IBM WebSphere eXtreme Scale Version V7.1.1 documentation

Welcome to the IBM WebSphere eXtreme Scale Version V7.1.1 documentation, where you can find information
about how to install, maintain, and use the IBM WebSphere eXtreme Scale Version V7.1.1.

Getting started Common tasks Troubleshooting and
Product overview Administering support
Troubleshootin
What's new Developing applications g
[# Support portal
Getting started Monitoring PPOTEP
: . [# Fix central
Installing Security
N [# Technotes
Configuring

[# System requirements More information

[+ WebSphere eXtreme
Scale V7.1.1 Education

WebSphere eXtreme
Scale V7.1.1 tutorials

[Articles

[Redbooks

http://www-01.ibm.com/support/docview.wss?uid=swg27019121
http://www-947.ibm.com/support/entry/portal/Overview/Software/WebSphere/WebSphere_eXtreme_Scale
http://www-933.ibm.com/support/fixcentral/
http://www-01.ibm.com/support/search.wss?tc=SSTVLU&q=v711xsrnotes
http://publib.boulder.ibm.com/infocenter/ieduasst/v1r1m0/index.jsp?topic=/com.ibm.iea.wxs/plugin_coverpage.html
http://www.ibm.com/developerworks/library/
http://www.redbooks.ibm.com/cgi-bin/searchsite.cgi?query=websphere+AND+extreme+scale&SearchOrder=1&SearchFuzzy=

Product overview

==}
B8

The WebSphere® eXtreme Scale licensed program is an elastic, scalable, in-
memory data grid. The data grid dynamically caches, partitions, replicates, and
manages application data and business logic across multiple servers. WebSphere
eXtreme Scale performs massive volumes of transaction processing with high
efficiency and linear scalability. With WebSphere eXtreme Scale, you can also get
qualities of service such as transactional integrity, high availability, and predictable
response times.

mag

WebSphere eXtreme Scale overview

The WebSphere eXtreme Scale licensed program is an elastic, scalable, in-memory data grid. The data
grid dynamically caches, partitions, replicates, and manages application data and business logic
across multiple servers. WebSphere eXtreme Scale performs massive volumes of transaction
processing with high efficiency and linear scalability. With WebSphere eXtreme Scale, you can also get
qualities of service such as transactional integrity, high availability, and predictable response times.

What’s new in Version 7.1.1

WebSphere eXtreme Scale includes many new features in *!' Version 7.1.1. Use this topic to learn
about the latest product updates.

Release notes
Links are provided to the product support Web site, to product documentation, and to last minute
updates, limitations, and known problems for the product.

Notices

Privacy policy considerations

Terms and conditions for information centers
Permissions for the use of these publications is granted subject to the following terms and conditions.

Hardware and software requirements

Browse an overview of hardware and operating system requirements. Although you are not required to
use a specific level of hardware or operating system for WebSphere eXtreme Scale, formally supported
hardware and software options are available on the Systems Requirements page of the product
support site. If a conflict exists between the information center and the System Requirements page,
the information at the website takes precedence. Prerequisite information in the information center is
provided as a convenience only.

Directory conventions

The following directory conventions are used throughout the documentation to reference special
directories such as wxs _install root and wxs home. You access these directories during several
different scenarios, including during installation and use of command-line tools.

WebSphere eXtreme Scale technical overview

WebSphere eXtreme Scale is an elastic, scalable, in-memory data grid. It dynamically caches,
partitions, replicates, and manages application data and business logic across multiple servers.

Caching overview

WebSphere eXtreme Scale can operate as an in-memory database processing space, which you can
use to provide in-line caching for a database back-end or to serve as a side-cache. In-line caching uses
eXtreme Scale as the primary means for interacting with the data. When eXtreme Scale is used as a
side-cache, the back-end is used in conjunction with the data grid. This section describes various
cache concepts and scenarios and discusses the available topologies for deploying a data grid.

Cache integration overview

The crucial element that gives WebSphere eXtreme Scale the capability to perform with such
versatility and reliability is its application of caching concepts to optimize the persistence and
recollection of data in virtually any deployment environment.

Database integration: Write-behind, in-line, and side caching

WebSphere eXtreme Scale is used to front a traditional database and eliminate read activity that is
normally pushed to the database. A coherent cache can be used with an application directly or
indirectly using an object relational mapper. The coherent cache can then offload the database or
backend from reads. In a slightly more complex scenario, such as transactional access to a data set
where only some of the data requires traditional persistence guarantees, filtering can be used to
offload even write transactions.

Serialization overview

*17 Data is always expressed, but not necessarily stored, as Java™ objects in the data grid.
WebSphere eXtreme Scale uses multiple Java processes to serialize the data, by converting the Java
object instances to bytes and back to objects again, as needed, to move the data between client and
server processes.

Scalability overview
WebSphere eXtreme Scale is scalable through the use of partitioned data, and can scale to thousands
of containers if required because each container is independent from other containers.

Availability overview

Transaction processing overview
WebSphere eXtreme Scale uses transactions as its mechanism for interaction with data.

Security overview
WebSphere eXtreme Scale can secure data access, including allowing for integration with external
security providers.

REST data services overview

The WebSphere eXtreme Scale REST data service is a Java HTTP service that is compatible with
Microsoft WCF Data Services (formally ADO.NET Data Services) and implements the Open Data
Protocol (OData). Microsoft WCF Data Services is compatible with this specification when using Visual
Studio 2008 SP1 and the .NET Framework 3.5 SP1.

WebSphere eXtreme Scale overview

The WebSphere® eXtreme Scale licensed program is an elastic, scalable, in-memory data grid. The data grid
dynamically caches, partitions, replicates, and manages application data and business logic across multiple
servers. WebSphere eXtreme Scale performs massive volumes of transaction processing with high efficiency
and linear scalability. With WebSphere eXtreme Scale, you can also get qualities of service such as
transactional integrity, high availability, and predictable response times.

WebSphere eXtreme Scale can be used in different ways. You can use the product as a very powerful cache,
as an in-memory database processing space to manage application state, or to build Extreme Transaction
Processing (XTP) applications. These XTP capabilities include an application infrastructure to support your
most demanding business-critical applications.

Elastic scalability

Elastic scalability is possible through the use of distributed object caching. With elastic scalability, the data
grid monitors and manages itself. The data grid can add or remove servers from the topology, which
increases or decreases memory, network throughput, and processing capacity as needed. When a scale-out
process is initiated, capacity is added to the data grid while it is running without requiring a restart.
Conversely, a scale-in process immediately removes capacity. The data grid is also self-healing by
automatically recovering from failures.

WebSphere eXtreme Scale versus an in-memory database

WebSphere eXtreme Scale cannot be considered an actual in-memory database. An in-memory database is
too simple to handle some of the complexities that WebSphere eXtreme Scale can manage. If an in-memory
database has a server that fails, it cannot repair the issue. A failure can be disastrous if your entire
environment is on that one server.

To tackle the problem of this type of failure, eXtreme Scale splits the given data set into partitions, which are
equivalent to constrained tree schemas. Constrained tree schemas describe the relationship between
entities. When you are using partitions, the entity relationships must model a tree data structure. In this
structure, the head of the tree is the root entity and is the only entity that is partitioned. All other children of
the root entity are stored in the same partition as the root entity. Each partition exists as a primary copy, or
shard. A partition also contains replica shards for backing up the data. An in-memory database cannot
provide this function because it is not structured and dynamic in this way. With an in-memory database, you
must implement the operations that WebSphere eXtreme Scale does automatically. You can run SQL
operations on in-memory databases, improving the processing speed compared to databases that are not in
memory. WebSphere eXtreme Scale has its own query language instead of SQL support. This query language
is more elastic, enables partitioning of data, and provides dependable failure recovery.

WebSphere eXtreme Scale with databases

With the write-behind cache feature, WebSphere eXtreme Scale can serve as a front-end cache for a
database. By using this front-end cache, throughput increases while reducing database load and contention.
WebSphere eXtreme Scale provides predictable scaling in and scaling out at predictable processing cost.

The following image shows that in a distributed, coherent cache environment, the eXtreme Scale clients
send and receive data from the data grid. The data grid can be automatically synchronized with a backend
data store. The cache is coherent because all of the clients see the same data in the cache. Each piece of
data is stored on exactly one writable server in the cache. Having one copy of each record resolves the
problem of having to maintain many copies of the same data, and it also prevents any version conflicts that
might occur. A coherent cache holds more data as more servers are added to the data grid, and scales
linearly as the data grid grows in size. The data can also be optionally replicated for more fault tolerance.

Figure 1. High-level topology

gXtreme Scale Grid

Fo Ty

Catalog Service

[I |
Application Clients [[I | Backend Data Store
L L P
ObjectGrid Bl

L
/

/
/
/
/
!
T
My

==
==

r”((ﬁ . (fm(- ((T\‘x
|'W ¢ (m ’ (((
N

000

o’

WebSphere eXtreme Scale has servers, called container servers, that provide its in-memory data grid. These
servers can run inside WebSphere Application Server, or on simple Java™ Standard Edition (J2SE) Java virtual
machines. More than one container server can run on a single physical server. As a result, the in-memory
data grid can be large. The data grid is not limited by, and does not have an impact on, the memory or
address space of the application or the application server. The memory can be the sum of the memory of
several hundred, or thousand, Java virtual machines, running on many different physical servers.

As an in-memory database processing space, WebSphere eXtreme Scale can be backed by disk, database, or
both.

While eXtreme Scale provides several Java APIs, many use cases require no user programming, just
configuration and deployment in your WebSphere infrastructure.

Data grid overview

The simplest eXtreme Scale programming interface is the ObjectMap interface, which is a simple map
interface that includes: a map.put(key,value) method to put a value in the cache, and a map.get(key)
method to later retrieve the value.

The fundamental data grid paradigm is a key-value pair, where the data grid stores values (Java objects),
with an associated key (another Java object). The key is later used to retrieve the value. In eXtreme Scale, a
map consists of entries of such key-value pairs.

WebSphere eXtreme Scale offers a number of data grid configurations, from a single, simple local cache, to a
large distributed cache, using multiple Java virtual machines or servers.

In addition to storing simple Java objects, you can store objects with relationships. You can use a query
language that is like SQL, with SELECT .. FROM .. WHERE statements to retrieve these objects. For example,
an order object might have a customer object and multiple item objects associated with it. WebSphere
eXtreme Scale supports one-to-one, one-to-many, many-to-one, and many-to-many relationships.

WebSphere eXtreme Scale also supports an EntityManager programming interface for storing entities in the
cache. This programming interface is like entities in Java Enterprise Edition. Entity relationships can be
automatically discovered from an entity descriptor XML file or annotations in the Java classes. You can
retrieve an entity from the cache by primary key using the find method on the EntityManager interface.
Entities can be persisted to or removed from the data grid within a transaction boundary.

Consider a distributed example where the key is a simple alphabetic name. The cache might be split into
four partitions by key: partition 1 for keys starting with A-E, partition 2 for keys starting with F-L, and so on.
For availability, a partition has a primary shard and a replica shard. Changes to the cache data are made to
the primary shard, and replicated to the replica shard. You configure the number of servers that contain the
data grid data, and eXtreme Scale distributes the data into shards over these server instances. For
availability, replica shards are placed in separate physical servers from primary shards.

WebSphere eXtreme Scale uses a catalog service to locate the primary shard for each key. It handles moving
shards among eXtreme Scale servers when the physical servers fail and later recover. For example, if the
server containing a replica shard fails, eXtreme Scale allocates a new replica shard. If a server containing a
primary shard fails, the replica shard is promoted to be the primary shard. As before, a new replica shard is
constructed.

Parent topic: Product overview

What’s new in Version 7.1.1

WebSphere® eXtreme Scale includes many new features in ' Version 7.1.1. Use this topic to learn about
the latest product updates.

.11

DataSerializer plug-ins

When clients and servers exchange information or when servers replicate data from one server to another,
data must be converted, or serialized, so that it can be transmitted over the network. In previous releases,
you used either the default Java™ serialization or the ObjectTransformer plug-in to serialize data. In this
release you can use the DataSerializer plug-ins to efficiently describe your serialization format, or byte array,
to WebSphere eXtreme Scale so that the product can interact with the byte array without requiring a specific

object format. (L’ Learn more...

.11

OSGi framework

Using the OSGi framework, you can expose your plug-ins as OSGi services so they can be used by the
eXtreme Scale run time. In addition, you can start eXtreme Scale servers and clients in an OSGi container,
which allows you to dynamically add and update eXtreme Scale plug-ins to the runtime environment. (1J
Learn more...

.11

Dynamic cache provider performance improvement

Invalidation processing within the WebSphere eXtreme Scale dynamic cache provider has been improved.
Invalidation requests are processed asynchronously and in batch when the wait parameter of the
invalidate(key, wait) method is set to a value of false. This enhancement significantly improves performance.

(LJ Learn more...

.11

Default placement behavior change

In previous releases, when a new container server started in the data grid, placement of shards on that
container server began immediately. This immediate placement resulted in high processor utilization on the
servers that contains the new container servers. The default behavior has been changed to set a 15000 ms,
or 15 second delay before placement occurs. You can change the placement interval with the

placementDeferralInterval server property. @ Learn more...

.11

Intra-domain topology for Java Persistence API (JPA) level 2 (L2) cache plug-in
configurations

By configuring an intra-domain topology on your JPA L2 cache, a primary shard is placed on every container
server in the configuration. Each primary shard contains the entire contents of the partition. By using this
configuration, you can increase performance because clients can locally access data, and any of the primary

shards can write to the data grid. @ Learn more...

1.1

xscmd utility
The xscmd utility is the new supported version of the xsadmin utility. The xsadmin utility was included as an

unsupported sample in previous releases. (i Learn more...

.11

Tool for generating log analysis reports
With the new xsloganalyzer tool, you can generate reports from your log files that can help you analyze the

performance of your environment and troubleshoot issues. L/ _Learn more...

.11

WebSphere Application Server Version 8 support
WebSphere eXtreme Scale Version 7.1.1 can now be installed on WebSphere Application Server and

WebSphere Application Server Network Deployment Version 8. @’ Learn more...

Parent topic: Product overview

Related reference:
Deprecated properties and APIs

Removed properties and APIs

Release notes

Links are provided to the product support Web site, to product documentation, and to last minute updates,
limitations, and known problems for the product.

Accessing last-minute updates, limitations, and known problems
Accessing system and software requirements

Accessing product documentation

Accessing the product support Web site

Contacting IBM Software Support

Accessing last-minute updates, limitations, and known problems

The release notes are available on the product support site as technotes. To see a list of all the technotes for
WebSphere® eXtreme Scale, go to the Support Web page. Clicking the links provided here will result in a
search of the Support Web page for the relevant release notes, which will be returned as a list.

Accessing system and software requirements

The hardware and software requirements are documented on the following pages:
e Detailed system requirements

Accessing product documentation

For the entire information set, go to the Library page.

Accessing the product support Web site
To search for the latest technotes, downloads, fixes, and other support-related information, go to the Support
Portal.

Contacting IBM Software Support

If you encounter a problem with the product, first try the following actions:

e Follow the steps described in the product documentation
e Look for related documentation in the online help
e Look up error messages in the message reference

If you cannot resolve your problem by any of the preceding methods, contact IBM® Technical Support.

Parent topic: Product overview

file:////dcs/markdown/workspace/Transform/htmlout/0/com.ibm.websphere.extremescale.doc/rxsrelnotes.html#rxsrelnotes__updates
file:////dcs/markdown/workspace/Transform/htmlout/0/com.ibm.websphere.extremescale.doc/rxsrelnotes.html#rxsrelnotes__requirements
file:////dcs/markdown/workspace/Transform/htmlout/0/com.ibm.websphere.extremescale.doc/rxsrelnotes.html#rxsrelnotes__documentation
file:////dcs/markdown/workspace/Transform/htmlout/0/com.ibm.websphere.extremescale.doc/rxsrelnotes.html#rxsrelnotes__supportsite
file:////dcs/markdown/workspace/Transform/htmlout/0/com.ibm.websphere.extremescale.doc/rxsrelnotes.html#rxsrelnotes__contactsupport
http://www-306.ibm.com/software/webservers/appserv/extend/support/
http://www-01.ibm.com/support/docview.wss?uid=swg27019121
http://www-01.ibm.com/software/webservers/appserv/extremescale/library/index.html
http://www-947.ibm.com/support/entry/portal/Overview/Software/WebSphere/WebSphere_eXtreme_Scale

Notices

This information was developed for products and services offered in the U.S.A.

IBM may not offer the products, services, or features discussed in this document in other countries. Consult
your local IBM representative for information about the products and services currently available in your
area. Any reference to an IBM product, program, or service is not intended to state or imply that only that
IBM product, program, or service may be used. Any functionally equivalent product, program, or service that
does not infringe any IBM intellectual property right may be used instead. However, it is the user's
responsibility to evaluate and verify the operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter described in this document.
The furnishing of this document does not grant you any license to these patents. You can send license
inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation

North Castle Drive
Armonk, NY 10504-1785
U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM Intellectual Property
Department in your country or send inquiries, in writing, to:

Intellectual Property Licensing

Legal and Intellectual Property Law
IBM Japan Ltd.

1623-14, Shimotsuruma, Yamato-shi
Kanagawa 242-8502 Japan

The following paragraph does not apply to the United Kingdom or any other country where such provisions
are inconsistent with local law: INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS
PUBLICATION "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A
PARTICULAR PURPOSE. Some states do not allow disclaimer of express or implied warranties in certain
transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors. Changes are periodically made
to the information herein; these changes will be incorporated in new editions of the publication. IBM may
make improvements and/or changes in the product(s) and/or the program(s) described in this publication at
any time without notice.

Any references in this information to non-IBM websites are provided for convenience only and do not in any
manner serve as an endorsement of those websites. The materials at those websites are not part of the
materials for this IBM product and use of those websites is at your own risk.

IBM may use or distribute any of the information you supply in any way it believes appropriate without
incurring any obligation to you.

Licensees of this program who wish to have information about it for the purpose of enabling: (i) the
exchange of information between independently created programs and other programs (including this one)
and (ii) the mutual use of the information which has been exchanged, should contact:

IBM® Corporation

Mail Station P300

522 South Road

Poughkeepsie, NY 12601-5400
USA

Attention: Information Requests

Such information may be available, subject to appropriate terms and conditions, including in some cases,
payment of a fee.

The licensed program described in this document and all licensed material available for it are provided by
IBM under terms of the IBM Customer Agreement, IBM International Program License Agreement or any
equivalent agreement between us.

Any performance data contained herein was determined in a controlled environment. Therefore, the results
obtained in other operating environments may vary significantly. Some measurements may have been made
on development-level systems and there is no guarantee that these measurements will be the same on
generally available systems. Furthermore, some measurements may have been estimated through

extrapolation. Actual results may vary. Users of this document should verify the applicable data for their
specific environment.

Information concerning non-IBM products was obtained from the suppliers of those products, their published
announcements or other publicly available sources. IBM has not tested those products and cannot confirm
the accuracy of performance, compatibility or any other claims related to non-IBM products. Questions on
the capabilities of non-IBM products should be addressed to the suppliers of those products.

All statements regarding IBM's future direction or intent are subject to change or withdrawal without notice,
and represent goals and objectives only.

All IBM prices shown are IBM's suggested retail prices, are current and are subject to change without notice.
Dealer prices may vary.

This information is for planning purposes only. The information herein is subject to change before the
products described become available.

This information contains examples of data and reports used in daily business operations. To illustrate them
as completely as possible, the examples include the names of individuals, companies, brands, and products.
All of these names are fictitious and any similarity to the names and addresses used by an actual business
enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which illustrate programming
techniques on various operating platforms. You may copy, modify, and distribute these sample programs in
any form without payment to IBM, for the purposes of developing, using, marketing or distributing
application programs conforming to the application programming interface for the operating platform for
which the sample programs are written. These examples have not been thoroughly tested under all
conditions. IBM, therefore, cannot guarantee or imply reliability, serviceability, or function of these programs.
The sample programs are provided "AS IS", without warranty of any kind. IBM shall not be liable for any
damages arising out of your use of the sample programs.

Each copy or any portion of these sample programs or any derivative work, must include a copyright notice
as follows:

© your company name) (year). Portions of this code are derived from IBM Corp. Sample Programs.

© Copyright IBM Corp. _enter the year or years_. All rights reserved.

Programming interface information

This publication. primarily documents information that is NOT intended to be used as Programming
Interfaces of WebSphere® eXtreme Scale. This publication also documents intended Programming Interfaces
that allow the customer to write programs to obtain the services of WebSphere eXtreme Scale. This
information is identified where it occurs, either by an introductory statement to a chapter or section or by
the following marking: Programming Interface information.

Trademarks

IBM, the IBM logo, and ibm.com are trademarks or registered trademarks of International Business Machines
Corp., registered in many jurisdictions worldwide. Other product and service names might be trademarks of
IBM or other companies. A current list of IBM trademarks is available on the Web at "Copyright and
trademark information" at www.ibm.com/legal/copytrade.shtml.

Parent topic: Product overview

http://www.ibm.com/legal/copytrade.shtml

Hardware and software requirements

Browse an overview of hardware and operating system requirements. Although you are not required to use a
specific level of hardware or operating system for WebSphere® eXtreme Scale, formally supported hardware
and software options are available on the Systems Requirements page of the product support site. If a
conflict exists between the information center and the System Requirements page, the information at the
website takes precedence. Prerequisite information in the information center is provided as a convenience
only.

See the System Requirements page for the official set of hardware and software requirements.

You can install and deploy the product in Java™ EE and Java SE environments. You can also bundle the client
component with Java EE applications directly without integrating with WebSphere Application Server.

Hardware requirements

WebSphere eXtreme Scale does not require a specific level of hardware. The hardware requirements are
dependent on the supported hardware for the Java Platform, Standard Edition installation that you use to run
WebSphere eXtreme Scale. If you are using eXtreme Scale with WebSphere Application Server or another
Java Platform, Enterprise Edition implementation, the hardware requirements of these platforms are
sufficient for WebSphere eXtreme Scale.

Operating system requirements

711
e Without the web console

eXtreme Scale does not require a specific operating system level. Each Java SE and Java EE
implementation requires different operating system levels or fixes for problems that are discovered
during the testing of the Java implementation. The levels required by these implementations are
sufficient for eXtreme Scale.

e 17 With the web console
The following requirements apply for each operating system if using the console:

Linux: 32 bit or 64 bit JVM
Linux PPC: 32 bit JVM only
Windows: 32 bit JVM only
AIX®: 32 bit JVM only

o O o o

Web browser requirements

The web console supports the following Web browsers:

e Mozilla Firefox, version 3.5.x and later
e Mozilla Firefox, version 3.6.x and later
e Microsoft Internet Explorer, version 7 or 8

WebSphere Application Server requirements

.11

e WebSphere Application Server Version 6.1.0.39 or later
e WebSphere Application Server Version 7.0.0.19 or later
e WebSphere Application Server Version 8.0.0.1 or later

See the Recommended fixes for WebSphere Application Server for more information.

Java requirements

11 Other Java EE implementations can use the eXtreme Scale run time as a local instance or as a client to
eXtreme Scale servers. To implement Java SE, you must use Version 5 or later.

Parent topic: Product overview
Parent topic: Planning for installation
Parent topic: ' Planning for installation

Related tasks:

Migrating to WebSphere eXtreme ScaleVersion 7.1.1Version 8.6
Stopping stand-alone servers

11 Installing WebSphere eXtreme Scale with the installation wizard

http://www.ibm.com/software/webservers/appserv/extremescale/sysreqs
http://www.ibm.com/support/docview.wss?rs=180&context=SSEQTP&uid=swg27004980

Directory conventions

The following directory conventions are used throughout the documentation to reference special directories
such aswxs install root and wxs home. You access these directories during several different scenarios,
including during installation and use of command-line tools.

wxs_install_root

The wxs install root directory is the root directory where WebSphere® eXtreme Scale product files are
installed. The wxs_install root directory can be the directory in which the trial archive is extracted or
the directory in which the WebSphere eXtreme Scale product is installed.

e Example when extracting the trial:
Example: /opt/IBM/WebSphere/eXtremeScale
e Example when WebSphere eXtreme Scale is installed to a stand-alone directory:
BTSN Example: /opt/IBM/eXtremeScale
BT Example: C:\Program Files\IBM\WebSphere\eXtremeScale
e Example when WebSphere eXtreme Scale is integrated with WebSphere Application Server:
Example: /opt/IBM/WebSphere/AppServer

wxs_home

The wxs home directory is the root directory of the WebSphere eXtreme Scale product libraries, samples,
and components. This directory is the same as the wxs_install root directory when the trial is extracted.
For stand-alone installations, the wxs home directory is the ObjectGrid subdirectory within the

wxs install root directory. For installations that are integrated with WebSphere Application Server, this
directory is the optionalLibraries/0ObjectGrid directory within the wxs install root directory.

e Example when extracting the trial:
Example: /opt/IBM/WebSphere/eXtremeScale

e Example when WebSphere eXtreme Scale is installed to a stand-alone directory:
BTN Example: /opt/IBM/eXtremeScale/ObjectGrid

WUIETTEN Example: wxs_install root\ObjectGrid

e Example when WebSphere eXtreme Scale is integrated with WebSphere Application Server:
Example: /opt/IBM/WebSphere/AppServer/optionalLibraries/ObjectGrid

was_root
The was root directory is the root directory of a WebSphere Application Server installation:

Example: /opt/IBM/WebSphere/AppServer

restservice_home

The restservice home directory is the directory in which the WebSphere eXtreme Scale REST data service
libraries and samples are located. This directory is named restservice and is a subdirectory under the
wxs _home directory.

e Example for stand-alone deployments:
Example: /opt/IBM/WebSphere/eXtremeScale/0ObjectGrid/restservice
Example: wxs_home\restservice
e Example for WebSphere Application Server integrated deployments:
Example: /opt/IBM/WebSphere/AppServer/optionalLibraries/ObjectGrid/restservice

tomcat_root
The tomcat root is the root directory of the Apache Tomcat installation.

Example: /opt/tomcat5.5

wasce_root
The wasce root is the root directory of the WebSphere Application Server Community Edition installation.

Example: /opt/IBM/WebSphere/AppServerCE

java_home

The java home is the root directory of a Java™ Runtime Environment (JRE) installation.
BTSN Example: /opt/IBM/WebSphere/eXtremeScale/java

MW Example: wxs_install root\java

samples_home
The samples home is the directory in which you extract the sample files that are used for tutorials.

BTSN Example: wxs_home/samples
MW Example: wxs_home\samples

dvd_root

The dvd root directory is the root directory of the DVD that contains the product.
Example: dvd root/docs/

equinox_root

The equinox root directory is the root directory of the Eclipse Equinox OSGi framework installation.
Example:/opt/equinox

user_home

The user home directory is the location where user files are stored, such as security profiles.
MUITITEMN c:\Documents and Settings\user name
BTSN /home/user name

Parent topic: Product overview
Parent topic: Planning for installation
Parent topic: ' Planning for installation

WebSphere eXtreme Scale technical overview

WebSphere® eXtreme Scale is an elastic, scalable, in-memory data grid. It dynamically caches, partitions,
replicates, and manages application data and business logic across multiple servers.

Because WebSphere eXtreme Scale is not an in-memory database, you must consider specific configuration
requirements. The first step to deploying a data grid is to start a core group and catalog service. The catalog
service acts as coordinator for all other Java™ virtual machines that are participating in the data grid and
manages configuration information. WebSphere eXtreme Scale processes are started with commands that
you issue on the command line.

The next step is to start container server processes for the data grid to store and retrieve data. As container
servers are started, they automatically register themselves with the core group and catalog service. By
registering, the catalog servers can cooperate in providing data grid services. More servers increase both
data grid capacity and reliability.

A local data grid is a simple, single-instance grid where all the data is in the one data grid. To effectively use
WebSphere eXtreme Scale as an in-memory database processing space, you can configure and deploy a
distributed data grid. The data in the distributed grid is spread out over the various eXtreme Scale servers so
that each server contains only some of the data. This portion of data is a partition.

A key distributed data grid configuration parameter is the number of partitions in the grid. The grid data is
partitioned into this number of subsets, each of which is called a partition. The catalog service locates the
partition for the data based on its key. The number of partitions directly affects the capacity and scalability of
the data grid. A server can contain one or more data grid partitions. As a result, the memory space of the
servers limits the size of a partition. Conversely, increasing the number of partitions increases the capacity
of the data grid. The maximum capacity of a data grid is the number of partitions times the usable memory
size of each server. A server can be a JVM, but you can define your container server to suit your deployment
environment,

The data of a partition is stored in a shard. For availability, a data grid can be configured with replicas, which
can be synchronous or asynchronous. Changes to the grid data are made to the primary shard, and
replicated to the replica shards. The total memory that is used or required by a data grid can be calculated
with the following equation: the size of the data grid times (1 (for the primary) + the number
of replicas).

WebSphere eXtreme Scale distributes the shards of a data grid over the number of servers that are in the
data grid. These servers might be on the same or different physical servers. For availability, replica shards
are placed in separate physical servers from primary shards.

WebSphere eXtreme Scale monitors the status of its servers and moves shards during shard or physical
server failure and recovery. For example, if the server that contains a replica shard fails, WebSphere eXtreme
Scale allocates a new replica shard, and replicate data from the primary to the new replica. If a server that
contains a primary shard fails, the replica shard is promoted to be the primary shard, and, a new replica
shard is constructed. If you start an extra server for the data grid, the shards are balanced over all servers.
This rebalancing is called scale-out. Similarly, for scale-in, you might stop one of the servers to reduce the
resources that are used by a data grid. As a result, the shards are balanced over the remaining servers.

Parent topic: Product overview

Caching overview

WebSphere® eXtreme Scale can operate as an in-memory database processing space, which you can use to
provide in-line caching for a database back-end or to serve as a side-cache. In-line caching uses eXtreme
Scale as the primary means for interacting with the data. When eXtreme Scale is used as a side-cache, the
back-end is used in conjunction with the data grid. This section describes various cache concepts and
scenarios and discusses the available topologies for deploying a data grid.

Caching architecture: Maps, containers, clients, and catalogs
With WebSphere eXtreme Scale, your architecture can use local in-memory data caching or distributed
client-server data caching.

IBM eXtremeMemory

IBM® eXtremeMemory enables objects to be stored in native memory instead of the Java™ heap. By
moving objects off the Java heap, you can avoid garbage collection pauses, leading to more constant
performance and predicable response times.

Zones

Zones give you control over shard placement. Zones are user-defined logical groupings of physical
servers. The following are examples of different types of zones: different blade servers, chassis of
blade servers, floors of a building, buildings, or different geographical locations in a multiple data
center environment. Another use case is in a virtualized environment where many server instances,
each with a unique IP address, run on the same physical server.

Evictors
Evictors remove data from the data grid. You can either set a time-based evictor or because evictors
are associated with BackingMaps, use the BackingMap interface to specify the pluggable evictor.

11+ OSGi framework overview

OSGi defines a dynamic module system for Java. The OSGi service platform has a layered architecture,
and is designed to run on various standard Java profiles. You can start WebSphere eXtreme Scale
servers and clients in an OSGi container.

Parent topic: Product overview

Caching architecture: Maps, containers, clients, and catalogs

With WebSphere® eXtreme Scale, your architecture can use local in-memory data caching or distributed
client-server data caching.

WebSphere eXtreme Scale requires minimal additional infrastructure to operate. The infrastructure consists
of scripts to install, start, and stop a Java™ Platform, Enterprise Edition application on a server. Cached data
is stored in the eXtreme Scale server, and clients remotely connect to the server.

Distributed caches offer increased performance, availability and scalability and can be configured using
dynamic topologies, in which servers are automatically balanced. You can also add additional servers without
restarting your existing eXtreme Scale servers. You can create either simple deployments or large, terabyte-
sized deployments in which thousands of servers are needed.

