
ibm.com/redbooks

Rational Application
Developer V6
Programming Guide

John Ganci
Fabio Ferraz
Hari Kanangi

Kiriya Keat
George Kroner

Juha Nevalainen
Nicolai Nielsen

Richard Raszka
Neil Weightman

Develop Java, Web, XML, database, 
EJB, Struts, JSF, SDO, EGL, Web 
Services, and portal applications

Test, debug, and profile with 
built-in and remote servers

Deploy applications to 
WebSphere Application 
Server and WebSphere Portal

Front cover

http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/




Rational Application Developer V6 Programming 
Guide

June 2005

International Technical Support Organization

SG24-6449-00



© Copyright International Business Machines Corporation 2005. All rights reserved.
Note to U.S. Government Users Restricted Rights -- Use, duplication or disclosure restricted by GSA ADP
Schedule Contract with IBM Corp.

First Edition (June 2005)

This edition applies to IBM Rational Application Developer V6.0 and IBM WebSphere Application 
Server V6.0.

Note: Before using this information and the product it supports, read the information in 
“Notices” on page xxi.



Contents

Notices  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xxi
Trademarks  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xxii

Preface  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xxiii
The team that wrote this redbook. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xxiii
Become a published author . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xxvi
Comments welcome. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .xxvii
Summary of changes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .xxvii

June 2005, First Edition  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .xxvii

Part 1.  Introduction to Rational Application Developer. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

Chapter 1.  Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.1  Introduction and concepts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.1.1  IBM Rational Software Development Platform . . . . . . . . . . . . . . . . . . 4
1.1.2  Version 6 terminology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.1.3  Application development challenges. . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.1.4  Key themes of Version 6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.2  Product packaging. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.2.1  Rational Developer supported platforms and databases  . . . . . . . . . . 9
1.2.2  Rational Application Developer V6 product packaging . . . . . . . . . . . 10
1.2.3  Rational Web Developer V6 product packaging . . . . . . . . . . . . . . . . 11

1.3  Product features  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
1.3.1  Summary of new features in Version 6 . . . . . . . . . . . . . . . . . . . . . . . 14
1.3.2  Specification versions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
1.3.3  Eclipse and IBM Rational Software Development Platform  . . . . . . . 19
1.3.4  Test server environments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
1.3.5  Licensing and installation  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
1.3.6  Migration and coexistence  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
1.3.7  Tools . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

1.4  Sample code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

Chapter 2.  Programming technologies . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
2.1  Desktop applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

2.1.1  Simple desktop applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
2.1.2  Database access. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
2.1.3  Graphical user interfaces  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
2.1.4  Extensible Markup Language (XML). . . . . . . . . . . . . . . . . . . . . . . . . 38

2.2  Static Web sites. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
© Copyright IBM Corp. 2005. All rights reserved. iii



2.2.1  Hypertext Transfer Protocol (HTTP) . . . . . . . . . . . . . . . . . . . . . . . . . 40
2.2.2  HyperText Markup Language (HTML)  . . . . . . . . . . . . . . . . . . . . . . . 42

2.3  Dynamic Web applications  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
2.3.1  Simple Web applications. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
2.3.2  Struts. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
2.3.3  JavaServer Faces (JSF) and Service Data Objects (SDO)  . . . . . . . 52
2.3.4  Portal applications. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

2.4  Enterprise JavaBeans . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
2.4.1  Different types of EJBs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
2.4.2  Other EJB features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
2.4.3  Requirements for the development environment  . . . . . . . . . . . . . . . 61

2.5  J2EE Application Clients . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
2.5.1  Application Programming Interfaces (APIs)  . . . . . . . . . . . . . . . . . . . 63
2.5.2  Security . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
2.5.3  Naming . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
2.5.4  Deployment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
2.5.5  Requirements for the development environment  . . . . . . . . . . . . . . . 65

2.6  Web Services  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
2.6.1  Web Services in J2EE V1.4  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

2.7  Messaging systems. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
2.7.1  Java Message Service (JMS) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
2.7.2  Message-driven EJBs (MDBs)  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
2.7.3  Requirements for the development environment  . . . . . . . . . . . . . . . 72

Chapter 3.  Workbench setup and preferences . . . . . . . . . . . . . . . . . . . . . . 75
3.1  Workbench basics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

3.1.1  Workspace basics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
3.1.2  Rational Application Developer log files . . . . . . . . . . . . . . . . . . . . . . 83

3.2  Preferences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
3.2.1  Automatic builds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
3.2.2  Clean build (manual) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
3.2.3  Capabilities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
3.2.4  File associations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
3.2.5  Local history  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
3.2.6  Perspectives preferences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
3.2.7  Internet preferences  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

3.3  Java development preferences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
3.3.1  Java classpath variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
3.3.2  Appearance of Java elements. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
3.3.3  Code style and formatting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
3.3.4  Compiler options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
3.3.5  Java editor settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
3.3.6  Installed JREs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
iv Rational Application Developer V6 Programming Guide



3.3.7  Templates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
3.3.8  Code review  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

Chapter 4.  Perspectives, views, and editors. . . . . . . . . . . . . . . . . . . . . . . 131
4.1  Integrated development environment (IDE)  . . . . . . . . . . . . . . . . . . . . . . 132

4.1.1  Rational Application Developer online help. . . . . . . . . . . . . . . . . . . 132
4.1.2  Perspectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136
4.1.3  Views. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137
4.1.4  Editors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137
4.1.5  Perspective layout. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137
4.1.6  Switching perspectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138
4.1.7  Specifying the default perspective  . . . . . . . . . . . . . . . . . . . . . . . . . 140
4.1.8  Organizing and customizing perspectives. . . . . . . . . . . . . . . . . . . . 140

4.2  Available perspectives. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143
4.2.1  CVS Repository Exploring perspective . . . . . . . . . . . . . . . . . . . . . . 143
4.2.2  Data perspective . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145
4.2.3  Debug perspective  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146
4.2.4  Generic Log Adapter perspective . . . . . . . . . . . . . . . . . . . . . . . . . . 148
4.2.5  J2EE perspective  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149
4.2.6  Java perspective . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151
4.2.7  Java Browsing perspective . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153
4.2.8  Java Type Hierarchy perspective . . . . . . . . . . . . . . . . . . . . . . . . . . 155
4.2.9  Plug-in Development perspective . . . . . . . . . . . . . . . . . . . . . . . . . . 157
4.2.10  Profiling and Logging perspective . . . . . . . . . . . . . . . . . . . . . . . . . 158
4.2.11  Resource perspective . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159
4.2.12  Team Synchronizing perspective  . . . . . . . . . . . . . . . . . . . . . . . . . 160
4.2.13  Test perspective . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161
4.2.14  Web perspective . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162
4.2.15  Progress view . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166

4.3  Rational Product Updater  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168

Chapter 5.  Projects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169
5.1  J2EE architecture  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170

5.1.1  EAR files . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170
5.1.2  WAR files  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170
5.1.3  EJB JAR files  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171
5.1.4  J2EE Application Client JAR files . . . . . . . . . . . . . . . . . . . . . . . . . . 171
5.1.5  RAR files . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171

5.2  Projects and folders. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171
5.3  Rational Application Developer projects . . . . . . . . . . . . . . . . . . . . . . . . . 173

5.3.1  Enterprise Application project . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175
5.3.2  J2EE Application Client project . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175
5.3.3  Dynamic Web Project . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175
 Contents v



5.3.4  Static Web Project. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176
5.3.5  EJB project  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176
5.3.6  Connector project  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176
5.3.7  Java project. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177
5.3.8  Simple project . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177
5.3.9  Server project  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177
5.3.10  Component test project . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177
5.3.11  Checkout projects from CVS. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177

5.4  Creating a new project  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178
5.5  Project properties  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180
5.6  Rational Application Developer samples. . . . . . . . . . . . . . . . . . . . . . . . . 181

5.6.1  The samples gallery  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183

Part 2.  Develop applications  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187

Chapter 6.  RUP and UML  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189
6.1  Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 190
6.2  Rational Unified Process (RUP)  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 190

6.2.1  Process Advisor  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191
6.2.2  Process Browser . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192
6.2.3  Setting process preferences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193

6.3  Visualize applications with UML  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 194
6.3.1  Unified Modeling Language (UML) . . . . . . . . . . . . . . . . . . . . . . . . . 195
6.3.2  Browse diagram  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197
6.3.3  Topic Diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199
6.3.4  Static Method Sequence Diagram  . . . . . . . . . . . . . . . . . . . . . . . . . 203
6.3.5  Class Diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 205
6.3.6  Sequence Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 213
6.3.7  J2EE visualization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 219

6.4  More information on UML . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 220

Chapter 7.  Develop Java applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . 221
7.1  Java perspective overview  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 222

7.1.1  Package Explorer view . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 223
7.1.2  Call Hierarchy view . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 223
7.1.3  Type Hierarch view . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 224
7.1.4  Problems view. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 225
7.1.5  Declaration view . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 225
7.1.6  Code review  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 226
7.1.7  Outline view. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 230
7.1.8  Diagram Navigator view  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 230

7.2  Develop the Java Bank application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 231
7.2.1  Java Bank application overview  . . . . . . . . . . . . . . . . . . . . . . . . . . . 231
7.2.2  Create a Java Project . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 235
vi Rational Application Developer V6 Programming Guide



7.2.3  Create a class diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 243
7.2.4  Create Java packages  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 246
7.2.5  Create a Java interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 248
7.2.6  Create Java classes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 249
7.2.7  Create the Java attributes and accessor methods . . . . . . . . . . . . . 254
7.2.8  Add method declarations to an interface. . . . . . . . . . . . . . . . . . . . . 258
7.2.9  Add Java methods and constructors. . . . . . . . . . . . . . . . . . . . . . . . 262
7.2.10  Define relationships (extends, implements, association)  . . . . . . . 267
7.2.11  Implement the methods for each class . . . . . . . . . . . . . . . . . . . . . 270
7.2.12  Run the Java Bank application . . . . . . . . . . . . . . . . . . . . . . . . . . . 286

7.3  Additional features used for Java applications  . . . . . . . . . . . . . . . . . . . . 286
7.3.1  Locating compile errors in your code  . . . . . . . . . . . . . . . . . . . . . . . 287
7.3.2  Running your programs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 290
7.3.3  Debug your programs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 292
7.3.4  Java Scrapbook  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 293
7.3.5  Pluggable Java Runtime Environment (JRE) . . . . . . . . . . . . . . . . . 296
7.3.6  Add a JAR file to the classpath . . . . . . . . . . . . . . . . . . . . . . . . . . . . 297
7.3.7  Export the Java code to a JAR file  . . . . . . . . . . . . . . . . . . . . . . . . . 299
7.3.8  Run the Java application external to Application Developer . . . . . . 301
7.3.9  Import a Java JAR file into a project . . . . . . . . . . . . . . . . . . . . . . . . 301
7.3.10  Utility Java Projects. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 302
7.3.11  Javadoc. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 303

7.4  Java editor and Rapid Application Development. . . . . . . . . . . . . . . . . . . 311
7.4.1  Navigate through the code  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 311
7.4.2  Source folding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 314
7.4.3  Type hierarchy  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 315
7.4.4  Smart Insert. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 316
7.4.5  Mark occurrences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 316
7.4.6  Word skipping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 317
7.4.7  Smart compilation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 318
7.4.8  Java search. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 318
7.4.9  Working sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 319
7.4.10  Quick Assist (Quick Fix)  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 320
7.4.11  Code Assist (content)  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 320
7.4.12  Import generation  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 322
7.4.13  Generate getters and setters  . . . . . . . . . . . . . . . . . . . . . . . . . . . . 324
7.4.14  Override/implement methods  . . . . . . . . . . . . . . . . . . . . . . . . . . . . 325
7.4.15  Adding constructors  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 326
7.4.16  Refactoring . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 328

Chapter 8.  Develop Java database applications  . . . . . . . . . . . . . . . . . . . 333
8.1  Introduction to Java database programming . . . . . . . . . . . . . . . . . . . . . . 334

8.1.1  JDBC overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 334
 Contents vii



8.1.2  Data source versus direct connection . . . . . . . . . . . . . . . . . . . . . . . 335
8.1.3  XMI and DDL. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 335
8.1.4  Rational Application Developer database features . . . . . . . . . . . . . 336

8.2  Preparing for the sample . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 337
8.2.1  Import the BankDB sample project . . . . . . . . . . . . . . . . . . . . . . . . . 337
8.2.2  Set up the BANK sample database. . . . . . . . . . . . . . . . . . . . . . . . . 338

8.3  Data perspective . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 339
8.3.1  Data Definition view  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 340
8.3.2  Database Explorer view  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 341
8.3.3  DB Output view . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 342
8.3.4  Navigator view. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 343

8.4  Create databases and tables from scripts. . . . . . . . . . . . . . . . . . . . . . . . 343
8.4.1  Create a database. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 344
8.4.2  Create a database connection  . . . . . . . . . . . . . . . . . . . . . . . . . . . . 347
8.4.3  Create the database tables from scripts . . . . . . . . . . . . . . . . . . . . . 349
8.4.4  Populate database tables with data  . . . . . . . . . . . . . . . . . . . . . . . . 351

8.5  Create and work with database objects  . . . . . . . . . . . . . . . . . . . . . . . . . 354
8.5.1  Create a database. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 355
8.5.2  Create a database connection  . . . . . . . . . . . . . . . . . . . . . . . . . . . . 356
8.5.3  Create a schema. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 357
8.5.4  Create a table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 358
8.5.5  Generate a DDL file  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 361
8.5.6  Deploy DDL from the workspace to a database . . . . . . . . . . . . . . . 362
8.5.7  Copy database objects from a DDL file to a workspace . . . . . . . . . 362
8.5.8  Generate DDL and XSD files for database objects. . . . . . . . . . . . . 365

8.6  UML visualization  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 370
8.6.1  Class diagrams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 370
8.6.2  Information engineering (IE) diagrams . . . . . . . . . . . . . . . . . . . . . . 374
8.6.3  IDEF1X (Integrated Definition Extended) diagrams  . . . . . . . . . . . . 375

8.7  Create SQL statements. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 376
8.7.1  Using the SQL Statement wizard  . . . . . . . . . . . . . . . . . . . . . . . . . . 376
8.7.2  Using the SQL Query Builder . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 384

8.8  Access a database from a Java application  . . . . . . . . . . . . . . . . . . . . . . 389
8.8.1  Prepare for the sample . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 389
8.8.2  Access the database using the DriverManager  . . . . . . . . . . . . . . . 390
8.8.3  Access using a data source  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 393

8.9  Java stored procedures. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 394
8.9.1  Prepare for the sample . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 395
8.9.2  Create a Java stored procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . 398
8.9.3  Build a stored procedure (deploy to database) . . . . . . . . . . . . . . . . 405
8.9.4  Java DriverManager access to a Java stored procedure . . . . . . . . 408
8.9.5  JavaBean access to Java stored procedure . . . . . . . . . . . . . . . . . . 409
viii Rational Application Developer V6 Programming Guide



Chapter 9.  Develop GUI applications. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 415
9.1  Introduction to the Visual Editor  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 416
9.2  Prepare for the sample . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 416

9.2.1  Create the project for the sample . . . . . . . . . . . . . . . . . . . . . . . . . . 417
9.2.2  Add JDBC driver for Cloudscape to project  . . . . . . . . . . . . . . . . . . 417
9.2.3  Set up the sample database . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 418
9.2.4  Import the model classes for the sample  . . . . . . . . . . . . . . . . . . . . 419

9.3  Launching the Visual Editor. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 419
9.3.1  Create a visual class . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 420
9.3.2  Open an existing class with the Visual Editor . . . . . . . . . . . . . . . . . 422

9.4  Visual Editor overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 423
9.4.1  Visual Editor layout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 423
9.4.2  Customizing the appearance of the Visual Editor . . . . . . . . . . . . . . 424

9.5  Work with the Visual Editor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 427
9.5.1  Resize a JavaBean component  . . . . . . . . . . . . . . . . . . . . . . . . . . . 427
9.5.2  Code synchronization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 427
9.5.3  Changing the properties of a component  . . . . . . . . . . . . . . . . . . . . 428
9.5.4  Add JavaBeans to a visual class. . . . . . . . . . . . . . . . . . . . . . . . . . . 428
9.5.5  Work with the Properties view. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 432
9.5.6  Testing the appearance of the GUI . . . . . . . . . . . . . . . . . . . . . . . . . 433
9.5.7  Add event handling to GUI  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 434
9.5.8  Verify the Java GUI application. . . . . . . . . . . . . . . . . . . . . . . . . . . . 435
9.5.9  Run the sample GUI as a Java application . . . . . . . . . . . . . . . . . . . 436
9.5.10  Automatically add event handling . . . . . . . . . . . . . . . . . . . . . . . . . 437
9.5.11  Visual Editor binding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 438

Chapter 10.  Develop XML applications . . . . . . . . . . . . . . . . . . . . . . . . . . . 443
10.1  XML overview and technologies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 444

10.1.1  XML and XML processor. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 444
10.1.2  DTD and XML schema . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 445
10.1.3  XSL and XSLT  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 446
10.1.4  XML namespaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 446
10.1.5  XPath  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 447

10.2  Rational Application Developer XML tools  . . . . . . . . . . . . . . . . . . . . . . 447
10.2.1  Create a project for XML sample  . . . . . . . . . . . . . . . . . . . . . . . . . 448
10.2.2  Work with DTD files. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 449
10.2.3  Work with XML schema files . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 458
10.2.4  Work with XML files. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 475
10.2.5  Work with XSL files . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 482
10.2.6  Transform an XML file. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 491
10.2.7  Java code generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 496

10.3  Where to find more information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 497
 Contents ix



Chapter 11.  Develop Web applications using JSPs and servlets . . . . . . 499
11.1  Introduction to Web applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 500

11.1.1  Concepts and technologies. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 500
11.1.2  Model-view-controller (MVC) pattern  . . . . . . . . . . . . . . . . . . . . . . 503

11.2  Web development tooling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 505
11.2.1  Web perspective and views  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 506
11.2.2  Web Projects. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 507
11.2.3  Web Site Designer  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 508
11.2.4  Page Designer  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 509
11.2.5  Page templates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 510
11.2.6  CSS Designer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 511
11.2.7  Javascript Editor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 511
11.2.8  WebArt Designer. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 511
11.2.9  AnimatedGif Designer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 511
11.2.10  File creation wizards . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 512

11.3  Prepare for the sample . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 513
11.3.1  ITSO Bank Web application overview. . . . . . . . . . . . . . . . . . . . . . 514
11.3.2  Create a Web Project . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 517
11.3.3  Web Project directory structure. . . . . . . . . . . . . . . . . . . . . . . . . . . 522
11.3.4  Import the ITSO Bank model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 524

11.4  Define the site navigation and appearance . . . . . . . . . . . . . . . . . . . . . . 524
11.4.1  Launch the Web Site Designer . . . . . . . . . . . . . . . . . . . . . . . . . . . 525
11.4.2  Create a new page template . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 526
11.4.3  Customize a page template  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 531
11.4.4  Customize a style sheet  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 535
11.4.5  Create the Web site navigation and pages . . . . . . . . . . . . . . . . . . 538
11.4.6  Verify the site navigation and page templates  . . . . . . . . . . . . . . . 542

11.5  Develop the static Web resources. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 544
11.5.1  Create the index.html page content (text, links)  . . . . . . . . . . . . . . 544
11.5.2  Create the rates.html page content (tables) . . . . . . . . . . . . . . . . . 546
11.5.3  Create the insurance.html page content (list) . . . . . . . . . . . . . . . . 547
11.5.4  Create the redbank.html page content (forms) . . . . . . . . . . . . . . . 548

11.6  Develop the dynamic Web resources . . . . . . . . . . . . . . . . . . . . . . . . . . 549
11.6.1  Creating model classes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 550
11.6.2  Working with servlets  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 576
11.6.3  Working with JSPs  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 595

11.7  Test the application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 610
11.7.1  Prerequisites to run sample Web application . . . . . . . . . . . . . . . . 611
11.7.2  Run the sample Web application  . . . . . . . . . . . . . . . . . . . . . . . . . 611
11.7.3  Verify the sample Web application . . . . . . . . . . . . . . . . . . . . . . . . 611

Chapter 12.  Develop Web applications using Struts . . . . . . . . . . . . . . . . 615
12.1  Introduction to Struts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 616
x Rational Application Developer V6 Programming Guide



12.1.1  Model-view-controller (MVC) pattern with Struts. . . . . . . . . . . . . . 616
12.1.2  Rational Application Developer support for Struts  . . . . . . . . . . . . 619

12.2  Prepare for the sample application . . . . . . . . . . . . . . . . . . . . . . . . . . . . 620
12.2.1  ITSO Bank Struts Web application overview  . . . . . . . . . . . . . . . . 620
12.2.2  Create a Dynamic Web Project with Struts support  . . . . . . . . . . . 622
12.2.3  Add JDBC driver for Cloudscape to project  . . . . . . . . . . . . . . . . . 628
12.2.4  Set up the sample database . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 629
12.2.5  Configure the data source. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 630

12.3  Develop a Web application using Struts . . . . . . . . . . . . . . . . . . . . . . . . 632
12.3.1  Create the Struts components  . . . . . . . . . . . . . . . . . . . . . . . . . . . 632
12.3.2  Realize the Struts components . . . . . . . . . . . . . . . . . . . . . . . . . . . 640
12.3.3  Modify ApplicationResources.properties. . . . . . . . . . . . . . . . . . . . 652
12.3.4  Struts validation framework. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 653
12.3.5  Page Designer and the Struts tag library  . . . . . . . . . . . . . . . . . . . 655
12.3.6  Using the Struts configuration file editor . . . . . . . . . . . . . . . . . . . . 659

12.4  Import and run the Struts sample application . . . . . . . . . . . . . . . . . . . . 665
12.4.1  Import the Struts Bank Web application sample . . . . . . . . . . . . . . 665
12.4.2  Prepare the application and sample database . . . . . . . . . . . . . . . 666
12.4.3  Run the Struts Bank Web application sample. . . . . . . . . . . . . . . . 666

Chapter 13.  Develop Web applications using JSF and SDO . . . . . . . . . . 673
13.1  Introduction to JSF and SDO  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 674

13.1.1  JavaServer Faces (JSF) overview  . . . . . . . . . . . . . . . . . . . . . . . . 674
13.1.2  Service Data Objects (SDO) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 678

13.2  Prepare for the sample . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 678
13.2.1  Create a Dynamic Web Project . . . . . . . . . . . . . . . . . . . . . . . . . . . 679
13.2.2  Set up the sample database . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 681
13.2.3  Configure the data source via the enhanced EAR  . . . . . . . . . . . . 681

13.3  Develop a Web application using JSF and SDO. . . . . . . . . . . . . . . . . . 684
13.3.1  Create a page template. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 684
13.3.2  Useful views for editing page template files  . . . . . . . . . . . . . . . . . 687
13.3.3  Customize the page template . . . . . . . . . . . . . . . . . . . . . . . . . . . . 695
13.3.4  Create JSF resources using the Web Diagram tool  . . . . . . . . . . . 700
13.3.5  Edit a JSF page. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 715
13.3.6  Completing the SDO example. . . . . . . . . . . . . . . . . . . . . . . . . . . . 730

13.4  Run the sample Web application. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 746
13.4.1  Prerequisites to run sample Web application . . . . . . . . . . . . . . . . 746
13.4.2  Run the sample Web application  . . . . . . . . . . . . . . . . . . . . . . . . . 747
13.4.3  Verify the sample Web application . . . . . . . . . . . . . . . . . . . . . . . . 747

Chapter 14.  Develop Web applications using EGL  . . . . . . . . . . . . . . . . . 751
14.1  Introduction to EGL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 752

14.1.1  Programming paradigms. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 752
 Contents xi



14.1.2  IBM Enterprise Generation Language. . . . . . . . . . . . . . . . . . . . . . 753
14.1.3  IBM EGL and Rational brand software . . . . . . . . . . . . . . . . . . . . . 758
14.1.4  IBM EGL feature enhancements. . . . . . . . . . . . . . . . . . . . . . . . . . 759
14.1.5  Where to find more information on EGL . . . . . . . . . . . . . . . . . . . . 761

14.2  IBM EGL tooling in Rational Developer products  . . . . . . . . . . . . . . . . . 761
14.2.1  EGL preferences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 761
14.2.2  EGL perspective and views. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 762
14.2.3  EGL projects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 763
14.2.4  EGL wizards . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 763
14.2.5  EGL migration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 764
14.2.6  EGL debug support . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 765
14.2.7  EGL Web application components . . . . . . . . . . . . . . . . . . . . . . . . 765

14.3  Prepare for the sample application . . . . . . . . . . . . . . . . . . . . . . . . . . . . 767
14.3.1  Install the EGL component of Rational Application Developer . . . 768
14.3.2  Enable the EGL development capability . . . . . . . . . . . . . . . . . . . . 771
14.3.3  Install DB2 Universal Database  . . . . . . . . . . . . . . . . . . . . . . . . . . 773
14.3.4  Create an EGL Web Project . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 773
14.3.5  Set up the sample database . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 777
14.3.6  Configure EGL preferences for SQL database connection. . . . . . 779
14.3.7  Configure the data source. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 780
14.3.8  Configure the DB2 JDBC class path environment variables. . . . . 783

14.4  Develop the Web application using EGL. . . . . . . . . . . . . . . . . . . . . . . . 784
14.4.1  Create the EGL data parts  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 785
14.4.2  Create and customize a page template  . . . . . . . . . . . . . . . . . . . . 799
14.4.3  Create the Faces JSPs using the Web Diagram tool  . . . . . . . . . . 802
14.4.4  Add EGL components to the Faces JSPs. . . . . . . . . . . . . . . . . . . 806

14.5  Import and run the sample Web application . . . . . . . . . . . . . . . . . . . . . 816
14.5.1  Import the EGL Web application sample. . . . . . . . . . . . . . . . . . . . 816
14.5.2  Prerequisites . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 816
14.5.3  Generate Java from EGL source  . . . . . . . . . . . . . . . . . . . . . . . . . 817
14.5.4  Run the sample EGL Web application  . . . . . . . . . . . . . . . . . . . . . 818

14.6  Considerations for exporting an EGL project  . . . . . . . . . . . . . . . . . . . . 820
14.6.1  Reduce the file size of the Project Interchange file . . . . . . . . . . . . 821
14.6.2  Manually adding the runtime libraries after migration . . . . . . . . . . 822
14.6.3  Export WAR/EAR with source. . . . . . . . . . . . . . . . . . . . . . . . . . . . 823

Chapter 15.  Develop Web applications using EJBs . . . . . . . . . . . . . . . . . 827
15.1  Introduction to Enterprise JavaBeans . . . . . . . . . . . . . . . . . . . . . . . . . . 828

15.1.1  What is new. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 828
15.1.2  Enterprise JavaBeans overview . . . . . . . . . . . . . . . . . . . . . . . . . . 828
15.1.3  EJB server. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 831
15.1.4  EJB container . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 832
15.1.5  EJB components . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 834
xii Rational Application Developer V6 Programming Guide



15.2  RedBank sample application overview . . . . . . . . . . . . . . . . . . . . . . . . . 840
15.3  Prepare for the sample . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 844

15.3.1  Required software . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 844
15.3.2  Create and configure the EJB projects . . . . . . . . . . . . . . . . . . . . . 844
15.3.3  Create an EJB project . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 845
15.3.4  Configure the EJB projects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 849
15.3.5  Import BankBasicWeb Project  . . . . . . . . . . . . . . . . . . . . . . . . . . . 853
15.3.6  Set up the sample database . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 854
15.3.7  Configure the data source. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 856

15.4  Develop an EJB application  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 858
15.4.1  Create the entity beans . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 859
15.4.2  Create the entity relationships. . . . . . . . . . . . . . . . . . . . . . . . . . . . 872
15.4.3  Customize the entity beans and add business logic . . . . . . . . . . . 880
15.4.4  Creating custom finders  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 890
15.4.5  Object-relational mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 892
15.4.6  Implement the session facade  . . . . . . . . . . . . . . . . . . . . . . . . . . . 901

15.5  Testing EJB with the Universal Test Client . . . . . . . . . . . . . . . . . . . . . . 915
15.6  Adapting the Web application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 919

Chapter 16.  Develop J2EE application clients . . . . . . . . . . . . . . . . . . . . . 925
16.1  Introduction to J2EE application clients. . . . . . . . . . . . . . . . . . . . . . . . . 926
16.2  Overview of the sample application. . . . . . . . . . . . . . . . . . . . . . . . . . . . 928
16.3  Preparing for the sample application. . . . . . . . . . . . . . . . . . . . . . . . . . . 931

16.3.1  Import the base enterprise application sample . . . . . . . . . . . . . . . 932
16.3.2  Set up the sample database . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 933
16.3.3  Configure the data source. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 934
16.3.4  Test the imported code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 936

16.4  Develop the J2EE application client  . . . . . . . . . . . . . . . . . . . . . . . . . . . 936
16.4.1  Create the J2EE application client projects. . . . . . . . . . . . . . . . . . 937
16.4.2  Configure the J2EE application client projects . . . . . . . . . . . . . . . 938
16.4.3  Import the graphical user interface and control classes . . . . . . . . 939
16.4.4  Create the BankDesktopController class  . . . . . . . . . . . . . . . . . . . 940
16.4.5  Complete the BankDesktopController class . . . . . . . . . . . . . . . . . 942
16.4.6  Register the BankDesktopController class as the Main class. . . . 946

16.5  Test the J2EE application client  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 946
16.6  Package the application client project . . . . . . . . . . . . . . . . . . . . . . . . . . 949

Chapter 17.  Develop Web Services applications . . . . . . . . . . . . . . . . . . . 951
17.1  Introduction to Web Services  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 952

17.1.1  Service-oriented architecture (SOA) . . . . . . . . . . . . . . . . . . . . . . . 952
17.1.2  Web Services as an SOA implementation  . . . . . . . . . . . . . . . . . . 953
17.1.3  Related Web Services standards . . . . . . . . . . . . . . . . . . . . . . . . . 955

17.2  Web Services tools in Application Developer . . . . . . . . . . . . . . . . . . . . 957
 Contents xiii



17.2.1  Creating a Web Service from existing resources  . . . . . . . . . . . . . 957
17.2.2  Creating a skeleton Web Service . . . . . . . . . . . . . . . . . . . . . . . . . 958
17.2.3  Client development . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 958
17.2.4  Testing tools for Web Services . . . . . . . . . . . . . . . . . . . . . . . . . . . 959

17.3  Preparing for the samples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 959
17.3.1  Import the sample code. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 959
17.3.2  Enable the Web Services Development capability . . . . . . . . . . . . 960
17.3.3  Set up the sample back-end database . . . . . . . . . . . . . . . . . . . . . 961
17.3.4  Add Cloudscape JDBC driver (JAR) to the project . . . . . . . . . . . . 962
17.3.5  Define a server to test the application. . . . . . . . . . . . . . . . . . . . . . 963
17.3.6  Test the application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 963

17.4  Create a Web Service from a JavaBean . . . . . . . . . . . . . . . . . . . . . . . . 964
17.4.1  Create a Web Service using the Web Service wizard. . . . . . . . . . 964
17.4.2  Resources generated by the Web Services wizard  . . . . . . . . . . . 968
17.4.3  Test the Web Service using the Web Services Explorer. . . . . . . . 971
17.4.4  Generate and test the client proxy  . . . . . . . . . . . . . . . . . . . . . . . . 973
17.4.5  Monitor the Web Service using the TCP/IP Monitor . . . . . . . . . . . 976

17.5  Create a Web Service from an EJB  . . . . . . . . . . . . . . . . . . . . . . . . . . . 980
17.6  Web Services security. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 980
17.7  Publish a Web Service using UDDI. . . . . . . . . . . . . . . . . . . . . . . . . . . . 982

Chapter 18.  Develop portal applications . . . . . . . . . . . . . . . . . . . . . . . . . . 985
18.1  Introduction to portals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 986

18.1.1  Portal concepts and definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . 986
18.1.2  IBM WebSphere Portal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 989
18.1.3  IBM Rational Application Developer . . . . . . . . . . . . . . . . . . . . . . . 989

18.2  Developing applications for WebSphere Portal . . . . . . . . . . . . . . . . . . . 992
18.2.1  Portal samples and tutorials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 992
18.2.2  Development strategy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 993
18.2.3  Portal tools for developing portals. . . . . . . . . . . . . . . . . . . . . . . . . 996
18.2.4  Portal tools for developing portlets . . . . . . . . . . . . . . . . . . . . . . . 1002
18.2.5  Portal tools for testing and debugging portlets . . . . . . . . . . . . . . 1016
18.2.6  Portal tools for deploying and managing portlets  . . . . . . . . . . . . 1020
18.2.7  Enterprise Application Integration Portal Tools . . . . . . . . . . . . . . 1022
18.2.8  Coexistence and migration of tools and applications  . . . . . . . . . 1023

18.3  Portal development scenario. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1025
18.3.1  Prepare for the sample . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1025
18.3.2  Create a portal project. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1026
18.3.3  Add and modify a portal page . . . . . . . . . . . . . . . . . . . . . . . . . . . 1027
18.3.4  Create and modify two portlets . . . . . . . . . . . . . . . . . . . . . . . . . . 1030
18.3.5  Add portlets to a portal page . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1033
18.3.6  Run the project in the test environment  . . . . . . . . . . . . . . . . . . . 1037
xiv Rational Application Developer V6 Programming Guide



Part 3.  Test and debug applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1041

Chapter 19.  Servers and server configuration . . . . . . . . . . . . . . . . . . . . 1043
19.1  Introduction to server configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . 1044

19.1.1  Supported test server environments . . . . . . . . . . . . . . . . . . . . . . 1045
19.1.2  Local vs. remote test environments  . . . . . . . . . . . . . . . . . . . . . . 1046
19.1.3  Commands to manage test servers  . . . . . . . . . . . . . . . . . . . . . . 1046

19.2  Configure a WebSphere V6 Test Environment . . . . . . . . . . . . . . . . . . 1046
19.2.1  Understanding WebSphere Application Server V6.0 profiles . . . 1047
19.2.2  WebSphere Application Server V6 installation . . . . . . . . . . . . . . 1050
19.2.3  WebSphere Application Server V6 profile creation . . . . . . . . . . . 1051
19.2.4  Define a new server in Rational Application Developer  . . . . . . . 1057
19.2.5  Verify the server  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1061
19.2.6  Customize a server in Rational Application Developer . . . . . . . . 1062

19.3  Add a project to a server . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1064
19.3.1  Considerations for adding a project to a server  . . . . . . . . . . . . . 1064
19.3.2  Add a project to a server . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1065

19.4  Remove a project from a server  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1066
19.4.1  Remove a project via Rational Application Developer  . . . . . . . . 1066
19.4.2  Remove a project via WebSphere Administrative Console. . . . . 1067

19.5  Publish application changes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1068
19.6  Configure application and server resources . . . . . . . . . . . . . . . . . . . . 1069

19.6.1  Configure application resources . . . . . . . . . . . . . . . . . . . . . . . . . 1069
19.6.2  Configure server resources. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1078
19.6.3  Configure messaging resources . . . . . . . . . . . . . . . . . . . . . . . . . 1079
19.6.4  Configure security . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1079

19.7  TCP/IP Monitor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1079

Chapter 20.  JUnit and component testing  . . . . . . . . . . . . . . . . . . . . . . . 1081
20.1  Introduction to application testing . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1082

20.1.1  Test concepts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1082
20.1.2  Benefits of unit and component testing . . . . . . . . . . . . . . . . . . . . 1085
20.1.3  Eclipse Hyades . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1086

20.2  JUnit testing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1087
20.2.1  JUnit fundamentals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1087
20.2.2  Prepare for the sample . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1089
20.2.3  Create the JUnit test case. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1089
20.2.4  Run the JUnit test case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1098

20.3  Automated component testing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1102
20.3.1  Prepare for the sample . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1102
20.3.2  Create a test project  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1103
20.3.3  Create a Java component test  . . . . . . . . . . . . . . . . . . . . . . . . . . 1103
20.3.4  Complete the component test code  . . . . . . . . . . . . . . . . . . . . . . 1107
 Contents xv



20.3.5  Run the component test  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1110
20.4  Web application testing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1112

20.4.1  Preparing for the sample. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1113
20.4.2  Create a Java project  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1113
20.4.3  Create (record) a test  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1113
20.4.4  Edit the test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1115
20.4.5  Generate an executable test . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1115
20.4.6  Create a deployment definition . . . . . . . . . . . . . . . . . . . . . . . . . . 1116
20.4.7  Run the test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1117
20.4.8  Analyze the test results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1118

Chapter 21.  Debug local and remote applications . . . . . . . . . . . . . . . . . 1121
21.1  Introduction to the debug tooling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1122

21.1.1  Summary of new Version 6 features . . . . . . . . . . . . . . . . . . . . . . 1122
21.1.2  Supported languages and environments  . . . . . . . . . . . . . . . . . . 1124
21.1.3  General functionality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1124
21.1.4  Drop-to-frame . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1126
21.1.5  View Management  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1127
21.1.6  XSLT debugger . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1128

21.2  Prepare for the sample . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1131
21.3  Debug a Web application on a local server. . . . . . . . . . . . . . . . . . . . . 1132

21.3.1  Set breakpoints in a servlet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1132
21.3.2  Set breakpoints in a JSP. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1135
21.3.3  Start the application for debugging . . . . . . . . . . . . . . . . . . . . . . . 1136
21.3.4  Run the application in the debugger . . . . . . . . . . . . . . . . . . . . . . 1136
21.3.5  Debug view with stack frames. . . . . . . . . . . . . . . . . . . . . . . . . . . 1141
21.3.6  Debug functions  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1141
21.3.7  Breakpoints view . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1142
21.3.8  Watch variables. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1142
21.3.9  Inspect variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1143
21.3.10  Evaluate an expression. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1143
21.3.11  Debug a JSP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1145

21.4  Debug a Web application on a remote server . . . . . . . . . . . . . . . . . . . 1145
21.4.1  Export the BankBasicWeb project to a WAR file. . . . . . . . . . . . . 1145
21.4.2  Deploy the BankBasicWeb.war. . . . . . . . . . . . . . . . . . . . . . . . . . 1146
21.4.3  Install the IBM Rational Agent Controller  . . . . . . . . . . . . . . . . . . 1147
21.4.4  Configure debug on remote WebSphere Application Server  . . . 1147
21.4.5  Attach to the remote server in Rational Application Developer . . 1148
21.4.6  Debug the application on the remote server . . . . . . . . . . . . . . . . 1151

Part 4.  Deploy and profile applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1153

Chapter 22.  Build applications with Ant . . . . . . . . . . . . . . . . . . . . . . . . . 1155
22.1  Introduction to Ant . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1156
xvi Rational Application Developer V6 Programming Guide



22.1.1  Ant build files. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1156
22.1.2  Ant tasks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1157

22.2  New features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1157
22.2.1  Code Assist . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1158
22.2.2  Code snippets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1159
22.2.3  Format an Ant script  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1163
22.2.4  Define format of an Ant script . . . . . . . . . . . . . . . . . . . . . . . . . . . 1164
22.2.5  Problem view. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1166

22.3  Build a simple Java application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1167
22.3.1  Prepare for the sample . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1168
22.3.2  Create a build file  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1169
22.3.3  Project definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1171
22.3.4  Global properties. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1171
22.3.5  Build targets  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1171
22.3.6  Run Ant . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1173
22.3.7  Ant Log Console . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1176
22.3.8  Rerun Ant  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1177
22.3.9  Forced build  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1177
22.3.10  Classpath problem  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1178
22.3.11  Run the sample application to verify the Ant build  . . . . . . . . . . 1178

22.4  Build a J2EE application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1178
22.4.1  J2EE application deployment packaging  . . . . . . . . . . . . . . . . . . 1179
22.4.2  Prepare for the sample . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1179
22.4.3  Create the build script . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1180
22.4.4  Run the Ant J2EE application build. . . . . . . . . . . . . . . . . . . . . . . 1183

22.5  Run Ant outside of Application Developer. . . . . . . . . . . . . . . . . . . . . . 1185
22.5.1  Prepare for the headless build  . . . . . . . . . . . . . . . . . . . . . . . . . . 1186
22.5.2  Run the headless Ant build script . . . . . . . . . . . . . . . . . . . . . . . . 1187

Chapter 23.  Deploy enterprise applications . . . . . . . . . . . . . . . . . . . . . . 1189
23.1  Introduction to application deployment . . . . . . . . . . . . . . . . . . . . . . . . 1190

23.1.1  Common deployment considerations . . . . . . . . . . . . . . . . . . . . . 1190
23.1.2  J2EE application components and deployment modules . . . . . . 1191
23.1.3  Java and WebSphere class loader . . . . . . . . . . . . . . . . . . . . . . . 1191
23.1.4  Deployment descriptors  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1196
23.1.5  WebSphere deployment architecture . . . . . . . . . . . . . . . . . . . . . 1199

23.2  Prepare for the sample . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1212
23.2.1  Review the deployment scenarios  . . . . . . . . . . . . . . . . . . . . . . . 1213
23.2.2  Install prerequisite software  . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1213
23.2.3  Import the sample application Project Interchange file . . . . . . . . 1214
23.2.4  Set up the sample database . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1215

23.3  Package the application for deployment . . . . . . . . . . . . . . . . . . . . . . . 1218
23.3.1  Packaging recommendations . . . . . . . . . . . . . . . . . . . . . . . . . . . 1218
 Contents xvii



23.3.2  Generate the EJB to RDB mapping  . . . . . . . . . . . . . . . . . . . . . . 1218
23.3.3  Customize the deployment descriptors . . . . . . . . . . . . . . . . . . . . 1220
23.3.4  Remove the Enhanced EAR datasource  . . . . . . . . . . . . . . . . . . 1221
23.3.5  Generate the deploy code. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1222
23.3.6  Export the EAR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1222

23.4  Deploy the enterprise application  . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1224
23.4.1  Configure the data source in WebSphere Application Server. . . 1225
23.4.2  Deploy the EAR. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1229

23.5  Verify the application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1230

Chapter 24.  Profile applications. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1237
24.1  Introduction to profiling  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1238

24.1.1  Profiling features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1238
24.1.2  Profiling architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1242
24.1.3  Profiling and Logging perspective . . . . . . . . . . . . . . . . . . . . . . . . 1244
24.1.4  Profiling sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1245

24.2  Prepare for the profiling sample  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1246
24.2.1  Prerequisites hardware and software . . . . . . . . . . . . . . . . . . . . . 1247
24.2.2  Enable the Profiling and Logging capability  . . . . . . . . . . . . . . . . 1247
24.2.3  Import the sample project interchange file  . . . . . . . . . . . . . . . . . 1248
24.2.4  Publish and run sample application  . . . . . . . . . . . . . . . . . . . . . . 1249

24.3  Profile the sample application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1249
24.3.1  Start server in profile mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1249
24.3.2  Collect profile information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1253
24.3.3  Analysis of code coverage information . . . . . . . . . . . . . . . . . . . . 1253

Part 5.  Team development . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1255

Chapter 25.  Rational ClearCase integration . . . . . . . . . . . . . . . . . . . . . . 1257
25.1  Introduction to IBM Rational ClearCase  . . . . . . . . . . . . . . . . . . . . . . . 1258

25.1.1  IBM Rational Application Developer ClearCase overview  . . . . . 1258
25.1.2  IBM Rational ClearCase terminology  . . . . . . . . . . . . . . . . . . . . . 1259
25.1.3  IBM Rational ClearCase LT installation  . . . . . . . . . . . . . . . . . . . 1260
25.1.4  IBM Rational Application Developer integration for ClearCase. . 1260

25.2  Integration scenario overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1263
25.3  ClearCase setup for a new project  . . . . . . . . . . . . . . . . . . . . . . . . . . . 1264

25.3.1  Enable Team capability in preferences . . . . . . . . . . . . . . . . . . . . 1264
25.3.2  Create new ClearCase project  . . . . . . . . . . . . . . . . . . . . . . . . . . 1265
25.3.3  Join a ClearCase project . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1268
25.3.4  Create a Web project  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1274
25.3.5  Add a project to ClearCase source control . . . . . . . . . . . . . . . . . 1274

25.4  Development scenario. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1277
25.4.1  Developer 1 adds a servlet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1277
25.4.2  Developer 1 delivers work to the integration stream . . . . . . . . . . 1279
xviii Rational Application Developer V6 Programming Guide



25.4.3  Developer 1 makes a baseline . . . . . . . . . . . . . . . . . . . . . . . . . . 1282
25.4.4  Developer 2 joins the project. . . . . . . . . . . . . . . . . . . . . . . . . . . . 1284
25.4.5  Developer 2 imports projects into Application Developer . . . . . . 1287
25.4.6  Developer 2 modifies the servlet. . . . . . . . . . . . . . . . . . . . . . . . . 1289
25.4.7  Developer 2 delivers work to the integration stream . . . . . . . . . . 1292
25.4.8  Developer 1 modifies the servlet. . . . . . . . . . . . . . . . . . . . . . . . . 1293
25.4.9  Developer 1 delivers new work to the integration stream . . . . . . 1294

Chapter 26.  CVS integration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1299
26.1  Introduction to CVS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1300

26.1.1  CVS features. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1300
26.1.2  New V6 features for team development . . . . . . . . . . . . . . . . . . . 1301

26.2  CVSNT Server implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1301
26.2.1  CVS Server installation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1302
26.2.2  CVS Server repository configuration. . . . . . . . . . . . . . . . . . . . . . 1303
26.2.3  Create the Windows users and groups used by CVS . . . . . . . . . 1306
26.2.4  Verify the CVSNT installation . . . . . . . . . . . . . . . . . . . . . . . . . . . 1307
26.2.5  Create CVS users . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1307

26.3  CVS client configuration for Application Developer. . . . . . . . . . . . . . . 1309
26.3.1  Configure CVS Team Capabilities  . . . . . . . . . . . . . . . . . . . . . . . 1309
26.3.2  Access the CVS Repository  . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1310

26.4  Configure CVS in Rational Application Developer  . . . . . . . . . . . . . . . 1312
26.4.1  Configure Rational Application Developer CVS preferences  . . . 1312

26.5  Development scenario. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1321
26.5.1  Create and share the project (step 1 - cvsuser1) . . . . . . . . . . . . 1322
26.5.2  Add a shared project to the workspace (step 2 - cvsuser2)  . . . . 1327
26.5.3  Modifying the Servlet (step 2 - cvsuser1) . . . . . . . . . . . . . . . . . . 1332
26.5.4  Synchronize with repository (step 3 - cvsuser1) . . . . . . . . . . . . . 1333
26.5.5  Parallel development (step 4 - cvsuser1 and cvsuser2) . . . . . . . 1335
26.5.6  Versioning (step 5- cvsuser1) . . . . . . . . . . . . . . . . . . . . . . . . . . . 1342

26.6  CVS resource history  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1343
26.7  Comparisons in CVS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1344

26.7.1  Comparing workspace file with repository. . . . . . . . . . . . . . . . . . 1345
26.7.2  Comparing two revisions in repository  . . . . . . . . . . . . . . . . . . . . 1347

26.8  Annotations in CVS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1348
26.9  Branches in CVS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1350

26.9.1  Branching  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1350
26.9.2  Merging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1354
26.9.3  Refreshing server-defined branches . . . . . . . . . . . . . . . . . . . . . . 1357

26.10  Work with patches . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1360
26.11  Disconnecting a project . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1360
26.12  Synchronize perspective . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1361

26.12.1  Custom configuration of resource synchronization . . . . . . . . . . 1362
 Contents xix



26.12.2  Schedule synchronization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1367

Part 6.  Appendixes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1369

Appendix A.  IBM product installation and configuration tips. . . . . . . . 1371
IBM Rational Application Developer V6 installation . . . . . . . . . . . . . . . . . . . 1372

Rational Application Developer installation . . . . . . . . . . . . . . . . . . . . . . . 1372
WebSphere Portal V5.0 Test Environment installation . . . . . . . . . . . . . . 1376
WebSphere Portal V5.1 Test Environment installation . . . . . . . . . . . . . . 1377
Rational Application Developer Product Updater - Interim Fix 0004. . . . 1380

IBM Rational Agent Controller V6 installation  . . . . . . . . . . . . . . . . . . . . . . . 1382
IBM Rational ClearCase LT installation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1385
IBM DB2 Universal Database V8.2 installation  . . . . . . . . . . . . . . . . . . . . . . 1387
IBM WebSphere Application Server V6 installation . . . . . . . . . . . . . . . . . . . 1387
WebSphere Application Server messaging configuration  . . . . . . . . . . . . . . 1389

Configure the service bus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1390
Configure the bus members . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1390
Configure the destinations  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1390
Verify the messaging engine startup. . . . . . . . . . . . . . . . . . . . . . . . . . . . 1391
Configure JMS connection queue factory . . . . . . . . . . . . . . . . . . . . . . . . 1391
Configure the destination JMS queue . . . . . . . . . . . . . . . . . . . . . . . . . . . 1392
Configuration of a JMS activation specification. . . . . . . . . . . . . . . . . . . . 1392

Appendix B.  Additional material  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1395
Locating the Web material . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1396

System requirements for downloading the Web material . . . . . . . . . . . . 1396
Unpack the 6449code.zip. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1396
Description of sample code  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1396
Import sample code from a Project Interchange file. . . . . . . . . . . . . . . . . . . 1398

Related publications  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1401
IBM Redbooks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1401
Other publications  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1402
Online resources  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1402
How to get IBM Redbooks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1404
Help from IBM  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1404

Index  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1405
xx Rational Application Developer V6 Programming Guide



Notices

This information was developed for products and services offered in the U.S.A. 

IBM may not offer the products, services, or features discussed in this document in other countries. Consult 
your local IBM representative for information on the products and services currently available in your area. 
Any reference to an IBM product, program, or service is not intended to state or imply that only that IBM 
product, program, or service may be used. Any functionally equivalent product, program, or service that 
does not infringe any IBM intellectual property right may be used instead. However, it is the user's 
responsibility to evaluate and verify the operation of any non-IBM product, program, or service. 

IBM may have patents or pending patent applications covering subject matter described in this document. 
The furnishing of this document does not give you any license to these patents. You can send license 
inquiries, in writing, to: 
IBM Director of Licensing, IBM Corporation, North Castle Drive Armonk, NY 10504-1785 U.S.A.

The following paragraph does not apply to the United Kingdom or any other country where such provisions 
are inconsistent with local law: INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES 
THIS PUBLICATION "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED, 
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF NON-INFRINGEMENT, 
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer 
of express or implied warranties in certain transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors. Changes are periodically made 
to the information herein; these changes will be incorporated in new editions of the publication. IBM may 
make improvements and/or changes in the product(s) and/or the program(s) described in this publication at 
any time without notice. 

Any references in this information to non-IBM Web sites are provided for convenience only and do not in any 
manner serve as an endorsement of those Web sites. The materials at those Web sites are not part of the 
materials for this IBM product and use of those Web sites is at your own risk. 

IBM may use or distribute any of the information you supply in any way it believes appropriate without 
incurring any obligation to you.

Information concerning non-IBM products was obtained from the suppliers of those products, their published 
announcements or other publicly available sources. IBM has not tested those products and cannot confirm 
the accuracy of performance, compatibility or any other claims related to non-IBM products. Questions on 
the capabilities of non-IBM products should be addressed to the suppliers of those products.

This information contains examples of data and reports used in daily business operations. To illustrate them 
as completely as possible, the examples include the names of individuals, companies, brands, and products. 
All of these names are fictitious and any similarity to the names and addresses used by an actual business 
enterprise is entirely coincidental. 

COPYRIGHT LICENSE: 
This information contains sample application programs in source language, which illustrates programming 
techniques on various operating platforms. You may copy, modify, and distribute these sample programs in 
any form without payment to IBM, for the purposes of developing, using, marketing or distributing application 
programs conforming to the application programming interface for the operating platform for which the 
sample programs are written. These examples have not been thoroughly tested under all conditions. IBM, 
therefore, cannot guarantee or imply reliability, serviceability, or function of these programs. You may copy, 
modify, and distribute these sample programs in any form without payment to IBM for the purposes of 
developing, using, marketing, or distributing application programs conforming to IBM's application 
programming interfaces. 
© Copyright IBM Corp. 2005. All rights reserved. xxi



Trademarks
The following terms are trademarks of the International Business Machines Corporation in the United States, 
other countries, or both: 

AIX®
Balance®
ClearCase MultiSite®
ClearCase®
Cloudscape™
DB2 Universal Database™
DB2®
developerWorks®
Informix®
IBM®
ibm.com®
IMS™

iSeries™
Lotus Notes®
Lotus®
Notes®
OS/390®
OS/400®
Rational Rose®
Rational Unified Process®
Rational®
Redbooks™
Redbooks (logo) ™
RUP®

S/390®
ThinkCentre™
VisualAge®
VisualGen®
WebSphere®
Workplace™
Workplace Web Content 
Management™
XDE™
z/OS®
zSeries®

The following terms are trademarks of other companies:

Java and all Java-based trademarks and logos are trademarks or registered trademarks of Sun 
Microsystems, Inc. in the United States, other countries, or both. 

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of Microsoft Corporation in the 
United States, other countries, or both.

Intel, Intel Inside (logos), MMX, and Pentium are trademarks of Intel Corporation in the United States, other 
countries, or both.

UNIX is a registered trademark of The Open Group in the United States and other countries.

Linux is a trademark of Linus Torvalds in the United States, other countries, or both.

Other company, product, and service names may be trademarks or service marks of others.
xxii Rational Application Developer V6 Programming Guide



Preface

IBM® Rational® Application Developer V6.0 is the full function Eclipse 3.0 based 
development platform for developing Java™ 2 Platform Standard Edition (J2SE) 
and Java 2 Platform Enterprise Edition (J2EE) applications with a focus on 
applications to be deployed to IBM WebSphere® Application Server and IBM 
WebSphere Portal. Rational Application Developer provides integrated 
development tools for all development roles, including Web developers, Java 
developers, business analysts, architects, and enterprise programmers. 

This IBM Redbook is a programming guide that highlights the features and 
tooling included with IBM Rational Application Developer V6.0. Many of the 
chapters provide working examples that demonstrate how to use the tooling to 
develop applications as well as achieve the benefits of visual and rapid Web 
development.

This book consists of six parts:

� Introduction to Rational Application Developer
� Develop applications
� Test and debug applications
� Deploy and profile applications
� Team development
� Appendixes

The team that wrote this redbook
This redbook was produced by a team of specialists from around the world 
working at the International Technical Support Organization, Raleigh Center.
© Copyright IBM Corp. 2005. All rights reserved. xxiii



Figure 1   IBM Redbook team (top, l-r: Neil Weightman, Fabio Ferraz, Richard Raszka, Juha Nevalainen; 
bottom, l-r: Hari Kanangi, John Ganci, Nicolai Nielsen, Kiriya Keat)

John Ganci is a Consulting IT Specialist at the IBM ITSO, Raleigh Center, USA. 
John has 15 years of experience in application design, development, testing, and 
consulting. His areas of expertise include e-business integration, WebSphere 
Application Server, e-commerce, portals, pervasive computing, technical team 
leadership, Linux®, and J2EE programming.

Daniel Farrell is a Certified Specialist in the IBM Software Group USA. He has a 
Masters degree in Computer Science from Regis University and is currently 
pursuing a PhD from Clemson in Adult Education and Human Resource Studies. 
He has 20 years of experience working with Informix® and related database 
technologies, and more recently has been focusing on IBM EGL and supporting 
tooling.
xxiv Rational Application Developer V6 Programming Guide



Fabio Ferraz is the Chief Consultant for Advus Corp, São Paulo, Brazil. He has 
12 years of experience in the IT field, with eight of those dedicated to e-business.

Ed Gondek is a Product Manager in the USA with IBM Software Group - 
Rational products division. He has 25 years of Information Systems and software 
management experience with expertise in 4GLs, Web-based application design, 
Web analytics, business intelligence tooling, and software product delivery.

Hari Kanangi is a Senior Technical Consultant for Stratus Solutions, Inc. He has 
nine years of industry experience. Over the past six years, Hari has focused on 
WebSphere, J2EE, and Java-based technologies. His expertise includes 
architecting, designing, developing, and deploying J2EE-based solutions. He is a 
Sun-certified Java Programmer, architect, and a WebSphere-certified specialist. 

Kiriya Keat is an IT Specialist in Australia with IBM Global Services. He has five 
years of experience in the Web development field. His areas of expertise include 
e-business integration, application architecture and development, technical team 
leadership, and WebSphere solutions.

George Kroner is a Co-op IT Specialist at the IBM ITSO Center in Raleigh, 
North Carolina. He is currently pursuing a Bachelor of Science degree in 
Information Sciences and Technology at Pennsylvania State University. His 
interests include Web applications, wireless/mobile computing, and intelligent 
interfaces.

Juha Nevalainen is an Consulting IT Specialist for Rational Technical Sales with 
IBM Finland. His areas of expertise include Rational brand software products, 
WebSphere Commerce, e-business, and systems integration.

Nicolai Nielsen is an Advisory IT Specialist with IBM Global Services, Denmark. 
He has nine years of experience in the fields of consulting, application 
development, and systems integration. Nicolai holds a degree in engineering 
from the Technical University of Denmark. He has written extensively about 
WebSphere Commerce, J2EE application development, and has worked on 
several WebSphere Commerce projects over the last three years.

Richard Raszka is a Senior IT Specialist in IBM Global Services, Application 
Management Services, Australia. He has 19 years of IT experience in the fields 
of application development, systems integration (particularly of 
e-business/e-commerce solutions), project planning, compiler development, 
configuration management, graphics and CAD/CAM development, simulation, 
and agent-oriented artificial intelligence. He holds degrees in Mechanical 
Engineering, Mathematical and Computer Science from the University of 
Adelaide and a Masters of Technology Management from Monash University in 
Melbourne. His areas of expertise include end-to-end systems integration, 
application design including patterns, application architecture, and development, 
 Preface xxv



technical team leadership, e-business solutions, WebSphere Application Server, 
UNIX®, J2EE architecture, and Java development.

Neil Weightman is a Technical Instructor in the United Kingdom. He has 15 
years of experience in the software development field. He holds a degree in 
Physics from Imperial College, University of London, and a masters in Scientific 
Computing from South Bank University, London. His areas of expertise include 
J2EE component development, Web services development, and best practices. 

Thanks to the following people for their contributions to this project:

� Ueli Wahli, Ian Brown, Fabio Ferraz, Maik Schumacher, Henrik Sjostrand who 
wrote the previous redbook edition, WebSphere Studio Application Developer 
Version 5 Programming Guide, SG24-6957

� Special thanks to Eric Erpenbach from the IBM WebSphere Technology and 
Training organization for providing early training materials on IBM Rational 
Application Developer V6.0, which was a tremendous help in ramping up on 
the new features for many topics found in this book

� Beverly DeWitt, Rational Application Developer Product Manager, IBM 
Toronto, Canada

� Geni Hutton, Rational Application Developer Product Manager, IBM Toronto, 
Canada

� Todd Britton, Manager for IBM Rational Application Developer Tools 
Development, IBM Raleigh, USA

� Kate Price, Rational Application Developer Information Development, IBM 
Toronto, Canada

� Leigh Davidson, Rational Application Developer Information Development 
Editor, IBM Toronto, Canada

� Tim Deboer, IBM WebSphere Tools, IBM Toronto, Canada

� Prem Lall, IT Specialist for IBM Global Services, IBM Gaithersburg, USA

� Chris Feldhacker, Principal Financial Group

Become a published author
Join us for a two- to six-week residency program! Help write an IBM Redbook 
dealing with specific products or solutions, while getting hands-on experience 
with leading-edge technologies. You'll team with IBM technical professionals, 
Business Partners and/or customers. 
xxvi Rational Application Developer V6 Programming Guide



Your efforts will help increase product acceptance and customer satisfaction. As 
a bonus, you'll develop a network of contacts in IBM development labs, and 
increase your productivity and marketability. 

Find out more about the residency program, browse the residency index, and 
apply online at:

ibm.com/redbooks/residencies.html

Comments welcome
Your comments are important to us!

We want our Redbooks™ to be as helpful as possible. Send us your comments 
about this or other Redbooks in one of the following ways:

� Use the online Contact us review redbook form found at:

ibm.com/redbooks

� Send your comments in an email to:

redbook@us.ibm.com

� Mail your comments to:

IBM Corporation, International Technical Support Organization
Dept. HZ8  Building 662
P.O. Box 12195
Research Triangle Park, NC 27709-2195

Summary of changes
This section describes the technical changes made in this edition of the book and 
in previous editions. This edition may also include minor corrections and editorial 
changes that are not identified.

Summary of Changes
for SG24-6449-00
for the Rational Application Developer V6 Programming Guide

June 2005, First Edition
This book is a major rewrite ofWebSphere Studio Application Developer Version 
5 Programming Guide, SG24-6957. The previous book was based on Application 
Developer Version 5; this book is based on Version 6.
 Preface xxvii

http://www.redbooks.ibm.com/residencies.html
http://www.redbooks.ibm.com/residencies.html
http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/contacts.html


This revision reflects the addition, deletion, or modification of new and changed 
information described below.

New information
� Broaden appeal

– Improves user assistance and ease of learning
– Progressive disclosure of tools

� Raise productivity

– Rapid Web and Portal application development
– Rapid deployment to WebSphere Application Server V6.0

� Extended integration

– Integration of Rational technology to enhance the application development 
lifecycle and raise productivity

– Enhance portal as a first-class deployment target

� Maintain standards and middleware support

– Java 2 Platform Enterprise Edition V1.4 specification compliance
– Support for many new integrated test servers including WebSphere 

Application Server V6.0/V5.x, and WebSphere Portal V5.0.2.2
– New and enhanced tooling (Web Services, EGL, Visual UML, portal, 

Struts, JSF, SDO, etc.).

Changed information
� General update of existing information to Version 6

Deleted information
� Developing Web applications with database access using DB beans. The 

preferred method of database access is Service Data Objects (SDO).
xxviii Rational Application Developer V6 Programming Guide



Part 1 Introduction to 
Rational 
Application 
Developer

Part 1
© Copyright IBM Corp. 2005. All rights reserved. 1



2 Rational Application Developer V6 Programming Guide



Chapter 1. Introduction

IBM Rational Application Developer V6.0 is the full function development 
platform for developing Java 2 Platform Standard Edition (J2SE) and Java 2 
Platform Enterprise Edition (J2EE) applications with a focus on applications to be 
deployed to IBM WebSphere Application Server and IBM WebSphere Portal.

This chapter contains an introduction to the concepts, packaging, and features of 
IBM Rational Application Developer V6.0 and IBM Rational Web Developer V6.0 
products.

The chapter is organized into the following sections:

� Introduction and concepts
� Product packaging
� Product features
� Sample code

1

Note: Although this chapter does contain information on both IBM Rational 
Application Developer V6.0 and IBM Rational Web Developer V6.0, the 
majority of the chapters and samples found in this book were only tested with 
IBM Rational Application Developer V6.0. 
© Copyright IBM Corp. 2005. All rights reserved. 3



1.1  Introduction and concepts
This section provides an introduction to the Rational Software Development 
Platform, Eclipse, Rational Application Developer, and Rational Web Developer.

Rational products help your business or organization manage the entire software 
development process. Software modelers, architects, developers, and testers 
can use the same team-unifying Rational Software Development Platform tooling 
to be more efficient in exchanging assets, following common processes, 
managing change and requirements, maintaining status, and improving quality.

1.1.1  IBM Rational Software Development Platform
The IBM Rational Software Development Platform is not a single product, but 
rather an integrated set of products that share a common technology platform 
built on the Eclipse 3.0 framework in support of each phase of the development 
life cycle.

The IBM Rational Software Development Platform provides a team-based 
environment with capabilities that are optimized for the key roles of a 
development team including business analyst, architect, developer, tester, and 
deployment manager. It enables a high degree of team cohesion through shared 
access to common requirements, test results, software assets, and workflow and 
process guidance. Combined, these capabilities improve both individual and 
team productivity.

Figure 1-1 on page 5 provides perspective on how the Rational Application 
Developer and Rational Web Developer products fit within the IBM Rational 
Software Development Platform product set.
4 Rational Application Developer V6 Programming Guide



Figure 1-1   Rational Software Development Platform products

We have included a brief description of each of the products included in the IBM 
Rational Software Development Platform (see Figure 1-1) that share common 
tooling based on the IBM Eclipse SDK V3.0 (IBM-supported Eclipse 3.0):

� Rational Software Modeler

The Software Modeler is a UML-based visual modeling and design tool for 
system analysts, software architects, and designers who need to clearly 
define and communicate their architectural specifications to stakeholders. 

This product was known in previous releases as Rational XDE™ Modeler and 
is targeted at development shops where the business analyst has a distinct 
role of architecture and design (no development).

� Rational Software Architect

The Software Architect is a design and construction tool that leverages 
model-driven development with UML for creating well-architected 
applications, including those based on a Service Oriented Architecture 
(SOA). It unifies modeling, Java structural review, Web Services, J2SE, 
J2EE, database, XML, Web development, and process guidance for 
architects and senior developers creating applications in Java or C++.

This product was known in previous releases as Rational Rose® and Rational 
XDE for Java. Software Architect includes architecture and design capability 
as well as full J2EE development functionality provided by Rational 
Application Developer. This product is targeted at development shops where 

Rational Software Development Platform (IBM Eclipse SDK 3.0)

WebSphere
Business
Integrator 
Modeler

Rational
Web

Developer

Rational
Application
Developer

Rational
Software
Architect

Rational
Software
Modeler

Rational
Function
Tester

Rational
Performance

Tester

Analyst Architect / Application Developer Tester

Rational
Manual
Tester
 Chapter 1. Introduction 5



the architect has a strong architecture and design role, as well as application 
development. If architects only need the modeling functionality, they should 
use the Rational Software Modeler product.

� Rational Web Developer

The IBM Rational Web Developer (or simply Web Developer) extends the 
capabilities of Eclipse 3.0 with visual tools for Web, Java, and rich client 
applications, and full support for XML, Web services, and Enterprise 
Generation Language. 

In previous releases this product was known as WebSphere Studio Site 
Developer. Rational Web Developer is packaged with IBM WebSphere 
Application Server Express V6.0.

� Rational Application Developer

The IBM Rational Application Developer is a full suite of development, 
analysis, and deployment tools for rapidly implementing J2EE applications, 
Enterprise JavaBeans, portlets, and Web applications. 

In previous releases this product was known as WebSphere Studio 
Application Developer and is targeted at J2EE developers.

� Rational Functional Tester

The Rational Function Tester is an automated testing tool that tests Java, 
HTML, VB.NET, and Windows® applications. It provides the capability to 
record robust scripts that can be played back to validate new builds of an 
application. 

� Rational Performance Tester

The Rational Performance Tester is a multi-user system performance test 
product designed to test Web applications, and focuses on ease-of-use and 
scalability. 

� WebSphere Business Integrator Modeler

The WebSphere Business Integrator Modeler does not carry the Rational 
brand name, but is an important product of the Rational Software 
Development Platform. WebSphere Business Integrator Modeler targets the 
business analyst who models business processes. WebSphere Business 
Integrator Modeler can be used to generate Business Process Execution 
Language (BPEL) definitions to be deployed to WebSphere Business 
Integrator production environments. The WebSphere Business Integrator 
Modeler BPEL provides a more seamless move to production and eliminates 
the need to create Visio diagrams and then move to production.

Note: IBM Rational Application Developer V6.0 is the focus of this book.
6 Rational Application Developer V6 Programming Guide



1.1.2  Version 6 terminology
Table 1-1 provides a basic terminology comparison from Version 6 and Version 5 
for reference purposes.

Table 1-1   Terminology

1.1.3  Application development challenges
To better grasp the business value that IBM Rational Application Developer V6.0 
provides, it is important to understand the challenges businesses face in 
application development.

Table 1-2 highlights the key application development challenges as well as 
desired development tooling solutions.

Table 1-2   Application development challenges

Version 6 Version 5

Rational Developer
Note: Used to describe development 
products built on common Eclipse base

WebSphere Studio

Rational Application Developer
(known as Application Developer)

WebSphere Studio Application Developer

Rational Web Developer
(known as Web Developer)

WebSphere Studio Site Developer

IBM Eclipse SDK 3.0
Note: IBM branded and value-added 
version of Eclipse SDK 3.0

WebSphere Studio Workbench
(IBM supported Eclipse 2.x)

Workbench Workbench

IBM Rational Software Development 
Platform
Note: Used to describe product set built 
on common Eclipse 3.0 platform

N/A

Challenges Solution tooling

Application development is complex, time 
consuming, and error prone.

Raise productivity by automating time 
consuming and error prone tasks.

Highly skilled developers are required and 
in short supply.

Improve code quality early in the 
development life cycle.
 Chapter 1. Introduction 7



1.1.4  Key themes of Version 6
There are many very significant enhancements and features in IBM Rational 
Application Developer V6.0. We have listed the key themes of Version 6 tooling:

� Broaden appeal.

– Improves user assistance and ease of learning
– Progressive disclosure of tools

� Raise productivity.

– Rapid Web and Portal application development
– Rapid deployment to WebSphere Application Server and WebSphere 

Portal

� Extended integration.

– Integration of Rational technology to enhance the application development 
life cycle and raise productivity

– Enhances portal as a first-class deployment target

� Maintain standards and middleware support.

– Java 2 Platform Enterprise Edition V1.4 specification compliance
– Support for many new integrated test servers including WebSphere 

Application Server V6.0/V5.x and WebSphere Portal V5.0.2.2/5.1
– New and enhanced tooling (Web Services, EGL, Visual UML, portal, etc.)

� Team unifying platform.

As described in “IBM Rational Software Development Platform” on page 4, 
Rational Application Developer and Rational Web Developer are products 
included in the IBM Rational Software Development Platform product set that 
promote team development. 

We provide more detail on the these new features in “Summary of new features 
in Version 6” on page 14, as well as throughout the chapters of this book.

Learning curves are long. Shorten learning curves by providing 
Rapid Application Development (RAD) 
tooling (visual layout and design, 
resusable components, code generators, 
etc.).

Challenges Solution tooling
8 Rational Application Developer V6 Programming Guide



1.2  Product packaging
This section highlights the product packaging for IBM Rational Web Developer 
V6.0 and IBM Rational Application Developer V6.0.

1.2.1  Rational Developer supported platforms and databases
This section describes the platforms and databases supported by the Rational 
Developer products.

Supported operating system platforms
IBM Rational Application Developer V6.0 supports the following operating 
systems:

� Microsoft® Windows:

– Windows XP with Service Packs 1 and 2
– Windows 2000 Professional with Service Packs 3 and 4
– Windows 2000 Server with Service Packs 3 and 4
– Windows 2000 Advanced Server with Service Packs 3 and 4
– Windows Server 2003 Standard Edition
– Windows Server 2003 Enterprise Edition

� Linux on Intel®:

– Red Hat Enterprise Linux Workstation V3 (all service packs)
– SuSE Linux Enterprise Server (SLES) V9 (all service packs)

The IBM Rational Agent Controller included with IBM Rational Application 
Developer V6.0 is supported on many platforms running WebSphere Application 
Server. For details refer to the Installation Guide, IBM Rational Application 
Developer V6.0 product guide (install.html) found on the IBM Rational 
Application Developer V6 Setup CD 1.

Supported databases
IBM Rational Application Developer V6.0 supports the following database 
products:

� IBM Cloudscape™ V5.0
� IBM Cloudscape V5.1 (bundled with the WebSphere Application Server V6.0 

Test Environment)
� IBM DB2 Universal Database V8.1
� IBM DB2 Universal Database V8.2
� IBM DB2 Universal Database Express V8.1
� IBM DB2 Universal Database Express V8.2
� IBM DB2 Universal Database for iSeries™ V4R5
� IBM DB2 Universal Database for iSeries V5R1
 Chapter 1. Introduction 9



� IBM DB2 Universal Database for iSeries V5R2
� IBM DB2 Universal Database for iSeries V5R3
� IBM DB2 Universal Database for z/OS® and OS/390® V7
� IBM DB2 Universal Database for z/OS V8
� Informix Dynamic Server V7.3
� Informix Dynamic Server V9.2
� Informix Dynamic Server V9.3
� Informix Dynamic Server V9.4
� Microsoft SQL Server V7.0
� Microsoft SQL Server 2000
� Oracle8i V8.1.7
� Oracle9i
� Oracle10g
� Sybase Adaptive Server Enterprise V12
� Sybase Adaptive Server Enterprise V12.5

1.2.2  Rational Application Developer V6 product packaging
Table 1-3 lists the software CDs included with IBM Rational Application 
Developer V6.0.

Table 1-3   IBM Rational Application Developer V6.0 product packaging

CDs Windows Linux

IBM Rational Application Developer V6.0 - Core installation files (required) X X

IBM WebSphere Application Server V6.0 Integrated Test Environment X X

IBM WebSphere Application Server V5.0.2/V5.1 Integrated Test Environment X X

IBM Enterprise Generation Language (EGL) X X

IBM Rational Application Developer V6.0 - Language Pack X X

IBM WebSphere Portal V5.0.2.2 Integrated Test Environment
Note: IBM WebSphere Portal V5.1 Test Environment is installed via its own 
installer on a separate CD packaged with Rational Application Developer.

X N/A
10 Rational Application Developer V6 Programming Guide



1.2.3  Rational Web Developer V6 product packaging
Table 1-4 lists the software CDs included with IBM Rational Web Developer V6.0.

Table 1-4   IBM Rational Web Developer V6.0 product packaging

IBM WebSphere Portal V5.1 Test Environment
The following CDs are included for the WebSphere Portal V5.1 Test Environment 
(separate installer from Rational Application Developer):
� IBM WebSphere Portal V5.1 - Portal Install (Setup) CD
� IBM WebSphere Portal V5.1 - WebSphere Business Integrator Server 

Foundation (1-1) CD
� IBM WebSphere Portal V5.1 - WebSphere Business Integrator Server 

Foundation (1-2) CD
� IBM WebSphere Portal V5.1 - WebSphere Business Integrator Server 

Foundation WebSphere Application Server V5.1 Fixpack 1 (1-15) CD
� IBM WebSphere Portal V5.1 - Portal Server (2) CD
� IBM WebSphere Portal V5.1 - Lotus® Workplace™ Web Content 

Management (3) CD

X X

IBM Rational Agent Controller
Note: Support for many additional platforms

X X

IBM WebSphere Application Server V5 - Embedded messaging client and server X X

IBM Rational ClearCase® LT
Note: Web download

Web Web

Crystal Enterprise V10 Professional Edition X X

Crystal Enterprise V10 Embedded Edition X na

IBM DB2 Universal Database V8.2, Express Edition X X

IBM WebSphere Application Server for Developers V6.0
(IBM HTTP Server, Web server plug-ins, DataDirect JDBC drivers, Appl. Clients)

X X

CDs Windows Linux

CD title Windows Linux

IBM Rational Web Developer V6.0 - Core installation files (required) X X

IBM WebSphere Application Server V6.0 Integrated Test Environment X X

IBM WebSphere Application Server V5.0.2 and V5.1 Integrated Test 
Environment

X X

IBM Enterprise Generation Language (EGL) X X

IBM Rational Web Developer V6.0 - Language Pack X X
 Chapter 1. Introduction 11



1.3  Product features
This section provides a summary of the new features of IBM Rational Application 
Developer V6.0 and IBM Rational Web Developer V6.0. We will provide more 
detailed information on the new features throughout the chapters of this book.

Figure 1-2 on page 13 displays a summary of features found in the IBM Rational 
Developer V6.0 products. We have organized the description of the product 
features into the following topics:

� Summary of new features in Version 6
� Specification versions
� Eclipse and IBM Rational Software Development Platform
� Test server environments
� Licensing and installation
� Migration and coexistence
� Tools

IBM Rational Agent Controller
Note: Support for many additional platforms

X X

IBM DB2 Universal Database V8.2, Express Edition X X

IBM WebSphere Application Server for Developers V6.0
(IBM HTTP Server, Web server plug-ins, DataDirect JDBC drivers, Appl. Clients)

X X

CD title Windows Linux
12 Rational Application Developer V6 Programming Guide



Figure 1-2   Tools and features summary

Figure 1-3 provides a summary of technologies supported by Rational 
Application Developer categorized by the applications component.

Figure 1-3   Supported technologies for developing applications

IBM Eclipse SDK 3.0
•IBM commercially supported Eclipse 3.0
•IBM Rational Software Development Platform tooling

Application Server Tool (AST)

IBM Rational Web Developer

IBM Rational Application Developer

•Tool for assembly, deployment (EJB, Web Services) 
and debug J2EE applications
•No development support
•WebSphere Rapid Deployment
•Support for EnahancedEAR
•Server Tools –support for remote server

•Full development support
•Support for J2EE 1.2, 1.3, 1.4 Web based 
applications (JSF, Struts, SDO tools)
•No EJB, J2C development support

•Server Test Environments (WebSphere 
Application Server V5.0, 5.1, 6.0, Tomcat 
5.0 and WebLogic6.1, 7.1, 8.1 available 
separately)
•Visual Java GUI builder
•Web Diagram Editor
•Site Designer
•Page Templates
•XML tools
•Web Services tools
•Database tools
•Portal and portlet development
•Enterprise Generation Language (EGL) 
tools
•Debugger

•Full J2EE 1.4 support
•Portal Test Environment 5.0.2.2
•UML Visual editors
•Static and runtime analysis
•Extended debugging and 
profiling 
•Component test automation
•ClearCaseLT for team 
integration
•Rational Unified Process (RUP) 
integration 

User 
Interface
Services

HTML
JSP
WML
VML
JSF
Portlets

Servlets

Struts

JSF

JavaBeans

EJB

4GL

Control
Logic

Business
Logic

Enterprise
Information 
Connection

JDBC

JCA

JMS

Web
Services

Business Process
Integration

WSDL

SOAP

UDDI

XML

BPEL

SOA
 Chapter 1. Introduction 13



1.3.1  Summary of new features in Version 6
There are many new features in VERSION 6, many of which we highlight in detail 
in the remaining chapters of this book. The objective of this section is to 
summarize the new features in IBM Rational Application Developer V6.0:

� Specification versions: Full support for J2EE V1.4 and IBM WebSphere 
Application Server V6.0. See “Specification versions” on page 18 for more 
information on new features.

� Eclipse and IBM Rational Software Development Platform: Based on Eclipse 
3.0. See “Eclipse and IBM Rational Software Development Platform” on 
page 19 for more information on new features.

� Test server environments: 

– Test environments included for WebSphere Application Server V6.0, V5.1, 
V5.0, and WebSphere Portal V5.0.2.2, V5.1.

– Integration with IBM WebSphere Application Server V6.0 for deployment, 
testing, and administration is the same (test environment, separate install, 
and Network Deployment edition).

See “Test server environments” on page 22 for more information on new 
features.

� Web Services: 

– Build and consume Web Services with JSR 101/109 support for 
implementing Web Services for EJBs and Java beans.

– Support for setting conformance levels, including WS-I SSBP 1.0 (simple 
SOAP Basic Profile 1.0) and WS-I AP (Attachments Profile 1.0).

– Integrated SOAP Monitor to view Web Services traffic via creation wizard.

– Secure Web Services request/response capability using WS-Security 
(security values specified in the J2EE deployment descriptor).

For more detailed information and a programming example, refer to 
Chapter 17, “Develop Web Services applications” on page 951.

� Portal application development: 

– Rational Application Developer V6.0 includes portal development tooling, 
as well as integrated test environments for WebSphere Portal V5.0.2 and 
V5.1.

– Model-View-Control (MVC) architecture for portal applications, including 
support for JSF or Struts.

– Portal Site Designer for WebSphere Portal V5.0.2.2 and V5.1 to customize 
the layout and navigation or portal pages.

– Wired portlets used to link portlets.
14 Rational Application Developer V6 Programming Guide



– Portlets for business process tasks via integration with WebSphere 
Business Integrator (WBI).

– SAP and Seibel integration using JSF and SDO.

For more detailed information and a programming example, refer to 
Chapter 18, “Develop portal applications” on page 985.

� Application modeling with UML:

– Model EJBs (top down or bottom up), Java classes, and database 
schemas visually. 

– New topic, browse, and sequence diagram views available for viewing 
class relationships and method interaction. 

– This feature is offered in Rational Application Developer and Rational 
Software Architect (not Rational Web Developer).

For more detailed information and a programming example, refer to 
Chapter 6, “RUP and UML” on page 189.

� Rational Unified Process® integration:

– Process Browser provides search capability for Rational Unified Process 
(RUP®) best practices and life cycle for development.

– Process Advisor view displays RUP information specific to current task.

– This feature is offered in Rational Application Developer and Rational 
Software Architect (not Rational Web Developer).

For more detailed information and a programming example, refer to 
Chapter 6, “RUP and UML” on page 189.

� Annotated programming:

– EJB and Web resources can be created with annotations following the 
proposed XDoclet standard (JSR 175).

– A number of required development resources are reduced since code is 
generated at the time of deployment.

� Application code analysis: Application code can be reviewed for coding 
practices. The application code analysis tool can identify the problem and 
provide examples and a possible solution following best practice guidelines.

� Rapid Web Development:

– Page template provides a common and consistent look, feel, and layout 
for Web applications. Page template fragments are now available with 
support for nesting page templates.

– Web Site Designer provides group support for applying page templates 
and creating navigation bars.
 Chapter 1. Introduction 15



– Drag and drop page design and construction.

– Struts includes enhancements for the Web Diagram Editor for visual Struts 
development and improved integration with portal.

– Point and click database access.

– Event-driven programming model.

– Automated code construction.

– Rich client construction.

– Robust Web services construction and consumption.

– XML integration and database access.

� JavaServer Faces (JSF):

– Full support for JSF 1.0 (JSR 127), plus additional IBM components

– Enhanced visual development of JSF with Web Diagram Editor, such as 
visual layout of different actions and navigation of JSF pages

– Client components off new display formats for data

For more detailed information and a programming example, refer to 
Chapter 13, “Develop Web applications using JSF and SDO” on page 673.

� Service Data Objects (SDO):

– Service Data Objects (SDO) offers a common API for working with data 
across heterogeneous datastores.

– Access to different datastores becomes transparent as access is through 
mediators.

– Developers can focus on real problems rather than spend time learning 
low-level data access APIs.

– Available for use in Web and EJB components.

For more detailed information and a programming example, refer to 
Chapter 13, “Develop Web applications using JSF and SDO” on page 673.

� Crystal Reports integration:

– New Report Designer included for designing Crystal Reports.

– JSF components for Crystal Enterprise included for adding Crystal 
Reports to Web applications from Palette view. 

– Development and testing licenses included for Crystal Enterprise V10 
Professional and Embedded Editions.

– This feature is offered in Rational Application Developer and Rational 
Software Architect (not Rational Web Developer).

For more detailed information refer to the product documentation.
16 Rational Application Developer V6 Programming Guide



� Enterprise Generation Language (EGL):

– High-level programming language for developing business logic 
previously available in WebSphere Studio Application Developer V5 
Enterprise Edition

– Easy language for non-Java developers for building applications

– Independent of implementation to hide the complexities of the technology 
(encourages Rapid Application Development)

– EGL code generated to Java for runtime

For more detailed information and a programming example, refer to 
Chapter 14, “Develop Web applications using EGL” on page 751

� Component testing:

– Easy creation, execution, and maintenance of dynamic unit tests for J2EE 
components (Java classes, EJBs 1.1/2.0/2.1, Web services).

– Test patterns available for defining complex unit test cases.

– Test data can be stored in separate data pool table for flexible test case 
definition.

– Based on JUnit framework and open source Hyades project.

– This feature is offered in Rational Application Developer and Rational 
Software Architect (not Rational Web Developer).

For more detailed information and examples, refer to Chapter 20, “JUnit and 
component testing” on page 1081.

� Profiling tools:

– Enhanced Memory Analysis features help locate memory leaks in heap 
dumps

– New Thread Analysis view for monitoring thread state for locks

– New ProbeKit feature allows for easy profiling at key points in the 
application using byte-code instrumentation

– Robust summary and detailed code and line execution statistics with Code 
Coverage feature

For more detailed information and profiling examples, refer to Chapter 24, 
“Profile applications” on page 1237.

� Additional enhancements:

– Database tools: Many enhancements around SQL Tools, SQLJ, and 
importing, exporting, and deploying stored procedures and user-defined 
functions.

– XML: Enhancements to WSDL, XML Schema, and XPATH editors.
 Chapter 1. Introduction 17



– XSLT: New debugging capabilities allow developers to debug XSLT called 
from Java and Java called from XSLT.

– WebSphere Programming Model Extensions (PMEs): Snippet and 
Deployment Descriptors included to enable applications. Note that PMEs 
are not included within the scope of this book.

1.3.2  Specification versions
This section highlights the specification versions found in IBM Rational 
Application Developer V6.0, which supports development for the Java 2 Platform 
Enterprise Edition V1.4. We have included WebSphere Studio Application 
Developer V5.0 for comparison purposes, which is based on the Java 2 Platform 
Enterprise Edition V1.3.

Table 1-5 includes a comparison of the J2EE specification versions, and 
Table 1-6 on page 19 includes a comparison of the WebSphere Application 
Server specification versions.

Table 1-5   J2EE specification versions

Specification Rational Application 
Developer V6.0

WebSphere Studio 
Application Developer V5.0

IBM Java Runtime Environment (JRE) 1.4.2 1.3.1

JavaServer Page (JSP) 2.0 1.2

Java Servlet 2.4 2.3

Enterprise JavaBeans (EJB) 2.1 2.0

Java Message Service (JMS) 1.1 1.0

Java Transaction API (JTA) 1.0 1.0

JavaMail 1.3 1.2

Java Activation Framework (JAF) 1.0 1.0

Java API for XML Processing (JAXP) 1.2 1.0

J2EE Connector 1.5 1.0

Web Services 1.1 1.0

Java API for XML RPC (JAX-RPC) 1.1 N/A

SOAP with Attachments API for Java 
(SAAJ)

1.2 N/A
18 Rational Application Developer V6 Programming Guide



Table 1-6   WebSphere Application Server specification versions

1.3.3  Eclipse and IBM Rational Software Development Platform
This section provides an overview of the Eclipse Project as well as how Eclipse 
relates to the IBM Rational Software Development Platform and IBM Rational 
Application Developer V6.0.

Eclipse Project
The Eclipse Project is an open source software development project devoted to 
creating a development platform and integrated tooling.

Java Authentication and Authorization 
Service (JAAS)

1.2 1.0

Java API for XML Registries (JAXR) 1.0 N/A

J2EE Management API 1.0 N/A

Java Management Extensions (JMX) 1.2 N/A

J2EE Deployment API 1.1 N/A

Java Authorization Service Provider 
Contract for Containers (JAAC)

1.0 N/A

Specification Rational Application 
Developer V6.0

WebSphere Studio 
Application Developer V5.0

JavaServer Faces (JSF) 1.0 (JSR 127) N/A
Note: JSF 1.0 included in 
WSAD V5.1.2

Service Data Objects (SDO) 1.0 N/A
Note: SDO 1.0 formerly 
named WDO included in 
WSAD V5.1.2

Struts 1.1 1.0.2 and 1.1 Beta 2
Note: Struts 1.0.2 and 1.1 
included in WSAD V5.1.1 
and V5.1.2

Specification Rational Application 
Developer V6.0

WebSphere Studio 
Application Developer V5.0
 Chapter 1. Introduction 19



Figure 1-4 on page 20 depicts the high-level Eclipse Project architecture and 
shows the relationship of the following sub projects:

� Eclipse Platform
� Eclipse Java Development Tools (JDT)
� Eclipse Plug-in Development Environment (PDE)

Figure 1-4   Eclipse Project overview

With a common public license that provides royalty free source code and 
world-wide redistribution rights, the Eclipse Platform provides tool developers 
with great flexibility and control over their software technology.

Industry leaders like IBM, Borland, Merant, QNX Software Systems, RedHat, 
SuSE, TogetherSoft, and WebGain formed the initial eclipse.org board of 
directors of the Eclipse open source project.

More detailed information on Eclipse can be found at:

http://www.eclipse.org

Eclipse Platform
The Eclipse Platform provides a framework and services that serve as a 
foundation for tools developers to integrate and extend the functionality of the 
Platform. The Platform includes a Workbench, concept of projects, user interface 
libraries (JFace, SWT), built-in help engine, and support for team development 
and debug. The Platform can be leveraged by a variety of software development 

Platform Runtime

Workspace

Help

Team

Workbench

JFace

SWT

Eclipse Project

Java
Development

Tools
(JDT)

Their 
Tool

Your 
Tool

Another
Tool

Plug-in
Development
Environment

(PDE)

Eclipse Platform

Debug
20 Rational Application Developer V6 Programming Guide

http://www.eclipse.org


purposes including modeling and architecture, integrated development 
environment (Java, C/C++, Cobol, etc.), testing, etc.

Eclipse Java Development Tools (JDT)
The JDT provides the plug-ins for the Platform specifically for a Java-based 
integrated development environment, as well as the development of plug-ins for 
Eclipse. The JDT adds the concepts of Java projects, perspectives, views, 
editors, wizards, and refactoring tools to extend the Platform. 

Eclipse Plug-in Development Environment (PDE)
The PDE provides the tools to facilitate the development of Eclipse plug-ins.

Eclipse Software Developer Kit (SDK)
The Eclipse SDK consists of the software created by the Eclipse Project 
(Platform, JDT, PDE), which can be licensed under the Eclipse Common Public 
License agreement, as well as other open source third-party software licensed 
separately.

IBM Eclipse SDK V3.0
The IBM Eclipse SDK V3.0 is an IBM branded and value added version of the 
Eclipse SDK. The IBM Eclipse SDK V3.0 includes additional plug-ins and the 
IBM Java Runtime Environment (JRE) V1.4.2. The IBM Eclipse SDK V3.0 was 
formerly known as the WebSphere Studio Workbench. 

The IBM Eclipse SDK V3.0 is highly desirable for many reasons:

� The IBM Eclipse SDK V3.0 offers the ability for loose or tight integration of 
tooling with the Platform as well as industry standard tools and repositories. 

� Provides frameworks, services, and tools that enable tool builders to focus on 
tool building, not on building tool infrastructure. ISVs can develop new tools to 
take advantage of the infrastructure and integration points for seamless 
integration between the tools and the SDK. 

� Provides flexibility for rapid support for new standards and technologies (for 
example, Web Services).

� The IBM Eclipse SDK provides a consistent way of representing and 
maintaining objects. 

� The IBM Eclipse SDK V3.0 tools have been designed to support a 
roles-based development model in which the assets created in one tool are 

Note: The Eclipse SDK does not include a Java Runtime Environment (JRE) 
and must be obtained separately and installed for Eclipse to run.
 Chapter 1. Introduction 21



are consistent for other tools (for example, XML created in one tool and used 
in another). 

� The IBM Eclipse SDK also provides the support for the full life cycle, including 
test, debug, and deployment. 

The following components are included in the IBM Eclipse SDK V3.0:

� Eclipse SDK 3.0
– Eclipse Platform
– Eclipse Java Development Tooling (JDT)
– Eclipse Plug-in Development Environment (PDE)

� Eclipse Modeling Framework (EMF)
� Eclipse Hyades
� C/C++ Development Tooling (CDT)
� Graphical Editing Framework (GEF)
� XML Schema Infoset Model (XSD)
� UML 2.0 Metamodel Implementation (UML2)
� IBM Java Runtime Environment (JRE) V1.4.2

In summary, the IBM Eclipse SDK V3.0, which provides an open, portable, and 
universal tooling platform, serves as the base for the IBM Rational Software 
Development Platform common to many Rational products including IBM 
Rational Application Developer V6.0 and IBM Rational Web Developer V6.0.

1.3.4  Test server environments
IBM Rational Web Developer V6.0 and IBM Rational Application Developer V6.0 
support a wide range of test server environments for running, testing, and 
debugging application code. 

In IBM Rational Application Developer V6.0, the integration with the IBM 
WebSphere Application Server V6.0 for deployment, testing, and administration 
is the same as for the IBM WebSphere Application Server V6.0 (Test 
Environment, separate install, and the Network Deployment edition). In previous 
versions of WebSphere Studio, the configuration of the test environment was 
different than a separately installed WebSphere Application Server.

We have categorized the test server environments as follows:

� Integrated test servers

Integrated test servers refers to the test servers included with the Rational 
Developer edition (see Table 1-7 on page 23).

� Test servers available separately
22 Rational Application Developer V6 Programming Guide



Test servers available separately refers to the test servers that are supported 
by Rational Developer edition but available separately from the Rational 
Developer products (see Table 1-8 on page 23).

Table 1-7   Integrated test servers

Table 1-8   Additional supported test servers available separately

1.3.5  Licensing and installation
This section provides a summary for licensing, installation, product updates, and 
uninstallation for Rational Application Developer and Rational Web Developer.

Licensing
Both IBM Rational Application Developer V6.0 and IBM Rational Web Developer 
V6.0 include a license as part of the product. The license is registered 

Install option Integrated test server Web 
Developer

Application 
Developer

IBM WebSphere Application Server V6.0

IBM WebSphere Application Server V6.0 X X

IBM WebSphere Application Server V5.x

IBM WebSphere Application Server V5.1 X X

IBM WebSphere Application Server Express V5.1 X X

IBM WebSphere Application Server V5.0.2 X X

IBM WebSphere Application Server Express V5.0.2 X X

IBM WebSphere Portal

IBM WebSphere Portal V5.0.2.2
Note: Available on Windows (not Linux)

N/A X

IBM WebSphere Portal V5.1 N/A X

Integrated Test Server Web 
Developer

Application 
Developer

Tomcat V5.0 X X

WebLogic V6.1 X X

WebLogic V7.1 X X

WebLogic V8.1 X X
 Chapter 1. Introduction 23



automatically when the product is installed. Separate license manager is not 
required.

The license information location is as follows:

� Windows

C:\Documents and Settings\All Users\Application Data\IBM\LUM\nodelock

� Linux

/opt/IBM/RSDP/6.0/

The license installation and registration results are stored in the following log file:

<IRAD_install_dir>\logs\license.log

If licensing fails (for example, due to a permission problem), it can be manually 
executed as follows:

<IRAD_install_dir>\setup\lum\rad\enroll rad-6.0-full.lic

Installation
This section provides a summary of the new installation architecture, key 
software and hardware requirements, as well as basic scenarios for installation.

All Version 6.0 products include the Rational Software Development Platform 
and plug-ins. If the Rational Software Development Platform is found during the 
installation; only the plug-ins for the new product are installed. Products that 
contain the functionality of an installed product as well as additional plug-ins will 
upgrade the installed product. Products with less functionality than the installed 
products will be blocked from installation.

For details on the supported platforms refer to “Supported operating system 
platforms” on page 9.

The system hardware requirements are as follows:

� Pentium® III 800 MHz or higher.

� 768 MB RAM minimum (1 GB RAM recommended).

� 1024x768 video resolution or higher.

� A common install will need 2 GB RAM with 4 GB or free hard disk space to 
install all components.

� The /tmp (Linux or c:\temp (Windows) should have at least 500 MB of free 
space.

The Application Developer/Web Developer installations can be started by 
running launchpad.exe. There are many possible scenarios for installation. 
24 Rational Application Developer V6 Programming Guide



Figure 1-5 on page 25 displays the installation options for Rational Application 
Developer. 

Figure 1-5   IBM Rational Application Developer V6.0 installation options

Updates
Once Rational Application Developer or Rational Web Developer have been 
installed, the IBM Rational Product Updater tool provides and interface to 
update the products. This replaces the Update/Install perspectives provided in 
WebSphere Studio. The product updates are retrieved from preconfigured sites 
or can be customized.

For details refer to “Rational Application Developer Product Updater - Interim Fix 
0004” on page 1380.

Uninstall
Rational Application Developer and Rational Web Developer can be uninstalled 
interactively or from the command line silently.

On the Windows platform, Web Developer and Application Developer can be 
uninstalled using the Add/Remove Programs feature of Windows. Alternatively, 
they can be uninstalled from a command line silently as follows:

<IRAD_install_dir>\rad_prod\_uninst\uninstall.exe –silent
 Chapter 1. Introduction 25



<IRWD_install_dir>\rwd_prod\_uninst\uninstall.exe –silent

On the Linux platform, Web Developer and Application Developer can be 
uninstalled as follows:

<IRAD_install_dir>/rad_prod/_uninst/uninstall.bin

Or silently as follows:

<IRAD_install_dir>/rad_prod/_uninst/uninstall.bin -silent

If other Rational products that share the Rational Software Development 
Platform are installed, these products will remain after uninstalling Rational 
Application Developer or Rational Web Developer.

After the uninstall on Windows, the following artifacts remain:

� <IRAD_INSTALL_DIR>\ still exists.

� <IRAD_INSTALL_DIR>\runtimes\base_v6\logs\uninstlog.txt contains 
uninstall results for the WebSphere V6.0 Test Environment.

� C:\Program Files\Common Files\Crystal Decisions and C:\Program 
Files\Common Files\Business Objects\ still exist.

� %USER_PROFILE%\WINDOWS\vpd.properties is clean.

� %USER_PROFILE%\.WASRegistry cleared of WebSphere V6.0 Test 
Environment entry.

� HKEY_LOCAL_MACHINE\SOFTWARE\IBM\License Use Runtime\ still 
exists.

� HKEY_LOCAL_MACHINE\SOFTWARE\Crystal Decisions\ still exists.

� License information remains in C:\Documents and Settings\All 
Users\Application Data\IBM\LUM\nodelock.

� Windows 2000 %USER_PROFILE%\WINDOWS\IBM\RAT60 still exists.

� Windows XP directories that still exist after uninstall.

C:\WINDOWS\IBM\RAD60

� On Linux (SuSE 9.0) the following directory and some subdirectories remain:

<IRAD_INSTALL_DIR>/..

1.3.6  Migration and coexistence
This section highlights the IBM Rational Application Developer V6.0 migration 
features, and coexistence and compatibility with WebSphere Studio.
26 Rational Application Developer V6 Programming Guide



Migration and coexistence
Migration includes the migration of WebSphere Studio as well as J2EE projects 
and code assets.

IBM Rational Application Developer V6.0 does include the ability to migrate IBM 
WebSphere Studio V5.1.x edition installations.

Workspaces created in WebSphere Studio can be used with Rational Application 
Developer or Rational Web Developer; however, once opened (migrated), they 
cannot be used again with WebSphere Studio.

Projects exported from WebSphere Studio, such as EARs, WARs, JARs, or with 
Project Interchange ZIP, will be migrated when imported into Rational Application 
Developer or Rational Web Developer.

Compatibility with WebSphere Studio V5.1.x
Rational Application Developer and Rational Web Developer include a 
compatibility option. 

Projects may be shared with WebSphere Studio developers through a SCM, 
such as ClearCase or CVS, or Project Interchange Zip files.

Metadata and project structure are not updated to Rational Application 
Developer and Rational Web Developer format. A .compatibility file is added to 
projects and is used to track the timestamps of resources.

Compatibility support can be removed when finished developing in a mixed                                          
environment.

Migration considerations
Migration information available on specific components:

� Migrating JavaServer Faces resources in a Web Project
� Migrating JavaServer Faces resources with Faces Client Components
� WDO to SDO migration
� Portal Applications with and without JavaServer Faces
� Considerations around using the Debugger
� EGL reserved words

Previous installations of the IBM Agent Controller should be uninstalled before 
installing a new version.
 Chapter 1. Introduction 27



1.3.7  Tools
IBM Rational Application Developer V6.0 includes a wide array of tooling to 
simplify or eliminate tedious and error-prone tasks, and provide the ability for 
Rapid Web Development. We have listed the key areas of tooling included with 
Rational Application Developer:

� Java development tools (JDT)
� Relational database tools
� XML tools
� Web development tools
� Struts tools
� JSF development tools
� SDO development tools
� Enterprise Generation Language tools
� EJB tools
� Portal tools
� Web Services tools
� Team collaboration tools
� Debugging tools
� Performance profiling and analysis tools
� Server configuration tools
� Testing tools
� Deployment tools
� Plug-in development tools

1.4  Sample code
The chapters are written so that you can follow along and create the code from 
scratch. In places where there is lots of typing involved we have provided 
snippets of code to cut and paste. 

Alternatively, you can import the completed sample code from a Project 
Interchange file. For details on the sample code (download, unpack, description, 
import interchange file, create databases) refer to Appendix B, “Additional 
material” on page 1395.

Note: Each of the chapters of this book provides a description of the tools 
related to the given topic and demonstrates how to use the Rational 
Application Developer tooling.
28 Rational Application Developer V6 Programming Guide



Important: Interim Fix 0004

Much of this book was originally researched and written using IBM Rational 
Application Developer V6.0. During the course of completing this book, we 
upgraded the system to the most current Interim Fix level at the time (Interim 
Fix 0004). In some cases, our samples require that you use the Interim Fix 
level for the sample to run properly.

For more information refer to “Rational Application Developer Product Updater 
- Interim Fix 0004” on page 1380.
 Chapter 1. Introduction 29



30 Rational Application Developer V6 Programming Guide



Chapter 2. Programming technologies

This chapter describes a number of example application development scenarios, 
based on a simple banking application. Throughout these examples, we will 
review the Java and supporting technologies, as well as highlight the tooling 
provided by IBM Rational Application Developer V6.0, which can be used to 
facilitate implementing the programming technologies.

This chapter is organized into the following sections:

� Desktop applications
� Static Web sites
� Dynamic Web applications
� Enterprise JavaBeans
� J2EE Application Clients
� Web Services
� Messaging systems

2

© Copyright IBM Corp. 2005. All rights reserved. 31



2.1  Desktop applications
By desktop applications we mean applications in which the application runs on a 
single machine and the user interacts directly with the application using a user 
interface on the same machine.

When this idea is extended to include database access, some work may be 
performed by another process, possibly on another machine. Although this 
begins to move us into the client-server environment, the application is often only 
using the database as a service—the user interface, business logic, and control 
of flow are still contained within the desktop application. This contrasts with full 
client-server applications in which these elements are clearly separated and may 
be provided by different technologies running on different machines.

This type of application is the simplest type we will consider. Many of the 
technologies and tools involved in developing desktop applications, such as the 
Java editor and the XML tooling, are used widely throughout all aspects of 
Rational Application Developer.

The first scenario deals with a situation in which a bank requires an application to 
allow workers in a bank call center to be able to view and update customer 
account information. We will call this the Call Center Desktop.

2.1.1  Simple desktop applications
A starting point for the Call Center Desktop might be a simple stand-alone 
application designed to run on desktop computers.

Java 2 Platform Standard Edition (J2SE) provides all the elements necessary to 
develop such applications. It includes, among other elements, a complete 
object-oriented programming language specification, a wide range of useful 
classes to speed development, and a runtime environment in which programs 
can be executed. We will be dealing with J2SE V1.4.

The complete J2SE specification can be found at:

http://java.sun.com/j2se/

Java language
Java is a general purpose, object-oriented language. The basic language syntax 
is similar to C and C++, although there are significant differences. Java is a 
higher-level language than C or C++, in that the developer is presented with a 
more abstracted view of the underlying computer hardware and is not expected 
to take direct control of issues such as memory management. The compilation 
process for Java does not produce directly executable binaries, but rather an 
32 Rational Application Developer V6 Programming Guide

http://java.sun.com/j2se/


intermediate bytecode, which may be executed directly by a virtual machine or 
further processed by a just-in-time compiler at runtime to produce 
platform-specific binary output.

Core Java APIs
J2SE V1.4 includes a wide-ranging library of useful classes that can greatly 
improve developer productivity. These are arranged in packages of classes, 
such as:

� Logging: Provides a simple mechanism for reporting events during program 
execution

� Locale support: Provides facilities for internationalizing applications

� Security: Provides mechanisms for authenticating users and determining 
which resources they are authorized to use

� Lang: Provides basic functionality that the Java language relies on, such as 
basic types and classes allowing access to features of the runtime 
environment

� Util: Provides a range of utility classes representing object collections, event 
handling, and time and date facilities

� Input/output: Provides facilities for stream input and output, serialization of 
objects, and file system access

� Networking: Allows programs to access network resources using TCP/IP

Java Virtual Machine
The Java Virtual Machine (JVM) is a runtime environment designed for executing 
compiled Java bytecode, contained in the .class files, which result from the 
compilation of Java source code. Several different types of JVM exist, ranging 
from simple interpreters to just-in-time compilers that dynamically translate 
bytecode instructions to platform-specific instructions as required.

Requirements for the development environment
The developer of the Call Center Desktop should have access to a development 
tool, providing a range of features to enhance developer productivity:

� A specialized code editor, providing syntax highlighting

� Assistance with completing code and correcting syntactical errors

� Facilities for visualizing the relationships between the classes in the 
application

� Assistance with documenting code
 Chapter 2. Programming technologies 33



� Automatic code review functionality to ensure that code is being developed 
according to recognized best practices

� A simple way of testing applications

IBM Rational Application Developer V6.0 provides developers with an integrated 
development environment with these features.

2.1.2  Database access
It is very likely that the Call Center Desktop will need to access data residing in a 
relational database, such as IBM DB2® Universal Database™.

J2SE V1.4 includes several integration technologies:

� JDBC is the Java standard technology for accessing data stores.

� Java Remote Method Invocation (RMI) is the standard way of enabling 
remote access to objects within Java.

� Java Naming and Directory Interface (JNDI) is the standard Java interface for 
naming and directory services.

� Java IDL is the Java implementation of the Interface Definition Language 
(IDL) for the Common Object Request Broker Architecture (CORBA), allowing 
Java programs to access objects hosted on CORBA servers.

We will focus on the Java DataBase Connectivity (JDBC) technology in this 
section.

JDBC
J2SE V1.4 includes JDBC V3.0. In earlier versions of J2SE, the classes 
contained in the jaxa.sql package were known as the JDBC Core API, whereas 
those in the javax.sql package were known as the JDBC Standard Extension API 
(or Optional Package), but now the V1.4 JDBC includes both packages as 
standard. Since Java 2 Platform Enterprise Edition V1.4 (J2EE V1.4, which we 
will come to shortly) is based on J2SE V1.4, all these features are available when 
developing J2EE V1.4 applications as well.

More information on JDBC can be found at:

http://java.sun.com/j2se/1.4.2/docs/guide/jdbc/

Although JDBC supports a wide range of data store types, it is most commonly 
used for accessing relational databases using SQL. Classes and interfaces are 
provided to simplify database programming, such as:

� java.sql.DriverManager and javax.sql.DataSource can be used to obtain a 
connection to a database system.
34 Rational Application Developer V6 Programming Guide

http://java.sun.com/j2se/1.4.2/docs/guide/jdbc/


� java.sql.Connection represents the connection that an application has to a 
database system.

� java.sql.Statement, PreparedStatement, and CallableStatement represent 
executable statements that can be used to update or query the database.

� java.sql.ResultSet represents the values returned from a statement that has 
queried the database.

� Various types such as java.sql.Date and java.sql.Blob are Java 
representations of SQL data types that do not have a directly equivalent 
primitive type in Java.

Requirements for the development environment
The development environment should provide access to all the facilities of JDBC 
V3.0. However, since JDBC V3.0 is an integral part of J2SE V1.4, this 
requirement has already been covered in 2.1.1, “Simple desktop applications” on 
page 32. In addition, the development environment should provide:

� A way of viewing information about the structure of an external database

� A mechanism for viewing sample contents of tables

� Facilities for importing structural information from a database server so that it 
can be used as part of the development process

� Wizards and editors allowing databases, tables, columns, relationships, and 
constraints to be created or modified

� A feature to allow databases created or modified in this way to be exported to 
an external database server

� A wizard to help create and test SQL statements

These features would allow developers to develop test databases and work with 
production databases as part of the overall development process. They could 
also be used by database administrators to manage database systems, although 
they may prefer to use dedicated tools provided by the vendor of their database 
systems.

IBM Rational Application Developer V6.0 includes these features.

2.1.3  Graphical user interfaces
A further enhancement of the Call Center Desktop would be to make the 
application easier to use by providing a graphical user interface (GUI).
 Chapter 2. Programming technologies 35



Abstract Window Toolkit (AWT)
The Abstract Window Toolkit (AWT) is the original GUI toolkit for Java. It has 
been enhanced since it was originally introduced, but the basic structure remains 
the same. The AWT includes the following:

� A wide range of user interface components, represented by Java classes 
such as java.awt.Frame, Button, Label, Menu, and TextArea

� An event-handling model to deal with events such as button clicks, menu 
choices, and mouse operations

� Classes to deal with graphics and image processing

� Layout manager classes to help with positioning components in a GUI

� Support for drag-and-drop functionality in GUI applications

The AWT is implemented natively for each platform’s JVM. AWT interfaces 
typically perform relatively quickly and have the same look-and-feel as the 
operating system, but the range of GUI components that can be used is limited to 
the lowest common denominator of operating system components and the 
look-and-feel cannot be changed.

More information on the AWT can be found at:

http://java.sun.com/j2se/1.4.2/docs/guide/awt/

Swing
Swing is a newer GUI component framework for Java. It provides Java 
implementations of the components in the AWT and adds a number of more 
sophisticated GUI components, such as tree views and list boxes. For the basic 
components, Swing implementations have the same name as the AWT 
component with a J prefix and a different package structure, for example, 
java.awt.Button becomes javax.swing.JButton in Swing.

Swing GUIs do not normally perform as quickly as AWT GUIs, but have a richer 
set of controls and have a pluggable look-and-feel.

More information on Swing can be found at:

http://java.sun.com/j2se/1.4.2/docs/guide/swing/

Standard Widget1 Toolkit
The Standard Widget Toolkit (SWT) is the GUI toolkit provided as part of the 
Eclipse Project and used to build the Eclipse GUI itself. The SWT is written 
entirely in Java and uses the Java Native Interface (JNI) to pass the calls through 

1  In the context of windowing systems, a widget is a reusable interface component, such as a menu, 
scroll bar, button, text box or label.
36 Rational Application Developer V6 Programming Guide

http://java.sun.com/j2se/1.4.2/docs/guide/swing/
http://java.sun.com/j2se/1.4.2/docs/guide/awt/


to the operating system where possible. This is done to avoid the lowest common 
denominator problem. The SWT uses native calls where they are available and 
builds the component in Java where they are not.

In many respects, the SWT provides the best of both worlds (AWT and Swing):

� It has a rich, portable component model, like Swing.

� It has the same look-and-feel as the native operating system, like the AWT.

� GUIs built using the SWT perform well, like the AWT, since most of the 
components simply pass through to operative system components.

A disadvantage of the SWT is that, unlike the AWT and Swing, it is not a 
standard part of J2SE V1.4. Consequently, any application that uses the SWT 
has to be installed along with the SWT class libraries. However, the SWT, like 
the rest of the components that make up Eclipse, is open source and freely 
distributable under the terms of the Common Public License.

More information on the SWT can be found at:

http://www.eclipse.org/swt/

Java components providing a GUI
There are two types of Java components that might provide a GUI:

� Stand-alone Java applications: Launched in their own process (JVM). This 
category would include J2EE Application Clients, which we will come to later.

� Java applets: Normally run in a JVM provided by a Web browser or a Web 
browser plug-in.

An applet normally runs in a JVM with a very strict security model, by default. 
The applet is not allowed to access the file system of the machine on which it is 
running and can only make network connections back to the machine from which 
it was originally loaded. Consequently, applets are not normally suitable for 
applications that require access to databases, since this would require the 
database to reside on the same machine as the Web server. If the security 
restrictions are relaxed, as might be possible if the applet was being used only on 
a company intranet, this problem is not encountered.

An applet is downloaded on demand from the Web site that is hosting it. This 
gives an advantage in that the latest version is automatically downloaded each 
time it is requested, so distributing new versions is trivial. On the other hand, it 
also introduces disadvantages in that the applet will often be downloaded several 
times even if it has not changed, pointlessly using bandwidth, and the developer 
has little control over the environment in which the applet will run.
 Chapter 2. Programming technologies 37

http://www.eclipse.org/swt/


The requirements for the development environment
The development environment should provide a specialized editor that allows a 
developer to design GUIs using a variety of component frameworks (such as the 
AWT, Swing, or the SWT). The developer should be able to focus mainly on the 
visual aspects of the layout of the GUI, rather than the coding that lies behind it. 
Where necessary, the developer should be able to edit the generated code to 
add event-handling code and business logic calls. The editor should be dynamic, 
reflecting changes in the visual layout immediately in the generated code and 
changes in the code immediately in the visual display. The development 
environment should also provide facilities for testing visual components that 
make up a GUI, as well the entire GUI.

IBM Rational Application Developer V6.0 includes a visual editor for Java 
classes, which offers this functionality.

2.1.4  Extensible Markup Language (XML)
Communication between computer systems is often difficult because different 
systems use different data formats for storing data. XML has become a common 
way of resolving this problem.

It may be desirable for the Call Center Desktop application to be able to 
exchange data with other applications. For example, we may want to be able to 
export tabular data so that it can be read into a spreadsheet application to 
produce a chart, or we may want to be able to read information about a group of 
transactions that can then be carried out as part of an overnight batch operation.

A convenient technology for exchanging information between applications is 
XML. XML is a standard, simple, flexible way of exchanging data. The structure 
of the data is described in the XML document itself, and there are mechanisms 
for ensuring that the structure conforms to an agreed format (these are known as 
Document Type Definitions (DTDs) and XML Schemas (XSDs)).

XML is increasingly also being used to store configuration information for 
applications. For example, many aspects of J2EE V1.4 use XML for 
configuration files called deployment descriptors, and WebSphere Application 
Server V6 uses XML files for storing its configuration settings.

For more information on XML, see the home of XML - the World Wide Web 
Consortium (W3C) at:

http://www.w3c.org/XML/
38 Rational Application Developer V6 Programming Guide

http://www.w3c.org/XML/


Using XML in Java code
J2SE V1.4 includes the Java API for XML Processing (JAXP). JAXP contains 
several elements:

� A parser interface based on the Document Object Model (DOM) from the 
W3C, which builds a complete internal representation of the XML document

� The Simple API for XML Parsing (SAX), which allows the document to be 
parsed dynamically using an event-driven approach

� XSL Transformations (XSLT), which uses Extensible Stylesheet Language 
(XSL) to describe how to transform XML documents from one form into 
another

Since JAXP is a standard part of J2SE V1.4, all these features are available in 
any Java code running in a JVM.

Requirements for the development environment
In addition to allowing developers to write code to create and parse XML 
documents, the development environment should provide features that allow 
developers to create and edit XML documents and related resources. In 
particular:

� An XML editor that will check the XML document for well-formedness 
(conformance with the structural requirements of XML) and for consistency 
with a DTD or XML Schema

� Wizards for:

– Creating XML documents from DTDs and XML Schemas
– Creating DTDs and XML Schemas from XML documents
– Converting between DTDs and XML Schemas
– Generating JavaBeans to represent data stored in XML documents
– Creating XSL

� An environment to test and debug XSL transformations

IBM Rational Application Developer V6.0 includes all these features.

2.2  Static Web sites
A static Web site is one in which the content viewed by users accessing the site 
using a Web browser is determined only by the contents of the file system on the 
Web server machine. Because the user’s experience is determined only by the 
content of these files and not by any action of the user or any business logic 
running on the server machine, the site is described as static.
 Chapter 2. Programming technologies 39



In most cases, the communication protocol used for interacting with static Web 
sites is the Hypertext Transfer Protocol (HTTP).

In the context of our sample scenario, the bank may wish to publish a static Web 
site in order to inform customers of bank services, such as branch locations and 
opening hours, and to inform potential customers of services provided by the 
bank, such as account interest rates. This kind of information can safely be 
provided statically, since it is the same for all visitors to the site and infrequently 
changes.

2.2.1  Hypertext Transfer Protocol (HTTP)
HTTP follows a request/response model. A client sends an HTTP request to the 
server providing information about the request method being used, the requested 
Uniform Resource Identifier (URI), the protocol version being used, various other 
header information and often other details, such as details from a form 
completed on the Web browser. The server responds by returning an HTTP 
response consisting of a status line, including a success or error code, and other 
header information followed by a the HyperText Markup Language (HTML) code 
for the static page requested by the client.

Full details of HTTP can be found at:

http://www.w3c.org/Protocols/

Information on HTML can be found at:

http://www.w3c.org/MarkUp/

Methods
HTTP 1.1 defines several request methods: GET, HEAD, POST, PUT, DELETE, 
OPTIONS, and TRACE. Of these, only GET and POST are commonly used in 
Web applications:

� GET requests are normally used in situations where the user has entered an 
address into the address or location field of a Web browser, used a bookmark 
or favorite stored by the browser, or followed a hyperlink within an HTML 
document.

� POST requests are normally used when the user has completed an HTML 
form displayed by the browser and has submitted the form for processing. 
This request type is most often used with dynamic Web applications, which 
include business logic for processing the values entered into the form.

Status codes
The status code returned by the server as the first line of the HTTP response 
indicates the outcome of the request. In the event of an error, this information 
40 Rational Application Developer V6 Programming Guide

http://www.w3c.org/Protocols/
http://www.w3c.org/MarkUp/


can be used by the client to inform the user of the problem. In some situations, 
such as redirection to another URI, the browser will act on the response without 
any interaction from the user. The classes of status code are:

� 1xx: Information - The request has been received and processing is 
continuing.

� 2xx: Success - The request has been correctly received and processed; an 
HTML page will normally accompany a 2xx status code as the body of the 
response.

� 3xx: Redirection - The request did not contain all the information required or 
the browser needs to take the user to another URI.

� 4xx: Client error - The request was incorrectly formed or could not be fulfilled.

� 5xx: Server error - Although the request was valid, the server failed to fulfill it.

The most common status code is 200 (OK), although 404 (Not Found) is very 
commonly encountered. A complete list of status codes can be found at the W3C 
site mentioned above.

Cookies
Cookies are a general mechanism that server-side connections can use to both 
store and retrieve information on the client side of the connection. Cookies can 
contain any piece of textual information, within an overall size limit per cookie of 
4 kilobytes. Cookies have the following attributes:

� Name: The name of the cookie.

� Value: The data that the server wants passed back to it when a browser 
requests another page.

� Domain: The address of the server that sent the cookie and that receives a 
copy of this cookie when the browser requests a file from that server. The 
domain may be set to equal the subdomain that contains the server so that 
multiple servers in the same subdomain receive the cookie from the browser.

� Path: Used to specify the subset of URLs in a domain for which the cookie is 
valid.

� Expires: Specifies a date string that defines the valid lifetime of that cookie.

� Secure: Specifies that the cookie is only sent if HTTP communication is taking 
place over a secure channel (known as HTTPS).

A cookie's life cycle proceeds as follows:

1. The user gets connected to a server that wants to record a cookie.

2. The server sends the name and the value of the cookie in the HTTP 
response.
 Chapter 2. Programming technologies 41



3. The browser receives the cookie and stores it.

4. Every time the user sends a request for a URL at the designated domain, the 
browser sends any cookies for that domain that have not expired with the 
HTTP request.

5. Once the expiration date has been passed, the cookie crumbles.

Non-persistent cookies are created without an expiry date—they will only last for 
the duration of the user’s browser session. Persistent cookies are set once and 
remain on the user’s hard drive until the expiration date of the cookie.

Cookies are widely used in dynamic Web applications, which we address later in 
this chapter, for associating a user with server-side state information.

More information on cookies can be found at:

http://wp.netscape.com/newsref/std/cookie_spec.html

2.2.2  HyperText Markup Language (HTML)
HTML is a language for publishing hypertext on the Web. HTML uses tags to 
structure text into headings, paragraphs, lists, hypertext links, and so forth. 
Table 2-1 lists some of the basic HTML tags.

Table 2-1   Some basic HTML tags

Cascading Style Sheets (CSS)
Although Web developers can use HTML tags to specify styling attributes, the 
best practice is to use a cascading style sheet (CSS). A CSS file defines a 
hierarchical set of style rules that the creator of an HTML (or XML) file uses in 

Tag Description

<html> Tells the browser that the following text is marked up in HTML. The closing 
tag </html> is required and is the last tag in your document.

<head> Defines information for the browser that may or may not be displayed to the 
user. Tags that belong in the <head> section are <title>, <meta>, <script>, 
and <style>. The closing tag </head> is required.

<title> Displays the title of your Web page, and is usually displayed by the browser 
at the top of the browser pane. The closing tag </title> is required.

<body> Defines the primary portion of the Web page. Attributes of the <body> tag 
enables setting of the background color for the Web pages, the text color, the 
link color, and the active and visited link colors. The closing tag </body> is 
required.
42 Rational Application Developer V6 Programming Guide

http://wp.netscape.com/newsref/std/cookie_spec.html


order to control how that page is rendered in a browser or viewer, or how it is 
printed.

CSS allows for separation of presentation content of documents from the content 
of documents. A CSS file can be referenced by an entire Web site to provide 
continuity to titles, fonts, and colors.

Below is a rule for setting the H2 elements to the color red. Rules are made up of 
two parts: Selector and declaration. The selector (H2) is the link between the 
HTML document and the style sheet, and all HTML element types are possible 
selectors. The declaration has two parts: Property (color) and value (red):

H2 { color: red }

More information on CSS can be found at:

http://www.w3.org/Style/CSS/

Requirements for the development environment
The development environment should provide:

� An editor for HTML pages, providing WYSIWYG (what you see is what you 
get), HTML code, and preview (browser) views to assist HTML page 
designers

� A CSS editor

� A view showing the overall structure of a site as it is being designed

� A built-in Web server and browser to allow Web sites to be tested

IBM Rational Application Developer V6.0 provides all of these features.

2.3  Dynamic Web applications
By Web applications we mean applications that are accessed using HTTP 
(Hypertext Transfer Protocol), usually using a Web browser as the client-side 
user interface to the application. The flow of control logic, business logic, and 
generation of the Web pages for the Web browser are all handled by software 
running on a server machine. Many different technologies exist for developing 
this type of application, but we will focus on the Java technologies that are 
relevant in this area.

Since the technologies are based on Java, most of the features discussed in 2.1, 
“Desktop applications” on page 32, are relevant here as well (the GUI features 
are less significant). In this section we focus on the additional features required 
for developing Web applications.
 Chapter 2. Programming technologies 43

http://www.w3.org/Style/CSS/


In the context of our example banking application, thus far we have provided 
workers in the bank’s call center with a desktop application to allow them to view 
and update account information and members of the Web browsing public with 
information about the bank and its services. We will now move into the Internet 
banking Web application. We want to extend the system to allow bank customers 
to access their account information online, such as balances and statements, 
and to perform some transactions, such as transferring money between accounts 
and paying bills.

2.3.1  Simple Web applications
The simplest way of providing Web-accessible applications using Java is to use 
Java Servlets and JavaServer Pages (JSPs). These technologies form part of 
the Java 2 Platform Enterprise Edition (J2EE), although they can also be 
implemented in systems that do not conform to the J2EE specification, such as 
Apache Jakarta Tomcat:

http://jakarta.apache.org/tomcat/

Information on these technologies (including specifications) can be found at the 
following locations:

� Servlets:

http://java.sun.com/products/servlet/

� JSPs:

http://java.sun.com/products/jsp/

In this book we discuss J2EE V1.4, since this is the version supported by IBM 
Rational Application Developer V6.0 and IBM WebSphere Application Server 
V6.0. J2EE V1.4 requires Servlet V2.4 and JSP V2.0. Full details of J2EE V1.4 
can be found at:

http://java.sun.com/j2ee/

Servlets
A servlet is a Java class that is managed by server software known as a Web 
container (sometimes referred to as a servlets container or servlets engine). The 
purpose of a servlet is to read information from an HTTP request, perform some 
processing, and generate some dynamic content to be returned to the client in an 
HTTP response.

The Servlet Application Programming Interface (API) includes a class, 
javax.servlet.http.HttpServlet, which can be subclassed by a developer. The 
developer needs to override methods such as the following to handle different 
44 Rational Application Developer V6 Programming Guide

http://java.sun.com/j2ee/
http://jakarta.apache.org/tomcat/
http://java.sun.com/products/servlet/
http://java.sun.com/products/jsp/


types of HTTP requests (in these cases, POST and GET requests; other 
methods are also supported):

� public void doPost (HttpServletRequest request, HttpServletResponse 
response)

� public void doGet (HttpServletRequest request, HttpServletResponse 
response)

When a HTTP request is received by the Web container, it consults a 
configuration file, known as a deployment descriptor, to establish which servlets 
class corresponds to the URL provided. If the class is already loaded in the Web 
container and an instance has been created and initialized, the Web container 
invokes a standard method on the servlets class:

public void service (HttpServletRequest request, HttpServletResponse 
response)

The service method, which is inherited from HttpServlet, examines the HTTP 
request type and delegates processing to the doPost or doGet method as 
appropriate. One of the responsibilities of the Web container is to package the 
HTTP request received from the client as an HttpServletRequest object and to 
create an HttpServletResponse object to represent the HTTP response that will 
ultimately be returned to the client.

Within the doPost or doGet method, the servlets developer can use the wide 
range of features available within Java, such as database access, messaging 
systems, connectors to other systems, or Enterprise JavaBeans.

If the servlet has not already been loaded, instantiated, and initialized, the Web 
container is responsible for carrying out these tasks. The initialization step is 
performed by executing the method:

public void init ()

And there is a corresponding method:

public void destroy ()

This is called when the servlet is being unloaded from the Web container.

Within the code for the doPost and doGet methods, the usual processing pattern 
is:

1. Read information from the request - This will often include reading cookie 
information and getting parameters that correspond to fields in an HTML 
form.

2. Check that the user is in the appropriate state to perform the requested 
action.
 Chapter 2. Programming technologies 45



3. Delegate processing of the request to the appropriate type of business object.

4. Update the user’s state information.

5. Dynamically generate the content to be returned to the client.

The last step could be carried out directly in the servlets code by writing HTML to 
a PrintWriter object obtained from the HttpServletResponse object:

PrintWriter out = response.getWriter();
out.println("<html><head><title>Page title</title></head>");
out.println("<body>The page content:");
// etc...

This approach is not recommended, because the embedding of HTML within the 
Java code means that HTML page design tools, such as those provided by 
Rational Application Developer, cannot be used. It also means that development 
roles cannot easily be separated—Java developers must maintain HTML code. 
The best practice is to use a dedicated display technology, such as JSP, covered 
next.

JavaServer Pages (JSPs)
JSPs provide a server-side scripting technology that enables Java code to be 
embedded within Web pages, so JSPs have the appearance of HTML pages 
with embedded Java code. When the page is executed, the Java code can 
generate dynamic content to appear in the resulting Web page. JSPs are 
compiled at runtime into servlets that execute to generate the resulting HTML. 
Subsequent calls to the same JSP simply execute the compiled servlet.

JSP scripting elements (some of which are shown in Table 2-2) are used to 
control the page compilation process, create and access objects, define 
methods, and manage the flow of control.

Table 2-2   Examples of JSP scripting elements

Element Meaning

Directive Instructions that are processed by the JSP engine when the page is 
compiled to a servlet
<%@ ... %> or <jsp:directive.page ... />

Declaration Allows variables and methods to be declared
<%! ... %> or <jsp:declaration> ... </jsp:declaration>

Expression Java expressions, which are evaluated, converted to a String and 
entered into the HTML
<%= ... %> or <jsp:expression ... />

Scriptlet Blocks of Java code embedded within a JSP
<% ... %> or <jsp:scriptlet> ... </jsp:scriptlet>
46 Rational Application Developer V6 Programming Guide



The JSP scripting elements can be extended, using a technology known as tag 
extensions (or custom tags), to allow the developer to make up new tags and 
associate them with code that can carry out a wide range of tasks in Java. Tag 
extensions are grouped in tag libraries, which we will discuss shortly.

Some of the standard JSP tags are only provided in an XML-compliant version, 
such as <jsp:useBean ... />. Others are available in both traditional form (for 
example, <%= ... %> for JSP expressions) or XML-compliant form (for example, 
<jsp:expression ... />). These XML-compliant versions have been introduced in 
order to allow JSPs to be validated using XML validators.

JSPs generate HTML output by default—the Multipurpose Internet Mail 
Extensions (MIME) type is text/html. It may be desirable to produce XML 
(text/xml) instead in some situations. For example, a developer may wish to 
produce XML output, which can then be converted to HTML for Web browsers, 
Wireless Markup Language (WML) for wireless devices, or VoiceXML for 
systems with a voice interface. Servlets can also produce XML output in this 
way—the content type being returned is set using a method on the 
HttpServletResponse object.

Tag libraries
Tag libraries are a standard way of packaging tag extensions for applications 
using JSPs.

Tag extensions address the problem that arises when a developer wishes to use 
non-trivial processing logic within a JSP. Java code can be embedded directly in 
the JSP using the standard tags described above. This mixture of HTML and 
Java makes it difficult to separate development responsibilities (the HTML/JSP 

Use Bean Retrieves an object from a particular scope or creates an object and 
puts it into a specified scope
<jsp:useBean ... />

Get Property Calls a getter method on a bean, converts the result to a String, and 
places it in the output
<jsp:getProperty ... />

Set Property Calls a setter method on a bean
<jsp:setProperty ... />

Include Includes content from another page or resource
<jsp:include ... />

Forward Forwards the request processing to another URL
<jsp:forward ... />

Element Meaning
 Chapter 2. Programming technologies 47



designer has to maintain the Java code) and makes it hard to use appropriate 
tools for the tasks in hand (a page design tool will not provide the same level of 
support for Java development as a Java development tool). This is essentially 
the reverse of the problem described when discussing servlets above. To 
address this problem, developers have documented the View Helper design 
pattern, as described in Core J2EE Patterns: Best Practices and Design 
Strategies by Crupi, et al. (the pattern catalog contained in this book is also 
available at http://java.sun.com/blueprints/corej2eepatterns/Patterns/). 
Tag extensions are the standard way of implementing View Helpers for JSPs.

Using tag extensions, a Java developer can create a class that implements some 
view-related logic. This class can be associated with a particular JSP tag using a 
tag library descriptor (TLD). The TLD can be included in a Web application, and 
the tag extensions defined within it can then be used in JSPs. The JSP designer 
can use these tags in exactly the same way as other (standard) JSP tags. The 
JSP specification includes classes that can be used as a basis for tag extensions 
and (new in JSP v2.0) a simplified mechanism for defining tag extensions that 
does not require detailed knowledge of Java.

Many convenient tags are provided in the JSP Standard Tag Library (JSTL), 
which actually includes several tag libraries:

� Core tags: Flow control (such as loops and conditional statements) and 
various general purpose actions.

� XML tags: Allow basic XML processing within a JSP.

� Formatting tags: Internationalized data formatting.

� SQL tags: Database access for querying and updating.

� Function tags: Various string handling functions.

Tag libraries are also available from other sources, such as those from the 
Jakarta Taglibs Project (http://jakarta.apache.org/taglibs/), and it is also 
possible to develop tag libraries yourself.

Expression Language
Expression Language (EL) was originally developed as part of the JSTL, but it is 
now a standard part of JSP (from V2.0). EL provides a standard way of writing 
expressions within a JSP using implicit variables, objects available in the various 
scopes within a JSP and standard operators. EL is defined within the JSP V2.0 
specification.

Filters
Filters are objects that can transform a request or modify a response. They can 
process the request before it reaches a servlet, and/or process the response 
48 Rational Application Developer V6 Programming Guide

http://java.sun.com/blueprints/corej2eepatterns/Patterns/
http://jakarta.apache.org/taglibs/


leaving a servlet before it is finally returned to the client. A filter can examine a 
request before a servlet is called and can modify the request and response 
headers and data by providing a customized version of the request or response 
object that wraps the real request or response. The deployment descriptor for a 
Web application is used to configure specific filters for particular servlets or 
JSPs. Filters can also be linked together in chains.

Life cycle listeners
Life cycle events enable listener objects to be notified when servlet contexts and 
sessions are initialized and destroyed, as well as when attributes are added or 
removed from a context or session.

Any listener interested in observing the ServletContext life cycle can implement 
the ServletContextListener interface, which has two methods, contextInitialized 
(called when an application is first ready to serve requests) and 
contextDestroyed (called when an application is about to shut down).

A listener interested in observing the ServletContext attribute life cycle can 
implement the ServletContextAttributesListener interface, which has three 
methods, attributeAdded (called when an attribute is added to the 
ServletContext), attributeRemoved (called when an attribute is removed from the 
ServletContext), and attributeReplaced (called when an attribute is replaced by 
another attribute in the ServletContext).

Similar listener interfaces exist for HttpSession and ServletRequest objects:

� javax.servlet.http.HttpSessionListener: HttpSession life cycle events.

� javax.servlet.HttpSessionAttributeListener: Attributes events on an 
HttpSession.

� javax.servlet.HttpSessionActivationListener: Activation or passivation of an 
HttpSession.

� javax.servlet.HttpSessionBindingListener: Object binding on an HttpSession.

� javax.servlet.ServletRequestListener: Processing of a ServletRequest has 
begun.

� javax.servlet.ServletRequestAttributeListener: Attribute events on a 
ServletRequest.

Requirements for the development environment
The development environment should provide:

� Wizards for creating servlets, JSPs, Listeners, Filters, and Tag Extensions

� An editor for JSPs that enables the developer to use all the features of JSP in 
an intuitive way, focussing mainly on page design
 Chapter 2. Programming technologies 49



� An editor for Web deployment descriptors allowing these components to be 
configured

� Validators to ensure that all the technologies are being used correctly

� A test environment that will allow dynamic Web applications to be tested and 
debugged

IBM Rational Application Developer V6.0 includes all these features.

Figure 2-1 shows the interaction between the Web components and a relational 
database, as well as the desktop application discussed in 2.1, “Desktop 
applications” on page 32.

Figure 2-1   Simple Web application

Java
Application

JavaServer
Page

Java
Servlet

JavaBean

Relational
Database

Web
Browser

Simple
Web
Application

Desktop
Application
50 Rational Application Developer V6 Programming Guide



2.3.2  Struts
The model-view-controller (MVC) architecture pattern is used widely in 
object-oriented systems as a way of dividing applications into sections with 
well-defined responsibilities:

� Model: Manages the application domain’s concepts, both behavior and state. 
It responds to requests for information about its state and responds to 
instructions to change its state.

� View: Implements the rendering of the model, displaying the results of 
processing for the use, and manages user input.

� Controller: Receives user input events, determines which action is necessary, 
and delegates processing to the appropriate model objects.

In dynamic Web applications, the servlet normally fills the role of controller, the 
JSP fills the role of view and various components, and JavaBeans or Enterprise 
JavaBeans fill the role of model. The MVC pattern will be described in more detail 
in Chapter 12, “Develop Web applications using Struts” on page 615, as will 
Struts.

In the context of our banking scenario, this technology does not relate to any 
change in functionality from the user’s point of view. The problem being 
addressed here is that, although many developers may wish to use the MVC 
pattern, J2EE V1.4 does not provide a standard way of implementing it. The 
developers of the bank’s Internet banking application wish to design their 
application according to the MVC pattern, but do not want to have to build 
everything from the ground up.

Struts was introduced as a way of providing developers with an MVC framework 
for applications using the Java Web technologies—servlets and JSPs. Complete 
information on Struts is available at:

http://struts.apache.org/

Struts provides a Controller servlets, called ActionServlet, which acts as the 
entry point for any Struts application. When the ActionServlet receives a request, 
it uses the URL to determine the requested action and uses an ActionMapping 
object, created when the application starts up, based on information in an XML 
file called struts-config.xml. From this ActionMapping object, the Struts 
ActionServlet determines the Action-derived class that is expected to handle the 
request. The Action object is then invoked to perform the required processing. 
This Action object is provided by the developer using Struts to create a Web 
application and may use any convenient technology for processing the request. 
The Action object is the route into the model for the application. Once processing 
has been completed, the Action object can indicate what should happen 
next—the ActionServlet will use this information to select the appropriate 
 Chapter 2. Programming technologies 51

http://struts.apache.org/


response agent (normally a JSP) to generate the dynamic content to be sent 
back to the user. The JSP represents the view for the application.

Struts provides other features, such as FormBeans, to represent data entered 
into HTML forms and JSP tag extensions to facilitate Struts JSP development.

Requirements for the development environment
Since Struts applications are also Web applications, all the functionality 
described in 2.3.1, “Simple Web applications” on page 44, is relevant in this 
context as well. In addition, the development environment should provide:

� Wizards to create:

– A new Struts Action class and corresponding ActionMapping
– A new ActionForm bean
– A new Struts exception type
– A new Struts module

� An editor to modify the struts-config.xml file

� A graphical editor to display and modify the relationship between Struts 
elements, such as Actions, ActionForms, and View components

In addition, the basic Web application tools should be Struts-aware. The wizard 
for creating Web applications should include a simple mechanism for adding 
Struts support, and the wizard for creating JSPs should offer to add the 
necessary Struts tag libraries.

IBM Rational Application Developer V6.0 provides all of these features.

Figure 2-1 on page 50 still represents the structure of a Web application using 
Struts. Although Struts provides us with a framework on which we can build our 
own applications, the technology is still the same as for basic Web applications.

2.3.3  JavaServer Faces (JSF) and Service Data Objects (SDO)
When we build a GUI using stand-alone Java applications, we can include 
event-handling code, so that when UI events take place they can be used 
immediately to perform business logic processing or update the UI. Users are 
familiar with this type of behavior in desktop applications, but the nature of Web 
applications has made this difficult to achieve using a browser-based interface; 
the user interface provided through HTML is limited, and the request-response 
style of HTTP does not naturally lead to flexible, event-driven user interfaces.

Many applications require access to data, and there is often a requirement to be 
able to represent this data in an object-oriented way within applications. Many 
tools and frameworks exist for mapping between data and objects (we will see 
52 Rational Application Developer V6 Programming Guide



J2EE’s standard system, CMP entity beans, later in this chapter), but often these 
are proprietary or excessively heavy weight systems.

In the Internet Banking Web Application we want to make the user interface 
richer, while still allowing us to use the MVC architecture described in 2.3.2, 
“Struts” on page 51. In addition, our developers want a simple, lightweight, 
object-oriented database access system, which will remove the need for direct 
JDBC coding.

JavaServer Faces (JSF)
JSF is a framework for developing Java Web applications. The JSF framework 
aims to unify techniques for solving a number of common problems in Web 
application design and development, such as:

� User interface development: JSF allows direct binding of user interface (UI) 
components to model data. It abstracts request processing into an 
event-driven model. Developers can use extensive libraries of prebuilt UI 
components that provide both basic and advanced Web functionality.

� Navigation: JSF introduces a layer of separation between business logic and 
the resulting UI pages; stand-alone flexible rules drive the flow of pages.

� Session and object management: JSF manages designated model data 
objects by handling their initialization, persistence over the request cycle, and 
cleanup.

� Validation and error feedback: JSF allows direct binding of reusable 
validators to UI components. The framework also provides a queue 
mechanism to simplify error and message feedback to the application user. 
These messages can be associated with specific UI components.

� Internationalization: JSF provides tools for internationalizing Web 
applications, supporting number, currency, time, and date formatting, and 
externalizing of UI strings. JSF is easily extended in a variety of ways to suit 
the requirements of your particular application. You can develop custom 
components, renderers, validators, and other JSF objects and register them 
with the JSF runtime.

The JSF specification can be found at:

http://www.jcp.org/en/jsr/detail?id=127

Service Data Objects (SDO)
SDO is a data programming architecture and API for the Java platform that 
unifies data programming across data source types; provides robust support for 
common application patterns; and enables applications, tools, and frameworks to 
more easily query, view, bind, update, and introspect data.
 Chapter 2. Programming technologies 53

http://www.jcp.org/en/jsr/detail?id=127


SDO was originally developed by IBM and BEA Systems and is now the subject 
of a Java specification request (JSR-235), but has not yet been standardized 
under this process.

SDOs are designed to simplify and unify the way in which applications handle 
data. Using SDO, application programmers can uniformly access and manipulate 
data from heterogeneous data sources, including relational databases, XML data 
sources, Web services, and enterprise information systems. 

The SDO architecture consists of three major components:

� Data object: The data object is designed to be an easy way for a Java 
programmer to access, traverse, and update structured data. Data objects 
have a rich variety of strongly and loosely typed interfaces for querying and 
updating properties. This enables a simple programming model without 
sacrificing the dynamic model required by tools and frameworks. A data 
object may also be a composite of other data objects.

� Data graph: SDO is based on the concept of disconnected data graphs. A 
data graph is a collection of tree-structured or graph-structured data objects. 
Under the disconnected data graphs architecture, a client retrieves a data 
graph from a data source, mutates the data graph, and can then apply the 
data graph changes to the data source. The data graph also contains some 
metadata about the data object, including change summary and metadata 
information. The metadata API allows applications, tools, and frameworks to 
introspect the data model for a data graph, enabling applications to handle 
data from heterogeneous data sources in a uniform way.

� Data mediator: The task of connecting applications to data sources is 
performed by a data mediator. Client applications query a data mediator and 
get a data graph in response. Client applications send an updated data graph 
to a data mediator to have the updates applied to the original data source. 
This architecture allows applications to deal principally with data graphs and 
data objects, providing a layer of abstraction between the business data and 
the data source.

More information on JSF and SDO can be found in the IBM Redbook 
WebSphere Studio V5.1.2 JavaServer Faces and Service Data Objects, 
SG24-6361. This book covers the use of these technologies in WebSphere 
Studio rather than the Rational Software Development Platform, but the 
coverage of the technologies is still very useful.

Requirements for the development environment
The development environment should provide tooling to create and edit pages 
based on JSF, to modify the configuration files for JSF applications, and to test 
them. For SDO, the development environment should provide wizards to create 
54 Rational Application Developer V6 Programming Guide



SDOs from an existing database (bottom-up mapping) and should make it easy 
to use the resulting objects in JSF and other applications.

IBM Rational Application Developer V6.0 includes these features.

Figure 2-2 shows how JSF and SDO can be used to create a flexible, powerful 
MVC-based Web application with simple database access.

Figure 2-2   JSF and SDO

2.3.4  Portal applications
Portal applications have several important features:

� They can collect content from a variety of sources and present them to the 
user in a single unified format.

� The presentation can be personalized so that each user sees a view based 
on their own characteristics or role.

� The presentation can be customized by the user to fulfill their specific needs.

� They can provide collaboration tools, which allow teams to work in a virtual 
office.

� They can provide content to a range of devices, formatting and selecting the 
content appropriately according to the capabilities of the device.

In the context of our sample scenario, we can use a portal application to enhance 
the user experience. The Internet Banking Web Application can be integrated 
with the static Web content providing information about branches and bank 
services. If the customer has credit cards, mortgages, personal loans, savings 

JSP using
JSF

JSF
Servlet

SDO

Relational
Database

Web
Browser

SDO
Mediator
 Chapter 2. Programming technologies 55



accounts, shares, insurance, or other products provided by the bank or business 
partners, these could also be seamlessly integrated into the same user interface, 
providing the customer with a convenient single point of entry to all these 
services. The content or these applications can be provided from a variety of 
sources, with the portal server application collecting the content and presenting it 
to the user. The user can customize the interface to display only the required 
components, and the content can be varied to allow the customer to connect 
using a Web browser, a personal digital assistant (PDA), or mobile phone.

Within the bank, the portal can also be used to provide convenient intranet 
facilities for employees. Sales staff can use a portal to receive information on the 
latest products and special offers, information from human resources, leads from 
colleagues, and so on.

IBM WebSphere Portal
WebSphere Portal runs within WebSphere Application Server, using the J2EE 
standard services and management capabilities of the server as the basis for 
portal services. WebSphere Portal provides its own deployment, configuration, 
administration, and communication features.

The WebSphere Portal Toolkit is provided as part of the Rational Application 
Developer as a complete development environment for developing portal 
applications. A wizard allows a developer to begin development of a new portlet 
application, generating a skeleton portlet application as a project in Rational 
Application Developer and required deployment descriptors. The Portlet Toolkit 
also provides debugging support for portal developers.

Java Portlet specification
The Java Portlet V1.0 specification (http://jcp.org/en/jsr/detail?id=168) has 
been developed to provide a standard for the development of Java portlets for 
portal applications. WebSphere Portal V5.1 supports the Java Portlet standard.

Requirements for the development environment
The development environment should provide wizards for creating portal 
applications and the associated components and configuration files, as well as 
editors for all these files. A test environment should be provided to allow portal 
applications to be executed and debugged.

IBM Rational Application Developer V6.0 includes the WebSphere Portal Toolkit 
and the WebSphere Portal V5.0.2.2 Integrated Test Environment.

Figure 2-3 on page 57 shows how portal applications fit in with other 
technologies mentioned in this chapter.
56 Rational Application Developer V6 Programming Guide

http://jcp.org/en/jsr/detail?id=168


Figure 2-3   Portal applications

2.4  Enterprise JavaBeans
Now that the Internet Banking Web Application is up and running, more issues 
arise. Some of these relate to the services provided to customers and bank 
workers and some relate to the design, configuration, and functionality of the 
systems that perform the back-end processing for the application.

First, we want to provide the same business logic in a new application that will be 
used by administration staff working in the bank’s offices. We would like to be 
able to reuse the code that has already been generated for the Internet banking 
Web application without introducing the overhead of having to maintain several 
copies of the same code. Integration of these business objects into a new 
application should be made as simple as possible.

Next, we want to reduce development time by using an object-relational mapping 
system that will keep an in-memory, object-oriented view of data with the 
relational database view automatically, and provide convenient mapping tools to 
set up the relationships between objects and data. This system should be 

P o rtle t

W ebS phe re
P orta l

Legacy
A p p lica tion

W eb
B row se r

S ecu rity
S e rv ice

M ob ile
P hone

P D A

C o llabo ra tion
A p p lica tion

W eb
S erv ice

W eb
A pp lica tion

P o rtle t P o rtle tP o rtle t
 Chapter 2. Programming technologies 57



capable of dealing with distributed transactions, since the data might be located 
on several different databases around the bank’s network.

Since we are planning to make business logic available to multiple applications 
simultaneously, we want a system that will manage such issues as 
multithreading, resource allocation, and security so that developers can focus on 
writing business logic code without having to worry about infrastructure matters 
such as these.

Finally, the bank has legacy systems, not written in Java, that we would like to be 
able to update to use the new functionality provided by these business objects. 
We would like to use a technology that will allow this type of interoperability 
between different platforms and languages.

We can get all this functionality by using Enterprise JavaBeans (EJBs) to provide 
our back-end business logic and access to data. Later, we will see how EJBs can 
also allow us to integrate messaging systems and Web services clients with our 
application logic.

2.4.1  Different types of EJBs
This section describes several types of EJBs including session, entity, and 
message driven beans.

Session EJBs
Session EJBs are task-oriented objects, which are invoked by an EJB client. 
They are non-persistent and will not survive an EJB container shutdown or crash. 
There are two types of session EJB: Stateless and stateful.

Session beans often act as the external face of the business logic provided by 
EJBs. The session facade pattern, described in many pattern catalogs including 
Core J2EE Patterns: Best Practices and Design Strategies by Crupi, et al., 
describes this idea. The client application that needs to access the business logic 
provided by some EJBs sees only the session beans. The low-level details of the 
persistence mechanism are hidden behind these session beans (the session 
bean layer is known as the session facade). As a result of this, the session beans 
that make up this layer are often closely associated with a particular application 
and may not be reusable between applications.

It is also possible to design reusable session beans, which might represent a 
common service that can be used by many applications.

Stateless session EJBs
Stateless session EJBs are the preferred type of session EJB, since they 
generally scale better than stateful session EJBs. Stateless beans are pooled by 
58 Rational Application Developer V6 Programming Guide



the EJB container to handle multiple requests from multiple clients. In order to 
permit this pooling, stateless beans cannot contain any state information that is 
specific to a particular client. Because of this restriction, all instances of a 
stateless bean are equivalent, allowing the EJB container to assign an instance 
to any client.

Stateful session EJBs
Stateful session EJBs are useful when an EJB client needs to call several 
methods and store state information in the session bean between calls. Each 
stateful bean instance must be associated with exactly one client, so the 
container is unable to pool stateful bean instances.

Entity EJBs
Entity EJBs are designed to provide an object-oriented view of data. The data 
itself is stored by an external persistence mechanism, such as a relational 
database or other enterprise information system. Entity beans should normally 
be designed to be general purpose, not designed to work with one particular 
application—the application-specific logic should normally be placed in a layer of 
session EJBs that use entity beans to access data when required, as described 
above.

Once an entity bean has been created it can be found using a key or using some 
other search criteria. It persists until it is explicitly removed. Two main types of 
entity bean exist: Container-managed or bean-managed persistence.

Container-managed persistence (CMP)
The EJB container handles all database access required by the entity bean. The 
bean's code contains no database access (SQL) calls. As a result, the bean's 
code is not tied to a specific database. Because of this flexibility, even if you 
redeploy the same entity bean on different J2EE servers that use different 
databases, you do not have to modify or recompile the bean's code. The 
container must provide an object-relational mapping tool to allow a developer or 
deployer to describe how the attributes of an entity bean map onto columns in 
tables of a database.

Bean-managed persistence (BMP)
The developer handles all storage-specific access required by the entity bean. 
This allows the developer to use non-relational storage options and features of 
relational databases that are not supported by CMP entity beans, such as 
complex SQL and stored procedures.

Message-driven EJBs (MDBs)
MDBs are designed to receive and process messages.They can be accessed 
only by sending a message to the messaging server that the bean is configured 
 Chapter 2. Programming technologies 59



to listen to. MDBs are stateless and can be used to allow asynchronous 
communication between a client EJB logic via some type of messaging system. 
MDBs are normally configured to listen to Java Message Service (JMS) 
resources, although from EJB V2.1 other messaging systems may also be 
supported. MDBs are normally used as adapters to allow logic provided by 
session beans to be invoked via a messaging system; as such, they may be 
thought of as an asynchronous extension of the session facade concept 
described above, known as the message facade pattern. Message-driven beans 
can only be invoked in this way and therefore have no specific client interface.

2.4.2  Other EJB features
This section describes other EJB features not discussed previously.

Container-managed relationships (CMR)
From EJB V2.0, the EJB container is able to manage the relationships between 
entity beans. All the code required to manage the relationships is generated 
automatically as part of the deployment process.

� One-to-one relationships: A CMP entity bean is associated with a single 
instance of another CMP entity bean (for example, customer has one 
address).

� One-to-many relationships: A CMP entity bean is associated with multiple 
instances of another CMP entity bean (for example, account has many 
transactions).

� Many-to-many relationship: Multiple instances of a CMP entity bean are 
associated with multiple instances of another CMP entity bean (for example, 
customer has many accounts, account belongs to many customers).

The methods required to traverse the relationships are generated as part of the 
development and code generation mechanisms.

EJB query language (EJB QL)
EJB QL is used to specify queries for CMP entity beans. It is based on SQL and 
allows searches on the persistent attributes of an enterprise bean and allows 
container-managed relationships to be traversed as part of the query. EJB QL 
defines queries in terms of the declared structure of the EJBs themselves, not 
the underlying data store; as a result, the queries are independent of the bean's 
mapping to a persistent store.

An EJB query can be used to define a finder method or a select method of a 
CMP entity bean. Finder and select methods are specified in the bean's 
deployment descriptor using the <ejb-ql> element. Queries specified in the 
deployment descriptor are compiled into SQL during deployment.
60 Rational Application Developer V6 Programming Guide



An EJB QL query is a string that contains the following elements:

� A SELECT clause that specifies the enterprise beans or values to return
� A FROM clause that names the bean collections
� A WHERE clause that contains search predicates over the collections

Only SELECT statements can be created using EJB QL. EJB QL is like a 
cut-down version of SQL, using the abstract persistence schema defined by the 
EJBs rather than tables and columns. The language has been extended in EJB 
V2.1 compared with V2.0. A query can contain input parameters that correspond 
to the arguments of the finder or select method.

Local and remote interfaces
EJBs were originally designed around remote invocation using the Java Remote 
Method Invocation (RMI) mechanism, and later extended to support standard 
Common Object Request Broker Architecture (CORBA) transport for these calls 
using RMI over the Internet Inter-ORB Protocol (RMI-IIOP). Since many EJB 
clients make calls to EJBs that are in the same container, from EJB V2.0 
onwards local interfaces can be used instead for calls when the client is in the 
same JVM as the target EJB. For EJB-to-EJB and Servlet-to-EJB calls, this 
avoids the expensive network call. A session or entity EJB can be defined as 
having a local and/or remote interface. MDBs do not have any interfaces, so this 
issue does not arise.

EJB Timer Service
The EJB Timer Service was introduced with EJB V2.1. A bean provider can 
choose to implement the javax.ejb.TimedObject interface, which requires the 
implementation of a single method, ejbTimeout. The bean creates a Timer object 
by using the TimerService object obtained from the bean’s EJBContext. Once 
the Timer object has been created and configured, the bean will receive 
messages from the container according to the specified schedule; the container 
calls the ejbTimeout method at the appropriate interval.

2.4.3  Requirements for the development environment
The development environment should provide wizards for creating the various 
types of EJB, tools for mapping CMP entity beans to relational database systems 
and test facilities.

IBM Rational Application Developer V6.0 provides all these features.

Figure 2-4 shows how EJBs work with other technologies already discussed. The 
provision of remote interfaces to EJBs means that the method calls made by the 
JavaBean to the session EJB could take place across a network connection, 
allowing the application to be physically distributed across several machines. 
 Chapter 2. Programming technologies 61



Performance considerations might make this option less attractive, but it is a 
useful technology choice in some situations. As we will see later, using remote 
interfaces is sometimes the only available choice.

Figure 2-4   EJBs as part of an enterprise application

2.5  J2EE Application Clients
J2EE Application Clients are one of the four types of components defined in the 
J2EE specification—the others being EJBs, Web components (servletss and 
JSPs), and Java Applets. They are stand-alone Java applications which use 
resources provided by a J2EE application server, such as EJBs, data sources 
and JMS resources.

In the context of our banking sample application, we want to provide an 
application for bank workers who are responsible for creating accounts and 
reporting on the accounts held at the bank. Since a lot of the business logic for 
accessing the bank’s database has now been developed using EJBs, we want to 
avoid duplicating this logic in our new application. Using a J2EE Application 
Client for this purpose will allow us to develop a convenient interface, possibly a 
GUI, while still allowing access to this EJB-based business logic. Even if we do 
not wish to use EJBs for business logic, a J2EE Application Client will allow us to 

Java
Application

JavaServer
Page

Java
Servlet

JavaBean

Entity
EJB

Session 
EJB

Relational
Database

Web
Browser

Adding EJBs to the picture
62 Rational Application Developer V6 Programming Guide



access data sources or JMS resources provided by the application server and 
will allow us to integrate with the security architecture of the server.

2.5.1  Application Programming Interfaces (APIs)
The J2EE specification (available from http://java.sun.com/j2ee/) requires the 
following APIs to be provided to J2EE Application Clients, in addition to those 
provided by a standard J2SE JVM:

� EJB V2.1 client-side APIs
� JMS V1.1
� JavaMail V1.3
� JavaBeans Activation Framework (JAF) V1.0
� Java API for XML Processing (JAXP) V1.2
� Web Services for J2EE V1.1
� Java API for XML-based Remote Procedure Call (JAX-RPC) V1.1
� SOAP with Attachments API for Java (SAAJ) V1.2
� Java API for XML Registries (JAXR) V1.0
� J2EE Management 1.0
� Java Management Extensions (JMX) V1.2

2.5.2  Security
The J2EE specification requires that the same authentication mechanisms 
should be made available for J2EE Application Clients as for other types of J2EE 
components. The authentication features are provided by the J2EE Application 
Client container, as they are in other containers within J2EE. A J2EE platform 
can allow the J2EE Application Client container to communicate with an 
application server to use its authentication services; WebSphere Application 
Server allows this.

2.5.3  Naming
The J2EE specification requires that J2EE Application Clients should have 
exactly the same naming features available as are provided for Web components 
and EJBs. J2EE Application Clients should be able to use the Java Naming and 
Directory Interface (JNDI) to look up objects using object references as well as 
real JNDI names. The reference concept allows a deployer to configure 
references that can be used as JNDI names in lookup code. The references are 
bound to real JNDI names at deployment time, so that if the real JNDI name is 
subsequently changed, the code does not need to be modified or 
 Chapter 2. Programming technologies 63

http://java.sun.com/j2ee/


recompiled—only the binding needs to be updated. References can be defined 
for:

� EJBs - For J2EE Application Clients, only remote references, since the client 
cannot use local interfaces

� Resource manager connection factories

� Resource environment values

� Message destinations

� User transactions

� ORBs

Code to look up an EJB might look like this (this is somewhat simplified):

accountHome = (AccountHome) initialContext.lookup ( 
"java:comp/env/ejb/account" );

java:comp/env/ is a standard prefix used to identify references, and ejb/account 
would be bound at deployment time to the real JNDI name used for the Account 
bean.

2.5.4  Deployment
The J2EE specification only specified the packaging format for J2EE Application 
Clients, not how these should be deployed—this is left to the Platform provider. 
The packaging format is specified, based on the standard Java JAR format, and 
it allows the developer to specify which class contains the main method to be 
executed at run time.

J2EE application clients for the WebSphere Application Server platform run 
inside the Application Client for WebSphere Application Server. This is a 
product that is available for download from developerWorks®, as well the 
WebSphere Application Server installation CD.

Refer to the WebSphere Application Server Information Center for more 
information about installing and using the Application Client for WebSphere 
Application Server.

The Application Client for WebSphere Application Server provides a 
launchClient command, which sets up the correct environment for J2EE 
Application Clients and runs the main class.
64 Rational Application Developer V6 Programming Guide



2.5.5  Requirements for the development environment
In addition to the standard Java tooling, the development environment should 
provide a wizard for creating J2EE Application Clients, editors for the deployment 
descriptor for a J2EE Application Client module, and a mechanism for testing the 
J2EE Application Client.

IBM Rational Application Developer V6.0 provides these features.

Figure 2-5 on page 65 shows how J2EE Application Clients fit into the picture; 
since these applications can access other J2EE resources, we can now use the 
business logic contained in our session EJBs from a stand-alone client 
application. J2EE Application Clients run in their own JVM, normally on a 
different machine from the EJBs, so they can only communicate using remote 
interfaces.

Figure 2-5   J2EE Application Clients

Java
Application

JavaServer
Page

Java
Servlet

J2EE
Application

Client

JavaBean

Entity
EJB

Session 
EJB

Relational
Database

Web
Browser

J2EE Application Clients
can also use EJBs
 Chapter 2. Programming technologies 65



2.6  Web Services
The bank’s computer system is now quite sophisticated, comprising:

� A database for storing the bank’s data

� A Java application allowing bank employees to access the database

� A static Web site, providing information on the bank’s branches, products, and 
services

� A Web application, providing Internet banking facilities for customers, with 
various technology options available

� An EJB back-end, providing:

– Centralized access to the bank’s business logic through session beans

– Transactional, object-oriented access to data in the bank’s database 
through entity beans

� A J2EE Application Client that can use the business logic in session beans

So far, everything is quite self-contained. Although clients can connect from the 
Web in order to use the Internet banking facilities, the business logic is all 
contained within the bank’s systems, and even the Java application and J2EE 
Application Client are expected to be within the bank’s private network.

The next step in developing our service is to enable mortgage agents, who 
search many mortgage providers to find the best deal for their customers, to 
access business logic provided by the bank to get the latest mortgage rates and 
repayment information. While we want to enable this, we do not want to 
compromise security, and we need to take into account that fact that the 
mortgage brokers may not be using systems based on Java at all.

The League of Agents for Mortgage Enquiries has published a description of 
services that its members might use to get this type of information. We want to 
conform to this description in order to allow the maximum number of agents to 
use our bank’s systems.

We may also want to be able to share information with other banks; for example, 
we may wish to exchange information on funds transfers between banks. 
Standard mechanisms to perform these tasks have been provided by the relevant 
government body.

These issues are all related to interoperability, which is the domain addressed by 
Web services. Web services will allow us to enable all these different types of 
communication between systems. We will be able to use our existing business 
logic where applicable and develop new Web services easily where necessary.
66 Rational Application Developer V6 Programming Guide



2.6.1  Web Services in J2EE V1.4
Web Services provide a standard means of communication among different 
software applications. Because of the simple foundation technologies used in 
enabling Web services, it is very simple to a Web service regardless of the 
Platform, operating system, language, or technology used to implement it.

A service provider creates a Web service and publishes its interface and access 
information to a service registry (or service broker). A service requestor locates 
entries in the service registry, then binds to the service provider in order to 
invoke its Web service.

Web services use the following standards:

� SOAP: A XML-based protocol that defines the messaging between objects

� Web Services Description Language (WSDL): Describes Web services 
interfaces and access information

� Universal Description, Discovery, and Integration (UDDI): A standard 
interface for service registries, which allows an application to find 
organizations and services

The specifications for these technologies are available at:

� http://www.w3.org/TR/soap/
� http://www.w3.org/TR/wsdl/
� http://www.oasis-open.org/committees/uddi-spec/doc/tcspecs.html

Figure 2-6 shows how these technologies fit together.
 Chapter 2. Programming technologies 67

http://www.w3.org/TR/soap/
http://www.w3.org/TR/wsdl/
http://www.oasis-open.org/committees/uddi-spec/doc/tcspecs.html


Figure 2-6   Web services foundation technologies

Web services are now included in the J2EE specification (from V1.4), so all J2EE 
application servers that support J2EE V1.4 have exactly the same basic level of 
support for Web services; some will also provide enhancements as well.

The key Web services-related Java technologies that are specified in the J2EE 
V1.4 specification are:

� Web Services for J2EE V1.1: 

http://jcp.org/en/jsr/detail?id=921

Note: The URL quoted above for the Web Services for J2EE V1.1 
specification leads to a page entitled JSR 921: Implementing Enterprise 
Web Services 1.1. This is the V1.1 maintenance release for Web Services 
for J2EE, which was originally developed under JSR 109.

S e rv ice
D esc rip tion

(W S D L)

W eb
S erv ice
C lien t

W eb
S e rv ice
R eg is try

W eb
S erv ice

(re fe rence )

SO APSO AP

S O A P

(use )
(c rea te )

UDD I
U D D I
68 Rational Application Developer V6 Programming Guide

http://jcp.org/en/jsr/detail?id=921


� Java API for XML-based Remote Procedure Call (JAX-RPC) V1.1:

http://java.sun.com/xml/jaxrpc/

The Web services support in J2EE also relies on the underlying XML support in 
the Platform, provided by JAXP and associated specifications.

Web Services for J2EE defines the programming and deployment model for Web 
services in J2EE. It includes details of the client and server programming 
models, handlers (a similar concept to servlets filters), deployment descriptors, 
container requirements, and security.

JAX-RPC defines the various APIs required to enable XML-based remote 
procedure calls in Java.

Since interoperability is a key goal in Web services, an open, industry 
organization known as the Web Services Interoperability Organization (WS-I, 
http://ws-i.org/) has been created to allow interested parties to work together 
to maximize the interoperability between Web services implementations. WSI-I 
has produced the following set of interoperability profiles:

� WS-I Basic Profile

http://ws-i.org/Profiles/BasicProfile-1.0.html

� WS-I Simple SOAP Binding Profile

http://ws-i.org/Profiles/SimpleSoapBindingProfile-1.0.html

� WS-I Attachments Profile

http://ws-i.org/Profiles/AttachmentsProfile-1.0.html

The J2EE V1.4 specification allows for ordinary Java resources and stateless 
session EJBs to be exposed as Web services. The former, known as JAX-RPC 
service endpoint implementations, can be hosted within the J2EE application 
server’s Web container, and the latter can be hosted within the EJB container.

Requirements for the development environment
The development environment should provide facilities for creating Web services 
from existing Java resources—both JAX-RPC service endpoint implementations 
and stateless session EJBs. As part of the creation process, the tools should 
also produce the required deployment descriptors and WSDL files. Editors 
should be provided for WSDL files and deployment descriptors.

The tooling should also allow skeleton Web services to be created from WSDL 
files and should provide assistance in developing Web services clients, based on 
information obtained from WSDL files.
 Chapter 2. Programming technologies 69

http://java.sun.com/xml/jaxrpc/
http://ws-i.org/
http://ws-i.org/Profiles/BasicProfile-1.0.html
http://ws-i.org/Profiles/SimpleSoapBindingProfile-1.0.html
http://ws-i.org/Profiles/AttachmentsProfile-1.0.html


A range of test facilities should be provided, allowing a developer to test Web 
services and clients as well as UDDI integration.

IBM Rational Application Developer V6.0 provides all this functionality.

Figure 2-7 shows how the Web services technologies fit into the overall 
programming model we have been discussing.

Figure 2-7   Web services

2.7  Messaging systems
Although Web services offer excellent opportunities for integrating disparate 
systems, they currently have some drawbacks:

� Security specifications are available for Web services, but they have not been 
fully implemented on all platforms at this stage.

Java
Application

JavaServer
Page

Java
Servlet

Web
Service

J2EE
Application

Client

JavaBean

Entity
EJB

Session 
EJB

Relational
Database

Web
Browser

Web
Service
Client

Web
Service

Web
Service
Client

Web
services
70 Rational Application Developer V6 Programming Guide



� Web services do not provide guaranteed delivery, and there is no widely 
implemented, standard way of reporting the reliability of a Web service.

� There is no standard way of scaling Web services to the degree required by 
modern information technology systems, no way of distributing Web services 
transparently across servers, and no way of recovering from system failures.

The bank has numerous automatic teller machines (ATMs), each of which has a 
built-in computer providing user interface and communication support. The ATMs 
are designed to communicate with the bank’s central computer systems using a 
secure, reliable, highly scalable messaging system. We would like to integrate 
the ATMs with our system so that transactions carried out at an ATM can be 
processed using the business logic we have already implemented. Ideally, we 
would also like to have the option of using EJBs to handle the messaging for us.

Many messaging systems exist that provide features like these. IBM’s solution in 
this area is IBM WebSphere MQ, which is available on many platforms and 
provides application programming interfaces in several languages. From the 
point of view of our sample scenario, WebSphere MQ provides Java interfaces 
that we can use in our applications—in particular, we will consider the interface 
that conforms to the Java Message Service (JMS) specification. The idea of JMS 
is similar to that of JDBC—a standard interface providing a layer of abstraction 
for developers wishing to use messaging systems without being tied to a specific 
implementation.

2.7.1  Java Message Service (JMS)
JMS defines (among other things):

� A messaging model: The structure of a JMS message and an API for 
accessing the information contained within a message. The JMS interface is, 
javax.jms.Message, implemented by several concrete classes, such as 
javax.jms.TextMessage.

� Point-to-point (PTP) messaging: A queue-based messaging architecture, 
similar to a mailbox system. The JMS interface is javax.jms.Queue.

� Publish/subscribe (Pub/Sub) messaging: A topic-based messaging 
architecture, similar to a mailing list. Clients subscribe to a topic and then 
receive any messages that are sent to the topic. The JMS interface is 
javax.jms.Topic.

More information on JMS can be found at:

http://java.sun.com/products/jms/
 Chapter 2. Programming technologies 71

http://java.sun.com/products/jms/


2.7.2  Message-driven EJBs (MDBs)
MDBs were introduced into the EJB architecture at V2.0 and have been 
extended in EJB V2.1. MDBs are designed to consume incoming messages sent 
from a destination or endpoint system the MDB is configured to listen to. From 
the point of view of the message-producing client, it is impossible to tell how the 
message is being processed—whether by a stand-alone Java application, a 
MDB, or a message-consuming application implemented in some other 
language. This is one of the advantages of using messaging systems; the 
message-producing client is very well decoupled from the message consumer 
(similar to Web services in this respect).

From a development point of view, MDBs are the simplest type of EJB, since 
they do not have clients in the same sense as session and entity beans. The only 
way of invoking an MDB is to send a message to the endpoint or destination that 
the MDB is listening to. In EJB V2.0, MDBs only dealt with JMS messages, but in 
EJB V2.1 this is extended to other messaging systems. The development of an 
MDB is different depending on the messaging system being targeted, but most 
MDBs are still designed to consume messages via JMS, which requires the bean 
class to implement the javax.jms.MessageListener interface, as well as 
javax.ejb.MessageDrivenBean.

A common pattern in this area is the message facade pattern, as described in 
EJB Design Patterns: Advanced Patterns, Processes and Idioms by Marinescu. 
This book is available for download from:

http://theserverside.com/articles/

According to this pattern, the MDB simply acts as an adapter, receiving and 
parsing the message, then invoking the business logic to process the message 
using the session bean layer.

2.7.3  Requirements for the development environment
The development environment should provide a wizard to create MDBs and 
facilities for configuring the MDBs in a suitable test environment. The test 
environment should also include a JMS-compliant server (this is a J2EE V1.4 
requirement anyway).

Testing MDBs is challenging, since they can only be invoked by sending a 
message to the messaging resource that the bean is configured to listen to. 
However, WebSphere Application Server V6.0, which is provided as a test 
environment within Rational Application Developer, includes an embedded JMS 
messaging system that can be used for testing purposes. A JMS client must be 
developed to create the test messages.
72 Rational Application Developer V6 Programming Guide

http://theserverside.com/articles/


Figure 2-8 shows how messaging systems and MDBs fit into the application 
architecture.

Figure 2-8   Messaging systems

J a v a
A p p lic a tio n

J a v a S e rv e r
P a g e

J a v a
S e rv le t

M e s s a g in g
S e rv e r

W e b
S e rv ic e

J 2 E E
A p p lic a tio n

C lie n t

J a v a B e a n

M e s s a g e -
D r iv e n

E J B

E n tity
E J B

S e s s io n  
E J B

R e la tio n a l
D a ta b a s e

W e b
B ro w s e r

M e s s a g e
P ro d u c e r

A p p lic a tio n

W e b
S e rv ic e
C lie n t

W e b
S e rv ic e

W e b
S e rv ic e
C lie n t

M e s s a g in g  s y s te m s
a n d  M D B s
 Chapter 2. Programming technologies 73



74 Rational Application Developer V6 Programming Guide



Chapter 3. Workbench setup and 
preferences

After installing IBM Rational Application Developer V6.0, the Workbench is 
configured with a simple default configuration to make it easier to navigate for 
new users. Developers are made aware of new features as needed for a given 
task via the progressive disclosure of tools concept (capabilities) provided by 
Eclipse 3.0. Alternatively, developers can configure the Workbench preferences 
for their needs manually at any time. This chapter describes the most commonly 
customized Rational Application Developer preferences.

The following topics are discussed in this chapter:

� Workbench basics
� Preferences
� Java development preferences

3

Note: For information on installing IBM Rational Application Developer V6.0 
refer to Appendix A, “IBM product installation and configuration tips” on 
page 1371.
© Copyright IBM Corp. 2005. All rights reserved. 75



3.1  Workbench basics
When starting Rational Application Developer after the installation, you will see a 
single window with the Welcome screen, as seen in Figure 3-1. The Welcome 
page can be accessed subsequently by selecting Help → Welcome from the 
Workbench menu bar. The Welcome screen is provided to guide a new user of 
IBM Rational Application Developer V6.0 to the various aspects of the tool.

Figure 3-1   Rational Application Developer Workbench startup screen

The Welcome screen presents six icons, each including a description via hover 
help (move mouse over icon to display description). We provide a summary of 
each Welcome screen icon in Table 3-1 on page 77.
76 Rational Application Developer V6 Programming Guide



Table 3-1   Welcome screen assistance capabilities

Users experienced with Rational Application Developer or the concepts that the 
product provides can close the Welcome screen by clicking the X for the view to 
close it down, or clicking the icon in the top right corner arrow. They will then be 
presented with the default perspective of the J2EE perspective. Each 
perspective in Rational Application Developer contains multiple views, such as 
the Project Explorer view, Snippets view, and others. More information regarding 
perspectives and views are provided in Chapter 4, “Perspectives, views, and 
editors” on page 131.

The far right of the window has a shortcut icon, highlighted by a circle in 
Figure 3-2 on page 78, that allows you to open available perspectives, and 
places them in the shortcut bar next to it. Once the icons are on the shortcut bar, 
the user is able to navigate between perspectives that are already open. The 

Icon Image Name Description

Overview Provides an overview of the key functions 
in Rational Application Developer and a 
tutorial requiring Flash Player 6 r65 or 
later

What’s New A description of the major new features 
and highlights of the product

Tutorials Tutorial screens to assist in a stepwise 
manner through some of the major points 
of Web development using Rational 
Application Developer

Samples Sample code for the user to begin working 
with “live” examples with minimal 
assistance

First Steps Instructions and a quick access wizards to 
focus on a first time user in developing 
Web-based applications

Web Resources URL links to understand the product and 
technology in the tooling
 Chapter 3. Workbench setup and preferences 77



name of the active perspective is shown in the title of the window, and its icon is 
in the shortcut bar on the right side as a pushed button.

Figure 3-2   J2EE perspective in Rational Application Developer

The term Workbench refers to the desktop development environment. Each 
Workbench window of Rational Application Developer contains one or more 
perspectives. Perspectives contain views and editors and control what appears 
in certain menus and toolbars.

3.1.1  Workspace basics
When you start up Rational Application Developer you are prompted to provide a 
workspace to start up. On first startup, the path will look something like the 
following, depending on the installation path:

c:\Documents and Settings\<user>\IBM\rationalsdp6.0\workspace

Where <user> is the Windows user ID you have logged in as. 
78 Rational Application Developer V6 Programming Guide



The Rational Application Developer workspace is a private work area created for 
the individual developer, and it holds the following information:

� Rational Application Developer environment metadata, such as configuration 
information and temporary files.

� A developer’s copy of projects that they have created, which includes source 
code, project definition, or config files and generate files such as class files.

Resources that are modified and saved are reflected on the local file system. 
Users can have many workspaces on their local file system to contain different 
project work that they are working on or differing versions. Each of these 
workspaces may be configured differently, since they will have their own copy of 
metadata that will have configuration data for that workspace.

Rational Application Developer allows you to open more than one Workbench at 
a time. It opens another window into the same Workbench, allowing you to work 
in two differing perspectives. Changes that are made in one window will be 
reflected back to the other windows, and you are not permitted to work in more 
that one window at a time. That is, you cannot switch between windows while in 
the process of using a wizard in one window. Opening a new Workbench in 
another window is done by selecting Window → New Window, and a new 
Workbench with the same perspective will open in a new window.

The default workspace can be started on first startup of Rational Application 
Developer by specifying the workspace location on the local machine and 
selecting the check box Use this as the default and do not ask again, as 
shown in Figure 3-3 on page 80. 

This will ensure on the next startup of Rational Application Developer that the 
workspace will automatically use the directory specified initially, and it will not 
prompt for the workspace in the future.

Important: Although workspace metadata stores configuration information, 
this does not mean that the metadata can be transferred between 
workspaces. In general, we do not recommend copying or using the metadata 
in one workspace, with a another one. The recommended approach is to 
create a new workspace and then configure it appropriately.

Note: See “Setting the workspace with a prompt dialog” on page 82 
describing how to reestablish Rational Application Developer prompting for the 
workspace at startup.
 Chapter 3. Workbench setup and preferences 79



Figure 3-3   Setting the default workspace on startup

The other way to enforce the use of a particular workspace is by using the -data 
<workspace> command-line argument on Rational Application Developer, where 
<workspace> is a path name on the local machine where the workspace is 
located and should be a full path name to remove any ambiguity of location of the 
workspace.

By using the -data arguement you can start a second instance of Rational 
Application Developer that uses a different workspace. For example, if your 
second instance should use the NewWorkspace workspace folder, you can 
launch Rational Application Developer with this command (assuming that the 
product has been installed in the default installation directory):

c:\Program Files\IBM\Rational\SDP\6.0\rationalsdp.exe -data c:\NewWorkspace

There are a number of arguments that you can add when launching the Rational 
Software Development Platform; some of these have been sourced from the 
online help and are shown in Figure 3-2 on page 81. More options can be found 
by searching for Running Eclipse in the online help.

Tip: On a machine where there are multiple workspaces used by the 
developer, a shortcut would be the recommended approach in setting up the 
starting workspace location. The target would be “<IRAD Install 
Dir>\rationalsdp.exe” -data <workspace>, and the startup directory <IRAD 
Install Dir>.
80 Rational Application Developer V6 Programming Guide



Table 3-2   Startup parameters

Memory consideration
Use the -vmargs flag to set limits to the memory that is used by Application 
Developer. For example, with only 768 MB RAM you may be able to get better 
performance by limiting the memory:

-vmargs -Xmx150M

Command Description

-configuration
configurationFileU

RL

The location for the Platform configuration file, 
expressed as a URL. The configuration file determines 
the location of the Platform, the set of available plug-ins, 
and the primary feature. Note that relative URLs are not 
allowed. The configuration file is written to this location 
when Application Developer is installed or updated.

-consolelog Mirrors the Eclipse platform's error log to the console 
used to run Eclipse. Handy when combined with -debug.

-data
<workspace 

directory>

Start Rational Application Developer with a specific 
workspace located in <workspace directory>.

-debug [optionsFileURL] Puts the Platform in debug mode and loads the debug 
options from the file at the given URL, if specified. This 
file indicates which debug points are available for a 
plug-in and whether or not they are enabled. If a file path 
is not given, the Platform looks in the directory that 
Rational Application Developer was started from for a 
file called .options. Note that relative URLs are not 
allowed.

-refresh Option for performing a global fresh of the workspace on 
startup to reconcile any changes made on the file 
system since the Platform was last run.

-showlocation Option for displaying the location of the workspace in the 
window title bar.

-vm vmPath This optional option allows you to set the location of 
Java Runtime Environment (JRE) to run Application 
Developer. Relative paths are interpreted relative to the 
directory that Eclipse was started from.

-vmargs -Xmx256M For large-scale development you should modify your 
VM arguments to make more heap available. This 
example allows the Java heap to grow to 256 MB. This 
may not be enough for large projects.
 Chapter 3. Workbench setup and preferences 81



You can also modify VMArgs initialization parameters in the rationalsdp.ini file (in 
the installation directory):

VMArgs=-Xms64M -Xmx150M

These arguments significantly limit the memory utilization. Setting the -Xmx 
argument below 150M does begin to degrade performance.

Setting the workspace with a prompt dialog
The default behavior on installation is that Rational Application Developer will 
prompt for the workspace on startup. In the event that you have set the check 
box on this startup screen to not ask again (see Figure 3-3 on page 80), there is 
a procedure to re-initiate this, described as follows:

1. Select Window → Preferences.

2. On opening the dialog, expand the tree, as shown in Figure 3-4.
82 Rational Application Developer V6 Programming Guide



Figure 3-4   Setting the prompt dialog box for workspace selection on startup

3. Check the Prompt for workspace on startup checkbox, click Apply, and 
then click OK.

On the next startup of Rational Application Developer, the workspace prompt 
dialog will appear asking the user which workspace to load up.

3.1.2  Rational Application Developer log files
Rational Application Developer provides logging facilities for plug-in developers 
to log and trace important events, primarily expected or unexpected errors. Log 
files are a crucial part of the Application Developer problem determination 
process.
 Chapter 3. Workbench setup and preferences 83



The primary reason to use log files is if you encounter unexpected program 
behavior. In some cases, an error message tells you explicitly to look at the error 
log.

There are two main log files in the .metadata directory of the workspace folder:

� .metadata/.plugins/com.ibm.pzn.resource.wizards/debug.log

This log is used to catch errors in the event of an error during the use of a 
wizard.

� .log

The .log file is used by the Rational Application Developer to capture errors, 
and any uncaught exceptions from plug-ins. The .log file is cumulative, as 
each new session of Application Developer appends its messages to the end 
of the .log file without deleting any previous messages. This enables you to 
see a history of past messages over multiple Application Developer sessions, 
each one starting with the !SESSION string.

Both log files are ASCII files and can be viewed with a text editor.

3.2  Preferences
The Rational Application Developer preferences can be modified by selecting 
Window → Preferences from the menu bar. Opening the preferences displays 
the dialog shown in Figure 3-5 on page 85.

In the left pane you can navigate through many entries. Each entry has its own 
preferences page, where you can change the initial options.

This section describes the most important options. Rational Application 
Developer online help contains a complete description of all options available in 
the preferences dialogs.

Tip: Each page of Application Developer’s preferences dialog contains a 
Restore Defaults button (see Figure 3-5 on page 85). When you click this 
button, Application Developer restores the settings of the current dialog to its 
initial values.
84 Rational Application Developer V6 Programming Guide



Figure 3-5   Workbench preferences

3.2.1  Automatic builds
Builds or a compilation of Java code in Rational Application Developer is done 
automatically whenever a resource has been modified and saved. If you require 
more control regarding builds, you can disable the auto-building feature. To 
perform a build you have to explicitly start it. This may be desirable in cases 
where you know that building is of no value until you finish a large set of 
changes.

If you want to turn off the automatic build feature, select Windows → 
Preferences → Workbench and uncheck Build automatically (see Figure 3-5 
on page 85). 
 Chapter 3. Workbench setup and preferences 85



In this same dialog (see Figure 3-5 on page 85) you can specify whether you 
want unsaved resources to be saved before performing a manual build. Check 
Save automatically before build to enable this feature.

3.2.2  Clean build (manual)
Although the automatic build feature may be adequate for many developers, 
there are a couple of scenarios in which a developer may want to perform a build 
manually. First, some developers do not want to build automatically since it may 
slow down development. In this case the developer will need a method of 
building at the time of their choosing. Second, there are cases when you want to 
force a build of a project or all projects to resolve build errors and dependency 
issues. To address these types of issues, Application Developer provides the 
ability to perform a manual build, known as a clean build.

To perform a clean build, do the following:

1. Select the desired project in the Project Explorer view (or other view).

2. Select Project → Clean.

3. When the Clean dialog appears, select one of the following options and then 
click OK:

– Clean all projects (This will perform a build of all projects.)

– Clean selected projects: <project> (The project selected in step 1 will be 
displayed or you can use the Browse option to select a project.)

3.2.3  Capabilities
A new feature in Rational Application Developer is the ability to enable and 
disable capabilities in the tooling. The default setup does not enable a large 
proportion of the capabilities such as team support for CVS and Rational 
Clearcase, Web Services development, or XML development.

Capabilities can be enabled in a number of ways in Rational Application 
Developer. We will describe how to enable capabilities via the following 
mechanisms:

� Welcome screen
� Windows preferences
� Opening a perspective

Note: From the same menu you will notice that Build Automatically is 
enabled by default.
86 Rational Application Developer V6 Programming Guide



Enable capability via Welcome screen
The Rational Application Developer Welcome screen provides an icon in the 
shape of a human figure in the bottom right-hand corner (see Figure 3-1 on 
page 76) used to enable roles. These assist in setting up available capabilities for 
the user of the tool through the following process.

The scenario that we will attempt is enable the team capability or role so that the 
developer can save their resources in a repository.

1. In the Welcome Screen move the mouse to the bottom right corner over the 
human figure. Single-click the figure.

2. Move the mouse until it is over the desired capability or role, and click the 
icon. For example, move the mouse over the Team capability or role so that it 
is highlighted (see Figure 3-6), and click the icon; this will enable the Team 
capability.

Figure 3-6   Enable Team capability or role in Welcome screen

Important: Capabilities that are not enabled will impact the context of a 
number of areas in Rational Application Developer. This includes the help 
system, windows preferences, opening perspectives, and the file new menus. 
Items will not be available, setable, or searchable. For example, the help 
system will not search through its help files if the capability is disabled.
 Chapter 3. Workbench setup and preferences 87



Enable capability via Windows Preferences
Using the scenario of enabling the Team capability. The process to enable is as 
follows:

1. Select Windows → Preferences.

2. Select and expand the Workbench tree.

3. Click Capabilities and expand out the Team tree, as shown in Figure 3-7 on 
page 88.

Figure 3-7   Setting the Team capability using Windows preferences 

4. Check the Team check box, and this will set the check boxes for all 
components under this tree.

5. Click Apply and then click OK. This will enable the Team capability.
88 Rational Application Developer V6 Programming Guide



Enable a capability by opening a perspective
A capability can be enabled by opening the particular perspective required by the 
capability. Using the scenario of enabling the CVS Team capability, this can be 
achieved using the following:

1. In any perspective, click Window → Open Perspective → Other.

2. Check the Show all check box, select CVS Repository Exploring (see 
Figure 3-8 on page 89), and then click OK.

Figure 3-8   Enable capability by opening a perspective

3. A prompt will appear as shown in Figure 3-9; click OK, and optionally check 
the check box Always enable capabilities and don’t ask me again.
 Chapter 3. Workbench setup and preferences 89



Figure 3-9   Confirm capability enablement

This will enable the CVS repository exploring capability and switch the user to 
the CVS repository exploring perspective.

3.2.4  File associations
The File Associations preferences page (Figure 3-10) enables you to add or 
remove file types recognized by the Workbench. You can also associate editors 
or external programs with file types in the file types list.
90 Rational Application Developer V6 Programming Guide



Figure 3-10   File associations preferences

The top right pane allows you to add and remove the file types. The bottom right 
pane allows you to add or remove the associated editors.

If you want to add a file association, do the following:

1. For an example, we will add the Internet Explorer as an additional program to 
open .gif files. Select *.gif from the file types list and click Add next to the 
associated editors pane.

2. A new dialog opens (Figure 3-11 on page 92) where you have to select the 
External Programs option, then click Browse.

3. Select iexplore.exe from the folder where Internet Explorer is installed (for 
example, C:\WINDOWS\ServicePackFiles\i386) and confirm the dialog with 
Open.
 Chapter 3. Workbench setup and preferences 91



Figure 3-11   File association editor selection

4. Click OK to confirm the Editor Selection dialog, and you will notice that the 
program has been added to the editors list. 

5. Now you can open the file by using the context menu on the file and selecting 
Open With, and selecting the appropriate program.

3.2.5  Local history
A local edit history of a file is maintained when you create or modify a file. A copy 
is saved each time you edit and save the file. This allows you to replace the 
current file with a previous edit or even restore a deleted file. You can also 
compare the content of all the local edits. Each edit in the local history is uniquely 
represented by the data and time the file has been saved.

To compare a file with the local history, do the following:

1. This assumes you have a Java file. If you do not, add or create a file.

Note: Optionally, you can set this program as the default program for this 
file type by clicking Default.

Note: Only files have local history. Projects and folders do not have a local 
history.
92 Rational Application Developer V6 Programming Guide



2. Select the file, right-click, and select Compare With → Local History from its 
context menu.

To replace a file with an edit from the local history, do the following:

1. This assumes you have a Java file. If you do not, add or create a file.

2. Select the file, right-click, and select Replace With → Local History from its 
context menu.

3. Select the desired file time stamp and then click Replace.

To configure local history settings, select Window → Preferences → 
Workbench → Local History to open its preferences page (see Figure 3-12).

Figure 3-12   Local history preferences

Table 3-3 explains the options for the local history preferences.

Table 3-3   Local history settings

Option Description

Days to keep files Indicates for how many days you want to maintain changes 
in the local history. History state older than this value will be 
lost.

Entries per file This option indicates how many history states per file you 
want to maintain in the local history. If you exceed this value, 
you will lose older history to make room for new history.
 Chapter 3. Workbench setup and preferences 93



3.2.6  Perspectives preferences
The Perspectives preferences page enables you to manage the various 
perspectives defined in the Workbench. To open the page, select Window → 
Preferences → Workbench → Perspectives (see Figure 3-13).

Figure 3-13   Perspectives preferences

Here you can change the following options:

� Open a new perspective in the same or in a new window.

� Open a new view within the perspective or as a fast view (docked to the side 
of the current perspective).

Maximum file size (MB) Indicates the maximum size of individual states in the history 
store. If a file is over this size, it will not be stored.

Option Description
94 Rational Application Developer V6 Programming Guide



� The option to always switch, never switch, or prompt when a particular project 
is created to the appropriate perspective.

There is also a list with all available perspectives where you can select the 
default perspective. If you have added one or more customized perspectives you 
can delete them here if you want to.

3.2.7  Internet preferences
The Internet preferences in Rational Application Developer have four types of 
settings available to be configured:

� FTP
� Proxy settings
� TCP/IP monitor
� Web browser

Only proxy settings and Web browser settings will be covered, with the other two 
settings left for the reader to investigate using Rational Application Developer’s 
extensive help facility.

Proxy settings
When using Rational Application Developer and working within an intranet, you 
may want to use a proxy server to get across the firewall to access the Internet.

To set the preferences for the HTTP proxy server within the Workbench to allow 
Internet access from Rational Application Developer, do the following:

1. From the Workbench select Window → Preferences.

2. Select Internet → Proxy Settings (see Figure 3-14 on page 96).

3. Check Enable Proxy, and enter the proxy host and port. 

There are additional optional settings for the use of SOCKS and enabling 
proxy authentication.

4. Click Apply and then OK.
 Chapter 3. Workbench setup and preferences 95



Figure 3-14   Internet proxy settings preferences

Web browser settings
The Web browser settings allow the user to select which Web browser will be the 
default browser used by Rational Application Developer for displaying Web 
information. 

To change the Web browser settings, do the following:

1. From the Workbench select Window → Preferences.

2. Select Internet → Web Browser (see Figure 3-15 on page 97).
96 Rational Application Developer V6 Programming Guide



Figure 3-15   Default Web browser preferences

3. The default option is to use the internal Web browser. To change to another 
browser, select from the available list; otherwise you can click Add to add a 
new Web browser (see Figure 3-16).

4. The user would fill out a name supplied by the user in the Name field, add the 
location of the browser using the Browse... button into the Location field, and 
add any parameters required in the Parameters field. Click OK.

Figure 3-16   Adding a new browser to Rational Application Developer
 Chapter 3. Workbench setup and preferences 97



3.3  Java development preferences
Rational Application Developer provides a number of coding preferences. Some 
of these are described in this section. Chapter 7, “Develop Java applications” on 
page 221, also provides information regarding these preferences and Java 
coding.

3.3.1  Java classpath variables
Rational Application Developer provides a number of default classpath variables 
that can be used in a Java build path to avoid a direct reference to the local file 
system in a project. This method ensures that the project only references 
classpaths using the variable names and not specific local file system directories 
or paths. This is a good programming methodology when developing within a 
team and using multiple projects using the same variable. This means that all 
team members need to do is set the variables required that are defined for the 
project, and this will be maintained in the workspace.

Depending on the type of Java coding you plan to do, you may have to add 
variables pointing to other code libraries. For example, this can be driver classes 
to access relational databases or locally developed code that you would like to 
reuse in other projects.

Once you have created a Java project, you can add any of these variables to the 
project’s classpath. Chapter 7, “Develop Java applications” on page 221, 
provides more information on adding classpath variables to a Java project.

To view and change the default classpath variables:

1. From the Workbench select Window → Preferences.

2. Select Java → Build Path → Classpath Variables from the list. 

A list of the existing classpath variables is displayed, as shown in Figure 3-17 
on page 99.

Tip: We recommend that you standardize the Rational Application Developer 
installation path for your development team. We found that many files within 
the projects have absolute paths based on the Rational Application Developer 
installation path, thus when you import projects from a team repository such 
as CVS or ClearCase you will get many errors even when using classpath 
variables.
98 Rational Application Developer V6 Programming Guide



Figure 3-17   Classpath variables preferences

3. Creation, editing, or removing of variables can be performed on this screen. 
Click New to add a new variable. A dialog appears prompting for the variable 
to create. For example, for an application using DB2 you would enter the 
information as shown in Figure 3-18, and then click OK.

Figure 3-18   New Variable Entry dialog
 Chapter 3. Workbench setup and preferences 99



3.3.2  Appearance of Java elements
The appearance and the settings of associated Java elements, such as 
methods, members, and their access types, can be adjusted for display in the 
Java viewers. Some of the views it impacts on are the package and outline 
explorer views. To adjust the appearance of Java elements in the viewers, the 
following would be performed:

1. From the Workbench select Window → Preferences.

2. Select Java → Appearance from the list. 

A window like Figure 3-19 on page 101 will be displayed with appearance 
check boxes as described in Table 3-4.

Table 3-4   Description of appearance settings for Java views

Appearance setting Description

Show method return types The views will display the return type of 
the methods for a class.

Show override indicators in outline and 
hierarchy

Displays an indicator for overridden and 
implemented methods in the Outline and 
Type Hierarchy views.

Show members in Package Explorer Displays the members of the class and 
their scope such as private, private or 
protected, including others.

Compress package name segments Compresses the name of the package 
based on a pattern supplied in the dialog 
below the check box.