Catalog service

The catalog service controls placement of shards and discovers and monitors the health of container
servers in the data grid. The catalog service hosts logic that should be idle and has little influence on
scalability. It is built to service hundreds of container servers that become available simultaneously,
and run services to manage the container servers.

Container servers, partitions, and shards

The container server stores application data for the data grid. This data is generally broken into parts,
which are called partitions. Partitions are hosted across multiple shard containers. As a result, each
container server hosts a subset of the complete data. A JVM might host one or more shard containers
and each shard container can host multiple shards.

Maps
A map is a container for key-value pairs, which allows an application to store a value indexed by a key.

Maps support indexes that can be added to index attributes on the key or value. These indexes are
automatically used by the query runtime to determine the most efficient way to run a query.

Clients

Clients connect to a catalog service, retrieve a description of the server topology, and communicate
directly to each server as needed. When the server topology changes because new servers are added
or existing servers have failed, the dynamic catalog service routes the client to the appropriate server
that is hosting the data. Clients must examine the keys of application data to determine which
partition to route the request. Clients can read data from multiple partitions in a single transaction.
However, clients can update only a single partition in a transaction. After the client updates some
entries, the client transaction must use that partition for updates.

Parent topic: Caching overview

Related concepts:
Planning the topology

Catalog service

The catalog service controls placement of shards and discovers and monitors the health of container servers
in the data grid. The catalog service hosts logic that should be idle and has little influence on scalability. It is
built to service hundreds of container servers that become available simultaneously, and run services to
manage the container servers.

Figure 1. Catalog service

JvM

Catalog Service 3

Location Service I [I'—"Ia.:‘.arnant Earuical

Core Group Mgr Il Administratiocn I

,

The catalog server responsibilities consist of the following services:

Location service

The location service runs on the data grid members to provide locality to clients and container servers.
Container servers register with the location service to register the hosted applications. Clients can then
use the location service to search for container servers to host applications.

Placement service

The catalog service manages the placement of shards across available container servers. The placement
service is responsible for maintaining balance across physical resources and allocating individual shards to
their host container server. The placement service runs as a One of N elected service in the cluster and in
the data grid. This means that exactly one instance of the placement service is running. If an instance fails,
another process is elected and takes over. To provide redundancy, the state of the catalog service is
replicated across all the servers that are hosting the catalog service.

Core group manager

The core group manages peer grouping for availability monitoring, organizes container servers into small
groups of servers, and automatically federates the groups of servers.

The catalog service uses the high availability manager (HA manager) to group processes together for
availability monitoring. Each grouping of the processes is a core group. The core group manager
dynamically groups the processes together. These processes are kept small to allow for scalability. Each
core group elects a leader that is responsible for sending heartbeat messages to the core group manager.
These messages detect if an individual member failed or is still available. The heartbeat mechanism is also
used to detect if all the members of a group failed, which causes the communication with the leader to fail.

The core group manager is responsible for organizing containers into small groups of servers that are
loosely federated to make a data grid. When a container server first contacts the catalog service, it waits
to be assigned to either a new or existing group. An eXtreme Scale deployment consists of many such
groups, and this grouping is a key scalability enabler. Each group consists of Java™ virtual machines. An
elected leader uses the heartbeat mechanism to monitor the availability of the other groups. The leader
relays availability information to the catalog service to allow for failure reaction by reallocation and route
forwarding.

Administration

The catalog service is also the logical entry point for system administration. The catalog service hosts a
Managed Bean (MBean) and provides Java Management Extensions (JMX) URLs for any of the servers that
the catalog service is managing.

For high availability, configure a catalog service domain. A catalog service domain consists of multiple Java
virtual machines, including a master JVM and a number of backup Java virtual machines. For more
information, see High availability catalog service.

Parent topic: Caching architecture: Maps, containers, clients, and catalogs

Related concepts:
High availability catalog service

Related tasks:

Configuring catalog servers and catalog service domains

Configuring the guorum mechanism

Tuning the heartbeat interval setting for failover detection

Configuring WebSphere eXtreme Scale with WebSphere Application Server

Configuring the catalog service in WebSphere Application Server
Creating catalog service domains in WebSphere Application Server
Configuring catalog and container servers

Starting and stopping stand-alone servers

Using the embedded server API to start and stop servers
Configuring WebSphere Application Server applications to automatically start container servers
Configuring container servers in WebSphere Application Server
Controlling placement

Managing data center failures

Managing data center failures when gquorum is enabled
Administering with the xscmd utility

Related reference:

Server properties file

startOgServer script

Catalog service domain administrative tasks
ObjectGrid descriptor XML file

Deployment policy descriptor XML file

Container servers, partitions, and shards

The container server stores application data for the data grid. This data is generally broken into parts, which
are called partitions. Partitions are hosted across multiple shard containers. As a result, each container
server hosts a subset of the complete data. A JVM might host one or more shard containers and each shard
container can host multiple shards.

Remember: Plan out the heap size for the container servers, which host all of your data. Configure the heap
settings accordingly.

Figure 1. Container server

Container server (JVM)

.
Shard container

[5=<][5]
[s=cllo=]

Partitions host a subset of the data in the grid. WebSphere® eXtreme Scale automatically places partitions in
a container. A partition consists of one primary shard and optional replica shards. When more container
servers become available, replica shards are created and placed. Existing primary and replica shards are
also distributed to new containers to maintain an equals number of shards on each container server.

Important: Before final deployment, choose the number of partitions carefully. WebSphere eXtreme Scale
uses a hash code to locate partitions in the network and this number cannot be changed dynamically. As a
general rule, you can overestimate the number of partitions.

Figure 2. Partition

Container server (JVM) Container server (JVM)

4 Shard container \ (Shard container)

%’rmary shard / Partition 1 _.__,.__.--"'Replica shard /

: 1] ||
/erlica shard/ Partition 2 %’rmary shard/
R | B

Shards are instances of partitions and have one of two roles: primary or replica. The primary shard and its
replicas make up the physical manifestation of the partition. Every partition has several shards that each
host all of the data contained in that partition. One shard is the primary, and the others are replicas, which
are redundant copies of the data in the primary shard. A primary shard is the only partition instance that
allows transactions to write to the cache. A replica shard is a "mirrored" instance of the partition. It receives
updates synchronously or asynchronously from the primary shard. The replica shard only allows transactions
to read from the cache. Replicas are never hosted in the same container server as the primary and are not
normally hosted on the same machine as the primary.

Figure 3. Shard

Map Map

| | ———
—— |] | S —

To increase the availability of the data, or increase persistence guarantees, replicate the data. However,
replication adds cost to the transaction and trades performance in return for availability. With eXtreme Scale,
you can control the cost as both synchronous and asynchronous replication is supported, as well as hybrid

replication models using both synchronous and asynchronous replication modes. A synchronous replica
shard receives updates as part of the transaction of the primary shard to guarantee data consistency. A
synchronous replica can double the response time because the transaction has to commit on both the
primary and the synchronous replica before the transaction is complete. An asynchronous replica shard
receives updates after the transaction commits to limit impact on performance, but introduces the possibility
of data loss as the asynchronous replica can be several transactions behind the primary.

Figure 4. ObjectGrid

Objectrid

.

&3

=&
>

IR

Parent topic: Caching architecture: Maps, containers, clients, and catalogs

Related tasks:

Configuring catalog and container servers

Starting and stopping stand-alone servers

Using the embedded server APl to start and stop servers

Configuring the catalog service in WebSphere Application Server

Configuring WebSphere Application Server applications to automatically start container servers
Configuring container servers in WebSphere Application Server

Controlling placement

Related reference:

Server properties file

ObjectGrid descriptor XML file
Deployment policy descriptor XML file

Maps

A map is a container for key-value pairs, which allows an application to store a value indexed by a key. Maps
support indexes that can be added to index attributes on the key or value. These indexes are automatically
used by the query runtime to determine the most efficient way to run a query.

Figure 1. Map

Map
[Keyl || vaiuei |
| Key2 || valuez |

A map set is a collection of maps with a common partitioning algorithm. The data within the maps are
replicated based on the policy defined on the map set. A map set is only used for distributed topologies and
is not needed for local topologies.

Figure 2. Map sets

i MapSat)
!',.1.a|;| Map
|_key1 J[valuet il Keyl][valuei |
| kKeyz || vaez | | keyz || valusz]
Map Map Magp
[key1 J| vawsai ||| Keyl || valuei i_}.l Keyl || valuel |
L keyz J{ vaez || ([keyz J{ value2 | Lkeyz || _vauez |
— _

A map set can have a schema associated with it. A schema is the metadata that describes the relationships
between each map when using homogeneous Object types or entities.

WebSphere® eXtreme Scale can store serializable Java™ objects in each of the maps using the ObjectMap
API for Java clients. A schema can be defined over the maps to identify the relationship between the objects
in the maps where each map holds objects of a single type. Defining a schema for maps is required to query
the contents of the map objects. WebSphere eXtreme Scale can have multiple map schemas defined.

For more information about caching objects, see Getting started tutorial module 2: Create a client
application.

WebSphere eXtreme Scale can also store entities using the EntityManager API. Each entity is associated with
a map. The schema for an entity map set is automatically discovered using either an entity descriptor XML
file or annotated Java classes. Each entity has a set of key attributes and set of non-key attributes. An entity
can also have relationships to other entities. WebSphere eXtreme Scale supports one to one, one to many,
many to one and many to many relationships. Each entity is physically mapped to a single map in the map
set. Entities allow applications to easily have complex object graphs that span multiple Maps. A distributed
topology can have multiple entity schemas.

For more information about caching objects with the EntityManager API, see Caching objects and their
relationships (EntityManager API).

Parent topic: Caching architecture: Maps, containers, clients, and catalogs

Clients

Clients connect to a catalog service, retrieve a description of the server topology, and communicate directly
to each server as needed. When the server topology changes because new servers are added or existing
servers have failed, the dynamic catalog service routes the client to the appropriate server that is hosting
the data. Clients must examine the keys of application data to determine which partition to route the
request. Clients can read data from multiple partitions in a single transaction. However, clients can update
only a single partition in a transaction. After the client updates some entries, the client transaction must use
that partition for updates.

Java clients

Java client applications run on Java™ virtual machines (JVM) and connect to the catalog service and
container servers.

e A catalog service exists in its own data grid of Java virtual machines. A single catalog service can be
used to manage multiple clients or container servers.

e A container server can be started in a JVM by itself or can be loaded into an arbitrary JVM with other
containers for different data grids.

e A client can exist in any JVM and communicate with one or more data grids. A client can also exist in
the same JVM as a container server.

Figure 1. Possible topologies

Java Virtual Machine (JVM) faxa_\ﬂnuaudamm_L.MML
Java Virlual Machine [JVR)
! : =
Java Virtual Machine [JWVM) % [Server container I ‘ Sarver container
o
Catalog service ;o -
o
] Virtual Machine (I |
Java Virtual Machine [JVIM)
-]
L]
._!Ee. ||
O
Java Virtual Machine {JVM) Java Virtual Machine (JVM
[rpone | Java Virtlual Machine (JWVM)

Java Virtual Machine [JVM)

Parent topic: Caching architecture: Maps, containers, clients, and catalogs

Zones

Zones give you control over shard placement. Zones are user-defined logical groupings of physical servers.
The following are examples of different types of zones: different blade servers, chassis of blade servers,
floors of a building, buildings, or different geographical locations in a multiple data center environment.
Another use case is in a virtualized environment where many server instances, each with a unique IP
address, run on the same physical server.

Zones defined between data centers

The classic example and use case for zones is when you have two or more geographically dispersed data
centers. Dispersed data centers spread your data grid over different locations for recovery from data center
failure. For example, you might want to ensure that you have a full set of asynchronous replica shards for
your data grid in a remote data center. With this strategy, you can recover from the failure of the local data
center transparently, with no loss of data. Data centers themselves have high speed, low latency networks.
However, communication between one data center and another has higher latency. Synchronous replicas are
used in each data center where the low latency minimizes the impact of replication on response times. Using
asynchronous replication reduces impact on response time. The geographic distance provides availability in
case of local data center failure.

In the following example, primary shards for the Chicago zone have replicas in the London zone. Primary
shards for the London zone have replicas in the Chicago zone.

Figure 1. Primaries and replicas in zones

Chicago London
=T AR4 f P3 ARD
P1 ARG P ARZ
P2 ARD] PS5 ARE
P& AR i Pa AR1
P7 AR10 f P10 ART
Fa AR } P11 ARE

Three configuration settings control shard placement:

e Deployment file
e Group containers
e Specify rules

The following sections explain the different options, presented loosely from least to most complicated.
Development mode

In your deployment XML file, set: developmentMode="false".

This simple step activates the first shard placement policy.

For more information about the XML file, see Deployment policy descriptor XML file.

Policy 1: Shards for the same partition are placed in separate physical servers.

Consider a simple example of a data grid with one replica shard. With this policy, the primary and replica
shards for each partition are on different physical servers. If a single physical server fails, no data is lost. The
primary or replica shard for each partition are on different physical servers that did not fail, or both are on
some other physical server that did not fail.

The high availability and simplicity of this policy make it the most efficient setting for all production

environments. In many cases, applying this policy is the only step required for effectively controlling shard
placement in your environment.

In applying this policy, a physical server is defined by an IP address. Shards are placed in container servers.
Container servers have an IP address, for example, the -listenerHost parameter on the start server script.
Multiple container servers can have the same IP address.

Since a physical server has multiple IP addresses, consider the next step for more control of your
environment.

Group container servers

Container servers are assigned to zones with the -zone parameter on the start server script. In a WebSphere
Application Server environment, zones are defined through node groups with a specific name format:
ReplicationZone<Zone>. In this way, you choose the name and membership of your zones. For more
information, see Defining zones for container servers.

Policy 2: Shards for the same partition are placed in separate zones.

Consider extending the example of a data grid with one replica shard by deploying it across two data
centers. Define each data center as an independent zone. Use a zone name of DC1 for the container servers
in the first data center, and DC2 for the container servers in the second data center. With this policy, the
primary and replica shards for each partition would be in different data centers. If a data center fails, no data
is lost. For each partition, either its primary or replica shard is in the other data center.

With this policy, you can control shard placement by defining zones. You choose your physical or logical
boundary or grouping of interest. Then, choose a unigue zone name for each group, and start the container
servers in each of your zones with the name of the appropriate zone. Shards are placed so that shards for
the same partition are placed in separate zones.

Zone rules

The finest level of control over shard placement is achieved using zone rules. Zone rules are specified in the
zoneMetadata element of the deployment policy descriptor XML file. A zone rule defines a set of zones in
which shards are placed. A shardMapping element assigns a shard to a zone rule. The shard attribute of the
shardMapping element specifies the shard type:

e P specifies the primary shard

e S specifies synchronous replica shards

e A specifies asynchronous replica shards.

If more than one synchronous or asynchronous replica exist, then you must provide shardMapping elements
of the appropriate shard type. The exclusivePlacement attribute of the zoneRule element determines the
placement of shards in the same partition in zones. The exclusivePlacement attribute values are:

e true (a shard cannot be placed in the same zone as another shard from the same partition).

Remember: For the "true" case, you must have at least as many zones in the rule as you have shards
using it. Doing so ensures that each shard can be in its own zone.

e false (shards from the same partition can be placed in the same zone.
The default setting is true.

For more information, see Example: Zone definitions in the deployment policy descriptor XML file.

Extended use cases
The following are various use cases for shard placement strategies:
Rolling upgrades

Consider a scenario in which you want to apply rolling upgrades to your physical servers, including
maintenance that requires restarting your deployment. In this example, assume that you have a data grid
spread across 20 physical servers, defined with one synchronous replica. You want to shut down 10 of the
physical servers at a time for the maintenance.

When you shut down groups of 10 physical servers, no partition has both its primary and replica shards on
the servers you are shutting down. Otherwise, you lose the data from that partition.

The easiest solution is to define a third zone. Instead of two zones of 10 physical servers each, use three
zones, two with seven physical servers, and one with six. Spreading the data across more zones allows for
better failover for availability.

Rather than defining another zone, the other approach is to add a replica.

Upgrading WebSphere® eXtreme Scale

When you are upgrading WebSphere eXtreme Scale software in a rolling manner with data grids that contain
live data, consider the following issues. The catalog service software version must be greater than or equal
to the container server software versions. Upgrade all the catalog servers first with a rolling strategy. Read
more about upgrading your deployment in the topicUpdating eXtreme Scale servers.

Changing data model

A related issue is how to change the data model or schema of objects that are stored in the data grid without
causing downtime. It would be disruptive to change the data model by stopping the data grid and restarting
with the updated data model classes in the container server classpath, and reloading the data grid. An
alternative would be to start a new data grid with the new schema, copy the data from the old data grid to
the new data grid, then shut down the old data grid.

Each of these processes are disruptive and result in downtime. To change the data model without downtime,
store the object in one of these formats:

e Use XML as the value
e Use a blob made with Google protobuf
e Use JavaScript Object Notation (JSON)

Write serializers to go from plain old Java object (POJO) to one of these formats easily on the client side.
Schema changes become easier.

Virtualization

Cloud computing and virtualization are popular emerging technologies. By default, two shards for the same
partition are never placed on the same IP address as described in Policy 1. When you are deploying on
virtual images, such as VMware, many server instances, each with a unique IP address, can be run on the
same physical server. To ensure that replicas can only be placed on separate physical servers, you can use
zones to solve the problem. Group your physical servers into zones, and use zone placement rules to keep
primary and replica shards in separate zones.

Zones for wide-area networks

You might want to deploy a single data grid over multiple buildings or data centers with slower network
connections. Slower network connections lead to lower bandwidth and higher latency connections. The
possibility of network partitions also increases in this mode due to network congestion and other factors.

To deal with these risks, the catalog service organizes container servers into core groups that exchange
heartbeats to detect container server failure. These core groups do not span zones. A leader within each
core group pushes membership information to the catalog service. The catalog service verifies any reported
failures before responding to membership information by heartbeating the container server in question. If
the catalog service sees a false failure detection, the catalog service takes no action. The core group
partition heals quickly. The catalog service also heartbeats core group leaders periodically at a slow rate to
handle the case of core group isolation.

Parent topic: Caching overview

Related tasks:

Controlling shard placement with zones
Defining zones for container servers

Viewing zone information with the xscmd utility
Administering with the xscmd utility

Related reference:
Example: Zone definitions in the deployment policy descriptor XML file
Deployment policy descriptor XML file

Evictors

Evictors remove data from the data grid. You can either set a time-based evictor or because evictors are
associated with BackingMaps, use the BackingMap interface to specify the pluggable evictor.

Evictor types

A default TTL evictor is created with every dynamic backing map. The evictor removes entries based on a
time to live concept.

None

Specifies that entries never expire and therefore are never removed from the map.
Creation time

Specifies that entries are evicted depending on when they were created.

If you are using the Creation time (CREATION_TIME ttIType) evictor, the evictor evicts an entry when its
time from creation equals its TTL (TimeToLive attribute) value, which is set in milliseconds in your
application configuration. If you set the TTL TTL (TimeToLive attribute) value to 10 seconds, the entry is
automatically evicted ten seconds after it was inserted.

It is important to take caution when setting this value for the Creation time evictor type(CREATION_TIME
ttlType). This evictor is best used when reasonably high amounts of additions to the cache exist that are
only used for a set amount of time. With this strategy, anything that is created is removed after the set
amount of time.

The Creation time evictor type (CREATION_TIME ttlType) is useful in scenarios such as refreshing stock
quotes every 20 minutes or less. Suppose a Web application obtains stock quotes, and getting the most
recent quotes is not critical. In this case, the stock quotes are cached in a data grid for 20 minutes. After
20 minutes, the map entries expire and are evicted. Every twenty minutes or so, the data grid uses the
Loader plug-in to refresh the data with data from the database. The database is updated every 20 minutes
with the most recent stock quotes.

Last access time

Specifies that entries are evicted depending upon when they were last accessed, whether they were read
or updated.

Last update time
Specifies that entries are evicted depending upon when they were last updated.

If you are using the Last access time (LAST_ACCESS TIME) or the Last update time evictor type
(LAST_UPDATE_TIME ttlType attribute), set the TTL value (TimeToLive attribute) to a lower number than if
you are using the Creation time evictor(CREATION_TIME ttlType). The entries TimeToLive attribute are reset
every time it is accessed. In other words, if the TimeToLive attribute value is equal to 15 and an entry has
existed for 14 seconds but then gets accessed, it does not expire again for another 15 seconds. If you set
the TTL value to a relatively high number, many entries might never be evicted. However, if you set the
value to something like 15 seconds, entries might be removed when they are not often accessed.

The Last access time (LAST_ACCESS TIME) or Last update time evictor type (LAST_UPDATE_TIME ttlType)
are useful in scenarios such as holding session data from a client, using a data grid map. Session data
must be destroyed if the client does not use the session data for some period of time. For example, the
session data times out after 30 minutes of no activity by the client. In this case, using an evictor type of
Last access time (LAST_ACCESS TIME) or Last update time (LAST_UPDATE_TIME) with the TTL value set to
30 minutes is appropriate for this application.

You can also write your own evictors: For more information, see Custom evictors.

Pluggable evictor

The default TTL evictor uses an eviction policy that is based on time, and the number of entries in the
BackingMap has no affect on the expiration time of an entry. You can use an optional pluggable evictor to
evict entries based on the number of entries that exist instead of based on time.

The following optional pluggable evictors provide some commonly used algorithms for deciding which entries
to evict when a BackingMap grows beyond some size limit.

e The LRUEvictor evictor uses a least recently used (LRU) algorithm to decide which entries to evict
when the BackingMap exceeds a maximum number of entries.
e The LFUEvictor evictor uses a least frequently used (LFU) algorithm to decide which entries to evict

when the BackingMap exceeds a maximum number of entries.

The BackingMap informs an evictor as entries are created, modified, or removed in a transaction. The
BackingMap keeps track of these entries and chooses when to evict one or more entries from the
BackingMap instance.

A BackingMap instance has no configuration information for a maximum size. Instead, evictor properties are
set to control the evictor behavior. Both the LRUEvictor and the LFUEvictor have a maximum size property
that is used to cause the evictor to begin to evict entries after the maximum size is exceeded. Like the TTL
evictor, the LRU and LFU evictors might not immediately evict an entry when the maximum number of
entries is reached to minimize impact on performance.

If the LRU or LFU eviction algorithm is not adequate for a particular application, you can write your own
evictors to create your eviction strategy.

Memory-based eviction

Important: Memory-based eviction is only supported on Java™ Platform, Enterprise Edition Version 5 or
later.

All built-in evictors support memory-based eviction that can be enabled on the BackingMap interface by

setting the evictionTriggers attribute of BackingMap to MEMORY USAGE THRESHOLD. For more information

about how to set the evictionTriggers attribute on BackingMap, see BackingMap interface and ObjectGrid
descriptor XML file.

Memory-based eviction is based on heap usage threshold. When memory-based eviction is enabled on
BackingMap and the BackingMap has any built-in evictor, the usage threshold is set to a default percentage
of total memory if the threshold has not been previously set.

When you are using memory-based eviction, you should configure the garbage collection threshold to the
same value as their target heap utilization. For example, if the memory-based eviction threshold is set at 50
percent and the garbage collection threshold is at the default 70 percent level, then the heap utilization can
go as high as 70 percent. This heap utilization increase occurs because memory-based eviction is only
triggered after a garbage collection cycle.

To change the default usage threshold percentage, set the memoryThresholdPercentage property on
container and server property file for eXtreme Scale server process. To set the target usage threshold on a
client process, you can use the MemoryPoolMXBean.

The memory-based eviction algorithm used by WebSphere eXtreme Scale is sensitive to the behavior of the
garbage collection algorithm in use. The best algorithm for memory-based eviction is the IBM® default
throughput collector. Generation garbage collection algorithms can cause undesired behavior, and so you
should not use these algorithms with memory-based eviction.

To change the usage threshold percentage, set the memoryThresholdPercentage property on the container
and server property files for eXtreme Scale server processes.

During runtime, if the memory usage exceeds the target usage threshold, memory-based evictors start
evicting entries and try to keep memory usage below the target usage threshold. However, no guarantee
exists that the eviction speed is fast enough to avoid a potential out of memory error if the system runtime
continues to quickly consume memory.

Parent topic: Caching overview

Related concepts:

Tuning evictors

Plug-ins for evicting cache objects
Custom evictors

Related tasks:

Configuring evictors with XML files
Enabling evictors programmatically
Configuring evictors with XML files

Related reference:
ObjectGrid descriptor XML file

OSGi framework overview

~11+ OSGi defines a dynamic module system for Java™ . The OSGi service platform has a layered
architecture, and is designed to run on various standard Java profiles. You can start WebSphere® eXtreme
Scale servers and clients in an OSGi container.

Benefits of running applications in the OSGi container

WebSphere eXtreme Scale OSGi support allows you to deploy the product in the Eclipse Equinox OSGi
framework. Previously, if you wanted to update the plug-ins used by eXtreme Scale, you had to restart the
Java virtual machine (JVM) to apply the new versions of the plug-ins. With the dynamic update capability that
the OSGi framework provides, now you can update the plug-in classes without restarting the JVM. These
plug-ins are exported by user bundles as services. WebSphere eXtreme Scale accesses the service or
services by looking them up in the OSGi registry.

eXtreme Scale containers can be configured to start more easily and dynamically using either the OSGi
configuration admin service or with OSGi Blueprint. If you want to deploy a new data grid with its placement
strategy, you can do so by creating an OSGi configuration or by deploying a bundle with eXtreme Scale
descriptor XML files. With OSGi support, application bundles containing eXtreme Scale configuration data can
be installed, started, stopped, updated, and uninstalled without restarting the whole system. With this
capability, you can upgrade the application without disrupting the data grid.

Plug-in beans and services can be configured with custom shard scopes, enabling sophisticated options to
integrate with other services in the data grid. Each plug-in can use OSGi Blueprint rankings to verify that
every instance of the plug-in is activated is at the correct version. An OSGi-managed bean (MBean) and
xscmd utility are provided, which allow you to query the eXtreme Scale plug-in OSGi services and their
rankings.

This capability allows administrators to quickly recognize potential configuration and administration errors
and upgrade the plug-in service rankings in use by eXtreme Scale .

OSGi bundles

To interact with and deploy plug-ins in the OSGi framework, you must use bundles. In the OSGi service
platform, a bundle is a Java archive (JAR) file that contains Java code, resources, and a manifest that
describes the bundle and its dependencies. The bundle is the unit of deployment for an application. The
eXtreme Scale product supports the following bundle types:

Server bundle

The server bundle is the objectgrid. jar file and is installed with the server feature of the eXtreme Scale
stand-alone installation. It is required for running eXtreme Scale servers and can also be used for
runningeXtreme Scale clients, or local, in-memory caches. The bundle ID for the objectgrid. jar file is
com.ibm.websphere.xs.server_<version>, where the version is in the format: <Version>.<Release>.
<Modification>. For example, the server bundle for eXtreme Scale version 7.1.1 is
com.ibm.websphere.xs.server_7.1.1.

Client bundle

The client bundle is the ogclient. jar file and is installed with the client feature of the eXtreme Scale
stand-alone installations and is used to run eXtreme Scale clients or local, in-memory caches. The bundle
ID for the ogclient. jar file is com.ibm.websphere.xs.client version, where the version is in the format:
<Version>.<Release>.<Modification>. For example, the client bundle for eXtreme Scale version 7.1.1 is
com.ibm.websphere.xs.client_7.1.1.

Parent topic: Caching overview
Parent topic: Scenario: Using an OSGi environment to develop and run eXtreme Scale plug-ins
Next topic: Installing the Eclipse Equinox OSGi framework with Eclipse Gemini for clients and servers

Related tasks:

Programming to use the OSGi framework

Installing the Eclipse Equinox OSGi framework with Eclipse Gemini for clients and servers
Updating OSGi services for eXtreme Scale plug-ins with xscmd

Managing plug-in life cycles

Installing the Eclipse Equinox OSGi framework with Eclipse Gemini for clients and servers

Related reference:
Server properties file

Related information:
APl documentation
Introduction: Starting and configuring the eXtreme Scale server and container to run plug-ins in the OSGi

framework

Cache integration overview

The crucial element that gives WebSphere® eXtreme Scale the capability to perform with such versatility
and reliability is its application of caching concepts to optimize the persistence and recollection of data in
virtually any deployment environment.

Spring Framework Version 3.1 introduced a new cache abstraction. With this new abstraction, you can
transparently add caching to an existing Spring application. You can use WebSphere eXtreme Scale as the
cache provider for the cache abstraction.

JPA level 2 (L2) cache plug-in

WebSphere eXtreme Scale includes level 2 (L2) cache plug-ins for both OpenJPA and Hibernate Java™
Persistence API (JPA) providers. When you use one of these plug-ins, your application uses the JPA API.
A data grid is introduced between the application and the database, improving response times.

HTTP session management

The session replication manager that is shipped with WebSphere eXtreme Scale can work with the
default session manager in WebSphere Application Server. Session data is replicated from one process
to another process to support user session data high availability.

Dynamic cache provider overview

The WebSphere Application Server provides a dynamic cache service that is available to deployed Java
EE applications. This service is used to cache data such as output from servlet, JSP, or commands, and
object data programmatically specified within an enterprise application with the DistributedMap APIs. .

Parent topic: Product overview

JPA level 2 (L2) cache plug-in

WebSphere® eXtreme Scale includes level 2 (L2) cache plug-ins for both Open)JPA and Hibernate Java™
Persistence API (JPA) providers. When you use one of these plug-ins, your application uses the JPA API. A data
grid is introduced between the application and the database, improving response times.

Using eXtreme Scale as an L2 cache provider increases performance when you are reading and querying
data and reduces load to the database. WebSphere eXtreme Scale has advantages over built-in cache
implementations because the cache is automatically replicated between all processes. When one client
caches a value, all other clients are able to use the cached value that is locally in-memory.

You can configure the topology and properties for the L2 cache provider in the persistence.xml file. For
more information about configuring these properties, see ' JPA cache configuration properties for both
Open]PA and Hibernate Version 3.0.

Tip: The JPA L2 cache plug-in requires an application that uses the JPA APIs. If you want to use WebSphere
eXtreme Scale APIs to access a JPA data source, use the JPA loader. For more information, see |PA Loaders.

JPA L2 cache topology considerations
The following factors affect which type of topology to configure:

1. How much data do you expect to be cached?

o |f the data can fit into a single JVM heap, use the Embedded topology or Intra-domain topology.
o If the data cannot fit into a single JVM heap, use the Embedded, partitioned topology, or Remote

topology
2. What is the expected read-to-write ratio?

The read-to-write ratio affects the performance of the L2 cache. Each topology handles read and write
operations differently.
o Embedded topology: local read, remote write
o Intra-domain topology: local read, local write
o Embedded, partitioned topology: Partitioned: remote read, remote write
o Remote topology: remote read, remote write.
Applications that are mostly read-only should use embedded and intra-domain topologies when
possible. Applications that do more writing should use intra-domain topologies.
3. What is percentage of data is queried versus found by a key?

When enabled, query operations make use of the JPA query cache. Enable the JPA query cache for
applications with high read to write ratios only, for example when you are approaching 99% read
operations. If you use JPA query cache, you must use the Embedded topology or Intra-domain

topology.

The find-by-key operation fetches a target entity if the target entity does not have any relationship. If
the target entity has relationships with the EAGER fetch type, these relationships are fetched along
with the target entity. In JPA data cache, fetching these relationships causes a few cache hits to get all
the relationship data.

4. What is the tolerated staleness level of the data?

In a system with few JVMs, data replication latency exists for write operations. The goal of the cache is
to maintain an ultimate synchronized data view across all JVMs. When you are using the intra-domain

topology, a data replication delay exists for write operations. Applications using this topology must be
able to tolerate stale reads and simultaneous writes that might overwrite data.

.11+

Intra-domain topology

With an intra-domain topology, primary shards are placed on every container server in the topology. These
primary shards contain the full set of data for the partition. Any of these primary shards can also complete
cache write operations. This configuration eliminates the bottleneck in the embedded topology where all the
cache write operations must go through a single primary shard.

In an intra-domain topology, no replica shards are created, even if you have defined replicas in your
configuration files. Each redundant primary shard contains a full copy of the data, so each primary shard can
also be considered as a replica shard. This configuration uses a single partition, similar to the embedded
topology.

Figure 1. JPA intra-domain topology

file:////dcs/markdown/workspace/Transform/htmlout/0/com.ibm.websphere.extremescale.doc/cxsjpacache.html#cxsjpacache__embedded
file:////dcs/markdown/workspace/Transform/htmlout/0/com.ibm.websphere.extremescale.doc/cxsjpacache.html#cxsjpacache__intradomain
file:////dcs/markdown/workspace/Transform/htmlout/0/com.ibm.websphere.extremescale.doc/cxsjpacache.html#cxsjpacache__embedpart
file:////dcs/markdown/workspace/Transform/htmlout/0/com.ibm.websphere.extremescale.doc/cxsjpacache.html#cxsjpacache__remote
file:////dcs/markdown/workspace/Transform/htmlout/0/com.ibm.websphere.extremescale.doc/cxsjpacache.html#cxsjpacache__embedded
file:////dcs/markdown/workspace/Transform/htmlout/0/com.ibm.websphere.extremescale.doc/cxsjpacache.html#cxsjpacache__intradomain
file:////dcs/markdown/workspace/Transform/htmlout/0/com.ibm.websphere.extremescale.doc/cxsjpacache.html#cxsjpacache__embedpart
file:////dcs/markdown/workspace/Transform/htmlout/0/com.ibm.websphere.extremescale.doc/cxsjpacache.html#cxsjpacache__remote
file:////dcs/markdown/workspace/Transform/htmlout/0/com.ibm.websphere.extremescale.doc/cxsjpacache.html#cxsjpacache__embedded
file:////dcs/markdown/workspace/Transform/htmlout/0/com.ibm.websphere.extremescale.doc/cxsjpacache.html#cxsjpacache__intradomain

» [atabase

ObjectGrid Server | 7/ ObjectGrid Server
Primary P1 (ReadWrita) Primary P1 (ReadWrite)
t
2 I
& L
2
@ [ObjectGrid Cliant] E ‘ ObjectGrid Cliant |
=
8
- £
= =] s
< il ,
-——-b-[OpenJPA or Hibemate E OpenJPA or Hibemate }.7_
- 5 <] A
L d L i
{ Application Application J

Related JPA cache configuration properties for the intra-domain topology:

ObjectGridName=objectgrid name,ObjectGridType=EMBEDDED,PlacementScope=CONTAINER SCOPE,Plac
ementScopeTopology=HUB | RING

Advantages:

e Cache reads and updates are local.
e Simple to configure.

Limitations:

e This topology is best suited for when the container servers can contain the entire set of partition data.

e Replica shards, even if they are configured, are never placed because every container server hosts a
primary shard. However, all the primary shards are replicating with the other primary shards, so these
primary shards become replicas of each other.

Embedded topology
Tip: Consider using an intra-domain topology for the best performance.

An embedded topology creates a container server within the process space of each application. OpenJPA and
Hibernate read the in-memory copy of the cache directly and write to all of the other copies. You can improve
the write performance by using asynchronous replication. This default topology performs best when the
amount of cached data is small enough to fit in a single process. With an embedded topology, create a single
partition for the data.

Figure 2. JPA embedded topology

Catabase
OhjectiGrid Servar X ObjectGrid Sarver
Primary {ReadWrite) ﬁ Replica {Read Cnly)
. "'-\.___._\- _._
B ‘ ObjectGrid Client ‘ § [ObjectGrid Client]
5 5
= B
2»-{ OpenJPA or Hibemate J 5 [OpenJPA or Hibemate]4 !
: i
‘ Application J | Application I

Related JPA cache configuration properties for the embedded topology:

ObjectGridName=objectgrid name,ObjectGridType=EMBEDDED,MaxNumberOfReplicas=num replicas,Re
plicaMode=SYNC | ASYNC | NONE

Advantages:

e All cache reads are fast, local accesses.
e Simple to configure.

Limitations:

e Amount of data is limited to the size of the process.
e All cache updates are sent through one primary shard, which creates a bottleneck.

Embedded, partitioned topology
Tip: Consider using an intra-domain topology for the best performance.
CAUTION:

Do not use the JPA query cache with an embedded partitioned topology. The query cache stores
query results that are a collection of entity keys. The query cache fetches all entity data from
the data cache. Because the data cache is divided up between multiple processes, these
additional calls can negate the benefits of the L2 cache.

When the cached data is too large to fit in a single process, you can use the embedded, partitioned topology.
This topology divides the data over multiple processes. The data is divided between the primary shards, so
each primary shard contains a subset of the data. You can still use this option when database latency is high.

Figure 3. JPA embedded, partitioned topology

Ciatabase

ObjectiGrid Serdar ObjectGrid Sarver
Primary 0 {Readirite) f}ﬂ‘ Primary 1 {ReadWrite)

.-"':-q""\-\.,_

~ s . T

g‘ ObjectGrid Client r i ObjectGrid Client 1

- a o i
g f =
w Y &
=
[t
[
o

;

Application J Application I

-ﬁ'TE‘:

- CrpendPA or Hibemate J

Related JPA cache configuration properties for the embedded, partitioned topology:

ObjectGridName=objectgrid name,0ObjectGridType=EMBEDDED PARTITION,ReplicaMode=SYNC | ASYNC
| NONE,

NumberOfPartitions=num partitions,ReplicaReadEnabled=TRUE | FALSE

Advantages:

e Stores large amounts of data.
e Simple to configure
e Cache updates are spread over multiple processes.

Limitation:
e Most cache reads and updates are remote.

For example, to cache 10 GB of data with a maximum of 1 GB per JVM, 10 Java virtual machines are required.
The number of partitions must therefore be set to 10 or more. ldeally, the number of partitions must be set
to a prime number where each shard stores a reasonable amount of memory. Usually, the
numberOfPartitions setting is equal to the number of Java virtual machines. With this setting, each JVM
stores one partition. If you enable replication, you must increase the number of Java virtual machines in the
system. Otherwise, each JVM also stores one replica partition, which consumes as much memory as a
primary partition.

Read about Sizing memory and partition count calculation to maximize the performance of your chosen
configuration.

For example, in a system with four Java virtual machines, and the numberOfPartitions setting value of 4,
each JVM hosts a primary partition. A read operation has a 25 percent chance of fetching data from a locally
available partition, which is much faster compared to getting data from a remote JVM. If a read operation,
such as running a query, needs to fetch a collection of data that involves 4 partitions evenly, 75 percent of
the calls are remote and 25 percent of the calls are local. If the ReplicaMode setting is set to either SYNC or
ASYNC and the ReplicaReadEnabled setting is set to true, then four replica partitions are created and spread
across four Java virtual machines. Each JVM hosts one primary partition and one replica partition. The chance
that the read operation runs locally increases to 50 percent. The read operation that fetches a collection of
data that involves four partitions evenly has 50 percent remote calls and 50 percent local calls. Local calls
are much faster than remote calls. Whenever remote calls occur, the performance drops.

Remote topology
CAUTION:

Do not use the JPA query cache with a remote topology. The query cache stores query results
that are a collection of entity keys. The query cache fetches all entity data from the data cache.
Because the data cache is remote, these additional calls can negate the benefits of the L2
cache.

Tip: Consider using an intra-domain topology for the best performance.

A remote topology stores all of the cached data in one or more separate processes, reducing memory use of
the application processes. You can take advantage of distributing your data over separate processes by
deploying a partitioned, replicated eXtreme Scale data grid. As opposed to the embedded and embedded
partitioned configurations described in the previous sections, if you want to manage the remote data grid,
you must do so independent of the application and JPA provider.

Figure 4. JPA remote topology

r ObjectGrid h

000
000
i

i ;

=

§ CojeciGrid Client | E OibjectGrid Clisnt ‘
= 8
= @
¥ g
8 B
| | & | OpenJPA or Hibernate B COpendPA or Hibermate -
= s
| Application J | Application]

Related JPA cache configuration properties for the remote topology:
ObjectGridName=objectgrid name,ObjectGridType=REMOTE, AllowNearCache=TRUE

Note: The AllowNearCache property is optional. If it is not included in the configuration, the default value is
FALSE. This property is only used by a remote object grid type as long as the remote object grid server is
also enabled for near caching as defined in the ObjectGrid descriptor XML file. To enable the L2 cache
provider for near caching, set the property AllowNearCache is set to TRUE.

The REMOTE ObjectGrid type does not require any property settings because the ObjectGrid and deployment
policy is defined separately from the JPA application. The JPA cache plug-in remotely connects to an existing
remote ObjectGrid.

Because all interaction with the ObjectGrid is remote, this topology has the slowest performance among all
ObjectGrid types.

Advantages:

Stores large amounts of data.

Application process is free of cached data.

Cache updates are spread over multiple processes.
Flexible configuration options.

Limitation:

e All cache reads and updates are remote.

11 JPA cache configuration properties for both OpenJPA and Hibernate Version 3.0
WebSphere eXtreme Scale includes level 2 cache plug-ins for both OpenJPA and Hibernate Java
Persistence API (JPA) providers. To configure the L2 cache plug-in, you must update properties in the
persistence.xml file.

Configuring the Open]PA cache plug-in

You can configure both DataCache and QueryCache implementations for Open)PA.

Configuring the Hibernate cache plug-in
You can enable the cache to use the Hibernate cache plug-in by specifying properties files.

Parent topic: Cache integration overview
Parent topic: Configuring cache integration

Related tasks:

Configuring the Open]PA cache plug-in
Troubleshooting multiple data center configurations
Configuring the Hibernate cache plug-in

Related reference:

|PA cache configuration properties for both Open]PA and Hibernate Version 3.0
Example: Open]PA ObjectGrid XML files

Example: Hibernate ObjectGrid XML files

Related information:
com.ibm.websphere.objectgrid.open]PA package
com.ibm.websphere.objectgrid.hibernate.cache package

HTTP session management

The session replication manager that is shipped with WebSphere® eXtreme Scale can work with the default
session manager in WebSphere Application Server. Session data is replicated from one process to another
process to support user session data high availability.

Features

The session manager has been designed so that it can run in any Java™ Platform, Enterprise Edition Version
6 or later container. Because the session manager does not have any dependencies on WebSphere APIs, it
can support various versions of WebSphere Application Server, as well as vendor application server
environments.

The HTTP session manager provides session replication capabilities for an associated application. The
session replication manager works with the session manager for the web container. Together, the session
manager and web container create HTTP sessions and manage the life cycles of HTTP sessions that are
associated with the application. These life cycle management activities include: the invalidation of sessions
based on a timeout or an explicit servlet or JavaServer Pages (JSP) call and the invocation of session listeners
that are associated with the session or the web application. The session manager persists its sessions in a
fully replicated, clustered and partitioned data grid. The use of the WebSphere eXtreme Scale session
manager enables the session manager to provide HTTP session failover support when application servers are
shut down or end unexpectedly. The session manager can also work in environments that do not support
affinity, when affinity is not enforced by a load balancer tier that sprays requests to the application server
tier.

Usage scenarios
The session manager can be used in the following scenarios:

e In environments that use application servers at different versions of WebSphere Application Server,
such as in a migration scenario.

¢ |In deployments that use application servers from different vendors. For example, an application that is
being developed on open source application servers and that is hosted on WebSphere Application
Server. Another example is an application that is being promoted from staging to production. Seamless
migration of these application server versions is possible while all HTTP sessions are live and being
serviced.

e In environments that require the user to persist sessions with higher quality of service (QoS) levels.
Session availability is better guaranteed during server failover than default WebSphere Application
Server QoS levels.

¢ |In an environment where session affinity cannot be guaranteed, or environments in which affinity is
maintained by a vendor load balancer. With a vendor load balancer, the affinity mechanism must be
customized to that load balancer.

¢ In any environment to offload the processing required for session management and storage to an
external Java process.

¢ |In multiple cells to enable session failover between cells.

¢ |In multiple data centers or multiple zones.

How the session manager works

The session replication manager uses a session listener to listen on the changes of session data. The session
replication manager persists the session data into an ObjectGrid instance either locally or remotely. You can
add the session listener and servlet filter to every web module in your application with tooling that ships with
WebSphere eXtreme Scale. You can also manually add these listeners and filters to the web deployment
descriptor of your application.

This session replication manager works with each vendor web container session manager to replicate
session data across Java virtual machines. When the original server dies, users can retrieve session data
from other servers.

Figure 1. HTTP session management topology with a remote container configuration

Client ‘

Browser HTTP

e

Reqguestis
Sprayer
L ="

- T
| ES

E4
N | . I

\

00|

"
==
==

ObpecGnd tier with persistent
HTTP Session data

Application Server tier senvicing
HTTP reguesis and persisting
HTTP Sessions to ObjectGnd

Deployment topologies
The session manager can be configured using two different dynamic deployment scenarios:

Embedded, network attached eXtreme Scale container servers

In this scenario, the eXtreme Scale servers are collocated in the same processes as the servlets. The
session manager can communicate directly to the local ObjectGrid instance, avoiding costly network
delays. This scenario is preferable when running with affinity and performance is critical.

Remote, network attached eXtreme Scale container servers

In this scenario, the eXtreme Scale servers run in external processes from the process in which the servlets
run. The session manager communicates with a remote eXtreme Scale server grid. This scenario is
preferable when the web container tier does not have the memory to store the session data. The session
data is offloaded to a separate tier, which results in lower memory usage on the web container tier. Higher
latency occurs because the data is in a remote location.

Generic embedded container startup

eXtreme Scale automatically starts an embedded ObjectGrid container inside any application-server process
when the web container initializes the session listener or servlet filter, if the objectGridType property is set to
EMBEDDED. See Servlet context initialization parameters for details.

You are not required to package an ObjectGrid.xml file and objectGridDeployment.xml file into your web
application WAR or EAR file. The default ObjectGrid.xml and objectGridDeployment.xml files are
packaged in the product JAR file. Dynamic maps are created for various web application contexts by default.
Static eXtreme Scale maps continue to be supported.

This approach for starting embedded ObjectGrid containers applies to any type of application server. The
approaches involving a WebSphere Application Server component or WebSphere Application Server
Community Edition GBean are deprecated.

Parent topic: Cache integration overview

Related tasks:
Configuring HTTP session managers
Configuring the HTTP session manager with WebSphere Application Server

Configuring WebSphere Application Server HTTP session persistence to a data grid
Configuring HTTP session manager with WebSphere Portal
Configuring the HTTP session manager for various application servers

Related reference:

XML files for HTTP session manager configuration
Servlet context initialization parameters
splicer.properties file

Dynamic cache provider overview

The WebSphere® Application Server provides a dynamic cache service that is available to deployed Java™
EE applications. This service is used to cache data such as output from servlet, JSP, or commands, and object
data programmatically specified within an enterprise application with the DistributedMap APIs. .

Initially, the only service provider for the dynamic cache service was the default dynamic cache engine that
is built into WebSphere Application Server. You can also specify WebSphere eXtreme Scale to be the cache
provider for any cache instance. By setting up this capability, you can enable applications that use the
dynamic cache service, to use the features and performance capabilities of WebSphere eXtreme Scale.

Mew Customers ! | WebSphere Products l | Exasting Customers]

Dynamic Cache APls and Frameworks

POJO Caching
DistributedMBap

Command Caching Servlet Caching Web Services Cachimg
Command Framework Cachea Policy XML JAX-RPC Client Caching
Distributed MOk ap

AP XML rules engine

Y
7 CacheProvide: 5P B

External Cache Adapter Support
Edge Side Imclude Caching

Cache Configuration
tAdmin console & wsadmin)

Cache Monitoring & Administration
(Mbean, APls and Cache Monitor

application)
i
| = o |
WebSphere Application Server Default ™ WebSphere eXtreme Scale B
Dymamic Cache Provider Dymamic Cache Provider
; Replicate evenywhers
Replicat h best affort
SRlicate supnmiions [beat aff) {guaranteed or asymchronouws)

Pt mchs Highhy auaila_hla- and scalable, partitioned,
in-mamaory cache

I-Higphl:l.I available and scalable, partitioned,

Deciding how to use WebSphere eXtreme Scale

Disk cache

T

The available features in WebSphere eXtreme Scale significantly increase the distributed capabilities of the
dynamic cache service beyond what is offered by the default dynamic cache provider and data replication
service. With eXtreme Scale, you can create caches that are truly distributed between multiple servers,
rather than just replicated and synchronized between the servers. Also, eXtreme Scale caches are
transactional and highly available, ensuring that each server sees the same contents for the dynamic cache
service. WebSphere eXtreme Scale offers a higher quality of service for cache replication provided via DRS.

However, these advantages do not mean that the eXtreme Scale dynamic cache provider is the right choice
for every application. Use the decision trees and feature comparison matrix below to determine what

technology fits your application best.

Decision tree for migrating existing dynamic cache applications

Existing dynamic

cache application
Cwoes the
NO application use
dynamic cache
replication?
l\’ES
Does the
vES |=2pplication require
the
MOT_SHARED
reglication mode?
l MO
Y
Dwes tha
Does the MO |application use
MO application use jp—— SHARED PUSH
disk caching? replication mode?
l*rEs YES
the disk cache
fitin a parition=d
rid ae determined
NO by the procedura
described in tha
capacity planning
uide?
YES
Y
Wil at least 50
WO percent of the il
cache be on disk?
Use the default Lise the eXtreme
dynamic cache Scale dynamic
rovider cache provider

Decision tree for choosing a cache provider for new applications

| Merw Appication I

L
Doas tha
appl caiion need W
replicalo cachs
darta Derbwaan
PrOOEESES T

m:ullv_es

ks the cacks daia W thia apdioa b
largi @roiagh o Tt b daployeding |
YES Ingmn-ﬂmnry-:-ra Application Sarver HO
singhs procassT plushiar?
HD YEE
L 3
Elll:hn u-:hn:a.‘ Is BEET EFFORT
1% in @ paritiorsed i high encugh
L] grid & desoried quality of sendioe | 1 -
In Thee capac iy for cachd dals
planning guide™ mploation?
YES YEB
L 3
Can al keast 50 Wil cacho data
VEL parcent of tha M2 noed o be
ocache data fi in replciied acriss
i singhs procoss? i T
1
0 ¥ES
¥
|5 tha purposa of
this cache sendal,
FEP, or Woh
Sorvices cathing?
M] YEE
i

h h
U the dolauli Use aXirgme Uso The aXiname
dynamic cacha Soalo APIS Ecale dynamic
' provider I | cachs prosider

Feature comparison

Table 1. Feature comparison

eXtreme Scale eXtreme Scale
Cache features Default provider provider API
Local, in-memory Yes via Near-cache via Near-cache
~arhhinnA ~~nAahilifkg, ~anAahilifkgg

Laciiy

capawliiLy

Lapawvliiy

Distributed caching via DRS Yes Yes

Linearly scalable No Yes Yes

Reliable replication No Yes Yes

(synchronous)

Disk overflow Yes N/A N/A

Eviction LRU/TTL/heap-based LRU/TTL (per LRU/TTL (per

partition) partition)

Invalidation Yes Yes Yes

Relationships Dependency / Yes No (other
template ID relationships are
relationships possible)

Non-key lookups No No via Query and index

Back-end No No via Loaders

integration

Transactional No Yes Yes

Key-based storage Yes Yes Yes

Events and listeners Yes No Yes

WebSphere Single cell only Multiple cell Cell independent

Application Server

integration

Java Standard No Yes Yes

Edition support

Monitoring and Yes Yes Yes

statistics

Security Yes Yes Yes

Table 2. Seamless technology integration

eXtreme Scale

eXtreme Scale

Cache features Default provider provider API
WebSphere V5.1+ V6.1.0.25+
Application Server
servlet/JSP results
caching
WebSphere V5.1+ V6.1.0.25+

Application Server

Web Services (JAX-
RPC) result caching

synchronization
using Open)PA and
Hibernate

HTTP session X
caching

Cache provider for X
Open)PA and

Hibernate

Database X

Table 3. Programming interfaces

Cache features

Default provider

eXtreme Scale
provider

eXtreme Scale
API

Command-based
API

Command framework
API

Command framework
API

DataGrid API

Map-based API

DistributedMap API

DistributedMap API

ObjectMap API

EntityManager API X

For a more detailed description on how eXtreme Scale distributed caches work, see Planning the topology.

Note: An eXtreme Scale distributed cache can only store entries where the key and the value both
implement the java.io.Serializable interface.

Topology

L@ Deprecated: The local, embedded, and embedded-partitioned topology types are deprecated.

A dynamic cache service that is created with eXtreme Scale as the provider can be deployed in any of three
available topologies. With these topologies you can customize the cache specifically to performance,
resource, and administrative needs. These topologies are: embedded, embedded partitioned, and remote.

Embedded topology

The embedded topology is similar to the default dynamic cache and DRS provider. Distributed cache
instances created with the embedded topology keep a full copy of the cache within each eXtreme Scale
process that accesses the dynamic cache service, allowing all read operations to occur locally. All write
operations go through a single-server process, in which the transactional locks are managed, before being
replicated to the rest of the servers. Consequently, this topology is better for workloads where cache-read
operations greatly outnumber cache-write operations.

With the embedded topology, new or updated cache entries are not immediately visible on every single
server process. A cache entry will not be visible, even to the server that generated it, until it propagates
through the asynchronous replication services of WebSphere eXtreme Scale . These services operate as fast
as the hardware will allow, but there is still a small delay. The embedded topology is shown in the following
image:

ObjectGrid Server OibjectGrid Server
Primary (Readrita) Replica (Read Cnly)
ry Ty l
oy -::;""-\.___
3:5 ¥ iy g
E [}-'.E Dhymacache Provider &E [.‘.{S Ciynacache F'r-::n'.'ider]
E =
3 ‘ 3
A Y & ¥
=3 S
5 DynaCache a [CynaCache
3
¥
[Application { Application

Embedded partitioned topology

For workloads where cache-writes occur as often as or more frequently than reads, the embedded
partitioned or remote topologies are recommended. The embedded partitioned topology keeps all of the
cache data within the WebSphere Application Server processes that access the cache. However, each
process only stores a portion of the cache data. All reads and writes for the data located on this “partition”
go through the process, meaning that most requests to the cache will be fulfilled with a remote procedure
call. This results in a higher latency for read operations than the embedded topology, but the capacity of the
distributed cache to handle read and write operations will scale linearly with the number of WebSphere
Application Server processes accessing the cache. Also, with this topology, the maximum size of the cache is
not bound by the size of a single WebSphere process. Because each process only holds a portion of the
cache, the maximum cache size becomes the aggregate size of all the processes, minus the overhead of the
process. The embedded partitioned topology is shown in the following image:

ObjectGrd Sarver ObjactGrid Sarver
Primary 0 (Read " rita} Primary 1 [ReadWrita)
Replica 1 {mo read}) = Regplica 0 {mo read}
Z < I
oy _a- ..-""-\-.__
3:5 Y ik E ~h .
E A5 Dymacache Provider .E'.'.E X5 Dynacache Provider
E %, [= . -
: ! ;
2 ;_ ; ¥
-
i DynaCachea x OynaCachea
; 3
¥
[Application] { Application J

For example, assume you have a grid of server processes with 256 megabytes of free heap each to host a
dynamic cache service. The default dynamic cache provider and the eXtreme Scale provider using the
embedded topology would both be limited to an in-memory cache size of 256 megabytes minus overhead.
See the Capacity Planning and High Availability section later in this document. The eXtreme Scale provider
using the embedded partitioned topology would be limited to a cache size of one gigabyte minus overhead.
In this manner, the WebSphere eXtreme Scale provider makes it possible to have an in-memory dynamic
cache services that are larger than the size of a single server process. The default dynamic cache provider
relies on the use of a disk cache to allow cache instances to grow beyond the size of a single process. In
many situations, the WebSphere eXtreme Scale provider can eliminate the need for a disk cache and the
expensive disk storage systems needed to make them perform.

Remote topology

The remote topology eliminates the need for a disk cache. All of the cache data is stored outside of
WebSphere Application Server processes. WebSphere eXtreme Scale supports standalone container
processes for cache data. These container processes have a lower overhead than a WebSphere Application
Server process and are also not limited to using a particular Java Virtual Machine (JVM). For example, the
data for a dynamic cache service being accessed by a 32-bit WebSphere Application Server process could be
located in an eXtreme Scale container process running on a 64-bit JVM. This allows users to use the
increased memory capacity of 64-bit processes for caching, without incurring the additional overhead of 64-
bit for application server processes. The remote topology is shown in the following image:

——

ObjectGrid b

- (DD@
Dee

&£
==
J

'F

2'1._ oy
:
c - .
& | #5 Dynacache Provider J = ‘ X5 Dynacache Provider
= =
2 A = 1
; 3
r ¥ = ¥
i:", [=
% l DynaCache] o | OwnaCacha

3 3

¥ L J

‘ Application I ‘ Application

Data compression

Another performance feature offered by the WebSphere eXtreme Scale dynamic cache provider that can help
users manage cache overhead is compression. The default dynamic cache provider does not allow for
compression of cached data in memory. With the eXtreme Scale provider, this becomes possible. Cache
compression using the deflate algorithm can be enabled on any of the three distributed topologies. Enabling
compression will increase the overhead for read and write operations, but will drastically increase cache
density for applications like servlet and JSP caching.

Local in-memory cache

The WebSphere eXtreme Scale dynamic cache provider can also be used to back dynamic cache instances
that have replication disabled. Like the default dynamic cache provider, these caches can store non-
serializable data. They can also offer better performance than the default dynamic cache provider on large
multi-processor enterprise servers because the eXtreme Scale code path is designed to maximize in-memory
cache concurrency.

Dynamic cache engine and eXtreme Scale functional differences

Users should not notice a functional difference between the two caches except that the WebSphere eXtreme
Scale backed caches do not support disk offload or statistics and operations related to the size of the cache
in memory.

No appreciable difference exists in the results returned by most dynamic cache API calls, regardless of
whether you are using the default dynamic cache provider or the eXtreme Scale cache provider. For some
operations, you cannot emulate the behavior of the dynamic cache engine with eXtreme Scale.

Dynamic cache statistics

Dynamic cache statistics are reported via the CacheMonitor application or the dynamic cache MBean. When
using the eXtreme Scale dynamic cache provider, statistics will still be reported through these interfaces, but
the context of the statistical values will be different.

If a dynamic cache instance is shared between three servers named A, B, and C, then the dynamic cache
statistics object only returns statistics for the copy of the cache on the server where the call was made. If the
statistics are retrieved on server A, they only reflect the activity on server A.

With eXtreme Scale , there is only a single distributed cache shared among all the servers, so it is not
possible to track most statistics on a server-by-server basis like the default dynamic cache provider does. A
list of the statistics reported by the Cache Statistics APl and what they represent when you are using the
WebSphere eXtreme Scale dynamic cache provider follows. Like the default provider, these statistics are not
synchronized and therefore can vary up to 10% for concurrent workloads.

e Cache Hits : Cache hits are tracked per server. If traffic on Server A generates 10 cache hits and
traffic on Server B generates 20 cache hits, the cache statistics will report 10 cache hits on Server A

and 20 cache hits on Server B.

e Cache Misses: Cache misses are tracked per server just like cache hits.

e Memory Cache Entries: This statistic reports the number of cache entries in the distributed cache.
Every server that accesses the cache will report the same value for this statistic, and that value will be
the total number of cache entries in memory over all the servers.

e Memory Cache Size in MB: This metric is supported only for caches using the remote, embedded, or
embedded_ partitioned topologies. It reports the number of megabytes of Java heap space consumed
by the cache, across the entire grid. This statistic reports heap usage only for the primary partitions;
you must take replicas into account. Because the default setting for the remote and
embedded partitioned topologies is one asynchronous replica, double this number to get the true
memory consumption of the cache.

e Cache Removes: This statistic reports the total number of entries removed from the cache by any
method, and is an aggregate value for the whole distributed cache. If traffic on Server A generates 10
invalidations and traffic on Server B generates 20 invalidations, then the value on both servers will be
30.

e Cache Least Recently Used (LRU) Removes: This statistic is aggregate, like cache removes. It
tracks the number of entries that were removed to keep the cache under its maximum size.

e Timeout Invalidations: This is also an aggregate statistic, and it tracks the number of entries that
were removed because they timed out.

o Explicit Invalidations : Also an aggregate statistic, this tracks the number of entries that were
removed with direct invalidation by key, dependency ID or template.

o Extended Stats : The eXtreme Scale dynamic cache provider exports the following extended stat key
strings.

o com.ibm.websphere.xs.dynacache.remote_hits: The total number of cache hits tracked at
the eXtreme Scale container. This is an aggregate statistic, and its value in the extended stats
map is a long.

o com.ibm.websphere.xs.dynacache.remote_misses: The total number of cache misses
tracked at the eXtreme Scale container. An aggregate statistic, its value in the extended stats
map is a long.

Reporting reset statistics

The dynamic cache provider allows you to reset cache statistics. With the default provider the reset
operation only clears the statistics on the affected server. The eXtreme Scale dynamic cache provider tracks
most of its statistical data on the remote cache containers. This data is not cleared or changed when the
statistics are reset. Instead the default dynamic cache behavior is simulated on the client by reporting the
difference between the current value of a given statistic and the value of that statistic the last time reset
was called on that server.

For example, if traffic on Server A generates 10 cache removes, the statistics on Server A and on Server B
will report 10 removes. Now, if the statistics on Server B are reset and traffic on Server A generates an
additional 10 removes, the statistics on Server A will report 20 removes and the stats on Server B will report
10 removes.

Dynamic cache events

The dynamic cache API allows users to register event listeners. When you are using eXtreme Scale as the
dynamic cache provider, the event listeners work as expected for local in-memory caches.

For distributed caches, event behavior will depend on the topology being used. For caches using the
embedded topology, events will be generated on the server that handles the write operations, also known as
the primary shard. This means that only one server will receive event notifications, but it will have all the
event notifications normally expected from the dynamic cache provider. Because WebSphere eXtreme Scale
chooses the primary shard at runtime, it is not possible to ensure that a particular server process always
receives these events.

Embedded partitioned caches generate events on any server that hosts a partition of the cache. For
example, if a WebSphere Application Server Network Deployment environment has 11 application servers
that host 11 partitions for a cache, then each server receives the dynamic cache events for the cache entries
that it hosts. No single server process would see all of the events unless all 11 partitions were hosted in that
server process. As with the embedded topology, it is not possible to ensure that a particular server process
receives a particular set of events or any events at all.

Caches that use the remote topology do not support dynamic cache events.

MBean calls

The WebSphere eXtreme Scale dynamic cache provider does not support disk caching. Any MBean calls
relating to disk caching do not work.

Dynamic cache replication policy mapping

The WebSphere Application Server built-in dynamic cache provider supports multiple cache replication
policies. These policies can be configured globally or on each cache entry. See the dynamic cache
documentation for a description of these replication policies.

The eXtreme Scale dynamic cache provider does not honor these policies directly. The replication
characteristics of a cache are determined by the configured eXtreme Scale distributed topology type and
apply to all values placed in that cache, regardless of the replication policy set on the entry by the dynamic
cache service. The following is a list of all the replication policies supported by the dynamic cache service
and illustrates which eXtreme Scale topology provides similar replication characteristics.