Stack views vertically in the Java 
Browsing perspective

Displays the views in the Java Browsing 
perspective vertically rather than 
horizontally.
100 Rational Application Developer V6 Programming Guide



Figure 3-19   Java appearance settings

To change the appearance of the order of the members to be displayed in the 
Java viewers, do the following:

1. From the Workbench select Window → Preferences.

2. Select Java → Appearance → Members Sort Order. 

This preference allows you to display the members in the order you prefer as 
well as the order of scoping within that type of member. 

3. When done selecting preferences, click Apply and then OK.

3.3.3  Code style and formatting
The Java editor in the Workbench can be configured to format code and coding 
style in conformance to personal preferences or team-defined standards. When 
setting up the Workbench you can decide what formatting style should be applied 
to the Java files created using the wizards, as well as how the Java editors 
operate to assist what has been defined.
 Chapter 3. Workbench setup and preferences 101



Code style
The Java code style provides a facility to define the prefix and postfix style for 
member names, parameters, and local variables for use in your Java class files.

To demonstrate setting up a style, suppose we define a style in which the 
following style will be defined:

� Member attributes or fields will be prefixed by an m.
� Static attributes or fields will be prefixed by an s.
� Parameters of methods will be prefixed by a p.
� Local variables can have any name.
� Boolean getter methods will have a prefix of is.

Rational Application Developer would be able to assist in providing this style by 
performing the following: 

1. From the Workbench, select Windows → Preferences.

2. Select Java → Code Style as shown in Figure 3-20 on page 103.

Important: Working in a team environment requires a common understanding 
between all the members of the team of the style of coding and conventions 
such as class, member, and method name definitions. The coding standards 
need to be documented and agreed upon to ensure a consistent and 
standardized method of operation. 

There are many books that can be found to provide guidance on Java coding 
standards. A good reference available for download is the Writing Robust 
Java Code white paper by Scott Ambler found at:

http://www.ambysoft.com/javaCodingStandards.pdf
102 Rational Application Developer V6 Programming Guide

http://www.ambysoft.com/javaCodingStandards.pdf


Figure 3-20   Code style preferences page

3. Select the Fields column and click Edit.

4. Fill in the information as shown in Figure 3-21 on page 104, as defined for the 
scenario, and click OK.
 Chapter 3. Workbench setup and preferences 103



Figure 3-21   Filling in the prefix and suffix list for field name conventions

5. Repeat for all the conventions defined to produce the result shown in 
Figure 3-22, and click OK.

Figure 3-22   Completed code style definition preferences
104 Rational Application Developer V6 Programming Guide



These coding conventions will be used in the generation of setters and getters 
for Java classes. Whenever a prefix of m followed by a capital letter is found on 
an attribute, this would ignore the prefix and generate a getter and setter without 
the prefix. If the prefix is not found followed by a capitalized letter, then the setter 
and getter would be generated with the first letter capitalized followed by the rest 
of the name of the attribute. An example of the outcome of performing code 
generation of a getter is shown in Example 3-1 for some common examples of 
attributes.

Example 3-1   Example snippet of code generation output for getters

private long mCounter;
    private String maddress;
    private float m_salary;
    private int zipcode;
    /**
     * @return Returns the counter.
     */
    public long getCounter() {
        return mCounter;
    }
    /**
     * @return Returns the maddress.
     */
    public String getMaddress() {
        return maddress;
    }
    /**
     * @return Returns the m_salary.
     */
    public float getM_salary() {
        return m_salary;
    }
    /**
     * @return Returns the zipcode.
     */
    public int getZipcode() {
        return zipcode;
    }

Code formatter
The code formatter preferences in Rational Application Developer are used to 
ensure that the format of the Java code meets the standard defined for a team of 

Note: The capitalization of getters in IBM Rational Application Developer V6.0 
is based on the way the attributes are named.
 Chapter 3. Workbench setup and preferences 105



developers working on code. There are two profiles built-in with IBM Rational 
Application Developer V6.0 with the option of creating new profiles specific for 
your project.

� Eclipse 2.1 (similar to WebSphere Studio V5)

� Java Conventions (default profile on startup for IBM Rational Application 
Developer V6.0)

The code formatting rules are enforced on code when a developer has typed in 
code using their style, and does not conform to the team-defined standard. When 
this is the case, after the code has been written and tested and preferably before 
check into the Team repository, it is recommended that it be formatted. The 
procedure to perform this operation would be as follows:

1. In the editor that the Java code is in, right-click in the window.

2. Select Source → Format, and this will use the rules that have been defined.

The code formatter preferences/definitions can be accessed via the following:

1. From the Workbench, select Window → Preferences.

2. Select Java → Code Style → Code Formatter.

3. To display the information about a profile, click Show..., or to create a new 
profile click New..., as shown in Example 3-23 on page 107. 

4. Loading of a preexisting XML-defined format can be loaded via the Import 
button that was defined within IBM Rational Application Developer V6.0.
106 Rational Application Developer V6 Programming Guide



Figure 3-23   Code formatter profiles setup in IBM Rational Application Developer V6

User-defined profiles are established from one of the existing built-in profiles, 
which can be exported to the file system to share with team members. In 
Rational Application Developer V6.0, you can modify or create a new profile from 
either a built-in profile or import a custom profile from the file system. If the 
existing profile is modified then you will be prompted to create a new profile. Any 
profile that is created can be exported as an XML file that contains the 
standardized definitions required for your project. This can then be stored in a 
team repository and imported by each member of the team.

A profile consists of a number of sections that are provided as tab sections to 
standardize on the format and style that the Java code is written. Each of these 
tab sections are self-explanatory and provide a preview of the code after 
 Chapter 3. Workbench setup and preferences 107



selection of the required format. Each of these tabs is listed with a brief 
description below:

� Indentations

Specifies the indentations that you wish on your Java code in the Workbench, 
as shown in Figure 3-24. The area it covers includes:

– Tab spacing
– Alignment of fields
– Indentation of code

Figure 3-24   Code formatting - Indentations tab

� Braces

The braces tab formats the Java style of where braces will be placed for a 
number of Java language concepts. A preview is provided as you check the 
check boxes to ensure that it fits in with the guidelines established in your 
team. The options are displayed in Figure 3-25 on page 109.
108 Rational Application Developer V6 Programming Guide



Figure 3-25   Code formatting - Braces tab

� White Space

The White Space tab is used to format where the spaces are placed in the 
code based on a number of Java constructs. The screen shot in Figure 3-26 
on page 110 provides some of the options that are available.
 Chapter 3. Workbench setup and preferences 109



Figure 3-26   Code formatting - White Space tab

� Blank Lines

The Blank Lines tab is used to specify where you wish to place blank lines in 
the code for readability or style guidelines. The screen shown in Figure 3-27 
on page 111 provides a view of what is configurable.
110 Rational Application Developer V6 Programming Guide



Figure 3-27   Code formatting - Blank Lines

� New Lines

The New Lines tab specifies the option of where you wish to insert a new line, 
as shown in Figure 3-28 on page 112.
 Chapter 3. Workbench setup and preferences 111



Figure 3-28   Code formatting - New Lines tab

� Control Statements

The Control Statements tab is used to control the insertion of lines in control 
statements, as well as the appearance of if else statements of the Java code, 
as shown in Figure 3-29 on page 113.
112 Rational Application Developer V6 Programming Guide



Figure 3-29   Code formatting - Control Statements

� Line Wrapping

The Line Wrapping tab facility provides the style rule on what should be 
performed with the wrapping of code, as shown in Figure 3-30 on page 114.
 Chapter 3. Workbench setup and preferences 113



Figure 3-30   Code formatting - Line Wrapping

� Comments

The Comments tab is used to determine the rules of the look of the comments 
that are in the Java code. The settings that are possible are shown in 
Figure 3-31 on page 115.
114 Rational Application Developer V6 Programming Guide



Figure 3-31   Code formatting - Comments

3.3.4  Compiler options
Problems detected by the compiler are classified as either warnings or errors. 
The existence of a warning does not affect the execution of the program. The 
code executes as if it had been written correctly. Compile-time errors (as 
specified by the Java Language Specification) are always reported as errors by 
the Java compiler.

For some other types of problems you can, however, specify if you want the Java 
compiler to report them as warnings, errors, or to ignore them. To change the 
default settings you need to perform the following:

1. From the Workbench, select Window → Preferences.

2. Select Java → Compiler (see Figure 3-32 on page 117).

3. With each of the tabs select set the appropriate behavior required to ensure 
that you obtain the required information from the compiler.
 Chapter 3. Workbench setup and preferences 115



The tab options include:

– Style

Defines the severity level for the compiler for a number of scenarios.

– Advanced

Defines the severity level the compiler will identify for advanced error 
checking.

– Unused code

Configuration settings to assist in common problems that occur in Java 
development, such as local variables defined and not used and how to 
display these problems.

– Javadoc

Configuration settings on how to deal with Javadoc problems that may 
arise and what to display as errors.

– Compliance and Classfiles

Enforces a particular JDK compliance level. This is important to do if your 
application has to fulfil a minimum JDK level.

– Build Path

Specifies the error condition in the event of a build path error and how to 
display this error.
116 Rational Application Developer V6 Programming Guide



Figure 3-32   Java compiler preferences dialog

3.3.5  Java editor settings
The Java editor has a number of settings that assist in the productivity of the user 
in IBM Rational Application Developer V6. Most of these options relate to the 
look and feel of the Java editor in the Workbench. Preferences can be accessed 
via the following procedure:

1. From the Workbench, select Windows → Preferences.

2. Select Java → Editor and you will be presented with the following tab options 
to configure:

– Appearance: The look and feel of the colors and editor features such as 
line numbers.

– Syntax: The color options for syntax highlighting for the Java language.

Note: The Java compiler can create .class files even in the presence of 
compilation errors. In the case of serious errors (for example, references to 
inconsistent binaries, most likely related to an invalid build path), the Java 
builder does not produce any .class file.
 Chapter 3. Workbench setup and preferences 117



– Typing: Options to assist the user in completion of common tasks, such as 
closing of brackets.

– Hovers: Options to enable hover assists to view, such as variable 
selection assistance.

– Navigation: Identifies the carat positioning navigation and keyboard 
shortcut for hyper text opening.

– Folding: Options to enable and disable the collapsible sections in the Java 
editor. This enables a user of the Workbench to collapse a method, 
comments, or class into a concise single line view.

Details on each of the options within these tabs can be obtained from the 
Rational Application Developer online help.

Code Assist
The Code Assist feature in IBM Rational Application Developer V6 is used in 
assisting a developer in writing their code rapidly and reducing the errors in what 
they are writing. It is a feature that is triggered by pressing the keys Ctrl and the 
space bar simultaneously, and assists the developer in completion of a variable 
or method name when coding. These features are configured as follows:

1. From the Workbench, select Windows → Preferences.

2. Select Java → Editor → Code Assist.

This window provides the configuration settings for the code assist 
functionality in the editor. A description of each setting can be found in the 
Rational Application Developer online help.

Mark occurrences
The mark occurrences preferences can be configured as follows:

1. From the Workbench, select Windows → Preferences.

2. Select Java → Editor → Mark Occurrences.

When enabled, this highlights all occurrences of the types of entities 
described in the screen, as shown in Figure 3-33 on page 119. In the Java 
editor, by selecting an attribute, for example, the editor will display in the far 
right-hand context bar of the editor all occurrences in the resource of that 
attribute. This can be navigated to by selecting the highlight bar in that 
context bar.
118 Rational Application Developer V6 Programming Guide



Figure 3-33   Mark Occurrences preferences for the Java editor

3.3.6  Installed JREs
IBM Rational Application Developer V6 allows you to specify which Java 
Runtime Environment (JRE) should be used by the Java builder. By default the 
standard Java VM that comes with the product is used; however, to ensure that 
you application is targeted for the correct platform, the same JRE or at least the 
same version of the JRE should be used to compile the code. If the application is 
targeted for a WebSphere Application Server V6, then the JRE should be set to 
use the JRE associated with this environment in IBM Rational Application 
Developer V6.

The installed JRE can be changed using the following procedure if you want to 
point it to the WebSphere Application Server V6 JRE:

1. From the Workbench, select Windows → Preferences.

2. Select Java → Installed JREs.

Note: It should be noted that in a new workspace, only the eclipse JRE will 
appear in the list. The WebSphere JREs will not appear in the list until a 
test server has been created (and started) for the first time. Once that 
action takes place, then the full list of available JREs will appear.
 Chapter 3. Workbench setup and preferences 119



By default, the JRE used to run the Workbench will be used to build and run Java 
programs. It appears with a check mark in the list of installed JREs. If the target 
JRE that the application will run under is not in the list of JREs, then this can be 
installed on the machine and added onto the list. You can add, edit, or remove a 
JRE. 

Let us assume that the application you are writing requires the latest JRE 
1.4.2_06 located in the directory C:\Program Files\Java\j2re1.4.2_06\. The 
procedure to add a new JRE using this screen is as follows:

1. Click the Add button.

2. Fill out the dialog, as shown in Figure 3-34. 

– JRE type: A drop-down box indicating whether a Standard VM or Standard 
1.1.x VM. In most circumstances this will be set to Standard VM.

– JRE Name: A chosen name for the JRE to identify it.

– JRE home Directory: The location of the root directory of the install for the 
JRE.

– Javadoc URL: The URL for the Javadoc. If located on the disk, this would 
have the local reference.

– Default VM arguments: Arguments that are required to be passed to the 
JRE.

– Use default system libraries: When checked, will use the libraries 
associated with the JRE. When unchecked, additional Jar files can be 
added.

Important: A full rebuild is required on setting of the JRE. To initiate, click 
Project → Clean followed by Project → Build All.
120 Rational Application Developer V6 Programming Guide



 

Figure 3-34   Add JRE dialog

3. Click OK to add.

4. Select the check box of the JRE to set as the default JRE, press OK, and 
rebuild all Java code in the workspace.

3.3.7  Templates
IBM Rational Application Developer V6 also provides Templates that are often 
reoccurring source code patterns. The JDT of Application Developer offers 
support for creating, managing, and using templates.

The templates can be used by typing a part of the statement you want to add; 
and then by pressing Ctrl + Space bar in the Java editor, a list of templates 
matching the key will appear in the presented list. For more information on code 
assist refer to “Code Assist (content)” on page 320. Note that the list is filtered as 
you type, so typing the few first characters of a template name will reveal it.

The symbol in front of each template, shown Figure 3-35, in the code assist list is 
colored yellow, so you can distinguish between a template and a Java statement 
entry.
 Chapter 3. Workbench setup and preferences 121



Figure 3-35   Using templates for code assist

The Templates preference page allows you to create new and edit existing 
templates. A template is a convenience for the programmer to quickly insert 
often-reoccurring source code patterns. A new template can be created as 
follows:

1. From the Workbench, select Windows → Preferences.

2. Select Java → Editor → Templates and the window shown in Figure 3-36 on 
page 123 is displayed.
122 Rational Application Developer V6 Programming Guide



Figure 3-36   Templates preferences

3. Click New to add a new template and fill out the information to create a new 
template for a multi-line if-then-else statement, as shown in Figure 3-37 on 
page 124, and click OK when complete.

Note: Ensure that the context drop-down box is set to either Java or 
Javadoc, depending on the type of template that this is utilizing.
 Chapter 3. Workbench setup and preferences 123



Figure 3-37   Creating a new template 

4. Click OK to exit the preferences page. 

The template will now be available for use in the Java editor.

There are also some predefined variables available that can be added in the 
template. These variables can be inserted by clicking the Insert Variable button 
in Figure 3-37. This will bring up a list and a brief description of the variable.

Templates that have been defined can be exported and later imported into IBM 
Rational Application Developer V6 to ensure that a common environment can be 
set up among a team of developers.

3.3.8  Code review
IBM Rational Application Developer V6 has provided a code review facility to 
assist in the development of quality code developed in the Workbench. The code 
review provides the facility to review the code written to ensure that it adheres to 
common and good coding practices and outputs messages based on these 
rules.

IBM Rational Application Developer V6 comes with a set of predefined code 
reviews for a number of scenarios:

� Quick code review

Consists of three categories of rules: The J2EE Best Practices, J2SE Best 
Practices and Performance. The purpose of this set is to provide a way to 
124 Rational Application Developer V6 Programming Guide



discover the most problematic code, and does not necessarily reflect fast 
execution. Rules are applied that check for code with the most serious 
problems that need to be addressed first.

� Complete code review

This review contains the full set of rules and rule categories covering a range 
of severity levels, problems, warnings, and recommendations, and takes the 
longest to execute.

� J2EE Best Practices code review

This review contains one review category of J2EE Best Practices, and applies 
rules to the detection of antipatterns, which are difficult using conventional 
techniques. These rules only run across servlet code located in Dynamic Web 
Projects and focus on antipatterns that can cause performance degradation 
or system outages.

� Globalization code review

This review consists of one category called Globalization. The purpose of this 
review is to detect code that is noncompliant with globalization standards and 
that causes problems with translation and formatting of characters based on 
assumptions on the bit size of a character.

� J2SE Best Practices code review

This review consists of one review category called J2SE Best Practices, and 
applies rules to detect code that can potentially cause problems or be 
noncompliant with J2SE standards. The rules span a number of categories 
such as the AWT and Swing interface, as well as rules related to Null.

Each of these type of reviews can be customized to turn off rules within them and 
have filters added to ignore resources that should not have these rules run 
against them. A list of customization operations that can be performed for a 
review are:

� Adding a new user rule
� Changing the severity of the problem
� Filter resources to exclude from a code review
� Filter resources to exclude from a code review for a particular rule

Setting the code review options
The code review can be set within the Workbench using the following procedure:

1. From the Workbench, select Windows → Preferences.

2. Select Java → Code Review to display the window in Figure 3-38 on 
page 126.
 Chapter 3. Workbench setup and preferences 125



Figure 3-38   Code review preferences

3. Select the code review required based on the application being written from 
the drop-down box. For example, set the code review to J2EE Best Practices 
code review for review of dynamic projects.

Add a rule and filter
A rule can be added to the code review we have selected, and a filter to ignore 
particular resources. The procedure to show this is as follows:

1. From the Workbench, select Windows → Preferences.

2. Select Java → Code Review.

3. Click the New Rule... displaying the window shown in Figure 3-39 on 
page 127.
126 Rational Application Developer V6 Programming Guide



Figure 3-39   Adding a new rule to the J2EE Best Practices code review

4. Select the rule Avoid throwing [exception] and click Next to display the 
screen shown in Figure 3-40 on page 128. 

a. Select the category that this rule should fall under. In this case, the 
category J2EE Best Practices:Correctness was selected.

b. Select the severity of the rule failing from the options Problem, Warning, or 
Recommendation. In this case, Problem was selected.

c. Specify the class that needs to be avoided being thrown, 
javax.servlet.ServletException.

d. Click Finish.
 Chapter 3. Workbench setup and preferences 127



Figure 3-40   Define the parameters for the rule

5. Click OK to close the windows preferences.

Tip: Ensure that the specified category for the rule is available for the code 
review that the rule is being added to. The default category for 
user-defined rules is User Defined, and in all views except the Complete 
Code Review this will not appear and will not be applied when a code 
review is performed.
128 Rational Application Developer V6 Programming Guide



When the rule has been added, we can specify resource filters to ignore applying 
this rule to certain resources that may not be complete or valid for application of 
this rule. 

For example, if we had a servlet located in the workspace at a location 
/JSPandServletExample/JavaSource/com/ibm/samples/controller/LogonServlet.j
ava/LoginServlet.java, which we want to not have the code rule run, then the 
following would be performed:

1. From the Workbench, select Windows → Preferences.

2. Select Java → Code Review.

3. Select and expand J2EE Best Practices → Correctness, and highlight the 
rule added previously, Avoid throwing javax.servlet.ServletException.

4. Select the Resource Filters tab at the bottom of the window.

5. Click Add... and fill in the information shown in Figure 3-41, and specified as 
the example above, and click OK.

Figure 3-41   Filtering a class for a particular rule

This would prevent this rule from running for the particular resource that has 
been defined.

Exclusion of resources
Resources can be excluded from being code reviewed completely for a particular 
code review. Using the example defined in “Add a rule and filter” on page 126, 
the procedure to do this is as follows:

1. From the Workbench, select Windows → Preferences.

2. Select Java → Code Review → Excluded.

3. Select the Resources tab.

4. Click Add... to display the window shown in Figure 3-42 on page 130, and 
type in the resource name or use the Browse... button.
 Chapter 3. Workbench setup and preferences 129



Figure 3-42   Defining an excluded resource from the code review

5. Click OK to display the window shown in Figure 3-43.

Figure 3-43   Excluded resource has been set for all rules in code review

Excluding matches
Particular matches identified after performing a code review can be excluded in 
the Code Review view, using the context menu for the particular code review. 

1. From the Workbench, select Windows → Preferences.

2. Select Java → Code Review

3. Select Excluded on the Matches tab. This dialog view only allows the 
removal of excluded matches.
130 Rational Application Developer V6 Programming Guide



Chapter 4. Perspectives, views, and 
editors

Rational Application Developer supports a role-based development model. It 
does so by providing several different perspectives on the same project. Each 
perspective is suited for a particular role and provides the developer with the 
necessary tools to work on the tasks associated with that role.

This chapter is organized as follows to highlight the features of the perspectives, 
views, and editors included in IBM Rational Application Developer V6:

� Integrated development environment (IDE)
� Available perspectives
� Rational Product Updater

4

© Copyright IBM Corp. 2005. All rights reserved. 131



4.1  Integrated development environment (IDE)
An integrated development environment is a set of software development tools 
such as source editors, compilers, and debugger, that are accessible from a 
single user interface.

In Rational Application Developer, the IDE is called the Workbench. Rational 
Application Developer’s Workbench provides customizable perspectives that 
support role-based development. It provides a common way for all members of a 
project team to create, manage, and navigate resources easily. It consists of a 
number of interrelated views and editors.

Views provide different ways of looking at the resource you are working on, 
whereas editors allow you to create and modify the resource. Perspectives are a 
combination of views and editors that show various aspects of the project 
resource, and are organized by developer role or task. For example, a Java 
developer would work most often in the Java perspective, while a Web designer 
would work in the Web perspective.

Several perspectives are provided in Rational Application Developer, and team 
members also can customize them, according to their current role of preference. 
You can open more than one perspective at a time, and switch perspectives 
while you are working with Rational Application Developer. If you find that a 
particular perspective does not contain the views or editors you require, you can 
add them to the perspective and position them to suit your preference.

Before describing the perspectives, we will take a look at Rational Application 
Developer’s help feature.

4.1.1  Rational Application Developer online help
Rational Application Developer’s online help system provides access to the 
documentation, and lets you browse and print help content. It also has a full-text 
search engine and context-sensitive help.

Rational Application Developer provides the help content in a separate window, 
which you can open by selecting Help → Help Contents from the menu bar (see 
Figure 4-1 on page 133).
132 Rational Application Developer V6 Programming Guide



Figure 4-1   Help window

In the help window you see the available books in the left pane and the content in 
the right pane. When you select a book  in the left pane, the appropriate table 
of contents opens up and you can select a topic  within the book. When a 
page  is selected, the page content is displayed in the right pane.

You can navigate through the help documents by using the Go Back  and Go 
Forward  buttons in the toolbar for the right pane. There are other buttons in 
this toolbar:

� Show in Table of Contents: Synchronizes the navigation frame with the 
current topic, which is helpful if you have followed several links to related 
topics in several files, and want to see where the current topic fits into the 
navigation path.
 Chapter 4. Perspectives, views, and editors 133



� Bookmark Document: Adds a bookmark to the Bookmarks view in the left 
pane.

� Print Page.

� Maximize: Maximizes the left pane to fill the whole help window.

Figure 4-2 shows the help window with the table of contents for the Navigating 
and customizing the Workbench book.

Figure 4-2   Workbench help

Rational Application Developer’s help system contains a lot of useful information 
about the tool and technologies. It provides information about the different 
134 Rational Application Developer V6 Programming Guide



concepts used by the Workbench, the different tasks you can do within the 
Workbench, and some useful samples and tutorials.

The Search field allows you to do a search over all books by default. The Search 
Scope link opens a dialog box where you can select a scope for your search. If 
you have previously defined a search list, this list of books and topics can be 
selected from the dialog, allowing you to choose from particular selections of 
books that you have found useful in the past. This is shown in Figure 4-3 on 
page 135.

Figure 4-3   Select Search Scope dialog for help

To create a search list, click the New... button, or click Edit... if you wish to modify 
an existing search list. In either case, a dialog similar to the one shown in 
Figure 4-4 on page 136 allows you to make your selection of books and topics.
 Chapter 4. Perspectives, views, and editors 135



Figure 4-4   New Search List dialog for help

Enter your search expression in the Search field and click Go to start your 
search.

4.1.2  Perspectives
Perspectives provide a convenient grouping of views and editors that match the 
way you use Rational Application Developer. Depending on the role you are in 
and the task you have to do, you open a different perspective. A perspective 
defines an initial set and layout of views and editors for performing a particular 
set of development activities (for example, EJB development or profiling). You 

Note: The first time you search the online help, the help system initiates an 
index-generation process. This process builds the indexes for the search 
engine to use, which will probably take several minutes. Unlike WebSphere 
Studio Application Developer, the index is not rebuilt when the product is 
opened with a different workspace. It is also possible to prebuild the index: 
See the help entry under Navigating and customizing the workbench → 
Extending the workbench (advanced) → Extending the platform → 
Reference → Other reference information → Pre-built documentation 
index.
136 Rational Application Developer V6 Programming Guide



can change the layout and the preferences and save a perspective that you can 
have customized, so that you can open it again later. We will see how to do this 
later in this chapter.

4.1.3  Views
Views provide different presentations of resources or ways of navigating through 
the information in your workspace. For example, the Navigator view displays 
projects and other resources that you are working as a folder hierarchy, like a file 
system view. Rational Application Developer provides synchronization between 
different views and editors. Some views display information obtained from other 
software products, such as database systems or software configuration 
management (SCM) systems.

A view might appear by itself, or stacked with other views in a tabbed notebook 
arrangement. A perspective determines the initial set of views that you are likely 
to need. For example, the Java perspective includes the Package Explorer and 
the Hierarchy views to help you work with Java packages and hierarchies.

4.1.4  Editors
When you open a file, Rational Application Developer automatically opens the 
editor that is associated with that file type. For example, the Page Designer 
editor is opened for .html, .htm, and .jsp files, while the Java editor is opened for 
.java and .jpage files.

Editors that have been associated with specific file types will open in the editor 
area of the Workbench. By default, editors are stacked in a notebook 
arrangement inside the editor area. If there is no associated editor for a resource, 
Rational Application Developer will open the file in the default editor, which is a 
text editor.

4.1.5  Perspective layout
Many of Rational Application Developer’s perspectives use a similar layout. 
Figure 4-5 shows a layout of a perspective that is quite common.
 Chapter 4. Perspectives, views, and editors 137



Figure 4-5   Perspective layout

On the left side are views for navigating through the workspace. In the middle of 
the Workbench is larger pane, usually the source editor or the design pane, 
which allows you to change the code and design of files in your project. The right 
pane usually contains outline or properties views. In some perspectives the 
editor pane is larger and the outline view is at the bottom left corner of the 
perspective.

The content of the views is synchronized. For example, if you change a value in 
the Properties view, the update will automatically be reflected in the Editor view.

4.1.6  Switching perspectives
There are two ways to open another perspective:

� Click the Open a perspective icon ( ) in the top right corner of the 
Workbench working area and select the appropriate perspective from the list.

� Select Window → Open Perspective.

Editor

Tasks

O
u

tl
in

e

N
av

ig
at

o
r

Toolbar
138 Rational Application Developer V6 Programming Guide



In either case, there is also an Other... option, which displays the Select 
Perspective dialog (see Figure 4-6). Select the required perspective and click 
OK.

Figure 4-6   Select Perspective dialog

A button appears in the top left corner of the Workbench (an area known as the 
shortcut bar) for each open perspective, as shown in Figure 4-7. To switch to a 
particular perspective, click the appropriate button.

Figure 4-7   Buttons to switch between perspectives
 Chapter 4. Perspectives, views, and editors 139



4.1.7  Specifying the default perspective
The J2EE perspective is Rational Application Developer’s default perspective, 
but this can be changed using the Preferences dialog:

1. From the Workbench, select Window → Preferences.

2. Expand Workbench and select Perspectives.

3. Select the perspective that you want to define as the default, and click Make 
Default.

4. Click OK.

4.1.8  Organizing and customizing perspectives
Rational Application Developer allows you to open, customize, reset, save, and 
close perspectives. These actions can be found in the Window menu.

To customize a perspective, select Window → Customize Perspective.... The 
Customize Perspective dialog opens (Figure 4-8 on page 141).

Tips:

� The name of the perspective is shown in the window title area along with 
the name of the file open in the editor, which is currently at the front.

� To close a perspective, right-click the perspective's button on the shortcut 
bar (top right) and select Close.

� To display only the icons for the perspectives, right-click somewhere in the 
shortcut bar and deselect Show Text.

� Each perspective requires memory, so it is a good practice to close 
perspectives when not being used to improve performance.
140 Rational Application Developer V6 Programming Guide



Figure 4-8   Customize Perspective dialog

In the dialog you can use the check boxes to select which elements you want to 
see in the New, Open Perspective, and Show View menus of the selected 
perspective. Items you do not select are still accessible by clicking the Other... 
menu option. The Commands tab of the dialog allows you to select command 
groups that will be added to the menu bar or tool bar for Rational Application 
Developer in this perspective.

� Customize 

You can also customize a perspective by adding, closing, moving, and 
resizing views. To add a view to the perspective, select Window → Show 
View and select the view you would like to add to the currently open 
perspective.

� Move

You can move a view to another pane by using drag and drop. To move a 
view, select its title bar, drag the view, and drop it on top of another view. The 
views are stacked and you can use the tabs at the top of the view to switch 
between them.

� Drag

While you drag the view, the mouse cursor changes into a drop cursor. The 
drop cursor indicates what will happen when you release the view you are 
 Chapter 4. Perspectives, views, and editors 141



dragging. In each case, the area that will be filled with the dragged view is 
highlighted with a rectangular outline. 

The view will dock below the view under the cursor.

The view will dock to the left of the view under the cursor.

The view will dock to the right of the view under the cursor.

The view will dock above the view under the cursor.

The view will appear as a tab in the same pane as the view under 
the cursor.

The view will dock in the status bar (at the bottom of the Rational 
Application Developer window) and become a Fast View (see 
below).

The view will become a separate child window of the main 
Rational Application Developer window.

� Fast View

A Fast View appears as a button in the status bar of Rational Application 
Developer. Clicking the button will toggle whether or not the view is displayed 
on top of the other views in the perspective.

� Maximize and minimize a view

To maximize a view to fill the whole working area of the Workbench, you can 
double-click the title bar of the view, press Ctrl+M, or click the Maximize icon 
( )in the view’s toolbar. To restore the view, double-click the title bar or 
press Ctrl+M again. The Minimize button in the toolbar of a view minimizes 
the tab group so that only the tabs are visible; click the Restore button or one 
of the view tabs to restore the tab group.

� Save

Once you have configured the perspective to your preferences, you can save 
it as your own perspective by selecting Window → Save Perspective As.... 
In practice it is often unnecessary to save a perspective with a new name 
since Rational Application Developer remembers the settings for all your 
perspectives. It might be useful in situations where a development is being 
shared between several developers.

� Restore

To restore the currently opened perspective to its original layout, select 
Window → Reset Perspective.
142 Rational Application Developer V6 Programming Guide



4.2  Available perspectives
In this section we describe the perspectives that are available in Rational 
Application Developer. The perspectives are covered in the order in which they 
appear in the Select Perspective dialog (alphabetical order).

Rational Application Developer allows a developer to disable or enable 
capabilities to simplify the interface or make it more capable for specific types of 
development work. This is described in 3.2.3, “Capabilities” on page 86. For this 
section, all capabilities have been enabled in the product—otherwise certain 
perspectives, associated with specific capabilities, would not be available.

IBM Rational Application Developer V6.0 includes the following perspectives:

� CVS Repository Exploring perspective
� Data perspective
� Debug perspective
� Generic Log Adapter perspective
� J2EE perspective
� Java perspective
� Java Browsing perspective
� Java Type Hierarchy perspective
� Plug-in Development perspective
� Profiling and Logging perspective
� Resource perspective
� Team Synchronizing perspective
� Test perspective
� Web perspective

4.2.1  CVS Repository Exploring perspective
The CVS Repository Exploring perspective (see Figure 4-9 on page 144) lets 
you connect to Concurrent Versions System (CVS) repositories. It allows you to 
add and synchronize projects with the workspace and to inspect the revision 
history of resources.

� CVS Repositories view

Shows the CVS repository locations that you have added to your Workbench. 
Expanding a location reveals the main trunk (HEAD), project versions, and 
branches in that repository. You can further expand the project versions and 
branches to reveal the folders and files contained within them.

The context menu for this view also allows you to specify new repository 
locations. Use the CVS Repositories view to check out resources from the 
repository to the Workbench, configure the branches and versions shown by 
the view, view resource history, and compare resource versions.
 Chapter 4. Perspectives, views, and editors 143



Figure 4-9   CVS Repository Exploring perspective

� Editor

Files that exist in the repositories can be viewed by double-clicking them in a 
branch or version. This opens the version of the file specified in the editor 
pane.

� CVS Resource History view

Displays more detailed history of each file. This view provides a list of all the 
revisions of a resource in the repository. From this view you can compare two 
revisions or open an editor on a revision.

� CVS Annotate view

Select a resource in the CVS Repositories view, right-click a resource, and 
select Show Annotation. The CVS Annotate view will come to the front and 
will display a summary of all the changes made to the resource since it came 
under the control of your CVS server.
144 Rational Application Developer V6 Programming Guide



More details about using the CVS Repository Exploring perspective, and other 
aspects of CVS functionality in Rational Application Developer, can be found in 
Chapter 26, “CVS integration” on page 1299.

4.2.2  Data perspective
The Data perspective lets you access relational database tools, where you can 
create and manipulate the data definitions for your project. This perspective also 
lets you browse or import database schemas in the DB Servers view, create and 
work with database schemas in the Data Definition view, and change database 
schemas in the table editor. You can also export data definitions to another 
database installed either locally or remotely. The Data perspective is shown in 
Figure 4-10.

Figure 4-10   Data perspective

The views are:

� Data Definition view
 Chapter 4. Perspectives, views, and editors 145



This view of lets you work directly with data definitions, defining relational 
data objects. It can hold local copies of existing data definitions imported from 
the DB Servers view, designs created by running DDL scripts, or new designs 
that you have created directly in the Workbench.

� Database Explorer view

Using this view, you can work with database connections to view the design 
of existing databases, and import the designs to another folder in the Data 
Definition view, where you can extend or modify them.

� Tasks view

The Tasks view displays system-generated errors, warnings, or information 
associated with a resource, typically produced by builders. Tasks can also be 
added manually and optionally associated with a resource in the Workbench.

� Navigator view

The Navigator view provides a hierarchical view of all the resources in the 
Workbench. By using this view you can open files for editing or select 
resources for operations such as exporting. The Navigator view is essentially 
a file system view, showing the contents of the workspace and the directory 
structures used by any projects that have been created outside the 
workspace.

� Console view

The Console view shows the output of a process and allows you to provide 
keyboard input to a process. The console shows three different kinds of text, 
each in a different color: Standard output, standard error, and standard input.

� DB Output view

The DB Output view shows the messages, parameters, and results that are 
related to the database objects that you work with, such as SQL statements, 
stored procedures, and user-defined functions.

More details about using the Data perspective can be found in Chapter 8, 
“Develop Java database applications” on page 333.

4.2.3  Debug perspective
The Debug perspective, shown in Figure 4-11 on page 147, contains five panes:

� Top left: Shows Debug and Servers views

� Top right: Shows Breakpoints and Variables views

� Middle left: Shows the editor or the Web browser when debugging Web 
applications

� Middle right: Shows the Outline view
146 Rational Application Developer V6 Programming Guide



� Bottom: Shows the Console and the Tasks view

Figure 4-11   Debug perspective

The views are:

� Debug view

The Debug view displays the stack frame for the suspended threads for each 
target you are debugging. Each thread in your program appears as a node in 
the tree. If the thread is suspended, its stack frames are shown as child 
elements.

If the resource containing a selected thread is not open and/or active, the file 
opens in the editor and becomes active, focusing on the source with which 
the thread is associated.

The Debug view enables you to perform various start, step, and terminate 
debug actions, as well as enable or disable step-by-step debugging.

� Variables view
 Chapter 4. Perspectives, views, and editors 147



The Variables view displays information about the variables in the currently 
selected stack frame.

� Breakpoints view

The Breakpoints view lists all the breakpoints you have set in the Workbench 
projects. You can double-click a breakpoint to display its location in the editor. 
In this view, you can also enable or disable breakpoints, delete them, change 
their properties, or add new ones. This view also lists Java exception 
breakpoints, which suspend execution at the point where the exception is 
thrown.

� Servers view

The Servers view lists all the defined servers and their status. Right-clicking a 
server displays the server context menu, which allows the server to be 
started, stopped, etc.

� Outline view

The Outline view shows the elements (imports, class, fields, and methods) 
that exist in the source file in the front editor. Clicking an item in the outline will 
position you in the editor view at the line where that structure element is 
defined.

The Console and Tasks views have already been discussed in earlier sections of 
this chapter.

More information about the Debug perspective can be found in Chapter 21, 
“Debug local and remote applications” on page 1121.

4.2.4  Generic Log Adapter perspective
This perspective is used when working with Hyades, which is an integrated test, 
trace, and monitoring environment included with Rational Application Developer. 
See Chapter 20, “JUnit and component testing” on page 1081, for more 
information on using this feature of the Workbench. Hyades is an Eclipse project 
dealing with the area of Automated Software Quality; for more information, see 
http://www.eclipse.org/hyades/.

This perspective includes:

� Problems view

This view shows all errors, warnings, and information messages relating to 
resources in the workspace. The items listed here can be used to navigate to 
the line of code containing the error, warning, or information point.

� Sensor Results view
148 Rational Application Developer V6 Programming Guide

http://www.eclipse.org/hyades/


A sensor monitors a log or trace resource for changes. This view shows what 
sensor events have taken place.

� Extractor Results view

Extractors take content from a log or trace resource and convert it into a 
standardized internal representation, known as Common Base Event (CBE) 
format.

� Formatter Results view

A formatter takes CBEs and presents them in a customizable format.

The Navigator view has already been discussed in earlier sections of this 
chapter.

4.2.5  J2EE perspective
The default perspective of Rational Application Developer is the J2EE 
perspective, shown in Figure 4-12 on page 150. Rational Application Developer 
lets you change the default perspective. See 4.1.7, “Specifying the default 
perspective” on page 140, for instructions on how to change the default 
perspective.

The J2EE perspective contains the following views that you would typically use 
when you develop J2EE resources:

� Project Explorer view

This shows information about your J2EE and other projects in the workspace, 
including your project resources, J2EE deployment descriptors, and the files 
in the project directories, like the Navigator view.
 Chapter 4. Perspectives, views, and editors 149



Figure 4-12   J2EE perspective

� Snippets view

The Snippets view lets you catalog and organize reusable programming 
objects, such as HTML tagging, JavaScript, and JSP code, along with files 
and custom JSP tags. The view can be extended based on additional objects 
that you define and include. The available snippets are arranged in drawers, 
such as JSP or EJB, and the drawers can be customized by right-clicking a 
drawer and selecting Customize....

� Properties view

Provides a tabular view of the properties and associated values of objects in 
files you have open in an editor. For example, you can specify converters in 
the Properties view of the Mapping editor.

The Outline, Servers, Problems, Tasks, and Console views have already been 
discussed in earlier sections of this chapter.
150 Rational Application Developer V6 Programming Guide



More details about using the J2EE perspective can be found in Chapter 15, 
“Develop Web applications using EJBs” on page 827.

4.2.6  Java perspective
The Java perspective (Figure 4-13 on page 152) supports developers who 
create, edit, and build Java code.

The Java perspective consists of an editor area and displays, by default, the 
following views:

� Package Explorer view

This shows the Java element hierarchy of all the Java projects in your 
Workbench. It provides you with a Java-specific view of the resources shown 
in the Navigator view (which is not shown by default in the Java perspective). 
The element hierarchy is derived from the project's build classpath. For each 
project, its source folders and referenced libraries are shown in the tree view. 
From here you can open and browse the contents of both internal and 
external JAR files.

Note: When in the Package Explorer view, the JavaSource folder is off the 
project root folder. In most other views, the JavaSource folder is under 
Java Resources.
 Chapter 4. Perspectives, views, and editors 151



Figure 4-13   Java perspective

� Hierarchy view

Can be opened for a selected type to show its superclasses and subclasses. 
It offers three different ways to look at a class hierarchy:

– The Type Hierarchy displays the type hierarchy of the selected type, that 
is, its position in the hierarchy, along with all its superclass and 
subclasses.

– The Supertype Hierarchy displays the supertype hierarchy of the selected 
type and any interfaces the type implements.

– The Subtype Hierarchy displays the subtype hierarchy of the selected type 
or, for interfaces, displays classes that implement the type.

More information about the Hierarchy view is provided in 4.2.8, “Java Type 
Hierarchy perspective” on page 155.

� Diagram Navigator view
152 Rational Application Developer V6 Programming Guide



This view shows a hierarchical view of the workspace and allows a developer 
to find UML visualization diagrams.

� Javadoc view

This view shows the Javadoc comments associated with the element 
selected in the editor or outline view.

� Declarations view

Shows the source of the element selected in the editor or in outline view.

The Outline and Problems views have already been discussed in earlier sections 
of this chapter.

See Chapter 7, “Develop Java applications” on page 221, for more information 
about how to work with the Java perspective and the following two perspectives.

4.2.7  Java Browsing perspective
The Java Browsing perspective also addresses Java developers, but it provides 
different views (Figure 4-14 on page 154).
 Chapter 4. Perspectives, views, and editors 153



Figure 4-14   Java Browsing perspective

The Java Browsing perspective has a large editor area and several views to 
select the programming element you want to edit:

� Projects view: Lists all Java projects
� Packages view: Shows the Java packages within the selected project
� Types view: Shows the types defined within the selected package
� Members view: Shows the members of the selected type
154 Rational Application Developer V6 Programming Guide



The Show Selected Element Only button ( ) toggles between showing all the 
content of the selected type and showing only the code (and comments) for the 
element selected in the Members view.

4.2.8  Java Type Hierarchy perspective
This perspective also addresses Java developers and allows them to explore a 
type hierarchy. It can be opened on types, compilation units, packages, projects, 
or source folders, and consists of the Hierarchy view and an editor (Figure 4-15).

Figure 4-15   Java Type Hierarchy perspective

The Hierarchy view does not display a hierarchy until you select a type, so the 
initial appearance is as shown in Figure 4-16 on page 156.
 Chapter 4. Perspectives, views, and editors 155



Figure 4-16   Hierarchy view - initial appearance

To open a type in the Hierarchy view, open the context menu from a type in any 
view and select Open Type Hierarchy. The type hierarchy is displayed in the 
Hierarchy view. Figure 4-17 shows the Hierarchy view of the Swing class JList.

Figure 4-17   Hierarchy view
156 Rational Application Developer V6 Programming Guide



Icons are provided at the top of the Hierarchy view to display the type hierarchy 
( ), the supertype hierarchy (bottom-up) ( ), or the subtype hierarchy 
(top-down) ( ). The supertype hierarchy also shows interfaces that are 
implemented for each class in the hierarchy.

Since the Hierarchy view, which has been described earlier in this chapter, is 
also displayed in the Java perspective, and can be added to any other 
perspective as required, the only advantage of the Java Type Hierarchy 
perspective is the large editor area.

4.2.9  Plug-in Development perspective
You can develop your own Rational Application Developer tools by using the 
Plug-in Development perspective, which is inherited by Rational Application 
Developer from the Eclipse framework. This perspective includes:

� Plug-ins view: Shows the combined list of workspace and external plug-ins

� Error Log view: Shows the error log for the software development platform, 
allowing a plug-in developer to diagnose problems with plug-in code

The other views in this perspective have already been described earlier in this 
chapter.

In this book we do not describe how to develop plug-ins for Rational Application 
Developer or Eclipse. Figure 4-18 on page 158 shows the Plug-in Development 
perspective.
 Chapter 4. Perspectives, views, and editors 157



Figure 4-18   Plug-in Development perspective

To learn more about plug-in development, refer to Eclipse Development using 
the Graphical Editing Framework and the Eclipse Modeling Framework, 
SG24-6302, and The Java Developer’s Guide to Eclipse by Shavor et al.

4.2.10  Profiling and Logging perspective
The Profiling and Logging perspective provides a number of views for working 
with logs and for profiling applications.

� Log Navigator view

This view is used for working with various types of log files, including the 
service logs for WebSphere Application Server. Logs and symptom 
databases can be loaded using this view and opened in an editor or viewer, 
as shown in Figure 4-19 on page 159.
158 Rational Application Developer V6 Programming Guide



Figure 4-19   Working with logs in the Profiling and Logging perspective

� Profiling Monitor view (not shown in Figure 4-19)

This view shows the process that can be controlled by the profiling features of 
Rational Application Developer. Performance and statistical data can be 
collected from processes using this feature and displayed in various 
specialized views.

The Navigator view has been discussed earlier in this chapter.

More details about these views and the techniques required to use them can be 
found in Chapter 24, “Profile applications” on page 1237.

4.2.11  Resource perspective
The Resource perspective is a very simple perspective (see Figure 4-20 on 
page 160).
 Chapter 4. Perspectives, views, and editors 159



Figure 4-20   Resource perspective

All the views in this perspective have already been described.

4.2.12  Team Synchronizing perspective
The Team Synchronizing perspective provides the features necessary to 
synchronize the resources in the workspace with resources held on an SCM 
repository system, regardless of the specific system being used in your team.

� Synchronize view

Clicking the Synchronize button on the toolbar of this view leads you through 
the process of specifying the SCM repository you want to synchronize with. 
The view will display the list of synchronization items that result from the 
analysis of the differences between the local and repository versions of your 
projects. Double-clicking an item will open the comparison view to help you in 
completing the synchronization. This is shown in Figure 4-21.
160 Rational Application Developer V6 Programming Guide



Figure 4-21   Synchronizing resources using the Team Synchronizing perspective

4.2.13  Test perspective
The Test perspective (see Figure 4-22 on page 162) provides a framework for 
defining and executing test cases and test suites. The main view provided is the 
Test Navigator view. The Test Navigator is the main navigation view for browsing 
and editing test suites and viewing test results. It shows an execution-oriented 
view of test projects.
 Chapter 4. Perspectives, views, and editors 161



Figure 4-22   Test perspective

More information about Component Testing is located in Chapter 20, “JUnit and 
component testing” on page 1081.

The Tasks, Properties, and Outline views have already been covered in this 
chapter.

4.2.14  Web perspective
Web developers can use the Web perspective to build and edit Web resources, 
such as servlets, JSPs, HTML pages, Style sheets, and images, as well as the 
deployment descriptor file web.xml (Figure 4-23 on page 163).
162 Rational Application Developer V6 Programming Guide



Figure 4-23   Web perspective

The Web perspective contains the following views:

� Gallery view

Contains a variety of catalogs of reusable files that can be applied to Web 
pages. The file types available include images, wallpaper, Web art, sound 
files, and style sheet files.

� Page Data view

Allows you manage data from a variety of sources, such as session EJBs, 
JavaBeans, and Web services, which can be configured and dropped onto a 
JSP.

� Client Data view
 Chapter 4. Perspectives, views, and editors 163



This view relates to developing Web applications using JavaServer Faces 
(JSF). User interface components on JSF pages can be connected to 
server-side data. This view provides a mechanism for configuring the link.

� Styles view

Provides guided editing for cascading style sheets and individual style 
definitions for HTML elements.

� Thumbnails view

Shows thumbnails of the images in the selected project, folder, or file. This 
view is especially valuable when used with the Gallery view to add images 
from the artwork libraries supplied by Rational Developer to your page 
designs. When used with the Gallery view, thumbnail also displays the 
contents of a selected folder. You can drag and drop from this view into the 
Project Explorer view or the Design or Source page of Page Designer.

� Quick Edit

Allows you to edit small bits of code, including adding and editing actions 
assigned to tags. You can drag and drop items from the Snippets view into 
the Quick Edit view.

� Palette view

Contains expandable drawers of drag and drop objects. Allows you to drag 
objects, such as tables or form buttons, onto the Design or Source page of 
the Page Designer.

� Links view (as a fast view button in the status area)

Shows the resources used by or linked to from the selected file and files that 
use or link to the selected resource. This view provides you with a way to 
navigate through the various referenced parts of a Web application and can 
be used as an overview of the structure of the application being developed. 
The button toggles the display of this view.

Figure 4-24 on page 165 shows the Web perspective with the Links view 
toggled open.
164 Rational Application Developer V6 Programming Guide



Figure 4-24   Web perspective - Links view

� Page Designer editor

Page Designer allows you to work with HTML files, JSP files, and embedded 
JavaScript. Within the Page Designer, you can move among three pages that 
provide different ways for you to work with the file that you are editing. You 
can switch pages by clicking the tabs at the bottom of the editor pane. These 
pages work in conjunction with the Outline and Properties views, tool bar 
buttons, menu bar options, and context menus.

– Design

The Design page of Page Designer is the WYSIWYG mode for editing 
HTML and JSP files. As you edit in the Design page, your work reflects the 
layout and style of the Web pages you build without the added complexity 
of source tagging syntax, navigation, and debugging. Although many 
tasks can also be performed in the same way in the Source page, the 
 Chapter 4. Perspectives, views, and editors 165



Design page provides full access to Page Designer menu options, context 
menu actions, view-specific GUI options (such as those in the Styles 
view), and drag and drop behavior.

– Source

The Source page enables you to view and work with a file's source code 
directly. The Outline and Properties views both have features that 
supplement the Source page.

– Preview

Shows how the current page is likely to look when viewed in a Web 
browser. JSPs shown in this view will contain only static HTML output.

The Project Explorer, Outline, Properties, Servers, Console, Problems, and 
Snippets views have already been discussed in this chapter.

4.2.15  Progress view
The Progress view is not part of any perspective by default, but is a very useful 
part of using Rational Application Developer. When Rational Application 
Developer is carrying out a task that takes a substantial amount of time, two 
options are available: The user looks at the dialog until the operation completes, 
or the user clicks the Run in Background button and the task continues in the 
background. If the second option is selected, Rational Application Developer 
runs more slowly, but the developer can carry out other tasks while waiting. 
Examples of tasks that might be worth running in the background would be 
publishing and running an enterprise application, checking a large project into 
CVS or rebuilding a complex set of projects.

As an example, we will see what happens when a project is published to a newly 
created server, which is then started. Right-clicking index.html and selecting 
Run → Run on Server begins the process. Once a server has been created or 
selected in the wizard, a dialog appears, as shown in Figure 4-25 on page 167. 

The user can wait or click the Run in Background button. Clicking the button 
causes the process to minimize to the status area, shown as an icon in the 
bottom-right corner (Figure 4-26 on page 167). This section of the status bar now 
shows the name of the process being run in the background, a progress bar, and 
the “Shows background tasks in Progress view” button, which looks like a 
conveyor belt.

Clicking the Shows background tasks in Progress view button opens the 
Progress view, as shown in Figure 4-27 on page 168. This view lists all the active 
background processes and allows them to be monitored or controlled.
166 Rational Application Developer V6 Programming Guide



Figure 4-25   Blocking process

Figure 4-26   Process information in status bar
 Chapter 4. Perspectives, views, and editors 167



Figure 4-27   Progress view

4.3  Rational Product Updater
To obtain and install updates for Rational Application Developer, run the Rational 
Software Development Platform Product Updater tool, which is installed along 
with Rational Application Developer. This application will search for updates to 
Rational Software Development Platform products that are installed on the host 
computer and download them from IBM’s update site. The interface is shown in 
Figure 4-28.

Figure 4-28   Rational Software Development Platform Product Updates
168 Rational Application Developer V6 Programming Guide



Chapter 5. Projects

This chapter reviews J2EE packaging rules, explains how Rational Application 
Developer represents these rules, introduces the main project types, and looks 
at some of the options for configuring projects.

The chapter is organized into the following sections:

� J2EE architecture
� Projects and folders
� Rational Application Developer projects
� Creating a new project
� Project properties
� Rational Application Developer samples

5

© Copyright IBM Corp. 2005. All rights reserved. 169



5.1  J2EE architecture
The Java 2 Platform Enterprise Edition (J2EE) is a highly available, reliable, 
scalable, and secure platform for developing client-server applications in Java. In 
this book we are mainly concerned with J2EE V1.4.

The J2EE specification, along with many other resources relating to J2EE, is 
available at http://java.sun.com/j2ee/. The specification includes a 
description of the component model for developing J2EE applications and the 
runtime architecture. For more information on the programming technologies and 
how they are designed to interact, refer to Chapter 2, “Programming 
technologies” on page 31.

5.1.1  EAR files
Enterprise archive (EAR) files represent a J2EE application that can be deployed 
to WebSphere Application Server. The EAR file format is based on the Java 
archive (JAR) file format. An .ear file contains a deployment descriptor 
(application.xml), which describes the contents of the application and contains 
instructions for the entire application, such as security settings to be used in the 
runtime environment.

An EAR file contains the following modules (zero or more of each type—at least 
one module):

� Web modules - With a file extension of .war
� EJB modules - Packaged in a .jar file
� Application client modules - Packaged in a .jar file
� Resource adapter modules - Packaged in a .rar file

An EAR file can also contain utility JAR files required by other modules and other 
files as necessary.

5.1.2  WAR files
Web archive (WAR) files contain all the components of a Web application. These 
components will often include:

� HyperText Markup Language (HTML) files
� Cascading Style Sheets (CSS) files
� JavaServer Pages (JSP) files
� Compiled Java Servlet classes
� Other compiled Java classes
� Image files
� Portlets (portal applications)
170 Rational Application Developer V6 Programming Guide

http://java.sun.com/j2ee/


WAR files also include a deployment descriptor (web.xml), which describes how 
to deploy the various components packaged within the Web module.

5.1.3  EJB JAR files
An EJB JAR file is used to package all the classes and interfaces that make up 
the EJBs in the module. The EJB JAR file includes a deployment descriptor 
(ejb-jar.xml), which describes how the EJBs should be deployed.

5.1.4  J2EE Application Client JAR files
A J2EE Application Client is packaged in a JAR file. The JAR file includes the 
classes required for the user interface for the application, which will run on a 
client machine and access resources provided by a J2EE server, such as data 
sources, security services, and EJBs. The file also includes a deployment 
descriptor (application-client.xml).

5.1.5  RAR files
A resource adapter archive (RAR) file is used to package J2EE resource 
adapters, which are designed to provide access to back-end resources using 
services provided by the application server to manage the lookup of the resource 
and to manage connections. Resource adapters are often provided by vendors 
of enterprise information systems to facilitate access to resources from J2EE 
applications. 

The resource adapter may be installed as a stand-alone module within the 
server, to allow it to be shared among several applications, or as part of an 
application, in which case it will be available only to the containing application. 
The RAR file includes the Java classes, providing the Java-side of the resource 
adapter, and platform-specific code, providing the back-end connection 
functionality. The deployment descriptor is called ra.xml.

J2EE resource adapters are known by several names:

� Java 2 Connectors (J2C)
� J2EE Connector Architecture (JCA)
� J2EE Resource Adapter (RA)

5.2  Projects and folders
Rational Application Developer organizes all resources into projects, which 
contain the required files and folders. In the Workbench you can create different 
 Chapter 5. Projects 171



kinds of projects with different structures. These will be described in 5.3, 
“Rational Application Developer projects” on page 173.

Unless otherwise specified, projects are created in Rational Application 
Developer’s workspace directory, which is normally chosen as the tool is started.

When projects are deleted, Rational Application Developer offers the choice of 
whether to Also delete contents under <directory> or Do not delete 
contents (this is shown in Figure 5-1).Choosing the second option, which is the 
default, removes the project from Rational Application Developer’s list of projects, 
but leaves the file structure of the project intact—the project can later be 
imported using the “Existing Project into Workspace” option for imports. A project 
that has been deleted from the workspace takes up no memory and is not 
examined during builds, so deleting projects in this way can improve the 
performance of Rational Application Developer.

Figure 5-1   Confirm Project Delete dialog

Rational Application Developer complies with the J2EE specifications for 
developing components. The packaging rules, described above in 5.1, “J2EE 
architecture” on page 170, are only applied by Rational Application Developer 
when a J2EE application or module is exported. While these applications and 
modules are within Rational Application Developer, they are stored as projects in 
the same way as anything else. The relationship between the enterprise 
application projects and the modules they contain is managed by Rational 
Application Developer and applied on export to produce a properly packaged 
.ear file. This arrangement, and the correspondence between applications, 
modules and projects is shown in Figure 5-2 on page 173.
172 Rational Application Developer V6 Programming Guide



Figure 5-2   Relationship between J2EE modules and projects

5.3  Rational Application Developer projects
Table 5-1 shows the types of project for which Rational Application Developer 
provides creation wizards.

Table 5-1   Project types in Rational Application Developer

R a t i o n a l
A p p l i c a t i o n
D e v e l o p e r

E n t e r p r i s e
A p p l i c a t i o n

J 2 E E
E n t e r p r i s e

A p p l i c a t i o n

E J B
M o d u l e

R e s o u r c e
A d a p t e r
M o d u l e

A p p l i c a t i o n
C l i e n t

M o d u l e

W e b
M o d u l e

C o n n e c t o r
P r o j e c t

E n t e r p r i s e
A p p l i c a t i o n

P r o j e c t

D y n a m i c
W e b

P r o j e c t

A p p l i c a t i o n
C l i e n t

P r o j e c t

E J B
P r o j e c t

R
ational A

pplication D
eveloper

m
anages references betw

een projects

Enterprise Application Project J2EE Application Client Project

Dynamic Web Project Static Web Project

EJB Project Connector Project
 Chapter 5. Projects 173



EMF, Feature, Fragment, Plug-in, and Update Site Projects and Feature Patches 
are concerned with extending the functionality of the Workbench, which is 
beyond the scope of this book. This section does cover the other project types.

Figure 5-3   New Project dialog

Java Project Simple Project

Server Project Component Test Project

EMF Project Checkout Projects from CVS

Feature Patch Feature Project

Fragment Project Plug-in Project

Update Site Project
174 Rational Application Developer V6 Programming Guide



To create a project, do the following:

1. Select File → New → Project.... 

2. This displays the New Project dialog, which lists all the project types for which 
wizards exist. This dialog is shown in Figure 5-3 on page 174. Check Show 
All Wizard. Select the desired project type and click Next > to start the 
wizard.

5.3.1  Enterprise Application project
Enterprise Application projects contain references to the resources needed for 
enterprise applications and can contain a combination of Web modules, EJB 
modules, application client modules, resource adapter modules, utility Java 
projects, and JAR files.

The wizard for creating an enterprise application project also includes an option 
for creating one of each type of contained module (dynamic Web, EJB, 
application client, and connector). The J2EE level and target server can also be 
specified.

For more information on developing J2EE enterprise applications, see 
Chapter 23, “Deploy enterprise applications” on page 1189.

5.3.2  J2EE Application Client project
J2EE Application Client projects contain the resources needed for J2EE 
application client modules. An application client module is used to contain a 
full-function client Java application (non Web-based) that connects to and uses 
the J2EE resources defined in your server, such as the Java Naming and 
Directory Interfaces (JNDI) service provided by the server and, through JNDI, 
EJBs, and data sources. 

The wizard allows the J2EE version, target server, and containing EAR file to be 
specified.

5.3.3  Dynamic Web Project
A Dynamic Web Project contains resources needed for Web applications, such 
as JSPs, Java Servlets, HTML, and other files. The Dynamic Web Project wizard 
provides the capability to configure the version of the Java Servlet specification, 
target server, EAR file name, and context root. The wizard also allows various 
other features to be added to the dynamic Web Project:

� A CSS file
� Struts support
 Chapter 5. Projects 175



� A Web diagram
� JSP tag libraries
� Crystal Reports

The dynamic Web Project can also be built using a template—various samples 
are provided or user-defined templates can be created.

For more information on developing Web applications, see Chapter 11, “Develop 
Web applications using JSPs and servlets” on page 499.

5.3.4  Static Web Project
A Static Web Project contains only static Web content, such as HTML pages, 
images, sounds, and movie files. These resources are designed to be deployed 
to a Web server and do not require the services of a J2EE application server. 
The wizard allows the CSS file for the project to be selected and can build the 
static Web Project from a template.

For more information on developing Web applications, see Chapter 11, “Develop 
Web applications using JSPs and servlets” on page 499.

5.3.5  EJB project
EJB projects contain the resources for EJB applications. The EJB project 
contains classes and interfaces that make up the EJBs, the deployment 
descriptor for the EJB module, IBM extensions and bindings files, and files 
describing the mapping between entity beans in the project and relational 
database resources.

The wizard allows the EJB version, target server, and containing EAR file to be 
specified. In addition, support can be added for annotated Java classes (an 
extension to EJB V2.1, which looks forward to the EJB V3.0 specification), and 
the wizard can create a default session bean, called DefaultSession. An EJB 
Client JAR can also be created, which includes all the resources needed by 
client code to access the EJB module (the interfaces and stubs).

For more information on developing EJBs, see Chapter 15, “Develop Web 
applications using EJBs” on page 827.

5.3.6  Connector project
A Connector project contains the resources required for a J2EE resource 
adapter. The wizard allows the JCA version, target server, and containing EAR 
file to be specified. Unlike most of the projects discussed in this chapter, there is 
no explicit support for developing J2EE resource adapters.
176 Rational Application Developer V6 Programming Guide



5.3.7  Java project
A Java project contains Java packages and Java code as .java files and .class 
files. Java projects have an associated Java builder that incrementally compiles 
Java source files as they are changed. Java projects can be exported as JAR 
files or into a directory structure.

Java projects are used for stand-alone applications or to build utility JAR files for 
an enterprise application.

For more information on developing Java applications, see Chapter 7, “Develop 
Java applications” on page 221.

5.3.8  Simple project
A Simple project in Application Developer does not have any default folders or 
required structure.

5.3.9  Server project
A Server project stores information about test servers and their configurations. If 
all testing will be performed on the default test server, no server project is 
required, but if you want to test your EJB or Web components on another type of 
server, the configuration information is stored in a server project.

For more information on working with server configurations, see Chapter 19, 
“Servers and server configuration” on page 1043.

5.3.10  Component test project
A component test project serves as a grouping mechanism for the test artifacts 
that are generated when you create a component test. Test projects also serve 
to define the scope of the test project by limiting the number of files that will be 
analyzed when you create tests or stubs, especially when you have many 
projects or large projects in your workspace. This can be performed as you go 
through the wizard.

For more information on testing, see Chapter 20, “JUnit and component testing” 
on page 1081.

5.3.11  Checkout projects from CVS
This wizard allows you to copy projects from a Concurrent Versions System 
(CVS) repository to your local workspace. The wizard takes you through the 
 Chapter 5. Projects 177



process of connecting to the CVS repository server and allows you to specify a 
project to check out by name or to browse for it from a list provided by the server.

For more information on using CVS, see Chapter 26, “CVS integration” on 
page 1299.

5.4  Creating a new project
You normally start developing a new application by creating one or more 
projects. The Workbench provides wizards to create each specific type of 
project. 

As an example of running through the process of creating a new project, we will 
look at the New Enterprise Application Wizard. 

1. To launch this wizard, select File → New → Project.

2. Select J2EE → Enterprise Application Project. 

The New Enterprise Application Project wizard is shown in Figure 5-4.

Figure 5-4   New Enterprise Application Project wizard page 1

In this case, the things that can be specified are:

– Name: The project name—Example in this case.

– Location: By default, projects are stored in a subdirectory that is created 
for the project in the workspace directory, but another location may be 
specified.

– J2EE version: Here, 1.2, 1.3, or 1.4 can be selected.
178 Rational Application Developer V6 Programming Guide



– Target server: The options in the drop-down list will depend on the test 
servers that have been installed.

3. The second page of the wizard is shown in Figure 5-5. If J2EE module 
projects are already in the workspace, they are listed in this dialog and can be 
added to the project as it is created. If you want to create some basic modules 
as part of creating the enterprise application project, click New Module.... 
The resulting dialog is shown in Figure 5-6 on page 180.

Figure 5-5   New Enterprise Application Project wizard page 2
 Chapter 5. Projects 179



Figure 5-6   New Module Project dialog

4. Select the check boxes for the projects you wish to create, change the names 
if desired, and click Finish. Click Finish again on the New Enterprise 
Application Project wizard.

If the project you have created is associated with a particular perspective (as in 
this case, with the J2EE perspective), Rational Application Developer will offer to 
switch over to the perspective concerned.

5.5  Project properties
To make changes to the properties of a project, right-click the project and select 
Properties from the context menu. Figure 5-7 on page 181 shows the properties 
dialog for an EJB project. 
180 Rational Application Developer V6 Programming Guide



Figure 5-7   Project properties

In the Properties dialog you may want to change:

� Java Build Path: Project dependencies and JAR files.

� Server: Which test server to start when testing the project.

� Validation: Which validation tools should run after making changes.

� Java JAR Dependencies: Configure project dependencies and classpath 
entries.

Different types of projects have different options available in the Properties 
dialog.

5.6  Rational Application Developer samples
Rational Application Developer provides a wide range of sample applications that 
can help you to explore the features provided by the software development 
platform and the technologies supported by it.
 Chapter 5. Projects 181



The simplest way to access the samples is through the Welcome page for 
Rational Application Developer. 

1. This page is shown when the product is first started. (If you have closed it, it 
can be reopened by selecting Help → Welcome). The Welcome page is 
shown in Figure 5-8.

Figure 5-8   Welcome page

2. Click the Samples button to display the Samples page. 

3. This page is shown in Figure 5-9 on page 183. It includes a few sample 
applications that can be imported into Rational Application Developer, but a 
far larger number can be accessed by clicking the Launch the Samples 
Gallery button.

4. This opens a separate Samples Gallery window. The Samples Gallery can 
also be opened by selecting Help → Samples Gallery.
182 Rational Application Developer V6 Programming Guide



Figure 5-9   Samples page

5.6.1  The samples gallery
The samples gallery lists all the samples available in Rational Application 
Developer. At the time of writing, this included 42 samples. The samples are 
arranged in three main categories:

� Showcase samples: The most extensive, robust samples provided, consisting 
of end-to-end applications that follow best practices for application 
development

� Application samples: Applications created using more than one tool or API, 
showing how different tools within Rational Application Developer interact 
with each other

� Technology samples: More granular, code-based samples that focus on a 
single tool or API

The samples can be selected from a hierarchical list in the left-hand pane, as 
shown in Figure 5-10 on page 184.
 Chapter 5. Projects 183



Figure 5-10   Samples Gallery

As an example, the Web Application Showcase sample is an auction application. 
The page for this is shown in Figure 5-11 on page 185. The Setup instructions 
link displays a page of instructions on how to configure and run the sample 
application. The Import the sample link will import the sample application into 
Rational Application Developer as a project (or, in this case, set of nine projects) 
so that it can be run on a server and tested.
184 Rational Application Developer V6 Programming Guide



Figure 5-11   Auction Web application sample

For a detailed example of how to import a sample, see 21.2, “Prepare for the 
sample” on page 1131.
 Chapter 5. Projects 185



186 Rational Application Developer V6 Programming Guide



Part 2 Develop 
applications

Part 2
© Copyright IBM Corp. 2005. All rights reserved. 187



188 Rational Application Developer V6 Programming Guide



Chapter 6. RUP and UML

In this chapter we illustrate how a software development project can be assisted 
by using the Rational Unified Process (RUP) tooling provided within Rational 
Application Developer. In addition, we demonstrate how the visual UML tooling 
included in Application Developer can be used within the context of RUP with an 
emphasis on the implementation phase.

The chapter is organized into the following sections:

� Overview
� Rational Unified Process (RUP)
� Visualize applications with UML
� More information on UML

6

© Copyright IBM Corp. 2005. All rights reserved. 189



6.1  Overview
The implementation phase takes the design and implements code, which can be 
transformed into one or more executable applications.

We are assuming that at this point at least early versions of the use case model 
and architectural design are available to us. By now we should have a good idea 
of how the use cases will be realized, and we can base our implementation work 
on the design model. Note that since RUP is an iterative process, these artifacts 
are further updated during each iteration. It is important that the development 
team and the tools are well integrated.

Rational Application Developer is primarily aimed at the Developer working at the 
implementation phase, but is also well suited for roles and tasks via the 
integrated capabilities provided by the Rational Software Development Platform.

The UML visualization capabilities provided with Rational Application Developer 
fall under the category of code visualization and visual editing. This will be the 
focus in the second part of this chapter. If you are more interested in the analysis 
and design discipline, then we recommend looking into the Rational Software 
Architect and Rational Software Modeler products.

6.2  Rational Unified Process (RUP)
The Rational Unified Process (or simply RUP) is a software engineering process. 
It provides a disciplined approach to assigning tasks and responsibilities within a 
development organization. Its goal is to ensure the production of high-quality 
software that meets the needs of its end users within a predictable schedule and 
budget.

Figure 6-1   RUP overview
190 Rational Application Developer V6 Programming Guide



Figure 6-1 on page 190 illustrates the overall RUP architecture, which has two 
dimensions:

� Lifecycle phases

The horizontal axis represents time and shows the life cycle aspects of the 
process as it unfolds. This dimension illustrates the dynamic aspect of the 
process as it is enacted and is expressed in terms of phases, iterations, and 
milestones. 

� Disciplines

The vertical axis represents disciplines that logically group activities by 
nature. This dimension portrays the static aspect of the process—how it is 
described in terms of process components, disciplines, activities, workflows, 
artifacts, and roles. 

The graph in Figure 6-1 on page 190 shows how the emphasis varies over time. 
For example, in early iterations you spend more time on requirements; in later 
iterations more time is dedicated towards implementation.

You can access and configure process information directly in Rational 
Application Developer, using the following features:

� Process Advisor 
� Process Browser
� Setting process preferences

6.2.1  Process Advisor 
The Process Advisor provides contextual process guidance on model elements 
within diagrams. 

When you select elements in a UML diagram, the system conducts a dynamic 
search of RUP content based on the context of your selection and the settings on 
the Process page of the Preferences window. The results of the search are 
displayed as topic links in the Process Advisor. Clicking a link opens the topic 
content in the Process Browser view.

To launch the Process Advisor directly, select Help → Process Advisor.

You can also specify the default set of roles you are performing and the topics 
and the type of content that you are interested in (see 6.2.3, “Setting process 
preferences” on page 193).

A search can be initiated by selecting Search → Search from the Workbench. 
Then click the  Process Search tab.
 Chapter 6. RUP and UML 191



From there you can search process information, but you also have access to 
many kind of searches over your workspace or Java resources (see Figure 6-2). 
If you are connected to the network then you may also search the IBM 
developerWorks Web site for related information.

Figure 6-2   Process Search

6.2.2  Process Browser
The Process Browser displays the full set of RUP content from the installed RUP 
Configuration and provides navigation to topics with the use of three tabs:

� Process view
� Search Results
� Index

To launch the Process Browser, select Help → Process Browser.

A Process view is the hierarchical set of process elements represented in and 
displayed by the RUP content tree in the view pane, and associated with a 
particular role or major category. Each process view is represented by a tabbed 
pane, as shown in Figure 6-3 on page 193.
192 Rational Application Developer V6 Programming Guide



You can manage the views of these process elements by using the toolbar 
buttons at the top of the window.

You can perform the following tasks in the Process Browser:

� Browse topics in the process view.
� Browse the index.
� Search for words or phrases.
� Customize RUP process content by creating tailored process views.

Figure 6-3   Process Browser views

The Process Browser comes with one pre-defined RUP configuration for the 
Developer role. You can customize this configuration by creating your own view. 
Click either the Developer or the Getting Started view, and then click Save 
Tree As to create your own copy. That view can then be modified by adding 
nodes or selecting the desired information for display.

The Welcome view includes a tutorial that demonstrates the customization steps.

6.2.3  Setting process preferences
As installed by default, the RUP Configuration provides basic process guidance 
to help you get started. This configuration is a subset of the full process 
information available in the standard configuration of the RUP methodology.

If you want to, it is easy to switch to another RUP configuration by selecting 
Window → Preferences → Process, as seen in Figure 6-4 on page 194.
 Chapter 6. RUP and UML 193



Figure 6-4   Process preferences window

6.3  Visualize applications with UML
There are several types of visualization available with Rational Application 
Developer. As in the prior releases, IBM Rational Application Developer V6 still 
offers J2EE and Java visualization capabilities. This section touches on some of 
the new features associated with each of these types of visualization. Also, new 
in this release is support for data visualization. Data visualization enables 
developers to edit and view their database schemas in a variety of diagram 
notations.

There are some visualization semantics and actions that are unique to the type 
of artifacts that are being visualized such as J2EE, Java, or data. However, 
regardless of the type of project, the visualization capabilities allow you to 
examine existing projects or build a new project from the start. 

To get started using the visualization diagrams you can create the particular 
diagram manually by selecting File → New → Other → Modeling → 
<modeling_type>. Where the <modeling_type> can be one of the following:

� Class Diagram
194 Rational Application Developer V6 Programming Guide



� Sequence Diagram
� Static Method Sequence Diagram
� Topic Diagram
� E-R Modeling

– IDEFIX Diagram
– IE Diagram

In some cases the diagram will be generated by default by running through a 
particular wizard. 

UML visualization features provided by Rational Application Developer offer the 
advantage of code visualization and visual editing.

Visual editing offers the ability to build code without explicitly typing the code in a 
text editor, but rather adding attributes and methods through the diagram editor 
in a visual manner.

The code visualization capabilities allow developers to view an existing code 
base as either class or sequence diagrams. This type of visualization helps 
developers understand and communicate application code by showing 
relationships between components, and also provides insight into items included 
with deployment descriptors as is the case with J2EE visualization. The 
diagrams used to visualize code can also be copied into design documents and 
used in design and code reviews.

6.3.1  Unified Modeling Language (UML)
Rational Application Developer uses Unified Modeling Language (UML) V2.0 for 
the diagrams.

UML is a notation for object-oriented analysis and design. It is standardized by 
the Object Management Group (OMG).

UML 2.0 contains 13 types of diagrams, up from 9 in UML 1.x. Each type of 
diagram shows different aspects of the system being modeled. The diagrams are 
divided into two major groups:

� Static diagrams focus on the structure of the system. 
� Dynamic diagrams are used to describe the behavior of the system.

In Rational Application Developer, you can create UML visualization diagrams to 
examine and design the artifacts of your J2SE, J2EE, and database applications. 

UML diagrams are a powerful way to visualize the structure and behavior of your 
application. A UML diagram can depict some or all of the components in an 
application. You can use a UML diagram to create your own context to examine, 
 Chapter 6. RUP and UML 195



understand, collaborate, and design, using a subset of the components in a 
project.

You can create UML diagrams to show a high-level view of Java, Enterprise 
JavaBeans, and (with this release) database applications. You can use these 
diagrams, which are a visual abstraction of the system's architecture, to identify a 
system's key components and relationships. These diagrams can help you 
maintain existing application components or create new ones. 

Rational Application Developer provides the following diagrams for UML 
visualization:

� Browse Diagram: A temporary, non-editable diagram that provides a quick 
way to explore existing relationships between elements in an application. 
Great for quick exploring and lookup jobs.

� Topic Diagram: A non-editable diagram that provides a quick way to show 
existing relationships between elements in an application. You can think of 
the topic diagram as an enhanced browse diagram. You can customize the 
underlying query, open multiple topic diagrams at the same time, and save 
them away for further use.

� Static Method Sequence Diagram: A non-editable diagram that provides a 
quick way to illustrate the logic inside a method. Works much like the topic 
diagram, but is looking at a single method only.

� Class Diagram: Shows a collection of static model elements such as classes 
and types, their contents, and their relationships.

� Sequence Diagram: Shows the interactions between objects with focus on 
the ordering of the interactions. The interactions are represented by 
messages sent from one object to another. The messages can be conditional 
and can be iterated.

Data visualization is new in Rational Application Developer. There are several 
types of diagrams that can be associated with the data being visualized in the 
relational database. If you are familiar with UML visualization already, you are 
probably already familiar with the class diagram. Rational Application Developer 
also provides two other diagram types that differ only in the notation that is used 
to diagram the database schema:

� IE notation diagram: Information Engineering (IE) is a widely practiced and 
well-established data modeling notation. IE and has been around for many 
decades, before the object-oriented modelling started. 

� IDEF1X notation diagram: IDEF1X also supports data modelling, capturing a 
logical view of the enterprise data. IDEF1X is based on an Entity Relationship 
model, and it is intended for logical database design. 
196 Rational Application Developer V6 Programming Guide



The basic elements of IDEF1X are an entity (referring to a collection), 
attribute (associated with each member of the set), and the classification 
structure (for modelling logical data types).

For more details about data visualization, refer to Chapter 8, “Develop Java 
database applications” on page 333.

In addition to the above UML visualization, Rational Application Developer also 
includes a special diagram type for designing the application Web site. A Web 
Diagram shows the application flow of a Faces-based or Struts-based Web 
application. This diagram is not UML based, and is discussed separately in 
Chapter 12, “Develop Web applications using Struts” on page 615, and 
Chapter 13, “Develop Web applications using JSF and SDO” on page 673.

6.3.2  Browse diagram
You can use browse diagrams to explore artifacts in your workspace, without 
having to create, persist, and maintain diagrams. They are not meant for design 
and editing, but you can save them as regular UML diagram files (.dnx) and then 
edit those diagrams normally afterwards.

At any one time, there is no more than one copy of the Visualizer Browse 
Diagram open. When you explore the next element, this is displayed in the same 
Visualizer Browse view. However, you can scroll to the previous and next 
diagrams using the Visualizer tool bar.

As mentioned, there is no editing capability, and you cannot change the 
appearance or layout of a browse diagram. However, you can filter the 
relationships that the diagram shows, and you can control the depth to which an 
element is queried. Zooming in and out, and the outline view are also available.

1. Start Rational Application Developer. 

If desired, you can create a new workspace.

2. Install the Classifieds sample from the Samples Gallery.

Click Help → Welcome → Samples → Faces Classifieds sample. Import 
the sample by following the instructions. We will use this source code for the 
visualization examples in this chapter.

3. To verify that the sample was imported correctly, you may want to check that 
you can start the application and see that it is working as expected. 

Note: Occasionally we needed to manually start WebSphere Application 
Server V6.0 prior to run on server for the application to start successfully. 
We also noticed some scripting errors during the first application startup.
 Chapter 6. RUP and UML 197



4. Let us examine the application using the available visualizing support. In 
Project Explorer, select and expand Dynamic Web Projects → 
classifieds → Java Resources → JavaSource → beans.

5. Right-click Login.java and select Visualize → Explore in Browse diagram 
from the context menu. A diagram similar to Figure 6-5 should appear. The 
browse diagram contains only the single element that we selected.

6. Let us find out which other elements refer to this Java class. Click the fourth 
arrow References (Association) so that it becomes selected, and click 
Apply (see annotations in Figure 6-5).

Figure 6-5   Visualizer Browse Diagram - Login.java

7. The diagram is updated (see Figure 6-6 on page 199), and we can see that 
there are five other classes that refer to the Login class. You may need to 
zoom in for a better view. You can also bring up the Outline view by selecting 
Window → Show View → Outline.

8. We can now continue browsing to other elements in this diagram simply by 
right-clicking the element and selecting the same menu option. Browse 
diagrams retain a history of what you browse. You can then use the menu bar 
198 Rational Application Developer V6 Programming Guide



Back and Forward buttons to change context without creating a new browse 
diagram.

9. Another useful option on the menu bar is the auto-navigate to Java source 
button ( ) (found in the upper left part of the Workbench). When you turn 
that on, selecting an element in the diagram will automatically bring up the 
relevant source file.

10.Yet another nice feature is the navigation help. Suppose we wanted to know 
what the Results class is and where it is defined. Right-click Results and 
select Navigate → Show in → Package Explorer from the context menu. 
We can see that it is defined under the pagecode folder.

11.To explore an element in the diagram, simply double-click the element.

12.So far this is all temporary browsing and exploration activity. However, if you 
need to, you can also save the browse diagram as a file. The diagram is 
saved as a regular class diagram, and the class diagram editor is 
automatically launched (see Figure 6-6). 

Figure 6-6   Visualizer Browse diagram and the Outline view

6.3.3  Topic Diagram
Topic Diagrams show the results of a query. They are similar to Browse Diagram 
since they are not editable either. There is an important distinction though. A 
Topic Diagram is created based on a context and a query. Only the context and 
 Chapter 6. RUP and UML 199



query are persisted in the diagram, so when the underlying elements change 
then this is automatically reflected in the diagram.

Because topic diagrams show the current state of your workspace when you 
create or open them, you can use them to generate diagrams for documentation 
or Javadoc reports.

A Topic Diagram is created in the context of a code project and is stored in the 
project as a diagram file with a .tpx file name extension. The appearance and 
layout of a topic diagram cannot be customized.

Let us look at an example how this works.

1. You can continue further exploration directly from the same browse diagram 
we had open before. Right-click Results again and select Visualize in Topic 
Diagram from the context menu.

Or, if you already closed the browse diagram, you can alternatively expand 
the JavaSource → pagecode folder in the Explorer, right-click Results.java, 
and then select Visualize → Add to New Diagram File → Topic Diagram 
from the context menu.

2. When the Topic Wizard Location dialog appears, we entered the following (as 
seen in Figure 6-7 on page 201) and then clicked Next:

– Parent folder: classifieds/Design
– Filename: Results topicsdiagram

Note: It is important to understand the ramification of selecting the parent 
folder when creating diagrams.

In our example, we chose to create the diagrams in a separate folder off 
the root of the project. We observed the following behavior when working 
with Web Projects.

� When creating the folder off the root of the project, the folder and 
diagrams will be preserved when using a Project Interchange file.

� When creating the folder off the root of the project, the folder and 
diagrams will not be preserved when exporting to an EAR or WAR even 
if Export source files is checked.

� When creating the folder in JavaSource, we found that each time 
diagram is saved, the builder will copy the diagram to the 
WEB-INF\classes folder. Since the WAR export utility will include all 
resources located in the WebContent tree, any diagrams located in the 
JavaSource tree will be included in the WAR file, regardless of the 
setting of the Export source files check box.
200 Rational Application Developer V6 Programming Guide



Figure 6-7   Creating a topic diagram

3. When the Topics dialog appears with a list of predefined queries, select 
Utilized Java Elements and then click Next.

4. The Related Visualizer Elements dialog appears (as seen in Figure 6-8 on 
page 202). First of all, this dialog basically shows the detail for our selection 
on the previous screen, and allows for modification. You can specify direction 
of search, the visual layout type (default/radial), and how many levels down 
the search should reach. Note that this particular query that we selected 
maps to the Uses dependency relationship. Accept the default and click 
Finish.
 Chapter 6. RUP and UML 201



Figure 6-8   Creating a topic diagram: The related elements selection

5. The topic diagram is now created and displayed. You can see that Results 
uses Login and SearchBean beans to populate the page. Again, the editing 
functions on this diagram are disabled. But, you can easily go back to the 
query from the diagram context menu and change it with the Customize 
Query option.

– You can also add more elements to it—or even an entire folder—by 
right-clicking and selecting Visualize → Add to Current Diagram from 
the context menu.

– Topic diagrams are saved as .tpx files by default. You can turn them into 
regular edit diagrams by saving them, and then they become a user 
modifiable .dnx diagram file. For instance, you could then annotate the 
diagram with notes and text.
202 Rational Application Developer V6 Programming Guide



6.3.4  Static Method Sequence Diagram
This diagram type generates a non-editable sequence diagram from a method of 
your choosing. The diagram models the flow of logic within the method in a visual 
manner, enabling you both to document and validate your logic. The static 
method sequence diagram can be used to explore the logic of a complex 
operation, function, or procedure.

Sequence diagrams are the most popular UML artifact for dynamic modeling, 
which focuses on identifying the behavior within the system.

Let us experiment with the Static Method Sequence Diagram with a simple 
example. 

1. Again in the same browse diagram for the Login class, select the class and 
then the first method in the list, Login().

2. Right-click the selection and select Navigate → Open as Interaction from 
the context menu (see Figure 6-9).

Figure 6-9   Creating static method sequence diagram

If you do not have the browse diagram open, an alternative way is to expand 
the class in the Explorer, right-click the method, and select Visualize → Add 

Note: All the topic diagrams can be accessed via the Diagram Navigator 
view. You can use this view to find and edit all the topic diagrams in your 
workspace.
 Chapter 6. RUP and UML 203



to New Diagram File → Static Method Sequence Diagram from the context 
menu.

3. The diagram is created and displayed. The diagram file is also automatically 
stored under the same folder (..\classifieds\JavaSource\beans in our case), 
as sequencediagramN.tpx, where N is a running number. See Figure 6-10.

Figure 6-10   Static method sequence diagram for Login() method

4. This is a simple logic where we create a new date object and that is it. Try 
visualizing some other methods too, for instance the doBrowseFetchAction() 
method in the Categories class. This diagram contains some of the new 
UML2 features like the option combinations fragments (see Figure 6-11 on 
page 205).
204 Rational Application Developer V6 Programming Guide



Figure 6-11   Static method sequence diagram with option fragments

6.3.5  Class Diagram
Class Diagrams are the mainstay of object-oriented analysis and design. UML 2 
class diagrams show the classes of the system, their interrelationships (including 
inheritance, aggregation, and association), and the operations and attributes of 
the classes. Class diagrams are used for a wide variety of purposes, including 
both conceptual and domain modeling and detailed design modeling.

You may create class diagrams in many different ways in Rational Application 
Developer. If you are working in the Java perspective, class diagrams are 
available under the New → Other → Modeling → Class Diagram option in the 
context menu. You may also create a class diagram from the Diagram Navigator 
view. This is where all your diagrams are conveniently accessible in one place.

Attention: The examples found in this section are intended to highlight the 
UML tooling. This is not intended to be a complete working example 
application.
 Chapter 6. RUP and UML 205



Create Java project
The followings steps demonstrate some of the functionality that comes with class 
diagrams. We will create a new Java project and design some basic classes for a 
sample banking application.

1. From the Workbench select File → New → Project → Java Project. Click 
Next. 

2. In the New Java Project dialog, enter ITSO Banking as the project name and 
then click Finish.

3. If the Confirm Perspective Switch dialog appears, click Yes. 

We will design the classes in the Java perspective. However, the J2EE 
perspective can be used as well.

Create class diagram
There are many ways to create the classes that we need. In our example, we will 
create the classes from a class diagram.

To create a class diagram, do the following:

1. Right-click ITSO Banking, and select File → New → Other.

2. Expand Modeling, select Class Diagram, and then click Next.

3. When the Create Class Diagram dialog appears, we entered the following 
and then clicked Finish:

– Parent folder: ITSO Banking/Design
– Filename: Banking Classes

Note that for information about the placement of diagrams within the project 
structure, refer to the note box in 6.3.3, “Topic Diagram” on page 199.

The class diagram is created and opened for editing with associated palette on 
the right side, as seen in Figure 6-12 on page 207.

If you have existing classes, you can create a new class diagram by visualizing 
them. In that case, select the classes and select Visualize → Add to New 
Diagram File → Class Diagram from the context menu. This context menu 
option is available from Explorer or from another diagram—basically, whenever 
you can select the class you can also visualize it.
206 Rational Application Developer V6 Programming Guide



Figure 6-12   Creating a new class diagram 

Add classes to the class diagram
To add the Customer, Account, ATM, and Bank classes to the class diagram, do 
the following:

1. In the Palette, click Class and move your cursor to the drawing area. 

The cursor changes to a rectangle shape, with a + on the top left corner. This 
indicates we can insert our new class here. 

2. Click where you want the class to be placed on the diagram.

3. When the New Java Class dialog appears, enter Customer in the Name field, 
and itso.uml.sample in the Package field (see Figure 6-13 on page 208), 
then click Finish.
 Chapter 6. RUP and UML 207



Figure 6-13   Adding a Java class

4. The Customer class is created, both in the diagram and under the project. 
Expand the itso.uml.sample folder to verify this.

5. Repeat the previous instructions to create the Account, ATM, and Bank 
classes.

Add fields and methods to a class
This section describes how to add fields and methods to a class in the class 
diagram. In UML visualization, an action bar appears by default when you place 
the cursor over a shape in a diagram, as seen in Figure 6-14 on page 209. To 
see a short description for an action, move the cursor over the action (hover 
help).
208 Rational Application Developer V6 Programming Guide



Figure 6-14   Shape action bar

1. To add a field name to the Customer class, do the following:

a. In the diagram, place the cursor over Customer and click the little red 
square Add new Java Field icon from the action bar. 

b. When the Create Java Field dialog appears, enter name in the Name field, 
and select java.lang.String in the Type drop-down list, as seen in 
Figure 6-15 on page 210, and then click Finish.
 Chapter 6. RUP and UML 209



Figure 6-15   Adding a new field to Customer class

2. To add the getter and setter methods for the name field, do the following:

a. In Customer class, select the name field that we added in the previous 
step.

b. Right-click and select Refactor → Encapsulate Field from the context 
menu.

c. The Save all Modified Resources dialog will appear. Click OK to save the 
changes to the diagram.

d. In the Encapsulate Field dialog, click OK. The getname() and 
setName(String) methods are now added to the class.

3. To create the withdrawCash method for the ATM class, do the following:

a. Right-click the ATM class and select Add Java → Method.
210 Rational Application Developer V6 Programming Guide



b. When the Create Java Method dialog appears, do the following:

i. Enter withdrawCash as the name for the method. 

This method requires two parameters, the account number and 
amount. We can enter them in this same dialog. 

ii. In the Parameters section, click Add.

iii. When the Create Parameter dialog appears, enter accountNumber in 
the name field, Account in the Type field, and click OK.

iv. Repeat the previous steps to add a parameter named amount of type 
java.math.BigDecimal.

c. Click Finish.

4. To create the getBalance method for the Bank class, do the following:

a. Right-click the Bank class and select Add Java → Method.

b. When the Create Java Method dialog appears, do the following:

i. Enter getBalance as the name for the method. 

This method requires two parameters, the account number and 
amount. We can enter them in this same dialog. 

ii. In the Parameters section, click Add.

iii. When the Create Parameter dialog appears, enter accountNumber in 
the name field and Account in the Type field, then click OK.

iv. Click Add.

c. Click Finish.

5. If you do not see the <<use>> associations, right-click the drawing area and 
select Filters → Show/Hide Relationships from the context menu. Make 
sure Uses (Dependency) is checked and then click OK. Visiting this selection 
dialog is sometimes required to update the diagram with current relationships.

6. Save the diagram by selecting File → Save.

You should now have a very basic class diagram that looks like the diagram in 
Figure 6-16 on page 212.
 Chapter 6. RUP and UML 211



Figure 6-16   Completed class diagram

Note the following capabilities exist when working with class diagrams:

� Class is selected when you have the eight dot rectangle surrounding it. You 
can also select things inside the class, but then the context menu is different. 
If you want to reset any selection (deselect everything), click empty space in 
the diagram.

� Auto-navigation to Java source can be turned on and off with the  button 
on the toolbar.

� Deleting a class from the diagram does not delete it from your project or 
model. This means you can quickly hide unnecessary classes from your 
diagrams, without affecting your code or semantics.

� All other changes, including deleting content inside a class, are connected to 
sources and affect the project directly. The actual file will be immediately 
updated on the disk then. A separate save step to effect the changes that 
were made in the diagram is not needed.

� Undo and redo are available on the context menu for recovering from 
unwanted changes or actions.

Note: When you delete Java elements from a project (for example, the 
Explorer view, the Java elements are deleted from both the diagram and 
the project.
212 Rational Application Developer V6 Programming Guide



� The toolbar and context menu provide many different ways to arrange, align, 
and customize the elements in the diagram. You can also manually move the 
elements around, and change their visual layout (fonts, colors, line styles). 

� Compartments can be hidden or displayed by clicking the little triangle at the 
top left corner of that compartment, or by using the compartment switch on 
the toolbar (all compartments vs name only).

� To navigate and view more of the diagram, the usual double-click the diagram 
title will maximize it. Resizing and zooming works well too. For larger 
diagrams, you can also bring up the Outline view. Usually it is already visible, 
but select Window → Show View → Outline if you do not see it.

Class diagram preferences
You can customize some of the preferences for the Java assisted modeling 
function. Click Window → Preferences → Modeling. From there, you can 
customize the appearance and set the defaults for fields and methods that are 
generated from the diagrams. You can also enable the query for related 
elements to include binary types also. By default they are filtered out.

A new feature in Rational Application Developer is the option to add an EJB to a 
new or existing class diagram from the Create an Enterprise Bean wizard. This 
option is enabled by default but can be turned off from the preferences menu 
under Modeling → EJB. 

The new J2EE and EJB visualization features in class diagrams are discussed in 
Chapter 15, “Develop Web applications using EJBs” on page 827.

6.3.6  Sequence Diagram
Sequence diagrams are the most popular UML artifact for dynamic modeling, 
which focuses on identifying the behavior within your system.

With the new capabilities to represent fragments, interaction occurrences, and 
loops, sequence diagrams can be used in two forms:

� Instance form: Describes a specific scenario in detail, documenting one 
possible interaction, without conditions, branches, or loops. This form is used 
to represent one use case scenario. Different scenarios of the same use case 
are represented in different sequence diagrams. Modeling tools that support 
UML 1.x semantics only allow this form of representation.

� Generic form: Describes all possible alternatives in a scenario, taking 
advantage of new UML 2.0 capabilities like conditions, branches, and loops. 
This form can be used to represent several scenarios of the same use case in 
a unique sequence diagram, where it makes sense. 
 Chapter 6. RUP and UML 213



Rational Application Developer supports both the instance and generic form, and 
the UML2 generic form is available when drawing a sequence diagram by hand. 
As we have seen, the generic form is also used when a static method sequence 
diagram is generated.

Let us continue our example and design a sequence diagram that would handle 
the use case of a customer withdrawing cash from an ATM. We will use some of 
the new UML2 elements in this example, including conditional fragments and 
reference to another diagram.

Create a sequence diagram
To create a sequence diagram, do the following:

1. Select File → New → Other.

2. Expand Modeling, and select Sequence Diagram.

3. When the Create Sequence Diagram dialog appears, select the previously 
created ITSO Banking/Design folder, enter Withdrawal Cash in the file name 
field, and click Finish.

The sequence diagram and the associated drawing palette will appear. The 
title of the new diagram is Interaction1.

4. To change the title, click Interaction1 in the top left corner and enter 
Withdraw Cash as the new title, as seen in Figure 6-17.

Figure 6-17   Drawing a sequence diagram
214 Rational Application Developer V6 Programming Guide



Add objects
To add Customer, ATM, and Bank objects to the sequence diagram, do the 
following:

1. From Package Explorer, select the Customer class and drag the class to the 
sequence diagram. The property:Customer lifeline will appear.

2. Repeat the previous step to add the ATM and Bank classes.

3. Select the property:Customer lifeline and press F2.

4. Enter cust and press Enter. 

5. Repeat the previous steps to rename property2:ATM to teller:ATM and 
property3:Bank to theirBank:Bank.

6. Save the diagram.

The diagram should now look like the one in Figure 6-18.

Figure 6-18   Sequence diagram with three lifelines

Note: You can drag and drop C++, data, and other artifacts onto the 
sequence diagram (or class diagram for that matter) as well. However, 
code generation is only supported for Java/EJB artifacts.

A new lifeline can be added from the Palette also, but this does not 
generate the class. You could this for unspecified lifeline types.
 Chapter 6. RUP and UML 215



Create synchronous messages
Now that the necessary objects have been created, we can design the 
interactions between the objects. 

1. From the Palette, expand Sequence Diagram, and select Synchronous 
Message.

2. Once the association icon is selected click the Customer lifeline and drag 
with the left-mouse button pressed down to the Teller lifeline.

3. From the listbox, select withdrawCash and click in the empty area in the 
diagram. The resulting diagram should look like Figure 6-19 on page 216.

4. Repeat the previous steps to create the Synchronous Message getBalance 
from Teller to Bank. The message should originate from within the 
withdrawCash activation box of the Teller object.

Figure 6-19   Adding a message to sequence diagram 

Create a reference to an external diagram
We would like to indicate that the balance lookup is actually described in another 
sequence diagram. We can draw that using the Interaction Occurrence selection 
in the palette.

1. From the Palette view, select Interaction Occurrence.

2. Click the getBalance activation box on the Bank lifeline and select Create 
New Interaction from the context menu. 

Note: If the lines are overlapping, you can re-position any line by selecting 
it and moving it up or down the lifeline.
216 Rational Application Developer V6 Programming Guide



3. Enter Balance Lookup(accountNumber) : BigDecimal inside the new frame. 
This indicates that the Balance® Lookup diagram contains the flow of that 
sequence and will return a value of the type BigDecimal.

Create a conditional fragment
Now we would like specify that if sufficient funds were available, we will proceed 
with the transaction. This can be illustrated with a conditional fragment.

To add a conditional fragment to the sequence diagram, do the following:

1. From the palette, select Option Combined Fragment.

2. Drag a rectangle covering the Teller and Bank lifelines. The rectangle must 
be drawn below the previously created messages.

3. When the Add Covered Lifelines dialog appears with the Bank and Teller 
lifelines checked, click OK.

The diagram should now appear similar to Figure 6-20.

4. To specify the condition for the new frame, click [] and enter balance > 
amount as the test for further execution inside the frame.

Figure 6-20   Sequence diagram with conditional fragment
 Chapter 6. RUP and UML 217



Add interactions inside option frame
To add the debit message from Teller to Bank, do the following:

1. Create a Synchronous Message from Teller to Bank inside the opt frame 
created in the previous section.

2. In the Create New Operation listbox, press Enter.

3. When the Enter Operation name dialog appear, enter debit in the Operation 
name field and click OK.

4. Using the method described in “Create a reference to an external diagram” on 
page 216, add a ref frame to indicate that the debit sequence is designed in 
the Debit Account(accountNumber, amount) diagram. 

The completed sequence diagram should be similar to Figure 6-21.

Note: At the time of writing, entering parameters in the Enter Operation 
name dialog was not supported and resulted in invalid Java code being 
generated for the new method.
218 Rational Application Developer V6 Programming Guide



Figure 6-21   Completed sequence diagram: Withdraw Cash

6.3.7  J2EE visualization
A new feature in IBM Rational Application Developer V6.0 is the option to add an 
EJB to a new or existing Class diagram from the Create an Enterprise Bean 
wizard. This option is enabled by default; however, this option can be turned off 
from the preferences menu under Modeling → EJB. 
 Chapter 6. RUP and UML 219



6.4  More information on UML
For more information about UML, we recommend the following resources. These 
three Web sites provide information on modeling techniques, best practices, and 
UML standards:

� IBM developerWorks Rational

http://www.ibm.com/developerworks/rational/

Provides guidance and information that can help you implement and deepen 
your knowledge of Rational tools and best practices. This network includes 
access to white papers, artifacts, source code, discussions, training, and 
other documentation. 

In particular we would like to highlight the following series of high quality 
Rational Edge articles focusing on UML topics:

http://www.ibm.com/developerworks/rational/library/content/RationalEdge/arc
hives/uml.html

� The IBM Rational Software UML Resource Center 

http://www.ibm.com/software/rational/uml/index.html

This is a library of UML information and resources that IBM continues to build 
upon and update. In addition to current news and updates about the UML, 
you can find UML documentation, white papers, and learning resources.

� Object Management Group

http://www.omg.org
http://www.uml.org

These OMG Web sites provide the following resources:

– Formal specifications on UML that have been adopted by the OMG and 
are available in either published or downloadable form

– Technical submissions on UML that have not yet been adopted
220 Rational Application Developer V6 Programming Guide

http://www.ibm.com/developerworks/rational/
http://www.ibm.com/software/rational/uml/index.html
http://www.omg.org
http://www.ibm.com/developerworks/rational/library/content/RationalEdge/archives/uml.html
http://www.uml.org


Chapter 7. Develop Java applications

This chapter provides an introduction to the Java development capabilities and 
tooling for IBM Rational Application Developer V6.0.

The chapter is organized into the following four major sections:

� Java perspective overview
� Develop the Java Bank application
� Additional features used for Java applications
� Java editor and Rapid Application Development

7

Note: The sample code described in this chapter can be completed by 
following along in the procedures documented. Alternatively, you can import 
the sample Java code provided in the c:\6449code\java\BankJava.zip Project 
Interchange file. For details refer to Appendix B, “Additional material” on 
page 1395.
© Copyright IBM Corp. 2005. All rights reserved. 221



7.1  Java perspective overview
The Java perspective was briefly introduced in Chapter 4, “Perspectives, views, 
and editors” on page 131. Throughout this chapter we look at the commonly 
used views within the Java perspective. The highlighted areas in Figure 7-1 
indicate the views used within the Java perspective.

Figure 7-1   Views in the Java perspective
222 Rational Application Developer V6 Programming Guide



7.1.1  Package Explorer view
The Package Explorer view displays all packages, classes, interfaces, member 
variables, and member methods contained in the project workspace, as shown in 
Figure 7-2.

To view the Package Explorer, select Window → Show View → Other. In the 
Show View dialog box, expand Java and select Package Explorer.

Figure 7-2   Package Explorer view

7.1.2  Call Hierarchy view
The Call Hierarchy view displays all the members calling the selected method 
(Caller Hierarchy) or all the members called by the selected method (Callee 
Hierarchy), and presents it in a tree hierarchy.

To view the call hierarchy of a method, select the method in the Package 
Explorer, right-click, and choose Open Call Hierarchy. The Call Hierarchy for 
that method is displayed as shown in Figure 7-3 on page 224. To toggle between 
the Caller Hierarchy and Callee Hierarchy use the  and  buttons, 
respectively.
 Chapter 7. Develop Java applications 223



Figure 7-3   Call Hierarchy view

7.1.3  Type Hierarch view
The Type Hierarchy view, also known as Hierarchy, displays the class type 
hierarchy of the selected class.

To view the type hierarchy of a class type, select the type in the Package 
Explorer, right-click, and choose Type Hierarchy. The type hierarchy for that 
method is displayed in the Type Hierarchy view, as shown in Figure 7-4. To 
Toggle between SuperType and SubType Hierarchy use the  and  
buttons, respectively.

Figure 7-4   Type Hierarchy view
224 Rational Application Developer V6 Programming Guide



7.1.4  Problems view
The Problems view displays information regarding errors generated by the 
Workbench. Errors are typically generated by various builders within the 
Workbench.

To verify all the builders within a project, select the project in the Package 
Explorer, right-click, and select Properties from the context menu. In the 
properties window choose Builders. You will now be able to see all the builders 
associated with the project. You can enable/disable a builder from this view. 
Figure 7-5 shows an example of the Problems view with a problem detected by 
the Java builder.

Figure 7-5   Problems view

Also, the Problems view can be filtered to show only specific types of problems. 
For example, you may want to see only errors or tasks related to a specific 
resource. For more information on this issue, refer to 7.3.1, “Locating compile 
errors in your code” on page 287.

7.1.5  Declaration view
The Declaration view displays the declaration and definition of the selected type.

When a class is selected in the Package Explorer, the class declaration along 
with its member variables and method definitions are displayed in the 
Declaration view. Figure 7-6 on page 226 displays the Declaration view when a 
method is selected in the Package Explorer. To open the type and to edit the 
source in the editor use the  button. 
 Chapter 7. Develop Java applications 225



Figure 7-6   Declaration view

7.1.6  Code review
IBM Rational Application Developer V6.0 introduces the Code Review tool that 
facilitates verification of code quality and automates code reviews of source code 
in the workspace.

Rules can be created and configured through the Preference Window by 
selecting Window → Preference. From the Preference window expand Java 
and select Code Review.

There are five categories of code review, each with varying sets of rules that will 
be used to verify quality of code:

� Quick Code Review
� Complete Code Review
� Globalization Code Review
� J2SE Best Practices Code Review
� J2EE Best Practices Code Review

For more information on the various categories of code review and creating new 
rules based on existing rule templates, refer to Chapter 3, “Workbench setup and 
preferences” on page 75. Once rules are configured, code in the workspace, a 
selected project, or selected java files can be run against the configured rules.

Code Review view
To display the Code Review view, select Window → Show View → Other. In 
the Show View dialog box, expand Java and select Code Review.

Code Review example 
To demonstrate the code review feature of Rational Application Developer, we 
will use the base set of best practice rules that come with Rational Application 
226 Rational Application Developer V6 Programming Guide



Developer for a full code review and the CodeReviewSample.java, which has a 
method as shown in Example 7-1. CodeReviewSample.java can be found in 
BankJava → src → itso.bank.model.example.java, provided you imported the 
sample BankJava.zip Project Interchange file (see Appendix B, “Additional 
material” on page 1395).

This method violates one of the rules set up that mandates that as a best 
practice zero length arrays should be returned instead of null to minimize 
NullPointerExceptions.

Example 7-1   CodeReviewSample.java

public Object[] verifyCodeReviewTool(boolean dummy){
Object[] dummyValues = { new Object(), new Object() };
if ( dummy ){

return dummyValues;
} else {

return null;
}

}

To run the Code Review tool, select the Java element (Project, Package, or Java 
File) in the Package Explorer, right-click, and select Code Review → Review 
CodeReviewSample.java. Alternatively, use the Review Button ( ) to select 
the workspace, project, package, or Java file to review.

The Code Review tool runs and displays all the code artifacts that do not adhere 
to the rules configured previously. At the top of the window, a brief report 
indicating the number of rules against which the code was compared, number of 
files that were included in the current run of the code review tool, number of 
problems found, number of warnings found, and number of recommendations 
provided is displayed.

For the code shown in Example 7-1, the code review tool returns the result 
shown in Figure 7-7 on page 228. An icon is displayed in the editor beside the 
offending line (Figure 7-8 on page 228) to help developers easily spot the 
problem.
 Chapter 7. Develop Java applications 227



Figure 7-7   Code Review view with the result of reviewing the code in 
CodeReviewViewSample.java

Figure 7-8   Editor displays the problem icon beside the offending line
228 Rational Application Developer V6 Programming Guide



Code Review Details view
The Code Review Details view displays detailed information about the diagnosed 
problem by providing a description of the problem, examples, and solutions to fix 
the problem detected by the Code Review tool.

To open the Code Review Details view, double-click a problem displayed in the 
Code Review view shown in Figure 7-7 on page 228. Developers can take 
advantage of the Code Review Details view by using the description, examples, 
and solutions to fix any problem detected during code review. Figure 7-9 shows 
the code review details window describing the problem found as a result of 
running the Code Review tool against the code shown in Example 7-1. 

Figure 7-9   Code Review Details

Note: Rules and rule configurations can be exported and imported through 
the Preferences window. Importing and exporting of settings is described in 
Chapter 3, “Workbench setup and preferences” on page 75. 

This allows project teams to decide upon a standard set of rules that all code 
in the project needs to conform to to pass the quality code of the project. 
Developers can run the code review tool with the agreed upon rule set for the 
project to ensure that the code being developed adheres to the project 
standards. This tool is typically invaluable during the development and code 
review process and in helping maintain software quality.
 Chapter 7. Develop Java applications 229



Example 7-2 lists the updated code fixed as a result of the information provided 
in the Code Review Details view. The line that was modified is shown in bold in 
the Example 7-2.

Example 7-2   Listing of code fixed

public Object[] verifyCodeReviewFixed(boolean dummy){
Object[] dummyValues = { new Object(), new Object() };
if ( dummy ){

return dummyValues;
} else {

return new Object[0];
}

}

7.1.7  Outline view
The Outline view is context sensitive, and in the Java perspective context 
displays all the Java elements including package, imports, class, fields, and 
methods corresponding to the file currently active in the Java editor. The Outline 
view in the Java perspective is shown in Figure 7-10. This view allows the 
developer to filter Java elements that are displayed in this view by providing the 
buttons highlighted in Figure 7-10.

The Outline view can be displayed by selecting Window → Show View → 
Outline.

Figure 7-10   Outline view

7.1.8  Diagram Navigator view
The Diagram Navigator view is new to IBM Rational Application Developer V6.0. 
The Diagram Navigator supports creation class diagrams, sequence diagrams, 
and topic diagrams as visualization models. These visualization models can be 
used to design and develop J2SE solutions. Modifications to the visualization 
230 Rational Application Developer V6 Programming Guide



model are propagated to the code immediately, and changes made to the code is 
propagated to the visualization model.

We will explore class and sequence diagrams later in this chapter. 

� Javadoc: This view displays the java documentation of the selected java 
element selected in the package explorer. We will discuss this view in detail in 
7.3.11, “Javadoc” on page 303.

� Java Beans: This view is used with Visual Editor for Java for designing and 
developing applications in which Java renders the Graphical User Interface 
for the application. This is discussed in detail in Chapter 9, “Develop GUI 
applications” on page 415.

� JUnit: This view assists developers running JUnit test cases and visualizes 
the test results of executed test cases. This view is discussed in detail in 
Chapter 20, “JUnit and component testing” on page 1081.

7.2  Develop the Java Bank application
In this section we demonstrate how Rational Application Developer can be used 
to develop the various Java elements including projects, packages, classes, 
interfaces, member variables, and methods.

� Java Bank application overview.
� Create a Java Project.
� Create a class diagram.
� Create Java packages.
� Create a Java interface.
� Create Java classes.
� Create the Java attributes and accessor methods.
� Add method declarations to an interface.
� Add Java methods and constructors.
� Define relationships (extends, implements, association).
� Implement the methods for each class.
� Run the Java Bank application.

7.2.1  Java Bank application overview
We will use the ITSO RedBank banking example to work our way through the 
remaining sections of this chapter. The banking example is deliberately over 

Note: For a detailed description of UML and Rational Application Developer’s 
support for UML refer to Chapter 6, “RUP and UML” on page 189.
 Chapter 7. Develop Java applications 231



simplified. Exception handling is ignored to keep the example concise and 
relevant to our discussion.

Classes and interfaces for the example
The classes and interfaces for the Java Bank application example are as follows:

� Bank: A bank interface allows common operations a bank would perform, and 
typically includes customer, account, and transaction related operations.

� ITSOBank: A concrete instance of bank that will implement operations in the 
Bank interface.

� Customer: A customer is a client of the bank who holds one or more bank 
accounts with a bank, ITSOBank in our example. A customer can hold one or 
more accounts with a bank.

� Account: An account is the representation of a bank account and allows 
manipulations of the account information. An account can be associated to 
one or more customers.

� Transaction: Transaction is a single operation that will be performed on an 
account. In the Java implementation of this class, this is represented as an 
abstract base class. The two kinds of valid transactions in our case are credit 
and debit transactions. An account composes a list of transactions performed 
on this account for logging and querying purposes.

� Credit: Credit is a sub-type of transaction and inherits from transaction. This 
transaction results in an account being credited with the amount indicated.

� Debit: Debit is a sub-type of transaction and inherits from transaction. This 
transaction results in an account being debited by the amount indicated.

� TransactionType: A simple typesafe implementation for the indication of the 
transaction type.

� Exceptions: Exception classes to indicate common account and customer 
related exceptions.

Packaging structure
The bank sample uses the package structure listed in Table 7-1 to organize the 
classes discussed above.

Table 7-1   Bank sample packages

Package name Description

itso.bank.model Contains the business model objects for 
the ITSO Bank

itso.bank.facade Contains the interface for the ITSOBANK
232 Rational Application Developer V6 Programming Guide



Class diagram
The complete class diagram for the bank example is shown Figure 7-11 on 
page 234, which indicates the classes and their relationships discussed above. 
We will create this diagram using Rational Application Developer’s Visual UML 
tool throughout the course of this chapter, and at the end of this chapter we will 
have created the diagram displayed in Figure 7-11 on page 234.

itso.bank.exception Contains the exception classes

itso.bank.client Contains the BankClient class used to 
verify the bank sample

itso.bank.test Contains a JUnit test case and an 
example for using the Code Review tool

Package name Description
 Chapter 7. Develop Java applications 233



Figure 7-11   Class diagram - Banking sample
234 Rational Application Developer V6 Programming Guide



7.2.2  Create a Java Project
A Java project contains the resources needed for Java applications, including 
Java files and class files. Java projects are used to create Java packages. When 
you create a new Java project, the environment is set up for Java development.

To create a new Java project, do the following:

1. Start Rational Application Developer by clicking Start → Programs → IBM 
Rational → IBM Rational Application Developer V6.0 → Rational 
Application Developer.

2. From the Workbench, select File → New → Project.

3. When the Select a wizard dialog appears, select Java Project (or Java → 
Java Project), as seen in Figure 7-12, and then click Next.

Figure 7-12   New Project dialog

Tip: Alternatively, create a Java Project by using the Alt+Shift+N hot key 
sequence and select Project.
 Chapter 7. Develop Java applications 235



4. When the Create a Java project dialog appears, we entered the following, as 
seen in Figure 7-13 on page 237, and then clicked Next:

– Project name: BankJava

– Location: Select Create project in workspace (default).

– Project layout: Select Create separate source and output folders.

Note: By default, the project files will be stored in a directory created 
under the Rational Application Developer workspace directory. You can 
change the project directory by selecting the radio button marked as 
“Create project at external location” and specifying another directory. 

Note: By default, Use project folder as root for source and class 
files is selected. If you select Create separate source and output 
folders, you can optionally change the name for of the directories to 
something other than src and bin by clicking the Configure Defaults 
button. Figure 7-14 on page 238 displays the Preferences window for 
new projects.
236 Rational Application Developer V6 Programming Guide



Figure 7-13   New Java project: Project name and directory
 Chapter 7. Develop Java applications 237



Figure 7-14   Preferences window for setting defaults for new projects

You can change the default folder names and the JRE that will be used for 
new Java Projects. In our case we will accept the default settings of src/bin for 
folder names and JRE container for the JRE to be used. Click Cancel to 
return to the Java Project Wizard.

5. When the Java Settings dialog appears (see Figure 7-15 on page 239), you 
may want to change the settings for the following tabs.

– Source tab

On the Source tab you decide whether it is appropriate to store source 
code directly in the project folder, or if you want to use separate source 
folders. For our sample project, we already created a simple model where 
Java source is stored under src and the class files are stored under bin. 
The src folder is included in the build path. Additionally, if you want to 
include more directories with Java source files into the build path, you can 
add these folders by using the Add Folder... button.

You can also change the output folder; we will leave it as bin in this case.

Note: We accepted the default settings for each of the tabs.
238 Rational Application Developer V6 Programming Guide



Figure 7-15   New Java project: Source settings

– Projects tab

On the Projects tab you can specify any other projects in your workspace 
that should be in the Java build path for the new project (Figure 7-16 on 
page 240). You might have some common code in a project in the 
workspace that already exists that you want to reuse it in the new project.

Note: In the Package Explorer view you cannot see the generated .class 
files. If you open the Navigator view (Window → Show View → 
Navigator), you can see the source under src and class files under bin, for 
our example.
 Chapter 7. Develop Java applications 239



Figure 7-16   New Java project: Projects in build path

– Libraries tab

On the Libraries tab (shown in Figure 7-17 on page 242) you can add 
other code libraries that have to be included in the build path of your 
project. By default, the library list contains an entry representing the Java 
runtime library.

You can also add the following types of resources to your build path:

• Jar files: These are jar files that are available within the current 
workspace, To add jar files available within the current workspace use 
the Add Jars... button.

• External jar files: These are jar files that are in the file system external 
to the workspace. To add jar files available externally to the workspace 
use the Add External Jars... button.
240 Rational Application Developer V6 Programming Guide



• Variables: Variables are symbolic pointers to JAR files with the benefit 
of avoiding local file system paths specified explicitly in build and 
runtime classpaths. To add variables to the build path use the Add 
Variable... button.

For more information on defining new variables, refer to Chapter 4, 
“Perspectives, views, and editors” on page 131. It is a good idea to 
define and use project-specific variables when projects are shared in a 
team environment.

• Libraries: Libraries are a logical grouping of a group of jar files and are 
treated as a single artifact. To add libraries to the build path use the 
Add Library... button. 

Rational Application Developer introduces the concept of User 
Libraries, allowing users to define their own libraries consisting of 
multiple jar files through the Preference window. It is a good idea to 
define and use user libraries consisting of common jar files used 
throughout the project when developing in a team environment.

For more information on defining user libraries, refer to Chapter 4, 
“Perspectives, views, and editors” on page 131.

• Folders: Folders can be directly added to the build path to include all 
resources within the folder, including class and property files. To add 
folders to the build path use the Add Folder... button.
 Chapter 7. Develop Java applications 241



Figure 7-17   New Java Project: Library Settings

– Order and Export tab

On the last tab, Order and Export, you can specify the order in which you 
want items in the build path to be searched. Using the Up and Down 
buttons allows you to arrange the order of the classpath entries in the list 
(Figure 7-18 on page 243).

The checked list entries are marked as exported. Exported entries are 
visible to client projects that will use the new Java project being created. 
Use the Select All and Deselect All buttons to change the checked state of 
all entries. The source folder itself is exported, and not deselectable.
242 Rational Application Developer V6 Programming Guide



Figure 7-18   New Java project: Order and export settings

6. Click Finish to create the new project.

7.2.3  Create a class diagram
Before we can create Java elements (interfaces, classes, etc.) using the 
Diagram Navigator, we need to create a Class Diagram. In this example we will 
create a seperate folder named diagrams to hold the class and sequence 
diagrams. 

1. Create the diagrams folder under the BankJava project.

Note: It is important to understand where you create the folder in which the 
diagrams will be placed. 
 Chapter 7. Develop Java applications 243



a. Select the BankJava project from the Project Explorer, right-click, and 
select New → Other.

b. Expand Simple, select Folder, and then click Next.

c. Enter diagrams for the folder name field. Make sure that the parent folder 
name is BankJava. Click Finish.

2. From the Workbench, select Window → Show View → Other. 

3. In the Show View dialog box, expand Modeling and select Diagram 
Navigator. Click OK.

4. Create an empty class diagram from the Open Diagram Navigator view.

a. Select and expand My Diagrams → BankJava → diagrams.

b. Right-click the newly created folder diagrams and select New Diagram 
File → Class Diagram. 

c. When the New Class Diagram wizard opens, enter the following and then 
click Finish (see Figure 7-19 on page 245):

• Parent folder: BankJava/diagrams
• File name: BankJava-ClassDiagram 

Note: It is important to understand the ramification of the selection of the 
parent folder when creating diagrams.

In our example, we chose to create the diagrams in a separate folder off 
the root of the project. We observed the following behavior when working 
with Web Projects.

� When creating the folder off the root of the project, the folder and 
diagrams will be preserved when using a Project Interchange file.

� When creating the folder off the root of the project, the folder and 
diagrams will not be preserved when exporting to an EAR or WAR even 
if Export source files is checked.

� When creating the folder in JavaSource, we found that each time the 
diagram is saved, the builder will copy the diagram to the 
WEB-INF\classes folder. Since the WAR export utility will include all 
resources located in the WebContent tree, any diagrams located in the 
JavaSource tree will be included in the WAR file, regardless of the 
setting of the Export source files check box.

Refer to “Filtering the content of the EAR” on page 1222 for information on 
techniques for filtering files (include and exclude) when exporting the EAR. 
244 Rational Application Developer V6 Programming Guide



Figure 7-19   New Class Diagram

The file BankJava-ClassDiagram.dnx should now appear under the diagrams 
folder. If the visualization model for this file is not already open in the editor, 
double-click the file to open the visualization model.

Notice that the Java drawer is open in the Palette, as shown in Figure 7-20 on 
page 246. Rational Application Developer automatically opens the Java 
drawer by default for a Java project.
 Chapter 7. Develop Java applications 245



Figure 7-20   Blank Class Diagram with Java drawer opened in the Palette

7.2.4  Create Java packages
Once the Java project has been created, Java packages can be added to the 
project using either the Diagram Navigator or the Java Package wizard. Both of 
these methods are similar in the fact that the Diagram Navigator wizard pops up 
the Java Package wizard; from this point on the mechanism for creating 
packages is the same.

You will need to create all four packages listed in Table 7-2 by either using the 
Diagram Navigator or the Java Package wizard.

Table 7-2   Bank sample packages

Package name Description

itso.bank.model Contains the business model objects for 
the ITSO Bank

itso.bank.facade Contains the interface

itso.bank.exception Contains the exception classes

itso.bank.test Contains a JUnit test case and an 
example for using the Code Review tool

itso.bank.client Contains instance of bank with hardcoded 
customer data in main to run the bank 
application
246 Rational Application Developer V6 Programming Guide



Create a Java package using the Diagram Navigator
To create a Java package using the Diagram Navigator, do the following:

1. Click the Package icon ( ) in the Java drawer.

2. Once the package icon is selected, click anywhere in the visualization model. 

3. When the Java Package Wizard appears, enter the name of the package and 
then click Finish. For example, we entered the following values, as seen in 
Figure 7-21, to create the itso.bank.model package.

– Source Folder: BankJava/src
– Name: itso.bank.model

The package is now created under src. 

Figure 7-21   Create a Java package using the Diagram Navigator

4. Use Ctrl+S to save the Class Diagram.

Create a Java Package using the Java Package wizard
To create a Java package using the Java Package wizard, do the following:

1. In the Package Explorer, select the folder (for example, BankJava/src) where 
you want to create the package. 

2. Right-click and select New → Package. 
 Chapter 7. Develop Java applications 247



3. When the Java Package wizard appears, enter the Java package name and 
click Finish. For example, we entered the following:

– Source Folder: BankJava/src
– Name: itso.bank.facade

4. To add this package to the visualization model created previously, right-click 
the itso.bank.model.facade.java in the Package Explorer and then select 
Visualize → Add to Current Diagram from the context menu. 

5. Press Ctrl+S to save the Class Diagram.

When you have added all four packages listed in Table 7-2 on page 246, the 
Class Diagram should look like Figure 7-22.

Figure 7-22   Visualization model after adding packages

7.2.5  Create a Java interface
This section describes how to create an interface in the visualization model for 
the Bank interface.

To create the Java interface, do the following:

1. Click the Interface icon ( ) in the Java drawer to select it.

2. Once the Interface icon is selected, click anywhere in the visualization model.

3. When the Java Interface Wizard appears, enter the interface details and click 
Finish. For example, we entered the following (as seen in Figure 7-23 on 
page 249) for the Bank interface:

– Source folder: BankJava/src
248 Rational Application Developer V6 Programming Guide



– Package: itso.bank.facade
– Name: Bank

Figure 7-23   New Java Interface Wizard - Create the bank interface

4. Press Ctrl+S to save the Class Diagram.

7.2.6  Create Java classes
Classes can be created using either the Diagram Navigator or the Java Class 
wizard. For the Java Bank application, we will need to create the classes listed in 
Table 7-3.

Table 7-3   Bank Java classes

Class name Package Superclass Modifiers Interfaces

Transaction itso.bank.model Object Public, 
abstract

Serializable

Credit itso.bank.model Transaction Public

Debit itso.bank.model Transaction Public
 Chapter 7. Develop Java applications 249



Create a Java class using the Diagram Navigator
To create the Java classes using the Diagram Navigator, do the following:

1. Click the Class icon ( ) in the Java drawer to select it.

2. Once the Class icon is selected, click anywhere in the visualization model.

3. When the Java Class Wizard appears, enter the details for the class to be 
created. For example, to create the Transaction class we entered the 
following:

– Source folder: BankJava/src
– Package: itso.bank.model
– Name: Transaction
– Modifiers:

• Select Public.
• Check Abstract.

4. Click Add next to Interfaces. Enter serializable in the Choose interfaces 
field. Select Serializable from the list, as seen in Figure 7-24, and click OK.

TransactionType itso.bank.model Object Public

Account itso.bank.model Object Public Serializable

Customer itso.bank.model Object Public Serializable

InvalidAccountException itso.bank.exception Exception Public

InvalidCustomerException itso.bank.exception Exception Public

InvalidTransactionException itso.bank.exception Exception Public

ITSOBank itso.bank.facade Object Public Bank

BankNames itso.bank.facade Object Public

BankClient

Note: Check public static 
void main(String[] args).

itso.bank.client Object Public

Class name Package Superclass Modifiers Interfaces

Important: Prior to creating the ITSOBank class, you must create the bank 
interface as described in 7.2.5, “Create a Java interface” on page 248. It is not 
possible in the Diagram Navigator or Java Class wizard to create a class that 
refers to a non-existing interface.
250 Rational Application Developer V6 Programming Guide



Figure 7-24   Seriazable interface dialog

After entering the serializable interface, the Create Java Class dialog should 
look like Figure 7-25 on page 252.
 Chapter 7. Develop Java applications 251



Figure 7-25   Create a class with a serializable interface

5. Click Finish.

The package is now created under src. 

6. Press Ctrl+S to save the Class Diagram.

The newly created class and the updated visualization model are shown in 
Figure 7-26 on page 253.
252 Rational Application Developer V6 Programming Guide



Figure 7-26   Visualization model after adding the Transaction class

Create a Java class using the Java Class wizard
To create a Java class using the Java Class wizard, do the following:

1. Right-click the package (for example, itso.bank.model), and select New → 
Class. 

2. When the New Java Class wizard appears, enter the class details. For 
example, enter the following to create the Transaction class:

– Source folder: BankJava/src
– Package: itso.bank.model
– Name: Transaction
– Modifiers:

• Select Public.
• Check Abstract.

3. Click Add next to Interfaces. Enter serializable in the Choose interfaces 
field. Select Serializable from the list and click OK.

4. Add the class to the class diagram.

a. Double-click BankJava-ClassDiagram.dnx, found in the diagrams folder.

b. Right-click the class (for example, Transaction) in the Project Explorer and 
select Visualize → Add to Current Diagram from the context menu.

After creating all the classes listed in Table 7-2 on page 246 you may right-click in 
the class diagram and select Arrange All. You then manually move the classes 
as desired for better placement in the diagram. 
 Chapter 7. Develop Java applications 253



7.2.7  Create the Java attributes and accessor methods
This section describes how to create the Java attributes and accessor (setter and 
getter) methods using the Java Field wizard.

Table 7-4 lists the Java attributes and accessor methods that need to be created 
for the Java Bank application classes.

Table 7-4   Java attributes and accessor methods

Class
name

Attribute
name

Initial 
value

Type Visibility, 
modifier

Accessor
methods

Transaction timeStamp Null Date Private Yes

amount Null BigDecimal Private Yes

id 0 int Private Yes

TransactionType type Null String Private No

DEBIT New 
TransactionType 
(“DEBIT”)

TransactionType Public, 
static final

No

CREDIT New 
TransactionType 
(“CREDIT”)

TransactionType Public, 
static final

No

Account id Null String Private Yes

balance Null BigDecimal Private Yes

Customer ssn Null String Private Yes

firstName Null String Private Yes

lastName Null String Private Yes

title Null String Private Yes

InvalidAccountE
xception

id String Private No

InvalidCustomer
Exception

ssn String Private No
254 Rational Application Developer V6 Programming Guide



Create Java attributes using the Java Field wizard
To add attributes to a Java class (for example, Transaction class), do the 
following:

1. Move the cursor anywhere over the class (for example, Transaction).

2. When the action bar appears, as shown in Figure 7-27, click the Add new 
Java field icon ( ) to add attributes to the class.

Figure 7-27   The action bar is used to add attributes and methods to a Java class

3. When the Create Java Field wizard appears, enter the attribute details. For 
example, we entered the following, as seen in Figure 7-28 on page 256, to 
create the timeStamp attribute:

– Name: timeStamp
– Type: Date
– Initial value: null

InvalidTransactio
nException

transaction
Type

String Private No

amount BigDecimal Private No

accountNu
mber

String Private No

BankNames name Null String Private No

ITSOBANK New BankNames 
(“ITSOBANK”)

BankNames Public, 
static final

No

Class
name

Attribute
name

Initial 
value

Type Visibility, 
modifier

Accessor
methods
 Chapter 7. Develop Java applications 255



Figure 7-28   Java Field wizard - Add attribute

4. Click Finish.

Note: When clicking Finish, there are two issues that can cause the 
attribute to not be displayed in the class diagram:

� Type cannot be resolved.

If the type is not resolved (for example, Date), press Ctrl+Shift+O to 
organize the imports. If one or more of the types are ambiguous, the 
Organize Import dialog will then appear. Select the full import name (for 
example, java.util.Date) and then click OK. In some cases, the type 
may not be defined yet, and the error is normal.

� Class diagram attribute compartment is collapsed (hides attributes).

If the attribute compartment arrow is collapsed, the attributes will not be 
displayed. Simply click the arrow to expand the attributes compartment.
256 Rational Application Developer V6 Programming Guide



For this example, the Transaction class is updated and timeStamp now 
appears in the Attribute Compartment of Transaction in the class diagram.

5. Resolve the type by adding the import.

If the type is not resolved (for example, Date), press Ctrl+Shift+O to open the 
Organize Imports dialog. Select the full import name (for example, 
java.util.Date) and then click OK. 

6. Press Ctrl+S to save.

7. Repeat the process to add all the attributes listed in Table 7-4 on page 254.

Create accessor methods using the Java Field wizard
Create the accessor (getter and setter) methods for each of the attributes listed 
in Table 7-4 on page 254, using the Java Field wizard.

1. Select the attribute (for example, timeStamp) in the Attribute Compartment of 
the class (for example, Transaction).

2. Right-click and select Refactor → Encapsulate Field. 

3. If prompted to Save all Modified Resources, click OK.

4. When the Encapsulate Field dialog appears, we entered the following, as 
seen in Figure 7-29 on page 258, and then clicked OK:

– Getter name: getTimeStamp (supplied by default)

– Setter name: setTimeStamp (supplied by default)

– Insert new methods after: Select As First Method.

This will insert the getter and setter methods as the initial methods in the 
Java source file.

– Access modifier: Select Public.

This will create the setter and getter methods as public methods.

– Field access in declaring class: Select Keep field reference.

This will force any access to the timeStamp attribute within the 
Transaction class to use the field directly (not setter and getter).

– Check Generate Javadoc comments.

The public accessor methods are created in both the visualization model and 
Transaction class.

Tip: When adding subsequent accessors, you may consider inserting 
after the get accessor (set, then get) so that the get and set accessors 
are grouped in pairs within the Java source.
 Chapter 7. Develop Java applications 257



Figure 7-29   Encapsulate Field

5. Press Ctrl+S to save.

6. Repeat this process to create the accessor methods for each of the attributes 
listed in Table 7-4 on page 254.

7.2.8  Add method declarations to an interface
This section describes how to add method declarations to an interface using the 
Create Java Method wizard. For our working example, we will need to add all the 
method declarations listed in Table 7-5 to the bank interface.

Table 7-5   Method declarations for the bank interface

Method name Type Parameters
(type name)

Exception name

processTransaction void - Customer customer
- Account account
- BigDecimal amount
- TransactionType type

- InvalidCustomerException
- InvalidAccountException
- InvalidTransactionException

addCustomer void - Customer customer - InvalidCustomerException

removeCustomer void - Customer customer

getCustomer Customer - String ssn - InvalidCustomerException

addAccount void - Customer customer
- Account account

- InvalidCustomerException
258 Rational Application Developer V6 Programming Guide



To add a method declaration to an interface, do the following:

1. Move the cursor over the interface (for example, Bank).

2. When the action bar appears, click the method icon ( ) to add methods to 
the interface.

3. When the Java Method wizard appears, enter the method details. For 
example, we entered the following to create the processTransaction method 
declaration for the Bank interface:

– Name: processTransaction
– Type: void

4. For each exception the method should throw (if needed), do the following:

a. Click Add next to the Throws table.

b. Enter the search text for the exception name, select the exception from the 
list, and then click OK. For example, we added the following from the 
itso.bank.exception package:

• InvalidCustomerException
• InvalidAccountException
• InvalidTransactionException

5. For each parameter in the method declaration, do the following:

a. Click Add next to the Parameters table.

b. Enter the Name and Type, and then click OK. For example, we added the 
following parameters to the table:

• Customer customer
• Account account
• BigDecimal amount
• TransactionType type

6. Resolve the type by adding the import.

If the type is not resolved (for example, Date), press Ctrl+Shift+O to open the 
Organize Imports dialog. Select the full import name (for example, 
java.util.Date), and then click OK. 

removeAccount void - Customer customer
- Account account

getAccount Account - Customer customer
- String id

Method name Type Parameters
(type name)

Exception name
 Chapter 7. Develop Java applications 259



7. When complete, the Create Java Method wizard should look like Figure 7-30 
on page 261. Click Finish.

8. Press Ctrl+S to save.

Note: When adding method declarations with exceptions or parameters to 
an interface using the Method wizard in IBM Rational Application 
Developer V6.0, we found that the parameters or exceptions where not 
added to the declaration in the Java source code. This works correctly for 
classes. To work around this issue in V6.0, we added the parameters and 
exceptions to the code manually. 

When using Interim Fix 0002 or later this problem is fixed.
260 Rational Application Developer V6 Programming Guide



Figure 7-30   Create Java Method - Interface method declarations

9. Repeat the process to add each of the method declarations listed in Table 7-5 
on page 258.
 Chapter 7. Develop Java applications 261



7.2.9  Add Java methods and constructors
This section describes how to create new Java methods and constructors using 
the Java Method wizard. Table 7-6 lists the methods and constructors that need 
to be added for the bank application sample.

Table 7-6   Methods and constructors to add for Bank sample

Tip: It is a good practice to insert the constructors after the attributes and 
before the methods. Since we are adding constructors after adding attributes 
and accessors, the constructor will need to be moved manually.

Method 
name

Indentifier, 
modifier

Type Parameters
(type name)

Exception

Transaction class

Transaction public, 
constructor

- BigDecimal amount

process public, 
abstract

BigDecimal - BigDecimal 
accountBalance

Credit class

Credit public, 
constructor

- BigDecimal amount

process public BigDecimal - BigDecimal 
accountBalance

toString public String

Debit class

Debit public, 
constructor

- BigDecimal amount

process public BigDecimal - BigDecimal 
accountBalance

toString public String

Account class

Account public, 
constructor

- String ID
- BigDecimal balance

processTrans
action

public void - BigDecimal amount
- TransactionType 
transactionType

- InvalidTransactionException
262 Rational Application Developer V6 Programming Guide



getLog public List

toString public String

Customer class

Customer public, 
constructor

- String ssn
- String firstName
- String lastName

toString public String

InvalidCustomerException class

InvalidCusto
merException

public, 
constructor

- String ssn

getMessage public String

InvalidAccountException class

InvalidAccoun
tException

public, 
constructor

- String ssn

getMessage public String

InvalidTransactionException class

InvalidTransa
ctionExceptio
n

public, 
constructor

- String 
accountNumber
- String 
transactionType
- BigDecimal amount

getMessage public String

TransactionType class

TransactionT
ype

private, 
constructor

- String type

toString public String

ITSOBank class

processTrans
action

public void - Customer customer
- Account account
- BigDecimal amount
- TransactionType 
transactionType

- InvalidCustomerException
- InvalidAccountException
- InvalidTransactionException

Method 
name

Indentifier, 
modifier

Type Parameters
(type name)

Exception
 Chapter 7. Develop Java applications 263



To add methods to a Java class, do the following:

1. Move the cursor over the class (for example, Transaction).

2. When the action bar appears, click the method icon ( ) to add methods to 
the class.

3. When the Java Method wizard appears, enter the method details. For 
example, we entered the following, as seen in Figure 7-31 on page 266, for 
the process method:

– Name: process
– Select public.
– Check abstract.
– Type: BigDecimal

4. For each parameter in the method declaration, do the following:

a. Click Add next to the Parameters table.

b. Enter the Name and Type, and then click OK.

addAccount public void - Customer customer
- Account account

- InvalidCustomerException

addCustomer public void - Customer customer - InvalidCustomerException

getAccount public void - Customer customer
- String id

- InvalidCustomerException

getCustomer public Customer - String id

removeAccou
nt

public void - Customer customer
- Account account

removeCusto
mer

public void - Customer customer

BankNames class

BankNames private, 
constructor

- String name

BankClient class

main public, 
static

void - String[] args

getBank private, 
static

Bank BankNames bank

Method 
name

Indentifier, 
modifier

Type Parameters
(type name)

Exception
264 Rational Application Developer V6 Programming Guide



For example, we added the following parameters to the table for the 
process method:

BigDecimal accountBalance

The process method takes in the current account balance, processes the 
transaction, and returns the new account balance after the transaction has 
been processed successfully.

5. Click Finish.

6. Press Ctrl+S to save.
 Chapter 7. Develop Java applications 265



Figure 7-31   Java Method Wizard

7. Repeat the process to add each method and contructor listed in Table 7-6 on 
page 262.

Note: After adding the methods you will have many errors in the problems 
view. These will be resolved in subsequent sections.
266 Rational Application Developer V6 Programming Guide



7.2.10  Define relationships (extends, implements, association)
This section includes the following tasks:

� Extends relationship
� Implements relationship
� Association relationship

Extends relationship
In Rational Application Developer it is possible to model the class inheritance via 
the Diagram Navigator. To create an extends relationship between existing 
classes in the Diagram Navigator, click the Extends icon( ) and drag the 
mouse with the left mouse button down from any point on the child class to the 
parent class.

You will notice that the Diagram Navigator already contains the extends 
relationship, due to the fact that the transaction was specified as the superclass 
when the credit and Debit classes were created in 7.2.6, “Create Java classes” 
on page 249. You do not need to do anything else to relate the credit or Debit 
classes to the Transaction class.

Implements relationship
You will notice that the visualization model already contains the implements 
relationship due to the fact that the bank was specified in the Interfaces field in 
the ITSOBank New Class Java Wizard. You do not need to do anything else to 
relate ITSOBank and Bank using the implements relationship for the sample.

To create an implements relationship between existing classes and interfaces in 
the visualization model, click the Implements relationship icon ( ) and 
drag the mouse with the left mouse button down from any point on the child class 
to the parent class.

Association relationship
The Customer class can have one or more accounts, and an Account class can 
be associated with one or more customers. Additionally, each account is 
composed of zero or more transactions for the purpose of logging based on the 
transaction history associated with the account.

We will now demonstrate how to define a two-way association between account 
and customer:

1. Create an association from account to customer.

a. Click the Java Association icon ( ) in the Java drawer to select 
it.
 Chapter 7. Develop Java applications 267



b. Once the association icon is selected, click the Account class and drag 
with the left-mouse button pressed down to the Customer class in the 
visualization model. 

c. When the Create Association wizard appears, enter the association 
details. For example, we entered the following, as seen in Figure 7-32, and 
then clicked Finish:

• Name: customers
• Initial value: null
• Dimensions: Select 1 (default is 0).

d. Press Ctrl+S to save.

This creates an attribute in the Account class that is an array of type 
Customer (the target type) to reflect the association. 

Figure 7-32   Create associations between an account and one or more customers

2. Repeat the steps above to create an association from customer to account.
268 Rational Application Developer V6 Programming Guide



– Name: accounts
– Initial value: null
– Dimensions: Select 1 (default is 0).

3. Repeat the steps above to create an association from account to 
transactions.

– Name: transactions
– Initial value: null
– Dimensions: Select 1 (default is 0).

4. Repeat the steps above to create an association from ITSOBank to account.

– Name: customerAccounts
– Initial value: null
– Dimensions: Select 1 (default is 0).

Modify collection type for multi-dimensional association
When a multi-dimensional association is created, the wizard will implement the 
association using Java arrays. This is not always the desired behavior. In our 
example, we need the accounts, transactions, and customerAccounts 
associations to be of dynamic size. Both accounts and transactions should use 
the java.util.ArrayList class, while the customerAccounts should use 
java.util.Map.

We will modify the types as follows:

1. From the Project Explorer, double-click the Customer class to open the 
Customer.java in the Java editor. Modify the following and save the file.

– From: 

private itso.bank.model.Account[] accounts = null;

– To: 

private java.util.ArrayList accounts = null;

2. From the Project Explorer, double-click the Account class to open the 
Account.java in the Java editor. Modify the following and save the file.

– From: 

private itso.bank.model.Transaction[] transactions = null;

– To:

private java.util.ArrayList transactions = null;

3. From the Project Explorer, double-click the ITSOBank class to open the 
ITSOBank.java in the Java editor. Modify the following and save the file.

– From: 

private itso.bank.model.Account[] customerAccounts = null;
 Chapter 7. Develop Java applications 269



– To:

private java.util.Map customerAccounts = null;

The Updated visualization model after the associations are created between 
the account, customer, and transactions in our example are shown in 
Figure 7-33.

Figure 7-33   Class diagram with associations

7.2.11  Implement the methods for each class
Thus far we have included a step-by-step approach with the objective of 
demonstrating the tooling and logical process. This section provides the source 
code for each of the methods to be implemented in each of the classes.

Note: We found that in some instances, the association arrow disappears 
when modifying the type and is displayed as a field (attribute).

Note: To save time you can import the sample Java code provided in the 
c:\6449code\java\BankJava.zip Project Interchange file. For details refer to 
Appendix B, “Additional material” on page 1395.
270 Rational Application Developer V6 Programming Guide



Implement the Transaction class methods
Example 7-3 lists the Java source for the Transaction class methods.

Example 7-3   Transaction class

package itso.bank.model;

import java.io.Serializable;
import java.math.BigDecimal;
import java.util.Date;

public abstract class Transaction implements Serializable {
private Date timeStamp = null;

    private BigDecimal amount = null;
    private int id = 0;  

    public Transaction(BigDecimal amount){
this.amount = amount;

}

public void setAmount(BigDecimal amount) {
this.amount = amount;

}

public BigDecimal getAmount() {
return amount;

}

public void setTimeStamp(java.util.Date timeStamp) {
this.timeStamp = timeStamp;

}

public java.util.Date getTimeStamp() {
return timeStamp;

}

public void setId(int id) {
this.id = id;

}

public int getId() {
return id;

}
public abstract BigDecimal process(

BigDecimal accountBalance);
}

 Chapter 7. Develop Java applications 271



Implement the Credit class methods
Example 7-4 lists the Java source for the Credit class methods.

Example 7-4   Credit class

package itso.bank.model;

import java.math.BigDecimal;

public class Credit extends Transaction {

public Credit(BigDecimal amount) {
super(amount);

}

public BigDecimal process(BigDecimal accountBalance) {

BigDecimal newAccountBalance = accountBalance;
if (getAmount() != null

&& getAmount().compareTo(new BigDecimal(0))>0){
newAccountBalance = accountBalance.add(getAmount());
setTimeStamp(new java.util.Date());

} else {
String amount = null;
if (getAmount() != null){

System.out.println("Credit: Could not process "
+"Transaction. Reason: Negative/Zero Credit Amount. Amount: $"
+getAmount().setScale(2,BigDecimal.ROUND_HALF_EVEN));

} else {
System.out.println("Credit: Could not process "

+"Transaction. Reason: Null Credit Amount.");

}
}
return newAccountBalance;

}

public String toString(){
if (getAmount()!=null){

String message;
if (getTimeStamp()!=null){

message = "Credit: --> Amount $"+
getAmount().setScale(2,BigDecimal.ROUND_HALF_EVEN)
+ " on " + getTimeStamp();

} else {
message = "Amount that will be Credited to the Account is $"+
getAmount().setScale(2,BigDecimal.ROUND_HALF_EVEN);

}
return message;
272 Rational Application Developer V6 Programming Guide



}

return super.toString();
}

}

Implement the Debit class methods
Example 7-5 lists the Java source for the Debit class methods.

Example 7-5   Debit class

package itso.bank.model;

import java.math.BigDecimal;

public class Debit extends Transaction {

public Debit(BigDecimal amount) {
super(amount);

}

public BigDecimal process(BigDecimal accountBalance) {
BigDecimal newAccountBalance = accountBalance;
if (getAmount() != null

&& accountBalance.compareTo(getAmount())>0){
newAccountBalance = accountBalance.subtract(getAmount());
setTimeStamp(new java.util.Date());

} else {
String amount = null;
if (getAmount() != null){

System.out.println("Debit: Could not process "
+"Transaction. Reason: Negative/Zero Debit Amount. Amount: $"
+getAmount().setScale(2,BigDecimal.ROUND_HALF_EVEN));

} else {
System.out.println("Debit: Could not process "

+"Transaction. Reason: Null Debit Amount.");
}

}
return newAccountBalance;

}

public String toString(){
if (getAmount()!=null){

String message;
if (getTimeStamp()!=null){

message = "Debit: --> Amount $"+
getAmount().setScale(2,BigDecimal.ROUND_HALF_EVEN)
+ " on " + getTimeStamp();
 Chapter 7. Develop Java applications 273



} else {
message = "Amount that the Account will be Debited by is $"+
getAmount().setScale(2,BigDecimal.ROUND_HALF_EVEN);

}
return message;

}

return super.toString();
}

}

Implement the Account class methods
Example 7-6 lists the Java source for the Account class methods.

Example 7-6   Account class

/*
 * File Name:  Account.java
 */
package itso.bank.model;

import itso.bank.exception.InvalidTransactionException;
import java.io.Serializable;
import java.math.BigDecimal;
import java.util.ArrayList;
import java.util.Collections;
import java.util.List;

public class Account implements Serializable {

    private String id = null;
    private BigDecimal balance = null;
    private Customer[] customers = null;  
    private ArrayList transactions = null;
    

public Account(String id, BigDecimal balance) {
this.id = id;
this.balance = balance;
this.transactions = new ArrayList();

}

public void setId(String id) {
this.id = id;

}

public String getId() {
return id;

}

274 Rational Application Developer V6 Programming Guide



public void setBalance(BigDecimal balance) {
this.balance = balance;

}

public BigDecimal getBalance() {
return balance;

}
public void processTransaction(BigDecimal amount,

TransactionType transactionType) throws InvalidTransactionException{
BigDecimal newBalance = null;
Transaction transaction = null;
if (transactionType==TransactionType.CREDIT){

transaction = new Credit(amount);
} else if (transactionType==TransactionType.DEBIT){

transaction = new Debit(amount);
} else {

System.out.println ( "Invalid Transaction, Please use Debit/Credit." +
"No other Transactions are currently supported.");

return;
}

newBalance=transaction.process(balance);
if(newBalance.compareTo(balance)!=0){

balance = newBalance;
transactions.add(transaction);

} else {
throw new InvalidTransactionException(id, transactionType.toString(), amount);

}
}

public List getLog(){
return Collections.unmodifiableList(transactions);

}

public String toString(){
StringBuffer account = new StringBuffer();
account.append("Account”+id+”: --> Balance: $" 

+ balance.setScale(2,BigDecimal.ROUND_HALF_EVEN));
if (transactions.size()>0){

account.append(System.getProperty("line.separator"));
account.append("    Transactions: ");
account.append(System.getProperty("line.separator"));
for(int i=0;i<transactions.size();i++){

account.append("        "+i+". "+(Transaction)transactions.get(i));
}

}
return account.toString();

}

 Chapter 7. Develop Java applications 275



}

Implement the Customer class methods
Example 7-7 lists the Java source for the Customer class methods.

Example 7-7   Customer class

package itso.bank.model;

import java.io.Serializable;
import java.util.ArrayList;

public class Customer implements Serializable {
    private String ssn = null;
    private String firstName = null;
    private String lastName = null;
    private String title = null;

private ArrayList accounts = null;    
    

public Customer(String ssn, String firstName,
String lastName) {

this.ssn=ssn;
this.firstName=firstName;
this.lastName=lastName;

}
/**
 * @param ssn The ssn to set.
 */
public void setSsn(String ssn) {

this.ssn = ssn;
}
/**
 * @return Returns the ssn.
 */
public String getSsn() {

return ssn;
}
/**
 * @param firstName The firstName to set.
 * @deprecated
 */
public void setFirstName(String firstName) {

this.firstName = firstName;
}
/**
 * @return Returns the firstName.
 */
public String getFirstName() {
276 Rational Application Developer V6 Programming Guide



return firstName;
}
/**
 * @param lastName The lastName to set.
 */
public void setLastName(String lastName) {

this.lastName = lastName;
}
/**
 * @return Returns the lastName.
 */
public String getLastName() {

return lastName;
}
/**
 * @param title The title to set.
 */
public void setTitle(String title) {

this.title = title;
}
/**
 * @return Returns the title.
 */
public String getTitle() {

return title;
}
/**
 * @return Returns the accounts.
 */
public ArrayList getAccounts() {

return accounts;
}
/**
 * @param accounts The accounts to set.
 */
public void setAccounts(ArrayList accounts) {

this.accounts = accounts;
}

public String toString(){
StringBuffer buffer = new StringBuffer("Customer: --> ssn = " + ssn + " : FirstName = " 

+ firstName + " : LastName = " + lastName);
if (accounts!=null){

for(int i=0;i<accounts.size();i++){
buffer.append(System.getProperty("line.separator"));
buffer.append("    "+(Account)accounts.get(i));

}
}
return buffer.toString();
 Chapter 7. Develop Java applications 277



}
}

Implement the TransactionType class methods
Example 7-8 lists the Java source for the TransactionType class methods.

Example 7-8   TransactionType class

package itso.bank.model;

public class TransactionType {
// Simple Implementation of a type-safe enumeration, 
// NOTE: this class is used for serializable uses
private String type = null;

public static final TransactionType DEBIT = new TransactionType ("DEBIT");
public static final TransactionType CREDIT = new TransactionType ("CREDIT");

private TransactionType(String type){
this.type = type;

}

public String toString(){
return type;

}
}

Implement the InvalidAccountException class methods
Example 7-9 lists the Java source for the InvalidAccountException class 
methods.

Example 7-9   InvalidAccountException class

package itso.bank.exception;

public class InvalidAccountException extends Exception {
    private String id;
    

public InvalidAccountException(String id){
this.id=id;

}

public String getMessage(){
return "Invalid Account. Id: " + id;

}

278 Rational Application Developer V6 Programming Guide



}

Implement the InvalidCustomerException class methods
Example 7-10 lists the Java source for the InvalidCustomerException class 
methods.

Example 7-10   InvalidCustomerException class

package itso.bank.exception;

public class InvalidCustomerException extends Exception {
    private String ssn;
    

public InvalidCustomerException(String ssn){
this.ssn=ssn;

}

public String getMessage(){
return "Invalid Customer. SSN: " + ssn;

}
}

Implement the InvalidTransactionException class methods
Example 7-11 lists the Java source for the InvalidTransactionException class 
methods.

Example 7-11   InvalidTransactionException class

package itso.bank.exception;

import java.math.BigDecimal;

public class InvalidTransactionException extends Exception {
    private String transactionType;
    private BigDecimal amount;
    private String accountNumber;
    

public InvalidTransactionException(String accountNumber, String transactionType, BigDecimal 
amount){

this.transactionType=transactionType;
this.amount=amount;
this.accountNumber=accountNumber;

}

public String getMessage(){
return "Transaction. AccountNumber: " 

+ accountNumber 
 Chapter 7. Develop Java applications 279



+ " Transaction: " 
+ transactionType 
+ " Amount: $"
+ amount.setScale(2,BigDecimal.ROUND_HALF_EVEN);

}
}

Implement the Bank interface
Example 7-12 lists the Java source for the Bank interface.

Example 7-12   Bank interface

package itso.bank.facade;

import java.math.BigDecimal;
import itso.bank.exception.InvalidAccountException;
import itso.bank.exception.InvalidCustomerException;
import itso.bank.exception.InvalidTransactionException;
import itso.bank.model.Account;
import itso.bank.model.Customer;
import itso.bank.model.TransactionType;

public interface Bank {

    public void processTransaction(Customer customer, Account account, 
            BigDecimal amount, TransactionType type)
    throws InvalidCustomerException, InvalidAccountException, InvalidTransactionException;

    public void addCustomer(Customer customer) 
    throws InvalidCustomerException;
    
    public void removeCustomer(Customer customer);
    
    public Customer getCustomer(String ssn)
    throws InvalidCustomerException;
    
    public void addAccount(Customer customer, Account account) 
    throws InvalidCustomerException;
    
    public void removeAccount(Customer customer, Account account);
        
    public Account getAccount(Customer customer, String id);
}

Implement the BankNames class methods
Example 7-13 lists the Java source for the BankName class methods.
280 Rational Application Developer V6 Programming Guide



Example 7-13   BankNames class

package itso.bank.facade;

public class BankNames {

private String name;
public static final BankNames ITSOBANK = new BankNames("ITSOBANK");

private BankNames(String name){
this.name=name;

}
}

Implement the ITSOBank class methods
Example 7-14 lists the Java source for the ITSOBank class methods.

Example 7-14   ITSOBank class

package itso.bank.facade;

import itso.bank.exception.InvalidAccountException;
import itso.bank.exception.InvalidCustomerException;
import itso.bank.exception.InvalidTransactionException;
import itso.bank.model.Account;
import itso.bank.model.Customer;
import itso.bank.model.TransactionType;
import java.math.BigDecimal;
import java.util.ArrayList;
import java.util.Hashtable;
import java.util.Map;

public class ITSOBank implements Bank {
private Map customers = new Hashtable();
private Map accounts = new Hashtable();
private Map customerAccounts = new Hashtable();

public void addAccount(Customer customer, Account account) throws InvalidCustomerException 
{

Customer validCustomer = (Customer)customers.get(customer.getSsn());
if (validCustomer!=null){

ArrayList list = (ArrayList)customerAccounts.get(customer.getSsn());
list.add(account);
validCustomer.setAccounts(list);

} else {
throw new InvalidCustomerException(customer.getSsn());

}

 Chapter 7. Develop Java applications 281



}
/* (non-Javadoc)
 * @see itso.bank.facade.Bank#addCustomer(itso.bank.model.Customer)
 */
public void addCustomer(Customer customer) throws InvalidCustomerException {

if (customers.get(customer)==null){
customers.put(customer.getSsn(),customer);
customerAccounts.put(customer.getSsn(), new ArrayList());

} else {
throw new InvalidCustomerException(customer.getSsn());

}
}

public Account getAccount(Customer customer, String id) {
// TODO Auto-generated method stub
return null;

}

public Customer getCustomer(String ssn) throws InvalidCustomerException {
Customer customer=(Customer)customers.get(ssn);
if (customer==null){

throw new InvalidCustomerException(ssn);
}
return customer;

}

public void processTransaction(Customer customer, Account account,
BigDecimal amount, TransactionType type) throws InvalidCustomerException, 

InvalidAccountException, InvalidTransactionException{
if(customers.get(customer.getSsn())!=null){

ArrayList accounts = customer.getAccounts();
if (accounts.contains(account)){

account.processTransaction(amount,type);
} else {

throw new InvalidAccountException(account.getId());
}

} else {
throw new InvalidCustomerException(customer.getSsn());

}
}

public void removeAccount(Customer customer, Account account) {
// TODO Auto-generated method stub

}

public void removeCustomer(Customer customer) {
// TODO Auto-generated method stub
282 Rational Application Developer V6 Programming Guide



}
}

Implement the BankClient class methods
Example 7-15 lists the Java source for the BankClient class methods.

Example 7-15   BankClient class

/*
 * File Name:  BankClient.java 
 */
package itso.bank.client;

import itso.bank.exception.InvalidAccountException;
import itso.bank.exception.InvalidCustomerException;
import itso.bank.exception.InvalidTransactionException;
import itso.bank.facade.Bank;
import itso.bank.facade.BankNames;
import itso.bank.facade.ITSOBank;
import itso.bank.model.Account;
import itso.bank.model.Customer;
import itso.bank.model.TransactionType;

import java.math.BigDecimal;

public class BankClient {
//Customer customer;

public static void main(String[] args) {
Bank bank = getBank(BankNames.ITSOBANK);
try {

Customer customer1 = new Customer("111-11-1111","Jane","Doe");
bank.addCustomer(customer1);
System.out.println ( "Successfully Added customer1. "+customer1);
Account account11 = new Account("11",new BigDecimal(10000.00D));
bank.addAccount(customer1,account11);
Account account12 = new Account("12",new BigDecimal(11234.23));
bank.addAccount(customer1,account12);
System.out.println("Successfully Added 2 Accounts to Customer1... ");
System.out.println(customer1);

bank.processTransaction(customer1,account11,new 
BigDecimal(2399.99D),TransactionType.DEBIT);

System.out.println("Sucessfully Debited Account11 by $2399.99.. Updated Customer 
Accounts...");

System.out.println(customer1);
 Chapter 7. Develop Java applications 283



}catch(InvalidCustomerException e){
e.printStackTrace();

}catch(InvalidAccountException e){
e.printStackTrace();

}catch(InvalidTransactionException e){
e.printStackTrace();

}
}

private static Bank getBank (BankNames bank){
if(bank==BankNames.ITSOBANK){

return new ITSOBank ();
}
return null;

}
}

When complete the class diagram should look like Example 7-34.

Note: The BankJava.zip Project Interchange file includes additional classes 
for testing in subsequent sections and chapters.
284 Rational Application Developer V6 Programming Guide



Figure 7-34   Completed class diagram - Banking sample
 Chapter 7. Develop Java applications 285



7.2.12  Run the Java Bank application
Once you have completed the Bank application sample and resolved any 
outstanding errors, you are ready to test the Bank application.

1. From the Workbench, expand BankJava → src → itso.bank.client.

2. Select BankClient.java.

3. Right-click and select Run → Java Application.

You should see output in the console like Figure 7-35.

Figure 7-35   Java Bank application console output

7.3  Additional features used for Java applications
This section highlights some key features for working with Java projects within 
Rational Application Developer:

� Locating compile errors in your code
� Running your programs
� Debug your programs
� Java Scrapbook
� Pluggable Java Runtime Environment (JRE)
� Add a JAR file to the classpath
� Export the Java code to a JAR file
� Run the Java application external to Application Developer
� Import a Java JAR file into a project
� Utility Java Projects
� Javadoc

Note: For subsequent tests, simply click the Run icon from the Workbench 
toolbar (remembers previous run configuration).
286 Rational Application Developer V6 Programming Guide



7.3.1  Locating compile errors in your code
Compile errors in your Java code are shown in the Problems view. Example 7-16 
includes a code sample (CodeReviewSample.java) with errors so that we can 
demonstrate how to use the features of Rational Application Developer to 
resolve compile errors.

Example 7-16   CodeReviewSample.java 

package itso.bank.test;

public class CodeReviewSample {

/**
 * This method is used to demonstrate the capabilities of the
 * Rule based Code Review Tool, this method contains code
 * violating one of the J2SE Best Practices - Null Pointer
 * Category Rules that is set up by default in IBM
 * Rational Applicatin Developer. Based on the input provided
 * by the tool the method above is fixed.
 * @param dummy
 * @return
 */
public Object[] verifyCodeReview(boolean dummy){

Object[] dummyValues = { new Object(), new Object() };
if ( dummy ){

return dummyValues;
} else {

// This line violates the J2SE Best practice
return null;

}
}

/**
 * This method is used to demonstrate the capabilities of the
 * Rule based Code Review Tool, the verifyCodeReview method
 * violates one of the J2SE Best Practices - Null Pointer
 * Category Rules that is set up by default in IBM
 * Rational Applicatin Developer. Based on the input provided
 * by the tool the method above is fixed.
 * @param dummy
 * @return
 */
public Object[] verifyCodeReviewFixed(boolean dummy){

Object[] dummyValues = { new Object(), new Object() };
if ( dummy ){

return dummyValues;
} else {

return new Object[0];
 Chapter 7. Develop Java applications 287



}
}

public String verifyCompilationErrors(boolean dummy){
//comment the following line to view compilation error
//return null;

}

}

Find errors in Problems view
As you can see Figure 7-36 on page 289, Rational Application Developer marks 
the offending Java element in various views including the Package Explorer, 
Outline, Problems, and the Java editor view with an error symbol ( ) and uses 
the Problem highlight line, making it easier to get to and locate the offending 
code. Double-clicking the entry in the Problems view’s list of problems will 
navigate to the line in the source editor, where the error was detected. To resolve 
this problem, simply uncomment the return null.

The line where the error occurs is also indicated by a yellow light bulb. If you 
move the mouse over the light bulb, the error message is shown.
288 Rational Application Developer V6 Programming Guide



Figure 7-36   Identify errors in Java code

Filter errors displayed in Problems view
To more easily find the errors in the file you are working in, you can filter the 
Problems view to only show errors related to the current resource. Click the Filter 
icon  in the Problems view (see Figure 7-37 on page 290). Select the entry 
On selected resource only (or On any resource in same project; or you can 
create a working set, which is a specific set of resources) in the Create Filter 
wizard, as shown in Figure 7-37 on page 290.
 Chapter 7. Develop Java applications 289



Figure 7-37   Filters - Creating filters to filter the errors shown in the Problems view

7.3.2  Running your programs
After the code has been completed and is free of compile errors, it can be 
executed using the Workbench Java Application Launcher. To launch the 
program, select the program—in our case BankClient.java in the Package 
Explorer—and click the Run icon from the toolbar. 

The first time you launch the Run wizard, expand Java Applications under 
Configurations and then click New. This will create a new run configuration with 
appropriate settings for the selected class BankClient, as shown in Figure 7-38 
on page 291. You can also specify arguments, select a different JRE, modify 
290 Rational Application Developer V6 Programming Guide



runtime classpath settings, add additional source directories, add environment 
variables to the JRE, and use either a local or a shared runtime configuration. 

Figure 7-38   Run Configuration wizard

Tip: By defining launch configurations for a program, you can create multiple 
configurations for the same program with different arguments and settings 
(such as the JRE, environment variables, etc.). 
 Chapter 7. Develop Java applications 291



You can also use the drop-down arrow of the Run icon. Clicking this drop-down 
arrow the first time allows you either to open the configuration launcher or select 
the type of application you would like to run, directly. 

You can add other launch configurations for any program. Each configuration is 
displayed when clicking the drop-down arrow of the Run icon. In the sample 
when BankClient is run it calls a few business methods and displays the output 
shown in Figure 7-39 in the console.

Figure 7-39   Java run console - Partial output from running the BankClient class

7.3.3  Debug your programs
For details on debugging an application, refer to Chapter 21, “Debug local and 
remote applications” on page 1121.

Note: The new features introduced with this version of Rational Application 
Developer in the Run Configuration wizard include:

� Support for running classes that inherit from classes with a main method.

� In the Arguments tab, now the runtime arguments can be specified in 
terms of using variables. For more information on variables refer to 3.3.1, 
“Java classpath variables” on page 98.

� You can add additional source directories to the run path, used for 
debugging. By default, the JRE source and the project source are added. 
Thus, while debugging, developers will be able to debug the project source 
and will be able to go into types and methods that are core java classes in 
the JRE and still view the source.

� Environment variables can be added using the Environment tab; as with 
arguments, variables can be used.
292 Rational Application Developer V6 Programming Guide



7.3.4  Java Scrapbook
Snippets of Java code can be entered in a Scrapbook window and evaluated by 
simply selecting the code and running it. This feature can be used to quickly test 
code without having to modify any actual Java source files.

These scrapbook pages can be added to any project. The extension of a 
scrapbook page is jpage, to distinguish them from normal Java source files.

To create a scrapbook page, create a file with a .jpage extension. Alternatively, 
select the package in the Package Explorer, right-click, and from the context 
menu choose New → Other. In the Select a Wizard dialog, expand Java → 
Java Run/Debug → Scrapbook Page. Make sure the correct folder is selected 
and enter a file name (JavaTest) for the new page (Figure 7-40 on page 294).

Tip: Content assist (such as code assist) is also available on scrapbook 
pages.
 Chapter 7. Develop Java applications 293



Figure 7-40   Create Java Scrapbook Page dialog

Click Finish to create the scrapbook page. After the page has been created and 
opened in the source editor, you can start entering code snippets in it.

To test a scrapbook page, we use code shown in Example 7-17. The source 
code is available in the c:\6449code\java\JavaTest.jpage file.
294 Rational Application Developer V6 Programming Guide



Example 7-17   JavaTest.jpage sample

// Snippet1
Bank bank = new ITSOBank();
Customer customer1 = new Customer("111-11-1111","Jane","Doe");
bank.addCustomer(customer1);
System.out.println ( "Successfully Added customer1. "+customer1);
Account account11 = new Account("11",new BigDecimal(10000.00D));
bank.addAccount(customer1,account11);
Account account12 = new Account("12",new BigDecimal(11234.23));
bank.addAccount(customer1,account12);
System.out.println("Successfully Added 2 Accounts to Customer1... ");
System.out.println(customer1);

bank.processTransaction(customer1,account11,new 
BigDecimal(2399.99D),TransactionType.DEBIT);

System.out.println("Sucessfully Debited Account11 by $2399.99.. Updated Customer 
Accounts...");

System.out.println(customer1);

// Snippet 2
Bank bank = new ITSOBank();
Customer customer1 = new Customer("111-11-1111","Jane","Doe");
bank.addCustomer(customer1);
bank.getCustomer("111-11-1111");

After you have added the code, you can run one of the snippets by selecting the 
code and selecting Run Snippet from the context menu, or click the Run the 
Selected Code icon  in the toolbar. In our case, select all of snippet1 and 
select Run Snippet. The result is displayed in the Console view.

Tip: All class names in a scrapbook page must be fully qualified, or you have 
to set import statements:

� Select Set Imports from the context menu anywhere in the scrapbook.

� For our example, select the following packages:

itso.bank.model
itso.bank.facade
itso.bank.exception
itso.bank.client
itso.bank.test
java.math
 Chapter 7. Develop Java applications 295



Now select Snippet2 and select Display from the context menu, or click the 
Display icon  in the toolbar. The result is shown as in Figure Figure 7-41 on 
page 296.

Figure 7-41   Java Scrapbook - Display results

You can also select Display from the context menu to display the result 
expression. Alternatively, you can select Inspect from the context menu to bring 
up the Expressions view, which allows you to inspect the result like a variable in 
the debugger (see Chapter 21, “Debug local and remote applications” on 
page 1121for more information about debugging and inspecting).

7.3.5  Pluggable Java Runtime Environment (JRE)
Rational Application Developer provides support to allow Java projects to run 
under different versions of the Java Runtime Environments. New JREs can be 
added to the workspace, and projects can be configured to use any of the JREs 
available. By default, the Rational Application Developer uses and provides 
projects with support for IBM Java Runtime Environment V1.4.2. This is the 
runtime that will be used unless the configuration is changed explicitly to use, as 
shown in figure using the Run Configuration wizard (see Figure 7-42 on 
page 297).

Note: You cannot run code in a scrapbook page until you have at least one 
statement selected.

Note: After running snippets of code in the scrapbook, click the Stop the 
Evaluation icon( ) to end the scrapbook evaluation.
296 Rational Application Developer V6 Programming Guide



Figure 7-42   Changing the version of the Java Runtime

For more information regarding the JRE environment of Rational Application 
Developer and how to add a new JRE, see Chapter 3, “Workbench setup and 
preferences” on page 75.

7.3.6  Add a JAR file to the classpath
Typically classes within Java projects access and depend on types that are 
developed by third-party companies and are external to the workspace. These 
jar files are imported into the Java Build path as external jar files. This is done 
through the library properties. 

Note: At the time of this writing, switching the runtime of projects to JREs 
higher than 1.4.x is not supported.
 Chapter 7. Develop Java applications 297



To add an external jar (for example, db2java.zip) to the build path, do the 
following:

1. Select the project, right-click, and choose Properties from the context menu 
to bring up the Java project properties. 

2. Select the Java Build Path and then click the Libraries tab, as seen in 
Figure 7-43.

Figure 7-43   Java Build Path settings for the BankJava project

3. There are two ways you can specify access to the required jars.

– Select Add External JARs and locate the db2java.zip in the file system.

Or:

– Select Add Variable to add a variable that refers to the db2java.zip file.
298 Rational Application Developer V6 Programming Guide



4. To add this variable to the Java build path for the project, select Add Variable 
to display the New Variable Classpath Entry dialog.

5. Select the DB2_DRIVER_PATH variable and close the dialog with OK.

If the DB2_DRIVER_PATH variable is not available in the dialog, you have to 
create a new variable. 

a. Click the New button to display the New Variable Entry dialog. 

b. Enter DB2_DRIVER_PATH in the name field and enter the path to the 
db2java.zip in the Path field. Click OK.

Now all the types packaged within the jar/zip archive pointed to by the variable 
DB2_DRIVER_PATH are available in the buildpath of BankJava project. 

7.3.7  Export the Java code to a JAR file
This section describes how to export a Java application to a jar file that can be 
run outside of Rational Application Developer using a JRE via the command line. 
We will demonstrate how to export and run the BankClient Java application.

To export the Java Bank code to a JAR file, do the following:

1. From the Workbench, select the BankJava project.

2. Select File → Export.

3. When the Export Select dialog appears, select JAR file and then click Next.

4. When the JAR Package Specification page appears, enter the JAR details. 
For example, we entered the following, as seen in Figure 7-44 on page 300:

a. Select the Resources to export: Check “BankJava”.

b. Check “Export all output folders for checked projects”.

c. Check “Export java source files and resources”.

Tip: We recommend using the Add Variable option since you are not 
directly referencing a physical path that could be different for another 
developer within a team. For this sample it is assumed that a variable 
DB2_DRIVER_PATH has been defined. If DB2 is installed on your system, 
Application Developer predefines this variable.

Note: In our example, we chose to include the source to demonstrate in 
a later section how to import JAR files into a project. It may not be 
necessary or desirable to include Java source in a JAR file for your 
environment.
 Chapter 7. Develop Java applications 299



d. JAR file export destination: C:\BankJava.jar

e. Click Next.

Figure 7-44   Export - JAR Package Specification

5. When the JAR Packaging Options dialog appears, accept the defaults and 
click Next.

6. When the JAR Manifest Specification dialog appears, click the Browse button 
for the Main Class field.

7. Select BankClient in the Select Main Class window and click OK. 

8. Click Finish in the Jar Manifest Specification dialog to start the export of the 
entire Java project as a jar file. 
300 Rational Application Developer V6 Programming Guide



7.3.8  Run the Java application external to Application Developer
Once you have exported the Java code to a jar file as described in the previous 
step (see 7.3.7, “Export the Java code to a JAR file” on page 299) you can run 
the Java application external to Rational Application Developer as follows:

1. Open a Windows command window and navigate to the directory to which 
you have exported the JAR file (for example, C:\).

2. Ensure that the Java Runtime Environment is in your path. If not, add it to the 
path as follows, in a command window or to the Windows environment path.

PATH=%PATH%;C:\Program Files\IBM\Rational\SDP\6.0\eclipse\jre\bin

3. Enter the following command to run the Java Bank application:

java -jar BankJava.jar

This results in the main method of BankClient being executed; the results are 
similar Figure 7-45.

Figure 7-45   Output from running BankJava.jar outside Application Developer

7.3.9  Import a Java JAR file into a project
This section describes how to import a Java JAR file into an existing project. In 
addition to using the JAR file as a means to import project-related materials, JAR 
files provide a mechanism for utility projects in enterprise applications. Utility 
projects are discussed in 7.3.10, “Utility Java Projects” on page 302.

We will use the BankJava.jar file exported in 7.3.7, “Export the Java code to a 
JAR file” on page 299. Alternatively, you can use the BankJava.jar provided in the 
c:\6449code\java directory included with the redbook sample code.

1. Create a new project with the default options, for example, BankJava or 
BankJava1 if you already have a BankJava project.

2. Select the new project, right-click, and select Import from the context menu.
 Chapter 7. Develop Java applications 301



3. Select ZIP file and click Next.

4. Click Browse and locate the file (for example, 
c:\6449code\java\BankJava.jar).

5. If you imported the BankJava JAR into a project other than the name 
BankJava, uncheck .classpath and .project. If you do not do this you will be 
prompted to overwrite these files.

6. Click Finish.

After importing the code you find all the packages discussed in this chapter in the 
BankJavaJAR project.

We will use the BankJava project as a utility project in Chapter 11, “Develop Web 
applications using JSPs and servlets” on page 499.

To test the imported project, select and run BankClient from the Package 
Explorer. The program executes a few of the business methods and displays the 
output in the Console view.

7.3.10  Utility Java Projects
Utility Java projects are Java projects that are designed to contain code that is 
shared across multiple modules within an enterprise application. J2EE 1.3 and 
1.4 provide support for utility JAR files at the enterprise application level. Such 
JAR files are then made available to Web and EJB modules as JAR file 
dependencies.

In our example, the banking sample application, we have separated the business 
logic in a way so that we can use other clients than BankClient.java, which was 
the client to call business methods in the bank interface. We will use the 
BankJava project as a utility project in the enterprise sample applications 
described in Chapter 11, “Develop Web applications using JSPs and servlets” on 
page 499, and Chapter 12, “Develop Web applications using Struts” on 
page 615. These chapters also discuss in detail on the enterprise application 
configuration for using a Java Project as a utility project.
302 Rational Application Developer V6 Programming Guide



7.3.11  Javadoc
Javadoc is a tool in the Java JDK used to generate documentation. 
Documentation is generated with the help of html files in the package folders 
describing the package and block tags within Doc Comments placed within the 
Java source describing classes, interfaces, methods, and other Java elements 
for Java packages, classes, and methods. Rational Application Developer 
introduces the Javadoc view, which is implemented using a SWT browser widget 
to display HTML. In the Java perspective, the Javadoc view is context sensitive 
in the that the view displays the Javadoc associated with the Java element where 
the cursor is currently located within the editor.

To demonstrate the use of Javadoc, we will use the BankJava application 
created or imported (see 7.3.9, “Import a Java JAR file into a project” on 
page 301) in previous sections of this chapter.

1. Expand the BankJava project. 

2. Select the BankClient.java from the Package Explorer.

3. You will notice that when the cursor is on the BankClient Type, the Javadoc 
reflects the documentation associated with BankClient; and when the cursor 
is over BigDecimal, the Javadoc view changes to the documentation 
associated with BigDecimal, as shown in Figure 7-46 on page 304.

Note: For more information on Java utility JAR files, refer to the following:

� Developing J2EE utility JARs in WebSphere Studio Application Developer 
found at:

http://www.ibm.com/developerworks/websphere/library/techarticles/0112_deb
oer/deboer2.html

� Referencing J2EE Utility JARs and Java Projects in WebSphere Studio V5 
found at:

http://www.ibm.com/developerworks/websphere/library/techarticles/0304_man
ji/manji.html
 Chapter 7. Develop Java applications 303

http://www.ibm.com/developerworks/websphere/library/techarticles/0112_deboer/deboer2.html
http://www.ibm.com/developerworks/websphere/library/techarticles/0304_manji/manji.html
http://www.ibm.com/developerworks/websphere/library/techarticles/0304_manji/manji.html


Figure 7-46   Javadoc view - Context sensitive

Methods of generating Javadoc
Rational Application Developer provides the following methods to generate 
Javadoc:

� Select a project and use File → Export (or choose Export from the context 
menu), and select Javadoc from New wizard.

� Select a project and use File → Export (or choose Export from the context 
menu), sand elect Javadoc with diagram tags. This wizard is introduced in 
Rational Application Developer. 

The Javadoc with Diagram Tags wizard enables you to embed a 
@viz.diagram javadoc tag on the class, interface, or package level. This tag 
must refer to an existing diagram, and the wizard will then export that diagram 
into a GIF, JPG, or BMP, and embed that file to the generated javadoc for the 
class, interface, or package.
304 Rational Application Developer V6 Programming Guide



Example 7-18 shows an example of the use of the @viz.diagram tag.

Example 7-18   Using the @viz.diagram tag to generate diagrams in javadoc

package itso.bank.client;

/**
* Bank client class.
*
* @viz.diagram BankJava-ClassDiagram.dnx
*/
public class BankClient {

// ...

}

� Select a project. Use Project → Generate Javadoc... to run the Javadoc 
Generation Wizard.

� Select a project. Use Project → Generate Javadoc with Diagrams.

With this option, you can choose automatic or manual generation. With 
automatic generation, a topic diagram will be generated for each class by the 
Javadoc Generation Wizard. With manual generation, the @viz.diagram tag 
must be present as a block comment, and only topic diagrams pointed to by 
the @viz.diagram tags will be generated as html into the class specifying the 
block.

Restriction: At the time of writing, the @viz.diagram tag assumed that the 
diagram being referenced is placed in the same folder as the Java file 
containing the @viz.diagram tag.

If you plan on using this feature, you will have to place your diagrams along 
with the Java source code. For Web applications, this has the side effect of 
the class diagrams being packaged into the WAR file with the compiled 
Java code.

We found two possible work-arounds:

� You can manually remove these diagrams from the WAR file after 
exporting.

� Filter the contents by configuring an exclusion filter for the EAR export 
feature.

Refer to “Filtering the content of the EAR” on page 1222 for information 
on techniques for filtering files (include and exclude) when exporting the 
EAR. 
 Chapter 7. Develop Java applications 305



Example for generating Javadoc
This section describes by example how to generate Javadoc for the BankJava 
project.

1. Open the Java Perspective Package Explorer view.

2. Select the BankJava project.

3. Right-click and select Export from the context-sensitive menu.

Alternatively, select File → Export.

4. Select Javadoc in the Export wizard and click Next.

5. When the Javadoc Generation page appears, you will need to specify the 
path to the javadoc.exe file available under the bin directory of an installed 
JDK, visibility, output type, and Javadoc destination. For example, we entered 
the following, as seen in Figure 7-47 on page 307, and then clicked Next:

– Javadoc command:

<rad_home>\runtimes\base_v6\java\bin\javadoc.exe

Where <rad_home> is the Rational Application Developer installation path 
(for example, C:\Program Files\IBM\Rational\SDP\6.0).

– Create Javadoc for members with Visibility: Select Public (default).

– Select Use Standard doclet (default; generates HTML output).

Alternatively, you can specify a custom doclet. To specify a custom doclet, 
specify the name of the Doclet and the classpath to the doclet 
implementation.

– Destination: c:\workspace\BankJava\doc (default; generates Javadoc in 
doc directory of current project)

Note: We found that when in the Navigator view, we were not able to 
generate the Javadoc properly (the Generate Javadoc with UML option is 
greyed out).
306 Rational Application Developer V6 Programming Guide



Figure 7-47   Javadoc Generation Wizard

6. When the “Javadoc Generation - Configure Javadoc arguments for standard 
doclet” window appears, we accept the default settings and click Next.

7. When the “Javadoc Generation - Configure Javadoc arguments” window 
appears, check Save Settings for this Javadoc export as an Ant script, as 
seen in Figure 7-48 on page 308, and then click Finish.

This will generate the c:\workspace\BankJava\javadoc.xml ant script to 
invoke the Javadoc command.
 Chapter 7. Develop Java applications 307



Figure 7-48   Javadoc Generation Wizard - Configure Javadoc arguments

8. When prompted to update the Javadoc location, click Yes to all.

9. When prompted, the Ant file will be created; click OK.

You should see console output generated from the Javadoc wizard similar to 
Figure 7-49 on page 309.
308 Rational Application Developer V6 Programming Guide



Figure 7-49   Javadoc Wizard - Console output

10.View the generated Javadoc for the BankJava project, as shown in 
Figure 7-50 on page 310.

a. Expand BankJava → doc.

b. Double-click index.html to display the Javadoc contents for the BankJava 
project.
 Chapter 7. Develop Java applications 309



Figure 7-50   Javadoc output generated from the Javadoc Wizard for the BankJava project

Generate Javadoc from an Ant script
In our Javadoc example, we checked “Save Settings for this Javadoc export as 
an Ant script”. This generated the c:\workspace\BankJava\javadoc.xml ant script, 
which can be used to invoke the Javadoc command. We will use the javadoc.xml 
sample Ant script to demonstrate how to generate Javadoc documentation.

1. Select and expand BankJava.

2. Select javadoc.xml in Package Explorer.

3. From the context menu select Run → Ant Build. 

4. Click Finish. The javadoc generation process starts.
310 Rational Application Developer V6 Programming Guide



7.4  Java editor and Rapid Application Development
IBM Rational Application Developer V6.0 contains a number of features that 
ease and expedite the code development process. These features are designed 
to make life easier for both experienced and novice Java programmers by 
simplifying or automating many common tasks.

This section is organized into the following topics:

� Navigate through the code
� Source folding
� Type hierarchy
� Smart Insert
� Mark occurrences
� Word skipping
� Smart compilation
� Java search
� Quick Assist (Quick Fix)
� Code Assist (content)
� Import generation
� Generate getters and setters
� Override/implement methods
� Adding constructors
� Refactoring

7.4.1  Navigate through the code
This section highlights the use of the Outline view, Package Explorer, and 
bookmarks to navigate through the code.

Use the Outline view to navigate the code
The Outline view displays an outline of a structured file that is currently open in 
the editor area, and lists structural elements. The contents of the Outline view 
are editor-specific.

Note: For more information on Ant, refer to Chapter 22, “Build applications 
with Ant” on page 1155.

Note: This chapter focuses on the key features provided in the Rational 
Application Developer Java editor. For an exhaustive list of all editor-related 
features, refer to product help documentation.
 Chapter 7. Develop Java applications 311



For example, in a Java source file the structural elements are package name, 
import declarations, class, fields, and methods. We will use the BankJava project 
to demonstrate the use of the Outline view to navigate through the code:

1. Select and expand the BankJava → src → itso.bank.model from the 
Package Explorer.

2. Double-click Account.java to open the file in the Java editor.

3. Switch to the Outline view by selecting Window → Show view → Outline.

4. By selecting elements in the Outline view, you can navigate to the 
corresponding point in your code. This allows you to easily find methods and 
field definitions without scrolling through the editor window (see Figure 7-51).

Figure 7-51   Java editor - Outline view for navigation

Use the Package Explorer view to navigate the code
The Package Explorer view, which is available by default in the Java perspective, 
can also be used for navigation. The Package Explorer view provides you with a 

Note: If you have a source file with many fields and methods, you can use the 
Show Source of Selected Element Only icon  from the toolbar to limit the 
edit view to the element that is currently selected in the Outline view.
312 Rational Application Developer V6 Programming Guide



Java-specific view of the resources shown in the Navigator. The element 
hierarchy is derived from the project's build paths.

Use Bookmarks to navigate the code
Bookmarks are another simple way to navigate to resources that you frequently 
use. The Bookmarks view displays all bookmarks in the Workbench.

Show bookmarks
To show the Bookmarks view select Window → Show View → Other and select 
Basic → Bookmarks from the Basic section.

Set bookmark
To set a bookmark in your code, right-click in the gray sidebar to the left of your 
code in the Java editor and select Add Bookmark. The Add Bookmark window 
is shown in Figure 7-52. Enter the name of the bookmark and click OK.

Figure 7-52   Java editor - Add Bookmark

View bookmark
The newly created bookmark is indicated by the symbol  in the marker bar, as 
shown in Figure 7-53, and also appears in the Bookmark view. The Bookmark 
view, after a couple of bookmarks are created, is shown in Figure 7-54 on 
page 314. Double-clicking the bookmark entry in the Bookmarks view opens the 
file and navigates to the line where the bookmark has been created. 

Figure 7-53   Java editor - Bookmark icon in the editor
 Chapter 7. Develop Java applications 313



Figure 7-54   Java editor - Bookmark view

Delete bookmarks
You can remove a bookmark by using the bookmark’s context menu in the 
Bookmarks view and select Delete or click the delete icon ( ) from the 
Bookmark view’s toolbar, as seen in Figure 7-54.

7.4.2  Source folding
Rational Application Developer introduces source folding of import statements, 
comments, types, and methods. Source folding is configurable through the Java 
editor preferences.

To configure this select Window → Preferences. In the Preference dialog box 
expand Java and select Editor. Source folding of an import and a method are 
shown in Figure 7-55 on page 315.

Note: You can bookmark individual files in the Workbench to open them 
quickly from the Bookmark’s view later. Select the file in the Project Explorer 
view. Select Edit → Add Bookmark.  When the Bookmark dialog appears, 
enter the desired bookmark name and click OK. The bookmark should now be 
displayed in the Bookmarks view.

Note: Bookmarks are not specific to Java code. They can be used in any file 
to provide a quick way of navigating to a specific location.
314 Rational Application Developer V6 Programming Guide



Figure 7-55   Java editor - Source folding

7.4.3  Type hierarchy
Rational Application Developer introduces viewing the quick type hierarchy of a 
selected type. Select a type with the cursor and press Ctrl+t. This displays the 
hierarchy, as shown in Figure 7-56 on page 316.
 Chapter 7. Develop Java applications 315



Figure 7-56   Java editor - Type hierarchy

7.4.4  Smart Insert
To toggle the editor between Smart Insert and Insert modes, press 
Ctrl+Shift+Insert. When the editor is in Smart Insert mode the editor provides 
extra features specific to Java. For example, in Smart Mode when you cut and 
paste code from a source Java file to another target Java file, all the imports 
needed are automatically added to the target Java file.

To configure the features available when in Smart Insert mode, do the following:

1. Select Window → Preferences.

2. Expand Java and select Editor.

3. Select the Typing tab.

4. Select/de-select needed features available under “Enable these typing aids 
when in Smart Insert Mode”.

7.4.5  Mark occurrences 
When the cursor is over Java elements, including but not limited to Java types, 
keywords, variable names, and more importantly method exits (when the cursor 
is on the method name), and all methods that throw the exception (when the 
cursor is on the throws clause in a method definition), the editor highlights all 
occurrences of the type, as shown in Figure 7-57 on page 317. 
316 Rational Application Developer V6 Programming Guide



Alternately, you can click the Mark Occurrences icon() in the toolbar or click 
Alt+Shift+O. The Mark Occurrences feature can be configured. To configure 
Mark Occurrences select Window → Preferences. Expand Java, and select 
Mark Occurrences.

Figure 7-57   Java editor - Mark occurrences

7.4.6  Word skipping 
The Java editor now truly supports camel case notation for all word skipping 
operations. For example, if there was a method named getAllAccounts, the editor 
would stop at all characters in bold, as in getAllAccounts, when skipping through 
words, as opposed to getAllAccounts.
 Chapter 7. Develop Java applications 317



7.4.7  Smart compilation
The Java Builder in the Rational Application Developer Workbench incrementally 
compiles the Java code in the background as it is changed and displays any 
compilation errors in the editor window automatically, unless you disable the 
automatic build feature. Refer to Chapter 4, “Perspectives, views, and editors” on 
page 131, for information on enabling/disabling automatic builds and running 
Workbench tasks in the background.

7.4.8  Java search
Rational Application Developer provides support for various searches. To display 
the search dialog click the search icon( ) in the toolbar or press Ctrl+H. The 
search dialog box is shown in Figure 7-58. 

The Search dialog can be configured to display different searches by clicking the 
Customize... button in the Search dialog box. In Figure 7-58, the search dialog 
has been customized to not display the Process Search tab. The Process Search 
tab is not selected and is not displayed. For more information on Process Search 
refer to Chapter 6, “RUP and UML” on page 189. 

Figure 7-58   Java editor - Search

Note: If you cannot see the tab you are looking for (for example, the NLS Key 
tab), make sure the tab is selected in the Search Page Selection window when 
you click on the Customize... button.
318 Rational Application Developer V6 Programming Guide



The following types of searches are supported in Rational Application Developer:

� File search:

– Files can be search for the specified text. 

– Regular expressions can now be specified in the search text. 

– You can specify the scope of the search that includes the workspace, a 
select set of resources, enclosing projects (you can select specific projects 
in your workspace in the Package Explorer; selecting this option will 
search only through the selected project), or a working set. Working sets 
are discussed later in this section. 

– The results of this search are displayed in the Search view.

� dW search: Rational Application Developer introduces searches of the 
developer works Web site from within the Workbench. The results of this 
search are displayed in the Classic Search view.

� Help search: You can search the contents of help. The scope can be set to all 
or a working set. Working sets are discussed later in this section.

� Java search: You can search for Java types, methods, packages, 
constructors, and fields. 

� In Rational Application Developer, you have the option of searching through 
the JRE system libraries as well, for example, a Java search for ArrayList and 
its result set. The scope can be set to workspace, selected resources, or 
working sets. Workings sets are discussed later in this section.

� NLS keys: 

– You can search for unused keys in a property file or incorrectly used keys 
using the NLS key search. 

– You have to specify the accessor class that reads the property file and the 
name of the property file itself. 

– The scope of the search can be set to workspace, selected resources, 
enclosing projects, or working sets. Working sets are discussed later in 
this section.

7.4.9  Working sets
Working sets are used to filter resources by only including the specified 
resources. They are selected and defined using the view's filter selection dialog. 
We will use an example to demonstrate the creation and use of a working set as 
follows:

1. Open a search dialog by clicking the search icon( ) or pressing Ctrl+H.
 Chapter 7. Develop Java applications 319



2. When the Search dialog appears, enter itso.bank.model.Credit in the 
search string field.

3. Select Working Set under Scope and then click Choose.

4. From the Select Working Set dialog, click New to create a new working set.

5. When the New Working Set dialog appears, select Java to indicate that the 
working set will comprise of only Java resources and then click Next. 

6. When the Java Working Set dialog appears, expand BankJava → src. 

a. Select itso.bank.model.

b. Type EntityPackage for the name and click Finish. 

7. Click OK in the Select Working Set dialog.

8. We have now created a working set containing Java resources comprised of 
all the Java files in the itso.bank.model package named EntityPackage.

9. Double-click the line in the search result to open the file in the source editor.

7.4.10  Quick Assist (Quick Fix)
Rational Application Developer introduces Quick Assists in the editor to provide 
suggestions to complete Java editor tasks quickly. When enabled, a green 
lightbulb ( ) is displayed.

Enable Quick Assists
By default, the display of the Quick Assists lightbulb is disabled. To enable the 
Quick Assists feature, do the following:

1. Select Window → Preferences. 

2. Expand Java and select Editor.

3. Check Light bulb for quick assists on the Appearance tab.

Invoking Quick Assists
To use the Quick Assists feature once enabled, double-click the lightbulb ( ) 
icon. Alternatively, press Ctrl+1 to provide a list of intelligent suggestions, and 
selecting one completes the task. 

7.4.11  Code Assist (content)
The Code Assist feature of the Rational Application Developer displays possible 
completions that are valid with the current context.
320 Rational Application Developer V6 Programming Guide



Code Assist preferences
The Code Assist preferences can be configured as follows:

1. Select Window → Preferences.

2. Expand Java → Editor → Code Assist.

3. Modify the settings as desired and then click OK.

Invoke Code Assist
Code Assist is invoked by pressing Ctrl+Space bar.

In the example shown in Figure 7-59, the Code Assist wizard provides the 
method completions that are valid for the transaction object by displaying all the 
public methods of the Transaction class. In the Code Assist window use the 
arrow keys, select the method, and press Enter to complete the method call. 
Code Assist can also be invoked to insert or to complete Javadoc block tags in 
the Javadoc comment block.
 Chapter 7. Develop Java applications 321



Figure 7-59   Java editor - Code/content assist

Code Assist also provides Javadoc in an information window that pops up when 
you hover over a java element. You can customize the code assists and provide 
your own templates that will pop up, by using Rational Application Developer’s 
Templates feature.

7.4.12  Import generation
The Rational Application Developer Java editor simplifies the task of finding the 
correct import statements to use in your Java code.

Simply select the type name in the code and select Source → Add Import from 
the context menu or press Ctrl+Shift+M. If the type name is unambiguous, the 
import will be pasted at the correct place in the code. If the type exists in more 
322 Rational Application Developer V6 Programming Guide



than one package, a window with all the types is displayed and you can choose 
the correct type for the import statement. 

Figure 7-60 shows an example where the selected type (BigDecimal) exists in 
several packages. Once you have determined that the java.math package is what 
you want, double-click the entry in the list, and the import statement is generated 
in the code.

Figure 7-60   Java editor - Import generation

You can also add the required import statements for the whole compilation unit. 
Open the context menu somewhere in the Java source editor and select Source 
→ Organize Imports. The code in the compilation unit is analyzed and the 
appropriate import statements are added.

You can control the order in which the imports are added and when package 
level imports should be used through the Preferences dialog. 
 Chapter 7. Develop Java applications 323



7.4.13  Generate getters and setters
When working with the Java editor you can generate accesors (getters and 
setters) for the fields of a type inside a compilation unit. There are several ways 
to generate getters and setters for a field:

� Select Source → Generate Getter and Setter... from the context menu in the 
Java editor.

� Select Source → Generate Getter and Setter... from the context menu of the 
field in the Outline view.

� Select Source → Generate Getter and Setter... from the menu bar.

A dialog opens to let you select which methods you want to create. Select the 
methods and click OK (see Figure 7-61 on page 325).
324 Rational Application Developer V6 Programming Guide



Figure 7-61   Generate Getter and Setter dialog

7.4.14  Override/implement methods
The override methods feature helps you to override methods from the superclass 
or implement methods from an interface implemented by the selected type. 
Select Source → Override/Implement Methods... from the menu or select 
Override/Implement Methods... in the context menu of a selected type in the 
editor or on a text selection in a type.

The Override/Implement Methods dialog (see Figure 7-62 on page 326) displays 
all methods that can be overridden from superclasses or implemented from 
interfaces. Abstract methods or not yet implemented methods are selected by 
default.
 Chapter 7. Develop Java applications 325



When clicking OK, method stubs for all selected methods are created.

Figure 7-62   Java editor - Override/Implement Methods

7.4.15  Adding constructors
This feature allows you to automatically add any or all of the constructors defined 
in the superclass for the currently selected type. Open the context menu in the 
Java editor and select Source → Add Constructors from Superclass. 
Selecting any of the methods, as shown in Figure 7-63 on page 327 will add the 
selected constructor to the current type.
326 Rational Application Developer V6 Programming Guide



Figure 7-63   Java editor - Add Constructors from Superclass

The Delegate Method Generator feature allows you to delegate methods from 
one class to another. This feature is applicable to java files, classes, and fields in 
the Package Explorer. 

To use this feature, do the following:

1. Select a Java file, a class, or a field in a class.

2. Right-click, and in the context menu choose Source → Generate Delegate 
Methods. For example, select firstName in the class Customer and choose 
Source → Generate Delegate from the context menu.

3. When the Delegate Method Generation dialog appears, click OK.

This adds all String class (since firstName is of type String) methods to the 
Customer class, and code is added in the body of the method to delegate the 
method call to the String Class through the firstName attribute. Do not save 
 Chapter 7. Develop Java applications 327



the changes to the Customer class, as this was just an exercise to 
demonstrate the Delegate Method Generator feature.

Figure 7-64   Java editor - Delegate Method Generator

7.4.16  Refactoring
When developing Java applications, it is often necessary to perform tasks such 
as renaming classes, moving classes between packages, and breaking out code 
into separate methods. In traditional programming environments such tasks are 
both time consuming and error prone, because it is up to the programmer to find 
and update each and every reference throughout the project code. Rational 
Application Developer provides an enhanced list of refactor actions compared to 
previously released products to automate the this process.

Note: We found that when renaming servlet classes or packages, the 
corresponding servlet configuration was not updated automatically. To ensure 
that such resources are updated, use the “Update fully qualified names in 
non-java files” option in the Rename Compilation Unit dialog and enter *.xml 
in the File name patterns field.
328 Rational Application Developer V6 Programming Guide



The Java development tools (JDT) of Application Developer provide assistance 
for managing refactoring. In the Refactoring wizard you can select:

� Refactoring with preview: Click Next in the dialog to bring up a second 
dialog panel where you are notified of potential problems and are given a 
detailed preview of what the refactoring action will do.

� Refactoring without preview: Click Finish in the dialog and have the 
refactoring performed. If a stop problem is detected, refactoring is halted and 
a list of problems is displayed.

Table 7-7 provides a summary of common refactoring actions. For an exhaustive 
list of refactoring actions available in Rational Application Developer, check the 
product help documentation, under Developing Java Applications → Using 
the Java Integrated Development Environment → JDT Actions → Refactor. 

Table 7-7   Refactoring actions

Name Function

Rename Starts the Rename refactoring wizard. Renames the selected 
element and (if enabled) corrects all references to the elements 
(also in other files). Is available on methods, fields, local variables, 
method parameters, types, compilation units, packages, source 
folders, projects, and on a text selection resolving to one of these 
element types.

Move Starts the Move refactoring wizard. Moves the selected elements 
and (if enabled) corrects all references to the elements (also in 
other files). Can be applied on one or more static methods, static 
fields, types, compilation units, packages, source folders and 
projects, and on a text selection resolving to one of these element 
types.

Change Method 
Signature

Starts the Change Method Signature refactoring wizard. You can 
change the visibility of the method; additionally, you can change 
parameter names, parameter order, parameter types, add 
parameters, and change return types. The wizard all references to 
the changed method.

Extract Interface Starts the Extract Interface refactoring wizard. You can create an 
interface from a set of methods and make the selected class 
implement the newly created interface.

Push Down Starts the Push Down refactoring wizard. Moves a field or method 
to its subclasses. Can be applied to one or more methods from the 
same type or on a text selection resolving to a field or method.
 Chapter 7. Develop Java applications 329



Refactoring example
The following example of a refactoring operation assumes that you want to 
rename a class Debit that has been misspelled as Debti in your Java project.

To initiate the refactoring to rename Debti to Debit, do the following:

1. Select the Debti class.

2. Right-click and select Refactor → Rename from the context menu. 
Alternatively, press the Alt+Shift+R hot key sequence. 

3. When the Rename Compilation Unit wizard appears, select the appropriate 
refactoring settings. For example, we did the following (as seen in 
Figure 7-65), and then clicked Preview:

– New name: Debit
– Check Update references (default).

Pull Up Starts the Pull Up refactoring wizard. Moves a field or method to its 
super class. Can be applied on one or more methods and fields 
from the same type or on a text selection resolving to a field or 
method.

Extract Method Starts the Extract Method refactoring wizard. Creates a new 
method containing the statements or expressions currently 
selected, and replaces the selection with a reference to the new 
method.

Extract local 
Variable

Starts the Extract Variable refactoring wizard. Creates a new 
variable assigned to the expression currently selected and replaces 
the selection with a reference to the new variable.

Extract Constant Starts the Extract Constant refactoring wizard. Creates a static final 
field from the selected expression and substitutes a field reference, 
and optionally replaces all other places where the same expression 
occurs.

Inline Starts the Inline refactoring wizard. Inlines local variables, methods, 
or constants. This refactoring is available on methods, static final 
fields, and text selections that resolve to methods, static final fields, 
or local variables.

Encapsulate 
Field

Starts the Encapsulate Field refactoring wizard. Replaces all 
references to a field with getter and setter methods. Is applicable to 
a selected field or a text selection resolving to a field.

Undo Does an Undo of the last refactoring.

Redo Does a Redo of the last undone refactoring.

Name Function
330 Rational Application Developer V6 Programming Guide



– Check Update textual matches in comments and strings (default).
– Check Update fully qualified names in non-java files.

• File name patterns: *.java

These options force the wizard to display a preview indicating what changes 
will be made by the Rename Refactoring wizard.

Figure 7-65   Refactoring - Rename Compilation Unit wizard

If there are any files with unsaved changes in the Workbench and you have 
not indicated in the preferences that the save should be done automatically, 
you are prompted to save these files before continuing the refactoring 
operation.

If there are problems or warnings, the wizard presents the user with the 
Found Problems window. If the problems are severe, the Continue button will 
be disabled and the refactoring must be aborted until the problems have been 
corrected. 

4. After reviewing the changes that will be applied, you can again select whether 
to accept or cancel the refactoring operation. 

Click OK to perform the renaming operation of the class. If there are any 
problems detected, they will be displayed after the operation has been 
completed.

Rational Application Developer provides one level of an undo operation for 
refactoring commands. If you want to undo the renaming changes at this 
point, select Refactor → Undo from the menu bar.
 Chapter 7. Develop Java applications 331



332 Rational Application Developer V6 Programming Guide



Chapter 8. Develop Java database 
applications

In an enterprise environment, applications that use databases are very common. 
In this chapter we explore technologies that are used in developing Java 
database applications. Our focus is on highlighting the database tooling provided 
with IBM Rational Application Developer V6.0.

This chapter is organized into the following sections:

� Introduction to Java database programming
� Preparing for the sample
� Data perspective
� Create databases and tables from scripts
� Create and work with database objects
� UML visualization
� Create SQL statements
� Access a database from a Java application
� Java stored procedures

8

© Copyright IBM Corp. 2005. All rights reserved. 333



8.1  Introduction to Java database programming
This section includes an introduction to Java database technologies and 
highlights the key Rational Application Developer database tooling features.

8.1.1  JDBC overview
Java Database Connectivity (JDBC), like Open Database Connectivity (ODBC), 
is based on the X/Open SQL call-level interface specifications; but unlike ODBC, 
JDBC does not rely on various C features that do not fit well with the Java 
language. Using JDBC, you can make dynamic calls to databases from a Java 
application or Java applet.

JCBC is vendor neutral and provides access to a wide range of relational 
databases, as well as other tabular sources of data. It can even be used to get 
data from flat files or spreadsheets. JDBC is especially well suited for use in Web 
applications. Using the JDBC API you can connect to databases using standard 
network connections. Any modern Web browser is Java enabled, so you do not 
have to worry about whether the client can handle the application.

Figure 8-1 shows the basic components of JDBC access. The JDBC API sends 
the SQL commands from the application through a connection to the 
vendor-specific driver that provides access to the database. Connections can be 
established through a driver manager (JDBC 1.x) or a data source (JDBC 2.x).

Figure 8-1   JDBC overview

Database

Java Application

JDBC Driver 
Manager

Vendor supplied
JDBC Driver

Data SourceConnection

getConnection getConnection
334 Rational Application Developer V6 Programming Guide



8.1.2  Data source versus direct connection
In JDBC 1.x the only way of establishing a database connection was by using the 
DriverManager interface. This was expensive in terms of performance since a 
connection was created each time you had to access the database from your 
program, thereby incurring a substantial processing overhead. In the JDBC 2.x 
Standard Extension API, an alternative way of handling database connections 
was introduced.

Data source connection pooling advantages
By using data source objects you have access to a pool of connections to a data 
source. Using connection pooling gives you the following advantages:

� Improves performance

Creating connections is expensive; a data source object creates a pool of 
connections as soon as it is instantiated.

� Simplifies resource allocation

Resources are only allocated from the data source objects, and not at 
arbitrary places in the code.

Data source objects at work
Data source objects work as follows:

� When a servlet or other client wants to use a connection, it looks up a data 
source object by name from a Java Naming and Directory Interface (JNDI) 
server.

� The servlet or client asks the data source object for a connection.

� If the data source object has no more connections, it may ask the database 
manager for more connections (as long as it has not exceeded the maximum 
number of connections). 

� When the client has finished with the connection, it releases it.

� The data source object then returns the connection to the available pool.

8.1.3  XMI and DDL
XML Metadata Interchange (XMI) is an Object Management Group (OMG) 
standard format for exchanging metadata information. Rational Application 

Important: Because of the advantages of connection pooling, using data 
source objects is the preferred method of handling database connections in 
Web applications. The WebSphere Application Server has full support for 
connection pooling and for registering data sources through JNDI.
 Chapter 8. Develop Java database applications 335



Developer uses the XMI format to store all local descriptors of databases, tables, 
and schemas. Rational Application Developer appends a prefix to the extension 
of the XMI files, for example, local descriptors for databases are stored in 
databasename.dbxmi files, schemas are stored in schemaname.schxmi, and 
tables are stored in a tablename.tblxmi file. The content of these XMI files can be 
viewed and edited using tailored editors. When you import an existing database 
model, it can be stored in XMI format.

Data definition language (DDL) is a format used by relational database systems 
to store information about how to create database objects. Rational Application 
Developer allows you to generate DDL from an XMI file and vice versa.

8.1.4  Rational Application Developer database features
Rational Application Developer provides a number of features that make it easier 
to work with relational databases in your projects.

� Built-in Cloudscape database for development use that allows one client 
connection. This is a useful feature for rapid development. There is no extra 
installation required to use this database. A database and database objects 
can be created in this database once Rational Application Developer is 
installed.

� Support for multiple versions of Cloudscape, DB2, Informix, SQL Server, and 
Sybase databases.

� Ability to create new databases and database objects using class diagram, 
information engineering (IE) diagram, and integrated definition extended 
(IDEF1X) diagram logical modeling diagrams, and generate DDL for the 
target database.

� Ability to import and use existing database models.

� Ability to generate XML schemas from existing database models.

� Ability to interactively build and execute SQL queries from an imported 
database model or through an active connection, using the SQL Wizard and 
SQL Query Builder.

� Ability to generate Web pages and supporting Java classes based on existing 
or new SQL queries.

� Ability to access database API from JavaServer Pages, using either 
JavaBeans or JSP tags.

Note: To obtain a more detailed listing of database types and versions 
supported by Rational Application Developer, search for supported 
database types in the Rational Application Developer online help.
336 Rational Application Developer V6 Programming Guide



8.2  Preparing for the sample
In this chapter, we choose to provide the completed sample code up front and 
walk the reader through the Rational Application Developer database related 
tooling using the sample. This section describes how to import and set up the 
sample in Rational Application Developer.

8.2.1  Import the BankDB sample project
To import the BankDB.zip project interchange file, do the following:

1. From the Workbench, select File → Import.

2. Select Project Interchange and click Next.

3. When the Import Projects dialog appears, we entered the following and then 
clicked Finish:

– From zip file: c:\6449code\database\BankDB.zip
– Project location root: c:\workspace
– Check BankDB.

After importing the BankDB project interchange file you should see the BankDB 
project displayed (as seen in Figure 8-2) in the Data Definition view.

Note: This section assumes that you have already downloaded and unpacked 
the redbook sample code 6449code.zip to the c:\6449code directory. For 
more detailed information, refer to Appendix B, “Additional material” on 
page 1395.
 Chapter 8. Develop Java database applications 337



Figure 8-2   BankDB project displayed in the Data Definition view

8.2.2  Set up the BANK sample database
This section provides instructions for deploying the BANK sample database and 
populating the database with sample data. For simplicity we will use the built-in 
Cloudscape database.

To create the database, create the connection, and create and populate the 
tables for the BANK sample, do the following:

1. Create the Cloudscape BANK database.

For details refer to “Create Cloudscape database via Cloudscape CView” on 
page 344.

Note: The database and tables can be created within Rational Application 
Developer, or externally using the native database utilities such as 
Cloudscape CView or DB2 UDB (DB2 Control Center, Command Window, 
etc.).

For detailed information on creating databases, creating connections, creating 
tables, and loading data in tables from within Rational Application Developer 
or externally via Cloudscape CView or DB2 UDB, refer to 8.4, “Create 
databases and tables from scripts” on page 343.
338 Rational Application Developer V6 Programming Guide



2. Create the connection to the Cloudscape BANK database from within 
Rational Application Developer.

For details refer to “Create a database connection” on page 347.

3. Create the BANK database tables from within Rational Application Developer.

For details refer to “Create database tables via Rational Application 
Developer” on page 350.

4. Populate the BANK database tables with sample data from within Rational 
Application Developer.

For details refer to “Populate the tables within Rational Application Developer” 
on page 352.

8.3  Data perspective
The Data perspective is used to work with databases, database objects, and 
SQL statements. We will explore the following views of the Data perspective:

� Data Definition view
� Database Explorer view
� DB Output view
� Navigator view

Figure 8-3 shows the Data perspective and supporting views available within 
Rational Application Developer. IBM Rational Application Developer V6.0 
introduces support for diagram tooling to design and deploy databases (local or 
remote). The tooling can also be used to generate DDL files that can be used 
later to generate databases and database objects.

Rational Application Developer introduces support for three diagrams used to 
design database diagrams and deploy them to local and remote databases or 
generate DDL files that can be later used to generate databases and database 
objects on a database server.
 Chapter 8. Develop Java database applications 339



Figure 8-3   Data perspective and views

8.3.1  Data Definition view
The Data Definition view, as shown in Figure 8-4, contains copies of data 
definitions imported from an existing database, along with the designs that were 
created using the Data Definition view of Rational Application Developer.

Database models are stored within an Rational Application Developer project. 
This can be any type of project, such as a simple project, a Web Project with 
database access, or an EJB project with entity beans.

Note: Additional information on the Data perspective can be found in “Data 
perspective” on page 145.
340 Rational Application Developer V6 Programming Guide



The Data Definition view is a hierarchical view of the database objects and does 
not display how these definitions are stored in actual files. To view the actual files 
you will need to switch to the Navigator view.

Figure 8-4   Data perspective - Data Definition view

8.3.2  Database Explorer view
The Database Explorer view shows active connections to databases and allows 
you to create new connections. In Figure 8-5 on page 342 you can see an active 
connection to the Cloudscape BANK database. We will create this connection in 
8.4.2, “Create a database connection” on page 347.
 Chapter 8. Develop Java database applications 341



Figure 8-5   Data perspective - Database Explorer view

The Database Explorer view is independent of projects. It displays active 
connections to databases. An inactive connection can be activated by selecting 
the connection and then Reconnect from the context menu.

8.3.3  DB Output view
The DB Output view is used to display output information for operations 
performed on database objects or to display output when you run DDL or SQL 
files on connections, as described in 8.3.2, “Database Explorer view” on 
page 341. The DB Output view is shown in Figure 8-6 on page 342 after the 
execution of a DDL file on a local Cloudscape database.

Figure 8-6   Data perspective - Database Output view
342 Rational Application Developer V6 Programming Guide



The DB Output has the Status, Action, and Object Name fields in the left side of 
the view, which display the status of the current operation, what action was 
performed, and the name of object that was used to perform the action, 
respectively. 

The DB Output has the Messages, Parameters, and Results pages in the right 
side of the view, which display the progress of the action, any input to the 
operation, and any output returned by the operation.

8.3.4  Navigator view
The Navigator view is shown in Figure 8-7. In the Navigator view you can see the 
local descriptor files (.dbxmi, .schxmi, and .tblxmi files) that represent the various 
database objects. Each of the files has an editor associated with it. 
Double-clicking the file brings up the appropriate editor for the type of object that 
is described, which could be a database, a schema, or a table.

Figure 8-7   Data perspective - Navigator view

8.4  Create databases and tables from scripts
As part of the process of developing a database application, you will need to 
understand how to create databases, create a connection to the database, 
deploy tables, and populate the tables with data from scripts. This section 
describes how to create and work with databases and tables from within Rational 
Application Developer as well as externally for both Cloudscape and DB2 
Universal Database (UDB) from a deployment perspective.

This section is organized into the following topics:

� Create a database.
 Chapter 8. Develop Java database applications 343



– Create Cloudscape database via Cloudscape CView.
– Create DB2 UDB database via a DB2 command window.

� Create a database connection.

� Create the database tables from scripts.

– Create database tables via Rational Application Developer.
– Create Cloudscape database tables via Cloudscape CView.
– Create DB2 UDB database tables via a DB2 command window.

� Populate database tables with data.

– Populate the tables within Rational Application Developer.
– Populate the tables via Cloudscape CView.
– Populate the tables via a DB2 UDB command window.

8.4.1  Create a database
IBM Rational Application Developer V6.0 supports many database vender types 
(see “Supported databases” on page 9). In this section we focus on Cloudscape 
V5.1 included with Rational Application Developer, as well as IBM DB2 Universal 
Database V8.2. Many database types can be created from within Rational 
Application Developer using wizards, or externally using the native database 
utilities.

This section includes the following methods of creating a database:

� Create Cloudscape database via Cloudscape CView.
� Create DB2 UDB database via a DB2 command window.

Create Cloudscape database via Cloudscape CView
To create a Cloudscape database using the Cloudscape CView utility, do the 
following:

1. Start the Cloudscape CView utility by running cview.bat from one of the 
following directories:

– Rational Application Developer Integrated WebSphere Application Server

<rad_home>\runtimes\base_v6\cloudscape\bin\embedded

Or:

– WebSphere Application Server

<was_home>\cloudscape\bin\embedded

2. From CView select File → New → Database, as seen in Figure 8-8.
344 Rational Application Developer V6 Programming Guide



Figure 8-8   Cloudscape CView utility

3. When the New Database window appears, click the Database tab and enter 
the name <path_database_name>. For example, we entered 
c:\databases\BANK, as seen in Figure 8-9 on page 346, and then clicked OK.
 Chapter 8. Develop Java database applications 345



Figure 8-9   Cloudscape CView - Create BANK database

4. Close the Cloudscape CView utility.

Create DB2 UDB database via a DB2 command window
To create a DB2 UDB database from a DB2 command window, do the following:

1. Open a DB2 UDB command window by selecting Start → Programs → IBM 
DB2 → Command Line Tools → Command Window.

2. Enter the following in the DB2 command window to create a database:

db2 create db <database_name>

For example, create the following for the ITSO Bank sample:

db2 create db BANK

Important: It is important that you close the CView utility after creating the 
database since it maintains a connection to the database. 

The embedded version of Cloudscape only supports one connection from a 
JVM at a time. If the connection is open in the Database Explorer view, any 
applications we run (which will run in a separate JVM) will not be able to 
connect to the database. If you get errors in the Console view when you test a 
sample application, check that Bank Connection is disconnected or that 
CView is closed. 
346 Rational Application Developer V6 Programming Guide



8.4.2  Create a database connection
Once the database has been created (or if it existed previously) we need to 
create a database connection to the Cloudscape database (or other database 
type). 

1. From the Data perspective, open the Database Explorer view.

2. Right-click in the Database Explorer view and select New Connection....

3. When the New Database Connection dialog appears, enter the following (as 
seen in Figure 8-10) and then click Next:

– Connection name: <connection name> (for example, Bank Connection).
– Select Choose a database manager and JDBC driver.

Figure 8-10   Database Connection - Name and type

4. When the Specify connection parameters dialog appears, enter the following 
(as seen in Figure 8-11 on page 349), and then click Finish:

– Select database manager: Select Cloudscape → V5.1.

– JDBC driver: Select Cloudscape Embedded JDBC Driver. The JDBC 
driver is a list of available drivers for the selected database manager. 
Typically you will use the default selected by Rational Application 

Note: IBM DB2 Universal Database is not included with IBM Rational 
Application Developer V6.0. We used IBM DB2 Universal Database V8.2 for 
our testing.

Note: For DB2, select DB2 Universal Database → Express V8.2.
 Chapter 8. Develop Java database applications 347



Developer; if you have the need to use a different JDBC driver than the 
one specified, you will need to select this from the drop-down list.

– Database location: <database_directory> (for example, 
c:\databases\BANK).

– Check Create the database if required.

– Leave the Specify user information unchanged (not needed for 
Cloudscape). 

Note: For DB2, select IBM DB2 Application.

Note: For DB2, enter BANK for the Alias.

Note: When using DB2 or Oracle you will have to provide the user 
information by providing the user ID and password. Also, you may need to 
update the class location. Once the user ID and password have been 
entered, you can click Test Connection.
348 Rational Application Developer V6 Programming Guide



Figure 8-11   Database connection - Parameters

5. When prompted with the message Do you want to copy the database 
metadata to a project folder?, click No.

8.4.3  Create the database tables from scripts
This section describes how to create database tables from existing scripts using 
the following methods:

� Create database tables via Rational Application Developer.
� Create Cloudscape database tables via Cloudscape CView.
� Create DB2 UDB database tables via a DB2 command window.
 Chapter 8. Develop Java database applications 349



Create database tables via Rational Application Developer
To create a database table from within Rational Application Developer using a 
wizard, do the following:

1. From the Navigator view of the Data perspective, select the project folder.

2. Create a folder named db to contain database files.

a. Right-click the project and select New → Folder.

b. Enter db for the folder name.

c. Click Finish.

3. Right-click on the db folder and select Import.

4. When the Import window appears, select File System and click Next.

a. In the From directory, click Browse to navigate to the following folder:

c:\6449code\database\cloudscape\Bank

b. Check Table.ddl and loadData.sql to import the table descriptors and 
sample customer data, respectively.

c. Click Finish.

5. Right-click Table.ddl and select Deploy....

6. When the Run Script - Statements dialog appears, accept the default (all 
statements checked), as seen in Figure 8-12 on page 350, and click Next.

Figure 8-12   Create tables from the Table.ddl

7. When the Run Script - Options dialog appears, select Commit changes only 
upon success (default) and click Next.
350 Rational Application Developer V6 Programming Guide



8. When the Run Script - Database Connection dialog appears, do the following:

– Check the Use existing connection check box.

– Existing connection: Select the desired connection (for example, Bank 
Connection).

9. Click Finish to create the tables.

Create Cloudscape database tables via Cloudscape CView
To create a Cloudscape database table using the Cloudscape CView utility, do 
the following:

1. From CView, select the database (for example, c:\databases\BANK).

2. Click the Database tab.

3. Click the Script icon ( ) and select Open.

4. Navigate to the following directory and select the ddl file (for example, 
Table.ddl, found in the c:\6449code\database\cloudscape\BANK directory).

5. To execute the SQL to create the tables, click the Execute icon ( ).

6. To verify the tables where created, select and expand Tables. You should 
see the tables listed.

Create DB2 UDB database tables via a DB2 command window
To create a DB2 UDB database table from a DB2 command window, do the 
following:

1. Open a DB2 UDB command window by selecting Start → Programs → IBM 
DB2 → Command Line Tools → Command Window.

2. From the DB2 command window, enter the following commands to create 
database tables:

db2 connect to <database_name>
db2 -tvf <path_ddl_file_name>
db2 connect reset

For example, enter the following for the ITSO Bank sample:

db2 connect to BANK
db2 -tvf c:\6449code\database\DB2\BANK\Table.ddl
db2 connect reset

8.4.4  Populate database tables with data
This section describes how to populate database tables using SQL scripts 
containing data using the following methods:

� Populate the tables within Rational Application Developer.
 Chapter 8. Develop Java database applications 351



� Populate the tables via Cloudscape CView.
� Populate the tables via a DB2 UDB command window.

Populate the tables within Rational Application Developer
To populate the tables within Rational Application Developer, do the following:

1. Import the loadData.sql as described in “Create database tables via Rational 
Application Developer” on page 350.

2. Right-click the loadData.sql file and select Deploy....

3. When the Run Script - Statements dialog appears, accept the default (all 
checked) and click Next.

4. When the Run Script - Options dialog appears, select Commit changes only 
upon success (default) and click Next.

5. When the Database Connection dialog appears, do the following:

– Check the Use existing connection check box.
– Existing connection: Select Bank Connection.

6. Click Finish to populate the tables with data.

7. Verify the database was created and populated properly.

a. In the Database Explorer view, right-click your database connection and 
select Refresh.

b. Expand Bank Connection → BANK → ITSO → Tables as seen in 
Figure 8-13 on page 353. 

c. Right-click ITSO.CUSTOMER and select Sample contents. The contents 
of the table should be as shown in Figure 8-13 on page 353.

d. Check that the other tables contain appropriate rows (check loadData.sql 
to find out what should be in the tables).

8. Right-click the connection (for example, Bank Connection) and select 
Disconnect.
352 Rational Application Developer V6 Programming Guide



Figure 8-13   Bank connection working correctly

Populate the tables via Cloudscape CView
To populate the database tables with data from Cloudscape CView, do the 
following:

1. From CView, select the database (for example, c:\databases\BANK).

2. Click the Database tab.

3. Click the Script icon ( ) and select Open.

4. Navigate to the directory and select the sql file (for example, loaddata.sql, 
found in the c:\6449code\database\cloudscape\BANK directory).

5. To execute the SQL to create the tables, click the Execute icon ( ).
 Chapter 8. Develop Java database applications 353



6. To verify that the tables where populated, select the CUSTOMER table, and 
then click the Data tab. You should see a list of seven customers.

Populate the tables via a DB2 UDB command window
To populate the tables via a DB2 UDB command window, do the following:

1. Open a DB2 UDB command window by selecting Start → Programs → IBM 
DB2 → Command Line Tools → Command Window.

2. From the DB2 command window, enter the following commands to create 
database tables:

db2 connect to <database_name>
db2 -tvf <path_sql_filename>
db2 connect reset

For example, we did the following for the ITSO Bank sample:

db2 connect to BANK
db2 -tvf c:\6449code\database\DB2\BANK\loaddata.sql
db2 connect reset

3. To verify that the sample data was added successfully, enter the following 
SQL command to query the CUSTOMER table:

db2 connect to BANK
db2 select * from ITSO.CUSTOMER

8.5  Create and work with database objects
This section describes how to use the Rational Application Developer database 
tooling to create database objects from scratch and work with the objects.

Rational Application Developer provides support for creating new databases, 
new schemas, and new tables. You can create database objects using either the 
context menu in the Navigator and Data Definition views or you could use the 
UML visualization with class diagram, IE, or IDEF1X notation to create database 
objects. We cover UML visualization in 8.6, “UML visualization” on page 370.

You can use the DB Explorer view to connect to existing databases and view 
their objects. The objects can be imported into Rational Application Developer 
and used in your applications. The DB Explorer view allows you to filter the 
designs that are returned to only show a subset of schemas or tables. You can 
also use the DB Explorer view to generate DDL files.
354 Rational Application Developer V6 Programming Guide



This section is organized into the following topics:

� Create a database.
� Create a database connection.
� Create a schema.
� Create a table.
� Generate a DDL file.
� Deploy DDL from the workspace to a database.
� Copy database objects from a DDL file to a workspace.
� Generate DDL and XSD files for database objects.

8.5.1  Create a database
To create a database from scratch within Rational Application Developer, do the 
following:

1. To create a new database you have to have a project. If you have not already 
done so, you should now create a new simple project called BankDB and a 
folder called db. 

2. Switch to the Data perspective and open the Data Definition view.

3. Select BankDB → db.

4. Right-click and select New → Database Definition from the context menu. 

5. When the Database Definition wizard appears, enter the following, as seen in 
Figure 8-14 on page 356:

– Folder: /Bank/db
– Database name: BankDBClone
– Database vender type: Select Cloudscape V5.1. When you later generate 

the database DDL, it will conform to the database type that you select.

6. Click Finish to create the new database definition.

Important: The DB Explorer view is read-only. Before you can edit any 
database objects, you have to import them into an Rational Application 
Developer project.
 Chapter 8. Develop Java database applications 355



Figure 8-14   Database Definition wizard - New database definition

8.5.2  Create a database connection
To view the definition of an existing database, you first have to create a JDBC 
connection to the database. For details on how to create a connection refer to 
8.4.2, “Create a database connection” on page 347.

For more information regarding JDBC drivers, refer to “JDBC drivers” on 
page 391.

Important: Database definitions created within Rational Application 
Developer are not automatically created in the database system. You have to 
deploy the DDL as specified in 8.5.6, “Deploy DDL from the workspace to a 
database” on page 362, or use the appropriate database tool to create the 
objects from the DDL.
356 Rational Application Developer V6 Programming Guide



8.5.3  Create a schema
Database schemas provide a method of logical classification of objects for a 
database. Some of the objects that a schema may contain include tables, views, 
aliases, indexes, triggers, and structured types. 

The support for schemas varies between database types; some require them, 
and some have no support for them. The schema options available to you 
depend on the database vender type that you chose when the database was 
created. If the database type does not support schemas at all, this option will not 
be available, and the tables and other objects will be created directly under the 
database node.

To add a schema to a database, do the following:

1. Select the BankDBClone database definition previously created in 8.5.1, 
“Create a database” on page 355.

2. Right-click and select New → Schema Definition.

3. When the Schema Definition wizard appears, enter the Schema name (for 
example, ITSO) and click Finish. 

Figure 8-15   Schema Definition wizard - Schema Definition
 Chapter 8. Develop Java database applications 357



4. Expand the new schema in the Data Definition view and you will see the 
following types of objects that can be added to the schema.

– Tables
– Views
– Stored procedures
– User-defined functions

8.5.4  Create a table
This section describes how to create a new table in a schema. Rational 
Application Developer provides a wizard for defining table columns as well as 
primary and foreign keys.

To create a table in a schema, do the following:

1. Select the ITSO schema created in 8.5.3, “Create a schema” on page 357.

2. Right-click and select New → Table Definition. 

3. When the New Table Definition dialog appears, enter the Table name (for 
example, Accounts), as seen in Figure 8-16, and then click Next.

Figure 8-16   Table definition wizard -Table Definition

Note: In IBM Rational Application Developer V6.0, tables and views can be 
created for databases. The creation of stored procedures and user-defined 
functions is supported only when the Database Manager is one of the DB2 
UDB family of database types.
358 Rational Application Developer V6 Programming Guide



4. When the Table Columns dialog appears, click Add Another to add a column 
to the table and define the column properties.

The exact properties available depend on the database manager selected. 
For more information about the properties available, you can consult the 
documentation provided by the database vendor. 

5. On the next page you define the columns of the table. Figure 8-17 displays 
the ID column values. Click Add Another to add each of the columns listed in 
Table 8-1 for the ITSO example. When done adding columns click Next.

Table 8-1   Accounts table

Figure 8-17   Table Definition wizard -Table Columns

Column 
name

Column 
type

Default Nullable/Key 
column

String
length

ID VARCHAR Key Column 
(primary key)

250
Note: For VARCHAR type

BALANCE INTEGER
 Chapter 8. Develop Java database applications 359



6. When the Primary Key dialog appears (as seen in Figure 8-18), you can 
modify the primary key (optional) by selecting the items you want from the 
Source Columns, and add them to the primary key by clicking >. 

In our example, we accepted the default (ID) and clicked Next.

Figure 8-18   Table Definition wizard - Primary Key

7. When the Foreign Key dialog appears, define any foreign key constraints that 
you want to apply and then click Finish.

In our example, we do not have another table defined so we do not add a 
foreign key. 
360 Rational Application Developer V6 Programming Guide



8.5.5  Generate a DDL file
This section describes how to generate a DDL file from the data definition of the 
database table object (ACCOUNT), which can be used to create the database 
table (ACCOUNT) at the time of deployment in a database of the type defined 
(Cloudscape, DB2 UDB, Oracle, etc.).

To generate a DDL file for the table, do the following:

1. From the Data Definition view, select the ITSO.ACCOUNTS table.

2. Right-click and select Generate DDL.

3. When the Generate SQL DDL dialog appears, enter the DDL file name, select 
the desired project, specify the options, and then click Finish. For example, 
Figure 8-19 displays the options for the ACCOUT DDL file to be generated to 
the BankDB project.

Figure 8-19   Generate SQL DDL wizard - Generate DDL

The options available are to create the DDL with or without the schema name, 
whether to place delimiters around identifiers, whether to generate DROP 
statements, and whether to open an editor on the generated file. 
 Chapter 8. Develop Java database applications 361



Example 8-1   Sample generated ACCOUNT.ddl file

DROP TABLE "ITSO"."ACCOUNT" CASCADE;
CREATE TABLE "ITSO"."ACCOUNT"
  ("ID" VARCHAR(250) NOT NULL,
   "BALANCE" INTEGER NOT NULL);
ALTER TABLE "ITSO"."ACCOUNT"

The generated DDL file is shown in Example 8-1. You can use the generated 
DDL to create the table in the database system by deploying the DDL as 
described in 8.5.6, “Deploy DDL from the workspace to a database” on 
page 362, or use the appropriate tool provided by the database vendor.

8.5.6  Deploy DDL from the workspace to a database
Once the DDL file exists in the workspace, it can be deployed to a database. For 
details refer to “Create database tables via Rational Application Developer” on 
page 350.

8.5.7  Copy database objects from a DDL file to a workspace
In the Database Explorer view you can browse the tables and columns, but 
before you can actually use them in your application (read only), you will need to 
copy the database object into a project folder. In the previous section we looked 
at how we can deploy a DDL file from the workspace to a database. In this 
section we cover copying existing database objects from a DDL file to the 
workspace.

To copy database objects from a DDL file to the workspace, do the following:

1. Open the Data perspective Database Explorer view.

2. Select the database for which a connect has been defined (for example, 
BANK).

3. Right-click and select Copy to Project.

4. When the Copy to Project dialog appears, enter the folder you wish to copy 
the project to and then click Finish. For example, we entered /BankDB/db in 
the Folder field, as seen in Figure 8-20.
362 Rational Application Developer V6 Programming Guide



Figure 8-20   Copying database objects - Copy selected objects to project

Now all the schemas and tables under the BankDB database have been 
created in the BankDB project in the db folder.

5. Verify the database objects.

To verify that the database objects have been copied over from the database 
to the project, do the following:

a. Open the Data Definition view and expand the db folder under BankDB 
project.

b. You will see all the database objects including the BANK database, the 
ITSO schema, and the tables under the schema, as shown in Figure 8-21 
on page 364.
 Chapter 8. Develop Java database applications 363



Figure 8-21   Copying database objects - Data Definition view

Figure 8-22   Copying database objects - Navigator view
364 Rational Application Developer V6 Programming Guide



In the Navigator view you will also notice that a number of XMI format files 
have been created for the database objects as shown in Figure 8-22 on 
page 364. XMI is an open information interchange model that allows 
developers who work with object technology to exchange programming data 
over the Internet. 

If you double-click one of these files, the appropriate database object editor 
opens. If you want to see the XMI source, you can right-click any of the files 
and select Open With → Text Editor.

8.5.8  Generate DDL and XSD files for database objects
Rational Application Developer allows you to generate DDL files and XML 
schemas for database objects. 

Generate DDL file for database objects
To generate DDL files for database objects, do the following:

1. Select the database object (for example, BANK) in the Data Definition view.

2. Right-click and select Generate DDL... from the context menu.

3. When the Generate SQL DDL wizard appears, enter the file name and project 
you wish to output the DDL file, and select the desired options. For example, 
we entered Table for the file name, clicked Browse to select the BankDB 
project, and checked the options displayed in Figure 8-23 on page 366.

Note: To enable generation of XML Schemas options in the context menus, 
make sure the XML development capability is enabled.

To enable the XML development capability, do the following:

1. Select Window → Preferences.

2. From the Preferences dialog, expand Workbench and select 
Capabilities.

3. In the Capabilities list check the XML Development capability under XML 
Developer.
 Chapter 8. Develop Java database applications 365



Figure 8-23   Generate DDL wizard - Generate SQL DDL for the BankDB database

The generated DDL file is shown in Example 8-2.

Example 8-2   Sample generated Table.sql file

DROP TABLE "ITSO"."CUSTOMER" CASCADE;
DROP TABLE "ITSO"."ACCOUNTS_CUSTOMERS" CASCADE;
DROP TABLE "ITSO"."TRANSACTION1" CASCADE;
DROP TABLE "ITSO"."ACCOUNT" CASCADE;
DROP SCHEMA "ITSO";

CREATE SCHEMA "ITSO";

CREATE TABLE "ITSO"."CUSTOMER"
  ("TITLE" VARCHAR(250) NULL,
   "FIRSTNAME" VARCHAR(250) NULL,
   "LASTNAME" VARCHAR(250) NULL,
   "SSN" VARCHAR(250) NOT NULL);

ALTER TABLE "ITSO"."CUSTOMER"
  ADD CONSTRAINT "PK_CUSTOMER" PRIMARY KEY ("SSN");

CREATE TABLE "ITSO"."ACCOUNTS_CUSTOMERS"
366 Rational Application Developer V6 Programming Guide



  ("ACCOUNTS_ID" VARCHAR(250) NOT NULL,
   "CUSTOMERS_SSN" VARCHAR(250) NOT NULL);

ALTER TABLE "ITSO"."ACCOUNTS_CUSTOMERS"
  ADD CONSTRAINT "PK_ACCOUNTS_CUSTO2" PRIMARY KEY ("ACCOUNTS_ID", 
"CUSTOMERS_SSN");

CREATE TABLE "ITSO"."TRANSACTION1"
  ("DISCRIM_TRANSACTION1" VARCHAR(32) NOT NULL,
   "TIMESTAMP1" TIMESTAMP NULL,
   "AMOUNT" INTEGER NOT NULL,
   "ID" VARCHAR(250) NOT NULL,
   "TRANSACTIONSACCOUNTINVERSE_ID" VARCHAR(250) NULL);

ALTER TABLE "ITSO"."TRANSACTION1"
  ADD CONSTRAINT "PK_TRANSACTION1" PRIMARY KEY ("ID");

CREATE TABLE "ITSO"."ACCOUNT"
  ("BALANCE" INTEGER NOT NULL,
   "ID" VARCHAR(250) NOT NULL);

ALTER TABLE "ITSO"."ACCOUNT"
  ADD CONSTRAINT "PK_ACCOUNT" PRIMARY KEY ("ID");

Generate an XML schema for a table
XML schemas can be generated for tables. To generate an XML schema for a 
table, you must already have imported it into a folder and be in the Data 
Definition view. 

1. Select the CUSTOMER table.

2. Right-click and select Generate XML Schema from the context menu.

3. When the Create XML Schema dialog appears, select the directory into which 
to put the XML schema file, and enter a file name, as seen in Figure 8-24 on 
page 368.
 Chapter 8. Develop Java database applications 367



Figure 8-24   Generate XSD wizard - New XML Schema generation

4. Click Finish and the schema file (with extension .xsd) is created and opened 
in the XML schema editor. 

The content of the customer XSD file (visible in the Source tab of the editor) is 
shown in Example 8-3.

Example 8-3   Generated XML schema

<?xml version="1.0" encoding="UTF-8"?>
<xsd:schema xmlns:BankDBTestITSO="http://www.ibm.com/BankDBTest/ITSO" 

xmlns:xsd="http://www.w3.org/2001/XMLSchema" 
targetNamespace="http://www.ibm.com/BankDBTest/ITSO">

  <xsd:element name="CUSTOMER_TABLE">
    <xsd:complexType>
368 Rational Application Developer V6 Programming Guide



      <xsd:sequence>
        <xsd:element maxOccurs="unbounded" minOccurs="0" ref="BankDBTestITSO:CUSTOMER"/>
      </xsd:sequence>
    </xsd:complexType>
    <xsd:key name="PK_CUSTOMER_SSN">
      <xsd:selector xpath="BankDBTestITSO:CUSTOMER"/>
      <xsd:field xpath="SSN"/>
    </xsd:key>
  </xsd:element>
  <xsd:element name="CUSTOMER">
    <xsd:complexType>
      <xsd:sequence>
        <xsd:element name="TITLE">
          <xsd:simpleType>
            <xsd:restriction base="xsd:string">
              <xsd:length value="250"/>
            </xsd:restriction>
          </xsd:simpleType>
        </xsd:element>
        <xsd:element name="FIRSTNAME">
          <xsd:simpleType>
            <xsd:restriction base="xsd:string">
              <xsd:length value="250"/>
            </xsd:restriction>
          </xsd:simpleType>
        </xsd:element>
        <xsd:element name="LASTNAME">
          <xsd:simpleType>
            <xsd:restriction base="xsd:string">
              <xsd:length value="250"/>
            </xsd:restriction>
          </xsd:simpleType>
        </xsd:element>
        <xsd:element name="SSN">
          <xsd:simpleType>
            <xsd:restriction base="xsd:string">
              <xsd:length value="250"/>
            </xsd:restriction>
          </xsd:simpleType>
        </xsd:element>
      </xsd:sequence>
    </xsd:complexType>
  </xsd:element>
</xsd:schema>

Notice the Graph page of the XML schema editor, as shown in Figure 8-25 on 
page 370. Expand the boxes by clicking the plus icon (+).
 Chapter 8. Develop Java database applications 369



Figure 8-25   XML Schema Editor - Customer table graph

Study the Outline view as well. It shows the structure of the XML schema file. If 
you want, you can make changes to the XML file and generate a new DDL file by 
selecting Generate → DDL from the context menu.

8.6  UML visualization
You can create database objects including databases using either the wizards or 
UML visualization. In this chapter up until now we described how to create 
Tables using the wizard. In this section we look at creating database objects 
using visualization models. Rational Application Developer provides the ability to 
create class diagrams, IE diagrams and IDEFIX diagrams to support the design 
and development of database objects. 

8.6.1  Class diagrams
To demonstrate Rational Application Developer capabilities we will create a 
database (BankDBUML), a schema (ITSOUML) and three tables (Customer, 
Accounts_Customer) using the UML visualization model. 

Create a class diagram
To create a class diagram, do the following:

1. Select the BankDB project. 
370 Rational Application Developer V6 Programming Guide



2. Create a new folder named diagrams if one does not already exist. 

3. Select the diagrams folder.

4. Right-click and select New → Class Diagram from the context menu. 

5. When the Create Class Diagram dialog appears, enter BankDBClassDiagram 
for the File Name and click Finish. 

A new class diagram is created and is opened in the class diagram editor, as 
shown in Figure 8-26. The Database Drawer in the palette contains all the 
database objects that you can create using the class diagram model.

Figure 8-26   UML Visualization - Class diagram

Create a database
To create a database, do the following:

1. Click the database element in the Database Drawer in the palette and click 
anywhere on the class diagram editor. 

2. When the Database Definition dialog appears, enter BankDBUML for the 
database name. Ensure that Cloudscape V5.1 is selected for Database 
Vendor Type. Click Finish. At this point the database is created in the 
workspace under the db directory of the BankDB project.
 Chapter 8. Develop Java database applications 371



Figure 8-27   UML visualization - Database definition

Create a schema
To create a schema, do the following:

1. Click the Schema element in the Database Drawer in the palette.

2. Click the BankDBUML to create the schema within the BankDBUML 
database. Enter ITSOUML for the Schema Name, as shown in Figure 8-28 on 
page 373.

3. Click Finish.
372 Rational Application Developer V6 Programming Guide



Figure 8-28   UML visualization - Schema Definition

Create two tables (Account, Accounts_Customer)
Create two tables (Account and Accounts_Customer) by clicking the table 
element in the Database Drawer in the palette and clicking the ITSOUML 
schema to make sure that the tables are created under the ITSOUML schema. 
Follow the directions in 8.5.4, “Create a table” on page 358, to create the two 
tables. 

The resulting class diagram is shown in Figure 8-29 on page 374.
 Chapter 8. Develop Java database applications 373



Figure 8-29   UML visualization - Class diagram

At this point the database objects are created in the workspace. If you want to 
deploy the objects to a database, follow the instructions in 8.5.6, “Deploy DDL 
from the workspace to a database” on page 362, to deploy the database objects 
to a local or remote database.

8.6.2  Information engineering (IE) diagrams
Using the ID diagram you can visualize tables, columns, primary keys, and 
foreign keys. The IE diagram is useful for engineers who are comfortable with the 
IE notation. These diagrams are stored as .ifx files and can be opened from the 
Navigator view. You can drag and drop existing database objects from the DB 
374 Rational Application Developer V6 Programming Guide



Explorer or Data Definition view into the IE diagram. Figure 8-30 shows the IE 
diagram.

Figure 8-30   UML visualization - IE diagram

8.6.3  IDEF1X (Integrated Definition Extended) diagrams
With Rational Application Developer supports IDEF1X models, you can visualize 
existing databases, schemas, and other database objects to an IDEF1X model, 
and you can create tables, columns, and primary and foreign keys directly in an 
IDEF1X model. IDEF1X models are stored as .ifx files and can be opened and 
modified from the Navigator view.
 Chapter 8. Develop Java database applications 375



8.7  Create SQL statements
There are two alternative methods of creating an SQL statement in Rational 
Application Developer:

� SQL Statement Wizard - Guided wizard resulting in SQL statements
� SQL Query Builder - Provides an editor for an advanced user

Both tools can be used to build an SQL statement. After using the SQL 
Statement Wizard, you can use the SQL Query Builder to updates the SQL.

8.7.1  Using the SQL Statement wizard
In this section we demonstrate how create an SQL statement using the SQL 
Statement Wizard.

To create an SQL statement using the SQL Statement Wizard, do the following:

1. Create an sql folder in which to store the scripts.

a. Select the BankDB project in the Navigator view. 

b. Right-click sand elect New → Folder.

c. When the New Folder dialog appears, enter sql as the folder name and 
then click Finish.

2. Select the BankDB project in the Navigator view.

3. Right-click and select File → New → Other.

4. When the Select a Wizard dialog appears, select Data → SQL Statement, 
and then click Next.

5. When the Specify SQL Statement Information dialog appears, we entered the 
following, as seen in Figure 8-31 on page 377, and clicked Next:

– SQL statement: Select SELECT (default). 

How would you like to create your SQL statement? Select Be guided 
through creating an SQL statement (default).

– Uncheck Create a new database connection.

Note: This section requires that you have already created the BANK database 
and tables, as well as populated the sample data. See 8.2, “Preparing for the 
sample” on page 337, for details.
376 Rational Application Developer V6 Programming Guide



Figure 8-31   SQL Statement wizard - Specify SQL Statement Information

6. When the Choose and Existing Database Model dialog appears, we clicked 
Browse, selected BankDB → db → BANK, and the clicked OK. Click Next.

7. When the Database and Statement Location dialog appears, we entered 
Select1 in the SQL statement name field and then clicked Next.

Select tables and columns
Complete the following steps to add tables and columns from the SQL Statement 
Wizard - Construct an SQL Statement dialog.

1. Select the tables to include in the SQL statement.

a. Click the Tables tab.

b. Click the > button from the list of available tables to add to the list of 
selected tables. 

c. When done click Next.

In our example, we added the following tables, as seen in Figure 8-32 on 
page 378:

– ITSO.ACCOUNT
– ITSO.ACCOUNTS_CUSTOMERS
– ITSO.CUSTOMER
 Chapter 8. Develop Java database applications 377



Figure 8-32   SQL Statement wizard - Construct an SQL Statement - Table selection

2. Select the columns to include in SQL statement.

a. Click the Columns tab.

b. Expand the desired table and select the desired columns by clicking the > 
button to add columns from the Available Columns list to the Selected 
Columns list. Order the output columns using the Move Up and Move 
Down buttons. When done click Next.

In our example, we selected the columns listed in Table 8-2. 

Table 8-2   Selected columns for each table

Table Columns

ITSO.CUSTOMER TITLE, FIRSTNAME, LASTNAME, SSN

ITSO.ACCOUNT ID, BALANCE
378 Rational Application Developer V6 Programming Guide



Figure 8-33   SQL Statement wizard - Construct an SQL Statement - Choose Columns

Define table joins
Complete the following steps to add tables and columns from the SQL Statement 
Wizard - Construct an SQL Statement dialog.

1. Define the columns to join between the tables.

This is done by selecting the column from one table and dragging it to the 
corresponding column of the other table.

In our example, we did the following, as seen in Figure 8-34 on page 380, and 
then clicked Next:

a. Click the Joins tab.

b. We linked ITSO.CUSTOMER.SSN to 
ITSO.ACCOUNTS_CUSTOMERS.SSN and ITSO.ACCOUNT.ID to 
 Chapter 8. Develop Java database applications 379



ITSO.ACCOUNTS_CUSTOMER.ID. When the joins are complete, 
connection symbols are displayed, as shown in Figure 8-34.

Figure 8-34   SQL Statement wizard - Construct an SQL Statement - Create joins

Define the conditions for the WHERE clause
The Conditions tab is used to define the restrictions on the SELECT statement. 
Each condition is added to the WHERE clause, as shown in Figure 8-35 on 
page 381.

1. Define the conditions for the WHERE clause.

Tip: You can rearrange the tables by dragging them on the pane. You can 
enlarge a table by dragging the sides. You can also select the columns in this 
dialog step, or make changes to the selection from the previous step.
380 Rational Application Developer V6 Programming Guide



Enter the appropriate values in the Column, Operator, Value, and And/Or 
fields of the SQL Statement wizard to define the conditions of the WHERE 
clause. Enter the value by typing in the field. When done click Next.

In our example, we did the following, as seen in Figure 8-35:

a. Click the Conditions tab.

b. Click in the cell for Column and then selected CUSTOMER.FIRSTNAME.

c. Click in the cell for Operator and then selected LIKE.

d. Click in the cell for Value and select firstNameVariable (variable defined 
in next section).

Figure 8-35   SQL Statement wizard - Construct an SQL Statement - Create conditions

Tip: If you have to enter more than one condition, you must put in the AND or 
the OR element before the next row in the table becomes editable.
 Chapter 8. Develop Java database applications 381



Use a variable
The host variable can be used in an SQL statement to represent a value that will 
be substituted at execution time. For example, you might not want to hardcode 
the first name if it contains the letter j, but instead leave it as a host variable. Do 
not enter '%j%' in the Value column, rather enter a variable as 
:firstNameVariable.

Groups and order
On the next two tabs you can enter information regarding grouping (GROUP BY) 
and sorting of rows (ORDER BY).

View SQL statement
Once you have finished building the statement you can click Next to see the 
generated SQL statement, as shown in Figure 8-36.

Figure 8-36   SQL Statement wizard - Construct an SQL Statement - Generated SQL

Parse the statement
If you want, you can edit the statement directly. When you are finished editing, 
you can click Parse to validate that the SQL statement is correct. 
382 Rational Application Developer V6 Programming Guide



Execute an SQL statement
To execute the SQL statement, do the following:

1. Click Execute.

2. Click Execute again in the next window.

3. When prompted for the host variable, enter ‘J%’ (as seen in Figure 8-37), and 
click Finish.

Figure 8-37   SQL Statement wizard - Execute - Enter the host variable value

The statement is executed and the results are displayed, as shown in 
Figure 8-38 on page 384.
 Chapter 8. Develop Java database applications 383



Figure 8-38   SQL Statement wizard - Construct an SQL Statement - SQL execution

4. Select Close to close the Execute SQL Statement window.

5. Select Finish to save the SQL Statement.

6. The SQL statement is opened in the SQL Query Builder editor. Close the 
editor.

The SQL statement appears as BANK_Select1.sqx in the Navigator view, and as 
Select1 in the Data Definition view.

8.7.2  Using the SQL Query Builder
The other way of creating SQL statements in Rational Application Developer is to 
use the SQL Query Builder. This tool supports all the options of the SQL 
Statement Wizard, with the addition of WITH and FULLSELECT. 

In this section we describe how to use the SQL Query Builder to build a similar 
SELECT statement as we did using the SQL Statement Wizard. We develop a 
SELECT statement against the BANK database. We would like to select all 
customers and their account balances whose first name is a variable.

To start the SQL Query Builder, do the following:

1. Expand the BankDB → db → Statements folder in the Data Definition view.

2. Right-click and select New → Select Statement.

3. When the New Select Statement dialog appears, enter the name of the 
statement to be displayed (for example, SelectCustomers) and click OK.

The SQL Query Builder editor is displayed as shown in Figure 8-39 on 
page 385.
384 Rational Application Developer V6 Programming Guide



Figure 8-39   SQL Query Builder - Select statement

Define tables and columns
To define tables and columns:

1. Add the tables to the SQL statement. 

To add them, simply drag them from the Navigator or Data Definition view 
and drop them in the middle pane of the SQL Query Builder screen.

In our example, we added the ITSO.CUSTOMER, ITSO.ACCOUNT, and 
ITSO.ACCOUNTS_CUSTOMER tables. 

The result is shown in Figure 8-40 on page 386. As you can see, the tables 
have been added to the SELECT statement in the top pane.
 Chapter 8. Develop Java database applications 385



Figure 8-40   SQL Query Builder - Select tables

2. Add columns to the SQL statement.

To select a column, check the box next to its name. For both the CUSTOMER 
and ACCOUNT tables, select all columns. Do not select any columns of the 
ACCOUNTS_CUSTOMER table (they are duplicates anyway). As you select 
the columns, the SELECT statement is updated in the top pane and the 
columns are added in the bottom pane.

Define table joins
Define the table joins. To define the tables to join, do the following:

1. Select the CUSTOMER.SSN column in the CUSTOMER table and drag it 
across to the corresponding column in the ACCOUNTS_CUSTOMER table.

2. Select the ID column in the ACCOUNTS_CUSTOMER table and drag it 
across to the corresponding column in the ACCOUNT table. 

A link symbol is shown between the tables, and the SELECT statement is 
updated with the corresponding WHERE clauses, as shown in Figure 8-41 on 
page 387.
386 Rational Application Developer V6 Programming Guide



Figure 8-41   SQL Query Builder - Creating joins

Define conditions
Define the conditions for the SQL statement. 

1. Add a condition that specifies the CUSTOMER.FIRSTNAME LIKE 
:firstNameVariable clause. 

2. Use the Conditions tab in the bottom pane to add the conditions using the 
drop-down menus, or type them directly into the SQL statement, and the 
Conditions tab will be updated, as shown in Figure 8-42.

Figure 8-42   SQL Query Builder - Creating conditions

3. The complete statement is created and the workspace is as shown in 
Figure 8-43 on page 388. Save the statement. 
 Chapter 8. Develop Java database applications 387



4. You are prompted for the host variables; just click Cancel to dismiss the 
dialog.

Figure 8-43   SQL Query Builder - SQL select statement

Execute the SQL statement
To execute the SQL statement:

1. To test the statement, select it in the Statements folder and select Execute 
from the context menu or select SQL → Execute in the menu bar. 

2. Enter ‘J%’ as the value for the :firstNameVariable variable in the Host 
Variable Values window.

3. Click Finish to execute the query. 

JOIN

CONDITION
388 Rational Application Developer V6 Programming Guide



8.8  Access a database from a Java application
This section demonstrates by example how to access a database from a Java 
application.

To demonstrate how to access a database from a Java application, we will 
create a simple Java class named CustomerList, which will perform an SQL 
query to the BANK database and display a listing of customers. We will leverage 
the Java code created in Chapter 7, “Develop Java applications” on page 221, as 
a starting point for this sample. Our sample will describe how to access the 
database using the DriverManager and data source.

This section is organized as follows:

� Prepare for the sample.
� Access the database using the DriverManager.
� Access using a data source.

8.8.1  Prepare for the sample
This section describes the steps required to prepare for the sample to access a 
database from a Java application.

1. If you have not already done so, import the BankJava.zip project interchange 
file, which is described in detail in Chapter 7, “Develop Java applications” on 
page 221.

For details on importing the BankJava.zip project interchange file refer to 
Appendix B, “Additional material” on page 1395.

2. If you have not already done so, create the BANK database.

For details refer to 8.2.2, “Set up the BANK sample database” on page 338.

3. Add the JDBC driver for Cloudscape to the BankJava project.

a. Select the BankJava project in the Package Explorer view of the Java 
perspective.

Note: For information on accessing databases from Web and J2EE 
applications, refer to the following chapters:

� Chapter 11, “Develop Web applications using JSPs and servlets” on 
page 499

� Chapter 13, “Develop Web applications using JSF and SDO” on page 673

� Chapter 15, “Develop Web applications using EJBs” on page 827

� Chapter 16, “Develop J2EE application clients” on page 925
 Chapter 8. Develop Java database applications 389



b. Right-click and select Properties → Java Build Path.

c. Click the Libraries tab at the top of the dialog and click Add Variable....

A further dialog appears, allowing you to select from a list of predefined 
variables. By default, there is no variable defined for the JAR file we need, 
so we will have to create one.

d. Click Configure Variables... and in the resulting dialog click New....

e. Enter CLOUDSCAPE_DRIVER_JAR in the Name field and click File....

f. Find the appropriate JAR file, which is in 
<rad_home>\runtimes\base_v6\cloudscape\lib and is called db2j.jar.

g. Click Open, OK, and OK and you will be back at the New Variable 
Classpath Entry dialog.

h. Select the CLOUDSCAPE_DRIVER_JAR variable you just created and 
click OK.

4. Import Java source into itso.bank.client.

a. Select the itso.bank.client package.

b. Right-click and select Import → File system and then click Next.

c. When the File System dialog appears, enter c:\6449code\database in the 
From directory field, and check BankClientCustomerList.java.

d. Click Finish.

5. Run the BankClientCustomerList.

8.8.2  Access the database using the DriverManager
This section describes how to use the driver manager class when using JDBC 
1.x to manage the connection to the database.

This section is organized as follows:

� Load JDBC driver and connect to the database.
� JDBC drivers.
� Execute SQL statements.

Load JDBC driver and connect to the database
The first task is to load the JDBC driver. The Class.forName() call loads the 
JDBC driver, as seen in Example 8-4 on page 391 (JDBC driver for Cloudscape). 

Note: The BankClientCustomerList.java contains a completed sample to 
access the database using the DriverManager approach.
390 Rational Application Developer V6 Programming Guide



The JDBC driver name is dependent on which database type (Cloudscape, DB2 
UDB, Oracle, etc.) you are connecting to.

Example 8-4   Load JDBC driver and connect to the database

protected static Connection connect() {
Connection con = null;
try {

Class.forName("com.ibm.db2j.jdbc.DB2jDriver");
con = DriverManager.getConnection(

"jdbc:db2j:C:/databases/BANK"); 
} catch(Exception e) {...}
return con;

}

After loading the JDBC driver, we need to establish a connection to the 
database. The class that handles the connection is called the DriverManager. 

The URL string that is passed in to the getConnection method is dependent on 
which Database Manager you are using. In the example listed in Example 8-4, 
we are connecting to a Cloudscape database called BANK. 

In this example we are not passing a user ID and password, but if that was 
required, they would be the second and third parameters of the getConnection 
call (needed for DB2 UDB and Oracle).

JDBC drivers
In this section we discuss the JDBC drivers provided with Cloudscape and DB2 
UDB. If you are using a database other than Cloudscape and DB2 UDB, refer to 
the Rational Application Developer online help and the documentation provided 
with the database for the driver class and client usage information.

Cloudscape JDBC driver
Cloudscape provides the com.ibm.db2j.jdbc.DB2jDriver JDBC driver. This is a 
JDBC type 4 driver for an embedded Cloudscape V5.1 database that clients use 
to connect to the database that runs within the JVM (embedded). 

The database URL has the format:

jdbc:db2j:database

If the database is within the Cloudscape system directory, no path information is 
needed; if the database is external to the system directory, as is the case in our 

Note: You do not have to create an instance of the driver or register it. This is 
done automatically for you by the DriverManager class.
 Chapter 8. Develop Java database applications 391



example, you will need to specify the entire path (or relative path if part of the 
path is in the classpath) as used in the getConnection call.

DB2 UDB JDBC drivers
DB2 UDB includes two JDBC drivers:

� COM.ibm.db2.jdbc.app.DB2Driver

This is a JDBC type 2 driver that uses a DB2 client installed on the machine 
where the application runs. You would use this driver when accessing a local 
database or a remote database through a local DB2 client. 

The database URL has the format: 

jdbc:db2:databasename

� COM.ibm.db2.jdbc.net.DB2Driver

This is a JDBC type 3 driver. It is a Java driver that is designed to enable Java 
applets access to DB2 data sources. Using this driver your application will talk 
to another machine where the DB2 client is installed. 

The database URL has the format:

jdbc:db2://hostname:port/databasename

The standard port of the DB2 JDBC applet server service is 6789. This DB2 
service must be started in your machine. 

To connect to a database you have to supply user ID and password:

con = DriverManager.getConnection("jdbc:db2://localhost:6789/BANK",
"db2admin","password");

The classes required when connecting to a DB2 database from Java are 
found in .\sqllib\java\db2java.zip. You would make this available in Rational 
Application Developer by creating a classpath variable for it and adding that 
to the project build path.

Execute SQL statements
Once you have loaded the JDBC driver and established a connection, you are 
now ready to perform operations on the database. Example 8-5 includes a basic 
SQL statement that will retrieve all customers from the CUSTOMER table.

Example 8-5   Execute SQL statement

stmt = con.createStatement();
ResultSet rs = stmt.executeQuery("SELECT * FROM ITSO.CUSTOMER");

You create a statement using the connection obtained from the DriverManager 
and then you execute the query passing the select statement. The result set from 
the query is returned as a ResultSet object.
392 Rational Application Developer V6 Programming Guide



Next, you have to process the result set from the query. The ResultSet class 
provides a number of get methods for various data types, as shown in 
Example 8-6.

Example 8-6   Process the result set from the SQL query

while (rs.next()) {
String title = rs.getString("title");
String firstName = rs.getString("firstName");
String lastName = rs.getString("lastName");
String ssn = rs.getString("SSN");
System.out.println(title + " " + firstName + " " + lastName + " " + ssn);

}

Finally, JDBC objects must be closed to release the resources and keep the 
database in a healthy state, as shown in Example 8-7. The best place is a finally 
clause that is executed even in the case of exceptions.

Example 8-7   Release the JDBC resources

} finally {
try { if (rs != null) rs.close(); } 

catch (SQLException e) {e.printStackTrace();}
try { if (stmt != null) stmt.close(); } 

catch (SQLException e) {e.printStackTrace();}
try { if (con  != null) con.close(); } 

catch (SQLException e) {e.printStackTrace();}
}

8.8.3  Access using a data source
JDBC access using a data source is not well suited for stand-alone applications. 
It is, however, the preferred way to access databases from Web applications 
where multiple clients use the same servlet for database access.

When using a data source with WebSphere Application Server, you configure the 
data source in the Administration Console. For information on how to configure a 
data source, refer to 23.4.1, “Configure the data source in WebSphere 
Application Server” on page 1225.

Note: The following chapters include examples for using the data source 
approach:

� Chapter 11, “Develop Web applications using JSPs and servlets” on 
page 499

� Chapter 15, “Develop Web applications using EJBs” on page 827
 Chapter 8. Develop Java database applications 393



Example 8-8 shows the basic code sequence to get a connection through a data 
source in the Java application.

Example 8-8   Get a connection through a data source

try {
javax.naming.InitialContext ctx = new javax.naming.InitialContext();
javax.sql.DataSource ds = (javax.sql.DataSource)

ctx.lookup("jdbc/bankDS");
con = ds.getConnection();

} catch (javax.naming.NamingException e) {
System.err.println("Naming-Exception: " + e.getMessage());

} catch (java.sql.SQLException e) {
System.err.println("SQL-Exception: " + e.getMessage());

}

The data source is retrieved using a the lookup method of the InitialContext. The 
data source must be registered in the JNDI server. In our example we use a 
JNDI name of jdbc/bankDS, which points to a connection pool that in turn 
contains connections to the BankDB database. Once a connection is obtained, 
the rest of the code is the same.

Retrieving the data source is expensive. Good coding practice for Web 
applications is to retrieve the data source only once in the init method of a 
servlet, and to get and release a connection in the doGet or doPost method for 
each client request.

8.9  Java stored procedures
A stored procedure is a block of procedural constructs and embedded SQL 
statements that are stored in a database and can be called by name. Stored 
procedures allow an application program to be run in two parts, one on the client 
and the other on the server. One client-server call can produce several accesses 
to the database. This is good for performance because the traffic between the 
client and the server is minimized.

Stored procedures can be written as SQL procedures, or as C, COBOL, PL/I, or 
Java programs. In this section we look at how to write and use Java stored 
procedures.

Note: IBM Rational Application Developer V6.0 only supports creating SQL 
Stored Procedures, Java SQL Stored Procedures, SQL user-defined 
functions, and WebSphere MQ user-defined functions when the database 
type is IBM DB2 UDB. 
394 Rational Application Developer V6 Programming Guide



This section is organized as follows:

� Prepare for the sample.
� Create a Java stored procedure.
� Build a stored procedure (deploy to database).
� Java DriverManager access to a Java stored procedure.
� JavaBean access to Java stored procedure.

8.9.1  Prepare for the sample
Complete the following steps to prepare the environment for the Java store 
procedures example:

1. Install DB2 UDB.
2. Create a DB2 UDB database.
3. Create a connection.
4. Create the database tables.
5. Populate the database tables.
6. Create a Web Project.
7. Copy the database to the Web Project.

Install DB2 UDB
Java stored procedures require that IBM DB2 Universal Database be installed.

For details on installing DB2 UDB refer to “IBM DB2 Universal Database V8.2 
installation” on page 1387.

Create a DB2 UDB database
Create a DB2 UDB database named BANK.

For details refer to “Create DB2 UDB database via a DB2 command window” on 
page 346.

Create a connection
Create a connection to the BANK database from within Rational Application 
Developer. Figure 8-44 on page 396 displays the settings we entered to create 
the DB2 Bank Connection.

For details refer to “Create a database connection” on page 347. When using 
DB2 UDB you will need to specify the user ID and password. 
 Chapter 8. Develop Java database applications 395



Figure 8-44   DB2 UDB database connection

Create the database tables
Create the BANK database tables.

For details refer to “Create DB2 UDB database tables via a DB2 command 
window” on page 351.

Populate the database tables
Populate the BANK database tables with sample data.

For details refer to “Populate the tables via a DB2 UDB command window” on 
page 354.
396 Rational Application Developer V6 Programming Guide



Create a Web Project
Create a new Web Project named BankDBWeb for the Java stored procedure 
examples.

For details on creating a Web Project refer to 11.3.2, “Create a Web Project” on 
page 517.

Copy the database to the Web Project
To copy the database definition to the Web Project, do the following:

1. Open the Data perspective and change to the Database Explorer view.

2. Create a folder named databases in the /BankDBWeb/WebContent/WEB-INF 
directory.

3. Right-click BANK and select Copy to Project.

4. When the Copy to Project window appears, we entered 
/BankDBWeb/WebContent/WEB-INF/databases and then clicked OK.

5. Click Finish.

Figure 8-45 on page 397 shows the Data Definition view in the Data 
perspective after the DB2 UDB Bank database has been copied to the 
BankDBWeb Project.

Figure 8-45   Data Definition view - Copy the BANK DB2 database to BankDBWeb
 Chapter 8. Develop Java database applications 397



8.9.2  Create a Java stored procedure
In this section we demonstrate how create a simple stored procedure that takes 
a customer SSN and returns all customer information. Later we create a Web 
application that uses the stored procedure.

Enable Java stored procedures
Prior to using Java stored procedures, the Workbench capability must be 
enabled. 

1. Select Window → Preferences from the main menu. 

2. Select Workbench → Capabilities.

3. Check the Database Developer check box to enable all database 
capabilities. 

4. Check Stored Procedure and User-Defined Function Development, and 
click OK.

Using the Stored Procedure Wizard
To create a stored procedure using the Stored Procedure Wizard, do the 
following:

1. Open the Data Definition view in the Data perspective.

2. Select BankDBWeb → WebContent → WEB-INF → databases → 
BANK → ITSO.

3. Right-click and select New → Java Stored Procedure.

Alternatively, select File → New → Other → Data → Java Stored 
Procedure.

4. When the Specify name for stored procedure dialog appears, we entered the 
following (as seen in Figure 8-48 on page 401) and then click Next:

– Name: getCustomer
– Build: Leave unchecked, as we will build later.
398 Rational Application Developer V6 Programming Guide



Figure 8-46   Java stored procedure - Specify name for stored procedure

5. When the Create new SQL statements dialog appears, do one of the 
following (as seen in Figure 8-48 on page 401) to update the SQL. When 
done click Next.

– SQL Statement Wizard.

We recommended that you use the SQL Statement Wizard by clicking 
SQL Assist. Refer to 8.7.1, “Using the SQL Statement wizard” on 
page 376, for more information on using SQL Assist. The desired SQL for 
the example is displayed in Example 8-9. Or do the following.

– Manually enter SQL.

You can enter the statement manually by typing the statement as seen in 
Example 8-9. This statement gets all fields from the customer table given 
a customer ID.
 Chapter 8. Develop Java database applications 399



Example 8-9   getCustomer SQL

SELECT 
ITSO.CUSTOMER.TITLE, 

   ITSO.CUSTOMER.FIRSTNAME, 
   ITSO.CUSTOMER.LASTNAME, 
   ITSO.CUSTOMER.SSN
FROM
   ITSO.CUSTOMER
WHERE
   ITSO.CUSTOMER.SSN = :ssn

Figure 8-47   Java stored procedure - SQL Statements

Back in the wizard, the new SQL statement is shown in the statement text 
box. In the remainder of this page of the wizard, you can add code fragments 
that you wish to include in the generated stored procedure.

6. When the Specify parameters dialog appears, specify the parameters for the 
stored procedure (as seen in Figure 8-48 on page 401) and then click Next.
400 Rational Application Developer V6 Programming Guide



– If you used SQL Assist to create the SQL statement, the parameter is 
already filled in.

– If you typed in the SQL statement, you have to create the parameter 
manually by clicking Add and specifying In for the mode field and ssn for 
the name field, and VARCHAR for the SQL Type field.

Figure 8-48   Java stored procedure - Specify parameters for the stored procedure

7. When the Specify options dialog appears, we entered the following (as seen 
in Figure 8-49 on page 402) and then clicked Next:

– Jar ID: Accept default (value contains current time stamp).
– Java package: itso.bank.example.db
– We accepted the default values in the remaining fields. 
 Chapter 8. Develop Java database applications 401



Figure 8-49   Java stored procedure - Specify options

8. When the Code Fragments dialog appears, customize the generated code.

This page provides a means to customize the generated code by specifying 
header, import, data, and method code fragment file that will be inserted at 
the appropriate place in the generated code (see Figure 8-50 on page 403).

In our example, we accepted the default generated code and clicked Next.
402 Rational Application Developer V6 Programming Guide



Figure 8-50   Java stored procedure - Code fragments

9. When the Summary of the stored procedure dialog is displayed, as shown in 
Figure 8-51 on page 404, review the settings and then click Finish.
 Chapter 8. Develop Java database applications 403



Figure 8-51   Summary of the new stored procedure before it is created

10.The generated Java stored procedure code is shown in Example 8-10. You 
can double-click the getCustomer Java stored procedure to open the Java 
editor.

The getCustomer Java stored procedure can be found in the BankDBWeb → 
WebContent → WEB-INF → databases → BANK → ITSO → Stored 
Procedures folder.

Example 8-10   getCustomer Java stored procedure

/**
 * JDBC Stored Procedure ITSO.getCustomer 
 * @param ssn  
 */
package itso.bank.example.db;

import java.sql.*;                   // JDBC classes
404 Rational Application Developer V6 Programming Guide



public class GetCustomer
{
    public static void getCustomer ( String ssn,
                                     ResultSet[] rs1 ) throws SQLException, 
Exception
    {
        // Get connection to the database
        Connection con = 
DriverManager.getConnection("jdbc:default:connection");
        PreparedStatement stmt = null;
        boolean bFlag;
        String sql;

        sql = "SELECT "
            + "    ITSO.CUSTOMER.TITLE, "
            + "    ITSO.CUSTOMER.FIRSTNAME, "
            + "    ITSO.CUSTOMER.LASTNAME, "
            + "    ITSO.CUSTOMER.SSN"
            + " FROM"
            + "    ITSO.CUSTOMER"
            + " WHERE"
            + "    ITSO.CUSTOMER.SSN =  ?";
        stmt = con.prepareStatement( sql );
        stmt.setString( 1, ssn );
        bFlag = stmt.execute();
        rs1[0] = stmt.getResultSet();
    }
}

8.9.3  Build a stored procedure (deploy to database)
After a stored procedure is written locally, you must build it (deploy to database) 
on the database server. The build procedure uploads and compiles the Java 
stored procedure to the database server.

1. Expand BankDBWeb → WebContent → WEB-INF → databases → 
BANK → ITSO → Stored Procedures from the Data Definition view.

2. Select the getCustomer stored procedure.

3. Right-click and select Build from the context menu.

4. If you are prompted to create a new connection, select the Use Existing 
Connection check box, select the appropriate connection (for example, DB2 
Bank Connection) and click Finish.

Figure 8-52 on page 406 displays the DB Output view, which contains the 
result of the build. 
 Chapter 8. Develop Java database applications 405



Figure 8-52   Java stored procedure - DB Output view with build output of stored procedure

In Figure 8-52 we see that the build was successful. The GetCustomer class is 
compiled and placed into a JAR file, and the JAR file is installed in the target 
database.

Execute and test the stored procedure
IBM Rational Application Developer V6.0 provides a test facility for testing Java 
stored procedures.

1. Select the getCustomer stored procedure in the Data Definition view.

2. Right-click and select Run from the context menu. 

3. When the Run Settings dialog appears, enter a customer ssn (for example, 
111-11-1111) as seen in Figure 8-53 on page 407, and then click OK.

Tip: You can see stored procedures in the DB2 UDB database system from 
the DB2 Control Center.
406 Rational Application Developer V6 Programming Guide



Figure 8-53   Java stored procedure - Run Settings

The output of the Java stored procedure is shown in the DB Output view, as 
shown in Figure 8-54.

Figure 8-54   Java stored procedure - DB Output view from running the getCustomer stored procedure

We have now created a simple procedure that takes an input argument (the 
customer ssn) and returns the details about that customer from the database.

Tip: You can make changes to the stored procedure by selecting Properties 
from the context menu.
 Chapter 8. Develop Java database applications 407



8.9.4  Java DriverManager access to a Java stored procedure
Once you have loaded a stored procedure into the database, it can be accessed 
from an application via a DriverManager connection. Example 8-11 displays a 
code fragment illustrating how to call the Java stored procedure from an 
application.

Example 8-11   Code snippet from getCustomerMain.java on how to access a Java store procedure

public static void main(String[] args) throws SQLException {
String ssn = "111-11-1111";
if (args != null && args.length > 0) ssn = args[0];

GetCustomerMain custTest = new GetCustomerMain();

// connect to database
Connection con = custTest.getConnection();

// prepare statement that calls stored procedure
CallableStatement cs = con.prepareCall("{call ITSO.GetCustomer(?)} ");
cs.setString(1, ssn);

// execute
ResultSet rs = cs.executeQuery();

while (rs.next()) {
// get the data from the row
System.out.println("CUSTOMER SSN: " + rs.getString("ssn"));
System.out.println("TITLE:       " + rs.getString("title"));
System.out.println("FIRST NAME:  " + rs.getString("firstname"));
System.out.println("LAST NAME:   " + rs.getString("lastname"));

}
}

The question mark (?) is a place holder for a parameter. The second line sets 
111-11-1111 as the value for the parameter. Following that, the stored procedure 
is executed and the results are obtained from the result set.

We provide a main program called GetCustomerMain.java that you can import 
into the BankDBWeb Project.

1. Import GetCustomerMain.java into a new itso.bank.example.db package from 
the following directory of the ITSO sample code:

c:\6449code\database

2. Add the db2java.zip to the Java build path of the BankDBWeb Project. In our 
example, the db2java.zip was found in the <db2_home>\java directory.

3. Right-click GetCustomerMain.java and select Run → Java Application.
408 Rational Application Developer V6 Programming Guide



The Console output should look like Figure 8-55.

Figure 8-55   Console output from Java application accessing a stored procedure

8.9.5  JavaBean access to Java stored procedure
In this section we describe how to generate a JavaBean using a wizard provided 
by Rational Application Developer, and then use the JavaBean to access a Java 
stored procedure.

Generate a JavaBean to access the stored procedure
Rational Application Developer provides a wizard to generate a JavaBean that 
accesses a Java stored procedure.

To generate a JavaBean, do the following:

1. Open the Package Explorer view in the Java perspective.

2. Expand BankDBWeb → JavaSource.

3. Right-click and select New → Package.

4. When the New Package dialog appears, enter itso.bank.example.db.bean in 
the Name field and then click OK.

5. Select the getCustomer stored procedure in the Data Definition view.

6. Right-click and select Generate JavaBean from the context menu.

7. When the Java Class Specification dialog appears, we entered the following 
as seen in Figure 8-56 on page 410, and then click Next:

– Source Folder: Click Browse to locate the 
BankDBWeb/JavaSourceJavaSource folder.

Note: If you get a SQL Exception indicating no suitable driver was found, 
ensure that the db2java.zip file is in the Java Build Path.
 Chapter 8. Develop Java database applications 409



– Package: Click Browse to locate the itso.bank.example.db.bean package.

– Name: GetCustomerBean

– Select Stored procedure returns a result set. 

– Check Generate a helper class with methods to access each column 
in the result set.

Figure 8-56   Generate a JavaBean - Java class specification

8. When the Describe the result set dialog appears, select the 
ITSO.CUSTOMER table from the Tables tab, click > to move to the Selected 
Tables, and then click Next.

9. Click the Columns tab, select each of the columns (TITLE, FIRSTNAME, 
LASTNAME, SSN), click > to move to the Selected Columns (as seen in 
Figure 8-57 on page 411), and then click Next.
410 Rational Application Developer V6 Programming Guide



Figure 8-57   Generate a JavaBean - Describe the result set

10.When the Specify Runtime Database Connection Information dialog appears, 
we entered the following (as seen in Figure 8-58 on page 412), and then click 
Next:

– Select Use DriverManager connection.
– Driver name: COM.ibm.db2.jdbc.app.DB2Driver
– URL: jdbc:db2:BANK
– Select Inside the execute () method.
– User ID: <db2_admin>
– Password: <db2_admin_password>
 Chapter 8. Develop Java database applications 411



Figure 8-58   Generate a JavaBean - Database connection properties

11.When the Review the specification dialog appears, review the methods that 
generated (as seen in Figure 8-59 on page 413), and then click Finish.
412 Rational Application Developer V6 Programming Guide



Figure 8-59   Generate a JavaBean - Review the specification

The following two classes are generated:

� GetCustomerBeanRow

Provides access to one row of the result set.

� GetCustomerBean

Executes the stored procedure and provides a method to retrieve an array of 
GetCustomerBeanRow objects.

Using the JavaBean
The generated GetCustomerBean JavaBean can be used in a servlet or JSP to 
execute the stored procedure and access the result set.
 Chapter 8. Develop Java database applications 413



A simple JSP to execute the JavaBean is shown in Example 8-12 on page 414. 

Example 8-12   JSP used to execute the JavaBean with the Java stored procedure

<BODY>
<H1>JSP -> JavaBean -> Stored Procedure</H1>
<jsp:useBean id="getCustomer"

class="itso.bank.example.db.bean.GetCustomerBean"></jsp:useBean>

<% getCustomer.execute( new String(“111-11-1111”) ); %>

<% itso.bank.example.db.bean.GetCustomerBeanRow row = getCustomer.getRows()[0]; 
%>
<TABLE border="1">

<TR><TH align="left">TITLE</TH>
<TD><%= row.getCUSTOMER_TITLE() %></TD></TR>

<TR><TH align="left">FIRSTNAME</TH>
<TD><%= row.getCUSTOMER_FIRSTNAME() %></TD></TR>

<TR><TH align="left">LASTNAME</TH>
<TD><%= row.getCUSTOMER_LASTNAME() %></TD></TR>

......
</TABLE>
</BODY>

Import the RunGetCustomerBean.jsp provided in the following directory of the 
ITSO provided sample code:

c:\6449code\database\RunGetCustomerBean.jsp

The GetCustomerBean JavaBean is instantiated using a <useBean> tag. The 
stored procedure is executed and the first row of the result set is retrieved and 
displayed. Note that the customer ssn is passed as a constant, and no error 
checking is performed. In a real application the code would be more complex.

Note: Java stored procedures can also be executed through the jspsql tag 
library. For information, refer to the Rational Application Developer online help 
414 Rational Application Developer V6 Programming Guide



Chapter 9. Develop GUI applications

Rational Application Developer provides a Visual Editor for building Java 
graphical user interfaces (GUIs).

In this chapter we introduce the Visual Editor and develop a sample GUI, which 
interacts with back-end business logic. This GUI is runnable as a JavaBean and 
as a Java application.

The chapter is organized into the following sections:

� Introduction to the Visual Editor
� Prepare for the sample
� Launching the Visual Editor
� Visual Editor overview
� Work with the Visual Editor

9

Note: The sample code described in this chapter can be completed by 
following along in the procedures documented. Alternatively, you can import 
the sample code provided in the c:\6449code\gui\BankGUI.zip Project 
Interchange file. For details refer to Appendix B, “Additional material” on 
page 1395.
© Copyright IBM Corp. 2005. All rights reserved. 415



9.1  Introduction to the Visual Editor
The Visual Editor is used to design applications containing a graphical user 
interface (GUI) based on the JavaBeans component model. It supports visual 
construction using either the Abstract Window Toolkit (AWT), Swing, or the 
Standard Widget Toolkit (SWT).

More information concerning Swing and AWT can be found at:

http://java.sun.com/j2se/1.4.2/docs/guide/swing/
http://java.sun.com/j2se/1.4.2/docs/guide/awt/

The SWT is part of Eclipse. More information can be found at:

http://www.eclipse.org/platform/

The Visual Editor allows you to design GUIs visually. Using the Visual Editor, you 
can drag beans from different palettes, manipulate them in the Design view, and 
edit their properties in the Properties view. The Visual Editor also includes a 
Source view where you can both see and modify the generated Java code. You 
can make changes in either the Source view or in the Design view—the Visual 
Editor uses a process known as round-tripping to synchronize the two views.

9.2  Prepare for the sample
The sample GUI we develop in this chapter is shown in Figure 9-1 on page 417. 
It allows a user to search for a specific social security number and view full 
information about the customer and the accounts held by the customer. We use 
Swing components for our sample.
416 Rational Application Developer V6 Programming Guide

http://java.sun.com/j2se/1.4.2/docs/guide/awt/
http://www.eclipse.org/platform/
http://java.sun.com/j2se/1.4.2/docs/guide/swing/


Figure 9-1   Sample GUI

By creating the sample GUI, you should learn how to work with the Visual Editor 
and how to compose and add visual components, change their properties, add 
event handling code, and run the GUI.

To set up your development environment for the GUI sample application, you 
need to create the database that the GUI will use and import some database 
access classes.

9.2.1  Create the project for the sample
To create the BankGUI project for our sample with Cloudscape database 
support, do the following:

1. From the Workbench select File → New → Project....

2. From the first page of the New Project wizard, select Java Project and click 
Next >.

3. On the second page of the wizard, enter the following and then click Next:

– Project name: BankGUI
– Select Create project in workspace (default).
– Select Use project folder as root for sources and class files (default).

9.2.2  Add JDBC driver for Cloudscape to project
To add the Cloudscape JDBC driver to the project, do the following:

1. Select the project, right-click, and select Properties.
 Chapter 9. Develop GUI applications 417



2. Select Java Build Path. 

3. Add the JAR file that contains the JDBC drivers for the Cloudscape database 
we will be using in the sample.

a. Select the Libraries tab at the top of the dialog and click Add Variable....

A further dialog appears, allowing you to select from a list of predefined 
variables. By default, there is no variable defined for the JAR file we need, 
so we will have to create one.

b. Click Configure Variables..., and in the resulting dialog click New....

c. Enter CLOUDSCAPE_DRIVER_JAR in the Name field and click File....

d. Find the appropriate JAR file, which is in 
<rad_home>\runtimes\base_v6\cloudscape\lib and is called db2j.jar.

e. Click Open, OK, and OK and you will be back at the New Variable 
Classpath Entry dialog.

f. Select the CLOUDSCAPE_DRIVER_JAR variable you just created and 
click OK.

4. Click Finish on the New Java Project wizard.

5. Unless you have previously turned this feature off, Rational Application 
Developer will display a Confirm Perspective Switch dialog asking whether 
you want to switch to the Java perspective. Click Yes. If you have turned this 
feature off, you will need to open the Java perspective now.

We will not be using the J2EE perspective, so it can be closed now to save 
memory.

9.2.3  Set up the sample database
If the Cloudscape database has already been configured for another sample in 
this book, you can skip the next step and go straight to 9.2.4, “Import the model 
classes for the sample” on page 419.

This section provides instructions for deploying the BANK sample database and 
populating the database with sample data. For simplicity we use the built-in 
Cloudscape database.

Note: Creating a variable is a good practice for this kind of situation. The 
alternative is to select Add External JARs..., which adds the full path to the 
JAR file into the project build settings. A variable can be shared among all the 
projects in the workspace, saving time for JAR files that are likely to be 
needed elsewhere, like this one.
418 Rational Application Developer V6 Programming Guide



To create the database, create the connection, and create and populate the 
tables for the BANK sample from within Rational Application Developer, do the 
following:

1. Create the database and connection to the Cloudscape BANK database from 
within Rational Application Developer.

For details refer to “Create a database connection” on page 347.

2. Create the BANK database tables from within Rational Application Developer.

For details refer to “Create database tables via Rational Application 
Developer” on page 350.

3. Populate the BANK database tables with sample data from within Rational 
Application Developer.

For details refer to “Populate the tables within Rational Application Developer” 
on page 352.

9.2.4  Import the model classes for the sample
To import the model classes for the GUI sample, do the following:

1. Switch to the Java perspective.

2. Right-click BankGUI project and select Import....

3. Choose Zip file from the list (this also covers JAR files) and click Next.

4. Select model.jar from the c:\6449code\gui directory and click Finish.

9.3  Launching the Visual Editor
The Visual Editor allows you to create and modify GUIs by manipulating 
JavaBeans in a WYSIWYG (what you see is what you get) editor. There are two 
ways to launch the Visual Editor:

� Create a visual class.

Create a visual class in which case the class is automatically associated with 
the Visual Editor and opened with it.

� Open an existing class with the Visual Editor.

Create a Java class and open it with the Visual Editor.

In this example we create a visual class.
 Chapter 9. Develop GUI applications 419



9.3.1  Create a visual class
To create a visual class, do the following:

1. Select File → New → Other → Java → Visual Class, and then click Next.

Alternatively, right-click the project or package in which you wish to create the 
visual class and select New → Visual Class from the context menu.

2. When the Create a new Java class dialog appears, enter the following (as 
seen in Figure 9-2 on page 421):

– Source Folder: BankGUI (generate by default)

– Package: itso.bank.gui

– Name: BankDesktop

– Style: Expand Swing and select Frame. (Note that this enters the correct 
superclass, javax.swing.JFrame, into the Superclass field.)

– Interfaces: Click the Add... button next to the Interfaces box, type 
ActionListener (to select java.awt.event.ActionListener), and click OK.

– Which method stubs would you like to create? Check public static void 
main (String[] args) and Inherited abstract methods. Leave 
Constructors from superclass unchecked.

The dialog should look like Figure 9-2 on page 421.

3. Click Finish.
420 Rational Application Developer V6 Programming Guide



Figure 9-2   New Java Visual Class

The new BankDesktop GUI class opens the Visual Editor. This can take a 
while, since Rational Application Developer has to start a new JVM to display 
the GUI visually in the Display view. Figure 9-3 on page 422 shows the new 
class CustomerGUI in the Visual Editor.
 Chapter 9. Develop GUI applications 421



Figure 9-3   New Java Class open in the Visual Editor

9.3.2  Open an existing class with the Visual Editor
Alternatively, you can open any other Java class with the Visual Editor by using 
the context menu. Right-click the class and select Open With → Visual Editor 
(Figure 9-4 on page 423).

Note: The big dot in front of the Visual Editor menu item of the context menu 
indicates that the last editor used was the Visual Editor.
422 Rational Application Developer V6 Programming Guide



Figure 9-4   Open with context menu

9.4  Visual Editor overview
This section describes the overall layout of the Visual Editor and some of the 
options for changing the appearance and operation of the editor.

9.4.1  Visual Editor layout
The Visual Editor consists of two panes and a palette bar, shown in Figure 9-5 on 
page 424. In this screen the editor has been maximized within Rational 
Application Developer to make it easier to see (double-click the title bar to 
maximize or click the Maximize button at the top-right of the pane):

� A graphical canvas is located in the top section of the Visual Editor—this is 
the Design view, where you compose the GUI.

� The source file is displayed beneath it in the Source view, which has all the 
normal functionality of a Java source editor in Rational Application Developer.

� A palette of common JavaBeans is available on the right:

– The palette allows you to select JavaBeans for building your GUI.

– It is divided into drawers, which group components by type.

– The palette is initially just a gray bar along the right-hand side of the Visual 
Editor pane. Move the mouse pointer over this bar and the palette 
appears. (Figure 9-5 on page 424 shows the palette revealed.)

– The appearance of the palette can be modified as explained in 9.4.2, 
“Customizing the appearance of the Visual Editor” on page 424.
 Chapter 9. Develop GUI applications 423



Figure 9-5   Visual Editor layout

When the Visual Editor is opened, two additional views open automatically:

� The Java Beans view, in the bottom-left corner of the workspace, displays the 
structure of the JavaBeans used in your GUI in a tree view.

� The Properties view, at the bottom-right, lets you view and modify attribute 
settings.

9.4.2  Customizing the appearance of the Visual Editor
Various aspects of the Visual Editor can be customized.

Click the up arrow, located in the center-left of the separator between the Design 
and Source views (see Figure 9-5), to maximize the Source view or the down 
arrow, located to the right of the up arrow, to maximize the Design view.

The palette will automatically hide when not in use, but the appearance of the 
palette can be modified. Right-click the palette and use the context menu to 
change the Layout (options: Columns, List, Icons Only, Details) and choose 
whether large or small icons should be displayed. Select Settings... from this 
424 Rational Application Developer V6 Programming Guide



menu to open a preferences dialog for the palette. In addition to the options 
described above, you can also configure the behavior of the drawers and set the 
font for the palette; this dialog is shown in Figure 9-6. Drawers can be fixed open 
within the palette by clicking the pin icon next to the drawer name. The width of 
the palette can also be changed by dragging the left edge, and it can be docked 
on the left-hand side of the editor if preferred.

Figure 9-6   JavaBeans Palette Settings

To modify the preferences for the Visual Editor as a whole, select Window → 
Preferences and choose Java → Visual Editor. The preferences page is shown 
in Figure 9-7 on page 426.
 Chapter 9. Develop GUI applications 425



Figure 9-7   Visual Editor preferences

The options are as follows:

� Split or notebook view: The editor is shown as a split pane by default, but a 
tabbed view is also available.

� Views to open: By default, the Java Beans and Properties views will open; 
this can be turned off.

� Swing look and feel: The default appearance for Swing components can be 
set using this list. Check the desired look and feel.

� Code generation: Specify whether try/catch blocks and comments should be 
generated and set the interval for synchronization between the code and 
visual views of your GUI.

� Pattern styles: Define how the code generation will use visual beans as the 
GUI is displayed in the Design view.
426 Rational Application Developer V6 Programming Guide



The Visual Editor Bindings preferences page allows you to specify the package 
name for generated code that will bind component properties with other Java 
components. This is covered later in this chapter in 9.5.11, “Visual Editor binding” 
on page 438.

9.5  Work with the Visual Editor
We will continue to develop the BankDesktop GUI application to explore the main 
GUI design features of the Visual Editor.

9.5.1  Resize a JavaBean component
To resize a component, select it (either by clicking the component in the Design 
view or in the Java Beans view). Control handles appear around the component 
(small black squares at the corners and in the middles of the sides). Moving 
these will resize the component.

Use this approach to resize the JFrame. Notice that the generated initialize 
method is modified as a result of this change, so it will now look something like 
Figure 9-1 (the numbers in the setSize method call will probably be different).

Example 9-1   Resize JavaBean component

private void initialize() {
this.setSize(361, 265);
this.setContentPane(getJContentPane());
this.setTitle("JFrame");

}

This code will be generated automatically when the visual and code views of 
your GUI are synchronized (by default this takes place every second).

9.5.2  Code synchronization
We have seen that changes made in the Design view cause changes to the 
code. The reverse is also true. Change the setSize method call in the initialize 
method (400, 300), as seen in Figure 9-2.

Example 9-2   Resize JavaBean component

private void initialize() {
this.setSize(400, 300);
this.setContentPane(getJContentPane());
this.setTitle("JFrame");
 Chapter 9. Develop GUI applications 427



}

After you overtype the first number (the width), replacing it with 400, wait for 
around a second and you will see the visual representation of your GUI update 
even without saving the code changes. During the short interval before the views 
are synchronized, the status bar displays Out of synch instead of the usual In 
synch.

You can also disable synchronization by pressing the pause button in the toolbar. 
This is a good idea when you wish to make a number of large changes to the 
source without incurring the overhead of the round-tripping for synchronizing the 
code and visual representations.

9.5.3  Changing the properties of a component
We are going to use the GridBagLayout Swing layout manager to position the 
components in our GUI. By default, the content pane that is created within our 
JFrame uses BorderLayout.

1. Select the content pane (not frame) by clicking in the grey area within the 
frame. 

Alternatively, select the component from the list of objects in the Java Beans 
view (the name is jContentPane).

2. Select the Properties view and scroll down until you can see the layout 
property. It should have a value of BorderLayout.

3. Click the value to select it, then click it again to display a list of the available 
values.

4. Select GridBagLayout from the list.

5. Select the JFrame title bar. Change the title of the JFrame by clicking the title 
value (JFrame) and change it to Bank Desktop.

6. Press Ctrl+S to save.

9.5.4  Add JavaBeans to a visual class
Now we need to add the various GUI components (or JavaBeans) to our GUI.

Tip: Once the content pane is selected, if you accidentally press Delete the 
content pane will be deleted. To add it back, right-click the frame and 
select Create Content Pane.
428 Rational Application Developer V6 Programming Guide



1. Move the cursor over the palette to display it (or click the small left arrow 
Show Palette button at the top of the palette bar if hidden).

2. Open the Swing components drawer.

3. Click the JLabel button and move the mouse pointer over to the content 
pane.

The mouse pointer will show a set of coordinates (0,0) to indicate which row 
and column within the GridBagLayout the component will be placed (see 
Figure 9-8).

4. Click in the content pane and the JLabel will appear in the center of the pane.

Figure 9-8   Positioning Swing components

5. Select JTextField from the palette and drop it to the right of the JLabel.
 Chapter 9. Develop GUI applications 429



When the mouse pointer is in the correct position the coordinates should be 
(1,0)—indicating column 1, row 0.

6. Add a JButton to the right of the JTextField at (2,0). A yellow bar will appear in 
the correct position when you have the mouse pointer placed correctly.

7. Add three additional JLabels below the first one at (0,1), (0,2), and (0,3).

8. Add JTextFields at (1,1) and (1,2)—to the right of the first two new JLabels, 
and a JList at (1,3).

The interface should now appear as shown in Figure 9-9.

Figure 9-9   Basic GUI layout

At the moment we have an unused space at the bottom-right corner of our 
GUI. We need to change the width of some of the other components to fill this 
space.
430 Rational Application Developer V6 Programming Guide



9. Select the JTextField at (1,1) (look at constraint property to see the x and y 
values in the Property view) and drag the green control handle to the right so 
that the field spans two columns, as shown in Figure 9-10.

10.Repeat this process with the JTextField at (1,2) and the JList at (1,3).

The empty space in the GUI should now be filled up.

Figure 9-10   Resizing components within the layout

11.Click the top JLabel to select it, and then click it again to make the text 
editable. Change it to Search SSN. 

12.Change the other JLabel text entries in the same way to Customer Name, 
Social Security, and Accounts.

13.Add some text to the JButton in the same way. Click once to select, then a 
second time to edit the text. Enter Lookup as the name of the JButton.
 Chapter 9. Develop GUI applications 431



At this stage the GUI should look like Figure 9-11.

Figure 9-11   Changed text labels

9.5.5  Work with the Properties view
It would be better if the JLabels were all lined up along one edge. We are going 
to line them all up along their right edges using the properties view.

1. Select the Search SSN JLabel and in the Properties view find the constraint 
property.

2. Expand the property and change the anchor value to EAST.

Figure 9-12 on page 433 shows this.
432 Rational Application Developer V6 Programming Guide



Figure 9-12   Changing the anchor property

3. Do the same thing with the Customer Name and Social Security JLabels.

4. Change the anchor property for the Accounts JLabel to NORTHEAST.

Although it is not noticeable at this stage, the font of the JList is different from 
the font for the JTextFields.

5. Select the JList, select the font property, and click the ... button to the right of 
the value field.

6. In the pop-up Java Property Editor, change the Style from bold to plain and 
then click OK.

7. Save your changes (Ctrl+S or File → Save).

9.5.6  Testing the appearance of the GUI
As a quick test of the appearance of the GUI, we can run the JFrame as it is. 
Select Run → Run As → Java Bean. The GUI should start up and appear as a 
separate window, looking something like Figure 9-13.

Figure 9-13   First GUI test
 Chapter 9. Develop GUI applications 433



The GUI should work up to a point—you should be able to type into the text fields 
and click the Lookup button—but we have not yet coded any event handling 
behavior.

Close the GUI by clicking the close box at the top-right.

9.5.7  Add event handling to GUI
For our example, we want the user to be able to enter a search term into the 
Search SSN field (a social security number for a customer) and click the Lookup 
button. When the button is clicked, we need to search the database for the 
customer details, find the accounts for the customer, and put the account 
information in the list at the bottom of our GUI.

Add event handling
To add event handling to the GUI, do the following:

1. Register the JFrame as an ActionListener for the JButton.

The first stage is to register our JFrame as an ActionListener for our JButton 
so that it will receive messages when the button is pressed.

The best place to do this is in the initialize method of BankDesktop.java, as 
seen in Example 9-3.

Example 9-3   Add addActionListener sample

private void initialize() {
this.setSize(400, 300);
this.setContentPane(getJContentPane());
this.setTitle("Bank Desktop");
this.getJButton().addActionListener(this);

}

2. Add code to the actionPerformed method.

Since we chose to implement the ActionListener interface when we created 
this class, the required method is already present, although at the moment it 
does not do anything—that is the next step.

The code for the actionPerformed method in BankDesktop should look like 
Example 9-4.

Example 9-4   Add actionPerformed method

public void actionPerformed(ActionEvent e) {
String searchSsn = getJTextField().getText();
CustomerFactory factory = new CustomerFactory();
try {

Customer customer = factory.getCustomer(searchSsn);
434 Rational Application Developer V6 Programming Guide



getJTextField1().setText(customer.getFullName());
getJTextField2().setText(customer.getSsn());
getJList().setListData(customer.getAccounts());

} catch (SQLException e1) {
getJTextField1().setText("<SSN not found>");
getJTextField2().setText("");
getJList().setListData(new Vector());
e1.printStackTrace();

}
}

3. Add the appropriate import statements (Ctrl+Shift+O).

4. Save the file (Ctrl+S).

Update the imported model class database location
The event handling code described in this section uses the back-end code we 
imported in 9.2.4, “Import the model classes for the sample” on page 419. We 
will need to modify the DatabaseManager class so that it points to the correct 
database.

1. From the Package Explorer, expand BankGUI → 
itso.bank.model.entity.java → DatabaseManager.java.

2. Select the DatabaseManager class from the Project Explorer. 

3. Change the URL string for the database in the getConnection method to 
reflect the actual location of the database. For example, 
"jdbc:db2j:C:\\databases\\BANK" if you have used the location suggested in 
9.2.3, “Set up the sample database” on page 418.

4. Save the file (Ctrl+S).

9.5.8  Verify the Java GUI application
To verify that the Java GUI application is working properly, do the following:

1. Ensure that no connections to the BANK database are active. If they are, 
disconnect prior to running the Java GUI application.

Note: The generated code will use simple names for the components you 
add, based on the type name with an incrementing suffix (jTextField, 
jTextField1, and so on). Components can be renamed to give them a more 
meaningful name by right-clicking the component in the Design or Java 
Beans view and selecting Rename Field, or by changing the field name 
property for the component. The accessor method for the component will 
automatically be renamed and any references will automatically be 
updated.
 Chapter 9. Develop GUI applications 435



2. Click the Run button in the toolbar (or select BankDesktop.java, right-click 
Run → Java application). If you hover the mouse pointer over it you will see 
that the tooltip text reads Run BankDesktop.

3. Enter a valid social security number into the Search SSN field. For example, 
we entered 111-11-1111, which is valid in our sample data set. For more 
information on the sample data, either query the BANK database or look at 
the loadData.sql used to populate the sample data.

4. Click Lookup and the program will search the database for the requested 
value. 

The results are shown in Figure 9-14.

Figure 9-14   Testing the working GUI

5. Try entering an invalid value. In the Console view, you will see an error 
message for the invalid value entered as well as an exception stack trace.

9.5.9  Run the sample GUI as a Java application
To run the sample GUI as a Java application, we need to add code to the main 
method.

1. Change the main method in BankDesktop, which we asked to be generated 
when we created the class, as seen in Example 9-5.

Example 9-5   BankDesktop method

public static void main(String[] args) {
BankDesktop instance = new BankDesktop();
instance.setDefaultCloseOperation(JFrame.DISPOSE_ON_CLOSE);
instance.setVisible(true);

}

2. Run the BankDesktop as a Java application by selecting Run → Run As → 
Java Application. The results should be the same as in 9.5.8, “Verify the 
Java GUI application” on page 435.
436 Rational Application Developer V6 Programming Guide



9.5.10  Automatically add event handling
The Visual Editor provides a mechanism for generating the code necessary for 
handling component events. 

To demonstrate the automatic adding of event handling, we will first remove the 
existing event handling code.

1. Select all the code in the existing actionPerformed method and cut it 
(right-click and select Cut, or, Ctrl+X, or Edit → Cut).

2. Delete the actionPerformed method from BankDesktop (this will produce a 
syntax error, which we will now fix).

3. Delete implements ActionListener from the class definition. It should now 
read:

public class BankDesktop extends JFrame {

4. Remove the line from the initialize method that registers BankDesktop as a 
button listener. The initialize method should now be like Example 9-6.

Example 9-6   Initialize method

private void initialize() {
this.setSize(400, 300);
this.setContentPane(getJContentPane());
this.setTitle("Bank Desktop");

}

All the errors should now have disappeared.

5. In the Design view, right-click the Lookup JButton and select Events → 
actionPerformed.

This adds the addActionListener method call to the getJButton method and 
codes an anonymous inner class to implement the ActionListener interface. 
We must now add code to this anonymous inner class to make it work.

6. Delete the line of code that is automatically generated in the actionPerformed 
method (a System.out.println call).

7. Paste the code you previously cut from the actionPerformed method into this 
new actionPerformed method. The getJButton method should now look like 
Example 9-7.

Example 9-7   getJButton method

private JButton getJButton() {
if (jButton == null) {

jButton = new JButton();
jButton.setText("Lookup");
jButton.addActionListener(new java.awt.event.ActionListener() {
 Chapter 9. Develop GUI applications 437



public void actionPerformed(java.awt.event.ActionEvent e) {
String searchSsn = getJTextField().getText();
CustomerFactory factory = new CustomerFactory();
try {

Customer customer = factory.getCustomer(searchSsn);
getJTextField1().setText(customer.getFullName());
getJTextField2().setText(customer.getSsn());
getJList().setListData(customer.getAccounts());

} catch (SQLException e1) {
getJTextField1().setText("<SSN not found>");
getJTextField2().setText("");
getJList().setListData(new Vector());
e1.printStackTrace();

}
}

});
}
return jButton;

}

8. Test the GUI as described in 9.5.8, “Verify the Java GUI application” on 
page 435.

9.5.11  Visual Editor binding
The Visual Editor can perform some automatic code generation for binding the 
properties of certain components to data source objects. The data source objects 
can be Enterprise JavaBeans (EJBs), Web services, or ordinary JavaBeans.

1. Select the Customer Name text field.

2. Click the yellow Bind.. button above the field, as seen in Figure 9-15.

Figure 9-15   The Bind.. button

3. Click the New Data Source Data Object button.

4. When the New Data Source Data Object window appears, enter the following 
(as seen in Figure 9-16), and then click OK:

– Name: CustomerDataObject
438 Rational Application Developer V6 Programming Guide



– Source type: Select Java Bean Factory (default).

– Data source: Click New... next to Data Source, enter CustomerFactory into 
the search text field, and click OK.

– Source service: Select getCustomer.

– Argument: Select jTextField.

– Property: Select text.

Figure 9-16   New Data Source Data Object dialog

5. Select fullName from the Data object properties list, as shown in Figure 9-17 
on page 440.

6. Click OK.
 Chapter 9. Develop GUI applications 439



Figure 9-17   Field Data Bindings dialog

7. Select the Social Security text field and click its Bind.. button.

8. Select ssn from the Data object properties list.

9. Click OK.

10.Unfortunately, only JTextField, JTable, JTextArea, or JButton can be bound 
to data source objects in this way, so we cannot use this technique for our 
JList.

The getJButton method can now be changed as seen in Example 9-8.

Example 9-8   getJButton method modifications

private JButton getJButton() {
if (jButton == null) {

jButton = new JButton();
jButton.setText("Lookup");
jButton.addActionListener(new java.awt.event.ActionListener() {

public void actionPerformed(java.awt.event.ActionEvent e) {
getCustomerDataObject().refresh();
String searchSsn = getJTextField().getText();
CustomerFactory factory = new CustomerFactory();
try {

Customer customer = factory.getCustomer(searchSsn);
440 Rational Application Developer V6 Programming Guide



getJList().setListData(customer.getAccounts());
} catch (SQLException e1) {

getJList().setListData(new Vector());
e1.printStackTrace();

}
}

});
}
return jButton;

}

The main change is highlighted in bold. The code needed to set the text of the 
name and social security fields is no longer required—it is essentially replaced by 
the call to getCustomerDataObject().refresh(), which now handles the 
synchronization for us.
 Chapter 9. Develop GUI applications 441



442 Rational Application Developer V6 Programming Guide



Chapter 10. Develop XML applications

This chapter introduces the XML capabilities provided by Rational Application 
Developer and describes how to use the XML tooling.

The chapter is organized into the following topics:

� XML overview and technologies
� Rational Application Developer XML tools
� Where to find more information

10

Note: The sample code described in this chapter can be completed by 
following along in the procedures documented. Alternatively, you can import 
the sample Java code provided in the c:\6449code\xml\BankXMLWeb.zip 
Project Interchange file. For details refer to Appendix B, “Additional material” 
on page 1395.
© Copyright IBM Corp. 2005. All rights reserved. 443



10.1  XML overview and technologies
eXtensible Markup Language (XML) is a subset of Standard Generalized Markup 
Language (SGML). Both XML and SGML are meta languages, as they allow the 
user to define their own tags for elements and attributes.

XML is a key part of the software infrastructure. It provides a simple and flexible 
means of defining, creating, and storing data. XML is used for a variety of 
purposes ranging from configuration to messaging to data storage. 

By allowing the user to define the structure of the XML document, the rules that 
define the structure can also be used to validate a document to ensure they 
conform.

10.1.1  XML and XML processor
XML is tag-based; however, XML tags are not predefined in XML. You have to 
define your own tags. XML uses a document type definition (DTD) or an XML 
schema to describe the data.

XML documents follow strict syntax rules. For more information regarding XML 
consult the W3C web site:

http://www.w3.org/XML

See the following web site for XML syntax rules:

http://www.w3.org/TR/rdf-syntax-grammar/

To create, read, and update XML documents, you need an XML processor or 
parser. At the heart of an XML application is an XML processor that parses an 
XML document, so that the document elements can be retrieved and 
transformed into a presentation understood by the target client. The other 
responsibility of the parser is to check the syntax and structure of the XML 
document.

Note: For more detailed information and examples on developing XML/XSL 
applications using Application Developer, refer to the redbook The XML Files: 
Development of XML/XSL Applications Using WebSphere Studio Version 5, 
SG24-6586.
444 Rational Application Developer V6 Programming Guide

http://www.w3.org/XML
http://www.w3.org/TR/rdf-syntax-grammar/


Where to find more information
Refer to the following for more information on XML and XSLT parsers:

� Xerces (XML parser - Apache)

http://xml.apache.org/xerces2-j

� Xalan (XSLT processor - Apache)

http://xml.apache.org/xalan-j

� Crimson (XML parser)

http://xml.apache.org/crimson/

Refer to the following for more information on XML parser APIs:

� JAXP (XML parser - Sun)

http://java.sun.com/xml/jaxp

� SAX2 (XML API)

http://sax.sourceforge.net

10.1.2  DTD and XML schema
Document Type Definitions (DTDs) and XML schemas are both used to describe 
structured information; however, in recent years the acceptance of XML 
schemas has gained momentum. Both DTDs and schemas are building blocks 
for XML documents and consist of elements, tags, attributes, and entities. Both 
define the rules by which an XML document must conform.

An XML schema is more powerful than DTD. Here are some advantages of XML 
schemas over DTDs:

� They define data types for elements and attributes, and their default and fixed 
values. The data types can be of string, decimal, integer, boolean, date, time, 
or duration.

� They apply restrictions to elements, by stating minimum and maximum values 
(for example, on age from 1 to 90 years), or restrictions of certain values (for 
example, redbooks, residencies, redpieces with no other values accepted, 
such as in a drop-down list). Restrictions can also be applied to types of 
characters and their patterns (for example, only accepting values ‘a’ to ‘z’ and 
also specifying that only three letters can be accepted). The length of the data 
can also be specified (for example, passwords must be between 4 and 8 
characters).

� They specify complex element types. Complex types may contain simple 
elements and other complex types. Restrictions can be applied to the 
sequence and the frequency of their occurrences. These complex types can 
then be used in other complex type elements.
 Chapter 10. Develop XML applications 445

http://xml.apache.org/xerces2-j
http://xml.apache.org/xalan-j
http://java.sun.com/xml/jaxp
http://sax.sourceforge.net
http://xml.apache.org/crimson/


� Since schemas are written in XML, they are also extensible. This also implies 
that the learning curve for learning another language has been eliminated. 
The available parsers need not be enhanced. Transformation can be carried 
out using XSLT, and its manipulation can be carried out using XML DOM.

� With XML schemas being extensible, they can be re-used in other schemas. 
Multiple schemas can be referenced from the same document. In addition, 
they have the ability to create new data types from standard data types.

For more information on XML schema requirements:

http://www.w3.org/TR/NOTE-xml-schema-req

10.1.3  XSL and XSLT
The eXtensible Style Language (XSL) is a language defined by the W3C for 
expressing style sheets. 

XSL has the following three parts:

� XSL transformations (XSLT): Used for transforming XML documents

� XML path language (XPath): Language used to access or refer to parts of an 
XML document

� XSL-FO: Vocabulary for specifying formatting semantics

A transformation in XSLT must be a well-formed document and must conform to 
the namespaces in XML, which can contain elements that may or may not be 
defined by XSLT. XSLT-defined elements belong to a specific XML namespace. 
A transformation in XSLT is called a style sheet.

XSL uses an XML notation and works on two principles—pattern matching and 
templates. XSL operates on an XML source document and parses it into a 
source tree. It applies the transformation of the source tree to a result tree, and 
then it outputs the result tree to a specified format. In constructing the result tree, 
the elements can be reordered or filtered, and other structures can be added. 
The result tree can be completely different from the source tree.

10.1.4  XML namespaces
Namespaces are used when there is a need for elements and attributes of the 
same name to take on a different meaning depending on the context in which 

Note: DTDs consists of elements such as text strings, text strings with other 
child elements, and a set of child elements. DTDs offer limited support for 
types and namespaces, and the syntax in DTDs is not XML.
446 Rational Application Developer V6 Programming Guide

http://www.w3.org/TR/NOTE-xml-schema-req


they are used. For instance, a tag called <TITLE> takes on a different meaning, 
depending on whether it is applied to a person or a book.

If both entities (a person and a book) need to be defined in the same document 
(for example, in a library entry that associates a book with its author), we need 
some mechanism to distinguish between the two and apply the correct semantic 
description to the <TITLE> tag whenever it is used in the document.

Namespaces provide the mechanism that allows us to write XML documents that 
contain information relevant to many software modules.

10.1.5  XPath
The XML path language (XPath) is used to address parts of an XML document. 
An XPath expression can be used to search through an XML document, and 
extract information from the nodes (any part of the document, such as an 
element or attribute) in it. 

There are four different kinds of XPath expressions:

� Boolean: Expression type with two possible values

� Node set: Collection of nodes that match an expression's criteria, usually 
derived with a location path

� Number: Numeric value, useful for counting nodes and for performing simple 
arithmetic

� String: Text fragment that may come from the input tree, processed or 
augmented with general text

An XPath expression returns a certain node set, which is a collection of nodes. 
The following is a sample XPath expression:

/ACCOUNT_TABLE/ACCOUNT/ACCID

This expression selects any elements named ACCID (account ID), which are 
children of ACCOUNT elements, which are children of ACCOUNT_TABLE 
elements, which are children of the document root.

10.2  Rational Application Developer XML tools
Rational Application Developer provides a comprehensive visual XML 
development environment. The tool set includes components for building DTDs, 
XML schemas, XML, and XSL files. 
 Chapter 10. Develop XML applications 447



Rational Application Developer includes the following XML development tools:

� DTD editor
� XML schema editor
� XSL editor
� XML editor
� XPath expression wizard
� XML to XML mapping editor
� XSL debugging and transformation
� XML and relational data
� Relational database to XML mapping (visual DAD builder)

This chapter covers only a few XML tools of Rational Application Developer. We 
demonstrate how to create XML files, and we introduce you to some of Rational 
Application Developer’s XML generators. 

The following topics are discussed:

� Create a project for XML sample.
� Work with DTD files.
� Work with XML schema files.
� Work with XML files.
� Work with XSL files.
� Transform an XML file.
� Java code generation.

10.2.1  Create a project for XML sample
To demonstrate some of Rational Application Developer’s XML tools, we set up a 
new project, create a new package, and add a new folder.

1. Create a Dynamic Web Project named BankXMLWeb.

We created a new Dynamic Web Project named BankXMLWeb without 
adding to an EAR project (delete BankXMLWebEAR manually after creating 
the project).

Refer to Chapter 11, “Develop Web applications using JSPs and servlets” on 
page 499, for details on creating a new Web Project.

2. Create a Java package named itso.xml.

Note: We do not create a fully XML-enabled application here. This chapter 
only shows some XML capabilities of Rational Application Developer where 
we create and work with XML files.

Refer to Rational Application Developer online help for more detailed 
information regarding XML tools and editors.
448 Rational Application Developer V6 Programming Guide



Once you have created a Web Project, create a Java package and name it 
itso.xml.

Refer to 7.2.4, “Create Java packages” on page 246, for details on creating a 
package in Rational Application Developer.

3. Create a new folder in WEB-INF named xml (WEB-INF\xml).

We also create a new folder in the WEB-INF folder and named the folder xml. 
The xml folder will be used to store an XML schema file. 

The new Web Project skeleton is displayed in the J2EE Navigator view, and 
should now look like Figure 10-1.

Figure 10-1   Sample project skeleton

10.2.2  Work with DTD files
In this section we demonstrate how to use the DTD editor by completing the 
following tasks:

� Create a DTD file.
� DTD editor features.
� Validate DTD files.
 Chapter 10. Develop XML applications 449



Create a DTD file
To create a new DTD file, use the new DTD wizard as follows:

1. Switch to the Web perspective, Package Explorer view.

2. Select the BankXMLWeb project.

3. Select File → New → Other (or press Ctrl+N).

4. When the New wizard appears, do the following (as seen in Figure 10-2):

a. Check Show All Wizards.

b. Expand XML.

c. Select DTD.

d. Click Next.

Figure 10-2   Create new dialog

5. When prompted with the message seen in Figure 10-3, check Always enable 
capabilities and do not ask again, and then click OK.
450 Rational Application Developer V6 Programming Guide



Figure 10-3   Enable XML development

6. When prompted, enter the file name AccountTable.dtd, select the xml folder 
(as seen in Figure 10-4), and then click Finish.

Figure 10-4   Create new DTD dialog
 Chapter 10. Develop XML applications 451



DTD editor features
The section highlights the following DTD editor features:

� Syntax highlighting preferences.
� Add items to a DTD file.
� Change the content type.
� Edit Model Group or Occurrence of and Element.
� Add entities.
� Add notations.
� Add comments.

Syntax highlighting preferences
To change the syntax highlighting preferences in the DTD editor, right-click the 
source editor, and select Preferences ... from the context menu. The relevant 
preference options will be displayed.

Views that are useful for editing DTD files are as follows:

� Outline view (Figure 10-5)

The outline view has useful feature buttons on the top right of the view. The 
first button allows you to sort the items in alphabetical order , and the 
second allows you to group like items into a logical grouping . The third 
allows you to collapse all the items , and the fourth links the outline to the 
editor.

Figure 10-5   Outline view

� Properties view (Figure 10-6 on page 453)

The properties view has two tabs—one for general information that is context 
sensitive; and the second for the description, which allows you to enter 
descriptive text about the item that you are editing. The description will 

Note: IBM Rational Application Developer V6.0 now has the ability to link to 
external files on the file system. The Advance button on the Create DTD 
wizard provides the ability to specify the location on the file system that the 
DTD is linked to.
452 Rational Application Developer V6 Programming Guide



actually create a comment item above the item that the description is 
associated with.

Figure 10-6   Properties view

Add items to a DTD file
To add new items such as Elements, Entities, Notations, Parameter Entity 
Reference, Comment, or Add to the attribute list to a DTD file, do the following:

1. Double-click AccountTable.dtd to open the file in the editor.

2. Add the item. Do one of the following:

– Add the content by typing into the source editor.
– Add via the context menu in the Outline view (see Figure 10-7).

Figure 10-7   Adding items to a DTD file

When adding new elements, the Properties view will be presented with the 
new element selected. It will also create the new element with and EMPTY 
content type. The General tab on the Properties view allows you to change 
the name of the element. 
 Chapter 10. Develop XML applications 453



Change the content type
To change the content type you must expand the element in the outline, and then 
select the EMPTY node or select EMPTY in the Source view. 

The options to change the content type to are as follows:

� EMPTY
� PCDATA
� Children content 
� Mixed content (First child will be PCDATA)
� Other elements

When you select the content type of either Children content or Mixed content, a 
grouping node is added to the Outline view and the Properties view will be 
changed to include Model Group and Occurrence. 

� Model Group: Allows you to define the grouping of the Children content as 
follows:

– Sequence: The editor will insert commas (,) between children.
– Choice: The editor will insert pipe (|) between children.

� Occurrence: Allows you to define the number of times the child can occur in 
the element. The valid choices are as follows:

– Just once - One and only one child.
– One or more - One or more children.
– Optional - This child may or may not exist.
– Zero or more - Zero or more instances of this child.

Edit Model Group or Occurrence of and Element
To edit Model Group or Occurrence of an Element you must select the 
grouping node in the Outline view, as shown in Figure 10-8 on page 455.
454 Rational Application Developer V6 Programming Guide



Figure 10-8   Select grouping node

To add more children to an element you can right-click the group node in the 
Outline view and select Add Element to Content Model, as shown in 
Figure 10-8. This will add a new child node, from which you can the select the 
appropriate child type.

Add entities
When adding new entities, the Properties view will be presented with the new 
entity selected. The Properties view will contain the following fields:

� Name - The name of the entity that must be unique
� Entity Type - General or Parameter (External or Internal)
� Entity Value - The value associated with the entity

Entities are used to define values that can be used in the XML file.

Add notations
When adding new notations, the Properties view will be presented with the new 
notation selected. The Properties view will contain the following fields:

� Name - The name of the notations that must be unique
� Public ID - The public identifier of the notations
� System ID - The system identifier of the notations

Tip: When using the Context menu to add elements, it is easier to add all the 
elements first and then go back and change the content types.
 Chapter 10. Develop XML applications 455



Notations are used to define additional processing instructions for unparsed 
entities.

Add comments
When adding new comments, the Properties view will be presented with a 
Comment window in the General tab. New comments will be added to the bottom 
of the source file.

A completed sample AccountTable.dtd file is listed in Example 10-1.

Example 10-1   Sample AccountTable.dtd

<?xml version="1.0" encoding="UTF-8"?>
<!-- This is the root element for this document type.-->
<!ELEMENT ACCOUNT_TABLE (ACCOUNT)*>

<!-- This element defines a record in the account table.-->
<!ELEMENT ACCOUNT 
(ACCT_ID,ACCT_TYPE,BALANCE,DISCRIMINATOR,INTEREST,OVERDRAFT,MIN_AMOUNT)>

<!ELEMENT ACCT_ID (#PCDATA)>
<!ELEMENT ACCT_TYPE (#PCDATA)>
<!ELEMENT BALANCE (#PCDATA)>
<!ELEMENT DISCRIMINATOR (#PCDATA)>
<!ELEMENT INTEREST (#PCDATA)>
<!ELEMENT OVERDRAFT (#PCDATA)>
<!ELEMENT MIN_AMOUNT (#PCDATA)>

<!ENTITY ACCTTYPE_SAVINGS "Savings">
<!ENTITY ACCTTYPE_LOAN "Loan">
<!ENTITY ACCTTYPE_FIXED "fixed">

<!--General comment for the document type definition - This document type is an 
xml representation of the Account table.-->

Validate DTD files
To validate a DTD file, do the following:

1. Switch to the Web perspective.

2. Right-click the AccountTable.dtd file in the Navigator view.

3. In the Context menu select Validate DTD file.

Note: Comments inserted above an element, entity, or notation will appear as 
the description for that item.
456 Rational Application Developer V6 Programming Guide



– If validation was successful you will be presented with a pop-up window 
stating Validation was successful.

– If the file that you are trying to validate contains unsaved information, you 
will be prompted to save the file before validation. If you select No it will 
validate the previously saved version.

– If validation was not successful, you will be presented with a pop-up 
window stating that validation has failed. The source editor will also have a 
red cross next to the line that failed (see Figure 10-9), and the problem 
view will also have an entry with a reason why the validation failed (see 
Figure 10-10).

Figure 10-9   Error marker in the source editor

Figure 10-10   Problem view with description of problem in DTD file
 Chapter 10. Develop XML applications 457



10.2.3  Work with XML schema files
This section demonstrates how to use XML schema editor features to complete 
the following tasks:

� Generate an XML schema from an existing DTD file.
� Generate an XML schema from relational table definition.
� Generate an XML schema file from an XML file.
� Create a new XML schema.
� Edit an XML schema.
� Validate an XML schema.

Generate an XML schema from an existing DTD file
To generate an XML Schema file from an existing DTD file, do the following:

1. Switch to the Web perspective.

2. Right-click the DTD file in the Navigator view.

In our example, we used the AccountTable.dtd supplied with the sample code 
and displayed in Example 10-1 on page 456.

3. Select Generate → XML Schema.

4. When the Generate XML Schema dialog appears, do the following (as seen 
in Figure 10-11 on page 459), and then click Next:

– Select the folder in which you wish to place the new XML schema file (for 
example, xml).

– File name: AccountTable.xsd (Note that XML schema files have an .xsd 
extension.)
458 Rational Application Developer V6 Programming Guide



Figure 10-11   Generate new XML schema

5. When the XML Schema Generation Options dialog appears, select Create 
one XML schema that includes all DTD files (as seen in Figure 10-12 on 
page 460), and then click Finish.

If you have a DTD file that references other DTD files, you can opt to create a 
single XML schema file or multiple XML schema files for each DTD file. 

You should see a message that the XML schema was successfully 
generated.
 Chapter 10. Develop XML applications 459



Figure 10-12   Creating multiple XML schema options

The XML schema AccountTable.xsd generated from the AccountTable.dtd 
can be seen in Example 10-2. 

As you can see, the XML schema that is generated is suitable for simple 
validation; however, to actually take full advantage of XML schemas, the 
generated file should be modified to further refine the validation rules. In the 
previous version of Application Developer it was possible to generate DTD 
files from XSD files, but this was a backward step, as DTDs provide less 
functionality, so this feature has been removed.

Example 10-2   Sample XML schema AccountTable.xsd generated from AccountTable.dtd

<?xml version="1.0" encoding="UTF-8"?>
<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema">
    <xsd:element name="ACCOUNT_TABLE">
        <xsd:annotation>
            <xsd:documentation> This is the root element for this document 
type.</xsd:documentation>
        </xsd:annotation>
        <xsd:complexType>
            <xsd:sequence>
                <xsd:element maxOccurs="unbounded" minOccurs="0" ref="ACCOUNT"/>
            </xsd:sequence>
        </xsd:complexType>
    </xsd:element>
    <xsd:element name="ACCOUNT">
        <xsd:annotation>
460 Rational Application Developer V6 Programming Guide



            <xsd:documentation> This element defines a record in the account 
table.</xsd:documentation>
        </xsd:annotation>
        <xsd:complexType>
            <xsd:sequence>
                <xsd:element ref="ACCT_ID"/>
                <xsd:element ref="ACCT_TYPE"/>
                <xsd:element ref="BALANCE"/>
                <xsd:element ref="DISCRIMINATOR"/>
                <xsd:element ref="INTEREST"/>
                <xsd:element ref="OVERDRAFT"/>
                <xsd:element ref="MIN_AMOUNT"/>
            </xsd:sequence>
        </xsd:complexType>
    </xsd:element>
    <xsd:element name="ACCT_ID" type="xsd:string"/>
    <xsd:element name="ACCT_TYPE" type="xsd:string"/>
    <xsd:element name="BALANCE" type="xsd:string"/>
    <xsd:element name="DISCRIMINATOR" type="xsd:string"/>
    <xsd:element name="INTEREST" type="xsd:string"/>
    <xsd:element name="OVERDRAFT" type="xsd:string"/>
    <xsd:element name="MIN_AMOUNT" type="xsd:string"/>
</xsd:schema>

Generate an XML schema from relational table definition
To generate an XML schema file from a relational table definition, do the 
following:

1. Open the Data perspective.
2. Open the Data Definition view.
3. Right-click the table that you wish to create the XML schema base on.
4. Select Generate XML Schema from the context menu.
5. Select the folder in which you wish to place the new XML schema file.
6. Enter generatedXMLSchemaFromTable.xml in the Filename field.
7. Click Finish.

Generate an XML schema file from an XML file
To generate and XML schema file from a XML file, do the following:

1. Right-click the XML file and select Generate → XML Schema ... from the 
context menu.

2. Select the folder in which you wish to place the new XML schema file.

3. Enter a generateXMLSchemaFromXML.xsd.

4. Click Finish.
 Chapter 10. Develop XML applications 461



Figure 10-13   Generate an XML schema from an XML file

The sample generated file can be seen in Example 10-3.

Example 10-3   Sample generatedXMLSchemaFromXML.xsd file

<?xml version="1.0" encoding="UTF-8"?>
<xsd:schema xmlns:tns="http://www.ibm.com/AccountTable"

xmlns:xsd="http://www.w3.org/2001/XMLSchema"
targetNamespace="http://www.ibm.com/AccountTable">
<xsd:element name="ACCOUNT_TABLE">

<xsd:complexType>
<xsd:sequence>

<xsd:element maxOccurs="unbounded" name="account">
<xsd:complexType>

<xsd:sequence>
<xsd:element name="accountId"

type="xsd:string" />
<xsd:element name="accountType"

type="xsd:string" />
<xsd:element name="balance"

type="xsd:string" />
<xsd:element name="disclaiminator"
462 Rational Application Developer V6 Programming Guide



type="xsd:string" />
<xsd:element name="interest"

type="xsd:string" />
<xsd:element name="minAmount"

type="xsd:string" />
<xsd:element name="overdraft"

type="xsd:string" />
</xsd:sequence>

</xsd:complexType>
</xsd:element>

</xsd:sequence>
</xsd:complexType>

</xsd:element>
</xsd:schema>

Create a new XML schema
To create a new XML schema from scratch, use the new XML schema wizard, as 
follows:

1. Switch to the Web perspective.

2. Select File → New → Other.

3. When the Create new schema file wizard appears (as seen in Figure 10-14 
on page 464), do the following:

a. Check Show All.
b. Expand the XML folder.
c. Select XML Schema a
d. Click Next.
 Chapter 10. Develop XML applications 463



Figure 10-14   Create new XML schema file wizard

4. When the next XML schema dialog appears, do the following (as seen in 
Figure 10-15 on page 465):

a. Select the folder in which you wish to place the new XML schema file.

b. In the File name field enter AccountTable.xsd. 

If a file by this name already exists, either rename the existing file or 
change the file name to be a different name.

c. Click Finish.
464 Rational Application Developer V6 Programming Guide



Figure 10-15   New XML schema wizard

Edit an XML schema
To add new elements, directives, simple types, complex types, and annotations 
to the XML schema, do the following after opening the file in the XML schema 
editor:

� Add content by typing in the source editor (see Figure 10-16 on page 466).

� Add via the context menu in the Outline view (see Figure 10-18 on page 468).

� Add via the context menu in the Graph pane of the editor (see Figure 10-17 
on page 467).

The XML schema editor has two panes:

� XML Schema editor - Source pane
� XML Schema editor - Graph pane

XML Schema editor - Source pane
The source pane will allow you to edit the source directly (for example, see the 
source pane in Figure 10-16 on page 466).
 Chapter 10. Develop XML applications 465



The source editor provides for the following text editing features:

� Syntax highlighting
� Unlimited undo and redo of changes
� Node selection indicator
� Content Assist with Ctrl+Space

To change the syntax highlighting for the XML schema, do the following:

1. Right-click the source editor and select Preferences.

2. From the context menu, the associated preferences will be displayed. Expand 
the Web and XML folder, and expand the XML Files folder.

3. Select XML Styles. 

You can also change the formatting options within the XML Source options of 
the preferences.

Figure 10-16   XML schema editor source pane

XML Schema editor - Graph pane
This pane will give you a graphical representation of the XML schema file. It also 
allows you to traverse the XML file and edit the items in the XML schema file. An 
example of the graph pane is shown in Figure 10-17 on page 467.
466 Rational Application Developer V6 Programming Guide



Figure 10-17   XML schema editor graph pane

XML Schema views
Views that are useful for editing XML schema file are:

� Outline view: This view presents a tree structure representation of all the 
categorized components of the XML schema, as shown in Figure 10-18 on 
page 468. This view contains:

– Directive - Allows you to define include, import, and redefine statements

– Elements - Allows you to define the elements in the schema

– Attributes - Allows you to define global attributes

– Attribute Groups - Allows you to define attribute groups

– Type - Allows you to define simple types and complex types items in the 
schema

– Groups - Allows you define groups of elements and element references

– Notations - Allows you to define notations
 Chapter 10. Develop XML applications 467



Figure 10-18   Outline view of XML schema

� Properties view - This view is used to edit the properties of the selected node.

This view is context sensitive, and the tabs will change based on the type of 
node that you are currently editing.

When the XML schema node is selected, the following tabs are available:

� General - This tab allows you to define the prefix of the XML schema and the 
target namespace. The prefix and target namespace should be updated after 
generating an XML schema from a DTD.

� Other - This tab allows you to define various values for the XML schema file 
such as attributeFromDefault, blockDefault, elementFromDefault, version, 
and xml:lang.

Figure 10-19   Changing the target namespace

While editing simple types, the following tabs are available:

� General - This tab allows you to change the common attributes of the simple 
type node such as Name, Variety, and Base type. The Variety field is limited 
to the list of valid values by a drop-down list box. To display more types to 
select from for the Base type you can click the More button to the right of the 
field; this will display a dialog of available types. The available types will only 
include built-in simple types and user-defined simple types.
468 Rational Application Developer V6 Programming Guide



� Enumeration - This tab allows you to define the list of possible values that this 
simple type node can possibly have.

� Documentation - This tab allows you to add documentation for the node. It will 
added the annotation and documentation tags into the node for you.

� Advance - This tab changes based on the base type of the node. It allows you 
to define various attributes for the node; as an example, if you define a base 
type of built-in simple type short, you will have the option to put restrictions on 
the totalDigits, fractionDigits, whiteSpace, maxInclusive, maxExclusive, 
minInclusive, and minExclusive.

We will change the elements of the account into user-defined simple type items 
rather than elements to take advantage of XML schema restrictions.

Add user-defined simple type
To add a user-define simple type, do the following:

1. Double-click AccountTable.xsd to open the file in the editor.

a. Add the content by typing into the source editor.

b. Add via the context menu in the source editor, as shown in Figure 10-18 
on page 468.

c. Add via the context menu in the graph editor, as shown in Figure 10-20 on 
page 470.

2. The new simple type item will be added and selected. 

3. In the Properties view select the General tab, and in the Name field enter 
accountId.

4. Select the Advanced tab and enter a length of 6, and in the whiteSpace field 
select collapse, as shown in Figure 10-21 on page 470.

This ensures that any XML files that are validated against this schema must 
have an accoutId of 6 non-white space characters.
 Chapter 10. Develop XML applications 469



Figure 10-20   Adding a user-defined simple type in the graph editor

Figure 10-21   Advance tab for user-defined simple type, with a base type of string

While editing, elements the following tabs are available:

� General - This tab allows you to edit the common attributes of the selected 
node, such as the name and type. To select the element type you can click 
the More button, which will display a dialog with the types that you can 
choose from, as shown in Figure 10-23 on page 472. You can also choose to 
display user-defined simple types, as well as user-defined complex types, by 
selecting the appropriate radio button.
470 Rational Application Developer V6 Programming Guide



� Other - This tab allows you to define various values for the element such as 
abstract, block, final, fixed/default, nillable, and substitutionGroup.

� Attributes - This tab allows you to manage the attributes for the element.

� Documentation - This tab allows you to add documentation for the node. It will 
added the annotation and documentation tags into the node for you.

Figure 10-22   Available types for dialog

While editing complex types:

� General - This tab allows you to change the common attributes of the 
complex type such as the Name, Base type, and Derived by. The base type 
can be a build-in simple type, user-defined simple type, or a user-defined 
complex type. To select the base type, select the more Button to the right of 
the field.

� Other - This tab allows you to define various values for the element such as 
abstract, block, final, and mixed.

� Attributes - This tab allows you to manage the attributes associated with the 
complex type.

� Documentation - This tab allows you to add documentation for the node. It will 
add the annotation and documentation tags into the node for you.
 Chapter 10. Develop XML applications 471



While editing groups:

� General - This tab allows you to define the common attributes of the group, 
such as Kind, minOccurs, maxOccurs.

� Documentation - This tab allows you to add documentation for the node. It will 
add the annotation and documentation tags into the node for you.

Figure 10-23   Properties view for XML schema

The updated AccountTable.xsd file is displayed in Example 10-23.

Example 10-4   The updated AccountTable.xsd file

<?xml version="1.0" encoding="UTF-8"?>
<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema" 
targetNamespace="http://www.ibm.com/AccountTable" 
xmlns:tns="http://www.ibm.com/AccountTable">
    <xsd:element name="ACCOUNT_TABLE">
    <xsd:annotation>
    <xsd:documentation>
    This is the root element for this document type.
    </xsd:documentation>
    </xsd:annotation>
    <xsd:complexType>
    <xsd:sequence>
    <xsd:element name="account" type="tns:Account" minOccurs="0" 
maxOccurs="unbounded"></xsd:element>
    </xsd:sequence>
    </xsd:complexType>
    </xsd:element>
    <xsd:simpleType name="AccountId">
    <xsd:restriction base="xsd:string">
    <xsd:length value="6"></xsd:length>
    <xsd:whiteSpace value="collapse"></xsd:whiteSpace>
    </xsd:restriction>
    </xsd:simpleType>
472 Rational Application Developer V6 Programming Guide



    <xsd:simpleType name="AccountType">
    <xsd:restriction base="xsd:string">
    <xsd:enumeration value="Savings"></xsd:enumeration>
    <xsd:enumeration value="Loan"></xsd:enumeration>
    <xsd:enumeration value="Fixed"></xsd:enumeration>
    </xsd:restriction>
    </xsd:simpleType>

    <xsd:simpleType name="Balance">
    <xsd:restriction base="xsd:decimal">
    <xsd:totalDigits value="15"></xsd:totalDigits>
    <xsd:fractionDigits value="2"></xsd:fractionDigits>
    <xsd:whiteSpace value="collapse"></xsd:whiteSpace>
    </xsd:restriction>
    </xsd:simpleType>

    <xsd:simpleType name="Discriminator">
    <xsd:restriction base="xsd:string">
    <xsd:enumeration value="Yes"></xsd:enumeration>
    <xsd:enumeration value="No"></xsd:enumeration>
    </xsd:restriction>
    </xsd:simpleType>

    <xsd:simpleType name="Interest">
    <xsd:restriction base="xsd:decimal">
    <xsd:totalDigits value="6"></xsd:totalDigits>
    <xsd:fractionDigits value="2"></xsd:fractionDigits>
    <xsd:whiteSpace value="collapse"></xsd:whiteSpace>
    <xsd:maxInclusive value="100.00"></xsd:maxInclusive>
    <xsd:minInclusive value="000.00"></xsd:minInclusive>
    </xsd:restriction>
    </xsd:simpleType>

    <xsd:simpleType name="MinAmount">
    <xsd:restriction base="xsd:integer"></xsd:restriction>
    </xsd:simpleType>

    <xsd:simpleType name="Overdraft">
    <xsd:restriction base="xsd:string">
    <xsd:enumeration value="Yes"></xsd:enumeration>
    <xsd:enumeration value="No"></xsd:enumeration>
    </xsd:restriction>
    </xsd:simpleType>

    <xsd:complexType name="Account">
    <xsd:sequence minOccurs="1" maxOccurs="1">
    <xsd:element name="accountId" type="tns:AccountId" minOccurs="1" 
maxOccurs="1"></xsd:element>
 Chapter 10. Develop XML applications 473



    <xsd:element name="accountType" type="tns:AccountType" minOccurs="1" 
maxOccurs="1"></xsd:element>
    <xsd:element name="balance" type="tns:Balance" minOccurs="1" 
maxOccurs="1"></xsd:element>
    <xsd:element name="disclaiminator" type="tns:Discriminator" 
minOccurs="1" maxOccurs="1"></xsd:element>
    <xsd:element name="interest" type="tns:Interest" minOccurs="1" 
maxOccurs="1"></xsd:element>
    <xsd:element name="minAmount" type="tns:MinAmount" minOccurs="1" 
maxOccurs="1"></xsd:element>
    <xsd:element name="overdraft" type="tns:Overdraft" minOccurs="1" 
maxOccurs="1"></xsd:element>
    </xsd:sequence>
    </xsd:complexType>

</xsd:schema>

Validate an XML schema
To validate the XML schema file perform the following:

1. Switch to the Web perspective.

2. Right-click the AccountTable.xsd file in the Navigator view.

3. In the context menu select Validate XML Schema.

If the file that you are trying to validate contains unsaved information you will 
be prompted to save the file before validation. If you select No it will validate 
the previously saved version.

If validation was successful you will be presented with a pop-up window stating 
that validation was successful.

If validation was not successful you will be presented with a pop-up window 
stating that validation has failed. The source editor will also have a red cross next 
to the line that failed (see Figure 10-24 on page 475), and the problem view will 
also have an entry with a reason why the validation failed (see Figure 10-25 on 
page 475).
474 Rational Application Developer V6 Programming Guide



Figure 10-24   Error in the XML schema file

Figure 10-25   XML schema Problems view

10.2.4  Work with XML files
This section demonstrates the following capabilities of the XML editor:

� Generate XML file from an existing DTD file.
� Generate an XML file from an existing XML schema.
� Create a new XML file.
� Edit an XML file.
� Validate an XML file.
 Chapter 10. Develop XML applications 475



Generate XML file from an existing DTD file
To generate an XML file from an existing DTD file:

1. Switch to the Web perspective.

2. Right-click the DTD file in the Navigator view.

3. Select Generate → XML File.

4. When the New file dialog is displayed (as shown in Figure 10-26), select the 
folder in which you wish to place the new XML file.

5. Enter the file name AccountTableFromDTD.xml and then click Next.

6. Select the root element, which will be ACCOUNT_TABLE.

7. Select both Create optional attributes and Create optional elements.

8. Click Finish.

Figure 10-26   Generating a new XML file form DTD dialog

A sample of the generated file is displayed in Example 10-5. As you can see, the 
content of the XML file is valid according to the DTD file; however, this does not 
have much relevance to the actual content.

Example 10-5   The AccountTableFromDTD.xml

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE ACCOUNT_TABLE SYSTEM "AccountTable.dtd" >
<ACCOUNT_TABLE>
476 Rational Application Developer V6 Programming Guide



  <ACCOUNT>
    <ACCT_ID>ACCT_ID</ACCT_ID>
    <ACCT_TYPE>ACCT_TYPE</ACCT_TYPE>
    <BALANCE>BALANCE</BALANCE>
    <DISCRIMINATOR>DISCRIMINATOR</DISCRIMINATOR>
    <INTEREST>INTEREST</INTEREST>
    <OVERDRAFT>OVERDRAFT</OVERDRAFT>
    <MIN_AMOUNT>MIN_AMOUNT</MIN_AMOUNT>
  </ACCOUNT>
</ACCOUNT_TABLE>

Generate an XML file from an existing XML schema
To generate an XML file from an existing XML schema:

1. Switch to the Web perspective.

2. Right-click XML schema in the Navigator view.

3. Select Generate → XML File....

4. When the New file dialog is displayed (as shown in Figure 10-27 on 
page 478), select the folder in which you wish to place the new XML file.

5. Enter the file name file AccountTableFromSchema.xml and then click Next.

6. Select the root element, which will be ACCOUNT_TABLE.

7. Select both Create optional attributes and Create optional elements.

8. Click Finish.
 Chapter 10. Develop XML applications 477



Figure 10-27   Generating an XML file from an XML schema

A sample of the generated XML file is displayed in Example 10-6. You can see in 
the source editor that there is an error in the generated xml file because the value 
accountId violates the schema’s restrictions.

Example 10-6   The AccoutTableFromSchema.xml file

<?xml version="1.0" encoding="UTF-8"?>
<tns:ACCOUNT_TABLE xmlns:tns="http://www.ibm.com/AccountTable" 
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" 
xsi:schemaLocation="http://www.ibm.com/AccountTable AccountTable.xsd ">
  <account>
    <accountId>accountId</accountId>
    <accountType>Savings</accountType>
    <balance>0.0</balance>
    <disclaiminator>Yes</disclaiminator>
    <interest>0.0</interest>
    <minAmount>0</minAmount>
    <overdraft>Yes</overdraft>
  </account>
</tns:ACCOUNT_TABLE>

Create a new XML file
To create a new XML file from scratch, use the new XML schema wizard.
478 Rational Application Developer V6 Programming Guide



1. Switch to the Web perspective

2. Select File → New → Other. The new file dialog will be displayed, as shown 
in Figure 10-28.

3. Check Show All.

4. Expand the XML folder.

5. Select XML and click Next. 

6. When the Create XML file wizard is displayed (as shown in Figure 10-29 on 
page 480), select Create XML file from scratch and click Next.

7. Select the folder in which you wish to place the new XML file.

8. Enter the file name file AccountTable.xml and click Finish.

Figure 10-28   New XML file dialog
 Chapter 10. Develop XML applications 479



Figure 10-29   Create new XML file wizard

Edit an XML file
To add new elements, comments, and processing instructions, do the following 
after opening the file in the XML schema editor:

� Add content by typing in the source editor.
� Add via the context menu in the Outline view.

The XML editor has the following features:

� Syntax highlighting 
� Unlimited undo and redo of changes
� Content assist with Ctrl+Space
� Node selection indicator

Views that are useful for editing XML files are:

� Outline view - This view presents a tree structure representation of the XML 
file. The outline view is shown in Figure 10-30 on page 481.

� Properties view - This view allows you to view and edit the attributes of the 
selected node.
480 Rational Application Developer V6 Programming Guide



Figure 10-30   Outline view of XML file

Figure 10-31   Properties view of the XML file

Validate an XML file
To validate the XML file perform the following:

1. Switch to the Web perspective.

2. Right-click AccountTableFromSchema.xml in the Navigator view.

3. In the context menu select Validate XML Schema.

If the file that you are trying to validate contains unsaved information you will 
be prompted to save the file before validation. If you select No it will validate 
the previously saved version.

If validation was successful you will be presented with a pop-up window 
stating that validation was successful.

If validation was not successful you will be presented with a pop-up window 
stating that validation has failed. The source editor will also have a red cross 
next to the line that failed (see Figure 10-32 on page 482), and the problem 
view will also have an entry with a reason why the validation failed (see 
Figure 10-33 on page 482).
 Chapter 10. Develop XML applications 481



Figure 10-32   Error in XML file

Figure 10-33   XML Problems view

10.2.5  Work with XSL files
This section demonstrates the following capabilities of working with XSL files 
with the editor:

� Create a new XSL file.
� Edit an XSL file.
� Validate an XSL file.
482 Rational Application Developer V6 Programming Guide



Create a new XSL file
To create a new XML schema from scratch using the new XML schema wizard, 
do the following:

1. Switch to the Web perspective.
2. Select File → New → Other.
3. Check Show All.
4. Expand the XML folder.
5. Select XSL and then click Next (see Figure 10-34 on page 484).
6. Select the BankXMLWeb/WebContent/WEB-INF/xml folder.
7. Enter the file name BasicAccountTable.xsl and then click Next.
8. Select the AccountTableFromDTD.xml file to associate with this XSL file.
9. Click Finish.

A sample of the generated XSL file is listed in Example 10-7.

Example 10-7   The generated BasicAccountTable.xsl

<?xml version="1.0" encoding="UTF-8"?>
<xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
    version="1.0"
    xmlns:xalan="http://xml.apache.org/xslt">

</xsl:stylesheet>
 Chapter 10. Develop XML applications 483



Figure 10-34   The new XSL file dialog
484 Rational Application Developer V6 Programming Guide



Figure 10-35   The create new XSL wizard

Edit an XSL file
Views that are useful for editing XSL files are:

� Outline view - This view presents the XSL file in a tree structure as shown in 
Figure 10-36 on page 486.

� Properties view - This view allows you to view and edit the attributes of the 
selected node, as shown in Figure 10-36 on page 486.

� Snippets view - This view allows you add in commonly used code. Different 
categorizations of code can be seen in Figure 10-37 on page 486.
 Chapter 10. Develop XML applications 485



Figure 10-36   The Outline and Properties views of the XSL file

Figure 10-37   The Snippets view

To add code snippets to a selected XSL file, do the following:

1. Switch to the Web perspective.

2. Double-click BasicAccountTable.xsl.

3. In the editor view, place the cursor in between the stylesheet tags, as show in 
Figure 10-38 on page 487.

4. In the Snippets view, select the XSL bar to show the XSL snippets, as shown 
in Figure 10-37.

5. Double-click Default HTML header. This will add the default HTML header 
information into the BasicAccountTable.xsl file.

6. Remove <xsl:apply-templates />, and leave the cursor in its place.
486 Rational Application Developer V6 Programming Guide



7. Double-click HTML table in XSL. The XSL table wizard will be displayed, as 
shown in Figure 10-39.

8. Select the content node of ACCOUNT. Select the Include header check box 
and then click Next.

9. Enter 1 into the Border field and 1 into the Cellspacing field, and then click 
Finish.

Figure 10-38   XSL editor with new xml file

Figure 10-39   XSL table wizard
 Chapter 10. Develop XML applications 487



Figure 10-40   XSL Table wizard attributes

A sample of the generated snippet is shown in Example 10-8. The snippet may 
not be formatted correctly. To format the XSL file, right-click the source editor and 
select Format → Document.

Example 10-8   The BasicAccountTable.xsl file

<?xml version="1.0" encoding="UTF-8"?>
<xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform"

version="1.0" xmlns:xalan="http://xml.apache.org/xslt">
<xsl:output method="html" encoding="UTF-8" />
<xsl:template match="/">

<html>
<head>

<title>Untitled</title>
</head>
<body>

<table border="1" cellspacing="1">
<tr>

<th>ACCT_ID</th>
488 Rational Application Developer V6 Programming Guide



<th>ACCT_TYPE</th>
<th>BALANCE</th>
<th>DISCRIMINATOR</th>
<th>INTEREST</th>
<th>OVERDRAFT</th>
<th>MIN_AMOUNT</th>

</tr>
<xsl:for-each select="/ACCOUNT_TABLE/ACCOUNT">

<tr>
<td>

<xsl:value-of select="ACCT_ID" />
</td>
<td>

<xsl:value-of select="ACCT_TYPE" />
</td>
<td>

<xsl:value-of select="BALANCE" />
</td>
<td>

<xsl:value-of select="DISCRIMINATOR" />
</td>
<td>

<xsl:value-of select="INTEREST" />
</td>
<td>

<xsl:value-of select="OVERDRAFT" />
</td>
<td>

<xsl:value-of select="MIN_AMOUNT" />
</td>

</tr>
</xsl:for-each>

</table>

</body>
</html>

</xsl:template>

</xsl:stylesheet>

Validate an XSL file
To validate the XMl schema file, do the following:

1. Switch to the Web perspective.

2. Right-click the BasicAccountTable.xsl file in the Navigator view.

3. In the context menu select Validate XML Schema.
 Chapter 10. Develop XML applications 489



If the file that you are trying to validate contains unsaved information you will 
be prompted to save the file before validation. If you select No it will validate 
the previously saved version.

If validation was successful you will be presented with a pop-up window 
stating that validation was successful.

If validation was not successful you will be presented with a pop-up window 
stating that validation has failed. The source editor will also have a red cross 
next to the line that failed (see Figure 10-41), and the problem view will also 
have an entry with a reason why the validation failed (see Figure 10-42 on 
page 491).

Figure 10-41   XSL error in the source editor
490 Rational Application Developer V6 Programming Guide



Figure 10-42   XSL Problem view

10.2.6  Transform an XML file
XML files can be transformed into other XML files, HTML files, or text files 
through the use of XSL files. 

When moving from DTD to XML schema you will need a means of migrating your 
existing XML documents base on DTDs across to XML schemas. This can be 
done using XSLT. 

IBM Rational Application Developer V6.0 offers an XML-to-XML mapping 
function that will perform this task for you. 

Transform an XML file
To transform an XML file, do the following:

1. Switch to the Web perspective.

2. Select File → New → Other.

3. Expand the XML folder.

a. If the XML folder is not listed, check the Show All check box.
b. You may be asked to confirm enablement of XML Development. Click OK.

4. Select XML To XML Mapping and then click Next.

5. Select the folder in which you wish to place the new XML file.

6. Enter the file name xmlmap.xmx.

7. Select the AccountTable.dtd file and click the > button.

8. Click Next.

9. Select the AccountTable.xsd file and click Next.
 Chapter 10. Develop XML applications 491



10.Select the ACCOUNT_TABLE as the root element and click Finish.

Figure 10-43   XML-to-XML Mapping view

To map the node in the DTD to the XML schema, select the un-mapped node 
and drag it from the left pane to the corresponding node in the right pane. 
Mapped nodes are indicated by the arrows next to the node; also, the node will 
appear in the table as shown in Figure 10-43. 

After you have mapped the element from the DTD to the XSD file, you need to 
create an XSLT file.

Create an XSLT file
To create an XSLT file, do the following:

1. Right-click the xmlmap.xmx file and select Generate XSLT .... This will 
display the Generate XSLT Script dialog, as shown in the Figure 10-44 on 
page 493. 

2. Enter the file name xmlmap.xsl, and click the Finish button.
492 Rational Application Developer V6 Programming Guide



Figure 10-44   The Generate XSLT Script dialog

Debug an XSLT file
To debug the XSL file, do the following:

1. Switch to the Web perspective.

2. Right-click the xmlmap.xmx file.

3. Select Debug → Debug.

4. When the Debug dialog is displayed (as shown in Figure 10-45 on page 494), 
do the following:

a. Enter xmlmap in the Name field. This will be used to identify this debugging 
session preferences so that you do not have to configure asession each 
time you want to debug the XSL file. You will see the name appear in the 
configuration list box.

b. Enter xmlmap.xsl in the Source XSL file field, as this is the generated 
XSLT file for the XMX file.

c. Enter AccountTableFromDTD.xml in the Source XML file. As you can see in 
Figure 10-45 on page 494, the XML input only has single enabled. This is 
 Chapter 10. Develop XML applications 493



because you can only debug using one XML file at time; however, you can 
process more than one file when you run the XSL file.

d. Click the Debug button. 

5. You may be asked to confirm a perspective switch, as shown inFigure 10-46 
on page 495. Click the Yes button to proceed.

6. The Debug perspective will be displayed as shown in Figure 10-47 on 
page 496.

Figure 10-45   Debug dialog
494 Rational Application Developer V6 Programming Guide



Figure 10-46   Confirm Perspective Switch dialog

The Debugging perspective is shown in Figure 10-47 on page 496. You can 
use the Debug view to step through the XSL file. The XSL file that is being 
debugged, as well as the source XML file that is being transformed, is also 
displayed. The end result is displayed in the output view.
 Chapter 10. Develop XML applications 495



Figure 10-47   Debug perspective

10.2.7  Java code generation
IBM Rational Application Developer V6.0 includes some Java code generation 
tools. These tools allow you to create Java code based on an XML schema file.

Generate Java classes
IBM Rational Application Developer V6.0 allows you to generate Service Data 
Object classes from a XML schema file. 

To generate SDO classes, do the following:

1. Switch to the Web perspective.
496 Rational Application Developer V6 Programming Guide



2. Right-click the AccountTable.xsd file in the Navigator view.

3. Select Generate → Java.

4. When the Generate Java dialog is displayed (as shown in Figure 10-48), 
select the SDO Generator, and in the Container field enter 
/BankXMLWeb/JavaSource.

5. Click Finish.

6. The Java code will be generated in the JavaSource folder with the package 
name as defined by the target namespace.

Figure 10-48   Java SDO classes generator

10.3  Where to find more information
In the IBM Redbook The XML Files: Development of XML/XSL Applications 
Using WebSphere Studio Version 5, SG24-6586, more detailed information is 
provided regarding developing XML/XSL applications using Application 
Developer. That book also contains examples using Application Developer 
Version 5.
 Chapter 10. Develop XML applications 497



For more information on XML schemas refer to:

http://www.w3.org/XML/Schema

For more information on XML refer to:

http://www.w3.org/XML/

For more information on XML parsers refer to:

� Xerces (XML parser - Apache)

http://xml.apache.org/xerces2-j

� Xalan (XSLT processor - Apache)

http://xml.apache.org/xalan-j

� JAXP (XML parser - Sun)

http://java.sun.com/xml/jaxp

� SAX2 (XML API)

http://sax.sourceforge.net
498 Rational Application Developer V6 Programming Guide

http://www.w3.org/XML/Schema
http://www.w3.org/XML/
http://xml.apache.org/xerces2-j
http://xml.apache.org/xalan-j
http://java.sun.com/xml/jaxp
http://sax.sourceforge.net


Chapter 11. Develop Web applications 
using JSPs and servlets

There are many technologies available for developing Web applications. In this 
chapter, we focus on developing dynamic Web applications using JavaServer 
Pages (JSPs) and Java Servlet technology, and static Web sites using HTML.

The chapter is designed to guide the reader through the features of Application 
Developer used in the creation of Web applications. First, we introduce the ITSO 
Bank sample application and create a new Web Project to hold our example 
application. Next, we add static and dynamic content using wizards and tools 
such as Page Designer. Finally, we provide examples for working with filters and 
listeners, and creating a Web page from JavaBeans.

The chapter is organized into the following sections:

� Introduction to Web applications
� Web development tooling
� Prepare for the sample
� Define the site navigation and appearance
� Develop the static Web resources
� Develop the dynamic Web resources
� Test the application

11
© Copyright IBM Corp. 2005. All rights reserved. 499



11.1  Introduction to Web applications
There are many Web development technologies as well as tools included in 
Rational Application Developer. In this chapter we do not discuss Struts, JSF, 
EGL, or portals, since these Web application topics are covered in other 
chapters. Our focus in this chapter is on developing dynamic Web applications 
using JavaServer Pages (JSPs) and Java Servlet technology, and static Web 
sites using HTML with the tooling included with Rational Application Developer.

11.1.1  Concepts and technologies
This section provides an overview of the concepts and technolgy used by J2EE 
Web applications. 

Static and dynamic Web application technologies
For an overview on the concepts and techologies used to develop static Web 
sites and dynamic Web applications refer to the following:

� “Static Web sites” on page 39
� “Dynamic Web applications” on page 43

Enterprise application
An enterprise application project contains the hierarchy of resources that are 
required to deploy an enterprise (J2EE) application. It can contain a combination 
of Web modules, EJB modules, JAR files, and application client modules. It 
includes a deployment descriptor and an IBM extension document, as well as 
files that are common to all J2EE modules that are defined in the deployment 
descriptor. It can contain a complete application that may be a combination of 
multiple modules. Enterprise applications make it easier to deploy and maintain 
code at the level of a complete application instead of as individual pieces. 

There are a few methods to create an Enterprise Application:

� Create a New Enterprise Application wizard. This wizard can by started by 
selecting File → New → Project. Select J2EE → Enterprise Application. 

� Create the enterprise application as part of creating a new Web Project. This 
is the method we will use for our sample.

� Create an enterprise application using the Import wizard. If you are importing 
a Web Project, you can create an enterprise application via the Import wizard.

Enterprise Application projects are exported as enterprise archive (EAR) files 
that include all files defined in the enterprise application project as well as the 
appropriate module archive file for each J2EE module project defined in the 
deployment descriptor, such as Web archive (WAR) files and EJB JAR files.
500 Rational Application Developer V6 Programming Guide



An enterprise application may contain JAR files to be used by the contained 
modules. This allows sharing of code at the application level by multiple Web or 
EJB modules. 

The enterprise application deployment descriptor contains information about the 
components that make up the enterprise application. This deployment descriptor 
is called application.xml and is located under the META-INF directory. 

Web application
The Java Servlet Specification 2.4 and the J2EE specification contain the 
concept of a Web application. A Web application contains JavaServer Pages, 
servlets, applets, Java classes, HTML files, graphics, and descriptive meta 
information that connects all these elements. The format is standardized and 
compatible between multiple vendors.

The specification also defines a hierarchical structure for the contents of a Web 
application that can be used for deployment and packaging purposes. Many 
servlet containers, including the one provided by Express Application Server, 
support this structure.

Any Web resource can be included in a Web application, including the following: 

� Servlets and JavaServer Pages.

� Utility classes: Standard Java classes may be packaged in a Java archive 
(JAR) file. JAR is a standard platform-independent file format for aggregating 
files (mainly Java classes files).

� Static documents: HTML files, images, sounds, videos, etc. This term 
includes all the documents a Web server is able to handle and to provide to 
client requests.

� Client-side applets, beans, and classes.

� Descriptive meta information, which ties all of the above elements together.

� Custom Tag Libraries.

� Struts.

� XML files.

� Web Services.

The directory structure for a Web application requires the existence of a 
WEB-INF directory. This directory contains Java and support classes that 
contain application logic. Access to these resources is controlled through the 
servlet container, within the application server.
 Chapter 11. Develop Web applications using JSPs and servlets 501



Figure 11-1 shows an example of a typical directory structure under the 
WEB-INF directory.

Figure 11-1   The WEB-INF directory: A sample structure

The required elements are:

� web.xml: This file is required and is the deployment descriptor for the Web 
application.

� lib: This directory is required and is used to store all the Java classes used in 
the application. This directory will typically contain JAR files, including tag 
libraries. 

� classes: This directory is also required. Typically, servlet classes and utility 
classes for the servlets compose this directory. It is possible to keep a 
package structure in this directory and to put class files under several 
subdirectories of the classes directory (as it is done for the Servlet2.class file 
in the subdirectory mypackage in Figure 11-1).

Although there are no other requirements for the directory structure of a Web 
application, we recommend that you organize the resources in separate logical 
directories for easy management (for example, an images folder to contain all 
graphics).

As with the enterprise application, a deployment descriptor exists for the Web 
application. The Web deployment descriptor, web.xml, contains elements that 
describe how to deploy the Web application and its contents to the servlet 
container within the Web server. Note that JSPs execute as servlets and are 
treated as such in the Web deployment desciptor. 

lib

WEB-INF

classes

Servlet1.class

web.xml

myjar.jar mypackage

Servlet3.classServlet2.class
502 Rational Application Developer V6 Programming Guide



The deployment descriptor file enables the application configuration to be 
specified independently from the server. It clearly simplifies the deployment 
process because the same application can be deployed into different servers 
without having to review its content.

11.1.2  Model-view-controller (MVC) pattern
The model-view-controller architectural pattern was conceived in the mid-1980's. 
It has since then been extensively applied in most object-oriented user interfaces 
and has been improved to respond to specific platform requirements, such as 
J2EE. It has also been generalized as a pattern for implementing the separation 
of concerns among application layers in general, and not only the three originally 
proposed layers.

Following the MVC pattern, a software component (application or module) should 
separate its business logic (model) from its presentation (view). There are many 
reasons for this requirement, such as:

� More than one view of the same model: If both the business logic and its 
presentation were built together, adding an additional view would cause 
considerable disruptions and increase the component's complexity. A good 
example of a model with two views would be a banking application that can 
be accessed by traditional Web browser clients and mobile phones.

� Avoid model dependence on the view: You do not want to have to change the 
model every time you modify the view. The view is definitely dependent on 
the model, since it presents specific aspects of the model to the user. It 
makes no sense to have the model depend on the view. Building both 
together dramatically increases the chances of this happening, and the need 
to change the model every time you implement a small change to the view.

This separation can be achieved through the layering of the component into:

� Model layer: This layer is responsible for implementing the business logic. 

� View layer: The view layer is responsible for rendering the user interface (be it 
graphical or not) to a specific client type and in a specific fashion.

With these two layers, we can implement the business logic and present it to the 
user. That solves only half of the problem. We would also like to be able to 
interact with the model. The implementation of this interaction is better left to a 
third layer, called the controller.

Model
The model layer manages the application domain’s concepts, both behavior and 
state. It responds to requests for information about its state and responds to 
instructions to change its state.
 Chapter 11. Develop Web applications using JSPs and servlets 503



Just like any software component, the model should have a well-defined and an 
as simple as possible public interface. This is usually achieved through the use 
of a facade. The intent of facades is to provide a simple and unified interface to 
the otherwise complex model that lies behind it. By doing so, we reduce the 
dependencies between the model classes and its clients. Less dependencies 
mean more freedom to adapt to new requirements.

Figure 11-2 shows the model layer with its encapsulated business domain 
objects and the exposed facade object. Note that the model does not have any 
dependences on views or controllers.

Figure 11-2   Model layer

View
The view layer implements a rendering of the model. The responsibility of the 
view is to know what parts of the model’s state are relevant for the user, and to 
query the model for that information. The view retrieves the data from the model 
or receives it from the controller, and displays it to the user in a way the user 
expects to see it.

Controller
The controller’s responsibility is to capture user events and to determine which 
actions each of these events imply, depending on both the user’s and the 
application’s state. This usually involves verifying pre and post conditions. These 

Note: For more detailed information on the facade design pattern, we 
recommend reading Design Patterns, Elements of Reusable Object-Oriented 
Software, Eric Gamma, et al.

Model

Facade
504 Rational Application Developer V6 Programming Guide



actions can then be translated to messages to the model and view layers, as 
appropriate.

Dependencies between MVC layers
Figure 11-3 shows the dependencies allowed in the MVC pattern. Note that the 
less dependencies your layers have, the easier it will be for the layers to respond 
to requirement changes.

Figure 11-3   Dependencies allowed in the MVC pattern

As we go through this chapter and other Web application development chapters, 
we will explore how the MVC pattern is implemented by the various technologies.

11.2  Web development tooling
Rational Application Developer includes many Web development tools for 
buidling static and dynamic Web applications. In this section, we highlight the 
following tools and features:

� Web perspective and views
� Web Projects
� Web Site Designer
� Page Designer
� Page templates
� CSS Designer
� Javascript Editor
� WebArt Designer
� AnimatedGif Designer
� File creation wizards

A B   <=> A  depends on  B  

Controller View

Model
 Chapter 11. Develop Web applications using JSPs and servlets 505



These tools, as well as other tool,s will be further illustrated in the examples 
found throughout this chapter.

11.2.1  Web perspective and views
Web developers can use the Web perspective and supporting views within 
Rational Application Developer to build and edit Web resources, such as 
servlets, JSPs, HTML pages, style sheets, and images, as well as the 
deployment descriptor files.

The Web perspective can be opened by selecting Window → Open 
Perspective → Web from the Workbench. Figure 11-4 displays the default 
layout of the Web perspective with a simple home.html open.

Figure 11-4   Web perspective

As you can see in Figure 11-5, there are many Web perspective views accessible 
by selecting Window → Show View, many of which are already open in the Web 
perspective default setting.
506 Rational Application Developer V6 Programming Guide



Figure 11-5   Web perspective views

11.2.2  Web Projects
In Application Developer, you create and maintain Web resources in Web 
Projects. They provide an environment that enables you to perform activities 
such as link-checking, building, testing, and publishing. Within a Web Project, 
Web resources can be treated as a portable, cohesive unit.

Web Projects can be static or dynamic. Static Web Projects are comprised solely 
of static resources, which can be served by a traditional HTTP server (HTML 
files, images, etc.), and are useful for when you do not have to program any 
business logic. J2EE Web Projects, on the other hand, may deliver dynamic 
content as well, which gives them the ability to define Web applications.

A Web application contains components that work together to realize some 
business requirements. It might be self-contained, or access external data and 

Note: For more information on the Web perspective and views, refer to 4.2.14, 
“Web perspective” on page 162.
 Chapter 11. Develop Web applications using JSPs and servlets 507



functions, as it is usually the case. It is comprised of one or more related servlets, 
JavaServer Pages, and regular static content, and managed as a unit.

11.2.3  Web Site Designer
The Web Site Designer is provided to simplify and speed up the creation of the 
Web site navigation and creation of HTML and JSP pages. You can view the 
Web site in a Navigation view to add new pages, delete pages, and move pages 
in the site. The Web Site Designer is especially suited for building pages that use 
a page template. 

The Web Site Designer is used to create the structure for your application in 
much the same way you would create a book outline to serve as the basis for 
writing a book. You use the Web Site Designer to visually lay out the flow of the 
application, rearranging the elements (JSPs, HTML pages) until it fits your 
needs. Then you continue by creating pages based on this design.

As you build your Web site design, the information is stored in the 
website-config.xml file so that navigation links and site maps can be generated 
automatically. This means that when the structure of a site changes, for example, 
when a new page is added, the navigation links are automatically regenerated to 
reflect the new Web site structure. 

The Web Site Designer can be used with existing or new projects. To create a 
Web site configuration for a Web Project that does not currently have one, there 
is an option present on the context menu of the Web Project, Convert to Web 
Site in the Web perspective. The site can be easily constructed from site parts 
found in the Palette. The site parts represent parts for navigation bars, navigation 
menus, page trails (history), even a site map. Each site part will derive its layout 
from information present in the Web site configuration file.

To launch the Web Site Designer, double-click Web Site Navigation found in the 
root of your Web Project folder. Figure 11-6 on page 509 displays the sample 
ITSO Bank Web site navigation and pages in Web Site Designer.

Note: For detailed example on creating a Web Project refer to 11.3.2, “Create 
a Web Project” on page 517.
508 Rational Application Developer V6 Programming Guide



Figure 11-6   Web Site Designer

11.2.4  Page Designer
Page Designer is the primary editor for developing HTML, XHTML, JSPs, and 
Faces JSP source code. It has three representations of the page, including 
Design, Source, and Preview. The Design tab provides a WYSIWYG 
environment to visually design the contents of the page. As its name implies, the 

Note: For a detailed example of using the Web Site Designer refer to 11.4, 
“Define the site navigation and appearance” on page 524.
 Chapter 11. Develop Web applications using JSPs and servlets 509



Source tab provides access to the page source code. The Preview tab shows 
what the page would like if displayed in a Web browser. 

We have listed the key new features of Page Designer in IBM Rational 
Application Developer V6.0:

� Bidirectional language support (full support on Windows, limited support on 
Linux)

� Usability Enhancements:

– Embedded document (JSP Include) support
– New Properties view
– Changed visual cue for read only content areas
– Improved “drag and drop” functionality in free layout mode
– Improved cell editing functionality
– Free layout mode improved

11.2.5  Page templates
A page template contains common areas that you want to appear on all pages, 
and content areas that will be unique on the page. They are used to provide a 
common look and feel for a Web Project. 

The Page Template File creation wizard is used to create the file. Once created 
the file is modified in the Page Designer. The page templates are stored as *.htpl 
for HTML pages and *.jtpl files for JSP pages. Changes to the page template will 
be reflected in pages that use that template. Templates can be applied to 
individual pages, groups of pages, or applied to an entire Web Project. Areas can 
be marked as read-only; thus Page Designer will not allow the user to modify 
those areas.

Note: For a detailed example of using the Page Designer refer to 11.6, 
“Develop the dynamic Web resources” on page 549.

Note: For examples on creating, customizing, and applying page template, 
refer to the following:

� “Create a new page template” on page 526
� “Customize a page template” on page 531
510 Rational Application Developer V6 Programming Guide



11.2.6  CSS Designer
Style sheets can be created when you create the Web Project, or they can be 
added later. It is a good idea to decide on the overall theme (color, fonts, etc.) for 
your Web application in the beginning and create the style sheet at the start of 
the development effort. Then as you create the HTML and JSP files, you can 
select that style sheet to ensure that the look of the Web pages will be 
consistent. Style sheets are commonly kept in the WebContent/theme folder.

The CSS Designer is used to modify cascading style sheet *.css files. The 
changes are immediately applied to the Design page in Page Designer, if the 
HTML file is linked to the CSS file. 

11.2.7  Javascript Editor
The Javascript Editor provides a Source page and Preview page to enable you to 
work with source files and view them as if in a Web browser. The Snippets 
palette includes Javascript code that you can drag and drop into your Web 
pages.

11.2.8  WebArt Designer
WebArt Designer is a program that can be used to create and edit image files. 
Using WebArt Designer, you can create shape objects, draw a simple map, as 
well as create logos and buttons often seen on Web pages. The Page Designer 
also enables you to edit GIF and JPEG images, but WebArt Designer offers a 
much richer set of functionality for editing images.

11.2.9  AnimatedGif Designer
An animated GIF is a series of image files in GIF format, displayed sequentially 
to give the appearance of an animation. You can insert an animated GIF into a 
page in the same way as a regular GIF image file. Animated GIFs can be viewed 
on a regular Web browser without any special plug-ins.

The AnimatedGif Designer is a program for creating animated GIF files, and 
comes with a gallery of predefined animation files. With the AnimatedGif 
Designer, you can:

� Combine several images to create an animation.
� Apply an animation effect on a single image to create an animation.

Note: An example of customizing style sheets used by a page template can 
be found in 11.4.4, “Customize a style sheet” on page 535.
 Chapter 11. Develop Web applications using JSPs and servlets 511



� Apply an animation effect on text to create an animated banner.

The AnimatedGif Designer can be launched by clicking Tools → AnimatedGif 
Designer from the menu bar.

11.2.10  File creation wizards
Rational Application Developer provides many Web development file creation 
wizards by selecting File → New and then selecting the wizards, as seen in 
Figure 11-7.

Figure 11-7   File creation wizard selection

HTML File wizard
The HTML File wizard allows you to create an HTML file in a specified folder, 
with the option to create from a page template. In addition, the markup language 
included can be defined as type, HTML, HTML Frameset, Compact HTML, 
XHTML, XHTML Frameset, and WML 1.3.

JSP File wizard
The JSP File wizard allows you to create a JSP file in a specified folder, with the 
option to create from a page template or create as a JSP Fragement, and define 
the markup language (HTML, HTML Frameset, Compact HTML, XHTML, 
XHTML Frameset, and WML 1.3). In addition, you optionally have the ability to 
select a model (none, JSP, Struts Portlet JSP, Struts JSP).
512 Rational Application Developer V6 Programming Guide



Faces JSP File wizard
This wizard is similar to the JSP File wizard in capability. It has a different set of 
models. This wizard will be covered in more detail in Chapter 13, “Develop Web 
applications using JSF and SDO” on page 673.

Page Template File wizard
The Page Template File wizard is used to create new page template files in a 
specified folder, with the option to create from a page template or create as a 
JSP Fragement, and define the markup language (HTML, HTML Frameset, 
Compact HTML, XHTML, XHTML Frameset, and WML 1.3). You can optionally 
create a new page template from an existing page template. In addition, you can 
select from one of the following models: Template contains Faces Components, 
Template containing only HTML, Template containing JSP.

Javascript File wizard
The Javascript File wizard is used to create a new Javascript file in a specified 
folder.

CSS File wizard
The CSS File wizard is used to create a new cascading style sheet (CSS) in a 
specified folder.

Image File wizard
The Image File wizard is used to create a new image files (bmp, mif, gif, png, jpg) 
in a specified folder.

11.3  Prepare for the sample
This section provides an overview of the ITSO Bank (RedBank) Web application, 
and describes the prepatory steps as a sample, such as creating a Web Project 
and importing supporting application classes.

The section is organized as as follows:

� ITSO Bank Web application overview.
� Create a Web Project.
� Import the ITSO Bank model.
 Chapter 11. Develop Web applications using JSPs and servlets 513



11.3.1  ITSO Bank Web application overview
In this section we describe the architecture for our sample ITSO Bank Web 
application, also known as RedBank. Note that the intent of this chapter is to 
introduce you to the Application Developer’s tools that make the development of 
Web applications possible. Together we will work on only a single HTML page, a 
single servlet, and a single JSP page. The rest of the application has already 
been developed and is made available to you so that you can explore it if you 
would like to.

The RedBank application was designed using the MVC architecture pattern 
introduced in 11.1.2, “Model-view-controller (MVC) pattern” on page 503. Since 
the same example is used throughout the book, you will have the opportunity to 
see how little it changes in the face of varying design constraints and evolving 
techniques. This is in fact the most important characteristic of the MVC pattern.

The following sections describe how the RedBank application implements each 
of the MVC layers, to gain a better understanding of its design and understand 
how the JSP and servlet technologies are used within the MVC pattern.

Model
The ITSO RedBank application’s business model is depicted in Figure 11-8. 

Figure 11-8   Banking model revisited

Controller
The control layer was implemented using two different strategies: One 
straightforward; and the other a little bit more complex, but more realistic. We did 
so to keep the discussion in the book simple, but still have a nice example.

The application has a total of four servlets:

� ListAccounts: Get the list of accounts for one customer.

� AccountDetails: Display the account balance and the selection of operations: 
List transactions, deposit, withdraw, and transfer.

� Logout: Invalidate the session data.

Bank MemoryBank Customer

Account TransRecord
514 Rational Application Developer V6 Programming Guide



� PerformTransaction: Perform the selected operation by calling the 
appropriate control action: ListTransactions, Deposit, Withdraw, or Transfer.

Three of the servlets, including the ListAccounts servlet that you will implement, 
fall into the first category. They work as sole controllers, without any external 
collaboration. It is easier to implement and understand them this way.

The last of the four servlets, PerformTransaction, falls into the second category. 
It acts as a front controller, simply receiving the HTTP request and passing it to 
the appropriate control action object. These objects are responsible for carrying 
out the control of the application. For a more thorough explanation of this 
strategy, and the motivation behind it, please read Chapter 12, “Develop Web 
applications using Struts” on page 615.

View
The RedBank application’s view layer is comprised of an HTML file and four JSP 
files. The application home page is the index.html. The home page allows you to 
type in the customer ID to access the customer services. There is no dynamic 
content in this page, so we use plain HTML. Note that security issues (logon and 
password) are not covered in this book. 

Off of the home page are three HTML pages (Rates.html, Insurance.html, and 
RedBank.html). Both Rates.html and Insurance.html contain plain HTML content. 
The RedBank.html, when launched, will display the customer’s accounts for 
selection.

The customer’s name and the available accounts are processed dynamically, as 
they depend on the given customer ID, so we implemented this page as a JSP. 

After selecting an account, the user can view the logged transactions or perform 
banking transactions, such as deposit, withdraw, and transfer.

The maintenance screen also shows the current account number and balance, 
both dynamic values. A simple JavaScript code controls whether the amount and 
destination account fields are available, depending on the option selected.

This is a mostly dynamic page. The user may check the transaction number, 
date, type, and amount. The color of the table rows alternate for readability 
reasons.

Note: Action objects, or commands, are part of the command design pattern. 
For more information, refer to Design Patterns: Elements of Reusable 
Object-Oriented Software.
 Chapter 11. Develop Web applications using JSPs and servlets 515



Finally, if anything goes wrong in the regular flow of events, the exception page is 
shown to inform the user of the error.

Facade
We will use a copy of the facade in the Web application. It is better to have the 
facade in the Web application to be able to access a different model that is 
implemented in another project (for example, as EJBs).

Application flow
The flow of the application is shown in Figure 11-9 on page 517:

� The view layer is comprised of four HTML files and four JSPs.

� The control layer is comprised of four servlets and four action classes. The 
PerformTransaction servlet passes control to one of the action classes.

You will implement the ListAccounts servlet.

� The model layer is comprised of the facade and four model classes. All 
interactions from the servlets and actions classes go through the facade, the 
Bank class.

The model is available in the ItsoProGuideJava project, which will be a utility 
project in the enterprise application.
516 Rational Application Developer V6 Programming Guide



Figure 11-9   ITSO RedBank application flow

11.3.2  Create a Web Project
There are two types of Web Projects availabe in Rational Application Developer, 
namely Static and Dynamic. Throughout this chapter, we create both static and 
dynamic content. Thus, we will create a dynamic Web Project since it is capable 
of supporting tasks for static and dynamic content creation.

To create a new Web Project, do the following:

1. Start Rational Application Developer.

2. Open the Web perspective by selecting Window → Open Perspective → 
Web.

3. To create a new Web Project, select File → New → Project.

4. When the New Project dialog appears, select Web → Dynamic Web Project 
(as seen in Figure 11-10 on page 518), and then click Next.

listTransactions.jsp showException.jsplistAccounts.jsp accountDetails.jsp

Index.html

Rates.html Insurance.htmlRedBank.html

ListAccounts AccountDetails PerformTransaction

Logout ListTransactions Deposit Withdraw Transfer

View

Control

Model
Bank (MemoryBank)

Customer, Account, Transaction (Credit, Debit)

Facade
 Chapter 11. Develop Web applications using JSPs and servlets 517



Figure 11-10   Create a Web Project

5. When the New Dynamic Web Project dialog appears, enter the following (as 
seen in Figure 11-11 on page 520), and then click Next:

– Name: BankBasicWeb

Most of the time, the only option you will enter is the project name. If the 
name is the only option you decide to supply, you can click Finish on this 
page.

– Click Show Advanced.

Advanced users may also want to change other options in this dialog. 

– Servlet version: Select 2.4 (default).

Version 2.3 and 2.2 are also supported.

– Target server: Select WebSphere Application Server v6.0 (default).
518 Rational Application Developer V6 Programming Guide



This option will display the supported test environments that have been 
installed. In our case, we have only installed the integrated WebSphere 
Application Server V6.0 Test Environment.

– Check Add module to an EAR project (default).

Dynamic Web Projects, such as the one we are creating, run exclusively 
within an enterprise application. For this reason, you have to either create 
a new EAR project or select an existing project.

– EAR project: BankBasicWebEAR

Since we checked Add module to an EAR project, the wizard will create a 
new EAR project using the name value from above to create <name>EAR 
as the EAR project name. 

– Context Root: BankBasicWeb

The context root defines the Web application. The context root is the root 
part of the URI under which all the application resources are going to be 
placed, and by which they will be later referenced. It is also the top level 
directory for your Web application when it is deployed to an application 
server. 

Context roots are case-sensitive, as are all the Java URLs. Many 
developers like to make their context root all lowercase in order to facilitate 
the manual entering of URLs. The context root you select must be unique 
among all Web modules within the same application server cell. 
Application Developer’s default is to use the project’s name as the context 
root.

– Add support for annotated Java classes: In our example, we did not check 
this option. 

Annotation-based programming can be used to speed up application 
development by reducing the number of artifacts that you need to develop 
and manage on your own. By adding metadata tags to the Java code, the 
WebSphere Rapid Deployment tools can automatically create and 
manage the artifacts to build a J2EE-compliant module and application.
 Chapter 11. Develop Web applications using JSPs and servlets 519



Figure 11-11   Create Dynamic Web Project settings

6. When the Dynamic Web Project - Features dialog appears, we accepted the 
default features seen in Figure 11-12 on page 521, and then clicked Next.
520 Rational Application Developer V6 Programming Guide



Figure 11-12   Dynamic Web Project Features selection

7. When the Select a Page Template for the Web Site dialog appears, we 
accepted the default, as seen in Figure 11-13 on page 522.

This dialog allows you to select from Rational Application Developer supplied 
sample page templates, or you can select your own pre-defined page 
template.
 Chapter 11. Develop Web applications using JSPs and servlets 521



Figure 11-13   Select a Page Template for the Web Site

8. Click Finish and the Dynamic Web Project will be created.

11.3.3  Web Project directory structure
The Web Project directory structure for the newly created BankBasicWeb Project 
is displayed in Figure 11-14 on page 523.
522 Rational Application Developer V6 Programming Guide



Figure 11-14   Web Project directory structure

� JavaSource: This folder contains the project’s Java source code for regular 
classes, JavaBeans, and servlets. When resources are added to a Web 
Project, they are automatically compiled, and the generated files are added to 
the WebContent\WEB-INF\classes folder. By default, the contents of the 
source directory are not packaged in exported WAR files. If you want them to 
be, you have to select the appropriate option when exporting the WAR file.

� WebContent: This folder holds the contents of the WAR file that will be 
deployed to the server. It contains all the Web resources, including compiled 
Java classes and servlets, HTML files, JSPs, and graphics needed for the 
application.

– WebContent\META-INF

Important: Any files not under WebContent are considered design time 
resources (for example, .java and .sql files), and will not be deployed when 
the project is published. Make sure that you place everything that should 
be published under the WebContent folder.
 Chapter 11. Develop Web applications using JSPs and servlets 523



This folder holds the MANIFEST.MF file, which describes the Web 
module’s external dependencies.

– WebContent\theme

Contains cascading style sheets and other style-related objects such as 
page templates.

– WebContent\WEB-INF

This directory holds the supporting Web resources for the Web module, 
including the Web deployment descriptor (web.xml), IBM WebSphere 
extensions’ descriptors (ibm-web-bnd.xmi and ibm-web-ext.xmi), and the 
classes and lib directories.

– WebContent\WEB-INF\classes

Contains the project’s Java-compiled code for regular classes, 
JavaBeans, and servlets. These are the Java classes that will be 
published to the application server and loaded at runtime. The class files 
are automatically placed in this directory when the source files from the 
JavaSource directory are compiled. Any files placed manually in this 
directory will be deleted by the Java compiler when it runs.

– WebContent\WEB-INF\lib

Contains utility JAR files that your Web module references. Any classes 
contained in these JAR files will be available to your Web module.

11.3.4  Import the ITSO Bank model
The ITSO Bank Web application requires the classes created in Chapter 7, 
“Develop Java applications” on page 221. This section describes how to import 
the BankJava.zip Project Interchange file.

1. Select File → Import.

2. When the Import dialog appears, select Project Interchange and click Next.

3. When the Import Projects dialog appears, enter 
c:\6449code\java\BankJava.zip in the From zip file field, check the 
BankJava project, and then click Finish.

11.4  Define the site navigation and appearance
In this section, we demonstrate how to define the site pages and navigation 
using the Web Site Designer. In addition, we will create a page template and 
style sheet to provide a common appearance on the site pages. The page 
template is used to define a standard page layout (header, navigation menu, 
524 Rational Application Developer V6 Programming Guide



footer, etc.), whereas a stylesheet is used by page templates to define fonts, 
colors, table formatting, etc.

This section includes the following tasks:

� Launch the Web Site Designer.
� Create a new page template.
� Create the Web site navigation and pages.
� Customize a page template.
� Customize a style sheet.

11.4.1  Launch the Web Site Designer
The Web Site Designer can be launched by clicking the Web Site Navigation file 
found in the Web Project, as follows:

1. From the Web perspective Project Explorer view, expand Dynamic Web 
Projects → BankBasicWeb.

2. Double-click Web Site Navigation, as seen in Figure 11-15.

Figure 11-15   Launch Web Site Designer

3. When the Web Site Designer opens (as seen in Figure 11-16 on page 526), 
take note of the following features.

– Navigation and Detail view: There is a Navigation view (default) and a 
Detail view used to visually design the layout of the site; and a Detail view 
used to define the structure such as ID, navigational label, file path and 
name /URL, serlet URL, page title, etc.
 Chapter 11. Develop Web applications using JSPs and servlets 525



– Palette: The Palette parts can be dragged to the Navigation page. For 
example, the New Page part can be dragged from the Palette to create a 
new page.

There is also the capability to create a New Group, which can be used to 
logically organize pages in a hiearchy grouping.

– Site template: In the Properties view, you can select a Site template to 
define the appearance of the site from a sample page template included 
with Rational Application Developer, or a user-defined page template.

Figure 11-16   Web Site Designer - Navigation view

11.4.2  Create a new page template
Page templates provide an efficient methods of creating a common layout for 
Web pages. Page templates can be created from an existing sample page 
template or be user-defined. 
526 Rational Application Developer V6 Programming Guide



The ITSO Web site user interface (view) will be made up of a combination of 
static HTML pages and dynamic JSPs. In this section we describe how to create 
a static page template (itso_html_template.htpl) and a dyanamic page template 
(itso_jsp_template.jtpl) from existing sample page templates, and then customize 
the page templates to be new user-defined templates.

We recommend that you create a page template prior to creating the pages in 
the Web Site Designer so that you can specify the page template at the time you 
create the page. 

Page templates versus style sheets
Though style sheets have not been discussed as of yet, there may be some 
confusion about page templates and style sheets. Page templates are used if 
you wish to create a standard layout for the JSP and HTML pages in your 
application. For example, you may want each page in your application to have a 
header, a navigation menu on the left side of the page, and a footer. All of these 
elements can be created in a page template and then used by the pages in your 
application; this obviously will aid in the maintenance of your application, as 
changes only need to be made in one area.

Style sheets, on the other hand, are used by page templates (or JSP and HTML 
pages) to set fonts, colors, table formatting, etc. Again, like page templates, 
maintenance is done in one area, which will save time.

Create a static page template
To create a new user-defined static page template (itso_html_template. htpl) to 
be used by the ITSO Web site HTML pages, do the following:

1. Open the Web perspective Project Explorer view.

2. Expand Dynamic Web Projects → BankBasicWeb → WebContent → 
theme. Selecting the folder in which you want to create the template before 
launching the wizard will save time entering the Folder path.

3. Select File → New → Page Template File.

4. When the New Page Template File dialog appears, we entered the following 
(as seen in Figure 11-17 on page 528), and then clicked Next:

– Folder: /BankBasicWeb/WebContent/theme

– File name: itso_html_template

Tip: The Rational Application Developer Tutorials Gallery includes a Watch 
and Learn module on Enriching Web pages with page templates. In the 
Tutorial example, the page template is created from scratch, whereas in our 
sample we created our page template from an existing sample page template.
 Chapter 11. Develop Web applications using JSPs and servlets 527



– Markup language: Select HTML.

– Check Create from page template.

– Model: Select Template containing only HTML.

Figure 11-17   New Page Template File - itso_static_template

5. When the Select a page to use when creating this file dialog appears, select 
Sample page template under Page template type, select the A-01_gray.htpl 
thumbnail representing the template (as seen in Figure 11-18 on page 529), 
and then click Finish.
528 Rational Application Developer V6 Programming Guide



Figure 11-18   Select the sample page template

6. You will see a dialog stating A page template must contain at least one 
Content Area which is later filled in by the pages that use the 
template. Click OK.

Take note of the files that have been created in the theme directory as a 
result of creating the page template from an existing sample template.

– itso_html_template.htpl: This is the new template created with references 
to the existing template it was created from (A-01_gray.htpl).

– A-01_gray.htpl: This is copy of the sample template.

– logo_gray.gif: This is the logo for the A-01_gray.htpl template.

– gray.css: This is a css file from the existing template.

– nav_head.html: This is the navigation header file.

– footer.html: This is the footer file.
 Chapter 11. Develop Web applications using JSPs and servlets 529



7. Create your own page template from the files generated.

a. Delete the itso_html_template.htpl created by the Page Template wizard.

b. Rename the A-01_gray.htpl page template copied to the theme directory 
to itso_html_template.htpl. Select the file, right-click, and select 
Refactor → Rename.

c. When prompted with Do you want to have the links to or from those 
files fixed accordingly?, click Yes.

We will later explain how to customize the itso_html_template.htpl in 
“Customize a page template” on page 531.

Create a dynamic page template
To create a new user-defined dynamic page template (itso_jsp_template.jtpl) to 
be used by the ITSO Web site JSPs, do the following:

1. Open the Web perspective Project Explorer view.

2. Expand Dynamic Web Projects → BankBasicWeb → WebContent → 
theme. Selecting the folder in which you want to create the template before 
launching the wizard will save time entering the Folder path.

3. Select File → New → Page Template File.

4. When the New Page Template File dialog appears, we entered the following 
and then clicked Next:

– Folder: /BankBasicWeb/WebContent/theme

– File name: itso_jsp_template

– Markup language: Select HTML.

– Check Create from page template.

– Model: Select Template containing JSP.

5. When the Select a page to use when creating this file dialog appears, select 
Sample page template under Page template type, select the 
JSP-A-01_gray.jtpl thumbnail representing the template, and then click 
Finish.

Note: The Page Template wizard is designed in such a way that the new 
page template created references the sample, and thus all page elements 
of the new template are read-only, including the content area of the new 
page template. This is not the desired behavior for what we wanted to do, 
so we created a hybrid procedure of creating the page template and then 
customizing it to be a user-defined page template.
530 Rational Application Developer V6 Programming Guide



6. You will see a dialog stating A page template must contain at least one 
Content Area which is later filled in by the pages that use the 
template. Click OK.

Take note of the files that have been created in the theme directory as a 
result of creating the page template from an existing template.

– itso_jsp_template.jtpl: This is the new template created with references to 
the existing template it was created from (JSP-A-01_gray.jtpl).

– JSP-A-01_gray.jtpl: This is copy of the sample template.

– logo_gray.gif: This is the logo for the JSP-A-01_gray.jtpl template.

– gray.css: This is a css file from the existing template.

– nav_head.jsp: This is the navigation header JSP include file.

– footer.jsp: This is the footer JSP include file.

7. Create your own page template from the files generated.

a. Delete the itso_html_template.jtpl.

b. Rename the JSP-A-01_gray.jtpl page template copied to the theme 
directory to itso_jsp_template.jtpl. Select the file, right-click, and select 
Refactor → Rename.

c. When prompted with Do you want to have the links to or from those 
files fixed accordingly?, click Yes.

We will later explain how to customize the itso_jsp_template.jtpl in 11.4.3, 
“Customize a page template” on page 531.