Note that the eXtreme Scale dynamic cache provider ignores DRS replication policy settings on a cache or
cache entry. Users must choose the topology that appropriate to their replication needs.

e NOT_SHARED - currently none of the topologies provided by the eXtreme Scale dynamic cache
provider can approximate this policy. This means that all data stored into the cache must have keys
and values that implement java.io.Serializable.

e SHARED PUSH - The embedded topology approximates this replication policy. When a cache entry is
created it is replicated to all the servers. Servers only look for cache entries locally. If an entry is not
found locally, it is assumed to be non-existent and the other servers are not queried for it.

e SHARED PULL and SHARED PUSH PULL - The embedded partitioned and remote topologies
approximate this replication policy. The distributed state of the cache is completely consistent between
all the servers.

This information is provided mainly so you can make sure that the topology meets your distributed
consistency needs. For example, if the embedded topology is a better choice for your deployment and
performance needs, but you require the level of cache consistency provided by SHARED PUSH_PULL, then
consider using embedded partitioned, even though the performance may be slightly lower.

Multi-master replication

A dynamic cache instance can be configured to support a multi-master replication topology. For more
information, see Design considerations for multi-master replication. By default, the dynamic cache grid
configuration is configured to use an internal collision arbiter. The arbiter is invoked to resolve collisions
during replication. It first resolves collisions that result from remove and invalidation events, applying these
actions over any other event. For all other events, the changes from the lexically lowest named catalog
service domain will be applied. For more information, see Planning multiple data center topologies.

Additional information

e Dynamic cache Redbook

e Dynamic cache documentation
o WebSphere Application Server 7.0
o WebSphere Application Server 6.1

e DRS documentation
o WebSphere Application Server 7.0
o WebSphere Application Server 6.1

Parent topic: Cache integration overview

Related concepts:
Dynamic cache capacity planning

Related tasks:
Configuring the dynamic cache provider for WebSphere eXtreme Scale

http://publib.boulder.ibm.com/infocenter/wasinfo/v6r1/index.jsp?topic=/com.ibm.websphere.ejbfep.multiplatform.doc/info/ae/ae/tdyn_cachereplication.html
http://www.redbooks.ibm.com/abstracts/SG247393.html
http://publib.boulder.ibm.com/infocenter/wasinfo/v7r0/index.jsp?topic=/com.ibm.websphere.nd.doc/info/ae/ae/welc6tech_dyn_intro.html
http://publib.boulder.ibm.com/infocenter/wasinfo/v6r1/index.jsp?topic=/com.ibm.websphere.base.doc/info/aes/ae/welc6tech_dyn_intro.html
http://publib.boulder.ibm.com/infocenter/wasinfo/v7r0/index.jsp?topic=/com.ibm.websphere.nd.doc/info/ae/ae/crun_drs_replication.html
http://publib.boulder.ibm.com/infocenter/wasinfo/v6r1/index.jsp?topic=/com.ibm.websphere.nd.doc/info/ae/ae/crun_drs_replication.html

Database integration: Write-behind, in-line, and side caching

WebSphere® eXtreme Scale is used to front a traditional database and eliminate read activity that is
normally pushed to the database. A coherent cache can be used with an application directly or indirectly
using an object relational mapper. The coherent cache can then offload the database or backend from reads.
In a slightly more complex scenario, such as transactional access to a data set where only some of the data
requires traditional persistence guarantees, filtering can be used to offload even write transactions.

You can configure WebSphere eXtreme Scale to function as a highly flexible in-memory database processing
space. However, WebSphere eXtreme Scale is not an object relational mapper (ORM). It does not know where
the data in the data grid came from. An application or an ORM can place data in an eXtreme Scale server. It
is the responsibility of the source of the data to make sure that it stays consistent with the database where
data originated. This means eXtreme Scale cannot invalidate data that is pulled from a database
automatically. The application or mapper must provide this function and manage the data stored in eXtreme
Scale.

Figure 1. ObjectGrid as a database buffer

PN
N

Database

Database

000
W]

Sparse and complete cache

WebSphere eXtreme Scale can be used as a sparse cache or a complete cache. A sparse cache only
keeps a subset of the total data, while a complete cache keeps all of the data. and can be populated
lazily, as the data is needed. Sparse caches are normally accessed using keys (instead of indexes or
queries) because the data is only partially available.

Side cache
When WebSphere eXtreme Scale is used as a side cache, the back end is used with the data grid.

In-line cache

You can configure in-line caching for a database back end or as a side cache for a database. In-line
caching uses eXtreme Scale as the primary means for interacting with the data. When eXtreme Scale
is used as an in-line cache, the application interacts with the back end using a Loader plug-in.

Write-behind caching
You can use write-behind caching to reduce the overhead that occurs when updating a database you
are using as a back end.

Loaders

With a Loader plug-in, a data grid map can behave as a memory cache for data that is typically kept in
a persistent store on either the same system or another system. Typically, a database or file system is
used as the persistent store. A remote Java™ virtual machine (JVM) can also be used as the source of
data, allowing hub-based caches to be built using eXtreme Scale. A loader has the logic for reading
and writing data to and from a persistent store.

Data preloading and warm-up
In many scenarios that incorporate the use of a loader, you can prepare your data grid by preloading it

with data.

Database synchronization techniques

When WebSphere eXtreme Scale is used as a cache, applications must be written to tolerate stale data
if the database can be updated independently from an eXtreme Scale transaction. To serve as a
synchronized in-memory database processing space, eXtreme Scale provides several ways of keeping
the cache updated.

WebSphere eXtreme Scale change data capture adapter for InfoSphere Data Replication

Data invalidation
To remove stale cache data, you can use invalidation mechanisms.

Indexing
Use the MaplndexPlugin plug-in to build an index or several indexes on a BackingMap to support non-

key data access.

JPA Loaders

The Java Persistence API (JPA) is a specification that allows mapping Java objects to relational
databases. JPA contains a full object-relational mapping (ORM) specification using Java language
metadata annotations, XML descriptors, or both to define the mapping between Java objects and a
relational database. A number of open-source and commercial implementations are available.

Parent topic: Product overview
Parent topic: Planning the topology

Related concepts:

Local in-memory cache

Peer-replicated local cache

Embedded cache

Distributed cache

Planning multiple data center topologies

Loader considerations in a multi-master topology
Programming for JPA integration

Plug-ins for communicating with databases

Sparse and complete cache

WebSphere® eXtreme Scale can be used as a sparse cache or a complete cache. A sparse cache only keeps
a subset of the total data, while a complete cache keeps all of the data. and can be populated lazily, as the
data is needed. Sparse caches are normally accessed using keys (instead of indexes or queries) because the
data is only partially available.

Sparse cache

When a key is not present in a sparse cache, or the data is not available and a cache miss occurs, the next
tier is invoked. The data is fetched, from a database for example, and is inserted into the data grid cache
tier. If you are using a query or index, only the currently loaded values are accessed and the requests are not
forwarded to the other tiers.

Complete cache

A complete cache contains all of the required data and can be accessed using non-key attributes with
indexes or queries. A complete cache is preloaded with data from the database before the application tries
to access the data. A complete cache can function as a database replacement after data is loaded. Because
all of the data is available, queries and indexes can be used to find and aggregate data.

Parent topic: Database integration: Write-behind, in-line, and side caching

Side cache

When WebSphere® eXtreme Scale is used as a side cache, the back end is used with the data grid.

Side cache

You can configure the product as a side cache for the data access layer of an application. In this scenario,
WebSphere eXtreme Scale is used to temporarily store objects that would normally be retrieved from a back-
end database. Applications check to see if the data grid contains the data. If the data is in the data grid, the
data is returned to the caller. If the data does not exist, the data is retrieved from the back-end database.
The data is then inserted into the data grid so that the next request can use the cached copy. The following
diagram illustrates how WebSphere eXtreme Scale can be used as a side-cache with an arbitrary data access
layer such as OpenJPA or Hibernate.

Side cache plug-ins for Hibernate and OpenjJPA

Figure 1. Side cache

Server Core Cache
{Backinghap)

!

Trameactonal Cache
(ObjectMap)

I

Data Access Layer
{OpenJPA or Hibernate)

ObpectEnd

Databasa

Application

Cache plug-ins for both OpenJPA and Hibernate are included in WebSphere eXtreme Scale, so you can use
the product as an automatic side-cache. Using WebSphere eXtreme Scale as a cache provider increases
performance when reading and querying data and reduces load to the database. There are advantages that
WebSphere eXtreme Scale has over built-in cache implementations because the cache is automatically
replicated between all processes. When one client caches a value, all other clients can use the cached value.

Parent topic: Database integration: Write-behind, in-line, and side caching

In-line cache

You can configure in-line caching for a database back end or as a side cache for a database. In-line caching
uses eXtreme Scale as the primary means for interacting with the data. When eXtreme Scale is used as an
in-line cache, the application interacts with the back end using a Loader plug-in.

In-line cache

When used as an in-line cache, WebSphere® eXtreme Scale interacts with the back end using a Loader plug-
in. This scenario can simplify data access because applications can access the eXtreme Scale APIs directly.
Several different caching scenarios are supported in eXtreme Scale to make sure the data in the cache and
the data in the back end are synchronized. The following diagram illustrates how an in-line cache interacts

with the application and back end.
e

Back End
(Loader)

I

Servar Core Cache
{Backinghap)

!

| Transactonal E-al::ha-]

Figure 1. In-line cache

Object Grid

(CbjectMap)

Application

The in-line caching option simplifies data access because it allows applications to access the eXtreme Scale
APIs directly. WebSphere eXtreme Scale supports several in-line caching scenarios, as follows.

e Read-through

e Write-through

e Write-behind

Read-through caching scenario

A read-through cache is a sparse cache that lazily loads data entries by key as they are requested. This is
done without requiring the caller to know how the entries are populated. If the data cannot be found in the
eXtreme Scale cache, eXtreme Scale will retrieve the missing data from the Loader plug-in, which loads the
data from the back-end database and inserts the data into the cache. Subsequent requests for the same
data key will be found in the cache until it is removed, invalidated or evicted.

Figure 2. Read-through caching

get (k1) vl

3

rr[ImJ) [|

!

Lkl] Lxa]oa]
\ ¥,
get (k1) vl

Application

Write-through caching scenario

In a write-through cache, every write to the cache synchronously writes to the database using the Loader.
This method provides consistency with the back end, but decreases write performance since the database
operation is synchronous. Since the cache and database are both updated, subsequent reads for the same
data will be found in the cache, avoiding the database call. A write-through cache is often used in
conjunction with a read-through cache.

Figure 3. Write-through caching

insert imbo

batchUpdata
insert: k1,v1
{ 3
[
|
\ J
insart (k1,w1})

- |
Write-behind caching scenario

Database synchronization can be improved by writing changes asynchronously. This is known as a write-
behind or write-back cache. Changes that would normally be written synchronously to the loader are instead
buffered in eXtreme Scale and written to the database using a background thread. Write performance is
significantly improved because the database operation is removed from the client transaction and the
database writes can be compressed.

Figure 4. Write-behind caching

imsert into

batchUpdate
imsart: k1,¥1

Write -\I
Timer

[Clueus Map]

Parent topic: Database integration: Write-behind, in-line, and side caching

Write-behind caching

You can use write-behind caching to reduce the overhead that occurs when updating a database you are
using as a back end.

Write-behind caching overview

Write-behind caching asynchronously queues updates to the Loader plug-in. You can improve performance
by disconnecting updates, inserts, and removes for a map, the overhead of updating the back-end database.
The asynchronous update is performed after a time-based delay (for example, five minutes) or an entry-
based delay (1000 entries).

Figure 1. Write-behind caching

insart into
Loader Cratabase

batchUpdate
imsert: k1,¥1

wrie @ A
Timar
[Queuws Map 1
LK1 v1]
(k1] 1)
\ —

insart (k1,w1)

Application

The write-behind configuration on a BackingMap creates a thread between the loader and the map. The
loader then delegates data requests through the thread according to the configuration settings in the
BackingMap.setWriteBehind method. When an eXtreme Scale transaction inserts, updates, or removes an
entry from a map, a LogElement object is created for each of these records. These elements are sent to the
write-behind loader and queued in a special ObjectMap called a queue map. Each backing map with the
write-behind setting enabled has its own queue maps. A write-behind thread periodically removes the
queued data from the queue maps and pushes them to the real back-end loader.

The write-behind loader only sends insert, update, and delete types of LogElement objects to the real loader.
All other types of LogElement objects, for example, EVICT type, are ignored.

Write-behind support is an extension of the Loader plug-in, which you use to integrate eXtreme Scale with
the database. For example, consult the Configuring JPA loaders information about configuring a JPA loader.

Benefits
Enabling write-behind support has the following benefits:

e Back end failure isolation: Write-behind caching provides an isolation layer from back end failures.
When the back-end database fails, updates are queued in the queue map. The applications can
continue driving transactions to eXtreme Scale. When the back end recovers, the data in the queue
map is pushed to the back-end.

e Reduced back end load: The write-behind loader merges the updates on a key basis so only one
merged update per key exists in the queue map. This merge decreases the number of updates to the
back-end database.

e Improved transaction performance: Individual eXtreme Scale transaction times are reduced
because the transaction does not need to wait for the data to be synchronized with the back-end.

Parent topic: Database integration: Write-behind, in-line, and side caching
Parent topic: Configuring write-behind loader support

Related concepts:
Write-behind loader application design considerations
Handling failed write-behind updates

Related reference:
Example: Writing a write-behind dumper class

Example: Writing a write-behind dumper class

Loaders

With a Loader plug-in, a data grid map can behave as a memory cache for data that is typically kept in a
persistent store on either the same system or another system. Typically, a database or file system is used as
the persistent store. A remote Java™ virtual machine (JVM) can also be used as the source of data, allowing
hub-based caches to be built using eXtreme Scale. A loader has the logic for reading and writing data to and
from a persistent store.

Overview

Loaders are backing map plug-ins that are invoked when changes are made to the backing map or when the
backing map is unable to satisfy a data request (a cache miss). The Loader is invoked when the cache is
unable to satisfy a request for a key. The Loader logic provides a read-through capability for the cache, which
means that data is populated into the cache on demand. Since the entire data set does not need to be
loaded upon startup, the cache can be populated lazily. A loader also allows updates to the database when
cache values change. All changes within a transaction are grouped together to allow the number of database
interactions to be minimized. A TransactionCallback plug-in is used in conjunction with the loader to trigger
the demarcation of the backend transaction. Using this plug-in is important when multiple maps are included
in a single transaction or when transaction data is flushed to the cache without committing.

Figure 1. Loader

Catabas=a

Containar servar [JWVk)

T e
e

] Primary Shard

Loadar

Sarver Core Cacha
(Backinghdap)

Shard contamar

Transactional Cacha
(Ohjactdlap)

_____‘_ _-___,,,/

In order to avoid database locking on the row that requires updating, the loader can also perform optimistic
transaction locking. In this scenario, no locking is required on a row. The update is overqualified to ensure
that only rows that are in the same state as those originally read are changed. By storing a version attribute
in the cache value, the loader can also see the before and after image of the value as it is updated in the
cache. This value can then be used when updating the database or back end to verify that the data has not
been updated. A Loader can also be configured to preload the data grid when it is started. When partitioned,
a Loader instance is associated with each partition. If the "Company" Map has ten partitions, there are ten
Loader instances, one per primary partition. When the primary shard for the Map is activated, the
preloadMap method for the loader is invoked synchronously or asynchronously which allows loading the map
partition with data from the back-end to occur automatically. When invoked synchronously, all client
transactions are blocked, preventing inconsistent access to the data grid. Alternatively, a client preloader
can be used to load the entire data grid.

Two built-in loaders can greatly simplify integration with relational database back ends. The JPA loaders
utilize the Object-Relational Mapping (ORM) capabilities of both the OpenJPA and Hibernate implementations
of the Java Persistence API (JPA) specification. See JPA Loaders for more information.

If you are using loaders in a multiple data center configuration, you must consider how revision data and
cache consistency is maintained between the data grids. For more information, see Loader considerations in
a multi-master topology.

Loader configuration

To add a Loader into the BackingMap configuration, you can use programmatic configuration or XML
configuration. A loader has the following relationship with a backing map.

e A backing map can have only one loader.

e A client backing map (near cache) cannot have a loader.

e A loader definition can be applied to multiple backing maps, but each backing map has its own loader
instance.

Parent topic: Database integration: Write-behind, in-line, and side caching

Related concepts:

Plug-ins for communicating with databases
Writing a loader

|PAEntityLoader plug-in

Using a loader with entity maps and tuples
Writing a loader with a replica preload controller

Related tasks:
Monitoring eXtreme Scale information in DB2

Related reference:
|PA loader programming considerations

Data preloading and warm-up

In many scenarios that incorporate the use of a loader, you can prepare your data grid by preloading it with
data.

When used as a complete cache, the data grid must hold all of the data and must be loaded before any
clients can connect to it. When you are using a sparse cache, you can warm up the cache with data so that
clients can have immediate access to data when they connect.

Two approaches exist for preloading data into the data grid: Loader plug-in or client loader.

Loader plug-in

The Loader plug-in is associated with each map and is responsible for synchronizing a single primary
partition shard with the database. The preloadMap method of the :Loader plug-in runs automatically when a
shard is activated. For example, if you have 100 partitions, 100 loader instances exist, each loading the data
for its partition. When run synchronously, all clients are blocked until the preload completes.

Figure 1. Loader plug-in

IR
Databasze
Container servar [JWVk)
Primary Shard
Loader

[Sarver Core Cacha
[Backinghdap)

Transactional Cacha
(ObjectMap)

/ Shard containar \

_-__-_‘_,..-/

For more information about the Loader plug-in, see Plug-ins for communicating with databases.

Client loader

A client loader is a pattern for using one or more clients to load the data grid with data. Using multiple
clients to load grid data can be effective when the partition scheme is not stored in the database. You can
invoke client loaders manually or automatically when the data grid starts. Client loaders can optionally use
the StateManager to set the state of the data grid to preload mode, so that clients are not able to access the
data grid while it is preloading the data. WebSphere® eXtreme Scale includes a Java Persistence API (JPA)-
based loader that you can use to automatically load the data grid with either the Open)PA or Hibernate JPA
providers. For more information about cache providers, see |PA level 2 (L2) cache plug-in.

Figure 2. Client loader

Partition 0 |

Server Procass

JPA Clignt Loader

Chent Process

Parent topic: Database integration: Write-behind, in-line, and side caching

Database synchronization techniques

When WebSphere® eXtreme Scale is used as a cache, applications must be written to tolerate stale data if
the database can be updated independently from an eXtreme Scale transaction. To serve as a synchronized
in-memory database processing space, eXtreme Scale provides several ways of keeping the cache updated.

Parent topic: Database integration: Write-behind, in-line, and side caching

Data invalidation

To remove stale cache data, you can use invalidation mechanisms.

Event-based invalidation

Sparse and complete caches can be invalidated or updated using an event generator such as Java™
Message Service (JMS). Invalidation using JMS can be manually tied to any process that updates the back-
end using a database trigger. A JMS ObjectGridEventListener plug-in is provided in eXtreme Scale that can
notify clients when the server cache changes. This type of notification decreases the amount of time the
client can see stale data.

Event-based invalidation normally consists of the following three components.

e Event queue: An event queue stores the data change events. It could be a JMS queue, a database, an
in-memory FIFO queue, or any kind of manifest as long as it can manage the data change events.

e Event publisher: An event publisher publishes the data change events to the event queue. An event
publisher is usually an application you create or an eXtreme Scale plug-in implementation. The event
publisher knows when the data is changed or it changes the data itself. When a transaction commits,
events are generated for the changed data and the event publisher publishes these events to the
event queue.

e Event consumer: An event consumer consumes data change events. The event consumer is usually
an application to ensure the target grid data is updated with the latest change from other grids. This
event consumer interacts with the event queue to get the latest data change and applies the data
changes in the target grid. The event consumers can use eXtreme Scale APIs to invalidate stale data
or update the grid with the latest data.

For example, JMSObjectGridEventListener has an option for a client-server model, in which the event queue
is a designated JMS destination. All server processes are event publishers. When a transaction commits, the
server gets the data changes and publishes them to the designated JMS destination. All the client processes
are event consumers. They receive the data changes from the designated JMS destination and apply the
changes to the client's near cache.

See Configuring Java Message Service (JMS)-based client synchronization for more information.

Programmatic invalidation

The WebSphere® eXtreme Scale APIs allow manual interaction of the near and server cache using the
Session.beginNoWriteThrough(), ObjectMap.invalidate() and EntityManager.invalidate() APl methods. If a
client or server process no longer needs a portion of the data, the invalidate methods can be used to remove
data from the near or server cache. The beginNoWriteThrough method applies any ObjectMap or
EntityManager operation to the local cache without calling the loader. If invoked from a client, the operation
applies only to the near cache (the remote loader is not invoked). If invoked on the server, the operation
applies only to the server core cache without invoking the loader.

You can use programmatic invalidation with other techniques to determine when to invalidate the data. For
example, this invalidation method uses event-based invalidation mechanisms to receive the data change
events, and then uses APIs to invalidate the stale data.

Parent topic: Database integration: Write-behind, in-line, and side caching

Related concepts:
]JMS event listener

Related tasks:
Configuring the dynamic cache provider for WebSphere eXtreme Scale

Related reference:
ObjectGridEventListener plug-in
Introduction to ObjectMap

Related information:
ObjectMap.invalidate method
EntityManager.invalidate method
ObjectGridEventListener interface

file:////dcs/markdown/workspace/Transform/htmlout/0/com.ibm.websphere.extremescale.javadoc.doc/topics/com/ibm/websphere/objectgrid/em/EntityManager.html#invalidate(java.lang.Object)

Indexing

Use the MaplndexPlugin plug-in to build an index or several indexes on a BackingMap to support non-key
data access.

Index types and configuration

The indexing feature is represented by the MaplndexPlugin plug-in or Index for short. The Index is a
BackingMap plug-in. A BackingMap can have multiple Index plug-ins configured, as long as each one follows
the Index configuration rules.

You can use the indexing feature to build one or more indexes on a BackingMap. An index is built from an
attribute or a list of attributes of an object in the BackingMap. This feature provides a way for applications to
find certain objects more quickly. With the indexing feature, applications can find objects with a specific
value or within a range of values of indexed attributes.

Two types of indexing are possible: static and dynamic. With static indexing, you must configure the index
plug-in on the BackingMap before initializing the ObjectGrid instance. You can do this configuration with XML
or programmatic configuration of the BackingMap. Static indexing starts building an index during ObjectGrid
initialization. The index is always synchronized with the BackingMap and ready for use. After the static
indexing process starts, the maintenance of the index is part of the eXtreme Scale transaction management
process. When transactions commit changes, these changes also update the static index, and index changes
are rolled back if the transaction is rolled back.

With dynamic indexing, you can create an index on a BackingMap before or after the initialization of the
containing ObjectGrid instance. Applications have life cycle control over the dynamic indexing process so
that you can remove a dynamic index when it is no longer needed. When an application creates a dynamic
index, the index might not be ready for immediate use because of the time it takes to complete the index
building process. Because the amount of time depends upon the amount of data indexed, the
DynamiclndexCallback interface is provided for applications that want to receive notifications when certain
indexing events occur. These events include ready, error, and destroy. Applications can implement this
callback interface and register with the dynamic indexing process.

If a BackingMap has an index plug-in configured, you can obtain the application index proxy object from the
corresponding ObjectMap. Calling the getindex method on the ObjectMap and passing in the name of the
index plug-in returns the index proxy object. You must cast the index proxy object to an appropriate
application index interface, such as Maplndex, MapRangelndex, or a customized index interface. After
obtaining the index proxy object, you can use methods defined in the application index interface to find
cached objects.

The steps to use indexing are summarized in the following list:
e Add either static or dynamic index plug-ins into the BackingMap.
e Obtain an application index proxy object by issuing the getindex method of the ObjectMap.
e Cast the index proxy object to an appropriate application index interface, such as Maplndex,
MapRangelndex, or a customized index interface.
e Use methods that are defined in application index interface to find cached objects.

The Hashindex class is the built-in index plug-in implementation that can support both of the built-in
application index interfaces: Maplndex and MapRangelndex. You also can create your own indexes. You can
add Hashlndex as either a static or dynamic index into the BackingMap, obtain either MapIindex or
MapRangelndex index proxy object, and use the index proxy object to find cached objects.

Default index

If you want to iterate through the keys in a local map, you can use the default index. This index does not
require any configuration, but it must be used against the shard, using an agent or an ObjectGrid instance
retrieved from the ShardEvents.shardActivated(ObjectGrid shard) method.

Data quality consideration

The results of index query methods only represent a snapshot of data at a point of time. No locks against
data entries are obtained after the results return to the application. Application has to be aware that data
updates may occur on a returned data set. For example, the application obtains the key of a cached object
by running the findAll method of Mapindex. This returned key object is associated with a data entry in the
cache. The application should be able to run the get method on ObjectMap to find an object by providing the
key object. If another transaction removes the data object from the cache just before the get method is
called, the returned result will be null.

Indexing performance considerations

One of the main objectives of the indexing feature is to improve overall BackingMap performance. If indexing

is not used properly, the performance of the application might be compromised. Consider the following
factors before using this feature.

e The number of concurrent write transactions: Index processing can occur every time a
transaction writes data into a BackingMap. Performance degrades if many transactions are writing
data into the map concurrently when an application attempts index query operations.

e The size of the result set that is returned by a query operation: As the size of the resultset

increases, the query performance declines. Performance tends to degrade when the size of the result
set is 15% or more of the BackingMap.

e The number of indexes built over the same BackingMap: Each index consumes system
resources. As the number of the indexes built over the BackingMap increases, performance decreases.

The indexing function can improve BackingMap performance drastically. Ideal cases are when the

BackingMap has mostly read operations, the query result set is of a small percentage of the BackingMap
entries, and only few indexes are built over the BackingMap.

Parent topic: Database integration: Write-behind, in-line, and side caching

Related concepts:

Plug-ins for indexing data

Plug-ins for custom indexing of cache objects
Using a composite index

Tuning query performance

Related tasks:
Configuring the Hashindex plug-in
Accessing data with indexes (Index API)

Related reference:
Hashlndex plug-in attributes

JPA Loaders

The Java™ Persistence API (JPA) is a specification that allows mapping Java objects to relational databases.
JPA contains a full object-relational mapping (ORM) specification using Java language metadata annotations,
XML descriptors, or both to define the mapping between Java objects and a relational database. A number of
open-source and commercial implementations are available.

You can use a Java Persistence API (JPA) loader plug-in implementation with eXtreme Scale to interact with
any database supported by your chosen loader. To use JPA, you must have a supported JPA provider, such as
Open)PA or Hibernate, JAR files, and a META-INF/persistence.xml file in your class path.

The JPALoader com.ibm.websphere.objectgrid.jpa.JPALoader and the JPAEntityLoader
com.ibm.websphere.objectgrid.jpa.JPAEntityLoader plug-ins are two built-in JPA loader plug-ins that are used
to synchronize the ObjectGrid maps with a database. You must have a JPA implementation, such as Hibernate
or OpenJPA, to use this feature. The database can be any back end that is supported by the chosen JPA
provider.

You can use the JPALoader plug-in when you are storing data using the ObjectMap API. Use the
JPAEntityLoader plug-in when you are storing data using the EntityManager API.

JPA loader architecture
The JPA Loader is used for eXtreme Scale maps that store plain old Java objects (POJO).

Figure 1. JPA Loader architecture

Databasza

Container server [JV)

JPA Provider

Y

% Primary Shard
JP& Loader

Sarvar Cora Cacha
(BackingMap)

Tranzsactianal Cacha
{ObjectMap)

=
-

When an ObjectMap.get(Object key) method is called, the eXtreme Scale run time first checks whether the
entry is contained in the ObjectMap layer. If not, the run time delegates the request to the JPA Loader. Upon
request of loading the key, the JPALoader calls the JPA EntityManager.find(Object key) method to find the
data from the JPA layer. If the data is contained in the JPA entity manager, it is returned; otherwise, the JPA
provider interacts with the database to get the value.

When an update to ObjectMap occurs, for example, using the ObjectMap.update(Object key, Object value)
method, the eXtreme Scale run time creates a LogElement for this update and sends it to the JPALoader. The
JPALoader calls the JPA EntityManager.merge(Object value) method to update the value to the database.

For the JPAEntityLoader, the same four layers are involved. However, because the JPAEntityLoader plug-in is
used for maps that store eXtreme Scale entities, relations among entities could complicate the usage
scenario. An eXtreme Scale entity is distinguished from JPA entity. For more details, see JPAEntityLoader plug-
in.For more information, see |PAEntityLoader plug-in.For more information, see the information about the
JPAEntityLoader plug-in in the Programming Guide.

Methods

Loaders provide three main methods:

1. get: Returns a list of values that correspond to the list of keys that are passed in by retrieving the data
using JPA. The method uses JPA to find the entities in the database. For the JPALoader plug-in, the
returned list contains a list of JPA entities directly from the find operation. For the JPAEntityLoader plug-

in, the returned list contains eXtreme Scale entity value tuples that are converted from the JPA entities.

2. batchUpdate: Writes the data from ObjectGrid maps to the database. Depending on different operation
types (insert, update, or delete), the loader uses the JPA persist, merge, and remove operations to
update the data to the database. For the JPALoader, the objects in the map are directly used as JPA
entities. For the JPAEntityLoader, the entity tuples in the map are converted into objects which are
used as JPA entities.

3. preloadMap: Preloads the map using the ClientLoader.load client loader method. For partitioned maps,
the preloadMap method is only called in one partition. The partition is specified the preloadPartition
property of the JPALoader or JPAEntityLoader class. If the preloadPartition value is set to less than zero,
or greater than (total number of partitions - 1), preload is disabled.

Both JPALoader and JPAEntityLoader plug-ins work with the JPATxCallback class to coordinate the eXtreme
Scale transactions and JPA transactions. JPATxCallback must be configured in the ObjectGrid instance to use
these two loaders.

Configuration and programming

If you are using JPA loaders in a multi-master environment, see Loader considerations in a multi-master
topology. For more information about configuring JPA loaders, see Configuring |PA loaders. For more
information about programming JPA loaders, see |PA loader programming considerations.

Parent topic: Database integration: Write-behind, in-line, and side caching
Parent topic: Programming for JPA integration

Related tasks:
Developing client-based JPA loaders
Starting the |PA time-based updater

Related reference:
Example: Using the Hibernate plug-in to preload data into the ObjectGrid cache

Serialization overview

fds 1T Data is always expressed, but not necessarily stored, as Java™ objects in the data grid.
WebSphere® eXtreme Scale uses multiple Java processes to serialize the data, by converting the Java object
instances to bytes and back to objects again, as needed, to move the data between client and server
processes.

When data is serialized, it is converted into a data stream for transmission over a network in the following
situations:

e When clients communicate with servers, and those servers send information back to the client

e When servers replicate data from one server to another

Alternatively, you might decide to forgo the serialization process through WebSphere eXtreme Scale and
store raw data as byte arrays. Byte arrays are much cheaper to store in memory. The Java virtual machine
(JVM) has fewer objects to search for during garbage collection. The objects can be deserialized only when
they are needed. Use byte arrays only if access to the objects with queries or indexes is not required.
Because the data is stored as bytes, eXtreme Scale has no metadata for describing attributes to query.

Serialization for Java applications

To serialize data, you can use Java serialization, the ObjectTransformer plug-in, or the DataSerializer plug-ins.
To optimize serialization with any of these options, you can use the COPY_TO_BYTES mode to improve
performance up to 70 percent. With COPY_TO_BYTES mode, the data is serialized when transactions commit,
which means that serialization happens only one time. The serialized data is sent unchanged from the client
to the server or from the server to replicated server. By using the COPY_TO_BYTES mode, you can reduce the
memory footprint that a large graph of objects can use.

Use the following figures to help you determine which type of serialization method is most appropriate for
your development needs.