11.4.3  Customize a page template
This section describes how to make some common page template 
customizations, such as modifying the layout of the header, navigation, and 
footer, as well as adding a company logo image.

Note: The Page Template wizard is designed in such a way that the new 
page template created references the sample, and thus all page elements 
of the new template are read-only, including the content area of the new 
page template. This is not the desired behavior for what we wanted to do, 
so we created a hybrid procedure of creating the page template and then 
customizing it to be a user-defined page template.
 Chapter 11. Develop Web applications using JSPs and servlets 531



Customize the static page template
In this section, we describe how to customize the following elements of the static 
page template (itso_html_template.htpl) created in “Create a static page 
template” on page 527:

� Customize the logo and title.
� Insert links on the navigation bar.
� Insert the content area.

Customize the logo and title
Modify the page template to include the ITSO logo image and ITSO RedBank 
title. In order to modify the logo displayed in itso_static_template.htpl, we must 
really update the image in the A_gray.htpl that is referenced.

1. Import the itso_logo.gif image.

a. Expand Dynamic Web Projects → BankBasicWeb → WebContent. 

b. Right-click the theme folder, and select File → Import.

c. Select File System and click Next.

d. Enter c:\6449code\web in the From directory, check itso_logo.gif, and 
then click Finish.

2. Double-click itso_static_template.htpl to open the file.

3. You may see the message A page template must contain at least one 
Content Area which is later filled in by the pages that use the 
template. Click OK.

4. Click the Design tab.

5. Double-click the oval logo image at the top of the page template in the Design 
view.

6. Click the Source tab. The source with the image should be highlighted in the 
editor.

7. Modify the source for the following, as seen in Example 11-1:

– Change the image file name from logo_gray.gif to itso_logo.gif.

– Change the <td width to 70 (original 150), change the itso_logo.gif <img 
width to 60 (original 150), and change the height to 50 (original 55).

– Add ITSO RedBank as an <H1.

Example 11-1   Modified itso_html_template.htpl for itso_logo.gif and title

<tr>
   <td width="70"><img border="0" width="60" height="50" alt="Company's LOGO" 
src="/BankBasicWeb/theme/itso_logo.gif"></td>
   <td><H1>ITSO <Font color="red">RedBank</Font></H1></td>
532 Rational Application Developer V6 Programming Guide



</tr>

8. Save the itso_html_template.htpl file.

9. Verify that the page template looks as desired by clicking the Preview view.

Insert links on the navigation bar
The navigation bar is a set of links to other Web pages, displayed as a horizontal 
or vertical bar, in a Web site. The navigation bar typically includes links to the 
home page and other top-level pages. It is beneficial to insert navigation bars 
(links) in a page template, rather than adding to each individual page. 

In our example, we created our page template from a sample page template that 
included a navigation bar that displays links for the children of the top page 
(index.html). 

Rational Application Developer makes adding a navigation bar very easy. Simply 
drag and drop the Horizontal or Vertical bar, found under the Web Site 
Navigation parts Palette, to the page. You can then select the type from sample 
or user-defined thumbnails representing the bar type.

It is also easily add files or URLs using the Insert → Link toolbar option, 
pressing Ctrl+Q, or dragging and droping the Link icon from the Palette. The 
types of links you can choose from include file, http, FTP, e-mail, or other. 

Insert the content area
If you have created a page template from a sample page template, you need to 
ensure that a content area exists in the page template, which is used to display 
the unique content on a page. In our sample we do have a content area that was 
defined as part of creating the page template.

Insert a free table layout into the content area
Free layout tables create tables and cells for you automatically so that you can 
freely place objects on the page. In our example, we chose to add the free table 
layout to the page template to provide a starting point for adding unique content 
to the pages.

Note: If you need to add a new content area to a page template, do the 
following:

1. Select the Page Template drawer on the Palette and drag Content Area 
from the Palette to the desired location on the page template.

2. When the Insert Content Area for Page Template dialog appears, enter 
itso_html_content and then click OK.
 Chapter 11. Develop Web applications using JSPs and servlets 533



1. You will notice that the only part of the page that is not read-only is the 
content area marked Place your page content here. Select the text in the 
content area and delete it.

2. Select the content area, right-click, and select Layout Mode → Free Layout.

3. Expand HTML Tags from the Palette.

4. Drag the free layout table to the content area.

5. Drag the corner of the free layout table to increase the size. For example, we 
increased the width to match the width of the navigation bar, and increased 
the height to 300 in the Properties view, as seen in Figure 11-19.

Figure 11-19   Customizing the itso_html_template.htpl

Customize the dynamic page template
The customization of the dynamic page template is virtually identical to that of 
the static page template for our example. 
534 Rational Application Developer V6 Programming Guide



1. Double-click the itso_jsp_template.jhtpl file. Modify the page as described 
in “Customize the static page template” on page 532.

2. Disable the display of sibling pages on the footer.

In the case of the dyanamic page template, we want to turn off the display of 
sibling pages on the footer.

a. Double-click the itso_jsp_template.jtpl file to open in Page Designer.

b. Click the Design tab.

c. Right-click in the page, and select Layout Mode → Standard.

d. Select the icon at the bottom of the page in the footer. 

e. Click Link Destination in the Properties view.

f. Uncheck Sibling pages, and check Top page.

g. Save the page template file.

Methods of applying a page template to a page
Page templates can be applied to a Web page in one of the following ways:

� By specifying the template when you use a wizard to create the page. This is 
true regardless of whether you are using the wizard from a navigation view, a 
tool bar, or the Web Site Designer.

� By using the Web Site Designer. You can apply a template as you create 
pages or to existing pages as you add them to the Web Site Configuration. 
You can also apply or replace templates to pages already in the configuration. 

� By using the Page Designer. With the page open, select Page → Page 
Template. You can apply, replace, or detach the template. You also have the 
option of opening the template for modification.

A default page template can be specified when you create a Web Project. If you 
specify a default template, it will be automatically selected when given the option 
in wizards to select a template for a page.

11.4.4  Customize a style sheet
Style sheets can be created when a Web Project is created, when a page 
template is created from a sample, or at any time by launching CCS File creation 
wizard. In our example, we created a style sheet named gray.css as part of the 
process of creating a page template from a sample. Both the static 
(itso_html_template.htpl) and dynamic (itso_jsp_template.jhtpl) reference the 
gray.css as desired to have a common appearance of fonts and colors for the 
pages.
 Chapter 11. Develop Web applications using JSPs and servlets 535



In the following example we customize the colors used for the navigation bar 
links, and supporting variations such as hover links. By default the link text in the 
navigation bar is orange (cc6600). We will customize this to be red (FF0000). To 
find the hexadecimal HTML color code, we suggest you do an Internet search.

To customize the gray.css style sheet, do the following:

1. Expand Dynamic Web Projects → BasicBankWeb → WebContent → 
theme.

2. Double-click the gray.css file to open in the CSS Designer.

The CSS Designer will appear as seen in Figure 11-20. By selecting the 
source in the right-hand window, the text in the left-hand window will become 
highlighted and display, for example, the font and color. This makes it easy to 
change the settings and see the change immediately.
536 Rational Application Developer V6 Programming Guide



Figure 11-20   CSS Designer - Example gray.css

3. Customize the header highlighted link text.

a. Move to the source view (right-hand window), and scroll down until you 
find .nav-h-highlighted. We found this by first double-clicking the area 
we wanted to change in the Design view for the page template, and then 
looking at the source. 

b. Customize the Hex HTML color code for all nav-h-highlighted entries from 
color: #cc6600; (orange) to color: #FF0000; (red).

4. Customize the footer highlighted link text.

a. Move to the source view (right-hand window), and scroll down until you 
find .nav-f-highlighted. We found this by first double-clicking the area 
 Chapter 11. Develop Web applications using JSPs and servlets 537



we wanted to change in the Design view for the page template, and then 
looking at the source. 

b. Customize the Hex HTML color code for all nav-h-highlighted entries from 
color: #cc6600; (orange) to color: #FF0000; (red).

5. Save the gray.css file (press Ctrl+S).

11.4.5  Create the Web site navigation and pages
In this section, we use the Web Site Designer to visually construct the page 
navigation and page skeletons for the ITSO Bank Web site. In later sections, we 
add the content for these pages.

We will create the navigation pages and corresponding HTML or JSP page for 
each of the following:

� itsohome (index.html)
� Loans (loans.html)
� Insurance (insurance.html)
� RedBank (bank.html)
� listaccounts (listAccounts.jsp)
� accountdetails (accountDetails.jsp)
� listtransactions (listTransactions.jsp)
� showexception (showException.jsp)

To define the site navigation, as well as create the HTML and JSP page 
skeletons, do the following in the Web Site Designer:

1. If you have not already done so, launch the Web Site Desinger.

For details refer to 11.4.1, “Launch the Web Site Designer” on page 525.

2. Create the root static navigation page.

We will use the itsohome navigation and corresponding index.html as an 
example by which the other static pages listed above should be created.

a. Select New Page from the Palette and drag it to the Navigation page.

b. After the New Page was added, notice you can type the navigation label in 
the Navigation page or in the Properties view under Navigation label. We 
entered itsohome.

c. Save the Navigation page (press Ctrl+S).

d. Double-click the itsohome navigation page to create the corresponding 
HTML file associated with the navigation page.

e. When the Create a page dialog appears, select HTML and click OK.
538 Rational Application Developer V6 Programming Guide



f. When the HTML File location dialog appears, we entered the following (as 
seen in Figure 11-21), and then clicked Next:

• Folder: /BankBasicWeb/WebContent

• File name: index.html

By default a Web Project will look for index.html (or index.html) when 
the project is run on server. Although this behavior can be changed, we 
recommend that you use index.html as the top level page name.

• Markup language: Select HTML.

• Options: Check Create from page template.

Figure 11-21   Create the itsohome - index.html page

g. When the Specify a Page Template dialog appears, select User-defined 
page template, select the itso_html_template.htpl (as seen in 
Figure 11-22 on page 540), and then click Finish.

Note: When the page is created, the page is set as a navigation candidate 
by default. The top most page (for example, itsohome index.html) should 
be set as the Navigation root by selecting the page, right-clicking, and 
selecting Navigation → Set Navigation Root.

Also, pages are set by default as map cadidates. This feature is a toggle. If 
you want to change the page to not be visiable in the site map, select the 
page, right-click, and select Site Map → Site Map.
 Chapter 11. Develop Web applications using JSPs and servlets 539



Figure 11-22   Specify a Page Template

3. Define the navigation root.

In our example, itsohome (index.html) is the Navigation root. By default, 
when a page is created it is set as a Navigation candidate, which is the 
desired format for all other pages.

To enable itsohome (index.html) as the Navigation root, select itsohome, 
right-click, and select Navigation → Set Navigation Root. 

4. Add the following static pages as children of itsohome.

– loans (loans.html)
– redbank (redbank.html)
– insurance (insurance.html)

a. Select itsohome, right-click, and select Add New Page → As Child.
540 Rational Application Developer V6 Programming Guide



Notice the link and child relationship of the new page (loans) to the parent 
(itsohome) in the Navigation window.

b. The remaining steps are the same as used to create the itsohome static 
page.

c. Repeat the process to add insurance and redbank as children pages of 
itsohome.

d. Save the Navigation page (Ctrl+S).

5. Create a new group named RedBank.

Groups are used to logically build or organize pages into a reusable group. 
For example, consider a footer that includes an About, Privacy, Terms of Use, 
and Contact. These can be logically grouped into a group named Footer.

In our example, we are using the group to hold JSPs temporarily until we 
create the servlets that will control the navigation and interaction of the JSPs.

a. Select the redbank page, right-click, and select Add New Group → As 
Child.

b. Save the Navigation page (Ctrl+S).

6. Create the dynamic pages.

We will create the following JSPs and put them in the RedBank group:

– listaccount (listAccounts.jsp)
– accountdetails (accountDetails.jsp)
– listtransactions (listTransactions.jsp)
– showexception (showException.jsp)

a. Select New Page from the Palette and drag it to RedBank Group.

b. After the New Page was added, notice you can type the navigation label in 
the Navigation page or in the Properties view under Navigation label. We 
entered listaccount.

c. Save the Navigation page (Ctrl+S).

d. Double-click listaccount to create the JSP file associated with the 
navigation label.

e. When the Create a page dialog appears, select JSP and click OK.

Note: The interaction between the dynamic pages for the ITSO Bank Web 
is controlled by servlets. At this stage we will use the Web Site Designer to 
create the following JSPs and assign the itso_jsp_template.htpl page 
template and place them in the RedBank group. The navigation for these 
pages is not representative of the final version of the sample.
 Chapter 11. Develop Web applications using JSPs and servlets 541



f. When the HTML File location dialog appears, we entered the following 
and then clicked Next:

• Folder: /BankBasicWeb/WebContent
• File name: listAccount.jsp
• Markup language: Select HTML.
• Options: Check Create from page template.

g. When the Specify a Page Template dialog appears, select User-defined 
page template, select the itso_jsp_template.jtpl, and then click Finish.

h. Repeat the process to add the accountdetails (accountDetails.jsp) and 
showexception (showException.jsp) dynamic pages.

i. Select the showexception page, right-click, and select Navigation → 
Show in Navigation (toggle, enabled by default).

j. Save the Navigation page (Ctrl+S).

When done adding the navigation, HTML, and JSP pages, the Navigation page 
should look like Figure 11-23 on page 542 at this stage.

Figure 11-23   Navigation page after adding pages

11.4.6  Verify the site navigation and page templates
At this stage the site navigation is not complete, nor have we completed adding 
the static or dynamic content. We can, however, verify that the top level site 
navigation, page templates, and style sheet appearance is as desired. To verify 
542 Rational Application Developer V6 Programming Guide



the appearance, you can use the Preview view for the page, or run the 
application on a test server.

To run the ITSO RedBank Web application in the WebSphere Application Server 
V6.0 Test Environment to verify the site navigation and page appearance, do the 
following:

1. Expand Dynamic Web Applications.

2. Right-click BankBasicWeb, and select Run → Run on Server.

3. When the Define a New Server dialog appears, select Choose and existing 
server, select WebSphere Application Server v6.0, and then click Finish.

4. At this stage there is not a great deal to test, but this same concept can be 
used as you add static and dynamic content. Notice the URL in the Web 
browser to distiguish between pages (Loans, RedBank, Insurance), since 
there is no content at this point (see Figure 11-24 on page 543).

Figure 11-24   ITSO RedBank Web site

Note: If you do not have a test environment configured, refer to 
Chapter 19, “Servers and server configuration” on page 1043.
 Chapter 11. Develop Web applications using JSPs and servlets 543



11.5  Develop the static Web resources
In this section we create the content for the four static pages of our sample with 
the objective of highlighting some of the features of Page Designer. We use each 
of the following pages to demonstrate features of Page Designer such as adding 
tables, links, text, images, customizing fonts on the HTML pages, and working 
with forms.

� Create the index.html page content (text, links).
� Create the rates.html page content (tables).
� Create the insurance.html page content (list).
� Create the redbank.html page content (forms).

In each example the page content will be created in the Design view, reviewed in 
the Source view, and verified in the Preview view of Page Designer.

11.5.1  Create the index.html page content (text, links)
The ITSO RedBank home page is index.html. The links to the child pages are 
included as part of the header and footer of the our page template. In the 
following example, we describe how to add static text to the page, and add a link 
to the page to the IBM Redbooks site.

1. Expand Dynamic Web Projects → BankBasicWeb → WebContent.

2. Double-click the index.html file to open in Page Designer.

3. Click the Design tab. 

4. Insert the Welcome message text.

a. Click the content area in which you wish to insert the text.

b. Right-click and select Layout Mode → Free Layout.

c. From the menu bar, select Insert → Paragraph → Heading 1.

d. Click the cursor on the area of the table in which you wish to insert the 
heading.

e. You will see a cell marked on the page. Resize the cell as desired.

f. Enter Welcome to the ITSO RedBank! in the H1 field.

5. Insert a Link to the IBM Redbooks Web site.

a. From the menu bar, select Insert → Paragraph → Normal.

b. Click the cursor on the area of the table in which you wish to insert the 
heading.

c. You will see a cell marked on the page. Resize the cell as desired.
544 Rational Application Developer V6 Programming Guide



d. Enter For more information on the ITSO and IBM Redbooks, please 
visit our Internet site.

e. Select Internet site, right-click ,and select Insert Link.

f. When the Insert Link dialog appears, select HTTP, enter 
http://www.ibm.com/redbooks in the URL field, and then click OK.

6. Customize the text font face, size, and color.

a. Select the text.

b. Select Format → Font from the menu bar.

c. When the Insert Font dialog appears, select the desired font and size, click 
the Color button, select the desired color, and then click OK.

7. Save the index.html page.

8. Click the Preview tab. 

Figure 11-25 on page 545 displays a preview of the index.html page.

Figure 11-25   Preview of index.html
 Chapter 11. Develop Web applications using JSPs and servlets 545



11.5.2  Create the rates.html page content (tables)
In this example we demonstrate how to add a visable table containing interest 
rates using the Page Designer.

1. Expand Dynamic Web Projects → BankBasicWeb → WebContent.

2. Double-click the rates.html file to open in Page Designer.

3. Click the Design tab. 

4. Expand HTML Tags in the Palette.

5. Right-click and select Layout Mode → Free Layout.

6. Drag Table from the Palette to the content area.

7. When the Insert Table dialog appears, enter 5 for Rows and 5 for Columns, 
then click OK.

8. Resize the table as desired.

9. Enter the descriptions and rates (as seen in Figure 11-26 on page 547) into 
the table.

10.Save the rates.html page.

11.Click the Preview tab.

Figure 11-26 displays a preview of the rates.html page.

Note: Additional table rows and columns can be added and deleted with 
the Table menu option.
546 Rational Application Developer V6 Programming Guide



Figure 11-26   Preview the rates.html page

11.5.3  Create the insurance.html page content (list)
In this example, we demonstrate how to add a bulleted list of text and an image 
to the insurance.html page using the functionality provided by Page Designer.

1. Expand Dynamic Web Projects → BankBasicWeb → WebContent.

2. Double-click the insurance.html file to open in Page Designer.

3. Click the Design tab. 

4. Insert the insurance text.

a. Click the content area in which you wish to insert the text.

b. Right-click and select Layout Mode → Free Layout.

c. From the menu bar, select Insert → List → Bulleted List.

d. Click the cursor on the area in which you wish to insert the list.

e. You will see a cell marked on the page. Resize the cell as desired.

f. Enter the text for the bulleted list. For example, we added the following:

• Auto
• Life
• Home owners
• Renters

5. Save the insurance.html page.

6. Click the Preview tab to view the page.
 Chapter 11. Develop Web applications using JSPs and servlets 547



11.5.4  Create the redbank.html page content (forms)
In this example, we demonstrate how to work with forms by adding input fields 
and a button to the redbank.html page. The form will not be fully functional until 
adding the servlet code in later steps. Form options such as form input fields and 
submit buttons are available by selecting Insert → Form and Input Fields.

1. Expand Dynamic Web Projects → BankBasicWeb → WebContent.

2. Double-click the index.html file to open in Page Designer.

3. Click the Source tab. 

4. Modify the redbank.html source to add the form, input field, and submit 
button, as seen in Example 11-2.

Example 11-2   Modified redbank.html snipped for forms

<TD valign="top">
<FORM action="ListAccounts" method ="post">Please enter your customer ID (SSN):<BR>

<INPUT type="text" name="customerNumber" size="20">
<BR>
<BR>
<INPUT type="submit" name="ListAccounts" value="Submit">

</FORM>
</TD>

5. Save the redbank.html file.

6. Click the Preview tab to view the redbank.html page. 

Figure 11-27 on page 549 displays the preview of the page.

Note: At this point, you will see a broken link warning since the 
ListAccounts servlet has not yet been created.
548 Rational Application Developer V6 Programming Guide



Figure 11-27   Preview of the redbank.html page

11.6  Develop the dynamic Web resources
There are many ways to create dynamic Web applications. The most 
time-consuming method is to build the pages manually, by writing the code 
line-by-line in a text editor. An easier and more productive way is to use the 
Application Developer wizards in conjunction with content-specific editors, such 
as the HTML and CSS editors, which we have already used.

The Web development wizards help you quickly create forms, HTML pages, 
JavaServer Pages (JSPs), and Java servlets, even if you are not an expert 
programmer. These files can be used as is, or modified to fit your specific needs.

Application Developer wizards not only support you in creating servlets, JSPs, 
and JavaBeans, but they also compile the Java code and store the class files in 
the correct folders for publishing to your application servers. In addition, as the 
wizards generate project resources, the deployment descriptor file, web.xml, is 
updated with the appropriate configuration information for the servlets that are 
 Chapter 11. Develop Web applications using JSPs and servlets 549



created. You can test the resulting project resources within the Application 
Developer using the WebSphere Test Environment, or any other configured 
server that supports the chosen J2EE specification level.

In the previous section we described how to create each of the static Web pages 
from scratch. In this section we demonstrate the process of creating and working 
with servlets and JSPs; however, we rely on the completed samples to be 
imported as a prerequiste.

11.6.1  Creating model classes
Throughout the remainder of this section, we develop the dynamic behavior of 
the BankBasic Web application. Before we can create the servlets that 
manipulate the data model, we must first create the underlying Java classes that 
represent this model.

We create the classes listed in Table 11-1.

Table 11-1   Classes to add

Note: In this section we create classes using the visual modelling features of 
Rational Application Developer. Refer to 7.2, “Develop the Java Bank 
application” on page 231, for more detailed information about using these 
features for creating Java applications.

Class name Superclass Package Class modifiers

Customer java.lang.Object itso.bank.model public

Account java.lang.Object itso.bank.model public

Transaction java.lang.Object itso.bank.model public, abstract

Credit Transaction itso.bank.model public

Debit Transaction itso.bank.model public

Bank java.lang.Object itso.bank.facade public, abstract

MemoryBank Bank itso.bank.facade public

BankException java.lang.Exception itso.bank.exception public

UnknownCustomerException BankException itso.bank.exception public

UnknownAccountException BankException itso.bank.exception public

InvalidAmountException BankException itso.bank.exception public
550 Rational Application Developer V6 Programming Guide



Create a class diagram for the model
To create the class diagram that will be used to create the model classes, do the 
following:

1. Expand and select Dynamic Web Projects → BankBasicWeb.

2. Select File → New → Other.

3. In the Select a wizard window, expand and select Modeling → Class 
Diagram and click Next.

4. The Create a Class Diagram wizard appears. Enter the following and click 
Finish:

– Enter or select the parent folder: BankBasicWeb/diagrams
– File name: model

Rational Application Developer will create and open the editor for the new 
class diagram.

Create packages
To create the packages listed in Table 11-1 on page 550, do the following:

1. Open the class diagram that was created in the previous section.

2. In the Palette view, select Java → Package and click anywhere on the free 
form surface.

3. The New Java Package wizard appears. Enter itso.bank.model in the Name 
field and click Finish.

4. Repeat the previous steps to add packages named itso.bank.facade and 
itso.bank.exception. After this, your class diagram should similar to 
Figure 11-28.

InsufficientFundsException BankException itso.bank.exception public

ApplicationException java.lang.Exception itso.bank.exception public

Class name Superclass Package Class modifiers
 Chapter 11. Develop Web applications using JSPs and servlets 551



Figure 11-28   Class diagram with packages

Create classes
Do the following to create the classes listed in Table 11-1 on page 550:

1. In the Palette view, select Java → Class and click anywhere on the free form 
surface.

2. The New Java Class wizard appears. Enter itso.bank.model in the Package 
field, Customer in the Name field, and java.lang.Object in the Superclass 
field. Click Add.

3. When the Implemented Interfaces Selection dialog appears, enter 
Serializable in the Choose interfaces field. Select Serializable in the 
Matching types listbox and java.io in the Qualifier listbox and click OK.

4. When you return to New Java Class wizard it should look similar to in 
Figure 11-29. Click Finish.
552 Rational Application Developer V6 Programming Guide



Figure 11-29   Add class Customer

5. Repeat the previous steps to add the classes shown in Table 11-1 on 
page 550. Remember to add the Serializable interface for all classes.

When done, your class diagram should similar to Figure 11-30 on page 554.
 Chapter 11. Develop Web applications using JSPs and servlets 553



Figure 11-30   Class diagram with packages before adding attributes and methods

Create fields
We will create the fields listed in Table 11-2.

Table 11-2   Fields to add

Class Field name Field type Visibility 
and 
modifiers

Initial value

Customer ssn String private null

title String private null

firstName String private null

lastName String private null
554 Rational Application Developer V6 Programming Guide



To create a field, do the following:

1. Move the cursor anywhere over the class Customer.

2. When the Action bar appears (as shown in Figure 11-31), click the Add new 
Java field icon ( ) to add attributes to the class.

Figure 11-31   The Action bar is used to add attributes and methods to a Java class

Account accountNumber String private null

balance int private 0

Transaction accountNumber String private null

amount int private 0

timestamp java.util.Date private null

Bank singleton Bank private
static

null

MemoryBank customers java.util.Map private null

accounts java.util.Map private null

customerAccounts java.util.Map private null

transactions java.util.Map private null

InvalidAmountException amount String private null

UnknownCustomerException customerNumber String private null

UnknownAccountException accountNumber String private null

InsufficientFundsException debitAccountNumber String private null

amount int private 0

message String private null

Class Field name Field type Visibility 
and 
modifiers

Initial value
 Chapter 11. Develop Web applications using JSPs and servlets 555



3. Then the Create Java Field wizard appears. Do the folowing (as shown in 
Figure 11-32 on page 556), and click Finish:

– Enter firstName in the Name field.
– Enter String in the Type field.
– Enter null in the Initial value field.
– Select private.
– Ensure that none of the modifiers are checked.

Figure 11-32   Adding the field firstName to the Customer class

4. Repeat the process to add the fields in Table 11-2 on page 554. After this, 
your class diagram should appear similar to Figure 11-33 on page 557.
556 Rational Application Developer V6 Programming Guide



Figure 11-33   Class diagram with fields

Adding accessors
In this section, we add accessors to the model classes. The accessors we create 
are summarized in Table 11-3 on page 558.
 Chapter 11. Develop Web applications using JSPs and servlets 557



Table 11-3   Accessors for model classes

Class Accessor

Customer getSsn

setSsn

getTitle

setTitle

getFirstName

setFirstName

getLastName

setLastName

Account getAccountNumber

setAccountNumber

getBalance

setBalance

Transaction getAmount

setAmount

getAccountNumber

setAccountNumber

getTimestamp

setTimestamp

InvalidAmountException getAmount

UnknownCustomerException getCustomerNumber

UnknownAccountException getAccountNumber

InvalidTransactionException getDebitAccountNumber

getAmount

getMessage
558 Rational Application Developer V6 Programming Guide



To add the accessors, do the following:

1. In the Project Explorer, expand Dynamic Web Projects → 
BankBasicWeb → Java Resources → JavaSource → 
itso.bank.exception.

2. Right-click InvalidAmountException.java and select Source → Generate 
Getters and Setters.

3. When the Generate Getters and Setters window appears, check getAmount 
and click OK.

4. Repeat the above steps to generate the remaining accessors, shown in 
Table 11-3 on page 558.

After adding all accessors, the class diagram will look similar to Figure 11-34 on 
page 560.
 Chapter 11. Develop Web applications using JSPs and servlets 559



Figure 11-34   Class diagram with fields and accessors

Implement the abstract Bank facade
Now that the framework for the model classes is in place, we can implement the 
logic and interface of the abstract Bank, defining how the ITSO bank is used.

Note: This code is shipped in the finished BankBasicWeb.zip Project 
Interchange file, as well as a standalone file. The standalone file can be found 
as c:\6449code\web\source\Bank.java.

Refer to Appendix B, “Additional material” on page 1395, for more information 
about the additional material.
560 Rational Application Developer V6 Programming Guide



We will add the following methods to the Bank facade class, as shown in 
Example 11-4 on page 566:

� public static Bank getBank()

This method is used by a client to get a reference to the actual Bank 
implementation class.

For the in-memory bank used in the sample in this chapter, the method 
creates and returns an instance of the MemoryBank class.

� public abstract Customer getCustomer(String customerNumber)

This method is used to retrieve a Customer object from a customer number 
(SSN). If not found, the method will throw an UnknownCustomerException 
exception.

� public abstract Account[] getAccounts(String customerNumber)

This method is used to retrieve an array of Account objects, representing the 
accounts for a customer, as specified by the customer number (SSN). If the 
customer cannot be found, the method will throw an 
UnknownCustomerException exception. If that customer has no account, an 
empty array is returned.

� public abstract Account getAccount(String accountNumber)

This method is used to retrieve an Account object from an account number. If 
not found, the method will throw an UnknownAccountException exception.

� public abstract Transaction[] getTransactions(String accountId)

This method is used to retrieve a list of the transactions performed on the 
given account. If the account cannot be found, the method will throw an 
UnknownAccountException exception. If no transactions have been 
performed on the account, an empty array is returned.

� public abstract void updateCustomer(String ssn, String title, String firstName, 
String lastName)

This method will update the basic information about a customer. If the 
customer cannot be found, the method will throw an 
UnknownCustomerException exception.

� public abstract void deposit(String accountId, int amount)

This method is used to deposit the given number of cents to the specified 
account. If the account cannot be found, the method will throw an 
UnknownAccountException exception.

� public abstract void withdraw(String accountId, int amount)

This method is used to withdraw the given number of cents from the specified 
account. If the account cannot be found, the method will throw an 
 Chapter 11. Develop Web applications using JSPs and servlets 561



UnknownAccountException exception. If the withdrawal would result in an 
overdraft, an InvalidTransactionException is thrown.

� public abstract void transfer(String debitAccountNumber, 
String creditAccountNumber, int amount)

This method is used to transfer the given number of cents from the specified 
debitor account to the specified creditor account. If any of the accounts 
cannot be found, the method will throw an UnknownAccountException 
exception. If the transfer would result in an overdraft of the debitor account, 
an InvalidTransactionException is thrown.

Example 11-3   The method definitions for the abstract Bank class

/**
 * Create a singleton. The method will ensure that only
 * one Bank object is created.
 * 
 * @throws ApplicationException If an application-level non-business related
 *         exception occurred.
 * 
 * @see Bank#Bank()
 */
public static Bank getBank() throws ApplicationException {

if (singleton == null) {
// no singleton has been created yet - create one
singleton = new MemoryBank();

}

return singleton;
}

/**
 * Retrieve a Customer object for a given customer number (SSN).
 * 
 * @param customerNumber The customer number (SSN) to look up.
 * @return A Customer instance, representing that customer.
 * @throws UnknownCustomerException If the specified customer
 *         does not exist.
 * @throws ApplicationException If an application-level non-business related
 *         exception occurred.
 * 
 * @see Customer
 */
public abstract Customer getCustomer(String customerNumber)

throws UnknownCustomerException, ApplicationException;

/**
 * Retrieve an array of the accounts for a given customer 
 * number (SSN).
562 Rational Application Developer V6 Programming Guide



 * 
 * @param customerNumber The customer number (SSN) to look up.
 * @return An array of Account instances, each representing an
 *         account that the customer owns within the bank.
 * @throws UnknownCustomerException If the specified customer
 *         does not exist.
 * @throws ApplicationException If an application-level non-business related
 *         exception occurred.
 * 
 * @see Account
 */
public abstract Account[] getAccounts(String customerNumber) 

throws UnknownCustomerException, ApplicationException;

/**
 * Retrieve an Account object for a given account number.
 * 
 * @param accountNumber The account number to look up.
 * @return An Account instance, representing the given 
 *         account number.
 * @throws UnknownAccountException If the account does not
 *         exist.
 * @throws ApplicationException If an application-level non-business related
 *         exception occurred.
 * 
 * @see Account
 */
public abstract Account getAccount(String accountNumber) 

throws UnknownAccountException, ApplicationException;

/**
 * Retrieve an array of transaction records for the given account.
 * 
 * @param accountId The account number to retrieve the transaction
 *        log for.
 * @return An array of instances of the Transaction class, each
 *         representing a movement on the account. If the account has
 *         had no transaction, an empty array (an array of length zero)
 *         is returned.
 * @throws UnknownAccountException If the specified account does not exist.
 * @throws ApplicationException If an application-level non-business related
 *         exception occurred.
 * 
 * @see Transaction
 */
public abstract Transaction[] getTransactions(String accountId)

throws UnknownAccountException, ApplicationException;
 Chapter 11. Develop Web applications using JSPs and servlets 563



/**
 * Update the customer data for the specified customer. The specified SSN 
 * must match an existing customer.
 * 
 * @param ssn 
 * @param title
 * @param firstName
 * @param lastName
 * @throws UnknownCustomerException If either of the accounts do not exist.
 * @throws ApplicationException If an application-level non-business related
 *         exception occurred.
 */
public abstract void updateCustomer(String ssn, String title, 

String firstName, String lastName) 
throws UnknownCustomerException, ApplicationException;

/**
 * Deposit (credit) the specified amount of cents to 
 * the specified account.
 * 
 * After a successful transaction, the transaction log for
 * the account will be updated.
 * 
 * @param accountId The account number to deposit into.
 * @param amount The amount to deposit, in cents.
 * @throws UnknownAccountException If the account does not exist.
 * @throws ApplicationException If an application-level non-business related
 *         exception occurred.
 */
public abstract void deposit(String accountId, int amount) 

throws UnknownAccountException, ApplicationException;

/**
 * Withdraw (debit) the specified amount of cents from 
 * the specified account.
 * 
 * After a successful transaction, the transaction log for
 * the account will be updated.
 * 
 * @param accountId The account number to withdraw from.
 * @param amount The amount to withdraw, in cents.
 * @throws UnknownAccountException If the account does not exist.
 * @throws InsufficientFundsException If the amount exceeds the
 *         current balance of the account.
 * @throws ApplicationException If an application-level non-business related
 *         exception occurred.
 */
public abstract void withdraw(String accountId, int amount) 

throws UnknownAccountException, InsufficientFundsException, ApplicationException;
564 Rational Application Developer V6 Programming Guide



/**
 * Transfer the specified amount of cents from one account to
 * another. The accounts do not need to be owned by the same customer.
 * 
 * After a successful transaction, the transaction log for
 * both accounts will be updated.
 * 
 * @param debitAccountNumber The account number to withdraw (debit) from.
 * @param creditAccountNumber The account number to deposit (credit) to.
 * @param amount The amount to transfer, in cents.
 * @throws UnknownAccountException If either of the accounts do not exist.
 * @throws InsufficientFundsException If the amount exceeds the
 *         current balance of the debit account.
 * @throws ApplicationException If an application-level non-business related
 *         exception occurred.
 */
public abstract void transfer(String debitAccountNumber, String creditAccountNumber, 

int amount) 
throws UnknownAccountException, InsufficientFundsException, ApplicationException;

Implement the MemoryBank facade
While the abstract Bank class defines the interface to access an ITSO Bank, the 
concrete MemoryBank class implements the bank functionality as an in-memory 
database. In Chapter 15, “Develop Web applications using EJBs” on page 827, 
this will be augmented with a bank facade that uses EJBs to store the information 
in a relational database.

We will add implementation of the abstract methods from the parent Bank class, 
as well as the following methods to the MemoryBank facade class. The finished 
methods is shown in Example 11-4 on page 566.

� protected MemoryBank()

This constructor, which is protected to ensure that only classes in the 
itso.bank.facade package can create new instances, initializes the memory 
structures for the ITSO Bank example.

� private Transaction addDebitTransaction(String accountId, int amount)

This method is used by the transaction methods to add information to the 
transaction history about a debit transaction. The method will instantiate an 

Note: This code is shipped in the finished BankBasicWeb.zip Project 
Interchange file, as well as a standalone file. The standalone file can be found 
as c:\6449code\web\source\MemoryBank.java.
 Chapter 11. Develop Web applications using JSPs and servlets 565



object of the Debit class, populate it and call addTransactionToLog to add the 
transaction to the account’s transaction log.

– private Transaction addCreditTransaction(String accountId, int amount)

Like addDebitTransaction, but creates an instance of the Credit Transaction 
class.

� private void addTransactionToLog(Transaction transaction)

This method adds the specified transaction to the account specified in the 
accountNumber field of the transaction object.

� private void addCustomer(String ssn, String title, String firstName, 
String lastName)

This method is used by the constructor to create the test data used in the 
application.

� private void addAccount(String ssn, String accountNumber, int balance)

This method is used by the constructor to create the test data used in the 
application.

Example 11-4   Code for the MemoryBank facade class

/**
 * Create the in-memory bank, initialized with the default data.
 */
protected MemoryBank() {

// create the maps
customers = new HashMap();
accounts = new HashMap();
customerAccounts = new HashMap();
transactions = new HashMap();

// seed with data
addCustomer("111-11-1111", "MR", "John", "Ganci");
addCustomer("222-22-2222", "MR", "Richard", "Raszka");
addCustomer("333-33-3333", "MR", "Fabio", "Ferraz");
addCustomer("444-44-4444", "MR", "Neil", "Weightman");
addCustomer("555-55-5555", "MR", "Kiriya", "Keat");
addCustomer("666-66-6666", "MR", "Hari", "Kanangi");
addCustomer("777-77-7777", "MR", "Juha", "Nevalainen");
addCustomer("999-99-9999", "Sir", "Nicolai", "Nielsen");

addAccount("111-11-1111", "001-999000777", 123456789);

Note: After implementing the methods shown in Example 11-4 you will have a 
number of errors. These will be resolved when the transaction and exception 
classes have been completed in the following sections.
566 Rational Application Developer V6 Programming Guide



addAccount("111-11-1111", "001-999000888", 654321);
addAccount("111-11-1111", "001-999000999", 9876);
addAccount("222-22-2222", "002-999000777", 6548423);
addAccount("222-22-2222", "002-999000888", 8796);
addAccount("222-22-2222", "002-999000999", 65465);
addAccount("333-33-3333", "003-999000777", 987652);
addAccount("333-33-3333", "003-999000888", 56879);
addAccount("333-33-3333", "003-999000999", 2156);
addAccount("444-44-4444", "004-999000777", 98765);
addAccount("444-44-4444", "004-999000888", 145645646);
addAccount("444-44-4444", "004-999000999", 2315646);
addAccount("555-55-5555", "005-999000777", 6589);
addAccount("555-55-5555", "005-999000888", 7221341);
addAccount("555-55-5555", "005-999000999", 89755);
addAccount("666-66-6666", "006-999000777", 50000);
addAccount("666-66-6666", "006-999000888", 10000);
addAccount("666-66-6666", "006-999000999", 1000000);
addAccount("777-77-7777", "007-999000777", 250000000);
addAccount("777-77-7777", "007-999000888", 100000000);
addAccount("777-77-7777", "007-999000999", 123);
addAccount("999-99-9999", "009-999000999", 65860042);

}

/**
 * @see Bank#getCustomer(String)
 */
public Customer getCustomer(String customerNumber)

throws UnknownCustomerException {

Customer customer = (Customer)customers.get(customerNumber);

if (customer == null) {
// not found
throw new UnknownCustomerException(customerNumber);

}

return customer;
}

/**
 * @see itso.bank.facade.Bank#updateCustomer(java.lang.String, java.lang.String, 
java.lang.String, java.lang.String)
 */
public void updateCustomer(String ssn, String title, String firstName, String lastName) throws 
UnknownCustomerException, ApplicationException {

Customer customer = getCustomer(ssn);

customer.setTitle(title);
 Chapter 11. Develop Web applications using JSPs and servlets 567



customer.setFirstName(firstName);
customer.setLastName(lastName);

}

/**
 * @see Bank#getAccounts(String)
 */
public Account[] getAccounts(String customerNumber) 

throws UnknownCustomerException {

if (!customers.containsKey(customerNumber)) {
// no such customer
throw new UnknownCustomerException(customerNumber);

}

Collection accounts = (Collection)customerAccounts.get(customerNumber);

if (accounts == null) {
// no accounts - return empty array
return new Account[0];

}
else {

// copy to array of Account objects and cast
return (Account[])accounts.toArray(new Account[0]);

}
}

/**
 * @see Bank#getAccount(String)
 */
public Account getAccount(String accountNumber) 

throws UnknownAccountException {

Account account = (Account)accounts.get(accountNumber);

if (account == null) {
// not found
throw new UnknownAccountException(accountNumber);

}

return account;
}

/**
 * @see Bank#getTransactions(String)
 */
public Transaction[] getTransactions(String accountId)

throws UnknownAccountException {
568 Rational Application Developer V6 Programming Guide



if (accounts.containsKey(accountId)) {

Collection accountTransactions = (Collection)transactions.get(accountId);

if (accountTransactions == null) {
// no transactions - return empty array
return new Transaction[0];

}
else {

// copy to array of Transaction objects and cast
return (Transaction[])accountTransactions.toArray(new Transaction[0]);

}
}
else {

throw new UnknownAccountException(accountId);
}

}

/**
 * @see Bank#deposit(String, int)
 */
public void deposit(String accountId, int amount) 

throws UnknownAccountException, ApplicationException {

Account account = getAccount(accountId);

Transaction transaction = addCreditTransaction(accountId, amount);

account.setBalance(account.getBalance()+transaction.getSignedAmount());
}

/**
 * @see Bank#withdraw(String, int)
 */
public void withdraw(String accountId, int amount) 

throws UnknownAccountException, InsufficientFundsException, ApplicationException {
Account account = getAccount(accountId);

if (account.getBalance() > amount) {

Transaction transaction = addDebitTransaction(accountId, amount);

account.setBalance(account.getBalance()+transaction.getSignedAmount());
}
else {

// would result in overdraft
throw new InsufficientFundsException(accountId, amount);

}
}

 Chapter 11. Develop Web applications using JSPs and servlets 569



/**
 * @see Bank#transfer(String, String, int)
 */
public void transfer(String debitAccountNumber, String creditAccountNumber, int amount) 

throws UnknownAccountException, InsufficientFundsException, ApplicationException {
Account debitAccount = getAccount(debitAccountNumber);
Account creditAccount = getAccount(creditAccountNumber);

if (debitAccount.getBalance() > amount) {

Transaction credit = addCreditTransaction(creditAccountNumber, amount);
Transaction debit = addDebitTransaction(debitAccountNumber, amount);

debitAccount.setBalance(debitAccount.getBalance()+credit.getSignedAmount());
creditAccount.setBalance(creditAccount.getBalance()+debit.getSignedAmount());

}
else {

// would result in overdraft
throw new InsufficientFundsException(debitAccountNumber, amount);

}
}

/**
 * Add a Debit transaction for the specified account's transaction log.
 *  
 * @param accountId The account to add a record for.
 * @param amount The amount debited from the account.
 * @return The added transaction.
 * @throws UnknownAccountException If the specified account could not be found.
 */
protected Transaction addDebitTransaction(String accountId, int amount) throws 
UnknownAccountException {

Transaction transaction = new Debit();
transaction.setAccountNumber(accountId);
transaction.setAmount(amount);
transaction.setTimestamp(new Date());

addTransactionToLog(transaction);

return transaction;
}

/**
 * Adds a Credit transaction for the specified account's transaction log.
 *  
 * @param accountId The account to add a record for.
 * @param amount The amount credited to the account.
 * @return The added transaction.
570 Rational Application Developer V6 Programming Guide



 * @throws UnknownAccountException If the specified account could not be found.
 */
protected Transaction addCreditTransaction(String accountId, int amount) throws 
UnknownAccountException {

Transaction transaction = new Credit();
transaction.setAccountNumber(accountId);
transaction.setAmount(amount);
transaction.setTimestamp(new Date());

addTransactionToLog(transaction);

return transaction;
}

/**
 * Add the specified transaction to the account's transaction log.
 *  
 * @param transaction The transaction to add (the account number is 
 *        stored in the Transaction obejct).
 * @throws UnknownAccountException If the specified account could not be found.
 */
private void addTransactionToLog(Transaction transaction) throws UnknownAccountException {

if (accounts.containsKey(transaction.getAccountNumber())) {

Collection accountTransactions = 
(Collection)transactions.get(transaction.getAccountNumber());

if (accountTransactions == null) {
// no transactions create new list
accountTransactions = new LinkedList();
transactions.put(transaction.getAccountNumber(), accountTransactions);

}
accountTransactions.add(transaction);

}
else {

throw new UnknownAccountException(transaction.getAccountNumber());
}

}

/**
 * Add a customer record with the given information to the customer database.
 * This method is used by the constructor to seed the in-memory database.
 * 
 * @param ssn The customer number (SSN) of the new customer.
 * @param title The salutation for the new customer
 * @param firstName The new customer's first name.
 * @param lastName The new customer's last name.
 * 
 * @see Customer
 Chapter 11. Develop Web applications using JSPs and servlets 571



 * @see #Bank(Bank)
 */
private void addCustomer(String ssn, String title, String firstName, String lastName) {

Customer customer = new Customer();
customer.setSsn(ssn);
customer.setTitle(title);
customer.setFirstName(firstName);
customer.setLastName(lastName);

customers.put(ssn, customer);
}

/**
 * Add a new account with the given information to the account database.
 * This method is used by the constructor to seed the in-memory database.
 * 
 * @param ssn The customer number (SSN) of the customer owning the account.
 * @param accountNumber The number of the new account.
 * @param balance The initial balance, in cents.
 * 
 * @see Account
 * @see #Bank(Bank)
 */
private void addAccount(String ssn, String accountNumber, int balance) {

Account account = new Account();
account.setAccountNumber(accountNumber);
account.setBalance(balance);

Collection customerAccountsColl = (Collection)customerAccounts.get(ssn);

if (customerAccountsColl == null) {
customerAccountsColl = new LinkedList();
customerAccounts.put(ssn, customerAccountsColl);

}

customerAccountsColl.add(account);
accounts.put(accountNumber, account);

}

Implement the exception classes
In order to be able to use the exception classes, we need to create constructors 
that initialize the internal variables in a way that allows for useful exception 
messages.

Note: The code for the exception classes can be copied from the file 
c:\6449code\web\source\exception.jpage.
572 Rational Application Developer V6 Programming Guide



Example 11-5 shows the implementation of the constructors for the base 
exception class BankException. This class functions as a base class for the 
business-specific exceptions in the Bank application.

Example 11-5   Constructors for the class BankException

/**
 * Create a new BankException instance without any details.
 */
public BankException() {

super();
}
/**
 * Create a new BankException instance.
 * 
 * @param message A message, describing the exception.
 */
public BankException(String message) {

super(message);
}

Example 11-6 shows the implementation of the constructors for the base 
exception class ApplicationException. This exception signals that a non-business 
related application exception, such as a database problem, has occurred.

Example 11-6   Constructors for the class ApplicationException

/**
 * Create a new ApplicationException instance without any details.
 */
public ApplicationException() {

super();
}
/**
 * Create a new ApplicationException instance.
 * 
 * @param message A message, describing the exception.
 */
public ApplicationException(String message) {

super(message);
}
/**
 * Create a new ApplicationException instance.
 * 
 * @param message A message, describing the exception.
 * @param cause The root cause of the exception.
 */
public ApplicationException(String message, Throwable cause) {

super(message, cause);
 Chapter 11. Develop Web applications using JSPs and servlets 573



}

Example 11-7 shows the implementation of the constructor for the exception 
class UnknownCustomerException. The constructor initializes the exception 
message by passing the message to the Exception superclass.

Example 11-7   Constructor for the class UnknownCustomerException

/**
 * Create a new UnknownCustomerException.
 * 
 * @param customerNumber The customer number (SSN) that was specified.
 */
public UnknownCustomerException(String customerNumber) {

super("Unknown customer: "+customerNumber);
this.customerNumber = customerNumber;

}

Example 11-8 shows the implementation of the constructor for the exception 
class UnknownAccountException. The constructor initializes the exception 
message by passing the message to the Exception superclass.

Example 11-8   Constructor for the class UnknownAccountException

/**
 * Create a new UnknownAccountException.
 * @param accountNumber The account number attempted to be used.
 */
public UnknownAccountException(String accountNumber) {

super("Unknown account: "+accountNumber);
this.accountNumber = accountNumber;

}

Example 11-9 shows the implementation of the constructor for the exception 
class InvalidAmountException. The constructor initializes the exception message 
by passing the message to the Exception superclass.

Example 11-9   Constructor for the InvalidAmountException class

/**
 * Create an InvalidAmountException.
 * @param strAmount The string that was attempted to be 
 *        used as a monetary amount.
 */
public InvalidAmountException(String strAmount) {

super("Invalid amount: "+strAmount);
this.amount = strAmount;
574 Rational Application Developer V6 Programming Guide



}

Example 11-10 shows the implementation of the constructor for the exception 
class InsufficientFundsException. Since the exception message is rather large, 
the exception message is implemented as a field and a getMessage method that 
overrides the method from the Exception superclass.

Example 11-10   Constructor for the InsufficientFundsException class

/**
 * Create a new InsufficientFundsException.
 * @param accountNumber The account number for the account being debited.
 * @param amount The amount attempted to transfer.
 * 
 */
public InsufficientFundsException(

String debitAccountNumber,
int amount) {

this.debitAccountNumber = debitAccountNumber;
this.amount = amount;

// initialize the exception message string
StringBuffer buf = new StringBuffer(256);
buf.append("Insufficient funds for transfer. ");
buf.append(" Debitor: ");
buf.append(debitAccountNumber);
buf.append(" Amount: ");
buf.append(amount);
message = buf.toString();

}

Implement the Transaction classes
Two abstract method must be added to the Transaction class and implemented 
in the two concrete classes, Credit and Debit:

� public abstract String getTransactionType()

This method returns a descriptive name for the concrete transaction.

� public abstract int getSignedAmount()

This method returns the transaction amount with a sign that signals the 
direction of the transaction. This value can be used to add to an account 
balance to simulate the transaction.

Note: The code for the Transaction classes can be copied from the file 
c:\6449code\web\source\transactions.jpage.
 Chapter 11. Develop Web applications using JSPs and servlets 575



The abstract method declarations for the Transaction class are shown in 
Example 11-11.

Example 11-11   Method declarations for the Transaction class

/**
 * @return A textual description of the transaction type.
 */
public abstract String getTransactionType();

/**
 * @return An amount that reflect the "direction" of the transaction.
 */
public abstract int getSignedAmount();

The concrete method declarations for the Credit class are shown in 
Example 11-12.

Example 11-12   Method implementation for the Credit class

public int getSignedAmount() {
return getAmount();

}
public String getTransactionType() {

return "Credit";
}

The concrete method declarations for the Debit class are shown in 
Example 11-13.

Example 11-13   Method implementation for the Debit class

public int getSignedAmount() {
return -getAmount();

}
public String getTransactionType() {

return "Debit";
}

11.6.2  Working with servlets
Servlets are flexible and scalable server-side Java components based on the 
Sun Microsystems Java Servlet API, as defined in the Sun Microsystems Java 
Servlet Specification. For J2EE 1.4, the supported API is Servlet 2.4.
576 Rational Application Developer V6 Programming Guide



Servlets generate dynamic content by responding to Web client requests. When 
an HTTP request is received by the application server, the server determines, 
based on the request URI, which servlet is responsible for answering that 
request and forwards the request to that servlet. The servlet then performs its 
logic and builds the response HTML that is returned back to the Web client, or 
forwards the control to a JSP.

Application Developer provides the necessary features to make servlets easy to 
develop and integrate into your Web application. Without leaving your 
Workbench, you can develop, debug, and deploy them. You can set breakpoints 
within servlets, and step through the code. You can make changes that are 
dynamically folded into the running servlet on a running server, without having to 
restart the server each time.

In this section, we show you how to create and implement the servlets 
ListAccounts, UpdateCustomer, AccountDetails, and Logout servlets. Then we 
show you how to use the command, or action, pattern to implement the 
PerformTransaction servlet.

Adding the ListAccounts servlet to the Web Project
Application Developer provides a servlet wizard to assist you in adding servlets 
to your Web applications. 

1. Select File → New → Other.

2. The New wizard will open. Select Web → Servlet and click Next.

3. The first page of the Create Servlet wizard appears. Enter the name of the 
new servlet and click Next. In our case, we entered ListAccounts, as shown 
in Figure 11-35 on page 578.

The wizard will automatically generate the URL mapping /ListAccounts for us. 
If we were intereseted in a different, or additional URL mappings for this 
servlet, we could add these here.

The wizard will also allow us to add servlet initialization parameters. These 
are used to parameterize a servlet. Servlet initialization parameters can be 
changed at runtime from within the WebSphere Application Server 
Administration Console.

In our sample, we do not require additional URL mappings or initialization 
parameters.

Tip: The Create Servlet wizard can also be accessed by right-clicking the 
deployment descriptor and selecting New → Servlet.
 Chapter 11. Develop Web applications using JSPs and servlets 577



Figure 11-35   New servlet wizard (page 1)

4. The second page of the Create Servlet wizard appears. On this page we can 
specify specifics about the Java class that will be created to implement the 
new servlet. We accepted the defaults, except for the package name. We 
entered the name itso.bank.servlet (as shown in Figure 11-36 on 
page 579), and clicked Next.
578 Rational Application Developer V6 Programming Guide



Figure 11-36   New servlet wizard (page 2)

5. The third and last page of the Create Servlet wizard appears.

This page lets you select the appropriate method stubs to be created in the 
servlet code. These are the servlet’s life-cycle methods, along with its service 
methods specific to the HTTP protocol (the methods that start with do).

For our example, we need both doGet and doPost selected. Both are read 
methods. Usually, HTTP gets are used with direct links, when no information 
needs to be sent to the server. HTTP posts are typically used when 
information in a form has to be sent to the server.

Only one instance of a servlet is created in the application server. If you want 
to perform any initialization when the servlet instance is created, select the 
init method to be created. This method is invoked after the servlet instance 
has been created and you can perform the initialization tasks.

Uncheck Constructors from superclass and ensure that doPost and doGet 
are both checked (as shown in Figure 11-37), and click Finish.
 Chapter 11. Develop Web applications using JSPs and servlets 579



Figure 11-37   New servlet wizard (page 3)

The servlet is then generated and added to the project. The source code can be 
found in the JavaSource folder of the project, while the configuration for the 
servlet is found in Servlets tab of the Web Deployment Descriptor.

Implementing the ListAccounts servlet
We now have a skeleton servlet that does not perform any actions when it is 
invoked. We now need to add code to the servlet in order to implement the 
required behavior.

1. Expand Dynamic Web Projects → BankBasicWeb → Java Resources → 
JavaSource → itso.bank.servlet.

2. Double-click ListAccounts.java.

3. Add the import statements from Example 11-14 to the existing import 
statements.

Note: The code for the following servlets can be copied from the file 
c:\6449code\web\source\servlets.jpage.
580 Rational Application Developer V6 Programming Guide



Example 11-14   Additional import statements for ListAccounts.java

import javax.servlet.ServletContext;
import javax.servlet.http.HttpSession;
import javax.servlet.RequestDispatcher;
import itso.bank.facade.Bank;
import itso.bank.model.Account;
import itso.bank.model.Customer;

4. Change the doGet and doPost methods to look like Example 11-15.

As Example 11-15 shows, both service methods call a third method, 
performTask. This means that HTTP GET and POST methods will be handled 
identically.

Example 11-15   Modified doGet and doPost service methods for ListAccounts.java

/**
* HTTP GET service method. Calls performTask to service requests.
* 
* @see performTask(HttpServletRequest req, HttpServletResponse resp)
* @see javax.servlet.http.HttpServlet#doGet(HttpServletRequest req,
*      HttpServletResponse resp)
*/
protected void doGet(HttpServletRequest req, HttpServletResponse resp)

throws ServletException, IOException
{

performTask(req, resp);
}

/**
* HTTP POST service method. Calls performTask to service requests.
* 
* @see performTask(HttpServletRequest req, HttpServletResponse resp)
* @see javax.servlet.http.HttpServlet#doPost(HttpServletRequest req,
*      HttpServletResponse resp)
*/
protected void doPost(HttpServletRequest req, HttpServletResponse resp)

throws ServletException, IOException
{

performTask(req, resp);
}

5. Implement the performTask method, as shown in Example 11-16.

Example 11-16   The performTask method for the ListAcocunts servlet

private void performTask(HttpServletRequest req, HttpServletResponse resp)
throws ServletException, IOException

{

 Chapter 11. Develop Web applications using JSPs and servlets 581



try
{

// Get input parameter and keep it on the HTTP session
String customerNumber = req.getParameter("customerNumber");
HttpSession session = req.getSession();

if (customerNumber == null)
customerNumber = (String) session.getAttribute("customerNumber");

else
session.setAttribute("customerNumber", customerNumber);

// Control logic - Create the new banking facade
Bank bank = Bank.getBank();

// Retrieve customer and related accounts
Customer customer = bank.getCustomer(customerNumber);
Account[] accounts = bank.getAccounts(customerNumber);

// Response - Set the request attributes for future rendering
req.setAttribute("customer", customer);
req.setAttribute("accounts", accounts);

// Call the presentation renderer
ServletContext ctx = getServletContext();
RequestDispatcher disp = ctx.getRequestDispatcher("listAccounts.jsp");
disp.forward(req, resp);

}
catch (Exception e)
{

// set up error information and forward to the error page
req.setAttribute("message", e.getMessage());
req.setAttribute("forward", "index.html");
ServletContext ctx = getServletContext();
RequestDispatcher disp = ctx.getRequestDispatcher("showException.jsp");
disp.forward(req, resp);

}
}

The performTask method is divided into three main sections: 

– The first section deals with the HTTP parameters. This servlet expects to 
either receive a parameter called customerNumber or none at all. If the 
parameter is passed, we store it in the HTTP session for future use. If it is 
not passed, we look for it in the HTTP session, because it might have 
been stored there earlier.

– The second section deals with the control logic. We create a new Bank 
facade and use it to get the customer object and the array of accounts for 
that customer.
582 Rational Application Developer V6 Programming Guide



– The third section sees that the presentation renderer (listAccounts.jsp) 
gets the parameters it requires to perform its job (customer and accounts). 
The parameters are passed in the request context, where they can be 
picked up my the JSP.

– The final part is the error handler. If an exception is thrown in the previous 
code, the catch block will ensure that control is passed to the 
showException.jsp page.

6. Save your changes and close the source editor.

Implementing the UpdateCustomer servlet
The UpdateCustomer servlet is used for updating the customer information. The 
servlet accepts the following parameters:

� title
� firstName
� lastName

The servlet requires that the SSN of the customer that should be updated is 
already placed on the session, as done by the ListAccounts servlet.

Follow the procedures described in “Implementing the ListAccounts servlet” on 
page 580 for preparing the servlet, including the doGet and doPost methods. The 
performTask implementation for the UpdateCustomer servlet is shown in 
Example 11-17.

Example 11-17   The performTask method for the UpdateCustomer servlet

private void performTask(HttpServletRequest req, HttpServletResponse resp)
throws ServletException, IOException

{
try
{

// Get input parameters
String title = req.getParameter("title");
String firstName = req.getParameter("firstName");
String lastName = req.getParameter("lastName");

// retrieve the SSN from the session
HttpSession session = req.getSession();
String ssn = (String) session.getAttribute("customerNumber");

// Control logic - Create the new banking facade
Bank bank = Bank.getBank();

// Update customer information
bank.updateCustomer(ssn, title, firstName, lastName);
 Chapter 11. Develop Web applications using JSPs and servlets 583



// Retrieve customer information
Customer customer = bank.getCustomer(ssn);

// Call the presentation renderer
ServletContext ctx = getServletContext();
RequestDispatcher disp = ctx.getRequestDispatcher("listAccounts.jsp");
disp.forward(req, resp);

}
catch (Exception e)
{

// set up error information and forward to the error page
req.setAttribute("message", e.getMessage());
req.setAttribute("forward", "index.html");
ServletContext ctx = getServletContext();
RequestDispatcher disp = ctx.getRequestDispatcher("showException.jsp");
disp.forward(req, resp);

}
}

Implementing the AccountDetails servlet
The AccountDetails servlet is used to retrieve account details and forward to the 
accountDetails.jsp to show these details. The servlet accepts the parameter 
accountId, specifying the account for which data should be shown.

Follow the procedures described in “Implementing the ListAccounts servlet” on 
page 580 for preparing the servlet. The performTask implementation for the 
AccountDetails servlet is shown in Example 11-18.

Example 11-18   The performTask method for the AccountDetails servlet

private void performTask(HttpServletRequest req, HttpServletResponse resp)
throws ServletException, IOException

{
try
{

// parameters
String accountNumber = req.getParameter("accountId");

// Control logic - Create the new banking facade
Bank bank = Bank.getBank();

// Retrieve customer and related accounts
Account account = bank.getAccount(accountNumber);

Note: A real-life implementation would perform authorization, that is verify that 
the current user has the required access rights to the requested account.
584 Rational Application Developer V6 Programming Guide



// Response - Set the request attributes for future rendering
req.setAttribute("account", account);

// Call the presentation renderer
ServletContext ctx = getServletContext();
RequestDispatcher disp = ctx.getRequestDispatcher("accountDetails.jsp");
disp.forward(req, resp);

}
catch (Exception e)
{

// set up error information and forward to the error page
req.setAttribute("message", e.getMessage());
req.setAttribute("forward", "index.html");
ServletContext ctx = getServletContext();
RequestDispatcher disp = ctx.getRequestDispatcher("showException.jsp");
disp.forward(req, resp);

}
}

Implementing the Logout servlet
The Logout servlet is used for logging off the redbank. The servlet requires no 
parameters, and the only logic performed in the servlet is to remove teh SSN 
from the session, simulating a log off action.

Follow the procedures described in “Implementing the ListAccounts servlet” on 
page 580 to prepare the servlet. The performTask implementation for the Logout 
servlet is shown in Example 11-19.

Example 11-19   The performTask method for the Logout servlet

private void performTask(HttpServletRequest req, HttpServletResponse resp)
throws ServletException, IOException
{

try
{

// remove the customer number from the session
HttpSession session = req.getSession();
session.removeAttribute("customerNumber");
session.invalidate();

// Call the presentation renderer
ServletContext ctx = getServletContext();
RequestDispatcher disp = ctx.getRequestDispatcher("redbank.html");
disp.forward(req, resp);

}
catch (Exception e)
{

 Chapter 11. Develop Web applications using JSPs and servlets 585



// set up error information and forward to the error page
req.setAttribute("message", e.getMessage());
req.setAttribute("forward", "index.html");
ServletContext ctx = getServletContext();
RequestDispatcher disp = ctx.getRequestDispatcher("showException.jsp");
disp.forward(req, resp);

}
}

Implementing the PerformTransaction servlet framework
In this section, we show you how to use the command design pattern to 
implement a fron controller, PerformTransaction, that forwards control to one of 
the four command objects, Deposit, Withdraw, Transfer, and ListTransactions.

Implementing the Command interface
The Command interface is an interface that describes the contract to a 
command. It is implemented by each of the four command classes Deposit, 
Withdraw, Transfer, and ListTransactions.

Use the New Java Interface wizard to create an interface named Command in 
the package itso.bank.command. The entire source code for the new interface is 
shown in Example 11-20.

Example 11-20   The command interface

package itso.bank.command;

import java.io.IOException;

import javax.servlet.http.HttpServletRequest;
import javax.servlet.http.HttpServletResponse;

/**
* The Command interface. This is based on the Task, or Command, design
* pattern.
* Used for servlet processing, the class provides only two methods:
* <tt>execute</tt> and <tt>getForwardView</tt>.
*/
public interface Command
{

/**
 * Execute the command. The passed-in serlvet request and response

Note: The code for the following classes and interfaces can be copied from 
files in the c:\6449code\web\source directory. The code will be in separate 
.java files, named for the class or interface.
586 Rational Application Developer V6 Programming Guide



 * can be used just like any servlet. If an exception is thrown, control
 * is forwarded to the showError.jsp page.
 * 
 * @param req The HTTP request
 * @param resp The HTTP response
 * @throws ServletException
 * @throws IOException
 */
public void execute(HttpServletRequest req, HttpServletResponse resp)

throws Exception;

/**
 * @return The requested view to forward to after executing the command,
 *         or <tt>null</tt> if no forwarding should take place.
 */
public String getForwardView();

}

Implementing the DepositCommand command
The DepositCommand class implements the Command interface, created 
previously, to realize a deposit of a specified amount to a given account.

Use the New Java Class wizard to create a class named DepositCommand in 
the package itso.bank.command. The class should implement the interface 
itso.bank.command.Command. The entire source code for the new interface is 
shown in Example 11-21.

Example 11-21   The completed DepositCommand class

package itso.bank.command;

import javax.servlet.http.HttpServletRequest;
import javax.servlet.http.HttpServletResponse;

import itso.bank.facade.Bank;
import itso.bank.model.Account;

/**
 * Deposit command. Will perform a deposit of the specified amount to
 * the specified account.
 * 
 * Parameters:
 * <dl>
 * <dt>amount</dt><dd>The amount cents to deposit to the account</dd>
 * <dt>accountId</dt><dd>The account number to deposit to</dd>
 * </dl>
 */
public class DepositCommand
 Chapter 11. Develop Web applications using JSPs and servlets 587



implements Command
{

/**
 * Do the actual deposit.
 * 
 * @see 

itso.bank.command.Command#execute(javax.servlet.http.HttpServletRequest, 
javax.servlet.http.HttpServletResponse)

 */
public void execute(HttpServletRequest req, HttpServletResponse resp)

throws Exception
{

// Parameters
String accountId = req.getParameter("accountId");
String strAmount = req.getParameter("amount");
int iAmount = Integer.parseInt(strAmount);

// Control logic
Bank bank = Bank.getBank();
bank.deposit(accountId, iAmount);

// Response
Account account = bank.getAccount(accountId);
req.setAttribute("account", account);

}

/**
 * @see itso.bank.command.Command#getForwardView()
 */
public String getForwardView() {

return "accountDetails.jsp";
}

}

Implementing the WithdrawCommand command
The WithdrawCommand class implements the Command interface, created 
previously, to realize a withdrawal of a specified amount from a given account.

Use the New Java Class wizard to create a class named WithdrawCommand in 
the package itso.bank.command. The class should implement the interface 
itso.bank.command.Command. The entire source code for the new interface is 
shown in Example 11-22.

Example 11-22   The completed WithdrawCommand class

package itso.bank.command;
588 Rational Application Developer V6 Programming Guide



import javax.servlet.http.HttpServletRequest;
import javax.servlet.http.HttpServletResponse;

import itso.bank.facade.Bank;
import itso.bank.model.Account;

/**
 * Withdrawal command. Will perform a withdrawal of the specified amount
 * from the specified account.
 * 
 * Parameters:
 * <dl>
 * <dt>amount</dt><dd>The amount cents to withdraw</dd>
 * <dt>accountId</dt><dd>The account number to withdraw from</dd>
 * </dl>
 */
public class WithdrawCommand

implements Command
{

/**
 * Do the actual withdrawal.
 * 
 * @see 

itso.bank.command.Command#execute(javax.servlet.http.HttpServletRequest, 
javax.servlet.http.HttpServletResponse)

 */
public void execute(HttpServletRequest req, HttpServletResponse resp)

throws Exception
{

// Parameters
String accountId = req.getParameter("accountId");
String strAmount = req.getParameter("amount");
int iAmount = Integer.parseInt(strAmount);

// Control logic
Bank bank = Bank.getBank();
bank.withdraw(accountId, iAmount);

// Response
Account account = bank.getAccount(accountId);
req.setAttribute("account", account);

}

/**
 * @see itso.bank.command.Command#getForwardView()
 */
public String getForwardView() {

return "accountDetails.jsp";
 Chapter 11. Develop Web applications using JSPs and servlets 589



}
}

Implementing the TransferCommand command
The TransferCommand class implements the Command interface, created 
previously, to realize a transfer from one account to another.

Use the New Java Class wizard to create a class named TransferCommand in 
the package itso.bank.command. The class should implement the interface 
itso.bank.command.Command. The entire source code for the new interface is 
shown in Example 11-23.

Example 11-23   The completed TransferCommand class

package itso.bank.command;

import javax.servlet.http.HttpServletRequest;
import javax.servlet.http.HttpServletResponse;

import itso.bank.exception.InvalidAmountException;
import itso.bank.facade.Bank;
import itso.bank.model.Account;

/**
 * Transfer command. Will perform a transfer of the specified amount
 * from one account to another.
 * 
 * Parameters:
 * <dl>
 * <dt>amount</dt><dd>The amount of cents to transfer</dd>
 * <dt>accountId</dt><dd>The debit account</dd>
 * <dt>targetAccountId</dt><dd>The credit account</dd>
 * </dl>
 */
public class TransferCommand

implements Command
{

/**
 * Do the actual transfer.
 * 
 * @see 

itso.bank.command.Command#execute(javax.servlet.http.HttpServletRequest, 
javax.servlet.http.HttpServletResponse)

 */
public void execute(HttpServletRequest req, HttpServletResponse resp)

throws Exception
{

// Parameters
590 Rational Application Developer V6 Programming Guide



String debitAccountNumber = req.getParameter("accountId");
String creditAccountNumber = req.getParameter("targetAccountId");
String strAmount = req.getParameter("amount");
int iAmount = 0;

try
{

iAmount = Integer.parseInt(strAmount);
}
catch (NumberFormatException x)
{

throw new InvalidAmountException(strAmount);
}

// Control logic
Bank bank = Bank.getBank();
bank.transfer(debitAccountNumber, creditAccountNumber, iAmount);

// Response
Account account = bank.getAccount(debitAccountNumber);
req.setAttribute("account", account);

}

/**
 * @see itso.bank.command.Command#getForwardView()
 */
public String getForwardView() {

return "accountDetails.jsp";
}

}

Implementing the ListTransactionsCommand command
The ListTransactionsCommand class implements the Command interface, 
created previously, to retrieve the transaction history for an account and forward 
to the view listTransactions.jsp to display this information to the user.

Use the New Java Class wizard to create a class named 
ListTransactionsCommand in the package itso.bank.command. The class should 
implement the interface itso.bank.command.Command. The entire source code 
for the new interface is shown in Example 11-24.

Example 11-24   The completed ListTransactionsCommand class

package itso.bank.command;

import javax.servlet.http.HttpServletRequest;
import javax.servlet.http.HttpServletResponse;
 Chapter 11. Develop Web applications using JSPs and servlets 591



import itso.bank.facade.Bank;
import itso.bank.model.Account;
import itso.bank.model.Transaction;

/**
 * List transactions command. Will retrieve the account history and forward
 * to a JSP that can show this information to the user.
 * 
 * Parameters:
 * <dl>
 * <dt>accountId</dt><dd>The account to show the transaction history for</dd>
 * </dl>
 */
public class ListTransactionsCommand

implements Command
{

/**
 * Retrieve the transactions for the account.
 * 
 * @see 

itso.bank.command.Command#execute(javax.servlet.http.HttpServletRequest, 
javax.servlet.http.HttpServletResponse)

 */
public void execute(HttpServletRequest req, HttpServletResponse resp)

throws Exception
{

// Parameters
String accountId = req.getParameter("accountId");

// Control logic
Bank bank = Bank.getBank();

// Response
Account account = bank.getAccount(accountId);
Transaction[] transactions = bank.getTransactions(accountId);

req.setAttribute("account", account);
req.setAttribute("transactions", transactions);

}

/**
 * @see itso.bank.command.Command#getForwardView()
 */
public String getForwardView() {

return "listTransactions.jsp";
}

}

592 Rational Application Developer V6 Programming Guide



Implementing the PerformTransaction servlet
Now that all the commands for the PerformTransaction framework have been 
realized, we can create the PerformTransaction servlet. The servlet uses the 
value of the transaction request parameter to determine what command to 
execute.

Use the Create Servlet to create a servlet named PerformTransaction. The 
servlet class should be placed in the package itso.bank.servlet. The source code 
for the completed servlet is shown in Example 11-25.

Example 11-25   The PerformTransaction servlet

package itso.bank.servlet;

import java.io.IOException;
import java.util.HashMap;
import java.util.Map;

import javax.servlet.RequestDispatcher;
import javax.servlet.Servlet;
import javax.servlet.ServletContext;
import javax.servlet.ServletException;
import javax.servlet.http.HttpServlet;
import javax.servlet.http.HttpServletRequest;
import javax.servlet.http.HttpServletResponse;

import itso.bank.command.*;

public class PerformTransaction
extends HttpServlet
implements Servlet

{
private Map commands;

public PerformTransaction()
{

commands = new HashMap();

commands.put("deposit", new DepositCommand());
commands.put("withdraw", new WithdrawCommand());
commands.put("transfer", new TransferCommand());
commands.put("list", new ListTransactionsCommand());

}

/**
 * HTTP GET service method. Calls performTask to service requests.
 * 
 * @see performTask(HttpServletRequest req, HttpServletResponse resp)
 Chapter 11. Develop Web applications using JSPs and servlets 593



 * @see javax.servlet.http.HttpServlet#doGet(HttpServletRequest req,
 *      HttpServletResponse resp)
 */
protected void doGet(HttpServletRequest req, HttpServletResponse resp)

throws ServletException, IOException
{

performTask(req, resp);
}

/**
 * HTTP POST service method. Calls performTask to service requests.
 * 
 * @see performTask(HttpServletRequest req, HttpServletResponse resp)
 * @see javax.servlet.http.HttpServlet#doPost(HttpServletRequest req,
 *      HttpServletResponse resp)
 */
protected void doPost(HttpServletRequest req, HttpServletResponse resp)

throws ServletException, IOException
{

performTask(req, resp);
}

private void performTask(HttpServletRequest req, HttpServletResponse resp)
throws ServletException, IOException

{
String transaction = null;

try
{

// Get input parameter and keep it on the HTTP session
transaction = req.getParameter("transaction");

Command command = (Command)commands.get(transaction);
if (command != null)
{

command.execute(req, resp);

String forwardView = command.getForwardView();

if (forwardView != null)
{

// Call the presentation renderer
ServletContext ctx = getServletContext();
RequestDispatcher disp = ctx.getRequestDispatcher(forwardView);
disp.forward(req, resp);

}
}
else
{

594 Rational Application Developer V6 Programming Guide



// set up error information and forward to the error page
req.setAttribute("message", "Unknown transaction: "+transaction);
req.setAttribute("forward", "index.html");
ServletContext ctx = getServletContext();
RequestDispatcher disp = ctx.getRequestDispatcher("showException.jsp");
disp.forward(req, resp);

}
}
catch (Exception e)
{

// set up error information and forward to the error page
req.setAttribute("message", e.getMessage());
req.setAttribute("forward", "index.html");
ServletContext ctx = getServletContext();
RequestDispatcher disp = ctx.getRequestDispatcher("showException.jsp");
disp.forward(req, resp);

}
}

}

11.6.3  Working with JSPs
Now that we have created a servlet that prepares the required data for, and 
forwards controls to, the listAccounts.jsp page, we can complete the 
listAccounts.jsp to display the customer details and account overview.

JSP files are edited in Page Designer, the very same editor you used to edit the 
HTML page. When working with a JSP page, Page Designer has additional 
elements (JSP tags) that can be used, such as JavaBean references, Java 
Standard Template Language (JSTL) tags, and scriptlets containing Java code.

In this section we do the following:

� Implement listAccounts.jsp
� Implement accountDetails.jsp
� Implementing listTransactions.jsp
� Implementing showError.jsp

Implement listAccounts.jsp
You can customize the recently created JSP file by adding your own static 
content, just like you would to a regular HTML file. Along with that, you can use 
the standard JSP declarations, scriptlets, expressions, and tags, or any other 
custom tag that you might have retrieved from the Internet or developed yourself. 

To finish the listAccounts.jsp file, do the following:

1. Expand Dynamic Web Projects → BankBasicWeb → WebContent.
 Chapter 11. Develop Web applications using JSPs and servlets 595



2. Double-click the listAccounts.jsp file to open in Page Designer.

3. Click the Design tab. 

4. Click the content area and select Center in the Horizontal alignment 
drop-down box of the Properties view.

5. Add the customer and accounts variables to the page data meta information. 
These variables are sent to the JSP from the ListAccounts servlet, as can be 
seen in Example 11-16 on page 581. We need to make the Page Designer 
aware of these variables:

a. Right-click anywhere on the Page Data view and select New → Scripting 
Variable → Request Scope Variable.

b. The Add Request Scope Variable window opens. Enter the following 
information in the window and click OK:

• Variable name: customer
• Type: itso.bank.model.Customer

c. Repeat this procedure to add the following request scope variable:

• Variable name: accounts
• Type: itso.bank.model.Account[]

6. In the Palette view, select Form Tags → Form and click anywhere on the 
JSP page. A dashed box will appear on the JSP page, representing the new 
form.

7. In the Properties view, enter the following:

– Action: UpdateCustomer
– Method: Select Post.

8. Add a table with customer information:

a. In the Page Data view, expand and select Scripting Variables → 
requestScope → customer (itso.bank.model.Customer).

b. Click and drag the customer request object to area inside the form that 
was previously created.

c. When the Insert JavaBean window appears, do the following:

• Select Displaying data (read-only).

Tip: You can use the browse-button (marked with an ellipsis) to find 
the class using the class browser.

Important: Note the square brackets—the variable accounts is an 
array of accounts.
596 Rational Application Developer V6 Programming Guide



• Use the arrow up and down buttons to arrange the fields in the order 
shown in Figure 11-38.

• Edit the labels as shown in Figure 11-38.

• Click Finish.

Figure 11-38   Inserting the customer JavaBean

9. Right-click the last row of the newly created table and select Table → Add 
Row Below.

10.In the Palette view, select Form Tags → Submit Button and click in the 
right-hand cell of the new row.

11.When the Insert Submit Button window appears, enter Update in the Label 
field and click OK.

Note: The newly created table with customer data will be changed in a 
later stage to use input fields for the title, first name and last name fields. At 
the time of writing, this was not possible to achieve through the use of the 
available wizards.
 Chapter 11. Develop Web applications using JSPs and servlets 597



12.In the Palette view, select HTMLTags → Horizontal Rule and click in the 
area below the form.

13.In the Page Data view, expand and select Scripting Variables → 
requestScope → accounts (itso.bank.model.Account[]).

14.Click and drag the customer request object to area below the horizontal rule.

15.When the Insert JavaBean wizard appears, do the following, as seen in 
Figure 11-39 on page 598, and click Finish.

– For both fields, select Output link in the Control Type column.
– In the Label field for the accountNumber field, enter Account Number.
– Ensure that the order of the fields is:

• accountNumber
• balance

Figure 11-39   Inserting the accounts JavaBean

16.The wizard will insert a JSTL c:forEach tag and an HTML table with 
headings, as selected in the Insert JavaBean window. Since we selected 
Output link as the Control Type for each column, corresponding c:url tags 
have been inserted. We now need to edit the URL for these links to be 
identical:

a. Select the first c:url tag: . In the Properties 
view, enter the following in the Value field:

AccountDetails

b. Select the second c:url tag: . In the Properties 
view, enter the following n the Value field:
598 Rational Application Developer V6 Programming Guide



AccountDetails

c. In the Palette view, select JSP Tags → Parameter and click the first c:url 
tag ( ).

d. In the Properties view, enter accountId in the Name field and 
${varAccounts.accountNumber} in the Value field.

e. Repeat the two previous steps to add a parameter to the second c:url tag 
( ).

17.Select the c:out tag for outputting the balance (the tag with the text 
${varAccounts.balance}). In the Properties view, enter 
${varAccounts.balance/100} in the Value or EL expression field.

18.In the Properties view, select the lower-most td tab and select Right in the 
Horizontal alignment list box.

19.In the Palette view, select HTMLTags → Horizontal Rule and click in the 
area below the account details table.

20.Add a logout form:

a. In the Palette view, select Form Tags → Form and click below the new 
horizontal rule. A dashed box will appear on the JSP page, representing 
the new form.

b. In the Properties view, enter the following:

• Action: Logout
• Method: Select Post.

c. In the Palette view, select Form Tags → Submit Button and click in the 
right-hand cell of the new row.

d. When the Insert Submit Button window appears, enter Logout in the Label 
field and click OK.

The JSP should now look similar to Figure 11-40 on page 600. The only part 
missing is to change the title, first name and last name to be entry fields, such 
that the user can update the customer details.
 Chapter 11. Develop Web applications using JSPs and servlets 599



Figure 11-40   listAccounts.jsp before adding entry fields

21.Do the following to convert the Title, First Name, and Last Name text fields to 
allow text entry:

a. Click the Source tab.

b. Locate the lines shown in Example 11-26 in the source code.

Example 11-26   Source code lines that must be changed

<tr>
<td align="left">SSN:</td>
<td><c:out value="${requestScope.customer.ssn}" /></td>

</tr>

<tr>
<td align="left">Title:</td>
600 Rational Application Developer V6 Programming Guide



<td><c:out value="${requestScope.customer.title}" /></td>
</tr>

<tr>
<td align="left">First Name:</td>
<td><c:out value="${requestScope.customer.firstName}" /></td>

</tr>

<tr>
<td align="left">Last Name:</td>
<td><c:out value="${requestScope.customer.lastName}" /></td>

</tr>

c. Replace the lines with the lines shown in Example 11-27 in the source 
code. The differences have been highlighted in bold.

Example 11-27   Changed lines to support entry fields

<tr>
<td align="left">SSN:</td>
<td><c:out value="${requestScope.customer.ssn}" /></td>

</tr>

<tr>
<td align="left">Title:</td>
<td><input type="text" name="title" 

value="<c:out value='${requestScope.customer.title}' />" /></td>
</tr>

<tr>
<td align="left">First Name:</td>
<td><input type="text" name="firstName" 

value="<c:out value='${requestScope.customer.firstName}' />" /></td>
</tr>

<tr>
<td align="left">Last Name:</td>
<td><input type="text" name="lastName" 

value="<c:out value='${requestScope.customer.lastName}' />" /></td>
</tr>

22.Save the file by pressing Ctrl+S.

The listAccounts.jsp page is now complete. The page should look like 
Figure 11-41 on page 602 when shown in the Design view.
 Chapter 11. Develop Web applications using JSPs and servlets 601



Figure 11-41   Finished listAccounts.jsp in the Preview view

The JSP tags are shown as icon boxes. Double-click a JSP tag icon and view the 
definition in the Attributes view, or view the content in the Source view.

Implement accountDetails.jsp
The listAccounts.jsp page will forward the user to the AccountDetails servlet 
when one of the lines in the account list is clicked. As shown in Example 11-18 
on page 584, the servlet will add the account attribute to the request and forward 
control to the accountDetails.jsp page.

The following steps describe how to implement the accountDetails.jsp page:

1. Expand Dynamic Web Projects → BankBasicWeb → WebContent.

2. Double-click the accountDetails.jsp file to open in Page Designer.

3. Click the Design tab. 
602 Rational Application Developer V6 Programming Guide



4. Click the content area and select Center in the Horizontal alignment 
drop-down box of the Properties view.

5. Using the method described in “Implement listAccounts.jsp” on page 595 to 
add the request scope variable accounts to the page. The variable has the 
type itso.bank.Account.

6. Drag the account request scope variable to the content area. When the Insert 
JavaBean window appears:

– Select Displaying data (read-only).
– Ensure that accountNumber and balance appear in that order.
– Enter Account Number: in the Label field for the accountNumber variable.
– Click Finish.

7. Select the balance tag (the c:out tag with the display text 
${requestScope.account.balance}). In the Properties view, enter 
${requestScope.account.balance/100} in the Value or EL expression field.

8. Add a horizontal rule below the new table.

9. Add a form under the horizontal rule. The form should have the following 
properties:

– Action: PerformTransaction
– Method: Select Post.

10.In the Properties view, select the Hidden fields tab below the FORM tab.

11.Click Add and enter the following in the first row of the Hidden fields table:

– Name: accountId
– Value: <c:out value="${requestScope.account.accountNumber}" />

12.Add a table to the form. The table should have 5 rows and 4 columns, have 
no borders and have a padding of 5 pixels inside the cells.

13.In the Palette view, select Form Tags → Radio Button and click the top-left 
cell of the table.

14.When the Insert Radio Button window appears, enter transaction in the 
Group name field, list in the Value field, check Selected and click OK.

15.Enter the description List transactions in the cell to the right of the new 
radio button. 

16.Repeat the previous steps to add the remaining radio buttons with 
descriptions from Table 11-4 to the cells in the first column of the table.

Tip: This tab may be hidden. If so, click the small triangular down-arrow 
below the FORM tab to scroll down in the tab list.
 Chapter 11. Develop Web applications using JSPs and servlets 603



Table 11-4   Radio buttons on the accountDetails.jsp page

17.Enter the text Amount: to the right of the Withdraw description (third cell in the 
second row).

18.Enter the text To account: to the right of the Transfer description (third cell in 
the fourth row).

19.In the Palette view, select Form Tags → Text Field and click the cell to the 
right of the text Amount: (fourth cell in the second row).

20.When the Insert Text Field window opens, enter amount in the Name field and 
click OK.

21.In the Palette view, select Form Tags → Text Field and click the cell to the 
right of the text To account: (fourth cell in the fourth row).

22.When the Insert Text Field window opens, enter targetAccountId in the 
Name field and click OK.

23.In the Palette view, select Form Tags → Submit Button and click the first 
cell in the last row of the table.

24.When the Insert Submit Button window opens, enter Submit in the Label field 
and click OK.

25.Perform the following to merge cells in the table. The finished table should 
look similar to Figure 11-43 on page 606.

a. Select cells two through four on the first row of the table (the cell with the 
description List transactions and the two adoining cells to the right), 
right click and select Table → Join Selected Cells to merge the cells.

b. Select the cells in the second column of rows two and three (the cell with 
the description Amount: and the cell below it), right click and select 
Table → Join Selected Cells to merge the cells.

c. Select the cells in the last column of rows two and three (the cell with the 
amount Text the cell below it), right click and select Table → Join 
Selected Cells to merge the cells.

d. Select all the cells in the last row, right click and select Table → Join 
Selected Cells to merge the cells.

Value Selected Description

list Checked List transactions

withdraw Unchecked Withdraw

deposit Unchecked Deposit

transfer Unchecked Transfer
604 Rational Application Developer V6 Programming Guide



e. With the last row still selected, select Center in the Horizontal Alignment 
list box in the Properties view.

Figure 11-42   accountDetails.jsp table after merging cells

26.Add a new form under the table. The form should have the following 
properties:

– Action: ListAccounts
– Method: Select Post.

27.Add a Submit Button with the label Customer Details to the new form.

28.Save the page. The page should look similar to Figure 11-43 on page 606.
 Chapter 11. Develop Web applications using JSPs and servlets 605



Figure 11-43   Completed accountDetails.jsp in the Design view

Implementing listTransactions.jsp
As shown in Example 11-24 on page 591, the ListTransactionsCommand will 
forward the user to the listTransactions.jsp page after adding ther account and 
transactions request to the request.

The following steps describe how to implement the listTransactions.jsp page:

1. Expand Dynamic Web Projects → BankBasicWeb → WebContent.

2. Double-click the listTransactions.jsp file to open in Page Designer.

3. Click the Design tab. 

4. Click the content area and select Center in the Horizontal alignment 
drop-down box of the Properties view.
606 Rational Application Developer V6 Programming Guide



5. Using the method described in “Implement listAccounts.jsp” on page 595 to 
add the two request scope variables shown in Table 11-5 to the page.

Table 11-5   New request scope variables for listTransactions.jsp

6. Drag the account request scope variable to the content area. When the Insert 
JavaBean window appears:

– Select Displaying data (read-only).

– Ensure that accountNumber and balance appear in that order.

– Enter Account Number: in the Label field for the accountNumber variable.

– Click OK.

7. Add a horizontal rule below the new table.

8. Drag the transactions request scope variable to the area below the 
horizontal rule. When the Insert JavaBean window appears, ensure that only 
the columns shown in Table 11-6 are checked and that the occur in the order 
shown in the table. Change the values in the Label column to match 
information shown in Table 11-6 and click Finish.

Table 11-6   Columns to show in the transaction list

9. Select the JSTL tag under the Time heading (the tag in the first cell in the 
second row of the new table).

10.In the Properties view, select Date and time and enter yyyy-MM-dd HH:mm:ss 
in the format field to the right of the Date and time radio button.

11.Select the JSTL tag under the Amount heading (the tag in the right-most cell in 
the second row of the new table).

12.In the Properties view, enter ${varTransactions.amount/100} in the Value or 
EL expression field.

13.In the Properties view, select the td tab just above the currently highlighted 
c:out tab. 

Variable Name Variable Type

account itso.bank.model.Account

transactions itso.bank.model.Transaction[]

Column name Label

timestamp Time

transactionType Type

amount Amount
 Chapter 11. Develop Web applications using JSPs and servlets 607



14.Select Right in the Horizontal alignment drop-down box.

15.In the Properties view, select the bottom-most table tab.

16.Enter 1 in the Border field and 2 in the Padding field.

17.Add a horizontal rule below the new table.

18.Add a form under the horizontal rule. The form should have the following 
properties:

– Action: AccountDetails
– Method: Select Post.

19.In the Properties view, select the Hidden fields tab below the FORM tab.

20.Click Add and enter the following in the first row of the Hidden fields table:

– Name: accountId
– Value: <c:out value="${requestScope.account.accountNumber}" />

21.Add a Submit Button with the label Account Details to the new form.

22.Save the page. The page should look similar to Figure 11-44.

Figure 11-44   Completed listTransactions.jsp in the Design view
608 Rational Application Developer V6 Programming Guide



Implementing showError.jsp
As shown in Example 11-16 on page 581, the user will be forwarded to the 
showError.jsp page in case an error occurs in the servlet processing. The servlet 
will add the following two String attributes to the request:

� message

A message, descibing the error condition. This will be of a technical nature, 
often just the exception text.

� forward

The page that the user should be sent to after reading the error message.

The following steps describe how to implement a simple error page:

1. Expand Dynamic Web Projects → BankBasicWeb → WebContent.

2. Double-click the showError.jsp file to open in Page Designer.

3. Click the Design tab. 

4. Click the content area and select Center in the Horizontal alignment 
drop-down box of the Properties view.

5. Using the method described in “Implement listAccounts.jsp” on page 595 to 
add the two request scope variables shown in Table 11-7 to the page.

Table 11-7   New request scope variables for showError.jsp

6. Drag the message request scope variable to the content area. When the Insert 
JavaBean window appears:

– Select Displaying data (read-only).

– Enter An error has occurred: in the Label field.

– Click OK.

7. Drag the forward request scope variable to the content area. When the Insert 
JavaBean window appears:

– Select Displaying data (read-only).

– Clear the contents of the Label field.

– Select Output link in the Control Type drop-down box.

– Click OK.

Variable Name Variable Type

message java.lang.String

forward java.lang.String
 Chapter 11. Develop Web applications using JSPs and servlets 609



8. Select the c:out tag (the second tag with the text ${requestScope.forward} 
in blue) and enter the text Click here to continue in the Value or EL 
expression field in the Properties view.

9. Save the page. The page should look similar to Figure 11-45.

Figure 11-45   Completed showError.jsp in the Design view

11.7  Test the application
This section demonstrates how to run the sample Web application built using 
servlets and JSPs.
610 Rational Application Developer V6 Programming Guide



11.7.1  Prerequisites to run sample Web application
In order to run the Web application you will need to have completed one of the 
following:

� Complete the sample following the procedures described in the following 
sections:

– 11.3, “Prepare for the sample” on page 513.
– 11.4, “Define the site navigation and appearance” on page 524.
– 11.5, “Develop the static Web resources” on page 544.
– 11.6, “Develop the dynamic Web resources” on page 549.

� Import the completed sample c:\6449code\web\BankBasicWeb.zip Project 
Interchange file. Refer to “Import sample code from a Project Interchange file” 
on page 1398 for details.

11.7.2  Run the sample Web application
To run the sample Web application in the test environment, do the following:

1. Open the Web perspective Project Explorer view.

2. Expand and select Dynamic Web Projects → BankBasicWeb.

3. Right-click BankBasicWeb, and select Run → Run on Server.

4. When the Server Selection dialog appears, select Choose an existing 
server, select WebSphere Application Server v6.0, and click Finish.

The main page of the Web application should be displayed in a Web browser 
inside Rational Application Developer.

11.7.3  Verify the sample Web application
Once you have launched the application by running it on the test server, there 
are some basic steps that can be taken to verify the Web application is working 
properly.

1. From the main page, select the RedBank menu option.

2. When the ITSO RedBank login page appears, enter 111-11-1111 in the 
customer SSN field as seen in Figure 11-46 on page 612, and then click 
Enter.
 Chapter 11. Develop Web applications using JSPs and servlets 611



Figure 11-46   ITSO RedBank Login page

The resulting page should look like Figure 11-47.

Figure 11-47   Display of customer accounts
612 Rational Application Developer V6 Programming Guide



3. From the page displayed in Figure 11-47, you can do one of the following:

– Change the fields and then click Update. This verifies the 
UpdateCustomer servlet. For example, change Title to Sir and then click 
Update.

– You can click Logout, which will perform a logout and return to the Login 
page.

– You can click on the accounts to display the accounts information, 
resulting in the page displayed in Figure 11-48 on page 613.

Figure 11-48   Details for a selected account

4. From the page displayed in Figure 11-48, you can do one of the following:

– Select one of the radio buttons and click Submit. This tests the framework, 
created in “Implementing the PerformTransaction servlet framework” on 
page 586. The radio buttons works as follows:

• List transactions: This will result in the page displayed in Figure 11-49 
on page 614.

Note: The page in Figure 11-49 on page 614 is the result of first 
testing a few withdrawals and deposits. Before testing these 
transactions, the List transactions page does not contain any details.
 Chapter 11. Develop Web applications using JSPs and servlets 613



• Withdraw: This will result in the number of cents entered in the Amount 
field to be withdrawn from the account and the current page to be 
redisplayed with the updated balance.

• Deposit: This will result in the number of cents entered in the Amount 
field to be deposited to the account and the current page to be 
redisplayed with the updated balance.

• Transfer: This will result in the number of cents entered in the Amount 
field to be transferred to the account number entered in the To account 
field and the current page to be redisplayed with the updated balance.

– You can click Customer Details, which will return you to the page 
displayed in Figure 11-47 on page 612.

– You can click Logout, which will perform a logout and return to the home 
page.

Figure 11-49   List of transactions for an account
614 Rational Application Developer V6 Programming Guide



Chapter 12. Develop Web applications 
using Struts

Jakarta Struts is an open source framework maintained by the Apache Software 
Foundation, that simplifies building and maintaining Web applications.

In this chapter we introduce the concepts of the Struts framework and 
demonstrate the Rational Application Developer tooling used for Struts Web 
application development. Lastly, we have provided a completed Web application 
using Struts that can be imported and run within the test environment.

The chapter is organized into the following sections:

� Introduction to Struts
� Prepare for the sample application
� Develop a Web application using Struts
� Import and run the Struts sample application

12
© Copyright IBM Corp. 2005. All rights reserved. 615



12.1  Introduction to Struts
The Struts framework control layer uses technologies such as servlets, 
JavaBeans, and XML. The view layer is implemented using JSPs. The Struts 
architecture encourages the implementation of the concepts of the 
model-view-controller (MVC) architecture pattern. By using Struts you can get a 
clean separation between the presentation and business logic layers of your 
application.

Struts also speeds up Web application development by providing an extensive 
JSP tag library, parsing and validation of user input, error handling, and 
internationalization support.

The focus of this chapter is on the Rational Application Developer tooling used to 
develop Struts-based Web applications. Although we do introduce some basic 
concepts of the Struts framework, we recommend that you refer to the following 
sites:

� Apache Struts home page:

http://struts.apache.org/

� Apache Struts User Guide:

http://struts.apache.org/userGuide/introduction.html

12.1.1  Model-view-controller (MVC) pattern with Struts
In 11.1.2, “Model-view-controller (MVC) pattern” on page 503, we described the 
general concepts and architecture of the MVC pattern. Figure 12-1 on page 617 
depicts the Struts components in relation to the MVC pattern.

� Model: Struts does not provide model classes. The business logic must be 
provided by the Web application developer as JavaBeans or EJBs.

� View: Struts provides action forms to create form beans that are used to pass 
data between the controller and view. In addition, Struts provides custom JSP 
tag libraries that assist developers in creating interactive form-based 
applications using JSPs. Application resource files hold text constants and 
error message, translated for each language, that are used in JSPs.

� Controller: Struts provides an action servlet (controller servlet) that populates 
action forms from JSP input fields and then calls an action class where the 
developer provides the logic to interface with the model.

Note: IBM Rational Application Developer V6.0 includes support for Struts 
Version 1.1. At the time of writing this book, the latest version of the Struts 
framework was V1.2.4.
616 Rational Application Developer V6 Programming Guide

http://struts.apache.org/userGuide/introduction.html
http://struts.apache.org/


Figure 12-1   Struts components in the MVC architecture

A typical Struts Web application is composed of the following components:

� A single servlet (extending org.apache.struts.action.ActionServlet) 
implements the primary function of mapping a request URI to an action class. 
Before calling the action class, it populates the form bean associated to the 
action with the fields from the input JSP. If specified, the action servlet also 
requests the form bean to validate the data. It then calls the action class to 
carry out the requested function. If form bean validation fails, control is 
returned to the input JSP so the user can correct the data. The action servlet 
is configured by an XML configuration file that specifies the environment and 
the relationship between the participating components.

� Multiple JSPs that provide the end-user view. Struts includes an extensive tag 
library to make JSP coding easier. The JSPs display the information prepared 
by the actions and requests new information from the user.

� Multiple action classes (extending any one of the Struts action classes like 
org.apache.struts.action.Action) that interface with the model. When an action 
has performed its processing, it returns an action forward object, which 
determines the view that should be called to display the response. The action 
class prepares the information required to display the response, usually as a 
form bean, and makes it available to the JSP. Usually the same form bean 
that was used to pass information to the action is used also for the response, 
but it is also common to have special view beans tailored for displaying the 
data. An action forward has properties for its name, address (URL), and a flag 

 : ActionForm

View                        Controller                       Model

Action

Action

Action

Action
configuration

file

Model

 Application 
Resources

ActionServlet

Tag libraries

 : JSP

Struts Support
 Chapter 12. Develop Web applications using Struts 617



specifying if a forward or redirect call should be made. The address to an 
action forward is usually hard coded in the action servlet configuration file, but 
can also be generated dynamically by the action itself.

� Multiple action forms (extending any one of the Struts Action Form classes 
like org.apache.struts.action.ActionForm) to help facilitate transfer form data 
from JSPs. The action forms are generic Javabeans with getters and setters 
for the input fields available on the JSPs. Usually there is one form bean per 
Web page, but you can also use more coarse-grained form beans holding the 
properties available on multiple Web pages (this fits very well for wizard-style 
Web pages). If data validation is requested (a configurable option) the form 
bean is not passed to the action until it has successfully validated the data. 
Therefore the form beans can act as a sort of firewall between the JSPs and 
the actions, only letting valid data into the system.

� One application resource file per language supported by the application holds 
text constants and error messages and makes internationalization easy.

Figure 12-2 shows the basic flow of information for an interaction in a Struts Web 
application.

Figure 12-2   Struts request sequence

A request from a Web browser reaches the Struts ActionServlet. If the action that 
will handle the request has a form bean associated with it, Struts creates the 
form bean and populates it with the data from the input form. It then calls the 
validate method of the form bean. If validation fails, the user is returned to the 
input page to correct the input. If validation succeeds, Struts calls the action’s 
execute method. The action retrieves the data from the form bean and performs 
the appropriate logic. Actions often call session EJBs to perform the business 

 : Web user
(Browser)

 : ActionServlet  : Action  : ActionForm  : JSP

HTTP setXxx()
validate()

execute()

forward()

getXxx()

getXxx()

setXxx()"forward"
618 Rational Application Developer V6 Programming Guide



logic. When done, the action either creates a new form bean (or other 
appropriate view bean) or reuses the existing one, populates it with new data, 
and stores it in the request (or session) scope. It then returns a forward object to 
the Struts action servlet, which forwards to the appropriate output JSP. The JSP 
uses the data in the form bean to render the result.

12.1.2  Rational Application Developer support for Struts
Rational Application Developer provides the following support for Struts-based 
Web applications:

� A Web Project can be configured for Struts. This adds the Struts runtime (and 
dependent JARs), tag libraries, and action servlet to the project, and creates 
skeleton Struts configuration and application resources files. Rational 
Application Developer provides support for Struts 1.1, selectable when setting 
up the project. This field is selectable, as at the time of this writing, support for 
Struts 1.2.x is being added to Rational Application Developer.

� A set of Struts Component Wizards to define action form classes, action 
classes with action forwarding information, and JSP skeletons with the tag 
libraries included.

� The Struts Configuration Editor to maintain the control information for the 
action servlet.

� A graphical design tool to edit a graphical view of the Web application from 
which components (forms, actions, JSPs) can be created using the wizards. 
This graphical view is called a Web diagram. The Web diagram editor 
provides top-down development (developing a Struts application from 
scratch), bottom-up development (that is, you can easily diagram an existing 
Struts application that you may have imported), and meet-in-the-middle 
development (that is, enhancing or modifying an existing diagrammed Struts 
application).

� The Project Explorer view provides a hierarchical (tree-like) view of the 
application. This view shows the Struts artifacts (such as Actions, 
Formbeans, Global Forwards, Global Exceptions, and Web pages). You can 
expand the artifacts to see their attributes. For example, an Action can be 
expanded to see the formbeans, and forwards and local exceptions 
associated with the selected Action. This is useful for understanding specific 
execution paths of your application. The Project Explorer view is available in 
the Web perspective.

� The JSP Page Designer support for rendering the Struts tags, making it 
possible to properly view Web pages that use the Struts JSP tags. This 
support is customizable using Rational Application Developer’s Preferences 
settings.
 Chapter 12. Develop Web applications using Struts 619



� Validators to validate the Struts XML configuration file and the JSP tags used 
in the JSP pages.

12.2  Prepare for the sample application
This section describes the tasks that need to be completed prior to developing 
the Web application using Struts.

12.2.1  ITSO Bank Struts Web application overview
We will use the ITSO Bank as the theme of our sample application. Similar 
samples were developed in the following chapters using other Web application 
technologies:

� Chapter 11, “Develop Web applications using JSPs and servlets” on 
page 499

� Chapter 13, “Develop Web applications using JSF and SDO” on page 673

The ITSO Bank sample application allows a customer to enter a customer ID 
(social security number), select an account to view detailed transaction 
information, or perform a deposit or withdrawal on the account. The model layer 
of the application is implemented within the Action classes using Java beans for 
the sake of simplicity. We will implement the business tier using EJB technology 
developed in Chapter 15, “Develop Web applications using EJBs” on page 827.

In the banking sample, we will use the Struts framework for the controller and 
view components of the Web application, implement the model using JavaBeans 
and Cloudscape bundled with Rational Application Developer. 

Figure 12-3 on page 621 displays the Struts Web diagram for the sample 
banking application. The basic description and flow of the banking sample 
application are as follows

1. The logon.jsp page is displayed as the initial page of the banking sample 
application. The customer is allowed to enter her or his social security 
number. In our case we will use simple validation to check for an empty value 

Note: A completed version of the ITSO RedBank Web application built using 
Struts can be found in the c:\6449code\struts\BankStrutsWeb.zip Project 
Interchange file.

If you do not wish to develop the sample yourself, but want to see it run, follow 
the procedures described in 12.4, “Import and run the Struts sample 
application” on page 665.
620 Rational Application Developer V6 Programming Guide



entered using the Struts framework. If the customer does not enter a valid 
value, the Struts framework will return to the logon.jsp page and display the 
appropriate message to the user.

2. The logon action logs in the user, and on successful logon retrieves the 
customer’s account information and lists all the accounts associated with the 
customer using the customerlisting.jsp Web page.

3. In cutsomerlisting.jsp, the customer can select to see details of a selected 
account or select to perform a transaction on an account using the 
accountDetails and performTransaction actions, respectively.

4. The customer can log off using the logoff link, which will invoke the logoff 
action.

Figure 12-3   Struts Web diagram - Bank sample

In this section we focus on creating the various Struts components, including the 
Struts Controller, Action, Form bean, and Web pages, and relate these 
 Chapter 12. Develop Web applications using Struts 621



components together. We will implement the following steps to demonstrate the 
capabilities of Rational Application Developer:

� Create a Dynamic Web Application with Struts support: In this section the 
process of creating a dynamic Web application with Struts support and the 
wizard generated support for Struts will be described.

� Create Struts Components: In this section we will focus on creating Web 
pages, Actions, Form Beans, Exceptions (Local and Global), and Forwards 
using Web diagrams, and modify the properties of Struts components using 
the Struts Configuration Editor.

� Use the Struts Configuration Editor: In this section we will focus on creating 
Struts components using the Struts Configuration Editor that provides a visual 
editor to modify the Struts Configuration file struts-config.xml.

� Import the complete Sample Banking Web-application: In the previous 
sections we created various Struts components. Here we will import the 
complete banking sample implemented as shown in Figure 12-3 on page 621.

� Run the sample Banking Application: In this section we will verify the 
datasource configurations in the Extended Application Descriptor of the 
imported sample and then run and test the application in the WebSphere V6.0 
Test Environment.

12.2.2  Create a Dynamic Web Project with Struts support
To create a dynamic Web Project with Struts support, do the following:

1. Open the Web perspective.

2. Select File → New → Project from the menu. 

3. When the New Project Wizard appears, select Dynamic Web Project and 
click Next.

4. Enter BankStrutsWeb in the Name field and click Next.

5. When the Features dialog appears, check Struts as seen in Figure 12-4 on 
page 623, accept defaults for other features, and then click Next.

Note: Because this chapter focuses on Application Developer’s Struts tools 
and wizards (more than the architecture and best practices of a Struts 
application) we try to use the Struts tools and wizards as much as possible 
when creating our application. 

After having used the wizards to create some components (JSPs, form beans, 
actions) you may find it faster to create new components by copying and 
pasting from your existing components than by using all the wizards.
622 Rational Application Developer V6 Programming Guide



Figure 12-4   Create a Struts-based Dynamic Web Project - Select Features

6. We accepted the default on the Select a Page Template for the Web site 
page. Click Next.

7. When the Struts Settings page appears, since we enabled Struts, do the 
following (as seen in Figure 12-5 on page 624), and then click Finish:

– Check Override default settings.
– Struts version: Select 1.1 (default).
– Default Java package prefix: itso.bank.model.struts

Note: At the time of writing, Struts V1.1 is the only version supported and 
available from the list box.
 Chapter 12. Develop Web applications using Struts 623



Figure 12-5   Create a Struts-based Dynamic Web Project - Struts Settings

At this point a new dynamic Web Project with Struts support called 
BankStrutsWeb has been created. 

Note: If you create a Web Project as part of creating an Enterprise Application 
Project you will not be given the option to add Struts support at that time. You 
will have to add the Struts support afterwards by selecting Properties from 
the Web Project’s context menu, selecting Web Project Features in the left 
pane, and checking the Struts option there.
624 Rational Application Developer V6 Programming Guide



The following Struts-specific artifacts are created, and Web application 
configurations are modified by the wizard related to Struts when a new dynamic 
Web application is created with Struts support:

� The wizards add the Struts configuration file struts-config.xml, the Struts jar 
files under the WEB-INF/lib directory, and the tag library(tild) files under the 
WEB-INF directory, as shown in Figure 12-6 on page 626.

� Modifies the Web deployment descriptor web.xml and adds the following 
elements to the deployment descriptor:

– The Struts Action Servlet and a servlet mapping for the Action servlet to 
handle all client requests matching the regular expression pattern *.do, as 
shown in Figure 12-7 on page 627.

– The tld files References for the Struts tag libraries, as shown in 
Figure 12-8 on page 628.

� Adds the ApplicationResources.properties in the package specified in step 4 
in the creation of a dynamic project. This is a property file used in the Struts 
Web framework to display messages and form field names in a language and 
locale independent fashion.

� A default Struts Module called <default Module> is created, under which all 
the Struts components are created.

� A default Web diagram diagram.gph is created. The Struts Web Diagram 
Navigator is used to create Struts components. The Web Diagram Navigator 
is used in a top-down design approach for creating Web Applications.

Note: The Struts action servlet is configured (in web.xml) to intercept all 
requests with a URL ending in .do (the servlet mapping is *.do). This is 
common for Struts applications, but equally common is using a servlet 
mapping of /action/* to intercept all URLs beginning with /action.
 Chapter 12. Develop Web applications using Struts 625



Figure 12-6   Generated struts-config.xml, Struts jars, and tag library definitions
626 Rational Application Developer V6 Programming Guide



Figure 12-7   Generated Web Deployment Descriptor config for action servlet
 Chapter 12. Develop Web applications using Struts 627



Figure 12-8   Generated Web Deployment Descriptor config for Struts tag library references

12.2.3  Add JDBC driver for Cloudscape to project
To add the Cloudscape JDBC driver to the project, do the following:

1. Open the Web perspective Project Explorer view.

2. Expand Dynamic Web Projects.

3. Right-click BankStrutsWeb and select Properties.

4. Select Java Build Path. 

5. Add the JAR file that contains the JDBC drivers for the Cloudscape database 
we will be using in the sample.

a. Select the Libraries tab at the top of the dialog and click Add Variable....
628 Rational Application Developer V6 Programming Guide



A further dialog appears, allowing you to select from a list of predefined 
variables. By default, there is no variable defined for the JAR file we need, 
so we will have to create one.

b. Click Configure Variables... and in the resulting dialog click New....

c. Enter CLOUDSCAPE_DRIVER_JAR in the Name field and click File....

d. Find the appropriate JAR file, which is in 
<rad_home>\runtimes\base_v6\cloudscape\lib and is called db2j.jar.

e. Click Open, OK, and OK and you will be back at the New Variable 
Classpath Entry dialog. 

f. Click OK when prompted for a Full Rebuild of the project workspace with 
the new variable added to classpath.

g. Select the CLOUDSCAPE_DRIVER_JAR variable you just created and 
click OK.

6. If you were not prompted for a full rebuild of the project workspace in step 3e, 
Rational Application Developer has been configured to not perform automatic 
builds. Perform a project build by selecting Project → Build All. (This option 
is disabled if automatic builds are selected; Project → Build Automatically). 

7. Unless you have previously turned this feature off, Rational Application 
Developer will display a Confirm Perspective Switch dialog asking whether 
you want to switch to the Java perspective. Click Yes. If you have turned this 
feature off, you will need to open the Java perspective now.

12.2.4  Set up the sample database
This section provides instructions for deploying the BANK sample database and 
populating the database with sample data. For simplicity we will use the built-in 
Cloudscape database.

To create the database, create the connection, and create and populate the 
tables for the BANK sample from within Rational Application Developer, do the 
following:

1. Create the database and connection to the Cloudscape BANK database from 
within Rational Application Developer.

For details refer to “Create a database connection” on page 347.

2. Create the BANK database tables from within Rational Application Developer.

For details refer to “Create database tables via Rational Application 
Developer” on page 350.

3. Populate the BANK database tables with sample data from within Rational 
Application Developer.
 Chapter 12. Develop Web applications using Struts 629



For details refer to “Populate the tables within Rational Application Developer” 
on page 352.

12.2.5  Configure the data source
There are a couple of methods that can be used to configure the datasource, 
including using the WebSphere Administrative Console or using the WebSphere 
Enhanced EAR, which stores the configuration in the deployment descriptor and 
is deployed with the application. 

This section describes how to configure the datasource using the WebSphere 
Enhanced EAR capabilities. The enhanced EAR is configured in the Deployment 
tab of the EAR deployment descriptor.

The procedure found in this section considers two scenarios for using the 
enhanced EAR:

� If you choose to import the complete sample code, you will only need to verify 
that the value of the databaseName property in the deployment descriptor 
matches the location of your database. 

� If you are going to complete the working example Web application found in 
this chapter, you will need to create the JDBC provider, the datasource, and 
update the databaseName property.

Access the deployment descriptor
To access the deployment descriptor where the enhanced EAR settings are 
defined, do the following:

1. Open the Web perspective Project Explorer view.

2. Expand Enterprise Applications → BankStrutsWebEAR.

3. Double-click Deployment Descriptor : BankStrutsWebEAR to open the file 
in the Deployment Descriptor Editor.

4. Click the Deployment tab.

Note: For more information on configuring data sources and general 
deployment issues, refer to Chapter 23, “Deploy enterprise applications” on 
page 1189.

Note: For JAAS Authentication, when using Cloudscape, the configuration of 
the user ID and password for the JAAS Authentication is not needed.

When using DB2 Universal Database or other database types that require a 
user ID and password, you will need to configure the JAAS authentication.
630 Rational Application Developer V6 Programming Guide



Configure a new JDBC provider
By default, when using Cloudscape, the Cloudscape JDBC Provider (XA), 
supporting two-phase commit, is predefined in the JDBC provider list. In our 
example, we do not take advantage of the two-phase commit feature, but it does 
not cause any harm using this provider.

The following procedure is only needed if you wish to add a new JDBC provider 
using the enhanced EAR capability in the deployment descriptor:

1. From the Deployment tab of the Application Deployment Descriptor, click Add 
under the JDBC provider list.

2. When the Create a JDBC Provider dialog appears, select Cloudscape as the 
Database type, select Cloudscape JDBC Provider as the JDBC provider 
type, and then click Next.

3. Enter Cloudscape JDBC Provider in the Name field and then click Finish.

Configure the data source
To configure a new data source using the enhanced EAR capability in the 
deployment descriptor, do the following:

1. From the Deployment tab of the Application Deployment Descriptor, select 
the JDBC provider.

2. Click Add next to data source. 

3. When the Create a Data Source dialog appears, select Cloudscape JDBC 
Provider (XA) under the JDBC provider, select Version 5.0 data source, 
and then click Next.

4. When the Create a Data Source dialog appears, enter the following and then 
click Finish:

– Name: BankDS
– JNDI name: jdbc/BankDS

Configure the databaseName property
To configure the databaseName in the new data source using the enhanced 
EAR capability in the deployment descriptor to define the location of the 
database for your environment, do the following:

1. Select the data source created in the previous section.

2. Select the databaseName property under the Resource properties.

Note: This step is optional for our example, since we will use the predefined 
Cloudscape JDBC Provider (XA).
 Chapter 12. Develop Web applications using Struts 631



3. Click Edit next to Resource properties to change the value for the 
databaseName.

4. When the Edit a resource property dialog appears, enter c:\databases\BANK 
in the Value field and then click OK. 

In our example, c:\databases\BANK is the database created for our sample 
application.

5. Save the Application Deployment Descriptor.

The changes will not take effect until the server is restarted.

12.3  Develop a Web application using Struts
This section describes how to develop a Web application using Struts with the 
tooling provided by Rational Application Developer. 

The section is organized into the following tasks:

� Create the Struts components.
� Realize the Struts components.
� Modify ApplicationResources.properties.
� Struts validation framework.
� Page Designer and the Struts tag library.
� Using the Struts configuration file editor.

12.3.1  Create the Struts components
There are several ways to create Struts components:

� In the Project Explorer, expand and select Dynamic Web Projects → 
<project> → Struts. Use New from the context menu of the Struts to create 
Struts Modules, Actions, FormBeans, Global Forwards, and Global 
Exceptions.

� Using the Struts Configuration Editor: Rational Application Developer 
provides a Struts configuration editor, which is used to create Struts 

Note: If your enterprise application is already deployed, it may be necessary 
to remove the application from the server and then republish it.

Important: This section demonstrates how to develop a Web application 
using Struts with the tooling included with Rational Application Developer. We 
do not cover the details for all of the sample code. A procedure to import and 
run the completed Struts Bank Web application sample can be found in 12.4, 
“Import and run the Struts sample application” on page 665.
632 Rational Application Developer V6 Programming Guide



components and to modify the Struts configuration file struts-config.xml. 
Using the Struts Configuration Editor will be described in detail in 12.3.6, 
“Using the Struts configuration file editor” on page 659.

� In the Struts Web Diagram Navigator, use the Struts Palette to create Struts 
components. 

In this chapter, we take a top-down approach to design the Web application by 
laying out all the components in the Web diagram using the Web Diagram 
Navigator.

This section is organized into the following tasks:

� Start the Web Diagram editor.
� Create a Struts Action.
� Create a Struts Form Bean.
� Create a Web Page.
� Create a Struts Web connection.

Start the Web Diagram editor
To launch the Web Diagram editor, do the following:

1. Open the Web perspective Project Explorer view.

2. Expand Dynamic Web Projects → BankStrutsWeb.

3. Double-click Web Diagram from the Project Explorer view.

The Web Designer should be open, as seen in Figure 12-9 on page 633. 

Figure 12-9   Web Diagram with the Struts Drawer open in the Palette
 Chapter 12. Develop Web applications using Struts 633



Create a Struts Action
To create the Struts Action for logon, do the following:

1. From the Palette, expand Struts Parts.

2. Drag and drop the Action Mapping icon ( ) from the palette.

3. Change the name of the action to /logon, as seen in Figure 12-10 on 
page 634.

The logon component appears in black and white. This is because the 
component has not yet been realized. Once the action is realized it will be 
displayed in color.

Figure 12-10   Struts Components - Create Struts action

Create a Struts Form Bean
In the previous section we created the logon action. The logon action is invoked 
when the customer enters a customer ID (social security number). This 
information is passed to the action as a Struts Form bean. 

To create and associate the logonForm form bean to the logon action, do the 
following:

1. From the Struts Parts drawer in the Palette, drag and drop the Form Bean 
icon ( ) from the Palette to the editor. 

2. When the Form Bean Attributes dialog appears, do the following and then 
click OK:

– Form Bean Name: logonForm
634 Rational Application Developer V6 Programming Guide



– Form Bean Scope: select request

You can choose to store the form bean in either the request or session scope. 
We choose to store logonForm in the request scope in our example.

3. Associate the Logon action to the LogonForm form bean. 

a. To create a connection, select the Connection icon ( ) from the 
Palette. 

b. Single click the logon action, and drag and drop the connection on 
logonForm.

The Web diagram should now look like Figure 12-11 on page 635.

Figure 12-11   Struts Components - Creating Struts Form Bean

Again notice that the diagram is in black and white. This is because none of the 
components have been realized. We discuss realization and more about 
realizing the Web components in 12.3.2, “Realize the Struts components” on 
page 640.

Create a Web Page
Thus far, we have created the logon action and the logonForm form bean. We 
will create the input and output pages to the logon action. The input page 
(logon.jsp) lets the customer enter a customer ID (SSN) through the input form. 
The form action is mapped to the logon action. The form data is passed to the 
action through the logonForm logon form bean. 
 Chapter 12. Develop Web applications using Struts 635



To create the logon.jsp and customerListing.jsp Web pages, do the following:

1. From the Web Parts drawer of the Palette, drag and drop the Web Page icon 
( ) into the Web diagram.

2. Enter logon.jsp as the page name.

3. Repeat the steps to create the customerListing.jsp. 

The Web diagram should now look like Figure 12-12 on page 636.

Figure 12-12   Struts components - Create Web pages

Create a Struts Web connection
A connection is typically used to connect two nodes in a Web diagram. In a 
Struts context, when a connection is dragged from a Struts action, a pop-up 
connection wizard is displayed, enabling the user to create the connection. When 
any of these connections are realized, the corresponding Struts action mapping 
entry in the Struts configuration file struts-config.xml is modified appropriately. 
For now we will create the connection, and realize all the components we have 
created thus far in 12.3.2, “Realize the Struts components” on page 640.

When you select Connection from the palette and drag it from a Struts Action to 
any other node, you will be able to create the following:

� Local Exception: When Local Exception is selected, the Action Mapping 
entry is modified in the struts-config.xml file. The handler class created during 
the creation is invoked when the Struts action throws the local exception.
636 Rational Application Developer V6 Programming Guide



� Action Input: When the Struts validation framework is used, the action needs 
to forward the control back to the page that invoked the action in case of 
validation failures. This is specified by specifying an action input. The action 
mapping entry is modified in the struts-config.xml file.

� Include Action Mapping: The action in the Action Mapping entry in 
struts-config.xml is configured as a include.

� Forward Action Mapping: The action in the Action Mapping entry in 
struts-config.xml is configured as a forward.

� Global Forward: When Global Forward is selected, a global forward entry is 
added in the struts-config.xml configuration file.

� Local Forward: When Local Forward is selected, a local forward entry is 
added within the corresponding action mapping entry instead of globally in 
the struts-config.xml configuration file.

� Global Exception: When Global Exception is selected, a global exception 
entry is added in the struts-config.xml configuration file.

In our sample, when a user enters an invalid customer ID (SSN), the logon action 
fails and then forwards the user back to the logon page to enable the user to 
re-enter this information. Likewise, if the logon action succeeds, the customer 
has to be forwarded to the customerListing page that displays the customer’s 
account information.

To create the local forwards for success and failures for the logon action, do the 
following:

1. Create a connection from logon.jsp to the logon action. 

This is done to indicate that the action that will be invoked when the form is 
submitted will be logon.

Select Connection from the Palette, click logon.jsp, and drag the connection 
to the logon action.

2. Create an Action Input.

The Action Input will be used by the Struts validation framework for validating 
the form data in logon.jsp to redirect the user back to the logon.jsp page. 

Select Connection from the Palette, click the logon action, and drag it back 
to logon.jsp.

3. When the Choose a connection dialog appears, expand Action Input and 
select <new> (as seen in Figure 12-13), and then click OK.
 Chapter 12. Develop Web applications using Struts 637



Figure 12-13   Struts Components - Creating a connection

You will now see a dotted red arrow from the logon action to the logon.jsp 
page, as shown in Figure 12-14 on page 638.

Figure 12-14   Struts Components - Creating Struts Action Input

4. Create a local forward back to logon.jsp.

This will be used to forward the user back to the logon page when business 
exceptions occur in the logon action. 

a. Select Connection, click the logon action, and drag it back to logon.jsp. 

b. When the Choose a connection dialog appears, expand Local Forward, 
select <new>, and then click OK.

c. Rename the forward to failure.
638 Rational Application Developer V6 Programming Guide



You will now see a dotted arrow from the logon action to the logon.jsp page.

5. Create a local forward to the customerListing.jsp.

a. Select Connection, click the logon action, and drag it back to 
customerListing.jsp. 

b. When the Choose a connection dialog appears, expand Local Forward, 
select <new>, and then click OK.

c. Rename the forward to success.

You will now see a dotted arrow line from the Struts action to the Web page, 
as shown in Figure 12-15 on page 639.

Figure 12-15   Struts components - Creating local action forwards

6. Save the Web diagram (Ctrl+S).

Tip: You can select a component in the Web diagram, right-click, and from the 
context menu select:

� Change Path to change the name of a JSP or action
� Edit the forward name to change the name of a connection
� Change Description to add descriptive text to any components

To improve the layout of the application flow, you can drag components to 
another spot and you can rearrange connections by dragging their middle 
point.
 Chapter 12. Develop Web applications using Struts 639



12.3.2  Realize the Struts components
Up to this point, the components (action, form bean, Web pages, local forwards) 
displayed on the Web diagram (see Figure 12-15) are black and white. This 
shows that the components have not been realized.

To realize a resource in a Web diagram means to tie the node/connection in the 
Web diagram to its underlying resource and bring the underlying resource into 
existence. 

To realize the component, you can either double-click the component to invoke 
the appropriate wizard or you can change the path of the component to an 
existing resource. Table 12-1 on page 640 shows the action that occurs when 
double-clicking the component.

Table 12-1   Struts components realization result

Object Resulting action when realized

Struts Form Beans If the form bean does not exist, by default 
the New ActionForm Class wizard opens. 
If the form bean exists but is not defined in 
a configuration file, a configuration dialog 
box opens, and the dialog box lists all the 
Struts configuration files that are defined 
in the web.xml file for the Struts 
application. The Struts configuration file 
editor is opened on the chosen 
configuration file, and a new form bean 
entry is generated and selected. This 
behavior can be changed by setting the 
Web diagram preferences.

Struts Actions If the action mapping does not exist, the 
Action Mapping wizard opens. If the action 
mapping exists but is not configured, a 
configuration dialog box opens. The 
former case is the default. In the latter 
case the dialog box lists all the Struts 
configuration files that are defined for the 
Struts application (via the web.xml file). 
The Struts configuration file editor opens, 
and a new action mapping entry is 
generated and selected. This behavior 
can be changed by setting the Web 
diagram preferences.
640 Rational Application Developer V6 Programming Guide



Realize a Struts form bean
To realize a Struts form bean named logonForm, do the following:

1. Double-click the logonForm form bean in the Web diagram.

2. The New Form Bean dialog should be displayed with all the fields populated 
by default. Ensure that the Create New ActionForm class or Struts 
dynamform using DynaActionForm radio button is selected, and Generic 
Form-Bean Mapping is selected in the Model field. Accept the default, as 
shown in Figure 12-16, and click Next.

Local/Global Forwards, Exceptions, 
Action Input Connections

When a Struts connection is realized, the 
Struts configuration file struts-config.xml is 
updated appropriately based on the type 
of connection being realized.

JSP The JSP Wizard opens.

Note: Do not select a template from sample page templates, because this 
produces a JSP file with the Struts tags removed. Instead of samples, select a 
user-defined page template that you created. To create a page template, 
create a Struts JSP file and save it as page template from the menu (Page 
Designer's File → Save As Page Template).

Object Resulting action when realized
 Chapter 12. Develop Web applications using Struts 641



Figure 12-16   Realize Struts components - Logon Form Bean - Bean information

3. When the Choose New Fields dialog appears, we could choose an existing 
Form in a HTML/JSP file and add it to the form bean directly, but since we 
have not yet realized the logon.jsp, we skip this and create the fields directly 
in the bean. Click Next.

4. When the Create New Fields for your ActionForm class dialog appears, do 
the following:

a. Click Add. 

b. Enter ssn in the new field.

c. When complete, the dialog should look like Figure 12-17. Click Next to 
continue.
642 Rational Application Developer V6 Programming Guide



Figure 12-17   Realize Struts components - Logon Form Bean - Create new fields

5. When the Create Mapping for the ActionForm class dialog appears, enter the 
following (as seen in Figure 12-18 on page 644) and then click Finish:

– Java package: itso.bank.model.struts.form
– ActionForm class name: org.apache.struts.validator.ValidatorForm
– Method stubs: Uncheck validate and reset.
 Chapter 12. Develop Web applications using Struts 643



Figure 12-18   Create a mapping for your ActionForm class

6. Save the Web diagram.

The following actions have been completed by the wizard:

� A class LogonForm has been created in the package specified in step 1.

� The Struts configuration file struts-config.xml has been updated with the form 
bean information, as shown in Example 12-1.

Example 12-1   Struts configuration file struts-config.xml snippet

<!-- Form Beans -->
<form-beans>

<form-bean name="logonForm" type="itso.bank.model.struts.forms.LogonForm">
</form-bean>
644 Rational Application Developer V6 Programming Guide



</form-beans>

� Now that the Web diagram has been updated, notice that the form bean 
appears in the diagram and that the color has changed. The color change in 
Figure 12-19 for the logonForm denotes the Struts component has been 
realized.

Figure 12-19   Realize Struts components - Logon form bean realized

Realize a Struts action
To realize the Struts action named logon, do the following:

1. Double-click the logon action in the Web diagram.

2. When the New Action Mapping wizard appears, the fields should already be 
filled in by the wizard, as seen in Figure 12-20 on page 646. Click Next.
 Chapter 12. Develop Web applications using Struts 645



Figure 12-20   New Action Mapping for logon action

3. When the Create an Action class for your mapping dialog appears, we 
entered the values seen in Figure 12-21 on page 647 and then clicked 
Finish.
646 Rational Application Developer V6 Programming Guide



Figure 12-21   Realize Struts components - Logon action - Create action class

The following actions have been completed by the wizard:

� A class LogonAction has been created in the package specified in step 1.

� The Struts configuration file struts-config.xml has been updated with the 
LogonAction Action Mapping information, as shown in Example 12-2.

Example 12-2   struts-config.xml snippet

<!-- Action Mappings -->
<action-mappings>

<action name="logonForm" path="/logon" scope="request" 
type="itso.bank.model.struts.actions.LogonAction">

<forward name="failure" path="/logon.jsp">
</forward>
<forward name="success" path="/customerListing.jsp">
</forward>

</action>
 Chapter 12. Develop Web applications using Struts 647



</action-mappings>

� The Web diagram has been updated, and now the Logon Action and the local 
forwards failure and success appear in color to indicate they have been 
realized, as shown in Figure 12-22.

Figure 12-22   Realize Struts components - Logon action realized

Realize a JSP
Realizing a JSP and other Web components is described in detail in Chapter 11, 
“Develop Web applications using JSPs and servlets” on page 499. Here we just 
indicate briefly how to realize the logon.jsp and customerListing jsp.

1. Realize the logon.jsp.

a. Double-click the logon.jsp in the Web diagram.

b. When the New JSP File wizard appears, the wizard will provide the default 
values, which we chose to accept. Ensure that Struts JSP is selected in 
the Model field, and Configure advanced options is checked. Click Next.
648 Rational Application Developer V6 Programming Guide



Figure 12-23   Realize Struts components - Logon JSP - JSP File

c. When the Tag Libraries dialog appears, accept the defaults of adding 
support for the Struts bean and html tag libraries. You can add more tag 
libraries if needed here. Click Next. 

d. When the JSP File Options dialog appears, accept the defaults for HTML 
settings and click Next. 

e. When the JSP File Choose Method Stubs to generate dialog appears, 
accept the default settings and click Next.

f. When the Form Field Selection dialog appears, the wizard fills in the Struts 
Form Bean and Struts Action information by default based on the Web 
diagram. Check the ssn field and then click Finish.

2. Realize the customerListing.jsp.

a. Double-click the customerListing.jsp in the Web diagram.
 Chapter 12. Develop Web applications using Struts 649



b. When the New JSP File wizard appears, the wizard will provide the default 
values, which we chose to accept. Ensure that Struts JSP is selected in 
the Model field, and Configure advanced options is checked. Click 
Finish.

The logon.jsp and customerListing.jsp pages are now created, as is the Web 
diagram, as shown in Figure 12-24.

Figure 12-24   Realize Struts components - Realizing JSP pages

Realize the Struts Web connections
When connections are not realized, the Web diagram displays dashed lined 
arrows. Realized connections are indicated by solid arrows instead of dashed 
arrows. 

To realize connections we follow the same procedure of double-clicking the arrow 
to bring the wizard up. In our example, notice that most of the arrows in 
Figure 12-24 have been realized automatically by the wizard when the action, 
form beans, and JSP pages were realized.

We will demonstrate realization of Web connections using the Action Input in our 
sample that we still have to realize for the logon action. 

Double-click the red dashed arrow that goes from the logon Action to logon.jsp. 

The wizard automatically adds the necessary input attribute to the logon action 
mapping, as shown in bold in Example 12-3. 

Example 12-3   struts-config.xml snippet - Logon action mapping

<!-- Action Mappings -->
650 Rational Application Developer V6 Programming Guide



<action-mappings>
<action name="logonForm" path="/logon" scope="request" 

type="itso.bank.model.struts.actions.LogonAction" input="/logon.jsp">
<forward name="failure" path="/logon.jsp">
</forward>
<forward name="success" path="/customerListing.jsp">
</forward>

</action>
</action-mappings>

The Web diagram, after all the realizations have been completed, is shown in 
Figure 12-25.

Figure 12-25   Realize Struts components - Realizing connections

Note: If deleting a component from the Web diagram, you are prompted 
whether you also want to delete the underlying resource. Underlying resource 
here refers to the mapping in the struts-config.xml file, not the implemented 
component itself. 

This means that if you delete a form bean and also delete the underlying 
resource, it will remove the form bean from the Web diagram and its mapping 
from the struts-config.xml file. It will not, however, delete the Java source or 
class file for the form bean. If you then add a new form bean with the same 
name to the Web diagram and attempt to implement it, the Finish button that 
you must click to create the component is deactivated in the wizard. This is 
due to the fact that this class already exists—it was not deleted.
 Chapter 12. Develop Web applications using Struts 651



12.3.3  Modify ApplicationResources.properties
The wizard created an empty ApplicationResource.properties file for us and we 
have to update it with the texts and messages for our application. 

While developing Struts applications, you will usually find yourself having this file 
open, because you will typically add messages to it as you go along writing your 
code. Example 12-4 shows a snippet of the ApplicationResources.properties file.

Example 12-4   ApplicationResources.properties snippet

# Optional header and footer for <errors/> tag.
errors.header=<ul>
errors.footer=</ul>
errors.prefix=<li>
errors.suffix=</li>

form.ssn=SSN
form.accountId=Account Id
form.balance=Balance
form.amount=Amount

...

errors.required={0} is a required Field
error.ssn=Verify that the customer ssn entered is correct.
error.amount=Verify that the amount entered is valid.
error.timeout=Your session has timed out. Please login again.
errors.systemError=The system is currently unavailable. Please try again later.

To modify the ApplicationResources.properties file, do the following:

1. Open the Web perspective Project Explorer view.

2. Expand Dynamic Web Project → BankStrutsWeb → Java Resources → 
JavaSource → itso.bank.model.struts.resources.

3. Double-click the ApplicationResources.properties file.

4. Append the contents of Example 12-5 to the end of the 
ApplicationResources.properties file.

Example 12-5   ApplicationResources.properties - Add lines to the bottom of the file

form.ssn=SSN
errors.required={0} is a required field.

5. Save the file (Ctrl+S) and close the editor.
652 Rational Application Developer V6 Programming Guide



We will use this message to validate, using the Struts Validation Framework, the 
logon form in logon.jsp to ensure that the user enters a value for the customer 
(SSN).

12.3.4  Struts validation framework
The Struts validation framework provides automatic validation of forms using 
configuration files. The validation.xml and validator-rules.xml are the two 
configuration files used by the Struts Validation Framework to validate forms.

To validate the logonForm using the Struts validation framework, do the 
following:

1. We have provided a validation.xml and validation-rules.xml as part of the 
sample code.

Import the validation.xml and validator-rules.xml from the c:\6449code\struts 
directory into the BankStrutsWeb\WebContent\WEB-INF directory of the 
workspace.

2. Add the Struts validator plug-in and required property to the plug-in indicating 
the location of the validation configuration files.

a. Expand Dynamic Web Projects → BankStrutsWeb → WebContent → 
WEB-INF.

b. Double-click the struts-config.xml file to open in the Struts Configuration 
Editor.

c. Click the Plug-ins tab in the Struts Configuration Editor.

d. Click Add... in the Plug-ins field and select the ValidatorPlugIn in the 
Class Selection Wizard. Click OK to close the Class Selection Wizard. The 
Struts Validator Plug-in has now been added.

e. Add the required parameter by clicking Add in the Plug-in Mapping 
Extension field. 

f. In the Property and Value fields, enter in pathnames and 
/WEB-INF/validator-rules.xml,/WEB-INF/validation.xml, respectively, 
as seen in Figure 12-26 on page 654.

Note: More information on the architecture and further documentation of 
Struts Validation Framework can be found at:

http://struts.apache.org
 Chapter 12. Develop Web applications using Struts 653

http://struts.apache.org


Figure 12-26   Struts Configuration Editor - Adding the validator plug-in

3. Save the configuration file and close the Struts configuration file.

The validation.xml file contains all the Struts form beans and the fields within the 
form bean that will be validated, and the rule that will be applied to validate the 
bean. The snippet that validates the logonForm is shown in Example 12-6.

Example 12-6   validation.xml snippet - LogonForm

<form-validation>
<formset>

<form name="logonForm">
<field property="ssn" depends="required">

<arg0 key="form.ssn" />
</field>

</form>
</formset>
.......
.......

</form-validation>
654 Rational Application Developer V6 Programming Guide



The validator-rules.xml file contains the rule configurations for all the rules 
defined in the validation.xml file. In our example above, the rule that is defined is 
required for the field ssn, as shown in Example 12-6 on page 654. The snippet 
for the required rule is shown in Example 12-7.

Example 12-7   validator-rules.xml snippet - Rule configuration for the required rule

<form-validation>
<global>

<validator name="required"
classname="org.apache.struts.validator.FieldChecks"
method="validateRequired"
methodParams="java.lang.Object, 

org.apache.commons.validator.ValidatorAction, 
org.apache.commons.validator.Field, org.apache.struts.action.ActionErrors, 
javax.servlet.http.HttpServletRequest"

msg="errors.required" />
</global>

</form-validation>

12.3.5  Page Designer and the Struts tag library
The Struts framework provides a tag library to help in the development of 
Struts-based Web applications. The Page Designer is used to design and 
develop HTML and dynamic Web pages within Rational Application Developer. 
The features of the Page Designer are explained in detail in Chapter 11, 
“Develop Web applications using JSPs and servlets” on page 499.

Stuts tag library overview
In this section we explore the support for the Struts tag libraries within the Page 
Designer. The Page Designer supports the Struts tag libraries by allowing 
dropping of tags from the Page Designer palette and into the design view of the 
Page Designer. 

� Struts-html tags: Struts provides tags to render html content. Examples of the 
Struts html tags are button, cancel, checkbox, form, errors, etc. These tags 
can be dragged and dropped into a page in the page designer’s design 
perspective. We will drag and drop the errors tag to the logon.jsp and display 
a message to the user if no ssn is entered later on in this section. The 
Struts-html Palette is displayed in Figure 12-27 on page 656.

� Struts-bean tags: The bean tag library provides tags to access bean 
properties, request parameters, create page attributes, etc. The Struts-bean 
Palette is displayed in Figure 12-27 on page 656.
 Chapter 12. Develop Web applications using Struts 655



� Struts-Logic tags: The Logic tag library provides tags to implement 
conditional, looping, and control related functionality. The Struts-logic Palette 
is displayed in Figure 12-27.

� Struts-Nested tags: The Nested tag library provides tags to access complex 
beans with nested structures. The Struts-nested Palette is displayed in 
Figure 12-27.

� Struts-Template tags: The Template tag library provides tags for creation of 
dynamic JSP templates. The Struts-template is displayed in Figure 12-27.

� Struts-Tiles Tags: The Tiles tag library facilitates development of dynamic 
Web applications in a tiled fashion where the tile can be reused throughout 
the application. The Tiles tag library is displayed in Figure 12-27.

Figure 12-27   Struts tag library support - Web Page Designer Struts tag drawers

Tip: If you do not see all the Struts tag libraries in the palette, right-click the 
palette and select Customize. From the Customize Palette dialog box, select 
all drawers you want to be available in the palette.
656 Rational Application Developer V6 Programming Guide



Add html error tag to logon.jsp
We will now add a simple html error tag to logon.jsp, which will display an HTML 
error message that occurs due to the validation check by the Struts Validation 
Framework. To add the html error tag to logon.jsp, do the following:

1. Open the Web perspective Project Explorer view.

2. Double-click logon.jsp to open in Page Designer.

3. Click the Design tab of the Page Designer.

4. Insert a space before the HTML form, where the Struts html error tag will be 
placed. The logon.jsp is shown in Figure 12-28.

Figure 12-28   Struts tags - Adding a Struts tag

5. Click the Errors icon ( ) from the Struts HTML Tags drawer and drop it 
in the newly created space before the HTML form. 

The Page Designer renders the html for the tag in the design view as shown 
in Figure 12-29 on page 658.
 Chapter 12. Develop Web applications using Struts 657



Figure 12-29   Struts tags - Struts html tag rendered by the Page Designer

6. The source for the rendered logon.jsp is shown in the Example 12-8. The 
html:error tag has been added. Notice also that the wizard has added the 
Struts html tags for rendering the form itself.

Example 12-8   Struts tags - Logon.jsp snippet of the tag in the source view

......
<P><html:errors /></P>
<html:form action="/logon">

<TABLE border="0">
<TBODY>

<TR>
<TH>ssn</TH>
<TD><html:text property="ssn" /></TD>

</TR>
<TR>

<TD><html:submit property="submit" value="Submit" /></TD>
<TD><html:reset /></TD>

</TR>
</TBODY>

</TABLE>
</html:form>
......
658 Rational Application Developer V6 Programming Guide



12.3.6  Using the Struts configuration file editor
Rational Application Developer provides an editor for the Struts struts-config.xml 
configuration file. This editor is yet another way you can add new form beans and 
actions and customize their attributes. You can also directly edit the XML source 
file should you prefer to do it by hand instead of using the wizards. The Struts 
Configuration Editor is shown in Figure 12-30.

Figure 12-30   Struts Configuration Editor

We will use this editor to add a local forward called cancel to the logon action. 
This forward can be used by the logon action’s execute method to forward the 
user to the logon.jsp page, as we will map this forward to the logon.jsp page.

We also specify the input attribute for all our actions. This attribute specifies 
which page should be displayed if the validate method of a form bean or the 
Struts validation framework fails to validate. Usually you want to display the input 
page where the user entered the data so they can correct their entry.

1. Expand Dynamic Web Projects → BankStrutsWeb → WebContent → 
WEB-INF.
 Chapter 12. Develop Web applications using Struts 659



2. Double-click the struts-config.xml file to open in the Struts Configuration 
Editor.

The editor has tabs at the bottom of the screen to navigate between the 
different Struts artifacts (actions, form beans, global forwards, data sources) it 
supports.

3. Click the Action Mappings tab. 

4. Select the /logon action. In the Input field enter /logon.jsp if it is not already 
specified, as shown in Figure Figure 12-31.

Figure 12-31   Struts Configuration Editor - Action input attribute

5. Create a forward.

a. Click the Local Forwards tab found at the top of the Action Mappings 
page.

b. Click Add to specify in the Local Forwards module. A new forward with 
the name no name is created. 

c. Rename no name to cancel as the name and enter /logon.jsp in the Path 
field in the Forward Attributes, as shown in Figure 12-32 on page 661.
660 Rational Application Developer V6 Programming Guide



Figure 12-32   Struts Configuration Editor - Creating new forward

6. Save the file (Ctrl+S).

Note: The Redirect check box allows you to select if a redirect or forward 
call should be made. A forward call keeps the same request with all 
attributes it contains and just passes control over to the path specified. A 
redirect call tells the browser to make a new HTTP request, which creates 
a new request object (and you lose any attributes set in the original 
request).

A forward call does not change the URL in the browser’s address field, as it 
is unaware that the server has passed control to another component. With 
a redirect call, however, the browser updates the URL in its address field to 
reflect the requested address.

You can also redirect or forward to other actions. It does not necessarily 
have to be a JSP.
 Chapter 12. Develop Web applications using Struts 661



7. Click the Source tab to look at the Struts configuration file XML. 
Example 12-9 displays the struts-config.xml XML source.

Example 12-9   Struts configuration file - struts-config.xml

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE struts-config PUBLIC "-//Apache Software Foundation//DTD Struts 
Configuration 1.1//EN" 
"http://jakarta.apache.org/struts/dtds/struts-config_1_1.dtd">
<struts-config>

<!-- Data Sources -->
<data-sources>
</data-sources>

<!-- Form Beans -->
<form-beans>

<form-bean name="logonForm" 
type="itso.bank.model.struts.forms.LogonForm">

</form-bean>
</form-beans>

<!-- Global Exceptions -->
<global-exceptions>
</global-exceptions>

<!-- Global Forwards -->

<!-- Action Mappings -->
<action-mappings>

<action name="logonForm" path="/logon" scope="request" 
type="itso.bank.model.struts.actions.LogonAction" input="/logon.jsp">

<forward name="failure" path="/logon.jsp">
</forward>
<forward name="success" path="/customerListing.jsp">
</forward>
<forward name="cancel" path="/logon.jsp">
</forward>

</action>
</action-mappings>

<!-- Message Resources -->
<message-resources 

parameter="itso.bank.model.struts.resources.ApplicationResources"/>
<plug-in className="org.apache.struts.validator.ValidatorPlugIn">

<set-property property="pathnames" 
value="/WEB-INF/validator-rules.xml,/WEB-INF/validation.xml"/>

</plug-in>
662 Rational Application Developer V6 Programming Guide



</struts-config>

As you can see, the Rational Application Developer Struts tools have defined 
the logonform bean in the <form-beans> section and the logon action in the 
<action-mappings> section. The JSPs, however, are not specified in the 
Struts configuration file. They are completely separate form the Struts 
framework (only the forwarding information is kept in the configuration file). At 
the end of the file is the name of the application resources file where our texts 
and error messages are stored.

The Struts configuration editor does round-trip editing, so if you edit 
something in the XML view it is reflected in the other views.

The forwards we use are local to each action, meaning that only the action 
associated with the forward can look it up. In the <global-forwards> section 
you can also specify global forwards that are available for all actions in the 
application. Normally you have a common error page to display any severe 
error messages that may have occurred in your application and that prevents 
it from continuing. Pages like these are good targets for global forwards and 
so are any other commonly used forward. Local forwards override global 
forwards.

8. You can now close the configuration file editor.

9. Update the Web diagram.

As we have now added a forward through the Struts Configuration Editor, we 
should update the Web diagram to show them as well. 

a. If the Web diagram is not open, open it by double-clicking \diagram.gph. 

b. In the Web diagram select the logon action and choose Draw → Draw 
Selected from its context menu. 

c. Select On Input Error → logon.jsp and cancel → logon.jsp (as shown 
in Figure 12-33 on page 664), and click OK. 

This draws the red line from the logon action back to logon.jsp indicating 
the input page, and a new black line named cancel from logon action to 
logon.jsp to indicate the forward.
 Chapter 12. Develop Web applications using Struts 663



Figure 12-33   Struts Configuration Editor - Selecting Struts components to draw

10.Select the lines and drag the small dot in the middle of the line to avoid the 
lines from crossing over other components in the Web Diagram, if needed.

The result is shown in Figure 12-34.

Figure 12-34   Struts Configuration Editor - Updated Web diagram

11.Save the Web diagram (Ctrl+S).
664 Rational Application Developer V6 Programming Guide



12.4  Import and run the Struts sample application
In the previous sections of this chapter, we demonstrated how create the various 
Struts components including Struts actions, form beans, local forwards, inputs, 
and exceptions. We implemented a simple sequence that uses most Struts 
components to demonstrate the capabilities of Rational Application Developer 
support for Struts-based development.

This section describes how to import the completed Struts Bank Web application 
and run it within the test environment. You will see that the logon.jsp form 
validates, and if a number is entered you are forwarded to a customerListing.jsp, 
which just displays a message Place Content here, as the logon action’s 
execute method does not do anything but forward the page using the local 
forward success created earlier. If nothing is submitted to the logon action you will 
notice that the Struts validation framework brings you back to the logon.jsp page.

You can continue to implement the rest of diagram based on the instructions 
provided in the previous sections of this chapter to create the various Struts 
components and complete the diagram shown in Figure 12-3 on page 621 or 
import the sample Web application from the source directory provide.

12.4.1  Import the Struts Bank Web application sample
We will now import the sample banking application that implements the diagram 
shown in Figure 12-3 on page 621.

To import the sample application, do the following:

1. Open the Web perspective Project Explorer view.

Notes: We recommend that all requests for JSPs go through an action class 
so that you have control over the flow and can prepare the view beans (form 
beans) necessary for the JSP to display properly. Struts provides simple 
forwarding actions that you can use to accomplish this.

In our example we do not perform any customization on the Struts action 
servlet (org.apache.struts.action.ActionServlet). If you have to do any 
initialization (for example, initialize data sources), you would want to create 
your own action servlet, extending the ActionServlet class, and overriding the 
init and destroy methods. You would then also modify the \WEB-INF\web.xml 
file and replace the name of the Struts action servlet with the name of your 
action servlet class.
 Chapter 12. Develop Web applications using Struts 665



2. The imported sample project interchange file will use the project name 
BankStrutsWeb. If you completed the previous samples of this chapter, this 
project will already exist. Simply refactor the existing project by selecting the 
project, right-clicking, and selecting Refactor → Rename.

3. Select File → Import.

4. When the Import Wizard wizard appears, select Project Interchange and 
click Next.

5. In the Import Projects screen, browse to the c:\6449code\struts folder and 
select BankStrutsWeb.zip. Click Open.

6. Select the BankStrutsWeb and BankStrutsWebEAR projects, and then 
click Finish.

Now a dynamic Web Project, BankStrutsWeb, that is Struts enabled and an 
Enterprise Application Project, BankStrutsWebEAR, are imported into the 
workspace. The solution shown in Figure 12-3 on page 621 is implemented. 
You can access this by double-clicking diagram.gph under the 
BankStrutsWeb project.

12.4.2  Prepare the application and sample database
Ensure that you have completed the following steps prior to running the 
application:

1. Add the JDBC driver for Cloudscape to the BankStrutsWeb project.

Refer to 12.2.3, “Add JDBC driver for Cloudscape to project” on page 628.

2. Set up the sample BANK database using the sample Table.ddl and 
loadData.sql.

Refer to 12.2.4, “Set up the sample database” on page 629.

3. Ensure that the data source is configured to use the database you defined in 
the previous step.

Refer to 12.2.5, “Configure the data source” on page 630.

12.4.3  Run the Struts Bank Web application sample
In this section we run the sample application and explore the functionality built 
using Rational Application Developer and its support for rapid development of 
Struts-based Web applications. 

To run the sample Bank application, do the following:

1. Open the Web perspective Project Explorer view.

2. Expand Dynamic Web Projects → BankStrutsWeb → WebContent.
666 Rational Application Developer V6 Programming Guide



3. Select logon.jsp, right-click, and select Run → Run on Server.

4. When the Server Selection wizard appears, select Choose and existing 
server, select the WebSphere Application Server v6.0 server, and click 
Finish.

The home page logon.jsp should be displayed as shown in Figure 12-35.

Figure 12-35   Running the sample - Logon.jsp

5. If you click Submit without entering an ssn, the Struts Validation Framework 
kicks in and displays the error message added to 
ApplicationResources.properties, as shown in Figure 12-36 on page 668.
 Chapter 12. Develop Web applications using Struts 667



Figure 12-36   Running the sample - Logon.jsp - Invalid input

6. Enter a sample ssn 111-11-1111 and click Submit. A list of accounts 
associated with the account is displayed. Here the logon action is responsible 
for retrieving this information. In a real world application the logon action will 
talk to the business tier to retrieve this information. The Business Tier 
Architecture is described in detail in Chapter 15, “Develop Web applications 
using EJBs” on page 827. 
668 Rational Application Developer V6 Programming Guide



Figure 12-37   Running the sample - Account listing

7. To view details of a particular account, click the Account Number and the list 
of transactions on the account is listed, as shown in Figure 12-38.

Figure 12-38   Running the sample - Account details
 Chapter 12. Develop Web applications using Struts 669



8. To perform a transaction on the account, click the Deposit/Withdraw link in 
Figure 12-39. 

9. The transaction page is displayed. Enter a positive number for deposits and 
negative number for withdrawal. We will enter in -50000 to indicate a 
withdrawal of $50,000, and click Submit.

Figure 12-39   Running the sample - Performing transactions

10.The Account Details page is displayed with a new entry made for the last 
transaction, as shown in Figure 12-40 on page 671.
670 Rational Application Developer V6 Programming Guide



Figure 12-40   Running the sample - Transaction listing
 Chapter 12. Develop Web applications using Struts 671



672 Rational Application Developer V6 Programming Guide



Chapter 13. Develop Web applications 
using JSF and SDO

JavaServer Faces (JSF) is a framework that simplifies building user interfaces 
for Web applications. Service Data Objects (SDO) is a data programming 
architecture and API for the Java platform that unifies data programming across 
data source types.

This chapter introduces the features, benefits, and architecture of JSF and SDO. 
The focus of the chapter is to demonstrate the Rational Application Developer 
support and tooling for JSF. The chapter includes a working example Web 
application using JSF and SDO.

The chapter is organized into the following sections:

� Introduction to JSF and SDO
� Prepare for the sample
� Develop a Web application using JSF and SDO
� Run the sample Web application

13
© Copyright IBM Corp. 2005. All rights reserved. 673



13.1  Introduction to JSF and SDO
This section provides an introduction to JavaServer Faces (JSF) and Service 
Data Objects (SDO).

13.1.1  JavaServer Faces (JSF) overview
JavaServer Faces is a framework that simplifies building user interfaces for Web 
applications. The combination of the JSF technology and the tooling provided by 
IBM Rational Application Developer allows developers of differing skill levels the 
ability to achieve the promises of rapid Web development.

This section provides an overview of the following aspects of JSF:

� JSF features and benefits
� JSF application architecture
� IBM Rational Application Developer support for JSF

JSF features and benefits
The following is a list of the key features and benefits of using JSF for Web 
application design and development:

� JSF is a standards-based Web application framework.

JavaServer Faces technology is the result of the Java Community process 
JSR-127 and evolved from Struts. JSF addresses more of the 
Model-View-Controller pattern than Struts, in that it more strongly addresses 
the view or presentation layer though UI components, and addresses the 
model through managed beans. Although JSF is an emerging technology and 
will likely become a dominant standard, Struts is still widely used.

JSF is targeted at Web developers with little knowledge of Java and 
eliminates much of the hand coding involved in integrating Web applications 
with back-end systems.

� Event driven architecture.

JSF provides server-side rich UI components that respond to client events.

� User interface development.

UI components are de-coupled from its rendering. This allows for other 
technologies such as WML to be used (for example, mobile devices).

JSF allows direct binding of user interface (UI) components to model data.

Note: Detailed information on the JSF specification can be found at:

http://java.sun.com/j2ee/javaserverfaces/download.html
674 Rational Application Developer V6 Programming Guide

http://java.sun.com/j2ee/javaserverfaces/download.html


Developers can use extensive libraries of prebuilt UI components that provide 
both basic and advanced Web functionality.

� Session and object management

JSF manages designated model data objects by handling their initialization, 
persistence over the request cycle, and cleanup.

� Validation and error feedback

JSF allows direct binding of reusable validators to UI components. The 
framework also provides a queue mechanism to simplify error and message 
feedback to the application user. These messages can be associated with 
specific UI components.

� Internationalization

JSF provides tools for internationalizing Web applications, including 
supporting number, currency, time, and date formatting, and externalization 
of UI strings.

JSF application architecture
The JSF application architecture can be easily extended in a variety of ways to 
suit the requirements of your particular application. You can develop custom 
components, renderers, validators, and other JSF objects and register them with 
the JSF runtime.

The focus of this section is to highlight the JSF application architecture depicted 
in Figure 13-1 on page 676:

� JSF page JSPs are built from JSF components, where each component is 
represented by a server-side class.

� Faces Servlet: One servlet (FacesServlet) controls the execution flow.

� Configuration file: An XML file (faces-config.xml) that contains the navigation 
rules between the JSPs, validators, and managed beans.

� Tag libraries: The JSF components are implemented in tag libraries. 

� Validators: Java classes to validate the content of JSF components, for 
example, to validate user input.

� Managed beans: JavaBeans defined in the configuration file to hold the data 
from JSF components. Managed beans represent the data model and are 
passed between business logic and user interface. JSF moves the data 
between managed beans and user interface components.

� Events: Java code executed in the server for events (for example, a push 
button). Event handling is used to pass managed beans to business logic.
 Chapter 13. Develop Web applications using JSF and SDO 675



Figure 13-1   JSF application architecture

Figure 13-2 on page 677 represents the structure of a simple JSF application 
created in Rational Application Developer.
676 Rational Application Developer V6 Programming Guide



Figure 13-2   JSF application structure within Rational Application Developer

IBM Rational Application Developer support for JSF
IBM Rational Application Developer V6.0 includes a wide range of features for 
building highly functional Web applications. Application Developer includes full 
support to make drag-and-drop Web application development a reality.

Rational Application Developer includes the following support and tooling for JSF 
Web application development:

� Visual page layout of JSF components using Page Designer.

� Built-in Component Property Editor.

� Built-in tools to simplify and automate event handling.

� Built-in tools to simplify page navigation.

� Page navigation defined declaratively.

� Automatic code generation for data validation, formatting, and CRUD 
functions for data access.

� Relational database support.
 Chapter 13. Develop Web applications using JSF and SDO 677



� EJB support.

� Web Services support.

� Data abstraction objects for easy data connectivity (Service Data Objects).

� Data objects can be bound easily to user interface components.

13.1.2  Service Data Objects (SDO)
Service Data Objects is a data programming architecture and API for the Java 
platform that unifies data programming across data source types. SDO provides 
robust support for common application patterns, and enables applications, tools, 
and frameworks to more easily query, view, bind, update, and introspect data.

The Java specification request is JSR-235 for Service Data Objects (SDO) and 
can be found at:

http://www.jcp.org/en/jsr/detail?id=235

13.2  Prepare for the sample
This section describes the tasks that need to be completed prior to developing 
the JSF and SDO sample application. 

Note: For more detailed information on JavaServer Faces and Service Data 
Objects, we recommend the following:

� WebSphere Studio 5.1.2 JavaServer Faces and Service Data Objects, 
SG24-6361

� Developing JSF Applications using WebSphere Studio V5.1.1 -- Part 1, 
found at:

http://www.ibm.com/developerworks/websphere/techjournal/0401_barcia/barci
a.html

Note: A completed version of the ITSO RedBank Web application built using 
JSF and SDO can be found in the c:\6449code\jsf\BankJSF.zip Project 
Interchange file. If you do not wish to create the sample yourself, but want to 
see it run, follow the procedures described in 13.4, “Run the sample Web 
application” on page 746.
678 Rational Application Developer V6 Programming Guide

http://www.jcp.org/en/jsr/detail?id=235
http://www.ibm.com/developerworks/websphere/techjournal/0401_barcia/barcia.html
http://www.ibm.com/developerworks/websphere/techjournal/0401_barcia/barcia.html


13.2.1  Create a Dynamic Web Project
To create a new Dynamic Web Project with support for JSF and SDO, do the 
following:

1. Open the Web perspective Project Explorer view.

2. Right-click the Dynamic Web Projects folder.

3. In the context menu select New → Dynamic Web Project.

4. When the New Dynamic Web Project wizard appears, enter the following (as 
seen in Figure 13-3), and then click Next:

– Name: BankJSF
– Click Show Advanced.
– Check Add support for annotated Java classes.

Figure 13-3   New Dynamic Web Project Wizard

5. When the Features dialog appears, select the features you wish to include in 
your project.
 Chapter 13. Develop Web applications using JSF and SDO 679



For our example, ensure that you select the following features (as seen in 
Figure 13-4) and then click Next:

– Check WDO Relational Database runtimes.

– Check Web Diagram.

– Check JSP Tag Libraries (includes both the JSP Standard Tag Library 
and Utility Tag Library).

Figure 13-4   The features dialog for New Dynamic Web Projects

Note: At the time of writing, the SDO feature is named WDO in various 
parts of Application Developer.

Tip: Dynamic Web Project features can also be added to a project later 
using the Web Project Features panel of the Project Properties window.
680 Rational Application Developer V6 Programming Guide



6. When the Select a Page Templates for the Web site dialog appears, do not 
check this option. We will create a user-defined page template as part of our 
sample. Click Finish.

13.2.2  Set up the sample database
In order for us to use SDO components we will need to have a relational 
database to connect to. This section provides instructions for deploying the 
BANK sample database and populating the database with sample data. For 
simplicity we will use the built-in Cloudscape database.

To create the database, create the connection, and create and populate the 
tables for the BANK sample from within Rational Application Developer, do the 
following:

1. Create the database and connection to the Cloudscape BANK database from 
within Rational Application Developer.

For details refer to “Create a database connection” on page 347.

2. Create the BANK database tables from within Rational Application Developer.

For details refer to “Create database tables via Rational Application 
Developer” on page 350.

3. Populate the BANK database tables with sample data from within Rational 
Application Developer.

For details refer to “Populate the tables within Rational Application Developer” 
on page 352.

13.2.3  Configure the data source via the enhanced EAR
There are a couple of methods that can be used to configure the datasource, 
including using the WebSphere Administrative Console or using the WebSphere 
Enhanced EAR, which stores the configuration in the deployment descriptor and 
is deployed with the application. 

This section describes how to configure the datasource using the WebSphere 
Enhanced EAR capabilities. The enhanced EAR is configured in the Deployment 
tab of the EAR deployment descriptor.

Note: For this chapter we created a connection named BankJSF_Con1.
 Chapter 13. Develop Web applications using JSF and SDO 681



The procedure found in this section considers two scenarios for using the 
enhanced EAR:

� If you choose to import the complete sample code, you will only need to verify 
that the value of the databaseName property in the deployment descriptor 
matches the location of your database. 

� If you are going to complete the working example Web application found in 
this chapter, you will need to create the JDBC provider and the datasource, 
and update the databaseName property.

Access the deployment descriptor
To access the deployment descriptor where the enhanced EAR settings are 
defined, do the following:

1. Open the Web perspective Project Explorer view.

2. Expand Enterprise Applications → BankJSFEAR.

3. Double-click Deployment Descriptor : BankJSFEAR to open the file in the 
Deployment Descriptor Editor.

4. Click the Deployment tab.

Configure a new JDBC provider
To configure a new JDBC provider using the enhanced EAR capability in the 
deployment descriptor, do the following:

1. From the Deployment tab of the Application Deployment Descriptor, click Add 
under the JDBC provider list.

2. When the Create a JDBC Provider dialog appears, select Cloudscape as the 
Database type, select Cloudscape JDBC Provider as the JDBC provider 
type, and then click Next.

Note: For more information on configuring data sources and general 
deployment issues, refer to Chapter 23, “Deploy enterprise applications” on 
page 1189.

Note: When using Cloudscape, the configuration of the user ID and password 
for the JAAS Authentication is not needed.

When using DB2 Universal Database or other database types that require a 
user ID and password, you will need to configure the JAAS authentication.
682 Rational Application Developer V6 Programming Guide



3. Enter Cloudscape JDBC Provider - SDO in the Name field and then click 
Finish.

Configure the data source
To configure a new data source using the enhanced EAR capability in the 
deployment descriptor, do the following:

1. From the Deployment tab of the Application Deployment Descriptor, select 
the JDBC provider created in the previous step.

2. Click Add next to data source. 

3. When the Create a Data Source dialog appears, select Cloudscape JDBC 
Provider under the JDBC provider, select Version 5.0 data source, and 
then click Next.

4. When the Create a Data Source dialog appears, enter the following and then 
click Finish:

– Name: BankJSF_Con1

– JNDI name: jdbc/BankJSF_Con1
– Description: BankJSF_Con1

Configure the databaseName property
To configure the databaseName in a new data source using the enhanced EAR 
capability in the deployment descriptor to define the location of the database for 
your environment, do the following:

1. Select the data source created in the previous section.

2. Select the databaseName property under the Resource properties.

3. Click Edit next to Resource properties to change the value for the 
databaseName.

Note: The JDBC provider type list for Cloudscape will contain two entries:

� Cloudscape JDBC Provider
� Cloudscape JDBC Provider (XA)

Since we will not need support for two-phase commits, we choose to use 
the non-XA JDBC provider for Cloudscape.

Note: This name should match the connection name used to select a 
database when adding the SDO relational record to the page (see “Add 
SDO to a JSF page” on page 720).
 Chapter 13. Develop Web applications using JSF and SDO 683



4. When the Edit a resource property dialog appears, enter c:\databases\BANK 
in the Value field and then click OK. 

In our example, c:\databases\BANK is the database created for our sample 
application in 13.2.2, “Set up the sample database” on page 681.

5. Save the Application Deployment Descriptor.

6. Restart the test server for the changes to the deployment descriptor to take 
effect.

13.3  Develop a Web application using JSF and SDO
This section describes how to develop the ITSO RedBank sample Web 
application using JSF and SDO.

This section includes the following tasks:

� Create a page template.
� Useful views for editing page template files.
� Customize the page template.
� Create JSF resources using the Web Diagram tool.

13.3.1  Create a page template
A page template contains common areas that you want to appear on all pages, 
and content areas that will be unique on the page. They are used to provide a 
common look and feel for a Web Project.

Create a page template
To create a page template containing JSF components, do the following:

1. Open the Web perspective Project Explorer view.

2. Expand Dynamic Web Projects → BankJSF.

Tip: You can verify that the data source configuration has been picked up by 
the server by inspecting the console output after the server has been 
restarted. The following lines should appear in the server console output:

WSVR0200I: Starting application: BankJSFEAR
WSVR0049I: Binding BankJSF_Con1_CF as eis/jdbc/BankJSF_Con1_CMP
WSVR0049I: Binding BankJSF_Con1 as jdbc/BankJSF_Con1
SRVE0169I: Loading Web Module: BankJSF.

If these lines do not appear, you may have to remove the BankJSF application 
from the server and then republish it.
684 Rational Application Developer V6 Programming Guide



3. Right-click the WebContent folder, and select New → Page Template File 
from the context menu.

4. When the New Page Template wizard appears, enter the following (as seen 
in Figure 13-5 on page 685), and then click Finish:

– Folder: /BankJSF/WebContent
– File name: BankJSFTemplate
– Model: Select Template containing Faces Components.

Figure 13-5   The new page template wizard design

5. When prompted with the message displayed in Figure 13-6, click OK. We will 
add a content area as part of our page template customization.
 Chapter 13. Develop Web applications using JSF and SDO 685



Figure 13-6   Content area warning

Review of files generated for page template
Now that we have created the page template, we would like to highlight some of 
the files that have been generated. 

In the Project Explorer view (shown in Figure 13-7) you will see that there are 
some files added to the Java Resources folder. The JavaSource folder contains 
the generated managed bean classes. The PageCodeBase.java class file is a 
super class for all the generated managed bean classes. A 
BankJSFTemplate.java class was created as the managed bean for the template 
page. Each JSF page will have its own managed bean class generated.
686 Rational Application Developer V6 Programming Guide



Figure 13-7   JSF page template files

13.3.2  Useful views for editing page template files
There are many views and tools that can be used when editing page templates. 
This section highlights some views that we found helpful for editing a page 
template.

Page Template Editor view
This is the main editor window and it comprised of three tabs: Design, Source, 
and Preview.

� Design tab: The Design tab is the main GUI editor that allows you to select 
the components on the page in a graphical manner. It also gives you a good 

Note: This section is not required for the working example. To continue with 
the working example, skip to 13.3.3, “Customize the page template” on 
page 695.
 Chapter 13. Develop Web applications using JSF and SDO 687



representation of the resulting page. Also, you will notice in the top right of 
Figure 13-8 that there are some drop-down options; these options allow you 
to select the layout mode, select an existing component on the page, and 
select font options for presentation, respectively. If you right-click the Design 
editor, the context menu will allow you to be able to insert a variety of 
components, as well as edit embedded documents.

Figure 13-8   Design tab of Page Template Editor

� Source tab: The Source tab allows you to view the page template source. 
This tab allows you to tweak the template by changing the source directly. If 
you right-click in the source editor you have the option to clean up the 
document, format the source, and refactor components. 

– The cleanup option will present the Cleanup dialog, as shown in 
Figure 13-10 on page 689. This dialog allows you to change the casing of 
HTML tags and attributes. It also gives you the ability to clean up tags with 
missing attributes, place quotes around attributes, insert missing tags, and 
format the source. 

– The format option allows you to format the whole document based on your 
formatting preferences, or just format the active element. To set your 
preferences you can right-click the source editor and select 
Preferences..., and the preferences dialog will be displayed, as shown in 
Figure 13-11 on page 690. The preferences dialog is similar to the one 
that is displayed when you select the preferences through the Windows 
menu; however, only the relevant preferences are include in the dialog.
688 Rational Application Developer V6 Programming Guide



Figure 13-9   Source tab of the Page Template Editor

Figure 13-10   Cleanup dialog
 Chapter 13. Develop Web applications using JSF and SDO 689



Figure 13-11   Preferences dialog

� Preview tab: The Preview tab allows you to preview the resulting JSF page 
template. It presents the page template as it would appear in a browser. You 
will notice in the top right corner there are some buttons; these button are 
similar to the navigation buttons on a browser. They allow you to go to the 
previous page, next page, or reload the page, respectively.

Figure 13-12   Preview tab for Page Template Editor
690 Rational Application Developer V6 Programming Guide



Palette view
This view allows you to select palettes to work with. Examples of palettes in the 
Palette view can be seen in Figure 13-13 on page 692. Palettes contain the 
reusable components that can be dragged on to the page to be added to a file. 
The palettes that are available for page template files include:

� HTML Tags: This palette contains common HTML tags such as images, lists, 
tables, links, etc. 

� JSP Tags: This palette contains common JSP tags such as beans, 
expressions, scriptlets, declarations, include directives, as well as some 
logical tags such as if, when, otherwise, etc.

� Crystal Report Faces Components: This palette contains Crystal Report 
Faces Components. You can drag these reusable Crystal Report 
Components to be used on the page template.

� Faces Components: This palette contains the common Faces tags, as well as 
the IBM extended Faces tags.

� Page Template: This palette contains page Template tags such as content 
area and page fragment.

� Web Site Navigation: This palette contains IBM’s site edit tags, which can be 
used to add site navigation to your page template.

� Data: This palette contains data components that can be added to the page 
template such as Web services, EJB session bean, SDO relational records, 
SDO relational record list, and Java beans.

The Palette view can be customized to hide and display palettes that you wish to 
use. The palettes listed above are the default palettes presented when editing a 
Page Template with JSF and SDO components. Other palettes that can be 
included are EGL, Struts, Server Side Include directives, etc. 

To customize the Palette view, right-click the Palette view and select Customize. 
The Customize Palette dialog will be presented, as shown in Figure 13-14 on 
page 693. This dialog allows you to hide and show palettes, as well as 
reorganize the order in which they appear. You will notice that in the dialog the 
hidden palettes are a lighter shade of gray.

Some palettes contain more components that can be presented on the screen at 
any one time, so there are some arrows to allow you to scroll up and down, as 

Note: The Preview tab within the Page Designer for templates does not 
always give you a graphical preview when there are extended components 
on the page. The Preview tab on the Page Designer for JSF does give you 
a graphical preview of the page.
 Chapter 13. Develop Web applications using JSF and SDO 691



seen in Figure 13-14 on page 693. Also, the Palette view allows you to pin open 
frequently used palettes to stop them from being closed when you open other 
palettes.

Figure 13-13   Palettes views
692 Rational Application Developer V6 Programming Guide



Figure 13-14   Customize Palette dialog

Properties view
The Properties view allows you to define the properties of the selected 
component. It is context sensitive and will change its content based on the type 
of component selected. The properties view (as seen in Figure 13-15) shows the 
properties of the body tag. It also has a Text tab, which allows you to define the 
text style for the page template. You will notice the highlighted button on the top 
right of Figure 13-15. This button allows you to view all the attributes of the tag in 
tabular format, as shown in Figure 13-16 on page 694.

Figure 13-15   Properties view
 Chapter 13. Develop Web applications using JSF and SDO 693



Figure 13-16   Properties view - All attributes

Page Data view
The Page Data view allows you to create data elements, as well as select 
methods from you managed beans to be added to your page or bound to your 
page components. The button in Figure 13-17 allows you to add new data 
components such as:

� EJB Session Beans
� Web Services
� Param scope variable
� Application scope variables
� Request scope variables
� Session scope variables
� SDO Relational record list
� SDO Relation records
� Java Beans

You can also add these components through the context menu by right-clicking 
the Page Data view.

Figure 13-17   Page Data view
694 Rational Application Developer V6 Programming Guide



13.3.3  Customize the page template
Now that you have created a page template, it is likely you will want to customize 
the page. This section demonstrates how to make the following common 
customizations to a page template:

� Customize the logo image and title of the page template.
� Customize the style of the page template.
� Add the content area to the page template.

Customize the logo image and title of the page template
To customize the page template to include the ITSO logo image and ITSO 
RedBank title, do the following:

1. Import the itso_logo.gif image.

a. Expand Dynamic Web Projects → BankJSF → WebContent → theme.

b. Right-click the theme folder, and select Import.

c. Select File System and click Next.

d. Enter c:\6449code\web in the From directory, check itso_logo.gif (as 
seen in Figure 13-18 on page 696), and then click Finish.
 Chapter 13. Develop Web applications using JSF and SDO 695



Figure 13-18   Adding the ITSO logo to the Dynamic Web Project

2. Expand Dynamic Web Projects → BankJSF → WebContent.

3. Double-click BankJSFTemplate.jtpl to open the file created in 13.3.1, 
“Create a page template” on page 684.

4. Click the Design tab.

5. Select the text Place content here, right-click, and select Delete.

6. From the Palettes view, expand the Faces Components.

Note: You may see the message shown in Figure 13-6 on page 686. If this 
happens, just click OK.
696 Rational Application Developer V6 Programming Guide



7. Select the Panel - Group Box  and drag it onto the page.

8. When the Select Type dialog appears, select List as seen in Figure 13-19, 
and then click OK.

Figure 13-19   Select Type - List

9. You should now see a box on your page with the text box1: Drag and Drop 
Items from the palette to this area to populate this region.

From the Faces Components, select Image  and drag it to the 
panel. After adding the image, the page should look like Figure 13-20.

Figure 13-20   View of page template after adding image to panel - Group box

Note: You maybe asked to confirm resource copy. This is because the 
project does not contain resources that are required for the component that 
you are adding to the page template. Click the OK button to proceed. 
Notice the faces-config.xml file has been added to the WEB-INF folder.
 Chapter 13. Develop Web applications using JSF and SDO 697



10.Update the image values in the Properties view.

a. Select the image on the page (see Figure 13-20 on page 697) to highlight 
the image.

b. In the Properties view, enter headerImage in the Id field, as seen in 
Figure 13-21.

c. Click the folder icon next to File and select Import. Enter the path to the 
image and click Open. In our example, we entered 
/WebContent/themes/itso_logo.gif to import the image.

Figure 13-21   Properties for an image component

d. You will notice in Figure 13-21 that the absolute reference has been 
entered. We need to make it a relative reference by removing the 
/BankJSF from the File field. After making the change, it will be 
theme/itso_logo.gif without any leading slash.

11.From the Faces Components palette, select Output  and drag it 
under the image.

12.In the Properties view enter ITSO RedBank into the Value field.

13.Select the Output box (ITSO RedBank) and move it to the right of the image.

Customize the style of the page template
To customize the style of the page template, do the following:

1. Select the Output text box on the page.

Note: We found that the File field in the Properties view showed 
/BankJSF/theme/itso_logo.gif after the import of the image.
698 Rational Application Developer V6 Programming Guide



2. In the Properties view, click the button next to the Style: Props: field. The Add 
style dialog will be displayed, as shown in Figure 13-22 on page 699.

Figure 13-22   Style dialog used to configure the style of the selected components

3. Change the Size field value to 18.

4. Select Arial for the Font and click Add. 

5. Select sans-serif for the Font and click Add. 

6. Click OK.

Add the content area to the page template
To add the required content area to the page template, do the following:

1. Right-click under the output field and from the context menu select Insert → 
Horizontal Rule.

2. Expand Page Template in the Palette view.

3. From the Page Template, select the Content Area  and drag it 
under the horizontal rule. 

4. When the Insert Content Area for Page Template dialog appears, accept the 
default name (bodyarea) and click OK.
 Chapter 13. Develop Web applications using JSF and SDO 699



5. Right-click under the content area and from the context menu select Insert → 
Horizontal Rule.

6. Save the page template file.

The customized page template file should look similar to Figure 13-23.

Figure 13-23   Customized page template - BankJSFTemplate.jtpl

13.3.4  Create JSF resources using the Web Diagram tool
This section demonstrates using the Web Diagram tool to create JSF pages, 
JSPs, Faces actions, and connections between pages and actions. 

The sample application will consist of the following three pages:

� Login page (BankJSFLogin): Validate the entered CustomerSSN. If it is valid 
it will then display the customer details for the entered customer.

� Customer details page (BankJSFCustomerDetails): Display all the customer’s 
account details and allow you to select an account to view the transactions.

� Account details page (BankJSPAccountDetails): Display the selected account 
details.

Create a JSF page using the Web Diagram tool
To create a JSF page using the Web Diagram tool, do the following:

1. Open the Web perspective Project Explorer view.
700 Rational Application Developer V6 Programming Guide



2. Expand Dynamic Web Projects → BankJSF.

3. Double-click Web Diagram (as shown in Figure 13-24) to open.

Figure 13-24   Select Web Diagram in the Project Explorer

4. When the Web Diagram appears in the Web Diagram Editor (as seen in 
Figure 13-25), select Web Page  from the Web Parts palette and 
drag it onto the page.

Figure 13-25   Initial Web Diagram page
 Chapter 13. Develop Web applications using JSF and SDO 701



5. In the Properties view change the Web Page Path value to 
/BankJSFLogin.jsp, and change the description to The login page.

6. Repeat the process to create Web pages for the JSF pages shown in 
Table 13-1.

Table 13-1   Additional Web pages for the BankJSF application

Create a JSP file
To create the JSP file from a page template using the Web diagram, do the 
following:

1. Double-click the BankJSPLogin.jsp in the Web diagram.

2. When the New Faces JSP File wizard appears, enter the following (as seen in 
Figure 13-26 on page 703), and then click Next:

– Folder: /BankJSF/WebContent
– File name: BankJSFLogin.jsp
– Options: Check Create from page template.

Note: Now that we have created a Web page in the Web Diagram tool, you 
may notice that the BankJSFLogin.jsp icon has a gray-blue tint. The 
reason for this is that it is not linked to an actual JSP file. We will use this 
diagram to create the actual JSP file that this icon will link to in a later step.

Web page path Description

/BankJSFCustomerDetails.jsp Customer details and account overview

/BankJSPAccountDetails.jsp Account details

Note: If you have not already created the page template refer to 13.3.1, 
“Create a page template” on page 684, to create a page template.
702 Rational Application Developer V6 Programming Guide



Figure 13-26   New Faces JSP File wizard - Create from page template

3. When the Page Template File Selection page appears, select the 
User-defined page template, select BankJSFTemplate.jtpl (as seen in 
Figure 13-27 on page 704), and then click Finish.
 Chapter 13. Develop Web applications using JSF and SDO 703



Figure 13-27   New Faces JSP file select template

4. The new Faces JSP file will be loaded into the Page Designer. At this point, 
the newly create JSF page should look like the page template.

5. Click the Web Diagram to repeat the process to create the following Faces 
JSPs using the BankJSFTemplate.jtpl:

– BankJSFCustomerDetails.jsp
– BankJSFAccountDetails.jsp

6. Save the Web diagram.

Once you have created all the Faces JSPs, the Web diagram should look similar 
to Figure 13-28 on page 705. Notice the Web page icons now have color, and the 
icon titles are shown in bold. This is because they have been realized.
704 Rational Application Developer V6 Programming Guide



Figure 13-28   Realized Faces JSPs for the sample application

Create connections between JSF pages
Now that the pages have been created, we can create connections between the 
pages.

To add connections between pages, do the following:

1. Click Connection  from the Palette, click BankJSFLogin.jsp, 
and then click BankJSFCustomerDetails.jsp. 

2. When the Choose a Connection dialog appears, select Faces Outcome → 
<new> (as seen in Figure 13-29), and then click OK.

Figure 13-29   Choose a connection dialog

Note: The Connection palette item is not dragged to the Web diagram like 
the remaining palette items.
 Chapter 13. Develop Web applications using JSF and SDO 705



3. An arrow with a dotted line with the label of <new> will be drawn from the 
BankJSFLogin icon to the BankJSFCustomerDetails icon. The line is dotted 
because the connection has not been realized (added to the 
faces-config.xml). Once realized, the line will become solid.

Click the <new> label to change the value of the outcome, and enter login. 
Alternatively, you can select the line and change the value in the properties 
window.

4. Realize the connection.

a. Double-click the line.

Alternatively, right-click the line and select Create outcome.

b. When the Edit Navigation Rule appears, do the following (as seen in 
Figure 13-30), and then click OK:

• From page: /BankJSFLogin.jsp

• To page: /BankJSFLoginCustomerDetails.jsp

• When action returns outcome: Select The outcome named, enter 
login.

• This rule is used by: Select Any action.

• When following this rule: Select Use request forwarding (parameters 
work automatically).
706 Rational Application Developer V6 Programming Guide



Figure 13-30   Edit Navigation Rule dialog

5. Review the modified faces-config.xml.

Now we have a link from the BankJSFLogin.jsp to the 
BankJSFCustomerDetails.jsp. This link will be activated when the outcome of 
an action on the BankJSFLogin page is login. To review how this link is 
realized in the JSF configuration, do the following:

a. Expand Dynamic Web Project → BankJSF → WebContent → 
WEB-INF.

b. Double-click face-config.xml to open the file.

Verify the navigation rule was added as displayed in Example 13-1.

The connection in the Web Diagram view should now be a solid line and 
the Web diagram should look similar to Figure 13-31.

Example 13-1   New navigation rule added to faces-config.xml (snippet)

<navigation-rule>
<from-view-id>/BankJSFLogin.jsp</from-view-id>
<navigation-case>

<from-outcome>login</from-outcome>
<to-view-id>/BankJSFCustomerDetails.jsp</to-view-id>

</navigation-case>
 Chapter 13. Develop Web applications using JSF and SDO 707



</navigation-rule>

Figure 13-31   Web diagram with a realized connection

Create Faces action
The Web Diagram tool provides the means to create faces actions and connect 
Web pages to these actions. 

To create a new Faces action, do the following:

1. From the Faces Parts palette select Faces Action  and drag it 
onto the page. 

2. When the Faces Action Attributes dialog appears, enter Logout in the 
Managed Bean field, enter logout in the Method field (as seen in 
Figure 13-32), and then click OK.

Figure 13-32   Faces Action Attributes dialog

3. Create the bean class.
708 Rational Application Developer V6 Programming Guide



Again you will notice that the new icon is lacking in color. This is because the 
Faces Action bean is linked to an actual class or is unrealized. Double-click 
the Logout.logout icon to create the bean class.

4. When the New Faces Managed Bean dialog appears, the manage bean name 
will be populated for you, since this is the first we are creating.

Select the New managed-bean class option to create a new managed bean, 
and ensure that the selected Model is managed-bean-class extends Action 
(as seen in Figure 13-33 on page 709), and then click Next.

Figure 13-33   New Managed Bean wizard

5. When the Specify the managed-bean class you wish to generate dialog 
appears, enter com.ibm.bankjsf.actions in the Java package field (as 
displayed in Figure 13-34 on page 710), and click Finish.
 Chapter 13. Develop Web applications using JSF and SDO 709



Figure 13-34   New Faces Managed Bean class details

6. The new action class will be displayed in the editor. Enter the source code 
found in Example 13-2 to the relevant sections of the LogoutAction class.

Example 13-2   ITSO sample LogoutAction.java 

package com.ibm.bankjsf.actions;

/** Import statements **/
import java.util.Map;
import javax.faces.context.*;

public class LogoutAction {

    /** Constructor **/
    public LogoutAction() {

    }

Note: To save time entering, the source code can be copied from 
c:\6449code\jsf\BankJSFSource.jpage.
710 Rational Application Developer V6 Programming Guide



/** Member variables **/
protected FacesContext facesContext;
protected Map sessionScope;

private static final String CUSTOMERSSN_KEY = "customerSSN";
private static final String SESSION_SCOPE = "#{sessionScope}";
private static final String OUTCOME_LOGOUT = "logout";

/** logout method **/
public String logout(){

facesContext = FacesContext.getCurrentInstance();
sessionScope =

(Map) facesContext
.getApplication()
.createValueBinding(SESSION_SCOPE)
.getValue(facesContext);

if (sessionScope.containsKey(CUSTOMERSSN_KEY)){
sessionScope.remove(CUSTOMERSSN_KEY);

}

return OUTCOME_LOGOUT;
}

}

The Web Diagram should now look similar to Figure 13-35.

Figure 13-35   Logout bean in the Web diagram
 Chapter 13. Develop Web applications using JSF and SDO 711



Add a connection for the action
To add a connection from the Action to a page, do the following:

1. Select Connection  from the palette, click the Logout.logout 
icon, and then click on the BankJSFLogin.jsp icon.

2. Select <new> on the dotted line between Logout.logout and 
BankJSFLogin.jsp, and rename the outcome to logout.

3. Double-click logout on the dotted line between Logout.logout and 
BankJSFLogin.jsp to realize the connection.

4. When the Edit Navigation Rule dialog appears, do the following, as seen in 
Figure 13-36, and then click OK:

a. Enter /* in the From Page field (the * makes the navigation rule applicable 
for all pages).

b. Ensure that Any action is selected.

Figure 13-36   Realize global logout navigation rule

Note: At the time of writing, the settings for this navigation rule would 
change if the logout line was subsequently double-clicked. The settings 
would then reflect those of Figure 13-37 on page 713. Note how the 
selection has changed from Any action to This action only.
712 Rational Application Developer V6 Programming Guide



Figure 13-37   Wrong settings for the logout navigation rule

This will result in the new navigation rule being added to the faces-config.xml file, 
as shown in Example 13-3.

Example 13-3   New navigation rule added to faces-config.xml for the logout action

<navigation-rule>
<from-view-id>/*</from-view-id>
<navigation-case>

<from-outcome>logout</from-outcome>
<to-view-id>/BankJSFLogin.jsp</to-view-id>

</navigation-case>
</navigation-rule>

Add remaining navigation rules
We now have an action bean that will perform some action and return the user to 
the BankKJSFLogin screen. 

1. Add the navigation rules listed in Table 13-2 on page 714, following the 
previously described procedures. Note that the navigation rules that point to 
the logout action do not require any outcome information.
 Chapter 13. Develop Web applications using JSF and SDO 713



Table 13-2   Navigation rules and connections

2. Once you have added the connections the Web Diagram should look similar 
to Figure 13-38.

Figure 13-38   Completed Web diagram

Other useful buttons for editing the Web diagram are shown in Figure 13-39 
on page 715.

– Align selected objects horizontally.
– Align selected object vertically.
– Zoom in and out.
– Configure the diagram setting such as grid line and snap to grid.
– Filter certain types of objects from view.

From To Outcome

BankJSFCustomerDetails.jsp BankJSFAccountDetails.jsp accountDetails

BankJSFAccountDetails.jsp BankJSFCustomerDetails.jsp customerDetails

BankJSFCustomerDetails.jsp Logout.logout

BankJSFAccountDetails.jsp Logout.logout

Tip: To change the shape of a connection, select the connection, and in 
the center of the straight line you will see an anchor point (a small square). 
You can drag the anchor to change the shape of the connection for better 
readability.
714 Rational Application Developer V6 Programming Guide



Figure 13-39   Web diagram menu bar

13.3.5  Edit a JSF page
This section demonstrates the JSF editing features in Application Developer by 
using the JSF pages created in 13.3.4, “Create JSF resources using the Web 
Diagram tool” on page 700. 

Add the UI components
To add the UI components to the BankJSFLogin.jsp page, do the following:

1. Open BankJSFLogin.jsp by double-clicking the file in the Web diagram or in 
the WebContent folder.

2. Click the Design tab.

3. Select the text Default content of bodyarea, right-click, and select Delete.

4. From the Faces Components palette select Output  and drag it 
into the content area.

5. In the Properties view for the new output component, do the following:

a. Enter Login into the Value field.

b. Click the icon next to Style: Props: to change the font and size.

i. Select the Font size 14.

ii. Select Arial font, and click Add.

iii. Select sans-serif font, and click Add.

iv. Click OK.

6. Place the cursor right after the Output component and press Enter.

7. Enter the text Enter Customer SSN:. Select the text you have just entered and 
use the Properties view to change the font to Arial.

8. From the Faces Components select Input  and drag it next to the 
text entered in the previous step.

9. In the Properties view of the input component, enter customer in the Id field.

10.From the Faces Components select the Command - Button  
and drag it to the right of the Input component.

11.In the Properties view for the command button select the Display options 
tab, and in the Button label type Enter, as seen in Figure 13-40 on page 716.
 Chapter 13. Develop Web applications using JSF and SDO 715



Figure 13-40   Command button Properties view

12.Save the BankJSFLogin.jsp file (Ctrl+S).

13.Click the Preview tab.

The resulting page should be similar to Figure 13-41.

Figure 13-41   Preview of the BankJSFLogin.jsp

Add variables
When a page has a field where text is entered, the input needs can be stored. 
This is accomplished by creating a session scope variable to store the entered 
value and bind it with the input field created.
716 Rational Application Developer V6 Programming Guide



To create a variable and bind it to the input field, do the following:

1. Double-click BankJSFLogin.jsp and change to the Design view if necessary.

2. In the Page Data view click the Create new data component button ( ) 
(upper right of view).

3. When the Add Data Component dialog appears, select the Session Scope 
Variable, and then click OK.

4. When the Add Session Scope Variable dialog appears, enter customerSSN in 
the Variable name field, enter java.lang.String in the Type field (as seen in 
Figure 13-42), and then click OK.

Figure 13-42   Add session scope variable

5. From the Page Data view, expand and select Scripting Variables → 
sessionScope → customerSSN. Drag customerSSN to the input 
component. The help-tip will show the text Drop here to bind “customerSSN” 
to the control customerId.

Tip: The Page Data view may be collapsed. If this is the case, click the 
Show List icon on the right of the other tabs in the panel where the view is 
normally placed (this is typically in the lower-left part of the Workbench) 
and select Page Data from the list.
 Chapter 13. Develop Web applications using JSF and SDO 717



6. Save BankJSFLogin.jsp.

BankJSFLogin.jsp should look like Figure 13-43 from the Design view. Notice 
that the input field is now bound to the session scope variable customerSSN, as 
denoted by the text {customerSSN}.

Figure 13-43   Design view - Bind input field and session scope variable

Add simple validation
JSF offers a framework for performing common validation on input fields such as 
required values, validation on the length of the input, and input check for all 
alphabetic or digits.

To add simple validation to an input field, do the following:

1. Select the Input component in the Design view.

2. In the Properties view for the input component select the Validation tab.

3. Enter the following in the Validation tab, as seen in Figure 13-44 on page 719:

a. Check Value is required.

b. Check Display validation error message in an error message control. 
When you select the second checkbox an error message component will 
be added next to the Input box.

c. Enter 11 in the Minimum length field.
718 Rational Application Developer V6 Programming Guide



Figure 13-44   Input box validation properties

We have now added some simple validation for the input component.

Add static navigation to a page
To add static navigation to page, do the following:

1. Double-click the BankJSFLogin.jsp to open in the editor.

2. Select the Command Button component (Enter).

3. In the Properties view, click the All Attributes ( ) icon found in the top right. 

The Properties view will be changed to show all the attributes of the selected 
component, as seen in Figure 13-45.

Figure 13-45   Properties view showing all attributes

4. Select the action attribute, and enter success, as seen in Figure 13-45.

This will be the outcome of the page when the Command Button (Enter) is 
pressed, and as a result the navigation rule that we created will be invoked.
 Chapter 13. Develop Web applications using JSF and SDO 719



5. Save the BankJSFLogin.jsp.

Now that we have set up static navigation, we need to compare the entered 
customer SSN to the values in the database. We will do so by creating an SDO 
object to retrieve the records from the database.

Add SDO to a JSF page
To add an SDO relational record to a JSF page, do the following:

1. Ensure you have set up the sample database as described in 13.2.2, “Set up 
the sample database” on page 681. We will use the Bank Connection as part 
of the following procedure.

2. Ensure the BankJSF_Con1 connection is connected so that it can access the 
c:\databases\BANK database.

3. Double-click the BankJSFLogin.jsp to open it in the editor.

4. Right-click the Page Data view, and select New → Relational Record List.

5. When the Add Relational Record List dialog appears, enter customers in the 
Name field (as shown in Figure 13-46), and then click Next.

Figure 13-46   Add Relational Record List wizard

6. When the Record List Properties dialog appears, do the following:

a. The first time this dialog appears the Connection name drop-down list will 
be empty even though the actual database connection named Bank 
Connection exists. Click New.
720 Rational Application Developer V6 Programming Guide



b. When the Select a Database dialog appears, select Use Live 
Connection, select either BankJSF_Con1 connection or the BANK 
database for the BankJSF_Con1 connection (as seen in Figure 13-47), 
and then click Finish.

Figure 13-47   Add SDO to JSF page - Select a database

c. As a result of selecting the database in the previous step, the Record List 
Properties page will be populated with the database tables. Select the 
ITSO.CUSTOMER table (as seen in Figure 13-48 on page 722), and then 
click Next.

Note: In our example, the BANK database did not always show up 
under the BankJSF_Con1 connection. We found that in these cases, 
we could just select the BankJSF_Con1 connection.
 Chapter 13. Develop Web applications using JSF and SDO 721



Figure 13-48   Select a Connection and Table

7. When the Column Selection and Other Task dialog appears, do the following 
(as seen in Figure 13-49 on page 723), and then click the Filter results link:

– Check TITLE.
– Check FIRSTNAME.
– Check LASTNAME.
722 Rational Application Developer V6 Programming Guide



Figure 13-49   Column selection 

8. When the Filters dialog appears, click + (add) to add a new filter rule, as 
shown in Figure 13-50 on page 724.
 Chapter 13. Develop Web applications using JSF and SDO 723



Figure 13-50   Add new filter

9. When the Conditions dialog appears, select SSN from the Column drop-down 
list, and click the .... (more) button to the right of Value, as seen in 
Figure 13-51. 