Figure 1. Serialization methods that are available when you are running logic that interacts with data objects
directly in the data grid shard

Are you running any logic
that will interact with the
data objects directly in the
grid shard such as:
ObjectQuery, Hashindex,
agents, or shard listeners?

|
YES

¥

Do you need to store non-
JavaBeans objects in the grid,
such as XML or JSON objects?

YES NO
\ ¥

Use COPY_TO_BYTES.

Use the DataSerializer plug-ins. If the objects are POJOs,

will you be storing very

YES NO YES NO

\ \ Y v

o . 0 Use traditional Use COPY_TO BYTES. Use a non-COPY_TO_BYTES
Rt l:tﬂ:;{ﬁz” g;ﬁ' o1 Heap-based Use the DataSerializer copy mode (store the data in
sl i el memory storage Plug-ins (key with byte native Java Object form in
YES NO (the default). equality, and value) memory) Use traditional
heap-based memory storage
. v Does yﬂﬂ;ﬂmnﬁgﬂmﬂﬂn (the default)
5 rt mory?
" UE& Use traditional ezl enlsehs Do the data objects implement
SImmaniamony m';?nﬂ;??ﬂzfsmge YES | NO the Serializable or Externalizable
interfaces, or can you alter the
(the default). v v object implementation?
Use Use traditional
eXtremeMemory Heap-based YES NO
memaory storage
(the default). ¢ *
Do you require high Use Object-
client/server and Transformer
replication performance?
YES NO

v v

Use Externalizable Use Serializable
interface interface

Figure 2. Serialization methods when you are not directly interacting with the data grid shard.

Are you running any logic
that will interact with the
data objects directly in the
grid shard such as:
ObjectQuery, Hashindex,
agents, or shard listeners?

l‘f

Use COPY_TO BYTES

Are you storing large
gigabytes of data?

YES NO

v v

Use DataSerializer Use traditional
Heap-based memory

Does your configuration storage (the default).

Do the data objects implement

YES NO Serializable or Externalizable
Use eXtremeMemory Use traditional
heap-based memory YES NO
storage (the default). + +

Use DataSerializer
Do you require high

client/server and

replication performance?

YES NO

v v

Use Externalizable interface Use Serializable interface

To learn more about the supported forms of serialization in the eXtreme Scale product, see the following
topics:

Serialization using Java
Java serialization refers to either default serialization, which uses the Serializable interface, or custom
serialization, which uses both the Serializable and Externalizable interfaces.

ObjectTransformer plug-in
With the ObjectTransformer plug-in, you can serialize, deserialize, and copy objects in the cache for
increased performance.

Serialization using the DataSerializer plug-ins
Use the DataSerializer plug-ins to efficiently store arbitrary data in WebSphere eXtreme Scale so that
existing product APIs can efficiently interact with your data.

Parent topic: Product overview

Related concepts:

Serialization using Java

Serialization using the DataSerializer plug-ins
ObjectTransformer plug-in

Samples
lava plug-ins overview

Plug-ins for serializing cached objects
Serializer programming overview

IBM eXtremeMemory

Serializer programming overview

Samples

Related tasks:

Avoiding object inflation when updating and retrieving cache data
Planning to use IBM eXtremeMemory

Avoiding object inflation when updating and retrieving cache data

Programming to use the OSGi framework

Related information:

(* Oracle Java Serialization API
DataSerializer APl documentation

http://java.sun.com/developer/technicalArticles/Programming/serialization/

Serialization using Java

~11* Java serialization refers to either default serialization, which uses the Serializable interface, or custom
serialization, which uses both the Serializable and Externalizable interfaces.

Default serialization

To use default serialization, implement the java.io.Serializable interface, which includes the API that converts
objects into bytes, which are later deserialized. Use the java.io.ObjectOutputStream class to persist the
object. Then, call the ObjectOutputStream.writeObject() method to initiate serialization and flatten the Java
object.

Custom serialization

Some cases exist where objects must be modified to use custom serialization, such as implementing the
java.io.Externalizable interface or by implementing the writeObject and readObject methods for classes
implementing the java.io.Serializable interface. Custom serialization techniques should be employed when
the objects are serialized using mechanisms other than the ObjectGrid API or EntityManager APl methods.

For example, when objects or entities are stored as instance data in a DataGrid API agent or the agent
returns objects or entities, those objects are not transformed using an ObjectTransformer. The agent, will
however, automatically use the ObjectTransformer when using EntityMixin interface. See DataGrid agents
and entity based Maps for further details.

Parent topic: Serialization overview

Related concepts:

Serialization overview

Serialization using the DataSerializer plug-ins
ObjectTransformer plug-in

Samples

Java plug-ins overview

Plug-ins for serializing cached objects
Serializer programming overview

IBM eXtremeMemory

Related tasks:
Avoiding object inflation when updating and retrieving cache data
Planning to use IBM eXtremeMemory

Related information:
(* Oracle Java Serialization AP

http://java.sun.com/developer/technicalArticles/Programming/serialization/

ObjectTransformer plug-in

With the ObjectTransformer plug-in, you can serialize, deserialize, and copy objects in the cache for
increased performance.

L@ The ObjectTransformer interface has been replaced by the DataSerializer plug-ins, which you can use to
efficiently store arbitrary data in WebSphere® eXtreme Scale so that existing product APIs can efficiently
interact with your data.

If you see performance issues with processor usage, add an ObjectTransformer plug-in to each map. If you
do not provide an ObjectTransformer plug-in, up to 60-70 percent of the total processor time is spent
serializing and copying entries.

Purpose

With the ObjectTransformer plug-in, your applications can provide custom methods for the following
operations:

e Serialize or deserialize the key for an entry

e Serialize or deserialize the value for an entry

e Copy a key or value for an entry

If no ObjectTransformer plug-in is provided, you must be able to serialize the keys and values because the
ObjectGrid uses a serialize and deserialize sequence to copy the objects. This method is expensive, so use
an ObjectTransformer plug-in when performance is critical. The copying occurs when an application looks up
an object in a transaction for the first time. You can avoid this copying by setting the copy mode of the Map
to NO_COPY or reduce the copying by setting the copy mode to COPY_ON_READ. Optimize the copy
operation when needed by the application by providing a custom copy method on this plug-in. Such a plug-in
can reduce the copy overhead from 65—70 percent to 2/3 percent of total processor time.

The default copyKey and copyValue method implementations first attempt to use the clone method, if the
method is provided. If no clone method implementation is provided, the implementation defaults to
serialization.

Object serialization is also used directly when the eXtreme Scale is running in distributed mode. The
LogSequence uses the ObjectTransformer plug-in to help serialize keys and values before transmitting the
changes to peers in the ObjectGrid. You must take care when providing a custom serialization method
instead of using the built-in Java™ developer kit serialization. Object versioning is a complex issue and you
might encounter problems with version compatibility if you do not ensure that your custom methods are
designed for versioning.

The following list describes how the eXtreme Scale tries to serialize both keys and values:

e If a custom ObjectTransformer plug-in is written and plugged in, eXtreme Scale calls methods in the
ObjectTransformer interface to serialize keys and values and get copies of object keys and values.

e |f a custom ObjectTransformer plug-in is not used, eXtreme Scale serializes and deserializes values
according to the default. If the default plug-in is used, each object is implemented as externalizable or
is implemented as serializable.

o If the object supports the Externalizable interface, the writeExternal method is called. Objects
that are implemented as externalizable lead to better performance.

o If the object does not support the Externalizable interface and does implement the Serializable
interface, the object is saved using the ObjectOutputStream method.

Using the ObjectTransformer interface

An ObjectTransformer object must implement the ObjectTransformer interface and follow the common
ObjectGrid plug-in conventions.

Two approaches, programmatic configuration and XML configuration, are used to add an ObjectTransformer
object into the BackingMap configuration as follows.

Programmatically plug in an ObjectTransformer object

The following code snippet creates the custom ObjectTransformer object and adds it to a BackingMap:

ObjectGridManager objectGridManager = ObjectGridManagerFactory.getObjectGridManager();
ObjectGrid myGrid = objectGridManager.createObjectGrid("myGrid", false);

BackingMap backingMap = myGrid.getMap("myMap");

MyObjectTransformer myObjectTransformer = new MyObjectTransformer();
backingMap.setObjectTransformer(myObjectTransformer);

XML configuration approach to plug in an ObjectTransformer

Assume that the class name of the ObjectTransformer implementation is the
com.company.org.MyObjectTransformer class. This class implements the ObjectTransformer interface. An
ObjectTransformer implementation can be configured using the following XML:

<?xml version="1.0" encoding="UTF-8"7>
<objectGridConfig xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalLocation="http://ibm.com/ws/objectgrid/config ../objectGrid.xsd"
xmlns="http://ibm.com/ws/objectgrid/config">
<objectGrids>
<objectGrid name="myGrid">
<backingMap name="myMap" pluginCollectionRef="myMap" />
</objectGrid>
</objectGrids>

<backingMapPluginCollections>
<backingMapPluginCollection id="myMap">
<bean id="ObjectTransformer" className="com.company.org.MyObjectTransformer"
/>
</backingMapPluginCollection>
</backingMapPluginCollections>
</objectGridConfig>

ObjectTransformer usage scenarios

You can use the ObjectTransformer plug-in in the following situations:
e Non-serializable object
e Serializable object but improve serialization performance
e Key or value copy

In the following example, ObjectGrid is used to store the Stock class:

/**
* Stock object for ObjectGrid demo
k
>k
*/
public class Stock implements Cloneable {
String ticket;
double price;
String company;
String description;
int serialNumber;
long lastTransactionTime;
/**
* @return Returns the description.
*/
public String getDescription() {
return description;
}
/**
* @param description The description to set.
*/
public void setDescription(String description) {
this.description = description;
}
/**
* @return Returns the lastTransactionTime.
*/
public long getLastTransactionTime() {
return lastTransactionTime;

}

/**

* @param lastTransactionTime The lastTransactionTime to set.

*/

public void setLastTransactionTime(long lastTransactionTime) {
this.lastTransactionTime = lastTransactionTime;

}

/**

* @return Returns the price.

*/

public double getPrice() {
return price;

}

/>|<>I<

* @param price The price to set.

*/

public void setPrice(double price) {
this.price = price;

}

/>|<>I<

* @return Returns the serialNumber.

*/

public int getSerialNumber() {
return serialNumber;

}

/>|<>I<

* @param serialNumber The serialNumber to set.

*/

public void setSerialNumber(int serialNumber) {
this.serialNumber = serialNumber;

}

/>|<>I<

* @return Returns the ticket.

*/

public String getTicket() {
return ticket;

}

/>|<>I<

* @param ticket The ticket to set.

*/

public void setTicket(String ticket) {
this.ticket = ticket;

}

/>|<>I<

* @return Returns the company.

*/

public String getCompany() {
return company;

}

/>|<>I<

* @param company The company to set.

*/

public void setCompany(String company) {
this.company = company;

}

//clone

public Object clone() throws CloneNotSupportedException

{
return super.clone();

}

}

You can write a custom object transformer class for the Stock class:

/*>I<

* Custom implementation of ObjectGrid ObjectTransformer for stock object
>

*/

public class MyStockObjectTransformer implements ObjectTransformer {

/* (non-Javadoc)

* @see

* com.ibm.websphere.objectgrid.plugins.ObjectTransformer#serializeKey

* (java.lang.Object,

* java.io.0bjectOutputStream)

*/

public void serializeKey(Object key, ObjectOutputStream stream) throws IOException {

String ticket= (String) key;
stream.writeUTF(ticket);

}

/* (non-Javadoc)

* @see com.ibm.websphere.objectgrid.plugins.
ObjectTransformer#serializeValue(java.lang.0Object,
java.io.0bjectOutputStream)

*/

public void serializeValue(Object value, ObjectOutputStream stream) throws

Stock stock= (Stock) value;
stream.writeUTF(stock.getTicket());
stream.writeUTF(stock.getCompany());
stream.writeUTF(stock.getDescription());
stream.writeDouble(stock.getPrice());
stream.writelLong(stock.getlLastTransactionTime());
stream.writeInt(stock.getSerialNumber());

}

/* (non-Javadoc)
* @see com.ibm.websphere.objectgrid.plugins.
ObjectTransformer#inflateKey(java.io.0bjectInputStream)
*/
public Object inflateKey(ObjectInputStream stream) throws IOException,
ClassNotFoundException {

String ticket=stream.readUTF();

return ticket;

}

/* (non-Javadoc)

* @see com.ibm.websphere.objectgrid.plugins.
ObjectTransformer#inflateValue(java.io.0bjectInputStream)
*/

public Object inflateValue(ObjectInputStream stream) throws IOException,
ClassNotFoundException {
Stock stock=new Stock();
stock.setTicket(stream.readUTF());
stock.setCompany(stream.readUTF());
stock.setDescription(stream.readUTF());
stock.setPrice(stream.readDouble());
stock.setlLastTransactionTime(stream. readLong());
stock.setSerialNumber(stream. readInt());
return stock;

}

/* (non-Javadoc)

* @see com.ibm.websphere.objectgrid.plugins.

ObjectTransformer#copyValue(java.lang.0Object)

*/

public Object copyValue(Object value) {
Stock stock = (Stock) value;

try {
return stock.clone();

}
catch (CloneNotSupportedException e)

{
// display exception message }

}

/* (non-Javadoc)
* @see com.ibm.websphere.objectgrid.plugins.
ObjectTransformer#copyKey(java.lang.0Object)
*/
public Object copyKey(Object key) {
String ticket=(String) key;
String ticketCopy= new String (ticket);
return ticketCopy;

I0Exception {

}
}

Then, plug in this custom MyStockObjectTransformer class into the BackingMap:

ObjectGridManager ogf=0bjectGridManagerFactory.getObjectGridManager();
ObjectGrid og = ogf.getObjectGrid("NYSE");

BackingMap bm = og.defineMap("NYSEStocks");

MyStockObjectTransformer ot = new MyStockObjectTransformer();
bm.setObjectTransformer(ot);

Parent topic: Serialization overview
Parent topic: Plug-ins for serializing cached objects

Related concepts:

Serialization using Java

Serialization overview

Serialization using the DataSerializer plug-ins
Samples

lava plug-ins overview

Plug-ins for serializing cached objects
Serializer programming overview

IBM eXtremeMemory

Tuning serialization performance

Tuning serialization

Using a loader with entity maps and tuples
Tuning copy operations with the ObjectTransformer interface

Related tasks:
Avoiding object inflation when updating and retrieving cache data
Planning to use IBM eXtremeMemory

Related information:
(* Oracle Java Serialization API

http://java.sun.com/developer/technicalArticles/Programming/serialization/

Serialization using the DataSerializer plug-ins

~11* Use the DataSerializer plug-ins to efficiently store arbitrary data in WebSphere eXtreme Scale so that
existing product APIs can efficiently interact with your data.

Serialization methods such as Java serialization and the ObjectTransformer plug-in allow data to be
marshalled over the network. In addition, when you use these serialization options with the COPY_TO BYTES
copy mode, moving data between clients and servers becomes less expensive and performance is improved.
However, these options do not solve the following issues that can exist:

e Keys are not stored in bytes; they are still Java objects.

e Server-side code must still inflate the object; for example, query and index still use reflection and must

inflate the object. Additionally, agents, listeners, and plug-ins still need the object form.
e Classes still need to be in the server classpath.
e Data is still in Java serialization form (ObjectOutputStream).

The DataSerializer plug-ins introduce an efficient way of solving these problems. Specifically, the
DataSerializer plug-in gives you a way to describe your serialization format, or byte array, to WebSphere
eXtreme Scale so that the product can interrogate the byte array without requiring a specific object format.
The public DataSerializer plug-in classes and interfaces are in the package,
com.ibm.websphere.objectgrid.plugins.io. For more information, refer to the APl documentation.

Important: Entity Java objects are not stored directly into the BackingMaps when you use the
EntityManager API. The EntityManager APl converts the entity object to Tuple objects. Entity maps are
automatically associated with a highly optimized ObjectTransformer. Whenever the ObjectMap API or
EntityManager API is used to interact with entity maps, the ObjectTransformer entity is invoked. Therefore,
when you use entities, no work is required for serialization because the product automatically completes this
process for you.

Parent topic: Serialization overview

Related concepts:

Serialization using Java

Serialization overview

ObjectTransformer plug-in

Samples

Java plug-ins overview

Plug-ins for serializing cached objects
Serializer programming overview

IBM eXtremeMemory

Tuning serialization performance

Tuning serialization

Using a loader with entity maps and tuples
Tuning copy operations with the ObjectTransformer interface

Related tasks:
Avoiding object inflation when updating and retrieving cache data
Planning to use IBM eXtremeMemory

Related information:
[(* Oracle Java Serialization AP

http://java.sun.com/developer/technicalArticles/Programming/serialization/

Scalability overview

WebSphere® eXtreme Scale is scalable through the use of partitioned data, and can scale to thousands of
containers if required because each container is independent from other containers.

WebSphere eXtreme Scale divides data sets into distinct partitions that can be moved between processes or
even between physical servers at run time. You can, for example, start with a deployment of four servers and
then expand to a deployment with 10 servers as the demands on the cache grow. Just as you can add more
physical servers and processing units for vertical scalability, you can extend the elastic scaling capability
horizontally with partitioning. Horizontal scaling is a major advantage to using WebSphere eXtreme Scale
over an in-memory database. In-memory databases can only scale vertically.

With WebSphere eXtreme Scale, you can also use a set of APIs to gain transactional access this partitioned
and distributed data. The choices you make for interacting with the cache are as significant as the functions
to manage the cache for availability from a performance perspective.

Note: Scalability is not available when containers communicate with one another. The availability

management, or core grouping, protocol is an O(N?) heartbeat and view maintenance algorithm, but is
mitigated by keeping the number of core group members under 20. Only peer to peer replication between
shards exists.

Distributed clients

The WebSphere eXtreme Scale client protocol supports very large numbers of clients. The partitioning
strategy offers assistance by assuming that all clients are not always interested in all partitions because
connections can be spread across multiple containers. Clients are connected directly to the partitions so
latency is limited to one transferred connection.

Data grids, partitions, and shards

A data grid is divided into partitions. A partition holds an exclusive subset of the data. A partition
contains one or more shards: a primary shard and replica shards. Replica shards are not necessary in a
partition, but you can use replica shards to provide high availability. Whether your deployment is an
independent in-memory data grid or an in-memory database processing space, data access in
eXtreme Scale relies heavily on shards.

Partitioning
Use partitioning to scale out an application. You can define the number of partitions in your
deployment policy.

Placement and partitions

You have two placement strategies available for WebSphere eXtreme Scale: fixed partition and per-
container. The choice of placement strategy affects how your deployment configuration places
partitions over the remote data grid.

Single-partition and cross-data-grid transactions

The major distinction between WebSphere eXtreme Scale and traditional data storage solutions like
relational databases or in-memory databases is the use of partitioning, which allows the cache to scale
linearly. The important types of transactions to consider are single-partition and every-partition (cross-
data-grid) transactions.

Scaling in units or pods

Although you can deploy a data grid over thousands of Java virtual machines, you might consider
splitting the data grid into units or pods to increase the reliability and ease of testing of your
configuration. A pod is a group of servers that is running the same set of applications.

Parent topic: Product overview

Data grids, partitions, and shards

A data grid is divided into partitions. A partition holds an exclusive subset of the data. A partition contains
one or more shards: a primary shard and replica shards. Replica shards are not necessary in a partition, but
you can use replica shards to provide high availability. Whether your deployment is an independent in-
memory data grid or an in-memory database processing space, data access in eXtreme Scale relies heavily
on shards.

The data for a partition is stored in a set of shards at run time. This set of shards includes a primary shared
and possibly one or more replica shards. A shard is the smallest unit that eXtreme Scale can add or remove
from a Java™ virtual machine.

Two placement strategies exist: fixed partition placement (default) and per container placement. The
following discussion focuses on the usage of the fixed partition placement strategy.

Total number of shards

If your environment includes 10 partitions that hold 1 million objects with no replicas, then 10 shards would
exist that each store 100,000 objects. If you add a replica to this scenario, then an extra shard exists in each
partition. In this case, 20 shards exist: 10 primary shards and 10 replica shards. Each one of these shards
store 100,000 objects. Each partition consists of a primary shard and one or more (N) replica shards.
Determining the optimal shard count is critical. If you configure few shards, data is not distributed evenly
among the shards, resulting in out of memory errors and processor overloading issues. You must have at
least 10 shards for each JVM as you scale. When you are initially deploying the data grid, you would
potentially use many partitions.

Number of shards per JVM scenarios
Scenario: small number of shards for each JVM

Data is added and removed from a JVM using shard units. Shards are never split into pieces. If 10 GB of data
existed, and 20 shards exist to hold this data, then each shard holds 500 MB of data on average. If nine Java
virtual machines host the data grid, then on average each JVM has two shards. Because 20 is not evenly
divisible by 9, a few Java virtual machines have three shards, in the following distribution:

e Seven Java virtual machines with two shards
e Two Java virtual machines with three shards

Because each shard holds 500 MB of data, the distribution of data is unequal. The seven Java virtual
machines with two shards each host 1 GB of data. The two Java virtual machines with three shards have 50%
more data, or 1.5 GB, which is a much larger memory burden. Because the two Java virtual machines are
hosting three shards, they also receive 50% more requests for their data. As a result, having few shards for
each JVM causes imbalance. To increase the performance, you increase the number of shards for each JVM.

Scenario: increased number of shards per JVM

In this scenario, consider a much larger number of shards. In this scenario, there are 101 shards with nine
Java virtual machines hosting 10 GB of data. In this case, each shard holds 99 MB of data. The Java virtual
machines have the following distribution of shards:

e Seven Java virtual machines with 11 shards
e Two Java virtual machines with 12 shards

The two Java virtual machines with 12 shards now have just 99 MB more data than the other shards, which is
a 9% difference. This scenario is much more evenly distributed than the 50% difference in the scenario with
few shards. From a processor use perspective, only 9% more work exists for the two Java virtual machines
with the 12 shards compared to the seven Java virtual machines that have 11 shards. By increasing the
number of shards in each JVM, the data and processor use is distributed in a fair and even way.

When you are creating your system, use 10 shards for each JVM in its maximally sized scenario, or when the
system is running its maximum number of Java virtual machines in your planning horizon.

Additional placement factors

The number of partitions, the placement strategy, and number and type of replicas are set in the
deployment policy. The number of shards that are placed depend on the deployment policy that you define.
The minSyncReplicas, developmentMode, maxSyncReplicas, and maxAsyncReplicas attributes affect where
partitions and replicas are placed.

The following factors affect when shards can be placed:
e The xscmd -c suspendBalancing and xscmd -c resumeBalancing commands.
e " The server properties file, which has the placementDeferralInterval property that defines the

number of milliseconds before shards are placed on the container servers.
e The numInitialContainers attribute in the deployment policy.

If the maximum number of replicas are not placed during the initial startup, additional replicas might be
placed if you start additional servers later. When you are planning the number of shards per JVM, the
maximum number of primary and replica shards is dependent on having enough JVMs started to support the
configured maximum number of replicas. A replica is never placed in the same process as its primary. If a
process is lost, both the primary and the replica are lost. When the developmentMode attribute is set to
false, the primary and replicas are not placed on the same physical server.

Parent topic: Scalability overview

Partitioning

Use partitioning to scale out an application. You can define the number of partitions in your deployment
policy.

About partitioning

Partitioning is not like Redundant Array of Independent Disks (RAID) striping, which slices each instance
across all stripes. Each partition hosts the complete data for individual entries. Partitioning is a very effective
means for scaling, but is not applicable to all applications. Applications that require transactional guarantees
across large sets of data do not scale and cannot be partitioned effectively. WebSphere® eXtreme Scale
does not currently support two-phase commit across partitions.

Important: Select the number of partitions carefully. The number of partitions that are defined in the
deployment policy directly affects the number of container servers to which an application can scale. Each
partition is made up of a primary shard and the configured number of replica shards. The

(Number Partitions*(1 + Number Replicas)) formula is the number of containers that can be used to
scale out a single application.

Using partitions

A data grid can have up to thousands of partitions. A data grid can scale up to the number of partitions times
the number of shards per partition. For example, if you have 16 partitions and each partition has one
primary and one replica, or two shards, then you can potentially scale to 32 Java™ virtual machines. In this
case, one shard is defined for each JVM. You must choose a reasonable number of partitions based on the
expected number of Java virtual machines that you are likely to use. Each shard increases processor and
memory usage for the system. The system is designed to scale out and handle this overhead based on the
number Java virtual machines that are available.

Applications should not use thousands of partitions if the application runs on a data grid of four container
server Java virtual machines. The application should be configured to have a reasonable number of shards
for each container server JVM. For example, an unreasonable configuration is 2000 partitions with two shards
that are running on four container Java virtual machines. This configuration results in 4000 shards that are
placed on four container Java virtual machines or 1000 shards per container JVM.

A better configuration would be under 10 shards for each expected container JVM. This configuration still
gives the possibility of allowing for elastic scaling that is ten times the initial configuration while keeping a
reasonable number of shards per container JVM.

Consider this scaling example: you currently have six physical servers with two container Java virtual
machines per physical server. You expect to grow to 20 physical servers over the next three years. With 20
physical servers, you have 40 container server Java virtual machines, and choose 60 to be pessimistic. You
want four shards per container JVM. You have 60 potential containers, or a total of 240 shards. If you have a
primary and replica per partition, then you want 120 partitions. Therefore, if you expect to scale to 20
computers, then 20 shards per container Java virtual machines are required (when 240 shards are divided by
12 container JVMs) for the initial deployment.

ObjectMap and partitioning

When you use the fixed partition placement strategy using the default value FIXED PARTITIONS, maps are split
across partitions and keys hash to different partitions. The client does not need to know to which partition
the keys belong. If a mapSet has multiple maps, the maps should be committed in separate transactions.

Entities and partitioning

Entity manager entities have an optimization that helps clients that are working with entities on a server.
The entity schema on the server for the map set can specify a single root entity. The client must access all
entities through the root entity. The entity manager can then find related entities from that root in the same
partition without requiring the related maps to have a common key. The root entity establishes affinity with a
single partition. This partition is used for all entity fetches within the transaction after affinity is established.
This affinity can save memory because the related maps do not require a common key. The root entity must
be specified with a modified entity annotation as shown in the following example:

@Entity(schemaRoot=true)

Use the entity to find the root of the object graph. The object graph defines the relationships between one or
more entities. Each linked entity must resolve to the same partition. All child entities are assumed to be in
the same partition as the root. The child entities in the object graph are only accessible from a client from
the root entity. Root entities are always required in partitioned environments when using an eXtreme Scale
client to communicate to the server. Only one root entity type can be defined per client. Root entities are not
required when using Extreme Transaction Processing (XTP) style ObjectGrids, because all communication to

the partition is accomplished through direct, local access and not through the client and server mechanism.

Parent topic: Scalability overview

Related concepts:
Replication for availability
Writing a loader with a replica preload controller

Placement and partitions

You have two placement strategies available for WebSphere® eXtreme Scale: fixed partition and per-
container. The choice of placement strategy affects how your deployment configuration places partitions
over the remote data grid.

Fixed partition placement

You can set the placement strategy in the deployment policy XML file. The default placement strategy is
fixed-partition placement, enabled with the FIXED PARTITIONS setting. The number of primary shards that
are placed across the available containers is equal to the number of partitions that you configured with the
numberOfPartitions attribute. If you configured replicas, the minimum total number of shards that are placed
is defined by the following formula: ((1 primary shard + minimum synchronous shards) * partitions
defined). The maximum total number of shards that are placed is defined by the following formula: ((1
primary shard + maximum synchronous shards + maximum asynchronous shards) * partitions).
Your WebSphere eXtreme Scale deployment spreads these shards over the available containers. The keys of
each map are hashed into assigned partitions that are based on the total partitions you defined. They keys
hash to the same partition even if the partition moves because of failover or server changes.

For example, if the numberPartitions value is 6 and the minSync value is 1 for MapSetl, the total shards for
that map set is 12 because each of the six partitions requires a synchronous replica. If three containers are
started, WebSphere eXtreme Scale places four shards per container for MapSetl.

Per-container placement

The per-container placement strategy is enabled when you set the placementStrategy attribute to

PER CONTAINER in the map set element in the deployment XML file. With this strategy, the number of
primary shards that are placed on each new container is equal to the number of partitions, P, that you
configured. The WebSphere eXtreme Scale deployment environment places P replicas of each partition for
each remaining container. The numlnitialContainers setting is ignored when you are using per-container
placement. The partitions get larger as the containers grow. The keys for maps are not fixed to a certain
partition in this strategy. The client routes to a partition and uses a random primary. If a client wants to
reconnect to the same session that it used to find a key again, it must use a session handle.

For more information, see SessionHandle for routing.

For failover or stopped servers, the WebSphere eXtreme Scale environment moves the primary shards in the
per-container placement strategy if they still contain data. If the shards are empty, they are discarded. In the
per-container strategy, old primary shards are not kept because new primary shards are placed for every
container.

WebSphere eXtreme Scale allows per-container placement as an alternative to what could be termed the
"typical" placement strategy, a fixed-partition approach with the key of a Map hashed to one of those
partitions. In a per-container placement, your deployment places the partitions on the set of online container
servers and automatically scales them out or in as containers are added or removed from the server data
grid. A data grid with the fixed-partition approach works well for key-based grids, where the application uses
a key object to locate data in the grid. The following discusses the alternative.

Example of a per-container data grid

Data grids that are configured to use a per-container placement strategy are different. You can specify that
the data grid uses the per-container placement strategy by setting the placementStrategy attribute in your
deployment XML file to PER_CONTAINER. Instead of configuring how many partitions total you want in the
data grid, you specify how many partitions you want per container that you start.

For example, if you set five partitions per container, five new anonymous partition primaries are created
when you start that container server, and the necessary replicas are created on the other deployed
container servers.

The following is a potential sequence in a per-container environment as the data grid grows.

1. Start container CO hosting five primaries (PO - P4).

o CO hosts: PO, P1, P2, P3, P4.
2. Start container C1 hosting five more primaries (P5 - P9). Replicas are balanced on the containers.
o CO hosts: PO, P1, P2, P3, P4, R5, R6, R7, R8, R9.
o C1 hosts: P5, P6, P7, P8, P9, RO, R1, R2, R3, R4.
3. Start container C2 hosting five more primaries (P10 - P14). Replicas are balanced further.
o CO hosts: PO, P1, P2, P3, P4, R7, R8, R9, R10, R11, R12.
o C1 hosts: P5, P6, P7, P8, P9, R2, R3, R4, R13, R14.
o C2 hosts: P10, P11, P12, P13, P14, R5, R6, RO, R1.

The pattern continues as more containers are started, creating five new primary partitions each time and
rebalancing replicas on the available containers in the data grid.

Note: WebSphere eXtreme Scale does not move primary shards when the per-container placement strategy
is used, only replicas.

The partition numbers are arbitrary and have nothing to do with keys, so you cannot use key-based routing.
If a container stops, then the partition IDs created for that container are no longer used, so there is a gap in
the partition IDs. In the example, there would no longer be partitions P5 - P9 if the container C1 failed,
leaving only PO - P4 and P10 - P14, so key-based hashing is impossible.

Using numbers like five or even more likely 10 for how many partitions per container work best if you
consider the consequences of a container failure. To spread the load of hosting shards evenly across the data
grid, you need more than just one partition for each container. If you had a single partition per container,
then when a container fails, only one container (the one hosting the corresponding replica shard) must bear
the full load of the lost primary. In this case, the load is immediately doubled for the container. However, if
you have five partitions per container, then five containers pick up the load of the lost container, lowering
impact on each by 80 percent. Using multiple partitions per container generally lowers the potential impact
on each container substantially. More directly, consider a case in which a container spikes unexpectedly-the
replication load of that container is spread over five containers rather than only one.