Figure 13-51   The Conditions dialog
724 Rational Application Developer V6 Programming Guide



10.When the Select Page Data Object dialog appears, expand sessionScope, 
select customerSSN (as seen Figure 13-52), and then click OK.

Figure 13-52   Select Page Data Object dialog

11.When the Conditions dialog appears, the proper values are displayed, as 
seen in Figure 13-53 on page 726. Click OK.
 Chapter 13. Develop Web applications using JSF and SDO 725



Figure 13-53   Conditions dialog with values

12.The Filters dialog should now look like Figure 13-54. Click Close.

Figure 13-54   Filter dialog with values

13.When you return to the Column Selection and Other Tasks dialog, click 
Finish.
726 Rational Application Developer V6 Programming Guide



14.Save the BankJSPLogin.jsp.

At this point, we have added an SDO Relational Record List object to the 
BankJSFLogin.jsp, and we can use the object to validate the customer SSN that 
is entered.

As a result of creating the relational record list, several files were generated. The 
customer.xml file is of most interest to us in that it contains the configuration 
details entered in the wizard.

/WebContent/WEB-INF/wdo/customers.xml

Add custom validation and dynamic navigation
To add custom validation and dynamic navigation we will have to add some Java 
code to our managed bean.

1. Expand Dynamic Web Project → BankJSF → Java Resources → 
JavaSource → pagecode.

2. Double-click BankJSFLogin.java to open the file in an editor.

3. Insert the code in Example 13-4 to the BankJSFLogin.java at the end of the 
file.

4. Add an import statement for ArrayList used by the code inserted in the 
previous step. Press Ctrl+Shift+O (Organize Imports) to add the following 
import.

import java.util.ArrayList;

5. Save the BankJSFLogin.java file.

Example 13-4   Custom validation code to check customer’s SSN

public static final String OUTCOME_FAILED = "failed";
public static final String OUTCOME_LOGIN = "login";

public String login(){
String outcome = OUTCOME_FAILED;

List custs = getCustomers();

// A valid customer SSN should only return one record
if (custs == null || custs.size() < 1) {

addErrorMessage("Customer Record not found.");
} else if (custs.size() == 1){

Note: To save time, the source code can be copied from 
c:\6449code\jsf\BankJSFSource.jpage.
 Chapter 13. Develop Web applications using JSF and SDO 727



// successfully entered a valid Customer SSN
outcome = OUTCOME_LOGIN;

} else {
addErrorMessage("To many customer records found.");

}
return outcome;

}

protected void addErrorMessage(String error){
if (errorMessages == null){

errorMessages = new ArrayList();
}

errorMessages.add(error);
}

public String getErrorMessages(){
StringBuffer messages = new StringBuffer();

if (errorMessages != null && errorMessages.size() > 0){
int size = errorMessages.size();
for (int i=0;i<size;i++){

messages.append(errorMessages.get(i));
}

}

return messages.toString();
}
private ArrayList errorMessages = null;

Test the custom validation and dynamic navigation
To test the custom validation and dynamic navigation code, do the following:

1. Open the Web perspective Project Explorer view.

2. Expand Dynamic Web Project → BankJSF → WebContent.

3. Double-click BankJSFLogin.jsp to open it in the editor.

4. In the Design view, select the Edit button (Id button1).

5. In the Page Data view, expand Actions.

6. Right-click login() and select Bind to ‘button1’ from the context menu, 
where button1 is the ID of the Enter button.

7. From the Palette, expand Faces Components.

8. From the Faces Components Palette, select Output - Formatted Text 
 and drag it to the area between Login and Enter Customer 

SSN texts.
728 Rational Application Developer V6 Programming Guide



9. Select the outputFormat component in the Design view.

10.In the Properties view for the new outputFormat component, do the following:

a. Enter errorMessage in the Id field.

b. Click the icon next to Style: Props: to change the font, color, and size.

i. Select the Font size 12.

ii. Select Arial font and click Add.

iii. Select sans-serif font and click Add.

iv. Select Red in the Color drop-down field.

v. Click OK.

11.In the Page Data view, right-click the errorMessages bean and select Bind 
to ‘errorMessage’ from the context menu, where format1 is the ID of the 
output formatted text component.

Now we have bound the Command button to run the login method, which will get 
the customers from the database using the SDO Relational Record List. It will 
check the number of records found. If it is not equal to 1 then it will return an error 
message and we will come back to the login screen. If it returns only one record, 
the login method will return an outcome of success. As this outcome is linked to a 
navigation rule, that navigation rule will be invoked and will present the customer 
details screen.

Important: At the time of writing, the procedure described here will result in 
invalid code being generated for BankJSFLogin.jsp. The following is the code 
that has been added to BankJSFLogin.jsp:

<f:param id="param1" name="msg1" value="#{pc_BankJSFLogin.errorMessages.}">
</f:param>

This code instructs JSF to show the contents of the variable 
#{pc_BankJSFLogin.errorMessages.} in the outputFormat component.

Unfortunately, there is no such variable. The correct name is 
#{pc_BankJSFLogin.errorMessages} without the dot. It is thus necessary to 
change the code in BankJSFLogin.jsp to:

<f:param id="param1" name="msg1" value="#{pc_BankJSFLogin.errorMessages}">
</f:param>

This is done in the Source view. After modifying the code, save 
BankJSFLogin.jsp.
 Chapter 13. Develop Web applications using JSF and SDO 729



13.3.6  Completing the SDO example
This section describes how to complete the sample application by using SDO 
with the pages to display and access the database. 

Complete BankJSFCustomerDetails.jsp
We will complete the following tasks to complete the 
BankJSFCustomerDetails.jsp to allow the user to update the customer details:

� Add relational record.
� Add the relational record component to the page.
� Link update button to doCustomerUpdateAction (database update).
� Add relational record list to display accounts.
� Add the relational record list to the page.
� Change the formatting of the balance field.
� Add a row action.
� Add reusable JavaBean.
� Add logout method.
� Add a logout button.

Add relational record
To add a relational record, do the following:

1. Double-click BankJSFCustomerDetails.jsp to open it in the editor.

2. In the Page Data view, click the Create new data component ( ) button, 
select Relational Record, and then click OK.

3. When the Add Relational Record dialog appears, enter customer in the Name 
filed (as seen in Figure 13-55 on page 731), and click Next.
730 Rational Application Developer V6 Programming Guide



Figure 13-55   Adding a Relational Record

4. Select the ITSO.CUSTOMER table, as seen in Figure 13-56, and click Next.

Figure 13-56   Selecting the table for the Relational Record
 Chapter 13. Develop Web applications using JSF and SDO 731



5. When the Column Selection and Other tasks dialog appears, click Filter 
Results.

6. When the Filters dialog appears, select the filter rule as seen in Figure 13-57, 
and click the Edit button ( ).

Figure 13-57   Filter rule selection

7. When the Conditions dialog appears, click the more button ( ) next to the 
Value field, as seen in Figure 13-58 on page 733.

8. When the Select Page Data Object dialog appears, expand sessionScope, 
select the customerSSN, and click OK.
732 Rational Application Developer V6 Programming Guide



Figure 13-58   Add sessionScope variable for customerSSN

9. When you return to the Conditions dialog, the values should be set as seen in 
Figure 13-58. Click OK.

10.When you return to the Filters dialog, click Close.

11.When you return to the Column Selection and Other Tasks dialog, click 
Finish.

We have now created the relational record.

Add the relational record component to the page
To add the relational record component to the page, do the following:

1. In the Design view, select the text Default content of bodyarea, right-click, 
and select Delete.

2. In the Page Data view, expand customer (Service Data Object), select the 
customer (CUSTOMER) relational record component, and drag it onto the 
content area of the page.

3. When the Insert Record - Configure Data Controls dialog appears, select 
Updating an existing record, uncheck the SSN field as seen in Figure 13-59 
on page 734, and then click the Options ... button.
 Chapter 13. Develop Web applications using JSF and SDO 733



Figure 13-59   Insert Record wizard

4. When the Options dialog appears, uncheck the Delete button check box, 
enter Update in the Label field as seen in Figure 13-60 on page 735, and then 
click OK.
734 Rational Application Developer V6 Programming Guide



Figure 13-60   Insert Record Options dialog

5. When you return to the Insert Record - Configure Data Controls dialog, click 
Finish.

6. Save the BankJSFCustomerDetails.jsp.

The customer details can now be displayed on the page, with the input fields 
available to enter data.

Link update button to doCustomerUpdateAction (database update)
In this step, we provide the ability to update the database with the customer input 
field data, by linking the doCustomerUpdateAction method to the update button.

1. In the Design view, select the Update button on the page.

2. In the Page Data view, expand customer (Service Data Object). 

3. Right-click doCustomerUpdateAction and select Bind to ‘button1’ from the 
context menu.

Add relational record list to display accounts
In this section we demonstrate how to add the relational record list for accounts 
to the page, so that we can display the accounts for the customer.

To add the relational record list for the accounts, do the following:

1. In the Page Data view, click the  button.

2. Select the Relational Record List from the New data component dialog and 
click OK.

3. When the Add Relational Record List dialog appears, enter accounts in the 
Name field and then click Next.
 Chapter 13. Develop Web applications using JSF and SDO 735



4. Select the ITSO.ACCOUNTS_CUSTOMERS table and then click Next.

5. Click the Filter results under the Tasks on the right of the dialog.

6. In the Filters dialog click the  button.

a. When the Conditions dialog appears, do the following:

i. Select the CUSTOMERS_SSN from the Column drop-down list.

ii. Click the ... (more) button next to the Value field.

iii. When the Select Page Data Object dialog appears, select the 
customerSSN session scope variable and click OK.

iv. When you return to the Conditions dialog, click OK.

b. When you return to the Filters dialog, click Close.

7. When you return to the Column Selection and Other tasks dialog, click Add 
another database table through relationship under Advanced tasks.

a. When the Choose Your Relationship dialog appears, select the 
ITSO.ACCOUNT table (as seen in Figure 13-61 on page 737), and then 
click Next.
736 Rational Application Developer V6 Programming Guide



Figure 13-61   Create Relationship dialog

b. When the Edit Your Relationship dialog appears, enter the following, as 
seen in Figure 13-62 on page 738:

i. Select *->1 FOREIGN KEY -> PRIMARY KEY from the Multiplicity 
drop-down list.

ii. Select ACCOUNTS_ID from the ACCOUNT_CUSTOMERS primary 
key drop-down list.

iii. Select ITSO.ACCOUNTS_CUSTOMER->ITSO.ACCOUNT in the 
Relationships panel to gain focus, and then click Finish.

Note: We found that if we did not highlight this field, the Finish 
button was not available to click.
 Chapter 13. Develop Web applications using JSF and SDO 737



Figure 13-62   Create Relationship conditions page

8. When you return to the Column Selection and Other Tasks dialog, click 
Finish.

9. Save the BankJSFCustomerDetails.jsp.

Add the relational record list to the page
To add the relational record list to the page, do the following:

1. In the Page Data view, expand accounts (Service Data Object).

2. Select the accounts (ACCOUNT_CUSTOMERS) relational record list 
component and drag it onto the area to the right of the Update button.
738 Rational Application Developer V6 Programming Guide



3. When the Insert Record List - Configure Data Control dialog appears, do the 
following, as seen in Figure 13-63 on page 739:

a. In the Label field for the ACCOUNTS_ID enter Account ID.

b. Uncheck CUSTOMERS_SSN.

c. Uncheck ACCOUNTS_CUSTOMERS_ACCOUNT.ID.

d. Click Finish.

Figure 13-63   Insert Record List

4. Save the BankJSFCustomerDetails.jsp.
 Chapter 13. Develop Web applications using JSF and SDO 739



Figure 13-64   Design view of showing the table for customer accounts

Figure 13-64 displays the Design view of BankJSFCustomerDetails.jsp 
representing the table of the accounts that belong to the customer.

Change the formatting of the balance field
To change the formatting of the balance field, do the following:

1. Select the  output component in the Design view.

2. In the Properties view, select Currency from the Type drop-down list.

3. Save the BankJSFCustomerDetails.jsp.
740 Rational Application Developer V6 Programming Guide



Add a row action
We will now add a row action that will be activated when the user clicks a row of 
the table. 

To add a row action, do the following:

1. In the Design view, select the data table component for accounts.

2. In the Properties view, select h:dataTable →Row actions.

3. Click Add next to Add an action that’s performed when a row is clicked.

The page should now look like Figure 13-65 in the Design view.

Figure 13-65   Add row action
 Chapter 13. Develop Web applications using JSF and SDO 741



4. Select the Quick Edit view. Click the  icon in the Properties view if there is 
no Quick Edit tab.

5. Copy the code from Example 13-5 in to the Quick Edit view.

Example 13-5   Code for accounts row action

try {
int row = getRowAction1().getRowIndex();
Object keyvalue = 

((DataObject)getAccounts().get(row)).get("ACCOUNTS_ID");
getSessionScope().put("accountId", keyvalue);

} catch(Exception e){
e.printStackTrace();

}

return "accountDetails";

6. Create a new Session scope variable named accountId, which is used by the 
code that was added.

a. In the Page Data view click the Create new data component button ( ) 
(upper right of view).

b. When the Add Data Component dialog appears, select the Session 
Scope Variable, and then click OK.

c. When the Add Session Scope Variable dialog appears, enter accountId in 
the Variable name field, enter java.lang.String in the Type field, and 
then click OK.

Add reusable JavaBean
We will now add the reusable JavaBean to the page to handle the logout 
process. 

To add a reusable java bean, do the following:

1. In the Page Data view, click the Create new data component button ( ).

2. Select JavaBean and click OK.

3. When the Add JavaBean dialog appears, do the following:

a. Select Add existing reusable JavaBean (JSF ManagedMean).

b. Select the Logout bean, as seen in Figure 13-66 on page 743. 

c. Click Finish.

Note: To save time, the source code can be copied from 
c:\6449code\jsf\BankJSFSource.jpage.
742 Rational Application Developer V6 Programming Guide



Figure 13-66   Add JavaBean wizard

Add logout method
To add the logout method from the Logout JavaBean, do the following:

1. In the Page Data view, right-click the Logout JavaBean and select Add New 
JavaBean Method from the context menu.

2. When the Select Method dialog appears, select logout() and click OK.

3. Modify the return of the doLogoutLogoutAction() method.

a. In the Page Data view, expand 
logout (com.ibm.bankjsf.actions.LogoutAction) → logout().

Note: This will add a new method on the page called 
doLogoutLogoutAction(). This method will call the JavaBean method 
logout. Since the default code returns a null as the outcome, you will have 
to change this method to return the logoutLogoutResultBean.
 Chapter 13. Develop Web applications using JSF and SDO 743



b. Double-click doLogoutLogoutAction() to open the file 
BankJSFCustomerDetails.java in the editor.

c. Change the return from null to the logoutLogoutResultBean.

d. Save and close BankJSFCustomerDetails.java.

4. Save BankJSFCustomerDetails.jsp.

Add a logout button
To add a command button to the page and bind the logout method to the 
command button, do the following:

1. Open BankJSFCustomerDetails.jsp.

2. From the Design view, select the Command - Button from the Faces 
component palette and drag it onto the page.

3. Select the newly added Command Button in the Design view.

4. In the Properties view, click the Display options tab, and change the Button 
label to Logout.

5. In the Page Data view, right-click the logout() method of the Logout 
JavaBean and select Bind to ‘button2’ from the context menu.

6. Save the BankJSFCustomerDetails.jsp.

The BankJSFCustomerDetails.jsp page is now complete.

Complete the BankJSFAccountDetails.jsp
This section describes the steps needed to complete the 
BankJSFAccountDetails.jsp. In many cases, the details for these steps can be 
found in the procedures used to complete the BankJSFCustomerDetails.jsp.

To complete the BankJSFAccountsDetails.jsp, do the following:

1. In the Project Explorer view, expand Dynamic Web Projects → BankJSF → 
WebContent.

2. Double-click the BankJSFAccountDetails.jsp to open it in the editor.

3. Remove the text Default content of bodyarea like on previous pages.

4. Create a New Relational Record called account.

For details refer to “Add relational record” on page 730.

– Select the ACCOUNT table.
– Add a filter condition of ID equal to the Session scope variable accountId.

5. From the Page Data view drag the Relational Record account onto the page.
744 Rational Application Developer V6 Programming Guide



For details refer to “Add the relational record component to the page” on 
page 733.

On the Configure Data Controls page, do the following:

– Ensure that Display an existing record (read-only) is selected.

– Use the up and down arrows to change the column order such that the ID 
column is displayed before the BALANCE column.

6. Change the Balance output component type to Currency.

For details refer to “Change the formatting of the balance field” on page 740.

7. Add a command button that:

– Has the display text Customer Details
– Returns the outcome of customerDetails

8. Add the reusable Logout Java Bean as we did in the previous section.

9. Add a command button and bind the logout method to the command button.

10.Add a column to the account information table containing the customer’s 
SSN:

a. Place the cursor in the Id: cell and select Table → Add Row → 
Add Above.

b. Enter SSN: in the left-most cell of the new row.

c. Drag an outputFormat component to the right-most cell of the new row.

d. Drag the customerSSN session variable to the new outputFormat 
component.

The resulting page should look like Figure 13-67 on page 746.

Tip: Use the Quick Edit view to change the outcome of a command button.

Tip: Remember to return the logoutLogoutResultBean in the 
doLogoutLogoutAction().
 Chapter 13. Develop Web applications using JSF and SDO 745



Figure 13-67   Finished BankJSFAccountDetails.jsp

13.4  Run the sample Web application
This section demonstrates how to run the sample Web application built using 
JSF and SDO.

13.4.1  Prerequisites to run sample Web application
In order to run the Web application you will need to have completed the following:

1. Sample code.

– Complete the sample following the procedures described in 13.3, “Develop 
a Web application using JSF and SDO” on page 684. Or do the following.

– Import the completed sample c:\6449code\jsf\BankJSF.zip Project 
Interchange file. Refer to “Import sample code from a Project Interchange 
file” on page 1398 for details.

2. Set up the sample database.
746 Rational Application Developer V6 Programming Guide



For details refer to 13.2.2, “Set up the sample database” on page 681.

3. Configure the data source.

The details can be found in 13.2.3, “Configure the data source via the 
enhanced EAR” on page 681.

13.4.2  Run the sample Web application
To run the sample Web application in the test environment, do the following:

1. Open the Web perspective Project Explorer view.

2. Expand Dynamic Web Projects → BankJSF → WebContent.

3. Right-click BankJSFLogin.jsp, and select Run → Run on Server.

4. When the Server Selection dialog appears, select Choose an existing 
server, select WebSphere Application Server v6.0, and click Finish.

The Web application Logon page should be displayed in a Web browser.

13.4.3  Verify the sample Web application
Once you have launched the application by running it on the test server, there 
are some basic steps that can be taken to verify that the Web application using 
JSF and SDO is working properly.

1. From the ITSO RedBank login page, enter 111-11-1111 in the customer SSN 
field (as seen in Figure 13-68 on page 748), and then click Enter.
 Chapter 13. Develop Web applications using JSF and SDO 747



Figure 13-68   ITSO RedBank Login page

The resulting page should look like Figure 13-69 on page 749.

Note: We noticed that under some circumstances, the JSF runtime would 
not initialize until the Enter button had been clicked. This resulted in the 
behavior that the first time the button was clicked, nothing happened. 
Retrying the login would then work as expected.
748 Rational Application Developer V6 Programming Guide



Figure 13-69   Display of customer accounts

2. From the page displayed in Figure 13-69, you can do one of the following:

– Change the fields and then click Update. This verifies write access to the 
database using SDO. For example, change Title to Sir and then click 
Update.

– You can click Logout, which will perform a logout and return to the home 
page.

– You can click the accounts to display the accounts information, resulting in 
the page displayed in Figure 13-70 on page 750.
 Chapter 13. Develop Web applications using JSF and SDO 749



Figure 13-70   Details for a selected account

3. From the page displayed in Figure 13-70, you can do one of the following:

– You can click Customer Details, which will return you to the page 
displayed in Figure 13-69 on page 749.

– You can click Logout, which will perform a logout and return you to the 
home page.
750 Rational Application Developer V6 Programming Guide



Chapter 14. Develop Web applications 
using EGL

IBM Enterprise Generation Language (EGL) is a business application centric 
procedural programming language and environment used to develop batch, text 
user interface (TUI), and Web applications. When developing an EGL Web 
application, the developer creates the EGL source files using wizards and the 
source editor. Java/J2EE source is generated from the EGL source files so that 
the application can then be deployed to WebSphere Application Server.

In this chapter we introduce the concepts, benefits, and architecture of the IBM 
Enterprise Generation Language. We have included a working example that 
describes how to develop Web applications using EGL and JSF with the tooling 
provided in IBM Rational Application Developer V6.0.

The chapter is organized into the following sections:

� Introduction to EGL
� IBM EGL tooling in Rational Developer products
� Prepare for the sample application
� Develop the Web application using EGL
� Import and run the sample Web application
� Considerations for exporting an EGL project

14
© Copyright IBM Corp. 2005. All rights reserved. 751



14.1  Introduction to EGL
Throughout this chapter, we explore the features of EGL and tooling provided in 
IBM Rational Application Developer V6.0 used to develop EGL applications.

This section is organized as follows:

� Programming paradigms
� IBM Enterprise Generation Language
� IBM EGL and Rational brand software
� IBM EGL feature enhancements
� Where to find more information on EGL

14.1.1  Programming paradigms
The objective of this section is to describe the classes of programming 
paradigms to better understand why EGL is well suited for business application 
development. 

System vs. business application programming
From a granular perspective, there are system programs and business 
application programs. Examples of systems programming include creating 
operating systems, spreadsheets, or word processors. Some examples of 
business application programming include creating an employee time and 
attendance system, customer order entry system, or a bill payment system.

Generally it can be said that business application programming involves slightly 
less software theory or invention, and more focus on applying the technology 
with the purpose of achieving a tangible business goal.

Computer programming languages that can provide for systems programming 
are general purpose in that they have fewer if any higher level constructs. For 
example, if you wanted to provide the end user with a data entry screen form and 
functions using the C language, you might have to write 2000 lines of program 
source code. When using a business application programming language, the 
same user interface might be developed in 200 lines of source code. Using the 
appropriate programming language can dramatically increase productivity.

Declarative programming languages
A declarative programming language describes what output is desired, not how 
to generate it. Examples of declarative languages include Structured Query 
Language (SQL), Extensible Markup Language (XML), and Hyper Text Markup 
Language (HTML).
752 Rational Application Developer V6 Programming Guide



Procedural programming languages
Procedure programming languages are modular in that they allow the 
programmer to group the code into modules, procedures, and/or functions. 
Examples of procedural languages include C, Fortran, Pascal, COBOL, and 
Basic.

Object-oriented programming languages
An object-oriented programming language supports the following constructs:

� Objects
� Abstraction
� Encapsulation
� Polymorphism
� Inheritance

Examples of object-oriented programming languages include Java, Smalltalk, 
C++, and C#. Object-oriented programming languages generally offer a 
language with many advanced capabilities over structured languages. These 
capabilities aid in software re-use, ease of maintenance, and numerous other 
desirable features. If there is a caveat to object-oriented programming 
languages, it is that they are considered to have a longer and more expensive 
learning curve than procedural programming languages.

Fourth generation programming languages (4GL)
Fourth generation programming languages, also known as 4GLs, are focused on 
business application programming. Using a 4GL minimizes programming skill 
requirements, development time, and total development cost.

14.1.2  IBM Enterprise Generation Language
IBM Enterprise Generation Language is a procedural language with a number of 
higher level 4GL language constructs. For example, EGL contains a two-word 
command verb that allows the developer to produce a dynamically retrieved 
array of tabular data for display, update, or other purposes.

IBM EGL provides the ability to develop a wide range of business application 
programs including applications with no user interface, a text user interface 
(TUI), or a multi-tier graphical Web interface. The IBM EGL compiler will 
generate Java source code for either Java 2 Platform Standard Edition or Java 2 
Platform Enterprise Edition, as required.

Additionally, IBM EGL supports software re-use, ease of maintenance, and other 
features normally associated with object-oriented programming languages by 
following the Model-View-Controller (MVC) design pattern.
 Chapter 14. Develop Web applications using EGL 753



In summary, EGL offers the benefits of J2EE, while providing a simple 
procedural programming environment for non-Java developers, which facilitates 
rapid Web application development.

Target audience of IBM EGL
Since IBM EGL is geared toward business application development, the 
developers tend to have a greater focus on understanding the business needs 
and less so on technology. Java 2 Platform Enterprise Edition offers many 
benefits and is extremely powerful; however, this platform requires developers to 
have extensive programming knowledge, which can be an impediment for 
developers who are new to Java. EGL provides the ease of use of a procedural 
programming language with the power of Java 2 Platform Enterprise Edition, 
which is generated by the EGL tooling.

We have listed some common types of developers that use EGL:

� Business application programmers in need of higher productivity

� Programmers needing to deploy to diverse platforms

� Business-oriented developers

– 4GL developers (Oracle Forms, Natural, CA Ideal, Mantis, Cool:Gen, 
reports)

– Visual Basic developers

– RPG developers

– COBOL/PL1 developers

– VisualAge® Generator developers

– IBM/Informix 4GL developers

History of EGL
In 1981 IBM introduced the Cross System Product (CSP). This programming 
language began the concept of a platform neutral, singular programming 
language and environment that would allow enterprise-wide application 
development and support.

Generally speaking, the objectives of a cross-platform solution are as follows:

� Abstraction: Hide the platform-specific differences from the developer and 
end user.

� Code generation: Using code generation to bridge abstract and concrete 
applications

� Platform and language neutrality.

� Rich client and debugger support.
754 Rational Application Developer V6 Programming Guide



The benefits of a cross-platform strategy include:

� Less program code to write (not platform specific)
� Reduction of training requirements
� Provide easier transition to new technologies
� Provide tested performance and code quality

In 1994 the IBM VisualAge Generator product (VisualGen®) product was 
released. VisualAge Generator V4.0 allowed for the creation of Web programs 
without knowledge of Java. Later releases of VisualAge introduced the EGL-like 
ability to output COBOL.

In 2001, the WebSphere Studio tools were introduced. In 2003, IBM acquired 
Rational software, which was known as a leader in software engineering 
technologies, methodologies, and software. In 2004, IBM officially transferred the 
WebSphere Studio development tooling to the IBM Rational division to 
consolidate software under one brand supporting the entire software 
development life cycle. During this same time period, IBM joined forces with 
many strategic companies to contribute to the Eclipse project. Today Eclipse 3.0 
is used as the base for which the IBM Rational Software Development Platform 
is built. Rational Application Developer, as well as much other Rational tooling, 
shares this common base. For more information on Eclipse and Rational 
products refer to 1.3.3, “Eclipse and IBM Rational Software Development 
Platform” on page 19.

The IBM Enterprise Generation Language emerged from many IBM 4GL 
predecessors (for example, VisualAge Generator and CSP). Today IBM EGL 
incorporates the ability to generate source output for Java 2 Platform Standard 
Edition, Java 2 Platform Enterprise Edition, COBOL, and PL1. It also includes 
migration tools for other 4GL languages.

IBM EGL value proposition
The IBM Enterprise Generation Language increases the developer’s productivity 
and value to the business in three key areas. First, EGL is an easy-to-learn 
procedural programming language. Second, EGL is a business application 
centric programming language, which allows you focus and complete business 
applications more rapidly than other languages. Third, since the Rational 
Application Developer EGL tooling can generate Java and Java 2 Platform 
Enterprise Edition source code, you can take advantage of the benefits of the 
open, scalable, and potent Java and J2EE programming environments.

When evaluating infrastructure choices for Web applications, there are two major 
competing models, Java 2 Platform Enterprise Edition and Microsoft .NET. Java 
2 Platform Enterprise Edition is the platform of choice of IBM and many 
businesses. Although Java 2 Platform Enterprise Edition does deliver on its great 
promises and is an excellent platform, it can take developers a great deal of time 
 Chapter 14. Develop Web applications using EGL 755



to master and be proficient. EGL addresses the learning curve issue of Java 2 
Platform Enterprise Edition by offering a simple procedural and business 
application centric programming model, which with the use of the EGL tooling 
provided by Rational Developer products, can be generated into Java or Java 2 
Platform Enterprise Edition resources.

As IBM EGL outputs Java/J2EE, IBM EGL acts as an abstract layer from 
changes in the Java/J2EE platform. Parts of Java/J2EE are mature. Parts of 
Java.J2EE are emerging and changing. IBM EGL offers to insulate programmers 
from this volatility.

In summary, IBM EGL provides the great productivity gains of a procedural and 
business centric programming language, with the many benefits of Java and 
Java 2 Platform Enterprise Edition.

Application architecture
IBM EGL can be used to deliver business application programs with no user 
interface (batch jobs), text user interface programs, and Web applications. In this 
section, we explore the architecture of Web applications. 

Figure 14-1 displays the architecture of a standard Web application. While Web 
applications can be delivered via a number of computing infrastructure choices, 
we focus on J2EE.

Figure 14-1   Architecture for a standard Web-based application

Pre-Client/ServerPre-Client/Server Web Based ApplicationWeb Based Application

Web
Server,
Tier-1

Web
Server,
Tier-1

App 
Server
Web

Container,
Tier-2

App 
Server
Web

Container,
Tier-2

App 
Server
EJB

Container,
Tier-3

App 
Server
EJB

Container,
Tier-3

DB,
Tier-4
DB,

Tier-4

Web
Browser
Tier-0

Web
Browser
Tier-0

ViewView
ControllerController

ModelModel

Pre-Client/ServerPre-Client/Server Web Based ApplicationWeb Based Application

Web
Server,
Tier-1

Web
Server,
Tier-1

App 
Server
Web

Container,
Tier-2

App 
Server
Web

Container,
Tier-2

App 
Server
EJB

Container,
Tier-3

App 
Server
EJB

Container,
Tier-3

DB,
Tier-4
DB,

Tier-4

Web
Browser
Tier-0

Web
Browser
Tier-0

ViewView
ControllerController

ModelModel
756 Rational Application Developer V6 Programming Guide



Using Java/J2EE, the following is held to be true:

� The end user operates from Tier-0. Tier-0 has no runtime or software 
requirements other than a Web browser and access to a network. 

� Tier-1 supports a Web server and communicates with the end user using an 
HTTP communication protocol (for example, IBM HTTP Server).

� Generally, the Web server handles requests for static resources—GIF files, 
JPEG files, static HTML, and more. The Web server maintains a list of file 
types, if you will, and is configured to forward requests it does not understand 
to another agent. This agent, also referred to as a Web server plug-in, is a 
dynamic linked library (DLL) or shared object (a “*.so” file). Generally, the 
Web server plug-in forwards requests to Tier-2.

� Tier-2 supports a Java/J2EE-compliant Web container, a 
Java/J2EE-compliant application server such as WebSphere Application 
Server.

� Tier-2 receives inbound communication requests, parses the input, and 
formulates a response. Within Java/J2EE, the primary objects being 
programmed here are Java filters, Java servlets, and Java server pages. In 
short, Java servlets handle inbound communication, and Java server pages 
handle output.

� In the Model-View-Controller design pattern, Java servlets are the controller, 
and JSPs are used for the view.

� Tier-3 supports a Java/J2EE-compliant EJB container, a Java/J2EE 
application server such as IBM WebSphere Application Server.

� As seen in Figure 14-1 on page 756, Tier-3 is used to provide an advanced 
data persistence layer; access to a relational database server such as DB2 
Universal Database.

� In the Model-View-Controller design pattern, Java beans or Enterprise Java 
Beans are models.

� Tier-4 supports the database server.

Java/J2EE is fabulous in that it is open, proven to scale, and offers numerous 
other advantages. If there is one criticism with Java/J2EE, it is the steep learning 
curve. First one must learn object-oriented programming, then Java, then 
Java/J2EE. There are numerous and distinct objects one must learn inside 
Java/J2SE and Java/J2EE—Java filters, Java servlets, Java server pages, Java 
beans, and/or Enterprise Java beans. IBM EGL is procedural and measurably 
less difficult to lean than Java/J2EE.

IBM EGL outputs Java/J2SE and Java/J2EE. For a Web application, IBM EGL 
uses one procedural language with no objects with 4GL level productivity. The 
 Chapter 14. Develop Web applications using EGL 757



interface is developed using Faces JSPs with small EGL page handlers to 
respond to page events, page loads, and action buttons.

14.1.3  IBM EGL and Rational brand software
The IBM Rational software brand includes products focused on design and 
construction, process and portfolio management, software configuration 
management, and software quality. The IBM EGL tooling and environment are 
included with the Rational Developer products on Windows and Linux platforms 
for the following editions (see Figure 14-2):

� IBM Rational Web Developer V6.0
� IBM Rational Application Developer V6.0
� IBM Rational Software Architect V6.0
� IBM WebSphere Studio Enterprise Developer
� IBM WebSphere Studio Integration Developer

Figure 14-2   IBM Rational software containing IBM EGL

Workbench
IBM’s commercially supported version of the Eclipse Workbench.

Rational Application Developer (RAD) 

• RWD plus …
• J2EE/EJB 

tools
• Code Review 

& Runtime 
Analysis

• UML Visual 
Editors

• Enhanced 
teaming -
Rational Clear 
Case LT

Development 
Studio Client for 
iSeries

• RAD plus ..
• EGL-COBOL 

generation 

WebSphere Enterprise 
Developer for Z 
(WSED)

• RAD plus ..
• Leverage and extend 

existing applications
• Web service and 

connector based 
enterprise 
transformation

• EGL-COBOL 
generation

• Traditional 
COBOL/PL1 
development

Rational Web Developer (RWD) 
• Visual composition of Pages and sites
• Faces JSP, Servlet, XML, and Web services 

tools
• Rich Java Client tools
• Rapid, simplified Development
• JSF/WDO, Wizards, Struts
• Enterprise Generation Language (EGL)
• Integrated Test Environment  

Rational Software Architect( (RSA) 
• UML Language Transforms
• Structural Review & Control
• C/C++ Development Tool

• RAD plus ..
• UML 2.0
• Pattern/Transform Authoring
• Reusable Asset Browser
758 Rational Application Developer V6 Programming Guide



To keep the Rational Developer product base install image as small as possible, 
EGL is installable as an optional component. Figure 14-5 on page 769 displays a 
picture of the IBM Enterprise Generation Language (EGL) component in the IBM 
Rational Application Developer V6.0 Installer.

IBM WebSphere Studio Enterprise Edition has additional EGL capabilities 
including the ability to output COBOL program code that can execute on the IBM 
zSeries® (zOS) and IBM iSeries platforms (OS/400®), in addition to generate 
Java source output.

IBM EGL Web applications can be deployed to J2EE-compliant application 
servers, including the WebSphere Application Server V6.0, Express, Base, and 
Network Deployment Editions, as well as IBM WebSphere Application Server 
Enterprise Edition (V5.x).

14.1.4  IBM EGL feature enhancements
At the time of completing this book, we learned of EGL feature enhancements 
that would be delivered point releases of IBM Rational Web Developer V6.x and 
IBM Rational Application Developer V6.x. Although we were not able to test 
these new features, we want to make people aware of this new functionality.

Version 6.0.01 feature enhancements
The following section describes the key feature enhancements to EGL included 
in IBM Rational Developer products V6.0.01. This list is by no means exhaustive.

� TUI Editor for EGL: This is an Eclipse-based WYSIWYG editor for the 
construction of Text User Interfaces (TUIs) for EGL. This allows EGL 
customers to define EGL TUIs that will deploy as 5250 or 3270 applications 
running against iSeries or zSeries, respectively. The EGL TUIs can also be 
run on distributed Java platforms. This is useful for VisualAge Generator 
customers migrating their TUI applications from these platforms to EGL.

� EGL runtime support for HP/UX and SUN Solaris: Support for HP/UX V11.0, 
V11.11, V11.23, and SUN Solaris V7, V8, V9.

� Debugger support for Jasper Reports: EGL provides the ability to debug an 
EGL ReportHandler, including breakpoints, variable inspection, etc.

� i4GL Migration Utility: This utility provides enhanced tooling integrated with 
IBM Rational's Software Development Platform to increase productivity of 
Informix application developers. The Informix 4GL to EGL Conversion Utility 
is available as an iFix004 iFeature with the Rational Developer V6.0 products. 
 Chapter 14. Develop Web applications using EGL 759



This release of IBM Informix 4GL to EGL Conversion Utility offers the 
following key features and benefits:

– Uniform Conversion from 4GL to EGL to retain the look-and-feel of your 
4GL program with the equivalent EGL program after conversion.

– Graphical Conversion Wizard steps you through each step of the 
conversion process.

– Command Line Conversion - Scripted or automated usage.

Informix 4GL to EGL Conversion Utility iFix004 iFeature should be installed 
via the Update Manager functionality with any of the following products:

– IBM Rational Web Developer V6.0
– IBM Rational Application Developer V6.0
– IBM Rational Software Architect V6.0
– IBM WebSphere Application Server Express V6.0

Version 6.0.1 feature enhancements
This section describes the key feature enhancements to EGL included in IBM 
Rational Developer products V6.0.1. This list is by no means exhaustive.

� EGL Parts Reference View Enhancements: 

– Part wizard: This wizard allows you to (optionally) create a part that does 
not exist. Currently a message saying the part does not exist will be 
displayed if the part is not defined. 

– Flat layout: This layout lists all the parts that are referenced in a flat table. 
We show part name, part type (icon), project, package, and file name in 
the table. The customer can toggle between viewing in the flat layout 
versus the existing hierarchical layout. 

– Search declarations and references: Allows you to search declarations 
and references to a part within a given scope. This is similar to the Java 
Development Tooling (JDT) in Eclipse.

– Find part: Ability to search the view (find capability) for a given part name. 

� EGL Language Enhancements for IMS™ and DLI Support: This includes the 
addition of part types to allow access to data stored in DL/I databases, which 
includes parts to represent PCBs and SSPs, in addition to a DL/I record.

� EGL Support for MS SQL Server: EGL supports Microsoft SQL Server 2000.

� EGL Data Item Part Source Assistant: This assistant provides a dialog that 
groups the various properties available on EGL Data items and facilitates the 
entry of appropriate values via a graphical dialog instead of the EGL Source 
editor.
760 Rational Application Developer V6 Programming Guide



14.1.5  Where to find more information on EGL
For more information on IBM EGL, refer to the following:

� IBM developerWorks EGL home page:

http://www.ibm.com/developerworks/rational/products/egl/

� Generating Java using EGL and JSF with WebSphere Studio Site Developer 
V5.1.2, white paper found at:

http://www.ibm.com/developerworks/websphere/library/techarticles/0408_baros
a/0408_barosa.html

� Transitioning: Informix 4GL to Enterprise Generation Language (EGL), 
SG24-6673, redbook; expected publish date is June 2005

14.2  IBM EGL tooling in Rational Developer products
This section highlights the IBM EGL tooling and support included in Rational 
Developer products.

14.2.1  EGL preferences
The EGL preferences allow you to define EGL development environment 
settings. 

Once you have enabled the EGL development capability from the Workbench 
preferences, you can access the EGL preferences. Select Window → 
Preferences. Click the EGL tab. From the EGL preferences you will be able to 
customize the settings highlighted in Figure 14-3 on page 762.

Important: After installing the Rational Application Developer EGL 
component, you must enable the EGL development capability in order to 
access the EGL preferences and features.

� For details on installation refer to 14.3.1, “Install the EGL component of 
Rational Application Developer” on page 768.

� For details on enabling the EGL development capability refer to 14.3.2, 
“Enable the EGL development capability” on page 771.
 Chapter 14. Develop Web applications using EGL 761

http://www.ibm.com/developerworks/rational/products/egl/
http://www.ibm.com/developerworks/websphere/library/techarticles/0408_barosa/0408_barosa.html


Figure 14-3   EGL preferences

14.2.2  EGL perspective and views
Within IBM Rational Application Developer V6, there is an EGL perspective and 
supporting views for EGL application development.

To open the EGL perspective, select Window → Open Perspective → Other. 
When the Select Perspective dialog appears, check Show all, select EGL, and 
then click OK.

EGL includes the following views, which can be accessed by selecting 
Window → Show View:

� EGL Debug Validation Errors
� EGL Generation Results
� EGL Parts Reference
� EGL SQL Errors
� EGL Validation Results
762 Rational Application Developer V6 Programming Guide



14.2.3  EGL projects
When working with EGL, it is important to understand the difference between an 
EGL Project and an EGL Web Project.

EGL Project
An EGL Project is used to develop EGL batch and text user interface (TUI) 
applications.

EGL Web Project
An EGL Web Project is a Dynamic Web Project with EGL support enabled and is 
used to develop applications with a Web interface. For the working example in 
this chapter, we demonstrate how to create an EGL Web Project in preparation 
for developing a Web application using EGL.

For details on creating an EGL Web Project, refer to 14.3.4, “Create an EGL Web 
Project” on page 773.

14.2.4  EGL wizards
IBM Rational Application Developer V6 includes several EGL wizards that can be 
used to generate the EGL source with the objective of speeding development 
tasks. For example, if you have created an EGL Web Project, right-click the 
project in the EGL perspective. Select New → EGL and then select one of the 
following EGL wizards:

� EGL Build File: The build descriptor controls the generation process. Within 
the context of Rational Application Developer, the EGL output type is 
Java/J2EE. The build descriptor is part of the EGL build file. 

� EGL Source Folder (EGLSource): The EGLSource folder is the location 
where the EGL source files will be stored within the a project.

� EGL Package: EGL packages are used to group common types of code (for 
example, data, libraries, pagehandlers).

� EGL Source File: When using the EGL Source File wizard, the EGL file is 
created with the given name in the EGLSource folder.

� Faces JSP File: When creating a Faces JSP within an EGL Web Project, an 
EGL page handler source file is created in addition to the Faces JSP Java 
source being created. 

� Program: An EGL program part is the main logical unit used to generate a 
Java program, Java wrapper, or Enterprise JavaBean session bean.

� Library: An EGL Library Part contains a set of functions, variables, and 
constructs that can be used by programs, page handlers, and other libraries.
 Chapter 14. Develop Web applications using EGL 763



� Data Table: An EGL Data Table Part associates a data structure with an array 
of initial values for the structure.

� Form Group: An EGL Form Group Part defines a collection of text and print 
forms.

� EGL Data Parts: The EGL Data Parts wizard is used to create SQL records, 
as well as data-item parts and library-based function parts, from one or more 
relational database tables or pre-existing views. The working example 
demonstrates how to use this wizard.

� EGL Data Parts and Pages: The EGL Data Parts and Pages wizard provides 
a method to create an EGL Web Project, data parts, and Faces JSPs for a 
given application in one simplified process.

14.2.5  EGL migration
IBM Rational Application Developer V6 includes EGL migration tooling for the 
following:

� EGL migration to V6.0

The EGL migration to V6.0 tooling is used to migrate previous EGL versions 
to EGL V6.0 with Interim Fix 0004.

This is enabled in through Workbench → Capabilities → EGL Developer 
→ EGL V6.0 Migration. Once the capability is enabled, you can right-click 
on the project and select Migrate → EGL V6.0 Migration to migrate the EGL 
source code to the new level.

� VisualAge Generator to EGL migration

The VisualAge Generator to EGL migration is used to migrate code 
developed in VisualAge Generator to EGL V6.0 with Interim Fix 004.

Enabled this by selecting Workbench → Capabilities → EGL Developer → 
VisualAge Generator to EGL Migration. Once the capability is enabled, you 
can right-click the project and select VisualAge Generator to EGL Migration 
to migrate to EGL.

� Informix 4GL to EGL Conversion Utility

The Informix 4GL migration is used to migrate Informix 4GL to EGL. 

Note: If you have developed an EGL application with IBM Rational 
Application Developer V6 .0 (original release), you will need to migrate the 
source code and manually copy the runtime libraries in your project after 
installing Rational Application Developer V6.0 - Interim Fix 0004. There are 
significant changes in the EGL language syntax that require that you 
migrate. 
764 Rational Application Developer V6 Programming Guide



This feature requires that the Informix 4GL to EGL Conversion Utility be 
installed using the Rational Product Updater Optional Features tab. 

Once this feature is installed, you will need to enable the Informix 4GL to 
EGL Conversion capability by selecting Window → Preferences → 
Workbench → Capabilities → EGL Developer, and checking the Informix 
4GL to EGL Conversion check box.

For details on the Informix 4GL to EGL Conversion Utility refer to the 
following:

– IBM Informix 4GL to EGL Conversion Utility User’s Guide, G251-2485, 
found in the following directory after installing the optional feature:

<rad_home>\egl\eclipse\plugins\com.ibm.etools.i4gl.conversion_6.0.0.2

– Transitioning: Informix 4GL to Enterprise Generation Language (EGL), 
SG24-6673, redbook (expected to be published June 2005)

14.2.6  EGL debug support
IBM Rational Application Developer V6 includes support for debugging 
applications developed in EGL. Like other development environments and 
languages within Rational Application Developer, EGL can be run and debugged 
on the WebSphere Application Server V6.0 or WebSphere Application Server 
V5.1 Test Environments. 

From the Server view, right-click the server started in debug mode, and select 
Enable/Disable EGL Debugging.

14.2.7  EGL Web application components
In the previous sections we highlighted the EGL tools and features included in 
Rational Application Developer used to develop an EGL application. In this 
section, we describe the components generated by the wizards that make up an 
EGL Web application. 

Figure 14-4 on page 767 displays the components of an EGL Web Project in the 
Project Explorer view. We have outlined the key resources to provide a better 
understanding of an EGL Web application.

� BankEGLEAR: The BankEGLEAR is created in the Enterprise Applications 
folder. 

� Deployment Descriptor: BankEGLEAR: We will modify the enhanced EAR 
settings to define the deployment database in a later step.

� BankEGL: The BankEGL EGL Web Project is created in the Dynamic Web 
Projects folder.
 Chapter 14. Develop Web applications using EGL 765



� EGLSource: This folder will contain the EGL resources created for the 
application. 

– data: Folder includes EGL source files containing data records.

– libraries: Folder includes EGL source files containing functions.

– pagehandlers: Folder includes EGL page handler source files used to 
define the EGL functionality within a Faces JSP. For example, the page 
handler will contain the code to be executed when a button within the 
Faces JSP, such as Logout, is clicked.

� BankEGL.eglbld: The BankEGL.eglbld is the EGL Build Descriptor that was 
generated when we created the new EGL Web Project and selected to create 
new project build descriptor(s) automatically. This file contains the 
preferences that will be used for the EGL Web Project.

� JavaSource: This folder contains Java source files that have been generated 
from the EGL source files found in the EGLSource folder.

� WebContent: This folder contains Faces JSPs with EGL references (page 
handlers, libraries, data).
766 Rational Application Developer V6 Programming Guide



Figure 14-4   Components of a sample EGL Web application

14.3  Prepare for the sample application
Prior to developing the sample application using EGL, you will need to complete 
the following tasks described in this section:

� Install the EGL component of Rational Application Developer.
� Enable the EGL development capability.
 Chapter 14. Develop Web applications using EGL 767



� Install DB2 Universal Database.
� Create an EGL Web Project.
� Set up the sample database.
� Configure EGL preferences for SQL database connection.
� Configure the data source.

14.3.1  Install the EGL component of Rational Application Developer
This section describes the configuration requirements for using IBM EGL within 
IBM Rational Application Developer V6.0.

Install IBM Enterprise Generation Language 
The IBM Enterprise Generation Language is optionally installed as a component 
of the Rational Application Developer installation, as seen in Figure 14-5 on 
page 769.

Note: A completed version of the ITSO RedBank Web application built using 
EGL can be found in the c:\6449code\egl\BankEGL.zip Project Interchange 
file. If you do not wish to create the sample yourself, but want to see it run, 
follow the procedures described in 14.5, “Import and run the sample Web 
application” on page 816.

Note: Within the context of this book, the installation of EGL requires that you 
have installed IBM Rational Application Developer V6.0 with the WebSphere 
Application Server V6.0 Integrated Test Environment.
768 Rational Application Developer V6 Programming Guide



Figure 14-5   EGL component of Rational Application Developer installation

Interim fix
At the time of writing this chapter and sample application, we used IBM Rational 
Application Developer V6.0 - Interim Fix 0004. We suggest that you install the 
latest available interim fix level.

Refer to the following URL for details on the contents and instructions for 
installing the latest IBM Rational Application Developer V6.0 - Interim Fix:

http://www.ibm.com/support/search.wss?rs=2043&tc=SSRTLW%2BSSRTLW&q=interim+fix
 Chapter 14. Develop Web applications using EGL 769

http://www.ibm.com/support/search.wss?rs=2043&tc=SSRTLW%2BSSRTLW&q=interim+fix


Verify EGL plug-ins exist
After installing the Enterprise Generation Language component, verify that the 
EGL plug-ins are configured.

1. From the menu bar of Rational Application Developer, select Help → About 
IBM Rational Software Development Platform.

2. Click Plug-in Details.

3. Scroll down the page until you see plug-ins with IBM in the Provider column.

4. Find the plug-ins that begin with EGL. You should see something like 
Figure 14-6 on page 771.

Attention: EGL applications developed with IBM Rational Application 
Developer V6.0 need to be migrated for the source code to adhere to the new 
EGL language syntax included in Interim Fix 0004 (or 0001).

1. Migrate the EGL source.

a. Enable EGL V6.0 Migration capability by selecting Window → 
Preferences. Expand Workbench and select Capabilities. Expand 
EGL Developer and check EGL V6.0 Migration. Click OK.

b. Right-click the EGLSource folder, and select EGL V6.0 Migration → 
Migrate.

2. Manually copy the new EGL runtime libraries listed in Table 14-2 on 
page 820 from a newly created EGL Web Project (contains correct level of 
runtime files) to the same folder of the project being migrated.
770 Rational Application Developer V6 Programming Guide



Figure 14-6   Enterprise Generation Language plug-ins

14.3.2  Enable the EGL development capability
The Rational Application Developer Workbench hides certain features by default. 
The EGL development capability is disabled by default.
 Chapter 14. Develop Web applications using EGL 771



To enable the EGL development capability, do the following:

1. From the menu bar, select Window → Preferences.

2. Expand Workbench → Capabilities.

3. Select and expand EGL Developer. Depending on your needs, check the 
appropriate sub features, as seen in Figure 14-7.

– Check EGL Developer - Required for EGL development
– Check EGL V6.0 Migration - Required for V6.0 to V6.0 + Interim Fix 0004

– VisualAge Generator to EGL Migration (as needed)

4. Click OK.

Note: We needed this feature to migrate an EGL Web Project created 
with the IBM Rational Application Developer V6.0, since Interim Fix 
0001 and 0004 contain an EGL version that has new EGL language 
syntax.
772 Rational Application Developer V6 Programming Guide



Figure 14-7   Enable EGL Developer capability

14.3.3  Install DB2 Universal Database
For the working example, we installed IBM DB2 Universal Database V8.2 
Express Edition included with the IBM Rational Application Developer V6.0 
packaging.

Refer to “IBM DB2 Universal Database V8.2 installation” on page 1387 for details 
on installing DB2 Universal Database.

14.3.4  Create an EGL Web Project
To create an EGL Web Project for the redbook sample application, do the 
following:

1. Open the EGL perspective.
 Chapter 14. Develop Web applications using EGL 773



a. From the menu bar, select Window → Open Perspective → Other.

b. When the Select Perspectives dialog appears, check Show All.

c. Select EGL and click OK.

2. From the menu bar, select File → New → Project.

3. When the New Project dialog appears, expand EGL, select EGL Web 
Project, and then click Next.

4. When the New EGL Web Project dialog appears, do the following (as seen in 
Figure 14-8 on page 775), and then click Next:

– Name: BankEGL

– Build Descriptor Options: Select Create new project build descriptor(s) 
automatically.

– JNDI name for SQL connection: jdbc/BankDS

This value should match the value entered in 14.3.6, “Configure EGL 
preferences for SQL database connection” on page 779.

– Click Show Advanced.

If other EAR projects exist prior to creating the EGL Web Project, you may 
need to specify the EAR project by clicking New. In our example, no other 
EAR projects existed; thus, the wizard supplied BankEGLEAR as the EAR 
project name.

Note: Should you need to change the JNDI name after creating the 
EGL Web Project, you will need to also modify the sqlJNDIName in the 
EGL build descriptor (for example, EGLSource\BankEGL.eglbld).
774 Rational Application Developer V6 Programming Guide



Figure 14-8   New EGL Web Project

5. When the New EGL Web Project - Features dialog appears, notice that Add 
EGL Support and JSP Standard Tag Library are checked, as seen in 
Figure 14-9 on page 776. Click Finish.

Note: An EGL Web Project is a Dynamic Web Project with Add EGL Support 
and JSP Standard Tag Library enabled.
 Chapter 14. Develop Web applications using EGL 775



Figure 14-9   New EGL Web Project - Features

Add EGL support to an existing Dynamic Web Project
You can also add EGL support to an existing Dynamic Web Project by doing the 
following:

1. Open the Web perspective Project Explorer view.

2. Right-click the Dynamic Web Project that you wish to add EGL support to and 
select Properties.

3. In the Properties dialog select Web Project Features.

4. From the Available Web Project Features select Add EGL Support and JSP 
Standard Tag Library.

5. Click the Apply button.
776 Rational Application Developer V6 Programming Guide



14.3.5  Set up the sample database
This section provides instructions for deploying the BANK sample database and 
populating the database with sample data. For example, we chose to use IBM 
DB2 Universal Database V8.2 Express Edition.

To create the database, create the connection, and create and populate the 
tables for the BANK sample from within Rational Application Developer, do the 
following:

1. Create the BANK database in DB2 Universal Database.

For details refer to “Create DB2 UDB database via a DB2 command window” 
on page 346.

2. Create the database connection from within Rational Application Developer to 
the BANK database.

For details refer to “Create a database connection” on page 347.

3. Create the BANK database tables from within Rational Application Developer.

For details refer to “Create DB2 UDB database tables via a DB2 command 
window” on page 351.

4. Populate the BANK database tables with sample data from within Rational 
Application Developer.

For details refer to “Populate the tables via a DB2 UDB command window” on 
page 354.

After creating the BANK database, tables, and loading the sample data, view the 
database tables by opening the Database Explorer in the Data perspective, as 
seen in Figure 14-10 on page 778.

Note: When using DB2 or Oracle you will have to provide the user 
information by providing the user ID and password. Also, you may need to 
update the class location. Once the user ID and password have been 
entered, you can click Test Connection.
 Chapter 14. Develop Web applications using EGL 777



Figure 14-10   BANK database schema in the Database Explorer view

Right-click the ITSO.CUSTOMER table, and select Sample contents. You 
should see results like Figure 14-11 in the DB Output view.

Figure 14-11   ITSO.CUSTOMER table sample data in DB Output view
778 Rational Application Developer V6 Programming Guide



14.3.6  Configure EGL preferences for SQL database connection
The EGL wizards rely upon the SQL database connection being configured. To 
configure the EGL preferences with the appropriate DB2 SQL database 
connection, do the following:

1. Select Window → Preferences.

2. When the Preferences dialog appears, expand EGL and select SQL 
Database Connection.

3. When the SQL Database Connection dialog appears, enter the following (as 
seen in Figure 14-12 on page 780), and then click OK:

– Connection URL: jdbc:db2:BANK

– Database: BANK

– Database vendor type: Select DB2 Universal Database Express V8.2.

– JDBC driver: Select IBM DB2 App Driver.

– JDBC driver class: COM.ibm.db2.jdbc.app.DB2Driver

– Class location: C:\Program Files\IBM\SQLLIB\java\db2java.zip

– Connection JNDI name: jdbc/BankDS

Note: This value should match the value entered when creating the 
EGL Web Project in 14.3.4, “Create an EGL Web Project” on page 773.
 Chapter 14. Develop Web applications using EGL 779



Figure 14-12   EGL preferences

14.3.7  Configure the data source
There are a couple methods that can be used to configure the datasource, 
including using the WebSphere Administrative Console or using the WebSphere 
Enhanced EAR, which stores the configuration in the deployment descriptor and 
is deployed with the application. 

This section describes how to configure the datasource using the WebSphere 
Enhanced EAR capabilities. The enhanced EAR is configured in the Deployment 
tab of the EAR deployment descriptor.
780 Rational Application Developer V6 Programming Guide



The procedure found in this section considers two scenarios for using the 
enhanced EAR:

� If you choose to import the complete sample code, you will only need to verify 
that the value of the databaseName property in the deployment descriptor 
matches the location of your database. 

� If you are going to complete the working example Web application found in 
this chapter, you will need to create the JDBC provider and datasource, and 
update the databaseName property.

Configure authentication
To configure the authentication settings in the enterprise application deployment 
descriptor where the enhanced EAR settings are defined, do the following:

1. Open the Web perspective Project Explorer view.

2. Expand Enterprise Applications → BankEGLEAR.

3. Double-click Deployment Descriptor : BankEGLEAR to open the file in the 
Deployment Descriptor Editor.

4. Click the Deployment tab.

5. Click Authentication (lower left of page).

6. Click Add.

7. When the Add JASS Authentication Entry dialog appears, enter the following 
and then click OK:

– Alias: dbuser
– User ID: db2admin
– Password: <your_db2admin_password>

Configure a new JDBC provider
To create a new JDBC provider for DB2 Universal Database, do the following:

1. From the Deployment tab of the Application Deployment Descriptor, click Add 
under the JDBC provider list.

2. When the Create a JDBC Provider dialog appears, select IBM DB2 as the 
Database type, select DB2 Universal Database JDBC Driver Provider (XA) 
as the JDBC provider type, and then click Next.

3. Enter DB2 Universal JDBC Driver Provider (XA) in the Name field (as seen 
in Figure 14-13 on page 782), and then click Finish.

Note: For more information on configuring data sources and general 
deployment issues, refer to Chapter 23, “Deploy enterprise applications” on 
page 1189.
 Chapter 14. Develop Web applications using EGL 781



Figure 14-13   Add new JDBC provider

Configure the data source
To configure a new data source using the enhanced EAR capability in the 
deployment descriptor, do the following:

1. From the Deployment tab of the Application Deployment Descriptor, click the 
JDBC provider created in the previous step.

2. Click Add next to data source. 

3. When the Create a Data Source dialog appears, select DB2 Universal 
Database JDBC Driver Provider (XA) under the JDBC provider, select 
Version 5.0 data source, and then click Next.

Note: Our example only requires the db2jcc.jar and db2jcc_license_cu.jar.
782 Rational Application Developer V6 Programming Guide



4. When the Create a Data Source dialog appears, enter the following and click 
Finish:

– Name: BankDS
– JNDI name: jdbc/BankDS
– Component managed authentication alias: Select dbuser.

Configure the databaseName property
To configure the databaseName in the new data source using the enhanced 
EAR capability in the deployment descriptor to define the location of the 
database for your environment, do the following:

1. Select the data source created in the previous section.

2. Select the databaseName property under the Resource properties.

3. Click Edit next to Resource properties to change the value for the 
databaseName.

4. When the Edit a resource property dialog appears, enter BANK in the Value 
field and then click OK. 

5. Save the Application Deployment Descriptor.

14.3.8  Configure the DB2 JDBC class path environment variables
The JDBC provider for DB2 Universal Database, which we configured in 
“Configure a new JDBC provider” on page 781, depends upon environment 
variables being defined. We chose to update the environment variable values for 
the WebSphere Application Server environment in which the application will be 
deployed via the WebSphere Administrative Console.

Table 14-1   DB2 Universal Database JDBC driver classpath environment variables

To configure the DB2 Universal Database JDBC driver classpath environment 
variables listed in Table 14-1, do the following:

1. Open the Web perspective.

2. From the Servers view, right-click the WebSphere Application Server v6.0 
test server, and select Start.

Note: The user is configured in “Configure authentication” on page 781.

Variable name Path value

DB2UNIVERSAL_JDBC_DRIVER_PATH C:\Program Files\IBM\SQLLIB\java

UNIVERSAL_JDBC_DRIVER_PATH ${WAS_INSTALL_ROOT}/universalDriver/lib
 Chapter 14. Develop Web applications using EGL 783



3. After the server is started, right-click the WebSphere Application Server V6.0 
test server, and select Run administrative console.

4. When prompted for a user ID, you can enter an ID or simply click Log in since 
WebSphere security is not enabled.

5. Expand Environment.

6. Click WebSphere Variables.

7. Ensure that the variables listed in Table 14-1 on page 783 are configured 
correctly for your environment at the node level. If they are not configured, 
enter the appropriate path values. Click OK.

8. Click Save, and then Save to Master.

9. Click Logout.

10.Restart the WebSphere Application Server V6.0 test server.

14.4  Develop the Web application using EGL
This section provides a working example describing how to develop a Web 
application using EGL. The application will use EGL for database access 
(records, libraries) and Faces JSPs with EGL page handlers for the user 
interface.

This section includes the following tasks:

� Create the EGL data parts.
� Create and customize a page template.
� Create the Faces JSPs using the Web Diagram tool.
� Add EGL components to the Faces JSPs.

When developing a Web application using EGL, there are several options that 
can be used to get started, including:

� EGL Data Parts and Pages wizard.

When using the EGL Data Parts and Pages wizard, you will be guided 
through a sequence of dialogs that result in creating an EGL Web Project.

Within minutes you will have a simple working application, customized for 
your database schema, ready for you to further customize. 

The down side to this approach is that you have less control of what is being 
created. Furthermore, the wizard can only be used to initially create a project, 
not update the contents of an existing project.

� Create EGL Web Project, Data Parts, and Faces JSPs individually.
784 Rational Application Developer V6 Programming Guide



When using this approach, we will still take advantage of the EGL wizards 
and tooling provided, with more control with what resources are created. 

In our working example, we chose this approach. We will first create an EGL 
Web Project. Then we will create the EGL source for database access using 
the EGL Data Parts wizard. Finally we will create the Faces JSPs and EGL 
page handlers. We will then generate the Java resources and test the Web 
application on the WebSphere Application Server V6.0 test server.

14.4.1  Create the EGL data parts
There are a few methods of creating EGL data parts. In our example, we chose 
to use the EGL Data Parts wizard to create the EGL source files that define an 
SQL record type and reusable functions associated for the record type.

This section is organized as follows:

� Create records and libraries via the EGL Data Parts wizard.
� Summary of code created by the EGL Data Parts wizard.
� Generate the Java code for the EGL file.
� Create the Customer to Account relationship.
� Modify the SQL in the EGL source code.

Create records and libraries via the EGL Data Parts wizard
To create the records and libraries for customers and account, using the EGL 
Data Parts wizard, do the following:

1. Open the EGL perspective, Project Explorer view.

2. Expand Dynamic Web Projects → BankEGL.

3. Right-click the EGLSource folder, and select New → EGL Data Parts.

4. When the Generate EGL Components dialog appears, do the following:

a. EGL project name: Select BankEGL.

b. Database connection: Click Add.
 Chapter 14. Develop Web applications using EGL 785



c. When the Establish a connection to a database dialog appears, select 
Choose a DB2 alias, enter EGL Bank Connection in the Connection name 
field, and then click Next.

d. When the Specify connection parameters dialog appears, do the following:

i. For the JDBC driver, select IBM DB2 Universal.

ii. For the Alias, select BANK.

iii. Click Test Connection to verify the settings. You should see the 
message Connection to BANK is successful. Click OK. 

iv. Click Finish.

e. When you return to the Generate EGL Components dialog, select 
ACCOUNT and CUSTOMERS under the Select your data column, and 
click the > to add to the column on the right of the dialog. When done the 
dialog should look like Figure 14-14 on page 787. Click Next.

Note: At the time of writing, when using the EGL Data Parts wizard, 
only database connections for DB2 aliases worked. If a database 
connection was created with the Database Manager and JDBC driver 
option, you will not be able to use the database connection in the EGL 
Data Parts wizard (once selected, the wizard will not allow you to click 
Next).

Additionally, we found that once a database connection is used by the 
EGL Data Parts wizard, it cannot be used again to create a new record 
with the EGL Data Parts wizard.

You can manage database connections in the Database Explorer view 
of the Data perspective.
786 Rational Application Developer V6 Programming Guide



Figure 14-14   New EGL Data Parts - Generate EGL Components

5. When the Define the Fields dialog appears, as seen in Figure 14-15 on 
page 788, we accepted the default settings and clicked Next.

Note: The “Record and library in same file” check box seen in Figure 14-14 
on page 787 allows us to keep the record and library content in the same 
file. In our example, we chose to keep them separate (default). 
 Chapter 14. Develop Web applications using EGL 787



Figure 14-15   New EGL Data Parts - Define the Fields

6. When the Generate EGL Data Parts Summary dialog appears, as seen in 
Figure 14-16 on page 789, we accepted the default settings and clicked 
Finish.
788 Rational Application Developer V6 Programming Guide



Figure 14-16   New EGL Data Parts - Summary

7. You should see a dialog with the message Successful Generation. Click OK.

Summary of code created by the EGL Data Parts wizard
The objective of this section is to provide a basic understanding of what was 
created by the EGL Data Parts wizard. 

Figure 14-17 on page 790 displays the EGL and Java source files generated by 
the EGL Data Parts wizard for the sample. Notice there are data and libraries 
package folders under the EGLSource folder. Also, notice there is a JavaSource 
folder that has corresponding packages for data and libraries. When the EGL 
Generate feature is executed on the EGL source, the Java source will be 
generated in the appropriate JavaSource sub folder.
 Chapter 14. Develop Web applications using EGL 789



Figure 14-17   EGL and Java source files generated by the EGL Data Parts wizard
790 Rational Application Developer V6 Programming Guide



The data folder in the EGLSource contains EGL source files with record 
definitions for the database schema. For example, the CustomerRecord.egl file 
contains the record definition for the Customer table, as seen in Example 14-1.

Example 14-1   Sample CustomerRecord.egl

package data;

Record Customer type SQLRecord 

{ tableNames = [["ITSO.CUSTOMER"]], 
keyitems = ["ssn"] }

title TITLE {column = "TITLE", sqlVariableLen = yes, maxlen = 250, isNullable = yes};
firstname FIRSTNAME {column = "FIRSTNAME", sqlVariableLen = yes, maxlen = 250, isNullable = 

yes};
lastname LASTNAME {column = "LASTNAME", sqlVariableLen = yes, maxlen = 250, isNullable = 

yes};
ssn SSN {column = "SSN", sqlVariableLen = yes, maxlen = 250};

// used in arrays: index of the row
indexInArray int {persistent = no};

end

// define the data to store in the session for a detail of Customer
 Record CustomerKeys type BasicRecord
  ssn SSN;
end

// define the data to store in the session for a list of Customer
 Record CustomerSessionListData type BasicRecord
// index of the first item of the current page

indexOfCurrentPage int;
end

The record definition in Example 14-1 uses the type names SSN, TITLE, 
FIRSTNAME, and LASTNAME to define the types for the fields of the record. 
These are not built-in types, but defined in the file DataItems.egl, placed in the 
same folder as the record definition. Example 14-2 displays the contents of the 
DataItems.egl file. In addition to the type definitions for the Customer record, 
Example 14-2 also contains type definitions for the fields ID and BALANCE from 
the Account record.

Example 14-2   Sample DataItems.egl

package data;

DataItem BALANCE int {displayName = "BALANCE"} end
 Chapter 14. Develop Web applications using EGL 791



DataItem ID string {displayName = "ID"} end
DataItem SSN string {displayName = "SSN"} end
DataItem LASTNAME string {displayName = "LASTNAME"} end
DataItem FIRSTNAME string {displayName = "FIRSTNAME"} end
DataItem TITLE string {displayName = "TITLE"} end

To access the record, functions were created in the CustomerLibrary.egl file 
found in the libraries directory. Example 14-3 lists the contents of the 
CustomerLibrary.egl containing functions to manipulate the Customer record.

Example 14-3   Sample CustomerLibrary.egl

package libraries;
import data.StatusRecord;
import data.Customer;
import data.CustomerKeys;

Library CustomerLibrary

/* Pass ssn in via Customer argument. 
Customer is returned if found. Status is returned with success or failure */
Function readCustomer (customer Customer, sqlStatusData StatusRecord)

try
get customer;
sqlStatusData.sqlStatus = 0;

onException
sqlStatusData.sqlStatus = sysvar.sqlCode;
sqlStatusData.description = syslib.currentException.description;

end
end

/* Pass ssn in via CustomerKeys argument. 
Customer is returned if found. Status is returned with success or failure */
Function readCustomerFromKeyRecord (customer Customer, CustomerKeys customerKeys, 

sqlStatusData StatusRecord)

customer.ssn = customerKeys.ssn;
readCustomer (customer, sqlStatusData);

end

/* Pass Customer to be created argument.
Status is returned with success or failure */
Function createCustomer (customer Customer, sqlStatusData StatusRecord)

try
add customer;
sqlStatusData.sqlStatus = 0;

onException
792 Rational Application Developer V6 Programming Guide



sqlStatusData.sqlStatus = sysvar.sqlCode;
sqlStatusData.description = syslib.currentException.description;

end
end

/* Pass Customer to be deleted argument.
Status is returned with success or failure */
Function deleteCustomer (customer Customer, sqlStatusData StatusRecord)

try
execute #sql{ 
 DELETE FROM ITSO.CUSTOMER WHERE CUSTOMER.SSN = :customer.ssn
};
sqlStatusData.sqlStatus = 0;

onException
sqlStatusData.sqlStatus = sysvar.sqlCode;
sqlStatusData.description = syslib.currentException.description;

end
end

/* Pass Customer to be updated argument.
Status is returned with success or failure */
Function updateCustomer (customer Customer, sqlStatusData StatusRecord)

try
execute #sql{ 
 UPDATE ITSO.CUSTOMER SET TITLE = :customer.title, FIRSTNAME = :customer.firstname,
  LASTNAME = :customer.lastname WHERE CUSTOMER.SSN = :customer.ssn
};
sqlStatusData.sqlStatus = 0;

onException
sqlStatusData.sqlStatus = sysvar.sqlCode;
sqlStatusData.description = syslib.currentException.description;

end
end

/* Pass Customer[] dynamic array to be returned with data.
Status is returned with success or failure */
Function selectCustomer (customer Customer[], sqlStatusData StatusRecord)

try
get customer;
sqlStatusData.sqlStatus = 0;

onException
sqlStatusData.sqlStatus = sysvar.sqlCode;
sqlStatusData.description = syslib.currentException.description;

end
end
 Chapter 14. Develop Web applications using EGL 793



end

Generate the Java code for the EGL file
In our example, the Java source code was generated from the EGL source files 
automatically by the EGL Data Parts wizard. After modifying the EGL source 
files, the files are typically generated automatically. On occasion, you will need to 
run the Generate feature manually to generate the corresponding Java source. 

Generate Java from an individual EGL library source file
To generate Java from an individual EGL library source file, do the following:

1. Open the EGL perspective Project Explorer view.

2. Expand Dynamic Web Projects → BankEGL → EGLSource.

3. Right-click the EGL library source file, and select Generate.

Alternatively, in the Source Editor view of an EGL source file, right-click and 
then select Generate (or press CTRL+G).

Generate all EGL files in a EGL Web Project
To generate EGL files in a EGL Web Project, do the following:

1. From the EGL perspective, expand Dynamic Web Projects.

2. Right-click BankEGL, and select Generate With Wizard.

3. When the Generate wizard appears, click Select All, and click Next.

4. Select Use one build descriptor for all parts, select 
BankEGLWebBuildOptions <BankEGL/EGLSource/BankEGL.eglbld> 
from the drop-down list, and then click Finish.

Create the Customer to Account relationship
In our example, we needed to create an EGL record that joins the Accounts and 
Accounts_Customers tables, so that we can retrieve all account information for a 
customer. At the time of writing, the EGL tooling did not provide this capability; 
therefore, we needed to add the EGL source manually.

Attention: Java source for EGL data (records) source files are only generated 
when a EGL library source file that references the record is being generated. 

Although it is possible to select an EGL record source file and run the 
Generate task, it will not generate Java source. You must run the Generate 
task on an EGL library source file that references the record.
794 Rational Application Developer V6 Programming Guide



Create the Customer_AccountsRecord.egl
To create the Customer_AccountsRecord.egl, do the following:

1. Open the EGL perspective.

2. Expand Dynamic Web Projects → BankEGL → EGLSource.

3. Right-click data, and select New → EGL Source File.

4. When the New EGL Source file dialog appears, enter 
Customer_AccountsRecord in the EGL source file name field, and click Finish.

5. Open the Customer_AccountsRecord.egl file.

6. Enter the contents of Example 14-4 into the Customer_AccountsRecord.egl 
file.

Example 14-4   Add contents to Customer_AccountsRecord.egl

package data;

Record Customer_Accounts type SQLRecord { 
tableNames = [["ITSO.ACCOUNTS_CUSTOMERS", "AC"], ["ITSO.ACCOUNT", "A"]], 
defaultSelectCondition = #sqlCondition{ 

AC.ACCOUNTS_ID=A.ID 
and AC.CUSTOMERS_SSN=:customers_ssn }}

end

7. Place the cursor inside the record, and press Ctrl+Shift+R to retrieve the 
record data. 

After running the SQL retrieve, the Customer_AccountsRecord.egl file should 
look similar to Example 14-5 (SQL formatted for readability).

Example 14-5   After SQL retrieve - Customer_AccountsRecord.egl

package data;

Record Customer_Accounts type SQLRecord { 
tableNames = [["ITSO.ACCOUNTS_CUSTOMERS", "AC"], ["ITSO.ACCOUNT", "A"]], 
defaultSelectCondition = #sqlCondition{ 

AC.ACCOUNTS_ID=A.ID 
and AC.CUSTOMERS_SSN=:customers_ssn }, 

keyItems=["ACCOUNTS_ID", "CUSTOMERS_SSN", "ID"]}

Note: The code in Example 14-4 can be found in 
c:\6449code\egl\Customer_AccountsRecordSnippet.txt.

Note: The code in Example 14-5 can be found in 
c:\6449code\egl\Customer_AccountsRecord.egl.
 Chapter 14. Develop Web applications using EGL 795



ACCOUNTS_ID string {
column="AC.ACCOUNTS_ID", isReadOnly=yes, 
sqlVariableLen=yes, maxLen=250};

CUSTOMERS_SSN string {
column="AC.CUSTOMERS_SSN", isReadOnly=yes, 
sqlVariableLen=yes, maxLen=250};

BALANCE int {
column="A.BALANCE", isReadOnly=yes};

ID string {
column="A.ID", isReadOnly=yes, 
sqlVariableLen=yes, maxLen=250};

end

8. Save the Customer_AccountsRecord.egl file.

Create the Customer_AccountsLibrary.egl
To create the Customer_AccountsLibrary.egl, do the following:

1. Open the EGL perspective.

2. Expand Dynamic Web Projects → BankEGL → EGLSource.

3. Right-click library, and select New → EGL Source File.

4. When the New EGL Source file dialog appears, enter 
Customer_AccountsLibrary in the EGL source file name field, and click 
Finish.

5. Open the Customer_AccountsLibrary.egl file.

6. Enter the contents of Example 14-6 into the Customers_AccountsLibrary.egl 
file.

Example 14-6   Add contents to Customer_AccountsLibrary.egl

package libraries;
import data.StatusRecord;
import data.Customer;
import data.Customer_Accounts;
import data.Customer_AccountsKeys;

Library Customer_AccountsLibrary

Function getCustomerAccountsByCustomer(
customer Customer, 

Note: The contents of Example 14-4 can be found in the 
c:\6449code\egl\Customer_AccountsLibrary.egl.
796 Rational Application Developer V6 Programming Guide



customerAccounts Customer_Accounts[], 
sqlStatusData StatusRecord) 

returns (int)

customers_ssn char(250);

customers_ssn = Customer.ssn;

try
get customerAccounts usingkeys customers_ssn;
sqlStatusData.sqlStatus = 0;

onException
sqlStatusData.sqlStatus = sysvar.sqlCode;
sqlStatusData.description = syslib.currentException.description;

end
end

end

7. Save the Customers_AccountsLibrary.egl file.

8. Generate the Java source from the EGL library.

For details refer to “Generate Java from an individual EGL library source file” 
on page 794.

Modify the SQL in the EGL source code
At the time of writing, we found that the EGL Data Parts wizard prefixed table 
names with the schema name in the FROM clause; however, the wizard prefixed 
the column names with the table name, without the schema name. This results in 
an invalid SQL statement, which requires that you modify the code manually.

While testing our sample application, we found that our database update function 
for customer data did not work properly due to this issue. We have included a 
sample of the generated and modified source to resolve this issue:

� Generated EGL library source for deleting a customer (formatted for 
readability):

DELETE FROM ITSO.CUSTOMER 
WHERE CUSTOMER.SSN = :customer.ssn

Note: While creating our sample, we only tested with the following software:

� IBM Rational Application Developer V6.0 with Interim Fix 0004

� IBM DB2 Universal Database V8.2 Express Edition (included with Rational 
Application Developer)

We were not able to verify if this issue applies to other database platforms.
 Chapter 14. Develop Web applications using EGL 797



� Corrected EGL library source for deleting a customer:

DELETE FROM ITSO.CUSTOMER 
WHERE ITSO.CUSTOMER.SSN = :customer.ssn

� Generated EGL library source for updating a customer (formatted for 
readability):

UPDATE ITSO.CUSTOMER 
SET TITLE = :customer.title, 

FIRSTNAME = :customer.firstname, 
LASTNAME = :customer.lastname

WHERE CUSTOMER.SSN = :customer.ssn

� Corrected EGL library source for updating a customer:

UPDATE ITSO.CUSTOMER 
SET TITLE = :customer.title, 

FIRSTNAME = :customer.firstname, 
LASTNAME = :customer.lastname

WHERE ITSO.CUSTOMER.SSN = :customer.ssn

To work around this issue for our sample application, we modified the EGL 
library source file generated by the EGL Data Parts wizard to include the schema 
name.

1. Open the Web perspective.

2. Expand the Dynamic Web Projects → BankEGL → EGLSource → 
libraries.

3. Double-click CustomerLibrary.egl to open in the source editor.

4. Modify the generated SQL code to match the corrected SQL that includes the 
schema name (ITSO) as follows:

– Generated:

UPDATE ITSO.CUSTOMER 
SET TITLE = :customer.title, 

FIRSTNAME = :customer.firstname, 
LASTNAME = :customer.lastname

WHERE CUSTOMER.SSN = :customer.ssn

– Corrected:

UPDATE ITSO.CUSTOMER 
SET TITLE = :customer.title, 

FIRSTNAME = :customer.firstname, 
LASTNAME = :customer.lastname

WHERE ITSO.CUSTOMER.SSN = :customer.ssn

5. Save the CustomerLibrary.egl file.

6. Generate the CustomerLibrary.egl by pressing Ctrl+G.
798 Rational Application Developer V6 Programming Guide



14.4.2  Create and customize a page template
This section describes how to create and customize a page template. We will 
use the page template in a later section to provide a common look and feel for 
the JSF pages.

Create a page template
To create a page template containing JSF components, do the following:

1. Open the Web perspective Project Explorer view.

2. Expand Dynamic Web Projects.

3. Right-click the BankEGL project, and select New → Page Template File 
from the context menu.

4. When the New Page Template wizard appears, enter the following and then 
click Finish:

– Folder: /BankEGL/WebContent
– File name: BankEGLTemplate
– Model: Select Template containing Faces Components.

5. When prompted with the message A page template must contain at least 
one Content Area which is later filled in by the pages that use the 
template, click OK. We will add a content area as part of our page template 
customization.

Customize the page template
Now that you have created a page template, it is likely that you will want to 
customize the page. This section demonstrates how to make the following 
common customizations to a page template:

� Customize the logo image and title of the page template.
� Customize the style of the page template.
� Add the content area to the page template.

Customize the logo image and title of the page template
To customize the page template to include the ITSO logo image and ITSO 
RedBank title, do the following:

1. Open the Web perspective.

Note: For more detailed information on creating and customizing page 
templates used by JSF pages, refer to the following:

� 13.3.1, “Create a page template” on page 684
� 13.3.2, “Useful views for editing page template files” on page 687
� 13.3.3, “Customize the page template” on page 695
 Chapter 14. Develop Web applications using EGL 799



2. Import the itso_logo.gif image.

a. Expand Dynamic Web Projects → BankEGL → WebContent → theme.

b. Right-click the theme folder, and select Import.

c. Select File System and click Next.

d. Enter c:\6449code\web in the From directory, check itso_logo.gif, and 
then click Finish.

3. Expand Dynamic Web Projects → BankEGL → WebContent.

4. Double-click BankEGLTemplate.jtpl to open the file.

5. Click the Design tab.

6. Select the text Place content here, right-click, and select Delete.

7. From the Palettes view, expand Faces Components.

8. Select the Panel - Group Box  and drag it onto the page.

9. When the Select Type dialog appears, select List and then click OK.

10.You should now see a box on your page with the text box1: Drag and Drop 
Items from the palette to this area to populate this region. From the 
Faces Components, select Image  and drag it to the panel. 

11.Update the image values in the Properties view.

a. Select the image on the page to highlight the image.

b. In the Properties view, enter headerImage in the Id field.

c. Click the folder icon next to File and select Import. Enter the path to the 
image and click Open. In our example, we entered 
/WebContent/themes/itso_logo.gif to import the image.

d. You will notice that the absolute reference has been entered. We need to 
make it a relative reference by removing the /BankEGL/ from the File field. 
After making the change, it will be theme/itso_logo.gif without any leading 
slash.

12.From the Faces Components palette, select Output  and drag it 
under the image.

13.In the Properties view enter ITSO RedBank into the Value field.

14.Select the Output box (ITSO RedBank) and drag it to the right of the image.

Customize the style of the page template
To customize the style of the page template, do the following:

1. Select the Output text box on the page.

2. In the Properties view, click the button next to the Style: Props: field. 
800 Rational Application Developer V6 Programming Guide



3. Change the Size field value to 18. 

4. Select Arial for the Font and click Add. 

5. Select sans-serif (rule of thumb) for the Font and click Add.

6. Click OK.

Add the content area to the page template
To add the required content area to the page template, do the following:

1. Right-click under the Output field and from the context menu select Insert → 
Horizontal Rule.

2. Expand Page Template in the Palette view.

3. From the Page Template, select the Content Area  and drag it 
under the horizontal rule. 

4. When the Insert Content Area for Page Template dialog appears, accept the 
default name (bodyarea) and click OK.

5. Right-click under the content area and from the context menu select Insert → 
Horizontal Rule.

6. Save the page template file.

The customized page template file should look similar to Figure 14-18.

Figure 14-18   Customized page template - BankEGLTemplate.jtpl
 Chapter 14. Develop Web applications using EGL 801



14.4.3  Create the Faces JSPs using the Web Diagram tool
This section demonstrates how to create the Faces JSPs using the Web Diagram 
tool, including the following tasks:

� Create a Web diagram.
� Create a Web page using the Web Diagram tool.
� Create a Faces JSP file.
� Create connections between Faces JSPs.

The sample application consists of the following pages:

� Login page (Login.jsp): Validate the entered CustomerSSN. If it is valid it will 
then display the Customer details for the entered customer.

� Customer account details page (ListAccounts.jsp): Display the customer’s 
account details.

Create a Web diagram
By default, and EGL Web Project does not include a Web diagram like other Web 
Projects. To add a Web diagram to the EGL Web Project, do the following:

1. Open the Web perspective.

2. Expand Dynamic Web Projects.

3. Right-click BankEGL, and select New → Other.

4. Expand Web, select Web Diagram, and click Next.

5. When the Web Diagram dialog appears, enter BankEGL Web Diagram in the 
File name field, and then click Finish.

Create a Web page using the Web Diagram tool
To create a page using the Web Diagram tool, do the following:

1. Open the Web perspective Project Explorer view.

2. Expand Dynamic Web Projects → BankEGL.

3. Double-click Web Diagram to open.

4. When the Web diagram appears in the Web Diagram Editor, select Web 
Page  from the Web Parts palette and drag it onto the page.

Note: Although at a file system level the Web diagram is named Bank EGL 
Web Diagram.gph, within the Project Explorer it will be named Web diagram if 
there is only one diagram. After creating more than one Web diagram, they 
will be displayed with the actual file name in a folder called Web diagrams.
802 Rational Application Developer V6 Programming Guide



5. In the Properties view change Web Page Path value to /Login.jsp, and 
change the description to The login page.

6. Repeat the process to create a Web page for /ListAccounts.jsp.

Create a Faces JSP file
To create the Faces JSP file from a page template using the Web diagram, do 
the following:

1. Double-click the Login.jsp in the Web diagram.

2. When the New Faces JSP File wizard appears, enter the following and then 
click Next:

– Folder: /BankEGL/WebContent

– File name: Login.jsp

– Options: Check Create from page template.

3. When the Page Template File Selection page appears, select User-defined 
page template, select BankEGLTemplate.jtpl, and then click Finish.

4. The new Faces JSP file will be loaded into the Page Designer. At this point, 
the newly create JSF page should look like the page template.

5. Double-click Web Diagram to repeat the process to create the 
ListAccounts.jsf Faces JSPs using the BankEGLTemplate.jtpl page template.

6. Save the Web diagram.

Now that the pages have been realized, the Web page icons should have 
color and the title icons displayed in bold.

Figure 14-19 on page 804 displays the EGL page handlers and corresponding 
Faces JSPs in the Project Explorer view. The EGL page handlers are created 
automatically when the Faces JSPs are created (realized in the Web diagram) 
within the EGL Web Project. 

Note: Now that we have created a Web page in the Web Diagram tool, you 
may notice that the BankJSFLogin.jsp icon has a gray-blue tint. The 
reason for this is that it is not linked to an actual JSP file. We will use this 
diagram to create the actual JSP file that this icon will link to in a later step.

Note: If you have not already created the page template, refer to 14.4.2, 
“Create and customize a page template” on page 799, to create one.
 Chapter 14. Develop Web applications using EGL 803



The EGL page handlers are used to define the EGL functionality within a Faces 
JSP. For example, the page handler will contain the code to be executed when a 
button within the Faces JSP, such as Logout, is clicked.

Figure 14-19   Creation of EGL pagehandlers when creating JSF page

Create connections between Faces JSPs
Now that the pages have been created, we can create connections between the 
pages.

To add connections between pages, do the following:

1. Create a connection from Login.jsp to ListAccounts.jsp.

a. Click Connection  from the Palette. Click Login.jsp, and 
then click ListAccounts.jsp. 
804 Rational Application Developer V6 Programming Guide



b. When the Choose a Connection dialog appears, select Faces 
Outcome → ListAccounts (defaults to target name), as seen in 
Figure 14-20, and then click OK.

Figure 14-20   Choose a Connection dialog

2. Create a connection from ListAccounts.jsp to Login.jsp.

a. Click Connection  from the Palette, click ListAccounts.jsp, 
and then click Login.jsp.

b. When the Choose a Connection dialog appears, select Faces 
Outcome → <new> and then click OK.

c. Click <new> and change the name to Logout.

d. Double-click connection and click OK.

When done, your Web diagram should look like Figure 14-21 on page 806.

Note: The Connection palette item is not dragged to the Web diagram 
like the remaining palette items.
 Chapter 14. Develop Web applications using EGL 805



Figure 14-21   Web diagram

14.4.4  Add EGL components to the Faces JSPs
This section describes how to add the EGL components created in 14.4.1, 
“Create the EGL data parts” on page 785, to the Faces JSPs such that the 
application will have database access to read and update the database.

Add the content to the Login.jsp
To add the content to the JSP file, do the following:

1. Open the Web perspective, Project Explorer view.

2. Expand Dynamic Web Projects → BankEGL → WebContent

3. Double-click Login.jsp to open in the editor.

4. Click the Design tab.

5. Select the text Default content of bodyarea, and press Delete.

6. In the Palette, expand EGL.

7. Click Record and drag it to the page data view.

8. When the Select a Record Part dialog appears, do the following (as seen in 
Figure 14-22 on page 807), and then click OK:

– Select Customer (data/CustomerRecord.egl).
– Enter the name of the field: customer (default)
– Uncheck Add controls to display the EGL element on the Web page.
806 Rational Application Developer V6 Programming Guide



Figure 14-22   Select a Record Part dialog

The Page Data view will now display the customer, as shown in Figure 14-23 
on page 808.
 Chapter 14. Develop Web applications using EGL 807



Figure 14-23   Page Data view

9. In the Page Data view, expand Login → customer - Customer.

10.Select the ssn - SSN field from the customer record and drag it onto the 
page.

11.When the Insert Control dialog appears, do the following:

a. Select Updating an existing record.

b. For the Label enter Enter Customer SSN:

c. Select Input field for the Control Type.

d. Click Options.

e. When the Options dialog appears, uncheck Delete button, enter Login in 
the Label field (as seen in Figure 14-24), and then click OK.

Figure 14-24   The insert control option dialog
808 Rational Application Developer V6 Programming Guide



12.The Insert Control page should look like Figure 14-25 on page 809. Click 
Finish.

Figure 14-25   Insert Control

The resulting Login page should look similar to Figure 14-26 on page 810 in 
the Design view.
 Chapter 14. Develop Web applications using EGL 809



Figure 14-26   Login.jsp page

13.To add an EGL action to the login button:

a. Select the Login button on the page.

b. Open the Quick Edit view.

c. Insert the code from Example 14-7 into the quick edit view.

Example 14-7   Login button code

// define SQL status area
sqlStatusData StatusRecord;

// lookup customer
libraries.CustomerLibrary.readCustomer(customer, sqlStatusData);

if (sqlStatusData.sqlStatus == 0)
// SQL code 0 = No error. Record found.
// Add the customer's SSN to the session variable customerSSN
// and forward to the accounts page.
J2EELib.setSessionAttr("customerSSN", customer.SSN);
forward to "ListAccounts";

else
if (sqlStatusData.sqlStatus == 100)

Note: The Login source code found in Example 14-7 can be found in 
the c:\6449\egl\login_handler.txt.
810 Rational Application Developer V6 Programming Guide



// SQL code 100 = No row found. Set error code to display.
setError("Customer does not exist");

else
// Unknown database error
setError("Customer retrieval failed - database error");

end
end

Before we can test the login screen we must first create a session scope 
variable, a navigation rule, and a new jsp file to be forwarded to.

14.Add a new Session Scope variable called customerSSN.

a. In the Page Data view, right-click and select New → 
ScriptingVariable → Session Scope Variable.

b. When the Add Session Scope Variable dialog appears, enter customerSSN 
in the Variable name field, enter java.lang.String in the Type field, and 
then click OK.

Add content to the ListAccounts.jsp
This section describes the steps required to complete the ListAccounts.jsp.

Add customer data
To add the content to the JSP file, do the following:

1. Open the Web perspective, Project Explorer view.

2. Expand Dynamic Web Projects → BankEGL → WebContent

3. Double-click ListAccounts.jsp to open in the editor.

4. Click the Design tab.

5. Select the text Default content of bodyarea, and press Delete.

6. In the Palette, expand EGL.

7. Click Record and drag it to the Page Data view.

8. When the Select a Record Part dialog appears, do the following (as seen in 
Figure 14-22 on page 807), and then click OK:

– Select Customer (data/CustomerRecord.egl).
– Enter the name of the field: customer(default)
– Check Add controls to display the EGL element on the Web page.

9. When the Configure Data Controls dialog appears, do the following:

a. Select Updating a existing record.

b. Uncheck indexInArray.

c. Change the labels as seen in Figure 14-27 on page 812.
 Chapter 14. Develop Web applications using EGL 811



d. In the Control Type drop-down for SSN, select Output field.

e. Click Options.

i. Uncheck Delete.

ii. Change the label to Update.

iii. Click OK.

f. Click Finish.

Figure 14-27   Insert customer record

10.Define action code for the Update button.

a. Select the Update button.

b. Enter the code found in Example 14-8 into the Quick Edit view.

Example 14-8   Add code for Update button to the page

// define SQL status area
sqlStatusData StatusRecord;

CustomerLibrary.updateCustomer(customer, sqlStatusData);
812 Rational Application Developer V6 Programming Guide



if (sqlStatusData.sqlStatus != 0)
setError("Error updating customer");

end

Add the Logout button and action code
To add the Logout button and action code, do the following:

1. In the Design tab of the ListAccounts.jsp, expand Faces Components.

2. Click Command - Button and drag it to the area below the Account data list.

3. In the Properties, enter Logout in the Button label field.

4. Define action code for the Logout button.

a. Switch to the Quick Edit view.

b. Select the Logout button.

c. Enter the code found in Example 14-9 into the Quick Edit view.

Example 14-9   Add code for Logout button to the page

j2eelib.clearSessionAttr(“customerSSN”);
forward to label “Logout”;

Add account data
To add the account data to be displayed for a customer on the ListAccounts.egl, 
do the following:

1. Open the Web perspective, Project Explorer view.

2. Expand Dynamic Web Projects → BankEGL → EGLSource → 
pagehandlers.

3. Double-click ListAccounts.egl to open in the editor.

4. Click the Design tab.

5. Enter the contents of Example 14-10 into the ListAccounts.egl file.

Example 14-10   Add contents to ListAccounts.egl

package pagehandlers;

import data.*;
import libraries.*;

Note: The contents of Example 14-10 can be found in the 
c:\6449code\egl\ListAccounts.egl.
 Chapter 14. Develop Web applications using EGL 813



PageHandler ListAccounts {view="ListAccounts.jsp", 
onPageLoadFunction=onPageLoad}

customer Customer;
customerAccounts Customer_Accounts[];

Function onPageLoad()
// define SQL status area
sqlStatusData StatusRecord;

J2EELib.getSessionAttr("customerSSN", customer.ssn);
try

get customer;
sqlStatusData.sqlStatus = 0;

onException
sqlStatusData.sqlStatus = sysVar.sqlcode;

end

if (sqlStatusData.sqlStatus == 0)
Customer_AccountsLibrary.getCustomerAccountsByCustomer(customer, 

customerAccounts, sqlStatusData);
case (sqlStatusData.sqlStatus)

when (0)
;
when (100)
;
otherwise

setError("Error retrieving accouts for customer");
end

else
setError("Error retrieving customer");

end
End

End

6. Save the ListAccounts.egl file.

7. Expand Dynamic Web Projects → BankEGL → WebContent.

8. Double-click ListAccounts.jsp to open in the editor.

9. Click the Design tab.

10.In the Page Data view, expand ListAccounts and drag customerAccounts - 
Customer_Accounts[] to the right of the Error Messages tag.
814 Rational Application Developer V6 Programming Guide



11.When the Configure Data Controls dialog appears, do the following:

a. Uncheck CUSTOMERS_SSN and ID.

b. Change the labels as seen in Figure 14-28.

Figure 14-28   Configure Data Controls

c. Click Finish.

12.Test the sample Web application.

Refer to 14.5.4, “Run the sample EGL Web application” on page 818.

Note: We found that in some cases, the tooling allowed dropping the 
CustomerAccounts - Customer_Accounts on the page but did not add the 
code after clicking Finish. Ensure that you drop the record in the proper 
location of the content area.
 Chapter 14. Develop Web applications using EGL 815



14.5  Import and run the sample Web application
This section describes how to import the completed Web application built using 
EGL, and run it within the WebSphere Application Server V6.0 Test Environment. 

14.5.1  Import the EGL Web application sample
The imported sample project interchange file will use the project name BankEGL. 

To import the completed sample EGL Web application, do the following:

1. Open the EGL perspective Project Explorer view.

2. Select File → Import.

3. When the Import Wizard wizard appears, select Project Interchange and 
click Next.

4. In the Import Projects screen, browse to the c:\6449code\egl folder and select 
BankEGL.zip. Click Open.

5. Check the BankEGL and BankEGLEAR projects, and click Finish.

Rational Application Developer will import the BankEGL and BankEGLEAR 
projects. Since the projects were packaged without the EGL runtime libraries to 
reduce the file of the sample code zip file, you will have a number of errors in 
your workspace after the import. These will be fixed when you generate in 14.5.3, 
“Generate Java from EGL source” on page 817, since the runtime libraries are 
automatically added back to the appropriate folder during the Generate task.

14.5.2  Prerequisites
If you have worked your way through this chapter, it is likely that you have 
completed the following prerequisite steps. 

Ensure the you have completed the following prerequisite steps:

1. Ensure that the IBM Rational Application Developer V6.0 EGL component is 
installed, and that you have installed Interim Fix 0004.

For details refer to “Install the EGL component of Rational Application 
Developer” on page 768.

2. Ensure that the EGL development capability is enabled under the Workbench 
preferences.

For details refer to “Enable the EGL development capability” on page 771.

3. Ensure that IBM DB2 Universal Database V8.2 is installed, as this is a 
required for the EGL Web application sample.
816 Rational Application Developer V6 Programming Guide



For details refer to “Install DB2 Universal Database” on page 773.

4. Ensure that the BANK sample database and tables have been created, the 
sample data has been loaded, and a connection has been created in Rational 
Application Developer.

For details refer to “Set up the sample database” on page 777.

5. Ensure that the EGL preferences for the SQL database connection defining 
the database and datasource have been configured.

For details refer to “Configure EGL preferences for SQL database connection” 
on page 779.

6. Ensure that the JDBC provider and datasource have been configured in the 
application deployment descriptor (enhanced EAR feature). This information 
will be used during deployment to create the datasource on the target test 
server.

For details refer to “Configure the data source” on page 780.

7. Ensure that the DB2 Universal Database JDBC class path environment 
variable variables have been defined for the WebSphere Application Server 
V6.0 test server via the WebSphere Administrative Console.

For details refer to “Configure the DB2 JDBC class path environment 
variables” on page 783.

14.5.3  Generate Java from EGL source
The BankEGL.zip Project Interchange file shipped with the redbook sample code 
was modified manually to remove some EGL runtime libraries. This was done to 
reduce the size of the BankEGL.zip for distribution purposes. For more 
information regarding this issue refer to 14.6, “Considerations for exporting an 
EGL project” on page 820.

We will run the Generate task on the EGL source to generate the Java used for 
deployment. This also has the effect of copying the EGL runtime libraries back to 
the \WebContent\WEB-INF\lib folder.

1. From the EGL perspective, expand Dynamic Web Projects.

2. Right-click BankEGL, and select Generate With Wizard.

3. When the Generate wizard appears, click Select All, and click Next.

Note: This step is not necessary if you simply want to run the sample 
application in the test environment. If you wish to further customize the 
sample you will need this option configured.
 Chapter 14. Develop Web applications using EGL 817



4. Select Use one build descriptor for all parts, select 
BankEGLWebBuildOptions <BankEGL/EGLSource/BankEGL.eglbld> 
from the drop-down list, and then click Finish.

The Generate task should resolve all the errors for the BankEGL Web Project. 
Some warnings may still exist.

14.5.4  Run the sample EGL Web application
To run the Web application sample built using EGL, do the following:

1. Open the Web perspective Package Explorer view.

2. Expand Dynamic Web Projects → BankEGL → WebContent.

3. Right-click Login.jsp, and select Run → Run on Server from the context 
menu.

4. When the Server Selection dialog appears, select Choose and existing 
server, select WebSphere Application Server v6.0, and click Finish.

This operation will start the server and publish the application to the server. 

5. When the Login page appears, enter 111-11-1111 in the Customer SSN field 
(as seen in Figure 14-29 on page 819), and then click the Login button.

Note: At the time of writing, we found that we had to enter the Customer 
SSN input again after clicking Login, due to a problem with JSF input 
validation. This is only necessary after the first time the application is run.
818 Rational Application Developer V6 Programming Guide



Figure 14-29   EGL Web application sample: Login page

6. The Accounts page should be displayed (as seen in Figure 14-30 on 
page 820) with the customer account information retrieved from the BANK 
database.

From the page you can do the following:

– You can modify the values in the Title, Firstname, and Lastname fields 
and then click Update.

– You can log out by clicking Logout. 
 Chapter 14. Develop Web applications using EGL 819



Figure 14-30   EGL Web application sample - Customer accounts

14.6  Considerations for exporting an EGL project
Table 14-2 lists the EGL runtime libraries added to the \WebContent\WEB-INF\lib 
folder of an EGL Web Project.

Table 14-2   EGL and supporting runtime libraries

EGL and supporting runtime libraries Time of addition to EGL Web Project

jsf-ibm.jar When project is created

sdo_access_beans.jar When project is created

sdo_web.jar When project is created

fda6.jar When project is created and when 
Generate is executed
820 Rational Application Developer V6 Programming Guide



At the time of writing, we discovered several issues when exporting an EGL Web 
Project to a Project Interchange file, WAR and EAR:

� Project Interchange and WAR file size: We found that a simple EGL Web 
Project when exported was fairly large. For example, the 
eglintdebugsupport.jar is 14 MB, when using IBM Rational Application 
Developer V6.0 and Interim Fix 0004, and is packaged in the Project 
Interchange file.

Refer to 14.6.1, “Reduce the file size of the Project Interchange file” on 
page 821, for a work-around procedure to address this issue for Project 
Interchange files.

� Migration of runtime libraries: We found that the EGL V6.0 Migration tooling 
used to migrate EGL V6.0 to V6.0 with Interim Fix 0001 or 0004, did not 
migrate the EGL runtime libraries; thus, the migrated EGL source is out of 
synch with the EGL runtime libraries. 

Refer to 14.6.2, “Manually adding the runtime libraries after migration” on 
page 822, for a work-around procedure to address the issue of migrating the 
runtime libraries.

� Export WAR/EAR with source: We found that when checking Export source 
during the export of a WAR or EAR file containing an EGL Web Project, the 
EGL source was not exported. Only the generated Java source was exported. 
We were informed this is working as designed.

Refer to “Export WAR/EAR with source” on page 823 for a work-around 
procedure to address the issue of including the EGL source in a WAR/EAR.

14.6.1  Reduce the file size of the Project Interchange file
Project Interchange files are a very useful means of packaging the contents of 
projects. Since the size of the EGL runtime files is likely to be much larger than 
the size of the EGL and generated Java source, it is desirable to remove some of 
the runtime files before exporting the EGL Web Project to a Project Interchange 
file.

fdaj6.jar When project is created and when 
Generate is executed

eglintdebug.jar When 1st Faces JSP added and when 
Generate is executed

eglintdebugsupport.jar When 1st Faces JSP added and when 
Generate is executed

EGL and supporting runtime libraries Time of addition to EGL Web Project
 Chapter 14. Develop Web applications using EGL 821



We found that eglintdebug.jar, eglintdebugsupport.jar, fda6.jar, and fdaj6.jar 
were added back into the \WebContent\WEB-INF\lib folder when the EGL 
Generate task was run. Due to this behavior, we found that we could remove the 
noted files before exporting to a Project Interchange file, and thus greatly reduce 
the size of the file. For example, when using this technique our sample 
BankEGL.zip Project Interchange file was reduced from 15 MB to 800 KB (and 
that is a good thing).

14.6.2  Manually adding the runtime libraries after migration
When originally developing the EGL Web application sample, we used IBM 
Rational Application Developer V6.0, which includes EGL V6.0. We later 
upgraded to Interim Fix 0004. Interim Fix 0004 includes a significant number of 
changes to the EGL language syntax and requires that projects created in EGL 
V6.0 be migrated to EGL V6.0 with Interim Fix 0004.

We successfully migrated our sample source code by right-clicking the EGL Web 
Project and selecting EGL V6.0 Migration → Migrate. 

After the migration, we discovered that the EGL runtime libraries listed in 
Table 14-2 on page 820 had not been migrated.

To manually update the EGL runtime libraries, do the following:

1. Expand Dynamic Web Projects → BankEGL → WebContent → 
WEB-INF → lib.

Where BankEGL is the EGL Web Project that has been migrated and has the 
old level of the EGL runtime libraries.

2. Back up the files found in the lib directory. This step is only included for 
precautionary purposes.

3. Delete all files listed in Table 14-2 on page 820 from the lib directory.

4. Create a new EGL Web Project called EGLv601.

The newly created EGL Web Project will contain the proper level of the EGL 
runtime files. We will use this project as a source of the desired EGL runtime 
files.

5. Expand Dynamic Web Projects → EGLv601 → WebContent → 
WEB-INF → lib.

6. Copy all files found in the lib folder EGLv601 project lib directory to the 
migrated project lib directory. 

7. Generate the BankEGL project, which will automatically add the remaining 
EGL runtime libraries.
822 Rational Application Developer V6 Programming Guide



14.6.3  Export WAR/EAR with source
Although WAR/EAR files can be used to package source code, they are primarily 
intended as deployment packages. We recommend that developers use Project 
Interchange files as a method of exchanging project resources, such as source 
code. If you do decide to use WAR/EARs and would like to include EGL source 
in the EAR/WAR files, you will need to understand and complete the following 
work-around.

Adding EGL source to WAR
To enable the inclusion of EGL source code to exported WAR files, do the 
following:

1. Right-click the BankEGL project, and select Properties.

Where BankEGL is the EGL Web Project you wish to configure.

2. Select Java Build Path.

3. Select the Source tab.

4. Check Allow output folders for source folders.

5. Click Add Folder.

6. Check EGLSource and click OK.

7. Expand the BankEGL/EGLSource, select Output folder, and click Edit.

8. When the Source Folder Output Location dialog appears, select Specific 
output folder, enter WebContent/WEB-INF/EGLSource (as seen in Figure 14-31 
on page 824), and then click OK.

Note: When using this procedure, the EGL source files will always be included 
in the WAR file, regardless of the setting of the Export source files check box 
in the WAR/EAR export wizard. Once configured as described in “Adding EGL 
source to WAR” on page 823, you can temporarily disable this work-around by 
following the procedure outlined in “Disable export of EGL source” on 
page 824.
 Chapter 14. Develop Web applications using EGL 823



Figure 14-31   Source Folder Output Location

9. Click OK.

Now when you perform the Export of an EAR or WAR, the EGL source files will 
be found in the folder WEB-INF/EGLSource of the WAR file.

Disable export of EGL source
To exclude EGL source code from exported WAR files, do the following:

1. Right-click the BankEGL project, and select Properties.

Where BankEGL is the EGL Web Project you wish to configure.

Note: When the work-around is disabled using the procedure mentioned here, 
the exported WAR files will still contain a folder named WEB-INF/EGLSource. 
However, this folder will be empty.
824 Rational Application Developer V6 Programming Guide



2. Select Java Build Path.

3. Select the Source tab.

4. Expand the BankEGL/EGLSource, select Excluded, and click Edit.

5. When the Inclusion and Exclusion Patterns window appears, click Add in the 
Exclusion patterns section.

6. When the Add Exclusion Pattern window appears, enter **/* and click OK.

7. Click OK to close the Inclusion and Exclusion Patterns window.

8. The Properties window should now look similar to Figure 14-32. Click OK.

Figure 14-32   Disabled exporting of EGL source code to WAR files
 Chapter 14. Develop Web applications using EGL 825



826 Rational Application Developer V6 Programming Guide



Chapter 15. Develop Web applications 
using EJBs

This chapter introduces Enterprise JavaBeans (EJB) and demonstrates by 
example how to create, maintain, and test such components.

We will describe how to develop entity beans, relationships between the entity 
beans, a session bean, and integrate the EJBs with a front-end Web application 
for the ITSO Bank sample. We will include examples for creating the EJBs using 
the Visual UML tooling as well as the Deployment Descriptor Editor.

The chapter is organized into the following topics:

� Introduction to Enterprise JavaBeans
� RedBank sample application overview
� Prepare for the sample
� Develop an EJB application
� Testing EJB with the Universal Test Client
� Adapting the Web application

15
© Copyright IBM Corp. 2005. All rights reserved. 827



15.1  Introduction to Enterprise JavaBeans
Enterprise JavaBeans (EJBs) is an architecture for server-centric, 
component-based, distributed object-oriented business applications written in 
the Java programming language.

15.1.1  What is new
The following features, supported by IBM Rational Application Developer V6.0, 
are new to the EJB 2.1 specification and require a J2EE 1.4 compatible 
application server, such as WebSphere Application Server V6.0:

� Stateless session beans can now implement a Web service endpoint.

� Enterprise beans of any type may utilize external Web services.

� The container-managed Timer service. 

� Message-driven beans support more messaging types in addition to JMS.

� The EJB Query Language has been enhanced to include support for 
aggregate functions, ordering of results, and additional scalar functions. Also, 
the rules for allowing null values to be returned by finder and select methods 
have been clarified.

15.1.2  Enterprise JavaBeans overview
Since its introduction in December 1999, the technology has gained momentum 
among platform providers and enterprise development teams. This is because 
the EJB component model simplifies the development of business components 
that are:

� Secure: Certain types of applications have security restrictions that have 
previously made them difficult and time consuming to implement in Java. For 
example, an insurance application may have to restrict access to patient data 
in order to meet regulatory guidelines. Until the advent of enterprise beans, 
there was no inherent way to restrict access to an object or method by a 
particular user. Previously, restricting access at the database level and then 
catching errors thrown at the JDBC level, or restricting access at the 
application level by custom security code, would have been the only 
implementation options.

Note: This chapter provides a condensed description of the EJB architecture 
and several coding examples. For more complete coverage on EJBs refer to 
the EJB 2.0 Development with WebSphere Studio Application Developer, 
SG24-6819. Although IBM Rational Application Developer V6 includes 
support for EJB 2.1, much of the information is still relevant.
828 Rational Application Developer V6 Programming Guide



Enterprise JavaBeans allow the declaration of method-level security rules for 
any bean. Users and user groups can be granted or denied execution rights 
to any bean or method. In WebSphere, these same user groups can be 
granted or denied access to Web resources (servlets, JSPs, and HTML 
pages), and the user IDs can be in a seamless way passed from the Web 
resources to the EJBs by the underlying security framework. Not only that, but 
the authenticated credentials may also be forwarded to other systems, 
possibly legacy systems (compatible LTPA clients).

� Distributed: Enterprise JavaBeans automatically provide distribution 
capabilities to your application, allowing for the building of enterprise-scale 
systems. In short, this means that your system’s modules can be deployed to 
many different physical machines and many separate OS processes to 
achieve your performance, scalability, and availability requirements. Better 
yet, you may start small with just a single process and grow to as many 
different machines as you want without ever having to touch your code.

� Persistent: Making an object persistent means preserving its persistent state 
(the values of its non-transient variables) even after the termination of the 
system that created that object.

In most cases, the state of a persistent object is stored in a relational 
database. Unfortunately, the OO and relational paradigms differ a lot from 
each other. Relational models are less expressive than OO models because 
they provide no way to represent behavior, encapsulation, or complex 
relationships like inheritance. Additionally, SQL data types do not exactly 
match Java data types, leading to conversion problems. All these problems 
may be automatically solved when using EJBs.

� Transactional: Transactions give us four fundamental guarantees including 
atomicity, consistency, isolation, and durability (ACID):

– Atomicity means that delimited sets of operations have to be executed as 
a single unit of work. If any single operation fails, the whole set must fail as 
well. 

– Consistency guarantees that no matter what the transaction outcome is, 
the system is going to be left in a consistent state. 

– Isolation means that even though you may have many transactions being 
performed at the same time, your system will be under the impression that 
these transactions occur one after the other. 

– Durability means that the effects of transactions are to be persistent. 
Once committed, they cannot be rolled-back.

Enterprise beans support multiple concurrent transactions with commit and 
rollback capabilities across multiple data sources in a full two-phase 
commit-capable environment for distributed transactions.
 Chapter 15. Develop Web applications using EJBs 829



� Scalable: Over the past several years customers have found that fat-client 
systems simply do not scale up, as Web-based systems do, to the thousands 
or millions of users that they may have. At the same time, software 
distribution problems have led to a desire to “trim down” fat clients. The 
24-hour, 7-day-a-week nature of the Web has also made uptime a crucial 
issue for businesses. However, not everyone needs a system designed for 
24x7 operation or that is able to handle millions of concurrent users. We 
should be able to design a system so that scalability can be achieved without 
sacrificing ease of development, or standardization.

So, what customers need is a way to write business logic that can scale up to 
meet these kinds of requirements. WebSphere’s EJB support can provide this 
kind of highly scalable, highly available system. It does so by utilizing the 
following features:

– Object caching and pooling: WebSphere Application Server automatically 
pools enterprise beans at the server level, reducing the amount of time 
spent in object creation and garbage collection. This results in more 
processing cycles being available to do real work.

– Workload optimization: WebSphere Application Server Network 
Deployment provides advanced EJB workload optimization features. 
Servers can be grouped in clusters and then managed together using a 
single administration facility. Weights can be assigned to each server to 
account for their individual capabilities. When you install an application on 
a cluster, the application is automatically installed on all cluster members, 
providing for weighted load balancing. In addition, you can configure and 
run multiple application servers on one machine, taking advantage of 
multiprocessor architectures.

– Automatic fail-over support: With several servers available in a cluster to 
handle requests, it is less likely that occasional hardware and software 
failures will produce throughput and reliability issues. In a clustered 
environment, tasks are assigned to servers that have the capacity to 
perform the task operations. If one server is unavailable to perform the 
task, it is assigned to another cluster member. No changes to the code are 
necessary to take advantage of these features.

� Portable: A strategic issue for businesses nowadays is achieving platform 
and vendor independence. The EJB architecture, which is an industry 
standard, can help achieve this goal. EJBs developed for the J2EE platform 
can be deployed to any compliant application servers. This promise has been 
demonstrated at the June 1999 JavaOne conference, where the same car 
dealer application was deployed on multiple application servers, from multiple 
vendors. While in the short-term it is often easier and faster to take advantage 
of features that may precede standardization, standardization provides the 
best long-term advantage.
830 Rational Application Developer V6 Programming Guide



The EJB architecture depicted in Figure 15-1 reduces the complexity of 
developing business components by providing automatic (non-programmatic) 
support for such system level services, thus allowing developers to concentrate 
on the development of business logic. Such focus can bring a competitive 
advantage to a business.

Figure 15-1   EJB architecture overview

In the following sections we briefly explain each of the EJB architecture elements 
depicted in:

� EJB server
� EJB container
� EJB components

15.1.3  EJB server
An EJB server is the part of an application server that hosts EJB containers. It is 
sometimes referred to as an Enterprise Java Server (EJS).

Java Virtual Machine

EJB Server

Container

Local 
client

Remote 
cient

EJB
Home

EJB 
Local
Home

EJB 
Local
Object

EISs

EJB Component

Remote View

Local View

Web 
Service 
client

EJB
Object

Service

Endpoint

Web Service View

Available for Stateless
Session Beans only
 Chapter 15. Develop Web applications using EJBs 831



The EJB server provides the implementation for the common services available 
to all EJBs. The EJB server’s responsibility is to hide the complexities of these 
services from the component requiring them. The EJB specification outlines eight 
services that must be provided by an EJB server:

� Naming
� Transaction
� Security
� Persistence
� Concurrency
� Life cycle
� Messaging
� Timer

Bear in mind that the EJB container and the EJB server are not very clearly 
separated constructs from the component point of view. EJBs do not interact 
directly with the EJB server (there is no standard API for that), but rather do so 
through the EJB container. So, from the EJBs’ perspective, it appears as if the 
EJB container is providing those services, when in fact it might not. The 
specification defines a bean-container contract, but not a container-server 
contract, so determining who actually does what is somewhat ambiguous and 
platform dependent.

15.1.4  EJB container
The EJB container functions as a runtime environment for enterprise beans by 
managing and applying the primary services that are needed for bean 
management at runtime. In addition to being an intermediary to the services 
provided by the EJB server, the EJB container will also provide for EJB instance 
life cycle management and EJB instance identification. EJB containers create 
bean instances, manage pools of instances, and destroy them.

Containers are transparent to the client in that there is no client API to 
manipulate the container, and there is no way for a client to tell in which 
container an enterprise bean is deployed.

One of the container’s primary responsibilities is to provide the means for remote 
clients to access components that live within them. Remote accessibility enables 
remote invocation of a native component by converting it into a network 
component. EJB containers use the Java RMI interfaces to specify remote 
accessibility to clients of the EJBs.

The responsibilities that an EJB container must satisfy can be defined in terms of 
the primary services. Specific EJB container responsibilities are as follows:

� Naming
832 Rational Application Developer V6 Programming Guide



� Transaction
� Security
� Persistence
� Concurrency
� Life cycle
� Messaging
� Timer

Note the similarity to the list in 15.1.3, “EJB server” on page 831. This is due to 
the unspecified division of responsibilities between the EJB server and container.

Naming
The container is responsible for registering the unique lookup name in the JNDI 
namespace when the server starts up, and binding the appropriate object type 
into the JNDI namespace.

Transaction
The EJB container may handle the demarcation of transactions automatically, 
depending on the EJB type and the transaction type attribute, both described in 
the EJB module’s deployment descriptor. When the container demarcates the 
transactions, applications can be written without explicit transaction demarcation 
code (for example, begin, commit, rollback).

Security
The container provides security realms for enterprise beans. It is responsible for 
enforcing the security policies defined at the deployment time whenever there is 
a method call, through access control lists (ACL). An ACL is a list of users, the 
groups they belong to, and their rights, and it ensures that users access only 
those resources and perform those tasks for which they have been given 
permission.

Persistence
The container is also responsible for managing the persistence of a certain type 
of bean (discussed later in this chapter) by synchronizing the state of the bean’s 
instance in memory with the respective record in the data source.

Concurrency
The container is responsible for managing the concurrent access to components, 
according to the rules of each bean type.
 Chapter 15. Develop Web applications using EJBs 833



Life cycle
The container controls the life cycle of the deployed components. As EJB clients 
start sending requests to the container, the container dynamically instantiates, 
destroys, and reuses the beans as appropriate. The specific life cycle 
management that the container performs is dependent upon the type of bean. 
The container may ultimately provide for some resource utilization optimizations, 
and employ techniques for bean instance pooling.

Messaging
The container must provide for the reliable routing of asynchronous messages 
from messaging clients (JMS or otherwise) to message-driven beans (MDBs). 
These messages can follow either the peer-to-peer (queue-based) or 
publish/subscribe (topic-based) communication patterns.

Timer
Enterprise applications may model business processes that are dependent on 
temporal events. To implement this characteristic, the container must provide a 
reliable and transactional EJB Timer Service that allows callbacks to be 
scheduled for time-based events. Timer notifications may be scheduled to occur 
at a specific time, after a specific elapsed duration, or at specific recurring 
intervals. Note that this service is not intended for the modeling of real-time 
events.

15.1.5  EJB components
EJB components run inside an EJB container, their runtime environment. The 
container offers life-cycle services to these components, and provides them with 
an interface to the EJB server. It also manages the connections to the enterprise 
information systems (EISs), including databases and legacy systems.

Client views
For client objects to send messages to an EJB component, the component must 
provide a view. A view is a client interface to the bean, and may be local or 
remote:

� A local view can be used only by local clients (clients that reside in the same 
JVM as the server component) to access the EJB.

� A remote view allows any client (possibly distributed) to access the 
component.

The motivation for local interfaces is that remote calls are more expensive than 
local calls. Which one to use is influenced by how the bean itself is to be used by 
its clients, because local and remote depict the clients’ view of the bean. An EJB 
834 Rational Application Developer V6 Programming Guide



client may be a remote client, such as a servlet running on another process, or 
may be a local client, such as another EJB in the same container.

Additionally, Web Service clients may access stateless session beans through 
the Web Service client view. The view is described by the WSDL document for 
the Web Service the bean implements, and corresponds to the bean’s Web 
Service endpoint interface.

Which interfaces to use, classes to extend, and other rules of bean construction 
are governed by the type of bean you choose to develop. A quick introduction to 
the types of enterprise beans and their uses is presented here.

Note: Even though a component may expose both a local and a remote view 
at the same time, this is typically not the case. EJBs that play the role of 
facades usually offer only a remote interface. The rest of the components 
generally expose only a local interface.

In remote invocation, method arguments and return values are passed by 
value. This means that the complete objects, including their non-transient 
reference graphs, have to be serialized and sent over the network to the 
remote party, which reconstructs them as new objects. Both the object 
serialization and network overhead can be a costly proposition, ultimately 
reducing the response time of the request.

On the other hand, remote interfaces have the advantage of being location 
independent. The same method can be called by a client that is inside or 
outside of the container.
 Chapter 15. Develop Web applications using EJBs 835



EJB types
There are three main types of EJBs: Entity beans, session beans, and 
message-driven beans (see Figure 15-2).

Figure 15-2   EJB types

� Entity beans: Entity beans are modeled to represent business or domain 
specific concepts, and are typically the nouns of your system, such as 
customer and account. Entity beans are persistent; that is, they maintain their 
internal state (attribute values) between invocations and across server 
restarts. Due to their persistent nature, entity beans usually represent data 
(entities) stored in a database.

While the container determines when an entity bean is stored in persistent 
storage, how the bean is stored can either be controlled by the container, 
through container-managed persistence (CMP), or by the bean itself, through 
bean-managed persistence (BMP). Container-managed persistence is 
typically obtained by defining the mapping between the fields of the entity 
bean and columns in a relational database to the EJB server.

� Session beans: A session bean is modeled to represent a task or workflow of 
a system, and to provide coordination of those activities. It is commonly used 
to implement the facade of EJB modules. Although some session beans may 
maintain state data, this data is not persistent, it is just conversational.

Session beans can either be stateless or stateful. Stateless session beans are 
beans that maintain no conversational state, and are pooled by the container 
to be reused. Stateful session beans are beans that keep track of the 

Stateless StatefulBMPCMP

Synchronous Asynchronous

SessionEntity

EJB

Message-Driven
836 Rational Application Developer V6 Programming Guide



conversational state with a specific client. Thus, they cannot be shared 
among clients.

� Message-driven beans (MDB): Like session beans, message-driven beans 
may also be modeled to represent tasks. However, they are invoked by the 
receipt of asynchronous messages, instead of synchronous ones. The bean 
either listens for or subscribes to messages that it is to receive.

Entity and session beans are accessed synchronously through a remote or local 
EJB interface method invocation. This is referred to as synchronous invocation, 
because when a client makes an invocation request, it will be blocked, waiting for 
the return. Clients of EJBs invoke methods on session and entity beans. An EJB 
client may be remote, such as a servlet, or local, such as another EJB within the 
same JVM. 

Message-driven beans are not accessible through remote or a local interfaces. 
The only way for an EJB client to communicate with a message-driven bean is by 
sending a JMS message. This is an example of asynchronous communication. 
The client does not invoke the method on the bean directly, but rather, uses JMS 
constructs to send a message. The container delegates the message to a 
suitable message-driven bean instance to handle the invocation. EJBs of any 
type can also be accessed asynchronously by means of a timer event, fired by 
the EJB Timer Service.

Interfaces and classes
An EJB component consists of the following primary elements, depending on the 
type of bean:

� EJB bean class: Contains the bean’s business logic implementation. Bean 
classes must implement one of the enterprise bean interfaces, depending on 
the bean type: javax.ejb.SessionBean, javax.ejb.EntityBean, 
javax.ejb.MessageDrivenBean. Beans willing to be notified of timer events 
must implement the javax.ejb.TimedObject, so that the container may call the 
bean back when a timer expires. Message-driven beans must also implement 
the javax.jms.MessageListener interface, to allow the container to register the 

Note: Although the bean flavors (CMP versus BMP, stateful versus stateless) 
are often referred to as EJB types, this is not the case. EJBs with different 
persistent management or stateness are not different types in the sense that 
there are no new classes or interfaces to represent these types. They are still 
just entity or session beans. Rather, how the container manages these beans 
is what makes them different. All information regarding the way the container 
has to handle these different bean flavors is managed in the deployment 
descriptor.
 Chapter 15. Develop Web applications using EJBs 837



bean as a JMS message listener and to call it back when a new message 
arrives.

� EJB component interface: Declares which of the bean’s business methods 
should be exposed to the bean’s public interface. Clients will use this 
interface to access such methods. Clients may not access methods that are 
not declared in this interface. A bean may implement a local component 
interface, a remote component interface, or both, depending on the kinds of 
clients it expects to serve. The local component interface is also known as an 
EJB local object, because of the javax.ejb.EJBLocalObject interface that it 
extends. The remote component interface, in turn, is also known as EJB 
object, due to the javax.ejb.EJBObject interface that it extends.

� EJB home interface: Declares which bean’s life-cycle methods (to create, 
find, and remove beans instances) are available to clients, functioning very 
much like a factory. Local beans have local home interfaces that extend 
javax.ejb.EJBLocalHome. Remote beans have remote home interfaces that 
extend javax.ejb.EJBHome.

� Primary key class: Entity beans must also have a primary key class. 
Instances of this class uniquely identify an instance of the entity type in the 
database. Even though not formally enforced, primary key classes must also 
correctly implement the equals and hashCode methods. As you will see, 
Rational Application Developer takes care of that for you. The primary key 
class may be an existing class, such as java.lang.Integer or java.lang.String, 
or a new class created specifically for this purpose.

Relationships
Relations are a key component of object-oriented software development. 
Non-trivial object models can form complex networks with these relationships.

The container automatically manages the state of CMP entity beans. This 
management includes synchronizing the state of the bean with the underlying 
database when necessary and also managing any container-managed 
relationships (CMRs) with other entity beans. The bean developer is relieved of 
the burden that is writing database-specific code and, instead, can focus on 
business logic.

Multiplicity is an important characteristic of relations. Relations can have the 
following multiplicities:

� One-to-one: In a one-to-one (1:1) relationship, a CMP entity bean is 
associated with a single instance of another CMP entity bean. If you come up 
with a one-to-one composition or aggregation relationship, remember to 
check if you are not, in fact, modeling the same concept as two different 
entities.
838 Rational Application Developer V6 Programming Guide



� One-to-many: In a one-to-many (1:m) relationship, a CMP entity bean is 
associated with multiple instances of another CMP entity bean. For example, 
an Account bean could be associated with multiple instances of a 
Transaction bean, kept as a log of transactions.

� Many-to-many: In a many-to-many (m:m) relationship, multiple instances of a 
CMP entity bean are associated with multiple instances of another CMP 
entity bean. For example, a Customer bean may be associated with 
multiple instances of an Account bean, and a single Account bean may, in 
turn, be associated with many Customer beans.

There are also three different types of relationships:

� Association: An association is a loose relationship between two independent 
objects.

� Aggregation: Aggregation identifies that an object is made up of separate 
parts. That is, the aggregating object is dependent on the aggregated objects. 
The lifetime of the aggregated objects is not controlled by the aggregator. If 
the aggregating object is destroyed, the aggregated objects are not 
necessarily destroyed.

� Composition: Composition defines a stronger dependency between the 
objects. Composition is similar to aggregation, but with composition, the 
lifetime of the objects that make up the whole are controlled by the 
compositor.

It is the developer’s task to implement the differences among the three kinds of 
relationships. These differences may require considerations of characteristics 
such as the navigation of the relationship and the encapsulation of the related 
objects.

Component-level inheritance is still not in the EJB 2.1 specification, even though 
it is planned for future releases. In want of standardized component-level 
inheritance, IBM WebSphere Application Server V6.0 and IBM Rational 
Application Developer V6.0 implements proprietary component-level inheritance.

EJB query language (EJB QL)
The EJB query language is a query specification language, similar to SQL, for 
entity beans with container-managed persistence. With it, the Bean Provider is 
able to specify the semantics of custom finder or EJB select methods in a 
portable way and in terms of the object model’s entities, instead of the relational 
model’s entities. This is possible because EJB QL is based on the abstract 
schema types of the entity beans.
 Chapter 15. Develop Web applications using EJBs 839



An EJB QL query is a string consisting of the following clauses:

� A SELECT clause, which determines the type of the objects or values to be 
selected.

� A FROM clause, which provides declarations that designate the domain to 
which the specified expressions apply.

� An optional WHERE clause, which may be used to restrict the results that are 
returned by the query.

� An optional ORDER BY clause, which may be used to order the results that 
are returned by the query.

� The result type can be an EJBLocalObject, an EJBObject, a CMP-field value, 
a collection of any of these types, or the result of an aggregate function.

EJB QL queries are defined by the Bean Provider in the deployment descriptor. 
The SQL statements for the actual database access is generated automatically 
by the deployment tooling. As an example, this query retrieves customers that 
have accounts with a large balance:

select object(c) from Customer c, in(c.accounts) a where a.balance > ?1

As you can see, this EJB QL statement is independent of the database 
implementation. It follows a CMR relationship from customer to account and 
queries the account balance. Finder and EJB select methods specified using 
EJB QL are portable to any EJB 2.1 environment.

15.2  RedBank sample application overview
In this chapter, we reuse the design of the RedBank application, described in 
Chapter 11, “Develop Web applications using JSPs and servlets” on page 499. 
The focus of this chapter is on implementing EJBs for the business model, 
instead of regular JavaBeans. The rest of the application’s layers (control and 
view) still apply exactly as designed.

Note: Both finder and EJB select methods are used to query the backend 
where the actual data is stored. The difference is that finder methods are 
accessible to the entity beans’ clients, whereas select methods are internal to 
the implementation and not visible to clients.

Note: These finder and EJB select methods may also be portable to EJB 2.0 
environments if they do not use the new order and aggregate features defined 
by the EJB 2.1 specification.
840 Rational Application Developer V6 Programming Guide



Figure 15-3 depicts the RedBank application model layer design.

Figure 15-3   EJB module’s class diagram for RedBank application

If you compare the model depicted in Figure 15-3 on page 841 to the Web 
application model shown in Figure 11-8 on page 514, the Bank session bean will 
act as a facade for the EJB model. A new coordinator, EJBBank will replace the 
MemoryBank coordinator shown in Figure 11-8.

Note: While the sample application in this chapter extends the sample 
application developed in the Web application chapter (Chapter 11, “Develop 
Web applications using JSPs and servlets” on page 499), the content of this 
chapter does not strictly depend on it. 

If your focus is on developing EJBs and testing them using the Universal Test 
Client, you can complete the sample in this chapter without knowledge of the 
sample developed in the Web application chapter.

Also, since the completed sample application from the Web application 
chapter is included with the additional material for this book, you can choose 
to import the finished sample application from the Web application chapter in 
order to get a running application at the end of this chapter.

Business
Entities

Facade
 Chapter 15. Develop Web applications using EJBs 841



Our business entities (Customer, Account, Transaction, Credit, and Debit) are 
implemented as CMP entity beans with local interfaces, as opposed to regular 
JavaBeans. By doing so, we automatically gain persistence, security, 
distribution, and transaction management services. On the other hand, this also 
implies that the control and view layers will not be able to reference these entities 
directly, because they may be placed in a different JVM. Only the session bean 
(Bank) will be able to access the business entities through their local home 
interfaces. 

You may be asking yourself then why we do not expose a remote interface for 
the entity beans as well? The problem with doing that is two-fold. First, in such a 
design, clients would probably make many remote calls to the model in order to 
resolve each client request. This is not a recommended practice because remote 
calls are much more expensive than local ones. Finally, allowing clients to see 
into the model breaks the layer’s encapsulation, promoting unwanted 
dependencies and coupling.

As the control layer will not be able to reference the model’s objects directly, we 
will reuse the Customer, Account, Transaction, Credit, and Debit from the Web 
application from Chapter 11, “Develop Web applications using JSPs and 
servlets” on page 499, as data transfer object, carrying data to the servlets and 
JSPs, but allowing no direct access to the underlying model.

Figure 15-4 shows the application component model and the flow of events.

Note: The data transfer object, also known as value object or transfer object, 
is documented in many J2EE architecture books. The objective is to limit 
inter-layer data sharing to serializable JavaBeans, thus avoiding remote 
references. The DTOs can be created by the session facade or by a builder 
object (according to the Builder design pattern) on its behalf, in case the 
building process is too complicated or needs validation steps.
842 Rational Application Developer V6 Programming Guide



Figure 15-4   Application component model and workflow

The flow of events, as shown in Figure 15-4 on page 843, is:

1. The first event that occurs is the HTTP request issued by the Web client to 
the server. This request is answered by a servlet in the control layer, also 
known as the front controller, which extracts the parameters from the request. 
The servlet sends the request to the appropriate control JavaBean. This bean 
verifies whether the request is valid in the current user and application states.

2. If so, the control layer sends the request through the JavaBean proxy to the 
session EJB facade. This involves using JNDI to locate the session bean’s 
home interface and creating a new instance of the bean.

3. The session EJB executes the appropriate business logic related to the 
request. This includes having to access entity beans in the model layer.

4. The facade creates a new DTO and populates it with the response data. The 
DTO is returned to the calling controller servlet.

5. The front controller servlet sets the response DTO as a request attribute and 
forwards the request to the appropriate JSP in the view layer, responsible for 
rendering the response back to the client.

6. The view JSP accesses the response DTO to build the user response.

7. The result view, possibly in HTML, is returned to the client.

Please note that the intent of this chapter is to introduce you to the Rational 
Application Developer tools that make the development of EJBs and enterprise 
applications possible. Together we will work only on a single session bean and 
three entity beans. 

Application Server

Web Client

Web Container

EJB Container

EJB Module

Web Module

View

Control

Entity
Model

1

5

DTO

4

6

HTTP

7

RMI/IIOP

Proxy 2 Facade
3

 Chapter 15. Develop Web applications using EJBs 843



15.3  Prepare for the sample
This section describes the steps to prepare for developing the sample EJB 
application.

15.3.1  Required software
To complete the EJB development sample in this chapter, you will need the 
following software installed:

� IBM Rational Application Developer V6.0
� Database software:

– Cloudscape V5.1 (installed by default with Rational Application Developer)

Or:

– IBM DB2 Universal Database V8.2

15.3.2  Create and configure the EJB projects
In Rational Application Developer, you create and maintain Enterprise 
JavaBeans and associated Java resources in EJB projects. The environment 
has facilities that help you create all three types of EJBs, define relationships 
(association and inheritance), and create resources such as access beans, 
converters, and composers. Within an EJB project, these resources can be 
treated as a portable, cohesive unit.

An EJB module typically contains components that work together to perform 
some business logic. This logic may be self-contained, or access external data 
and functions as needed. It should be comprised of a facade and the business 
entities. The facade is usually implemented using one or more remote session 
beans and message-driven beans. The model is commonly implemented with 
related local entity beans.

In this chapter we develop the entity beans shown in Figure 15-3 on page 841.

Note: For more information on installing the software, refer to Appendix A, 
“IBM product installation and configuration tips” on page 1371.

Note: Converters and composers are used for non-standard relational 
mapping. A converter allows you to transform a user-defined Java type to an 
SQL type back and forth. Composers are used when entity attributes have 
multi-column relational representations.
844 Rational Application Developer V6 Programming Guide



15.3.3  Create an EJB project
In order to develop EJBs, you must create an EJB project. When creating an EJB 
project, you need to create an EJB client project to hold the deployed code. It is 
also typical to create an Enterprise Application project that will be the container 
for deploying the EJB project.

To create a J2EE EJB project, do the following:

1. From the Workbench, select File → New → Project.

2. When the New Project dialog appears, select EJB → EJB Project and click 
Next.

3. When the New EJB Project dialog appears, enter BankEJB in the Name field 
(as shown in Figure 15-5 on page 846), and click Next.

If you click the Show Advanced button, additional options are displayed. The 
following lists the selections that should be done for advanced options:

– EJB version: Select 2.1 (default).

– Target server: Select WebSphere Application Server V6.0.

– Check Add module to EAR project (default).

You can choose to add the EJB module being created to an EAR project. 
The default behavior for that end is to create a new EAR project, but you 
can also select an existing one from the drop-down combo box. If you 
would like to create a new project and also configure its location, click the 
New button. For our example, we will use the given default value.

– Check Create an EJB Client JAR Project to hold client interfaces and 
classes (default).

You can also choose to create an EJB client JAR project, which is optional 
under the EJB 2.1 specification but considered a best practice. The EJB 
client jar holds the home and component interfaces of the project’s 
enterprise beans, and other classes that these interfaces depend on, such 
as their superclasses and implemented interfaces, the classes and 
interfaces used as method parameters, results, and exceptions.

Tip: From the Project Explorer, it is possible to access the New EJB 
Project wizard by right-clicking EJB Projects and selecting File → New → 
EJB Project.

Note: The New button allows you to define a new installed server 
runtime environment.
 Chapter 15. Develop Web applications using EJBs 845



Figure 15-5   Create an EJB project wizard (page 1)

Finally, on the last section of the Figure 15-5 dialog, you can select whether 
you want to add support for annotated Java classes or create a default 
stateless session bean (always named DefaultSession).
846 Rational Application Developer V6 Programming Guide



4. When the EJB client JAR Creation window appears, enter the following (as 
shown in Figure 15-6 on page 848), and then click Finish:

– Client JAR URI: BankEJBClient.jar
– Name: BankEJBClient

Note: Annotation-based programming provides an extensible mechanism 
for generating application artifacts, packaging the application, and 
readying it for execution. Annotation-based programming offers a set of 
tags and a processing mechanism that allow you to embed additional 
metadata in your source code. This additional metadata is used to derive 
the artifacts required to execute the application in a J2EE environment.

The goal of annotation-based programming is to minimize the number of 
artifacts that you have to create and maintain, thereby simplifying the 
development process.

For example, consider a CMP entity EJB. With annotation-based 
programming, you simply create a simple Java source file containing the 
bean implementation logic, and a few tags indicating that you want to 
deploy this class as an EJB. Using this single artifact, Rational Application 
Developer can create:

� The home and remote interfaces and the key class
� The EJB deployment descriptor
� WebSphere-specific binding data

You can also use annotations to edit the bean’s characteristics later, such 
as which methods should be exposed to the home and remote interfaces, 
which attributes the bean has, and which of those belong to the primary 
key.

Unfortunately, this extremely interesting capability is not yet fully integrated 
to the rest of the environment. If you choose to use it, you will not be able 
to edit some of the enterprise beans’ characteristics through other means 
provided by the tool, such as the deployment descriptor or the graphical 
interface. Because of this, we chose not to use it at this time in the book.

Annotations are an integral part of J2SE 1.5 and will probably be integrated 
to a future J2EE 1.5 specification.
 Chapter 15. Develop Web applications using EJBs 847



Figure 15-6   Create an EJB project wizard (page 2)

If the current perspective was not the J2EE Perspective when you created the 
project, Rational Application Developer will prompt if you want to switch to the 
J2EE Perspective. Click Yes.

5. Verify that when complete, the resulting workspace structure and created 
project components should look like Figure 15-7.

Figure 15-7   Resulting workspace structure after project creation

EJB module

EJB client JAR

Enterprise application project

EJB project

EJB client project
848 Rational Application Developer V6 Programming Guide



15.3.4  Configure the EJB projects
Before we can develop the EJB code, we need to prepare the project settings. 
The following needs to be done:

1. Add a new source folder, ejbDeploy, in the BankEJB project.

2. Set up the ned folder to be used for deployment source code.

3. Configure the BankEJB project to not produce warnings for unused imports.

4. Configure the BankEJBClient project to not produce warnings for unused 
imports.

Do the following to perform these changes to the workspace:

1. Configure the Java Build Path properties.

We will now make some changes to the EJB project’s structure in order to 
facilitate development and maintenance:

a. From the Project Explorer view, right-click EJB Project → BankEJB and 
select Properties. 

b. When the Properties for BankEJB dialog appears, select Java Build Path.

c. When the Java Build Path panel appears, click the Source tab and click 
Add Folder, as seen Figure 15-8.

Figure 15-8   EJB project’s properties

d. When the Source Folder Selection dialog appears, click Create New 
Folder.
 Chapter 15. Develop Web applications using EJBs 849



e. When the New Folder dialog appears, enter ejbDeploy as the folder name 
and then click OK (see Figure 15-9).

Figure 15-9   Source folder selection dialog

f. Click OK in the Source Folder Selection window to add the folder.

g. Click OK in the Properties for BankEJB window to apply the changes.

2. Configure the EJB Deployment properties.

This step describes how to configure the Rational Application Developer 
folder where the deployment code will be generated and keep it independent 
of the code we will develop. This will make it easier to later develop and 
maintain the beans by keeping the ejbModule directory structure clean.

a. From the Project Explorer view, select EJB Project → BankEJB, 
right-click, and select Properties. 

b. When the Properties for BankEJB dialog appears, select EJB 
Deployment. 

c. Check the ejbDeploy folder (only one folder can be checked) (as seen in 
Figure 15-10 on page 851), and click OK.

This selects the source folder to store the EJBs deployment code to be the 
ejbDeploy folder that was created in the previous step.
850 Rational Application Developer V6 Programming Guide



Figure 15-10   EJB Deployment properties

3. Configure the Java Compiler properties.

a. From the Project Explorer view, select EJB Project → BankEJB, 
right-click, and select Properties.

b. When the Properties for BankEJB window appears, select Java 
Compiler.

c. Select Use project settings, as seen in Figure 15-11 on page 852.

d. Select the Unused Code tab and select Ignore in the Unused imports 
drop-down.

Note: Since Eclipse 3.0, the Java compiler’s default behavior is to warn 
about unused imports. This is a very nice feature, but in EJB and EJB 
client projects this can be an annoyance. The code that Java’s RMI 
compiler (RMIC) generates is full of unused imports, so if we do not 
disable the verification we will get a lot of warnings in the Problems 
view.
 Chapter 15. Develop Web applications using EJBs 851



Figure 15-11   Java compiler settings

e. Click OK to close the properties dialog. 

f. When the Compiler Settings Changed dialog appears, click Yes.

The dialog is displayed to let you know that the compiler settings have 
changed and that a project rebuild is required for the changes to take 
effect. Clicking Yes will perform the rebuild.

4. Repeat the previous step for the BankEJBClient project:

a. From the Project Explorer view, select Other Projects → 
BankEJBClient, right-click, and select Properties.

b. When the Properties for BankEJB window appears, select Java 
Compiler.

c. Select Use project settings.
852 Rational Application Developer V6 Programming Guide



d. Select the Unused Code tab and select Ignore in the Unused imports 
drop-down.

e. Click OK to close the properties dialog. 

f. When the Compiler Settings Changed dialog appears, click Yes to rebuild 
the project.

15.3.5  Import BankBasicWeb Project
In order to finish the EJB application, we need resources from the Web Project, 
which was developed in Chapter 11, “Develop Web applications using JSPs and 
servlets” on page 499.

Do the following to import the BankBasicWeb project from the additional material 
(refer to Appendix B, “Additional material” on page 1395, for more information 
about the additional material for this Redbook):

1. From the Workbench, select File → Import.

2. When the Import dialog appears, select Project Interchange and click Next.

3. When the Import Projects dialog appears, enter 
c:\6449code\web\BankBasicWeb.zip in the From zip file field and select 
BankBasicWeb in the project list.

4. Click Finish.

Now we need to add the new BankBasicWeb project to the BankEJBEAR 
Enterprise Application. Do the following to add the Web Project to the EAR:

1. In the Project Explorer, expand Enterprise Applications → BankEJBEAR.

2. Double-click Deployment Descriptor: BankEJBEAR to open the 
Deployment Descriptor editor.

3. Click the Module tab.

4. In the Modules section you will see EJB BankEJB.jar listed; click Add.

5. When the Add Module dialog appears, select BankBasicWeb and click 
Finish.

6. Press Ctrl+S to save the deployment descriptor, and close the editor.

Tip: It can take a while for the project list to populate. To force it to 
populate, click anywhere on the list box, or click Back, followed by Next to 
switch to the previous page, and Back again.
 Chapter 15. Develop Web applications using EJBs 853



We need to reference the exceptions and data objects defined in the Web project 
from both the EJB project and EJB Client, as well as from the Web project itself. 
We have to move these classes to the EJB Client project.

1. In the Project Explorer, expand Dynamic Web Projects → 
BankBasicWeb → Java Resources → JavaSource.

2. Select itso.bank.exception and itso.bank.model, right-click, and select 
Refactor → Move.

3. When the Move dialog appears, expand and select BankEJBClient → 
ejbModule and click OK.

4. When the Confirm overwriting dialog appears, click Yes To All.

Several errors will appear in the Problems view. This is due to the fact that the 
BankBasicWeb project cannot see the classes that we just moved. To fix this, do 
the following:

1. In the Project Explorer, expand and right-click Dynamic Web Projects → 
BankBasicWeb and select Properties.

2. When the Properties for BankBasicWeb dialog appears, select Java JAR 
Dependencies.

3. Select Use EJB client JARs, check BankEJBClient.jar, and click OK.

You will notice that the build errors related to the exception and model classes 
have disappeared.

15.3.6  Set up the sample database
Before we can define the EJB to RDB mapping, we need to create and populate 
the database, as well as define a database connection within Rational 
Application Developer that the mapping tools will use to extract schema 
information from the database.

This section provides instructions for deploying the BANK sample database and 
populating the database with sample data. For simplicity we will use the built-in 
Cloudscape database.

To create the database, create the connection, and create and populate the 
tables for the BANK sample from within Rational Application Developer, do the 
following:

1. Create the database and connection to the Cloudscape BANK database from 
within Rational Application Developer.

For details refer to “Create a database connection” on page 347.

2. Create the BANK database tables from within Rational Application Developer.
854 Rational Application Developer V6 Programming Guide



For details refer to “Create database tables via Rational Application 
Developer” on page 350.

3. Populate the BANK database tables with sample data from within Rational 
Application Developer.

For details refer to “Populate the tables within Rational Application Developer” 
on page 352.

4. Import database metadata.

Now that the database tables have been created, we need to import the 
metadata (database schema) into the EJB project. This has to be done in 
order for the mapping tools to be able to map the EJBs to the database.

a. From from Database Explorer view, right-click the Bank Connection, and 
select Copy to Project.

b. When the Copy to Project dialog appears, click Browse, expand and 
select BankEJB → ejbModule → META-INF, and click OK. 

c. Check Use default schema folder for EJB projects. The folder path is 
then automatically entered for the appropriate database type. 

d. Click Finish (see Figure 15-12 on page 855).

Figure 15-12   Copying schema information to EJB project
 Chapter 15. Develop Web applications using EJBs 855



e. When the Confirm Folder Create dialog appears, click Yes.

15.3.7  Configure the data source
There are a couple of methods that can be used to configure the data source, 
including using the WebSphere Administrative Console or using the WebSphere 
Enhanced EAR, which stores the configuration in the deployment descriptor and 
is deployed with the application. 

This section describes how to configure the data source using the WebSphere 
Enhanced EAR capabilities. The enhanced EAR is configured in the Deployment 
tab of the EAR deployment descriptor.

The procedure found in this section considers two scenarios for using the 
enhanced EAR:

� If you choose to import the complete sample code, you will only need to verify 
that the value of the databaseName property in the deployment descriptor 
matches the location of your database. 

� If you are going to complete the working example Web application found in 
this chapter, you will need to create the JDBC provider and data source, and 
update the databaseName property.

Access the deployment descriptor
To access the deployment descriptor where the enhanced EAR settings are 
defined, do the following:

1. Open the J2EE Perspective Project Explorer view.

2. Expand Enterprise Applications → BankEJBEAR.

3. Double-click Deployment Descriptor: BankEJBEAR to open the file in the 
Deployment Descriptor Editor.

4. Click the Deployment tab.

Note: For more information on configuring data sources and general 
deployment issues, refer to Chapter 23, “Deploy enterprise applications” on 
page 1189.

Note: For JAAS authentication, when using Cloudscape, the configuration of 
the user ID and password for the JAAS authentication is not needed.

When using DB2 Universal Database or other database types that require a 
user ID and password you will need to configure the JAAS authentication.
856 Rational Application Developer V6 Programming Guide



Configure a new JDBC provider
To configure a new JDBC provider using the enhanced EAR capability in the 
deployment descriptor, do the following:

1. From the Deployment tab of the Application Deployment Descriptor, click Add 
under the JDBC provider list.

2. When the Create a JDBC Provider dialog appears, select Cloudscape as the 
Database type, select Cloudscape JDBC Provider as the JDBC provider 
type, and then click Next.

3. Enter Cloudscape JDBC Provider - BankEJB in the Name field and then click 
Finish.

Configure the data source
To configure a new data source using the enhanced EAR capability in the 
deployment descriptor, do the following:

1. From the Deployment tab of the Application Deployment Descriptor, select 
the JDBC provider created in the previous step.

2. Click Add next to data source. 

3. When the Create a Data Source dialog appears, select Cloudscape JDBC 
Provider under the JDBC provider, select Version 5.0 data source, and 
then click Next.

4. When the Create a Data Source dialog appears, enter the following and then 
click Finish:

– Name: BankDS
– JNDI name: jdbc/BankDS
– Description: Bank Data Source

Configure the databaseName property
To configure the databaseName in the new data source using the enhanced 
EAR capability in the deployment descriptor to define the location of the 
database for your environment, do the following:

1. Select the data source created in the previous section.

Note: The JDBC provider type list for Cloudscape will contain two entries:

� Cloudscape JDBC Provider
� Cloudscape JDBC Provider (XA)

Since we will not need support for two-phase commits, we choose to use 
the non-XA JDBC provider for Cloudscape.
 Chapter 15. Develop Web applications using EJBs 857



2. Select the databaseName property under the Resource properties.

3. Click Edit next to Resource properties to change the value for the 
databaseName.

4. When the Edit a resource property dialog appears, enter c:\databases\BANK 
in the Value field and then click OK. 

In our example, c:\databases\BANK is the database created for our sample 
application in 15.3.6, “Set up the sample database” on page 854. 

5. Save the Application Deployment Descriptor. 

6. Restart the test server for the changes to the deployment descriptor to take 
effect. 

Set up the default CMP data source
Several data sources can be defined for an enterprise application. In order for 
the EJB container to be able to determine which data source should be used, we 
must configure the BankEJBEAR project to point to the newly created data 
source as follows:

1. Open the J2EE Perspective Project Explorer view.

2. Expand EJB Projects → BankEJB. 

3. Double-click Deployment Descriptor: BankEJB to open the file in the 
Deployment Descriptor Editor. 

4. On the Overview tab, scroll down to the JNDI - CMP Connection Factory 
Binding section.

5. Enter jdbc/BankDS in the JNDI name field.

6. Press Ctrl+S followed by Ctrl+F4 to save and close the deployment 
descriptor.

15.4  Develop an EJB application
Our first step towards implementing the RedBank’s model with EJBs is creating 
the following entity beans (as seen in Figure 15-13 on page 859):

� Customer
� Account
� Transaction

Important: The Edit a resource property dialog allows you to edit the entire 
resource property, including the name. Ensure that you only change the 
value of the databaseName property, not the name.
858 Rational Application Developer V6 Programming Guide



� Debit
� Credit

In this section, we focus on defining and implementing the business logic for the 
entity beans. In 15.4.5, “Object-relational mapping” on page 892, we define the 
mapping to the relational database.

Figure 15-13   Business entities

15.4.1  Create the entity beans
This section describes how to implement the RedBank entity beans in the 
following sequence:

� Define the Customer bean.
� Define the Account and Transaction beans.
� Define the Credit and Debit derived beans.

Define the Customer bean
To define the Customer bean, do the following:

1. Select and expand EJB Projects → BankEJB from the Project Explorer 
view.
 Chapter 15. Develop Web applications using EJBs 859



2. Select File → New → Enterprise Bean.

3. When the Create an Enterprise Bean dialog appears, do the following (as 
seen in Figure 15-14):

– Select Entity bean with container-managed persistence (CMP) fields.
– Bean name: Customer
– Default package: itso.bank.model.ejb
– Leave the remaining options with the default values and click Next.

Figure 15-14   Create an enterprise bean (page 1)

4. When the Enterprise Bean Details dialog appears, we entered the information 
below (as seen in Figure 15-15 on page 862).

This page lets you select the bean supertype, allowing you to define the 
inheritance structures. We will do this in “Define the Credit and Debit derived 
beans” on page 870. For now, we leave the supertype blank.

Tip: This can also be done by right-clicking the Deployment Descriptor for 
the EJB project and selecting New → Enterprise Bean.
860 Rational Application Developer V6 Programming Guide



Additionally, you can define type names, which views you would like to 
create, and finally the key class and CMP attributes.

– Do not check Remote client view.

– Check Local client view (default).

– CMP attributes: Select id:java.lang.Integer and then click Remove.

– Add the CMP attributes by clicking Add.

Note: Most of the time the suggested values for the type names 
(derived from the bean name) are fine, so you do not have to worry 
about them. According to the design, entity beans should have only 
local interfaces, so make sure not to select the Remote client view 
check box. Rational Application Developer knows about this best 
practice, so it will only select Local client view by default.

Note: The Customer class will have a key field, but it will be named ssn 
and be of type java.lang.String.
 Chapter 15. Develop Web applications using EJBs 861



Figure 15-15   Create an entity bean (page 2)

5. When the Create CMP Attribute dialog appears, we entered the following, as 
seen in Figure 15-16 on page 863. This dialog lets you specify the 
characteristics of the new CMP attribute you would like to add to the entity 
bean. 

– Name: ssn
– Type: Select java.lang.String.
– Check Key field.
– Click Apply.
862 Rational Application Developer V6 Programming Guide



Figure 15-16   Create CMP attributes

6. For the Customer bean, repeat the process of adding a CMP attribute for the 
fields listed in Table 15-1. Click Apply after adding each attribute. Click Close 
when done.

Note: Create CMP Attributes.

If you do not define at least one key CMP attribute, you may not create the 
CMP entity bean.

� Array: If the attribute is an array, select the Array check box and specify 
the number of the dimensions for it.

� Key field: By selecting the Key field check box, you indicate that the 
new field should be part of the entity’s unique identifier. You may 
declare as many attributes as you want to perform this role. Rational 
Application Developer is very smart here. If you specify just one key 
attribute of an object type, it will declare that type as the key class. If you 
select an attribute of a non-object type (like int or double), or if you 
select more than one key attribute, the environment will automatically 
create a new key class for you, implement all its methods (including 
equals and hashCode), and declare it as the key class.

� The two last check boxes let you indicate whether you want to promote 
the new attribute (through its getter and setter) to either the remote or 
the local interfaces, or to both. The availability of these options depends 
on which client views you selected, and if the attribute is a key field.
 Chapter 15. Develop Web applications using EJBs 863



Table 15-1   Customer bean’s CMP attributes

7. After closing the CMP Attribute dialog, the Enterprise Bean Details page 
should look similar to Figure 15-17 on page 865. Check Use the single key 
attribute type for the key class.

– If you have one key attribute and it is of an object type, such as String, 
Integer, Float, BigDecimal, and so forth, then a separate key class is not 
required.

– Key wrapper classes are required for the simple data types (int, float, char) 
or if there is more than one key attribute.

Tip: You can enter String, instead of java.lang.String, in the Type field. 
Rational Application Developer will automatically change the type to be 
java.lang.String.

Name Type Attribute type check box

ssn java.lang.String Key field

title java.lang.String Promote getter and setter methods to local interface

firstName java.lang.String Promote getter and setter methods to local interface

lastName java.lang.String Promote getter and setter methods to local interface
864 Rational Application Developer V6 Programming Guide



Figure 15-17   Creating an entity bean (page 2) after adding CMP attributes

8. When the EJB Java Class Details page appears, we accepted the defaults 
and clicked Next.

Important: The Bean superclass on the EJB Java Class Detail, shown in 
Figure 15-18 on page 866, is not related to the Bean supertype field on the 
previous page, shown in Figure 15-17. The former is used to define Java 
class inheritance for the implementation classes that make up the EJB. 
The latter is used to define the EJB inheritance hierarchy. Refer to “Define 
a bean supertype” on page 871 for use of the Bean supertype and EJB 
inheritance feature.
 Chapter 15. Develop Web applications using EJBs 865



Figure 15-18   EJB Class Details page

9. When the Select Class Diagram for Visualization dialog appears, click New.

10.When the New Class Diagram dialog appears, enter BankEJB/diagrams in the 
Enter or select the parent folder field and ejbs in the File name field, as seen 
in Figure 15-19 on page 867, and click Finish.
866 Rational Application Developer V6 Programming Guide



Figure 15-19   Creating a class diagram for EJBs

11.When the dialog closes, expand and select BankEJB → diagrams → 
ejbs.dnx, as shown in Figure 15-20 on page 868, and click Finish.

Note: Although this page allows you to specify a class diagram, we found 
that it defaulted to use the diagram named default.dnx, located in the root 
of the BankEJB project. We chose to place all diagrams in a separate 
folder named diagrams.
 Chapter 15. Develop Web applications using EJBs 867



Figure 15-20   Creating an entity bean (page 4)

The new UML class diagram should be displayed with the Customer entity 
bean, as seen in Figure 15-21 on page 868.

Figure 15-21   Class diagram with Customer entity bean

12.Select File → Save, or press Ctrl+S, to save the diagram, and then close the 
window.
868 Rational Application Developer V6 Programming Guide



Define the Account and Transaction beans
Repeat the same process for the next two CMP entity beans, Account and 
Transaction, according to the data on Table 15-2 and Table 15-3.

Table 15-2   Account bean CMP attributes

Table 15-3   Transaction bean CMP attributes

Important: Make sure to select Use the single key attribute type for the 
key class, as shown on Figure 15-17 on page 865.

Name Type Attribute type check box

id java.lang.String Key field

balance int Promote getter and setter methods to local interface.

Name Type Attribute type check box

id java.lang.String Key field

amount int Promote getter and setter methods to local interface

timestamp java.util.Date Promote getter and setter methods to local interface
 Chapter 15. Develop Web applications using EJBs 869



Define the Credit and Debit derived beans
Complete the creation of our business entities by defining the last two beans: 
Credit and Debit. Both are subtypes of Transaction, so the process of creating 
them is slightly different.

1. Select and expand EJB Projects → BankEJB from the Project Explorer 
view.

2. Select File → New → Enterprise Bean.

3. When the Create an Enterprise Bean dialog appears, do the following to 
define the Credit bean (subtype of Transaction):

– Select Entity bean with container-managed persistence (CMP) fields.
– Bean name: Credit
– Default package: itso.bank.model.ejb
– Leave the remaining options with the default values and click Next.

Tip: Approaches to resolve no natural unique identifier follow. 

It is common to find entities that do not have a natural unique identifier, as is 
the case with our Account and Transaction objects. The EJB 2.0 specification 
approached this problem when it introduced the unknown primary key class 
for CMP entity beans. Even though WebSphere Application Server has 
implemented this part of the specification since Version 5, IBM Rational 
Application Developer V6.0 does not include support for this.

There are basically two approaches to the problem. The first is to have the 
back-end database generate the unique identifiers. This is feasible because 
even though you may have as many application servers as you may like, the 
data pertinent to a single entity will hopefully be stored in just one database. 
The downside to this approach is that every time an entity is created, a 
database table must be locked in order to generate the ID, and thus becomes 
a bottleneck in the process. The upside is that sequential identifiers may be 
generated this way. This was our selected approach for the Account bean.

The second approach would be to generate the universally unique identifiers 
(UUIDs, unique even among distributed systems) in the application server tier. 
This is a little tricky, but can be accomplished. One way to do it is to come up 
with a utility class that generates the UUIDs based on a unique JVM identifier, 
the machine's IP address, the system time, and an internal counter. This 
technique is usually more efficient than having the back-end database 
generate UIDs because it does not involve table locking. This was our 
selected approach for the Transaction bean. We used the class 
com.ibm.ejs.util.Uuid to generate UUIDs. This class ships with Rational 
Application Developer and WebSphere Application Server.
870 Rational Application Developer V6 Programming Guide



4. When the Enterprise Bean Details dialog appears, select Transaction in the 
Bean supertype drop-down, as seen in Figure 15-22, and click Next.

This page lets you select the supertype (allowing you to define the inheritance 
structures), type names, which views you would like to create, and finally the 
key class and CMP attributes.

Figure 15-22   Define a bean supertype

5. When the EJB Java Class Details page appears, click Next.

Note: As mentioned earlier, this page has nothing to do with EJB 
inheritance. As such, we leave the page blank.
 Chapter 15. Develop Web applications using EJBs 871



6. When the Select Class Diagram for Visualization page appears, expand and 
select BankEJB → diagrams → ejbs.dnx and click Finish.

7. Repeat the process for the Debit bean. None of the beans have additional 
attributes, apart from the attributes inherited from the Transaction EJB. They 
only differ in behavior.

8. At this point, we have all the five entities created (Customer, Account, 
Transaction, Credit, and Debit). Your class diagram should look like 
Figure 15-23. As you can see, for each entity bean, we have a primary key 
attribute, regular attributes, and home and component interfaces. 

9. Save the diagram, and the close the editor.

Figure 15-23   Class diagram at entity bean creation phase

15.4.2  Create the entity relationships
Now that the five business entities have been created, it is time to specify their 
relationships: A one-to-many unidirectional association, implementing an 
analysis composition, and a many-to-many bidirectional association (see 
Figure 15-24 on page 873).
872 Rational Application Developer V6 Programming Guide



Figure 15-24   Association relationships in the model

Rational Application Developer offers a couple of facilities to streamline the 
process of both creating and maintaining container-managed relationships 
(CMRs). You can, for instance, visually create relationships with the UML 
Diagram Editor, and the environment will automatically generate all the 
necessary code and deployment descriptor changes. You may, alternatively, edit 
the deployment descriptor directly, and Rational Application Developer will also 
generate the appropriate code changes. Finally, you can use the environment’s 
menus to accomplish the same task.

In the following sections, we will use the first two strategies described above to 
create the association and the composition relationships, respectively.

Association

Composition
 Chapter 15. Develop Web applications using EJBs 873



Customer Account association relationship
The first relationship that we will add is the association between the Customer 
bean and the Account bean. In this example, we demonstrate how to define 
relationships using the UML Diagram Editor.

1. From the Project Explorer view, expand EJB Projects → BankEJB → 
diagrams.

2. Double-click ejbs.dnx to open it with the UML Editor.

3. When the editor opens, click the down-arrow to the right of 0..1:0..1 CMP 
Relationship in the Palette and select 0..*:0..* CMP Relationship, as shown 
in Figure 15-25 on page 874.

Figure 15-25   Selecting the relationship type and multiplicity

4. Left-click and hold the mouse arrow over the Customer bean, and then drag 
the mouse towards the Account bean. Release the button over the Account 
bean to create the association relationship, as shown in Figure 15-26.
874 Rational Application Developer V6 Programming Guide



Figure 15-26   Association relationship between Customer and Account (part 1)

5. Double-click + customer and change to + customers. 

6. Double-click + account and change to + accounts. 

The resulting relationship and the added methods to support it should look 
similar to Figure 15-27.

Note: The names at the ends of the association (in this case customer and 
account) are used to generate accessor methods in the two beans’ 
interface.

The plus sign (+) means that the relationship is visible to the associated 
entity at the respective end.
 Chapter 15. Develop Web applications using EJBs 875



Figure 15-27   Finished customer account relationship

7. Save the changes and close the editor.

Account Transaction composition relationship
The second relationship that needs to be created is the composition between the 
Account and the Transaction beans. It represents the account’s transaction log 
that has to be maintained over time. In this example, we create the relationship 
using the Deployment Descriptor Editor to demonstrate an alternative to the UML 
Diagram Editor.

1. In the Project Explorer view, expand EJB Projects → BankEJB → 
Deployment Descriptor: BankEJB → Entity Beans.

Important: If you ever need to delete the relationship, you need to select it, 
open its context menu, and select Delete from Deployment Descriptor. 

If you select Delete from Diagram, or simply press Delete, the relationship is 
only removed from the diagram, but stays in the model.

If a relationship is deleted from the diagram but stays in the model, it can be 
redrawn by right-clicking one of the related entities and selecting Filters → 
Show / Hide Relationships. The resulting Show/Hide Relationships dialog 
can then be used to show or hide specific relationship types.
876 Rational Application Developer V6 Programming Guide



2. Double-click the Account bean to open the EJB Deployment Descriptor 
Editor. The Deployment Descriptor Editor will open on the Bean tab with the 
Account bean selected. 

3. Scroll down to the Relationships section, as shown in Figure 15-28.

Figure 15-28   Defining relationships with the EJB Deployment Descriptor Editor

4. Click Add to create a new relationship for the Account bean. 

5. The Add Relationship wizard opens, showing an UML view of the 
relationship, with the Account bean already displaying on the left-hand side. 

Select the Transaction bean on the right-hand side list box. The wizard 
should automatically fill in the remaining Role name field, as shown in 
Figure 15-29.

Tip: There are alternative ways to open the EJB deployment descriptor. 
On the Project Explorer view, you can double-click Deployment 
Descriptor: BankEJB, or navigate BankEJB → ejbModule → META-INF 
and double-click ejb-jar.xml.
 Chapter 15. Develop Web applications using EJBs 877



Figure 15-29   Add relationship wizard (part 1)

6. Modify the relationships.

a. Modify the Transaction bean multiplicity. The Account bean’s role name 
and multiplicity are already correct, but the Transaction’s are not and need 
to be edited as follows:

i. Modify the Transaction multiplicity by double-clicking 0..1 and changing 
it to 0..*

ii. Modify the Transaction role name to be plural, due to the relationship’s 
multiplicity (one account may be associated with many transactions) by 
double-clicking the transaction role name and changing it to 
transactions.

b. We also want to guarantee that the same transaction is not added to the 
account twice. Hover the mouse cursor over the Transaction’s end of the 
relationship and select the return type of java.util.Set.
878 Rational Application Developer V6 Programming Guide



c. Hover the mouse cursor over the Account’s end of the relationship to 
display the its role information. As this relationship is a composition 
relationship, the composed objects should have no knowledge about the 
composer. Uncheck the Navigable check box, as seen in Figure 15-30.

Figure 15-30   Add Relationship wizard (part 2)

7. Click Finish to complete the wizard. 

8. Save the deployment descriptor to apply the changes just made and close it.

9. You may now inspect the changes the wizard made to your EJBs. Among 
them are the ones made to the Account bean. 

a. In the Project Explorer view, double-click the AccountLocal interface 
under the Account bean to open it with the Java editor. 

b. The following methods will have been added:

public java.util.Collection getCustomers();
public void setCustomers(java.util.Collection aCustomers);
public java.util.Set getTransactions();
 Chapter 15. Develop Web applications using EJBs 879



public void setTransactions(java.util.Set aTransactions);

c. Close the editor.

15.4.3  Customize the entity beans and add business logic
Now that our five entity beans have been created, it is time for us to do a little 
programming. For each of the beans created, three types were generated: The 
bean class, the home interface, and the local component interface. 

1. View the Account bean, for instance, to see the generated code, as these 
types are shown in Figure 15-31.

From the Project explorer view, select and expand EJB Projects → 
BankEJB → Deployment Descriptor: BankEJB → Entity Beans → 
Account.

Figure 15-31   Generated types for the Account bean

2. Double-click the AccountBean class. 

3. Select the Outline view. It should look similar to Figure 15-32 on page 881.

Note: There is a fourth type associated with the Account bean: String. It is 
the primary key class. If we had chosen a non-object key field or multiple 
key fields, a key class would also have been generated.
880 Rational Application Developer V6 Programming Guide



Figure 15-32   Outline view of the AccountBean class

There are two kinds of methods generated (see Figure 15-32):

� Life-cycle methods, which are the callback methods used by the EJB 
container at predefined events

� Business methods, which manipulate the CMP attributes

Manage the home and component interfaces
As you can see, Rational Application Developer has already generated the 
life-cycle methods and some business methods for us. The latest, of course, are 
the getters and setters. Some of these methods belong to the bean’s home 
interface. Others belong to the local interface. Some of them are simply private to 
the component and should not be exposed.

Whether a method is exposed to the interface or not is a design choice. We will 
make some modifications to the generated interfaces in order to accommodate 
our design decisions.

Limit access to the Transaction bean
We do not want clients to instantiate the Transaction EJB or modify fields in an 
already created instance. The reason for the former is that in our model, this 
represents an abstract entity. While there is no such thing as an abstract EJB, in 
the same sense as an abstract Java class, we can obtain a similar behavior by 
removing any ejbCreate methods from the remote and home interfaces. The 
reason why we do not want clients to change a transaction object is that these 
should appear immutable, as they represent a log of historical transactions.

Life-cycle methods

Business methods

AccountBean class
 Chapter 15. Develop Web applications using EJBs 881



In order to block access for clients to the setter methods, as well as the 
constructor and setters for the Transaction EJB, do the following:

1. In the Outline view for the AccountBean class, right-click setBalance and 
select Enterprise Bean → Demote from Local Interface.

Notice that the L-shaped icon next to setBalance disappears. The seBalance 
method is now inaccessible to clients.

2. In the Project Explorer, expand EJB Projects → BankEJB → Deployment 
Descriptor: BankEJB → Entity Beans → Transaction.

3. Double-click TransactionBean to open TransactionBean.java in the Java 
editor. 

4. In the Outline view, right-click ejbCreate(String) and select Enterprise 
Bean → Demote from Local Home Interface.

Notice that the LH-shaped icon next to ejbCreate(String) disappears.

5. In the Outline view, right-click setAmount(int) and select Enterprise 
Bean → Demote from Local Interface.

6. In the Outline view, right-click setTimestamp(int) and select Enterprise 
Bean → Demote from Local Interface.

Modify constructors for Transaction, Credit, and Debit
When creating a transaction object, we want to be able to specify the transaction 
amount and let the bean generate the identifier and timestamp automatically. Do 
the following to accomplish this.

1. In the Project Explorer, expand EJB Projects → BankEJB → Deployment 
Descriptor: BankEJB → Entity Beans → Transaction.

2. Double-click TransactionBean to open TransactionBean.java in the Java 
editor. 

3. Modify the ejbCreate and ejbPostCreate methods so they look like 
Example 15-1 on page 883. Save when done.

Tip: The Java code for this section can be copied from the file 
c:\6449code\ejb\source\Transactions.jpage, included with the additional 
material for this book.

Note: As noted earlier, the class com.ibm.ejs.util.Uuid, referenced in 
Example 15-1, is used to generate unique identifiers. We use it here to 
automatically generate identifiers for any transaction object. Clients will 
thus not have to worry about this.
882 Rational Application Developer V6 Programming Guide



Example 15-1   TransactionBean ejbCreate and ejbPostCreate

public java.lang.String ejbCreate(int amount)
throws javax.ejb.CreateException {

setId((new com.ibm.ejs.util.Uuid()).toString());
setAmount(amount);
setTimestamp(new java.util.Date());
return null;

}

public void ejbPostCreate(int amount)
throws javax.ejb.CreateException {

}

4. In the Project Explorer, expand EJB Projects → BankEJB → Deployment 
Descriptor: BankEJB → Entity Beans → Transaction → Credit.

5. Double-click CreditLocalHome to open CreditLocalHome.java in the Java 
editor.

6. Modify the create method signature to match Example 15-2. Save when 
done.

Example 15-2   Modify create method in CreditLocalHome.java

public itso.bank.model.ejb.CreditLocal create(int amount)
throws javax.ejb.CreateException;

7. In the Project Explorer, expand EJB Projects → BankEJB → Deployment 
Descriptor: BankEJB → Entity Beans → Transaction → Debit.

8. Double-click DebitLocalHome to open DebitLocalHome.java in the Java 
editor.

9. Modify the create method signature to match Example 15-3. Save when 
done.

Note: At this stage you will likely see the following two warning messages 
in the Problems view:

CHKJ2504W: The ejbCreate matching method must exist on itso.bank.model.ej
b.CreditBean (EJB 2.0: 10.6.12)

CHKJ2504W: The ejbCreate matching method must exist on itso.bank.model.ej
b.DebitBean (EJB 2.0: 10.6.12)

This is simply a message that we need to align the subtypes Credit and 
Debit with the new Transaction constructor. We will do this in the next two 
steps.
 Chapter 15. Develop Web applications using EJBs 883



Example 15-3   Modify create method in DebitLocalHome.java

public itso.bank.model.ejb.DebitLocal create(int amount)
throws javax.ejb.CreateException;

Add the business logic
Getters and setters are generated automatically, but the business methods must 
be implemented manually.

We will need to add business logic to the Transaction, Credit, Debit, and Account 
EJBs. We will add a new method, getSignedAmount, to the transaction EJBs. 
This method will return the transaction amount with a sign that denotes the 
transaction “direction” in such a way that the return value added to the 
pre-transaction account balance will yield the post-transaction account balance.

We will then add the method processTransaction to the Account EJB. This 
method will, given a Transaction instance, update the account balance, utilizing 
the new getSignedAmount method.

Add business logic to the transaction EJBs
To add the getSignedAmount method to the transaction EJBs, do the following:

1. Open TransactionBean.java for editing.

2. Add the method getSignedAmount, shown in Example 15-4, to the 
TransactionBean class.

Example 15-4   TransactionBean getSignedAmount method

public int getSignedAmount()
throws itso.bank.exception.ApplicationException

{
throw new itso.bank.exception.ApplicationException(

"Transaction.getSignedAmount invoked!");
}

The implementation of the getSignedAmount method is not relevant in the 
base Transaction bean, since the method is conceptually abstract. In a Java 
class hierarchy, this method would be made abstract, but this is not possible 
in an EJB hierarchy. If we were to define the getSignedAmount as abstract, 
the deployed code would have errors, and the EJB would not be deployable.

Tip: The Java code for this section can be copied from the file 
c:\6449code\ejb\source\Transactions.jpage, included with the additional 
material for this book.
884 Rational Application Developer V6 Programming Guide



We thus choose to throw an exception from the method in case a 
programming error results in the execution of the method.

3. Promote the newly created getSignedAmount method to the bean’s local 
interface.

a. In the Outline view, right-click getSignedAmount and select Enterprise 
Bean → Promote to Local Interface. 

b. Save the changes and close the Java editor.

4. Modify the CreditBean class.

a. Double-click the CreditBean class on the Project Explorer view to open 
the class in the Java editor. 

b. Insert the declarations in Example 15-5 to the CreditBean.java file.

Example 15-5   CreditBean extensions to TransactionBean

/**
* Insert before the first method
*/
public static final String TYPE_KEY = "Credit";

/**
* Insert after the last method
*/
public int getSignedAmount()

throws itso.bank.exception.ApplicationException
{

return getAmount();
}

c. Save your changes and close the editor.

4. Modify the DebitBean class.

Tip: As getSignedAmount is an inherited method, the code can be 
alternatively created by Rational Application Developer’s sourcing 
facility, relieving you from having to type it. 

1. Select the CreditBean class from the Outline view, right-click, and 
select Source → Override/Implement Methods.

2. On the resulting dialog, click Deselect All to make sure that no 
other methods have their signatures generated. Next, check the 
getSignedAmount method and click OK. 

3. Manually add the following after the CreditBean class:

public static final String TYPE_KEY = "Credit";
 Chapter 15. Develop Web applications using EJBs 885



a. Double-click the DebitBean class on the Project Explorer view to open the 
class up on the Java editor. 

b. Insert the declarations in Example 15-6 to the CreditBean.java file.

Example 15-6   DebitBean extensions to TransactionBean

/**
* Insert before the first method
*/
public static final String TYPE_KEY = "Debit";

/**
* Insert after the last method
*/
public int getSignedAmount()

throws itso.bank.exception.ApplicationException
{

return -getAmount();
}

c. Save the changes and close the editor.

Add business logic to the Account bean
When we specified the account bean’s CMP fields, for instance, we configured 
the wizard to expose both the setter and the getter for the balance attribute to the 
bean’s local interface. This is why there is a small L-shaped icon next to the 
getBalance and setBalance methods. While it is fine for a client to retrieve an 
account’s balance, we do not want the clients to change the balance by calling 
the setBalance method. Later we will implement and expose another business 
method, processTransaction, that manipulates the balance, adhering to business 
rules.

From a business perspective, it makes no sense to allow the creation of 
accounts that are not associated to any customers. Thus, the first modification 
that we want to make is to guarantee that accounts are not created unless a 
primary customer is specified.

Note: The TYPE_KEY constant defined in the Debit and Credit classes is 
used by the EJB container to determine what type a given record in the 
database refers to, since both Credit and Debit instances will be persisted 
to the same database table. The value of this constant is compared to the 
value of the DISCRIM_<tablename> column, where <tablename> is the 
name of the table that the EJB is being persisted to.
886 Rational Application Developer V6 Programming Guide



1. Open the AccountBean class by double-clicking it from the Project Explorer 
view.

2. Refactor the ejbCreate(String) method signature.

a. From the Outline view, select the existing ejbCreate(String) method.

b. Right-click and select Enterprise Bean → Demote from Local Home 
Interface to remove the create method declaration from the bean’s home 
interface. 

c. Modify the ejbCreate(String) and ejbPostCreate(String) methods so that 
they look like the definitions in Example 15-7.

Example 15-7   Account bean’s ejbCreate and ejbPostCreate methods

public java.lang.String ejbCreate(CustomerLocal primaryCustomer) 
throws javax.ejb.CreateException

{
setId((new com.ibm.ejs.util.Uuid()).toString());
return null;

}

public void ejbPostCreate(CustomerLocal primaryCustomer)
throws javax.ejb.CreateException

{

Tip: The Java code for this section can be copied from the file 
c:\6449code\ejb\source\AccountBean.jpage, included with the additional 
material for this book.

Tip: For refactoring, if you need to edit the signature of any method that 
already belongs to either the remote or home interface, the easiest way is 
as follows:

� First demote the method from the interface.
� Edit the signature.
� Promote the method back to the interface. 

If you do not demote the method from the interfaces first, you will have to 
manually edit the method signatures in these interfaces. Using the 
approach mentioned here, you let Rational Application Developer update 
the method signatures in the interfaces when the method is promoted back 
to the interfaces.

Since the throws clause for a method is part of the method signature, this 
procedure should also be followed when changing this clause.
 Chapter 15. Develop Web applications using EJBs 887



getCustomers().add(primaryCustomer);
}

d. Now add the create method back to the Account bean’s home interface by 
selecting the ejbCreate(CustomerLocal) method on the Outline view, 
right-clicking it, and selecting Enterprise Bean → Promote to Local 
Home Interface.

3. When we created the relationship between the Account and the Customer 
beans, the method setCustomers(Collection) was created. It does not have to 
be available to the bean’s clients. Right-click setCustomers(Collection) in 
the Outline view and demote it from the local interface by selecting 
Enterprise Bean → Demote from Local Interface.

4. Demote the accessors for the transactions relation.

As you may recall, the relationship between the Account bean and the 
Transaction bean is a composition. This means that references to transaction 
objects cannot be exported to objects outside of the Account bean.

When we created the relationship, getTransactions and setTransactions(Set) 
methods were generated and added to the local interface for the Account 
bean. We want clients to be able to check the transaction log. If we were to 
allow access to these methods, clients would be able not only to do so, but 
also to add transactions to the log without correctly processing them using the 
processTransaction method, which we will define later in this section. The 
result would be that the affected account object would be put into an invalid 
state. This would be breaching the object’s encapsulation, and thus should 
not be allowed. 

Demote both getTransactions and setTransactions(Set) methods, then add 
the getLog method as follows:

a. Right-click getTransactions from the Outline view, and select Enterprise 
Bean → Demote from Local Interface.

b. Right-click setTransactions(Set) from the Outline view, and select 
Enterprise Bean → Demote from Local Interface.

Important: The getCustomers method was generated when we 
created the association relationship between the Account and the 
Customer beans. This method cannot be called from the Account’s 
ejbCreate method. According to the specification, during ejbCreate the 
instance cannot acquire references to the associated entity objects.

In the ejbPostCreate method, on the other hand, the instance may 
reference the associated entity objects. Thus, a call to getCustomers 
can be made.
888 Rational Application Developer V6 Programming Guide



c. Add the getLog method, as seen in Example 15-8, to the 
AccountBean.java.

Example 15-8   Account bean’s getLog method

public java.util.Set getLog()
{

return java.util.Collections.unmodifiableSet(getTransactions());
}

d. Right-click getLog from the Outline view, and select Enterprise Bean → 
Promote from Local Interface.

5. Add the processTransaction method to the AccountBean class.

a. Double-click AccountBean in the Project Explorer view to open the class 
in the Java editor. 

b. Insert the declarations in Example 15-9 in to the AccountBean.java file to 
add the processTransaction method.

Example 15-9   AccountBean processTransaction method

public void processTransaction(TransactionLocal transaction)
throws itso.bank.exception.ApplicationException

{
setBalance(getBalance() + transaction.getSignedAmount());
getTransactions().add(transaction);

}

The processTransaction method receives a transaction object local 
reference and changes the account’s balance by adding the transaction’s 
signed amount to it. Later in this chapter, we will alter this method to also 
add the transaction reference into a transaction log. 

c. Save the changes and close the editor.

6. Promote the processTransaction method to the bean’s local interface.

a. Add the method to the bean’s local interface by right-clicking 
processTransaction from the Outline view.

b. Select Enterprise Bean → Promote to Local Interface.
 Chapter 15. Develop Web applications using EJBs 889



15.4.4  Creating custom finders
When you create an entity bean, you always get the findByPrimaryKey finder 
method on the home interface. Sometimes, though, you need to find an entity 
based on criteria other than just the primary key. For these occasions, the EJB 
2.1 specification provides a query language called EJB QL. Custom finder 
methods are declared in the home interface and defined in the EJB deployment 
descriptor using the EJB QL.

Our example requires two similar simple custom finders: One for the Account 
bean and the other for the Customer bean. To add them, do the following:

1. From the Project Explorer, expand and double-click EJB Projects → 
BankEJB → diagrams → ejbs.dnx to open the class diagram in the UML 
Diagram Editor.

2. Modify the Account bean to create a findAll query.

a. Right-click the Account bean to open its context menu and then select 
Add EJB → Query. 

b. When the Add Finder Descriptor wizard appears, do the following:

• Method: Select New.

The only finder we have in our AccountLocalHome interface is the 
default findByPrimaryKey. Rational Application Developerwill take care 
of updating the home interface for you by adding the declaration of the 
new finder method.

• Method Type: Select find method.

The Method Type field lets you select whether you want to create a 
descriptor for a finder method or for an ejbSelect method. The 
difference between the two is that finder methods get promoted to the 
bean's home interface, whereas ejbSelect methods do not. The 
ejbSelect methods are useful as internal helper methods, as they 
cannot be called by clients.

• Type: Check Local.

The Type field lets you select to which home interface, either local or 
remote, you would like the finder method promoted. 

Note: We found that in some cases, the Remote check box was 
enabled, since the Account bean only exposes a local view. If you 
check Remote, the query is only added to the deployment 
descriptor, but no changes are made to the home interface. Make 
sure that only Local is checked.
890 Rational Application Developer V6 Programming Guide



• Name: findAll
• Return type: Select java.util.Collection.

The dialog should look like Figure 15-33 on page 891 after making the 
selections. Click Next to continue.

Figure 15-33   Adding a new finder descriptor (page 1)

c. When the Add Finder Descriptor dialog appears, select Find All Query 
and click Finish (see Figure 15-34 on page 892).
 Chapter 15. Develop Web applications using EJBs 891



Figure 15-34   Adding a new finder descriptor (page 2)

3. Repeat the same steps for the Customer bean to create a findAll query.

4. Your changes should already be saved, so you may close the editor.

15.4.5  Object-relational mapping
Container-managed persistence (CMP) entity beans delegate their persistence 
to the container. As mentioned in “EJB types” on page 836, this means that it is 
the responsibility of the EJB container to handle the details of how to store the 
internal state of the EJBs.

In order for the container to be able to do this, we need to provide information 
about how the EJB fields should be mapped to the relational database. This 
information is stored in the deployment descriptor, and during deployment, the 
JDBC code to perform the operations is generated by the container. 

When the beans are actually deployed, associations to real data sources can be 
made to dynamically bind the bean to the data. In this way, the CMPs are 
abstract classes that associate to data, but do not provide any implementation for 
accessing data themselves.
892 Rational Application Developer V6 Programming Guide



To facilitate development, deployment, and testing, Rational Application 
Developer contains the tools for the developer to both define the mappings and 
create deployment bindings. 

The advantages to separating the development and persistence concerns are 
numerous. Apart from achieving database implementation independence, the 
developer is free to work with object views of the domain data instead of data 
views and writing SQL, and is allowed to focus on the business logic, instead of 
the technical details of accessing the database. 

As mentioned, the CMP can be developed largely independently of the data 
source, and allows a clear separation of business and data access logic. This is 
one of the fundamental axioms of aspect-oriented programming, where the 
aspect of persistence can be removed from the development process and 
applied later, in this case at deployment time. 

Rational Application Developer offers three different mapping strategies:

� Top down is when you start from an object-oriented model and let the 
environment generate the data model automatically for you, including the 
object-relational mapping and the DDL that you would use to create the tables 
in the database.

� Bottom up is when you start from a data model and let Rational Application 
Developer generate the object model automatically for you, including the 
creation of the entity beans based on tables and columns that you select.

� Meet in the middle is the compromise strategy, in which you keep both your 
existing object-oriented and data models, creating a mapping between the 
two. The mapping process is usually started by Rational Application 
Developer, based on cues like attribute names and types, and completed 
manually by the Developer.

For the ITSO Bank application, we will use the meet in the middle strategy 
because we do have an existing database for application data.

Note: This strategy is preferred when the data backend does not exist and 
will be created from scratch.

Note: This strategy is not recommended for object-oriented applications, 
because the data model is less expressive than the object model. It should 
be used only for prototyping purposes.
 Chapter 15. Develop Web applications using EJBs 893



The BANK database schema
This chapter uses the same relational model created in Chapter 8, “Develop Java 
database applications” on page 333. Figure 15-35 shows the existing data 
model.

Figure 15-35   Existing relational model

Our objective is to map the object model created in 15.4, “Develop an EJB 
application” on page 858, to the existing relational model. As mentioned, this is a 
more realistic approach than creating a new top-down mapping from scratch, 
although a top-down mapping would be simpler and more convenient if a 
relational database model did not already exist.
894 Rational Application Developer V6 Programming Guide



Generate EJB-to-RDB mapping
We now create a mapping between the object-oriented EJB model and the 
relational database model, as defined by the BANK database schema. To 
generate the EJB-to-RDB mapping, do the following:

1. In the Project Explorer view of the J2EE perspective, right-click EJB 
Projects → BankEJB and select EJB to RDB Mapping → Generate Map 
from the context menu. 

2. When the EJB to RDB Mapping wizard appears, select Use an existing 
backend folder. Select CLOUDSCAPE_V51_1 and click Next (see 
Figure 15-36 on page 895).

Figure 15-36   Using an existing backend folder

3. When the Create new EJB / RDB Mapping dialog appears, select Meet In the 
Middle and click Next (Figure 15-37 on page 896).

Note: This is the folder that was created when we copied the database 
metadata to the EJB project folder in 15.3.6, “Set up the sample database” 
on page 854.
 Chapter 15. Develop Web applications using EJBs 895



The Create new EJB / RDB Mapping page lets you select which kind of 
mapping you would like to create. The options displayed are the ones 
discussed earlier:

– Bottom-Up, which creates a new set of EJBs based on an existing 
database schema.

– Top-Down, which automatically generates a new database schema 
supporting the existing enterprise beans and the mapping between the 
existing object model and the new relational model. This option is greyed 
out since we chose to use an existing backend folder on the previous 
page.

– Meet-In-The-Middle, which generates a map between the existing object 
and relational models.

Figure 15-37   Creating a meet-in-the-middle EJB-to-RDB mapping

4. When the Select Meet-in-Middle Mapping options page appears, select 
Match by Name (as seen in Figure 15-39 on page 898) and click Finish.

When selecting Match by Name, Rational Application Developer will attempt 
to match the entity beans to table names and entity bean field names to 
column names. When the EJBs and their fields are appropriately named, the 
amount of manual work will be minimized.
896 Rational Application Developer V6 Programming Guide



Figure 15-38   Select meet-in-the-middle option

Completing the EJB-to-RDB mapping
After completing the EJB to RDB wizard from the previous section, the 
Map.mapxmi editor will open. The display should look similar to Figure 15-39 on 
page 898. 

As you can see, the wizard has already mapped the Customer and Account 
beans to the correct tables, and some of the fields are mapped to the correct 
columns. The mapped items carry a little triangle as an indicator, and they are 
listed in the bottom pane.

There are two possible methods of completing the mapping: Drag-and-drop, and 
using the context menus and choosing Create Mapping.
 Chapter 15. Develop Web applications using EJBs 897



Figure 15-39   Generated object-relational mapping

To complete the EJB-to-RDB mapping using the drag-and-drop approach, do the 
following:

1. Map the EJBs to tables.

A bean must be mapped to a table before you can map the attributes of the 
bean to the columns.

a. Drag the Transaction EJB and drop it on the ITSO.TRANSACTION1 
table.

b. Expand the Transaction EJB.

c. Drag the Credit EJB and drop it on the ITSO.TRANSACTION1 table.

d. Drag the Debit EJB and drop it on the ITSO.TRANSACTION1 table.
898 Rational Application Developer V6 Programming Guide



2. Map the EJB attributes to the table columns.

Some fields have not been matched automatically. We can perform the 
manual mapping by dragging and dropping attributes in the left pane to 
relational columns on the right, or vice-versa.

a. Expand the Transaction EJB and the TRANSACTION1 table.

b. Drag the id attribute of the Transaction EJB to the ID column of the 
ITSO.TRANSACTION1 table.

c. Drag the amount attribute of the Transaction EJB to the AMOUNT column 
of the ITSO.TRANSACTION1 table.

d. Drag the timestamp attribute of the Transaction EJB to the TIMESTAMP1 
column of the ITSO.TRANSACTION1 table.

3. Map the EJB container-managed relationships to the foreign key relationships 
between the database tables.

a. Right-click the ITSO.TRANSACTION1 table and select Open Table 
Editor.

b. When the Table Editor opens, switch to the Foreign Keys tab.

c. Click Add Another.

Several edit fields, along with a Source Columns area that allows you to 
select columns for the foreign key, will appear in the right side of the page, 
as shown in Figure 15-40 on page 900.

The value in the Foreign key name field is generated automatically and will 
have a different value for you.

d. Enter FK_TRANSACTION_ACCOUNT in the Foreign key name field

e. Select ITSO.ACCOUNT in the Target Table drop-down list.

f. Select TRANSACTIONSACCOUNTINVERSE_ID on the source column 
and click > to add it to the list on the right. 

g. Save and close the Table Editor.

Tip: The DISCRIM_TRANSACTION1 column of the 
ITSO.TRANSACTION1 table is the discriminator field. It is used to tell 
whether a transaction is a debit or a credit. The contents of this column 
correspond to the value of the TYPE_KEY constant field, which was added 
to the Credit and Debit beans in “Modify constructors for Transaction, 
Credit, and Debit” on page 882.

The DISCRIM_ prefix is reserved for use by the persistence manager.
 Chapter 15. Develop Web applications using EJBs 899



Figure 15-40   Creating a foreign key with the table editor

h. In the Map.mapxmi editor, drag [0..1] account : Account from the 
Transaction bean and drop it on FK_TRANSACTION_ACCOUNT.

i. Right-click the ITSO.ACCOUNTS_CUSTOMERS table and select Open 
Table Editor. 

j. Create two foreign keys:

i. Right-click the ITSO.ACCOUNTS_CUSTOMERS table and select 
Open Table Editor.

ii. Switch to the Foreign Keys tab.

iii. Click Add Another.

iv. Enter FK_CUSTOMER_ACCOUNT in the Foreign key name field.

v. Select ITSO.ACCOUNT in the Target Table drop-down list.

vi. Select ACCOUNTS_ID on the source column and click > to add it to 
the list on the right. 

vii. Click Add Another.

viii.Enter FK_ACCOUNT_CUSTOMER in the Foreign key name field.
900 Rational Application Developer V6 Programming Guide



ix. Select ITSO.CUSTOMER in the Target Table drop-down list.

x. Select CUSTOMERS_SSN on the source column and click > to add it 
to the list on the right. 

xi. Save and close the Table Editor.

k. Expand the Customer EJB, and the ITSO.ACCOUNT_CUSTOMERS 
table. Drag [0..*] accounts: Account to FK_CUSTOMER_ACCOUNT.

l. Expand the Account EJB. Drag the [0..*] customers: Customer to 
FK_ACCOUNT_CUSTOMER.

The Outline view of the mapping editor summarizes our mapping activities 
(Figure 15-41).

Figure 15-41   Outline view of the mapping editor

4. Save the mapping by pressing Ctrl+S and close the Map Editor.

15.4.6  Implement the session facade
The next EJB that we have to build is the session facade: The Bank stateless 
session bean (Figure 15-42).
 Chapter 15. Develop Web applications using EJBs 901



Figure 15-42   Business model session facade

Create the Bank session bean
To create the session bean, do the following:

1. In the Project Explorer view, expand EJB Projects → BankEJB → 
diagrams.

2. Double-click the ejbs.dnx diagram file to open it in the diagram editor.

3. In the Palette view, select EJB → Session Bean and click the canvas.

4. When the Create a new Session bean dialog appears, enter the following (as 
seen in Figure 15-43 on page 903), and then click Next:

– EJB project: Select BankEJB.
– Bean name: Bank
– Source folder: ejbModule
– Default package: itso.bank.facade.ejb
902 Rational Application Developer V6 Programming Guide



Figure 15-43   Creating a new session bean (page 1)

5. When the Enterprise Bean Details dialog appears, ensure that Stateless is 
selected in the Session type listbox and Container is selected in the 
Transaction type listbox, as shown in Figure 15-44 on page 904, and click 
Finish. 