A per-container policy

Several scenarios make the per-container strategy an ideal configuration, such as with HTTP session
replication or application session state. In such a case, an HTTP router assigns a session to a servlet
container. The servlet container needs to create an HTTP session and chooses one of the five local partition
primaries for the session. The "ID" of the partition that is chosen is then stored in a cookie. The servlet
container now has local access to the session state, which means zero latency access to the data for this
request as long as you maintain session affinity. And eXtreme Scale replicates any changes to the partition.

In practice, remember the repercussions of a case in which you have multiple partitions per container (say
five again). With each new container started, you have five more partition primaries and five more replicas.
Over time, more partitions should be created and they should not move or be destroyed. But this is not how
the containers would behave. When a container starts, it hosts five primary shards, which can be called
"home" primaries, existing on the respective containers that created them. If the container fails, the replicas
become primaries and eXtreme Scale creates five more replicas to maintain high availability (unless you
disabled auto repair). The new primaries are in a different container than the one that created them, which
can be called "foreign" primaries. The application should never place new state or sessions in a foreign
primary. Eventually, the foreign primary has no entries and eXtreme Scale automatically deletes it and its
associated replicas. The foreign primaries' purpose is to allow existing sessions to still be available (but not
new sessions).

A client can still interact with a data grid that does not rely on keys. The client just begins a transaction and
stores data in the data grid independent of any keys. It asks the Session for a SessionHandle object, a
serializable handle that allows the client to interact with the same partition when necessary. WebSphere
eXtreme Scale chooses a partition for the client from the list of home partition primaries. It does not return a
foreign primary partition. The SessionHandle can be serialized in an HTTP cookie, for example, and later
convert the cookie back into a SessionHandle. Then, the WebSphere eXtreme Scale APIs can obtain a Session
that is bound to the same partition with the SessionHandle.

Note: You cannot use agents to interact with a PER_CONTAINER data grid.

Advantages

The per-container placement strategy is different from a normal fixed partition or hash data grid because the
client stores data in a place in the grid. The client gets a handle to it and uses the handle to access it again.
There is no application-supplied key as there is in the fixed-partition placement strategy.

Your deployment does not make a new partition for each Session. So in a per-container deployment, the keys
that are used to store data in the partition must be unique within that partition. For example, you can have
your client generate a unique SessionlD and then use it as the key to find information in Maps in that
partition. Multiple client sessions then interact with the same partition so the application needs to use
unique keys to store session data in each partition.

The previous examples used five partitions, but the numberOfPartitions parameter in the object grid XML file
can be used to specify the partitions as required. Instead of per data grid, the setting is per container. (The
number of replicas is specified in the same way as with the fixed-partition policy.)

The per-container policy can also be used with multiple zones. If possible, eXtreme Scale returns a
SessionHandle to a partition whose primary is in the same zone as that client. The client can specify the
zone as a parameter to the container or by using an API. The client zone ID can be set to serverproperties

or clientproperties.

The per-container strategy for a data grid suits applications that store conversational type state rather than
database-oriented data. The key to access the data would be a conversation ID and is not related to a
specific database record. It provides higher performance (because the partition primaries can be collocated
with the servlets for example) and easier configuration (without having to calculate partitions and
containers).

Parent topic: Scalability overview

Single-partition and cross-data-grid transactions

The major distinction between WebSphere® eXtreme Scale and traditional data storage solutions like
relational databases or in-memory databases is the use of partitioning, which allows the cache to scale
linearly. The important types of transactions to consider are single-partition and every-partition (cross-data-
grid) transactions.

In general, interactions with the cache can be categorized as single-partition transactions or cross-data-grid
transactions.

Single-partition transactions

Single-partition transactions are the preferable method for interacting with caches that are hosted by
WebSphere eXtreme Scale. When a transaction is limited to a single partition, then by default it is limited to
a single Java™ virtual machine, and therefore a single server computer. A server can complete M number of
these transactions per second, and if you have N computers, you can complete M*N transactions per second.
If your business increases and you need to perform twice as many of these transactions per second, you can
double N by buying more computers. Then you can meet capacity demands without changing the
application, upgrading hardware, or even taking the application offline.

In addition to letting the cache scale so significantly, single-partition transactions also maximize the
availability of the cache. Each transaction only depends on one computer. Any of the other (N-1) computers
can fail without affecting the success or response time of the transaction. So if you are running 100
computers and one of them fails, only 1 percent of the transactions in flight at the moment that server failed
are rolled back. After the server fails, WebSphere eXtreme Scale relocates the partitions that are hosted by
the failed server to the other 99 computers. During this brief period, before the operation completes, the
other 99 computers can still complete transactions. Only the transactions that would involve the partitions
that are being relocated are blocked. After the failover process is complete, the cache can continue running,
fully operational, at 99 percent of its original throughput capacity. After the failed server is replaced and
returned to the data grid, the cache returns to 100 percent throughput capacity.

Cross-data-grid transactions

In terms of performance, availability and scalability, cross-data-grid transactions are the opposite of single-
partition transactions. Cross-data-grid transactions access every partition and therefore every computer in

the configuration. Each computer in the data grid is asked to look up some data and then return the result.

The transaction cannot complete until every computer has responded, and therefore the throughput of the

entire data grid is limited by the slowest computer. Adding computers does not make the slowest computer
faster and therefore does not improve the throughput of the cache.

Cross-data-grid transactions have a similar effect on availability. Extending the previous example, if you are
running 100 servers and one server fails, then 100 percent of the transactions that are in progress at the
moment that server failed are rolled back. After the server fails, WebSphere eXtreme Scale starts to relocate
the partitions that are hosted by that server to the other 99 computers. During this time, before the failover
process completes, the data grid cannot process any of these transactions. After the failover process is
complete, the cache can continue running, but at reduced capacity. If each computer in the data grid
serviced 10 partitions, then 10 of the remaining 99 computers receive at least one extra partition as part of
the failover process. Adding an extra partition increases the workload of that computer by at least 10
percent. Because the throughput of the data grid is limited to the throughput of the slowest computer in a
cross-data-grid transaction, on average, the throughput is reduced by 10 percent.

Single-partition transactions are preferable to cross-data-grid transactions for scaling out with a distributed,
highly available, object cache like WebSphere eXtreme Scale. Maximizing the performance of these kinds of
systems requires the use of techniques that are different from traditional relational methodologies, but you
can turn cross-data-grid transactions into scalable single-partition transactions.

Best practices for building scalable data models

The best practices for building scalable applications with products like WebSphere eXtreme Scale include two
categories: foundational principles and implementation tips. Foundational principles are core ideas that need
to be captured in the design of the data itself. An application that does not observe these principles is
unlikely to scale well, even for its mainline transactions. Implementation tips are applied for problematic
transactions in an otherwise well-designed application that observes the general principles for scalable data
models.

Foundational principles
Some of the important means of optimizing scalability are basic concepts or principles to keep in mind.

Duplicate instead of normalizing

The key thing to remember about products like WebSphere eXtreme Scale is that they are designed to
spread data across a large number of computers. If the goal is to make most or all transactions complete
on a single partition, then the data model design needs to ensure that all the data the transaction might
need is in the partition. Most of the time, the only way to achieve this is by duplicating data.

For example, consider an application like a message board. Two important transactions for a message
board are showing all the posts from a user and all the posts on a topic. First, consider how these
transactions would work with a normalized data model that contains a user record, a topic record, and a
post record that contains the actual text. If posts are partitioned with user records, then displaying the
topic becomes a cross-grid transaction, and vice versa. Topics and users cannot be partitioned together
because they have a many-to-many relationship.

The best way to make this message board scale is to duplicate the posts, storing one copy with the topic
record and one copy with the user record. Then, displaying the posts from a user is a single-partition
transaction, displaying the posts on a topic is a single-partition transaction, and updating or deleting a post
is a two-partition transaction. All three of these transactions scale linearly as the number of computers in
the data grid increases.

Scalability rather than resources

The biggest obstacle to overcome when you are considering denormalized data models is the impact that
these models have on resources. Keeping two, three, or more copies of some data can seem to use too
many resources to be practical. When you are confronted with this scenario, remember the following facts:
Hardware resources get cheaper every year. Second, and more importantly, WebSphere eXtreme Scale
eliminates most hidden costs that are associated with deploying more resources.

Measure resources in terms of cost rather than computer terms such as megabytes and processors. Data
stores that work with normalized relational data generally must be on the same computer. This required
collocation means that a single larger enterprise computer must be purchased rather than several smaller
computers. With enterprise hardware, it is not uncommon for one computer that is capable of completing
one million transactions per second to cost much more than the combined cost of 10 computers capable of
doing 100,000 transactions per second each.

A business cost in adding resources also exists. A growing business eventually runs out of capacity. When
you run out of capacity, you either need to shut down while moving to a bigger, faster computer, or create
a second production environment to which you can switch. Either way, additional costs will come in the
form of lost business or maintaining almost twice the capacity needed during the transition period.

With WebSphere eXtreme Scale, the application does not need to be shut down to add capacity. If your
business projects that you need 10 percent more capacity for the coming year, then increase the number
of computers in the data grid by 10 percent. You can increase this percentage without application
downtime and without purchasing excess capacity.

Avoid data transformations

When you are using WebSphere eXtreme Scale, data should be stored in a format that is directly
consumable by the business logic. Breaking the data down into a more primitive form is costly. The
transformation needs to be done when the data is written and when the data is read. With relational
databases, this transformation is done out of necessity because the data is ultimately persisted to disk
frequently. With WebSphere eXtreme Scale, these transformations are not necessary. Usually, data is
stored in memory and can therefore be stored in the exact form that the application needs.

Observing this simple rule helps denormalize your data in accordance with the first principle. The most
common type of transformation for business data is the JOIN operations that are necessary to turn
normalized data into a result set that fits the needs of the application. Storing the data in the correct
format implicitly avoids performing these JOIN operations and produces a denormalized data model.

Eliminate unbounded queries

No matter how well you structure your data, unbounded queries do not scale well. For example, do not
have a transaction that asks for a list of all items that are sorted by value. This transaction might work at
first when the total number of items is 1000, but when the total number of items reaches 10 million, the
transaction returns all 10 million items. If you run this transaction, the two most likely outcomes are the
transaction timing out, or the client encounters an out-of-memory error.

The best option is to alter the business logic so that only the top 10 or 20 items can be returned. This logic
alteration keeps the size of the transaction manageable no matter how many items are in the cache.

Define schema

The main advantage of normalizing data is that the database system can take care of data consistency
behind the scenes. When data is denormalized for scalability, this automatic data consistency

management no longer exists. You must implement a data model that can work in the application layer or
as a plug-in to the distributed data grid to guarantee data consistency.

Consider the message board example. If a transaction removes a post from a topic, then the duplicate post
on the user record must be removed. Without a data model, it is possible a developer might write the
application code to remove the post from the topic and forget to remove the post from the user record.
However, if the developer is using a data model instead of interacting with the cache directly, the
removePost method on the data model pulls the user ID from the post, looks up the user record, and
removes the duplicate post behind the scenes.

Alternately, you can implement a listener that runs on the actual partition that detects the change to the
topic and automatically adjusts the user record. A listener might be beneficial because the adjustment to
the user record might happen locally if the partition happens to have the user record. If the user record is
on a different partition, the transaction takes place between servers instead of between the client and
server. The network connection between servers is likely to be faster than the network connection between
the client and the server.

Avoid contention

Avoid scenarios such as having a global counter. The data grid does not scale if a single record is being
used a disproportionate number of times compared to the rest of the records. The performance of the data
grid is limited by the performance of the computer that holds the record.

In these situations, try to break up the record so it is managed per partition. For example, consider a
transaction that returns the total number of entries in the distributed cache. Instead of having every insert
and remove operation access a single record that increments, have a listener on each partition track the
insert and remove operations. With this listener tracking, insert and remove can become single-partition
operations.

Reading the counter becomes a cross-data-grid operation. Usually, it was already as inefficient as a cross-
data-grid operation because its performance was tied to the performance of the computer that is hosting
the record.

Implementation tips
You can also consider the following tips to achieve the best scalability.
Use reverse-lookup indexes

Consider a properly denormalized data model where customer records are partitioned based on the
customer ID number. This partitioning method is the logical choice because nearly every business
operation that is performed with the customer record uses the customer ID number. However, an
important transaction that does not use the customer ID number is the login transaction. It is more
common to have user names or email addresses for login instead of customer ID numbers.

The simple approach to the login scenario is to use a cross-data-grid transaction to find the customer
record. As explained previously, this approach does not scale.

The next option might be to partition on user name or email. This option is not practical because all the
customer ID-based operations become cross-data-grid transactions. Also, the customers on your site might
want to change their user name or email address. Products like WebSphere eXtreme Scale need the value
that is used to partition the data to remain constant.

The correct solution is to use a reverse lookup index. With WebSphere eXtreme Scale, a cache can be
created in the same distributed grid as the cache that holds all the user records. This cache is highly
available, partitioned, and scalable. This cache can be used to map a user name or email address to a
customer ID. This cache turns login into a two partition operation instead of a cross-grid operation. This
scenario is not as good as a single-partition transaction, but the throughput still scales linearly as the
number of computers increases.

Compute at write time

Commonly calculated values like averages or totals can be expensive to produce because these operations
usually require reading a large number of entries. Because reads are more common than writes in most
applications, it is efficient to compute these values at write time and then store the result in the cache.
This practice makes read operations both faster and more scalable.

Optional fields

Consider a user record that holds a business, home, and telephone number. A user might have all, none or
any combination of these numbers defined. If the data were normalized, then a user table and a telephone
number table would exist. The telephone numbers for a user can be found with a JOIN operation between

the two tables.

De-normalizing this record does not require data duplication, because most users do not share telephone
numbers. Instead, empty slots in the user record must be allowed. Instead of having a telephone number
table, add three attributes to each user record, one for each telephone number type. This addition of
attributes eliminates the JOIN operation and makes a telephone number lookup for a user a single-partition
operation.

Placement of many-to-many relationships

Consider an application that tracks products and the stores in which the products are sold. A single product
is sold in many stores, and a single store sells many products. Assume that this application tracks 50 large
retailers. Each product is sold in a maximum of 50 stores. Each store sells thousands of products.

Keep a list of stores inside the product entity (arrangement A), instead of keeping a list of products inside
each store entity (arrangement B). Looking at some of the transactions this application must run illustrates
why arrangement A is more scalable.

First look at updates. With arrangement A, removing a product from the inventory of a store locks the
product entity. If the data grid holds 10000 products, only 1/10000 of the grid must be locked to complete
the update. With arrangement B, the data grid only contains only 50 stores, so 1/50 of the data grid must
be locked to complete the update. So even though both of these updates might be considered single-
partition operations, arrangement A scales out more efficiently.

Now, considering reads with arrangement A, looking up the stores at which a product is sold is a single-
partition transaction that scales and is fast because the transaction only transmits a small amount of data.
With arrangement B, this transaction becomes a cross-data-grid transaction because each store entity
must be accessed to see if the product is sold at that store, which reveals an enormous performance
advantage for arrangement A.

Scaling with normalized data

One legitimate use of cross-data-grid transactions is to scale data processing. If a data grid has 5
computers and a cross-data-grid transaction is dispatched that sorts through about 100,000 records on
each computer, then that transaction sorts through 500,000 records. If the slowest computer in the data
grid can perform 10 of these transactions per second, then the data grid is capable of sorting through
5,000,000 records per second. If the data in the grid doubles, then each computer must sort through
200,000 records, and each transaction sorts through 1,000,000 records. This data increase decreases the
throughput of the slowest computer to 5 transactions per second, reducing the throughput of the data grid
to 5 transactions per second. Still, the data grid sorts through 5,000,000 records per second.

In this scenario, doubling the number of computers allows each computer to return to its previous load of
sorting through 100,000 records, allowing the slowest computer to process 10 of these transactions per
second. The throughput of the data grid stays the same at 10 requests per second, but now each
transaction processes 1,000,000 records. As a result, the data grid doubled its capacity in terms of
processing records to 10,000,000 per second.

Applications such as a search engine that needs to scale both in terms of data processing to accommodate
the increasing size of the Internet and throughput to accommodate growth in the number of users, you
must create multiple data grids, with a round robin of the requests between the data grids. If you must
scale up the throughput, add computers and add another data grid to service requests. If data processing
must be scaled up, add more computers and keep the number of data grids constant.

Parent topic: Scalability overview
Parent topic: Transaction processing overview

Scaling in units or pods

Although you can deploy a data grid over thousands of Java virtual machines, you might consider splitting
the data grid into units or pods to increase the reliability and ease of testing of your configuration. A pod is a
group of servers that is running the same set of applications.

Deploying a large single data grid

Testing has verified that eXtreme Scale can scale out to over 1000 JVMs. Such testing encourages building
applications to deploy single data grids on large numbers of boxes. Although it is possible to do this, it is not
recommended, for several reasons:

1. Budget concerns: Your environment cannot realistically test a 1000-server data grid. However, it can
test a much smaller data grid considering budget reasons, so you do not need to buy twice the
hardware, especially for such a large number of servers.

2. Different application versions: Requiring a large number of boxes for each testing thread is not
practical. The risk is that you are not testing the same factors as you would in a production
environment.

3. Data loss: Running a database on a single hard drive is unreliable. Any problem with the hard drive
causes you to lose data. Running a growing application on a single data grid is similar. You will likely
have bugs in your environment and in your applications. So placing all of the data on a single large
system will often lead to a loss of large amounts of data.

Splitting the data grid

Splitting the application data grid into pods (units) is a more reliable option. A pod is a group of servers that
are running a homogenous application stack. Pods can be of any size, but ideally they should consist of
about 20 physical servers. Instead of having 500 physical servers in a single data grid, you can have 25 pods
of 20 physical servers. A single version of an application stack should run on a given pod, but different pods
can have their own versions of an application stack.

Generally, an application stack considers levels of the following components.
Operating system

Hardware

JVM

WebSphere® eXtreme Scale version

Application

Other necessary components

A pod is a conveniently sized deployment unit for testing. Instead of having hundreds of servers for testing,
it is more practical to have 20 servers. In this case, you are still testing the same configuration as you would
have in production. Production uses grids with a maximum size of 20 servers, constituting a pod. You can
stress-test a single pod and determine its capacity, number of users, amount of data, and transaction
throughput. This makes planning easier and follows the standard of having predictable scaling at predictable
cost.

Setting up a pod-based environment

In different cases, the pod does not necessarily have to have 20 servers. The purpose of the pod size is for
practical testing. The size of a pod should be small enough that if a pod encounters problems in production,
the fraction of transactions affected is tolerable.

Ideally, any bug impacts a single pod. A bug would only have an impact on four percent of the application
transactions rather than 100 percent. In addition, upgrades are easier because they can be rolled out one
pod at a time. As a result, if an upgrade to a pod creates problems, the user can switch that pod back to the
prior level. Upgrades include any changes to the application, the application stack, or system updates. As
much as possible, upgrades should only change a single element of the stack at a time to make problem
diagnosis more precise.

To implement an environment with pods, you need a routing layer above the pods that is forwards and
backwards compatible if pods get software upgrades. Also, you should create a directory that includes
information about which pod has what data. You can use another eXtreme Scale data grid for this with a
database behind it, preferably using the write-behind scenario.) This yields a two-tier solution. Tier 1 is the
directory and is used to locate which pod handles a specific transaction. Tier 2 is composed of the pods
themselves. When tier 1 identifies a pod, the setup routes each transaction to the correct server in the pod,
which is usually the server holding the partition for the data used by the transaction. Optionally, you can also
use a near cache on tier 1 to lower the impact associated with looking up the correct pod.

Using pods is slightly more complex than having a single data grid, but the operational, testing, and
reliability improvements make it a crucial part of scalability testing.

Parent topic: Scalability overview

Availability overview

High availability
With high availability, WebSphere® eXtreme Scale provides reliable data redundancy and detection of
failures.

Replicas and shards

With eXtreme Scale, an in-memory database or shard can be replicated from one Java™ virtual
machine (JVM) to another. A shard represents a partition that is placed on a container. Multiple shards
that represent different partitions can exist on a single container. Each partition has an instance that is
a primary shard and a configurable number of replica shards. The replica shards are either
synchronous or asynchronous. The types and placement of replica shards are determined by a
deployment policy, which specifies the minimum and maximum number of synchronous and
asynchronous shards.

Parent topic: Product overview

High availability

With high availability, WebSphere® eXtreme Scale provides reliable data redundancy and detection of
failures.

WebSphere eXtreme Scale self-organizes data grids of Java™ virtual machines into a loosely federated tree.
The catalog service is at the root and core groups hold container servers are at the leaves of the tree. See
Caching architecture: Maps, containers, clients, and catalogs for more information.

Important terms

e Heartbeat: A signal that is sent between servers to convey that they are running.

e Quorum: A group of catalog servers that communicate and conduct placement operations in the data
grid. This group consists of all of the catalog servers in the data grid, unless you manually override the
quorum mechanism with administrative actions.

e Brownout: A temporary loss of connectivity between one or more servers.

e Blackout: A permanent loss of connectivity between one or more servers.

e Data center: A geographically located group of servers that are generally connected with a local area
network (LAN).

e Zone: A zone is a configuration option that is used to group servers together that share some physical
characteristic. Examples of zones for a group of servers include: a data center, an area network, a
building, or a floor of a building.

e Network partition: Two catalog servers act as primaries concurrently. Both servers make changes to
the catalog server state, which leads to data corruption.

Core groups

A core group is a high availability domain of container servers. The catalog service places container
servers into core groups of a limited size. A core group tries to detect the failure of its members. A
single member of a core group is elected to be the core group leader. The core group leader
periodically tells the catalog service that the core group is alive and reports any membership changes
to the catalog service. A membership change might be a Java virtual machine (JVM) failure or a newly
added JVM that joins the core group.

High availability catalog service

A catalog service domain is the data grid of catalog servers you are using, which retain topology
information for all of the container servers in your eXtreme Scale environment. The catalog service
controls balancing and routing for all clients.

Catalog server quorums

The catalog service domain is a fixed set of catalog server Java virtual machines (JVM). For the best
performance, do not configure catalog service domains to span data centers. When the quorum
mechanism is enabled, all the catalog servers in the quorum must be available and communicating
with each other for placement operations to occur in the data grid. The catalog service responds to
container server lifecycle events while the catalog service has quorum. These lifecycle events include
the placement or removal of shards on a container server when the container server stops or starts.
When a brownout scenario or other failure occurs, not all members of the quorum are available. So,
you must override quorum because placement operations do not occur if the quorum is not available.

Replication for availability
Replication provides fault tolerance and increases performance for a distributed eXtreme Scale
topology. Replication is enabled by associating backing maps with a map set.

Parent topic: Availability overview

Related tasks:

Configuring the quorum mechanism

Tuning the heartbeat interval setting for failover detection
Managing data center failures when quorum is not enabled

Replication for availability

Replication provides fault tolerance and increases performance for a distributed eXtreme Scale topology.
Replication is enabled by associating backing maps with a map set.

About map sets

A map set is a collection of maps that are categorized by a partition-key. This partition-key is derived from
the key on the individual map by taking its hash modulo the number of partitions. If one group of maps
within the map set has partition-key X, those maps are stored in a corresponding partition X in the data grid.
If another group has partition-key Y, all of the maps are stored in partition Y, and so on. The data within the
maps is replicated based on the policy defined on the map set. Replication occurs on distributed topologies.

Map sets are assigned the number of partitions and a replication policy. The map set replication
configuration identifies the number of synchronous and asynchronous replica shards for the map set must in
addition to the primary shard. For example, if one synchronous and one asynchronous replica exist, all of the
BackingMaps that are assigned to the map set each have a replica shard distributed automatically within the
set of available container server s for the data grid. The replication configuration can also enable clients to
read data from synchronously replicated servers. This can spread the load for read requests over additional
servers in the data grid. Replication has a programming model impact only when preloading the backing
maps.

Map preloading

For a description of preloading methods, including client loaders, see Data preloading and warm-up.

Maps can be associated with Loaders. A loader is used to fetch objects when they cannot be found in the
map (a cache miss) and also to write changes to a back-end when a transaction commits. Loaders can also
be used for preloading data into a map. The preloadMap method of the Loader interface is called on each
map when its corresponding partition in the map set becomes a primary. The preloadMap method is not
called on replicas. It attempts to load all the intended referenced data from the back-end into the map using
the provided session. The relevant map is identified by the BackingMap argument that is passed to the
preloadMap method.

void preloadMap(Session session, BackingMap backingMap) throws LoaderException;

Preloading in partitioned map set

Maps can be partitioned into N partitions. Maps can therefore be striped across multiple servers, with each
entry identified by a key that is stored only on one of those servers. Very large maps can be held in a data
grid because the application is no longer limited by the heap size of a single JVM to hold all the entries of a
Map. Applications that want to preload with the preloadMap method of the Loader interface must identify the
subset of the data that it preloads. A fixed number of partitions always exists. You can determine this
number by using the following code example:

int numPartitions = backingMap.getPartitionManager().getNumOfPartitions();
int myPartition = backingMap.getPartitionId();

This code example shows that an application can identify the subset of the data to preload from the
database. Applications must always use these methods even when the map is not initially partitioned. These
methods allow flexibility: If the map is later partitioned by the administrators, then the loader continues to
work correctly.

The application must issue queries to retrieve the myPartition subset from the backend. If a database is
used, then it might be easier to have a column with the partition identifier for a given record unless there is
some natural query that allows the data in the table to partition easily.

Performance

The preload implementation copies data from the back-end into the map by storing multiple objects in the
map in a single transaction. The optimal number of records to store per transaction depends on several
factors, including complexity and size. For example, after the transaction includes blocks of more than 100
entries, the performance benefit decreases as you increase the number of entries. To determine the optimal
number, begin with 100 entries and then increase the number until the performance benefit decreases to
none. Larger transactions result in better replication performance. Remember, only the primary runs the
preload code. The preloaded data is replicated from the primary to any replicas that are online.

Preloading map sets

If the application uses a map set with multiple maps then each map has its own loader. Each loader has a

preload method. Each map is loaded serially by the data grid. It might be more efficient to preload all the
maps by designating a single map as the preloading map. This process is an application convention. For
example, two maps, department and employee, might use the department Loader to preload both the
department and the employee maps. This procedure ensures that, transactionally, if an application wants a
department then the employees for that department are in the cache. When the department Loader
preloads a department from the back-end, it also fetches the employees for that department. The
department object and its associated employee objects are then added to the map using a single
transaction.

Recoverable preloading

Some customers have very large data sets that need caching. Preloading this data can be very time
consuming. Sometimes, the preloading must complete before the application can go online. You can benefit
from making preloading recoverable. Suppose there are a million records to preload. The primary is
preloading them and fails at the 800,000th record. Normally, the replica chosen to be the new primary clears
any replicated state and starts from the beginning. eXtreme Scale can use a ReplicaPreloadController
interface. The loader for the application would also need to implement the ReplicaPreloadController
interface. This example adds a single method to the Loader: Status checkPreloadStatus(Session
session, BackingMap bmap) ;. This method is called by the eXtreme Scale run time before the preload
method of the Loader interface is normally called. The eXtreme Scale tests the result of this method (Status)
to determine its behavior whenever a replica is promoted to a primary.

Table 1. Status value and response
Returned status value eXtreme Scale response
Status.PRELOADED_ALREADY eXtreme Scale does not call the preload method at all

because this status value indicates that the map is
fully preloaded.

Status.FULL PRELOAD_NEEDED eXtreme Scale clears the map and calls the preload
method normally.

Status.PARTIAL PRELOAD NEEDED eXtreme Scale leaves the map as-is and calls preload.
This strategy allows the application loader to continue
preloading from that point onwards.

Clearly, while a primary is preloading the map, it must leave some state in a map in the map set that is
being replicated so that the replica determines what status to return. You can use an extra map named, for
example, RecoveryMap. This RecoveryMap must be part of the same map set that is being preloaded to
ensure that the map is replicated consistently with the data being preloaded. A suggested implementation
follows.

As the preload commits each block of records, the process also updates a counter or value in the
RecoveryMap as part of that transaction. The preloaded data and the RecoveryMap data are replicated
atomically to the replicas. When the replica is promoted to primary, it can now check the RecoveryMap to
see what has happened.

The RecoveryMap can hold a single entry with the state key. If no object exists for this key then you need a
full preload (checkPreloadStatus returns FULL PRELOAD NEEDED). If an object exists for this state key and
the value is COMPLETE, the preload completes, and the checkPreloadStatus method returns
PRELOADED_ALREADY. Otherwise, the value object indicates where the preload restarts and the
checkPreloadStatus method returns: PARTIAL PRELOAD NEEDED. The loader can store the recovery point in
an instance variable for the loader so that when preload is called, the loader knows the starting point. The
RecoveryMap can also hold an entry per map if each map is preloaded independently.

Handling recovery in synchronous replication mode with a Loader

The runtime is designed not to lose committed data when the primary fails. The following section shows the
algorithms used. These algorithms apply only when a replication group uses synchronous replication. A
loader is optional.

The runtime can be configured to replicate all changes from a primary to the replicas synchronously. When a
synchronous replica is placed, it receives a copy of the existing data on the primary shard. During this time,
the primary continues to receive transactions and copies them to the replica asynchronously. The replica is
not considered to be online at this time.

After the replica catches up the primary, the replica enters peer mode and synchronous replication begins.
Every transaction committed on the primary is sent to the synchronous replicas and the primary waits for a
response from each replica. A synchronous commit sequence with a Loader on the primary looks like the
following set of steps:

Table 2. Commit sequence on the primary

Step with loader Step without loader

Get locks for entries same

Flush changes to the loader no-op

Save changes to the cache same

Send changes to replicas and wait for same

acknowledgment

Commit to the loader through the TransactionCallback Plug-in commit called, but does
plug-in nothing

Release locks for entries same

Notice that the changes are sent to the replica before they are committed to the loader. To determine when
the changes are committed on the replica, revise this sequence: At initialize time, initialize the tx lists on the
primary as below.

CommitedTx = {}, RolledBackTx = {}

During synchronous commit processing, use the following sequence:

Table 3. Synchronous commit processing

Step with loader Step without loader
Get locks for entries same
Flush changes to the loader no-op
Save changes to the cache same
Send changes with a committed transaction, roll back same

transaction to replica, and wait for acknowledgment

Clear list of committed transactions and rolled back same
transactions

Commit the loader through the TransactionCallBack plug-in TransactionCallBack plug-
in commit is still called,
but typically does not do

anything
If commit succeeds, add the transaction to the committed no-op
transactions, otherwise add to the rolled back transactions
Release locks for entries same

For replica processing, use the following sequence:

Receive changes

Commit all received transactions in the committed transaction list
Roll back all received transactions in the rolled back transaction list
Start a transaction or session

Apply changes to the transaction or session

Save the transaction or session to the pending list

Send back reply

NouUuhwNhH

Notice that on the replica, no loader interactions occur while the replica is in replica mode. The primary must
push all changes through the Loader. The replica does not push any changes. A side effect of this algorithm
is that the replica always has the transactions, but they are not committed until the next primary transaction
sends the commit status of those transactions. The transactions are then committed or rolled back on the
replica. Until then, the transactions are not committed. You can add a timer on the primary that sends the
transaction outcome after a small period (a few seconds). This timer limits, but does not eliminate, any
staleness to that time window. This staleness is only a problem when using replica read mode. Otherwise,
the staleness does not have an impact on the application.

When the primary fails, it is likely that a few transactions were committed or rolled back on the primary, but
the message never made it to the replica with these outcomes. When a replica is promoted to the new
primary, one of the first actions is to handle this condition. Each pending transaction is reprocessed against
the new primary's set of maps. If there is a Loader, then each transaction is given to the Loader. These
transactions are applied in strict first in first out (FIFO) order. If a transaction fails, it is ignored. If three
transactions are pending, A, B, and C, then A might commit, B might rollback, and C might also commit. No
one transaction has any impact on the others. Assume that they are independent.

A loader might want to use slightly different logic when it is in failover recovery mode versus normal mode.
The loader can easily know when it is in failover recovery mode by implementing the
ReplicaPreloadController interface. The checkPreloadStatus method is only called when failover recovery

completes. Therefore, if the apply method of the Loader interface is called before the checkPreloadStatus
method, then it is a recovery transaction. After the checkPreloadStatus method is called, the failover
recovery is complete.

Load balancing across replicas

The eXtreme Scale, unless configured otherwise, sends all read and write requests to the primary server for
a given replication group. The primary must service all requests from clients. You might want to allow read
requests to be sent to replicas of the primary. Sending read requests to the replicas allows the load of the
read requests to be shared by multiple Java™ Virtual Machines (JVM). However, using replicas for read
requests can result in inconsistent responses.

Load balancing across replicas is typically used only when clients are caching data that is changing all the
time or when the clients are using pessimistic locking.

If the data is continually changing and then being invalidated in client near caches, the primary should see a
relatively high get request rate from clients as a result. Likewise, in pessimistic locking mode, no local cache
exists, so all requests are sent to the primary.

If the data is relatively static or if pessimistic mode is not used, then sending read requests to the replica
does not have a large impact on performance. The frequency of get requests from clients with caches that
are full of data is not high.

When a client first starts, its near cache is empty. Cache requests to the empty cache are forwarded to the
primary. The client cache gets data over time, causing the request load to drop. If many clients start
concurrently, then the load might be significant and replica read might be an appropriate performance
choice.

Client-side replication

With eXtreme Scale, you can replicate a server map to one or more clients by using asynchronous
replication. A client can request a local read-only copy of a server side map by using the
ClientReplicableMap.enableClientReplication method.

void enableClientReplication(Mode mode, int[] partitions,
ReplicationMapListener listener) throws ObjectGridException;

The first parameter is the replication mode. This mode can be a continuous replication or a snapshot
replication. The second parameter is an array of partition IDs that represent the partitions from which to
replicate the data. If the value is null or an empty array, the data is replicated from all the partitions. The last
parameter is a listener to receive client replication events. See ClientReplicableMap and
ReplicationMapListener in the APl documentation for details.

After the replication is enabled, then the server starts to replicate the map to the client. The client is
eventually only a few transactions behind the server at any point in time.

Parent topic: High availability

Related concepts:
Partitioning
Writing a loader with a replica preload controller

Related tasks:

Configuring the guorum mechanism

Tuning the heartbeat interval setting for failover detection
Managing data center failures when quorum is not enabled

High availability catalog service

A catalog service domain is the data grid of catalog servers you are using, which retain topology information
for all of the container servers in your eXtreme Scale environment. The catalog service controls balancing
and routing for all clients.

For more information about catalog servers, see Catalog service.

Figure 1. Catalog service domain

Catalog service domain

JVM (Backup)

JVM (Master)
Catalog Service

Placement Service
Core Group Mgr Administration

When multiple catalog servers start, one of the servers is elected as the master catalog server that accepts
heartbeats and handles system data changes in response to any catalog service or container changes.

When clients contact any one of the catalog servers, the routing table for the catalog service domain is
propagated to the clients through the Common Object Request Broker Architecture (CORBA) service context.

Configure at least three catalog servers in the catalog service domain. Catalog servers must be installed on
separate nodes or separate installation images from your container servers to ensure that you can
seamlessly upgrade your servers at a later date. If your configuration has zones, you can configure one
catalog server per zone.

When a container server contacts one of the catalog servers, the routing table for the catalog service
domain is also propagated to the catalog server and container server through the CORBA service context.
Furthermore, if the contacted catalog server is not currently the master catalog server, the request is
automatically rerouted to the current master catalog server and the routing table for the catalog server is
updated.

Note: A catalog service domain and the container server data grid are very different. The catalog service
domain is for high availability of your system data. The container server data grid is for your data high
availability, scalability, and workload management. Therefore, two different routing tables exist: the routing
table for the catalog service domain and the routing table for the container server data grid shards.

Catalog service domain heart-beating

The catalog service domain looks like a private core group with a static membership and a quorum
mechanism. It detects failures the same way as a normal core group. However, the behavior is modified to
include quorum logic. The catalog service also uses a less aggressive heart-beating configuration.

Parent topic: High availability

Related concepts:
Catalog service

Related tasks:

Configuring the guorum mechanism

Tuning the heartbeat interval setting for failover detection

Managing data center failures when quorum is not enabled

Configuring WebSphere eXtreme Scale with WebSphere Application Server
Configuring the catalog service in WebSphere Application Server

Creating catalog service domains in WebSphere Application Server

Related reference:

Catalog service domain administrative tasks
Server properties file

Catalog server quorums

The catalog service domain is a fixed set of catalog server Java virtual machines (JVM). For the best
performance, do not configure catalog service domains to span data centers. When the quorum mechanism
is enabled, all the catalog servers in the quorum must be available and communicating with each other for
placement operations to occur in the data grid. The catalog service responds to container server lifecycle
events while the catalog service has quorum. These lifecycle events include the placement or removal of
shards on a container server when the container server stops or starts. When a brownout scenario or other
failure occurs, not all members of the quorum are available. So, you must override quorum because
placement operations do not occur if the quorum is not available.

Failure classification

Single failure: When the failure of one container server or catalog server occurs in the environment, it is
considered to be a single failure event. When a single failure event occurs, recovery can occur without data
loss.

Double failure: When two failures of any server processes occur simultaneously, data loss can occur on the
second failure. Because of the second failure, applications might lose write access to the data that was
stored on the failed container server. To prevent double failures, you can isolate components of the data grid
from each other. For more information, see Zones.

Quorum loss

If the catalog service loses quorum, it waits for quorum to be reestablished. While the catalog service does
not have quorum, it ignores lifecycle events from catalog and container servers.

WebSphere® eXtreme Scale expects to lose quorum for the following scenarios:
e A catalog server fails

A catalog server that fails causes quorum to be lost. If a JVM fails, quorum can be reestablished by
either overriding quorum or by restarting the failed catalog server.

e Brownout occurs

A brownout is when a temporary loss of connectivity occurs. Brownouts are transient and clear within
seconds or minutes. Brownouts can be frequent and repeated depending on the cause. Brownouts can
be caused by network partitions, long garbage collection pauses, operating system level swapping, or
disk I/0O problems. Quorum is the mechanism for reacting to brownouts in the catalog server that are
long enough to cause heartbeat failures. While the product tries to maintain normal operation during
the brownout period, a brownout is regarded as a single failure event. The failure is expected to be
fixed and then normal operation resumes with no actions necessary.

WebSphere eXtreme Scale does not lose quorum when a catalog server is stopped with the stop command
or any other administrative actions. The system knows that the server instance stopped, which is different
from a JVM failure or brownout. The quorum drops to one less server, preserving quorum. The remaining
servers still have quorum. Restarting the catalog server sets quorum back to the previous number.

Client behavior during quorum loss

If the client can connect to a catalog server, the client can bootstrap to the data grid whether the catalog
service domain has quorum or not. The client tries to connect to any catalog server instance to obtain a
route table and then interact with the data grid. If no container failures or connectivity issues happen during
the quorum loss event, then clients can still fully interact with the container servers.

Recovery after quorum is reestablished

If quorum is lost for any reason, when quorum is reestablished, a recovery protocol is run. When the quorum
loss event occurs, all heartbeating for core groups is suspended and failure reports are also ignored. After
quorum is back, any container server failures that occurred while quorum was lost are processed. Any shards
that were hosted on container servers that were reported as failed are recovered. If primary shards were
lost, then surviving replica shards become primary shards. If replica shards were lost, more replica shards
are created.

Scenarios for overriding quorum

Quorum loss due to a catalog server failure or a network brownout recovers automatically after the catalog
server is restarted or the network brownout ends. When intermittent failures are occurring, such as network
instability, you must remove the problematic catalog servers by manually ending the catalog server
processes. Then, you can override quorum.

When you override quorum, the catalog service assumes that quorum is achieved with the current
membership. Container server lifecycle events are processed. When you run an override quorum command,
you are informing the catalog service domain that the failed catalog servers do not have a chance of
recovering.

The following list considers some scenarios for overriding quorum. In the configuration, you have three
catalog servers: A, B, and C.

e Brownout: Brownout scenarios occur and are resolved fairly quickly. The C catalog server is isolated
temporarily. The catalog service loses quorum and waits for the brownout to complete. After the
brownout is over, the C catalog server rejoins the catalog service domain and quorum is reestablished.
Your application sees no problems during this time. You do not need to take any administrative actions.

e JVM process failure: The JVM for the C catalog server fails and the catalog service loses quorum. You
can override quorum immediately, which restarts the processing of container server lifecycle events.
Then, diagnose why the C catalog server failed and resolve any issues. When you are sure that the
problem is resolved, you can restart the C catalog server. The C catalog server joins the catalog
service domain again when it restarts. Your application sees no problems during this time.

e Problematic or repeated brownouts: In this scenario, the A and B catalog servers are on one side
of the network partition, while the C catalog server is on the other. You must be careful about when
you override quorum in this scenario. You do not want to override quorum just as the brownout
temporarily heals, and then have the brownout occur again. If this scenario were to occur, both sides
of the network partition could become primary, causing a split brain condition.

e Multiple failures: During a failure scenario, catalog server C and one or more container servers are
lost. Ensure that the failing servers are stopped. Then, override quorum. The surviving catalog servers
use the remaining container servers to run a full recovery by replacing shards that were hosted in the
failed container servers. The catalog service is now running with a full guorum of the A and B catalog
servers. The application might see delays or exceptions during the interval between the start of the
blackout and when quorum is overridden. After quorum is overridden, the data grid recovers and
normal operation is resumed. If multiple containers were lost that included primary and all replica
shards for particular partitions, data loss for those partitions occurs.

Majority quorum

For added flexibility to the standard quorum support in WebSphere eXtreme Scale, a new quorum type is
available called majority quorum. In this quorum type, WebSphere eXtreme Scale does not leave quorum if
there are greater than half the catalog servers still running. For example, if there are three catalog servers
and one of them cannot communicate with the other two catalog servers, then the other two catalogs stay in
quorum. The other two catalogs allow for placement changes to occur. If the other catalog rejoins the group,
WebSphere eXtreme Scale tries to let it join dynamically if possible. Otherwise, the catalog is restarted so
that it can properly rejoin the catalog cluster. Majority quorum automatically resolves catalog server failures
on the majority side when a brownout event affects the catalog servers. Also, this quorum policy greatly
reduces the need to recycle the catalogs that were partitioned when they rejoin. Even if the primary catalog
server was partitioned, when it rejoins the cluster, the catalog server is merged back and only one primary
remains in the cluster. To enable majority quorum, see Configuring the guorum mechanism. However, if you
have four catalog servers and two are isolated, then there is no majority and WebSphere eXtreme Scale
leaves quorum. Therefore, a majority quorum policy equates to<number of catalog servers configured
in a cluster>/2 +1.

Note: If a brownout event occurs and affects container servers on the non-majority side, then the container
servers need to be recycled when the brownout recovers. Also, if there are concerns of frequent and
repeated brownouts within your environment, then standard quorum might prove to be a better option than
majority quorum. This way, you can investigate and fix the environmental issue, rather than continually
moving data around during repeated container error recovery.

Deciding on a quorum policy for your environment

Use the table to help you decide what type of quorum policy would make sense for your environment, or if
you should enable quorum at all.

Q
u
o
r
u
m How does this
st policy behave
at during a What is the
e brownout? motivation
for usage? Associated risks to consider
St e All configured Prevent Requires manual intervention to initiate any

a Fatalan ~liickar linder anv container failure recoverv. This means failiire

- _GLGIUU ciludLCI — = ey ———rm——- B I P AR T

n members circumstanc placement will not occur until quorum is

d need to be e the need overridden. If a container is lost while quorum
ar able to to recycle is violated, then the shards on that container
d communicate the grid due are not available until quorum is overridden.
with each to state If a client cannot reach a primary shard due
other in order corruption to loss of the shard or network issues, it will
for placement caused by not be able to update data. In cases where
changes to catalogs that replicaReadEnabled is set to true, the client
oCCur as a become will not be able to access the data either,
result of divergent until quorum is overridden or reestablished.
changes in during
container periods
server where
lifecycle communicati
e Fully removes on does not
need to work.
recycle
catalogs.
N e When You should Catastrophic, repeated, insidious
0 communicatio not manually communication errors can lead to repeated
n n is broken intervene data movement as a result of constant failure
€ between and let recovery. In worst cases, most of the grid
(N multiple WebSphere must recycle to achieve consistency when
o] catalog eXtreme environmental issues are fixed.
Q servers, each Scale recycle
u catalog can or shutdown
or potentially catalogs
u promote itself automaticall
m as the y.
) primary. The
result is a
conflict on

where various
partitions can
reside. The
conflicts can
also lead to
inconsistent
copies of
customer
data.

e The catalog
cluster state
can also
become
corrupted in
such
scenarios,
resulting in
the need to
recycle the
catalogs.
However,
recycle can
happen
automatically
depending on
whether the
container
reconnect

settings are
enabled or
disabled.

Parent topic: High availability

Related tasks:

Configuring the quorum mechanism

Tuning the heartbeat interval setting for failover detection
Managing data center failures when quorum is not enabled
Managing data center failures

Managing data center failures when quorum is enabled
Administering with the xscmd utility

Replicas and shards

With eXtreme Scale, an in-memory database or shard can be replicated from one Java™ virtual machine
(JVM) to another. A shard represents a partition that is placed on a container. Multiple shards that represent
different partitions can exist on a single container. Each partition has an instance that is a primary shard and
a configurable number of replica shards. The replica shards are either synchronous or asynchronous. The
types and placement of replica shards are determined by a deployment policy, which specifies the minimum
and maximum number of synchronous and asynchronous shards.

Shard types
Replication uses three types of shards:

e Primary
e Synchronous replica
e Asynchronous replica

The primary shard receives all insert, update, and remove operations. The primary shard adds and removes
replicas, replicates data to the replicas, and manages commits and rollbacks of transactions.

Synchronous replicas maintain the same state as the primary. When a primary replicates data to a
synchronous replica, the transaction is not committed until it commits on the synchronous replica.

Asynchronous replicas might or might not be at the same state as the primary. The asynchronous replica
polls for new data from the primary in the background. If new data arrives between replication requests and
the primary shard fails, an asynchronous replica will not have 100% of the data unless it is reloaded with a
loader. During a promotion to a primary, an asynchronous replica can temporarily promote to a synchronous
replica in order to receive any outstanding data before it transitions to a primary. However, if the primary is
not available, then promotion happens immediately.

The asynchronous replica poll adjusts itself automatically. If replication calls take a long time, the poll time is
less aggressive. If replication occurs quickly, the poll time shortens. If no new data is available (the system is
either idle or in a read mostly state), the asynchronous replica polls less aggressively until new data
replicates. A size limit is imposed on each replication call to prevent sending large packets over the wire.
When a new replica comes online, it can take several replication calls to copy all of the data from a
populated primary shard.

Figure 1. Communication path between a primary shard and replica shards

Machine A
Container server (JVM)
C___Shard Container 1 D
Ne—" Y\
Transaction | EE$3W
\/-\ Partition 0

/
Machine ﬂ

Contajner server (JVM)

Shard Containgr2

Synchronous
Replica Shard
Partition O

Machine C
Container

e
—

Asynchronous

Replica Shard

Partition 0

\.._______ gl _ _______./

Minimum synchronous replica shards

When a primary prepares to commit data, it checks how many synchronous replica shards voted to commit
the transaction. If the transaction processes normally on the replica, it votes to commit. If something went
wrong on the synchronous replica, it votes not to commit. Before a primary shard can commit, the number of
synchronous replica shards that are voting to commit must meet the minSyncReplica setting from the
deployment policy. When the number of synchronous replica shards that are voting to commit is too low, the
primary does not commit the transaction and an error results. This action ensures that the required number
of synchronous replicas are available with the correct data. Synchronous replicas that encountered errors
reregister to fix their state. For more information about reregistering, see Replica shard recovery.

The primary throws a ReplicationVotedToRollbackTransactionException error if too few synchronous replicas

file:////dcs/markdown/workspace/Transform/htmlout/0/com.ibm.websphere.extremescale.doc/cxslifecycl.html#cxslifecycl__replshardrec

voted to commit.

Replication and Loaders

Normally, a primary shard writes changes synchronously through the Loader to a database. The Loader and
database are always in sync. When the primary fails over to a replica shard, the database and Loader might
not be in synch. For example:

e The primary shard can send the transaction to the replica, and then fail before it commits to the
database.
e The primary shard can commit to the database, and then fail before it sends to the replica.

Either approach leads to either the replica being one transaction in front of or behind the database. This
situation is not acceptable. eXtreme Scale uses a special protocol and a contract with the Loader
implementation to solve this issue without two-phase commit. The protocol follows:

Primary side

e Send the transaction along with the previous transaction outcomes.

e Write to the database and try to commit the transaction.

e |f the database commits, then commit on eXtreme Scale. If the database does not commit, then roll
back the transaction.

e Record the outcome.

Replica side

e Receive a transaction and buffer it.
e For all outcomes, send with the transaction, commit any buffered transactions, and discard any rolled
back transactions.

Replica side on failover

e For all buffered transactions, provide the transactions to the Loader and the Loader attempts to
commit the transactions.

The Loader needs to be written to make each transaction is idempotent.

If the transaction is already in the database, then the Loader performs no operation.

If the transaction is not in the database, then the Loader applies the transaction.

After all transactions are processed, then the new primary can begin to serve requests.

This protocol ensures that the database is at the same level as the new primary state.

Replica behavior during failures
Synchronous replica behavior

The primary shard can accept new transactions during brownout or blackout conditions if the number of
replicas online is at least at the minsync property value for the map set. If any new transactions are
processed on the primary shard while the link to the synchronous replica is broken, the replica is
resynchronized with the current state of the primary when the link is reestablished.

Attention: Do not configure synchronous replication between data centers or over a WAN-style link.
Asynchronous replica behavior

While the connection is broken with an asynchronous replica, the primary shard can accept new
transactions. The asynchronous replica continues to poll the primary shard and waits for a successful call.
When the asynchronous replica receives communication exceptions and fails to replicate, it polls the primary
shard less aggressively. If the connection returns, the replica polls the primary and replicates any
outstanding changes.

Shard placement

The catalog service is responsible for placing shards. Each ObjectGrid has a number of partitions, each
of which has a primary shard and an optional set of replica shards. The catalog service allocates the
shards by balancing them so that they are evenly distributed over the available container servers.
Replica and primary shards for the same partition are never placed on the same container server or
the same IP address, unless the configuration is in development mode.

Reading from replicas
You can configure map sets such that a client is permitted to read from a replica rather than being
restricted to primary shards only.

Load balancing across replicas

Load balancing across replicas is typically used only when clients are caching data that is changing all
the time or when the clients are using pessimistic locking.

Shard lifecycles

Shards go through different states and events to support replication. The lifecycle of a shard includes
coming online, run time, shut down, fail over and error handling. Shards can be promoted from a
replica shard to a primary shard to handle server state changes.

Map sets for replication
Replication is enabled by associating BackingMaps with a map set.

Parent topic: Availability overview

Shard placement

The catalog service is responsible for placing shards. Each ObjectGrid has a number of partitions, each of
which has a primary shard and an optional set of replica shards. The catalog service allocates the shards by
balancing them so that they are evenly distributed over the available container servers. Replica and primary
shards for the same partition are never placed on the same container server or the same IP address, unless
the configuration is in development mode.

If a new container server starts, then eXtreme Scale retrieves shards from relatively overloaded container
servers to the new empty container server. This movement of shards enables horizontal scaling.

Scaling out

Scaling out means that when extra container servers are added to a data grid, eXtreme Scale tries to move
existing shards, primaries or replicas, from the old set of container servers to the new set. This movement
expands the data grid to take advantage of the processor, network and memory of the newly added
container servers. The movement also balances the data grid and tries to ensure that each JVM in the data
grid hosts the same amount of data. As the data grid expands, each server hosts a smaller subset of the
total grid. eXtreme Scale assumes that data is distributed evenly among the partitions. This expansion
enables scaling out.

Scaling in

Scaling in means that if a JVM fails, then eXtreme Scale tries to repair the damage. If the failed JVM had a
replica, then eXtreme Scale replaces the lost replica by creating a new replica on a surviving JVM. If the
failed JVM had a primary, then eXtreme Scale finds the best replica on the survivors and promotes the
replica to be the new primary. eXtreme Scale then replaces the promoted replica with a new replica that is
created on the remaining servers. To maintain scalability, eXtreme Scale preserves the replica count for
partitions as servers fail.

Figure 1. Placement of an ObjectGrid map set with a deployment policy of 3 partitions with a
minSyncReplicas value of 1, a maxSyncReplicas value of 1, and a maxAsyncReplicas value of 1

Machine &

Cortaimer senvar (V)
Shard contaimer 1

Prirmany Synchronous Asynchonous
Shard Replica Shard { | Replica Shard
Partition 0 Partition 1 Partition 2

Machine B

Contaimer servar ([JWA)
Shard containes 2

Prirarny Synchronous Asyreh nanous
Shard Replica Shard | | Replica Shard
Partition 1 Partition 2 Partition 0

Machine C

Container servar (JYh)

Shard container 3

Primary YNChronoUS Asynchronous
Shard Faplica Shard | [Replica Shard
Partition 2 Partition O Partition 1

Parent topic: Replicas and shards

Reading from replicas

You can configure map sets such that a client is permitted to read from a replica rather than being restricted
to primary shards only.

It can often be advantageous to allow replicas to serve as more than simply potential primaries in the case
of failures. For example, map sets can be configured to allow read operations to be routed to replicas by
setting the replicaReadEnabled option on the MapSet to true. The default setting is false.

For more information on the MapSet element, see Deployment policy descriptor XML file.

Enabling reading of replicas can improve performance by spreading read requests to more Java™ virtual
machines. If the option is not enabled, all read requests such as the ObjectMap.get or the
Query.getResultlterator methods are routed to the primary. When replicaReadEnabled is set to true, some
get requests might return stale data, so an application using this option must be able to tolerate this
possibility. However, a cache miss will not occur. If the data is not on the replica, the get request is redirected

to the primary and tried again.

The replicaReadEnabled option can be used with both synchronous and asynchronous replication.

Parent topic: Replicas and shards

Load balancing across replicas

Load balancing across replicas is typically used only when clients are caching data that is changing all the
time or when the clients are using pessimistic locking.

The eXtreme Scale, unless configured otherwise, sends all read and write requests to the primary server for
a given replication group. The primary must service all requests from clients. You might want to allow read
requests to be sent to replicas of the primary. Sending read requests to the replicas allows the load of the
read requests to be shared by multiple Java™ Virtual Machines (JVM). However, using replicas for read
requests can result in inconsistent responses.

Load balancing across replicas is typically used only when clients are caching data that is changing all the
time or when the clients are using pessimistic locking.

If the data is continually changing and then being invalidated in client near caches, the primary should see a
relatively high get request rate from clients as a result. Likewise, in pessimistic locking mode, no local cache
exists, so all requests are sent to the primary.

If the data is relatively static or if pessimistic mode is not used, then sending read requests to the replica
does not have a big impact on performance. The frequency of get requests from clients with caches that are
full of data is not high.

When a client first starts, its near cache is empty. Cache requests to the empty cache are forwarded to the
primary. The client cache gets data over time, causing the request load to drop. If a large number of clients
start concurrently, then the load might be significant and replica read might be an appropriate performance
choice.

Parent topic: Replicas and shards

Shard lifecycles

Shards go through different states and events to support replication. The lifecycle of a shard includes coming
online, run time, shut down, fail over and error handling. Shards can be promoted from a replica shard to a
primary shard to handle server state changes.

Lifecycle events

When primary and replica shards are placed and started, they go through a series of events to bring
themselves online and into listening mode.

Primary shard

The catalog service places a primary shard for a partition. The catalog service also does the work of
balancing primary shard locations and initiating failover for primary shards.

When a shard becomes a primary shard, it receives a list of replicas from the catalog service. The new
primary shard creates a replica group and registers all the replicas.

When the primary is ready, an open for business message displays in the SystemQOut. log file for the
container on which it is running. The open message, or the CWOBJ15111 message, lists the map name, map
set name, and partition number of the primary shard that started.

CWOBJ1511T: mapName:mapSetName:partitionNumber (primary) is open for business.

See Shard placement for more information on how the catalog service places shards.

Replica shard

Replica shards are mainly controlled by the primary shard unless the replica shard detects a problem. During
a normal lifecycle, the primary shard places, registers, and de-registers a replica shard.

When the primary shard initializes a replica shard, a message displays the log that describes where the
replica runs to indicate that the replica shard is available. The open message, or the CWOBJ1511] messaqge,
lists the map name, map set name, and partition number of the replica shard. This message follows:
CWOBJ1511T: mapName:mapSetName:partitionNumber (synchronous replica) is open for business.

or

CWOBJ1511T: mapName:mapSetName:partitionNumber (asynchronous replica) 1is open for
business.

Asynchronous replica shard: An asynchronous replica shard polls the primary for data. The replica
automatically will adjust the poll timing if it does not receive data from the primary, which indicates that it is
caught up with the primary. It also will adjust if it receives an error that might indicate that the primary has
failed, or if there is a network problem.

When the asynchronous replica starts replicating, it prints the following message to the SystemOut.log file
for the replica. This message might print more than one time per CWOBJ1511 message. It will print again if
the replica connects to a different primary or if template maps are added.

CWOBJ1543I: The asynchronous replica objectGridName:mapsetName:partitionNumber started or
continued replicating from the primary. Replicating for maps: [mapName]

Synchronous replica shard: When the synchronous replica shard first starts, it is not yet in peer mode.
When a replica shard is in peer mode, it receives data from the primary as data comes into the primary.
Before entering peer mode, the replica shard needs a copy of all of the existing data on the primary shard.

The synchronous replica copies data from the primary shard similar to an asynchronous replica by polling for
data. When it copies the existing data from the primary, it switches to peer mode and begins to receive data
as the primary receives the data.

When a replica shard reaches peer mode, it prints a message to the SystemOut.log file for the replica. The
time refers to the amount of time that it took the replica shard to get all of its initial data from the primary
shard. The time might display as zero or very low if the primary shard does not have any existing data to
replicate. This message may print more than one time per CWOBJ1511 message. It will print again if the
replica connects to a different primary or if template maps are added.

CWOBJ1526I: Replica objectGridName:mapsetName:partitionNumber:mapName entering peer

mode after X seconds.

When the synchronous replica shard is in peer mode, the primary shard must replicate transactions to all
peer mode synchronous replicas. The synchronous replica shard data remains at the same level as the
primary shard data. If a minimum number of synchronous replicas or minSync is set in the deployment
policy, that number of synchronous replicas must vote to commit before the transaction can successfully
commit on the primary.

Recovery events

Replication is designed to recover from failure and error events. If a primary shard fails, another replica takes
over. If errors are on the replica shards, the replica shard attempts to recover. The catalog service controls
the placement and transactions of new primary shards or new replica shards.

Replica shard becomes a primary shard

A replica shard becomes a primary shard for two reasons. Either the primary shard stopped or failed, or a
balance decision was made to move the previous primary shard to a new location.

The catalog service selects a new primary shard from the existing synchronous replica shards. If a primary
move needs to take place and there are no replicas, a temporary replica will be placed to complete the
transition. The new primary shard registers all of the existing replicas and accepts transactions as the new
primary shard. If the existing replica shards have the correct level of data, the current data is preserved as
the replica shards register with the new primary shard. Asynchronous replicas will poll against the new
primary.

Figure 1. Example placement of an ObjectGrid map set for the partition0 partition. The deployment policy
has a minSyncReplicas value of 1, a maxSyncReplicas value of 2, and a maxAsyncReplicas value of 1.

Machine & Machine B
Contaimer servar [JVR] Contaimer servar [JWVh]
Shard container 1 F Shard container 2
Prirmiary ynchronous
Shard Feplica Shard
Partiticn 0 [Partition O
S
\\\
Machine C “\\\ Machine D
Contalner server [Jv b] Container server [1y
Shard containerd
Synchronous Asynchronous
Replica Shard Replica Shard
Partiticn O Partition 0

Figure 2. The container for the primary shard fails

Machine B
Contaimer servar (WA
Shard container 2
yhchronous
Replica Shard
Partition O

L

Contaimer servar

Synchranous

Replica Shard
Partition 0

Asynchronous
Reaplica Shard
Partition O

Figure 3. The synchronous replica shard on ObjectGrid container 2 becomes the primary shard

Machine & Machine B

Contaimer senwar (JVA)
Shard container 2
]'Epwchmnﬂus rifmanry
Replica Shard
IJHM a

antainer servar
Shard container 4

RSy ERIronous
Replica Shard
Partition 0

Synchranous
Replica Shard
Partition 0

Figure 4. Machine B contains the primary shard. Depending on how automatic repair mode is set and the
availability of the containers, a new synchronous replica shard might or might not be placed on a machine.

Machine A Machine B

Contaimer senwar (JWV)
Shard container 2

Primary Shard
Pariifion O

Machine C / Machine D

Container semne Contaimer server (JWV
i Shard contajner 4
I
S}ml::hn:lnuus Asynchronous
Replica Shard Replica Shard
Partition 0 Partition O

A synchronous replica shard is controlled by the primary shard. However, if a replica shard detects a
problem, it can trigger a reregister event to correct the state of the data. The replica clears the current data
and gets a fresh copy from the primary.

Replica shard recovery

When a replica shard initiates a reregister event, the replica prints a log message.

CWOBJ152471: Replica listener
objectGridName:mapSetName:partition must re-register with the primary.
Reason: Exception listed

If a transaction causes an error on a replica shard during processing, then the replica shard is in an unknown
state. The transaction successfully processed on the primary shard, but something went wrong on the
replica. To correct this situation, the replica initiates a reregister event. With a new copy of data from the
primary, the replica shard can continue. If the same problem reoccurs, the replica shard does not
continuously reregister. See Failure events for more details.

Failure events
A replica can stop replicating data if it encounters error situations for which the replica cannot recover.
Too many register attempts

If a replica triggers a reregister multiple times without successfully committing data, the replica stops.
Stopping prevents a replica from entering an endless reregister loop. By default, a replica shard tries to
reregister three times in a row before stopping.

If a replica shard reregisters too many times, it prints the following message to the log.

file:////dcs/markdown/workspace/Transform/htmlout/0/com.ibm.websphere.extremescale.doc/cxslifecycl.html#cxslifecycl__failure

CWOBJ1537E: objectGridName:mapSetName:partition exceeded the maximum number
of times to reregister (timesAllowed) without successful transactions..

If the replica is unable to recover by reregistering, a pervasive problem might exist with the transactions that
are relative to the replica shard. A possible problem could be missing resources on the classpath if an error
occurs while inflating the keys or values from the transaction.

Failure while entering peer mode

If a replica attempts to enter peer mode and experiences an error processing the bulk existing data from the
primary (the checkpoint data), the replica shuts down. Shutting down prevents a replica from starting with
incorrect initial data. Because it receives the same data from the primary if it reregisters, the replica does
not retry.

If a replica shard fails to enter peer mode, it prints the following message to the log:

CWOBJ1527W Replica objectGridName:mapSetName:partition:mapName failed to enter peer mode
after numSeconds seconds.

An additional message displays in the log that explains why the replica failed to enter peer mode.
Recovery after re-register or peer mode failure

If a replica fails to re-register or enter peer mode, the replica is in an inactive state until a new placement
event occurs. A new placement event might be a new server starting or stopping. You can also start a
placement event by using the triggerPlacement method on the PlacementServiceMBean Mbean.

Parent topic: Replicas and shards

Map sets for replication
Replication is enabled by associating BackingMaps with a map set.