Note that the default selection for the session bean is to create a remote client 
view instead of a local client view, as for the entity beans (see Figure 15-15 on 
page 862). This is because the environment knows that session beans are 
normally used to implement the model’s facade and, as such, need remote 
interfaces as opposed to local ones.

6. Save the diagram to apply your changes, and close the UML Editor.
 Chapter 15. Develop Web applications using EJBs 903



Figure 15-44   Creating a new session bean (page 2)

Edit the session bean
We will now add the facade methods that will be used by clients to perform 
banking operations.

1. In the Project Explorer view of the J2EE Perspective, expand EJB 
Projects → BankEJB → Deployment Descriptor: BankEJB → Session 
Beans → Bank.

2. Double-click BankBean to open BankBean.java in the Java source editor.

3. Add the import statements from Example 15-10 to the file.

Tip: The Java code for this section can be copied from the file 
c:\6449code\ejb\source\BankBean.jpage, included with the additional material 
for this book.
904 Rational Application Developer V6 Programming Guide



Example 15-10   Import statements for BankBean.java

import itso.bank.exception.*;
import itso.bank.model.*;
import itso.bank.model.ejb.*;

import java.util.Collection;
import java.util.Iterator;
import java.util.Set;

4. Complete the getCustomer method.

a. Enter the method stub for the getCustomer method shown in 
Example 15-11 after the last method of the BankBean class.

Example 15-11   The getCustomer method stub

public Customer getCustomer(String ssn)
throws UnknownCustomerException

{
}

b. Place the cursor in the getCustomer method body.

c. Switch to the Snippets view and double-click EJB → Call an EJB “find” 
method.

d. When the Insert EJB Find wizard appears, click New EJB Reference. 

e. When the Add EJB Reference dialog appears, select Enterprise Beans 
in the workspace, expand and select BankEJBEAR → BankEJB → 
Customer, ensure that Local is selected in the Ref type drop-down, and 
click Finish.

Tip: The Snippets view is usually located in the same panel as the 
Outline view. If it is not visible, change to the Outline view and select 
Window → Show View → Other, and then select Basic → Snippets 
and click OK.

Note: The name defaults to ejb/<BeanName>, where <BeanName> is 
the name of the bean that you are adding a reference to. You can 
change this, but we choose to use the default.
 Chapter 15. Develop Web applications using EJBs 905



Figure 15-45   Adding the ejb/Customer EJB reference

f. When you return the Insert EJB Find wizard, click Next.

g. When the Select Method page appears, select findByPrimaryKey(String 
primaryKey) and click Next.

h. When the Enter Parameter Values page appears, enter ssn in the Value 
column of the first row and click Finish.

Several things will have happened when you are returned to the Java editor:

– A new EJB reference has been added to the Bank session bean, as 
shown in Figure 15-46 on page 908.

– A new line of code, shown in Example 15-12, has been added at the 
current cursor location.

Example 15-12   New code to find a Customer bean by its primary key

CustomerLocal aCustomerLocal = find_CustomerLocalHome_findByPrimaryKey(ssn);

– Example 15-12 invokes a new local method, 
find_CustomerLocalHome_findByPrimaryKey, which has been added after 
906 Rational Application Developer V6 Programming Guide



the last method of the class. The code for this method is shown in 
Example 15-13.

Example 15-13   Generated find_CustomerLocalHome_findByPrimaryKey method

protected CustomerLocal find_CustomerLocalHome_findByPrimaryKey(
String primaryKey) {

CustomerLocalHome aCustomerLocalHome = (CustomerLocalHome) ServiceLocatorManager
.getLocalHome(STATIC_CustomerLocalHome_REF_NAME,

STATIC_CustomerLocalHome_CLASS);
try {

if (aCustomerLocalHome != null)
return aCustomerLocalHome.findByPrimaryKey(primaryKey);

} catch (javax.ejb.FinderException fe) {
// TODO Auto-generated catch block
fe.printStackTrace();

}
return null;

}

– Example 15-13 uses some constants, which have been added before the 
first method in the class. The definition for these is shown in 
Example 15-14.

Example 15-14   Constants to support the find_CustomerLocalHome_findByPrimaryKey method

private final static String STATIC_CustomerLocalHome_REF_NAME = "ejb/Customer";
private final static Class STATIC_CustomerLocalHome_CLASS = CustomerLocalHome.class;

– Additionally, the import statements, shown in Example 15-15, have been 
added at the top of the file.

Example 15-15   Imports added to the BankBean.java file

import itso.bank.model.ejb.CustomerLocal;
import com.ibm.etools.service.locator.ServiceLocatorManager;
import itso.bank.model.ejb.CustomerLocalHome;

– Finally, the JAR file serviceLocatorMgr.jar is added to the BankEJBEAR 
Enterprise Application, as shown in Figure 15-46 on page 908. This JAR, 
which contains the implementation of the ServiceLocatorManager class 
used in Example 15-13, is also added to the Java build path and the Java 
JAR Dependencies for the BankEJB project.
 Chapter 15. Develop Web applications using EJBs 907



Figure 15-46   New JAR and EJB Reference to the Customer bean for the Bank bean

i. Modify the find_CustomerLocalHome_findByPrimaryKey method to match 
the code in Example 15-16. The difference, which consists of throwing an 
application-specific exception when the customer cannot be found, is 
highlighted in bold.

Example 15-16   Modified find_CustomerLocalHome_findByPrimaryKey method

protected CustomerLocal find_CustomerLocalHome_findByPrimaryKey(String primaryKey)
throws UnknownCustomerException

{
CustomerLocalHome aCustomerLocalHome = (CustomerLocalHome) ServiceLocatorManager

.getLocalHome(STATIC_CustomerLocalHome_REF_NAME,
STATIC_CustomerLocalHome_CLASS);

try {
if (aCustomerLocalHome != null)

return aCustomerLocalHome.findByPrimaryKey(primaryKey);
} catch (javax.ejb.FinderException fe) {

// Customer not found
throw new UnknownCustomerException(primaryKey);

}
return null;

}

j. Complete the getCustomer method, as shown in Example 15-17. The 
method uses the find_CustomerLocalHome_findByPrimaryKey method to 
908 Rational Application Developer V6 Programming Guide



look up the customer in the database and then builds a data transfer 
object and returns that to the caller.

Example 15-17   Completed getCustomer method

public Customer getCustomer(String ssn)
throws UnknownCustomerException

{
CustomerLocal aCustomerLocal = find_CustomerLocalHome_findByPrimaryKey(ssn);
Customer customer = new Customer();
customer.setSsn(ssn);
customer.setTitle(aCustomerLocal.getTitle());
customer.setFirstName(aCustomerLocal.getFirstName());
customer.setLastName(aCustomerLocal.getLastName());
return customer;

}

5. Complete the getAccount method using a similar approach to the 
getCustomer method. The finished getAccount method is shown in 
Example 15-18.

Example 15-18   Completed getAccount method

public Account getAccount(String accountNumber)
throws UnknownAccountException

{
AccountLocal anAccountLocal = find_AccountLocalHome_findByPrimaryKey(accountNumber);

Account account = new Account();
account.setAccountNumber(accountNumber);
account.setBalance(anAccountLocal.getBalance());

return account;
}

Example 15-19 shows the find_AccountLocalHome_findByPrimaryKey 
method, modified to throw the application-specific exception 
UnknownAccountException.

Example 15-19   Completed find_AccountLocalHome_findByPrimaryKey method

protected AccountLocal find_AccountLocalHome_findByPrimaryKey(String primaryKey) 
throws UnknownAccountException

{
AccountLocalHome anAccountLocalHome = (AccountLocalHome) ServiceLocatorManager

.getLocalHome(STATIC_AccountLocalHome_REF_NAME,
STATIC_AccountLocalHome_CLASS);

try {
if (anAccountLocalHome != null)

return anAccountLocalHome.findByPrimaryKey(primaryKey);
 Chapter 15. Develop Web applications using EJBs 909



} catch (javax.ejb.FinderException fe) {
// Account does not exist
throw new UnknownAccountException(primaryKey);

}
return null;

}

6. Now that we have utility functions to look up accounts and customers, we can 
implement the methods for updating a customer (updateCustomer), retrieving 
the accounts for a customer (getAccounts), and the transactions for an 
account (getTransactions). These are shown in Example 15-20.

Example 15-20   Completed updateCustomer, getAccounts, and getTransactions methods

public void updateCustomer(String ssn, String title, String firstName, String lastName) 
throws UnknownCustomerException

{
CustomerLocal aCustomerLocal = find_CustomerLocalHome_findByPrimaryKey(ssn);

aCustomerLocal.setTitle(title);
aCustomerLocal.setFirstName(firstName);
aCustomerLocal.setLastName(lastName);

}

public Account[] getAccounts(String ssn)
throws UnknownCustomerException

{
CustomerLocal aCustomerLocal = find_CustomerLocalHome_findByPrimaryKey(ssn);

Collection colAccounts = aCustomerLocal.getAccounts();
Iterator itAccounts = colAccounts.iterator();
Account[] arrAccount = new Account[colAccounts.size()];
int i = 0;
while (itAccounts.hasNext()) {

AccountLocal accountLocal = (AccountLocal) itAccounts.next();
Account account = new Account();
account.setAccountNumber(accountLocal.getPrimaryKey().toString());
account.setBalance(accountLocal.getBalance());
arrAccount[i++] = account;

}

return arrAccount;
}

public Transaction[] getTransactions(String accountNumber)
throws UnknownAccountException

{
AccountLocal anAccountLocal = find_AccountLocalHome_findByPrimaryKey(accountNumber);
Set setTransactions = anAccountLocal.getLog();
910 Rational Application Developer V6 Programming Guide



Iterator itTransactions = setTransactions.iterator();
Transaction[] arrTransaction = new Transaction[setTransactions.size()];
int i = 0;
while (itTransactions.hasNext()) {

TransactionLocal transactionLocal = (TransactionLocal) itTransactions
.next();

Transaction transaction = null;
if (transactionLocal instanceof CreditLocal) {

transaction = new Credit();
} else {

transaction = new Debit();
}
transaction.setAccountNumber(accountNumber);
transaction.setAmount(transactionLocal.getAmount());
transaction.setTimestamp(transactionLocal.getTimestamp());
arrTransaction[i++] = transaction;

}

return arrTransaction;
}

7. In order to implement the transaction methods, we need code to create a new 
transaction. The method is similar to creating code for an EJB lookup method:

a. Create a method stub for the deposit method, as shown in Example 15-21, 
placing the cursor inside the method body.

Example 15-21   Method stub for the deposit method

public void deposit(String accountNumber, int amount)
throws UnknownAccountException, ApplicationException

{
}

b. In the Snippets view, double-click EJB → Call an EJB “create” method.

c. When the Insert EJB Create wizard appears, click New EJB Reference. 

d. When the Add EJB Reference dialog appears, select Enterprise Beans 
in the workspace, expand and select BankEJBEAR → BankEJB → 
Credit, ensure that Local is selected in the Ref type drop-down, and click 
Finish.

e. When you return the Insert EJB Create wizard, click Finish.

Similar resources to the Insert EJB Find wizard are created for you:

• An EJB reference named ejb/Credit is created for the Bank session 
bean.

• A createCreditLocal method is created in the BankBean class.
 Chapter 15. Develop Web applications using EJBs 911



• Constants STATIC_CreditLocalHome_REF_NAME and 
STATIC_CreditLocalHome_CLASS are added to the BankBean class.

• Import statements for itso.bank.model.ejb.CreditLocalHome and 
itso.bank.model.ejb.CreditLocal are added to BankBean.java.

f. Modify the generated createCreditLocal method to match the code shown 
in Example 15-22.

Example 15-22   Completed createCreditLocal method, customizations shown in bold

protected CreditLocal createCreditLocal(int amount)
throws ApplicationException

{
CreditLocalHome aCreditLocalHome = (CreditLocalHome) ServiceLocatorManager

.getLocalHome(STATIC_CreditLocalHome_REF_NAME,
STATIC_CreditLocalHome_CLASS);

try {
if (aCreditLocalHome != null)

return aCreditLocalHome.create(amount);
} catch (javax.ejb.CreateException ce) {

throw new ApplicationException(
"Unable to create credit transaction (amount="+amount+")", ce);

}
return null;

}

g. Complete the deposit method, as shown in Example 15-23.

Example 15-23   Completed deposit method

public void deposit(String accountNumber, int amount)
throws UnknownAccountException, ApplicationException

{
AccountLocal anAccountLocal = find_AccountLocalHome_findByPrimaryKey(accountNumber);

CreditLocal aCreditLocal = createCreditLocal(amount);

anAccountLocal.processTransaction(aCreditLocal);
}

8. Implement the withdraw method, using the same process as the deposit 
method, except that you use the Insert EJB Create wizard to generate code to 
create a Debit bean. The completed code for the withdraw, transfer, and 
createDebitLocal methods is shown in Example 15-24. Again, the modified 
parts of the createDebitLocal method are highlighted in bold.

Example 15-24   Completed withdraw, transfer, and createDebitLocal method

public void withdraw(String accountNumber, int amount)
912 Rational Application Developer V6 Programming Guide



throws UnknownAccountException, InsufficientFundsException, ApplicationException
{

AccountLocal anAccountLocal = find_AccountLocalHome_findByPrimaryKey(accountNumber);

DebitLocal aDebitLocal = createDebitLocal(amount);

anAccountLocal.processTransaction(aDebitLocal);
}

public void transfer(String debitAccountNumber, String creditAccountNumber, int amount) 
throws UnknownAccountException, InsufficientFundsException, ApplicationException

{
withdraw(debitAccountNumber, amount);
deposit(creditAccountNumber, amount);

}

protected DebitLocal createDebitLocal(int amount)
throws ApplicationException

{
DebitLocalHome aDebitLocalHome = (DebitLocalHome) ServiceLocatorManager

.getLocalHome(STATIC_DebitLocalHome_REF_NAME,
STATIC_DebitLocalHome_CLASS);

try {
if (aDebitLocalHome != null)

return aDebitLocalHome.create(amount);
} catch (javax.ejb.CreateException ce) {

throw new ApplicationException(
"Unable to create debit transaction (amount="+amount+")", ce);

}
return null;

}

9. Promote the facade methods to the remote interface, as follows:

a. In the Outline view, highlight the following methods, as shown in 
Figure 15-47 on page 914:

• getCustomer(String)
• getAccount(String)
• updateCustomer(String, String, String, String)
• getAccounts(String)
• getTransactions(String)
• deposit(String, int)
• withdraw(String, int)
• transfer(String, String, int)
 Chapter 15. Develop Web applications using EJBs 913



Figure 15-47   Promote Bank methods to the remote interface

b. Right-click one of the selected methods and select Enterprise Bean → 
Promote to Remote Interface.

The Bank session bean is now complete. In the following sections we first test 
the EJBs using the Universal Test Client and then proceed to integrate the EJBs 
with the ITSO Web Bank application.

Note: We found that sometimes the R-shaped icons (which mean that 
the method exists in the remote interface) would not appear after 
promoting the methods. Closing and reopening the Java editor would 
fix this.
914 Rational Application Developer V6 Programming Guide



15.5  Testing EJB with the Universal Test Client
Before we integrate the EJB application with the Web application, imported in 
15.3.5, “Import BankBasicWeb Project” on page 853, we will test the Bank 
session bean to see that it works as expected. We will use the enterprise 
application Universal Test Client (UTC), which is contained within Rational 
Application Developer. 

In this section we describe some of the operations you can perform with the 
Universal Test Client. We will use the test client to find the Customer EJB home, 
find and create instances of the Customer bean, and send messages to those 
instances. 

To test the EJBs, do the following:

1. From the Project Explorer of the J2EE Perspective, right-click EJB 
Projects → BankEJB and select Run → Run on Server.

2. When the Server Selection dialog appears, select WebSphere Application 
Server v6.0 and click Finish.

The server will be started and the EJB project will be deployed, if necessary. 
This may take a while.

3. When the Universal Test Client Welcome page appears, as shown in 
Figure 15-48, click JNDI Explorer.

Figure 15-48   Universal Test Client home page

Tip: The default URL of the test client is http://localhost:9080/UTC/, so you 
can also access it through an external browser. If you want to access it 
from another machine, just substitute localhost with the hostname or IP 
address of the developer machine.
 Chapter 15. Develop Web applications using EJBs 915



4. When the JNDI Explorer page appears, expand [Local EJB Beans] → ejb → 
itso → bank → model → ejb, ejb → itso → bank → facade → ejb and 
jdbc.

The page should look similar to Figure 15-49. Notice that our five entity beans 
appear in the section for local EJBs, because they have no remote interface, 
while the Bank session bean appears in the remotely accessible scope. Also, 
the data source that we defined in 15.3.7, “Configure the data source” on 
page 856, appears in the JNDI explorer view. All EJBs appear as Web links.

Figure 15-49   The UTC JNDI Explorer

Local EJBs

Data Source

Remote EJB
916 Rational Application Developer V6 Programming Guide



5. Click BankHome (itso.bank.facade.ejb.BankHome). The result is that the 
Bank bean is added to the EJB Beans list.

6. Expand EJB Beans → BankHome → Bank and click Bank create().

7. The method signature for the create method is displayed. Click Invoke. The 
page should look similar to Figure 15-50.

Figure 15-50   After invoking the create method for the Bank EJB

Note: If the EJBs do not show up as links, we suggest that you unpublish 
the application from the server, restart the server, and start again by 
running the BankEJB project on the server.
 Chapter 15. Develop Web applications using EJBs 917



8. Click Work with Object. UTC will display the following message below the 
menu:

Recently added:
Bank 1

Additionally, the object Bank 1 will appear below the existing BankHome 
object in the EJB Beans compartment of the menu.

9. Expand EJB Beans → Bank 1 and click Account[] getAccounts(String). 
The method signature for the getAccounts method will appear with a table, 
allowing you to specify the method parameters (in this case, only one String 
parameter).

10.Enter 111-11-1111 in the Value field and click Invoke. The resulting page 
should look similar to Figure 15-51. As you can see, three objects of the type 
itso.bank.model.Account were returned.

Figure 15-51   After invoking getAccounts for customer 111-11-1111

11.Click Work with Object. Notice how the object is added to the Objects 
compartment and not the EJB Beans.
918 Rational Application Developer V6 Programming Guide



The test client cannot inspect objects in arrays, so we will have to convert it to 
a java.util.List:

a. Expand Utilities and click Object[] -> List.

b. When the Object[] -> List page appears, select Account[3] and click 
Convert.

c. Click Work with Contained Objects.

Three Account objects will be added to the Objects compartment. Invoke 
their getAccountNumber and getBalance methods to inspect their 
contents.

You can play with the UTC to make sure all of your EJBs work. When you are 
done, close the browser window and stop the server in the Servers view.

15.6  Adapting the Web application
The Web application, developed in Chapter 11, “Develop Web applications using 
JSPs and servlets” on page 499, was imported and added to the BankEJBEAR 
project in 15.3.5, “Import BankBasicWeb Project” on page 853. We will now add 
client code to the Web application, in order to utilize the EJBs developed and 
tested in this chapter.

1. In the Project Explorer, expand Dynamic Web Projects → 
BankBasicWeb → diagrams.

2. Double-click model.dnx to open the class diagram in the UML Editor.

3. The UML Editor will open. 

Notice that the model and exception classes and their relationship lines 
appear with crossed-out circles. This is the UML Editor’s way of telling us that 
it cannot find the source for these resources.

4. Select the model and exception classes and press Delete to remove them 
from the diagram.

5. Select itso.bank.facade and press Delete to remove the package from the 
diagram.

6. In the Palette, select Java → Class and click the canvas.

Tip: The Java code for the EJBBank class can be copied from the file 
c:\6449code\ejb\source\EJBBank.java, included with the additional material 
for this book.
 Chapter 15. Develop Web applications using EJBs 919



7. When the New Java Class wizard appears, do the following and click Finish:

– Name: EJBBank
– Package: itso.bank.facade
– Superclass: Bank
– Select Inherited abstract methods.

8. When the new class has been added to the diagram, double-click it to open 
EJBBank.java in the Java source editor.

9. Add the code from Example 15-25 to the class.

Example 15-25   Method stub for getBankEJB

// add before the first method of the class
private itso.bank.facade.ejb.Bank bankEJB = null;

// add after the last method of the class
private itso.bank.facade.ejb.Bank getBankEJB()

throws ApplicationException
{

if (bankEJB == null) {
// place the cursor on the next line

}
return bankEJB;

}

10.Place the cursor over the if statement and double-click EJB → Call an EJB 
“create” method in the Snippets view.

11.When the Insert EJB Create wizard appears, click New EJB Reference. 

12.When the Add EJB Reference dialog appears, select Enterprise Beans in 
the workspace, expand and select BankEJBEAR → BankEJB → Bank, 
ensure that Remote is selected in the Ref type drop-down, and click Finish.

13.When you return the Insert EJB Create wizard, click Finish.

14.When the wizard is done adding configuration data and code, replace the 
getBankEJB and generated createBank methods with the code shown in 
Example 15-26.

Example 15-26   Completed getBankEJB method

private itso.bank.facade.ejb.Bank getBankEJB() throws ApplicationException {
if (bankEJB == null) {

BankHome aBankHome = (BankHome) ServiceLocatorManager.getRemoteHome(
STATIC_BankHome_REF_NAME, STATIC_BankHome_CLASS);

try {
if (aBankHome != null)

bankEJB = aBankHome.create();
920 Rational Application Developer V6 Programming Guide



} catch (javax.ejb.CreateException ce) {
throw new ApplicationException("Unable to create EJB: "+

STATIC_BankHome_REF_NAME, ce);
} catch (RemoteException re) {

throw new ApplicationException("Unable to create EJB: "+
STATIC_BankHome_REF_NAME, re);

}
}
return bankEJB;

}

15.Remove the following import statement:

import itso.bank.facade.ejb.Bank;

This import statement was created by the Insert EJB Create wizard. 

16.Replace the method stubs that were generated by the New Java Class wizard 
with the methods shown in Example 15-27. These methods will forward all 
calls to the Bank EJB.

Example 15-27   Completed EJBBank facade methods invoke the Bank EJB

public Account getAccount(String accountNumber)
throws UnknownAccountException, ApplicationException {

try {
return getBankEJB().getAccount(accountNumber);

} catch (RemoteException e) {
throw new ApplicationException("Unable to retrieve account: "+

accountNumber, e);
}

}

public Account[] getAccounts(String customerNumber)
throws UnknownCustomerException, ApplicationException {

try {
return getBankEJB().getAccounts(customerNumber);

} catch (RemoteException e) {
throw new ApplicationException("Unable to retrieve accounts for: "+

customerNumber, e);
}

}

public Customer getCustomer(String customerNumber)
throws UnknownCustomerException, ApplicationException {

try {
return getBankEJB().getCustomer(customerNumber);

} catch (RemoteException e) {
throw new ApplicationException("Unable to retrieve accounts for: "+

customerNumber, e);
 Chapter 15. Develop Web applications using EJBs 921



}
}

public Transaction[] getTransactions(String accountId)
throws UnknownAccountException, ApplicationException {

try {
return getBankEJB().getTransactions(accountId);

} catch (RemoteException e) {
throw new ApplicationException("Unable to retrieve transactions for: "+

accountId, e);
}

}

public void deposit(String accountId, int amount) 
throws UnknownAccountException, ApplicationException {

try {
getBankEJB().deposit(accountId, amount);

} catch (RemoteException e) {
throw new ApplicationException("Unable to deposit "+amount+

" to "+accountId, e);
}

}

public void withdraw(String accountId, int amount) 
throws UnknownAccountException, InsufficientFundsException, 
ApplicationException {

try {
getBankEJB().withdraw(accountId, amount);

} catch (RemoteException e) {
throw new ApplicationException("Unable to withdraw "+amount+" from 

"+accountId, e);
}

}

public void transfer(String debitAccountNumber, String creditAccountNumber, 
int amount) 
throws UnknownAccountException, InsufficientFundsException, 

ApplicationException {
try {

getBankEJB().transfer(debitAccountNumber, creditAccountNumber, amount);
} catch (RemoteException e) {

throw new ApplicationException("Unable to transfer "+amount+
" from "+debitAccountNumber+" to "+creditAccountNumber, e);

}
}

public void updateCustomer(String ssn, String title, 
String firstName, String lastName) 
throws UnknownCustomerException, ApplicationException {
922 Rational Application Developer V6 Programming Guide



try {
getBankEJB().updateCustomer(ssn, title, firstName, lastName);

} catch (RemoteException e) {
throw new ApplicationException("Unable to update customer "+ssn, e);

}
}

17.Now that we have completed the EJBBank facade, we need to update the 
abstract class itso.bank.facade.Bank to return an instance to the EJBBank 
class when its getBank method is called. Modify the getBank method of the 
Bank class as shown in Example 15-28.

Example 15-28   New getBank method for the Bank facade

public static Bank getBank() throws ApplicationException {
if (singleton == null) {

// no singleton has been created yet - create one
singleton = new EJBBank();

}

return singleton;
}

18.Restart the server.

19.Follow the instructions in 11.7, “Test the application” on page 610, to test the 
Web application. 

Tip: The Java code for the getBank method can be copied from the file 
c:\6449code\ejb\source\Bank.jpage, included with the additional material 
for this book.

Persistence: In the first implementation, every time you started the Web 
application you got the same data because it was created from memory. Now 
we are running with EJBs accessing the underlying BANK database. All the 
updates are persistent. The updated balance is stored in the database and the 
transaction records accumulate for each account.

When testing, try to restart the server to see the persistence.
 Chapter 15. Develop Web applications using EJBs 923



924 Rational Application Developer V6 Programming Guide



Chapter 16. Develop J2EE application 
clients

This chapter provides an introduction to J2EE application clients and the facilities 
supplied by the J2EE application client container. In addition, we highlight the 
features provided by Rational Application Developer for developing and testing 
J2EE application clients.

The chapter is organized into the following sections:

� Introduction to J2EE application clients
� Overview of the sample application
� Preparing for the sample application
� Develop the J2EE application client
� Test the J2EE application client
� Package the application client project

16
© Copyright IBM Corp. 2005. All rights reserved. 925



16.1  Introduction to J2EE application clients
A J2EE application server is capable of making several different types of 
resources available for remote access, such as:

� Enterprise JavaBeans (EJBs)
� JDBC Data Sources
� Java Message Service (JMS) resources (Queues and Topics)
� Java Naming and Directory Interface (JNDI) services

These resources are most often accessed from a component that is running 
within the J2EE application server itself, such as an EJB, servlet, or JSP. 
However, these resources can also be used from a stand-alone Java application 
running in its own Java Virtual Machine (JVM), possibly on a different computer 
from the server. This is known as a J2EE application client. Figure 16-1 depicts 
the resource access scenarios described.

Figure 16-1   Java applications using J2EE server resources

S e rv e r  J V M

J D B C
D a ta

S o u rc e

J M S
Q u e u e

J 2 E E  a p p lic a t io n
c lie n t  c o n ta in e r

J N D I s e rv ic e

E J B  c o n ta in e r

E J B E J B

J 2 E E  a p p lic a t io n
c lie n t  c o n ta in e r

J 2 E E  a p p lic a t io n
c lie n t  c o n ta in e r

M e s s a g in g
a p p lic a t io n

E J B
c lie n t

D a ta b a s e
a p p lic a t io n

J N D I lo o k u p

A c c e s s  re s o u rc e
926 Rational Application Developer V6 Programming Guide



Since a regular JVM does not support accessing such application server 
resources, additional setup for the runtime environment is required for a J2EE 
application. There are two methods to achieve this:

� Add the required packages to the Java Runtime Environment manually.

� Package the application according to the J2EE application client specification 
and execute the application in a J2EE application client container.

In this chapter, we focus on the second of these options. In addition to providing 
the correct runtime resources for Java applications wishing to access J2EE 
server resources, the J2EE application client container provides additional 
features, such as mapping references to JNDI names and integration with server 
security features.

The specification defines the runtime requirements for J2EE application clients, 
particularly in the areas of security, transactions, and naming (JNDI). It also 
specifies which programming APIs are required in addition to those provided by 
Java 2 Standard Edition (J2SE):

� Enterprise JavaBeans (EJB) 2.1 (client-side APIs)
� Java Message Service (JMS) 1.1 
� JavaMail 1.3
� JavaBeans Activation Framework (JAF) 1.0
� Java APIs for XML Processing (JAXP) 1.2
� Web Services 1.1
� Java API for XML-based Remote Procedure Call (JAX-RPC) 1.1
� SOAP with Attachments API for Java (SAAJ) 1.2
� Java API for XML Registries (JAXR) 1.0
� J2EE Management 1.0
� Java Management Extensions (JMX) 1.2

Note: The clients shown in Figure 16-1 on page 926 may conceptually be 
running on the same physical node, or even in the same JVM as the 
application server. The focus in this chapter, however, is clients running in 
distributed environments. During the course of this chapter, we will develop an 
EJB client, invoking the EJBs from Chapter 15, “Develop Web applications 
using EJBs” on page 827, to provide a simple ITSO Bank client application.

Note: For more detailed information on J2EE application clients, refer to the 
J2EE specification (Chapter 9, “Application Clients”) found at:

http://java.sun.com/j2ee/
 Chapter 16. Develop J2EE application clients 927

http://java.sun.com/j2ee/


In addition, the J2EE specification describes the packaging format to be used for 
J2EE application clients (based on the JAR file format) and the contents of the 
the deployment descriptor for the J2EE application client.

IBM WebSphere Application Server V6.0 includes a J2EE application client 
container and a facility for launching J2EE application clients. The J2EE 
application client container, known as Application Client for WebSphere 
Application Server, can be installed separately from the WebSphere Application 
Server installation CDs, or downloaded from developerWorks, and runs a 
completely separate JVM on the client machine. When the JVM starts it loads the 
necessary runtime support classes to make it possible to communicate with 
WebSphere Application Server and to support J2EE application clients that will 
use server-side resources. Refer to the WebSphere Application Server 
Information Center for more information about installing and using the 
Application Client for WebSphere Application Server.

IBM Rational Application Developer V6.0 includes tooling to assist with 
developing and configuring J2EE application clients and a test facility that allows 
J2EE application clients to be executed in an appropriate container. The focus of 
this chapter is on the Rational Application Developer tooling for J2EE application 
clients, so we will be looking only at this facility.

16.2  Overview of the sample application
The application that will be developed in the course of this chapter is a very 
simple client application. It will use the EJB application that was developed in 
Chapter 15, “Develop Web applications using EJBs” on page 827, to look up the 
customer information and account overview from a specified customer SSN.

The application will use a graphical user interface, implemented with Swing 
components, as shown in Figure 16-2, which displays the details for the 
customer with SSN 111-11-1111.

Note: Although the J2EE specification describes the JAR format as the 
packaging format for J2EE application clients, the Application Client for 
WebSphere Application Server expects the application to be packaged as a 
JAR inside an enterprise application archive (EAR). The Application Client for 
WebSphere Application Server does not support execution of a standalone 
J2EE client JAR.
928 Rational Application Developer V6 Programming Guide



Figure 16-2   Interface for the sample application client

Referring to Figure 16-1 on page 926, the sample J2EE application client is an 
EJB client that uses the services of the Bank EJB, created in Chapter 15, 
“Develop Web applications using EJBs” on page 827, to access account 
information for customers in the ITSO Bank.

Figure 16-3 on page 930 shows a class diagram of the finished sample 
application. The classes on the right-hand side of the class diagram are classes 
from the EJB enterprise application, while the three left-hand classes are part of 
the application client. As the class diagram outlines, the application client 
controller class, BankDesktopController, uses the Bank EJB to retrieve 
Customer and Account object instances, representing the customer and 
associated account(s) that is being retrieved from the server database.
 Chapter 16. Develop J2EE application clients 929



Figure 16-3   Class diagram for the ITSO Bank J2EE application client

To illustrate the deployment units for the finished application, Figure 16-4 on 
page 931 shows the Project Explorer view with all projects and the deployment 
descriptors for the two enterprise applications expanded. When deployed to a 
working environment, the BankAppClientEAR is deployed on the client node, 
while the BankEJBEAR is deployed on an application server.

As Figure 16-4 on page 931 shows, the two enterprise applications share the two 
utility JARs BankEJBClient.jar and serviceLocatorMgr.jar. The former is the client 
code necessary to use the EJBs from the BankEJB project, deployed within the 
BankEJBEAR enterprise application, while the latter contains utility classes for 
looking up and instantiating EJBs from a client application.

The projects BankAppClientEAR and BankAppClient are created during the 
course of this chapter, while the remaining projects were implemented in 
Chapter 15, “Develop Web applications using EJBs” on page 827.
930 Rational Application Developer V6 Programming Guide



Figure 16-4   Project Explorer for the finished application client

16.3  Preparing for the sample application
Prior to working on the sample for this chapter, we need to set up the database 
for the sample application, import the EJB bank projects, and ensure that 
everything is working.

The preparation tasks are as follows:

� Import the base enterprise application sample.
� Set up the sample database.
� Configure the data source.
� Test the imported code.
 Chapter 16. Develop J2EE application clients 931



16.3.1  Import the base enterprise application sample
To import the base enterprise application sample that we will use as a starting 
point for this chapter, do the following:

1. From the Project Explorer view in the J2EE perspective, select File → 
Import....

2. When the Import dialog appears, select Project Interchange and click Next.

3. When the Import Project Interchange Contents dialog appears, enter 
c:\6449code\ejb\BankEJB.zip in the From zip file field, click Select All, and 
then Finish.

After the Import wizard has completed the import, the projects shown in 
Figure 16-5 should appear in the workspace.

Figure 16-5   Projects imported from the BankEJB sample application

The projects shown in Figure 16-5 are described as follows:

� BankEJBEAR: This is the deployable enterprise application, which functions 
as a container for the remaining projects. This enterprise application must be 
executed on an application server.

Note: You may notice that a number of warnings exist for the BankEJB and 
BankEJBClient projects. These are all related to unused import statements in 
code generated by Rational Application Developer, and can be safely ignored. 
To remove these warnings from the Problems view, you may follow the 
instructions in 15.3.4, “Configure the EJB projects” on page 849, for ignoring 
such warning messages.
932 Rational Application Developer V6 Programming Guide



� BankEJB: This is the project, containing the EJBs, that makes up the 
business logic of the ITSO Bank. The Bank session bean acts as a facade for 
the EJB application. 

This project is packaged inside BankEJBEAR when exported and deployed 
on an application server.

� BankBasicWeb: This is a Web application that uses the EJBs to implement a 
Web interface for the ITSO Bank. During the course of this chapter, we 
develop a stand-alone J2EE client application with the same functionality as 
the ListAccounts servlet of this Web application. 

This project is packaged inside BankEJBEAR when exported and deployed 
on an application server.

� BankEJBClient: This is the client interface for the EJB application. This 
project is packaged with any application that will need to access the EJBs in 
the BankEJB project, including the BankBasicWeb project and the client 
application that will be developed during the course of this chapter.

16.3.2  Set up the sample database
If the Cloudscape database has already been configured for another sample in 
this book, you can skip the next step and go straight to 16.3.3, “Configure the 
data source” on page 934.

This section provides instructions for deploying the BANK sample database and 
populating the database with sample data. For simplicity we will use the built-in 
Cloudscape database.

To create the database, create the connection, and create and populate the 
tables for the BANK sample from within Rational Application Developer, do the 
following:

1. Create the database and connection to the Cloudscape BANK database from 
within Rational Application Developer.

For details refer to “Create a database connection” on page 347.

2. Create the BANK database tables from within Rational Application Developer.

For details refer to “Create database tables via Rational Application 
Developer” on page 350.

3. Populate the BANK database tables with sample data from within Rational 
Application Developer.

For details refer to “Populate the tables within Rational Application Developer” 
on page 352.
 Chapter 16. Develop J2EE application clients 933



16.3.3  Configure the data source
There are a couple of methods that can be used to configure the data source, 
including using the WebSphere Administrative Console or using the WebSphere 
Enhanced EAR, which stores the configuration in the deployment descriptor and 
is deployed with the application. 

This section describes how to configure the data source using the WebSphere 
Enhanced EAR capabilities. The enhanced EAR is configured in the Deployment 
tab of the EAR deployment descriptor.

Access the deployment descriptor
To access the deployment descriptor where the enhanced EAR settings are 
defined, do the following:

1. Open the J2EE Perspective Project Explorer view.

2. Expand Enterprise Applications → BankEJBEAR.

3. Double-click Deployment Descriptor: BankEJBEAR to open the file in the 
Deployment Descriptor Editor.

4. Click the Deployment tab.

Configure a new JDBC provider
To configure a new JDBC provider using the enhanced EAR capability in the 
deployment descriptor, do the following:

1. From the Deployment tab of the Application Deployment Descriptor, click Add 
under the JDBC provider list.

2. When the Create a JDBC Provider dialog appears, select Cloudscape as the 
Database type, select Cloudscape JDBC Provider as the JDBC provider 
type, and then click Next.

Note: For JAAS Authentication, when using Cloudscape, the configuration of 
the user ID and password for the JAAS Authentication is not needed.

When using DB2 Universal Database or other database types that require a 
user ID and password, you will need to configure the JAAS Authentication.
934 Rational Application Developer V6 Programming Guide



3. Enter Cloudscape JDBC Provider - BankEJB in the Name field and then click 
Finish.

Configure the data source
To configure a new data source using the enhanced EAR capability in the 
deployment descriptor, do the following:

1. From the Deployment tab of the Application Deployment Descriptor, select 
the JDBC provider created in the previous step.

2. Click Add next to data source. 

3. When the Create a Data Source dialog appears, select Cloudscape JDBC 
Provider under the JDBC provider, select Version 5.0 data source, and 
then click Next.

4. When the Create a Data Source dialog appears, enter the following and then 
click Finish:

– Name: BankDS
– JNDI name: jdbc/BankDS
– Description: Bank Data Source

Configure the databaseName property
To configure the databaseName in the new data source using the enhanced 
EAR capability in the deployment descriptor to define the location of the 
database for your environment, do the following:

1. Select the data source created in the previous section.

2. Select the databaseName property under the Resource properties.

3. Click Edit next to Resource properties to change the value for the 
databaseName.

4. When the Edit a resource property dialog appears, enter c:\databases\BANK 
in the Value field and then click OK. 

Note: The JDBC provider type list for Cloudscape will contain two entries:

� Cloudscape JDBC Provider
� Cloudscape JDBC Provider (XA)

Since we will not need support for two-phase commits, we choose to use 
the non-XA JDBC provider for Cloudscape.
 Chapter 16. Develop J2EE application clients 935



In our example, c:\databases\BANK is the database created for our sample 
application in 15.3.6, “Set up the sample database” on page 854. 

5. Save the Application Deployment Descriptor. 

6. Restart the test server for the changes to the deployment descriptor to take 
effect. 

Set up the default CMP data source
Several data sources can be defined for an enterprise application. In order for 
the EJB container to be able to determine which data source should be used, we 
must configure the BankEJBEAR project to point to the newly created data 
source as follows:

1. Open the J2EE Perspective Project Explorer view.

2. Expand EJB Projects → BankEJB. 

3. Double-click Deployment Descriptor: BankEJB to open the file in the 
Deployment Descriptor Editor. 

4. From the Overview tab, scroll down to the JNDI - CMP Connection Factory 
Binding section.

5. Enter jdbc/BankDS in the JNDI name field.

6. Press Ctrl+S followed by Ctrl+F4 to save and close the deployment 
descriptor.

16.3.4  Test the imported code
Before continuing with the sample application, we suggest that you test the 
imported code. Follow the instructions in 15.5, “Testing EJB with the Universal 
Test Client” on page 915, to test the EJBs. 

16.4  Develop the J2EE application client
We will now use Rational Application Developer to create a project containing a 
J2EE application client. This application client will be associated with its own 
enterprise application. 

Important: The Edit a resource property dialog allows you to edit the entire 
resource property, including the name. Ensure that you only change the 
value of the databaseName property, not the name.
936 Rational Application Developer V6 Programming Guide



To finish the J2EE application client sample you need to complete the following 
tasks:

� Create the J2EE application client projects.
� Configure the J2EE application client projects.
� Import the graphical user interface and control classes.
� Create the BankDesktopController class.
� Complete the BankDesktopController class.
� Register the BankDesktopController class as the Main class.

16.4.1  Create the J2EE application client projects
To create the J2EE application projects, do the following:

1. In the Project Explorer view of the J2EE perspective, right-click Application 
Client Projects and select New → Application Client Project from the 
menu.

2. When the New Application Client Project wizard appears, enter 
BankAppClient in the Name field and click Show Advanced.

3. From the Show Advanced options, do the following (as seen in Figure 16-6), 
and then click Finish:

– Ensure that the J2EE version is set to 1.4.
– Check Add module to an EAR project. 
– Select BankAppClientEAR.
– Uncheck Create a default Main class.

Note: While it is possible to use the new client application with the existing 
BankEJBEAR enterprise application, this is not the recommended approach.

The reason for this is that the enterprise application that contains the EJBs 
and other server resources will typically contain information that should not be 
distributed to the clients, such as passwords or proprietary business logic.

Note: After the wizard has created the new projects, you will see the 
following error in the Problems view:

IWAE0035E The Main-Class attribute must be defined in the 
application client module.

This is because we unchecked “Create a default Main Class” in the New 
Application Client Project wizard. We will create a main class, and thus 
resolve this problem in a subsequent step.
 Chapter 16. Develop J2EE application clients 937



Figure 16-6   New Application Client Project wizard

When the wizard is complete, the following projects should have been created in 
your workspace:

� BankAppClientEAR: This is an enterprise application project that acts as a 
container for the code to be deployed on the application client node.

� BankAppClient: This project will contain the actual code for the ITSO Bank 
application client.

16.4.2  Configure the J2EE application client projects
As mentioned in 16.2, “Overview of the sample application” on page 928, the 
application client projects reference the BankEJBClient project that was imported 
in 16.3.1, “Import the base enterprise application sample” on page 932. In this 
section, we configure this dependency by completing the following tasks:

� Add BankEJBClient as a Utility JAR.
� Add BankEJBClient to the Java JAR Dependencies.
938 Rational Application Developer V6 Programming Guide



Add BankEJBClient as a Utility JAR
To add BankEJBClient as a Utility JAR for the BankAppClientEAR project, do the 
following:

1. In the Project Explorer view of the J2EE perspective, expand Enterprise 
Applications → BankAppClientEAR.

2. Double-click Deployment Descriptor: BankAppClientEAR to open in the 
Application Deployment Descriptor editor.

3. Select the Module tab.

4. Click Add in the Project Utility Jars section.

5. When the Add Utility JAR dialog appears, select BankEJBClient and click 
Finish. 

6. Save and close the deployment descriptor. 

Add BankEJBClient to the Java JAR Dependencies
To add BankEJBClient as a Java JAR Dependency for the BankAppClient 
project, do the following:

1. In the Project Explorer view of the J2EE perspective, expand Application 
Client Projects, right-click BankAppClient, and select Properties from the 
menu. 

2. When the Properties for BankAppClient dialog appears, select Java JAR 
Dependencies.

3. Check BankEJBClient.jar and click OK.

16.4.3  Import the graphical user interface and control classes
In this section, we complete the graphical user interface (GUI) for the J2EE 
application client.

Since this chapter focuses on the aspects relating to development of J2EE 
application clients, we will import the finished user interface and focus on 
implementing the code for accessing the EJBs in the EJB project that was 
imported in 16.3.1, “Import the base enterprise application sample” on page 932. 

To import the framework classes for the J2EE application client, do the following:

1. Expand Application Client Projects → BankAppClient, right-click 
appClientModule, and select Import.

2. When the Import dialog appears, select Zip file and click Next. 

3. When the Zip file page appears, enter 
c:\6449code\j2eeclt\BankAppClient_GUI.jar in the From zip file field.
 Chapter 16. Develop J2EE application clients 939



4. Expand / in the left panel and ensure that only itso is checked (as seen in 
Figure 16-7, and then click Finish.

Figure 16-7   Import existing GUI class

When the wizard has completed the import, the following classes should have 
been added to the BankAppClient project:

� itso.bank.client.ui.BankDesktop

This is a visual class, containing the view for the Bank J2EE application client.

� itso.bank.client.model.AccountTableModel

This is an implementation of the interface javax.swing.table.TableModel. The 
class will provide the relevant TableModel interface, given an array of 
Account instances.

16.4.4  Create the BankDesktopController class
In this section, we create the controller class for the J2EE application client. This 
class will also be the main class for the application and will contain the EJB 
lookup code.

To create the BankDesktopController class, do the following:

1. Expand Application Client Projects → BankAppClient.
940 Rational Application Developer V6 Programming Guide



2. Right-click appClientModule and select New → Class. 

3. When the New Java Class dialog appears, enter itso.bank.client.control 
in the Package field, BankDesktopController in the Name field, check public 
static void main(String[] args) and Constructors from superclass, and 
click Add.

4. When the Implemented Interfaces Selection dialog appears, enter 
ActionListener in the Choose interfaces field, select java.awt.event in the 
Qualifier list, and click OK.

5. When you return to the New Java Class wizard, it should look like Figure 16-8 
on page 941. Click Finish.

Figure 16-8   Create class BankDesktopController

The BankDesktopController class is now created. In the following section, you 
will add the logic to the class.
 Chapter 16. Develop J2EE application clients 941



16.4.5  Complete the BankDesktopController class
The BankDesktopController class, which was created in the previous section, is 
an empty class with no logic. In this section we add control logic, as well as the 
code to look up customer and account information from the BankEJB enterprise 
application.

To complete the BankDesktopController class, do the following:

1. In the Project Explorer view of the J2EE perspective, expand Application 
Client Projects → BankAppClient → appClientModule → 
itso.bank.client.control. 

2. Double-click BankDesktopController.java to open the class in the Java 
editor. 

3. Add the import statements shown in Example 16-1 to the Java file. 

Example 16-1   Import statements to add to BankDesktopController.java

import itso.bank.client.ui.AccountTableModel;
import itso.bank.client.ui.BankDesktop;
import itso.bank.model.Account;
import itso.bank.model.Customer;
import itso.bank.exception.UnknownCustomerException;

4. Add the fields shown in Example 16-2 to the beginning of the class definition. 

Example 16-2   Fields to add to the BankDesktopController class

private BankDesktop desktop = null;
private AccountTableModel accountTableModel = null;

5. Locate the constructor and modify it to look similar to Example 16-3. The new 
code is highlighted in bold. 

Note: The code found in this section can be copied from the complete 
BankDesktopController class that is supplied with the additional material for 
this book. The class can be found in the file 
c:\6449code\j2eeclt\BankDesktopController.java.

We suggest that you copy the sections as noted in our procedure from the 
completed BankDesktopController.java (step by step). If you simply import the 
BankDesktopController.java, the serviceLocatorMgr.jar will not be added as a 
Java JAR dependency to the BankAppClient project, and thus you will have 
can not resolve errors in the source code. The serviceLocatorMgr.jar is added 
by using the Insert EJB wizard.
942 Rational Application Developer V6 Programming Guide



Example 16-3   Constructor for the BankDesktopController class

public BankDesktopController() {

desktop = new BankDesktop();

desktop.getBtnSearch().addActionListener(this);

desktop.setVisible(true);
}

6. Locate the main method stub and modify it to look similar to Example 16-4. 
The new code is highlighted in bold. 

Example 16-4   Modify the main method 

public static void main(String[] args) {

BankDesktopController controller = new BankDesktopController();
}

7. Add the setAccounts method shown in Example 16-5 right before the main 
method. 

Example 16-5   Add the setAccounts method

private void setAccounts(Account[] accounts) {
if (accountTableModel == null) {

// instantiate the model and associate it with the JTable, if it
// hasn't been created yet.
accountTableModel = new AccountTableModel();
desktop.getTblAccounts().setModel(accountTableModel);

}

// update the JTable
accountTableModel.setAccounts(accounts);

}

8. Locate the actionPerformed method stub and modify it to look similar to 
Example 16-6. The new code is highlighted in bold. 

Example 16-6   Modify the actionPerformed method

public void actionPerformed(ActionEvent e) {
// we know that we are only listening to action events from
// the search button, so...

String ssn = desktop.getTfSSN().getText();
 Chapter 16. Develop J2EE application clients 943



}

9. Place the cursor on the last line of the actionPerformed method (the line 
between the ssn variable declaration and the ending curly brace). 

10.In the Snippets view, expand EJB and double-click Call an EJB “create” 
method.

11.When the Insert EJB create dialog appears, click New EJB Reference.

12.When the Add EJB Reference dialog appears, select Enterprise Beans in 
the workspace, expand BankEJBEAR → BankEJB, select Bank, and click 
Finish.

13.When you return to the Insert EJB create dialog, click Next.

14.When the Enter Lookup Properties dialog appears, check Use default 
context properties for doing a lookup on this reference and click Finish.

The Insert EJB create wizard will do the following:

– Adds the following line at the cursor location in the actionPerformed 
method:

Bank aBank = createBank();

– Adds private fields STATIC_BankHome_REF_NAME and 
STATIC_BankHome_CLASS to the class.

– Adds a private method, createBank, to the class.

– Adds the JAR serviceLocatorMgr.jar as a Utility JAR to the 
BankAppClientEAR enterprise application project.

– Creates an EJB reference, ejb/Bank, to the deployment descriptor for the 
BankAppClient project.

Note: By specifying to use the default context properties, we do not need 
to hard-code the server name in the code, or in other ways make the code 
location-aware.

To allow the application client to run on a node, separate from the 
application server, just specify the server name when starting the J2EE 
client container.

In the Application Client for WebSphere Application Server, this can be 
done by using the -CCBootstrapHost parameter to the launchClient script. 
Refer to the WebSphere Application Server InfoCenter for more 
information about using the Application Client for WebSphere Application 
Server.
944 Rational Application Developer V6 Programming Guide



– Adds the following import statements to the Java class file:

import com.ibm.etools.service.locator.ServiceLocatorManager;
import java.rmi.RemoteException;
import itso.bank.facade.ejb.BankHome;
import itso.bank.facade.ejb.Bank;

15.Complete the actionPerformed to look similar to Example 16-7. The new code 
is highlighted in bold.

Example 16-7   Complete the actionPerformed method

public void actionPerformed(ActionEvent e) {
// we know that we are only listening to action events from
// the search button, so...

String ssn = desktop.getTfSSN().getText();

Bank aBank = createBank();

try {
// look up the customer
Customer customer = aBank.getCustomer(ssn);
// look up the accounts
Account[] accounts = aBank.getAccounts(ssn);

// update the user interface
desktop.getTfTitle().setText(customer.getTitle());
desktop.getTfFirstName().setText(customer.getFirstName());
desktop.getTfLastName().setText(customer.getLastName());
setAccounts(accounts);

}
catch (UnknownCustomerException x) {

// unknown customer. Report this using the output fields...
desktop.getTfTitle().setText("(not found)");
desktop.getTfFirstName().setText("(not found)");
desktop.getTfLastName().setText("(not found)");
setAccounts(new Account[0]);

}
catch (RemoteException x) {

// unexpected RMI exception. Print it to the console and report it...
x.printStackTrace();
desktop.getTfTitle().setText("(internal error)");
desktop.getTfFirstName().setText("(internal error)");
desktop.getTfLastName().setText("(internal error)");
setAccounts(new Account[0]);

}
}

16.Save and close BankDesktopController.java. 
 Chapter 16. Develop J2EE application clients 945



The code for the ITSO Bank J2EE application client is now complete. Now we 
just need to register the BankDesktopController class as the main class for the 
application client. 

16.4.6  Register the BankDesktopController class as the Main class
The BankDesktopController class, which was created in the previous section, 
contains the logic for the J2EE application client. We need to register that this is 
the main class for the application client, such that J2EE application client 
containers know how to launch the application.

To register the BankDesktopController class as the main class, do the following:

1. In the Project Explorer, expand Application Client Projects → 
BankAppClient → appClientModule → META-INF.

2. Right-click MANIFEST.MF and select Open With → JAR Dependency 
Editor. 

3. When the JAR Dependency editor appears, click Browse next to the 
Main-Class entry field.

4. When the Type Selection dialog appears, enter BankDesktopController in the 
Select a class using field, ensure that 
itso.bank.client.control.BankDesktopController is selected in the Qualifier 
list, and click OK.

5. Save the file and close the JAR Dependency Editor. 

The error regarding the missing main class should disappear from the 
Problems view when the file is saved.

16.5  Test the J2EE application client
Now that the code has been updated, we can test the J2EE application client as 
follows:

1. Ensure that the server is started.

a. In the J2EE perspective, switch to the Servers view.

b. Check that the status shown for WebSphere Application Server v6.0 is 
Started. If not, right-click the server and select Start.

2. Ensure that the BankEJBEAR enterprise application is deployed on the 
server.

a. In the J2EE perspective, switch to the Servers view.
946 Rational Application Developer V6 Programming Guide



b. Right-click WebSphere Application Server v6.0 and select Add and 
remove projects.

c. When the Add and Remove Projects dialog appears, the BankEJBEAR 
project should appear in the Configured projects list, as shown in 
Figure 16-9 on page 947. If it does not, select BankEJBEAR and click 
Add.

Figure 16-9   Add and Remove Projects dialog showing BankEJBEAR as deployed

d. Click Finish. 

If you had to add the BankEJBEAR project to the list, Rational Application 
Developer will now deploy that project to the server. This may take a 
while.

3. In the Project Explorer, expand Application Client Projects, right-click 
BankAppClient and select Run → Run... from the menu. 

4. When the Run dialog appears, select the WebSphere v6.0 Application 
Client in the Configurations list and click New. 

Note: We found that sometimes, the server would restart in Debug 
mode after adding or removing projects for the server. If this happens, 
for you, right-click the server in the Servers view and select Restart → 
Start. 
 Chapter 16. Develop J2EE application clients 947



The right-hand side of the dialog will change to allow you to set up the new 
Run configuration.

5. Enter BankAppClient in the Name field, as shown in Figure 16-10 on 
page 948, click Apply and then Run. 

Figure 16-10   Create a new run configuration for the ITSO Bank application client

6. When the Bank Desktop window appears, enter 111-11-1111 in the Search 
SSN field and click Search. The results will be displayed as shown in 
Figure 16-11 on page 949. Try other SSN values, such as 222-22-2222 or 
999-99-9999. 
948 Rational Application Developer V6 Programming Guide



Figure 16-11   Showing the details for customer 111-11-1111

7. Enter an invalid value for the Search SSN and observe the output in the GUI.

8. When you have finished testing the J2EE application client, close the window.

We have successfully built and tested a J2EE application client. 

16.6  Package the application client project
In order to run the application client outside Rational Application Developer, we 
need to package the application.

To package the application client for deployment, do the following:

1. In the Project Explorer view of the J2EE perspective, expand Enterprise 
Applications, right-click BankAppClientEAR, and select Export → EAR file 
from the menu.

2. When the EAR Export dialog appears, enter the name of the EAR file (for 
example, c:\deployment\BankAppClient.ear) in the Destination field, and 
click Finish. 

Note: Although the J2EE specification names the JAR format as the principle 
means for distributing J2EE application clients, the WebSphere Application 
Server application client container, Application Client for WebSphere 
Application Server, expects an enterprise application archive (EAR) file.

Tip: If you check the Export source files and Include project build 
paths and meta-data files check boxes, you will be able to later import the 
EAR file to Rational Application Developer.
 Chapter 16. Develop J2EE application clients 949



The exported EAR file can now be deployed to a client node and executed using 
the Application Client for WebSphere Application Server.
950 Rational Application Developer V6 Programming Guide



Chapter 17. Develop Web Services 
applications

This chapter introduces the concepts of a service-oriented architecture (SOA) 
and explains how such an architecture can be realized using the Java 2 Platform 
Enterprise Edition (J2EE) Web Services implementation. 

We will explore the features provided by Rational Application Developer for Web 
Services development and look at two common examples: Create Web Services 
based on a JavaBean, and on an Enterprise JavaBean. We will also demonstrate 
how Rational Application Developer can help with testing Web Services and 
developing Web Services client applications.

The chapter is organized into the following sections:

� Introduction to Web Services
� Web Services tools in Application Developer
� Preparing for the samples
� Create a Web Service from a JavaBean
� Create a Web Service from an EJB
� Web Services security
� Publish a Web Service using UDDI

17

Note: For more detailed information refer to WebSphere Application Server 
V6: Web Services Development and Deployment, SG24-6461.
© Copyright IBM Corp. 2005. All rights reserved. 951



17.1  Introduction to Web Services
This section introduces architecture and concepts of the service-oriented 
architecture (SOA) and Web Services.

17.1.1  Service-oriented architecture (SOA)
In a service-oriented architecture, applications are made up from loosely coupled 
software services, which interact to provide all the functionality needed by the 
application. Each service is generally designed to be very self-contained and 
stateless to simplify the communication that takes place between them.

There are three main roles involved in a service-oriented architecture:

� Service provider
� Service broker
� Service requester

The interactions between these roles are shown in Figure 17-1.

Figure 17-1   Service-oriented architecture

Service provider
The service provider creates a service and may publish its interface and access 
information to a service broker.

A service provider must decide which services to expose and how to expose 
them. There is often a trade-off between security and interoperability; the service 
provider must make technology decisions based on this trade-off. If the service 
provider is using a service broker, decisions must be made on how to categorize 

Service
Requester

Service
Broker

Service
Provider

look up

bind

register
952 Rational Application Developer V6 Programming Guide



the service, and the service must be registered with the service broker using 
agreed-upon protocols.

Service broker
The service broker, also known as the service registry, is responsible for making 
the service interface and implementation access information available to any 
potential service requester.

The service broker will provide mechanisms for registering and finding services. 
A particular broker might be public (for example, available on the Internet) or 
private—only available to a limited audience (for example, on an intranet). The 
type and format of the information stored by a broker and the access 
mechanisms used will be implementation-dependent.

Service requester
The service requester, also know as a service client, discovers services and then 
uses them as part of its operation.

A service requester uses services provided by service providers. Using an 
agreed-upon protocol, the requester can find the required information about 
services using a broker (or this information can be obtained in some other way). 
Once the service requester has the necessary details of the service, it can bind 
or connect to the service and invoke operations on it. The binding is usually 
static, but the possibility of dynamically discovering the service details from a 
service broker and configuring the client accordingly makes dynamic binding 
possible.

17.1.2  Web Services as an SOA implementation
Web Services provides a technology foundation for implementing a 
service-oriented architecture. A major focus during the development of this 
technology is to make the functional building blocks accessible over standard 
Internet protocols which are independent of platforms and programming 
languages to ensure that very high levels of interoperability are possible.

Web Services are self-contained software services that can be accessed using 
simple protocols over a network. They can also be described using standard 
mechanisms, and these descriptions can be published and located using 
standard registries. Web Services can perform a wide variety of tasks, ranging 
from simple request-reply to full business process interactions.

Using tools like Rational Application Developer, existing resources can be 
exposed as Web Services very easily.
 Chapter 17. Develop Web Services applications 953



The core technologies used for Web Services are as follows:

� XML
� SOAP
� WSDL
� UDDI

XML
Extensible Markup Language (XML) is the markup language that underlies Web 
Services. XML is a generic language that can be used to describe any kind of 
content in a structured way, separated from its presentation to a specific device. 
All elements of Web Services use XML extensively, including XML namespaces 
and XML schemas.

The specification for XML is available at:

http://www.w3.org/XML/

SOAP
Simple Object Access Protocol (SOAP) is a network, transport, and 
programming language neutral protocol that allows a client to call a remote 
service. The message format is XML. SOAP is used for all communication 
between the service requester and the service provider. The format of the 
individual SOAP messages depends on the specific details of the service being 
used.

The specification for SOAP is available at:

http://www.w3.org/TR/soap/

WSDL
Web Services Description Language (WSDL) is an XML-based interface and 
implementation description language. The service provider uses a WSDL 
document in order to specify:

� The operations a Web Service provides
� The parameters and data types of these operations
� The service access information

WSDL is one way to make service interface and implementation information 
available in a UDDI registry. A server can use a WSDL document to deploy a 
Web Service. A service requester can use a WSDL document to work out how to 
access a Web Service (or a tool can be used for this purpose).

The specification for WSDL is available at:

http://www.w3.org/TR/wsdl/
954 Rational Application Developer V6 Programming Guide

http://www.w3.org/XML/
http://www.w3.org/TR/soap/
http://www.w3.org/TR/wsdl/


UDDI
Universal Description, Discovery and Integration (UDDI) is both a client-side API 
and a SOAP-based server implementation that can be used to store and retrieve 
information on service providers and Web Services.

The specification for UDDI is available at:

http://www.uddi.org/

Figure 17-2 shows a how the Web Services technologies are used to implement 
an SOA.

Figure 17-2   Web Services implementation of an SOA

17.1.3  Related Web Services standards
The basic technologies of XML, SOAP, WSDL, and UDDI are fundamental to 
Web Services, but many other standards have been developed to help with 
developing and using them.

An excellent resource for information on standards related to Web Services can 
be found at:

http://www.ibm.com/developerworks/views/webservices/standards.jsp

Web Services in J2EE V1.4
One of the main changes in moving from J2EE V1.3 to V1.4 is the incorporation 
of Web Services into the Platform standard. J2EE V1.4 provides support for Web 

Service
Requester

Service
Broker

Service
Provider

look up

bind

register

SOAP

UDDI
using SOAP

UDDI
using SOAP Service

Description
using WSDL

reference

create
 Chapter 17. Develop Web Services applications 955

http://www.uddi.org/
http://www.ibm.com/developerworks/views/webservices/standards.jsp


Services clients and also allows Web Services to be published. The main 
technologies in J2EE V1.4 that provide this support are as follows:

� Java API for XML-based Remote Procedure Calls (JAX-RPC): JAX-RPC 
provides an API for Web Services clients to invoke services using SOAP over 
HTTP. It also defines standard mappings between Java classes and XML 
types.

� SOAP with Attachments API for Java (SAAJ): Allows SOAP messages to be 
manipulated from within Java code. The API includes classes to represent 
such concepts as SOAP envelopes (the basic packaging mechanism within 
SOAP), SOAP faults (the SOAP equivalent of Java exceptions), SOAP 
connections, and attachments to SOAP messages.

� Web Services for J2EE: This specification deals with the deployment of Web 
Service clients and Web Services themselves. Under this specification, Web 
Services can be implemented using JavaBeans or stateless session EJBs.

� Java API for XML Registries (JAXR): This API deals with accessing XML 
registry servers, such as servers providing UDDI functionality.

The specifications for Web Services support in J2EE V1.4 are available at:

http://java.sun.com/j2ee/

Web Services interoperability
In an effort to improve the interoperability of Web Services, the Web Services 
Interoperability Organization (known as WS-I) was formed. WS-I produces a 
specification known as the WS-I Basic Profile, which describes the technology 
choices that maximize interoperability between Web Services and clients running 
on different platforms, using different runtime systems and written in different 
languages.

The WS-I Basic Profile is available at:

http://ws-i.org/deliverables/workinggroup.aspx?wg=basicprofile

Web Services security
Although not all runtimes support security for Web Services, a body of standards 
is evolving that describes how Web Services can be secured. The technical 
basis for these standards is known as WS-Security, which provides the basic 
encryption and digital signature technologies. In addition, several other 
specifications now use WS-Security for defining trust models, creating secure 
channels between Web Services and their clients, and ensuring that clients are 
authorized to use Web Services.

The specification for WS-Security is managed by OASIS:

http://www.oasis-open.org/
956 Rational Application Developer V6 Programming Guide

http://ws-i.org/deliverables/workinggroup.aspx?wg=basicprofile
http://java.sun.com/j2ee/
http://www.oasis-open.org/


Web Services workflow
Business Process Execution Language for Web Services (BPEL4WS) provides a 
language for the specification of business processes and business interactions 
protocols, extending the basic Web Services model to include business 
transaction support.

The specification for BPEL4WS is available at:

http://www.ibm.com/developerworks/webservices/library/ws-bpel/

Web Services Inspection Language
Web Services Inspection Language (WS-IL) can be used as an alternative to 
registering Web Services using UDDI. With WS-IL, a site can be inspected for 
Web Services, and all the necessary information about the available Web 
Services can be obtained from this inspection.

The WS-IL specification is available at:

http://www.ibm.com/developerworks/webservices/library/ws-wsilspec.html

17.2  Web Services tools in Application Developer
Rational Application Developer provides tools to create Web Services from 
existing Java and other resources or from WSDL files, as well as tools for Web 
Services client development and for testing Web Services.

17.2.1  Creating a Web Service from existing resources
Application Developer provides wizards for exposing a variety of resources as 
Web Services. The following resources can be used to build a Web Service:

� JavaBean: The Web Service wizard assists you in creating a new Web 
Service from a simple Java class, configures it for deployment, and deploys 
the Web Service to a server. The server can be the WebSphere Application 
Server V6.0 Test Environment included with Rational Application Developer 
or another application server.

� EJB: The Web Service wizard assists you in creating a new Web Service 
from a stateless session EJB, configures it for deployment, and deploys the 
Web Service to a server.

� DADX: Document access definition extension (DADX) is an XML document 
format that specifies how to create a Web Service using a set of operations 
that are defined by DAD documents and SQL statements. A DADX Web 
Service enables you to expose DB2 XML Extender or regular SQL 
statements as a Web Service. The DADX file defines the operations available 
 Chapter 17. Develop Web Services applications 957

http://www.ibm.com/developerworks/webservices/library/ws-bpel/
http://www.ibm.com/developerworks/webservices/library/ws-wsilspec.html


to the DADX run-time environment and the input and output parameters for 
the SQL operation.

� URL: The Web Service wizard assists you in creating a new Web Service that 
directly accesses a servlet running on a server.

� ISD: An ISD file is a legacy Web Service deployment descriptor. It provides 
information to the SOAP runtime about the service that should be made 
available to clients (for example, URI, methods, implementation classes, 
serializers, and deserializers). When using a Web Services runtime based on 
Apache SOAP, ISD files are concatenated into the SOAP deployment 
descriptor (dds.xml). This mechanism has been replaced in more recent Web 
Services runtimes, such as Apache Axis and J2EE Web Services runtimes.

17.2.2  Creating a skeleton Web Service
Rational Application Developer provides the functionality to create Web Services 
from a description in a WSDL (or WSIL) file:

� JavaBean from WSDL: The Web Service wizard assists you in creating a 
skeleton JavaBean from an existing WSDL document. The skeleton bean 
contains a set of methods that correspond to the operations described in the 
WSDL document. When the bean is created, each method has a trivial 
implementation that you replace by editing the bean.

� Enterprise JavaBean from WSDL: The Web Services tools support the 
generation of a skeleton EJB from an existing WSDL file. Apart from the type 
of component produced, the process is similar to that for JavaBeans.

17.2.3  Client development
To assist in development of Web Service clients, Rational Application Developer 
provides these features:

� Java client proxy from WSDL: The Web Service client wizard assists you in 
generating a proxy JavaBean. This proxy can be used within a client 
application to greatly simplify the client programming required to access a 
Web Service.

� Sample Web application from WSDL: Rational Application Developer can 
generate a sample Web application, which includes the proxy classes 
described above, and sample JSPs that use the proxy classes.
958 Rational Application Developer V6 Programming Guide



17.2.4  Testing tools for Web Services
To allow developers to test Web Services, Rational Application Developer 
provides a range of features:

� WebSphere Application Server V6.0 Test Environment: The V6.0 server is 
included with Rational Application Developer as a test server and can be 
used to host Web Services. It provides a range of Web Services runtimes, 
including an implementation of the J2EE specification standards.

� Sample Web application: The Web application mentioned above can be used 
to test Web Services and the generated proxy it uses.

� Web Services Explorer: This is a simple test environment that can be used to 
test any Web Service, based only on the WSDL file for the service. The 
service can be running on a local test server or anywhere else on the 
network.

� Universal Test Client: The Universal Test Client (UTC) is a very powerful and 
flexible test application that is normally used for testing EJBs. Its flexibility 
makes it possible to test ordinary Java classes, so it can be used to test the 
generated proxy classes created to simplify client development.

� TCP/IP Monitor: The TCP/IP Monitor works like a proxy server, passing 
TCP/IP requests on to another server and directing the returned responses 
back to the originating client. In the process of doing this, it records the 
TCP/IP messages that are exchanged, and can display these in a special 
view within Rational Application Developer.

17.3  Preparing for the samples
This section describes the steps required for preparing the environment for the 
Web Services application samples.

This section includes the following tasks:

� Import the sample code.
� Enable the Web Services Development capability.
� Set up the sample back-end database.
� Add Cloudscape JDBC driver (JAR) to the project.
� Define a server to test the application.
� Test the application.

17.3.1  Import the sample code
To prepare for this sample, we will import some sample code. This is a simple 
Web application that includes Java classes and an Enterprise JavaBean.
 Chapter 17. Develop Web Services applications 959



1. Switch to the J2EE perspective Project Explorer view.

2. Right-click Enterprise Applications, and select Import... → EAR file.

3. When the Enterprise Application Import dialog appears, click the Browse 
button next to the EAR file, navigate to and select the 
BankWebServiceEAR.ear from the c:\6449code\webservices folder, and 
click Open.

4. Ensure that the Import EAR project is checked and click Next >.

5. Click Select All in the part of the next page dealing with Utility JARs and Web 
libraries, and then click Finish.

17.3.2  Enable the Web Services Development capability
By default, the Web Services Development capability is not enabled in IBM 
Rational Application Developer V6.0. 

To enable the Web Services Development capability, do the following:

1. From the Workbench, select Window → Preferences.

2. Select Workbench → Capabilities.

3. Expand Web Service Developer.

4. Check Web Services Development and Component Test for Web 
Services (Core Database Development is already checked by default), as 
seen in Figure 17-3 on page 961, and then click OK.

Note: For information on downloading and unpacking the redbook sample 
code, refer to Appendix B, “Additional material” on page 1395.
960 Rational Application Developer V6 Programming Guide



Figure 17-3   Enable Web Services Development capability

17.3.3  Set up the sample back-end database
This section provides instructions for deploying the BANK sample database and 
populating the database with sample data. For simplicity we will use the built-in 
Cloudscape database.

To create the database, create the connection, and create and populate the 
tables for the BANK sample from within Rational Application Developer, do the 
following:

1. Create the database and the connection to the Cloudscape BANK database 
from within Rational Application Developer.

For details refer to “Create a database connection” on page 347.

2. Create the BANK database tables from within Rational Application Developer.
 Chapter 17. Develop Web Services applications 961



For details refer to “Create database tables via Rational Application 
Developer” on page 350.

3. Populate the BANK database tables with sample data from within Rational 
Application Developer.

For details refer to “Populate the tables within Rational Application Developer” 
on page 352.

17.3.4  Add Cloudscape JDBC driver (JAR) to the project
To add the Cloudscape JDBC driver (JAR) to the BankWebServiceUtility project, 
do the following:

1. From the J2EE perspective, expand Other Projects.

2. Select BankWebServiceUtility, right-click, and select Properties.

3. Select Java Build Path.

4. Select the Libraries tab at the top of the dialog and click Add Variable....

5. A further dialog appears, allowing you to select from a list of predefined 
variables. By default, there is no variable defined for the JAR file we need, so 
we will have to create one.

6. Click Configure Variables... and in the resulting dialog click New....

7. Enter CLOUDSCAPE_DRIVER_JAR in the Name field and click File....

8. Find the appropriate JAR file, which is in 
<rad_home>\runtimes\base_v6\cloudscape\lib and is called db2j.jar.

9. Click Open, OK, and OK and you will be back at the New Variable Classpath 
Entry dialog.

10.Select the CLOUDSCAPE_DRIVER_JAR variable you just created and click 
OK.

11.Modify the sample code URL to point to the correct back-end database.

a. From the J2EE perspective expand Other Projects → 
BankWebServiceUtility → src → itso.bank.model.entity.java.

b. Open the DatabaseManager.java file.

c. Modify the URL string for the database in the getConnection method to 
reflect the actual location of our database. For example:

"jdbc:db2j:C:\\databases\\BANK"

d. Save and close the file.
962 Rational Application Developer V6 Programming Guide



17.3.5  Define a server to test the application
Next, we need to define the server that the project will be added to to run and test 
the application. You can add the project to an existing server or create a new 
server. 

Add project to an existing server
If you already have a server defined for testing purposes, do the following.

1. Right-click the server (for example, WebSphere Application Server v6.0), and 
select Add and remove projects. 

2. When the Add and Remove Projects dialog appears, select 
BankWebServiceEAR under Available projects, and click Add >.

3. The BankWebServiceEAR should now appear under the Configured projects 
column. Click Finish.

4. Verify that the server can start and stop successfully.

Create a new server and add the project
To create a new server to run the application, do the following:

1. From the J2EE perspective, select the Servers view.

2. Right-click in the Servers view and select New → Server.

3. When the Define a New Server dialog appears, accept the default Host name 
as localhost and ensure that WebSphere v6.0 Server is selected under 
Select the server type. Click Next >.

4. When the WebSphere Server Settings dialog appears, accept the defaults 
and click Next >.

5. When the Add and Remove Projects dialog appears, select 
BankWebServiceEAR under Available projects, and click Add >.

6. The BankWebServiceEAR should now appear under the Configured projects 
column. Click Finish.

17.3.6  Test the application
To start and test the application, do the following:

1. Ensure that CView or another application is not connected to the sample 
BANK database.

Note: We chose this option for our example, since we already had a test 
server configured.
 Chapter 17. Develop Web Services applications 963



2. Expand Dynamic Web Projects → BankWebServiceWeb → WebContent.

3. Right-click search.html and select Run → Run on Server....

4. Select the Choose an existing server radio button and the desired server to 
run the application and then click Finish.

5. When search.html opens in a Web browser, enter an appropriate value in the 
Social Security field, such as 111-11-1111, and click Search.

If everything is working correctly, you should see the details of the customer 
and one of the customer’s accounts, which have been read from the 
database.

6. The stateless session EJB, CustomerFacade, can be tested using the 
Universal Test Client (UTC). See 15.5, “Testing EJB with the Universal Test 
Client” on page 915, for more information on using the UTC.

We now have some resources in preparation for the Web Services sample, 
including a Java class in the BankWebServicesWeb project and an EJB in the 
BankWebServicesEJB project. We will use these as a base for developing and 
testing the Web Services samples.

17.4  Create a Web Service from a JavaBean
As explained above, Web Services can be created in several different ways. In 
this first example, we will create a Web Service from an existing Java class.

The imported application contains a Java class called SimpleBankBean, which 
has various methods for querying the database.

This section is organized into the following tasks:

� Create a Web Service using the Web Service wizard.
� Resources generated by the Web Services wizard.
� Test the Web Service using the Web Services Explorer.
� Generate and test the client proxy.
� Monitor the Web Service using the TCP/IP Monitor.

17.4.1  Create a Web Service using the Web Service wizard
To create a Web Service using the Web Service wizard, do the following:

1. Ensure that the Web Services Development capability has been enabled.

For details refer to “Enable the Web Services Development capability” on 
page 960.
964 Rational Application Developer V6 Programming Guide



2. Ensure the test server (WebSphere Application Server v6.0) is started. This is 
needed by the wizard to create a service endpoint interface.

3. From the J2EE perspective, select the Dynamic Web Projects folder.

4. Select File → New → Other....

5. When the Select a Wizard dialog appears, select Web Service and then click 
Next.

6. When the Web Service dialog appears, we selected the following options (as 
seen in Figure 17-4 on page 966), and then clicked Next:

– Web service type: Select Java bean Web Service.
– Check Start Web Service in Web project (default).
– Check Create folders when necessary (default).

Note: If you have not previously enabled the Web Services Development 
capability within Rational Application Developer, you will see the dialog 
with the message This action requires the “Web Services 
Development”. Enable the required capability? Click OK.
 Chapter 17. Develop Web Services applications 965



Figure 17-4   New Web Service wizard

7. When the Object Selection Page appears, click Browse Classes..., type 
SimpleBankBean, and click OK.

8. The Bean name should be itso.bank.model.simple.SimpleBankBean. Click 
Next >.

9. When the Service Deployment Configuration dialog appears, we accepted 
the values displayed in Figure 17-5 on page 967 (based on our previous 
settings), and then clicked Next.

If these are not the value shown, you will need to click Edit... and set them as 
appropriate or choose them from the drop-down lists.
966 Rational Application Developer V6 Programming Guide



Figure 17-5   New Web Service wizard - Deployment settings

10.When the Service Endpoint Interface Selection dialog appears, accept the 
default (“Use an existing service endpoint interface” check box unchecked). 
This will cause the wizard to create a new service end point. Click Next.

11.When the Web Service Java Bean Identity dialog appears, we entered the 
following, as seen in Figure 17-6 on page 968:

– WSDL File: SimpleBankBean.wsdl (default)
– Methods:

• Check getNumAccounts(String).
• Check getAccountId(String,int).
• Check getCustomerFullName(String).
• Check getAccountBalance(String).

– Style and use: select Document/ Literal.
– Accept the default values for the remaining settings.

Tip: We found that if the server was not started, we received a null pointer 
exception from the wizard when attempting to create the service endpoint 
interface in the next step. This is the reason we started the server prior to 
running the wizard. 
 Chapter 17. Develop Web Services applications 967



Figure 17-6   New Web Service wizard - Configure the Web Service

12.Click Next >.

13.Click Finish.

17.4.2  Resources generated by the Web Services wizard
The wizard generates a lot of files based on the choices made. Since the original 
Java classes are located in the BankWebServiceWeb project, all of the 
generated code is also located in the BankWebServiceWeb project. The 
968 Rational Application Developer V6 Programming Guide



generated files are visible in two different views, as seen in Figure 17-7 and 
Figure 17-8 on page 970.

Figure 17-7   Web Services generated resources - Web project view

� The service endpoint interface is the Java interface that is implemented by 
the Web Service. This will include a subset of the public methods on the class 
that has been exposed as a Web Service.

� The WSDL file appears in two places:

– WEB-INF folder: This copy is used by the server for deployment purposes, 
but is not accessible to external clients through HTTP (the Servlet 

service endpoint interface

WSDL file

WebSphere bindings file

WebSphere extensions file

JAX-RPC type mappings
Web Services deployment
descriptor

WSDL file
(URL accessible)
 Chapter 17. Develop Web Services applications 969



specification states that resources contained within the WEB-INF folder 
are not visible externally).

– wsdl folder: This copy is accessible to external clients and can therefore 
be used by a client to obtain all the necessary information about the Web 
Service.

� The WebSphere bindings file is used to map local names to global names (for 
example, to map EJB references to real names used to register EJBs in 
JNDI).

� The WebSphere extensions file stores information relating to WebSphere 
extensions to the J2EE specification. This acts as an extension to the 
information contained within the deployment descriptor.

� The JAX-RPC type mapping file contains information on the relationships 
between types used in Java code and their equivalents in XML.

� The Web Services deployment descriptor contains information used by the 
server to deploy the Web Services in the project. The format of this file is 
defined by the Web Services for J2EE specification.

Figure 17-8   Web Services generated files - Web Services view

This view only shows information about Web Services defined in projects within 
the workspace.

� The Service Classes section shows how the Web Service is registered in a 
Web project as a Servlet (this can also be seen in the Web project’s 
deployment descriptor).

� The WSDL section shows the location of the internally visible copy of the 
WSDL file for the Web Service.
970 Rational Application Developer V6 Programming Guide



� The Handlers section (empty in this case) lists the handlers that are 
configured for this Web Service. These are similar in concept to Servlet filters.

17.4.3  Test the Web Service using the Web Services Explorer
Rational Application Developer includes a versatile tool for working with Web 
Services, called the Web Services Explorer. It works with WSDL files and 
automatically generates the appropriate interface for the Web Services being 
tested.

1. Ensure that you have closed other application connections to the sample 
BANK database (exit CView or disconnection from within Application 
Developer).

2. Open the J2EE perspective Project Explorer view.

3. Expand Web Services → Services → SimpleBankBeanService.

4. Right-click SimpleBankBean.wsdl from the SimpleBankBeanService folder, 
and select Test with Web Services Explorer, as seen in Figure 17-9 on 
page 972.

Note: Alternatively, expand Dynamic Web Projects → 
BankWebServiceWeb → WebContent → WEB-INF → wsdl.

Note: Alternatively, right-click SimpleBankBean.wsdl, and select Web 
Services → Test with Web Services Explorer.
 Chapter 17. Develop Web Services applications 971



Figure 17-9   Launching the Web Services Explorer

5. When the Web Services Explorer edit dialog appears, expand 
SimpleBankBeanSoapBinding to see the methods available on the Web 
Service.

6. Select one of the methods (for example, getCustomerFullName). 

The Actions pane on the right displays a simple interface allowing you to 
enter values for the method parameters

7. Enter a value for the customerId, such as 111-11-1111, and click Go.

The results of your Web Service invocation should appear in the Status pane 
at the bottom right of the Web Services Explorer.

8. Test the other methods in a similar way.
972 Rational Application Developer V6 Programming Guide



17.4.4  Generate and test the client proxy
We can also test out Web Service using a proxy class, which is generated by 
Rational Application Developer.

To generate a client and test the client proxy, do the following:

1. Open the J2EE perspective Project Explorer view.

2. Expand Web Services → Services → SimpleBankBeanService.

3. Right-click SimpleBankBean.wsdl, and select Generate Client.

4. When the Web Services Client dialog appears, we entered the following (as 
seen in Figure 17-10 on page 974), and then clicked Next:

– Check Test the Web Service.
– Check Monitor the Web Service.
– Uncheck Monitor the Web Service (we will come to this shortly).

In addition to creating the proxy, this will allow us to generate a sample 
application based on JSPs, which we can use to test the proxy.

Note: The proxy is generated using only the WSDL file, so in fact a proxy can 
be generated for any Web Service for which a WSDL file is available. The 
Web Service can be running anywhere on the Internet or on an intranet. 

The intention of this feature of Rational Application Developer is to simplify 
client development by encapsulating the lookup and invocation code in a 
simple Java class. 

For more information on using this feature refer to the WebSphere Application 
Server V6: Web Services Development and Deployment, SG24-6461, 
redbook.

Note: Alternatively, expand Dynamic Web Projects → 
BankWebServiceWeb → WebContent → WEB-INF → wsdl.

Note: Alternatively, right-click SimpleBankBean.wsdl, and select Web 
Services → Generate Client.
 Chapter 17. Develop Web Services applications 973



Figure 17-10   Generate Web Service client proxy

5. When the Web Service Selection Page dialog appears, we accepted the 
default (correct WSDL file selected) and clicked Next >.

6. When the Client Environment Configuration dialog appears, we entered the 
following and then clicked Next:

– Web Service runtime: IBM WebSphere

– Server: WebSphere Application Server v6.0

– J2EE version: 1.4

– Client type: Select Web (default). The other possible options include EJB, 
Application Client (J2EE), and Java (standalone application).

– Client project: BankWSClient (This will be created for us.)

– EAR project: Select BankWebServiceEAR.

7. When the Web Service Proxy Page dialog appears, we accepted the default 
(No Security) and clicked Next.

8. You may be prompted with Cannot create the file “web.xml” relative to 
the path “/BankWSClient/WebContent/WEB-INF” because automatic file 
overwriting has not been enabled. Do you want to enable it for this 
file? Click Yes.
974 Rational Application Developer V6 Programming Guide



9. When the Web Service Client Test dialog appears, we entered the following 
and then clicked Finish:

– Check Test the generated proxy.

– Test facility: Select Web Service sample JSPs (default). The test facility 
options include Web Service sample JSPs, Web Services Explorer, and 
Universal Test Client.

– Folder: sampleSimpleBankBeanProxy (default)

You can specify a different folder for the generated application if you wish.

– Methods: Leave all methods checked.

– Check Run test on server.

The sample application should start and be displayed in a Web browser.

10.Select the getCustomerFullName method, entera valid value in the 
customerId field such as 111-11-1111, and then click Invoke.

The results should be displayed in the result pane, as seen in Figure 17-11.

Figure 17-11   Sample JSP results

The code that uses the generated proxy is in Result.jsp and can be viewed in the 
Source view of the Page Designer editor, although it is not easy to read.
 Chapter 17. Develop Web Services applications 975



17.4.5  Monitor the Web Service using the TCP/IP Monitor
When developing Web Services, it is often useful to be able to observe the SOAP 
messages that are passed in both directions between the client and the Web 
Service. Rational Application Developer provides a tool to allow you to do this, 
known as the TCP/IP Monitor.

To monitor a Web Service using the Rational Application Developer TCP/IP 
Monitor, do the following:

1. Ensure that you have closed other application connections to the sample 
BANK database (exit CView or disconnection from within Application 
Developer).

2. Ensure the test server is started.

3. Create a server to act as the TCP/IP Monitor.

a. From the Workbench, select Window → Preferences.

b. Select Internet → TCP/IP Monitor.

c. Ensure that Show the TCP/IP Monitor view when there is activity is 
checked.

d. Under the TCP/IP Monitors lists, click Add.

e. When the new Monitor dialog appears, we entered the following, as seen 
in Figure 17-12 on page 977:

• Local Monitoring port: 9081

Specify a unique port number on your local machine.

• Host name: localhost

Specify the hostname or IP address of the machine where the server is 
running.

• Port: 9080

Specify the port number of the remote server.

• Type: Select HTTP (or TCP/IP).

f. Select the newly added hostname to monitor and then click Start.

g. Click OK to save preference settings.
976 Rational Application Developer V6 Programming Guide



Figure 17-12   TCP/IP Monitor preferences

4. Open the J2EE perspective Project Explorer view.

5. Expand Web Services → Services → SimpleBankBeanService.

6. Right-click SimpleBankBean.wsdl, and select Test with Web Services 
Explorer.

Note: Alternatively, expand Dynamic Web Projects → 
BankWebServiceWeb → WebContent → WEB-INF → wsdl.

Note: Alternatively, right-click SimpleBankBean.wsdl, and select Web 
Services → Test with Web Services Explorer.
 Chapter 17. Develop Web Services applications 977



7. From the Web Services Explorer, select SimpleBankBeanSoapBinding in 
the Navigator pane.

8. Scroll down to the Endpoints section in the Actions pane and click Add. 

9. A new editable endpoint address will appear, pre-filled with the original 
address. Change the port number from 9080 to 9081, so the new address will 
be as follows:

http://localhost:9081/BankWebServiceEARWeb/services/SimpleBankBean

10.Check the new endpoint, and click Go. 

You should see a message Endpoints were successfully updated.

11.Select the method you wish to test. For example, select 
getCustomerFullName, and from the Endpoints list select the endpoint with 
9081 as the port number.

12.Enter a suitable value for the customerId such as 555-55-5555 and click Go.

The TCP/IP Monitor view will automatically open, as seen in Figure 17-13 on 
page 979.

As long as port 9081 is used for the endpoint instead of 9080, all requests 
and responses will be routed through the TCP/IP monitor and will appear in 
the TCP/IP Monitor view. 

The TCP/IP Monitor view shows all the intercepted requests in the top pane, 
and when a request is selected, the messages passed in each direction are 
shown in the bottom panes (request in the left pane, response in the right). 
This can be a very useful tool in debugging Web Services and clients.
978 Rational Application Developer V6 Programming Guide



Figure 17-13   TCP/IP Monitor view
 Chapter 17. Develop Web Services applications 979



17.5  Create a Web Service from an EJB
The process of creating a Web Service from an EJB session bean is very similar 
to the process for a JavaBean.

1. Expand EJB Projects → BankWebServiceEJB → Deployment 
Descriptor → Session Beans.

2. Right-click SimpleBankFacade, and select Web Services → Create Web 
Service.

3. The Web Service type should be EJB Web Service. Leave all the other 
check boxes at their default values.

4. Click Next > and select the appropriate session EJB if it is not already 
selected.

5. Click Next > and Next > (these pages are the same as before).

6. On the page entitled Web Service EJB Configuration, you need to specify 
which Web project will contain the routing Servlet to forward requests to the 
EJB. We will use the same project we used for the other Web Service, so 
select BankWebServiceWeb from the list.

7. It is possible to invoke message-driven EJBs using SOAP over JMS as 
opposed to SOAP over HTTP (this is a WebSphere extension). We are using 
a stateless session EJB, so we need to leave the radio button set to SOAP 
over HTTP.

8. Click Next >.

9. On this page we can select which methods we want to make available to 
clients. Leave all the methods checked as before and click Next >.

10.Click Finish on the Web Service Publication page.

The mechanisms for testing Web Services based on stateless session EJBs are 
exactly the same as for services based on JavaBeans (or any other Web 
Service). Try testing your Web Service using the Web Services Explorer or the 
sample JSP application as described above. You will find the WSDL file in the 
EJB project under ejbModule META-INF wsdl.

17.6  Web Services security
Rational Application Developer allows you to create Web Services that 
communicate securely with clients. This can be selected in the wizard on the 
Web Service Java Bean Identity page, as shown in Figure 17-14 on page 982.
980 Rational Application Developer V6 Programming Guide



The options available are as follows:

� No security
� XML Digital Signature
� XML Encryption
� XML Digital Signature and XML Encryption

Although standards are evolving for Web Services security, they are not yet 
universally implemented, so the use of these security mechanisms is forbidden 
by the WS-I Basic Profile. Consequently, enabling any of these security options 
will produce the warning dialog shown in Figure 17-14 on page 982, stating You 
have made a choice that may result in a Web Service that does not comply 
with WS-I Simple SOAP Basic Profile. You can choose to ignore this message 
and continue to use secure Web Services, but this decision will impact the 
interoperability of your service with Web Services clients running on different 
technologies.

Secure Web Services can still be tested using the client proxy that is generated 
by Rational Application Developer, since the proxy includes the necessary code 
to communicate securely with the Web Service. The Web Services Explorer and 
the TCP/IP Monitor cannot be used effectively in this case, however.
 Chapter 17. Develop Web Services applications 981



Figure 17-14   Web Services security

17.7  Publish a Web Service using UDDI
Rational Application Developer includes a test UDDI registry, which runs in the 
integrated WebSphere server and uses Cloudscape or DB2 as the back-end 
database. To create the test registry:

1. Select File → New → Other... → Web Services → Unit Test UDDI and click 
Next >.

2. Leave the first page of the wizard with the default values (Private UDDI 
Registry for WAS v6.0 with Cloudscape) and click Next >.

3. The second page of the wizard allows you to specify which server to use for 
the registry. Leave the default values and click Finish.
982 Rational Application Developer V6 Programming Guide



The wizard imports an EAR file, which includes Web and EJB components and 
sets up the necessary database tables and data sources in the server; this takes 
some time. The Web Services Explorer is opened on completion with the UDDI 
page open. This can be used to register and search for businesses and services 
using the test registry. The Web Services Explorer can also be used with other 
registries, such as the Public Business Registries available at locations such as 
http://uddi.ibm.com/.
 Chapter 17. Develop Web Services applications 983

http://uddi.ibm.com/


984 Rational Application Developer V6 Programming Guide



Chapter 18. Develop portal applications

This chapter describes the portal development tools and test environment for 
IBM WebSphere Portal that are now included with IBM Rational Application 
Developer V6.0. We will also highlight how the portal tools in Rational Application 
Developer can be used to develop a portal and associated portlet applications for 
WebSphere Portal. Lastly, we have included a development scenario to 
demonstrate how to use the new integrated portal tooling and test environment to 
develop a portal, customize the portal, and develop two portlets.

The chapter is organized into the following topics:

� Introduction to portals
� Developing applications for WebSphere Portal
� Portal development scenario

18

Note: For more detailed information on IBM WebSphere Portal V5.0 and V5.1 
application development, refer to the following:

� IBM WebSphere Portal V5 A Guide for Portlet Application Development, 
SG24-6076 

� IBM WebSphere Portal V5.1 Portlet Application Development, SG24-6681
© Copyright IBM Corp. 2005. All rights reserved. 985



18.1  Introduction to portals
As J2EE technology has evolved, much emphasis has been placed on the 
challenges of building enterprise applications and bringing those applications to 
the Web. At the core of the challenges currently being faced by Web developers 
is the integration of disparate user content into a seamless Web application and 
well-designed user interface. Portal technology provides a framework to build 
such applications for the Web.

Because of the increasing popularity of portal technologies, the tooling and 
frameworks used to support the building of new portals has evolved. The main 
job of a portal is to aggregate content and functionality. Portal servers provide:

� A server to aggregate content
� A scalable infrastructure
� A framework to build portal components and extensions

Additionally, many portals offer personalization and customization features. 
Personalization enables the portal to deliver user-specific information targeting a 
user based on their unique information. Customization allows the user to 
organize the look and feel of the portal to suit their individual needs and 
preferences. 

Portals are the next-generation desktop, delivering e-business applications over 
the Web to many types of client devices from PCs to PDAs. Portals provide site 
users with a single point of access to multiple types of information and 
applications. Regardless of where the information resides or what format it is in, 
a portal aggregates all of the information in a way that is relevant to the user. 

The goal of implementing an Enterprise portal is to enable a working 
environment that integrates people, their work, personal activities, and 
supporting processes and technology.

18.1.1  Portal concepts and definitions
Before beginning development for portals, you should become familiar with some 
common definitions and descriptions of portal-related terminology. 

Portal page
A portal page is a single Web page that can be used to display content 
aggregated from multiple sources. The content that appears on a portal page is 
displayed by an arrangement of one or more portlets. For example, a World 
Stock Market portal page might contain two portlets that display stock tickers for 
popular stock exchanges and a third portlet that displays the current exchange 
rates for world currencies. 
986 Rational Application Developer V6 Programming Guide



Portlet
A portlet is an individual application that displays content on a portal page. To a 
user, a portlet is a single window or panel on the portal page that provides 
information or Web application functionality. To a developer, portlets are 
Java-based plugable modules that can access content from a source such as 
another Web site, an XML feed, or a database, and display this content to the 
user as part of the portal page.

Figure 18-1   Portal page and portlets

Portlet application
Portlet applications are collections of related portlets and resources that are 
packaged together. Portlets within the same portlet application can exchange 
and share data and act as a unit. All portlets packaged together share the same 
context, which contains all resources such as images, properties files, and 
classes.

Portlet

Portlet Portlet

Portlet

Portal page
 Chapter 18. Develop portal applications 987



Portlet states
Portlet states determine how individual portlets look when a user accesses them 
on the portal page. These states are very similar to minimize, restore, and 
maximize window states of applications run on any popular operating system just 
in a Web-based environment. 

The state of the portlet is stored in the PortletWindow.State object and can be 
queried for changing the way a portlet looks or behaves based on its current 
state. The IBM portlet API defines three possible states for a portlet:

� Normal: The portlet is displayed in its initial state, as defined when it was 
installed.

� Minimized: Only the portlet title bar is visible on the portal page.

� Maximized: The portlet fills the entire body of the portal page, hiding all other 
portlets.

Portlet modes
Portlet modes allow the portlet to display a different face depending on how it is 
being used. This allows different content to be displayed within the same portlet, 
depending on its mode. Modes are most commonly used to allow users and 
administrators to configure portlets or to offer help to the users. There are four 
modes in the IBM Portlet API:

� View: Initial face of the portlet when created. The portlet normally functions in 
this mode.

� Edit: This mode allows the user to configure the portlet for their personal use 
(for example, specifying a city for a localized weather forecast).

� Help: If the portlet supports the help mode, this mode displays a help page to 
the user.

� Configure: If provided, this mode displays a face that allows the portal 
administrator to configure the portlet for a group of users or a single user.

Portlet events
Some portlets only display static content in independent windows. To allow users 
to interact with portlets and to allow portlets to interact with each other, portlet 
events are used. Portlet events contain information to which a portlet might need 
to respond. For example, when a user clicks a link or button, this generates an 
action event. To receive notification of a given event, the portlet must also have 
the appropriate event listener implemented within the portlet class. There are 
three commonly used types of portlet events:

� Action events: Generated when an HTTP request is received by the portlet 
that is associated with an action, such as when a user clicks a link.
988 Rational Application Developer V6 Programming Guide



� Message events: Generated when one portlet within a portlet application 
sends a message to another portlet.

� Window events: Generated when the user changes the state of the portlet 
window.

18.1.2  IBM WebSphere Portal
IBM WebSphere Portal provides an extensible framework that allows the end 
user to interact with enterprise applications, people, content, and processes. 
They can personalize and organize their own view of the portal, manage their 
own profiles, and publish and share documents. WebSphere Portal provides 
additional services such as Single Sign-On (SSO), security, credential vault, 
directory services, document management, Web content management, 
personalization, search, collaboration, search and taxonomy, support for mobile 
devices, accessibility support, internationalization, e-learning, integration to 
applications, and site analytics. Clients can further extend the portal solution to 
provide host integration and e-commerce.

WebSphere Portal allows you to plug in new features or extensions using 
portlets. In the same way that a servlet is an application within a Web server, a 
portlet is an application within WebSphere Portal. Developing portlets is the most 
important task when providing a portal that functions as the user’s interface to 
information and tasks.

Portlets are an encapsulation of content and functionality. They are reusable 
components that combine Web-based content, application functionality, and 
access to resources. Portlets are assembled into portal pages that, in turn, make 
up a portal implementation.

Portal solutions such as IBM WebSphere Portal are proven to shorten the 
development time. Pre-built adapters and connectors are available so that 
customers can leverage on the company's existing investment by integrating with 
the existing legacy systems without re-inventing the wheel.

18.1.3  IBM Rational Application Developer
IBM Rational Application Developer provides development tools for applications 
destined to WebSphere Portal. Bundled with IBM Rational Application Developer 
V6.0 are a number of portal tools that allow you to create, test, debug, and 
deploy portal and portlet applications. These tools are described in more detail in 
18.2, “Developing applications for WebSphere Portal” on page 992. 
 Chapter 18. Develop portal applications 989



Portal tools
Unlike WebSphere Studio Application Developer where the tools where installed 
as a separate toolkit, Portal Tools can now be installed as a feature when 
installing IBM Rational Application Developer V6.0. For this reason, there is no 
longer a separate portal toolkit or separate installation procedure. 

Figure 18-2   Portal tools installation

Portal test environments
As part of this tool set, Rational Application Developer provides an integrated test 
environment to run and test your portal and portlet projects from within the 
Rational Application Developer Workbench.

At the time IBM Rational Application Developer V6.0 was released, the 
WebSphere Portal V5.0.2.2 Test Environment was included as an installed 
component of the Rational Application Developer installer known as the 
Launchpad (see Figure 18-3 on page 991). 
990 Rational Application Developer V6 Programming Guide



Figure 18-3   Product installation launchpad

CDs to install the WebSphere Portal V5.1 Test Environment are also included 
with the IBM Rational Application Developer V6.0 distribution. To install the 
WebSphere Portal V5.1 Test Environment, you must run the WebSphere Portal 
V5.1 setup program and select Test Environment as the setup type, as seen in 
Figure 18-4 on page 992. Follow the instructions in the InfoCenter to configure 
this test environment so that it works from within Rational Application Developer. 
The WebSphere Portal V5.0.2.2 and V5.1 Test Environments can co-exist within 
the same product installation.
 Chapter 18. Develop portal applications 991



Figure 18-4   Installing the WebSphere Portal V5.1 Test Environment

18.2  Developing applications for WebSphere Portal
Rational Application Developer includes many tools to help you quickly develop 
portals and individual portlet applications. In this section, we cover some basic 
portlet development strategies and provide an overview of the tools included with 
IBM Rational Application Developer V6.0 to aid with development of WebSphere 
Portal.

18.2.1  Portal samples and tutorials
Rational Application Developer also comes with several samples and tutorials to 
aid you with the development of WebSphere Portal. The Samples Gallery 
provides sample portlet applications to illustrate portlet development. 

To access portlet samples, click Help → Samples Gallery. Then expand 
Technology samples and Portlet. Here you can select a Basic Portlet, Faces 
Portlet, or Struts Portlet Framework to view sample portlet application projects 
that you can then modify and build upon for your own purposes. 
992 Rational Application Developer V6 Programming Guide



The Tutorials Gallery provides detailed tutorials to illustrate portlet development. 
These are accessible by selecting Help → Tutorials Gallery. Then expand Do 
and Learn. You can select Create a portal application or Examine the 
differences between portlet APIs to view the content of these tutorials.

18.2.2  Development strategy
A portlet application consists of Java classes, JSP files, and other resources 
such as deployment descriptors and image files. Before beginning development, 
several decisions must be made regarding the development strategy and 
technologies that will be used to develop a portlet application.

Choosing an API - IBM or JSR 168
WebSphere Portal supports portlet development using the IBM portlet API and 
the JSR 168 portlet API standard. The portal tools included with IBM Rational 
Application Developer V6.0 support both APIs.

The IBM portlet API was initially supported in WebSphere Portal V4.x and will 
continue to be supported by WebSphere Portal. It is important to note that the 
IBM portlet API extends the servlet API. More information about the IBM portlet 
API can be found at:

http://www.ibm.com/developerworks/websphere/zones/portal/portlet/5.0api/WPS

JSR 168 is a Java specification from the Java Community Process Program that 
addresses the requirements of content aggregation, personalization, 
presentation, and security for portlets running in a portal environment. It was 
finalized in October of 2003. Portlets conforming to JSR 168 are more portable 
and reusable because they can be deployed to any JSR 168 compliant portal. 
Rational Application Developer supports Faces portlet development based on 
the JSR 168 specification. 

Unlike the IBM portlet API, the JSR 168 API does not extend the servlet API. It 
does, however, share many of the same characteristics such as servlet 
specification, session management, and request dispatching. The JSR 168 API 
as implemented in WebSphere Portal V5.0.2.2 does not support Click-to-Action 
cooperative portlets or portlet messaging. However, in WebSphere Portal V5.1, 
the JSR 168 container has been enhanced with Property Broker support, which 
can act as a messaging broker for either portlet messaging or wired (automatic 
cooperating) portlets. At the time of writing, the support for Click-to-Action 
(user-initiated cooperating portlets) was still under development.

For new portlets, consider using JSR 168 when the functionality it provides is 
sufficient for the portlet’s needs or when the portlet is expected to be published 
as a Web Service for Remote Portlets (WSRP) service. 
 Chapter 18. Develop portal applications 993

http://www.ibm.com/developerworks/websphere/zones/portal/portlet/5.0api/WPS


IBM will further support JSR 168 in follow-on versions to make the JSR 168 
portlet API as robust as the current IBM counterpart, and offer tooling to support 
JSR 168 development. IBM is committed to the wider adoption of open standards 
in WebSphere Portal.

More information can be found on JSR 168 at:

http://www.jcp.org/en/jsr/detail?id=168

Choosing markup languages
WebSphere Portal supports mobile devices by generating pages in any markup 
language. Three markup languages are officially supported in Rational 
Application Developer: 

� HyperText Markup Language (HTML) is used for Web browsers on desktop 
computers. All portlet applications support HTML at a minimum. 

� Wireless Markup Language (WML) is used for WAP devices that are typically 
Web-enabled mobile telephones. 

� compact Hyper Text Markup Language (cHTML) is used for mobile devices in 
the NTT DoCoMo i-mode network. For more information on the i-mode 
network, visit the following Web site:

http://www.nttdocomo.co.jp/english/

Adding emulator support for other markup languages
To run a portlet application that supports WML or cHTML, you must use an 
emulator provided by the device vendor. To add device emulator support to 
Rational Application Developer, do the following:

1. Select Window → Preferences.

2. Expand Internet and select Web Browser.

3. Click the Add button to locate the device emulator appropriate for the device 
that you wish to test and debug.

Enabling transcoding for development in other markup languages
Transcoding is the process by which WebSphere Portal makes portal content 
displayable on mobile devices. By default, it is not enabled in the WebSphere 
Portal Test Environment. Therefore, you need to make some configuration 
changes before you can test and debug applications on mobile device emulators. 
You will need to remove the comments from lines beginning with #Disable 
Transcoding from three files.

The PortletFilterService.properties and PortalFilterService.properties files are all 
located by default in the following directory:

<rad_home>\runtimes\portal_v50\shared\app\config\services
994 Rational Application Developer V6 Programming Guide

http://www.nttdocomo.co.jp/english/
http://www.jcp.org/en/jsr/detail?id=168


The services.properties file is located by default in the following directory:

<rad_home>\runtimes\portal_v50\shared\app\config

Choosing other technologies
Struts technology and JavaServer Faces technology can also be incorporated 
into a portlet development strategy. 

Struts
Struts-based application development can be applied to portlets, similar to the 
way that Struts development is implemented in Web applications. The Struts 
Portal Framework (SPF) was developed to merge these two technologies. SPF 
support in Rational Application Developer simplifies the process of writing Struts 
portlet applications and eliminates the need to manage many of the underlying 
requirements of portlet applications. In addition, multiple wizards are present to 
help you create Struts portlet-related artifacts. These are the same wizards used 
in Struts development. These wizards include: Action Class, Action Mapping, 
ActionForm, Form-Bean Mapping, Struts Configuration, Struts Module, Struts 
Exception, and Web diagram. Refer to the Rational Application Developer Struts 
documentation for usage details.

In WebSphere Portal V5.0.2.2, Struts is only supported using the IBM portlet API. 
Struts is fully supported in both the IBM and JSR 168 APIs in WebSphere Portal 
V5.1; however, there is no tooling support in Rational Application Developer for 
this configuration.

More information on Struts can be found at: 

http://struts.apache.org/

JavaServer Faces (JSF)
JavaServer Faces is a GUI framework for developing J2EE Web applications 
(JSR 127). It includes reusable user interface components, input validation, state 
management, server-side event handling, page lifecycle management, 
accessibility, and internationalization. Faces-based application development can 
be applied to portlets, similar to the way that Faces development is implemented 
in Web applications. Similar to Struts, there are many wizards to help you with 
Faces development. Both WebSphere Portal V5.0.2.2 and V5.1 support 
JavaServer Faces.

There are certain limitations to Faces portlet development in the current release. 
Service Data Objects (SDO), formerly referred to as WebSphere Data Objects 
(WDO), are limited to prototyping purposes only. Applications that rely on SDOs 
should be limited in a production environment. File upload and binary download 
are not supported for Faces components. Finally, document root-relative URLs 
are not supported for images. 
 Chapter 18. Develop portal applications 995

http://struts.apache.org/


Refer to the Rational Application Developer Faces documentation in the 
InfoCenter for usage details. Alternatively you can refer to the following Web site:

http://www.jcp.org/en/jsr/detail?id=127

Beginning development
After making these decisions, you can now begin development using the portal 
tools included with Rational Application Developer.

18.2.3  Portal tools for developing portals
A portal is essentially a J2EE Web application. It provides a framework where 
developers can associate many portlets and portlet applications via one or more 
portal pages. 

Rational Application Developer includes several new portal site creation tools 
that enable you to visually customize portal page layout, themes, skins, and 
navigation. 

Portal Import wizard
One way to create a new portal project is to import an existing portal site from a 
WebSphere Portal V5.0 server into Rational Application Developer. Importing is 
also useful for updating the configuration of a project that already exists in IBM 
Rational Application Developer.

The portal site configuration on WebSphere Portal server contains the following 
resources: The global settings, the resource definitions, the portal content tree, 
and the page layout. Importing these resources from WebSphere Portal server to 
Rational Application Developer overwrites duplicate resources within the existing 
portal project. Non-duplicate resources from the server configuration are copied 
into the existing portal project. Likewise, resources that are unique to the portal 
project are not affected by the import.

Rational Application Developer uses the XML configuration interface to import a 
server configuration, and optionally retrieves files under the 
websphere_installation_directory/installedApps/node/wps.ear directory. These 
files include the JSP, CSS, and image files for themes and skins. When creating 
a new portal project, retrieving files is mandatory. To retrieve files, Rational 
Application Developer must have access to this directory, as specified when you 
define a new server for this project.

You can access the Portal Import Wizard by selecting File → Import, then 
selecting Portal. You will need to specify the server and options for importing the 
project into Rational Application Developer.
996 Rational Application Developer V6 Programming Guide

http://www.jcp.org/en/jsr/detail?id=127


Follow the instructions in the Help Topics on Developing Portal Applications to 
ensure that the configuration in the development environment accurately reflects 
that of the staging or runtime environment. If you do not do this, you may 
experience compilation errors after the product is imported or unexpected portal 
behaviors.

Portal Project wizard
The New Portal Project wizard will guide you through the process of creating a 
portal project within Rational Application Developer.

During this process, you are able to:

� Specify a project name. 
� Specify the default server. 
� Choose a default theme (optional).
� Choose a default skin for the theme (optional).

The project that you create with this wizard will not have any portlet definitions, 
labels, or pages. The themes and skins that are available in this wizard are the 
same as if you had imported a portal site from a WebSphere Portal server.

You can access this wizard by clicking File → New → Project and then selecting 
Portal Project from the list. Figure 18-5 on page 998 displays the options to 
specify when creating a Portal Project after clicking the Show Advanced button.

Important: You should not name your project wps or anything that resembles 
this string, in order to avoid internal naming conflicts.
 Chapter 18. Develop portal applications 997



Figure 18-5   Portal Project wizard

Portal Designer
Rational Application Developer allows for editing both the graphic design and 
portlet layout within your portal. Portal Designer is the Workbench interface that 
you see upon opening a portal project.

When using Portal Designer, the portal page layout can be altered. The layout 
refers to the number of content areas within a page and the number of portlets 
within those content areas. Page content includes rows, columns, URLs, and 
portlets.

Once the project is published to the Portal server, Portal administrators can use 
the administration portlets to give site users permission to edit the page layout.

In terms of portal layout and appearance, you can think of Portal Designer as a 
What-You-See-Is-What-You-Get (WYSIWYG) editor. It will render graphic 
interface items such as themes, skins, and page layouts. 

Portal Designer will also render the initial pages of JSF and Struts portlets within 
your portal pages, but not anything else with regard to portlet content.
998 Rational Application Developer V6 Programming Guide



Portal Designer provides the capability to alter the layout of the content within a 
portal page with respect to navigation (the hierarchy of your labels, pages, and 
URLs) and content (the arrangement of portlets via rows and columns on the 
portal pages).

Portal Configuration is the name of the layout source file that resides in the root 
of the portal project folder (see Figure 18-6). To open Portal Designer, 
double-click the file in the Project Explorer.

Figure 18-6   Portal Designer

Skin and theme design and editing
A skin is the border around each portlet within a portal page. Unlike themes, 
which apply to the overall look and feel of the portal, skins are limited to the look 
and feel of each portlet that you insert into your portal application. 

The IBM Rational Application Developer installation includes pre-built themes 
and skins to use with portal projects. There are also wizards to create new 
themes and skins. Changing themes and skins was previously done through 
 Chapter 18. Develop portal applications 999



portal administration. In addition to these wizards for creating new skins and 
themes, there are tools that can be used to change or edit these.

Once created, skins and themes will be displayed in the Project Explorer view. 
Double-click a skin or theme to manually edit it.

New Skin wizard
In addition to using the pre-made skins that came with the installation, you can 
use the New Skin wizard to create customized skins for your project. Right-click 
the portal project in the Project Explorer view and select New → Skin.

Figure 18-7   New Skin wizard

New Theme wizard
Themes provide the overall look and feel of your portal application. In addition to 
using the pre-existing themes, you can use the New Theme wizard to create 
customized themes for your project. Right-click the portal project in the Project 
Explorer view and select New → Theme (see Figure 18-8 on page 1001).
1000 Rational Application Developer V6 Programming Guide



Figure 18-8   New Theme wizard

Deploying portal projects
From Rational Application Developer, you can choose to publish a portal project 
to a WebSphere Portal server either manually (export) or automatically (deploy).

There are two models of publishing your portal project to WebSphere Portal: 

� Export: This method is recommended for publishing to a staging or 
production server. You need to manually copy the packaged portal project to 
the portal server. Since exporting does not require FTP or copy access to the 
portal server, there is very little chance of interruption during publishing.

To export, select File → Export, then select Portal Project Deploy Set. You 
will need to specify the Portal EAR file and specify a target Portal server. The 
wizard examines the Portal server so that it can generate specific deploy 
 Chapter 18. Develop portal applications 1001



information. It then generates a set of files for manually deploying the portal 
project to the Portal server. These files include:

– WPS.ear
– XmlAccess for deployment portal configuration (contained in the EAR)
– Readme file with instructions for deploying to a server
– WAR files for each portlet project used in the portal project
– XMLAccess script for deploying portlets

The wizard also created a file named DeployInstructions.txt, which is a set of 
instructions that will guide you through the process of manually deploying 
your exported project to the server.

� Deploy: This method automatically publishes a configuration from a portal 
project to a Portal Server. The deploy method is recommended for publishing 
to a test, integration, or staging server.

If you are also transferring the theme and skin files during the deployment, 
you must also have FTP or copy access to the portal server.

To deploy a portal, right-click the portal project and select Deploy Portal. 
From here, a wizard will guide you through the deployment process. This will 
include specifying the portal server to where you are deploying.

Once you start the deploy process, do not interrupt it. Errors in a project or an 
unfinished deploy may cause a portal server to become inoperable. As such, 
you should not deploy directly to a production server. Before running deploy, 
it is recommended that you back up or image your server. 

Since the portal project does not have any access control information, use 
administration portlets in the published Portal site to set appropriate access 
control.

18.2.4  Portal tools for developing portlets
Whether beginning or continuing development of individual portlets and portlet 
projects, Rational Application Developer has tools that can make this process 
easier.

Note: Do not attempt to manually deploy the exported files to a portal 
server other than the one you specify. The export operation contains 
information from this portal server, and it will not work with other servers.

Note: If a transfer interruption (for example, network failure) occurs during 
deployment, there is a slight chance that the portal server will become 
inoperable. 
1002 Rational Application Developer V6 Programming Guide



Project Interchange files
If you are not using a software configuration management (SCM) system, such 
as ClearCase or CVS, and you want to share portlet projects with team members 
or develop a portlet application among multiple computers, you can use the 
Project Interchange feature.

There are other ways that you can share projects and files including manually 
copying the project’s workspace and importing via WAR files. The recommended 
method of accomplishing project portability is using the Project Interchange 
feature. When you export using Project Interchange, the entire project structure 
is maintained, including metadata files. You can also export several unrelated 
projects or include required projects for an entire application. Projects exported 
using this feature can be easily imported into another workspace with a single 
action.

The Project Interchange mechanism exports projects as they exist in the 
Workbench, including the project property that specifies the target server runtime 
for the project. If a user imports the exported project and does not have the same 
target server runtime installed, the project will not compile. This can be corrected 
by modifying the target server for the project. 

Exporting a Project Interchange file
To export to a Project Interchange file, follow these steps:

1. Right-click the project that you want to export, and select Export. 

2. Select Project Interchange, and click Next. 

3. Select the projects that you want to export. You have the following options for 
selection:

– Click Select All to select all projects in the window. 

– Click Deselect All to clear all the check boxes. 

– Click Select Referenced to automatically select projects that are 
referenced by any of the currently selected projects. 

4. In the To zip file field, enter the full path, including the ZIP file name, where 
you want to export the selected projects.

5. Click Finish. 

Important: It is important that the IBM Rational Application Developer V6 
install path is common for all team members sharing code to avoid absolute 
library path problems found in projects when importing.
 Chapter 18. Develop portal applications 1003



Import a Project Interchange file
To import a Project Interchange file, do the following:

1. Click File → Import. 

2. Select Project Interchange and click Next. 

3. In the From ZIP file field, click Browse to navigate to the ZIP file that contains 
the shared projects. The Import wizard lists the projects that are in the ZIP 
file.

4. Select the projects that you want to import. You have the following options for 
selection:

– Click Select All to select all projects in the window. 

– Click Deselect All to clear all the check boxes. 

– Click Select Referenced to automatically select projects that are 
referenced by any of the currently selected projects. 

5. Click Finish. 

Import WAR files
An alternate method of transferring a portlet project to another computer is via a 
WAR file. WAR files package all pieces of a portlet project into a single file. They 
are most commonly used to manually deploy portlet projects to Portal Servers.

For development purposes, WAR files can be used to move portlet projects from 
one computer to another. WAR files are not optimized for this purpose, and 
moving projects in this way may result in lost meta data or lost time due to any 
reconfigurations that may be required upon import. 

For portlet projects completed with a version of the Portal Toolkit prior to 
V5.0.2.2, importing by WAR file is the only supported migration path.

To import a project by WAR file, follow these steps:

1. Select File → Import and select WAR File. Then click Next.

2. Locate the WAR file to import by using the Browse button. 

3. The wizard assumes you want to create a new Web project with the same 
name as the WAR file. Accepting these defaults will create a new project with 
the same servlet version as specified by the WAR file and in the same 
location. To override these settings, click New and specify the new settings in 
the Dynamic Web Project wizard. 

4. To import a WAR file into an existing Web project, select the project from the 
Web project drop-down list. If this method is used, the option to overwrite 
existing resources without warning can be selected. 
1004 Rational Application Developer V6 Programming Guide



5. Click Finish to populate the Web project.

Figure 18-9   WAR Import screen

Portlet Project wizard
Portlet projects are used for developing portlet applications in Rational 
Application Developer. To create a portlet application, first create a portlet project 
using the Portlet Project wizard.

The Portlet Project wizard is a very powerful tool that automatically assembles a 
framework for a portlet project containing all the resources that are necessary for 
testing, debugging, or deploying a portlet.

To use the Portlet Project wizard, do the following:

1. Select File → New → Project. 

2. Select Portlet Project and click Next.

Note: When a portlet project is exported to a WAR file, the source files must 
be included. This procedure is detailed in “Export WAR Files” on page 1020.
 Chapter 18. Develop portal applications 1005



3. On the first screen in the wizard, enter a project name. You can also specify 
an alternate project location by clicking the Browse button.

4. If you do not want to create the initial portlet definitions in the project, clear the 
Create a portlet check box. Typically, a portlet does not need to be created 
when importing a WAR file.

5. Click the Show Advanced button to see more options (see Figure 18-10 on 
page 1007).

The advanced options allow changes to be made to the project’s J2EE 
settings and runtime server environment. The Servlet version specifies the 
version of Servlet and JSP specifications to be included in your portlet. 

Choosing a Servlet version also determines the choice of target servers that 
appear in the drop-down list. When choosing a server, do not accidentally 
select any WebSphere Application Server options.

a. Deselect the Add module to an EAR project option only if you do not 
intend to deploy the portlet. Name an EAR project according to the name 
of the enterprise application project (EAR) that the portlet project should 
be associated with during deployment. All portlet applications associated 
with a single EAR project will run on a single session on a WebSphere 
Portal Server. You should use the same EAR project for portlet projects 
that are related.

The context root is used as the top-level directory in the portlet project 
when the portlet is deployed. It must not be the same as ones used by 
other projects.

b. Ensure that the Add support for annotated Java classes check box is 
selected if using model annotations to generate code in portlet projects. 

c. Click Next to continue with the Portlet Project wizard or Finish to generate 
a portlet project based on the defaults associated with a Basic IBM API 
portlet project.

Tip: Use the 2.2 Servlet version if importing a WebSphere Portal V4.x 
project WAR file. Note that features such as Servlet filters and life cycle 
event listeners are not supported if this level is chosen.
1006 Rational Application Developer V6 Programming Guide



Figure 18-10   Portlet Project wizard

d. On the following screen, select a portlet type that is appropriate for the 
portlet project. There are four types of portlets (see Figure 18-11 on 
page 1008):

• Empty portlet: Creates a portlet application that extends the 
PortletAdapter class with minimum code included. This option is 
selected if importing a project from a WAR file or when customizing 
empty portlet projects from scratch.

• Basic portlet: Creates a basic portlet application that extends the 
PortletAdapter class comprised of a complete concrete portlet and 
concrete portlet application. It contains a portlet class, sample JSP files 
that are used when rendering the portlet, and a sample Java bean. 

• Faces portlet: Creates a Faces portlet application based on Java 
Faces technology.
 Chapter 18. Develop portal applications 1007



• Struts portlet: Creates a Struts portlet application based on Java Struts 
technology. 

e. When finished selecting options on this screen, click Next.

Figure 18-11   Portlet type screen

When creating a Faces portlet, you will be presented with the following screen.
1008 Rational Application Developer V6 Programming Guide



Figure 18-12   Faces portlet miscellaneous screen

When creating a Struts portlet, you will be presented with the following screen. 
 Chapter 18. Develop portal applications 1009



Figure 18-13   Struts Portlet Settings screen

When creating a Basic portlet, you will be presented with the following screen. It 
allows you to select features that provide additional functionality in the portlet 
application. Select features as necessary. Deselect the Web Diagram check box 
if you are creating a Basic or Empty portlet. Select JSP Tag Libraries to include 
the functionality of this technology in the portlet project.

Figure 18-14   Portlet Features screen
1010 Rational Application Developer V6 Programming Guide



On the Portlet Settings screen, update or add any general portlet settings. The 
application name is the name of the portlet application as used to manage it by 
the portal administrator. To update this name after generating your portlet 
project, use the deployment descriptor editor to modify portlet.xml. Modify the 
Display name of each concrete portlet application.

The portlet name is the name of the portlet. It is also used by the portal 
administrator. It also can be updated by using the deployment descriptor editor 
and modifying the Display name of each concrete portlet.

The default locale specifies a default locale to use if the client locale cannot be 
determined. You can add supported locale using the deployment descriptor 
editor and adding a locale to each concrete portlet. 

The portlet title appears in the portlet title bar. To update this in the future, you 
can use the deployment descriptor editor to modify the title of each concrete 
portlet. 

Change code generation options can be used to change the package and class 
prefixes. 

Click Next to continue. If creating an empty portlet, the Miscellaneous screen (as 
seen in Figure 18-18 on page 1015) will be shown. If creating a Basic portlet, the 
Event Handling screen will be shown. 
 Chapter 18. Develop portal applications 1011



Figure 18-15   Portlet settings screen

On this screen, you have the ability to optionally add event handling capabilities 
to the portlet application. An action event is sent when an HTTP request is 
received that is associated with a portlet action. The Add action listener option 
implements the ActionListener interface to handle action events. The Add form 
sample option generates code to demonstrate action event handling with a 
simple form example.

Cooperative portlets provide a model for declaring, publishing, and sharing 
information with each other using the WebSphere Portal property broker. 
Cooperative portlets are only available when the Servlet level is 2.3. Cooperative 
portlets can run on WebSphere Portal V5.x servers. Create a portlet application 
that extends the PortletAdapter class. “Enable cooperative target” adds a sample 
WSDL file so that the Click-to-Action target can receive input properties. If you 
select this option with the Add form sample option in the Action Event handling 
section of this screen, the generated portlet project will be enabled as a 
Click-to-Action receiver. It is also possible to create an action handler and form 
and customize the WSDL file as required. The “Add Click-to-Action sender 
portlet sample” option adds a simple Click-to-Action sender portlet that is useful 
to test receiver function and provides sample code. The “Enable cooperative 
1012 Rational Application Developer V6 Programming Guide



source” option adds the Click-to-Action tag library directive for JSP files of the 
Click-to-Action source portlet.

Message events can be sent from one portlet to others if the recipient portlets are 
placed on the same portal page as the sending portlet. To get a Java class that 
implements the MessageListener interface, select the Add message listener 
option. The “Add message sender portlet sample” option generates a sample 
message sender portlet. 

To add a function showing events received by listeners in view mode select Add 
event log viewer. To select this option, you need to add at least one of the event 
listeners. The option to add edit panel allows you to change the default maximum 
event count while in edit mode.

Click Next to continue with the Portlet Project wizard.

Figure 18-16   Event handling screen
 Chapter 18. Develop portal applications 1013



Use the Single Sign-On screen to add sample code to support credential vault 
handling, which is used to safely store credentials that are used in portlet 
authentication. Portlets written to extract users’ credentials from the credential 
vault can hide the login challenge from the user. A portlet private credential vault 
clot stores user credentials that are not shared among portlets. A shared 
credential vault slot shares user credentials among all of a user’s portlets. The 
administrative credential vault slot allows each user to store their confidential 
information for accessing administrator-defined resources such as Lotus Notes® 
databases. A system credential vault slot stores system credentials where the 
actual confidential information is shared among all users and portlets. 

The slot name defines the name of the credential vault slot to store and retrieve 
the credentials. The Show password option allows a password to be displayed 
on the screen while in View mode.

Click Next to continue with the Portlet Project wizard.

Figure 18-17   Single Sign-On screen

The Miscellaneous screen allows other supported markup languages and portlet 
modes to be selected. For more information on markup languages, see 
“Choosing markup languages” on page 994. For more information on modes, see 
“Portlet modes” on page 988.
1014 Rational Application Developer V6 Programming Guide



Click Finish to generate the new portlet project. You may be presented with an 
option to switch to the Web perspective to work on this project. Click Yes if the 
Confirm Perspective Switch is shown. 

Figure 18-18   Supported markups and modes screen

Web perspective
The Web perspective combines views and editors that assist you with Web 
application development. This perspective is used to edit the project resources, 
such as HTML and JSP files, and deployment descriptors that make up the 
portlet project.

More information on the Web perspective can be found in 4.2.14, “Web 
perspective” on page 162.

Page Designer
Page Designer is an editor for HTML, XHTML, JSP, and Faces JSP files. It 
provides three representations of each file: Design, Source, and Preview. Each 
of these provides a different way to work with a file while it is being edited. You 
can switch between these by clicking the tabs at the bottom of the editor (see 
Figure 18-19 on page 1016):

� Design: The Design page provides a visual environment to create and work 
with a file while viewing its elements on the page. 

� Source: The Source page enables you to view and directly work with a file's 
source code. 
 Chapter 18. Develop portal applications 1015



� Preview: The preview page shows you how the current page is likely to look 
when viewed in an external Web browser. Previewing dynamic content 
requires running the portlet or portal page on a local or remote test server.

Figure 18-19   Page Designer showing the Design page

18.2.5  Portal tools for testing and debugging portlets
Once development is underway, you will need to test and debug your 
applications. Rational Application Developer provides many ways for you to do 
this. When defining a remote (server attach) server for testing, debugging, or 
profiling a portlet project, you must create and configure the server.

Portal server configuration
Portlet tools provide an additional type of server configuration, called the portal 
server configuration, which contains the server configuration information needed 
to publish your portlet application on a WebSphere Portal machine. After it is 
published, your target portlet will appear on the test page and the debug page of 
your WebSphere Portal. Source-level debugging is also supported.
1016 Rational Application Developer V6 Programming Guide



Remote server test
When developing portlet projects, you have the option of testing and debugging 
on a remote server or in a local test environment (as described in the next 
section). To test portlets on a remote WebSphere Portal Server, you will use this 
feature.

Before testing portlets with a server attach server, you may need to configure the 
remote server. See the section titled Preparing WebSphere Portal for remote 
testing and debugging in the product help for more information. The configuration 
steps detailed in this section are required when performing any of the following 
tasks.

� Testing or debugging with multiple users to the same remote server
� Testing or debugging a JSR 168 portlet on WebSphere Portal 5.0.2 
� Debugging to a remote Server Attach server
� Testing or debugging to a remote server behind a firewall
� Testing or debugging to a remote server running Linux

To use the remote server testing feature, do the following:

1. Right-click your portlet project and select Run → Run on Server. 

2. To use an existing server, select Choose an existing server and choose a 
WebSphere Portal Server Attach server from the list. 

3. To define a new external test server, you will need to use the New Server 
wizard to configure it. See the section titled Configuring remote servers for 
testing portlets in the product help. 

4. Click Finish. 

After the server starts and the portal is deployed, the Web browser opens to 
the URL of the portal application on the external server. 

Important: If multiple users are testing portlets to the same portlet server, 
ensure that the UIDs of the portlets are unique. Otherwise, when the portlet is 
installed on the portlet server, it may replace the original portlet using that UID. 

� For the IBM portlet API, modify the UID using the portlet deployment 
descriptor editor. 

� For the JSR 168 portlet API, the UID is constructed using the ID attribute of 
the portlet-app element. 

� If the ID attribute is not specified, the UID is generated automatically using 
the login user ID and project name. 
 Chapter 18. Develop portal applications 1017



WebSphere Portal Test Environment
Rational Application Developer includes the WebSphere Portal Test 
Environment to locally test and debug portlet applications. 

The WebSphere Portal Universal Test Environment allows you to locally test and 
debug portlets developed with the portal tools from within the Rational 
Application Developer Workbench. This is similar to running a Java servlet 
webapp in the WebSphere (Application Server) Test Environment.

The test environment is a WebSphere Portal runtime built on top of the 
WebSphere Test Environment. By default, the test environment uses 
Cloudscape as the portal configuration database. This can be configured to use 
DB2 UDB or Oracle.

When using the WebSphere Portal Test Environment, the server is running 
against the resources that are in the workspace. It supports adding, changing, or 
removing a resource from the portlet project without needing to be restarted or 
republished for these changes to be reflected.

To run your project in the WebSphere Portal Test Environment, right-click the 
portlet project and select Run → Run on Server. The Server Selection dialog is 
displayed. You may either choose to run the application on an existing server or 
manually define a new server.

To define a new local test server, perform the following steps:

1. Choose the option to Manually define a server.

2. Select WebSphere Portal v5.0 Test Environment from the list of server 
types. 

3. Click Next.

Note: An XML Exception occurs and the server attach fails to start if the 
project name, the filename, the file directory structure, or the user ID for the 
WebSphere Portal login name are excessively long. 

To correct this, shorten the length of the filename, the file directory structure, 
or the user ID for WebSphere Portal login at the WebSphere Portal Server 
Attach server configuration.

Note: You must have installed the WebSphere Portal V5.0 Test 
Environment when installing IBM Rational Application Developer for this 
option to be available.
1018 Rational Application Developer V6 Programming Guide



4. On the WebSphere Server Configuration Settings page, select one of the 
following values: 

– Select Use default port numbers and set the HTTP port number to use 
the default HTTP port (9081). 

– Select Use consecutive port numbers and set the first port number to 
use port numbers other than the default numbers used by WebSphere 
Application Server. 

This setting causes the test environment to use sequential port numbers, 
starting with the number you specify. You must specify a port number that 
begins a range of port numbers that are not being used by another 
application. This option allows you to have an external portal server or 
WebSphere Application Server running on your system, and allows the 
test environment to use different port numbers. You can also configure the 
test environment server's HTTP port numbers by editing the server 
configuration, as explained below. 

5. Click Finish. 

Additional options for local servers can be viewed and changed by 
double-clicking the server in the Servers view. This opens the server 
configuration editor. You can change any of the settings that were defined 
previously. In addition, the Portal tab has several additional settings that can 
be changed to suit your individual configuration.

Figure 18-20   Server configuration editor
 Chapter 18. Develop portal applications 1019



When you test a portlet on the local test environment server, the default theme 
and skin are used.

The test environment does not support features that rely on WebSphere 
Enterprise Edition (personalization and asynchronous rendering of portlets) or 
LDAP. Transcoding is also not enabled by default. It must be enabled to use a 
WML device emulator when developing portlets for mobile phones and other 
devices. See “Choosing markup languages” on page 994 for instructions on how 
to do this.

When testing or debugging, you may experience the following limitations:

� Help mode does not function correctly in the test environment while using the 
internal browser. Using an external browser corrects this issue.

� Single sign-on using LDAP is not supported when using the local test 
environment. LDAP is supported when testing portlets by remotely attaching 
to another WebSphere Portal server.

� You cannot create new portal users while in debug mode. Use the normal 
mode to create users.

� Portlet modifications are not previewed correctly when the portlet has been 
cached by the browser. Logging out and back in to the portal server corrects 
this. 

� If using Linux, you may not be able to start the test environment server 
without the appropriate user permissions. Users need full permissions on 
<STUDIO_HOME>/runtimes/portal_v50/cloudscape/wps50.

18.2.6  Portal tools for deploying and managing portlets
When development is complete, these tools will help you to load your completed 
portlet project onto a WebSphere Portal Server.

Export WAR Files
Exporting a portlet project to a WAR file allows you to install it on a WebSphere 
Portal server. To export a WAR file for a portlet project, do the following:

1. Right-click the portlet project and select Export → WAR file. The Export 
wizard opens.

2. On the WAR Export page, select a destination directory for the WAR file. 
Enter a name for the WAR file or accept the default.

3. Select the Export Source files check box to include source files in the WAR 
file. When deploying to a WebSphere Portal Server, you do not need to 
include the source files. If you were exporting a WAR file to continue 
development on another machine, you would want to select this option.
1020 Rational Application Developer V6 Programming Guide



4. Select the Overwrite existing file option to replace an existing WAR file with 
the same name.

5. Click Finish.

Install the WAR file on the WebSphere Portal server by using the WebSphere 
Portal administrative tools. 

Remote Server Deploy
Remote Server Deploy is a function that allows portlets developed for a 
WebSphere Portal V5.0 Server to be deployed in an automated fashion.

This functionality is not available for WebSphere Portal V5.1 servers. To deploy 
portlets to a WebSphere Portal V5.1 server, you must export portlet projects to 
WAR files, and then install them to WebSphere Portal V5.1 using the 
WebSphere Portal administration interface. The process of exporting WAR files 
is described in “Export WAR Files” on page 1020.

To deploy a portlet project to a WebSphere Portal server, follow the steps below.

1. Right-click the portlet project and select Deploy Portlet. The Deploy Portlet 
wizard opens. 

2. Select an existing server from the list or create a new one. Then click Next.

3. On the Portlets page, define these options for Portlet Overwriting: 

a. Select Automatically overwrite portlets to replace existing portlets 
without warning. 

b. Select the Update or the Remove & Deploy option. 

• Use the Update option to install the portlet, but preserve any 
customization data that was added in the configure or edit modes. 

• Use the Remove & Deploy option to remove and reinstall the portlet. 
During the removal process, all customization data is also removed, 
and portlets are removed from any pages where they were already 
placed. The install process only installs portlets, but does not restore 
customization data nor place portlets on pages. Use this option if you 
want to clean up portlet settings, or your portlet is not compatible with 
the old version. 

4. Click Finish. Do not interrupt the deployment process. 
 Chapter 18. Develop portal applications 1021



Portal administration
Administrative portlets can be enabled in the server configuration by using the 
Portal Server Configuration editor described in “Portal server configuration” on 
page 1016.

You can use the administrative portlets to configure advanced options when 
running portal and portlet projects.

There are several limitations to using the administrative portlets. You cannot 
install portlets using the administration portlets. In addition, any changes that are 
made are reset to the default values the next time the test environment is started.

It is recommended to only use this option when necessary. It affects the 
performance of the test environment. 

To debug portlets in a particular layout, use the test and debug options of a portal 
project, not the administration portlets in the test environment.

18.2.7  Enterprise Application Integration Portal Tools
Rational Application Developer also includes some tools to help you with 
Enterprise Application Integration with SAP and Siebel. 

Service Data Objects and Tools
Service Data Objects (SDO), the JSR 235 standard, is a new model for 
representing data, accessing persistent data, and passing data between tiers. It 
provides a single, consistent interface to any data source. 

The JSF tools for SDO in IBM Rational Application Developer provide minimal or 
zero coding for building dynamic data-bound JSPs. 

IBM has included SDO mediators for applications, including SAP and Siebel, that 
are supported on WebSphere Portal V5.1 servers.

SDO mediators are added to portlets through drag-and-drop from the Palette 
view and the Page Data view.

Note: An XML Exception occurs and the server attach fails to start if the 
project name, the filename, the file directory structure, or the user ID for the 
WebSphere Portal login name are excessively long. To correct this, shorten 
the length of the filename, the file directory structure, or the user ID for 
WebSphere Portal login at the WebSphere Portal Server Attach server 
configuration.
1022 Rational Application Developer V6 Programming Guide



Business Process Portlet Development Tools
The portal tools in IBM Rational Application Developer V6.0 also include support 
for Business Process Execution Language (BPEL)-based business process 
portlet development. These portlets are supported on WebSphere Portal V5.1 
servers.

To use these tools, process designers develop business processes by using the 
BPEL editor on WebSphere Studio Application Developer - Integration Edition 
V5.1.1 and test them in the WebSphere Test Environment.

You can then import the resultant business processes as JAR files to develop 
and compile task processing portlets using the remote server attach function for 
testing and debugging portlets. 

18.2.8  Coexistence and migration of tools and applications
When installing multiple versions of IBM development software and working with 
portal and portlet projects developed with different versions of development 
software, there are some important issues to consider.

WebSphere Studio and Rational Application Developer
WebSphere Studio Application Developer and IBM Rational Application 
Developer can coexist with regards to the Portal Toolkit 5.0.x on WebSphere 
Studio 5.x.

Portlet Projects (Portal Toolkit 5.0.2.2 and later)
Portlet projects completed using the Portal Toolkit V5.0.2.2 will be migrated 
automatically to Rational Application Developer V6.0 Portal Tools by either 
migrating the Portal Toolkit workspace or importing the project using the Project 
Interchange feature. 

During migration of Portal Toolkit V5.0.2.2 projects, some additional changes 
take place:

� The target server is set to WebSphere Portal V5.0, if no target server is set to 
the project. 

� The portlet build path is corrected. 

� A portlet project nature is added. 

Portlet projects (Portal Toolkit earlier than V5.0.2.2)
If migrating portlet projects from earlier versions of Portal Toolkit (prior to 
V5.0.2.2), the best practice is to export your portlet projects to WAR files and 
 Chapter 18. Develop portal applications 1023



then import the WAR files into new portlet projects within IBM Rational 
Application Developer V6.0.

Manually migrate your portlet projects by following these directions:

1. Export the existing project to a WAR file, and include its source files.

a. Right-click the project and select Export. 

b. Select WAR file and Export source files and click Finish. 

2. Import the portlet WAR file into a new portlet project:

a. In the Portal Tools for Rational Application Developer V6.0, create a new 
empty portlet project. 

i. Select File → New → Project → Portal → Portlet Project or Portlet 
Project (JSR 168).

ii. Deselect Create a portlet. 

iii. Click Show Advanced. 

iv. If you are importing a WebSphere Portal V4.2 portlet, select 2.2 as the 
servlet version. 

v. Select WebSphere Portal v5.0 as the target server, and click Finish. 

b. Import the WAR file to this new empty portlet project. 

i. Select File → Import. 

ii. Select WAR file and specify the WAR file from the portlet project that 
you exported. 

iii. Select the newly created empty portlet project. 

iv. Select Overwrite existing resources without warning. 

v. Do not select Delete project on overwrite. 

vi. Delete the TLD file. 

It is recommended that you delete the portlet TLD file from the project if 
it exists. Otherwise, you will get a warning message when you rebuild 
the project. Leaving it may cause a problem when the portlet project is 
deployed to WebSphere Portal and the TLD file of the portlet is 
different from the file in the server.

Note: If you are migrating a WebSphere Portal V4.2 portlet, you will need to 
migrate this migrated portlet project to WebSphere Portal V5.x. Backward 
compatibility of portlet projects is not supported.
1024 Rational Application Developer V6 Programming Guide



18.3  Portal development scenario
To gain an understanding of the portal development process, this scenario 
demonstrates how the portal tools can be used to create a portal site.

The portal development scenario is organized into the following tasks:

� Prepare for the sample.
� Add and modify a portal page.
� Create and modify two portlets.
� Add portlets to a portal page.
� Run the project in the test environment.

18.3.1  Prepare for the sample
Prior to working on the portal development scenario, ensure that you have 
prepared the environment by installing the Portal Tools and WebSphere Portal 
Test Environment (V5.0.2 or V5.1).

Install the Portal Tools
For details on installing the Portal Tools as a component of the Rational 
Application Developer installation, refer to “Rational Application Developer 
installation” on page 1372.

Install WebSphere Portal Test Environment
For the scenario in this chapter, you can install either the V5.0.2 or V5.1 
WebSphere Portal Test Environments (sample applies to both).

For more information on installing the WebSphere Portal Test Environments 
refer to the following:

� IBM WebSphere Portal V5.0.2 Test Environment

Refer to “WebSphere Portal V5.0 Test Environment installation” on page 1376 

Note: The sample code described in this chapter can be completed by 
following along in the procedures documented. Alternatively, you can import 
the sample Portal code provided in the c:\6449code\portal\Portal.zip Project 
Interchange file. For details refer to Appendix B, “Additional material” on 
page 1395. 

When importing the Project Interchange file, we found some errors when 
using the IBM WebSphere Portal V5.0.2 Test Environment due to issues 
related files outside of the scope of the Project Interchange packaging 
(specifically, themes and related JSPs).
 Chapter 18. Develop portal applications 1025



� IBM WebSphere Portal V5.1 Test Environment

Refer to “WebSphere Portal V5.1 Test Environment installation” on 
page 1377.

Install the Rational Application Developer V6 Interim Fix
We recommend that you install the latest Rational Application Developer interim 
fixes. For details refer to “Rational Application Developer Product Updater - 
Interim Fix 0004” on page 1380.

Start Rational Application Developer
To begin, start the IBM Rational Application Developer Workbench. By default, 
click Start → Programs → IBM Rational → IBM Rational Application 
Developer V6.0 → Rational Application Developer.

Once Developer is open, you will begin using the Portal Tools to develop a portal 
site, as instructed below.

18.3.2  Create a portal project
To create a portal project, do the following:

1. Select File → New → Project.

2. When the New Project dialog appears, select Portal Project and then click 
Next.

3. If prompted with the dialog displayed in Figure 18-21, click OK to enable 
portal development capabilities.

Figure 18-21   Enable portal development

4. When the Portal Project dialog appears, enter MyPortal in the Name field, 
click Show Advanced to see more options (we accepted the defaults), and 
then click Next.

5. When the Select Theme dialog appears, select the desired theme. For 
example, we select the Corporate theme and then clicked Next.
1026 Rational Application Developer V6 Programming Guide



6. When the Select Skin dialog appears, select the desired skin. For example, 
we selected the Outline skin and then clicked Finish.

This will generate the framework for the portal site.

7. If prompted to change to the Web perspective as seen in Figure 18-22, click 
Yes.

Figure 18-22   Confirm perspective switch

18.3.3  Add and modify a portal page
This section describes how to add and modify a portal page for a portal site. 

To add a new portal page, do the following:

1. Drag-and-drop the Page button from the Palette and place it in the same 
column as the existing Page1 was created (see Figure 18-23 on page 1028).

2. Click New Page.

3. Select the Title tab from the Properties view at the bottom of the window.

4. Change the page names.

Change the names of the pages Page1 and New Page to Top Page and 
Bottom page, respectively.
 Chapter 18. Develop portal applications 1027



Figure 18-23   Insert a new page and modify title

5. Add a label to the page (see Figure 18-24 on page 1029).

a. Drag and drop the Label button from the Palette view, and place it to the 
right of the existing Label1. 

b. Drag and drop the Page button from the Palette view onto the New Label 
to add a new page on which to place portlets.
1028 Rational Application Developer V6 Programming Guide



Figure 18-24   Add a new label and page

6. Change the label names (see Figure 18-25).

In the same way that the titles of pages are modified, change the names of 
the two labels on the portal site. Name the right label Right Label and the left 
label Left Label.

Figure 18-25   Changing label titles

7. Click File → Save All to save all the changes you have made. 

8. By adding labels and pages, you are able to alter the navigational structure of 
the portal. You can also view an outline view of this structure by looking at the 
 Chapter 18. Develop portal applications 1029



Outline view, which appears in the lower left corner of the Workbench (see 
Figure 18-26).

Figure 18-26   Outline view

18.3.4  Create and modify two portlets
Now that the portal site and its navigational structure have been defined, we can 
add content. Content is added to portals by placing portlets on each of the pages. 
We will create two portlet projects for our example in this section.

Create the first portlet
To create the first portlet, do the following:

1. Click File → New → Project. 

2. When the New Project dialog appears, select Portlet Project and click Next.

3. Enter Basic Portlet in the Name field and click Next.

4. When the Portlet Type dialog appears, select the Basic portlet type and click 
Next.

5. When the Features dialog appears, uncheck Web Diagram and click Next.

6. When the Portlet Settings dialog appears, we accepted the default portlet 
settings and click Next.

7. When the Event Handling dialog appears, do the following and then click 
Next:

– Uncheck Add form sample.
– Uncheck Add action listener.

8. When the Single Sign-on dialog appears, accept the default values for 
credential vault handling and click Next.
1030 Rational Application Developer V6 Programming Guide



9. When the Miscellaneous dialog appears, check Add edit mode on the 
miscellaneous settings page, and click Finish to generate your portlet code.

The portlet’s view mode JSP is now displayed in the Workbench to be edited. 

10.Expand Dynamic Web Projects → MyPortal in the Project Explorer view 
(see Figure 18-27).

Under this directory are all the resources associated with the portlet including 
the supporting JSP files, Java classes, and the portlet’s deployment 
descriptor. You can double-click any resource to edit it in its default editor.

Figure 18-27   Basic Portlet project in the Workbench

Create the second portlet
Now, create a second portlet for the portal site. This portlet will process a form 
and display the results.

1. Select File → New → Project.
 Chapter 18. Develop portal applications 1031



2. When the New Project dialog appears, select Portlet Project, and click Next.

3. Enter Form Portlet in the Name field and click Next.

4. When the Portlet Type dialog appears, select Basic portlet and click Next.

5. When the Features dialog appears, uncheck Web Diagram, check the JSP 
Tag Libraries, and then click Next.

6. When the Portlet Settings dialog appears, we accepted the default portlet 
settings, and clicked Next.

7. When the Event Handling dialog appears, accept the defaults on the event 
handling screen. The Add action listener and Add form sample options 
should be selected. Click Next.

8. When the Single Sign-on dialog appears, accept the default values for 
credential vault handling and click Next.

9. When the Miscellaneous dialog appears, accept the default and click Finish 
to generate your portlet code.

10.In the FormPortletPortletView.jsp file that is displayed on your screen, delete 
Welcome!

11.Figure 18-28 on page 1033 displays a sample view mode page. You have to 
edit this page to customize it for your own use. 

The source file for this page is as follows, leaving only the form sample to be 
displayed on this page:

/WebContent/form_portlet/jsp/html/FormPortletPortletView.jsp
1032 Rational Application Developer V6 Programming Guide



Figure 18-28   Modified second portlet

12.Click File → Save All to save all the changes made to the portlet projects.

18.3.5  Add portlets to a portal page
Now return to the Portal Configuration editor used in 18.3.3, “Add and modify a 
portal page” on page 1027, to add portlets to a portal page.

1. Expand Dynamic Web Projects → MyPortal.

2. Double-click Portal Configuration to open in the editor.

3. Add portlets to the Left Label of the Top Page.

a. Select the Left Label of the Top Page.

b. Drag and drop the Column button from the Palette view into the area of 
the Top Page that says Place portlet here. 

By doing this, the layout of the page is changed to accommodate two 
portlets side-by-side, as seen in Figure 18-29 on page 1034.
 Chapter 18. Develop portal applications 1033



Figure 18-29   Adding a column

c. Right-click the left column and click Insert Portlet → As Child. 

d. Select the Basic Portlet portlet, as seen in Figure 18-30 on page 1035, 
and click OK. 
1034 Rational Application Developer V6 Programming Guide



Figure 18-30   Select portlet to insert

4. Add portlets to the Left Label of the Bottom Page.

a. Select the Left Label of the Bottom Page.

b. Drag and drop the Column button from the Palette view into the area of 
the Bottom Page that says Place portlet here. 

c. Right-click the right column and click Insert Portlet → As Child. 

d. Select the Form Portlet portlet and click OK.

5. Perform the same action to insert the Basic Portlet portlet to the Left Label of 
the Bottom Page (see Figure 18-31 on page 1036).
 Chapter 18. Develop portal applications 1035



Figure 18-31   Basic portlet on the bottom page of the left label

6. Now click the Right Label.

7. Insert the Form Portlet onto this page (see Figure 18-32).

Figure 18-32   Inserting the form portlet into the right label new page

8. Click File → Save All to save all the changes made to your portal site.
1036 Rational Application Developer V6 Programming Guide



18.3.6  Run the project in the test environment
Now you can run and test the project in the WebSphere Portal Test Environment. 
This section assumes that you have not previously defined a WebSphere Portal 
Test Environment server and will configure a server for you as part of the 
procedure.

1. Open the Web perspective.

2. Expand Dynamic Web Projects.

3. Right-click MyPortal, and select Run → Run on Server, as seen in 
Figure 18-33. 

Figure 18-33   Run on Server

4. When the Define a New Server dialog appears, select Manually define a 
server, and select the desired WebSphere Portal Test Environment (V5.0 or 
V5.1). For example, we selected WebSphere Portal v5.0 Test Environment 
and clicked Next.

5. When the WebSphere Server Configuration Settings dialog appears, we 
accepted the default port (9081) and clicked Next.
 Chapter 18. Develop portal applications 1037



6. When the Add and Remove Projects dialog appears, select each of the 
following projects and click Add:

– Form PortletEAR
– Basic PortletEAR
– MyPortalEAR

7. When done adding the projects to the Configured projects column, you 
should have four projects (MyPortalEAR, Form PortletEAR, Basic 
PortletEAR, MyPortalPortletsEAR) associated with your MyPortal project so 
that they can run on the server. Click Finish.

8. Click OK if you receive the Repair Server Configuration dialog window (see 
Figure 18-34). This indicates that your portlets will be added to the server so 
that they run in your portal project.

Figure 18-34   Repair Server Configuration dialog

9. The server will now start, and your portal site will load in the Web browser, as 
seen in Figure 18-35 on page 1039.

Test the portal site.

a. Navigate the portal site using the labels and page links. 

b. Enter edit mode on the Basic Portlet by clicking Edit Page.

c. Submit a value using the form.
1038 Rational Application Developer V6 Programming Guide



Figure 18-35   My Portal project in Web browser within IBM Rational Application Developer
 Chapter 18. Develop portal applications 1039



1040 Rational Application Developer V6 Programming Guide



Part 3 Test and debug 
applications

Part 3
© Copyright IBM Corp. 2005. All rights reserved. 1041



1042 Rational Application Developer V6 Programming Guide



Chapter 19. Servers and server 
configuration

Rational Application Developer provides support for testing, debugging, profiling, 
and deploying Enterprise applications to local and remote test environments. 

To run an Enterprise application or Web application in Application Developer, the 
application must be published (deployed) to the server. This is achieved by 
installing the EAR project for the application into an application server. The 
server can then be started and the application can be tested in a Web browser, 
or by using the Universal Test Client (UTC) for EJBs and Web Services.

This chapter describes the features and concepts of server configuration, as well 
as demonstrates how to configure a server to test applications.

The chapter is organized into the following sections:

� Introduction to server configuration
� Configure a WebSphere V6 Test Environment
� Add a project to a server
� Remove a project from a server
� Publish application changes
� Configure application and server resources

19
© Copyright IBM Corp. 2005. All rights reserved. 1043



19.1  Introduction to server configuration
IBM Rational Application Developer V6.0 includes integrated test environments 
for IBM WebSphere Application Server V5.0/V5.1/V6.0 and IBM WebSphere 
Portal V5.0.2/V5.1, as well as support for many third-party servers obtained 
separately. In Version 6 the server configuration is the same for IBM WebSphere 
Application Server V6.0 (base), Express, and Network Deployment Editions. One 
of the many great features of V6 is the ability to simultaneously run multiple 
server configurations and test environments on the same development node 
where Rational Application Developer is installed.

In previous releases, there was a separate server configuration for WebSphere 
Application Server and only the base and Express servers were supported. In 
IBM Rational Application Developer V6.0, the new architecture supports 
deploying and testing on IBM WebSphere Application Server V6.0 (base), 
Express, and Network Deployment Editions. Also, test environment configuration 
for the WebSphere Application Server V6.0 Test Environment is done from the 
WebSphere Administrative Console. 

All communication with all WebSphere V6 servers occurs through JMX calls over 
SOAP (start, stop, install applications, set status) using port 8880 by default.

When using Rational Application Developer it is very common for a developer to 
have multiple test environments or server configurations, which are made up of 
workspaces, projects, and preferences, and supporting test environments (local 
or remote).

Some of the key test environment configuration items include:

� Multiple Workspaces with different projects, preferences, and other 
configuration settings defined

� Multiple Rational Application Developer Test Environment servers configured

� When using WebSphere Application Server V6.0 test environments, multiple 
profiles, each potentially representing a different server configuration

For example, a developer may want to have a separate server configuration for 
WebSphere Application Server V6.0 with a unique set of projects and 
preferences in a workspace and server configuration pointing to a newly created 
and customized WebSphere Application Server V6.0 profile. On the same 
system, the developer can create a separate portal server configuration with 
unique portal workspace projects and preferences, as well as a WebSphere 
Portal V5.1 Test Environment. This chapter describes how to create, configure, 
and run both a WebSphere Application Server V6.0 and WebSphere Portal V6.1 
Test Environments on the same development system.
1044 Rational Application Developer V6 Programming Guide



19.1.1  Supported test server environments
IBM Rational Web Developer V6.0 and IBM Rational Application Developer V6.0 
support a wide range of test server environments for running, testing, and 
debugging application code. 

In IBM Rational Application Developer V6.0, the integration with the IBM 
WebSphere Application Server V6.0 for deployment, testing, and administration 
is the same for IBM WebSphere Application Server V6.0 (Test Environment, 
separate install, and the Network Deployment edition). In previous versions of 
WebSphere Studio, the configuration of the test environment was different than a 
separately installed WebSphere Application Server.

We have categorized the test server environments as follows:

� Integrated test servers

Integrated test servers refers to the test servers included with the Rational 
Developer edition (see Table 19-1).

� Test servers available separately

Test servers available separately refers to the test servers that are supported 
by the Rational Developer edition, but available separately from the Rational 
Developer products (see Table 19-2 on page 1046).

Table 19-1   Integrated test servers

Install option Integrated test server Web 
Developer

Application 
Developer

IBM WebSphere Application Server V6.0

IBM WebSphere Application Server V6.0 X X

IBM WebSphere Application Server V5.x

IBM WebSphere Application Server V5.1 X X

IBM WebSphere Application Server Express V5.1 X X

IBM WebSphere Application Server V5.0.2 X X

IBM WebSphere Application Server Express V5.0.2 X X

IBM WebSphere Portal

IBM WebSphere Portal V5.0.2.2
Note: Available on Windows (not Linux)

na X

IBM WebSphere Portal V5.1 na X
 Chapter 19. Servers and server configuration 1045



Table 19-2   Additional supported test servers available separately

19.1.2  Local vs. remote test environments
When configuring a test environment, the server can be either a local integrated 
server or a remote server. Once the server itself is installed and configured, the 
server definition within Rational Application Developer is very similar for local 
and remote servers.

In either case, local or remote, you will need to specify the SOAP connector port 
from the Rational Application Developer WebSphere V6.0 server configuration 
and the WebSphere Application Server V6.0 Profile.

19.1.3  Commands to manage test servers
Once the server is setup, there are a few key commands used to manage the 
test servers.

� Debug: Only available for local test servers
� Start: Only available for local test servers
� Profile: Only available for local test servers
� Restart: Available on all active WebSphere v6.0 Servers
� Restart: Can restart in different modes (normal, debug, and profile)
� Stop

19.2  Configure a WebSphere V6 Test Environment
This section describes how to create and configure a WebSphere Application 
Server V6 Test Environment within IBM Rational Application Developer V6.0. In 
this example, we create a new WebSphere V6 profile, a new Rational Application 
Developer server configuration, and a workspace.

Integrated Test Server Web 
Developer

Application 
Developer

Tomcat V5.0 X X

WebLogic V6.1 X X

WebLogic V7.1 X X

WebLogic V8.1 X X
1046 Rational Application Developer V6 Programming Guide



19.2.1  Understanding WebSphere Application Server V6.0 profiles
New with IBM WebSphere Application Server V6.0 is the concept of profiles. The 
WebSphere Application Server installation process simply lays down a set of 
core product files required for the runtime processes. After installation you will 
need to create one or more profiles that define the runtime to have a functional 
system. The core product files are shared among the runtime components 
defined by these profiles. 

With WebSphere Application Server and WebSphere Application Server Express 
Editions you can only have standalone application servers, as shown in 
Figure 19-1. Each application server is defined within a single cell and node. The 
administration console is hosted within the application server and can only 
connect to that application server. No central management of multiple application 
servers are possible. An application server profile defines this environment. 

Figure 19-1   System management topology - Standalone server (Base and Express)

You can also create standalone application servers with the Network Deployment 
package, though you would most likely do so with the intent of federating that 
server into a cell for central management at some point. 

With the Network Deployment package, you have the option of defining multiple 
application servers with central management capabilities. For more information 
on profiles for the IBM WebSphere Application Server V6.0 Network Deployment 
Edition, refer to the WebSphere Application Server V6 Systems Management 
and Configuration, SG24-6451.

Note: In V5, the wsinstance command was used to create multiple runtime 
configurations using the same installation. With V6, profiles allow you to do 
this.

Cell

Application 
Server

"server1"

Node A

Admin 
console

Application 
Server profile
 Chapter 19. Servers and server configuration 1047



Types of profiles
There are three types of profiles for defining the runtime:

� Application server profile

� Deployment manager profile
� Custom profile

Application server profile
The application server profile defines a single standalone application server. 
Using this profile will give you an application server that can run standalone 
(unmanaged) with the following characteristics:

� The profile will consist of one cell, one node, and one server. The cell and 
node are not relevant in terms of administration, but you will see them when 
you administer the server through the administrative console (scopes). 

� The name of the application server is “server1”.

� The application samples are automatically installed on the server.

� The server has a dedicated administrative console. 

The primary use for this type of profile would be:

� To build a server in a Base or Express installation (including a test 
environment within Rational Application Developer).

� To build a standalone server in a Network Deployment installation that is not 
managed by the deployment manager (for example, to build a test machine).

� Or to build a server in a distributed server environment to be federated and 
managed by the deployment manager. If you are new to WebSphere 
Application Server and want a quick way of getting an application server 
complete with samples, this is a good option. When you federate this node, 
the default cell will become obsolete and the node will be added to the 
deployment manager cell. The server name will remain as server1 and the 
administrative console will be removed from the application server. 

Deployment manager profile
The deployment manager profile defines a deployment manager in a Network 
Deployment installation. Although you could conceivably have the Network 
Deployment package and run only standalone servers, this would bypass the 
primary advantages of Network Deployment, which are workload management, 
failover, and central administration.

Note: The application server profile is used by Rational Application 
Developer WebSphere Application Server V6.0 Test Environment.
1048 Rational Application Developer V6 Programming Guide



In a Network Deployment environment, you should create one deployment 
manager profile. This will give you:

� A cell for the administrative domain
� A node for the deployment manager
� A deployment manager with an administrative console.
� No application servers

Once you have the deployment manager, you can:

� Federate nodes built either from existing application server profiles or custom 
profiles. 

� Create new application servers and clusters on the nodes from the 
administrative console.

Custom profile
A custom profile is an empty node, intended for federation to a deployment 
manager. This type of profile is used when you are building a distributed server 
environment. The way you would use this is:

� Create a deployment manager profile.

� Create one custom profile on each node on which you will run application 
servers.

� Federate each custom profile, either during the custom profile creation 
process or later using the addNode command, to the deployment manager.

� Create new application servers and clusters on the nodes from the 
administrative console.

Directory structure and default profiles
Within Rational Application Developer the integrated test environments are 
located in the <rad_home>/runtimes directory, where <rad_home> is the 
installation path, such as:

C:/Program Files/IBM/Rational/SDP/6.0

The IBM WebSphere Application Server V6.0 Test Environment is located in the 
following directory:

<rad_home>/runtimes/base_v6

We will refer to the root of each profile directory as <profile_home>:

<rad_home>/runtimes/base_v6/profiles/<profile_name>
 Chapter 19. Servers and server configuration 1049



The default profile is determined by the following:

� The profile was defined as the default profile when you created it. The last 
profile specified as the default will take precedence. You can also use the 
wasprofile command to specify the default profile.

� Or, if you have not specified the default profile, it will be the first profile you 
create.

When a profile is created, the profile is created from a template and copied to its 
unique <profile_home>. In addition, an entry is made to the profileRegistry.xml 
found at:

<rad_home>\runtimes\base_v6\properties\profileRegistry.xml

Example 19-1 lists the contents of a sample profileRegistry.xml. In this example, 
two profiles exist (default, AppSrv01). Notice the profile named default is marked 
as isDefault=”true”.

Example 19-1   Sample profileRegistry.xml

<?xml version="1.0" encoding="UTF-8"?>
<profiles>
    <profile isDefault="true" name="default" path="C:\Program 
Files\IBM\Rational\SDP\6.0\runtimes\base_v6\profiles\default" template="C:\Program 
Files\IBM\Rational\SDP\6.0\runtimes\base_v6\profileTemplates\default"/>
    <profile isDefault="false" name="AppSrv01" path="C:\Program 
Files\IBM\Rational\SDP\6.0\runtimes\base_v6\profiles\AppSrv01" template="C:\Program 
Files\IBM\Rational\SDP\6.0\runtimes\base_v6\profileTemplates\default"/>
</profiles>

19.2.2  WebSphere Application Server V6 installation
The IBM WebSphere Application Server V6.0 Integrated Test Environment is an 
installation option from the main Rational Application Developer Installer. 

For details on how to install the WebSphere Application Server V6.0 Test 
Environment, refer to “IBM Rational Application Developer V6 installation” on 
page 1372 (see Figure A-2 on page 1375 for install component selection).

Prior to the IBM WebSphere Application Server V6.0 Test Environment 
installation, the runtimes directory will look as follows:

<rad_home>\runtimes\base_v6_stub

After the IBM WebSphere Application Server V6.0 Test Environment is installed 
the directory will look as follows (no more stub):

<rad_home>\runtimes\base_v6
1050 Rational Application Developer V6 Programming Guide



19.2.3  WebSphere Application Server V6 profile creation
In 19.2.1, “Understanding WebSphere Application Server V6.0 profiles” on 
page 1047, we reviewed the concepts for WebSphere V6.0 profiles. Profiles can 
be created using the wasprofile command line tool or the WebSphere Profile 
Creator wizard (pctWindows.exe), which is an interface to the wasprofile tool. For 
the purposes of development, we chose to use the WebSphere Profile wizard in 
the following example.

Create new profile using the WebSphere Profile wizard
To create a new WebSphere Application Server V6.0 profile using the 
WebSphere Profile Creator wizard (application server profile), do the following:

1. Start the WebSphere Profile Creation wizard.

a. Navigate to the following directory:

<rad_home>\runtimes\base_v6\bin\ProfileCreator

b. Run pctWindows.exe to launch the WebSphere Profile Creation wizard.

4. When the Welcome dialog appears, click Next.

5. When the Profile name dialog appears, we entered the following (as seen in 
Figure 19-2 on page 1052), and then clicked Next:

– Profile name: AppSrv01
– Uncheck Make this profile the default.

Note: Alternatively, if you have installed IBM Rational Application 
Developer Fix level V6.0.0.1, then you can do the following:

1. Select Window → Preferences.

2. Expand Server → WebSphere.

3. Click Create Profile.
 Chapter 19. Servers and server configuration 1051



Figure 19-2   WebSphere Profile Creator wizard - Profile name

6. When the Profile directory dialog appeared, we accepted the following default 
directory and then clicked Next:

<rad_home>\runtimes\base_v6\profiles\AppSrv01

Where <rad_home> is the Rational Application Developer installation path.

7. When the Node and host names dialog appeared, we accepted the following 
defaults and then clicked Next:

– Node name: rad6win1Node02

In this case, rad6win1 is the host name of our computer, and Node01 was 
already used to create the default server, so the wizard used the next 
available node (Node02).

– Host name: rad6win1.itso.ral.ibm.com

This is the fully qualified host name of our computer.

8. When the Port value assignment dialog appeared, we accepted the 
generated port values. In this case, notice in Figure 19-3 on page 1053 that 
each of the port values is increased by one from the original default since a 
default profile existed before creating the new profile (AppSrv01). 

Take note of the port values and click Next.
1052 Rational Application Developer V6 Programming Guide



Figure 19-3   WebSphere Profile Creator - Port value assignments

9. When the Windows service definition dialog appears, we unchecked Run the 
Application Server process as a Windows service, as seen in Figure 19-4 on 
page 1054, and then clicked Next.

Note: If you want to have multiple WebSphere Profiles but only intend to 
run them one at a time, you may consider using the default port values for 
each of them. Of course, this would preclude running them simultaneously 
without port conflicts.

Note: We will be starting and stopping the server from Rational Application 
Developer. Remember, the Rational Application Developer server 
configuration is a pointer to the server defined in the WebSphere Profile.
 Chapter 19. Servers and server configuration 1053



Figure 19-4   WebSphere Profile Creator - Windows service definition

10.When the Profile summary dialog appears, review the profile settings and 
then click Next to begin creating the new profile.

The WebSphere Profile creation process takes approximately 10 minutes to 
complete.

11.When the Profile creation complete dialog appears, you should see a 
message at the top of the dialog: The Profile creation wizard created the 
profile successfully. 

By default, Launch the First steps console is checked. Click Finish.

Verify the new WebSphere Profile
After creating the WebSphere Profile, we recommend that you verify it was 
created properly and familiarize yourself with how to use it.

1. View the directory structure and find the new profile.

<rad_home>/runtimes/base_v6/profiles/<profile_name>
1054 Rational Application Developer V6 Programming Guide



Where <profile_name> is the name of the WebSphere Profile.

This is where you will find, among other things, the config directory containing 
the application server configuration files, the bin directory (for entering 
commands), and the logs directory where information is recorded.

2. Start the server.

If you ran the installation verification, the server should already be started. 
You can check using the following commands:

cd <profile_home>\bin
serverStatus -all

If the server status is not started, then start it from the First Steps menu or 
with the following commands:

cd <profile_home>\bin
startServer server1

3. Verify the server startup and installation.

You can do this directly from the First Steps menu. This process will start the 
application server and verify the proper operation of the Web and EJB 
containers. Messages are displayed on the First Steps window and logged in 
the following places:

<profile_home>/logs/server1/startServer.log
<profile_home>/logs/server1/SystemOut.log

4. Open the WebSphere Administrative Console either by selecting the option in 
the First Steps window, or by accessing its URL from a Web browser:

http://<appserver_host>:<admin_console_port>/ibm/console

For example:

http://localhost:9061/ibm/console/

The administrative console port was selected during the profile creation 
wizard (see Figure 19-3 on page 1053).

Click the Log in button. Since security is not active at this time, you do not 
have to enter a user name. If you choose to enter a name, it can be any 
name. If you enter a name it will be used to track changes you made to the 
configuration. 

Note: For simplicity, we will refer the entire path for the profile as 
<profile_home>.
 Chapter 19. Servers and server configuration 1055



5. Display the configuration from the console. You should be able to see the 
following items from the administrative console:

a. Application servers: Select Servers → Application servers. You should 
see server1, as seen in Figure 19-5 on page 1056. To see the 
configuration of this server, click the name in the list.

Figure 19-5   Application server defined by the application server profile

b. Enterprise applications: Select Applications → Enterprise Applications. 
You should see a list of applications installed on server1.

c. Click Logout and close the browser.

Note: Although you cannot display the cell and node from the 
administrative console, they do exist. You will see this later as you 
begin to configure resources and choose a scope, and also in the 
<profile_home> /config directory structure.
1056 Rational Application Developer V6 Programming Guide



6. Stop the application server. You can do this from the First Steps menu, or 
better yet, use the stopServer command:

cd <profile_home>\bin
stopServer server1

19.2.4  Define a new server in Rational Application Developer
Once you have defined the WebSphere Profile or chosen to use the default 
profile, you can create a server in Rational Application Developer. The server 
points to the server defined within the WebSphere Profile you configured.

With the new server configuration architecture, there are a few considerations to 
be aware of:

� The profile default is created when the WebSphere Application Server V6.0 
Integrated Test Environment feature is selected during Rational Application 
Developer installation. A Rational Application Developer WebSphere 
Application Server V6.0 Test Environment is configured to use the default 
profile.

� The Rational Application Developer server configuration is essentially a 
pointer to the WebSphere Profile.

Tip: Delete a WebSphere Profile.

To delete a WebSphere Profile, do the following:

1. Stop the server that the profile is associated with.

2. Delete the WebSphere Profile.

– Delete using the wasprofile command:

wasprofile -delete -profileName AppSrv01

Where AppSrv01 is the WebSphere Profile to delete.

Or do the following

– Manually delete the profile.

i. Remove the profile entry from the profileRegistry.xml.

<rad_home>\runtimes\base_v6\properties\profileRegistry.xml

ii. Delete the <profile_name> directory:

<rad_home>\runtimes\base_v6\profiles\<profile_name>

iii. Delete the <profile_name>.bat from the following directory:

<rad_home>\runtimes\base_v6\properties\fsdb\<profile_name>.bat
 Chapter 19. Servers and server configuration 1057



� You must manually stop the WebSphere Application Server Test 
Environment within Rational Application Developer before closing the 
Rational Application Developer, otherwise the server (server1 of the 
WebSphere Profile) will continue to run as a standalone WebSphere 
Application Server. 

To create a server in Rational Application Developer, do the following:

1. Open the J2EE perspective.

2. Select the Servers view.

3. Right-click in the Servers view, and select New → Server.

4. When the Define a New Server dialog appears, we did the following (as seen 
in Figure 19-6 on page 1059), and then clicked Next:

– Host name: localhost (default)
– Select the server type: Select WebSphere v6.0 Server.

Tip: If you have installed IBM Rational Application Developer Fix level 
V6.0.0.1, then you can do the following to stop the server when the 
Workbench is closed:

1. From the Server view, double-click the server to open the Server 
Overview page settings.

2. At the bottom of the page, there is a check box to Terminate server on 
Workbench shutdown.

3. Save the settings.
1058 Rational Application Developer V6 Programming Guide



Figure 19-6   Define a New Server

5. When the WebSphere Server Settings dialog appears, we did the following 
(as seen in Figure 19-7 on page 1060), and then clicked Next:

– WebSphere Profile name: Select AppSrv01.

In our example, AppSrv01 is the WebSphere Profile we created. The 
default WebSphere Profile is the default value.

– Server admin port number (SOAP connector port): 8881

– Server name: server1

– Check Run server with resources within the workspace.

– Server type: Select Base or Express server.

– We left the remaining fields as the default settings.

Note: The port will need to match the SOAP port defined when creating 
the WebSphere Profile.
 Chapter 19. Servers and server configuration 1059



Figure 19-7   Define a New Server - WebSphere Server Settings

6. When the Add and Remove Projects dialog appears, we did not select a 
project at this time, and clicked Finish.

The server will be created and should be displayed in the Servers view. In our 
example, the server WebSphere v6.0 @ localhost was created.

Note: We address the topic of adding projects to a server in 19.3, “Add a 
project to a server” on page 1064.
1060 Rational Application Developer V6 Programming Guide



19.2.5  Verify the server
After you have completed defining the server within Rational Application 
Developer, we recommend that you perform some basic verification steps to 
ensure the server is configured properly.

1. Open the J2EE perspective.

2. Select the Servers view.

3. Double-click the server you created (for example, WebSphere v6.0 @ 
localhost) in the Servers view.

4. Review properties settings for the server.

When the WebSphere v6.0 @ localhost server properties dialog opens, verify 
that the proper WebSphere Profile name is selected (for example, AppSrv01). 
Review the other settings. When done, save the file if changes were made 
and then close it.

5. Select the server (for example, WebSphere v6.0 @ localhost) in the Servers 
view, right-click, and select Start.

In this example, the WebSphere v6.0 @ localhost defined in Rational 
Application Developer is configured to use server1 of the AppSrv01 
WebSphere Profile.

6. Review the server startup output in the console. Also check the 
startServer.log and SystemOut.log for errors. The server logs can be found in 
the following directory:

<profile_home>/logs/server1/startServer.log
<profile_home>/logs/server1/SystemOut.log

7. Open the WebSphere Administrative Console either by selecting the option in 
the First Steps window, or by accessing its URL from a Web browser:

http://<appserver_host>:<admin_console_port>/ibm/console

For example:

http://localhost:9061/ibm/console/

The WebSphere Administrative Console port was selected during the 
WebSphere Profile Creation wizard (see Figure 19-3 on page 1053).

8. Click the Log in button. Since security is not active at this time, you do not 
have to enter a user name. If you choose to enter a name, it can be any 
name. If you enter a name it will be used to track changes you made to the 
configuration. 

9. After accessing several pages of the WebSphere Administrative Console to 
verify it is working properly, click Logout and close the browser.
 Chapter 19. Servers and server configuration 1061



10.Verify the server stops properly by doing the following:

a. From the J2EE perspective Server view, select the server (for example, 
WebSphere v6.0 @ localhost), right-click, and select Stop.

The server status should change to Stopped.

b. Verify that the server1 application server of the AppSrv01 WebSphere 
Profile has really stopped by entering the following command to check the 
server status:

cd <profile_home>/bin
serverStatus -all

The server status output should show that the server has been stopped. If 
not, stop the server by entering the following command:

stopServer server1

19.2.6  Customize a server in Rational Application Developer
Once the server has been created in Rational Application Developer, it is very 
easy to customize the settings.

1. Open the J2EE perspective.

2. Double-click the server you wish to customize in the Servers view.

There are a couple of key settings to point out for the server configuration, as 
seen in Figure 19-8 on page 1063. 

� Server

– WebSphere Profile name: Select the desired WebSphere Profile from the 
drop-down list.

– Server admin port number (SOAP connector port): The SOAP connector 
port was defined for the WebSphere Profile at the time the profile was 
created. If you have more than one profile, the default behavior of the 
WebSphere Profile wizard is to increment this port number by 1. For 
example, the SOAP connector port for the default profile is 8880, and the 
AppSrv01 profile is 8881.

� Publishing

Modify the publishing settings.

– Select one of the following:

• Run server with resources within the workspace
• Run server with resources on a Server
1062 Rational Application Developer V6 Programming Guide



– Enable automatic publishing: The default is for this to be enabled. This can 
be very time consuming, so you may consider turning this off and 
publishing as needed. Alternatively, change the interval of publishing.

Figure 19-8   Customize server settings

3. After making changes save and close the file.
 Chapter 19. Servers and server configuration 1063



19.3  Add a project to a server
Once the server is configured, it can be further configured with server resources 
and be used to run applications by adding projects to it.

19.3.1  Considerations for adding a project to a server
When applications are added to a local test server or a separate installation, the 
actual binary files can be located in different places. The server definition in 
Rational Application Developer provides the selection of “Run server with 
resources within the workspace” or “Run server with resources on Server,” as 
seen in Figure 19-9. This configuration page can be accessed by double-clicking 
the server in the Servers view.

The publishing setting applies to all applications added from a workspace. When 
a project or application is removed via the Add/Remove Projects from the server 
context menu or from the WebSphere Administrative Console, the project still 
remains within the workspace.

Figure 19-9   Application binary file location
1064 Rational Application Developer V6 Programming Guide



19.3.2  Add a project to a server
This section describes how to add a Web application project to a server. We will 
use the simple JSP and Servlet Web application sample provided with Rational 
Application Developer.

Import the JSP and Servlet sample
To import the JSP and Servlet sample as a basis to demonstrate debug 
capabilities within Rational Application Developer, do the following:

1. From the Workbench select Help → Samples Gallery.

2. When the Samples Gallery window appears, select Technology Samples → 
Web → JSP and Servlet.

3. Scroll down the page and click Import the Sample.

4. When the Create a Sample Web Project window appears, accept the defaults 
and then click Finish.

Add the Web project to the server
To add a Web project to the server, do the following:

1. From the J2EE Perspective, select the Servers view.

2. Right-click the desired server to add the project, and select Add and remove 
projects.

For example, we right-clicked the WebSphere v6.0 Server @ localhost we 
defined in “Define a new server in Rational Application Developer” on 
page 1057.

3. When the Add and Remove Projects dialog appears, we selected the 
JSPandServletExampleEAR and then clicked Add. 

4. When the project appears in the Configured projects column, as seen in 
Figure 19-10 on page 1066, click Finish.
 Chapter 19. Servers and server configuration 1065



Figure 19-10   Add and Remove Projects

19.4  Remove a project from a server
As discussed previously, the Rational Application Developer server configuration 
is essentially a pointer to a server defined in the WebSphere Profile it is 
configured with. In this section we describe two scenarios for removing published 
projects from the server.

19.4.1  Remove a project via Rational Application Developer
In most cases, you can remove the project from the test server within Rational 
Application Developer as follows:

1. Open the Servers view.

2. Right-click the server where the application is published, and select Add and 
remove projects from the context menu.
1066 Rational Application Developer V6 Programming Guide



3. When the Add and Remove Projects dialog appears, select the project in the 
Configured projects list, click the < Remove button, and then click Finish.

This operation will uninstall the application from the server defined for the 
WebSphere Profile your Rational Application Developer test server is configured 
with.

19.4.2  Remove a project via WebSphere Administrative Console
We found it necessary in some cases to uninstall the application from the 
WebSphere Administrative Console. For example, if you have published a 
project in Rational Application Developer to your test server, it will have been 
deployed to the server defined in the WebSphere Profile. If you then delete your 
Rational Application Developer server configuration or switch workspaces 
without first removing the project from the server, you will have a broken 
association between the Rational Application Developer server and the server 
defined in the WebSphere Profile. 

To address issues like the scenarios described, uninstall the enterprise 
application from the WebSphere Administrative Console as follows:

1. Start the test server in Rational Application Developer by selecting the server, 
right-clicking, and selecting Start.

2. Start the WebSphere Administrative Console either by right-clicking the 
server and selecting Run administrative console, or by accessing its URL 
from a Web browser:

http://<appserver_host>:<admin_console_port>/ibm/console

For example:

http://localhost:9060/ibm/console/

Note: We have listed a couple of possible resolutions to this issue:

� Create a new WebSphere Profile for each new Rational Application 
Developer workspace (server configuration). This approach will require 
more diskspace for each WebSphere Profile and server configuration, and 
if run simultaneously will require additional memory.

For details refer to 19.2, “Configure a WebSphere V6 Test Environment” on 
page 1046.

� Manually uninstall the application from the WebSphere Administrative 
Console.

The following procedure explains how to uninstall a deployed application 
using the WebSphere Administrative Console.
 Chapter 19. Servers and server configuration 1067



3. Click the Log in button. 

WebSphere security is not enabled, thus a user ID and password are not 
required.

4. Click Applications → Enterprise Applications.

5. Check the desired application to uninstall.

6. Click the Uninstall button.

7. When prompted, click OK.

8. Save your changes.

19.5  Publish application changes
Depending on the type of application change, new artifacts may be published 
automatically. 

1. The source code and configuration data are created/modified and saved.

2. The Builder runs, and then starts the AppInstaller. 

3. The AppInstaller then determines the type of application change (for example, 
delta) and then publishes the change to the server.

Table 19-10 on page 1066 lists the actions of different components in Rational 
Application Developer and automatic publish actions.

Table 19-3   Automatic publish of changes

Action in Rational Application 
Developer

Automatic publish action Result on server

Web module added to EAR Module update sent to server Module added to EAR on server 
and module started

Web module removed from EAR Module update sent to server Module removed, EAR remains 
started

EJB module added to EAR Full application update sent to 
server

EJB module removed and EAR 
restarted

Enhanced EAR information 
added/changed in EAR

Full application update sent to 
server

EAR replaced and restarted

JSP added/changed/removed to 
Web module

Single file update sent to server JSP added to Web module

JSP removed from Web module Single file update sent to server JSP removed and Web module 
remains started
1068 Rational Application Developer V6 Programming Guide



Considerations with automatic publish:

� If applications are set to run from the workspace, changes will be picked up 
and take affect without publishing.

� Test server restarts are minimized with Automatic Publish enabled:

– Enabled defined resources (data sources at server level and above, JMS 
resources)

– Debugging applications

– Profiling servers

– Enabling security

– Changing JVM values on application server

� Automatic publish may slow system and development/test if making a large 
number of changes.

� Automatic publish requires server to be started, which requires more system 
resources.

19.6  Configure application and server resources
This section is organized into the following options for configuring application and 
server resources.

� Configure application resources.
� Configure server resources.
� Configure messaging resources.
� Configure security.

19.6.1  Configure application resources
In IBM WebSphere Application Server V6, application-related properties and 
data sources can be defined within an enhanced EAR file to simplify application 

Servlet added/changed/removed 
to Web module or web.xml (IBM 
Extensions and Bindings) 
changed

Module update sent to server Web module added to EAR and 
Web module restarted

EJB added/changed/removed or 
ejb-jar.xml (IBM Extensions and 
Bindings) changed

Full application update sent to 
server

EAR replaced and restarted

Action in Rational Application 
Developer

Automatic publish action Result on server
 Chapter 19. Servers and server configuration 1069



deployment (see Figure 19-3 on page 1053). The properties are used by the 
application after being deployed. When the extended EAR is deployed, the data 
source is registered with WebSphere Application Server V6.0 once the target 
application server is restarted. To provide greater flexibility, variables can be 
defined for substitution with server values when the application is deployed.

Figure 19-11   Enhanced EAR

Enhanced EAR tooling
The enhanced EAR tooling is provided from the Deployment tab of the 
Application Deployment Descriptor Editor, as seen in Figure 19-12 on 
page 1071. Deployment information is saved under the application 
../META-INF/ibmconfig directory. 

The following resource types can be added to the enhanced EAR:

� Virtual Hosts
� JAAS Authorization entries
� Shared Library
� Application class loader settings
� JDBC resources

Enhanced EAREnhanced EAR

J2EE App.
EAR

Properties

Resources
EnhancedEnhanced

EAREAR

Enhanced EAREnhanced EAR

J2EE App.
EAR

Properties

Resources

Enhanced EAREnhanced EAR

J2EE App.
EAR

PropertiesProperties

ResourcesResources
EnhancedEnhanced

EAREAR
1070 Rational Application Developer V6 Programming Guide



Figure 19-12   Application Deployment Descriptor Editor

Create a data source for EJB access
The data sources that support the entity beans must be specified before the 
application can be started. There are several ways to do it, but the easiest is to 
use the Enhanced EAR Editor.
 Chapter 19. Servers and server configuration 1071



The following sample demonstrates how to create a data source for EJB access 
for the EJB project created in Chapter 15, “Develop Web applications using 
EJBs” on page 827.

1. On the Project Explorer view, double-click the BankEJBEAR enterprise 
application’s deployment descriptor. 

2. Select the Deployment page as shown in Figure 19-13 on page 1073.

Note: The Enhanced EAR Editor is used to edit several WebSphere 
Application Server V6 specific configurations, like data sources, classloader 
policies, substitution variables, shared libraries, virtual hosts, and 
authentication settings. It lets you configure these settings with little effort and 
publish them every time you publish the application.

The upside of the tool is that it makes the testing process simpler and easily 
repeatable, because the configurations it makes are saved to files that are 
usually shared at the team’s repository. Thus, even though it will not let you 
configure every possible runtime setting, it is a good tool for development 
purposes because it eases the process of configuring the most common ones.

The downside is that the configurations the tool makes will be attached to the 
EAR, and will not be visible from WebSphere Application Server’s 
administrative console. The console is only able to edit settings that belong to 
the cluster, node, and server contexts. When you change a configuration 
using the Enhanced EAR Editor, this change is made at the application 
context. The deployer can still make changes to the EAR file using the 
Application Server Toolkit (AST), but it is a separate tool. Furthermore, in most 
cases these settings are dependent on the node the application server is 
installed in anyway, so it makes little sense to configure them at the 
application context for deployment purposes.
1072 Rational Application Developer V6 Programming Guide



Figure 19-13   Enhanced EAR Editor

3. Scroll down the page until you find the Authentication section. It allows you to 
define a login configuration used by JAAS. 

4. Click Add to include a new configuration (Figure 19-14).

Figure 19-14   JAAS Authentication Entry

5. Enter dbuser as the entry’s alias, and the appropriate user ID and password 
for your configuration. Click OK to complete the configuration.

6. Back at the Enhanced EAR editor, scroll back up to the Data Sources section. 
By default, the Cloudscape JDBC provider and Timer service datasource are 
defined. Since we are using DB2 in this example, we will need to add a DB2 
JDBC provider by clicking the Add button right next to the provider list.

The dialog depicted in Figure 19-15 on page 1074 is displayed.
 Chapter 19. Servers and server configuration 1073



Figure 19-15   Creating a JDBC provider (page 1)

7. Select IBM DB2 as the database type. Then select DB2 Universal JDBC 
Driver Provider (XA) as the provider type.

8. Click Next to proceed to the second page (see Figure 19-16 on page 1075).

Note: Note that for our development purposes, the DB2 Universal JDBC 
Driver Provider (non XA) would work fine, because we will not need XA 
(two-phase commit) capabilities.
1074 Rational Application Developer V6 Programming Guide



Figure 19-16   Creating a JDBC provider (page 2)

9. In this page, you only need to name the provider. We chose to call it DB2 XA 
JDBC Provider. The rest of the settings are good, so click Finish.

10.Go back to the Enhanced EAR Editor. With the new DB2 provider selected, 
click the Add button next to the defined data sources list (see Figure 19-17 on 
page 1076).
 Chapter 19. Servers and server configuration 1075



Figure 19-17   Create a Data Source (page 1)

11.Select DB2 Universal JDBC Driver Provider (XA) from the JDBC provider 
type list, and select the Version 5.0 data source radio button. Click Next to 
continue to the next page (see Figure 19-18 on page 1077).
1076 Rational Application Developer V6 Programming Guide



Figure 19-18   Create a Data Source (page 2)

12.Name the data source BankDS, give it the jdbc/bankDS JNDI name, fill out a 
description if you want, and select the dbuser alias from the 
“Component-managed authentication alias” drop-down box. Click Next to 
proceed to next wizard’s last page, shown in Figure 19-19 on page 1078.
 Chapter 19. Servers and server configuration 1077



Figure 19-19   Create a Data Source (page 3)

13.Finally, just set the databaseName variable value to BANK, and click Finish 
to conclude the wizard. Save the deployment descriptor.

19.6.2  Configure server resources
Within IBM Rational Application Developer V6.0, the WebSphere Administrative 
Console is the primary interface for configuring WebSphere Application Server 
V6.0 test servers (local and remote). The Server editor replaces the Server 
Configuration editor from Version 5.x. The Server editor only contains details that 
point to the Rational Application Developer test server. 

There are a couple of methods for accessing the WebSphere Administrative 
Server; however, in any case the WebSphere Application Server V6.0 test server 
must be started. 
1078 Rational Application Developer V6 Programming Guide



Once the WebSphere Application Server V6.0 test server is started, you can 
right-click the server and select Run administrative server. Alternatively, once 
the server is started you can enter one of the following URLs in a Web browser:

http://localhost:9060/ibm/console
http://localhost:9060/admin

Where 9060 is the port defined for the WebSphere Administrative Console for 
the application server in the WebSphere Profile.

19.6.3  Configure messaging resources
All Messaging Resources are set up through the WebSphere Administrative 
Console. This includes the Service Integration Bus, Bus Member, Messaging 
Engine, Bus Destinations, and JMS Destinations.

For 2.1 message-driven beans, they must bind to ActivationSpec JNDI name, 
Authentication Alias, and Destination JNDI name. The Listenerport is only for 2.0 
Message-driven beans.

For EJB or Web messaging client, the message references must bind to 
messaging resources (similar to V5).

19.6.4  Configure security
Security is enabled from the WebSphere Administrative Console for the test 
environment. User ID and password fields are used to authenticate to a running 
server to find status, publish applications, and stop or restart servers. A user ID 
and password are not used for the user ID and password the server runs under.

19.7  TCP/IP Monitor
The TCP/IP Monitor is a simple server that monitors all the requests and the 
responses between a Web browser and an application server. By default, when 

Note: For details on how to configure messaging refer to the WebSphere 
Application Server online information found in the InfoCenter. Also, in this 
book our sample EJB application includes messaging. For details on 
configuring messaging for this sample, refer to Chapter 23, “Deploy enterprise 
applications” on page 1189.

Note: For more information on configuring WebSphere security, refer to 
WebSphere Application Server V6 Security, SG24-6316.
 Chapter 19. Servers and server configuration 1079



the TCP/IP Monitor is started, it listens for requests on port 9081, and then it 
forwards these requests to the application server on port 9080. For responses 
from the application server, the TCP/IP Monitor forwards them back.

For an example of using the TCP/IP Monitor refer to 17.4.5, “Monitor the Web 
Service using the TCP/IP Monitor” on page 976.
1080 Rational Application Developer V6 Programming Guide



Chapter 20. JUnit and component 
testing

The IBM Rational Application Developer V6.0 test framework is built upon the 
open source Eclipse Hyades test framework, and includes JUnit, which can be 
used for automated component testing. Rational Application Developer also 
includes profiling capabilities for memory, performance, and other execution time 
code analysis. We explore profiling in more detail in Chapter 24, “Profile 
applications” on page 1237.

In this chapter we introduce application testing concepts, and provide an 
overview on the Hyades and JUnit, as well as the features of Rational Application 
Developer for testing. In addition, we include working examples to demonstrate 
how to create, run, and automate component tests using JUnit, as well as 
demonstrate how to test Web applications.

The chapter is organized into the following sections:

� Introduction to application testing
� JUnit testing
� Automated component testing
� Web application testing

20
© Copyright IBM Corp. 2005. All rights reserved. 1081



20.1  Introduction to application testing
Although the focus of this chapter is on component testing, we have included an 
introduction to testing concepts such as test phases and environments to put into 
context where component testing fits within the development cycle. Next we 
provide an overview on the Hyades and JUnit testing frameworks. The remainder 
of the chapter provides a working example of using the features of Hyades and 
JUnit within Rational Application Developer.

20.1.1  Test concepts
Within a typical development project, there are various types of testing 
performed within different phases of the development cycle. Project needs based 
on size, complexity, risks, and costs determine the levels of testing to be used. 
The focus of this chapter is on component testing. 

Test phases
We have outlined the key test phases and categories as follows:

� Unit test: Unit tests are informal tests that are generally executed by the 
developers of the application code. They are often quite low-level in nature, 
and test the behavior of individual software components such as individual 
Java classes, servlets, or EJBs.

Because unit tests are usually written and performed by the application 
developer, they tend to be white-box in nature—that is to say, they are written 
using knowledge about the implementation details and test-specific code 
paths. This is not to say all unit tests have to be written this way; one common 
practice is to write the unit tests for a component based on the component 
specification before developing the component itself. Both approaches are 
valid, and you may want to make use of both when defining your own unit 
testing policy.

� Component test: Component tests are used to verify particular components of 
the code before they are integrated into the production code base. 
Component tests can be performed on a developer's machine. Within the 
context of Rational Application Developer, a developer configures a test 
environment and supporting testing tools such as JUnit. Using the test 
environment, you can test customized code including Java beans, Enterprise 
JavaBeans, and JavaServer Pages without needing to deploy this code to a 
runtime system (WebSphere Application Server, WebSphere Portal).

� Build Verification Test (BVT): Members of the development team check their 
source code into the source control tool, and mark the components as part of 
a build level. The build team is responsible for building the application in a 
controlled environment based on the source code available in the source 
1082 Rational Application Developer V6 Programming Guide



control system repository. The build team extracts the source code from the 
source control system, executes scripts to compile the source code (link if 
needed), packages the application, and tests the application build. 

The test run on the application of the build produced is called a Build 
Verification Test (BVT). BVT is a predefined and documented test procedure 
to ensure that basic elements of the application are working properly before 
accepting the build and making it available to the test team for Function 
Verification Test (FVT) and/or System Verification Test (SVT).

� Function Verification Test (FVT): These tests are used to verify individual 
functions of an application. For example, you may verify if the taxes are being 
calculated properly within a banking application.

� System Verification Test (SVT): System tests are used to test a group of 
functions. A dedicated test environment should be used with the same 
system and application software as the target production environment. To get 
the best results from your tests, you need to find the most similar environment 
and involve as many components as possible, and verify that all functions are 
working properly in an integrated environment.

� Performance test: Performance tests simulate the volume of traffic that you 
expect to have for the application(s) and ensure that it will support this stress 
and determine if the system performance is acceptable.

� Customer Acceptance Test: This is a level of testing in which all aspects of an 
application or system are thoroughly and systematically tested to 
demonstrate that it meets business and non-functional requirements. The 
scope of a particular acceptance test is defined in the acceptance test plan.

Note: Within the Rational product family, the IBM Rational Function Tester 
is an ideal choice for this type of testing.

Note: Within the Rational product family, the IBM Rational Manual Tester 
is an ideal choice for this type of testing.

Note: Within the Rational product family, the IBM Rational Performance 
Tester is an ideal choice for this type of testing.
 Chapter 20. JUnit and component testing 1083



Test environments
When sizing a project, it is important to consider the system requirements 
needed for your test environments. We have listed some common test 
environments that are used.

� Component test environment: This is often the development system and the 
focus of this chapter. In larger projects, we recommend that development 
teams have a dedicated test environment to be used as a sandbox to 
integrate team members’ components before putting the code into the 
application build.

� Build verification test environment: This test environment is used to test the 
application produced from a controlled build. For example, a controlled build 
should have source control, build scripts, and packaging scripts for the 
application. The Build Verification Team will run a subset of tests, often 
known as regression tests, to verify basic functionality of the system that is 
representative to a wider scale of testing.

� System test environment: This test environment is used for FVT and SVT to 
verify the functionality of the application and integrate it with other 
components. There may be many test environments with teams of people 
focused on different aspects of the system.

� Staging environment: This staging environment is critical for all sizes of 
organizations. Prior to deploying the application to production, the staging 
environment is used to simulate the production environment. This 
environment can be used to perform customer acceptance tests. 

� Production environment: This is the live runtime environment that customers 
will use to access your e-commerce Web site. In some cases, customer 
acceptance testing may be performed on the production environment. 
Ultimately, the customers will test the application. You will need a process to 
track customer problems and implement fixes to the application within this 
environment.

Calibration
By definition calibration is a set of gradations that show positions or values. 
When testing, it is important to establish a base line for such things as 
performance and functionality for regression testing. For example, when 
regression testing, you need to provide a set of tests that have been exercised 
on previous builds of the application, before you test the new build. This is also 
very important when setting entrance and exit criteria.
1084 Rational Application Developer V6 Programming Guide



Test case execution and recording results
Sometimes the easiest way to know what broke the functionality of a component 
within the application is to know when the test case last worked. Recording the 
successes and failures of test cases for a designated application build is 
essential to having an accountable test organization and a quality application.

20.1.2  Benefits of unit and component testing
It may seem straightforward to many people as to why we test our code. 
Unfortunately, there are many people who do not understand the value of testing. 
Simply, we test our code and applications to find defects in the code, and to 
verify that changes we have made to existing code do not break that code. In this 
section, we highlight the key benefits of unit and component testing.

Perhaps it is more useful to look at the question from the opposite perspective, 
that is to say, why do developers not perform unit tests? In general, the simple 
answer is because it is too hard or because nobody forces them to. Writing an 
effective set of unit tests for a component is not a trivial undertaking. Given the 
pressure to deliver that many developers find themselves subjected to, the 
temptation to postpone the creation and execution of unit tests in favor of 
delivering code fixes or new functionality is often overwhelming.

In practice, this usually turns out to be a false economy, since developers very 
rarely deliver bug-free code, and the discovery of code defects and the costs 
associated with fixing them are simply pushed further out into the development 
cycle, which is inefficient. The best time to fix a code defect is immediately after 
the code has been written, while it is still fresh in the developer’s mind.

Furthermore, a defect discovered during a formal testing cycle must be written 
up, prioritized, and tracked. All of these activities incur cost, and may mean that a 
fix is deferred indefinitely, or at least until it becomes critical.

Based on our experience, we believe that encouraging and supporting the 
development and regular execution of unit test cases ultimately leads to 
significant improvements in productivity and overall code quality. The creation of 
unit test cases does not have to be a burden. If done properly, developers can 
find the intellectual challenge quite stimulating and ultimately satisfying. The 
thought process involved in creating a test can also highlight shortcomings in a 
design, which may not otherwise have been identified when the main focus is on 
implementation.

We recommend that you take the time to define a unit testing strategy for your 
own development projects. A simple set of guidelines, and a framework that 
makes it easy to develop and execute tests, pays for itself surprisingly quickly.
 Chapter 20. JUnit and component testing 1085



Once you have decided to implement a unit testing strategy for your project, the 
first hurdles to overcome are the factors that dissuade developers from creating 
and running unit tests in the first place. A testing framework can help by making it 
easier to:

� Write tests
� Run tests
� Rerun a test after a change

Tests are easier to write, because a lot of the infrastructure code that you require 
to support every test is already available. A testing framework also provides a 
facility that makes it easier to run and re-run tests, perhaps via a GUI. The more 
often a developer runs tests, the quicker problems can be located and fixed, 
because the difference between the code that last passed a unit test, and the 
code that fails the test, is smaller.

Testing frameworks also provide other benefits:

� Consistency: Every developer is using the same framework, all of your unit 
tests work in the same way, can be managed in the same way, and report 
results in the same format.

� Maintenance: A framework has already been developed and is already in use 
in a number of projects, and you spend less time maintaining your testing 
code.

� Ramp-up time: If you select a popular testing framework, you may find that 
new developers coming into your team are already familiar with the tools and 
concepts involved.

� Automation: A framework may offer the ability to run tests unattended, 
perhaps as part of a daily or nightly build.

20.1.3  Eclipse Hyades
The Eclipse Hyades Test framework provides integrated testing, tracing, and 
monitoring framework. Within the scope of Rational Application Developer, this 
includes three types of testing:

� JUnit testing
� Manual testing
� Web browser-based application testing

Automatic builds: A common practice in many development environments is 
the use of daily builds. These automatic builds are usually initiated in the early 
hours of the morning by a scheduling tool.
1086 Rational Application Developer V6 Programming Guide



Although each of these areas of testing has its own unique set of tasks and 
concepts, two sets of topics are common to all three types of testing:

� Creation and use of data pools
� Creating a test deployment

The primary purpose of the Eclipse Hyades project is to provide a common 
framework for test tools, so that Eclipse-based test tools can easily communicate 
with one another and work together. As such, the primary users of Hyades are 
Eclipse test tool developers. In addition, Hyades has an important secondary 
audience—testers of HTTP-based applications.

20.2  JUnit testing
This section provides JUnit fundamentals as well as a working example of how to 
create and run a JUnit test within Rational Application Developer. 

20.2.1  JUnit fundamentals
A unit test is a collection of tests designed to verify the behavior of a single unit 
with in a class. JUnit tests your class by scenario, and you have to create a 
testing scenario that uses the following elements:

� Instantiate an object.
� Invoke methods.
� Verify assertions.

Example 20-1 lists a simple test case to verify the result count of a database 
query.

Example 20-1   Sample JUnit test method

//Test method
public void testGetAccount(){

//instantiate
Banking banking = new Banking();
//invoke a method
Account account = banking.getAccount("104-4001");
//verify an assertion
assertEquals(account.getAccountId(),"104-4001");

}

Note: An assertion is a statement that allows you to test the validity of any 
assumptions made in your code.
 Chapter 20. JUnit and component testing 1087



In JUnit, each test is implemented as a Java method that should be declared as 
public void and take no parameters. This method is then invoked from a test 
runner defined in a different package. If the test method name begins with 
test..., the test runner finds it automatically and runs it. This way, if you have a 
large number of test cases, there is no need to explicitly define all the test 
methods to the test runner.

TestCase class
The core class in the JUnit test framework is junit.framework.TestCase, of which 
all of the JUnit test cases inherit (see Example 20-2).

Example 20-2   Sample to highlight junit.framework.TestCase 

import junit.framework.TestCase;

public class ITSOBankTest extends TestCase {

/**
 * Constructor for ITSOBankTest.
 * @param arg0
 */
public ITSOBankTest(String arg0) {

super(arg0);
}

As a best practice, your test case should have a constructor with a single string 
parameter. This is used as a test case name to display in the log and reports. All 
the reports will have the name of the test, which can make more sense than the 
entire java package and class name when seeing the report.

TestRunner class
Tests are executed using a test runner. To run this test in the text mode, use 
TestRunner, as seen in Example 20-3.

Example 20-3   Sample to highlight TestRunner

public static void main (String[] args) {
junit.textui.TestRunner.run (ITSOBankTest);

}

TestSuite class
Test cases can be organized into test suites, managed by the 
junit.framework.TestSuite class. JUnit provides tools that allow every test in a 
suite to be run in turn and to report on the results.
1088 Rational Application Developer V6 Programming Guide



TestSuite can extract the tests to be run automatically. To do so, you pass the 
class of your TestCase class to the TestSuite constructor, as seen in 
Example 20-4.

Example 20-4   Sample to highlight TestSuite class - TestSuite constructor

TestSuite suite = new TestSuite(ITSOBankTest.class);

This constructor creates a suite containing all methods starting with test, and that 
takes no arguments.

Alternatively, you can add new test cases using the addTest method of the 
TestSuite class, as seen in Example 20-5.

Example 20-5   Sample to highlight TestSuite class - addTest method

TestSuite suite = new TestSuite();
suite.addTest(new ITSOBankTest("testBankingConnection"));
suite.addTest(new ITSOBankTest("testBanking"));

20.2.2  Prepare for the sample
We use the Java Bank sample application created in Chapter 7, “Develop Java 
applications” on page 221, for the JUnit test working example.

Import the c:\6449code\java\BankJava.zip Project Interchange file into Rational 
Application Developer. 

After importing the Java Bank sample, verify that it runs properly in the Java 
perspective (BankClient). For more information refer to 7.2.12, “Run the Java 
Bank application” on page 286.

20.2.3  Create the JUnit test case
Rational Application Developer contains wizards to help you build JUnit test 
cases and test suites. We will use this wizard to create the ITSOBankTest test 
class to test the AllTests JavaBean, which is a facade of a banking application 
that allows you to get information about your account, and withdraw and deposit 
funds.

Note: The completed ITSOBankTest.java source used for the JUnit test case 
is included in the itso.bank.test package of the BankJava project.
 Chapter 20. JUnit and component testing 1089



Create the itso.bank.test.junit package
The completed version of the ITSOBankTest.java JUnit test case is included in 
the itso.bank.test package of the BankJava project. For the purposes of 
illustrating how to create a JUnit test case, we will create a new package named 
itso.bank.test.junit. 

To create the itso.bank.test.junit package, which we will use for JUnit test cases, 
do the following:

1. Select the BankJava project, right-click, and select New → Package.

2. When the Java Package dialog appears, enter itso.bank.test.junit in the 
Name field and then click Finish.

Create a JUnit test case
To create a test case for the processTransaction method of the AllTests facade, 
do the following:

1. Open the Java perspective Package Explorer view.

2. Expand BankJava → src → itso.bank.model.facade.

3. Select ITSOBank.java, right-click, and select New → JUnit Test Case.

4. To use JUnit in Rational Application Developer, the JUnit packages need to 
be added to the build path of the Java project. This is automatically detected, 
as seen Figure 20-1. Click Yes.

Figure 20-1   Adding JUnit library to the build class path

Note: In our example, since we imported the BankJava project with the 
existing JUnit test code, the JUnit packages have already been added to 
the Java build path for the BankJava project.
1090 Rational Application Developer V6 Programming Guide



5. When the JUnit Test Case dialog appears, we entered the following (as seen 
in Figure 20-2 on page 1092), and then clicked Next:

– Source Folder: BankJava/src

– Package: itso.bank.test.junit

This is the package we created in “Create the itso.bank.test.junit package” 
on page 1090. It is a best practice to use a separate package for test 
cases.

– Name: ITSOBankTest

Test is concatenated to the original source file name ITSOBank.

– Superclass: junit.framework.TestCase

This is the default since we are creating a JUnit test case.

– Check public static void main(String[] args).

– Check Add TestRunner statement for: and select text ui.

This creates a main method in the test case, and adds a line of code that 
executes the TestRunner to run the test methods and output the results.

– Check setUp().

This creates a stub for this method in the generated file.

– We accepted the default values for the remaining fields.

Tip: Sometimes you may need to add the JUnit library manually to your 
project. In that case, right-click the project and select Properties. Select 
Java Build Path and switch to the Libraries tab. Add a JUNIT variable that 
points to the junit.jar file, which can be found in the following directory:

<RAD_HOME>\eclipse\plugins\org.junit_3.8.1\junit.jar
 Chapter 20. JUnit and component testing 1091



Figure 20-2   Create a JUnit test case

– main is the method that is executed to start the JUnit test case as a Java 
application. This is not required, as within Rational Application Developer, 
we can run Java classes as JUnit test cases.

– The “Add TestRunner statement for” check box has three options: text ui, 
swing ui, and awt ui. These options add a single line of code to the main 
method to run the test case and output the results in three different user 
interfaces. Text is plain text, while swing and awt are graphical outputs.

– setUp is a method that is executed before the tests.

– tearDown is a method that is executed after the tests.

– constructor is constructor stub for the class.

– Class Under Test: This is the Java class that this new test case is testing.

Note: A stub is a skeleton method, generated so that you can add the body 
of the method yourself.
1092 Rational Application Developer V6 Programming Guide



6. When the Test Methods dialog appears, we checked the 
processTransaction method, as seen in Figure 20-3, and then clicked 
Finish.

Figure 20-3   JUnit - Select test methods

The wizard will generate the ITSOBankTest.java and open the file in an editor. 
This file can be used to test the ITSOBank class. All that remains to do is to write 
the testing code.

Complete the setUp and tearDown methods
Typically, you run several tests in one test case. To make sure there are no side 
effects between test runs, the JUnit framework provides the setUp and tearDown 

Tip: Try to think of the stub methods for a few scenarios to test in your test 
case. You can add as many methods to the generated file as you would 
like, and the naming conventions are up to you. This page of the wizard 
gets you started.
 Chapter 20. JUnit and component testing 1093



methods. Every time the test case is run, setUp is called at the start and 
tearDown at the end of the run.

1. Expand BankJava → src → itso.bank.test.junit.

2. Double-click ITSOBankTest.java to open the file in the Java editor.

3. Add the private object code highlighted in Example 20-6 to 
ITSOBankTest.java.

This private object will be instantiated before starting the test and is available 
for use in the test methods.

Example 20-6   Add private object to ITSOBankTest.java

public class ITSOBankTest extends TestCase {

Bank bank;
Customer customer1;
Account account11, account12;

4. Add the code highlighted in Example 20-7 to the setUp method of 
ITSOBankTest.java. 

The code is used to create an instance of the Bank facade and instantiate 
customer and account.

Example 20-7   Add code to setUp method

protected void setUp() throws Exception {
super.setUp();

bank = new ITSOBank();
try {

customer1 = new Customer("111-11-1111","John","Ganci");
bank.addCustomer(customer1);
System.out.println ( "Successfully Added customer1. "+customer1);
account11 = new Account("11",new BigDecimal(10000.00D));
bank.addAccount(customer1,account11);
account12 = new Account("12",new BigDecimal(11234.23));
bank.addAccount(customer1,account12);
System.out.println("Successfully Added 2 Accounts to Customer1... ");
System.out.println(customer1);

}catch(InvalidCustomerException e){
e.printStackTrace();

}
}

5. Resolve imports.
1094 Rational Application Developer V6 Programming Guide



As code is added, you will need to update the imports accordingly. 
Sometimes this is done automatically by Rational Application Developer, 
sometimes you can simply press Ctrl+Shift+O and add the imports, and other 
times you may need to manually add the imports.

6. Save the changes to the ITSOBankTest.java file by clicking File → Save.

In our example, there is no tearDown method (not needed). This method could 
be used to clean up tasks such as disconnecting from a database.

Complete the test methods
When the ITSOBankTest.java was generated, the test methods were added in 
stub form. This section describes the steps to complete the test methods.

1. Complete the testProcessTransaction method by adding the code highlighted 
in Example 20-8.

This test method adds a new customer and account, then deposits funds into 
that account. Then it retrieves the account balance again and verifies that the 
new balance is the sum of the original balance and the deposited amount.

Example 20-8   Add code to the testProcessTransaction method

public void testProcessTransaction() {
try {

BigDecimal balanceBefore = new BigDecimal( account11.getBalance().toString() );
BigDecimal debitAmount = new BigDecimal(2399.99D);

bank.processTransaction( customer1, account11, debitAmount,TransactionType.DEBIT);

assertEquals(account11.getBalance(), balanceBefore.subtract(debitAmount));

}catch(InvalidCustomerException e){
e.printStackTrace();
fail("InvalidCustomerException. Message: " + e.getMessage());

}catch(InvalidAccountException e){
e.printStackTrace();
fail("InvalidAccountException. Message: " + e.getMessage());

}catch(InvalidTransactionException e){
e.printStackTrace();
fail("InvalidTransactionException. Message: " + e.getMessage());

}
}

2. Add a new test method called testInvalidProcessTransaction, as seen in 
Example 20-9 on page 1096.

This method verifies that if you try withdrawing more than the account holds, 
you will receive the proper InvalidTransactionException exception.
 Chapter 20. JUnit and component testing 1095



Example 20-9   Add new testInvalidProcessTransaction method

public void testInvalidProcessTransaction(){
try {

BigDecimal balanceBefore = new BigDecimal(account11.getBalance().toString());
BigDecimal debitAmount = new BigDecimal(12399.99D);

bank.processTransaction(customer1, account11, debitAmount,TransactionType.DEBIT);

fail("Transaction should not be processed. Negative balance");

}catch(InvalidCustomerException e){
e.printStackTrace();
fail("InvalidCustomerException. Message: " + e.getMessage());

}catch(InvalidAccountException e){
e.printStackTrace();
fail("InvalidAccountException. Message: " + e.getMessage());

}catch(InvalidTransactionException e){
assertTrue(true);

}
}

3. Save the changes to the ITSOBankTest.java file by clicking File → Save.

This test case is now ready to run and can already be executed from the 
context menu (Run → JUnit Test). 

Before continuing on to run the JUnit test, we need to review the assert and fail 
methods that we used in our test. In addition, we will also introduce the concept 
of a test suite.

JUnit-supplied assert and fail methods
The assertEquals, assertTrue, and fail methods are provided by the JUnit 
framework. 

JUnit provides a number of methods that can be used to assert conditions and 
fail a test if the condition is not met. These methods are inherited from the class 
junit.framework.Assert (see Table 20-1). 

Table 20-1   JUnit assert methods

Method name Description

assertEquals Assert that two objects or primitives are equal. Compares objects 
using equals, and compares primitives using ==.

assertNotNull Assert that an object is not null.

assertNull Assert that an object is null.
1096 Rational Application Developer V6 Programming Guide



All of these methods include an optional String parameter that allows the writer of 
a test to provide a brief explanation of why the test failed. This message is 
reported along with the failure when the test is executed. Example 20-10 
includes an assertEquals sample message that will fail for the working example.

Example 20-10   Sample assertEquals message

assertEquals(account11.getBalance().toString(), balanceBefore.add(debitAmount).toString());

Create a TestSuite
A TestSuite is used to run one or more test cases at once. Rational Application 
Developer contains a simple wizard to create a test suite as follows:

1. Expand BankJava → src

2. Right-click itso.bank.test.junit, and select New → Other → Java → 
JUnit → JUnit Test Suite. Click Next.

3. When the JUnit Test Suite dialog appears, we entered the following, as seen 
in Figure 20-4 on page 1098, and then clicked Finish:

– Source Folder: BankJava/src

– Package: itso.bank.test.junit

– Test suite: AllTests

By default, the test suite is called AllTests. If you had multiple test classes, 
you could include them in one suite. We currently have a single test class 
only, but you can add to the suite later. 

– Check ITSOBankTest.

– Check public static void main(String[] args).

– Check Add TestRunner statement for: and select text ui.

assertSame Assert that two objects refer to the same object. Compares using ==.

assertTrue Assert that a boolean condition is true.

fail Fails the test.

Method name Description

Note: You may need to check Show All Wizards if not accessed 
previously.
 Chapter 20. JUnit and component testing 1097



Figure 20-4   Sample JUnit Test Suite settings

The generated AllTests.java source opens, and here we can add more test 
classes later by using the suite.addTestSuite() method. 

This code uses the text-based Test Runner tool in the JUnit framework, which 
runs the tests and reports the results.

4. No changes are required this time. Close the AllTests.java file.

In our example we only have a single test, and thus test suite is not required. 
However, as you add more and more test cases, a test suite quickly becomes a 
more practical way to manage your unit testing.

20.2.4  Run the JUnit test case
This section includes a couple of scenarios for running the JUnit test case. First, 
we examine the JUnit view and console output if the JUnit test was run after 
1098 Rational Application Developer V6 Programming Guide



completing the test methods (before “JUnit-supplied assert and fail methods” on 
page 1096). Second, we add asserts to have the test create a failure (not error).

Run JUnit test case
Now that the JUnit test case has been created (no assert failure), it can be run as 
follows:

1. Expand BankJava → src → itso.bank.test.junit.

2. Right-click ITSOBankTest.java, and select Run → JUnit Test.

For our working example, you should see a JUnit view like Figure 20-5 with 
the results of the test run (no failures, no errors).

Figure 20-5   JUnit view - No assert condition (no failures, no errors)

Modify and run the JUnit test case with assert failures
In the previous example we tested only for success. A test is considered to be 
successful if the test method returns normally. A test fails if one of the methods 
from the Assert class signals a failure. An error indicates that an unexpected 
exception was raised by the test method, or the setUp or tearDown method was 
invoked before or after it.

Tip: To run just one test case, select the test case class and then Run → 
JUnit Test. To run all the test cases, select the test suite class (by default 
AllTests) and then the same action.

Note the Rerun Last Test button on the JUnit view menu bar ( ).
 Chapter 20. JUnit and component testing 1099



The JUnit view is more interesting when an error or failure occurs. This section 
describes how to modify both methods in ITSOBankTest to include assert test 
failures.

1. Expand BankJava → src → itso.bank.test.junit.

2. Double-click ITSOBankTest.java to open the file in the Java editor.

3. Modify the testProcessTransaction method by changing the transaction type 
from DEBIT to CREDIT, as seen in Example 20-11, so the balance will not 
match, and thus get an assert failure.

Example 20-11   Modified testProcessTransaction method - CREDIT instead of DEBIT

bank.processTransaction(customer1,account11,debitAmount,TransactionType.CREDIT);

4. Modify the testInvalidProcessTransaction methods so that the transaction is 
attempted on an account that is unassigned to customer, as listed in 
Example 20-12.

Example 20-12   Modified testInvalidProcessTransaction method - Unassigned customer

bank.processTransaction(new Customer(“374-594-3994”, “a”, “b”), 
account12,debitAmount,TransactionType.DEBIT);

5. Run the modified JUnit ITSOBankTest.java test case.

Select ITSOBankTest.java, right-click, and select Run → JUnit Test.

Figure 20-6 shows the JUnit view when the test case is run as a JUnit test 
again. This time, failures are displayed as well as failure trace information for 
each failure.

Figure 20-6   Junit view with failures
1100 Rational Application Developer V6 Programming Guide



6. Select the testProcessTransaction method from the failures list.

7. This will update the Failure Trace window to show the stack trace of the 
failure. This makes it easy for you to track where the failure occurred. 
Double-clicking the entry in the Failure Trace list takes you to the specified 
line in the specified Java source file.

Alternatively, the ITSOBankTest class can be run as a Java application by 
selecting Run → Java Application, which executes the main method and 
uses the TestRunner from the JUnit framework to run and output the test 
results in the console.

8. Example 20-13 displays the Console output from the test case. 

In this example, there was one success and one failure. The failure occurred 
when running testProcessTransaction.

Example 20-13   Console output

.F.Debit: Could not process Transaction. Reason: Negative/Zero Debit Amount. 
Amount: $12399.99

Time: 0.02
There was 1 failure:
1) testProcessTransaction(itso.junit.bank.model.facade.java.ITSOBankTest)

junit.framework.AssertionFailedError:
expected:<12399.989999999999781721271574497222900390625> but was:

<7600.010000000000218278728425502777099609375>
...
FAILURES!!!
Tests run: 2,  Failures: 1,  Errors: 0

Each dot (.) in the first line of the output represents the start of a test. We 
have two tests in our test case, so there are two dots. An “F” indicates a 
failure, so one test failed. There is no special symbol printed for a passed test. 
Once all the tests have completed, the test runner shows how long they took 
to run and provides a summary of the results.

9. Once the error is corrected, the output should look like the Console view 
displayed in Example 20-14.

Example 20-14   New console output

..Debit: Could not process Transaction. Reason: Negative/Zero Debit Amount. 
Amount: $12399.99

Time: 0.02

OK (2 tests)
 Chapter 20. JUnit and component testing 1101



Test the Web applications
You can also create test cases that run against one of the Web projects, 
BankBasicWeb or BankStrutsWeb. However, when testing anything that runs 
inside a servlet container, a testing framework like Cactus could make the testing 
much easier.

20.3  Automated component testing
The automated component testing features in Rational Application Developer 
allows you to create, edit, deploy, and run automated tests for Java components, 
EJBs, and Web Services. These features comply with the UML Testing Profile 
standard and they use the JUnit testing framework.

All the tests that you create with Rational Application Developer are extensions 
of JUnit tests. The automated component testing features extend JUnit with the 
following families of primitives:

� Initialization points (IP): Initialize variables or attributes of a 
component-under-test (CUT). 

� Validation actions (VA): Verify the validity of a variable.

� Timing constraints (TC): Measure the duration of method calls.

A major difference between validation actions and the original JUnit assert 
methods is that with validation actions, failed assertions do not stop the 
execution of the entire JUnit test suite.

20.3.1  Prepare for the sample
This section outlines the tasks to complete the preparation for the automating 
component testing sample.

IBM Rational Agent Controller installation
The IBM Rational Agent Controller must be installed and running as a 
prerequisite to automated component testing.

Note: Cactus is an open source sub-project in the Apache Software 
Foundation's Jakarta Project. It is a simple framework for unit testing 
server-side Java code such as servlets, EJBs, Tag Libs, Filters, etc.

The objective of Cactus is to lower the cost of writing tests for server-side 
code. Cactus supports so-called white box testing of server-side code. It 
extends and uses JUnit. 
1102 Rational Application Developer V6 Programming Guide



For information on installing the IBM Rational Agent Controller included with 
Rational Application Developer, refer to “IBM Rational Agent Controller V6 
installation” on page 1382.

Import the sample application
We use the sample Java Bank application for the automated component testing 
sample. If you have not already done so, import the 
c:\6449code\java\BankJava.zip Project Interchange file. This is the same project 
that was used to implement the JUnit tests in 20.2, “JUnit testing” on page 1087.

20.3.2  Create a test project
To test your components, you must first create a test project. The test project is 
linked to one or several development projects that contain the components you 
want to test. Development projects can include Java development projects, 
Enterprise Application projects, or Dynamic Web Projects. The components 
targeted for each test are known as the component-under-test (CUT).

To create a new component test project, do the following:

1. Select File → New Project.

2. When the New Project dialog appears, select Component Test → 
Component Test Project and then click Next. 

3. Enter BankComponentTest in the Name field and then click Next.

4. When the Define the scope of the component test project dialog appears, 
check BankJava and then click Finish.

5. When the Confirm Perspective Switch dialog appears, click Yes.

20.3.3  Create a Java component test
To create a Java Component test, do the following:

1. From the Test perspective Test Navigator view, select the 
BankComponentTest project.

2. Select File → New → Other.

3. Select Component Test → Java → Java Component Test, and then click 
Next.

4. When the Select a test project dialog appears, select BankComponentTest 
and click Next.

5. If you completed the JUnit example found in 20.2, “JUnit testing” on 
page 1087, a Metrics Analysis pop-up dialog appears notifying you that the 
 Chapter 20. JUnit and component testing 1103



ITSOBankTest class is not a valid class for further testing because it extends 
TestCase. This makes sense and we do not need to test this class. Click OK.

6. When the Select components under test dialog appears, do the following (as 
seen in Figure 20-7 on page 1105) and then click Next:

– Check Customer.
– Check Account.
– Check ITSOBank.

Figure 20-7 on page 1105 displays the components with highlighted values or 
high numerical values considered high-priority test candidates.

A static analysis was performed on the Java source files associated with the 
BankJava project. These files were selected during the creation of the test 
and help to define the scope of the test. The list of files in the test project can 
be updated later by modifying the Test Scope properties of the project.
1104 Rational Application Developer V6 Programming Guide



Figure 20-7   Select the components under test

7. When the Select a test pattern dialog appears, select Scenario-based 
pattern and then click Next.

8. When the Define a test scenario dialog appears, do the following, as seen in 
Figure 20-8 on page 1106:

a. Add an instance of each class-under-test by double-clicking each 
constructor from the list on the left side. For our example, double-click 
each of the following: ITSOBank, Customer, and Account.

b. On the right side of the dialog, double-click a particular method to be 
included in the test scenario. Double-click addAccount, 
processTransaction, and addCustomer.

c. When you are finished building the scenario, click Finish.
 Chapter 20. JUnit and component testing 1105



Figure 20-8   Define the test scenario

We have now created a scenario-based test, and a single test case has been 
created within the test suite. In the test behavior code, the test case is 
implemented as a single JUnit test method. 

The Test Overview dialog appears, as seen in Figure 20-9 on page 1107. 
From this page, you can edit the name of test, add a description of the test, 
and open test behavior code in the Java editor.

Click /BankComponentTest/Behavior/test/Test.java next to Behavior, to 
view and start editing the test code.
1106 Rational Application Developer V6 Programming Guide



Figure 20-9   Component test for processing a transaction

20.3.4  Complete the component test code
To complete the component test, do the following:

1. The Java test file should be opened in the editor. If not opened, do the 
following:

a. From the Test Perspective Test Navigator view, expand Component 
Test → Test Suite.

b. Double-click Test to open in the editor.

2. Click /BankComponentTest/Behavior/test/Test.java next to Behavior, to 
view and start editing the test code.
 Chapter 20. JUnit and component testing 1107



3. Clean up the import statements.

When the Test.java file is open, you will notice a minor problem with the 
imports. To fix the import issue, do the following:

a. Click import > to expand the import statements.

b. Click the twistie next to the import line and then delete the last 
unnecessary import statement, as seen in Figure 20-10.

Figure 20-10   Clean up the import statements

4. Modify the code to implement the desired tests. For example:

– Use test data tables to define test data specific to your test.
– Use the Java editor to edit the test behavior code.
– Create stubs for classes that the code you are testing interacts with.

a. To view a test data table, click any test method in the editor. 

b. Maximize the Test Data Table view. 

We can now see the outline of the test. On the right-hand side there is the 
Test Data column, which is further divided into the In data column and 
Expected test result column. Note that some of the cells are plain white 
and the others are shaded. Our next task is to fill in the empty white cells.

c. Fill in the test input data in the In column, as shown in Figure 20-11 on 
page 1109. 

You can define the data ranges for the id and balance fields by 
right-clicking the field and selecting Define Set from the context menu.
1108 Rational Application Developer V6 Programming Guide



Figure 20-11   Editing the test data table

d. Save your changes by clicking the diskette icon on the toolbar, or by 
pressing Ctrl+S. There is a synchronization link between the table and the 
code, but not everything in the code gets displayed in the test table.

Note: Some of the entries will not be present until after modifying the code 
in the next step, at which time we enter the remaining In values.
 Chapter 20. JUnit and component testing 1109



Note that you need to enclose the strings and define the data types. Note 
also that the local amount variable gets assigned in the Action part of the 
test table and that the type variable does not appear. 

5. Example 20-15 displays the test behavior code for Test.java. The local 
variables should be assigned based on the actions of the previous steps.

Example 20-15   Modified test behavior code for Test.java

public class Test extends TestCase {

public void test_void() throws InvalidCustomerException,
            InvalidAccountException, InvalidTransactionException {

ITSOBank objITSOBank = null;
Customer objCustomer = null;
Account objAccount = null;
objITSOBank = new ITSOBank();
String ssn = "";
String firstName = "";
String lastName = "";
objCustomer = new Customer(ssn,firstName,lastName);
String id = "";
BigDecimal balance = null;
objAccount = new Account(id, balance);
Customer customer = null;
objITSOBank.addCustomer(customer);
objITSOBank.addAccount(objCustomer,objAccount);
BigDecimal amount = null;
amount = new BigDecimal(2399.99D);
TransactionType transactionType = null;
transactionType = TransactionType.DEBIT;
objITSOBank.processTransaction(objCustomer,objAccount,

amount,transactionType);
}

}

6. Now that the code has been modified, If you have not done so already, go 
back to the Test Data Table and enter the In values listed in Figure 20-11 on 
page 1109.

7. Save the modifications to the Test.java and close the file.

20.3.5  Run the component test
We can now run the test and view the results. A test runs with the behavior code 
and uses the additional input data you have supplied for it in a test data table. 

As we noticed, you can also supply sets or ranges of values in the test data table. 
In that case, running a single test results in the running of many individual tests; 
1110 Rational Application Developer V6 Programming Guide



for example, in our case where we supplied two values for two arguments, 
running the test results in four individual tests.

1. From the Test Navigator, expand BankComponentTest.

2. Right-click Test Suite, and select Run → Component Test.

3. After the test is completed, expand the BankComponentTest → Run folder 
until you find the individual tests, as seen in Figure 20-12. 

We can see that two tests passed and two tests had some kind of failure.

Figure 20-12   Selecting test result

4. Click an individual test to display the test results in the Test Data Comparator.

The Test Data Comparator is quite similar to the Test Data Table. There are 
now three columns for test data: 

– Input data (including derived input)
– Expected output 
– Actual result

The actual results column appears in green when the actual result matches 
the expected result, and in red when there are discrepancies.

As you can see in Figure 20-13 on page 1112, we have discrepancies, as can 
be expected, because the first balance was too low, and because the second 
account was not assigned to a customer.
 Chapter 20. JUnit and component testing 1111



Figure 20-13   Test Data Comparator

5. Try to achieve a 100 percent successful pass by modifying the input in the 
Test Data Table and Java editor and running the component test again.

20.4  Web application testing
In addition to providing a common framework for test tools and support for JUnit 
test generation, Hyades includes features allowing you to test Web-based 
applications.

The Hyades framework has an important secondary audience—testers of 
HTTP-based applications. You can perform the following Web-testing tasks with 
Hyades, without modifying the framework:

� Recording a test: The test creation wizard starts the Hyades proxy recorder, 
which records your interactions with a browser-based application. When you 
stop recording, the wizard starts a test generator, which creates a test from 
the recorded session. 

� Editing a test: You can inspect and modify a test prior to compiling and 
running it.

Note: For additional information on automated component testing, we 
recommend that you refer to the Rational Application Developer online help 
and the tutorial, which can be accessed by clicking Help → Tutorial 
Gallery → Do and Learn → Test Java components.
1112 Rational Application Developer V6 Programming Guide



� Generating an executable test: Follow this procedure to generate an 
executable test. Before a test can be run, the test's Java source code must be 
generated and compiled. This process is called code generation.

� Running a test.

� Analyzing test results: At the conclusion of a test run you see an execution 
history, including a test verdict, and you can request two graphical reports 
showing a page response time and a page hit analysis.

20.4.1  Preparing for the sample
As a prerequisite to the Web application testing sample, you will need to have the 
WebSphere Application Server V6.0 Test Environment or runtime server 
installed and running. We will run a simple test using the WebSphere 
Administration Console.

1. Open the J2EE perspective.

2. Click the Servers view.

3. Select WebSphere Application Server v6.0, right-click, and select Start.

20.4.2  Create a Java project
To create a Java project, do the following:

1. Open the Java perspective.

2. Create a new Java project to hold the test case behavior and other test 
elements. 

a. Select File → New → Project.

b. Select Java Project and then click Next.

3. Enter ITSO HTTP Test as the project name and click Finish.

4. Create a source folder under the project. 

a. Right-click ITSO HTTP Test and select New → Source folder.

b. Enter src as the folder name and click Finish.

20.4.3  Create (record) a test
We use the WebSphere Administration Console to demonstrate how to record a 
HTTP recording for a Web application (could be any application).
 Chapter 20. JUnit and component testing 1113



We now create a simple HTTP test case in Rational Application Developer, as 
follows:

1. Open the Test perspective Test Navigator view.

2. Right-click ITSO HTTP Test and select New → Test Artifact.

3. When the New Test Artifact dialog appears, select Test → Recording → 
HTTP Proxy Recorder, and then click Next.

4. Select the ITSO HTTP Test container, enter adminconsole in the Recording 
file name field, and then click Finish.

A progress dialog box opens while your browser starts. Your browser settings 
are updated and a local proxy is enabled. If you are using a browser other 
than Microsoft Internet Explorer, see the online help for detailed instructions 
on how to configure the proxy. Recording has now started. 

5. Start the WebSphere Administrative Console by entering the following URL in 
a Web browser:

http://localhost:9060/admin

Or:

http://localhost:9060/ibm/console

6. Log in to the console (security is not enabled, so any user ID will work) and 
access some pages. A small set is sufficient.

7. When done, close the Web browser to stop recording.

Alternatively, stop the recording by clicking the Stop button on the right side 
of the Recorder Control viewer, as seen in Figure 20-14.

Figure 20-14   Recorder Control view

Notice the message Recording completed in the Recorder Control view seen in 
Figure 20-14 after closing the browser.
1114 Rational Application Developer V6 Programming Guide



20.4.4  Edit the test
The Hyades URL test suite now appears under the HTTP Test project. We can 
inspect and modify it before compiling and running it. The test is not Java code 
yet, but we can check the requests and behavior and modify them. 

1. Click the Behavior tab of the Hyades URL Test Suite.

2. Change the behavior of the test. For example, you may want to adjust the 
number of iterations or think times for some of the requests, as seen in 
Figure 20-15.

3. Save and close the file.

Figure 20-15   Edit number of iterations

20.4.5  Generate an executable test
Before a test can be run, the test's Java source code must be generated and 
compiled. This process is called code generation.

The compiled code is stored in the src folder in the same Java project as the test. 
Once the test's Java source code is generated, the Eclipse IDE automatically 
compiles the source code into an executable test.

1. In the Test Navigator, right-click adminconsole and select Generate.

2. When the JUnit Test Definition Code Generation dialog appears, we entered 
the following and then clicked Finish:

– Java Project: ITSO HTTP Test
 Chapter 20. JUnit and component testing 1115



– Source Folder: src

The code is now generated and compiled. 

3. To examine the code, switch to the Java perspective and you will find 
Adminconsole.java JUnit source in the src/test package.

20.4.6  Create a deployment definition
Before a test can be run, it must be deployed. That requires creating a 
deployment definition for the test.

A test deployment definition typically consists of one or more pairs of test 
artifacts and locations. Test artifacts are test suites and data pools. A location 
identifies the computer where you run the test suite. Hyades reads the pairing 
and deploys the test artifacts on the computer specified. 

You can also create a test deployment that specifies only a location and does not 
specify test artifacts. Such a deployment is convenient when you want to run a 
specific test suite on a specific computer. Since we have only one test suite in 
our test, we need to define one deployment definition containing one location.

1. Open the Test perspective Test Navigator view.

2. Right-click ITSO HTTP Test, and select New → Test Artifact.

3. When the New Test Artifact dialog appears, select Test → Test Elements → 
Deployment and click Next.

4. When the New Deployment dialog appears, select ITSO HTTP Test as the 
folder, and enter deployment in the File name field, and then click Next.

5. When the New Deployment dialog appears, click Next. We have only one test 
suite and it will be automatically included in the deployment.

6. When the New Deployment - define the locations dialog appears, click Add.

a. In the Add Location Association dialog, select Create a new resource 
and click Next.

b. In the New Location dialog, select ITSO HTTP Test as the folder and 
enter location as the filename.

c. Click Finish.

7. In the New Deployment - define the locations dialog, make sure the location 
entry appears in the list of locations, and then click Finish. 

You should now have the structure in Test Navigator seen in Figure 20-16 on 
page 1117.
1116 Rational Application Developer V6 Programming Guide



Figure 20-16   Testing artifacts in Test Navigator

20.4.7  Run the test
The test code has now been generated and deployment has been defined. To 
run the test, do the following:

1. Open the Test perspective Test Navigator.

2. Right-click adminconsole, and select Run → Run.

3. When the Create, manage, and run configurations dialog appears, select 
Hyades URL Test and then click New.

4. A new test configuration, initially named New_Configuration is created. 
Change the name to ITSO URL Test.

5. In Select Test to run, navigate to the ITSO HTTP Test project and click 
adminconsole.

The deployment definition should now appear under the deployments 
selection, as seen in Figure 20-17 on page 1118.
 Chapter 20. JUnit and component testing 1117



Figure 20-17   Creating the run configuration

6. Select the Users tab. 

You may set the number of users to emulate in the run. If you are running 
everything locally, do not use too high a number.

7. When done click Apply.

8. Select the test case to run, such as adminconsole, and then click Run.

20.4.8  Analyze the test results
When the test run is finished, the execution result  appears in the Test 
Navigator. If you execute the test multiple times, a running sequence number is 
appended to the result, as seen in Figure 20-18 on page 1119.
1118 Rational Application Developer V6 Programming Guide



Figure 20-18   Test execution results

1. In order to view the Page Response Time and the Page Hit Rate reports, you 
need to install Adobe's Scalable Vector Graphics (SVG) browser plug-in. You 
can get this free viewer from the Adobe Web site at:

http://www.adobe.com/svg/viewer/install/main.html

2. Double-click the execution, and the execution summary is displayed. 

The execution summary gives the test's verdict, the time recording started, 
and the time recording stopped. The verdict may be one of the following:

– fail: One or more requests returned a code of 400 or greater, or the server 
could not be reached during playback. 

– pass: No request returned a code of 400 or greater. 

– inconclusive: The test did not run to completion. 

– error: The test itself contains an error. 

For tests that fail, the Events tab shows you the overall verdict and allows you 
to drill down to the requests in each page that returned a fail code.

Two analysis reports are available. 

– Page Response Time report: Bar graph showing the seconds required to 
process each page in the test and the average response time for all 
pages.

– Page Hit Rate report: Bar graph showing the hits per second to each page 
and the total hit rate for all pages.

3. To generate the reports from the execution result, right-click the 
adminconsole test suite (the last adminconsole entry with the  icon) and 
select Report from the context menu.
 Chapter 20. JUnit and component testing 1119

http://www.adobe.com/svg/viewer/install/main.html


4. When the New report dialog appears, select HTTP Page Response Time 
and then click Next.

5. When the New Report - Report dialog appears, select ITSO HTTP Test and 
enter adminconsole page response time as the file name, and click Finish.

6. If you have multiple test results, the HTTP Report Generator - select result for 
report dialog appears next. Select a result you want to base the report on and 
click Finish.

A report like the one in Figure 20-19 should appear.

Figure 20-19   HTTP Page Response Time

The exact numbers displayed at the top of the bars do not appear unless you 
click one of the bars. 

If you need to access the report later, you can find it under the Package Explorer 
view: adminconsole page response time.html.
1120 Rational Application Developer V6 Programming Guide



Chapter 21. Debug local and remote 
applications

The debug tooling included with IBM Rational Application Developer V6.0 can be 
used to debug a wide range of applications (languages and environments) either 
in a local integrated test environment or on remote servers such as WebSphere 
Application Server or WebSphere Portal.

In this chapter, we highlight the new and enhanced debug tooling features 
included with Rational Application Developer, as well as provide examples for 
using the debug tooling. In the first example, we demonstrate how to use the 
debugger within the Workbench and integrated WebSphere Application Server 
V6.0 Test Environment with Web application. Second, we describe how to debug 
a Web application on a remote WebSphere Application Server.

This chapter describes the following topics:

� Introduction to the debug tooling
� Prepare for the sample
� Debug a Web application on a local server
� Debug a Web application on a remote server

21
© Copyright IBM Corp. 2005. All rights reserved. 1121



21.1  Introduction to the debug tooling
This section provides an overview of the following new and enhanced debug 
tooling features included in IBM Rational Application Developer V6.0. The debug 
tooling can be used on local or remote test environments.

� Summary of new Version 6 features
� Supported languages and environments
� General functionality
� Drop-to-frame
� View Management
� XSLT debugger

21.1.1  Summary of new Version 6 features
The main areas of enhancements in Version 6 are as follows:

� Debug many different languages and environments, including mixed 
languages.

� User interface enhancements to make debugging the application easier.

� XSLT debugger now utilizes Eclipse Debug framework. This provides a 
common look and feel for the debuggers in Rational Application Developer.

� Debug option available from context menu.

Figure 21-1 on page 1123 displays the Debug configuration options.

� Debug from any perspective.

When you run an application using Debug on Server, you will be prompted as 
to whether you want to switch to the Debug perspective. You can choose to 
debug in the current perspective (Web, Java, etc.) as well as the Debug 
perspective.

� New debug predefined configuration options.

For a list of new predefined configurations see Figure 21-1 on page 1123. You 
may choose to use an existing configuration or define your own settings for 
your application.

Note: Most of the features outlined in this section include screen shots to 
display the menu options and dialogs. If you want to see these features on a 
live Rational Application Developer system, we suggest that you jump ahead 
to 21.3, “Debug a Web application on a local server” on page 1132. By 
completing the setup for this section, you will have a Web application imported 
to test these new and enhanced features.
1122 Rational Application Developer V6 Programming Guide



Figure 21-1   Debug - Debug on Server
 Chapter 21. Debug local and remote applications 1123



21.1.2  Supported languages and environments
IBM Rational Application Developer V6.0 includes support for debugging many 
different languages and environments, including mixed languages:

� Java
� Compiled Languages
� Active Script (client-side JavaScript or VisualBasic script)
� SQL Stored Procedures
� EGL
� XSL Transformations (XSLT)
� SQLJ
� Mixed language (new to V6)
� WebSphere Application Server (servlets, JSPs, EJBs, Web Services)
� WebSphere Portal (portlets)

21.1.3  General functionality
In this section, we explore some features that provide general functionality 
throughout the debugging tools.

Breakpoint enable/disable
Breakpoints can be enabled and disabled. To enable a breakpoint in the code, 
double-click in the grey area of the left frame for the line of code you for which to 
enable the breakpoint.

Alternatively, the breakpoints can be enabled and disabled from the Breakpoints 
view (as seen in Figure 21-2) once they have been created. If the breakpoint is 
unchecked in the Breakpoints view, it will be skipped during execution.

To disable or enable all breakpoints, click the Breakpoint icon in the tool bar 
highlighted in the Debug perspective, as seen in Figure 21-2. If disabled, the next 
execution will skip the breakpoint.

Figure 21-2   Breakpoint view - Enable/disable breakpoints
1124 Rational Application Developer V6 Programming Guide



Step-by-step disable default
By default, step-by-step debugging is disabled in the Workbench preferences. To 
enable step-by-step debug, do the following:

1. Select Window → Preferences. 

2. Expand Run/Debug → Java and Mixed Language Debug.

3. Check Enable step-by-step debug mode by default (as seen in 
Figure 21-3), and then click OK.

Figure 21-3   Enable step-by-step debug

Once the step-by-step debug feature is enabled, it can be toggled on and off by 
clicking the Step-By-Step Mode icon ( ) in the Debug view.
 Chapter 21. Debug local and remote applications 1125



Enable/disable Step Filter/Step Debug in Debug view
Within the Debug view, there is a new Step Filter/Step Debug icon ( ). This 
feature allows step functions such as step into, step over, etc. to be used. By 
default this feature is disabled in the Workbench preferences.

To enable the Step Filter/Step Debug feature in the Debug view, do the following:

1. Select Window → Preferences. 

2. Expand Run/Debug → Java and Mixed Language Debug → Step Filters.

3. Click Add Filter.

4. Enter the new filter and click OK.

Once the Step Filter/Step Debug feature is enabled, it can be toggled on and off 
by clicking the Step Filter icon ( ) in the Debug view.

21.1.4  Drop-to-frame
The Drop-to-frame feature allows you to back up execution of the application. 
This feature is available when debugging Java applications and Web 
applications running on WebSphere Application Server. This feature is useful 
when you need to test a range of values. With this feature multiple input values 
can be entered without having to rerun the application.

When running an application in the Debug perspective, you will see the stack 
frame in the Debug view, as seen in Figure 21-4. Drop-to-frame allows you to 
back up your application’s execution to previous points in the call stack by 
selecting the desired frame and then clicking the Drop-To-Frame icon ( ).

Figure 21-4   Debug view - Drop-to-frame feature
1126 Rational Application Developer V6 Programming Guide



21.1.5  View Management
The View Management feature allows debug-related views to be opened in 
non-debug perspectives. This helps reduce user interface clutter by only opening 
the views necessary for debugging for the launched process. After the process 
has terminated the opened debug-related views are closed.

The View Management feature can be configured through either the Debug view 
or the Workbench preferences. The Debug perspective participates in View 
Management by default. Additional perspectives can be configured to participate. 
For example:

� Debugging the Java process opens Debug, Breakpoints, Variables, and 
Expressions views.

� Debugging the compiled language process opens Debug, Breakpoints, 
Variables, Registers, Memory Rendering, Monitors, and Modules views.

To configure the View Management from the Workbench preferences, do the 
following:

1. Select Window → Preferences. 

2. Expand Run/Debug → View Management.

3. From the View Management tab, check the desired perspective(s) to be 
enabled, as seen in Figure 21-5 on page1124. This feature is used to 
determine which perspective(s) and supporting views will be displayed when 
the Debug view is opened and closed. Click OK when done.
 Chapter 21. Debug local and remote applications 1127



Figure 21-5   View Management

21.1.6  XSLT debugger
XSL Transformations (XSLT) is a language for transforming XML documents into 
other XML documents. XML Path Language (XPath) is used in matching parts of 
the source XML document with one or more predefined templates in the 
transformation script. For example, XSLT can be used to transform an XML 
document into an HTML document.
1128 Rational Application Developer V6 Programming Guide



Figure 21-6   Example XSLT transform XML to HTML

In IBM Rational Application Developer V6, the XSLT debugger is implemented 
using an Eclipse Debug framework. Some of the new capabilities include a 
similar look and feel to other debuggers, the ability to set breakpoints in code, 
single step through code, and a XSLT Context view.

Transformations can be debugged even when the source is in DOM or SAX 
format. The XSLT debugger supports XSL Transformations (XSLT) Version 1.0:

http://www.w3.org/TR/xslt

We have listed some of the other key features of the new XSLT debugger:

� Launch configurations

– Standalone XSL transformations

• Apply XSL directly to a single XML file (able to step into Java 
extensions called from the transformation).

• Allows user to verify transformations outside of a complex 
environment.

– Mixed language transformations

• Use when debugging Java to XSLT or XSLT involving Java extensions.
• Allows user to debug transformations in real-world scenarios.

� New preferences

– Node-by-node stepping

Enabling allows the user to step between nodes that appear on the same 
line (disabled by default).

– Built-in template rules filter

• Enabling causes the debugger to step over built-in template rules 
(enabled by default).

XSLT/
HTML
XSLT/
HTML

XMLXML HTMLHTML

Source Document

Transformation Script

Result Document

XSLT ProcessXSLT Process ResultResult

XSLT/
HTML
XSLT/
HTML

XMLXML HTMLHTML

Source Document

Transformation Script

Result Document

XSLT ProcessXSLT Process ResultResult
 Chapter 21. Debug local and remote applications 1129

http://www.w3.org/TR/xslt


• Built-in rules are still displayed on call stack.

– Step-by-step debugging for XSLT

Enabling allows step-by-step functionality to additionally work with XSLT 
debugging (disabled by default).

� Debug activities

– Iterate through XSLT using standard debugging operations.
– Add/remove breakpoints (set in both the XSL source and the XML input).
– Set watches on XPath expressions.
– View XSLT processor execution using XSLT Context view.
– View XSLT output using XSL Transformation Output view.

� Setting breakpoints

– XSL files can be set anywhere between opening and closing template 
tags.

– XML files must be set on the line containing the closing “>” of either the 
opening tag or the closing tag of an element.

– Breakpoints set in files generated by the transformation will not be 
persisted between debug sessions.

� XSLT view

– Visualizes XSLT processor’s execution
– Enables users to debug XPath expressions

� XSL Transformation Output view

– View output from transformation in either a text or Web browser viewer.
– Supports Xalan redirect extension.

� Troubleshooting

– Verify launch configuration problems by checking the configuration’s 
properties (Edit Launch Configuration properties through Run → Debug).

– Tracing for XSLT debugging can be enabled by modifying the options file 
in <rad_home>\rwd\eclipse\plugins\com.ibm.debug.xsl_6.0.0.

– Increase debugger timeout values if timeout errors occur by configuring 
through Window → Preferences → Java → Debug.

– Verify that problems encountered when debugging Java in Mixed 
Language debugger also occur in Java debugger (mixed Language 
debugger is based on Java debugger).

– Verify Java process used to launch transformation has correct arguments 
(view JVM launch properties by right-clicking the process in the Debug 
view and selecting Properties).
1130 Rational Application Developer V6 Programming Guide



– XML capabilities need to be enabled in order to use XSLT debugging 
functionality. 

– Configure through Window → Preferences → Workbench → 
Capabilities.

21.2  Prepare for the sample
This section describes how to set up the environment in preparation for the 
debug sample. We will use the ITSO RedBank Web application sampled 
developed in Chapter 11, “Develop Web applications using JSPs and servlets” 
on page 499, to demonstrate the debug facilities.

Import the sample application
To import the ITSO RedBank JSP and Servlet Web application Project 
Interchange file (BankBasicWeb.zip), do the following:

1. Open the Web perspective Project Explorer view.

2. Right-click Dynamic Web Projects, and select Import → Import.

3. When the Import dialog appears, select Project Interchange and then click 
Next.

4. In the Import Projects screen, browse to the c:\6449code\web folder and 
select BankBasicWeb.zip. Click Open.

5. Check the BankBasicWeb and BankBasicWebEAR projects, and click 
Finish.

Verify the sample application
To verify the sample application was imported properly, we recommend that you 
publish and run the sample Web application on the WebSphere Application 
Server V6.0 test server as follows:

1. Open the Web perspective.

2. Expand Dynamic Web Projects → BankBasicWeb → WebContent.

3. Right-click index.html, and select Run → Run on Server.

4. When the Server Selection dialog appears, select Choose and existing 
server, select WebSphere Application Server v6.0, and click Finish.

This operation will start the server, and publish the application to the server. 

Note: For an example of using the XSLT debugger, refer to 21.1.6, “XSLT 
debugger” on page 1128.
 Chapter 21. Debug local and remote applications 1131



5. When the Login page appears, enter 111-11-1111 in the Customer SSN field, 
and then click the Login button.

21.3  Debug a Web application on a local server
This section includes a Web application scenario in which the application will run, 
and shows hot to debug the local WebSphere Application Server V6.0 Test 
Environment. We use the expiring page sample included as part of the JSP, a 
Servlet Web application imported in 21.2, “Prepare for the sample” on 
page 1131.

The local debug example includes the following tasks to demonstrate the debug 
tooling and features of Rational Application Developer:

� Set breakpoints in a servlet.
� Set breakpoints in a JSP.
� Start the application for debugging.
� Debug view with stack frames.
� Debug functions.
� Breakpoints view.
� Watch variables.
� Inspect variables.
� Evaluate an expression.
� Debug a JSP.

21.3.1  Set breakpoints in a servlet
Breakpoints are indicators to the debugger that it should stop execution at 
specific places in the code, and let you step through it. Breakpoints can be set to 
trigger always or when a certain condition has been met.

In the ITSO RedBank sample application, before allowing the withdrawal of funds 
from an account, the amount requested to be withdrawn is evaluated with the 
amount that exists in the account. If there are adequate funds, the withdrawal will 
complete. If there are not enough funds in the account an 
InsufficientFundsException should be thrown. In this example, we set a 
breakpoint on the condition that tests the amount to withdraw does not exceed 
the amount that exists in the account.

To add a breakpoint in the code, do the following:

1. Select and expand the Dynamic Web Projects → BankBasicWeb → Java 
Resources → JavaSource → itso.bank.facade.

2. Double-click MemoryBank.java to open the file in the Java editor.
1132 Rational Application Developer V6 Programming Guide



3. Place the cursor in the gray bar (along the left edge of the editor area) on the 
following line of code:

if (account.getBalance() > amount)

4. Double-click to set a breakpoint marker, as seen in Figure 21-7 on page 1133.

Figure 21-7   Add a breakpoint

5. Right-click the breakpoint in the breakpoint view, and select Breakpoint 
Properties from the context menu.

The Breakpoint Properties window should appear with more detailed options 
about the breakpoint, as seen in Figure 21-8 on page 1134.

Tip: Use the Outline view to find the withdraw method to quickly find the 
source code listed.

Note: Enabled breakpoints are indicated with a blue circle. If the enabled 
breakpoint is successfully installed in a class in the VM at runtime, it is 
indicated with a check mark overlay.
 Chapter 21. Debug local and remote applications 1133



Figure 21-8   Breakpoint properties

– The Hit Count property, when set, causes the breakpoint to be triggered 
only when the lines have been executed as many times as the hit count 
specified. Once triggered, the breakpoint is disabled.

– The other property of interest here is Enable Condition. If set, then the 
breakpoint is reached only when the condition specified in the entry field 
evaluates to true. This condition is a Java expression. When this is 
enabled the breakpoint will now be marked with a question mark on the 
breakpoint, which indicates that it is a conditional breakpoint.

6. Click OK to close the breakpoint properties. 

Note: For example, check Enable Condition, select condition is true, 
and enter amount==1000 in the Enable Condition text box, and then click 
OK. Remember, in this application 1000 is really $10.00. When the 
application is run and 1000 is entered to withdraw, this conditional 
breakpoint will be hit in the debugger.
1134 Rational Application Developer V6 Programming Guide



21.3.2  Set breakpoints in a JSP
You can also set breakpoints in the JSP source code. However, you can only set 
breakpoints inside Java scriptlets or other JSP tags, such as JSTL tags.

In the following example, we set a breakpoint in the listAccounts.jsp at the point 
where the JSP displays a list of accounts for the customer.

1. Expand Dynamic Web Projects → BankBasicWeb → WebContent.

2. Double-click listAccounts.jsp to open the file in the editor.

3. Click the Source tab.

4. Set a breakpoint as shown in Figure 21-9 on page 1135 by double-clicking in 
the grey area next to the desired line of code.

Figure 21-9   Set a breakpoint in a JSP
 Chapter 21. Debug local and remote applications 1135



21.3.3  Start the application for debugging
Once you have set the breakpoint(s), the Web application can be started for 
debugging.

1. Stop the WebSphere Application Server V6.0 test server.

2. From the Web perspective, expand Dynamic Web Projects.

3. Right-click BankBasicWeb, and select Debug → Debug on Server.

4. When the Define a New Server dialog appears, select Choose and existing 
Server, select WebSphere Application Server V6.0, and then click Finish.

21.3.4  Run the application in the debugger
After starting the application in debug mode, as described in 21.3.3, “Start the 
application for debugging” on page 1136, you should now see index.html 
displayed in the Web Browser view, as shown in Figure 21-10 on page 1137.

Note: The server used for testing (for example, WebSphere Application 
Server V6.0 (default test server)), must be either stopped or started in debug 
mode. Otherwise, an error message will be displayed.

Note: If the server was started it will prompt you to restart. 

Tip: To debug a Java application, select Run → Debug As → Java 
Application to start the debugger. The startup is the primary difference 
between debugging a Web application and Java application.
1136 Rational Application Developer V6 Programming Guide



Figure 21-10   ITSO RedBank index.html page

1. Click RedBank in the horizontal navigation bar, as seen in Figure 21-10.

2. When prompted for the customer ID (SSN), enter 111-11-1111 (as seen in 
Figure 21-11 on page 1138), and then click Submit.
 Chapter 21. Debug local and remote applications 1137



Figure 21-11   Enter customer ID (SSN)

3. When the Confirm Perspective Switch window appears, click Yes to switch to 
the Debug perspective.

The sample will now be run in the Debug perspective.

4. Execution should stop at the breakpoint set in the listAccounts.jsp, since 
clicking Submit in the application will display the accounts. The thread is 
suspended in debug, but other threads might still be running (see 
Figure 21-12 on page 1139).
1138 Rational Application Developer V6 Programming Guide



Figure 21-12   Breakpoint in listAccounts.jsp in the Debug perspective

5. Once a breakpoint is hit, you can proceed in a number of ways. For our 
example, we click the Resume icon highlighted in Figure 21-12.

6. Click the Web Browser session and resize the page as needed. Click the 
001-999000888 account.
 Chapter 21. Debug local and remote applications 1139



7. When the Account: 001-999000888 page appears, select Withdraw, enter 
1000 (value of conditional breakpoint in MemoryBank.java), and then click 
Submit.

The breakpoint in MemoryBank.java should be hit and displayed in the Debug 
perspective, similar to Figure 21-13.

Figure 21-13   Breakpoint in MemoryBank.java in the Debug perspective

Next we discuss the different views of the Debug perspective.
1140 Rational Application Developer V6 Programming Guide



21.3.5  Debug view with stack frames
When a breakpoint is reached, the debugger displays a list of stack frames 
before the breakpoint occurred. Each frame corresponds to a called method. The 
entire list is in reverse chronological order. Figure 21-14 shows the stack frame 
listing for the breakpoint in the MemoryBank.java withdraw method.

Figure 21-14   Stack frame listing in Debug view

When a thread suspends, the top stack frame is automatically selected. If you 
select another stack frame, all visible variables in that frame are shown in the 
Variables view.

21.3.6  Debug functions
From the Debug view, which should now be displayed in the top left pane, you 
can use the functions available from its icon bar to control the execution of the 
application. The following icons are available:

�  Resume: Runs the application to the next breakpoint.

�  Suspend: Suspends a running thread.

�  Terminate: Terminates a process.

�  Disconnect: Disconnects from the target when debugging remotely.

�  Remove All Terminated Launches: Removes terminated executions.

�  Step Into: Steps into the highlighted statement.

�  Step Over: Steps over the highlighted statement.

�  Step Return: Steps out of the current method.

�  Drop to Frame: Drops to the Debug Frame view and highlights code.

�  Step Filter: Enable/disable the filtering for the step functions.
 Chapter 21. Debug local and remote applications 1141



�  Step-By-Step Mode: Once the step-by-step debug feature is enabled in 
the Run/Debug preferences, this icon can be used to toggle the feature.

�  Show Qualified Names: Toggle option to show the full package name.

In the upper right pane you can see the various debugging views that are 
available.

21.3.7  Breakpoints view
The Breakpoints view displays all the breakpoints set in the Workbench (see 
Figure 21-15).

Figure 21-15   Debugging views

You can use the Breakpoints view to display and manipulate the breakpoints that 
are currently set. You can open the properties, remove the breakpoint, or open 
its source file.

21.3.8  Watch variables
The Variables view displays the current values of the variables in the selected 
stack frame. Follow these steps to see how you can track the state of a variable.

Click the Step Over icon to execute the current statement. 

Click Step Over again and the year variable is added. The plus sign (+) next to a 
variable indicates that it is an object. 

In our example, we set a conditional break point on amount==1000. Notice the 
year input variable value 1000 in Figure 21-16 on page 1143.
1142 Rational Application Developer V6 Programming Guide



Figure 21-16   Displaying variables

If you want to test the code with some other value for any of these instance 
variables, you can change one of them by selecting Change Variable Value 
from its context menu. An entry field opens where you can change the value; for 
example, you can change the value of the year to 2002 and then click Resume 

. 

21.3.9  Inspect variables
To view more details about a variable, select the variable (for example, 
amount=1000), right-click, and select Inspect from the context menu. The result 
opens in the Expressions view, as seen in Figure 21-17.

Both the Variables and the Expressions views can be split into two panes by 
selecting Show Detail Pane from the context menu.

Figure 21-17   Inspecting a variable in Expressions view

21.3.10  Evaluate an expression
To evaluate an expression in the context of the currently suspended thread, use 
the Display view. 
 Chapter 21. Debug local and remote applications 1143



1. While in the debugger at the breakpoint, press F6 twice to step through code 
until you reach the following line:

account.setBalance(account.getBalance()+transaction.getSignedAmount());

2. From the Workbench select Windows → Show view → Display.

3. Enter the expression transaction.getTimestamp(), then highlight the 
expression, right-click, and select Display from the context menu.

Each expression is executed, and the result is displayed (Figure 21-18).

Figure 21-18   Expression and evaluated result in display view

4. The results of the Java expression can also be inspected by selecting 
Inspect from the context menu, as seen in Figure 21-19.

Figure 21-19   Display Inspect expression

5. You can also highlight any expression in the source code, right-click, and 
select Display or Inspect from the context menu. The result is shown either 
in the Display or the Expressions view. 

Note: When entering the expression, we used the code assist 
(Ctrl+spacebar) to simplify entry and enter the proper method.

Note: To move the results to the Expression view, press Ctrl+Shift+I.
1144 Rational Application Developer V6 Programming Guide



This is a useful way to evaluate Java expressions during debugging, without 
having to make changes in your code and recompile.

6. Select Remove from the context menu to remove expressions or variables 
from the Expressions views. In the Display view just select the text and delete 
it.

21.3.11  Debug a JSP
Step through the code or click the Resume icon ( ) to progress to the 
breakpoint in the JSP (see Figure 21-12 on page 1139).

Watch the JSP variables in the Variables view. The same functions as for 
servlets are available for JSP debugging. A JSP is compiled into a servlet. The 
difference is that the debugger shows the JSP source code and not the 
generated Java code.

When you step through JSP code, the debugger only stops at Java code; HTML 
statements are skipped. 

Resume execution to see the next Web page, then close the Debug perspective 
and stop the server.

21.4  Debug a Web application on a remote server
It is possible to connect to and debug a Java Web application that has been 
launched in debug mode on a remote application server, and the application 
server has been configured to accept remote connections. Debugging a remote 
program is similar to debugging a local application, except that the program has 
already been launched and could be running on a remote host.

This example scenario will include a node where IBM Rational Application 
Developer V6.0 is installed (Developer node), and a separate node where IBM 
WebSphere Application Server V6.0 is installed (Application Server node).

21.4.1  Export the BankBasicWeb project to a WAR file
This section describes how to export the BankBasicWeb project to a WAR file so 
that it can be deployed on a remote WebSphere Application Server.

1. Open the Web perspective in Rational Application Developer.

Note: If you have two JSPs in different Web applications, the wrong JSP 
source may be displayed. Open the correct JSP to see its source code.
 Chapter 21. Debug local and remote applications 1145



2. Expand Dynamic Web Projects.

3. Select BankBasicWeb, right-click, and select Export → WAR file.

4. When the WAR Export window appears, enter the following and then click 
Finish:

– Web project: BankBasicWeb
– Destination: c:\temp\BankBasicWeb.war

5. Verify that the c:\temp\BankBasicWeb.war exists.

21.4.2  Deploy the BankBasicWeb.war
This section describes how to deploy the BankBasicWeb.war to a remote system 
where IBM WebSphere Application Server V6.0 has been installed.

1. Copy the BankBasicWeb.war from the node where Rational Application 
Developer is installed to the node where WebSphere Application Server is 
installed (for example, c:\temp).

2. Ensure that the WebSphere Application Server - server1 application server is 
started.

3. Start the WebSphere Application Server Administrative Console by entering 
the following in a Web browser and logging on:

http://<hostname>:9060/ibm/console

4. Select Applications → Install New Application.

5. Enter the path to the war file and the context root, and then click Next. For 
example, we entered:

– Specify path: c:\temp\BankBasicWeb.war
– Context root: BankBasicWeb

6. We accepted the default options and clicked Next.

7. When you see an Application Security Warning, click Continue.

8. When the Step 1: Select installation options page appears, accept the default 
and click Next.

9. When the Step 2: Map modules to servers page appears, check the 
BankBasicWeb module, and then click Next.

10.When the Step 3: Map virtual hosts for Web modules page appears, check 
the BankBasicWeb Web module, select default_host from the Virtual host 
drop-down list, and then click Next.

11.When the Step 4: Summary page appears, accept the defaults and then click 
Finish.
1146 Rational Application Developer V6 Programming Guide



You should see the following message if successfully deployed:

Application BankBasicWeb _war installed successfully.

12.Click Save to Master. Click Save.

13.Check BankBasicWeb_war, and click Start.

14.Click Logout.

15.Verify the application is working properly by entering the following URL:

http://<hostname>:9080/BankBasicWeb/

21.4.3  Install the IBM Rational Agent Controller
The IBM Rational Agent Controller provides several plug-ins for debugging, 
logging, profiling, and testing. 

If the remote system is running WebSphere Application Server V6.0 and you only 
intend to use remote debug, the IBM Rational Agent Controller is not required, 
since the required functionality is built-in to WebSphere Application Server V6.0. 

If the remote system is running WebSphere Application Server V5.1 or V5.0 and 
you intend to use remote debug, the IBM Rational Agent Controller is required. 
You will be prompted to provided the installation path for WebSphere Application 
Server V5.1 or V5.0 during the IBM Rational Agent Controller installation.

If you intend to use the profiling and testing features of Rational Application 
Developer, the IBM Rational Agent Controller is required for WebSphere 
Application Server V6.0, V5.1 and 5.0.

For the redbook scenario, although we are planning on debugging on a 
WebSphere Application Server V6.0 server, we also want to perform profiling 
and testing, so we installed all plug-ins for the IBM Rational Agent Controller.

For details on installing the IBM Agent Controller refer to “IBM Rational Agent 
Controller V6 installation” on page 1382.

21.4.4  Configure debug on remote WebSphere Application Server
The following steps explain how to configure WebSphere Application Server 
V6.0 to start in debug mode:

1. Start the application server. 

<was_home>\bin\startServer.bat server1
 Chapter 21. Debug local and remote applications 1147



2. Start the WebSphere Administrative Console by entering the following in a 
Web browser and then logging in:

http://<hostname>:9060/ibm/console

3. In the left-hand frame, select Servers → Application Servers. 

4. In the Application Servers page, click server1.

5. On the Configuration tab, select Debugging Service in the Additional 
Properties section to open the Debugging Service configuration page.

6. In the General Properties section of the Configuration tab, check Enable 
service at startup. This enables the debugging service when the server 
starts.

7. Click OK to make the changes to your local configuration.

8. Click Save to apply the configuration changes. 

9. Click Logout.

10.You must restart the application server before the changes that you have 
made take effect.

21.4.5  Attach to the remote server in Rational Application Developer
To attach to the remote WebSphere Application Server V6.0 from within Rational 
Application Developer V6.0, do the following:

1. From the Workbench, open the J2EE perspective.

2. In the Servers view, right-click WebSphere Application Server v6.0 and 
select Stop.

3. Create a new remote WebSphere Application Server V6 server.

a. In the Servers view, right-click New → Server.

b. When the Define a New Server window appears, we entered the following, 
as seen in Figure 21-20, and then clicked Next:

• Host name: was6win1.itso.ral.ibm.com
• Server type: Select WebSphere V6.0 Server.

Note: The value of the JVM debug port (default 7777) is needed when 
connecting to the application server with the debugger. 
1148 Rational Application Developer V6 Programming Guide



Figure 21-20   Define new remote server

c. When the WebSphere Server Settings page appears, we entered the 
following, as seen in Figure 21-21 on page 1150:

• Server admin port number (SOAP connector port): 8880

• Server name: server1

• Server type: Select Base or Express server.

Note: The SOAP connector port is defined in the WebSphere 
Profile.

Note: We recommend that you test the connection to the server by 
clicking the Detect button (see Figure 21-21 on page 1150).
 Chapter 21. Debug local and remote applications 1149



Figure 21-21   WebSphere Server Settings

d. Click Finish.

When complete, the configuration should look like Figure 21-22 on 
page 1151. Notice the status is Debugging.
1150 Rational Application Developer V6 Programming Guide



Figure 21-22   Remote server configuration

21.4.6  Debug the application on the remote server
Now that the environment is configured, we demonstrate how to debug an 
application running on the remote server within Rational Application Developer.

Debug sample application on remote server
The behavior of debugging for remote servers is slightly different than locally. For 
example, when debugging locally you can select a project and Debug on Server. 
This will cause the application to be invoked in the built-in Web browser and start 
the server. Also, the user will automatically be prompted if they want to switch to 
the Debug perspective.

When debugging on a remote server, some of these steps are a bit more manual 
in the way that they are initiated.

1. Open the Debug perspective.

2. Add the Web browser to the Debug perspective.

a. From the tool bar of the Debug perspective, right-click Customize 
Perspective.

b. Click the Commands tab.

c. Scroll down and check Web Browser.

d. Click OK.

3. Click the Web browser icon ( ) found on the tool bar.

4. Enter the URL for the remote Web application in the Web browser. For 
example, we entered the following:

http://was6win1.itso.ral.ibm.com:9080/BankBasicWeb

5. Run the sample.
 Chapter 21. Debug local and remote applications 1151



Once the application is started, the steps to run the application are similar to 
those in 21.3.4, “Run the application in the debugger” on page 1136.

6. Provided that a breakpoint is set, the code will be displayed at the breakpoint. 
You can also step through the code.

7. Define source location.

a. You will see the message Source not found. Click the Edit Source 
Lookup Path button.

b. When the Edit Source Lookup Path dialog appears, click Add.

c. When the Add Source dialog appears, select Workspace and click OK.

d. Click OK.

Note: When the page of the breakpoint is loaded, you will see an option to 
locate the source. Select Folder, then select the project WebContent 
directory (for example, in this case for a JSP).

Attention: From within Rational Application Developer, you can stop the 
remote server by right-clicking the remote server in the Servers view, and 
selecting Stop. However, you cannot start the remote server from within 
Rational Application Developer. You must start the remote server from the 
remote WebSphere Application Server node.
1152 Rational Application Developer V6 Programming Guide



Part 4 Deploy and 
profile 
applications

Part 4
© Copyright IBM Corp. 2005. All rights reserved. 1153



1154 Rational Application Developer V6 Programming Guide



Chapter 22. Build applications with Ant

Traditionally, application builds are performed by using UNIX/Linux shell scripts 
or Windows batch files in combination with tools such as make. While these 
approaches are still valid, new challenges exist for when developing Java 
applications, especially in a heterogeneous environment. Traditional tools are 
limited in that they are closely coupled to a particular operating system. With Ant 
you can overcome these limitations and perform the build process in a 
standardized fashion regardless of the platform.

This chapter provides an introduction to the concepts and features of Ant within 
IBM Rational Application Developer V6.0. The focus of the chapter is to 
demonstrate how to use the Ant tooling included in Rational Application 
Developer to build projects (applications).

This chapter is organized into the following sections:

� Introduction to Ant
� New features
� Build a simple Java application
� Build a J2EE application
� Run Ant outside of Application Developer

22
© Copyright IBM Corp. 2005. All rights reserved. 1155



22.1  Introduction to Ant
Ant is a Java-based, platform-independent, open source build tool. It was 
formerly a sub-project in the Apache Jakarta project, but in November 2002 it 
was migrated to an Apache top-level project. Ant’s function is similar to the make 
tool. Since it is Java-based and does not make use of any operating 
system-specific functions, it is platform independent, thus allowing you to build 
your projects using the same build script on any Java-enabled platform.

The Ant build operations are controlled by the contents of the XML-based script 
file. This file not only defines what operations to perform, but also defines the 
order in which they should be performed, and any dependencies between them.

Ant comes with a large number of built-in tasks sufficient to perform many 
common build operations. However, if the tasks included are not sufficient, you 
also have the ability to extend Ant’s functionality by using Java to develop your 
own specialized tasks. These tasks can then be plugged into Ant.

Not only can Ant be used to build your applications, but it can also be used for 
many other operations such as retrieving source files from a version control 
system, storing the result back in the version control system, transferring the 
build output to other machines, deploying the applications, generating Javadoc, 
and sending messages when a build is finished.

22.1.1  Ant build files
Ant uses XML build files to define what operations must be performed to build a 
project. We have listed the main components of a build file:

� project: A build file contains build information for a single project. It may 
contain one or more targets.

� target: A target describes the tasks that must be performed to satisfy a goal. 
For example, compiling source code into class files may be one target, and 
packaging the class files into a JAR file may be another target.

Targets may depend upon other targets. For example, the class files must be 
up-to-date before you can create the JAR file. Ant can resolve these 
dependencies.

� task: A task is a single step that must be performed to satisfy a target. Tasks 
are implemented as Java classes that are invoked by Ant, passing 
parameters defined as attributes in the XML. Ant provides a set of standard 
tasks (core tasks), a set of optional tasks, and an API, which allows you to 
write your own tasks.
1156 Rational Application Developer V6 Programming Guide



� property: A property has a name and a value pair. Properties are essentially 
variables that can be passed to tasks through task attributes. Property values 
can be set inside a build file, or obtained externally from a properties file or 
from the command line. A property is referenced by enclosing the property 
name inside ${}, for example ${basedir}.

� path: A path is a set of directories or files. Paths can be defined once and 
referred to multiple times, easing the development and maintenance of build 
files. For example, a Java compilation task may use a path reference to 
determine the classpath to use.

22.1.2  Ant tasks
A comprehensive set of built-in tasks is supplied with the Ant distribution. The 
tasks that we use in our example are as follows:

� delete: Deletes files and directories
� echo: Outputs messages
� jar: Creates Java archive files
� javac: Compiles Java source
� mkdir: Creates directories
� tstamp: Sets properties containing date and time information

To find out more about Ant, visit the Ant Web site at:

http://ant.apache.org/

This chapter provides a basic outline of the features and capabilities of Ant. For 
complete information you should consult the Ant documentation included in the 
Ant distribution or available on the Internet at:

http://ant.apache.org/manual/index.html

22.2  New features
IBM Rational Application Developer V6.0 includes the following new features to 
aid in the development and use of Ant scripts:

� The ability to run the build process in a background task like other tasks within 
IBM Rational Application Developer V6.0.

� The Ant editor now also offers code assist with the ability to insert snippets.

� The Ant editor now has a format function that will allow you to format your Ant 
files base on your preferences.

Note: IBM Rational Application Developer V6.0 includes Ant V1.4.1.
 Chapter 22. Build applications with Ant 1157

http://ant.apache.org/
http://ant.apache.org/manual/index.html


� A problems view is now available in the Ant editor to highlight syntax errors in 
your Ant files.

In this section we highlight the following Ant-related features in Rational 
Application Developer:

� Code Assist
� Code snippets
� Format an Ant script
� Define format of an Ant script
� Problem view

22.2.1  Code Assist
To access the new features such as Code Assist in the Ant editor, do the 
following:

1. Open the Java perspective.

2. Expand the BankAnt project.

3. Double-click build.xml to open the file in an editor.

4. Place the cursor in the file and enter <prop, and then press Ctrl+Spacebar. 

5. The Code Assist dialog will be presented, as shown in Figure 22-1 on 
page 1159. You can then use the up and down arrow keys to select the tag 
that you want.

Note: The new features outlined in this section can be explored hands on by 
importing the BankAnt.zip Project Interchange file, as described in 22.3.1, 
“Prepare for the sample” on page 1168.
1158 Rational Application Developer V6 Programming Guide



Figure 22-1   Code Assist in Ant editor

22.2.2  Code snippets
IBM Rational Application Developer V6 provides the ability to create code 
snippets that contain commonly used code to be inserted into files rather than 
typing the code in every time.

To create code snippets, do the following:

1. Open the Snippets view by selecting Window → Show View → Other, and 
the Show View dialog will be displayed.

2. Expand the Basic folder, select the Snippets view (as shown in Figure 22-2 
on page 1160), and then click OK.
 Chapter 22. Build applications with Ant 1159



Figure 22-2   Show View dialog

3. Right-click the Snippets view and select Customize, as seen in Figure 22-3.

Figure 22-3   Customizing snippets

4. When the Customize Palette dialog appears, select New → New Category.
1160 Rational Application Developer V6 Programming Guide



5. When the New Customize Palette dialog appears (as seen in Figure 22-4 on 
page 1161), do the following:

– Name: Ant
– Description: Ant Snippets
– Select Custom.

Figure 22-4   New Customize Palette dialog

6. Click Browse next to Custom, check Ant Buildfiles (as seen in Figure 22-5 
on page 1162), and click OK to return to the Customize Palette dialog.
 Chapter 22. Build applications with Ant 1161



Figure 22-5   Content Type Selection view 

7. From the Customize Palette dialog, select New → New Item.

8. When the Unamed Template dialog appears, enter the following:

– Name: Comment Tag
– Click New in the variables section.
– Variable Name: comment 
– Template Pattern: <!-- ${comment} -->

9. Click OK on the Customize Palette dialog.

Use the code snippet
Now that you have created a code snippet you can use it in any Ant build file. To 
use a code snippet, do the following:

1. Double-click the build.xml file to open it in the editor.

2. Place the cursor under the <project tag, double-click the Comment Tag in the 
Snippets view, and the Insert Template dialog will be displayed (as shown in 
Figure 22-6 on page 1163).
1162 Rational Application Developer V6 Programming Guide



Figure 22-6   Insert Template dialog

3. In the variables table, enter Surf’s up! in the comment variable.

4. Click the Insert button.

22.2.3  Format an Ant script
Rational Application Developer now offers you the ability to format Ant scripts in 
the Ant editor. To format the Ant script, do the following:

1. Double-click build.xml to open it in the Ant editor.

2. Right-click the editor and select Format from the context menu, as shown in 
Figure 22-7 on page 1164.

Alternatively, you can press Ctrl+Shift+F.
 Chapter 22. Build applications with Ant 1163



Figure 22-7   Formatting the Ant file

22.2.4  Define format of an Ant script
To define the format of an Ant script, do the following:

1. Select Window → Preferences.

2. When the Preferences dialog appears, select Ant.

3. When the Ant preferences dialog appears, as seen in Figure 22-8 on 
page 1165, you can specify the console colors.
1164 Rational Application Developer V6 Programming Guide



Figure 22-8   Ant preferences

4. Expand the Ant folder and select Editor.

a. On the Appearance tab you can change the layout preferences of your Ant 
file.

b. On the Syntax tab you can change the syntax highlighting preferences 
with a preview of the results, and on the Problem tab you can define how 
certain problems should be handled.

5. Expand Editor.

a. In the Code Assist window you can define the code assist preferences. 

b. In the Formatter window you can define the preferences for the formatting 
tool for the Ant files.

c. In the Templates window you can create, edit, and delete templates for 
Ant files.

6. Select Runtime.

In this window you can define your preferences such as classpath, tasks, 
types, and properties.
 Chapter 22. Build applications with Ant 1165



22.2.5  Problem view
Rational Application Developer now offers you the problems view for the Ant file. 
The editor will present an error in the view by placing a red X on the left of the 
line with the problem as well as a line marker in the file on the right of the 
window, as shown in Figure 22-9. The problem view will list the problems as seen 
in Figure 22-10.

Figure 22-9   Problems in the Ant editor
1166 Rational Application Developer V6 Programming Guide



Figure 22-10   Problems view displaying Ant problems

22.3  Build a simple Java application
We created a simple build file that compiles the Java source for our HelloAnt 
application and generates a JAR file with the result. The build file is called 
build.xml, which is the default name assumed by Ant if no build file name is 
supplied.

The example simple build file has the following targets:

� init: Performs build initialization tasks. All other targets depend upon this 
target.

� compile: Compiles Java source into class files.

� dist: Creates the deliverable JAR for the module, and depends upon the 
compile target.

� clean: Removes all generated files. Used to force a full build.

Each Ant build file may have a default target. This target is executed if Ant is 
invoked on a build file and no target is supplied as a parameter. In our example, 
the default target is dist. The dependencies between the targets are illustrated in 
Figure 22-11.
 Chapter 22. Build applications with Ant 1167



Figure 22-11   Ant example dependencies

22.3.1  Prepare for the sample
To demonstrate the basic concepts of Ant, we wrote a very simple Java 
application named HelloAnt, which prints a message to stdout.

We created a new Java project for this that we called BankAnt. In this project we 
created a Java package called itso.ant.hello and a class called HelloAnt. Since 
these steps are basic Rational Application Developer tasks and the application 
does nothing but a simple System.out.println("G’day from Australia."), we do not 
show them here. In addition, the source code for the chapter is included in the 
BankAnt project.

To import the BankAnt.zip Project Interchange file, do the following:

1. Start Rational Application Developer.

2. From the Workbench, select File → Import.

3. From the Import dialog, select Project Interchange and then click Next.

4. When prompted for the Project Interchange path and file name, and target 
workspace location, we entered the following:

– From zip file: c:\6449code\ant\BankAnt.zip

– Project location root: c:\workspace

Enter the location of the desired workspace (for example, our workspace 
is found in c:\workspace).

5. After entering the zip file, check BankAnt and then click Finish.

depends on

clean

init

dist

compile
1168 Rational Application Developer V6 Programming Guide



22.3.2  Create a build file
The BankAnt project already includes the build.xml file we will create in this 
section. 

To create the simple build file, do the following:

1. Select the BankAnt project in the Package Explorer view.

2. Right-click and select New → File from its context menu.

3. When the New File dialog appears, enter build.xml as the filename, as seen 
in Figure 22-12 on page 1169, and click Finish.

Figure 22-12   Create a build.xml file

4. Cut and paste the text in Example 22-1 into the file.

Note: IBM Rational Application Developer V6 now has the ability to link to 
external files on the file system. The Advance button on the New File 
dialog allows you to specify the location on the file system that the new file 
is linked to.
 Chapter 22. Build applications with Ant 1169



Example 22-1   Example build.xml

<?xml version="1.0" encoding="UTF-8"?>
<project name="HelloAnt" default="dist" basedir=".">

  <!-- set global properties for this build -->
  <property name="build.compiler" value="org.eclipse.jdt.core.JDTCompilerAdapter"/>
  <property name="source" value="."/>
  <property name="build" value="c:\temp\build"/>
  <property name="distribute"  value="c:\temp\BankAnt”/>
  <property name="outFile" value="helloant"/>

  <target name="init">
    <!-- Create the time stamp -->
    <tstamp/>
    <!-- Create the build directory structure used by compile -->
    <mkdir dir="${build}"/>
  </target>

<target name="compile" depends="init">
    <!-- Compile the java code from ${source} into ${build} -->
    <javac srcdir="${source}" destdir="${build}"/>
  </target>

  <target name="dist" depends="compile">
    <!-- Create the distribution directory -->
    <mkdir dir="${distribute}/lib"/>

    <!-- Put everything in ${build} into the output JAR file -->
    <!-- Add a timestamp to the output filename as well -->
    <jar jarfile="${distribute}/lib/${outFile}-${DSTAMP}.jar" basedir="${build}">

<manifest>
<attribute name="Main-Class" value="itso.ant.hello.HelloAnt"/> 

</manifest>
    </jar>
  </target>

  <target name="clean">
    <!-- Delete the ${build} and ${distribute} directory trees -->
    <delete dir="${build}"/>
    <delete dir="${distribute}"/>
  </target>

</project>

We will now walk you through the various sections of this file, and provide an 
explanation for each of them.
1170 Rational Application Developer V6 Programming Guide



22.3.3  Project definition
The <project tag in the build.xml file defines the project name and the default 
target. The project name is an arbitrary name; it is not related to any project 
name in your Application Developer workspace. 

The project tag also sets the working directory for the Ant script. All references to 
directories throughout the script file are based on this directory. A dot (.) means 
to use the current directory, which, in Application Developer, is the directory 
where the build.xml file resides.

22.3.4  Global properties
Properties that will be referenced throughout the whole script file can be placed 
at the beginning of the Ant script. Here we define the property build.compiler that 
tells the javac command what compiler to use. We will tell it to use the Eclipse 
compiler. 

We also define the names for the source directory, the build directory, and the 
distribute directory. The source directory is where the Java source files reside. 
The build directory is where the class files end up, and the distribute directory is 
where the resulting JAR file is placed:

� We define the source property as ".", which means it is the same directory as 
the base directory specified in the project definition above. 

� The build and distribute directories will be created as c:\temp\build and 
c:\temp\BankAnt directories.

Properties can be set as shown below, but Ant can also read properties from 
standard Java properties files or use parameters passed as arguments on the 
command line:

<!-- set global properties for this build -->
<property name="build.compiler" 
value="org.eclipse.jdt.core.JDTCompilerAdapter"/>
<property name="source" value="."/>
<property name="build" value="c:\temp\build"/>
<property name="distribute"  value="c:\temp\BankAnt"/>
<property name="outFile" value="helloant"/>

22.3.5  Build targets
The build file contains four build targets: 

� init
� compile
� dist
 Chapter 22. Build applications with Ant 1171



� clean

Initialization target (init)
The first target we describe is the init target. All other targets (except clean) in the 
build file depend upon this target. In the init target we execute the tstamp task to 
set up properties that include timestamp information. These properties are then 
available throughout the whole build. We also create a build directory defined by 
the build property.

<target name="init">
    <!-- Create the time stamp -->
    <tstamp/>
    <!-- Create the build directory structure used by compile -->
    <mkdir dir="${build}"/>
</target>

Compilation target (compile)
The compile target compiles the Java source files in the source directory and 
places the resulting class files in the build directory. 

<target name="compile" depends="init">
    <!-- Compile the java code from ${source} into ${build} -->
    <javac srcdir="${source}" destdir="${build}"/>
</target>

With these parameters, if the compiled code in the build directory is up-to-date 
(each class file has a timestamp later than the corresponding Java file in the 
source directory), the source will not be recompiled.

Distribution target (dist)
The distribution target creates a JAR file that contains the compiled class files 
from the build directory and places it in the lib directory under the dist directory. 
Because the distribution target depends on the compile target, the compile target 
must have executed successfully before the distribution target is run.

<target name="dist" depends="compile">
    <!-- Create the distribution directory -->
    <mkdir dir="${distribute}/lib"/>

    <!-- Put everything in ${build} into the output JAR file -->
    <!-- We add a time stamp to the filename as well -->

<jar jarfile="${distribute}/lib/${outFile}-${DSTAMP}.jar" 
basedir="${build}">

<manifest>
<attribute name="Main-Class" value="itso.ant.hello.HelloAnt"/> 

</manifest>
    </jar>
1172 Rational Application Developer V6 Programming Guide



</target>

Cleanup target (clean)
The last of our standard targets is the cleanup target. This target removes the 
build and distribute directories, which means that a full recompile is always 
performed if this target has been executed. 

<target name="clean">
    <!-- Delete the ${build} and ${distribute} directory trees -->
    <delete dir="${build}"/>
    <delete dir="${distribute}"/>
</target>

Note that our build.xml file does not call for this target to be executed. It has to be 
specified when running Ant.

22.3.6  Run Ant
Ant is a built-in function to Rational Application Developer. You can launch it from 
the context menu of any XML file, although it will run successfully only on valid 
Ant XML build script files. When launching an Ant script, you are given the option 
to select which targets to run and whether you want to view the output in a 
special Log Console window.

To run our build script:

1. Open the Java perspective.

2. Expand the BankAnt project.

3. Right-click build.xml in either the Package Explorer or Outline view.

4. Select Run → 3.Run Ant..., as seen in Figure 22-13.
 Chapter 22. Build applications with Ant 1173



Figure 22-13   Launching Ant

5. When the Modify Attributes and Launch dialog appears, as seen in 
Figure 22-13 on page 1174, select the desired attributes. For example, select 
the JRE tab, select Run in the same JRE as the workspace, and then click 
Run.

The default target specified in the build file is already selected as one target to 
run. You can check, in sequence, which ones are to be executed, and the 
execution sequence is shown in the Target execution order field. 

Note: Since dist depends on compile, even if you only select dist, the 
compile target is executed as well.
1174 Rational Application Developer V6 Programming Guide



Figure 22-14   Selecting Ant targets to run

The Run Ant wizard gives you several tabs to configure or run the Ant 
process. The tabs allow you to do the following:

– Main: This tab allows you to select the build file, base directory, and 
arguments to pass to the Ant process.

– Refresh: This tab allows you to set some refresh options when the Ant 
process has finished running.

– Build: This tab allows you to set some build options before the Ant process 
is run.

– Target: This tab allows you to select the targets and the sequences the 
targets are to run.
 Chapter 22. Build applications with Ant 1175



– Classpath: This tab allows you to customize the classpath for the Ant 
process.

– Properties: This tab allows you to add, edit, or remove properties to be 
used by the Ant process.

– JRE: This tab allows you to select the Java Runtime Environment to use to 
run the Ant process.

– Environment: This tab allows you to define environmental variables to be 
used by the Ant process. This tab is only relevant when running in an 
external JRE.

– Common: This tab allows you to define the launch configuration for the Ant 
process.

When Ant is running, you will see output in the Log Console (Figure 22-15).

Figure 22-15   Log Console

22.3.7  Ant Log Console
The Log Console view opens automatically when running Ant, but if you want to 
open it manually, select Window → Show view → Log Console.

The Log Console shows that Ant has created the c:\temp\build directory, 
compiled the source files, created the c:\temp\BankAnt\lib directory, and 
generated a JAR file.
1176 Rational Application Developer V6 Programming Guide



22.3.8  Rerun Ant
If you launch Ant again with the same target selected, Ant will not do anything at 
all since the c:\temp\build and c:\temp\BankAnt\lib directories were already 
created, and the class files in the build directory were already up-to-date.

22.3.9  Forced build
To generate a complete build, select the clean target as the first target and the 
dist target as the second target to run. You have to de-select dist, select clean, 
and then select dist again to get the execution order right (see Figure 22-16).

Figure 22-16   Launching Ant to generate complete build
 Chapter 22. Build applications with Ant 1177



22.3.10  Classpath problem
The classpath specified in the Java build path for the project is, unfortunately, not 
available to the Ant process. If you are building a project that references another 
project, the classpath for the javac compiler must be set up in the following way:

<javac srcdir="${source}" destdir="${build}" includes="**/*.java">
<classpath>

<pathelement location="../MyOtherProject"/>
<pathelement location="../MyThirdProject"/>

</classpath>
</javac>

22.3.11  Run the sample application to verify the Ant build
Now that you have completed the Ant build, we recommend that you verify the 
build by running the sample application as follows:

1. Open a Windows command window.

2. Navigate to the output directory of the Ant build (for example, 
c:\temp\BankAnt\lib).

3. Set the Java path by entering the following command:

set PATH=%PATH%;c:\Program 
Files\IBM\Rational\SDP\6.0\runtimes\base_v6\java\bin

4. Enter the following to run the program:

java -jar helloant-20050216.jar

Where the timestamp in the jar filename will be dependent on when it is built.

You should see the following output:

G’day from Australia!

22.4  Build a J2EE application
As we have just demonstrated in the previous section, building a simple Java 
application using Ant is quite easy. In this section we demonstrate how to build a 
J2EE application from existing J2EE-related projects. 

This section is organized as follows:

� J2EE application deployment packaging.
� Prepare for the sample.
� Create the build script.
� Run the Ant J2EE application build.
1178 Rational Application Developer V6 Programming Guide



22.4.1  J2EE application deployment packaging
EAR, WAR, and EJB JAR files contain a number of deployment descriptors that 
control how the artifacts of the application are to be deployed onto an application 
server. These deployment descriptors are mostly XML files and are standardized 
within the J2EE specification.

While working in Application Developer, some of the information in the 
deployment descriptor is stored in XML files. The deployment descriptor files 
also contain information in a format convenient for interactive testing and 
debugging. This is one of the reasons it is so quick and easy to test J2EE 
applications in the integrated WebSphere Application Server V6.0 Test 
Environment included with Rational Application Developer.

The actual EAR being tested, and its supporting WAR, EJB, and client 
application JARs, are not actually created as a standalone file. Instead, a special 
EAR is used that simply points to the build contents of the various J2EE projects. 
Since these individual projects can be anywhere on the development machine, 
absolute path references are used.

When an enterprise application project is exported, a true standalone EAR is 
created, including all the module WARs, EJB JARs, and Java utility JARs it 
contains. Therefore, during the export operation, all absolute paths are changed 
into self-contained relative references within that EAR, and the internally 
optimized deployment descriptor information is merged and changed into a 
standard format. To create a J2EE-compliant WAR or EAR, we therefore have to 
use Application Developer’s export function.

22.4.2  Prepare for the sample
For the purposes of demonstrating how to build a J2EE application using Ant, we 
will use the J2EE applications developed in Chapter 15, “Develop Web 
applications using EJBs” on page 827. 

To import the BankEJB.zip Project Interchange file containing the sample code 
into Rational Application Developer, do the following:

1. Open the J2EE perspective Project Explorer view.

2. Select File → Import.

3. Select Project Interchange from the list of import sources and then click 
Next.

4. When the Import Projects dialog appears, click the Browse button next to zip 
file, navigate to and select the BankEJB.zip from the c:\6449code\ejb folder, 
and click Open.
 Chapter 22. Build applications with Ant 1179



5. Click Select All to select all projects and then click Finish.

After importing the BankEJB.zip Project Interchange file you should see the 
following projects: 

� BankEJBEAR
� BankEJB
� BankEJBClient
� BankBasicWeb

22.4.3  Create the build script
To build the BankEJBEAR enterprise application, we created an Ant build script 
(build.xml) that utilizes the J2EE Ant tasks provided by Rational Application 
Developer.

To add the Ant build script to the project, do the following:

1. Open the J2EE perspective Project Explorer view.

2. Expand Enterprise Applications → BankEJBEAR, and select META-INF.

3. Select File → New → Other.

4. When the New File dialog appears, select Simple → File, and click Next.

5. Enter build.xml in the File name field, and click Finish.

6. Enter the code in Example 22-2 into the build.xml file. 

7. Modify the value for the work.dir property to match your desired working 
directory (for example, c:/BankEAR_workdir), as highlighted in Example 22-2.

Example 22-2   J2EE Ant build.xml script

<?xml version="1.0" encoding="UTF-8"?>
<project name="ITSO RAD Pro Guide Ant" default="Total" basedir=".">

Note: For information on downloading and unpacking the redbook sample 
code, refer to Appendix B, “Additional material” on page 1395.

Note: The completed version the build.xml can be found in the 
c:\6449code\ant\j2ee directory.

Tip: For simplicity, we suggest that you simply import the completed 
build.xml or cut and paste the contents from the 
c:\6449code\ant\j2ee\build.xml file.
1180 Rational Application Developer V6 Programming Guide



<!-- Set global properties -->
<property name="work.dir" value="c:/BankEAR_workdir" />
<property name="dist" value="${work.dir}/dist" />
<property name="project.ear" value="BankEJBEAR" />
<property name="project.ejb" value="BankEJB" />
<property name="project.war" value="BankBasicWeb" />
<property name="type" value="incremental" />
<property name="debug" value="true" />
<property name="source" value="true" />
<property name="meta" value="false" />
<property name="noValidate" value="false" />

<target name="init">
<!-- Create the time stamp -->
<tstamp />
<!-- Create the dist directory where the output files are placed -->
<mkdir dir="${dist}" />

</target>

<target name="info">
<!-- Displays the properties for this run -->
<echo message="debug=${debug}" />
<echo message="type=${type}" />
<echo message="source=${source}" />
<echo message="meta=${meta}" />
<echo message="noValidate=${noValidate}" />
<echo message="Output directory=${dist}" />
<echo message="project.ear=${project.ear}" />
<echo message="project.ejb=${project.ejb}" />
<echo message="project.war=${project.war}" />

</target>

<target name="deployEjb">
<!-- Generates deployed code for the EJBs -->
<ejbDeploy EJBProject="${project.ejb}" NoValidate="${noValidate}" />

</target>

<target name="buildEjb" depends="deployEjb">
<!-- Builds the EJB project -->
<projectBuild ProjectName="${project.ejb}" BuildType="${type}" 

DebugCompilation="${debug}" />
<projectBuild ProjectName="${project.ejb}" BuildType="${type}" 

DebugCompilation="${debug}" />
</target>

<target name="buildWar">
<!-- Builds the WAR project -->
 Chapter 22. Build applications with Ant 1181



<projectBuild ProjectName="${project.war}" BuildType="${type}" 
DebugCompilation="${debug}" />

</target>

<target name="buildEar">
<!-- Builds the EAR project -->
<projectBuild ProjectName="${project.ear}" BuildType="${type}" 

DebugCompilation="${debug}" />
</target>

<target name="exportEjb" depends="init">
<!-- Exports the EJB JAR -->
<ejbExport ejbprojectname="${project.ejb}" ejbexportfile="${dist}/${project.ejb}.jar" 

exportsource="${source}" overwrite="true" />
</target>

<target name="exportWar" depends="init">
<!-- Exports the WAR file -->
<warExport warprojectname="${project.war}" warexportfile="${dist}/${project.war}.war" 

exportsource="${source}" overwrite="true" />
</target>

<target name="exportEar" depends="init">
<!-- Exports the EAR file -->
<echo message="Exported EAR files to ${dist}/${project.ear}.ear" />
<earExport earprojectname="${project.ear}" earexportfile="${dist}/${project.ear}.ear" 

exportsource="${source}" IncludeProjectMetaFiles="${meta}" overwrite="true" />
</target>

<target name="buildAll" depends="buildEjb,buildWar,buildEar">
<!-- Builds all projects -->
<echo message="Built all projects" />

</target>

<target name="exportAll" depends="exportEjb,exportWar,exportEar">
<!-- Exports all files -->
<echo message="Exported all files" />

</target>

<target name="Total" depends="buildAll,exportAll">
<!-- Buidl all projects and exports all files -->
<echo message="Total finished" />

</target>

<target name="clean">
<!-- Delete the output files -->
<delete file="${dist}/${project.ejb}.jar" failonerror="false" />
<delete file="${dist}/${project.war}.war" failonerror="false" />
<delete file="${dist}/${project.ear}.ear" failonerror="false" />
1182 Rational Application Developer V6 Programming Guide



</target>

</project>

The build.xml script includes the following Ant targets, which correspond to 
common J2EE application build.

� deployEjb: This generates the deploy code for all EJBs in the project.

� buildEjb: This builds the EJB project (compiles resources within project).

� buildWar: This builds the Web project (compiles resources within project).

� buildEar: This builds the Enterprise Application project (compiles resources 
within project).

� exportEjb: This exports the EJB project to a jar file.

� exportWar: This exports the Web project to a WAR file.

� exportEar: This exports the Enterprise Application project to an EAR file.

� buildAll: This invokes the buildEjb, buildWar, and buildEar targets.

� exportAll: This invokes the exportEjb, exportWar, and exportEar targets to 
create the BankEJBEAR.ear used for deployment.

In the global properties for this script we define a number of useful variables, 
such as the project names and the target directory. We also define a number of 
properties that we pass on to the Application Developer Ant tasks. These 
properties allow us to control whether the build process should perform a full or 
incremental build, whether debug statements should be included in the 
generated class files, and whether Application Developer’s metadata information 
should be included when exporting the project. 

When launching this Ant script, we can also override these properties by 
specifying other values in the arguments field, allowing us to perform different 
kinds of builds with the same script.

22.4.4  Run the Ant J2EE application build
When launching the build.xml script, you can select which targets to run and the 
execution order.

To run the Ant build.xml to build the J2EE application, do the following:

1. Open the J2EE perspective Project Explorer view.

2. Expand Enterprise Applications → BankEJBEAR → META-INF.

3. Right-click build.xml, and select Run → 3 Ant Build.
 Chapter 22. Build applications with Ant 1183



The Modify attributes and launch dialog will appear, as seen in Figure 22-17 
on page 1185. 

4. Click the Main tab. 

– To build the J2EE EAR file with debug, source files, and meta data, enter 
the following in the Arguments text area:

-DDebug=true -Dsource=true -Dmeta=true

Or:

– To build the J2EE EAR for production deployment (without debug support, 
source code, and meta data), enter the following in the Arguments text 
area:

-Dtype=full

5. Click the Targets tab, and check Sort Targets. Ensure that Total is checked 
(default).

6. Click the JRE tab. Select Run in the same JRE as the workspace.

7. Click Apply and then click Run.

8. Change to the following directory to ensure that the BankEJBEAR.ear file was 
created:

c:\BankEAR_workdir\dist

The Console view will display the operations performed and their results.

Note: From the content menu for the Ant build script, the following two 
build options exist:

� 2 Ant Build: This will invoke the default target for the Ant build. In our 
example, this is the Total target, which in turn invokes buildAll and 
exportAll targets.

� 3 Ant Build: This will launch a dialog where you can select the targets 
and order, and provide parameters, as seen in Figure 22-17 on 
page 1185.
1184 Rational Application Developer V6 Programming Guide



Figure 22-17   Launch Ant to build and export a J2EE project (EAR)

22.5  Run Ant outside of Application Developer
To automate the build process even further, you may want to run Ant outside of 
Application Developer by running Ant in headless mode.
 Chapter 22. Build applications with Ant 1185



22.5.1  Prepare for the headless build
Rational Application Developer includes a runAnt.bat file that can be used to 
invoke Ant in headless mode and passes the parameters that you specify. This 
will need to be customized for your environment.

The runAnt.bat file included with Rational Application Developer is located in the 
following directory:

<rad_home>\rwd\eclipse\plugins\com.ibm.etools.j2ee.ant_6.0.0

To create a headless Ant build script for J2EE project, do the following:

1. Copy the runAnt.bat file to a new file called itsoRunAnt.bat.

2. Modify the following values in the itsoRunAnt.bat, as seen in Example 22-3:

set STUDIO_DIR=C:\Program Files\IBM\Rational\SDP\6.0
set WORKSPACE=C:\workspace

Example 22-3   Snippet of the itsoRunAnt.bat (modified runAnt.bat)

@echo off
setlocal
REM RUNANT_DIR=This directory (which may, or may not, be your current working directory)
set RUNANT_DIR=%~dp0

:studio
REM The root directory of your Studio installation
set STUDIO_DIR=C:\Program Files\IBM\Rational\SDP\6.0
if not exist "%STUDIO_DIR%"\eclipse\jre  set STUDIO_DIR=%RUNANT_DIR%..\..\..
if not exist "%STUDIO_DIR%"\eclipse\jre  echo ERROR: incorrect STUDIO_DIR=%STUDIO_DIR%
if not exist "%STUDIO_DIR%"\eclipse\jre  goto done

:java
if not $%JAVA_DIR%$==$$ goto workspace
set JAVA_DIR=%STUDIO_DIR%\eclipse\jre\bin

:workspace
if not $%WORKSPACE%$==$$ goto check
REM #######################################################
REM ##### you must edit the "WORKSPACE" setting below #####
REM #######################################################
REM *********** The location of your workspace ************
set WORKSPACE=C:\workspace
1186 Rational Application Developer V6 Programming Guide



22.5.2  Run the headless Ant build script

To run the itsoRunAnt.bat command file, do the following:

1. Ensure you have closed Rational Application Developer.

2. Open a Windows command prompt.

3. Navigate to the location of the itsoRunAnt.bat file.

4. Run the command file by entering the following:

itsoRunAnt -buildfile c:\workspace\BankEJBEAR\META-INF\build.xml clean 
Total -DDebug=true -Dsource=true -Dmeta=true

The -buildfile parameter should specify the fully qualified path of the build.xml 
script file. We can pass the targets to run as parameters to itsoRunAnt and we 
can also pass Java environment variables by using the -D switch.

In this example we chose to run the clean and exportWar1 targets, and we 
chose to include the debug, Java source, and metadata files in the resulting 
EAR file.

5. There are several build output files, which can be found in the 
c:\BankEARTest\dist directory:

– BankBasicWeb.war, which is the BankBasicWeb project
– BankEJB.war, which is the BankEJB project
– BankEJBEAR.ear, which is the BankEJBEAR project with all the 

dependant projects included

Attention: Prior to running Ant in headless mode, Rational Application 
Developer must be closed. If you do not close Rational Application Developer, 
you will get build errors when attempting to run Ant build in headless mode.

Note: We have included a file named output.txt, which contains the output 
from the headless Ant script for review purposes. The file can be found in 
the c:\6449code\ant\j2ee directory.
 Chapter 22. Build applications with Ant 1187



1188 Rational Application Developer V6 Programming Guide



Chapter 23. Deploy enterprise 
applications

The term deployment can have many different meanings depending on the 
context. In this chapter we start out by defining the concepts of application 
deployment. The remainder of the chapter provides a working example for 
packaging and deploying the ITSO Bank enterprise application to a standalone 
IBM WebSphere Application Server V6.0 (Base Edition). 

The application deployment concepts and procedures described in this chapter 
apply to IBM WebSphere Application Server V6.0 Base, Express, and Network 
Deployment editions, as well as the Rational Application Developer integrated 
WebSphere Application Server V6.0 Test Environment.

This chapter is organized into the following sections:

� Introduction to application deployment
� Prepare for the sample
� Package the application for deployment
� Deploy the enterprise application
� Verify the application

23
© Copyright IBM Corp. 2005. All rights reserved. 1189



23.1  Introduction to application deployment
Deployment is a critical part of the J2EE application development cycle. Having a 
solid understanding of the deployment components, architecture, and process is 
essential for the successful deployment of the application.

In this section we review the following concepts of the J2EE and WebSphere 
deployment architecture:

� Common deployment considerations
� J2EE application components and deployment modules
� Java and WebSphere class loader
� Deployment descriptors
� WebSphere deployment architecture

23.1.1  Common deployment considerations
Some of the most common factors that impact the deployment of a J2EE 
application are as follows:

� Deployment architecture: How can you create, assemble, and deploy an 
application properly if you do not understand the deployment architecture.

� Infrastructure: What the hardware and software constraints are for the 
application.

� Security: What security will be imposed on the application and what is the 
current security architecture.

� Application requirements: Do they imply a distributed architecture?

Note: Further information on the IBM WebSphere Application Server 
deployment can be found in the following sources:

� WebSphere V6 Planning and Design, SG24-6446 

� WebSphere Application Server V6 Systems Management and 
Configuration, SG24-6451 

� WebSphere Application Server V6 Scalability and Performance, 
SG24-6392 

� IBM WebSphere Application Server V6.0 InfoCenter found at:

http://publib.boulder.ibm.com/infocenter/ws60help/index.jsp?topic=/com.ib
m.websphere.base.doc/info/welcome_base.html

Note: This chapter focuses on this aspect of deployment.
1190 Rational Application Developer V6 Programming Guide

http://publib.boulder.ibm.com/infocenter/ws60help/index.jsp?topic=/com.ibm.websphere.base.doc/info/welcome_base.html
http://publib.boulder.ibm.com/infocenter/ws60help/index.jsp?topic=/com.ibm.websphere.base.doc/info/welcome_base.html


� Performance: How many users are using the system (frequency, duration, 
and concurrency).

23.1.2  J2EE application components and deployment modules
Within the J2EE application development life cycle, the application components 
are created, assembled, and then deployed. In this section, we explore the 
application component types, deployment modules, and packaging formats to 
gain a better understanding of what is being packaged (assembled) for 
deployment.

Application component types
In J2EE V1.4, there are four application component types supported by the 
runtime environment:

� Application Clients: Run in the Application Client Container.
� Applets: Run in the Applet Container.
� Web applications (servlets, JSPs, HTML pages): Run in the Web Container.
� EJBs: Run in the EJB Container.

Deployment modules
The J2EE deployment components are packaged for deployment as modules: 

� Web application module
� EJB module
� Resource adapter module
� Application client module

Packaging formats (WAR and EAR)
There are two key packaging formats used to package J2EE modules for 
deployment, namely Web Application Archive (WAR) and Enterprise Application 
Archive (EAR). The packaging technology for both is similar to that of a jar file. 
WAR files can include servlets, JSPs, HTML, images, etc. Enterprise Application 
Archive (EAR) can be used to package EJB modules, resource adapter modules, 
and Web application modules.

23.1.3  Java and WebSphere class loader
Class loaders are responsible for loading classes, which may be used by an 
application. Understanding how Java and WebSphere class loaders work is an 
important element of WebSphere Application Server configuration needed for the 
application to work properly after deployment. Failure to set up the class loaders 
properly will often result in class loading exceptions such as 
ClassNotFoundException when trying to start the application.
 Chapter 23. Deploy enterprise applications 1191



Java class loader
Java class loaders enable the Java virtual machine (JVM) to load classes. Given 
the name of a class, the class loader should locate the definition of this class. 
Each Java class must be loaded by a class loader. 

The the JVM is started; three class loaders are used:

� Bootstrap class load: The bootstrap class loader is responsible for loading the 
core Java libraries (that is, core.jar, server.jar, etc.) in the <JAVA_HOME>/lib 
directory. This class loader, which is part of the core JVM, is written in native 
code.

� Extensions class loader: The extensions class loader is responsible for 
loading the code in the extensions directories (<JAVA_HOME>/lib/ext or any 
other directory specified by the java.ext.dirs system property). This class 
loader is implemented by the sun.misc.Launcher$ExtClassLoader class.

� System class loader: The system class loader is responsible for loading the 
code that is found on java.class.path, which ultimately maps to the system 
CLASSPATH variable. This class loader is implemented by the 
sun.misc.Launcher$AppClassLoader class.

Delegation is a key concept to understand when dealing with class loaders. It 
states that a custom class loader (a class loader other than the bootstrap, 
extension, or system class loaders) delegates class loading to its parent before 
trying to load the class itself. The parent class loader can either be another 
custom class loader or the bootstrap class loader. Another way to look at this is 
that a class loaded by a specific class loader can only reference classes that this 
class loader or its parents can load, but not its children.

The Extensions class loader is the parent for the System class loader. The 
Bootstrap class loader is the parent for the Extensions class loader. The class 
loaders hierarchy is shown in Figure 23-1 on page 1193.

If the System class loader needs to load a class, it first delegates to the 
Extensions class loader, which in turn delegates to the Bootstrap class loader. If 
the parent class loader cannot load the class, the child class loader tries to find 
the class in its own repository. In this manner, a class loader is only responsible 
for loading classes that its ancestors cannot load.

Note: Beginning with JDK 1.4, the core Java libraries in the IBM JDK are 
no longer packaged in rt.jar as was previously the case (and is the case for 
the Sun JDKs), but instead split into multiple JAR files.
1192 Rational Application Developer V6 Programming Guide



Figure 23-1   Java class loaders hierarchy

WebSphere class loader
It is important to keep in mind when reading the following material on 
WebSphere class loaders, that each Java Virtual Machine (JVM) has its own 
setup of class loaders. This means that in a WebSphere environment hosting 
multiple application servers (JVMs), such as a Network Deployment 
configuration, the class loaders for the JVMs are completely separated even if 
they are running on the same physical machine.

WebSphere provides several custom delegated class loaders, as shown in 
Figure 23-2 on page 1194.
 Chapter 23. Deploy enterprise applications 1193



Figure 23-2   WebSphere class loaders hierarchy

In Figure 23-2, the top box represents the Java (Bootstrap, Extension, and 
System) class loaders. WebSphere does not load much here, just enough to get 
itself bootstrapped and initialize the WebSphere extension class loader.

WebSphere extensions class loader
The WebSphere extensions class loader is where WebSphere itself is loaded. It 
uses the following directories to load the required WebSphere classes:

� <JAVA_HOME>\lib
� <WAS_HOME>\classes (Runtime Class Patches directory, or RCP)
� <WAS_HOME>\lib (Runtime class path directory, or RP)
� <WAS_HOME>\lib\ext (Runtime Extensions directory, or RE)
� <WAS_HOME>\installedChannels

The WebSphere runtime is loaded by the WebSphere extensions class loader 
based on the ws.ext.dirs system property, which is initially derived from the 
WS_EXT_DIRS environment variable set in the setupCmdLine script file. The 
default value of ws.ext.dirs is the following:

SET 
WAS_EXT_DIRS=%JAVA_HOME%\lib;%WAS_HOME%\classes;%WAS_HOME%\lib;%WAS_HOME%\i
nstalledChannels;%WAS_HOME%\lib\ext;%WAS_HOME%\web\help;%ITP_LOC%\plugins\c
om.ibm.etools.ejbdeploy\runtime

Java class loaders

WebSphere Extension class loader
(Runtime, Library JARs)

Application class loader
(EJBs, RARs, Utility JARs)

Application class loader
(EJBs, RARs, Utility JARs)

WAR
class loader

WAR
class loader

WAR
class loader

WAR
class loader
1194 Rational Application Developer V6 Programming Guide



The RCP directory is intended to be used for fixes and other APARs that are 
applied to the application server runtime. These patches override any copies of 
the same files lower in the RP and RE directories. The RP directory contains the 
core application server runtime files. The bootstrap class loader first finds 
classes in the RCP directory, then in the RP directory. The RE directory is used 
for extensions to the core application server runtime.

Each directory listed in the ws.ext.dirs environment variable is added to the 
WebSphere extensions class loaders class path. In addition, every JAR file 
and/or ZIP file in the directory is added to the class path. 

You can extend the list of directories/files loaded by the WebSphere extensions 
class loaders by setting a ws.ext.dirs custom property to the Java virtual machine 
settings of an application server.

Application and Web module class loaders
J2EE applications consist of five primary elements: Web modules, EJB modules, 
application client modules, resource adapters (RAR files), and Utility JARs. Utility 
JARs contain code used by both EJBs and/or servlets. Utility frameworks (like 
log4j) are a good example of a utility JAR.

EJB modules, utility JARs, resource adapters files, and shared libraries 
associated with an application are always grouped together into the same class 
loader. This class loader is called the application class loader. Depending on the 
application class loader policy, this application class loader can be shared by 
multiple applications (EAR) or be unique for each application (the default).

By default, Web modules receive their own class loader (a WAR class loader) to 
load the contents of the WEB-INF/classes and WEB-INF/lib directories. The 
default behavior can be modified by changing the application's WAR class loader 
policy (the default being Module). If the WAR class loader policy is set to 
Application, the Web module contents are loaded by the application class loader 
(in addition to the EJBs, RARs, utility JARs, and shared libraries). The 
application class loader is the parent of the WAR class loader.

The application and the Web module class loaders are reloadable class loaders. 
They monitor changes in the application code to automatically reload modified 
classes. This behavior can be altered at deployment time.

Handling JNI code
Due to a JVM limitation, code that needs to access native code via a Java Native 
Interface (JNI) must not be placed on a reloadable class path, but on a static 
class path. This includes shared libraries for which you can define a native class 
path, or the application server class path. So if you have a class loading native 
 Chapter 23. Deploy enterprise applications 1195



code via JNI, this class must not be placed on the WAR or application class 
loaders, but rather on the WebSphere extensions class loader.

It may make sense to break out just the lines of code that actually load the native 
library into a class of its own and place this class on a static class loader. This 
way you can have all the other code on a reloadable class loader.

23.1.4  Deployment descriptors
Information describing a J2EE application and how to deploy it into a J2EE 
container is stored in XML files called deployment descriptors. An EAR file 
normally contains multiple deployment descriptors, depending on the modules it 
contains. Figure 23-3 shows a schematic overview of a J2EE EAR file. In this 
figure the various deployment descriptors are designated with DD after their 
name.

Figure 23-3   J2EE EAR file structure

The deployment descriptor of the EAR file itself is stored in the META-INF 
directory in the root of the EAR and is called application.xml. It contains 
information about the modules making up the application.

The deployment descriptors for each module are stored in the META-INF 
directory of the module and are called web.xml (for Web modules), ejb-jar.xml 

Web
DD

EJB
Module
JAR file

EJB
Module
JAR file

Web
Module
WAR file

Web
Module
WAR file

Client
Module
JAR file

Client
Module
JAR file

J2EE
Application

EAR file
Installed
RARs

Installed
RARs

IBM Bind

Schema
Map

Schema
Attributes

Table 
Creation

was.policy
(Java2 Sec)

IBM
Bind/Ext

HTML,
GIFs, 
etc.

HTML,
GIFs, 
etc.

Servlet
JSP

Servlet
JSP

Application
DD

Web 
Services

DD

Client
Classes
Client

Classes

EJBsEJBs

IBM
Bind/Ext

IBM
Bind/Ext

EJB
DD

WS IBM 
Bind/Ext

Web 
Services

DD

Client
DD

WS Client 
IBM Bind/Ext

WSDL <-> Java
Mapping Files

WSDL <-> Java
Mapping Files

WS Client IBM 
Bind/Ext

WS IBM 
Bind/Ext

WS Client IBM 
Bind/Ext

WSDL <-> Java
Mapping Files
1196 Rational Application Developer V6 Programming Guide



(for EJB modules), ra.xml (for resource adapter modules), and 
application-client.xml (for Application client modules). These files describe the 
contents of a module and allow the J2EE container to configure things like 
servlet mappings, JNDI names, etc.

Classpath information specifying which other modules and utility JARs are 
needed for a particular module to run, is stored in the manifest.mf file, also in the 
META-INF directory of the modules.

In addition to the standard J2EE deployment descriptors, EAR files produced by 
Rational Application Developer or the Application Server Toolkit can also include 
additional WebSphere-specific information used when deploying applications to 
WebSphere environments. This supplemental information is stored in an XMI file, 
also in the META-INF directory of the respective modules. Examples of 
information in the IBM-specific files are IBM extensions like servlet reloading and 
EJB access intents.

New in WebSphere Application Server V6 is also the information contained in the 
enhanced EAR files. This information, which includes settings for the resources 
required by the application, is stored in an ibmconfig subdirectory of the 
application’s (EAR file’s) META-INF directory. In the ibmconfig directory are the 
well-known directories for a WebSphere cell configuration.

Rational Application Developer and the Application Server Toolkit have 
easy-to-use editors for working with all deployment descriptors. The information 
that goes into the different files is shown on one page in the GUI, eliminating the 
need to be concerned about what information is put into what file. However, if 
you are interested, you can click the Source tab of the deployment descriptor 
editor to see the text version of what is actually stored in that descriptor.

For example, if you open the EJB deployment descriptor, you will see settings 
that are stored across multiple deployment descriptors for the EJB module, 
including:

� The EJB deployment descriptor, ejb-jar.xml
� The extensions deployment descriptor, ibm-ejb-jar-ext.xmi
� The bindings file, ibm-ejb-jar-bnd.xmi files
� The access intent settings, ibm-ejb-access-bean.xmi
 Chapter 23. Deploy enterprise applications 1197



The deployment descriptors can be modified from within Rational Application 
Developer, by double-clicking the file to open the Deployment Descriptor Editor, 
as seen in Figure 23-4.

Figure 23-4   Deployment Descriptor Editor in Rational Application Developer
1198 Rational Application Developer V6 Programming Guide



While the editor will show you information stored in all the relevant deployment 
descriptor files on the appropriate tabs, the Source tab will only show you the 
source of the deployment descriptor itself (for example, ejb-jar.xml or web.xml) 
and not the IBM extensions and bindings stored in the WebSphere-specific 
deployment descriptor files. If you want to view the results of updates to those 
files in the source, you will need to open each file individually. By hovering over 
the EJB Deployment Descriptor Caption tab you can see the different files that 
make up the EJB deployment descriptor you are editing. The descriptor files are 
kept in the META-INF directory of the module you are editing.

When you have made changes to a deployment descriptor, save it by pressing 
Ctrl+S and then close it.

23.1.5  WebSphere deployment architecture
This section provides an overview of the IBM WebSphere Application Server 
V6.0 deployment architecture.

IBM Rational Application Developer V6.0 includes an integrated WebSphere 
Application Server V6.0 Test Environment. Administration of the server and 
applications is performed by using the WebSphere Administrative Console for 
such configuration tasks as:

� J2C authentication aliases
� Datasources
� Service buses
� JMS queues and connection factories

Due to the loose coupling between Rational Application Developer and 
WebSphere Application Server, applications can deploy in the following ways:

� Deploy from a Rational Application Developer project to the integrated 
WebSphere Application Server V6.0 Test Environment.

� Deploy from a Rational Application Developer project to a separate 
WebSphere Application Server runtime environment.

� Deploy via EAR to an integrated WebSphere Application Server V6.0 Test 
Environment.

� Deploy via EAR to a separate WebSphere Application Server runtime 
environment.

Note: “Customize the deployment descriptors” on page 1220 provides an 
example of customizing the ITSO Bank EJB deployment descriptors for the 
desired database server type (Cloudscape or DB2 Universal Database).
 Chapter 23. Deploy enterprise applications 1199



Administration of the application server is performed through the use of an 
Internet Web browser.

In addition, the WebSphere Application Server V6 can obtain an EAR from 
external tools without the deployment code generated and be loaded into the 
Rational Application Developer or Application Server Toolkit (AST). Rational 
Application Developer or AST will generate the deployment code for the 
WebSphere Application Server and a new EAR will be saved to deploy out to the 
application server.

A diagram of the deployment architecture and the various mechanisms to deploy 
out an application are provided in Figure 23-5. 

Details on how to configure the servers in IBM Rational Application Developer V6 
are documented in Chapter 19, “Servers and server configuration” on 
page 1043.

Figure 23-5   Deployment architecture

Rational 
Application
Developer

WebSphere Application
Server

WebSphere Application
Server

(RAD Test Environment)

Deploy

Deploy EAR

Application

Application

Application

Configure
Application

Server

Configure
Application

Server

Developer
Production

Externally
Packaged

EAR

Application 
Server Toolkit 

(AST)

Deploy EAR
1200 Rational Application Developer V6 Programming Guide



Profiles in WebSphere Application Server
WebSphere Application Server V6.0 has been split into two separate 
components:

� A set of shared read-only product files
� A set of configuration files known as WebSphere Profiles

The first component is the runtime part of WebSphere Application Server V6.0, 
while the second component is a new concept called WebSphere Profiles.

A WebSphere Profile is the set of configurable files including WebSphere 
Application Server configuration, applications, and properties files that constitute 
a new application server. Having multiple profiles equates to having multiple 
WebSphere Application Server instances for use with a number of applications.

In IBM Rational Application Developer V6 this allows a developer to configure 
multiple application servers for various applications that they may be working 
with. Separate WebSphere Profiles can then be set up as test environments in 
Rational Web/Application Developer (see Chapter 19, “Servers and server 
configuration” on page 1043). 

WebSphere enhanced EAR
The WebSphere enhanced EAR is a feature of IBM WebSphere Application 
Server V6.0 that provides an extension of the J2EE EAR with additional 
configuration information for resources typically required by J2EE applications. 
This information is not mandatory to be supplied at packaging time, but it can 
simplify the deployment of applications to WebSphere Application Server for 
selected scenarios.

The Enhanced EAR Editor can be used to edit several WebSphere Application 
Server V6 specific configurations, such as data sources, class loader policies, 
substitution variables, shared libraries, virtual hosts, and authentication settings. 
The configuration settings can be made simply within the editor and published 
with the EAR at the time of deployment.

The upside of the tool is that it makes the testing process simpler and repeatable, 
since the configurations can be saved to files and then shared within a team’s 
repository. Even though it will not let you configure every possible runtime 
setting, it is a good tool for development purposes because it eases the process 
of configuring the most common ones.

Note: This function is similar to the wsinstance command that was available in 
WebSphere Application Server V5.x, creating multiple runtime configurations 
using the same installation.
 Chapter 23. Deploy enterprise applications 1201



The downside is that the configurations the tool makes will be attached to the 
EAR, and will not be visible from the WebSphere Administrative Console. The 
WebSphere Administrative Console is only able to edit settings that belong to the 
cluster, node, and server contexts. 

When you change a configuration using the Enhanced EAR Editor, these 
changes are made within the application context. The deployer can still make 
changes to the EAR file using the Application Server Toolkit (AST), but it still 
requires a separate tool. Furthermore, in most cases these settings are 
dependent on the node the application server is installed in anyway, so it may not 
make sense to configure them at the application context for production 
deployment purposes.

Table 23-1 lists the supported resources that the enhanced EAR provides and 
the scope in which they are created.

Table 23-1   Enhanced EAR resources supported and their scope

The following example demonstrates how to use the Extended EAR Editor to 
create a data source, as an alternative to using the WebSphere Administrative 
Console.

1. Start Rational Application Developer.

2. Open the J2EE perspective Project Explorer view.

3. Expand Enterprise Applications → BankEJBEAR.

4. Double-click the Deployment Descriptor: BankEJBEAR to open in the 
editor.

5. Configure JAAS Authentication for DB2 Universal Database.

Resource Type Scope

JDBC Providers Application

DataSources Application

Substitution variables Application

Class loader policies Application

Shared libraries Server

JAAS authentication aliases Cell

Virtual hosts Cell

Note: This step is not required for Cloudscape (no authentication 
required).
1202 Rational Application Developer V6 Programming Guide



a. Click the Deployment tab, as seen in Figure 23-6 on page 1203.

b. Scroll down the page until you see the Authentication property. This allows 
you to define a login configuration used by JAAS Authentication. 

c. Select the dbuser entry (default) and click Edit.

Alternatively, click Add to create a new entry.

Figure 23-6   Application Deployment Descriptor - Deployment tab

d. When the Add JAAS Authentication Entry dialog appears, enter the user 
ID and password for the DB2 Universal Database, as seen in Figure 23-7 
on page 1204.
 Chapter 23. Deploy enterprise applications 1203



Figure 23-7   JAAS Authentication Entry

6. Add a JDBC provider.

a. From the Enhanced EAR Editor, scroll back to the JDBC Provider section 
at the top of the page. 

b. Click Add next to the JDBC Provider list.

c. When the Create a JDBC Provider dialog appears, select IBM DB2 as the 
Database type, select DB2 Universal JDBC Driver Provider (XA) from 
the JDBC provider type (as seen in Figure 23-8 on page 1205), and then 
click Next.

Note: Note that for our development purposes, the DB2 Universal 
JDBC Driver Provider (non XA) would work just as well, because we will 
not use the XA (two-phase commit) capabilities.
1204 Rational Application Developer V6 Programming Guide



Figure 23-8   Create a JDBC Provider

d. Enter DB2 XA JDBC Provider in the Name field, accept the defaults for 
remaining fields (as seen in Figure 23-9 on page 1206), and click Finish.
 Chapter 23. Deploy enterprise applications 1205



Figure 23-9   Create a JDBC Provider - Name

7. Add a data source.

a. Select the DB2 XA JDBC Provider you created in the previous step under 
the JDBC provider list.

b. Click Add next to the Data source section.

c. When the Create a Data Source (page 1) dialog appears, select DB2 
Universal JDBC Driver Provider (XA) (as seen in Figure 23-10 on 
page 1207), and then click Next.
1206 Rational Application Developer V6 Programming Guide



Figure 23-10   Create a Data Source (page 1)

d. When the Create Data Source (page 2) dialog appears, we entered the 
following (as seen in Figure 23-11 on page 1208) and then clicked Next:

• Name: BankDS
• JNDI name: jdbc/bankDS
• Description: Bank DataSource
• Component-managed authenticated alias: Select dbuser.
 Chapter 23. Deploy enterprise applications 1207



Figure 23-11   Create a Data Source (page 2)

e. When the Create Resource Properties dialog appears, select the 
databaseName variable from the Resource Properties list, enter BANK in 
the variable value field (as seen in Figure 23-12 on page 1209), and then 
click Finish.
1208 Rational Application Developer V6 Programming Guide



Figure 23-12   Create a Data Source (page 3)

8. Save the Deployment Descriptor.

The settings configured using the Enhanced EAR Editor will be packaged as part 
of the standard EAR export process and published at the time of installing the 
enterprise application in WebSphere Application Server.

Note: For more detailed information and an example of using the WebSphere 
enhanced EAR refer to:

� Packaging applications chapter in the WebSphere Application Server V6 
Systems Management and Configuration, SG24-6451 

� IBM WebSphere Application Server V6.0 InfoCenter found at:

http://publib.boulder.ibm.com/infocenter/ws60help/index.jsp?topic=/com.ib
m.websphere.base.doc/info/welcome_base.html
 Chapter 23. Deploy enterprise applications 1209

http://publib.boulder.ibm.com/infocenter/ws60help/index.jsp?topic=/com.ibm.websphere.base.doc/info/welcome_base.html
http://publib.boulder.ibm.com/infocenter/ws60help/index.jsp?topic=/com.ibm.websphere.base.doc/info/welcome_base.html


WebSphere Rapid Deployment
WebSphere Rapid Deployment is a collection of tools and technologies 
introduced in IBM WebSphere Application Server V6.0 that makes application 
development and deployment easier than ever before.

WebSphere Rapid Deployment consists of the following elements:

� Annotation-based programming (Xdoclet)
� Rapid deployment tools
� Fine-grained application updates

Annotation-based programming (Xdoclet)
Annotation-based programming speeds up application development by reducing 
the number of artifacts that you need to develop and manage on your own. By 
adding metadata tags to the Java code, the WebSphere Rapid Deployment tools 
can automatically create and manage the artifacts to build a J2EE-compliant 
module and application.

Rapid deployment tools
Using the rapid deployment tools part of WebSphere Rapid Deployment you can:

� Create a new J2EE application quickly without the overhead of using an 
integrated development environment (IDE).

� Package J2EE artifacts quickly into an EAR file.

� Deploy and test J2EE modules and full applications quickly on a server.

For example, you can place full J2EE applications (EAR files), application 
modules (WAR files, EJB JAR files), or application artifacts (Java source files, 
Java class files, images, JSPs, etc.) into a configurable location on your file 
system, referred to as the monitored, or project, directory. The rapid deployment 
tools then automatically detect added or changed parts of these J2EE artifacts 
and perform the steps necessary to produce a running application on an 
application server.

There are two ways to configure the monitored directory, each performing 
separate and distinct tasks (as depicted in Figure 23-13 on page 1212):

� Free-form project
� Automatic application installation project

With the free-form approach you can place in a single project directory the 
individual parts of your application, such as Java source files that represent 
servlets or enterprise beans, static resources, XML files, and other supported 
application artifacts. The rapid deployment tools then use your artifacts to 
automatically place them in the appropriate J2EE project structure, generate any 
1210 Rational Application Developer V6 Programming Guide



additional required artifacts to construct a J2EE-compliant application, and 
deploy that application on a target server.

The automatic application installation project, on the other hand, allows you to 
quickly and easily install, update, and uninstall J2EE applications on a server. If 
you place EAR files in the project directory they are automatically deployed to the 
server. If you delete EAR files from the project directory, the application is 
uninstalled from the server. If you place a new copy of the same EAR file in the 
project directory, the application is reinstalled. If you place WAR or EJB JAR files 
in the automatic application installation project, the rapid deployment tool 
generates the necessary EAR wrapper and then publishes that EAR file on the 
server. For RAR files, a wrapper is not created. The standalone RAR files are 
published to the server.

The advantage of using a free-form project is that you do not need to know how 
to package your application artifacts into a J2EE application. The free-form 
project takes care of the packaging part for you. The free-form project is suitable 
when you just want to test something quickly, perhaps write a servlet that 
performs a task.

An automatic application installation project, on the other hand, simplifies 
management of applications and relieves you of the burden of going through the 
installation panels in the WebSphere administrative console or developing 
wsadmin scripts to automate your application deployment.

The rapid deployment tools can be configured to deploy applications either onto 
a local or remote WebSphere Application Server. 
 Chapter 23. Deploy enterprise applications 1211



Figure 23-13   WebSphere Rapid Deployment modes

23.2  Prepare for the sample
This section describes the steps required to prepare the environment for the 
deployment sample. We will use the ITSO Bank enterprise application developed 
in Chapter 15, “Develop Web applications using EJBs” on page 827, to 
demonstrate the deployment process.

Note: For more detailed information on WebSphere Rapid Deployment refer 
to the following:

� WebSphere V6 Planning and Design, SG24-6446

� WebSphere Application Server V6 Systems Management and 
Configuration, SG24-6451

� IBM WebSphere Application Server V6.0 InfoCenter found at:

http://publib.boulder.ibm.com/infocenter/ws60help/index.jsp?topic=/com.ib
m.websphere.base.doc/info/welcome_base.html

and/or

J2EE
Apps

(EARs)

J2EE
Apps

(EARs)

J2EE
Apps

(EARs)

J2EE
Apps

(EARs)

J2EE
Apps

(EARs)

Client
JARs

J2EE
Apps

(EARs)

J2EE
Apps

(EARs)
WAR

J2EE
Apps

(EARs)

J2EE
Apps

(EARs)

EJB
JARs

Module Archives

Add J2EE
Applications or

Module archives
to WRD

workspace
WRD

Change
Detection /

Trigger
process

Application - Installed,
Restarted, Reinstalled

or Uninstalled

V6
Application

Server

Static
File

(Image,
HTML)

Servlet,
JSP,
etc.

Java
Source

Add J2EE Artifacts to 
WRD workspace - 

J2EE project 
structure not 

required
WRD

Change
Detection /

Trigger
process

User creates individual
J2EE artifacts (Java

Source, Web resources,
etc.) WRD generates

J2EE artifacts
and package

Application - Installed,
Restarted, Reinstalled

or Uninstalled

Automated Application Install

Free-Form Project
1212 Rational Application Developer V6 Programming Guide

http://publib.boulder.ibm.com/infocenter/ws60help/index.jsp?topic=/com.ibm.websphere.base.doc/info/welcome_base.html
http://publib.boulder.ibm.com/infocenter/ws60help/index.jsp?topic=/com.ibm.websphere.base.doc/info/welcome_base.html


This section includes the following tasks:

� Review the deployment scenarios.
� Install prerequisite software
� Import the sample application Project Interchange file.
� Set up the sample database.

23.2.1  Review the deployment scenarios
Now that the Rational Application Developer integration with WebSphere 
Application Server V6.0 is managed the same as a standalone WebSphere 
Application Server, the procedure to deploy the ITSO Bank sample application is 
nearly identical to that of a standalone WebSphere Application Server.

There are several possible configurations in which the sample can be installed. 
The deployment process in this chapter accounts for the following two scenarios:

� Deploy ITSO Bank to a separate production IBM WebSphere Application 
Server V6.0. This scenario uses two nodes (Developer node, Application 
Server node). 

or

� Deploy ITSO Bank to a Rational Application Developer - integrated 
WebSphere Application Server V6.0 Test Environment.

23.2.2  Install prerequisite software
The application deployment sample requires that you have the software defined 
in this section installed. Within the example, you can choose between DB2 
Universal Database and Cloudscape as your database server.

The sample for the working example environment consists of two nodes:

� Developer node (see Table 23-2 on page 1214 for product mapping)

This node will be used by the developer to import the sample code and 
package the application in preparation for deployment. 

� Application Server node (see Table 23-3 on page 1214 for product mapping)

This node will be used as the target server where the enterprise application 
will be deployed.

Note: For detailed information on installing the required software for the 
sample, refer to Appendix A, “IBM product installation and configuration tips” 
on page 1371.
 Chapter 23. Deploy enterprise applications 1213



Table 23-2   Developer node product mapping

Table 23-3   Application Server node product mapping

23.2.3  Import the sample application Project Interchange file
This section describes how to import the BankEJB.zip Project Interchange file 
into Rational Application Developer. The BankEJB.zip contains the following 
projects for the ITSO Bank enterprise application developed in Chapter 15, 
“Develop Web applications using EJBs” on page 827:

� BankBasicWeb
� BankEJB
� BankEJBClient
� BankEJBEAR

To import the BankEJB.zip Project Interchange file containing the sample code 
into Rational Application Developer, do the following:

1. Start Rational Application Developer.

2. Open the J2EE perspective Project Explorer view.

Software Version

Microsoft Windows XP + Service Pack 1a + Critical fixes and 
security patches.

IBM Rational Application Developer
* IBM WebSphere Application Server V6.0 Test Environment
Note: Cloudscape is installed by default.

6.0 + Interim Fix 0004

IBM DB2 Universal Database, Express Edition 8.2

Software Version

Microsoft Windows 2000 + Service Pack 4 + Critical fixes 
and security patches.

IBM WebSphere Application Server 6.0

IBM DB2 Universal Database, Express Edition 8.2

Note: DB2 Universal Database or Cloudscape

The procedures in this chapter provide information on using either DB2 
Universal Database or Cloudscape. Cloudscape is installed by default as part 
of the Rational Application Developer installation (part of WebSphere 
Application Server V6.0 Test Environment).
1214 Rational Application Developer V6 Programming Guide



3. Select File → Import.

4. Select Project Interchange from the list of import sources and then click 
Next.

5. When the Import Projects dialog appears, click the Browse button next to zip 
file, navigate to and select the BankEJB.zip from the c:\6449code\ejb folder, 
and click Open.

6. Click Select All to select all projects and then click Finish.

23.2.4  Set up the sample database
The ITSO Bank application requires the BANK database. The default procedure 
uses Cloudscape; however, we provide instructions for DB2 Universal Database 
as an alternative.

Depending on which database server platform you choose, the appropriate table 
and sample data files can be found as follows:

� Cloudscape:

c:\6449code\deploy\database\cloudscape\Bank\Table.ddl
c:\6449code\deploy\database\cloudscape\Bank\Loaddata.sql

or

� DB2 Universal Database:

c:\6449code\deploy\database\db2\Bank\Table.ddl
c:\6449code\deploy\database\db2\Bank\Loaddata.sql

To create the BANK database, create the connections, create tables for the 
databases, and populate the BANK database with sample data, do the following:

1. Create the BANK database on the Application Server node and Developer 
node.

– Cloudscape

For details refer to “Create Cloudscape database via Cloudscape CView” 
on page 344.

Important: In our scenario, we set up the BANK database on both Developer 
Node and on the Application Server node, since this will be the target for 
deploying the application.

Attention: The database setup procedure should be performed on the target 
node such as the Application Server node for our scenario, and the Developer 
node where Rational Application Developer is installed.
 Chapter 23. Deploy enterprise applications 1215



or

– DB2 Universal Database

For details refer to “Create DB2 UDB database via a DB2 command 
window” on page 346.

2. Create the BANK database tables on the Application Server node and 
Developer node.

– Create Cloudscape tables on the Application Server node.

For details refer to “Create Cloudscape database tables via Cloudscape 
CView” on page 351.

or

– Create DB2 Universal Database tables on the Application Server node.

For details refer to “Create DB2 UDB database tables via a DB2 command 
window” on page 351.

or

– Create Cloudscape tables from Rational Application Developer.

For details refer to “Create database tables via Rational Application 
Developer” on page 350.

3. Populate the BANK database tables with sample data on the Application 
Server node and Developer node.

– Populate Cloudscape BANK database tables with sample data on the 
Application Server node.

For details refer to “Populate the tables via Cloudscape CView” on 
page 353.

or

– Populate DB2 Universal Database BANK database tables with sample 
data on the Application Server node.

For details refer to “Populate the tables via a DB2 UDB command window” 
on page 354.

or

– Populate Cloudscape BANK database tables from Rational Application 
Developer.

For details refer to “Populate the tables within Rational Application 
Developer” on page 352.

4. Create the connection to the BANK database on the Developer node from 
within Rational Application Developer.

For details refer to “Create a database connection” on page 347.
1216 Rational Application Developer V6 Programming Guide



5. Add the JDBC driver as a variable to the Java build path on the Developer 
node from within Rational Application Developer.

To add a Cloudscape JDBC driver as a classpath variable, do the following.

a. Select Window → Preferences.

b. Select Java → Build Path → Classpath variable.

c. Click New.

d. When the New Variable Entry dialog appears, enter 
CLOUDSCAPE_DRIVER_JAR in the Name field. Click File and navigate to the 
directory of the driver. Select the db2j.jar and then click Open. 

For example, see Figure 23-14 path:

C:/Program Files/IBM/Rational/SDP/6.0/runtimes/base_v6/cloudscape
/lib/db2j.jar

Figure 23-14   CLOUDSCAPE_DRIVER_JAR variable

e. Click OK to add the variable.

f. Click OK to exit the preferences window.

Note: This step does not apply for setup on the Application Server node.

This step only applies if you are setting up the database server within 
Rational Application Developer. In our example, we are preparing the 
database on the Application Server node, and thus this step is not needed.

Note: For DB2 Universal Database, a DB2_DRIVER_PATH variable 
already exists. We suggest that you double check that the path to the 
driver is correct for your DB2 Universal Database installation.
 Chapter 23. Deploy enterprise applications 1217



g. Recompile the code. By default, the Workbench preferences are 
configured to Build automatically.

23.3  Package the application for deployment
This section describes the steps in preparation for packaging, as well as how to 
export the enterprise application from Rational Application Developer to an EAR 
file, which will be used to deploy on the WebSphere Application Server.

This section includes the following:

� Packaging recommendations.
� Generate the EJB to RDB mapping.
� Customize the deployment descriptors.
� Remove the Enhanced EAR datasource.
� Generate the deploy code.
� Export the EAR.

23.3.1  Packaging recommendations
We have included some basic guidelines to consider when packaging an 
enterprise application:

� The EJB JAR modules and Web WAR modules comprising an application 
should be packaged together in the same EAR module.

� When a Web module accesses an EJB module, you should not package the 
EJB interfaces and stubs in the WAR modules. Thanks to the class loading 
architecture, EJB stubs and interfaces are visible by default to WAR modules.

� Utility classes used by a single Web module should be placed within its 
WEB-INF/lib folder.

� Utility classes used by multiple modules within an application should be 
placed at the root of the EAR file. 

� Utility classes used by multiple applications can be placed on a directory 
referenced via a shared library definition.

23.3.2  Generate the EJB to RDB mapping
This section describes how to generate the EJB to RDB mapping for either 
Cloudscape or DB2 Universal Database. If you are using Cloudscape as your 
database server, this section is not required, but included for reference 
purposes. If using DB2 Universal Database, you will need to complete the DB2 
section to generate the EJB to RDB mapping.
1218 Rational Application Developer V6 Programming Guide



The following procedure describes how to generate the EJB to RDB mapping for 
the BankEJB EJBs.

1. If you are using Cloudscape, ensure the Cloudscape JDBC driver variable 
has been defined.

For details refer to “Set up the sample database” on page 1215.

For DB2 Universal Database the corresponding variable is already defined.

2. From the Data perspective, right-click the connection that you created in 
23.2.4, “Set up the sample database” on page 1215, and select Copy to 
Project.

3. When the Copy to Project dialog appears, click Browse, expand and select 
BankEJB → ejbModule → META-INF, and click OK. 

4. Check Use default schema folder for EJB projects. The folder path is then 
automatically entered for the appropriate database type. 

5. Click Finish.

6. When the Confirm folder create message box appears, click Yes.

7. Switch to the J2EE perspective Packaging Explorer view.

8. Expand EJB Projects, right-click the BankEJB project, and select EJB to 
RDB Mapping → Generate Map.

9. Select Use an existing backend folder, select the backend folder that you 
created in the previous step (for example, CLOUDSCAPE_V51_1 for 
Cloudscape, or DB2EXPRESS_V82_1 for DB2 Universal Database), and 
click Next. 
 Chapter 23. Deploy enterprise applications 1219



10.Select Meet-In-The-Middle and click Next.

11.Select Match by Name and click Next.

12.Click Finish.

13.The Mapping editor will open. Follow the instructions in “Completing the 
EJB-to-RDB mapping” on page 897 to complete the mapping.

23.3.3  Customize the deployment descriptors
Depending on your development process you may customize your deployment 
descriptors prior to exporting the enterprise application to an EAR file. For 
example, you may wish to customize the context paths for the target WebSphere 
Application Server the EAR will be deployed to or change the target database 
from Cloudscape to DB2 Universal Database.

Alternatively, the deployment descriptors of the exported EAR could be 
customized using the Application Server Toolkit provided with IBM WebSphere 
Application Server V6.0.

Note: Location of generated mapping

The mapping is generated in the following folders:

� BankEJB\Deployment Descriptor: BankEJB\Maps\Cloudscape V5.1\BANK:
CLOUDSCAPE_V51_1

� BankEJB\ejbModule\META-INF\backends\CLOUDSCAPE_V51_1

The Map.mapxmi file is found in this folder and will be opened as a result of 
generating the mapping.

The mapping will increment the name of the map by one each time another 
map is created. In our example, the map is named CLOUDSCAPE_V51_1 
since it is the first for Cloudscape. If we added another map for Cloudscape it 
would be named CLOUDSCAPE_V51_2.

To delete a mapping, select the mapping (for example, BANK: 
CLOUDSCAPE_V51_1) from the BankEJB → Deployment Descriptor: 
BankEJB → Maps → Cloudscape V5.1 folder, right-click, and select Delete.

Note: For more information refer to “Deployment descriptors” on page 1196.
1220 Rational Application Developer V6 Programming Guide



Customize the EJB deployment descriptors for Cloudscape
If you are using Cloudscape, the deployment descriptors for the sample 
application are already configured to use Cloudscape, thus the section is 
optional.

To customize the EJB deployment descriptors for use with Cloudscape, do the 
following:

1. Open the J2EE perspective Packaging Explorer view.

2. Expand Enterprise Applications.

3. Customize the BankEJB deployment descriptor.

a. Expand the BankEJB project.

b. Double-click Deployment Descriptor: BankEJB to open in the 
Deployment Descriptor Editor.

c. Scroll down near the bottom to the section marked Backend ID.

d. Select CLOUDSCAPE_V51_1.

e. Save the Deployment Descriptor: BankEJB file.

Customize the EJB deployment descriptors for DB2 UDB
To customize the EJB deployment descriptors for use with DB2 Universal 
Database, do the following:

1. Open the J2EE perspective Packaging Explorer view.

2. Expand Enterprise Applications.

3. Customize the BankEJB deployment descriptor.

a. Expand EJB Projects → BankEJB.

b. Double-click Deployment Descriptor: BankEJB to open in the 
Deployment Descriptor Editor.

c. Scroll down near the bottom to the section marked Backend ID.

d. Select DB2UDBNT_V82_1.

e. Save the Deployment Descriptor: BankEJB file.

23.3.4  Remove the Enhanced EAR datasource
The BankEJBEAR application deployment descriptor, contained in the 
BankEJB.zip Project Interchange that was imported in 23.2.3, “Import the sample 
application Project Interchange file” on page 1214, contains enhanced EAR 
settings to configure the datasource. These settings are needed when running 
the application within Rational Application Developer.
 Chapter 23. Deploy enterprise applications 1221



When deploying the application to a remote WebSphere Application Server 
system, we chose to configure the datasource using the WebSphere Application 
Server Administrative Console for demonstration purposes. Since the enhanced 
EAR datasource configuration overrides the Administrative Console 
configuration, the enhanced EAR datasource settings must be removed.

To remove the enhanced EAR datasource settings, do the following:

1. Expand Enterprise Applications → BankEJBEAR.

2. Double-click Application Deployment Descriptor: BankEJBEAR.

3. Select the Deployment tab.

4. Select the JDBC provider, and click Remove.

5. Save the deployment descriptor.

23.3.5  Generate the deploy code
Prior to exporting the EAR, we recommend that you generate the deploy code as 
follows:

1. Open the J2EE Perspective Project Explorer view.

2. Expand Enterprise Applications.

3. Right-click BankEJBEAR → Deploy.

23.3.6  Export the EAR
This section describes how to filter the contents (include, exclude) of an EAR file, 
and provides a procedure to export an EAR.

Filtering the content of the EAR
When creating assets, such as diagrams, under the JavaSource folder, we found 
that the assets are automatically copied to the WEB-INF\classes folder. Since 
the WAR export utility will include all resources located in the WebContent tree, 
any assets located in the JavaSource tree will be included in the WAR file, 
regardless of the setting of the Export source files check box. For example, this is 
likely not a desired behavior for diagrams such as a sequence diagram.

Note: After generating deployed code for the BankEJB project, you may see a 
number of warnings about unused imports in the Problems view. These can 
be safely ignored. If you wish, you can remove these warnings from the 
Problems view by following the process described in 15.3.4, “Configure the 
EJB projects” on page 849.
1222 Rational Application Developer V6 Programming Guide



The following procedure describes a procedure to filter the contents of an EAR 
for export:

1. Right-click the BankBasicWeb project, and select Properties (where 
BankBasicWeb is the project you wish to configure).

2. Select Java Build Path.

3. Select the Source tab.

4. Expand the BankBasicWeb/JavaSource, select Excluded, and click Edit.

5. When the Inclusion and Exclusion Patterns window appears, you will be 
presented with several options that can be used to filter contents.

– Exclude by pattern (Add button)
– Exclude individual files (Add Multiple button)

For example, we used the Exclude by pattern option to filter out diagrams as 
follows:

a. Click Add.

b. When the Add Exclusion Patterns dialog appears, enter **/*.dnx, and 
click OK.

c. Repeat the previous steps for the following patterns:

• **/*.iex
• **/*.ifx
• **/*.tpx

6. Click OK to close the Inclusion and Exclusion Patterns window.

Export an EAR
To export the enterprise application from Rational Application Developer to an 
EAR file, do the following:

1. Open the J2EE perspective Project Explorer view.

2. Expand Enterprise Applications.

3. Right-click BankEJBEAR → Export → EAR file.

4. When the EAR Export dialog window appears as shown in Figure 23-15, we 
entered the destination path (for example, c:\ibm\BankEJBEAR.ear) and then 
click Finish.

Note: Where ** is any sub folder of the JavaSource folder and the 
JavaSource folder itself. The /* means all files.
 Chapter 23. Deploy enterprise applications 1223



Figure 23-15   Exporting an EAR file

5. Verify that the BankEJBEAR.ear file exists in the c:\ibm folder specified 
during the export.

23.4  Deploy the enterprise application
Now that the application has been packaged to an EAR file, the enterprise 
application can be deployed to WebSphere Application Server. This section 
describes the steps required to configure the target WebSphere Application 
Server and deploy the BankEJBEAR.ear file.

Note: Make sure that the three options in the dialog (see Figure 23-15 on 
page 1224) are unchecked. Because the EAR file will be used in a 
production system, we do not want to include the source files or the 
Application Developer metadata.

Note: You can deploy the BankEJBEAR.ear exported in the previous section. 
Alternatively, the BankEJBEAR.ear found in the c:\6449code\deploy directory 
of the ITSO sample code can be used.
1224 Rational Application Developer V6 Programming Guide



23.4.1  Configure the data source in WebSphere Application Server
The data source for WebSphere Application Server can be created in several 
ways including:

� Enhanced EAR

For details on using the enhanced EAR to configure the JDBC provider, data 
source, authentication, and database name refer to “WebSphere enhanced 
EAR” on page 1201.

� wsadmin command line interface

For details refer to the WebSphere Application Server V6.0 InfoCenter.

� WebSphere Application Server Administrative Console

The high-level configuration steps are as follows to configure the data source 
within WebSphere Application Server for the ITSO Bank application sample:

� Start the server1 application server.
� Configure the environment variables.
� Configure J2C authentication data.
� Configure the JDBC Provider.
� Create the datasource.

Start the server1 application server
Ensure that the server1 application server is started on the Application Server 
node. If it is, not start it as follows:

� Click Start → Programs → IBM WebSphere → Application Server V6 → 
Profiles → default → Start server to start the application server named 
server1.

or

� Enter the following in a command window:

cd \Program Files\IBM\WebSphere\AppServer\profiles\default\bin
startServer.bat server1

or

� Start the Windows service named IBM WebSphere Application Server v6 - 
was6win1Node01 (where was6win1 is the host name of the system).

Note: Our example uses this method.
 Chapter 23. Deploy enterprise applications 1225



Configure the environment variables
Prior to configuring the data source, ensure that the environment variables are 
defined for the desired database server type. This step does not apply to 
Cloudscape since we are using the embedded Cloudscape, which already has 
the variables defined. For example, if you choose to use DB2 Universal 
Database, you must update the path of the driver for DB2 Universal Database.

1. Launch the WebSphere Administrative Console:

– Click Start → Programs → IBM WebSphere → Application Server V6 
→ Profiles → default → Administrative Console.

or

– Enter the following URL in a Web browser:

http://<hostname>:9060/ibm/console

2. Enter a login ID (for example, admin) and then click Log in. The user ID can 
be anything at this point, since WebSphere security is not enabled.

3. Select and expand Environment → WebSphere Variables.

4. Scroll down the page and click the desired variable and update the path 
accordingly for your installation.

– CLOUDSCAPE_JDBC_DRIVER_PATH

By default this variable is already configured since Cloudscape is installed 
with WebSphere Application Server.

or

– DB2UNIVERSAL_JDBC_DRIVER_PATH

For example, if you have decided to use DB2 Universal Database, click 
DB2UNIVERSAL_JDBC_DRIVER_PATH to enter the path value to the 
DB2 Java (db2java.zip). For example, we entered 
C:\Program Files\IBM\SQLLIB\java. Click OK.

5. Click Save, and then when prompted click Save to Save to Master 
Configuration.

Note: To verify that the server1 application server has started properly, you 
can look for the message Server server1 open for e-business in the 
SystemOut.log found in the following directory:

C:\Program Files\IBM\WebSphere\AppServer\profiles\default\logs\server1
1226 Rational Application Developer V6 Programming Guide



Configure J2C authentication data
This section describes how to configure the J2C authentication data (database 
login and password) for WebSphere Application Server from the WebSphere 
Administrative Console. This step is required for DB2 UDB and optional for 
Cloudscape.

If using DB2 UDB, configure the J2C authentication data (database login and 
password) for WebSphere Application Server from the Administrative Console:

1. Ensure the server1 application server is started.

2. Start the WebSphere Administrative Console.

http://<hostname>:9060/ibm/console

3. Select Security → Global Security.

4. Under the Authentication properties, expand JAAS Configuration → J2C 
Authentication data.

5. Click New.

6. Enter the following on the J2C Authentication data page if you are using DB2 
UDB and then click OK:

– Alias: dbuser
– User ID: db2admin
– Password: <password>

7. Click Save and then when prompted click Save to Save to Master 
Configuration.

Configure the JDBC Provider
This section describes how to configure the JDBC Provider for the selected 
database type. The following procedure demonstrates how to configure the 
JDBC Provider for Cloudscape, with notes on how to do the equivalent for DB2 
Universal Database.

To configure the JDBC Provider from the WebSphere Administrative Console, do 
the following:

1. Select Resources → JDBC Providers.

2. Click New.

3. From the New JDBC Providers page, do the following and then click Next:

a. Select the Database Type: Select Cloudscape.

Note: For DB2 UDB, select DB2.
 Chapter 23. Deploy enterprise applications 1227



b. Select the JDBC Provider: Select Cloudscape JDBC Provider.

c. Select the Implementation type: Select XA data source.

4. We accepted the default for the JDBC Provider name. Click OK.

The JDBC Provider default names are as follows:

– Cloudscape: Cloudscape JDBC Provider (XA)
– DB2: DB2 Universal JDBC Driver Provider (XA)

5. Click Save and then when prompted click Save to Save to Master 
Configuration.

Create the datasource
To create the datasource from the WebSphere Administrative Console, do the 
following:

1. Select Resources → JDBC Providers.

2. Click the JDBC Provider created in “Configure the JDBC Provider” on 
page 1227. For example:

– For Cloudscape click Cloudscape JDBC Provider (XA).

or

– For DB2 click DB2 Universal JDBC Driver Provider (XA).

3. Under Additional Properties (right-hand side of page), click Data sources.

4. Create the BankDS datasource for the BANK database.

a. Click New from the Data sources page.

b. Enter the following and then click OK:

• Name: BankDS
• JNDI name: jdbc/BankDS
• Database name (Cloudscape): c:\databases\BANK

c. For DB2 you must also set the authentication. Select dbuser (user 
defined in “Configure J2C authentication data” on page 1227) from the 
Component-managed authentication alias drop-down list.

Note: For DB2 UDB, select DB2 Universal JDBC Driver Provider.

Note: For DB2 UDB, select XA data source.

Note: For DB2 enter BANK for the database name.
1228 Rational Application Developer V6 Programming Guide



5. Click Save, and then when prompted click Save to Save to Master 
Configuration.

6. Verify the connection by checking BankDS and then click Test connection.

23.4.2  Deploy the EAR
To deploy the BankEJBEAR.ear exported in 23.3.6, “Export the EAR” on 
page 1222, to the WebSphere Application Server, do the following:

1. Copy the BankEJBEAR.ear from the Developer node where you exported the 
EAR from Rational Application Developer to a temporary directory on the 
Application Server node.

2. Ensure the server1 application server is started.

3. Start the WebSphere Administrative Console by opening the following 
location in a Web browser:

http://<hostname>:9060/ibm/console

4. Select Applications → Enterprise Applications.

5. Click Install.

6. Enter the following and then click Next:

– Select Local file system.
– Specify path: c:\temp\BankEJBEAR.ear

7. We accepted the defaults on the generate bindings page. Click Next.

8. When the Install New Application wizard appears, you will need to perform 
the following sequence of steps to deploy the EAR.

a. Select installation options. Accept defaults and click Next.

b. Select modules to servers. Accept defaults and click Next.

c. Select current backend ID. Select the currentBankendID for the specific 
database type then click Next:

– For Cloudscape, select CLOUDSCAPE_V51_1.
– For DB2 UDB, select DB2UDBNT_V82_1.

d. Provide JNDI names for beans. Accept defaults and click Next.

e. Provide default data source mapping for modules containing 2.x entity 
beans. Accept defaults and click Next.

f. Map data sources for all 2.x CMP beans. Accept defaults and click Next.

g. Map EJB references to beans. Accept defaults and click Next.

h. Map virtual hosts for Web modules. Accept defaults and click Next.
 Chapter 23. Deploy enterprise applications 1229



i. Ensure all unprotected 2.x methods have the correct level of protection. 
Accept defaults and click Next.

j. Summary. Click Finish.

You should see the a number of messages, concluded by the following 
message:

Application BankEJBEAR installed successfully.

9. Click Save to Master Configuration and click Save.

10.Select Applications → Enterprise Applications.

11.Check BankEJBEAR and then click Start. 

The status should change to started.

23.5  Verify the application
This section provides some basic procedures to verify the ITSO Bank was 
deployed properly and is working. Table 23-4 on page 1230 lists the sample data 
for the ITSO Bank loaded via the loaddata.sql in “Set up the sample database” 
on page 1215.

Table 23-4   ITSO Bank sample data (loaddata.sql)

Customer name Customer SSN Account number Account balance

John Ganci 111-11-1111 001-999000777 (wife)
001-999000888 (kids)
001-999000999 (dad)

$1,234,567.89
$6,543.21
$98.76

George Kroner 222-22-2222 002-999000777 (wife)
002-999000888 (kids)
002-999000999 (dad)

$65,484.23
$87.96
$654.65

Daniel Farrell 333-33-3333 003-999000777 (hush $)
003-999000888 (slush)
003-999000999 (mush)

$9,876.52
$568.79
$21.56

Juha Nevalainen 444-44-4444 004-999000777 (fish)
004-999000888 (cats)
004-999000999 (builder)

$9,876.52
$1,456,456.46
$23,156.46

Ed Gondek 555-55-5555 005-999000777 (food)
005-999000888 (food)
005-999000999 (food)

$65.89
$72,213.41
$897.55

Fabio Ferraz 666-66-6666 006-999000777 (beef)
006-999000888 (more beef)
006-999000999 (barbecue)

$500.00
$100.00
$100,000.00
1230 Rational Application Developer V6 Programming Guide



To verify that the ITSO Bank sample is deployed and working properly, do the 
following:

1. Ensure that the server1 application server is started.

2. Enter the following URL to access the ITSO Bank application:

http://<hostname>:9080/BankBasicWeb/index.html

Kiriya Keat 777-77-7777 007-999000777 (Vegas)
007-999000888 (beverage)
007-999000999 (ice)

$2,500,000.00
$1,000,000.00
$1.23

Nicolai Nielsen 999-99-9999 009-999000999 (Danny’s) $658,600.42

Customer name Customer SSN Account number Account balance
 Chapter 23. Deploy enterprise applications 1231



Figure 23-16   ITSO Bank home page

3. You should see something like Figure 23-16. Click RedBank.

4. You should see something like Figure 23-16. Enter customer ID 111-11-1111 
and then click Submit.
1232 Rational Application Developer V6 Programming Guide



Figure 23-17   ITSO Bank login page

5. When the Accounts page appears as seen in Figure 23-18 on page 1234, 
click 001-999000888.
 Chapter 23. Deploy enterprise applications 1233



Figure 23-18   ITSO Bank - Accounts page

6. When the Account Maintenance page appears (as seen in Figure 23-19 on 
page 1235), do the following and then click Submit:

– Select Transfer.

– Amount: 54000

– Destination account: 004-999000888

Note: This transfers 54000 cents, or 540 dollars.
1234 Rational Application Developer V6 Programming Guide



Figure 23-19   ITSO Bank - Transfer

After the transfer you should see a page like Figure 23-20 on page 1236. 
Notice the account balance has been updated (subtracted transfer amount).

Note: This transfers funds to the account associated with user SSN 
444-44-44444.
 Chapter 23. Deploy enterprise applications 1235



Figure 23-20   ITSO Bank - After transfer

7. Start another Web browser session, and enter the following URL to access 
the ITSO Bank application to simulate the other customer and account:

http://<hostname>:9080/BankBasicWeb/index.html

8. Enter customer ID 444-44-4444 and then click Submit. 

9. Click 004-999000888.

10.Select List transactions and click Submit.

You should see that the account has had $540.00 transferred to it. The 
original account balance was $1,456,456.46 and is now $1,456,996.46.
1236 Rational Application Developer V6 Programming Guide



Chapter 24. Profile applications

Profiling is a technique used by developers to detect and isolate application 
problems such as memory leaks, performance bottlenecks, excessive object 
creation, and exceeding system resource limits during the development phase.

This chapter introduces the features, architecture, and process for profiling 
applications using the profiling tooling included with IBM Rational Application 
Developer V6.0. We have included a working example for code coverage 
analysis for the Web application developed in Chapter 11, “Develop Web 
applications using JSPs and servlets” on page 499.

The chapter is organized into the following sections:

� Introduction to profiling
� Prepare for the profiling sample
� Profile the sample application

24
© Copyright IBM Corp. 2005. All rights reserved. 1237



24.1  Introduction to profiling
Traditionally, performance analysis is performed once an application is getting 
close to deployment or after it has already been deployed. The profiling tools 
included with Rational Application Developer allow the developer to move the 
performance analysis to a much earlier phase in the development cycle, thus 
providing more time for changes to the application that may effect the 
architecture of the application before they become critical production 
environment issues.

The types of problems that IBM Rational Application Developer V6.0 profiling 
tooling can assist in detecting include:

� Memory leaks
� Performance bottlenecks
� Excessive object creation
� System resource limits

The profiling tools can be used to gather information on applications that are 
running:

� Inside an application server, such as WebSphere Application Server

� As a standalone Java application

� On the same system as Rational Application Developer

� On a remote WebSphere Application Server with the IBM Rational Agent 
Controller installed

� In multiple JVMs

24.1.1  Profiling features
Within Rational Application Developer, there are several profiling types. Each 
profiling type includes predefined profiling sets used to detect and analyze 
common problems such as memory leaks, performance bottlenecks, and 
excessive object creation.

This section describes the capabilities of the following profiling types:

� Memory analysis
� Thread analysis
� Execution time analysis
� Code coverage analysis
� Probekit analysis
1238 Rational Application Developer V6 Programming Guide



Memory analysis
Memory analysis is used to detect memory management problems. In IBM 
Rational Application Developer V6 there is new support to provide automatic 
detection of memory leaks. Memory analysis can help developers identify 
memory leaks as well as excessive object allocation that may cause 
performance problems.

The memory analysis capability in IBM Rational Application Developer V6.0 has 
been enhanced with the addition of new views described in Table 24-1, and new 
capabilities found in Table 24-2.

Table 24-1   New memory analysis views

Table 24-2   New memory analysis capabilities

Thread analysis
Thread analysis is used to help identify thread contention and deadlock problems 
in a Java application. Thread contention issues can cause performance 
problems, while deadlocks are a correctness issue that can cause a critical 
runtime issue. The thread analysis capabilities provide analysis data for 
detecting both of these types of problems.

The thread analysis has been enhanced with the additional view displayed in 
Table 24-3.

View name Description

Leak Candidates view A tabular view to assist the developer in 
identifying the most likely objects 
responsible for leaking memory.

Object Reference Graph view A graphical view that shows the referential 
relationship of objects in a graph 
highlighting the allocation path of leak 
candidates.

Capability Description

Memory Leak Analysis - Manual Allows at the discretion of the developer to 
capture memory heap dumps after 
application warm-up; that is, when classes 
are loaded and initialized.

Memory Leak Analysis - Automatic Provides timed memory heap dumps at 
specified intervals during the running of 
the Java application.
 Chapter 24. Profile applications 1239



Table 24-3   New thread analysis views

Execution time analysis
Execution time analysis is used to detect performance problems by highlighting 
the most time intensive areas in the code. This type of analysis helps developers 
identify and remove unused or inefficient coding algorithms.

The execution time analysis has been enhanced with the additional views 
described in Table 24-4.

Table 24-4   New execution time analysis views

Code coverage analysis
Code coverage is a new capability in IBM Rational Application Developer V6.0. It 
is used to detect areas of code that have not been executed in a particular 
scenario that is tested. This capability is a useful analysis tool to integrate with 
component test scenarios and can be used to assist in identifying test cases that 
may be missing from a particular test suite or code that is redundant. 

New views associated with this capability are shown in Table 24-5.

View name Description

Thread View A graphical view of all threads available, 
their states, and which thread is holding 
locks. It assists in identifying thread 
contentions.

View name Description

Performance Call Graph View A graphical view focusing on data that 
indicates potential performance problems 
including statistical information.

Method Details View A view that provides complete 
performance data for the currently 
displayed method, including information 
about its callers and descendants.

Note: The profiling working example found in the following sections of this 
chapter demonstrate the end-to-end process of profiling a Web application for 
a code coverage:

� 24.2, “Prepare for the profiling sample” on page 1246
� 24.3, “Profile the sample application” on page 1249
1240 Rational Application Developer V6 Programming Guide



Table 24-5   New views associated with code coverage

Probekit analysis
Probekit analysis provides a new capability that has been introduced into IBM 
Rational Application Developer V6.0. It is a scriptable byte-code instrumentation 
(BCI) framework, to assist in profiling runtime problems by inserting Java code 
fragments into an application. The framework is used to collected detailed 
runtime information in a customized way.

A probekit file can be contain one or more probes with each containing one or 
more probe fragments. These probes can be specified when to be executed or 
on which program they will be used. The probe fragments are a set of Java 
methods that are merged with standard boilerplate code with a new Java class 
generated and compiled. The functions generated from the probe fragments 
appear as static methods of the generated probe class.

The probekit engine called the BCI engine is used to apply probe fragments by 
inserting the calls into the target programs. The insertion process of the call 
statements into the target methods is referred to as instrumentation. The data 
items requested by a probe fragment are passed as arguments (for example, 
method name and arguments). The benefit of this approach is that the probe can 
be inserted into a large number of methods with small overhead.

Probe fragments can be executed at the following points (see IBM Rational 
Application Developer V6’s online help for a complete list):

� On method entry or exit
� At exception handler time
� Before every executable code when source code is available
� When specific methods are called, not inside the called method 

View name Description

Coverage Navigator A graphical view that shows coverage 
levels of packages, classes, and methods 
and their coverage statistics.

Annotated Source Includes displays that:

� Have a copy of the code marked 
indicated tested, untested, and 
partially tested lines.

� Shows at the class and method level 
a pie chart with the line coverage 
statistic.

Coverage Statistics A tabular view showing the coverage 
statistics.
 Chapter 24. Profile applications 1241



Each of the probe fragments can access the following data:

� Package, class, and method name 

� Method signature 

� This object 

� Arguments 

� Return value 

� The exception object that caused an exception handler exit to execute, or an 
exception exit from the method 

There are two major types of probes available to the user to create, as described 
in Table 24-6.

Table 24-6   Types of probes available with Probekit

A tutorial on using Probekit is available in IBM Rational Application Developer V6 
via the menu by performing the following steps:

1. Start IBM Rational Application Developer V6.

2. Select Help → Tutorials Gallery.

3. When the Tutorials Gallery window displays, expand Do and Learn.

4. Select Use Probekit to customize Java profiling.

This tutorial is estimated to take 45 minutes and will assist the developer in 
creating and using the Probekit in IBM Rational Application Developer V6.

24.1.2  Profiling architecture
The profiling architecture that exists in IBM Rational Application Developer V6.0 
is based upon the data collection engine feature provided by the open source 
Eclipse Hyades project. More detailed information on the Eclipse Hyades project 
can be found at:

http://www.eclipse.org/hyades

Type of probe Description

Method Probe Probe can be inserted anywhere within the body of a method with the 
class or jar files containing the target methods instrumented by the 
BCI engine.

Callsite Probe Probe is inserted into the body of the method that calls the target 
method. The class or jar files that call the target instrumented by the 
BCI engine.
1242 Rational Application Developer V6 Programming Guide

http://www.eclipse.org/hyades


Hyades provides the IBM Rational Agent Controller daemon with a process for 
enabling client applications to launch host processes and interact with agents 
that exist within host processes. Figure 24-1 depicts the profiling architecture. 

Figure 24-1   Profiling architecture of IBM Rational Application Developer V6.0

The definitions for the profiling architecture are as follows:

� Application process: The process that is executing the application consisting 
of the Java Virtual Machine (JVM) and the profiling agent.

� Agent: The profiling component installed with the application that provides 
services to the host process, and more importantly, provides a portal by which 
application data can be forwarded to attached clients.

� Test Client: A local or remote application that is the destination of host 
process data that is externalized by an agent. A single client can be attached 
to many agents at once, but does not always have to be attached to an agent.

� Agent Controller: A daemon process that resides on each deployment host 
providing the mechanism by which client applications can either launch new 
host processes, or attach to agents coexisting within existing host processes. 
The Agent Controller can only interact with host processes on the same node.

� Deployment hosts: The host that an application has been deployed to and is 
being monitored for the capture of profiling agent.

Development Hosts

JVMPI
Events

Controls

Eclipse Plug-ins

Test Client

JDK

IBM Agent Controller

ServiceServiceServiceService

Deployment Hosts

Application
Process

AgentAgent

Application
Process

AgentAgent

Profiler
Agent

Java
Virtual

Machine
 Chapter 24. Profile applications 1243



� Development hosts: The host that runs an Eclipse-compatible architecture 
such as IBM Rational Application Developer V6 to receive profiling 
information and data for analysis.

Each application process shown in Figure 24-1 on page 1243 represents a JVM 
that is executing a Java application that is being profiled. A profile agent will be 
attached to each application to collect the appropriate runtime data for a 
particular type of profiling analysis. This profiling agent is based on the Java 
Virtual Machine Profiler Interface (JVMPI) architecture. More details on the 
JVMPI specification can be found at:

http://java.sun.com/j2se/1.4.2/docs/guide/jvmpi

The data collected by the agent is then sent to the agent controller, which then 
forwards this information to IBM Rational Application Developer V6 for analysis 
and visualization.

There are two types of profiling agents available in IBM Rational Application 
Developer V6:

� Java Profiling Agent: This agent is based on the JVMPI architecture and is 
shown in Figure 24-1 on page 1243. This agent is used for the collection of 
both standalone Java applications as well as applications running on an 
application server.

� J2EE Request Profiling Agent: This agent resides in an application server 
process and collects runtime data for J2EE applications by intercepting 
requests to the EJB or Web containers. 

24.1.3  Profiling and Logging perspective
After installing Rational Application Developer, you will first need to enable the 
Profiling and Logging capability (see “Enable the Profiling and Logging 
capability” on page 1247 for details).

The Profiling and Logging perspective can be accessed by selecting Window → 
Open Perspective → Other → Profiling and Logging and then clicking OK. If 
it is not listed click Show all. 

There are many supporting views for the Profiling and Logging perspective. 
When selecting Window → Show View while in the Profiling and Logging 
perspective, you will see the following views:

� Console

Note: There is only one instance of the J2EE Request Profiling agent that 
is active in a process that hosts WebSphere Application Server.
1244 Rational Application Developer V6 Programming Guide

http://java.sun.com/j2se/1.4.2/docs/guide/jvmpi


� Log Navigator
� Log View
� Navigator
� Package Statistics
� Problems
� Profile Monitor
� Properties
� Statistical Data
� Other

24.1.4  Profiling sets
The profiling in IBM Rational Application Developer V6 has been structured 
around profiling sets and associated views. These profiling sets focus on 
providing the user with the ability to concentrate on particular types of analysis 
while profiling an application. Users who require more extensive analysis can 
create their own unique profiling sets to satisfy their particular needs. 

The predefined profiling sets available in IBM Rational Application Developer V6 
are outlined in Table 24-7.

Table 24-7   Profiling sets and available views

Note: If you select Other, you will see a listing of many more views in 
support of profiling.

Profiling set Options selected Views available

Memory/Leak Analysis N/A � Package Statistics view
� Class Statistics view
� Object References view

Instance Level 
information check box 
selected

� Package Statistics view
� Class Statistics view
� Statistics
� Object References view
 Chapter 24. Profile applications 1245



24.2  Prepare for the profiling sample
This redbook includes a code coverage profiling example. We will use the ITSO 
RedBank sample Web application developed in Chapter 11, “Develop Web 
applications using JSPs and servlets” on page 499, as our sample application for 
profiling. 

Complete the following tasks in preparation for the profiling sample:

� Prerequisites hardware and software.
� Enable the Profiling and Logging capability.

Execution Time 
Analysis

Show execution 
Statistics (compressed 
data)

� Package Statistics view
� Class Statistics view
� Method Statistics view
� Coverage Statistics 

Show execution 
graphical details

� Package Statistics view
� Class Statistics view
� Method Statistics view
� Coverage Statistics
� Execution Flow view
� UML2 Sequence diagrams 

views (object, class, thread) 

Show Instance level 
information, Show 
execution graphical 
details

� Package Statistics view
� Class Statistics view
� Method Statistics view
� Instance Statistics
� Coverage Statistics
� Object References view
� Execution Flow view
� UML2 Sequence diagrams 

views (object, class, thread) 

Method Code Coverage N/A � Package Statistics view
� Class Statistics view
� Method Statistics view
� Coverage Statistics 

Important: For the Object References view you will need to ensure that 
Collect Object References is enabled to view the profiling data using the 
Object References view.

Profiling set Options selected Views available
1246 Rational Application Developer V6 Programming Guide



� Import the sample project interchange file.
� Publish and run sample application.

24.2.1  Prerequisites hardware and software
This section outlines the hardware and software we used to run the profiling 
working example.

Prerequisite hardware
When developing the working example, we used the following hardware:

� IBM ThinkCentre™ M50 (8189-E1U)

– Intel Pentium 4, 2.8 GHz CPU
– 2 GB RAM

– 40 GB 7200 RPM IDE HDD

Prerequisite software
The working example requires the following software be installed:

1. IBM Rational Application Developer V6.0

For details refer to “Rational Application Developer installation” on page 1372.

2. IBM Rational Application Developer V6.0 - Interim Fix 0004

For details refer to “Rational Application Developer Product Updater - Interim 
Fix 0004” on page 1380.

3. IBM Rational Agent Controller

For details refer to “IBM Rational Agent Controller V6 installation” on 
page 1382.

24.2.2  Enable the Profiling and Logging capability
To enable the Profiling and Logging capability in the preferences, do the 
following:

1. Select Window → Preferences.

2. Expand Workbench → Capabilities.

3. Expand Tester, and check Profiling and Logging (as seen in Figure 24-2), 
and then click OK.

Note: We found memory profiling to be very resource intensive.
 Chapter 24. Profile applications 1247



Figure 24-2   Enable Profiling and Logging capability

24.2.3  Import the sample project interchange file
To import the ITSO RedBank JSP and Servlet Web application Project 
Interchange file (BankBasicWeb.zip), do the following:

1. Open the Web perspective Project Explorer view.

2. Right-click Dynamic Web Projects, and select Import → Import.

3. When the Import dialog appears, select Project Interchange and then click 
Next.

Note: If you want to use the Probekit, you will need to enable this capability by 
checking the Probekit check box, as seen in Figure 24-2.
1248 Rational Application Developer V6 Programming Guide



4. In the Import Projects screen, browse to the c:\6449code\web folder and 
select BankBasicWeb.zip. Click Open.

5. Check the BankBasicWeb and BankBasicWebEAR projects, and click 
Finish.

24.2.4  Publish and run sample application
The sample application needs to be published to the WebSphere Application 
Server, prior to running the application server in profile mode.

To publish and run the sample application on the WebSphere Application Server 
V6.0 test server, do the following:

1. Open the Web perspective.

2. Expand Dynamic Web Projects → BankBasicWeb → WebContent.

3. Right-click index.html, and select Run → Run on Server.

4. When the Server Selection dialog appears, select Choose and existing 
server, select WebSphere Application Server v6.0, and click Finish.

This operation will start the server and publish the application to the server. 

24.3  Profile the sample application
This section demonstrates the code coverage analysis feature of profiling for the 
ITSO RedBank Web application.

24.3.1  Start server in profile mode
To start the WebSphere Application Server V6.0 in profile mode, do the 
following:

1. Ensure the IBM Rational Agent Controller Windows service is started.

2. Open the Web perspective.

3. In the Servers view, do the following to start the server in profile mode:

– If the WebSphere Application Server V6.0 is started, right-click and select 
Restart → Profile. 

– If the WebSphere Application Server V6.0 is not started, right-click the 
server and select  Profile. 

4. After the server has started, the Profile on server dialog should appear 
presenting the user with a listing of agents to attach to.
 Chapter 24. Profile applications 1249



Expand PID as seen in Figure 24-3, and select the  to move the PID to the 
Selected agents pane.

Figure 24-3   Identify Agents to attach to

5. Click the Profiling tab as seen in Figure 24-4 on page 1251.
1250 Rational Application Developer V6 Programming Guide



Figure 24-4   Addition of PID to the list of selected agents

6. When the Overview tab appears, check Method Coverage Information (as 
seen in Figure 24-5 on page 1252), and click Finish.

When you click Finish, the Profiling and Logging perspective will appear.

Note: In most cases, the pre-defined profile sets will be adequate for 
testing; however, you may want to create a new profile set that chains 
together the several existing profile sets. 

To add a new profile set, click Add as seen in Figure 24-5 on page 1252, 
and enter the name of the new profile set. Click Edit and check the desired 
existing profiling sets that you wish to include in your new profiling set.
 Chapter 24. Profile applications 1251



Figure 24-5   Profile on server

7. When the Profiling tips dialog appears as seen in Figure 24-6, click OK.

Figure 24-6   Profiling Tips
1252 Rational Application Developer V6 Programming Guide



24.3.2  Collect profile information
To collect the profile information, do the following:

1. In the Profiling Monitor view of the Profiling and Logging perspective, select 
the two attached profiler process, as shown in Figure 24-7. Right-click and 
select Start Monitoring.

Figure 24-7   Selecting active process in the Profile Monitor view

2. Run a test of a part of the application.

a. Enter the following URL to launch the application in a Web browser:

http://localhost:9080/BankBasicWeb/index.htm

b. Click RedBank.

c. When prompted, enter 111-11-1111 in the customer SSN field and then 
click Submit.

We have now run the part of the application that we want to obtain code 
coverage information for. In the next section, we will analyze this information.

24.3.3  Analysis of code coverage information
To analyze the code coverage information for our sample application, do the 
following:

1. In the Profiling Monitor view, right-click Method Code Coverage, and select 
Open With → Coverage Statistics.

2. The Coverage Statistics view will open. Enter itso.* in the Filter field and 
press Enter.

The Coverage Statistics view should look similar to Figure 24-8 on 
page 1254.

Note: This step requires that you have published the project to the server 
as described in 24.2.4, “Publish and run sample application” on page 1249.
 Chapter 24. Profile applications 1253



Figure 24-8   Coverage Statistics view

The Coverage Statistics view shows which methods have been called during the 
tests performed on the sample application. For example, the 
Account.getAccountNumber method was executed nine times. This type of 
information is useful for function testing.

You can examine the source code for a class or method by right-clicking it in the 
Coverage Statistics view and selecting Open Source.
1254 Rational Application Developer V6 Programming Guide



Part 5 Team 
development

Part 5
© Copyright IBM Corp. 2005. All rights reserved. 1255



1256 Rational Application Developer V6 Programming Guide



Chapter 25. Rational ClearCase 
integration

This chapter introduces the features and terminology of IBM Rational ClearCase 
with respect to Rational Application Developer. In addition, we provide a basic 
scenario with two developers working in parallel on a common Web project using 
Rational Application Developer and ClearCase. The focus of the example is to 
demonstrate the tooling and integration Rational Application Developer with 
ClearCase.

The chapter is organized into the following topics:

� Introduction to IBM Rational ClearCase
� Integration scenario overview
� ClearCase setup for a new project
� Development scenario

25
© Copyright IBM Corp. 2005. All rights reserved. 1257



25.1  Introduction to IBM Rational ClearCase
This section provides an introduction to the IBM Rational ClearCase product as 
well as basic information on the IBM Rational Application Developer V6.0 
integration features for ClearCase.

We have organized the section into the following topics:

� IBM Rational Application Developer ClearCase overview
� IBM Rational ClearCase terminology
� IBM Rational ClearCase LT installation
� New V6 integration features for ClearCase
� IBM Rational Application Developer integration for ClearCase

25.1.1  IBM Rational Application Developer ClearCase overview
Rational ClearCase is a software configuration management (SCM) product that 
helps to automate the tasks required to write, release, and maintain software 
code.

Rational ClearCase offers the essential functions of version control, workspace 
management, process configuration, and build management. By automating 
many of the necessary and error-prone tasks associated with software 
development, Rational ClearCase helps teams of all sizes build high-quality 
software.

ClearCase incorporates Unified Change Management (UCM), Rational's best 
practices process for managing change at the activity level, and control for 
workflow.

UCM can be applied to projects out-of-the-box, enabling teams to get up and 
running quickly. However, it can be replaced with any other process that you 
already have in place at your site.

ClearCase provides support for parallel development. With automatic branching 
and merge support, it enables multiple developers to design, code, test, and 
enhance software from a common, integrated code base.

Snapshot views support a disconnected use model for working away from the 
office. All changes since the last snapshot are automatically updated once you 
are connected again.

IBM offers two versions of the Rational ClearCase product: 

� ClearCase 
� ClearCase LT
1258 Rational Application Developer V6 Programming Guide



ClearCase LT is a light version for support of small teams that do not need the 
full functionality of the complete ClearCase product (distributed servers, 
database replication, advanced build management, transparent file access). A 
product license for IBM Rational ClearCase LT is included with IBM Rational 
Application Developer V6.0.

For the full-sized IBM Rational ClearCase, the product also provides an add-on 
MultiSite feature.

More information on the IBM Rational ClearCase products can be found at:

http://www.ibm.com/software/awdtools/clearcase

25.1.2  IBM Rational ClearCase terminology
We have outlined some of the key terminology used in IBM Rational ClearCase:

� Activity: A unit of work performed by an individual. In UCM an activity tracks a 
change set, that is, a list of versions of files created to perform the work (for 
example, Developer 1 fixing problem report #123). When you work on an 
activity, all versions you create are associated with that activity.

� Component: A set of related directory and file elements. Typically, elements 
that make up a component are developed, integrated, and released together. 
In Application Developer, a component contains one or more projects.

� Baseline: A version of a project.

� Development stream: Each developer’s own working area.

� Integration stream: A shared working area for the team, containing the 
versions of the components that are available to all developers.

� Deliver stream: The act of making a developer’s development stream 
available to the integration stream, publishing a developer’s work.

� Rebase: The act of retrieving a project to work on locally, or to synchronize 
your development stream with what is available in the integration stream.

� Check in and check out: A file that is to be edited must be checked out. This 
lets other developers know that the file is opened by another developer. Once 
a developer completes any edits on a file, it must be checked back in before 
making the files available to others.

� VOB (versioned object base): The permanent data repository where 
ClearCase stores files, directories, and metadata.

� View: A selection of resources in a VOB, a window to the VOB data.

Note: Rational Application Developer includes entitlement for ClearCase LT.
 Chapter 25. Rational ClearCase integration 1259

http://www.ibm.com/software/awdtools/clearcase


25.1.3  IBM Rational ClearCase LT installation
IBM Rational Application Developer V6.0 includes a license for IBM Rational 
ClearCase LT. 

Information on obtaining a copy of IBM Rational ClearCase LT can be found in 
TechNote-Installing_CCLT.html of the IBM Rational Application Developer V6.0 
CD1. This technote describes how to obtain ClearCase LT, as well as the need 
to apply a patch to work properly with IBM Rational Application Developer V6.0.

For information on the IBM Rational ClearCase LT installation, refer to “IBM 
Rational ClearCase LT installation” on page 1385.

Figure 25-1 shows a typical development environment when using ClearCase 
with two developers.

Figure 25-1   Sample ClearCase LT setup between two developers

In this chapter, we are simulating this flow by using two workspaces on the same 
machine.

25.1.4  IBM Rational Application Developer integration for ClearCase
IBM Rational Application Developer V6.0 includes integration support for IBM 
Rational ClearCase (as well as ClearCase LT), allowing easy access to 
ClearCase features. The ClearCase adapter is automatically activated when you 
start Rational Application Developer the next time after ClearCase installation.

Windows 2000
Domain Controller logonlogon

Developer 1 Developer 2

Application
Developer

Application
Developer

ClearCase
LT Client

ClearCase
LT Server

ClearCase
LT Client

connect
1260 Rational Application Developer V6 Programming Guide



New V6 integration features for ClearCase
Integration with Rational ClearCase via the source control management (SCM) 
adaptor has been enhanced in IBM Rational Application Developer V6.0 as 
follows:

� Dynamic views are now fully supported. Note though that ClearCase LT 
supports snapshot views only and the dynamic view capability is provided in 
ClearCase or ClearCase MultiSite®.

� Improved compare and merge, including integration with Eclipse 
compare/merge framework.

� Improved support for working in disconnected mode.

� Better workspace/view management.

� Better usage guidance and documentation.

ClearCase help in Rational Application Developer
Rational Application Developer provides two links to documentation for using 
ClearCase. 

To access the help documentation in Rational Developer, select Help → Help 
Contents to open the new help window. Select Developing applications in a 
team environment from the Contents view. 

To access the Rational ClearCase Help system, click ClearCase Help or click 
the ClearCase Help icon ( ). This icon becomes active when you connect to 
ClearCase.

ClearCase preferences
Ensure that the ClearCase SCM Adapter capability is enabled. Refer to 25.3.1, 
“Enable Team capability in preferences” on page 1264, for details.

There are a number of ClearCase preferences that you can modify by selecting 
Window → Preferences → Team → ClearCase SCM Adapter (see Figure 25-2 
on page 1262).

We recommend that you check out files from Rational ClearCase before you edit 
them. However, if you edit a file that is under ClearCase control but is not 
checked out, Rational Developer can automatically check it out for you if you 
select the Automatically checkout option for the setting “Checked-in files are 
saved by an internal editor.”

You can specify if you want to automatically connect to ClearCase when you 
start Application Developer. Select Automatically connect to ClearCase on 
startup to enable this option. 
 Chapter 25. Rational ClearCase integration 1261



Figure 25-2   ClearCase preferences dialog

If you click Advanced Options and then select the Operations tab, there is a 
preference for generating backup copies when you cancel a checkout. This is 
enabled by default, and specifies that ClearCase generates backup copies when 
you perform an undo checkout operation. The backup files will have a .keep 
extension. 

The ClearCase online help in Rational Developer contains a detailed description 
of each option of the preferences page.

Note: You must be connected to ClearCase for the Advanced Options button 
to be active.
1262 Rational Application Developer V6 Programming Guide



25.2  Integration scenario overview
This section describes a scenario with two developers, developer 1 and 2, 
working on a Web project called ITSO_ProGuide_UCM. Developer 1 is assigned 
the role of project integrator and is responsible for setting up the environment.

Table 25-1   Development activities

The setup of this scenario and its flow is shown in Figure 25-3 on page 1264. 
ClearCase terminology is used for the tasks.

Developer 1 activities Developer 2 activities

� Creates a new ClearCase project, 
ITSO_Project

� Joins the ClearCase project by 
creating views

� Creates a new Web project, 
ITSO_ProGuide_UCM

� Moves the project under ClearCase 
source control

� Adds a servlet, ServletA
� Delivers the work to the integration 

stream
� Makes a baseline

� Joins the ClearCase project by 
creating views

� Rebases his view to match the 
integration stream

� Imports the project into Rational 
Application Developer workspace

� Checks out ServletA
� Makes changes
� Checks in the servlet

� Checks out ServletA
� Makes changes
� Checks in the servlet
� Delivers the work to the integration 

stream

� Delivers the work to the integration 
stream

� Resolves conflicts by using the Merge 
Tool
 Chapter 25. Rational ClearCase integration 1263



Figure 25-3   Scenario setup

Note that the integration view is like a window to the integration stream. The 
integration stream should be reserved for only that code that has passed the 
developer’s inspection and is sharable to the entire team.

When finished with the changes, the developer delivers his or her development 
stream back to the integration stream. A project integrator (or any of the 
developers) can then make a new baseline freezing the latest code changes.

25.3  ClearCase setup for a new project
In this example scenario, developer 1 and developer 2 work on the same 
machine by switching workspaces to simulate multiple users. Alternatively, you 
could have developer 1 working on a machine where a ClearCase LT Server is 
installed, and other developers working on machines where only the ClearCase 
LT Client is installed. The steps are basically the same in both cases.

25.3.1  Enable Team capability in preferences
By default, the ClearCase SCM Adapter capability is disabled. To enable, do the 
following:

1. Select Window → Preferences.

2. Select Workbench → Capabilities.

3. Expand Team.

4. Check ClearCase SCM Adapter and Core Team Support.

Developer 2Developer 1

Make 
Baseline

dev1_View

Rebase 
Stream

Deliver 
Stream

Make 
Baseline

Rebase 
Stream

Deliver 
Stream

dev2_View

projects
VOB

ITSO_Project

ITSO_
Project_

Integration

Baselines
dev2_IntegrationViewdev1_IntegrationView

___________________Workbench 1_______________             _____Workbench 2_____

Update 
View

Update 
View
1264 Rational Application Developer V6 Programming Guide



25.3.2  Create new ClearCase project
Developer 1 creates a new project under ClearCase control as follows:

1. As developer 1, select Start → Programs → Rational Software → Rational 
ClearCase → Project Explorer.

2. Right-click projects and select New → Project from the context menu. 

3. When the New Project Wizard appear, enter ITSO_Project in the Project 
name field as seen in Figure 25-4, and then click Next.

Figure 25-4   Creating new project: Step 1

4. In the Step 2 dialog ensure No is selected, as seen in Figure 25-5 on 
page 1266, and then click Next.
 Chapter 25. Rational ClearCase integration 1265



Figure 25-5   Creating new project: Step 2

5. In the Step 3 dialog (see Figure 25-6 on page 1267) click Add:

a. In the Add Baseline dialog, first click Change >> and select all streams.

b. Select the component InitialComponent from the drop-down list and 
select InitialComponent_INITIAL under Baselines. 

c. Click OK.

6. Click Next.
1266 Rational Application Developer V6 Programming Guide



Figure 25-6   Creating new project: Step 3

7. In the Step 4 dialog (Figure 25-7 on page 1268) select InitialComponent 
under Make the following components modifiable. Leave the other values as 
their defaults. Click Next.
 Chapter 25. Rational ClearCase integration 1267



Figure 25-7   Creating new project: Step 4

8. In the Step 5 dialog, select No and click Finish.

9. Click OK on the confirmation dialog. 

ClearCase now creates the project and it shows up in the Project Explorer.

25.3.3  Join a ClearCase project
The next step for developer 1 is to join the project and create a new Web project 
in Rational Application Developer.

1. Start Rational Application Developer and enter C:\dev1_workspace as the 
name of the workspace for developer 1 (Figure 25-8 on page 1269). 

Do not enable the default workspace option since we will be switching 
workspaces several times during this exercise. Click OK. 

– If the Workspace Launcher dialog did not appear, change your Rational 
Application Developer startup setting under Window → Preferences → 
Workbench → Startup and shut down. Make sure the Prompt for 
workspace on startup option is selected.

– If the Auto Launch Configuration Change Alert dialog appears during 
startup, informing of an update to your auto launch settings, click Yes.
1268 Rational Application Developer V6 Programming Guide



Figure 25-8   Selecting workspace for developer 1

2. Close or minimize the Welcome view.

3. Select ClearCase → Connect to Rational ClearCase (unless you specified 
to automatically connect to ClearCase when Rational Application Developer 
starts). You may also click the ClearCase Connect icon ( ).

4. Select ClearCase → Create New View.

5. In the View Creation Wizard (Figure 25-9 on page 1270), select Yes to 
indicate that we are working on a ClearCase project. Expand projects and 
select the ITSO_Project. Click Next.
 Chapter 25. Rational ClearCase integration 1269



Figure 25-9   Creating a new view

6. In the Create a Development Stream dialog (Figure 25-10 on page 1271) 
enter dev1_view as the development stream name and make sure the 
integration stream name is ITSO_Project_Integration. Click Next.
1270 Rational Application Developer V6 Programming Guide



Figure 25-10   Creating a development stream

7. In the Choose Location for a Snapshot View (Development View) dialog 
(Figure 25-11 on page 1272) change the location to C:\ITSO\dev1_view. Click 
Next and click Yes on the confirmation dialog.
 Chapter 25. Rational ClearCase integration 1271



Figure 25-11   Specifying location for a development view

8. In the Choose Location for a Snapshot View (Integration View) dialog 
(Figure 25-12 on page 1273) change the location to 
C:\ITSO\Integration_view. Click Next.
1272 Rational Application Developer V6 Programming Guide



Figure 25-12   Specifying location for the integration view

9. In the Choose Components dialog, leave the Initial_Component selected. 
Click Finish.

10.In the Confirmation dialog (Figure 25-13) click OK.

Figure 25-13   View creation confirmation dialog

11.The View Creation Status dialog is displayed after the views have been 
created. Click OK.
 Chapter 25. Rational ClearCase integration 1273



25.3.4  Create a Web project
Developer 1 has now created the necessary views and joined the project. The 
next task is to start actual development and add a new project to ClearCase 
control. We will create a dynamic Web project containing just one servlet for this 
purpose.

1. As developer 1, select File → New → Dynamic Web Project. In the New 
Dynamic Web Project dialog (Figure 25-14), enter ITSO_ProGuide_UCM as a 
project name and click Finish.

2. After the project is created, click Yes to switch to the Web perspective.

You should now have a new project under the Dynamic Web Projects folder 
and the related EAR project under the Enterprise Applications folder.

Figure 25-14   Creating dynamic Web project

25.3.5  Add a project to ClearCase source control
To add the new project under ClearCase control, do the following:

1. As developer 1, right-click the ITSO_ProGuide_UCM project in the Project 
Explorer view and select Team → Share Project... from the context menu.

2. In the Share Project dialog, select ClearCase SCM Adapter and click Next.

3. In the Move Project Into a ClearCase VOB dialog (Figure 25-15 on 
page 1275) click Browse and select the 
C:\ITSO\dev1_view\sources\InitialComponent directory. Click OK and 
then click Finish.
1274 Rational Application Developer V6 Programming Guide



Figure 25-15   Moving project into ClearCase

4. In the Add Elements to Source Control dialog (Figure 25-16), leave all items 
selected and deselect Keep checked out. Click OK.

Figure 25-16   Specifying elements to add to source control

5. In the Select Activity dialog (Figure 25-16) select New... and enter Developer 
1 adds project to source control. Click OK to return, and then click OK to 
continue. The Web project is now added to ClearCase source control. 
 Chapter 25. Rational ClearCase integration 1275



Figure 25-17   Specifying activity

In Figure 25-18 you can see that the icons belonging to the Web project now 
have a blue background, and the project name has a view name attached to 
it. This indicates that the resources are under ClearCase source control. 

Figure 25-18   Resources under ClearCase source control

Project contents have been moved from the workspace to developer 1 view. 
(C:\dev1_workspace Æ C:\ITSO\dev1_view\sources\InitialComponent in our 
example). Open Windows Explorer and verify this result.

Note that the ITSO_ProGuide_UCMEAR project still resides under the dev1 
workspace.

6. Under Enterprise Applications, select the ITSO_ProGuide_UCMEAR project 
and add this project to source control using the same method (do not create a 
1276 Rational Application Developer V6 Programming Guide



new activity, use the activity created when adding the Web project to source 
control).

Both projects are now under ClearCase source control.

25.4  Development scenario
To show how to work with ClearCase we use a simple scenario where two 
developers work in parallel on a common project. We will use a servlet to 
illustrate handling a situation when adding an element (the servlet) generates a 
potential update to some other element(s), like the deployment descriptor.

25.4.1  Developer 1 adds a servlet
Developer 1 defines the servlet in the Web project as follows:

1. As developer 1, right-click ITSO_ProGuide_UCM and select New → 
Other → Web → Servlet from the context menu. 

2. Enter ServletA as the servlet name and click Next. Enter itso.ucm as the 
Java package name and click Finish. 

3. Adding a servlet to the project causes an update to the deployment descriptor 
(web.xml) and the binding and extension information (the ibm-web-bnd.xmi 
and ibm-web-ext.xmi files). You are prompted to check them out 
(Figure 25-19). On the Check Out Elements dialog, ensure all three files are 
selected and click OK.

Figure 25-19   Checking out dependent elements
 Chapter 25. Rational ClearCase integration 1277



4. On the Select Activity dialog, select New and enter Developer 1 adds 
servletA as the name of the activity. Click OK twice. The servlet is 
generated.

5. On the Add Element(s) to Source Control dialog (see Figure 25-20) make 
sure the packages and the servlet are selected. Leave “Keep checked out” 
deselected and click OK.

Figure 25-20   Adding new elements to source control

6. On the Select Activity dialog, select Developer 1 adds ServletA and click 
OK. The servlet is added to the project and to ClearCase source control.

7. Click Yes on the File Changed dialog.

The three dependent files are still checked out. Expand 
WebContent\WEB-INF\ and note the green check marks. Before we deliver 
the work to the integration stream, we want to check them back in.

8. Select web.xml and select Team → Check in from the context menu.

9. On the Check in Elements dialog, ensure that the element is selected and 
click OK. The green check mark on the resource icon is removed, indicating 
that the file is no longer checked out.

10.Before we can deliver the project to the stream, the ibm-web-bnd.xmi and 
ibm-web-ext.xmi files must be checked in as well. As their contents have not 
changed, we will simply undo their checkout. Select both of them and select 
Team → Undo Check Out... from the context menu.

11.Before delivering to the stream, it is also good practice to make sure that 
nothing else is checked out. Select ClearCase → Find Checkouts.... On the 
1278 Rational Application Developer V6 Programming Guide



Find Criteria dialog (see Figure 25-21) click Browse and select the 
C:\ITSO\dev1_view\sources directory. Keep the other defaults as shown and 
click OK.

Figure 25-21   Finding checkouts

12.No checked out files should be found. Click OK to dismiss the dialog and then 
close the Find Checkouts window.

25.4.2  Developer 1 delivers work to the integration stream
Follow these steps to deliver the work into the integration stream:

1. Select ClearCase → Deliver Stream. On the Deliver from Stream dialog 
(Figure 25-22 on page 1280) select the development stream dev1_view and 
click OK.
 Chapter 25. Rational ClearCase integration 1279



Figure 25-22   Delivering to integration stream

2. In the Deliver from Stream Preview dialog (Figure 25-23) make sure both 
activities are selected and that the view to deliver to is 
<userid>_Integration_view. Click OK.

Figure 25-23   Deliver from Stream Preview dialog

3. After a while the Deliver from Stream - Merges Complete dialog (see 
Figure 25-24 on page 1281) is shown. Deselect Open a ClearCase Explorer 
and click OK.
1280 Rational Application Developer V6 Programming Guide



Figure 25-24   Deliver from Stream - Merges Complete dialog

4.  On the Delivering to View dialog (Figure 25-25) click Complete.

Figure 25-25   Delivering to View dialog

5. Optionally, you can click Details to see a list of the files delivered (see 
Figure 25-26 on page 1282), then click Close.
 Chapter 25. Rational ClearCase integration 1281



Figure 25-26   Showing files delivered

25.4.3  Developer 1 makes a baseline
To make a baseline, do the following:

1. Select Start → Programs → Rational Software → Rational ClearCase → 
Project Explorer.

2. In the left pane right-click ITSO_Project_Integration and select Make 
Baseline from the context menu (see Figure 25-27 on page 1283).
1282 Rational Application Developer V6 Programming Guide



Figure 25-27   Making a baseline

3. In the Make Baseline dialog (see Figure 25-28) click OK.

Figure 25-28   Make baseline settings
 Chapter 25. Rational ClearCase integration 1283



4. Click OK on the confirmation dialog (one new baseline was created) and then 
close the Make Baseline dialog.

You can now close the ClearCase Project Explorer. Developer 1 has now 
finished the current task. Developer 2 will now join the project and make changes 
to the servlet.

25.4.4  Developer 2 joins the project
Developer 2 now joins the ClearCase project and adds it to his Rational 
Application Developer workspace.

1. Select File → Switch Workspace... in Rational Application Developer for the 
scenario simulation purposes.

2. Enter C:\dev2_workspace as the workspace for developer 2. Click OK.

3. Close or minimize the Welcome view.

4. If you are not connected to ClearCase by the preference setting, select 
ClearCase → Connect to Rational ClearCase or click the ClearCase 
Connect icon ( ).

5. Select ClearCase → Create New View.

6. In the View Creation Wizard (Figure 25-29 on page 1285), select Yes to 
indicate that you are working on a ClearCase project. Expand projects and 
select the ITSO_Project. Click Next.
1284 Rational Application Developer V6 Programming Guide



Figure 25-29   Creating a new view

7. The ClearCase View Tool dialog notifies you that there is already one stream 
defined for this Windows user (dev1_view). Click OK.

8. In the Create a Development Stream dialog (see Figure 25-30 on page 1286) 
enter dev2_view as the development stream name and verify that the 
integration stream name is ITSO_Project_Integration. Click Next.
 Chapter 25. Rational ClearCase integration 1285



I

Figure 25-30   Creating a development stream - Developer 2

9. In the Review Types of Views dialog, ensure that “Create a Development 
view” is selected and click Next.

10.In the Choose Location for a Snapshot View (Development View) dialog 
(Figure 25-31 on page 1287) accept C:\ITSO\dev2_view as the path for the 
new development view and click Next.
1286 Rational Application Developer V6 Programming Guide



Figure 25-31   Select location for development view

11.In the Choose Components dialog, make sure InitialComponent is selected. 
Click Finish to create the development view for developer 2.

12.Click OK when the confirmation dialog is displayed and then click OK in the 
View Creation Status dialog.

25.4.5  Developer 2 imports projects into Application Developer
Developer 2 works on the same projects as developer 1 and has to import the 
projects:

1. As developer 2, select ClearCase → Rebase Stream in Rational Application 
Developer to update your development stream with the contents of the 
integration stream.

2. In the Rebase Stream dialog (see Figure 25-32 on page 1288) select 
Projects → ITSO_Project → ITSO_Project_Integration → dev2_view and 
click OK.
 Chapter 25. Rational ClearCase integration 1287



Figure 25-32   Rebase Stream dialog

3. In the Rebase Stream Preview dialog (Figure 25-33) select 
InitialComponent_ITSO_Project_<date> from the baseline drop-down list 
and verify that <userid>_dev2_view is selected as the target view. Click OK.

Figure 25-33   Rebase Stream Preview - Developer 2

4. Click OK to dismiss the Hijacked Files Warning dialog. 

5. In the Rebasing in View dialog, click Complete to perform the rebase action. 
After this is done, click Close.

The contents of the integration view have now been copied to the developer 2 
view, but do not yet appear on this workspace. 

6. In Rational Application Developer, select File → Import → Existing Project 
into Workspace and click Next (see Figure 25-34 on page 1289). 
1288 Rational Application Developer V6 Programming Guide



7. Click Browse, select the EAR project, and click Finish.

C:\ITSO\dev2_view\sources\InitialComponent\ITSO_ProGuide_UCMEAR

R

Figure 25-34   Import EAR project

8. Repeat the import process for the Web project:

C:\ITSO\dev2_view\sources\InitialComponent\ITSO_ProGuide_UCM

25.4.6  Developer 2 modifies the servlet
As we only want to show how to work with ClearCase, we do not need to add any 
real code to the servlet. Adding a simple comment to the servlet will work just as 
well. 

1. Expand ITSO_ProGuide_UCM → Java Resources → JavaSource → 
itso.ucm and open ServletA.java by double-clicking it. 

2. Start entering some text inside the green comment area, indicating that 
developer 2 made this change. As soon as you start typing in the editor, the 
servlet needs to be checked out. The dialog shown in Figure 25-35 on 
page 1290 is displayed, asking you to check out the servlet file. Click OK.

Note: By now developer 1 and developer 2 are set up with a new shared 
project. Both can now check out files, work with these files, check them in, and 
deliver their work to the stream.
 Chapter 25. Rational ClearCase integration 1289



Figure 25-35   Check out elements

3. On the Select Activity dialog, create a new activity Developer 2 updates 
ServletA for this update and click OK to confirm. The file is now checked out, 
which is indicated by the green check mark on the servlet’s icon .

4. After making your changes (for example, adding your name as the author), 
press Ctrl+S to save the servlet, and then close the editor. 

5. The changed file must now be checked in. Right-click the servlet and select 
Team → Check in in the context menu (or use the Check in icon).

6. On the Check in Elements dialog, click OK. The green check marks of the 
resources icons are removed, indicating that the elements are no longer 
checked out.

Developer 2 is now ready to deliver the changes to the stream and share the 
code with the other developers. Before doing this, it is a best practice to make 
sure that no other developer has made changes recently.

7. Select ClearCase → Rebase Stream. In the Rebase Stream dialog, select 
developer 2’s development stream and click OK (Figure 25-36 on page 1291).
1290 Rational Application Developer V6 Programming Guide



Figure 25-36   Selecting development stream to rebase - Developer 2

8. In the Rebase Stream Preview dialog (see Figure 25-37), select the latest 
baseline (top of the list), and make sure the <userid>_dev2_view view is 
selected as the target. Click OK.

Figure 25-37   Rebase Stream Preview

9. The Rebase Stream dialog is displayed, and notifies you that the stream is 
currently up-to-date. Click OK to dismiss the information dialog and click 
Cancel to dismiss the Rebase Stream Preview dialog.

Note that what we did was to check to make sure developer 1 did not make any 
changes to the stream.
 Chapter 25. Rational ClearCase integration 1291



25.4.7  Developer 2 delivers work to the integration stream
Developer 2 is ready to integrate his work:

1. As developer 2, select ClearCase → Deliver Stream. In the Deliver from 
Stream dialog (Figure 25-38) select Projects → ITSO_Project → 
ITSO_Project_Integration → dev2_view. Click OK.

Figure 25-38   Deliver from Stream dialog

2. On the Deliver from Stream Preview dialog (see Figure 25-39) make sure the 
<userid>_Integration_view is selected as the integration view. Click OK.

Figure 25-39   Deliver from Stream Preview
1292 Rational Application Developer V6 Programming Guide



3. The integration view is now updated with the contents of the development 
view. 

4. On the Delivering to View dialog (see Figure 25-40), click Complete and then 
Close.

Figure 25-40   Delivering to integration view - Developer 2

25.4.8  Developer 1 modifies the servlet
ServletA has now been updated once in the integration stream since the original 
baseline was created. Let us see what happens when another developer makes 
changes to the same element and makes delivery.

1. Select File → Switch Workspace... in Rational Application Developer.

2. Enter C:\dev1_workspace as the workspace for developer 2. Click OK.

3. Expand ITSO_ProGuide_UCM → Java Resources → JavaSource → 
itso.ucm and open ServletA.java by double-clicking it. 

4. Make an update to the comment as developer 1. The servlet will be checked 
out again.

5. On the Select Activity dialog, select Developer 1 modifies ServletA and 
click OK. 

6. After making your changes (use some other text than previously), press 
Ctrl+S to save the servlet and then close the editor. 

7. Check in the updated servlet.
 Chapter 25. Rational ClearCase integration 1293



25.4.9  Developer 1 delivers new work to the integration stream
Developer 1 is now ready to integrate his work as well:

1. As developer 1, select ClearCase → Deliver Stream. In the Deliver from 
Stream dialog (Figure 25-41) select Projects → ITSO_Project → 
ITSO_Project_Integration → dev1_view. Click OK.

Figure 25-41   Deliver from Stream dialog - Developer 1

2. On the Deliver from Stream Preview dialog (see Figure 25-39 on page 1292) 
make sure the <userid>_Integration_view is selected as the integration view. 
Click OK.

Figure 25-42   Deliver from Stream Preview
1294 Rational Application Developer V6 Programming Guide



3. ClearCase notifies you that there is a conflict and the element cannot be 
merged automatically (Figure 25-43). Select start the Diff Merge tool for 
this element and click OK. Click OK again at the Diff Merge status dialog.

Figure 25-43   Deliver from Stream alert

4. The Diff Merge tool is now launched (see Figure 25-44). Take a few moments 
to become familiar with the information displayed and the options available to 
you.

Figure 25-44   Diff Merge tool
 Chapter 25. Rational ClearCase integration 1295



– The top panel shows the merge result and areas of conflict. Click a line to 
focus on that particular conflict.

– The lower panels show the different versions that are available.

– The number icons on the toolbar (1, 2, 3) are used to indicate which 
version should be used in the merged result.

5. In the top panel displaying the merge result, click the line that has the arrow 
next to it, indicating the conflict. 

6. On the toolbar, click 2 to determine that in this case the implementation by 
developer 1 should be used. Verify the change in the merge panel.

7. Close the Merge Tool by saving the changes (select File → Save) and close 
the tool.

8. On the Delivering to View dialog, click Complete and then Close.

Now all the changes to the servlet have been applied to the integration stream. 
You can verify this by looking at the element in the Version Tree (see 
Figure 25-45 on page 1297). 

You can invoke the Version Tree Browser from Rational Application Developer or 
from Windows Explorer. Right-click the servlet file and select the Version Tree 
option from the context menu.
1296 Rational Application Developer V6 Programming Guide



.

Figure 25-45   ClearCase Version Tree Browser

Note that looking at the same element as developer 2 will show the new element 
version in the tree, but we will not see the latest changes in that view because 
our view is set to look at the recommended base line. To see the delivered 
changes, developer 2 will need to wait for a new baseline to be created, and then 
rebase from that.
 Chapter 25. Rational ClearCase integration 1297



1298 Rational Application Developer V6 Programming Guide



Chapter 26. CVS integration

This chapter provides an introduction to the widely adopted open source 
Concurrent Version System (CVS). We will discuss the integration features of 
Rational Application Developer tooling for CVS by guiding the reader through an 
example implementation, as well as usage scenarios.

This chapter is organized into the following topics:

� Introduction to CVS
� CVSNT Server implementation
� CVS client configuration for Application Developer
� Configure CVS in Rational Application Developer
� Development scenario
� CVS resource history
� Comparisons in CVS
� Annotations in CVS
� Branches in CVS
� Work with patches
� Disconnecting a project
� Synchronize perspective

26

Note: The example in this chapter calls for two simulated developer systems. 
This can be accomplished by having two instances of Rational Application 
Developer or two Workspaces for demonstration purposes. Refer to 3.1, 
“Workbench basics” on page 76, for detailed instructions.
© Copyright IBM Corp. 2005. All rights reserved. 1299



26.1  Introduction to CVS
Concurrent Version System (CVS) is a simple open source software 
configuration management (SCM) system. CVS only implements version control. 
CVS can be used by individual developers as well as by large, distributed teams.

26.1.1  CVS features
Some of the main features of CVS are as follows:

� Multiple client-server protocols over TCP/IP that let developers access the 
latest code from a wide variety of clients virtually anywhere an Internet 
connection exists.

� It stores all the versions of a file in a single file using forward-delta versioning, 
which stores only the differences among the versions.

� It insulates the different developers from each other. Every developer works 
in his own directory, and CVS merges the work in the repository when each 
developer is done. Conflicts should be resolved in the process.

Note: IBM Rational Application Developer V6 supports three 
communication protocols:

� pserver (password server
� ext
� extssh

The protocols ext and extssh require additional configuration from the 
Rational Application Developer preferences:

� ext: Window → Preferences → Team → CVS → Ext Connection 
Method

� extssh: Window → Preferences → Team → CVS → SSH2 
Connection Method

Important: CVS and IBM Rational Application Developer V6 have a 
different understanding of what a conflict is:

� For CVS, a conflict arises when two changes to the same base file are 
close enough to be noticed by the merge command. 

� For IBM Rational Web Developer V6, a conflict exists when the local 
copy of a revision of a modified file is different from the revision stored 
in the repository.
1300 Rational Application Developer V6 Programming Guide



� It uses an unreserved checkout approach to version control that helps avoid 
artificial conflicts common when using an exclusive checkout model.

� It keeps shared project data in repositories. Each repository has a root 
directory on the file system.

� CVS maintains a history of the source code revisions. Each change is 
stamped with the time it was made and the user name of the person who 
made it. It is recommended that developers also provide a description of the 
change. Given that information, CVS can help you find answers to questions 
such as: Who made the change? When was it made, and why?

26.1.2  New V6 features for team development
The key new IBM Rational Application Developer V6 features for team 
development are as follows:

� New team synchronize view

� Multiple synchronization of repositories

� Scheduling of synchronization

� Setting up of a commit set of defined resources located anywhere in the 
workspace

� Background synchronization of CVS operations of the workspace

� Checkout wizard to allow checkout by using New → Project or File → Import

� Editor interface to specify CVS date tags in standardized format

� “Blame” view to identify what and who has changed a particular file

� Additional security options to communicate with the CVS server

This list does not include all the new features, but points to the major differences 
compared to previous versions of WebSphere Studio products. 

26.2  CVSNT Server implementation
The CVS server code for Linux and UNIX platforms is available at the project’s 
site, as is installation and usage documentation:

http://www.cvshome.org

Since our development environment is a pure Windows environment, we choose 
to use CVS for NT (CVSNT) for the development environment.
 Chapter 26. CVS integration 1301

http://www.cvshome.org


The CVSNT Server implementation is organized as follows:

� CVS Server installation.
� CVS Server repository configuration.
� Create the Windows users and groups used by CVS.
� Verify the CVSNT installation.
� Create CVS users.

26.2.1  CVS Server installation
To install CVS on the Windows platform, do the following:

1. Before installing CVSNT, we recommend reading the installation tips:

http://www.cvsnt.org/wiki/InstallationTips

2. Download the CVSNT V2.0.58b Server (cvsnt-2.0.58b.exe) from the following 
URL to a temporary directory (for example, c:\temp) on the Build and SCM 
node:

http://www.cvsnt.org

3. Execute the CVSNT installer by double-clicking the self-extracting 
cvsnt-2.0.58b.exe file from the temporary directory.

4. When the Welcome window appears, click Next.

5. When the License Agreement window appears, review the terms and if in 
agreement select I accept the agreement and click Next.

6. When the Select Destination Location window appears, we entered c:\cvsnt 
and then clicked Next.

7. When the Select Components window appears, we did the following and then 
clicked Next:

– Select Typical Installation.

– Under protocols, we additionally checked Named Pipe (:ntserver) 
Protocol.

Important: We chose to use CVSNT V2.0.58b since it has been validated 
against Eclipse V3.0.1. IBM Rational Application Developer V6 is built upon 
Eclipse V3.0.1.1 (<rad_home>\eclipse\.eclipseproduct).

CVSNT was ideal for our environment because we had a pure Windows 
environment, and it is easy to use. We did not experience any significant 
problems using the CVSNT version.

Important: The CVSNT software requires a user that has local system 
privileges to install and configure a service in Windows.
1302 Rational Application Developer V6 Programming Guide

http://www.cvsnt.org/wiki/InstallationTips
http://www.cvsnt.org


8. When the Select Start Menu Folder window appears, accept default and click 
Next.

9. When the Select Additional Tasks window appears, we did the following and 
then clicked Next:

– Check Install cvsnt service.
– Check Install cvsnt lock service.
– Check Generate default certificate.

10.When the Ready to Install window appears, review the installation options 
and then click Install.

11.When the Completing the cvsnt Setup Wizard window appears, accept the 
defaults and click Finish.

12.Restart your system.

When the installation is complete, we recommend that you restart your 
system. This step will guarantee that the environment variables are set up 
properly and the CVSNT Windows services are started.

26.2.2  CVS Server repository configuration
After you have installed the CVS Server and restarted your system (Build and 
SCM node), do the following to create and configure the CVS Server repository:

1. Manually create the common root directory. For example, we created the 
c:\rep6449 directory using Windows Explorer or via a command window. 

2. Stop the CVS services in order to create the repository, by clicking Start → 
Programs → CVSNT → Service control panel.

3. When the CVSNT control panel window appears, stop the following services 
by clicking stop:

– Click Stop under CVS service.
– Click Stop under CVS Lock service.

4. Click the Repositories tab. 

5. Click Add.

6. When the Edit repository window appears, we entered the following (as seen 
in Figure 26-1 on page 1304), and then clicked OK:

– Location: c:/rep6449

– Name: /rep6449

Note: We manually created this directory on the file system in step 1.
 Chapter 26. CVS integration 1303



Figure 26-1   Add repository

7. When prompted with the message c:/rep6449 exists, but is not a valid 
CVS repository. Do you want to initialise it?, click Yes.

When done, the Repository page should look like Figure 26-2.

Figure 26-2   CVSNT service configuration (Repository page)

8. Click Apply. 
1304 Rational Application Developer V6 Programming Guide



9. Click the Compatibility tab.

10.From the Compatibility tab, check the following options (as seen in 
Figure 26-3), and then click OK:

– Select Generic non-cvsnt.
– Check Respond as cvs 1.11.2 to version request.
– Check Emulate ‘-n checkout’ bug.
– Check Hide extended log/status information.

These settings ensure that CVSNT is compatible with clients such as IBM 
Rational Application Developer V6 and other CVS clients.

Figure 26-3   Compatibility settings required for interoperation with IBM Rational 
Application Developer V6 and other CVS clients
 Chapter 26. CVS integration 1305



26.2.3  Create the Windows users and groups used by CVS
When setting up CVS users, we opted to use the pserver protocol commonly 
used to secure a CVS repository for the following reasons: 

� The pserver protocol is desired when working from a multi operating system 
environment (for example, Windows and Linux clients).

� Provides a password facility that is independent of the operating system (for 
example, the pserver protocol does not use the password system of the native 
operating system).

� A single CVS administrator use can be set up and used to run the CVS 
commands minimizing the administration of permissions and security of all 
the users that will use the repository.

Add a Windows user (cvsadmin)
To add a Windows CVS administrator user do the following:

1. From the Windows desktop, right-click My Computer, and select Manage.

2. Expand Local Users and Groups and select Users.

3. From the menu bar, click Action → New User.

4. When the New user window appears, we entered the following and clicked 
Create:

– User name: cvsadmin
– Password: <password>
– Uncheck User must change password at next logon.

5. Click Close on the New Users dialog, but do not exit the Computer 
Management tool (needed in next section).

Add Windows user (cvsadmin) to a group (Power Users)
To add the Windows user to a group that has the sufficient permissions, do the 
following:

1. Click Groups and double-click Power Users.

2. Click Add.

3. Select the cvsadmin and click Add.

4. Click OK to exit the Select Users or Groups window.

5. Click OK to exit the Power Users Properties window.

6. Exit the Computer Management console.
1306 Rational Application Developer V6 Programming Guide



26.2.4  Verify the CVSNT installation
To verify the CVSNT installation, do the following:

1. Restart the system to ensure that the environment variables are loaded and 
the CVSNT services are started.

2. After the system has been restarted, verify that the following CVSNT 
Windows services have started:

– CVSNT
– CVSNT Lock Service

26.2.5  Create CVS users
To create CVS users to access the files in the repository, do the following:

1. Open a Windows command prompt.

2. Set the cvsroot as follows:

set cvsroot=:pserver:cvsrep1.itso.ral.ibm.com:/rep6449

Where cvsrep1.itso.ral.ibm.com is the host name of the repository node and 
/rep6449 is the repository located on this host name.

3. Log on to the CVS repository machine to manage the users, using the 
following command:

cvs login cvsadmin

4. You will be prompted to enter the CVS password. 

Tip: The CVSNT services can also be accessed from the CVSNT Service 
control panel.

When using the CVSNT Service control panel, we noticed that on occasion 
under the Service Status tab when clicking the Stop button for the CVS Lock 
Service and then clicking the Start button, that the lock service does not start 
running. 

To resolve this open the Windows Task Manager, locate the process 
cvslock.exe, right-click, and select End Process Tree. Reattempt clicking the 
Start button for the CVS Lock Service and this should set it in the running 
state. If further problems occur, restart the system.

Note: The host name must be specified. For example, specifying localhost 
will not work.
 Chapter 26. CVS integration 1307



We entered the password for the cvsadmin user created in 26.2.3, “Create the 
Windows users and groups used by CVS” on page 1306.

5. Enter the following CVS commands to add users:

cvs passwd -a -r cvsadmin <cvs user id>

– Where cvs passwd -a indicates that you wish to add a password for a 
user

– -r cvsadmin indicates the alias or native user name that the user will run 
under when connecting to the repository (set up in “Create the Windows 
users and groups used by CVS” on page 1306).

– <cvs user id> is the user ID to be added in. 

For example, to add user cvsuser1 enter the following:

cvs passwd -a -r cvsadmin cvsuser1

6. A prompt will appear to enter the password, as shown in the following:

Adding user cvsuser1@cvsrep1.itso.ral.ibm.com
New password: ********
Verify password: ********

7. Repeat the previous step for additional CVS users.

8. Next, provide the development users their CVS account information, host 
name, and connection type to the CVS server so that they can establish a 
connection from WebSphere Studio Application Developer in a later 
configuration step on the Developer node. For example:

– Account info: Developer CVS user created (for example, cvsuser1)

– Host name: <CVS_Server_host_name> (for example, 
cvsrep1.itso.ral.ibm.com)

– Connection type: pserver

– Password: <password>

– Repository path: /rep6449

Note: The first occurrence of a user being added will create the file passwd 
in the directory, in our case c:\rep6449\CVSROOT. The following user will 
be appended into this file. It is recommended that this file not be edited 
directly by a text editor. It also must not be placed under CVS control.
1308 Rational Application Developer V6 Programming Guide



26.3  CVS client configuration for Application Developer
This section describes CVS client configurations to be made for use with IBM 
Rational Application Developer V6.0.

26.3.1  Configure CVS Team Capabilities
IBM Rational Application Developer V6, by default, does not enable the Team 
Capabilities when creating a new workspace for a user. 

To enable the Team Capabilities, do the following:

1. Open IBM Rational Application Developer V6.

2. Click Windows → Preferences.

3. Select and expand the Workbench and click Capabilities.

4. Select and expand the Team capability and select the items showing in 
Figure 26-4 on page 1310.

Note: It is sufficient to set the CVS Support only, since the IBM Rational 
Application Developer V6 will automatically set Core Team Support as well.
 Chapter 26. CVS integration 1309



Figure 26-4   Setting the Team capability to be available

5. Click Apply and then click OK.

26.3.2  Access the CVS Repository
To access a repository that has been configured on a server for users to perform 
their version management, do the following:

1. Open IBM Rational Application Developer V6.

2. Click Windows → Open Perspective → Other → CVS Repository 
Exploring. Click OK.

3. In the CVS Repositories view, right-click and select New → Repository 
Location.

4. Add the parameters for the repository location as in Figure 26-5, check 
Validate Connection Finish and Save Password, and then click Finish.
1310 Rational Application Developer V6 Programming Guide



Figure 26-5   Add the CVS repository to the workspace

If everything worked correctly, you now should be able to see a repository 
location with HEAD, Branches, and Versions (see Figure 26-6 on page 1312).
 Chapter 26. CVS integration 1311



Figure 26-6   The CVS perspective of a successfully connected CVS repository

26.4  Configure CVS in Rational Application Developer
The team support for CVS had some major improvements in IBM Rational 
Application Developer V6.

26.4.1  Configure Rational Application Developer CVS preferences
Before you start working with CVS, you should look through the CVS 
preferences. Preferences that can be set for CVS include:

� Label decorations
� File content
� Ignored resources
� CVS-specific settings

Included in this section is a description of the keyword substitutions that CVS 
provides and how they can be used.

Label decorations
Label decorations are set to be on by default.

To view or change the label decorations, select Windows → Preferences and 
expand the Label Decorations section and select CVS. 

CVS label decorations are set to be on if the check box is checked (see 
Figure 26-7 on page 1313).
1312 Rational Application Developer V6 Programming Guide



Figure 26-7   CVS decoration preferences

File content
The file content of resources can be changed to be saved into the repository as 
either ASCII or Binary. When working with file extensions that are not part of the 
file contents that are defined in IBM Rational Application Developer V6, then 
these files are saved into the repository as Binary by default. 

To verify that a resource in the workspace is stored in the repository correctly, 
select Windows → Preferences and expand the Team → File Content section 
(see Figure 26-8 on page 1314). Verify that the file extension that you are using 
is present and stored in the repository as desired.
 Chapter 26. CVS integration 1313



Figure 26-8   Team File Content preferences

If you find that a particular file extension is not in the list then you will need to add 
this extension if you do not want the resource stored with the default binary 
behavior. A common file that sometimes occurs when you are supplied a library 
is a Makefile.mak file used in making applications, which is an ASCII file. 

To demonstrate adding this extension that is not present in this list, perform the 
following:

1. Select Windows → Preferences and expand the Team → File Content 
section.

2. Select the Add button.

3. Type the extension name mak (see Figure 26-9 on page 1315) and click OK.
1314 Rational Application Developer V6 Programming Guide



Figure 26-9   Entering a file extension

4. Find the extension in the list, click the Content column, and select ASCI from 
the drop-down.

5. Click Apply and then OK to exit the Windows preferences.

Ignored resources
Resources that are created or changed dynamically via mechanisms such as 
compilation or builds are not recommended to be saved in the repository. This 
may include class files, executables, lexer and parser code, and Enterprise Java 
Bean stub and implementation code. 

IBM Rational Application Developer V6 has a list of these resources that is 
accessed by selecting Windows → Preferences and expanding the Team → 
Ignored Resources section. 

Resources can be added to this list by specifying the pattern that will be ignored. 
The two wild card characters are a asterisk (*), which indicates a match of zero; 
or many characters and a question mark (?), which indicates a match of a 
character. For example, a pattern of _EJS*.java would match any file that begin 
with _EJS and had zero to many characters and ended in .java.

The addition of resources that need to be ignored for saving into the repository 
can be performed as follows using the example of a Windows dll file:

1. Select Windows → Preferences and expand the Team → Ignored 
Resources section.

2. Select the Add button.

3. Type the pattern *.dll (as shown in Figure 26-10 on page 1316) that will be 
ignored.

Tip: The content can also be changed by highlighting the extension and 
using the Change button.
 Chapter 26. CVS integration 1315



Figure 26-10   Ignored resource pattern to add

4. Click OK and ensure that the resource (*.dll) is checked (see Figure 26-11).

Figure 26-11   Resources that will be ignored when saving to the repository
1316 Rational Application Developer V6 Programming Guide



Patterns to be removed from the ignore list can be selected and the Remove 
button clicked (see Figure 26-11 on page 1316). Alternatively, you can 
temporarily disable ignoring the file pattern by de-selecting it from the list, and 
you do not have to remove the specified file pattern from the list. 

Additionally, there are two further facilities that can be used to exclude a file from 
version control:

� Resources marked as derived will automatically be ignored. This is 
implemented by builders in the Eclipse framework, such as the Java builder.

� Use of a .cvsignore file created in the same directory that it applies to. This 
file will contain a list of files or directories that should not be placed into the 
repository and is specific to CVS.

This can be created by using the wizards to create a simple file or by 
selecting the resource, right-clicking, and selecting Team → Add to 
.cvsignore.

Further details on the syntax of .cvsignore can be found at:

http://www.cvshome.org

CVS-specific settings
The CVS settings in IBM Rational Application Developer V6 are extensive and 
cannot be covered in full here. A list of categories for the CVS settings is 
provided in Table 26-1 with short descriptions. Some of the more important 
settings are highlighted to assist users; a description of the remaining settings 
can be obtained from the IBM Rational Application Developer V6 help system.

Table 26-1   Category of CVS settings available

Category Menu location Description

General CVS Settings Windows → Preferences 
→ Team → CVS

Settings for the default 
behavior in communicating 
with CVS

Console Windows → Preferences 
→ Team → CVS → 

Console

Settings for the colors to 
display in the CVS console 
and the flag to set the 
console display

Ext Connection Method Windows → Preferences 
→ Team → CVS → Ext 

Connection Method

Settings to identify the ssh 
external program and 
associated parameters
 Chapter 26. CVS integration 1317

http://www.cvshome.org


CVS keyword substitution
The key attributes of software development require that configuration 
management and versions be maintained. CVS provides a mechanism for 
identifying the version of the source code and other related information that is 
stored in the repository. This information can be accessed by developers by the 
defined keywords. This is known as keyword expansion.

Keyword expansion is an effective mechanism for identifying what version a 
resource is in the repository versus what a user has checkout locally on their 
workspace.

IBM Rational Application Developer V6, by default, has the keyword substitution 
set to ASCII with keyword expansion (-kkv) under the selection Windows → 
Preferences → Team → CVS → Console. This setting expands out keyword 
substitution based on what CVS understands, and is performed wherever they 
are located in the file.

Some of the available keywords (case sensitive) are listed in Table 26-2.

Table 26-2   CVS keywords

Label Decorations Windows → Preferences 
→ Team → CVS → 

Label Decorations

Settings for displaying the 
state of resources in IBM 
Rational Application 
Developer V6

Password Management Windows → Preferences 
→ Team → CVS → 

Password Management

Manages the passwords 
required to connect to 
multiple CVS repositories

SSH2 Connection Method Windows → Preferences 
→ Team → CVS → SSH2 

Connection Method

Configuration settings for 
SSH2 protocol to the CVS 
repository

Watch/Edit Windows → Preferences 
→ Team → CVS → 

Watch/Edit

Settings for the CVS watch 
and edit functionality

Keyword Description

$Author$ Expands to including the name of the author of the change in the 
file, for example:
$Author: itsodev $

$Date$ Expands to the date and time of the change in UTC, for example: 
$Date: 2004/10/29 18:21:32 $

Category Menu location Description
1318 Rational Application Developer V6 Programming Guide



To ensure consistency between multiple users working on a team, it is 
recommended that a standard header is defined for each Java code file that is 
created and is filled inappropriately. A simple example is shown in Example 26-1 
for what could be established. 

Example 26-1   Example of CVS keywords used in Java

/**
* class comment goes here.
*
* <pre>
* Date $Date$
* Id $Id$
* </pre>
* @author $Author$

$Header$ Contains the RCS file in repository, revision, date (in UTC), 
author, state and locker, for example:
$Header: /rep6449/XMLExample/.project,v 1.1 2004/10/29 
18:21:32 itsodev Exp itso $

$Id$ Like $Header$ except without the full path of the RCS file, for 
example:
$Id: .project,v 1.1 2004/10/29 18:21:32 itsodev Exp itso $

$Locker$ Name of the user that has a lock on this revision. (In CVS this is 
not applicable.)

$Log$ The log message of this revision. This does not get replaced but 
gets appended to existing log messages. In general, this is not 
recommended since files can become large for no real benefit.

$Name$ Expands to the name of the sticky tag, which is a file retrieved by 
date or revision tags, for example:
$Name: version_1_3 $

$RCSFile$ Expands to the name of the RCS file in the repository, for 
example:
$RCSFile: .project,v $ 

$Revision$ Expands to the revision number of the file, for example: 
$Revision: 1.1 $

$Source$ Expands to the full path of the RCS file in the repository, for 
example:
$Source: /rep6449/XMLExample/.project,v $

$State$ Expands to the state of the revision, for example:
$State: Exp $. This is not commonly used.

Keyword Description
 Chapter 26. CVS integration 1319



* @version $Revision$
*
* ${todo} To change the template for this generated type comment go to
* Window - Preferences - Java - Code Style - Code Templates
*/

To ensure consistency across all files created, each user would need to cut and 
paste this into their document. Fortunately, IBM Rational Application Developer 
V6 offers a means to ensure that consistency. To set up a standard template do 
the following:

1. Select Windows → Preferences → Java → Code Style → Code 
Templates.

2. Expand out the Comments tree.

3. Select Types and click Edit.

4. Cut and paste or type what comment header you require, as shown in 
Example 26-2.

Example 26-2   Comment header to paste into IBM Rational Application Developer V6

/**
* class comment goes here.
*
* <pre>
* Date $$Date$$
* Id $$Id$$
* </pre>
* @author $$Author$$
* @version $$Revision$$
*
* ${todo} To change the template for this generated type comment go to
* Window - Preferences - Java - Code Style - Code Templates
*/

Note: The double dollar sign ($$) (as shown in Figure 26-12 on page 1321) is 
required since IBM Rational Application Developer V6 treats a single dollar ($) 
as one of its own variables. The double dollar ($$) is used as a means of 
escaping the single dollar so that it can be post processed by CVS.
1320 Rational Application Developer V6 Programming Guide



Figure 26-12   Setup of a common code template for Java files

5. Click OK to complete the editing.

6. Click Apply followed by OK.

After performing this operation, creating a new class, and checking in and 
checking out, the header will be displayed as shown in Example 26-3.

Example 26-3   Contents of Java file after check in and check out from CVS

/**
* class comment goes here.
*
* <pre>
* Date $Date: 2004/10/29 18:21:32 $
* Id $Id: $Id: Example.java,v 1.1 2004/10/29 18:21:32 itsodev Exp itso $
* </pre>
* @author $Author: itsodev $
* @version $Revision: 1.1 $
*
* ${todo} To change the template for this generated type comment go to
* Window - Preferences - Java - Code Style - Code Templates

*/

26.5  Development scenario
To show you how to work with CVS in IBM Rational Application Developer V6, 
we will follow a simple but typical development scenario, shown in Table 26-3. 
 Chapter 26. CVS integration 1321



Two developers, cvsuser1 and cvsuser2, work together to create a Servlet 
ServletA and a view bean View1.

Table 26-3   Sample development scenario

Steps 1 through 3 are serial development—no parallel work is being done. 
During steps 4, 5, and 6, both developers work in parallel, resulting in inevitable 
conflicts. These conflicts are resolved using IBM Rational Application Developer 
V6 tooling.

In the sections that follow, we perform each of the steps and explain the team 
actions in detail.

26.5.1  Create and share the project (step 1 - cvsuser1)
IBM Rational Application Developer V6 offers a perspective specifically designed 
for viewing the contents of CVS servers: The CVS Repository Exploring. 

Step Developer 1 (cvsuser1) Developer 2 (cvsuser2)

1 Creates a new Dynamic Web Project 
ISTOCVSGuide and adds it to the 
version control and the repository.
Creates a servlet ServletA and 
commits it to the repository.

2 Updates the servlet ServletA. Imports the ISTOCVSGuide CVS 
module as a Workbench project. 
Creates a view bean View1, adds it to 
the version control, and synchronizes 
the project with the repository.

3 Synchronizes the project with the 
repository to commit his changes to 
repository and merges changes.

4 Continues changing and updating 
servlet. Synchronizes the project with 
the repository to commit his changes 
to repository and merges changes.

Synchronizes the project with 
repository, and begins changes to 
servlet.
Synchronizes the project after 
cvsuser1 has committed and needs to 
merge code from their workspace and 
the CVS repository.

5 Synchronizes and merges changes. 
Versions the project.
1322 Rational Application Developer V6 Programming Guide



Add a CVS repository
To add a CVS repository, do the following:

1. Open the CVS Repository Exploring perspective. 

2. Select New → Repository Location and fill in the information (as shown in 
Figure 26-13) based on the repository set up in 26.2, “CVSNT Server 
implementation” on page 1301.

Figure 26-13   Adding a CVS repository

Important: With pserver, passwords are stored on the client side in a trivial 
encoding and transmitted in the same encoding. The encoding is done only 
to prevent inadvertent password compromises, and will not prevent an 
attacker from obtaining the password. The other supported protocol, ssh, 
does not have this problem, but has to be manually set up.
 Chapter 26. CVS integration 1323



3. Click Finish, and the CVS Repositories view now contains the new repository 
location (Figure 26-14).

Figure 26-14   CVS Repositories view

Expanding a location in the CVS Repository view reveals branches and versions. 
A special branch, called HEAD, is shown detached because of its importance. It 
is the main integration branch, holding the project’s current development state.

You can use the CVS Repositories view to check out repository resources as 
projects on the Workbench. You can also configure branches and versions, view 
resource histories, and compare resource versions and revisions.

We must first create a project and share it before making full use of the 
repository.

Create a project and servlet
To create a project and a servlet, do the following:

1. Switch to the Web perspective and create a new Dynamic Web Project by 
selecting File → New → Dynamic Web Project.

2. Type in the name of the project, ITSOCVSGuide, and click Finish.

3. In the Project Explorer, expand Dynamic Web Projects → 
ITSOCVSGuide → Deployment Descriptor → Servlets, right-click, and 
select New → Servlet.

4. Type the name of the servlet to be ServletA and click Next.

5. Specify the package as itso.ral.ibm.com (see Figure 26-15) and click 
Finish.
1324 Rational Application Developer V6 Programming Guide



Figure 26-15   Specifying the package name for servlet

6. Expand the Dynamic Web Projects tree in the Project Explorer view and 
click on the project ITSOCVSGuide. Right-click and select Team → Share 
Project.

7. Select the option CVS, and click Next.

8. Select the radio button Use existing repository location: and the repository 
that was added previously, and click Next.

9. Select the radio button Use project name as module name, and click Next.

10.The window Share Project Resources (see Figure 26-16 on page 1326) will 
appear listing the resources to be added in. Click Finish to add this into the 
repository.
 Chapter 26. CVS integration 1325



Figure 26-16   Verification of resources to commit under CVS revision control

11.A dialog will ask whether to commit uncommitted changes. Click Yes.

12.A dialog will ask whether to add resources to the repository. Click Yes.

13.A prompt for a commit comment will be presented. Type Initial Version 
and click OK.

Note: A Run Background button is provided on the status when 
committing. This functionality has been introduced via the Eclipse 3.0 
framework into IBM Rational Application Developer V6. This enhances 
productivity, allowing the user to perform other tasks while waiting for a 
checkin.
1326 Rational Application Developer V6 Programming Guide



26.5.2  Add a shared project to the workspace (step 2 - cvsuser2)
The purpose of using CVS is to allow multiple developers to work as a team on 
the same project. We have created the project in one developer’s workspace, 
shared it using CVS, and now wish to add the same project to a second 
developer’s workspace.

1. The second developer must add the CVS repository location to the 
workspace using the CVS Repositories view in the CVS Repository Exploring 
perspective, as described in “Add a CVS repository” on page 1323.

The difference is now that the HEAD branch in the repository, if expanded, 
contains the ITSOCVSGuide module, as shown in Figure 26-17.

Figure 26-17   CVS Repository with ITSOCVSGuide project

2. Select the ItsoProGuideCVS module, right-click, and click Check Out. The 
current project in the HEAD branch is added to the workspace.

Develop the viewbean 
Now that both developers have exactly the same synchronized HEAD branch of 
the ITSOCVSGuide project on their workspaces, it is time for the second 
developer to create the viewbean View1.

1. Select Window → Open Perspective → Other → Java and click OK.

2. Expand the project tree ITSOCVSGuide → JavaSource → itso.ral.ibm.com 
and select itso.ral.ibm.com. Right-click and select New → Class.

3. Type the name of the class to be View1 and click Finish (see Figure 26-18 on 
page 1328).
 Chapter 26. CVS integration 1327



Figure 26-18   Creating the View1 viewbean

4. Create two private attributes in the class an integer named count and a string 
named message, as shown in Figure 26-19 on page 1329.
1328 Rational Application Developer V6 Programming Guide



Figure 26-19   View1 code with attributes added in before a save

5. Double-click the count attribute to highlight it, right-click, select Source → 
Generate Getters and Setters..., and check the check box for the message 
and verify that the Access Modifier section has public set, as in Figure 26-20 
on page 1330. Click OK to complete.
 Chapter 26. CVS integration 1329



Figure 26-20   Creating setters and getters for class View1

6. Save the file by selecting File → Save.

Synchronizing with the repository
To update the repository with these changes, perform the following:

1. Select the ITSOCVSGuide project and select Team → Synchronize with 
Repository... by clicking the right button. A dialog will prompt you to change 
to the Synchronize view. Click Yes. The project is compared with the 

Tip: The greater than sign (>) in front of a resource name means that the 
particular resource is not synchronized with the repository. You can always 
use this visual cue to determine when a project requires synchronization.
1330 Rational Application Developer V6 Programming Guide



repository, and the differences are displayed in the Synchronize view 
(Figure 26-21).

Figure 26-21   Synchronizing ITSOCVSGuide after creating the viewbean View1

This view allows you to update resources in the Workbench with newer 
content from the repository, commit resources from the Workbench to the 
repository, and resolve conflicts that may occur in the process. The arrow 
icons with a plus sign (+) indicate that the files do not exist in the repository. 

2. Add these new resources to version control by selecting ITSOCVSGuide in 
this view by right-clicking and selecting Commit... .

3. When the Add to CVS Version Control dialog appears, click the Details>>> 
button to verify the changes and then click Yes (see Figure 26-22).

Figure 26-22   Verifying committing of resources into repository
 Chapter 26. CVS integration 1331



4. The Commit dialog box will appear prompting for a comment. Enter Added 
view bean for application and click OK.

26.5.3  Modifying the Servlet (step 2 - cvsuser1)
While activities in the section Add a shared project to the workspace (step 2 - 
cvsuser2) occur, our original user, cvsuser1, is working on developing the servlet 
further.

1. Select the Web Perspective by clicking Window → Open Perspective → 
Other → Web.

2. In the Project Explorer expand Dynamic Web Projects → 
ITSOCVSGUIDE → Java Resources → JavaSource → itso.ral.ibm.com 
and double-click ServletA.java to open in an editor.

3. Create a static attribute called totalCount of type int and initialized to zero, as 
in Figure 26-23 on page 1333.

Note: The font in the Synchronize view turns to italic to indicate that there 
is an activity that is in progress on these files. This is useful when you are 
checking a large quantity of files into the CVS and have background mode 
on.
1332 Rational Application Developer V6 Programming Guide



Figure 26-23   Addition of servlet attributes

4. Save your work using File → Save.

26.5.4  Synchronize with repository (step 3 - cvsuser1)
The first user now synchronizes with the repository after cvsuser2 has checked 
their changes.

1. Open the Web perspective using Windows → Open Perspective → 
Other → Web.

2. Expand the Dynamic Web Project tree in the Project Explorer view and 
select the ITSOCVSGuide project. Right-click and select Team → 
Synchronize with Repository....

3. Click Yes to switch to the Synchronize view.

Note: Files that are not saved have a asterisk (*) in front of their names in 
the title bar of the window. This assists in identifying resources that need to 
be saved.
 Chapter 26. CVS integration 1333



4. Expand out the ITSOCVSGuide → JavaSource tree to view the changes. 
The screen in Figure 26-24 should be presented to you.

Figure 26-24   User cvsuser1 merging with CVS repository

5. To obtain updated resources from the CVS repository, right-click the project 
and select Update.

6. Verify that the changes do not cause problems with existing resources in the 
local workspace. In this case, there are none. Right-click and select 
Commit....

7. In the Commit dialog, add the comment Added static count variable to 
servlet. and click OK (see Figure 26-25).

Figure 26-25   Adding comment for changes to servlet

The repository now has the latest changes to the code from both developers. 
The user cvsuser1 is in sync with the repository; however, cvsuser2, as yet, does 
not have the changes to the servlet.

Note: The symbol  in the diagram indicates that an existing resource 
differs from what is in the repository. The symbol  indicates that a new 
resource is in the repository that does not exist on the local workspace.
1334 Rational Application Developer V6 Programming Guide



26.5.5  Parallel development (step 4 - cvsuser1 and cvsuser2)
The previous steps have highlighted development and repository 
synchronization with two people working on two parts of a project. It highlights 
the need to synchronize between each phase in the development before further 
work is performed. This scenario highlights two developers working on the same 
area of the code, with one checking before the other. Each user’s sequence of 
events is described in the sections below; however, to understand what is 
occurring refer to the timeline shown in Figure 26-26. 

Figure 26-26   Parallel concurrent development of same resource by multiple developers

User cvsuser1 updates and commits changes
In this scenario, the user cvsuser1 modifies the dopost method to log information 
for an attribute. The following procedure demonstrates how to synchronize the 
source code and commit the changes to CVS.

1. Open the Web perspective using Windows → Open Perspective → 
Other → Web.

2. Open the tree under the Dynamic Web Projects → ITSOCVSGuide → Java 
Resources → JavaSource → itso.ral.ibm.com and double-click the file 
ServletA.java to open it.

3. Navigate to the doPost method by scrolling down the file and adding the code 
in Figure 26-27 on page 1336.

CVS Repository

cvsuser1

cvsuser2

servletA v1.2

servletA v1.2

Time

servletA v1.3

check out

check out

check in

servletA v1.4
check in &

merge
 Chapter 26. CVS integration 1335



Figure 26-27   User cvsuser1 adding code to servlet in the local repository

4. Save the file by clicking File → Save.

5. Synchronize the project with the repository by right-clicking and selecting 
Team → Synchronize Repository..., and click OK to open synchronize 
view.

6. Fully expand out the tree in the Synchronize view. The servlet should be the 
only change, as shown in Figure 26-28.

Figure 26-28   Changes in servlet from the repository

7. Right-click and select Commit..., add the comment User1 updating the 
servlet, and press OK to commit.
1336 Rational Application Developer V6 Programming Guide



The developer cvsuser1 has now completed the task of adding code into the 
servlet. Changes can be picked up by other developers in the team.

User cvsuser2 updates and commits changes
The second developer updates their repository before beginning any new work to 
ensure that they have the latest copy of the code. This occurs before the first 
developer has checked in the changes to the servlet and while they are making 
their changes. The following steps are performed:

1. Open the Web perspective using Windows → Open Perspective → 
Other → Web.

2. Open the tree under Dynamic Web Projects → ITSOCVSGuide → Java 
Resources → JavaSource itso.ral.ibm.com and double-click the file 
ServletA.java to open it.

3. Navigate to the doPost method by scrolling down the file and adding the code 
in Figure 26-29. Save the code by selecting File → Save.

Figure 26-29   User cvsuser2 adds code into the servlet 

4. Synchronize with the repository by clicking the project ITSOCVSGuide and 
clicking the right button and selecting Team → Synchronize with 
Repository....
 Chapter 26. CVS integration 1337



5. Click Yes to switch to the synchronize perspective and expand out the tree in 
the synchronize view to see change, as in Figure 26-30.

Figure 26-30   Conflict of file in CVS Repository for user cvsuser2

6. Double-click the file ServletA.java to see the changes, as shown in 
Figure 26-31 on page 1339. On the right-hand side is the code in the 
repository (checked in by user cvsuser1), and on the left are the changes 
made by the current user cvsuser2.

Merging in this case will require consolidation between the two developers as 
to the best solution. In our example, we assume that the changes in the 
repository need to be placed before changes performed by cvsuser2 
(left-hand side).

Note: The symbol  indicates that the file has conflicting changes that 
require merging.
1338 Rational Application Developer V6 Programming Guide



Figure 26-31   The changes between the local and remote repository

7. Click the icon  (Copy current change from Right to Left). This will place the 
change at the end of the right-hand screen, as shown in Figure 26-32 on 
page 1340.
 Chapter 26. CVS integration 1339



Figure 26-32   Merging changes from right to left

8. In the left pane, highlight the two lines of code added and cut and paste them 
to the correct location in the file, as shown in Figure 26-33 on page 1341.
1340 Rational Application Developer V6 Programming Guide



Figure 26-33   Move the added code to the correct merge point

9. Verify that the code is exactly as agreed by the developers, and if so save the 
new merged change using File → Save.

10.Resynchronize the file using steps 4, 5, and 6 above in the Web perspective.

11.Verify that the changes are correct, and then in the Synchronize view 
right-click and select Mark as Merged, and then right-click and select 
Commit.

12.In the Commit dialog that appears, type the comment Changes and merge of 
Servlet, as in Figure 26-34 on page 1342.
 Chapter 26. CVS integration 1341



Figure 26-34   Comment for merged changes

This operation creates a version of the file, Version 1.4, which will contain the 
merged changes from users cvsuser1 and cvsuser2, in spite of the fact that both 
developers began working with Version 1.2.

26.5.6  Versioning (step 5- cvsuser1)
Now that all the changes are synchronized with the repository, we want to create 
a version to milestone our work.

1. Select the ITSOCVSGuide project in the Web perspective and Project 
explorer view and select Team → Tag as Version.... The Tag Resources 
dialog opens (seeFigure 26-35).

Figure 26-35   Tagging the project as a version

2. Verify that the tag has been performed by switching to the CVS Repository 
Exploring perspective and expand out the repository, as shown in 
Figure 26-36 on page 1343.
1342 Rational Application Developer V6 Programming Guide



Figure 26-36   Project version

26.6  CVS resource history 
The developer can view the resource history of a file of any shared project in 
their workspace. This is the list of all the revisions of a resource in the repository, 
shown in the CVS Resource History view. From this view you can compare two 
revisions, replace or revert the corresponding workspace file to the revision, or 
open an editor on a revision.

1. Open the Web perspective using Window → Open Perspective → Other → 
Web.

2. Expand in the Project Explorer Dynamic Web Projects → 
ITSOCVSGuide → Java Resources → JavaSource → itso.ral.ibm.com 
and highlight ServletA.java.

3. Right-click and select Team → Show in Resource History and a new view 
will appear, as in Figure 26-38 on page 1345.

The CVS resource history will display the following information (Table 26-4 on 
page 1343).

Table 26-4   CVS resource history terminology

Resource History column Description

Revision The revision number of each version of the file in the 
repository. An asterisk (*) indicates that this is the 
current version in the workspace.

Tags The tags associated with the revision. Selecting a 
revision line with a tag will display the tag in the lower 
pane of the view.

Date The date and time when the revision was created in the 
repository.
 Chapter 26. CVS integration 1343



Figure 26-37   CVS Resource view for ServletA.java

26.7  Comparisons in CVS
Users on occasion require the ability to compare what changes have occurred 
with a version of their code against a version in the repository. There are two 
ways of comparing: One is to compare a file in the workspace with that in the 
repository; the other is to compare two files in the repository. To demonstrate 
these features a scenario has been provided as an example of both processes.

Author The name of the used ID that created and checked in 
the revision into the repository.

Comments The comment (if any) supplied for this revision at the 
time it was committed. Selecting a revision in the upper 
pane displays the comment in the lower right pane of the 
view.

Resource History column Description
1344 Rational Application Developer V6 Programming Guide



26.7.1  Comparing workspace file with repository
The developer has Version 1.4 of the ServletA.java resource and wants to 
compare the differences between their current version and 1.1 to understand 
changes made. They would perform the following:

1. Open the Web perspective using Window → Open Perspective → Other → 
Web.

2. Expand in the Project Explorer Dynamic Web Projects → 
ITSOCVSGuide → Java Resources → JavaSource → itso.ral.ibm.com 
and highlight ServletA.java.

3. Right-click and select Compare with → Revision..., and a screen similar to 
the CVS Resource History will display, as in Figure 26-38.

Figure 26-38   List of revisions for ServletA.java
 Chapter 26. CVS integration 1345



4. Double-click the revision 1.1 version and a comparison will appear in the 
pane below, as in Figure 26-39. 

The changes are then displayed in a few ways. In the top right-hand corner 
the changes to the class are shown, which include attribute changes, and 
identifies the methods that have changed, while in the bottom two panes the 
actual code differences are highlighted. The left bottom pane has the revision 
in the workspace and the right bottom pane has the revision 1.2 from the 
repository.

Figure 26-39   Comparison between Version 1.4 and Version 1.1 of ServletA.java

Note: The bars in the bottom pane on the right-hand side indicate the 
changes located in the file. By clicking them they will position the pane to 
highlight the changes and assist in quickly moving around large files with 
many changes.
1346 Rational Application Developer V6 Programming Guide



26.7.2  Comparing two revisions in repository
A developer wants to compare the differences between revision 1.1 and 1.3 in 
the repository of the file ServletA.java, and they have version 1.4 in their 
workspace and do not want to remove it. The procedure to follow is:

1. Open up the CVS Resource History using the procedure in “CVS resource 
history” on page 1343, which would display the view shown in Figure 26-37 
on page 1344.

2. Click in the row of the first version you want to compare, say revision 1.1, and 
then, while pressing the Ctrl key, click in the row of the second version, which 
is 1.3, so that the screen looks as in Figure 26-40.

Figure 26-40   Highlight the two revisions to compare

3. Right-click, ensuring that the two revisions are highlighted, and click 
Compare, and the result will appear as in Figure 26-41 on page 1348. The 
higher version will always appear on the left-hand pane and the lower version 
in the right pane.
 Chapter 26. CVS integration 1347



Figure 26-41   Comparisons of two revisions from the repository

26.8  Annotations in CVS
The annotation function of CVS has been included in IBM Rational Application 
Developer V6 to provide details of the changes that were performed on a 
particular revision. The annotation function displays to the request of what lines 
were changed in particular revisions, and the author responsible for the change 
(or the one to “blame”). This feature can assist developers with gaining an 
understanding of what has changed that may impact a functionality change in the 
code and identify who can assist them in their resolution of this change.

To demonstrate annotations we can go back to our example of looking at the 
resource ServletA.java and see what the process is and what it provides.
1348 Rational Application Developer V6 Programming Guide



1. Open the Web perspective using Window → Open Perspective → Other → 
Web.

2. Expand in the Project Explorer Dynamic Web Projects → ITSOCVSGuide 
→ Java Resources → JavaSource → itso.ral.ibm.com and highlight 
ServletA.java.

3. Right-click and select Team → Show Annotation. This will switch to the CVS 
Repository Exploring view and display the views as in Figure 26-42.

The view on the left-hand side is the CVS Annotation view. The information 
that it displays is the user that made the change, followed by the version and 
the number of lines in brackets. Highlighting any of these will display the 
change that occurred in the top right-hand pane of the source, with the 
corresponding version information in the bottom right view.

Figure 26-42   Annotation view for ServletA.java

The annotation view allows a developer to identify changes that may have 
occurred in a particular file and identify the root causes of issues that they may 
be having.
 Chapter 26. CVS integration 1349



26.9  Branches in CVS
Branches are Software Configuration Management (SCM) techniques to allow 
current development of software based on a baseline that has been established. 

In CVS there is the concept of the HEAD, which is a branch that refers to the 
current work that is being performed in a team environment. However, this is only 
useful in terms of one development team working with one release. The 
real-world situation is that development follows a life cycle that has development, 
maintenance, and enhancement based on a baseline. This is when branches 
can be useful and when CVS can allow you to create baselines and parallel 
streams of work to enhance software product development. 

Typical development cycles would have a development cycle for new work, as 
well as a maintenance cycle in which code currently in use is enhanced and 
resolved of bugs. In these circumstances there would be two streams of 
development occurring that would be independent: The maintenance branch 
enhancing “operational” code and the development branch. At some point these 
would need to be merged together to provide a new baseline to be a production 
version. A representation is shown in Figure 26-43.

Figure 26-43   Branching of two development streams

26.9.1  Branching
Creating a branch is useful when you wish to maintain multiple versions of the 
software developed when they are in multiple stages of delivery. 

The scenario that is identified is that a particular release has been deployed to a 
host machine; however, further work needs to continue to enhance the 

Maintainance Stream

Development Stream

Merge two branches

Time

Release of software
1350 Rational Application Developer V6 Programming Guide



application. In addition to this, existing software needs to be enhanced and 
maintained so that problems identified are fixed. Branching provides the 
mechanism to achieve this, and a process is outlined using the simple example 
as follows:

1. Open the Web perspective using Window → Open Perspective → Other → 
Web.

2. Expand in the Project Explorer Dynamic Web Projects → ITSOCVSGuide 
and highlight ITSOCVSGuide.

3. Create a tag for what is in your repository to use as the branch root by 
right-clicking and selecting Team → Tag as Version..., and typing the tag 
name BRANCH_ROOT, and clicking OK.

4. Highlight the project ITSOCVSGuide, right-click, and select Team → 
Branch....

5. Type the name of the branch in the first dialog and the branch to base it from, 
which is BRANCH_ROOT. Leave the check box checked to start working on this 
branch, as shown in Figure 26-44 and press OK.

Figure 26-44   Creating a new CVS branch

6. Highlight the project ITSOCVSGuide, right-click, select Properties, and click 
the CVS tag. A view, as shown in Figure 26-45 on page 1352, will be 
displayed with the tag name displayed as Maintainance (Branch), indicating 
that it has been set up correctly. Click OK when finished viewing.

Note: The version name is important; you will need it when you want to 
merge the branches later. It identifies the point at which the branch was 
created.
 Chapter 26. CVS integration 1351



Figure 26-45   Branch information for a project in the local workspace

7. Open the CVS Repository Explorer window by clicking Window → Open 
Perspective → Other → CVS Repository Explorer.

8. Right-click the repository and click Refresh View.

9. Expand the tree and the branches sub tree to verify that the branch has been 
created in the repository, as shown in Figure 26-46.

Figure 26-46   List of branches created
1352 Rational Application Developer V6 Programming Guide



Updating Branch code
Assume now that there are changes required to be made to the servlet 
ServletA.java and a new viewbean View2.java, which is created with no methods 
or attributes. This will be used to demonstrate the merge process with the 
changes being made in the maintainance branch and saved into the repository.

1. Open the Web perspective using Windows → Open Perspective → 
Other → Web.

2. Expand in the Project Explorer Dynamic Web Projects → 
ITSOCVSGuide → Java Resources → JavaSource → itso.ral.ibm.com 
and double-click ServletA.java to open it.

3. Navigate to the doPost method and at the top of the class add the statement:

System.out.println("Added in some code to demonstrate branching");

4. Select File → Save to save the information.

5. Highlight the package itso.ral.ibm.com and right-click New → Class

6. Type View2 for the name of the class and click Finish.

7. Highlight the project ITSOCVSGuide and click Team → Synchronize, and 
click Yes to switch to the Synchronize view.

8. Select the project, right-click, select Commit..., and click Yes to add the 
resource into CVS.

9. When the Commit dialog window appears type Branching example, and click 
OK.

10.Open the CVS Repository Explorer by selecting Windows → Open 
Perspective → Other → CVS Repository Explorer, and expand out the 
tree, as shown in Figure 26-47 on page 1354.
 Chapter 26. CVS integration 1353



Figure 26-47   Code checked into the branch

The changes have now been committed into the branch called Maintainance, 
which will have contents that differ from the main branch. This will not be seen by 
developers working on the branch HEAD, which is the development stream in 
our scenario.

26.9.2  Merging
Merging of branches occurs when there is a point in time that requires the code 
from one branch to be incorporated into another branch for a major milestone. 
This could be a major integration step, release date, or changes are required 
from the branch to resolve some issues.

The scenario now is that development on the main CVS branch has completed 
development and is required to merge changes in the maintainance branch for 
release as a new version.

To merge the two branches, you have to know: 

� The name of the branch or version that contains your changes. 
1354 Rational Application Developer V6 Programming Guide



� The version from which the branch was created. This is the version name that 
you supplied when branching. 

In our case, the branch is Maintenance, and the version is Branch_Root.

Merging requires that the target or destination branch be loaded into the 
workspace before merging in a branch. Since in our scenario the changes will be 
merged to HEAD, this needs to be loaded in the workspace.

1. Open the Web perspective using Windows → Open Perspective → 
Other → Web.

2. Open the tree under the Dynamic Web Projects → ITSOCVSGuide, 
highlight the project ITSOCVSGuide, and right-click, selecting Replace 
With... → Another Branch or Version....

3. When the dialog appears, select HEAD and click OK.

4. Highlight the project ITSOCVSGuide and right-click, selecting Team → 
Merge, which displays the dialog shown in Figure 26-48.

Figure 26-48   Selection of the merge start point

5. Select the branch name BRANCH_ROOT for the merge start point and click 
Next.

6. The merge branch dialog will be displayed requesting the branch to merge 
into the tag BRANCH_ROOT specified earlier. Select Maintainance and click 
Finish, as in Figure 26-49 on page 1356. Click Yes to switch to the 
synchronizing view.
 Chapter 26. CVS integration 1355



Figure 26-49   Identification of the merge target in CVS

7. Expand out the tree in the Synchronize view to display changes. Verify that 
there are no conflicts. If there are then the developer will need to resolve 
these conflicts. In our case, the merge is simple, as shown in Figure 26-50.

Select the project ITSOCVSGuide, right-click, and select Update.

Figure 26-50   Files required to be merged

8. Open the Web perspective using Windows → Open Perspective → 
Other → Web.

9. Open the tree under the Dynamic Web Projects → ITSOCVSGuide and 
highlight the project ITSOCVSGuide, right-click, and select Team → 
Synchronize with Repository....

10.Click Yes to open the Synchronize view.
1356 Rational Application Developer V6 Programming Guide



11.Expand out the Synchronize view to display the changed files ServletA.java 
and View2.java, as in Figure 26-51. Select the project, and right-click and 
select Commit.

Figure 26-51   CVS updates to HEAD from the merge

12.When the commit dialog appears add the comment Merged changes from 
maintainance branch and click OK.

This scenario, although a simple one, highlights the technique required by users 
to work with branches. In a real scenario there would be conflicts found, and this 
would require resolution between developers. Be aware that branching and 
concurrent development is a complex process. IBM Rational Application 
Developer V6 provides the tools for merging; however, equally important are 
procedures on handling situations such as branching and merging of code.

26.9.3  Refreshing server-defined branches
If a branch exists on the server, you must refresh it in your workspace to be able 
to access it. The CVS Repositories view does not obtain a list of all branches 
from the server by default.

1. To define a branch manually to a repository, go to the CVS Repositories view 
by selecting Window → Open Perspective → Other → CVS Repository 
Explorer.

2. Select the repository and expand out the tree. Highlight the Branches node 
(see Figure 26-52 on page 1358), right-click, and select Refresh 
Branches....
 Chapter 26. CVS integration 1357



Figure 26-52   Selecting the Branches node in CVS Repository view

3. In the Refresh branches dialog specify the projects you wish to refresh 
(Figure 26-53 on page 1359) and click Finish.

Note: If there are no repository locations listed in the Repositories view, 
you have to add a location, as explained in “Add a CVS repository” on 
page 1323.
1358 Rational Application Developer V6 Programming Guide



Figure 26-53   Refreshing branches

4. In the Repositories view, expand Branches and observe that it now contains 
the new SERVER_HEAD branch (see Figure 26-54 on page 1360). 

You can now check files out from this branch, if they exist.
 Chapter 26. CVS integration 1359



Figure 26-54   Refreshed branch created in server displayed in CVS Repository view

26.10  Work with patches
IBM Rational Application Developer V6 provides the facility for developers to be 
able to share work when they do not have write access to the repository. In this 
circumstance the developer that does have access to the repository can create a 
patch and can forward it to another developer who has and can apply the patch 
to the project and commit changes. 

See the IBM Rational Application Developer V6 online help for a description of 
how to work with patches.

26.11  Disconnecting a project
Developers can disconnect a project from the repository. 

1. Open the Web perspective using Windows → Open Perspective → 
Other → Web.

2. Open the tree under the Dynamic Web Projects → ITSOCVSGuide.

3. Highlight the ITSOCVSGuide project, right-click, and select Team → 
Disconnect. 

4. A prompt will appear asking you to confirm the deletion of the CVS control 
information (see Figure 26-55 on page 1361). 

Select Do not delete the CVS meta information (e.g, CVS sub 
directories), and click OK.
1360 Rational Application Developer V6 Programming Guide



Figure 26-55   Disconnect confirmation

CVS adds special directories named CVS to the project and its folders. These 
directories can be deleted or kept on disconnect. The feature to keep these 
folders and files in IBM Rational Application Developer V6 hidden is provided 
with the Eclipse framework. 

Reconnect
You can reconnect a project to the repository (Team → Share Project). 
Reconnect is easier if the CVS folders are still in the project. If they were deleted, 
you are prompted to synchronize your code with the existing repository code.

26.12  Synchronize perspective
The synchronize perspective in IBM Rational Application Developer V6 has been 
used in describing concepts within this chapter but has not as yet been 
described. The purpose of this perspective is to provide to the user of the tool 
with an entry point to identify changes in the team repository versus what is on 
the local workspace, and assist in effectively using it. Features provided with the 
synchronize perspective include:

� Create custom synchronization of a subset of resources in the workspace.

� Schedule checkout synchronization.

� Provide a comparison of changes in the workspace (which has been 
demonstrated in “Comparisons in CVS” on page 1344).

Important: By not deleting the CVS meta information we can reconnect the 
project with the CVS repository more easily. Removal of the CVS meta 
information may impact the synchronization of the files in the workspace and 
the repository.
 Chapter 26. CVS integration 1361



26.12.1  Custom configuration of resource synchronization
The Synchronize view provides the ability to create custom synchronization sets 
for the purpose of synchronizing only identified resources that a developer may 
be working on. This allows the developer to focus on changes that are part of 
their scope of work and ensure they are aware of the changes that occur without 
focusing on the other aspects of the application. Problems can occur with this 
mode of operation as well, since with normal application development changes in 
one part of the application can impact other parts.

The scenario to demonstrate custom synchronization requires that the 
ITSOCVSGuide project exists in the workspace. In addition, the developer will 
need to perform the following synchronization procedures:

� Full synchronization of the project ITSOCVSGuide
� Partial synchronization of the servlet ServletA.java

The procedure to perform this would be as follows:

1. Select Window → Open Perspective → Other → Team Synchronizing, 
which presents the window shown in Figure 26-56 on page 1363.

Important: Custom synchronization is most effective when an application is 
designed with defined interfaces where the partitioning of work is clear and 
defined. However, even in this scenario it needs to used with caution since it 
can introduce additional work in the development cycle for integration of the 
final product. Procedures need to be documented and enforced to ensure that 
integration is incorporated as part of the work pattern for this scenario.
1362 Rational Application Developer V6 Programming Guide



Figure 26-56   Team Synchronizing perspective

2. Click the Synchronize button  at the top the Synchronize view (left pane) 
and click Synchronize... to add a new synchronization definition.

3. In the synchronize dialog that appears as in Figure 26-57 on page 1364, 
select CVS and click Next.
 Chapter 26. CVS integration 1363



Figure 26-57   Synchronize dialog

4. Expand the project tree out to view the contents. Accept the defaults for the 
Synchronize CVS dialog, as shown in Figure 26-58 on page 1365, and click 
Finish. 

If there are no changes then a dialog box will appear saying Synchronizing: 
No changes found, and in the Synchronize view a message of No changes in 
‘CVS (Workspace)’.
1364 Rational Application Developer V6 Programming Guide



Figure 26-58   Default synchronization of the project ITSOCVSGuide

5. To preserve this synchronization, click the Pin Current Synchronization icon 
.

6. Add in a new synchronization by clicking the Synchronize icon  at the top 
of the Synchronize view.

7. In the synchronize dialog that appears, as in Figure 26-57 on page 1364, 
select CVS and click Next.

8. Expand the project tree fully out under JavaSource to view the contents, click 
Deselect All to deselect all the resources, and click the check box for 
ServletA.java. 

Verify that Selected Resources is selected, as in Figure 26-59 on page 1366, 
and click Finish. If there are no changes, then a dialog box will appear saying 
Synchronizing: No changes found, and in the Synchronize view a message 
of No changes in ‘CVS (Workspace)’.
 Chapter 26. CVS integration 1365



Figure 26-59   Selecting ServletA.java for synchronization

9. To preserve this synchronization, click the Pin Current Synchronization icon 
.

In the list of synchronizations  two should appear, as shown in Figure 26-60.

Figure 26-60   List of synchronizations created

Worksets of synchronization can be defined when creating a synchronization. 
The workset supports three types of resources:

� Java

Supports the creation of synchronization working sets consisting of pure java 
resources, such as java source and jar files.
1366 Rational Application Developer V6 Programming Guide



� Help

Supports the creation of synchronization working sets consisting of Help 
resources.

� Resource

Supports the creation of synchronization working sets consisting of any file 
that can be saved into the team repository.

Working sets differ in that a name can be associated with the synchronization, 
allowing the developer to have a meaningful name related to the 
synchronization. This is not been shown in this book; however, it follows a similar 
procedure as described above and is left to the reader to attempt.

26.12.2  Schedule synchronization
A new feature that has been included in IBM Rational Application Developer V6 
is the ability to schedule synchronization of the workspace. This feature follows 
on from “Custom configuration of resource synchronization” on page 1362, in 
which a user would like to schedule the synchronization that has been defined. 
Scheduling a synchronization can only be performed for synchronizations that 
have been pinned.

To demonstrate this feature, assume that the project ITSOCVSGuide is loaded in 
the workspace and a synchronization has been defined for this project and 
pinned. Scheduling of this project for synchronization is then performed using the 
following:

1. Open the synchronization view by clicking Windows → Open 
Perspective → Other... → Team Synchronizing.

2. In the Synchronize view click the drop-down arrow, as circled in Figure 26-61.

Figure 26-61   Synchronize view

3. A drop-down box appears. Click Schedule... as shown in Figure 26-62 on 
page 1368.
 Chapter 26. CVS integration 1367



Figure 26-62   Selecting the Schedule option

4. The Configure Synchronize Schedule will be displayed. Select the radio 
button Using the following schedule: and the time period that you wish to 
synchronize, as shown in Figure 26-63. Click OK.

Figure 26-63   Setting synchronization schedule

By setting the synchronization schedule to an hour, the project ITSOCVSGuide 
will be synchronized every hour to ensure that the latest updates are available.
1368 Rational Application Developer V6 Programming Guide



Part 6 Appendixes

Part 6
© Copyright IBM Corp. 2005. All rights reserved. 1369



1370 Rational Application Developer V6 Programming Guide



Appendix A. IBM product installation and 
configuration tips

The objective of this appendix is to highlight the key considerations and options 
for installation selected for IBM Rational Application Developer, IBM DB2 
Universal Database, and IBM WebSphere Application Server for this redbook. 

The appendix is organized into the following sections:

� IBM Rational Application Developer V6 installation
� IBM Rational Agent Controller V6 installation
� IBM Rational ClearCase LT installation
� IBM DB2 Universal Database V8.2 installation
� IBM WebSphere Application Server V6 installation
� WebSphere Application Server messaging configuration

A

© Copyright IBM Corp. 2005. All rights reserved. 1371



IBM Rational Application Developer V6 installation
The purpose of this section is to highlight the key installation considerations, 
identify components installed while writing this redbook, and provide a general 
awareness to using the Rational Product Updater tool to install IBM Rational 
Application Developer V6 Interim Fix 0004.

This section includes the following tasks:

� Rational Application Developer installation
� WebSphere Portal V5.0 Test Environment installation
� WebSphere Portal V5.1 Test Environment installation
� Rational Application Developer Product Updater - Interim Fix 0004

Rational Application Developer installation
The IBM Rational Application Developer V6.0 product includes detailed 
installation documentation. This section highlights the installation issues we 
found while writing the redbook, as well as the components we installed.

Installation considerations
Prior to installing IBM Rational Application Developer V6.0, beware of the 
following installation considerations:

� UNC network shares: Do not install Rational Application Developer from a 
UNC network share (for example, \\server\shareA). Instead, map the network 
drive to a drive letter (for example, net use x: \\server\shareA) so that the 
Rational Application Developer installer works properly.

� Standardize installation path for team development: Standardize the Rational 
Application Developer installation path for your development team. We found 
that many files within the projects have absolute paths based on the 

Note: For detailed information on the IBM Rational Application Developer 
V6.0 installation, refer to the following product guides found on CD 1:

� Installation Guide, IBM Rational Application Developer V6.0 (Open 
install.html in a Web browser.)

� Release note, IBM Rational Application Developer V6.0 (Open 
readme.html in a Web browser.)

� Migration Guide, IBM Rational Application Developer V6.0 (Open 
migrate.html in a Web browser.)

� Installing IBM Rational ClearCase LT - Technote (Open 
TechNote-Installing_CCLT.html in a Web browser.)
1372 Rational Application Developer V6 Programming Guide



installation path; thus when you import projects from a team repository such 
as CVS or ClearCase you will get many errors.

� Installer window in foreground/background: After clicking IBM Rational 
Application Developer V6.0, sometimes the welcome screen does not appear 
in the foreground. Simply select the new window from the task list to continue.

Rational Application Developer installation
While writing this redbook, we installed IBM Rational Application Developer V6.0 
as follows:

1. Start the Rational Application Developer Installer by running launchpad.exe 
from CD 1. 

2. The IBM Rational Application Developer V6.0 components have separate 
installations from the main Launchpad Base page, as seen in Figure A-1.

Figure A-1   IBM Rational Application Developer V6.0 installation components
 Appendix A. IBM product installation and configuration tips 1373



Table A-1   IBM Rational Application Developer V6.0 description of install components

Component Description

Install IBM Rational Application Developer V6.0 Core Rational Application Developer - sub 
components:
� Integrated Development Environment (required)
� IBM WebSphere Application Server V6.0 

Integrated Test Environment
� Additional Features:

– Language Pack
– Enterprise Generation Language (EGL)
– Portal tools
– Examples for Eclipse Plug-in Development

Note: While writing the redbook, we did not install 
(out of scope) the Language Pack or Examples for 
Eclipse Plug-in Development.

IBM WebSphere Test Environment V5.x Select from the following sub components:

� WebSphere Application Server V5.1
� WebSphere Application Server V5.0.2
� WebSphere Application Server Express V5.1
� WebSphere Application Server Express V5.0.2

IBM WebSphere Portal V5.0 Test Environment IBM WebSphere Portal V5.0 Test Environment 
integrated with Rational Application Developer for 
local testing and debug.

Install Agent Controller IBM Rational Agent Controller is needed for debug on 
WebSphere Application Server V5.x (capability 
built-in on V6), and profiling and testing on 
WebSphere Application Server V6 and V5.x.

Install the embedded messaging client & server This feature is for embedded messaging for 
WebSphere Application Server V5.x. In WebSphere 
Application Server V6 messaging is built-in.

Install Rational ClearCase LT Note: Due to a defect at the time of the Rational 
Application Developer product release, the 
ClearCase LT was made available as a Web 
download with a supporting patch. See Installing IBM 
Rational ClearCase LT - Technote (open 
TechNote-Installing_CCLT.html in a Web browser 
found on CD 1).

Install Crystal Enterprise V10 Professional 
Edition

Install Crystal Enterprise V10 Embedded Edition
1374 Rational Application Developer V6 Programming Guide



3. When Welcome window appears, click Next.

4. When the License Agreement window appears, review the terms and if in 
agreement select I accept the terms of the license agreement. Click Next.

5. When the Install Directory window appears, we accepted the default 
C:\Program Files\IBM\Rational\SDP\6.0 and clicked Next.

6. When the Select Features window appears, select the appropriate features 
for your environment. For example, we selected the features displayed in 
Figure A-2 for the redbook.

Figure A-2   Install IBM Rational Application Developer V6.0 Features

7. When the Installation Summary window appears, review your selections and 
click Next to begin copying files as seen in Figure A-3 on page 1376.

Important: It is very important that you understand the implication of 
changing the default installation path. For example, if you plan on team 
development, we strongly recommend that all developers use the same 
installation path (such as default); otherwise you will run into problems. 

We found that many files within the projects have absolute paths based on 
the installation path; thus when you import projects from a team repository 
such as CVS or ClearCase you will get many errors.
 Appendix A. IBM product installation and configuration tips 1375



Figure A-3   IBM Rational Application Developer V6.0 install summary

The installation can take 30 minutes to 2 hours depending on the processing 
speed of your system and the features selected.

8. When you see the message The Installation Wizard has successfully 
installed IBM Rational Application Developer V6.0, click Next.

9. The installation is now complete. We unchecked the Launch Agent 
Controller install and then clicked Finish. We will install the IBM Rational 
Agent Controller separately for profiling and testing purposes.

WebSphere Portal V5.0 Test Environment installation
The development tools are installed as part of the base Rational Application 
Developer installation by selecting the Portal Tools feature. There are a couple of 
possible scenarios for the portal test environment. 

� IBM WebSphere Portal V5.0 Test Environment (local)

Install this feature from the main IBM Rational Application Developer V6.0 
Installer dialog.

Note: The selected features take approximately 2.5 GB of disk space.
1376 Rational Application Developer V6 Programming Guide



� IBM WebSphere Portal V5.0.2.2 (remote)

This option requires IBM WebSphere Portal V5.0.2.2 (Express, Enable, 
Extend Editions); sold separately. 

WebSphere Portal V5.1 Test Environment installation
The development tools are installed as part of the base Rational Application 
Developer installation by selecting the Portal Tools feature. There are a couple of 
possible scenarios for the portal test environment. 

� IBM WebSphere Portal V5.1 (remote)

This option requires IBM WebSphere Portal V5.1 (Express, Enable, Extend 
Editions); sold separately. 

� IBM WebSphere Portal V5.1 Test Environment (local)

The WebSphere Portal V5.1 Test Environment is included with IBM Rational 
Application Developer V6.0 distribution; however, it is installed via a separate 
installer found on the WebSphere Portal V5.1 Setup CD.

Table A-2   IBM WebSphere Portal V5.1 Test Environment CDs

Tip: Eliminate installer prompting of CDs.

When installing the IBM WebSphere Portal V5.1 Test Environment from a 
directory or network drive (ensure drive is mapped), create the directory 
names as listed in Table A-2 to eliminate the need for the WebSphere 
Portal installer to prompt for CDs. For example, we created a directory 
structure on a network drive like the following:

/wp51/setup
/wp51/cd1-1
/wp51/cd1-2
/wp51/cd1-15
/wp51/cd2
/wp51/cd3

IBM WebSphere Portal V5.1 Test Environment CDs included with RAD V6.0 Directory

IBM WebSphere Portal V5.1 - Portal Install (Setup) setup

IBM WebSphere Portal V5.1 - WebSphere Business Integrator Server Foundation (1-1) cd1-1

IBM WebSphere Portal V5.1 - WebSphere Business Integrator Server Foundation (1-2) cd1-2

IBM WebSphere Portal V5.1 - WebSphere Business Integrator Server Foundation 
WebSphere Application Server V5.1 Fixpack 1 (1-15)

cd1-15
 Appendix A. IBM product installation and configuration tips 1377



To install the IBM WebSphere Portal V5.1 Test Environment, do the following:

1. Run install.bat from the WebSphere Portal Setup CD (or setup directory).

2. When prompted, select the desired language for the install wizard (for 
example, English) and click OK.

3. When the Welcome page appears, review the information and click Next.

4. When the Software License Agreement page appears, if in agreement, select 
I accept the terms in the license agreement and click Next.

5. When the Choose the setup type that best suits your needs page appears, 
select Test Environment (as seen in Figure A-4) and then click Next.

IBM WebSphere Portal V5.1 - Portal Server (2) cd2

IBM WebSphere Portal V5.1 - Lotus Workplace Web Content Management™ (3) cd3

IBM WebSphere Portal V5.1 Test Environment CDs included with RAD V6.0 Directory
1378 Rational Application Developer V6 Programming Guide



Figure A-4   Choose the setup type - Test Environment

6. When prompted, ensure instances of WebSphere Application Server and 
WebSphere Portal are not running. Click Next.

7. When prompted to enter the WebSphere Application Server installation 
directory used by the WebSphere Portal Test Environment, we accepted the 
default directory (C:\Program Files\Portal51UTE\AppServer). Click Next.

8. When prompted to enter the WebSphere Portal installation directory, we 
accepted the default (C:\Program Files\Portal51UTE\PortalServer). Click 
Next.

Note: This requires approximately 1,650,000 KB of disk space.

Note: This requires approximately 1,550,000 KB of disk space.
 Appendix A. IBM product installation and configuration tips 1379



9. When prompted to enter the WebSphere Portal administrative user and 
password, we entered the following and then clicked Next:

– WebSphere Portal administrative user: wpsadmin
– WebSphere Portal administrative user password: <password>

10.When the WebSphere Portal install options Summary dialog appears, review 
the selections and click Next.

The installation should now begin to copy files. The installation process takes 
several hours.

11.When the installation is complete click Finish.

Rational Application Developer Product Updater - Interim Fix 0004
The Rational Product Updater tool is used to apply fixes to IBM Rational 
Application Developer V6. We strongly recommend that you install the Interim 
Fix 004 for IBM Rational Application Developer for WebSphere Software V6.0. 
The Interim Fix 0004 can be installed directly over the Web using the Product 
Updater tool included with Rational Application Developer, or alternatively the 
Interim Fix 0004 can be downloaded and installed locally.

More detailed information on Interim Fix 0004 can be found at:

http://www.ibm.com/support/docview.wss?rs=2043&context=SSRTLW&dc=D400&uid=swg24
008988&loc=en_US&cs=UTF-8&lang=enclass=

The following procedure describes how to install IBM Rational Application 
Developer V6.0 Interim Fix 0004 using the Product Updater tool:

1. Ensure that Rational Application Developer test servers are stopped and 
Application Developer is closed.

2. Start the Rational Product Updater by clicking Start → Programs → IBM 
Rational → Rational Product Updater.

3. Click Find Updates as seen in Figure A-5.

Note: The WebSphere Portal installation log can be found in the following 
directory:

C:\Program Files\Portal51UTE\PortalServer\log\wpinstalllog.txt
1380 Rational Application Developer V6 Programming Guide

http://www.ibm.com/support/docview.wss?rs=2043&context=SSRTLW&dc=D400&uid=swg24008988&loc=en_US&cs=UTF-8&lang=enclass=


Figure A-5   Rational Product Updater 

4. When prompted with a dialog that Interim Fix 0004 has been found, click OK.

5. The IBM Rational Product Updater should be populated with updated fix 
information. Ensure that Interim Fix 0004 is checked. Click Install Updates.

Note: The Rational Product Updater will detect that a newer version of the 
Product Updater is available. Download it and restart using the new 
version.

Tip: If the Rational Product Updater requires an update, you are prompted 
to install it before you can continue. The Rational Product Updater installs 
the update, restarts, and retrieves a list of available updates.

Tip: Detailed information on the fix is displayed in the right-hand window 
by selecting the Interim Fix.
 Appendix A. IBM product installation and configuration tips 1381



6. When the License Agreement dialog appears, if in agreement select I accept 
the terms in the license agreements, and then click OK to begin the 
installation.

Depending on the speed of your computer processor, the amount of RAM, 
and the speed of your Internet connection, the update might take an extended 
period of time to download and install.

7. After the installation is complete, click the Installed Products tab to verify 
that the Interim Fixes were installed successfully.

8. Close the Rational Product Updater. 

IBM Rational Agent Controller V6 installation
The IBM Rational Agent Controller is a daemon that allows client applications to 
launch and manage local or remote applications, and provides information about 
running applications to other applications. You must install Agent Controller 
separately before you can use the following tools: 

� Profiling tools to profile your applications. Agent Controller must be installed 
on the same system as the application that you are profiling. 

� Logging tools to import remote log files. Agent Controller must be installed 
and running on the remote system from which the log files are imported. 

� Component testing tool to run test cases. Agent Controller must be installed 
on the systems on which you run the test cases. 

� Run-time analysis tool for probe insertion, code coverage, and leak analysis. 

� Tools for remote application testing on WebSphere Application Server 
version 5.0 or 5.1. (Agent Controller does not have to be installed for remote 
publishing of applications, or for local application publishing or testing.) Note 
that WebSphere Application Server Version 6.0 has this functionality built in, 
so Agent Controller is not required on Version 6.0 target servers. 

The IBM Rational Agent Controller is available on the following platforms:

� Microsoft Windows 2000, XP, 2003
� IBM AIX®
� IBM OS/390
� IBM OS/400
� Linux on Intel
� Linux on S/390®
� SUN Solaris on Sparc
� HP/UX
1382 Rational Application Developer V6 Programming Guide



Within this redbook, there are a couple of scenarios where selected components 
of the IBM Rational Agent Controller need to be installed.

� Chapter 20, “JUnit and component testing” on page 1081

� Chapter 21, “Debug local and remote applications” on page 1121

– WebSphere Application Server V6.0

If the remote system is running WebSphere Application Server V6.0 and 
you only intend to use remote debug, the IBM Rational Agent Controller is 
not required since the required functionality is built into WebSphere 
Application Server V6.0.

– WebSphere Application Server V5.1 and V5.0

If the remote system is running WebSphere Application Server V5.1 or 
V5.0 and you only intend to use remote debug, the IBM Rational Agent 
Controller is required. You will be prompted to provide the installation path 
for WebSphere Application Server V5.1 or V5.0 during the IBM Rational 
Agent Controller installation.

� Chapter 24, “Profile applications” on page 1237

To install the IIBM Rational Agent Controller for Windows, do the following:

1. Insert the IBM Rational Agent Controller CD included with IBM Rational 
Application Developer V6.0 in the CD-ROM drive of the system where 
WebSphere Application Server is installed.

2. Navigate to the win_ia32 directory and run setup.exe to start the installer.

3. When the Welcome window appears, click Next.

4. When prompted to make sure the Eclipse Platform is not running, click Next.

5. Review the terms of the license agreement, and if in agreement select I 
accept the terms in the license agreement and then click Next.

6. When prompted to enter the IBM Rational Agent Controller installation 
directory, we accepted the default C:\Program Files\IBM\AgentController and 
then clicked Next.

7. When prompted to select the components of the IBM Rational Agent 
Controller to install, we accepted the default (see Figure A-6) and clicked 
Next.
 Appendix A. IBM product installation and configuration tips 1383



Figure A-6   IBM Rational Agent Controller component selection

8. When prompted to enter the path to the Java Runtime, we entered 
c:\ibm\WebSphere\AppServer\bin\java\jre\bin\java.exe and then clicked 
Next.

If installing the IBM Rational Agent Controller on the node where Rational 
Application Developer is installed, enter the following path:

<rad_home>\runtimes\base_v6\java\jre\bin\java.exe

Where <rad_home> is the Rational Application Developer installation path.

9. When prompted to enter the WebSphere Application Server installation path, 
we left this page blank since we are installing the IBM Rational Agent 
Controller on a WebSphere Application Server V6.0 node. Click Next.

10.When the Host that can access the Hyades Data Collection Engine window 
appears, we accepted the default (any system) and clicked Next.

11.When the Specify security setting window appears, we accepted the default 
(Disable) and clicked Next.

12.When the Installation summary page appears, review the installation options 
and then click Next to begin copying files.

13.When the installation is complete, click Finish.
1384 Rational Application Developer V6 Programming Guide



IBM Rational ClearCase LT installation
Rational Application Developer entitles you to a free license of Rational 
ClearCase LT. If you do not have the ClearCase LT product media, then you 
must first download and install the latest supported version of ClearCase LT. If 
you already have the ClearCase LT v2002.05 or ClearCase LT v2003.06 product 
media, you will also need the latest patches to support the integration with IBM 
Rational Application Developer V6.0.

Installing the ClearCase LT Server component also installs the ClearCase LT 
Client component. We recommend that you install the ClearCase LT Server 
component before installing ClearCase LT Client on any additional machines. 

The installation instructions in this section are intended to help you install the 
client and server code for Rational ClearCase LT. For more detailed installation 
instructions refer to the Rational ClearCase LT Installation Guide product guide.

1. Run setup.exe from the root directory of the downloaded ClearCase LT 
installation image.

2. When the Rational Setup Wizard appears click Next to continue.

Important: Information on obtaining a copy of IBM Rational ClearCase LT can 
be found in TechNote-Installing_CCLT.html of the IBM Rational Application 
Developer V6.0 CD1.

Tips: When installing the ClearCase LT Server, you can be logged on either 
locally on your Windows machine or logged on to a Windows domain. If 
installing while logged on locally, you will only be able to connect to the server 
from your local machine. Other people in your development team will not be 
able to connect to your machine and use your ClearCase LT Server. The user 
account used when installing must be a member of the local Administrators 
group.

To use ClearCase LT in a team environment and let other team members use 
your ClearCase LT Server, you must be logged on to a Windows domain with 
a user account having Domain Administrator privileges while installing 
ClearCase LT Server. The domain must also have a group for the ClearCase 
users and all members of your development team must be members of this 
group. This group should also be the Primary Group for these users. You can 
use the Domain Users group for this. 

It is highly recommended to use the Windows domain approach. Local setup 
can be useful for testing and demonstration purposes.
 Appendix A. IBM product installation and configuration tips 1385



3. On the Product Selection page, select Rational ClearCase LT and click 
Next.

4. On the Deployment Method page, select Desktop installation from CD 
image and click Next.

5. On the Client/Server page, select both server and client software and click 
Next.

6. In the new welcome window that is displayed, click Next.

7. A warning message about potential issues with Windows change journals 
may be displayed next. If you have implemented change journals on the 
target system, check the advice on the referenced Technote and determine 
whether the fix is required. Click Next to continue.

8. Accept the licensing agreement on the next page and click Next.

9. On the Destination Folder page, verify the install path (we use the default of 
C:\Program Files\Rational). Click Next.

10.On the Custom Setup page, you may unselect the Web Interface, as it is not 
used in this exercise. Click Next to continue.

11.A Configure pop-up window is displayed for adjusting the Start menu and 
desktop shortcut settings. Click Done.

12.Click Install on the Ready to Install the program window to start the 
installation.

13.On the Setup Complete page, click Finish.

14.The ClearCase LT Getting Started Wizard is now started. The wizard guides 
you through the process of creating a ClearCase storage directory, a 
ClearCase VOB, and setting up a ClearCase project. On the first page of the 
wizard click Next.

15.On the Storage Directory page, you can select a directory to store your 
ClearCase VOB files. Keep the default and click Next.

16.On the Source VOB page, keep the default name for Source VOB and the 
Initial Component. 

17.On the Initial Project page, keep the default project name InitialProject and 
select the Parallel Stream Project option. Click Next.

18.On the Summary page, click Next, and when the setup is done click Close on 
the final dialog.
1386 Rational Application Developer V6 Programming Guide



IBM DB2 Universal Database V8.2 installation
There are several editions of IBM DB2 Universal Database; however, the core 
functionality is the same amongst the editions. The IBM Rational Application 
Developer V6.0 product packaging includes IBM DB2 Universal Database V8.2 
Express Edition.

Several of the chapters found in this redbook require IBM DB2 Universal 
Database V8.2 to be installed. The purpose of this section is to highlight the key 
installation considerations for DB2 UDB specific to the redbook.

To start the DB2 UDB installation run setup.exe. We have highlighted the 
installation options we selected:

� Installation type: Typical (450 MB)
� Installation path: C:\Program Files\IBM\SQLLIB
� DB2 Administration Server user name: db2admin
� We accepted the defaults for the remaining installation settings.

IBM WebSphere Application Server V6 installation
Several of the chapters found in this redbook require IBM WebSphere 
Application Server V6.0 to be installed. The purpose of this section is to highlight 
the key installation considerations for WebSphere Application Server specific to 
this redbook.

The IBM WebSphere Application Server V6.0 installation is started by running 
launchpad.bat. The IBM WebSphere Application Server V6.0 components have 
separate installations from the main Launchpad Base page, as seen in 
Figure A-7 on page 1388. 

We accepted the default WebSphere Application Server installation directory, 
C:\Program Files\IBM\WebSphere\AppServer.

Note: After you have installed the Rational ClearCase LT product, we 
recommend that you review the Rational ClearCase Support page on the IBM 
Software Support site and make sure that the latest fixes have been applied. 
The Web site can be found at:

http://www.ibm.com/software/awdtools/clearcase/support

Note: For detailed installation instructions, refer to the IBM DB2 Universal 
Database V8.2 product documentation.
 Appendix A. IBM product installation and configuration tips 1387

http://www.ibm.com/software/awdtools/clearcase/support


Figure A-7   IBM WebSphere Application Server V6.0 installation components

Table A-3 describes the IBM WebSphere Application Server V6.0 installation 
components and usage within this redbook.

Table A-3   IBM WebSphere Application Server V6.0 installation components

Installation component Description Use in redbook 

WebSphere Application Server 
installation

Base WebSphere Application 
Server installation files.

Required
* Target for deploying ITSO 
application sample

IBM HTTP Server installation IBM HTTP Server installation files, 
which can be used with the 
WebSphere plug-in.

Optional
1388 Rational Application Developer V6 Programming Guide



For more detailed information on installing IBM WebSphere Application Server 
V6.0, refer to the following:

� IBM WebSphere Application Server V6.0 InfoCenter found at:

http://www.ibm.com/software/webservers/appserv/infocenter.html

� WebSphere V6 Planning and Design, SG24-6446 

� WebSphere Application Server V6 Systems Management and Configuration, 
SG24-6451 

WebSphere Application Server messaging configuration

The high-level configuration steps are as follows to configure messaging within 
WebSphere Application Server for the ITSO Bank application sample:

� Configure the service bus.
� Configure the bus members.
� Configure the destinations.
� Verify the messaging engine startup.

WebSphere plug-ins There are several supported 
WebSphere plug-ins depending on 
the Web server. If you install the 
IBM HTTP Server, you will need 
the IBM HTTP Server (apache) 
plug-in.

Optional

Application Clients installation This included the IBM JRE V1.4.2, 
as well as libraries for J2EE clients.

Optional
Note: Needed for J2EE Clients.

Application Server Toolkit 
installation

* Tool for assembly, deployment 
(EJB, Web Services) and debug 
J2EE applications. 

* No development support
* WebSphere Rapid Deployment
* Support for Enhanced EAR
* Server Tools – support for remote 
server

Optional

Installation component Description Use in redbook 

Note: This section is not required for the ITSO Bank sample application, as 
the ITSO Bank Enterprise Application does not use messaging, but is included 
for informational reasons.
 Appendix A. IBM product installation and configuration tips 1389

http://www.ibm.com/software/webservers/appserv/infocenter.html


� Configure JMS connection queue factory.
� Configure the destination JMS queue.
� Configuration of a JMS activation specification.

Configure the service bus
To configure the service bus, do the following:

1. From the WebSphere Administrative Console, select Service integration → 
Buses.

2. Click New.

3. Enter the following and then click OK:

– Name: InterbankingBus
– Uncheck Secure.

4. Click Save and then when prompted click Save to Save to Master 
Configuration.

Configure the bus members
To configure the Bus members, do the following:

1. Select Service integration → Buses.

2. Click the InterbankingBus created in the previous section.

3. Under Additional Properties, click Bus members.

4. Click Add.

5. The default Bus member name is the <hostnameNode:server>. For example, 
our Bus name is was6jmg1Node01:server1. Accept the defaults for the 
remaining fields and click Next.

6. Click Finish.

7. Click Save and then when prompted click Save to Save to Master 
Configuration.

Configure the destinations
To configure the destinations for messaging, do the following:

1. Select Service integration → Buses.

2. Click InterbankingBus.

3. Under Additional Properties, click Destinations.

4. Click New.
1390 Rational Application Developer V6 Programming Guide



5. When the Create new destination page appears, select Queue and then click 
Next.

6. Enter the Identifier. In our example we entered interbankingQueue. Click 
Next.

7. Select the Bus member created in “Configure the bus members” on 
page 1390 (for example, was6jmg1Node01:server1) and then click Next.

8. Click Finish.

9. Click Save and then when prompted click Save to Save to Master 
Configuration.

10.Log out of the WebSphere Administrative Console.

11.In order for the changes to take effect, you must restart the application server, 
in this case server1.

a. Stop the server1 application server by clicking Start → Programs → IBM 
WebSphere → Application Server V6 → Profiles → default → Stop 
server. Alternatively, use the stopServer.bat server1 command.

b. Start the server1 application server.

Verify the messaging engine startup
To verify the messaging engine startup, do the following:

1. Ensure the server1 application server has been restarted.

2. Start the WebSphere Administrative Console.

3. Select Service integration → Buses.

4. Click InterbankingBus.

5. Under Additional Properties, click Bus members.

6. Click Node=was6jmg1Node01, Server=server1.

You should see the green arrow under Status to note the Messaging Engine 
has been started.

Configure JMS connection queue factory
To configure the JMS connection queue factory, do the following:

1. Select Resources → JMS Provider → Default messaging.

2. Click JMS queue connection factory.

3. Click New.
 Appendix A. IBM product installation and configuration tips 1391



4. Enter the following and then click OK:

Connection:

– Name: interbankingCF
– JNDI name: jms/interbankingCF

Connection:

– Bus name: Select InterbankingBus.

5. Click Save and then when prompted click Save to Save to Master 
Configuration.

Configure the destination JMS queue
To configure the destination JMS queue, do the following:

1. Select Resources → JMS Provider → Default messaging.

2. Click JMS queue under Destinations.

3. Click New.

4. Enter the following and then click OK:

– Name: InterbankingQueue
– JNDI name: jms/interbankingQueue
– Bus name: Select InterbankingBus.
– Queue name: Select interbankingQueue.

5. Click Save and then when prompted click Save to Save to Master 
Configuration.

Configuration of a JMS activation specification
The configuration for the JMS activation specification for the destination of the 
busification configuration is accomplished by the following simple steps:

1. Select Resources → JMS Provider → Default messaging.

2. Click JMS activation specification under Activation Specifications.

3. Click New.

4. Enter the following and then click OK:

– Name: interbankingAS
– JNDI name: jms/interbankingAS
– Destination type: Select Queue.
– Destination JNDI name: jms/interbankingQueue
– Bus name: Select InterbankingBus.
1392 Rational Application Developer V6 Programming Guide



5. Click Save and then when prompted click Save to Save to Master 
Configuration.
 Appendix A. IBM product installation and configuration tips 1393



1394 Rational Application Developer V6 Programming Guide



Appendix B. Additional material

The additional material is a Web download of the sample code for this redbook. 
This appendix describes how to download, unpack, describe the contents, and 
import the Project Interchange file. In some cases the chapters also require 
database setup; however, if needed, the instructions will be provided in the 
chapter in which they are needed.

This appendix is organized into the following sections:

� Locating the Web material.
� Unpack the 6449code.zip.
� Description of sample code.
� Import sample code from a Project Interchange file.

B

© Copyright IBM Corp. 2005. All rights reserved. 1395



Locating the Web material
The Web material associated with this redbook is available in softcopy on the 
Internet from the IBM Redbooks Web server. Enter the following URL in a Web 
browser, and then download the 6449code.zip:

ftp://www.redbooks.ibm.com/redbooks/SG246449

Alternatively, you can go to the IBM Redbooks Web site at:

http://www.ibm.com/redbooks

Select the Additional materials and open the directory that corresponds with 
the redbook form number, SG246449.

The additional Web material that accompanies this redbook includes the 
following files:

File name Description
6449code.zip Zip file containing sample code

System requirements for downloading the Web material
The following system configuration is recommended:

Hard disk space: 20 MB minimum
Operating System: Windows or Linux
Processor: 1 GHz
Memory: 1 GB

Unpack the 6449code.zip
After you have downloaded the 6449code.zip, unpack the zip file to your local file 
system using WinZip, PKZip, or similar software. For example, we have 
unpacked the 6449code.zip to the c:\6449code directory. Throughout the 
samples we will reference the sample code as if you have already unpacked the 
zip (for example, c:\6449code).

Description of sample code
Table B-1 on page 1397 describes the contents of the 6449code.zip file after 
being unpacked.
1396 Rational Application Developer V6 Programming Guide

ftp://www.redbooks.ibm.com/redbooks/SG246449
http://www.ibm.com/redbooks


Table B-1   Sample code description

Unpack directory Description

c:\6449code Root directory after unpack of 6449code.zip

c:\6449code\java Chapter 7, “Develop Java applications” on page 221

� Java sample code packaged in BankJava.zip Project Interchange file.

c:\6449code\database Chapter 8, “Develop Java database applications” on page 333

� Java sample code to interact with databases packaged in BankDb.zip 
Project Interchange file.

� Database scripts used to create database tables (Table.ddl) and load 
sample data (loadData.sql) for both Cloudscape and DB2 UDB. These 
scripts are shared by many redbook chapters.

c:\6449code\gui Chapter 9, “Develop GUI applications” on page 415

� Java GUI sample code packaged in BankGUI.zip Project Interchange 
file.

c:\6449code\xml Chapter 10, “Develop XML applications” on page 443

� XML sample code packaged in BankXMLWeb.zip Project Interchange 
file.

c:\6449code\web Chapter 11, “Develop Web applications using JSPs and servlets” on 
page 499

� Web application sample code packaged in BankWeb.zip Project 
Interchange file.

� Source code, found in the source subdirectory.

c:\6449code\struts Chapter 12, “Develop Web applications using Struts” on page 615

� Web application using Struts sample code packaged in 
BankStrutsWeb.zip Project Interchange file.

c:\6449code\jsf Chapter 13, “Develop Web applications using JSF and SDO” on page 673

� Web application using JSF and SDO sample code packaged in 
BankJSF.zip Project Interchange file.

c:\6449code\egl Chapter 14, “Develop Web applications using EGL” on page 751

� Web application using EGL sample code packaged in BankEGL.zip 
Project Interchange file.

c:\6449code\ejb Chapter 15, “Develop Web applications using EJBs” on page 827

� EJB application sample code packaged in BankEJB.zip Project 
Interchange file.
 Appendix B. Additional material 1397



Import sample code from a Project Interchange file
This section describes how to import the redbook sample code Project 
Interchange zip files into Rational Application Developer. This section applies for 
each of the chapters containing sample code that have been packaged as a 
Project Interchange zip file.

To import a Project Interchange file, do the following:

1. Start Rational Application Developer.

2. From the Workbench, select File → Import.

3. From the Import dialog, select Project Interchange (as seen in Figure B-1 on 
page 1399), and then click Next.

c:\6449code\j2eeclt Chapter 16, “Develop J2EE application clients” on page 925

� The J2EE application client sample code packaged in 
BankAppClient.zip Project Interchange file. The 
BankAppClient_with_BankEJB.zip contains the EJB projects 
BankAppClient is dependent (import all complete projects needed).

c:\6449code\webservices Chapter 17, “Develop Web Services applications” on page 951

� Web Services application sample code packaged in 
BankWebServices.zip Project Interchange file.

c:\6449code\portal Chapter 18, “Develop portal applications” on page 985

� Portal application sample code packaged in Portal.zip Project 
Interchange file.

Unpack directory Description
1398 Rational Application Developer V6 Programming Guide



Figure B-1   Import a Project Interchange file

4. When prompted for the Project Interchange path and file name, and target 
workspace location, we entered the following:

– From zip file: c:\6449code\java\BankJava.zip

Enter the path and zip file name (for example, 
c:\6449code\java\BankJava.zip).

– Project location root: c:\workspace

Enter the location of the desired workspace (for example, our workspace 
is found in c:\workspace).

5. After entering the zip file, check the project and then click Finish.

For example, we checked BankJava and clicked Finish, as seen in 
Figure B-2 on page 1400. 
 Appendix B. Additional material 1399



Figure B-2   Import Interchange Projects location
1400 Rational Application Developer V6 Programming Guide



Related publications

The publications listed in this section are considered particularly suitable for a 
more detailed discussion of the topics covered in this redbook.

IBM Redbooks
For information on ordering these publications, see “How to get IBM Redbooks” 
on page 1404. Note that some of the documents referenced here may be 
available in softcopy only. 

� EJB 2.0 Development with WebSphere Studio Application Developer, 
SG24-6819

� WebSphere Studio V5.1.2 JavaServer Faces and Service Data Objects, 
SG24-6361

� IBM WebSphere Portal V5.1 Portlet Application Development, SG24-6681

� IBM WebSphere Portal V5 A Guide for Portlet Application Development, 
SG24-6076

� WebSphere Application Server V6: Web Services Development and 
Deployment, SG24-6461

� WebSphere V6 Planning and Design, SG24-6446

� WebSphere Application Server V6 Scalability and Performance, SG24-6392

� WebSphere Application Server V6 Security, SG24-6316

� WebSphere Application Server V6 Systems Management and Configuration, 
SG24-6451

� Eclipse Development using the Graphical Editing Framework and the Eclipse 
Modeling Framework, SG24-6302

� Transitioning: Informix 4GL to Enterprise Generation Language (EGL), 
SG24-6673

� WebSphere Studio Application Developer Version 5 Programming Guide, 
SG24-6957
© Copyright IBM Corp. 2005. All rights reserved. 1401



Other publications
These publications are also relevant as further information sources:

� Crupi, Malks and Alur, Core J2EE Patterns: Best Practices and Design 
Strategies, Prentice Hall, 2003, ISBN 0131422464

� Marinescu, EJB Design Patterns: Advanced Patterns, Processes and Idioms, 
Wiley, 2002, ISBN 0471208310

� Shavor, D’Anjou, Fairbrother, Kehn, Kellerman and McCarthy, The Java 
Developer’s Guide to Eclipse, Addison-Wesley, 2003, ISBN 0321159640

� Eric Gamma, et al., Design Patterns, Elements of Reusable Object-Oriented 
Software, Addison-Wesley Professional, 1995, ISBN 0-201-63361-2

� IBM Informix 4GL to EGL Conversion Utility User’s Guide, G251-2485

Online resources
These Web sites and URLs are also relevant as further information sources:

� Sun Microsystem’s Java site, with specifications, tutorials, and best practices

http://java.sun.com/

� The Eclipse Project site, with information on the underlying platform of 
Rational Application Developer

http://www.eclipse.org/

� Eclipse Hyades project

http://www.eclipse.org/hyades

� The WorldWide Web Consortium

http://www.w3c.org/

� Apache Jakarta Project, for information on Tomcat

http://jakarta.apache.org/

� Apache Struts site

http://struts.apache.org/

� The Java Community Process site, for Java specifications

http://www.jcp.org/

� OASIS, for UDDI

http://www.oasis-open.org/
1402 Rational Application Developer V6 Programming Guide

http://java.sun.com/
http://www.eclipse.org/
http://www.eclipse.org/hyades
http://www.w3c.org/
http://jakarta.apache.org/
http://struts.apache.org/
http://www.jcp.org/
http://www.oasis-open.org/


� Web Services Interoperability Organization

http://www.ws-i.org/

� The ServerSide.com is an enterprise Java site with articles, books, news, and 
discussions

http://www.theserverside.com/

� Writing Robust Java Code white paper by Scott Ambler 

http://www.ambysoft.com/javaCodingStandards.pdf

� Apache Ant Project home page

http://ant.apache.org/

� Apache Ant documentation

http://ant.apache.org/manual/index.html

� CVS home

http://www.cvshome.org

� CVSNT 

http://www.cvsnt.org

� CVSNT installation tips

http://www.cvsnt.org/wiki/InstallationTips

� IBM developerWorks EGL home page

http://www.ibm.com/developerworks/rational/products/egl/

� Generating Java using EGL and JSF with WebSphere Studio Site Developer 
V5.1.2, white paper 

http://www.ibm.com/developerworks/websphere/library/techarticles/0408_baros
a/0408_barosa.html

� VisiBone HEX HTML Color Codes

http://html-color-codes.com/

� The complete J2SE specification 

http://java.sun.com/j2se/

� Information on JDBC

http://java.sun.com/j2se/1.4.2/docs/guide/jdbc/

� Information on the AWT

http://java.sun.com/j2se/1.4.2/docs/guide/awt/

� Information on Swing 

http://java.sun.com/j2se/1.4.2/docs/guide/swing/
 Related publications 1403

http://www.ws-i.org/
http://www.theserverside.com/
http://www.ambysoft.com/javaCodingStandards.pdf
http://www.ibm.com/developerworks/rational/products/egl/
http://www.ibm.com/developerworks/websphere/library/techarticles/0408_barosa/0408_barosa.html
http://html-color-codes.com/
http://ant.apache.org/
http://ant.apache.org/manual/index.html
http://www.cvshome.org
http://www.cvsnt.org/wiki/InstallationTips
http://www.cvsnt.org
http://java.sun.com/j2se/
http://java.sun.com/j2se/1.4.2/docs/guide/jdbc/
http://java.sun.com/j2se/1.4.2/docs/guide/awt/
http://java.sun.com/j2se/1.4.2/docs/guide/swing/


� Information on the SWT 

http://www.eclipse.org/swt/

� XML - the World Wide Web Consortium (W3C) 

http://www.w3c.org/XML/

How to get IBM Redbooks
You can search for, view, or download Redbooks, Redpapers, Hints and Tips, 
draft publications and Additional materials, as well as order hardcopy Redbooks 
or CD-ROMs, at this Web site: 

http://www.ibm.com/redbooks

Help from IBM
IBM Support and downloads

http://www.ibm.com/support

IBM Global Services

http://www.ibm.com/services
1404 Rational Application Developer V6 Programming Guide

http://www.ibm.com/support
http://www.ibm.com/services
http://www.ibm.com/redbooks
http://www.eclipse.org/swt/
http://www.w3c.org/XML/


Index

Symbols
.eglbld   766

Numerics
6449code.zip   1396

A
abstract facade

implement   560
Abstract Window Toolkit   36, 416
access control

list   833
access CVS repository   1310
accessor methods   257
accessors   254, 557
AccountDetails   514
ACID   829
ACL   833
Active Script   1124
activity   1259
add a project to a server   1064
adding emulator support   994
additional material   1395
additional supported test servers   23
aliases   357
analyze test results   1113
animated GIF   511
AnimatedGif Designer   511
annotated programming   15
Annotation-based programming   1210
Ant   1155–1156

build
path   1157
project   1156
property   1157
target   1156
task   1156

build J2EE application   1178
create build script   1180
deployment packaging   1179
prepare for sample   1179
run Ant build   1183
© Copyright IBM Corp. 2005. All rights reserved.
build simple Java application   1167
build targets   1171
classpath problem   1178
clean   1173
compile   1172
create build file   1169
forced build   1177
global properties   1171
init   1172
project definition   1171
rerun Ant   1177
run Ant   1173

documentation   1157
headless build   1186
introduction   1156

build files   1156
new features   1157
tasks   1157

J2EE
applications   1178
build script   1180

new features
Code Assist   1158
Code snippets   1159
define format of an Ant script   1164
format an Ant script   1163
Problem view   1166

run   1173
Run Ant wizard

Build   1175
Classpath   1176
Common   1176
Environment   1176
JRE   1176
Main   1175
Properties   1176
Refresh   1175
Target   1175

run headless build   1187
run outside Application Developer   1185
runAnt.bat   1186
script   1171
tasks   1157

delete   1157
 1405



echo   1157
jar   1157
javac   1157
mkdir   1157
tstamp   1157

Web site   1157
Ant build files   1156
Apache Jakarta

Ant   1156
appearance

preferences   100
appearance of Java elements   100
applet   501
application classloader   1195
application client module   500, 1191
application code analysis   15
application deployment   1190
application deployment descriptor

access   630
application flow   842
application modeling with UML   15
application profiling   1237
Application Server

Network Deployment   830
Application server profile   1048
application.xml   501
ApplicationResource.properties   652
ArrayList   269
assertEquals   1096
assertions   1087
assertTrue   1096
association   267
association relationship   267, 874
atomicity   829
attributes   254
automated component test

run test   1110
automated component testing   1102
automatic build   85
Automatic fail-over support   830
AWT

See Abstract Window Toolkit

B
backend folder   895
banking model   514
baseline   1259

make   1282

Basic   753
bean   501
bean-managed persistence   836
BMP   836
bootstrap   1192
bottom up   893
BPEL

See Business Process Execution Language
breakpoint   1124, 1132

condition   1134
conditional   1134
JSP   1135
properties   1133
set   1132

Breakpoints view   148
breakpoints   1142

breakpoints view   1142
Browse diagram   197
build   85, 1155

Ant
build file   1156

compiler   1171
targets   1171

build applications   1155
build verification test   1082
build.xml   1167

J2EE application   1180
Java application   1170

bus members   1390
Business Process Execution Language   6
BVT

See build verification test

C
C   32, 753
C++   32
calibration   1084
Call Hierarchy view   223
capabilities   86
Cascading Style Sheets   42
change

variable value   1143
check in and check out   1259
check out   1289
cHTML   994
Class Diagram   194, 205, 233, 243, 370
classes directory   502
classloaders   1195
1406 Rational Application Developer V6 Programming Guide



WebSphere classloaders
RCP directory   1194
RE directory   1194
RP directory   1194

classpath
add JAR   297
Ant

classpath   1178
ClearCase   1258

add project   1274
check out   1289
connect   1269, 1284
deliver   1279
help   1261
import   1287
preferences   1261
project   1265
rebase   1290
scenario   1263, 1277
setup   1264

ClearCase LT   1259
Cloudscape CView   344
Cloudscape JDBC driver   391
CMP   836
CMP attributes   863
CMR   838

See container-managed relationships
COBOL   753
code

assist   121
formatter preferences   101

Code Assist   118, 320
code coverage analysis   1240
code formatter   105

blank lines   110
braces   108
comments   114
control statements   112
indentations   108
line wrapping   113
new lines   111
white space   109

Code Review   124, 226
add filter   126
add rule   126
Complete   125
excluding matches   130
exclusion of reources   129
Globalization   125

J2EE Best Practices   125
J2SE Best Practices   125
Quick   124
set options   125

Code Review Details view   229
Code Review view   226
code style   102
code style and formatting   101
coexistence   26
collection type   269
COM.ibm.db2.jdbc.app.DB2Driver   392
COM.ibm.db2.jdbc.net.DB2Driver   392
command

design pattern   515
Common Object Request Broker Architecture   34
compact Hyper Text Markup Language   994
compare a file   92
compare with   93
compatibility   27
compilation target   1172
compiler options   115

preferences   115
component   1259

interface   838
component interfaces   881
component test   1082

automated   1102
component test benefits   1085
Component Test project   177
component testing   17, 1081
component-under-test   1102
composer   844
composition relationship   876
concurrency   832
Concurrent Version System   1299
condition

breakpoint   1134
configuration

WebSphere Application Server
messaging   1389

conflict   1300
connect to ClearCase   1269
connection

JDBC
connection   334

pooling   335
Connector project   176
consistency   829, 1086
Console view   146
 Index 1407



constructors   262, 326, 882
container

EJB   832
container-managed

persistence   836
relationships   838

container-managed persistence   892
Container-managed relationships   60
content area   533
context root   519
controller

MVC   504, 514
converter   844
cookies   41
CORBA

See Common Object Request Broker Architec-
ture

Core Java APIs   33
create

Class Diagram   551
database   344
database connection   347
database schema   357
database tables from scripts   349
DTD file   450
fields   554
Java stored procedures   398
model classes   547, 550
packages   551
page template   526
simple Ant build file   1169
SQL statements   376
static Web resources   544
table   357–358
test case

create   1093
visual class   420
Web Project   517
XML schema   463
XSL file   483

Crystal Reports integration   16
CSS

See Cascading Style Sheets
CSS Designer   511
CSS File wizard   513
custom finders   890
Custom profile   1048
customer acceptance test   1083
CVS   1299

client configuration
access CVS repository   1310
enable CVS Team capability   1309

configuration   1312
development scenario   1321
features   1300
introduction   1300
new features for team development   1301
preferences   1312
Repositories view   1324
repository

add   1323
Resource History view   1343
scenario   1321
Web site   1301

CVS Annotate view   144
CVS client configuration   1309
CVS for NT   1301
CVS preferences

Rational Application Developer   1312
CVS specific settings   1317
file content   1313
ignored resources   1315
label decorations   1312

CVS Repositories view   143
CVS Repository Exploring perspective   143
CVS Resource History view   144
CVSNT

create CVS users   1307
create Windows users and groups   1306
server implementation   1301
server installation   1302
server repository configuration   1303
verfiy installation   1307

D
DADX   957
Data Definition view   145, 340
Data perspective   145, 339
data source   335, 393

configure   628, 630
deployment descriptor   630

objects   335
database

create
Cloudscape CView   343

create connection   347
create database
1408 Rational Application Developer V6 Programming Guide



DB2 command window   346
create database tables

Application Developer   350
Cloudscape CView   351
DB2 command window   351

defintion   355
objects   354
populate data in tables

Application Developer   352
Cloudscape CView   353
DB2 command window   354

schemas   357
table   358

Database Explorer view   146, 341
databaseName property   631
DB Output view   146, 342
DB2 UDB JDBC drivers   392
DB2 Universal Database   1387

class path environment variable   783
db2java.zip   392
DB2UNIVERSAL_JDBC_DRIVER_PATH   783
DDL file

copy objects to workspace   362
deploy to database   362
generate   358, 361
generate for database objects   365

debug   1122
Web application on local server   1132

breakpoints view   1142
debug functions   1141
debug JSP   1145
debug view with stack frames   1141
evaluate an expression   1144
inspect variable   1143
run application in debug   1136
set breakpoint in JSP   1135
set breakpoint in servlet   1132
start application for debug   1136
watch variables   1142

Web application on remote server   1145
attach to remote server   1148
configure debug in WAS   1147
debug application   1151
deploy WAR   1146
export project to WAR file   1145
install Agent Controller   1147

XSLT   493
debug features

breakpoints   1124

drop to frame   1126
step filter   1126
view management   1127
XSLT debugger   1128

Debug perspective   146
debug tooling

supported environments
WebSphere Application Server   1124
WebSphere Portal   1124

supported languages   1124
compiled languages   1124
EGL   1124
Java   1124
JavaScript   1124
mixed language   1124
SQL stored procedures   1124
SQLJ   1124
XSLT   1124

Debug view   147, 1141
debugging

icons   1141
remote   1145

declaration   259
Declaration view   225
declarative programming language   752
default CMP data source   858
default workspace   82
deliver   1279

stream   1259
delta versioning   1300
demarcation   833
deployment   1189

common considerations   1190
deploy the enterprise application

configure data source in WAS   1225
deploy the EAR   1229

descriptors   1196
J2EE application components

applets   1191
application clients   1191
EJBs   1191
Web applications   1191

J2EE deployment modules
application client module   1191
EJB module   1191
resource adapter module   1191
Web application module   1191

J2EE packaging
EAR   1191
 Index 1409



WAR   1191
Java and WebSphere class loader   1191
package an application   1218

customize deployment descriptors   1220
export the EAR   1222
generate deploy code   1222
generate EJB to RDB mapping   1218
recommendations   1218

prepare for sample
deployment scenario   1213
import sample code   1214
install prerequisite software   1213

verify the enterprise application   1230
WebSphere deployment architecture   1199
WebSphere enhanced EAR   1201
WebSphere Rapid Deployment   1210

deployment descriptor   1197
application.xml   501
enterprise application   501
Web application   502
Web module   502–503
web.xml   502

Deployment Manager profile   1048
derived beans   870
desktop applications   32
destination JMS queue   1392
destinations   1390
development stream   1259, 1270, 1285
Diagram Navigator view   230
Display view   1143
distribution   829
document access definition extension   957
Document Type Definition   445
doGet   579
doPost   579
DriverManager   335, 390
drop to frame   1126
DTD   445
DTD editor   448

features   452
DTD file

create   449
validate   456

DTO   842
durability   829
Dynamic Web Project   679
Dynamic Web project   175
dynamic Web resources   549

E
EAR   1179, 1191
EAR file   500
Eclipse and IBM Rational Software Development 
Platform   14
Eclipse Hyades   22, 1081, 1086

Web application testing   1112
analyzing test results   1113
editing a test   1112
generate an executable test   1113
recording a test   1112
run a test   1113

Eclipse Java Development Tools   21
Eclipse Modeling Framework (EMF)   22
Eclipse Platform   20
Eclipse Plug-in Development Environment   21
Eclipse Project   19

Eclipse Platform   20
Java Development Tools   21
Plug-in Development Environment   21

Eclipse Software Developer Kit (SDK)   21
editing a test   1112
Editing JSP   595
editors   137
EGL   751

debug   765
introduction   752
migration

EGL migration to V6.0   764
Informix 4GL to EGL Conversion Utility   764
VisualAge Generator to EGL migration   764

overview
application architecture   756
feature enhancements   759
history   754
Rational brand software   758
target audience   754
value proposition   755

perspective and views   762
EGL Debug Validation Errors   762
EGL Generation Results   762
EGL Parts Reference   762
EGL SQL Errors   762
EGL Validation Results   762

preferences   761
programming paradigms   752
projects

EGL Project   763
EGL Web Project   763
1410 Rational Application Developer V6 Programming Guide



tooling in Rational Application Developer   761
Web application components

data   766
Deployment Descriptor   765
EGL Web Project   765
EGLEAR   765
EGLSource folder   766
filename.eglbld   766
JavaSource folder   766
libraries   766
pagehandlers   766
WebContent folder   766

where to find more information   761
wizards

Data Table   764
EGL Build File   763
EGL Data Parts   764
EGL Data Parts and Pages   764
EGL Package   763
EGL Source File   763
EGL Source Folder (EGLSource)   763
Faces JSP File   763
Form Group   764
Library   763
Program   763

EGL Data Parts and Pages wizard   784
EGL Project   763
EGL Web application   751

add EGL components to Faces JSPs   806
create a connection between Faces JSPs   804
create a Faces JSP   803
create a Web Diagram   802
create a Web page   802
create an EGL Web Project   773
create Faces JSP   802
create page template   794, 799
create records and libraries   785
develop the application   783
EGL Data Parts wizard   789
exporting an EGL project

add runtime libraries   822
export WAR - EAR with source   823
reduce file size   821

generate Java code from EGL   794
import and run EGL sample Web application   
816
prepare

configure data source   780
configure EGL preferences for SQL data-

base connection   779
enable EGL development capability   771
install EGL component   768

EGL Web Project   763
EGL wizards   763
EJB   827

application   842
bean class   837
client   837
component   834
component interface   838
container   832
home interface   838
inheritance   839
JARs   1179
new features   828
overview   828
project   844

create   846
QL   840

custom finder   890
Query Language   839
See Enterprise Java Bean
server   831
specification   832
types   836
universal test client   915

EJB application
develop the application

add business logic   880
association relationship   874
composition relationship   876
create custom finders   890
create entity beans   859
create entity relationships   872
customize entity beans   880
implement session facade   901
object-relational mapping   892

prepare for development   844
configure data source   856
configure EJB project   849
create EJB project   844–845
import Web application project   853
setup sample database   854

testing with UTC   915
EJB JAR   171
EJB local and remote interfaces   61
EJB module   500, 1191
EJB project   176
 Index 1411



EJB query language   60, 839
EJB Timer Service   61
enabling transcoding for development   994
encapsulation   842
Enhanced EAR Editor   1201
Enhanced EAR tooling   1070
enterprise application   500
Enterprise Application Archive   1191
Enterprise Application project   175
Enterprise archive

See EAR
Enterprise Generation Language   751
Enterprise Java Server   831
Enterprise JavaBean

types
entity   59
message-driven   59
session   58

Enterprise JavaBeans   57, 827
architecture   831
components

client views   834
EJB types   836

EJB container   832
concurrency   833
life cycle   834
messaging   834
naming   833
persistence   833
security   833
transaction   833

EJB types
entity beans   836
message-driven beans   837
session bean   836

overview
distributed   829
persistent   829
portable   830
scalable   830
secure   828
transactional   829

entity beans   836
create   859
customize   880

Entity EJBs   59
entity relationships   872
E-R Modeling   195
evaluate an expression   1143

exception classes   572
execution time analysis   1240

views   1240
export

Java code to JAR file   299
export EAR

export the EAR file   1223
filtering the ontent of the EAR   1222

Expression Language   48
Expressions view   1143
extends   267
Extensible Markup Language   38, 444
Extensible Style Language   446
extensions classloader   1194–1195

F
facade   516
Faces Action   708
Faces JSP File wizard   513
fail   1096
features   12

summary   13–14
specification versions   14

fields   554
file

associations   90
File Creation wizard   512
filter errors   289
filters   48
find errors in Problems view   288
folders   171
foreign key   358
form bean   619
forms   548
Fortran   753
Free Layout   544
Free Table Layout   533
function verification test   1083
FVT

See functional verification test

G
generate EJB to RDB mapping   895
generate getter and setter   324
generating an executable test   1113
Generic Log Adapter perspective   148
getter   254, 257
graphical user interfaces   35
1412 Rational Application Developer V6 Programming Guide



Abstract Window Toolkit   36
Java components   37
Standard Widget Toolkit   36
Swing   36

GROUP BY   382
GUI Java application

add event handling   434
prepare

Add Cloudscape JDBC driver   417
create Java Project   417
import model classes   419
setup database   418

testing   433
verify sample application   435
Visual Editor   423

H
HEAD branch   1327
headless

Ant
build   1185

headless build   1186
history   92
hit count   1134
home interface   838, 880–881
host variable   382
HTML   42, 501, 994
HTML error tag   657
HTML File wizard   512
HTTP   40

See Hypertext Transfer Protocol
status codes   40

HyperText Markup Language   42, 994
Hypertext Transfer Protocol   40, 43

I
IBM DB2 Universal Database V8.2

installation   1387
IBM Eclipse SDK V3.0   21
IBM Enterprise Generation Language   753
IBM Rational Agent Controller   9, 1102, 1382
IBM Rational Agent Controller V6

installation   1382
IBM Rational ClearCase   1258
IBM Rational Software Development Platform   4

products   5
Rational Application Developer   6
Rational Function Tester   6

Rational Performance Tester   6
Rational Software Architect   5
Rational Software Modeler   5
Rational Web Developer   6
WebSphere Business Integrator Modeler   6

IBM WebSphere Application Server V6.0   1387
IBM WebSphere Portal   56, 989
icons for debugging   1141
IDE

See integrated development environment
IDEF1X Diagram   375
IDEF1X notation diagram   196
IE notation diagram   196
image   501
Image File wizard   513
implements relationship   267
import

from ClearCase   1287
generation   321–322
Java JAR   301

imports
resolve (Ctrl+Shift+O)   255
resolve (Ctrl+Shift-O)   256

indexes   357
Information Engineering (IE) Diagram   374
Informix 4GL migration   764
inheritance   839
init   579
Initialization target   1172
inspect variable   1143
Installation

CVS for NT   1302
installation

IBM DB2 UDB V8.2 Express Edition   1387
IBM Rational Agent Controller   1382
IBM Rational Application Developer   1372
Rational Application Developer

Interim Fix 0004   1380
Rational ClearCase LT   1385
WebSphere Application Server V6   1387
WebSphere Portal V5.0 Test Environment   
1376
WebSphere Portal V5.1 Test Environment   
1377

Installed JREs
preferences   119

integrated development environment   132
integrated test servers   23
integration
 Index 1413



stream   1259, 1279
interface   258, 834
Interim Fix 0004   1380
Internet

preferences   95
Internet preferences   95

Proxy settings   95
Web Browser settings   96

Introduction
application development challenges   7
Java database programming   334
Rational Software Development Platform   4
version 6 terminology   7

InvalidateSession   514
ISD   958
isolation   829
itso.ant.hello   1168

J
J2EE Application Client JAR   171
J2EE Application Client project   175
J2EE Application Clients   62
J2EE Connector   18
J2EE Deployment API   19
J2EE Management API   19
J2EE modules and projects   173
J2EE perspective   149
J2EE Request Profiling Agent   1244
J2EE Visualization   219
JAAC

See Java Authorization Service Provider Con-
tract for Containers

JAAS
See Java Authentication and Authorization Ser-
vice

JAF
See Java Activation Framework

JAR   501
Java

development
preferences   98

Editor
preferences   117

Runtime Environment   119
Scrapbook   293
source folder   523
test case   1110
utility JAR   1179

Java 2 Platform Enterprise Edition   170
Java accessor methods   254
Java Activation Framework   18
Java API for XML Processing   18
Java API for XML Registries   19
Java API for XML RPC   18
Java application

export code to JAR   299
locate compile errors   287

filter errors in Problems view   289
Problems view   288

run external   301
run sample   269, 286
working example   231

Java attributes   254
Java Authentication and Authorization Service   19
Java Authorization Service Provider Contract for 
Containers   19
Java Beans   231
Java Browsing perspective   153
Java class

create via Diagram Navigator   250
Java Class wizard   253

Java class loader   1192
extensions class loader   1192
hierarchy   1193
system class loader   1192

Java classes   249
Java classpath variables   98
Java component test   1103
Java database application

access database via data source   393
access database via DriverManager   390

load JDBC driver   390
prepare

setup BANK database   338
prepare for sample   337

Java database programming   334
Java development preferences   98

appearance of Java elements   100
code style and formatting   101
Java classpath variables   98

Java Editor   311
Java Editor settings   117
Java Field wizard   255
Java interface   248
Java language   32
Java Management Extensions   19
Java Message Service   18, 71
1414 Rational Application Developer V6 Programming Guide



Java methods   262
Java Native Interface   36
Java package

create via Diagram Navigator   247
create via Java Package wizard   247

Java packages   246
Java perspective   151, 222
Java Portlet specification   56
Java Profiling Agent   1244
Java project   177, 235
Java Remote Method Invocation   34
Java Scrapbook   293
Java Search   318
Java Servlet   18, 499
Java stored procedures   394

access via DriverManager   408
access via JavaBean   409
build   405
deploy   405
enable capability   398
Store Procedure wizard   398

Java Transaction API   18
Java Type Hierarchy perspective   155
Java Virtual Machine   33
Javadoc   231, 303

generate   304
Ant script   310
Export wizard   306

preferences   121
JavaMail   18
Javascript Editor   511
Javascript File wizard   513
JavaServer Faces   19, 52

application architecture   675
benefits   674
features   674
overview   674

JavaServer Page   18
JavaServer Pages   46, 499
JAXP

See Java API for XML Processing
JAXR

See Java API for XML Registries
JAX-RPC

See Java API for XML RPC
JDBC   34, 334

2.0 Standard Extension API   335
type 2 driver   392
type 3 driver   392

JDBC provider
configure   631

JDT
See Java Development Tools

JMS
See Java Message Service

JMS activation specification   1392
JMS connection queue factory   1391
JMX

See Java Management Extensions
JNDI

data source   335
namespace   833
See Java Naming and Directory Interface

JNI   1195
See Java Native Interface

join
project   1284

JRE   119
JSF

See JavaServer Faces
JSF and SDO Web application

add connection for action   712
add navigation rules   713
configure data source via enhanced EAR   681
create connection between JSF pages   705
create Dynamic Web Project   679
create Faces Action   708
create Faces JSP   700, 702
create page template   684
customize page template   695

content area   699
logo image and title   695
style (fonts, size)   698

edit JSF page
add relational record   730
add relational record list to page   738
add relational record to page   733
add reusable JavaBean   742
add row action   741
add SDO to JSF page   720
add simple validation   718
add static navigation to page   719
add UI components   715
add validation   727
add variables   716
display relational record   735
format field for currency   740
link button   733
 Index 1415



link button to action   735
run sample application   746
setup database   681

JSP   46
breakpoint   1135
Tag libraries   47

JSP File wizard   512
JSP Page Designer   619
JSPs   595
JSR 168   993
JTA

See Java Transaction API
JUnit   231, 1081, 1087

assert method   1089, 1096
automated component test   1102
class

TestCase   1088
TestRunner   1088
testRunner   1088
TestSuite   1088

create test case   1089
fail method   1096
fundamentals

instantiate an object   1087
invoke methods   1087
verify assertions   1087

methods   1096
run test case   1098
setUp and tearDown   1093
view   1099

junit.framework.Assert   1096
junit.jar   1091
JVM

See Java Virtual Machine

K
key

class   838
field   863
wrapper class   864

Key themes of version 6   8
broaden appeal   8
extended integration   8
maintain standards   8
raise productivity   8
team unifying platform   8

keyword
expansion   1318

L
Layout Mode   544
lib directory   502, 524
licensing   23
life cycle   832, 834
links   544
Linux   1155
list   547
ListAccounts   514
listeners   49
local

component interface   880
history   92

local history   92
compare with   93
replace with   93

locate compile errors   287
location independence   835
Log Console view   1176
log files   83

M
Maintenance   1086
make   1155–1156
MANIFEST.MF   524
mapping

strategies   893
mark occurrences   118
marker

breakpoint
marker   1133

MDB
See Message Driven Bean

Meet in the middle   893
memory analysis   1239
memory analysis views   1239
merging   1354
Merging from a stream   1354
message-driven bean   837
Message-driven EJBs   59, 72
messaging   832, 834
messaging engine startup   1391
messaging resources   1079
messaging systems   70
META-INF   523
method

accessor   257
declaration   258
1416 Rational Application Developer V6 Programming Guide



implement   325
override   325

Microsoft Windows 2000 Professional   9
Microsoft Windows 2000 Server   9
Microsoft Windows 2003 Enterprise Edition   9
Microsoft Windows 2003 Standard Edition   9
Microsoft Windows XP Professional   9
migration   26
model

MVC   514
model classes   550
model-view-controller   51, 503

controller   504
dependencies between layers   505
JSP and servlet Web application   514
model   503
Struts Web application   616
view   504

multi-dimensional association   269
MVC   514

controller   504
pattern   505
See model-view-controller
Struts   617

N
namespace   833
naming   832–833
Navigator view   146, 343
no natural unique identifier   870

O
object

caching   830
pooling   830

Object-relational mapping
bottom up   893
meet-in-the-middle   893
top down   893

object-relational mapping   892
ODBC   334
online help   132
ORDER BY   382
Outline view   148, 230, 311
override methods   325

P
Package Explorer view   223
packages

create   551
Page Designer   509
page template   510, 526

create dynamic JSP   530
create static   527
customize   531

Page Template File wizard   513
page templates versus style sheets   527
parallel development   1335
Pascal   753
pattern

command   515
MVC   514

PDE
See Plug-in Development Environment

performance test   1083
PerformTransaction   515
persistence   829, 832–833
perspective layout   137
perspectives   136

customizing   140
CVS Repository Exploring perspective   143
Data perspective   145
Debug perspective   146
Generic Log Adapter perspective   148
J2EE perspective   149
Java Browsing perspective   153
Java perspective   151, 222
Java Type Hierarchy perspective   155
Plug-in Development perspective   157
preferences   94
Profiling and Logging perspective   158
Resource perspective   159
specify default   140
switching   138
Team Synchronizing perspective   160
Test perspective   161
Web perspective   162

pluggable JRE   296
Plug-in Development perspective   157
populate

database tables with data   351
portabiliy   830
portal application development   14
Portal applications   55
portal applications   985
 Index 1417



develop   992
development strategy

choosing markup languages   994
IBM or JSR 168   993
JavaServer Faces   995
Struts   995

introduction   986
run project in test environment   1037
samples and tutorials   992
tools

coexistence and migration   1023
deploy projects   1001
portal administration   1022
Portal Designer   998
Portal Import wizard   996
Portal Project wizard   997
Portal Server Configuration   1016
Portlet Project wizard   1005
remote test server   1017
skin and theme design   999
WebSphere Portal test environment   1018

portal concepts and definitions
portal page   986
portlet   987
portlet application   987
portlet events   988
portlet modes   988
portlet states   988

Portal Designer   998
Portal Import Wizard   996
portal page   986

add portlets   1033
customize   1027

Portal Project
create   1026

Portal Project wizard   997
portal samples and tutorials   992
portal test environments

WebSphere Portal V5.0   990
WebSphere Portal V5.1   990

portal tools   990
portlet   987
portlet application   987
portlet applications   985
portlet events

action events   988
message events   989
Window events   989

portlet modes

configure   988
edit   988
help   988

Portlet Project Wizard   1005
portlet states   988

maximized   988
minimized   988
normal   988
portlet modes   988

preferences   84
capabilities   86
ClearCase   1261
CVS   1312
file associations   90
local history   93
perspectives   94
startup and shutdown   83

primary key   358
probekit analysis   1241
Problems view   148, 225
procedure programming languages   753
Process Advisor   191
Process Browser   192
Process Preferences   193
product configuration   1371
product features   12
product installation   1371
production environment   1084
profiles

WebSphere Application Server   1201
profiling

agent types
J2EE Request Profiling Agent   1244
Java Profiling Agent   1244

architecture   1242
agent   1243
Agent Controller   1243
application process   1243
deployment hosts   1243
development hosts   1244
test client   1243

features
code coverage   1240
execution time analysis   1240
memory analysis   1239
probekit analysis   1241
thread analysis   1239

prepare for profiling sample
enable Profiling and Logging capability   
1418 Rational Application Developer V6 Programming Guide



1247
prerequiste hardware and software   1247
publish and run sample application   1249

profile the sample application
analysis of code coverage information   1253
collect profile information   1253
start server in profile mode   1249

Profiling and Logging perspective   1244
profiling sets   1245

Profiling and Logging capability   1244
Profiling and Logging perspective   158, 1244
profiling applications   1237
profiling sets   1245
Profiling tools   17
programming languages

declarative   752
programming paradigms

4GL   753
object oriented   753
procedural   753

programming technologies   31
desktop applications   32
dynamic Web applications   43
enterprise JavaBeans   57
J2EE Application Clients   62
messaging systems   70
static Web sites   39
Web Services   66

project
ClearCase control   1274
create

Java   235
create a new   178
directory structure   522
disconnect from CVS   1360
EJB   844
join   1284
properties   178, 180
version   1342

Project Explorer view   149
Project Interchange file   1398
projects   171
promote   863
Proxy Settings   95

Q
Quick Assists   320
Quick Fix   320

R
ramp-up time   1086
Rapid Application Development   311

features
Code Assist   321
generate getter and setter   324
import generation   322
Java Search   318
navigate through the code   311
Quick Assist   320
Smart Insert   316
source folding   314
Type Hierarchy   315
Word Skipping   317
working sets   319

RAR   171
Rational

ClearCase
see ClearCase

Web site   1259
Rational Application Developer   6

CDs   10
ClearCase LT integration   1257
configure CVS   1312
CVS preferences   1312
database features   336
debug

attach to remote server   1148
debug tooling   1121

summary of new features   1122
Eclipse Hyades test framework   1086
editors   137
EGL tooling   761
folders   172
installation   24, 1372
JavaServer Faces support   677
JUnit   1087
licensing   23
local vs remote test environment   1046
log files   83
migration and coexistence   26
new EJB features   828
new server   1057
online help   132
perspectives   136
preferences   84
product packaging   10
projects   171

Component test   177
 Index 1419



Connector project   176
Dynamic Web project   175
EJB project   176
Enterprise Application project   175
J2EE Application Client project   175
Java project   177
Server project   177
Simple project   177
Static Web project   176
summary   173

Rational ClearCase features   1261
samples   181
server configuration   1043
startup parameters   81
Struts   619
Stuts support

Project Explorer view   619
Struts Component wizard   619
Struts Configuration Editor   619
Web Project Struts enabled   619

supported test servers   1045
test server introduction   1044
uninstall   25
views   137
Web Services tools   957
XML tools   447

Rational ClearCase
ClearCase preferences   1261
new features   1261
terminology

activity   1259
baseline   1259
check in   1259
check out   1259
component   1259
deliver stream   1259
development stream   1259
integration stream   1259
rebase   1259
verioned object base   1259
view   1259

Rational ClearCase LT
development scenario   1277
installation   1260, 1385
integration with Rational Application Developer   
1260
scenario overview   1263
setup for new project

add project to ClearCase source control   

1274
create a Web project   1274
create new ClearCase project   1265
enable Team capability   1264
join a ClearCase project   1268

Rational Developer   7
Rational Functional Tester   6
Rational Performance Tester   6
Rational Product Updater   25, 168, 1372, 1380
Rational Software Architect   5
Rational Software Modeler   5
Rational Unified Process   189–190

disciplines   191
lifecycle phases   191
Process Advisor   191
Process Browser   192

Rational Unified Process integration   15
Rational Web Developer   6
RCP directory   1194
RE directory   1194
rebase   1259, 1290
recording a test   1112
Red Hat Enterprise Linux Workstation V3   9
Redbooks Web site   1404

Contact us   xxvii
refactor   328

change method signature   329
encapsulate field   330
extract constant   330
extract interface   329
extract local variable   330
extract method   330
inline   330
move   329
pull up   330
push down   329
redo   330
rename   329
undo   330

refactoring
example   330

Relational database to XML mapping   448
relationship

methods   879
relationships   267, 838

create   872
remote

client view   903
debugging   1145
1420 Rational Application Developer V6 Programming Guide



remove project from a server
via Rational Application Developer   1066
via WebSphere Administrative Console   1067

request sequence   618
resource adapter   1195
Resource adapter module   1191
Resource perspective   159
resoure adapter achive

See RAR
resume   1141
RMI   832

See Remote Method Invocation
role-based development model   131
RP directory   1194
run

Java application outside Application Developer   
301
Java applications   290

runAnt.bat   1186
running a test   1113
RUP

See Rational Unified Process

S
SAAJ

See SOAP with Attachments API for Java
sample

Java database application
prepare

import BankDB.zip   337
sample code   1395

6449code.zip   1396
description by chapter   1396
locate   1396
Project Interchange files   1398

scalability   830
schema   357
Scrapbook   293
SDO

See Service Data Objects
security   832
Sequence Diagram   195, 213
server

debugging   1136
Server project   177
server resources   1078
Servers view   148
service broker   952–953

service bus   1390
service client   953
Service Data Objects   16, 19, 52, 678
service integration   1390
service provider   952
service requester   952–953
service-oriented architecture   951–952

service broker   953
service provider   952
service requester   953

servlet   577
add to Web Project   576–577
create   577
implement command interface   586

servlet container   501
servlets   44, 576
session bean   836, 901

business methods   904
create   902

session EJBs   58
session facade   901
set breakpoint   1133
setter   254, 257
setUp   1093
Simple Object Access Protocol   954
Simple project   177
site appearance   524
site navigation   517, 524
Smart Insert   316
snippet   295
SOA   951
SOAP with Attachments API for Java   18
software

configuration management   1258
sound   501
source folding   314
specification

Enterprise JavaBeans (EJB)   18
IBM Java Runtime Environment   18
J2EE Connector   18
J2EE Deployment API   19
J2EE Management API   19
Java Activation Framework   18
Java API for XML Processing   18
Java API for XML Registries   19
Java API for XML RPC   18
Java Authentication and Authorization Service   
19
Java Authorization Service Provider Contract for 
 Index 1421



Containers   19
Java Management Extensions   19
Java Message Service   18
Java Servlet   18
Java Transaction API   18
JavaMail   18
JavaServer Faces   19
JavaServer Page (JSP)   18
Service Data Objects   19
SOAP with Attachments API for Java   18
Struts   19
Web Services   18

specification versions   14, 18
SQL

statement
execute   383

SQL commands   334
SQL Query Builder   384

example   384
SQL statement   376
SQL Statement wizard   376

define conditions for WHERE clause   380
define table joins   379
execute SQL statement   383
groups and order   382
parse the statement   382
select tables and columns   377
use a variable   382
view SQL statement   382

staging environment   1084
Standard Widget Toolkit   36, 416
standardization   830
start server in profile mode   1249
startup parameters   81
stateless   901
static and dynamic   500
Static Method Sequence Diagram   195, 203
static pages

create a list   547
create tables   544, 546
forms   548
links   544
text   544

Static Web project   176
static web sites   39
step debug   1126
step filter   1126
step into   1141
step over   1141–1142

stored procedure   394
Stored Procedure wizard   398
structured types   357
Struts   19

configuration file editor   659
controller   616
create components

realize a JSP   648
realize Struts action   645
realize Struts form bean   641
Struts Action   634
Struts Form Bean   634
Struts Web Connection   636
Struts Web Connections   650
Web Diagram   633
Web Page   635

introduction   616
model   616
MVC   617
tag library   655
view   616

Struts Action   634
Struts Component wizards   619
Struts Configuration Editor   619
Struts Form Bean   634
Struts validation framework   653
Struts Web application

import and run sample   665
import BankStrutsWeb.zip   665
prepare sample database   666
run sample application   666

prepare for sample   620
Dynamic Web Project Struts enabled   622

Struts Web Connection   636
Struts-bean tags   655
Struts-html tags   655
Struts-Logic tags   656
Struts-Nested tags   656
Struts-Template tags   656
Struts-Tiles Tags   656
Stuts tag library   655
style sheets   511

customize   535
sualization   219
SubType   224
summary

features
annotated programming   15
application code analysis   15
1422 Rational Application Developer V6 Programming Guide



application modeling with UML   15
component testing   17
Crystal Reports integration   16
Eclipse   14
Enterprise Generation Language   17
JavaServer Faces   16
profiling tools   17
Rapid Web Development   15
Rational Unified Process   15
Service Data Objects   16
test server environments   14
Web Services   14

SuperType   224
supported

databases
Cloudscape   9
DB2 Universal Database   9
Informix Dynamic Server   10
Microsoft SQL Server   10
Oracle   10
Sybase Adaptive Server Enterprise   10

platforms
Microsoft Windows 2000 Professional   9
Microsoft Windows 2000 Server   9
Microsoft Windows Server 2003   9
Microsoft Windows XP Professional   9
Red Hat Enterprise Linux Workstation V3   9
SuSE Linux Enterprise Server V9   9

SuSE Linux Enterprise Server V9   9
suspend   1141
SVT

See system verification test
Swing   36
SWT

See Standard Widget Toolkit
system verification test   1083

T
tables   357, 546
tag libraries   47
Tasks view   146
TCP/IP Monitor   959, 1079
Team Synchronizing perspective   160
tearDown   1093
template

page templates   535
templates   121
terminate   1141

terminology   7
test

component test   1081
introduction   1082
JUnit   1081, 1087

test calibration   1084
test case

create   1089
test environments   1084
test execution   1085
Test perspective   161
test phases

build verification test   1082
component test   1082
customer acceptance test   1083
function verification test   1083
performance test   1083
system verification test   1083
unit tests   1082

test results recording   1085
test server environments   14
TestCase   1088
TestSuite   1088, 1097
text   544
theme   524
thread analysis   1239
thread analysis views   1240
Tomcat   23
top down   893
Topic Diagram   195
Topic Diagrams   199
transaction   832

demarcation   833
transactions

EJB   829
transfer object   842
triggers   357
Type Hierarchy view   224

U
UDDI registry   982
UML   194

more information   220
UML Visualization   370

browse diagram   196
Class Diagram   196
Sequence Diagram   196
Static Method Sequence Diagram   196
 Index 1423



Topic Diagram   196
UML visualization   195
Unified Change Management   1258
Unified Modeling Language

See UML
uninstall   25
unique identifier   870
unit test   1082

benefits   1085
case   1085

Universal Description, Discovery and Integration   
955
universal test client

EJB   915
Universal Test Client (UTC)   915
UNIVERSAL_JDBC_DRIVER_PATH   783
UNIX   1155
URL   391
utility classes   501
Utility Java projects   302

V
value object   842
variable

change value   1143
Variables view   147
version

project   1342
version 6 terminology   7
versioned object base   1259
versioning   1342
video   501
view   1259

CVS Repositories   1324
CVS Resource History   1343
Display   1143
Expressions   1143
JUnit   1099
MVC   515

view management   1127
views   137, 357

Breakpoints view   148, 1142
Call Hierarchy view   223
Code Review Details view   229
Code Review view   226
Console view   146
CVS Annotate view   144
CVS Repositories view   143

CVS Resource History view   144
Data Definition view   146
Database Explorer view   146
DB Output view   146
Debug view   147
Declaration view   225
Diagram Navigator view   230
Navigator view   146
Outline view   230
Outlines view   148
Package Explorer view   223
Problems view   148, 225
Sensor Results view   149
Servers view   148
Tasks view   146
Type Hierarch view   224
Variables view   148

visual class   420
visual development   194
Visual Editor   415–416

add JavaBeans to visual class   428
binding   438
change component properties   428
code synchronization   427
create visual class   420
customize appearance   424
launch   419
layout   423
open existing class   422
overview   423
resize JavaBean component   427

VisualAge Generator to EGL migration   764
VOB   1259

W
W3C   444
WAR   170, 1179, 1191
WAR classloader   1195
watch variables   1142
watching variables   1142
Web

content folder   523
project

create   507
Web application   501

debug on local server   1132
debug on remote server   1145

Web Application Archive   1191
1424 Rational Application Developer V6 Programming Guide



Web application module   1191
Web application test   1112
Web application testing

sample
analyze test results   1118
deployment definition   1116
edit the test   1115
generate an executable test   1115
record a test   1113
run test   1117

Web applications   43, 499
concepts and technologies   500
introduction   500
using EGL   751
using EJBs   827
using JSF and SDO   673
using JSPs and servlets   499

prepare for sample   513
using Struts   615

Web archive
See WAR

Web Browser Settings   96
Web development tooling

AnimatedGif Designer   511
CSS Designer   511
file creation wizard   512
Javascript Editor   511
Page Designer   509
page templates   510
Web perspective and views   506
Web Project   507
Web Site Designer   508
WebArt Designer   511

Web Diagram   197
Web module   500
Web perspective   162, 506
Web Project   507

directory structure   517
Web Service wizard   964
Web Services   14, 18, 66, 951

client development   958
create from an EJB   980
create Web Service from JavaBean   964
EJB from WSDL   958
enable development capability   960
introduction

related standards   955
service-oriented architecture   952
SOA implementation   953

JavaBean from WSDL   958
monitor using TCP/IP Monitor   976
prepare for development   959
publish using UDDI   982
security   980
test the client proxy   971, 973
test tools   959

TCP/IP Monitor   959
test environment   959
Universal Test Client   959
Web Services Explorer   959

Web Services Description Language   954
Web Services Explorer   971
Web Services tools   957
Web Site Designer   508, 525

launch   525
web.xml   502
WebArt Designer   511
WEB-INF   502, 524
WebLogic   23
WebSphere Administrative Console   1390
WebSphere Application Server

(base) Edition   1189
Base Edition   1189
configure data source   1225
deployment architecture   1199
enable debug   1147
enhanced EAR   1201
Express Edition   1189
installation   1050
messaging   1389
Network Deployment Edition   1189
profile creation   1051
profiles   1201
v6.0 Profiles   1047

WebSphere Business Integrator   6
WebSphere Business Integrator Modeler   6
WebSphere class loader   1193

application class loader   1195
extensions to class loader   1194
handling JNI code   1195
hierarchy   1194
Web module class loader   1195

WebSphere enhanced EAR   1201
WebSphere Portal   985, 989
WebSphere Portal V5.0 Test Environment   1376
WebSphere Portal V5.1 Test Environment   1377
WebSphere Profile wizard   1051
WebSphere Profiles   1047
 Index 1425



application server profile   1048
custom profile   1049
deployment manager profile   1048

WebSphere Rapid Deployment   1210
annotation-based programming   1210
modes   1212
tools   1210

WebSphere Studio   7
Wireless Markup Language   994
WML   994
Word Skipping   317
Workbench

basics   76, 78
Working sets   319
workload optimization   830
ws.ext.dirs   1194–1195
WYSIWYG   419, 509

X
X/Open SQL   334
Xdoclet   1210
XML   38, 444

Metadata Interchange   335
namespaces   446
overview   444
processor   444
schema   445, 458

create new   463
generate from DTD file   458
generate from relational table   461
generate from XML file   461
graph   370
validate   489

transform   491
where to find information   497

XML and relational data   448
XML editor   448
XML Path Language   446
XML schema editor   448
XML to XML mapping editor   448
XML tools

DTD editor   448
XML editor   448
XML schema editor   448
XPath Expression wizard   448
XSL editor   448

XPath   446–447
XPath expression wizard   448

XSL   446, 483
edit   485

XSL debugging and transformation   448
XSL editor   448
XSL Transformations   446
XSL-FO   446
XSLT   446

debug   493
XSLT debugger   1128

Z
zSeries   759
1426 Rational Application Developer V6 Programming Guide





Rational Application 
Developer V6 
Program

m
ing Guide





®

SG24-6449-00 ISBN 0738491209

INTERNATIONAL 
TECHNICAL
SUPPORT
ORGANIZATION

BUILDING TECHNICAL
INFORMATION BASED ON
PRACTICAL EXPERIENCE 

IBM Redbooks are developed by 
the IBM International Technical 
Support Organization. Experts 
from IBM, Customers and 
Partners from around the world 
create timely technical 
information based on realistic 
scenarios. Specific 
recommendations are provided 
to help you implement IT 
solutions more effectively in 
your environment.

For more information:
ibm.com/redbooks

Rational Application
Developer V6
Programming Guide

Develop Java, Web, 
XML, database, EJB, 
Struts, JSF, SDO, 
EGL, Web Services, 
and portal 
applications

Test, debug, and 
profile with built-in 
and remote servers

Deploy applications 
to WebSphere 
Application Server 
and WebSphere 
Portal

IBM Rational Application Developer V6.0 is the full 
function Eclipse 3.0 based development platform for 
developing Java 2 Platform Standard Edition (J2SE) and 
Java 2 Platform Enterprise Edition (J2EE) applications 
with a focus on applications to be deployed to IBM 
WebSphere Application Server and IBM WebSphere 
Portal. Rational Application Developer provides 
integrated development tools for all development roles, 
including Web developers, Java developers, business 
analysts, architects, and enterprise programmers. 

This IBM Redbook is a programming guide that 
highlights the features and tooling included with IBM 
Rational Application Developer V6.0. Many of the 
chapters provide working examples that demonstrate 
how to use the tooling to develop applications, as well as 
achieve the benefits of visual and rapid Web 
development.

This redbook consists of six parts:

� Introduction to Rational Application Developer
� Develop applications
� Test and debug applications
� Deploy and profile applications
� Team development
� Appendixes

Back cover

http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/

	Front cover
	Contents
	Notices
	Trademarks

	Preface
	The team that wrote this redbook
	Become a published author
	Comments welcome
	Summary of changes
	June 2005, First Edition


	Part 1 Introduction to Rational Application Developer
	Chapter 1. Introduction
	1.1 Introduction and concepts
	1.1.1 IBM Rational Software Development Platform
	1.1.2 Version 6 terminology
	1.1.3 Application development challenges
	1.1.4 Key themes of Version 6

	1.2 Product packaging
	1.2.1 Rational Developer supported platforms and databases
	1.2.2 Rational Application Developer V6 product packaging
	1.2.3 Rational Web Developer V6 product packaging

	1.3 Product features
	1.3.1 Summary of new features in Version 6
	1.3.2 Specification versions
	1.3.3 Eclipse and IBM Rational Software Development Platform
	1.3.4 Test server environments
	1.3.5 Licensing and installation
	1.3.6 Migration and coexistence
	1.3.7 Tools

	1.4 Sample code

	Chapter 2. Programming technologies
	2.1 Desktop applications
	2.1.1 Simple desktop applications
	2.1.2 Database access
	2.1.3 Graphical user interfaces
	2.1.4 Extensible Markup Language (XML)

	2.2 Static Web sites
	2.2.1 Hypertext Transfer Protocol (HTTP)
	2.2.2 HyperText Markup Language (HTML)

	2.3 Dynamic Web applications
	2.3.1 Simple Web applications
	2.3.2 Struts
	2.3.3 JavaServer Faces (JSF) and Service Data Objects (SDO)
	2.3.4 Portal applications

	2.4 Enterprise JavaBeans
	2.4.1 Different types of EJBs
	2.4.2 Other EJB features
	2.4.3 Requirements for the development environment

	2.5 J2EE Application Clients
	2.5.1 Application Programming Interfaces (APIs)
	2.5.2 Security
	2.5.3 Naming
	2.5.4 Deployment
	2.5.5 Requirements for the development environment

	2.6 Web Services
	2.6.1 Web Services in J2EE V1.4

	2.7 Messaging systems
	2.7.1 Java Message Service (JMS)
	2.7.2 Message-driven EJBs (MDBs)
	2.7.3 Requirements for the development environment


	Chapter 3. Workbench setup and preferences
	3.1 Workbench basics
	3.1.1 Workspace basics
	3.1.2 Rational Application Developer log files

	3.2 Preferences
	3.2.1 Automatic builds
	3.2.2 Clean build (manual)
	3.2.3 Capabilities
	3.2.4 File associations
	3.2.5 Local history
	3.2.6 Perspectives preferences
	3.2.7 Internet preferences

	3.3 Java development preferences
	3.3.1 Java classpath variables
	3.3.2 Appearance of Java elements
	3.3.3 Code style and formatting
	3.3.4 Compiler options
	3.3.5 Java editor settings
	3.3.6 Installed JREs
	3.3.7 Templates
	3.3.8 Code review


	Chapter 4. Perspectives, views, and editors
	4.1 Integrated development environment (IDE)
	4.1.1 Rational Application Developer online help
	4.1.2 Perspectives
	4.1.3 Views
	4.1.4 Editors
	4.1.5 Perspective layout
	4.1.6 Switching perspectives
	4.1.7 Specifying the default perspective
	4.1.8 Organizing and customizing perspectives

	4.2 Available perspectives
	4.2.1 CVS Repository Exploring perspective
	4.2.2 Data perspective
	4.2.3 Debug perspective
	4.2.4 Generic Log Adapter perspective
	4.2.5 J2EE perspective
	4.2.6 Java perspective
	4.2.7 Java Browsing perspective
	4.2.8 Java Type Hierarchy perspective
	4.2.9 Plug-in Development perspective
	4.2.10 Profiling and Logging perspective
	4.2.11 Resource perspective
	4.2.12 Team Synchronizing perspective
	4.2.13 Test perspective
	4.2.14 Web perspective
	4.2.15 Progress view

	4.3 Rational Product Updater

	Chapter 5. Projects
	5.1 J2EE architecture
	5.1.1 EAR files
	5.1.2 WAR files
	5.1.3 EJB JAR files
	5.1.4 J2EE Application Client JAR files
	5.1.5 RAR files

	5.2 Projects and folders
	5.3 Rational Application Developer projects
	5.3.1 Enterprise Application project
	5.3.2 J2EE Application Client project
	5.3.3 Dynamic Web Project
	5.3.4 Static Web Project
	5.3.5 EJB project
	5.3.6 Connector project
	5.3.7 Java project
	5.3.8 Simple project
	5.3.9 Server project
	5.3.10 Component test project
	5.3.11 Checkout projects from CVS

	5.4 Creating a new project
	5.5 Project properties
	5.6 Rational Application Developer samples
	5.6.1 The samples gallery


	Part 2 Develop applications
	Chapter 6. RUP and UML
	6.1 Overview
	6.2 Rational Unified Process (RUP)
	6.2.1 Process Advisor
	6.2.2 Process Browser
	6.2.3 Setting process preferences

	6.3 Visualize applications with UML
	6.3.1 Unified Modeling Language (UML)
	6.3.2 Browse diagram
	6.3.3 Topic Diagram
	6.3.4 Static Method Sequence Diagram
	6.3.5 Class Diagram
	6.3.6 Sequence Diagram
	6.3.7 J2EE visualization

	6.4 More information on UML

	Chapter 7. Develop Java applications
	7.1 Java perspective overview
	7.1.1 Package Explorer view
	7.1.2 Call Hierarchy view
	7.1.3 Type Hierarch view
	7.1.4 Problems view
	7.1.5 Declaration view
	7.1.6 Code review
	7.1.7 Outline view
	7.1.8 Diagram Navigator view

	7.2 Develop the Java Bank application
	7.2.1 Java Bank application overview
	7.2.2 Create a Java Project
	7.2.3 Create a class diagram
	7.2.4 Create Java packages
	7.2.5 Create a Java interface
	7.2.6 Create Java classes
	7.2.7 Create the Java attributes and accessor methods
	7.2.8 Add method declarations to an interface
	7.2.9 Add Java methods and constructors
	7.2.10 Define relationships (extends, implements, association)
	7.2.11 Implement the methods for each class
	7.2.12 Run the Java Bank application

	7.3 Additional features used for Java applications
	7.3.1 Locating compile errors in your code
	7.3.2 Running your programs
	7.3.3 Debug your programs
	7.3.4 Java Scrapbook
	7.3.5 Pluggable Java Runtime Environment (JRE)
	7.3.6 Add a JAR file to the classpath
	7.3.7 Export the Java code to a JAR file
	7.3.8 Run the Java application external to Application Developer
	7.3.9 Import a Java JAR file into a project
	7.3.10 Utility Java Projects
	7.3.11 Javadoc

	7.4 Java editor and Rapid Application Development
	7.4.1 Navigate through the code
	7.4.2 Source folding
	7.4.3 Type hierarchy
	7.4.4 Smart Insert
	7.4.5 Mark occurrences
	7.4.6 Word skipping
	7.4.7 Smart compilation
	7.4.8 Java search
	7.4.9 Working sets
	7.4.10 Quick Assist (Quick Fix)
	7.4.11 Code Assist (content)
	7.4.12 Import generation
	7.4.13 Generate getters and setters
	7.4.14 Override/implement methods
	7.4.15 Adding constructors
	7.4.16 Refactoring


	Chapter 8. Develop Java database applications
	8.1 Introduction to Java database programming
	8.1.1 JDBC overview
	8.1.2 Data source versus direct connection
	8.1.3 XMI and DDL
	8.1.4 Rational Application Developer database features

	8.2 Preparing for the sample
	8.2.1 Import the BankDB sample project
	8.2.2 Set up the BANK sample database

	8.3 Data perspective
	8.3.1 Data Definition view
	8.3.2 Database Explorer view
	8.3.3 DB Output view
	8.3.4 Navigator view

	8.4 Create databases and tables from scripts
	8.4.1 Create a database
	8.4.2 Create a database connection
	8.4.3 Create the database tables from scripts
	8.4.4 Populate database tables with data

	8.5 Create and work with database objects
	8.5.1 Create a database
	8.5.2 Create a database connection
	8.5.3 Create a schema
	8.5.4 Create a table
	8.5.5 Generate a DDL file
	8.5.6 Deploy DDL from the workspace to a database
	8.5.7 Copy database objects from a DDL file to a workspace
	8.5.8 Generate DDL and XSD files for database objects

	8.6 UML visualization
	8.6.1 Class diagrams
	8.6.2 Information engineering (IE) diagrams
	8.6.3 IDEF1X (Integrated Definition Extended) diagrams

	8.7 Create SQL statements
	8.7.1 Using the SQL Statement wizard
	8.7.2 Using the SQL Query Builder

	8.8 Access a database from a Java application
	8.8.1 Prepare for the sample
	8.8.2 Access the database using the DriverManager
	8.8.3 Access using a data source

	8.9 Java stored procedures
	8.9.1 Prepare for the sample
	8.9.2 Create a Java stored procedure
	8.9.3 Build a stored procedure (deploy to database)
	8.9.4 Java DriverManager access to a Java stored procedure
	8.9.5 JavaBean access to Java stored procedure


	Chapter 9. Develop GUI applications
	9.1 Introduction to the Visual Editor
	9.2 Prepare for the sample
	9.2.1 Create the project for the sample
	9.2.2 Add JDBC driver for Cloudscape to project
	9.2.3 Set up the sample database
	9.2.4 Import the model classes for the sample

	9.3 Launching the Visual Editor
	9.3.1 Create a visual class
	9.3.2 Open an existing class with the Visual Editor

	9.4 Visual Editor overview
	9.4.1 Visual Editor layout
	9.4.2 Customizing the appearance of the Visual Editor

	9.5 Work with the Visual Editor
	9.5.1 Resize a JavaBean component
	9.5.2 Code synchronization
	9.5.3 Changing the properties of a component
	9.5.4 Add JavaBeans to a visual class
	9.5.5 Work with the Properties view
	9.5.6 Testing the appearance of the GUI
	9.5.7 Add event handling to GUI
	9.5.8 Verify the Java GUI application
	9.5.9 Run the sample GUI as a Java application
	9.5.10 Automatically add event handling
	9.5.11 Visual Editor binding


	Chapter 10. Develop XML applications
	10.1 XML overview and technologies
	10.1.1 XML and XML processor
	10.1.2 DTD and XML schema
	10.1.3 XSL and XSLT
	10.1.4 XML namespaces
	10.1.5 XPath

	10.2 Rational Application Developer XML tools
	10.2.1 Create a project for XML sample
	10.2.2 Work with DTD files
	10.2.3 Work with XML schema files
	10.2.4 Work with XML files
	10.2.5 Work with XSL files
	10.2.6 Transform an XML file
	10.2.7 Java code generation

	10.3 Where to find more information

	Chapter 11. Develop Web applications using JSPs and servlets
	11.1 Introduction to Web applications
	11.1.1 Concepts and technologies
	11.1.2 Model-view-controller (MVC) pattern

	11.2 Web development tooling
	11.2.1 Web perspective and views
	11.2.2 Web Projects
	11.2.3 Web Site Designer
	11.2.4 Page Designer
	11.2.5 Page templates
	11.2.6 CSS Designer
	11.2.7 Javascript Editor
	11.2.8 WebArt Designer
	11.2.9 AnimatedGif Designer
	11.2.10 File creation wizards

	11.3 Prepare for the sample
	11.3.1 ITSO Bank Web application overview
	11.3.2 Create a Web Project
	11.3.3 Web Project directory structure
	11.3.4 Import the ITSO Bank model

	11.4 Define the site navigation and appearance
	11.4.1 Launch the Web Site Designer
	11.4.2 Create a new page template
	11.4.3 Customize a page template
	11.4.4 Customize a style sheet
	11.4.5 Create the Web site navigation and pages
	11.4.6 Verify the site navigation and page templates

	11.5 Develop the static Web resources
	11.5.1 Create the index.html page content (text, links)
	11.5.2 Create the rates.html page content (tables)
	11.5.3 Create the insurance.html page content (list)
	11.5.4 Create the redbank.html page content (forms)

	11.6 Develop the dynamic Web resources
	11.6.1 Creating model classes
	11.6.2 Working with servlets
	11.6.3 Working with JSPs

	11.7 Test the application
	11.7.1 Prerequisites to run sample Web application
	11.7.2 Run the sample Web application
	11.7.3 Verify the sample Web application


	Chapter 12. Develop Web applications using Struts
	12.1 Introduction to Struts
	12.1.1 Model-view-controller (MVC) pattern with Struts
	12.1.2 Rational Application Developer support for Struts

	12.2 Prepare for the sample application
	12.2.1 ITSO Bank Struts Web application overview
	12.2.2 Create a Dynamic Web Project with Struts support
	12.2.3 Add JDBC driver for Cloudscape to project
	12.2.4 Set up the sample database
	12.2.5 Configure the data source

	12.3 Develop a Web application using Struts
	12.3.1 Create the Struts components
	12.3.2 Realize the Struts components
	12.3.3 Modify ApplicationResources.properties
	12.3.4 Struts validation framework
	12.3.5 Page Designer and the Struts tag library
	12.3.6 Using the Struts configuration file editor

	12.4 Import and run the Struts sample application
	12.4.1 Import the Struts Bank Web application sample
	12.4.2 Prepare the application and sample database
	12.4.3 Run the Struts Bank Web application sample


	Chapter 13. Develop Web applications using JSF and SDO
	13.1 Introduction to JSF and SDO
	13.1.1 JavaServer Faces (JSF) overview
	13.1.2 Service Data Objects (SDO)

	13.2 Prepare for the sample
	13.2.1 Create a Dynamic Web Project
	13.2.2 Set up the sample database
	13.2.3 Configure the data source via the enhanced EAR

	13.3 Develop a Web application using JSF and SDO
	13.3.1 Create a page template
	13.3.2 Useful views for editing page template files
	13.3.3 Customize the page template
	13.3.4 Create JSF resources using the Web Diagram tool
	13.3.5 Edit a JSF page
	13.3.6 Completing the SDO example

	13.4 Run the sample Web application
	13.4.1 Prerequisites to run sample Web application
	13.4.2 Run the sample Web application
	13.4.3 Verify the sample Web application


	Chapter 14. Develop Web applications using EGL
	14.1 Introduction to EGL
	14.1.1 Programming paradigms
	14.1.2 IBM Enterprise Generation Language
	14.1.3 IBM EGL and Rational brand software
	14.1.4 IBM EGL feature enhancements
	14.1.5 Where to find more information on EGL

	14.2 IBM EGL tooling in Rational Developer products
	14.2.1 EGL preferences
	14.2.2 EGL perspective and views
	14.2.3 EGL projects
	14.2.4 EGL wizards
	14.2.5 EGL migration
	14.2.6 EGL debug support
	14.2.7 EGL Web application components

	14.3 Prepare for the sample application
	14.3.1 Install the EGL component of Rational Application Developer
	14.3.2 Enable the EGL development capability
	14.3.3 Install DB2 Universal Database
	14.3.4 Create an EGL Web Project
	14.3.5 Set up the sample database
	14.3.6 Configure EGL preferences for SQL database connection
	14.3.7 Configure the data source
	14.3.8 Configure the DB2 JDBC class path environment variables

	14.4 Develop the Web application using EGL
	14.4.1 Create the EGL data parts
	14.4.2 Create and customize a page template
	14.4.3 Create the Faces JSPs using the Web Diagram tool
	14.4.4 Add EGL components to the Faces JSPs

	14.5 Import and run the sample Web application
	14.5.1 Import the EGL Web application sample
	14.5.2 Prerequisites
	14.5.3 Generate Java from EGL source
	14.5.4 Run the sample EGL Web application

	14.6 Considerations for exporting an EGL project
	14.6.1 Reduce the file size of the Project Interchange file
	14.6.2 Manually adding the runtime libraries after migration
	14.6.3 Export WAR/EAR with source


	Chapter 15. Develop Web applications using EJBs
	15.1 Introduction to Enterprise JavaBeans
	15.1.1 What is new
	15.1.2 Enterprise JavaBeans overview
	15.1.3 EJB server
	15.1.4 EJB container
	15.1.5 EJB components

	15.2 RedBank sample application overview
	15.3 Prepare for the sample
	15.3.1 Required software
	15.3.2 Create and configure the EJB projects
	15.3.3 Create an EJB project
	15.3.4 Configure the EJB projects
	15.3.5 Import BankBasicWeb Project
	15.3.6 Set up the sample database
	15.3.7 Configure the data source

	15.4 Develop an EJB application
	15.4.1 Create the entity beans
	15.4.2 Create the entity relationships
	15.4.3 Customize the entity beans and add business logic
	15.4.4 Creating custom finders
	15.4.5 Object-relational mapping
	15.4.6 Implement the session facade

	15.5 Testing EJB with the Universal Test Client
	15.6 Adapting the Web application

	Chapter 16. Develop J2EE application clients
	16.1 Introduction to J2EE application clients
	16.2 Overview of the sample application
	16.3 Preparing for the sample application
	16.3.1 Import the base enterprise application sample
	16.3.2 Set up the sample database
	16.3.3 Configure the data source
	16.3.4 Test the imported code

	16.4 Develop the J2EE application client
	16.4.1 Create the J2EE application client projects
	16.4.2 Configure the J2EE application client projects
	16.4.3 Import the graphical user interface and control classes
	16.4.4 Create the BankDesktopController class
	16.4.5 Complete the BankDesktopController class
	16.4.6 Register the BankDesktopController class as the Main class

	16.5 Test the J2EE application client
	16.6 Package the application client project

	Chapter 17. Develop Web Services applications
	17.1 Introduction to Web Services
	17.1.1 Service-oriented architecture (SOA)
	17.1.2 Web Services as an SOA implementation
	17.1.3 Related Web Services standards

	17.2 Web Services tools in Application Developer
	17.2.1 Creating a Web Service from existing resources
	17.2.2 Creating a skeleton Web Service
	17.2.3 Client development
	17.2.4 Testing tools for Web Services

	17.3 Preparing for the samples
	17.3.1 Import the sample code
	17.3.2 Enable the Web Services Development capability
	17.3.3 Set up the sample back-end database
	17.3.4 Add Cloudscape JDBC driver (JAR) to the project
	17.3.5 Define a server to test the application
	17.3.6 Test the application

	17.4 Create a Web Service from a JavaBean
	17.4.1 Create a Web Service using the Web Service wizard
	17.4.2 Resources generated by the Web Services wizard
	17.4.3 Test the Web Service using the Web Services Explorer
	17.4.4 Generate and test the client proxy
	17.4.5 Monitor the Web Service using the TCP/IP Monitor

	17.5 Create a Web Service from an EJB
	17.6 Web Services security
	17.7 Publish a Web Service using UDDI

	Chapter 18. Develop portal applications
	18.1 Introduction to portals
	18.1.1 Portal concepts and definitions
	18.1.2 IBM WebSphere Portal
	18.1.3 IBM Rational Application Developer

	18.2 Developing applications for WebSphere Portal
	18.2.1 Portal samples and tutorials
	18.2.2 Development strategy
	18.2.3 Portal tools for developing portals
	18.2.4 Portal tools for developing portlets
	18.2.5 Portal tools for testing and debugging portlets
	18.2.6 Portal tools for deploying and managing portlets
	18.2.7 Enterprise Application Integration Portal Tools
	18.2.8 Coexistence and migration of tools and applications

	18.3 Portal development scenario
	18.3.1 Prepare for the sample
	18.3.2 Create a portal project
	18.3.3 Add and modify a portal page
	18.3.4 Create and modify two portlets
	18.3.5 Add portlets to a portal page
	18.3.6 Run the project in the test environment


	Part 3 Test and debug applications
	Chapter 19. Servers and server configuration
	19.1 Introduction to server configuration
	19.1.1 Supported test server environments
	19.1.2 Local vs. remote test environments
	19.1.3 Commands to manage test servers

	19.2 Configure a WebSphere V6 Test Environment
	19.2.1 Understanding WebSphere Application Server V6.0 profiles
	19.2.2 WebSphere Application Server V6 installation
	19.2.3 WebSphere Application Server V6 profile creation
	19.2.4 Define a new server in Rational Application Developer
	19.2.5 Verify the server
	19.2.6 Customize a server in Rational Application Developer

	19.3 Add a project to a server
	19.3.1 Considerations for adding a project to a server
	19.3.2 Add a project to a server

	19.4 Remove a project from a server
	19.4.1 Remove a project via Rational Application Developer
	19.4.2 Remove a project via WebSphere Administrative Console

	19.5 Publish application changes
	19.6 Configure application and server resources
	19.6.1 Configure application resources
	19.6.2 Configure server resources
	19.6.3 Configure messaging resources
	19.6.4 Configure security

	19.7 TCP/IP Monitor

	Chapter 20. JUnit and component testing
	20.1 Introduction to application testing
	20.1.1 Test concepts
	20.1.2 Benefits of unit and component testing
	20.1.3 Eclipse Hyades

	20.2 JUnit testing
	20.2.1 JUnit fundamentals
	20.2.2 Prepare for the sample
	20.2.3 Create the JUnit test case
	20.2.4 Run the JUnit test case

	20.3 Automated component testing
	20.3.1 Prepare for the sample
	20.3.2 Create a test project
	20.3.3 Create a Java component test
	20.3.4 Complete the component test code
	20.3.5 Run the component test

	20.4 Web application testing
	20.4.1 Preparing for the sample
	20.4.2 Create a Java project
	20.4.3 Create (record) a test
	20.4.4 Edit the test
	20.4.5 Generate an executable test
	20.4.6 Create a deployment definition
	20.4.7 Run the test
	20.4.8 Analyze the test results


	Chapter 21. Debug local and remote applications
	21.1 Introduction to the debug tooling
	21.1.1 Summary of new Version 6 features
	21.1.2 Supported languages and environments
	21.1.3 General functionality
	21.1.4 Drop-to-frame
	21.1.5 View Management
	21.1.6 XSLT debugger

	21.2 Prepare for the sample
	21.3 Debug a Web application on a local server
	21.3.1 Set breakpoints in a servlet
	21.3.2 Set breakpoints in a JSP
	21.3.3 Start the application for debugging
	21.3.4 Run the application in the debugger
	21.3.5 Debug view with stack frames
	21.3.6 Debug functions
	21.3.7 Breakpoints view
	21.3.8 Watch variables
	21.3.9 Inspect variables
	21.3.10 Evaluate an expression
	21.3.11 Debug a JSP

	21.4 Debug a Web application on a remote server
	21.4.1 Export the BankBasicWeb project to a WAR file
	21.4.2 Deploy the BankBasicWeb.war
	21.4.3 Install the IBM Rational Agent Controller
	21.4.4 Configure debug on remote WebSphere Application Server
	21.4.5 Attach to the remote server in Rational Application Developer
	21.4.6 Debug the application on the remote server


	Part 4 Deploy and profile applications
	Chapter 22. Build applications with Ant
	22.1 Introduction to Ant
	22.1.1 Ant build files
	22.1.2 Ant tasks

	22.2 New features
	22.2.1 Code Assist
	22.2.2 Code snippets
	22.2.3 Format an Ant script
	22.2.4 Define format of an Ant script
	22.2.5 Problem view

	22.3 Build a simple Java application
	22.3.1 Prepare for the sample
	22.3.2 Create a build file
	22.3.3 Project definition
	22.3.4 Global properties
	22.3.5 Build targets
	22.3.6 Run Ant
	22.3.7 Ant Log Console
	22.3.8 Rerun Ant
	22.3.9 Forced build
	22.3.10 Classpath problem
	22.3.11 Run the sample application to verify the Ant build

	22.4 Build a J2EE application
	22.4.1 J2EE application deployment packaging
	22.4.2 Prepare for the sample
	22.4.3 Create the build script
	22.4.4 Run the Ant J2EE application build

	22.5 Run Ant outside of Application Developer
	22.5.1 Prepare for the headless build
	22.5.2 Run the headless Ant build script


	Chapter 23. Deploy enterprise applications
	23.1 Introduction to application deployment
	23.1.1 Common deployment considerations
	23.1.2 J2EE application components and deployment modules
	23.1.3 Java and WebSphere class loader
	23.1.4 Deployment descriptors
	23.1.5 WebSphere deployment architecture

	23.2 Prepare for the sample
	23.2.1 Review the deployment scenarios
	23.2.2 Install prerequisite software
	23.2.3 Import the sample application Project Interchange file
	23.2.4 Set up the sample database

	23.3 Package the application for deployment
	23.3.1 Packaging recommendations
	23.3.2 Generate the EJB to RDB mapping
	23.3.3 Customize the deployment descriptors
	23.3.4 Remove the Enhanced EAR datasource
	23.3.5 Generate the deploy code
	23.3.6 Export the EAR

	23.4 Deploy the enterprise application
	23.4.1 Configure the data source in WebSphere Application Server
	23.4.2 Deploy the EAR

	23.5 Verify the application

	Chapter 24. Profile applications
	24.1 Introduction to profiling
	24.1.1 Profiling features
	24.1.2 Profiling architecture
	24.1.3 Profiling and Logging perspective
	24.1.4 Profiling sets

	24.2 Prepare for the profiling sample
	24.2.1 Prerequisites hardware and software
	24.2.2 Enable the Profiling and Logging capability
	24.2.3 Import the sample project interchange file
	24.2.4 Publish and run sample application

	24.3 Profile the sample application
	24.3.1 Start server in profile mode
	24.3.2 Collect profile information
	24.3.3 Analysis of code coverage information


	Part 5 Team development
	Chapter 25. Rational ClearCase integration
	25.1 Introduction to IBM Rational ClearCase
	25.1.1 IBM Rational Application Developer ClearCase overview
	25.1.2 IBM Rational ClearCase terminology
	25.1.3 IBM Rational ClearCase LT installation
	25.1.4 IBM Rational Application Developer integration for ClearCase

	25.2 Integration scenario overview
	25.3 ClearCase setup for a new project
	25.3.1 Enable Team capability in preferences
	25.3.2 Create new ClearCase project
	25.3.3 Join a ClearCase project
	25.3.4 Create a Web project
	25.3.5 Add a project to ClearCase source control

	25.4 Development scenario
	25.4.1 Developer 1 adds a servlet
	25.4.2 Developer 1 delivers work to the integration stream
	25.4.3 Developer 1 makes a baseline
	25.4.4 Developer 2 joins the project
	25.4.5 Developer 2 imports projects into Application Developer
	25.4.6 Developer 2 modifies the servlet
	25.4.7 Developer 2 delivers work to the integration stream
	25.4.8 Developer 1 modifies the servlet
	25.4.9 Developer 1 delivers new work to the integration stream


	Chapter 26. CVS integration
	26.1 Introduction to CVS
	26.1.1 CVS features
	26.1.2 New V6 features for team development

	26.2 CVSNT Server implementation
	26.2.1 CVS Server installation
	26.2.2 CVS Server repository configuration
	26.2.3 Create the Windows users and groups used by CVS
	26.2.4 Verify the CVSNT installation
	26.2.5 Create CVS users

	26.3 CVS client configuration for Application Developer
	26.3.1 Configure CVS Team Capabilities
	26.3.2 Access the CVS Repository

	26.4 Configure CVS in Rational Application Developer
	26.4.1 Configure Rational Application Developer CVS preferences

	26.5 Development scenario
	26.5.1 Create and share the project (step 1 - cvsuser1)
	26.5.2 Add a shared project to the workspace (step 2 - cvsuser2)
	26.5.3 Modifying the Servlet (step 2 - cvsuser1)
	26.5.4 Synchronize with repository (step 3 - cvsuser1)
	26.5.5 Parallel development (step 4 - cvsuser1 and cvsuser2)
	26.5.6 Versioning (step 5- cvsuser1)

	26.6 CVS resource history
	26.7 Comparisons in CVS
	26.7.1 Comparing workspace file with repository
	26.7.2 Comparing two revisions in repository

	26.8 Annotations in CVS
	26.9 Branches in CVS
	26.9.1 Branching
	26.9.2 Merging
	26.9.3 Refreshing server-defined branches

	26.10 Work with patches
	26.11 Disconnecting a project
	26.12 Synchronize perspective
	26.12.1 Custom configuration of resource synchronization
	26.12.2 Schedule synchronization


	Part 6 Appendixes
	Appendix A. IBM product installation and configuration tips
	IBM Rational Application Developer V6 installation
	Rational Application Developer installation
	WebSphere Portal V5.0 Test Environment installation
	WebSphere Portal V5.1 Test Environment installation
	Rational Application Developer Product Updater - Interim Fix 0004

	IBM Rational Agent Controller V6 installation
	IBM Rational ClearCase LT installation
	IBM DB2 Universal Database V8.2 installation
	IBM WebSphere Application Server V6 installation
	WebSphere Application Server messaging configuration
	Configure the service bus
	Configure the bus members
	Configure the destinations
	Verify the messaging engine startup
	Configure JMS connection queue factory
	Configure the destination JMS queue
	Configuration of a JMS activation specification


	Appendix B. Additional material
	Locating the Web material
	System requirements for downloading the Web material

	Unpack the 6449code.zip
	Description of sample code
	Import sample code from a Project Interchange file

	Related publications
	IBM Redbooks
	Other publications
	Online resources
	How to get IBM Redbooks
	Help from IBM

	Index
	Back cover