A map set is a collection of maps that are categorized by partition-key. This partition-key is derived from the
individual map's key by taking its hash modulo the number of partitions. If one group of maps within the map
set has partition-key X, those maps will be stored in a corresponding partition X in the data grid. If another
group has partition-key Y, all of the maps will be stored in partition Y, and so on. Also, the data within the
maps is replicated based on the policy defined on the map set, which is only used for distributed eXtreme
Scale topologies (unnecessary for local instances).

See Partitioning for more details.

Map sets are assigned what number of partitions they will have and a replication policy. The map set
replication configuration simply identifies the number of synchronous and asynchronous replica shards a
map set should have in addition to the primary shard. For example, if there is to be 1 synchronous and 1
asynchronous replica, all of the BackingMaps assigned to the map set will each have a replica shard
distributed automatically within the set of available containers for the eXtreme Scale. The replication
configuration can also enable clients to read data from synchronously replicated servers. This can spread the
load for read requests over additional servers in the eXtreme Scale. Replication only has a programming
model impact when preloading the BackingMaps.

Parent topic: Replicas and shards

Transaction processing overview

WebSphere® eXtreme Scale uses transactions as its mechanism for interaction with data.

Transaction processing in Java applications

To interact with data, the thread in your application needs its own session. When the application wants to
use the ObjectGrid on a thread, call one of the ObjectGrid.getSession methods to obtain a session. With the
session, the application can work with data that is stored in the ObjectGrid maps.

When an application uses a Session object, the session must be in the context of a transaction. A transaction
begins and commits or begins and rolls back with the begin, commit, and rollback methods on the Session
object. Applications can also work in auto-commit mode, in which the Session automatically begins and
commits a transaction whenever an operation runs on the map. Auto-commit mode cannot group multiple
operations into a single transaction. Auto-commit mode is the slower option if you are creating a batch of
multiple operations into a single transaction. However, for transactions that contain only one operation,
auto-commit is the faster option.

“11* When your application is finished with the Session, use the optional Session.close() method to close the
session. Closing the Session releases it from the heap and allows subsequent calls to the getSession()
method to be reused, improving performance.

Transactions

Transactions have many advantages for data storage and manipulation. You can use transactions to
protect the data grid from concurrent changes, to apply multiple changes as a concurrent unit, to
replicate data, and to implement a lifecycle for locks on changes.

CopyMode attribute
You can tune the number of copies by defining the CopyMode attribute of the BackingMap or
ObjectMap objects in the ObjectGrid descriptor XML file.

Locking strategies

Locking strategies include pessimistic, optimistic, and none. To choose a locking strategy, you must
consider issues such as the percentage of each type of operations you have, whether you use a loader,
and so on.

Lock types

When you are using pessimistic and optimistic locking, shared (S), upgradeable (U) and exclusive (X)
locks are used to maintain consistency. Understanding locking and its behavior is important when you
have pessimistic locking enabled. With optimistic locking, the locks are not held. Different types of
locks are compatible with others in various ways. Locks must be handled in the correct order to avoid
deadlock scenarios.

Deadlocks
Deadlocks can occur when two transactions try to update the same cache entry.

Data access and transactions
WebSphere eXtreme Scale uses transactions. After an application has a connection to a data grid, you
can access and interact with data in the data grid.

Transaction isolation
You can use one of three transaction isolation levels to tune the locking semantics that maintain
consistency in each cache map: repeatable read, read committed and read uncommitted.

Single-partition and cross-data-grid transactions

The major distinction between WebSphere eXtreme Scale and traditional data storage solutions like
relational databases or in-memory databases is the use of partitioning, which allows the cache to scale
linearly. The important types of transactions to consider are single-partition and every-partition (cross-
data-grid) transactions.

JMS for distributed transaction changes
Use Java™ Message Service (JMS) for distributed transaction changes between different tiers or in
environments on mixed platforms.

Two-phase commit and error recovery
The two-phase commit protocol coordinates all the partitions that participate in a distributed
transaction on whether to commit or roll back the transaction.

Parent topic: Product overview
Parent topic: Plug-ins for managing transaction life cycle events

Related concepts:
Two-phase commit and error recovery

Related tasks:
Resolving lock timeout exceptions
Troubleshooting lock timeout exceptions for a multi-partition transaction

Transactions

Transactions have many advantages for data storage and manipulation. You can use transactions to protect
the data grid from concurrent changes, to apply multiple changes as a concurrent unit, to replicate data, and
to implement a lifecycle for locks on changes.

When a transaction starts, WebSphere® eXtreme Scale allocates a special difference map to hold the
current changes or copies of key and value pairs that the transaction uses. Typically, when a key and value
pair is accessed, the value is copied before the application receives the value. In Java™ applications, the
difference map tracks all changes for operations such as insert, update, get, and remove. Keys are not
copied because they are assumed to be immutable. If a transaction is rolled back, then the difference map
information is discarded, and locks on entries are released. When a transaction commits, the changes are
applied to the maps and locks are released.

If an ObjectTransformer object is specified in a Java application, then this object is used for copying the
value. If the transaction is using optimistic locking, then before images of the values are also tracked for
comparison when the transaction commits.

If optimistic locking is being used in a Java application, then eXtreme Scale compares the before image
versions of the values with the values that are in the map. These values must match for the transaction to
commit. This comparison enables a multiple version locking scheme, but at a cost of two copies being made
when the transaction accesses the entry. All values are copied again and the new copy is stored in the map.
WebSphere eXtreme Scale performs this copy to protect itself against the application changing the
application reference to the value after a commit.

You can avoid using several copies of the information. The application can save a copy by using pessimistic
locking instead of optimistic locking as the cost of limiting concurrency. The copy of the value at commit time
can also be avoided if the application agrees not to change a value after a commit.

Advantages of transactions
Use transactions for the following reasons:

By using transactions, you can:

Roll back changes if an exception occurs or business logic needs to undo state changes.

To apply multiple changes as an atomic unit at commit time.

Hold and release locks on data to apply multiple changes as an atomic unit at commit time.
Protect a thread from concurrent changes.

Implement a lifecycle for locks on changes.

Produce an atomic unit of replication.

Transaction size

Larger transactions are more efficient, especially for replication. However, larger transactions can adversely
affect concurrency because the locks on entries are held for a longer time. If you use larger transactions, you
can increase replication performance. This performance increase is important when you are pre-loading a
Map. Experiment with different batch sizes to determine what works best for your scenario.

Larger transactions also help with loaders. If a loader is being used that can run SQL batching, then
significant performance gains are possible depending on the transaction and significant load reductions on
the database side. This performance gain depends on the Loader implementation.

Automatic commit mode

If no transaction is actively started, then when an application interacts with an ObjectMap object, an
automatic begin and commit operation is done on behalf of the application. This automatic begin and
commit operation works, but prevents rollback and locking from working effectively. Synchronous replication
speed is impacted because of the very small transaction size. If you are using an entity manager application,
then do not use automatic commit mode because objects that are looked up with the EntityManager.find
method immediately become unmanaged on the method return and become unusable.

External transaction coordinators

Typically, transactions begin with the session.begin method and end with the session.commit method.
However, when eXtreme Scale is embedded, the transactions might be started and ended by an external
transaction coordinator. If you are using an external transaction coordinator, you do not need to call the
session.begin method and end with the session.commit method. If you are using WebSphere Application
Server, you can use the WebSphereTranscationCallback plug-in.

Transaction processing in Java EE applications

Parent topic: Transaction processing overview

CopyMode attribute

You can tune the number of copies by defining the CopyMode attribute of the BackingMap or ObjectMap
objects in the ObjectGrid descriptor XML file.

For Java™ applications, you can tune the number of copies by defining the CopyMode attribute of the
BackingMap or ObjectMap objects.

The copy mode has the following values:

COPY_ON_READ_AND_COMMIT
COPY_ON_READ

NO_COPY

COPY ON_WRITE

COPY TO BYTES

COPY _TO BYTES_RAW

The COPY_ON_READ AND COMMIT value is the default. The COPY_ON_READ value copies the initial data
when it is retrieved, but does not copy at commit time. This mode is safe if the application does not modify a
value after committing a transaction. The NO_COPY value does not copy data, which is only safe for read-
only data. If the data never changes, then you do not need to copy it for isolation reasons.

Be careful when you use the NO_COPY attribute value with maps that can be updated. WebSphere®
eXtreme Scale uses the copy on first touch to allow the transaction rollback. The application only changed
the copy, and as a result, eXtreme Scale discards the copy. If the NO_COPY attribute value is used, and the
application modifies the committed value, completing a rollback is not possible. Modifying the committed
value leads to problems with indexes, replication, and so on because the indexes and replicas update when
the transaction commits. If you modify committed data and then roll back the transaction, which does not
actually roll back at all, then the indexes are not updated and replication does not take place. Other threads
can see the uncommitted changes immediately, even if they have locks. Use the NO_COPY attribute value
for read-only maps or for applications that complete the appropriate copy before modifying the value. If you
use the NO_COPY attribute value and call IBM® support with a data integrity problem, you are asked to
reproduce the problem with the copy mode set to COPY_ON_READ AND_COMMIT.

The COPY_TO BYTES value stores values in the map in a serialized form. At read time, eXtreme Scale inflates
the value from a serialized form and at commit time it stores the value to a serialized form. With this
method, a copy occurs at both read and commit time.

The default copy mode for a map can be configured on the BackingMap object. You can also change the copy
mode on maps before you start a transaction by using the ObjectMap.setCopyMode method.

An example of a backing map snippet from an objectgrid.xml file that shows how to set the copy mode for
a backing map follows. This example assumes that you are using cc as the objectgrid/config namespace.

<cc:backingMap name="RuntimeLifespan" copyMode="NO COPY"/>

Parent topic: Transaction processing overview

Related concepts:
Tuning the copy mode
Improving performance with byte array maps

Related reference:
ObjectGrid descriptor XML file

Locking strategies

Locking strategies include pessimistic, optimistic, and none. To choose a locking strategy, you must consider
issues such as the percentage of each type of operations you have, whether you use a loader, and so on.

Locks are bound by transactions. You can specify the following locking settings:

No locking

Running without the locking setting is the fastest. If you are using read-only data, then you might not need
locking.

Pessimistic locking

Acquires locks on entries, then and holds the locks until commit time. This locking strategy provides good
consistency at the expense of throughput.

Optimistic locking

Takes a before image of every record that the transaction touches and compares the image to the current
entry values when the transaction commits. If the entry values change, then the transaction rolls back. No
locks are held until commit time. This locking strategy provides better concurrency than the pessimistic
strategy, at the risk of the transaction rolling back and the memory cost of making the extra copy of the
entry.

Optimistic no versioning locking

This locking strategy allows you to disable version control. This is important because near cache is only
enabled if you are doing Optimistic locking. With the current implementation, you need a plug-in or
callback handler to handle version control. However, using the OPTIMISTIC_NO_VERSIONING locking
strategy to disable version control on the client and only enable it on the server, is an additional
performance savings.

Lock manager

When either a PESSIMISTIC or an OPTIMISTIC locking strategy is used, a lock manager is created for the
BackingMap. The lock manager uses a hash map to track entries that are locked by one or more
transactions. If many map entries exist in the hash map, more lock buckets can result in better performance.
The risk of Java™ synchronization collisions is lower as the number of buckets grows. More lock buckets also
lead to more concurrency. The previous examples show how an application can set the number of lock
buckets to use for a given BackingMap instance.

17 To avoid a java.lang.lllegalStateException exception, you must call the setNumberOfLockBuckets
method before the initialize or getSession methods on the ObjectGrid instance. The
setNumberOfLockBuckets method parameter is a Java primitive integer that specifies the number of lock
buckets to use. Using a prime number can allow for a uniform distribution of map entries over the lock
buckets. A good starting point for best performance is to set the number of lock buckets to about 10 percent
of the expected number of BackingMap entries.

Pessimistic locking

The PESSIMISTIC lock strategy acquires locks for cache entries and should be used when data is changed
frequently. Any time a cache entry is read, a lock is acquired and conditionally held until the transaction
completes. The duration of some locks can be tuned using transaction isolation levels for the session.

Use the pessimistic locking strategy for read and write maps when other locking strategies are not possible.
When an ObjectGrid map is configured to use the pessimistic locking strategy, a pessimistic transaction lock
for a map entry is obtained when a transaction first gets the entry from the BackingMap. The pessimistic lock
is held until the application completes the transaction. Typically, the pessimistic locking strategy is used in
the following situations:

e When the BackingMap is configured with or without a loader and versioning information is not
available.

e When the BackingMap is used directly by an application that needs help from the eXtreme Scale for
concurrency control.

e When versioning information is available, but update transactions frequently collide on the backing
entries, resulting in optimistic update failures.

The pessimistic locking strategy has the greatest impact on performance and scalability. Therefore, use this
strategy only for read and write maps when other locking strategies are not viable. For example, these
situations might include when optimistic update failures occur frequently, or when recovery from optimistic
failure is difficult for an application to handle.

When you use pessimistic locking, you can use lock methods to lock data, or keys, without returning any
data values. For a list of the methods and what kind of locks they acquire, see Lock types.

Optimistic locking

The default lock strategy is OPTIMISTIC. Use optimistic locking when data is changed infrequently. Locks are
only held for a short duration while data is being read from the cache and copied to the transaction. When
the transaction cache is synchronized with the main cache, any cache objects that have been updated are
checked against the original version. If the check fails, then the transaction is rolled back and an
OptimisticCollisionException exception results.

The optimistic locking strategy assumes that no two transactions might attempt to update the same map
entry while the transactions are running concurrently. The lock is not held for the lifecycle of the transaction
because it is unlikely that more than one transaction might update the map entry concurrently. The
optimistic locking strategy is typically used in the following situations:
e When a BackingMap is configured and versioning information is available. The BackingMap can be
configured with or without a loader.
e When a BackingMap has mostly transactions that are read operations. Insert, update, or remove
operations on map entries do not occur often on the BackingMap.
e When a BackingMap is inserted, updated, or removed more frequently than it is read, but transactions
rarely collide on the same map entry.

Like the pessimistic locking strategy, the methods on the ObjectMap interface determine how eXtreme Scale
automatically attempts to acquire a lock mode for the map entry that is being accessed. However, the
following differences between the pessimistic and optimistic strategies exist:

e Like the pessimistic locking strategy, an S lock mode is acquired by the get and getAll methods when
the method is called. However, with optimistic locking, the S lock mode is not held until the transaction
is completed. Instead, the S lock mode is released before the method returns to the application. The
purpose of acquiring the lock mode is so that eXtreme Scale can ensure that only committed data from
other transactions is visible to the current transaction. After eXtreme Scale has verified that the data is
committed, the S lock mode is released. At commit time, an optimistic versioning check is performed
to ensure that no other transaction has changed the map entry after the current transaction released
its S lock mode. If an entry is not fetched from the map before it is updated, invalidated, or deleted,
the eXtreme Scale run time implicitly fetches the entry from the map. This implicit get operation is
performed to get the current value at the time the entry was requested to be modified.

e Unlike pessimistic locking strategy, the getForUpdate and getAllForUpdate methods are handled
exactly like the get and getAll methods when the optimistic locking strategy is used. That is, an S lock
mode is acquired at the start of the method and the S lock mode is released before returning to the
application.

All other ObjectMap methods are handled the same as the pessimistic locking strategy. When the commit
method is called, an X lock mode is obtained for any map entry that is inserted, updated, removed, touched,
or invalidated. The X lock mode is held until the transaction completes commit processing.

The optimistic locking strategy assumes that no concurrently running transactions attempt to update the
same map entry. Because of this assumption, the lock mode does not need to be held for the life of the
transaction because it is unlikely that more than one transaction might update the map entry concurrently.
However, because a lock mode was not held, another concurrent transaction might potentially update the
map entry after the current transaction has released its S lock mode.

To handle this possibility, eXtreme Scale gets an X lock at commit time and performs an optimistic versioning
check to verify that no other transaction has changed the map entry after the current transaction read the
map entry from the BackingMap. If another transaction changes the map entry, the version check fails and
an OptimisticCollisionException exception occurs. This exception forces the current transaction to be rolled
back and the application must try the entire transaction again. The optimistic locking strategy is useful when
a map is mostly read and it is unlikely that updates for the same map entry might occur.

Optimistic no versioning
You can enable OPTIMISTIC_NO_VERSIONING locking either through the client override XML file or
programmatically. See the following examples of both approaches:

Client override XML file example

<objectGrid name="lockStrategyGrid">
<backingMap name="opt with noversion"
lockStrategy="0PTIMISTIC NO VERSIONING"/>
<backingMap name="opt with none" lockStrategy="NONE"/>
<backingMap name="optnoversion with opt" lockStrategy="OPTIMISTIC"/>
<backingMap name="optnoversion with none" lockStrategy="NONE"/>
</objectGrid>

Programmatic example

ObjectGridConfiguration lsConfig =

ObjectGridConfigFactory.createObjectGridConfiguration("lockStrategyGrid");
BackingMapConfiguration oMapWithQVConfig =

ObjectGridConfigFactory.createBackingMapConfiguration("opt with noversion");
oMapWithOVConfig.setLockStrategy(LockStrategy.OPTIMISTIC NO VERSIONING);
lsConfig.addBackingMapConfiguration(oMapWithOVConfig);

No locking

If locking is not required because the data is never updated or is only updated during quiet periods, you can
disable locking by using the NONE lock strategy. This strategy is very fast because a lock manager is not
required. The NONE lock strategy is ideal for look-up tables or read-only maps.

When a BackingMap is configured to use no locking strategy, no transaction locks for a map entry are
obtained.

Using no locking strategy is useful when an application is a persistence manager such as an Enterprise
JavaBeans (EJB) container or when an application uses Hibernate to obtain persistent data. In this scenario,
the BackingMap is configured without a loader and the persistence manager uses the BackingMap as a data
cache. In this scenario, the persistence manager provides concurrency control between transactions that are
accessing the same Map entries.

WebSphere® eXtreme Scale does not need to obtain any transaction locks for concurrency control. This
situation assumes that the persistence manager does not release its transaction locks before updating the
ObjectGrid map with committed changes. If the persistence manager releases its locks, then a pessimistic or
optimistic lock strategy must be used. For example, suppose that the persistence manager of an EJB
container is updating an ObjectGrid map with data that was committed in the EJB container-managed
transaction. If the update of the ObjectGrid map occurs before the persistence manager transaction locks are
released, then you can use the no lock strategy. If the ObjectGrid map update occurs after the persistence
manager transaction locks are released, then you must use either the optimistic or pessimistic lock strategy.

Another scenario where no locking strategy can be used is when the application uses a BackingMap directly
and a Loader is configured for the map. In this scenario, the loader uses the concurrency control support that
is provided by a relational database management system (RDBMS) by using either Java database
connectivity (JDBC) or Hibernate to access data in a relational database. The loader implementation can use
either an optimistic or pessimistic approach. A loader that uses an optimistic locking or versioning approach
helps to achieve the greatest amount of concurrency and performance. For more information about
implementing an optimistic locking approach, see the OptimisticCallback section in Configuring database
loaders. If you are using a loader that uses pessimistic locking support of an underlying backend, you might
want to use the forUpdate parameter that is passed on the get method of the Loader interface. Set this
parameter to true if the getForUpdate method of the ObjectMap interface was used by the application to get
the data. The loader can use this parameter to determine whether to request an upgradeable lock on the
row that is being read. For example, DB2® obtains an upgradeable lock when an SQL select statement
contains a FOR UPDATE clause. This approach offers the same deadlock prevention that is described in
Pessimistic locking.

Parent topic: Transaction processing overview

Related tasks:

Configuring a locking strateqy in the ObjectGrid descriptor XML file
Configuring and implementing locking in Java applications

Configuring the lock timeout value in the ObjectGrid descriptor XML file

file:////dcs/markdown/workspace/Transform/htmlout/0/com.ibm.websphere.extremescale.doc/cxslockstrategy.html#cxslockstrategy__pessimisticlock

JMS for distributed transaction changes

Use Java™ Message Service (JMS) for distributed transaction changes between different tiers or in
environments on mixed platforms.

JMS is an ideal protocol for distributed changes between different tiers or in environments on mixed
platforms. For example, some applications that use eXtreme Scale might be deployed on IBM® WebSphere®
Application Server Community Edition, Apache Geronimo, or Apache Tomcat, whereas other applications
might run on WebSphere Application Server Version 6.x. JMS is ideal for distributed changes between
eXtreme Scale peers in these different environments. The high availability manager message transport is
very fast, but can only distribute changes to Java virtual machines that are in a single core group. JMS is
slower, but allows larger and more diverse sets of application clients to share an ObjectGrid. JMS is ideal
when sharing data in an ObjectGrid between a fat Swing client and an application deployed on WebSphere
Extended Deployment.

The built-in Client Invalidation Mechanism and Peer-to-Peer Replication are examples of JMS-based
transactional changes distribution. See Configuring Java Message Service (JMS)-based client synchronization
and Configuring peer-to-peer replication with [MS for more information.

Implementing JMS

JMS is implemented for distributing transaction changes by using a Java object that behaves as an
ObjectGridEventListener. This object can propagate the state in the following four ways:
1. Invalidate: Any entry that is evicted, updated or deleted is removed on all peer Java virtual machines
when they receive the message.
2. Invalidate conditional: The entry is evicted only if the local version is the same or older than the
version on the publisher.
3. Push: Any entry that was evicted, updated, deleted or inserted is added or overwritten on all peer Java
virtual machines when they receive the JMS message.
4. Push conditional: The entry is only updated or added on the receive side if the local entry is less recent
than the version that is being published.

Listen for changes for publishing

The plug-in implements the ObjectGridEventListener interface to intercept the transactionEnd event. When
eXtreme Scale invokes this method, the plug-in attempts to convert the LogSequence list for each map that
is touched by the transaction to a JMS message and then publish it. The plug-in can be configured to publish
changes for all maps or a subset of maps. LogSequence objects are processed for the maps that have
publishing enabled. The LogSequenceTransformer ObjectGrid class serializes a filtered LogSequence for each
map to a stream. After all LogSequences are serialized to the stream, then a JMS ObjectMessage is created
and published to a well-known topic.

Listen for JMS messages and apply them to the local ObjectGrid

The same plug-in also starts a thread that spins in a loop, receiving all messages that are published to the
well known topic. When a message arrives, it passes the message contents to the LogSequenceTransformer
class where it is converted to a set of LogSequence objects. Then, a no-write-through transaction is started.
Each LogSequence object is provided to the Session.processLogSequence method, which updates the local
Maps with the changes. The processLogSequence method understands the distribution mode. The
transaction is committed and the local cache now reflects the changes. For more information about using
JMS to distribute transaction changes, see Distributing changes between peer JVMs.

Parent topic: Transaction processing overview

Security overview

WebSphere® eXtreme Scale can secure data access, including allowing for integration with external security
providers.

Note: In an existing non-cached data store such as a database, you likely have built-in security features that
you might not need to actively configure or enable. However, after you have cached your data with eXtreme
Scale, you must consider the important resulting situation that your backend security features are no longer
in effect. You can configureeXtreme Scale security on necessary levels so that your new cached architecture
for your data is also secured.

A brief summary of eXtreme Scale security features follows. For more detailed information about configuring
security see the Administration Guide and the Programming Guide.

Distributed security basics
Distributed eXtreme Scale security is based on three key concepts:
Trustable authentication

The ability to determine the identity of the requester. WebSphere eXtreme Scale supports both client-to-
server and server-to-server authentication.

Authorization

The ability to give permissions to grant access rights to the requester. WebSphere eXtreme Scale supports
different authorizations for various operations.

Secure transport

The safe transmission of data over a network. WebSphere eXtreme Scale supports the Transport Layer
Security/Secure Sockets Layer (TLS/SSL) protocols.

Authentication

WebSphere eXtreme Scale supports a distributed client server framework. A client server security
infrastructure is in place to secure access to eXtreme Scale servers. For example, when authentication is
required by the eXtreme Scale server, an eXtreme Scale client must provide credentials to authenticate to
the server. These credentials can be a user name and password pair, a client certificate, a Kerberos ticket, or
data that is presented in a format that is agreed upon by client and server.

Authorization
WebSphere eXtreme Scale authorizations are based on subjects and permissions. You can use the Java™
Authentication and Authorization Services (JAAS) to authorize the access, or you can plug in a custom
approach, such as Tivoli® Access Manager (TAM), to handle the authorizations. The following authorizations
can be given to a client or group:
Map authorization
Perform insert, read, update, evict, or delete operations on Maps.
ObjectGrid authorization
Perform object or entity queries and stream queries on ObjectGrid objects.
DataGrid agent authorization
Allow DataGrid agents to be deployed to an ObjectGrid.
Server side map authorization
Replicate a server map to client side or create a dynamic index to the server map.
Administration authorization

Perform administration tasks.

Transport security

To secure the client server communication, WebSphere eXtreme Scale supports TLS/SSL. These protocols
provide transport layer security with authenticity, integrity, and confidentiality for a secure connection
between an eXtreme Scale client and server.

Grid security

In a secure environment, a server must be able to check the authenticity of another server. WebSphere
eXtreme Scale uses a shared secret key string mechanism for this purpose. This secret key mechanism is
similar to a shared password. All the eXtreme Scale servers agree on a shared secret string. When a server
joins the data grid, the server is challenged to present the secret string. If the secret string of the joining
server matches the one in the master server, then the joining server can join the grid. Otherwise, the join

request is rejected.

Sending a clear text secret is not secure. The eXtreme Scale security infrastructure provides a
SecureTokenManager plug-in to allow the server to secure this secret before sending it. You can choose how
you implement the secure operation. WebSphere eXtreme Scale provides an implementation, in which the
secure operation is implemented to encrypt and sign the secret.

Java Management Extensions (JMX) security in a dynamic deployment topology

JMX MBean security is supported in all versions of eXtreme Scale. Clients of catalog server MBeans and
container server MBeans can be authenticated, and access to MBean operations can be enforced.

Local eXtreme Scale security

Local eXtreme Scale security is different from the distributed eXtreme Scale model because the application
directly instantiates and uses an ObjectGrid instance. Your application and eXtreme Scale instances are in
the same Java virtual machine (JVM). Because no client-server concept exists in this model, authentication is
not supported. Your applications must manage their own authentication, and then pass the authenticated
Subject object to the eXtreme Scale. However, the authorization mechanism that is used for the local
eXtreme Scale programming model is the same as what is used for the client-server model.

Configuration and programming
For more information about configuring and programming for security, see Security integration with external
providers and Security API.

Parent topic: Product overview
Parent topic: Planning for configuration

Related tasks:
1% Installing WebSphere eXtreme Scale with the installation wizard
Tutorial: Configuring Java SE security

Related information:
Introduction: Integrate WebSphere eXtreme Scale security with WebSphere Application Server using the
WebSphere Application Server Authentication plug-ins

[*WebSphere Application Server: Securing applications and their environment

http://www14.software.ibm.com/webapp/wsbroker/redirect?version=compass&product=was-nd-mp&topic=welc6topsecuring

REST data services overview

The WebSphere® eXtreme Scale REST data service is a Java™ HTTP service that is compatible with Microsoft
WCF Data Services (formally ADO.NET Data Services) and implements the Open Data Protocol (OData).
Microsoft WCF Data Services is compatible with this specification when using Visual Studio 2008 SP1 and the
.NET Framework 3.5 SP1.

Compatibility requirements

The REST data service allows any HTTP client to access a data grid. The REST data service is compatible with
the WCF Data Services support supplied with the Microsoft .NET Framework 3.5 SP1. RESTful applications can
be developed with the rich tooling provided by Microsoft Visual Studio 2008 SP1. The figure provides an
overview of how WCF Data Services interacts with clients and databases.

Figure 1. Microsoft WCF Data Services

HTTP Clients WCF DS .
NET/WCF [RESTSenvice | | Ty
: i “\-h._._‘_____________,..-"

' :

|
AJAX ; |
: I Database
PHP |
More... | :

—

WebSphere eXtreme Scale includes a function-rich API set for Java clients. As shown in the following figure,
the REST data service is a gateway between HTTP clients and the WebSphere eXtreme Scale data grid,
communicating with the grid through an WebSphere eXtreme Scale client. The REST data service is a Java
servlet, which allows flexible deployments for common Java Platform, Enterprise Edition (JEE) platforms, such
as WebSphere Application Server. The REST data service communicates with the WebSphere eXtreme Scale
data grid using the WebSphere eXtreme Scale Java APIs. It allows WCF Data Services clients or any other
client that can communicate with HTTP and XML.

Figure 2. WebSphere eXtreme Scale REST data service

HTTP Clients | WebSphere eXtreme Scale
I
NET/WCF i REST Service |
i
AJAX |
PHP
More...

Refer to the Configuring REST data services, or use the following links to learn more about WCF Data
Services.

Microsoft WCF Data Services Developer Center

ADO.NET Data Services overview on MSDN

Whitepaper: Using ADO.NET Data Services

Atom Publish Protocol: Data Services URI and Payload Extensions
Conceptual Schema Definition File Format

Entity Data Model for Data Services Packaging Format

Open Data Protocol

Open Data Protocol FAQ

Features

This version of the eXtreme Scale REST data service supports the following features:

e Automatic modeling of eXtreme Scale EntityManager API entities as WCF Data Services entities, which
includes the following support:

o Java data type to Entity Data Model type conversion

http://msdn.microsoft.com/en-us/data/bb931106.aspx
http://msdn.microsoft.com/en-us/library/cc956153.aspx
http://msdn.microsoft.com/en-us/library/cc956153.aspx
http://msdn.microsoft.com/en-us/library/cc956153.aspx
http://msdn.microsoft.com/en-us/library/cc956153.aspx
http://msdn.microsoft.com/en-us/library/cc956153.aspx
http://www.odata.org/
http://msdn.microsoft.com/en-us/library/dd541474(PROT.10).aspx

o Entity association support
o Schema root and key association support, which is required for partitioned data grids
See Entity model for more information.
e Atom Publish Protocol (AtomPub or APP) XML and JavaScript Object Notation (JSON) data payload
format.
e Create, Read, Update and Delete (CRUD) operations using the respective HTTP request methods:
POST, GET, PUT and DELETE. In addition, the Microsoft extension: MERGE is supported.
Simple queries, using filters
Batch retrieval and change set requests
Partitioned data grid support for high availability
Interoperability with eXtreme Scale EntityManager API clients
Support for standard Java EE Web servers
Optimistic concurrency
User authorization and authentication between the REST data service and the eXtreme Scale data grid

Known problems and limitations
e Tunneled requests are not supported.

Parent topic: Product overview
Parent topic: Planning to develop Java applications

Related concepts:
Operations with the REST data service

Related tasks:
Accessing data with the REST data service
Configuring REST data services

Related reference:

Optimistic concurrency in the REST data service
Request protocols for the REST data service
Retrieve requests with the REST data service
Retrieving non-entities with REST data services
Insert requests with REST data services

Update requests with REST data services
Delete requests with REST data services

file:////dcs/markdown/workspace/Transform/htmlout/0/com.ibm.websphere.extremescale.doc/rxsrestconf.html#rxsrestconf__entmodel
http://msdn.microsoft.com/en-us/library/dd541188(PROT.10).aspx

Scenarios

Scenarios include real-world information to build a complete picture. Complete a
o[} scenario to understand new concepts or to accomplish common WebSphere®
eXtreme Scale tasks.

Scenario: Using an OSGi environment to develop and run eXtreme Scale plug-ins

Use these scenarios to complete common tasks in an OSGi environment. For example, the OSGi
framework is ideal for starting servers and clients in an OSGi container, which allows you to
dynamically add and update WebSphere eXtreme Scale plug-ins to the runtime environment.

Scenario: Using an 0OSGi environment to develop and run
eXtreme Scale plug-ins

~11* Use these scenarios to complete common tasks in an OSGi environment. For example, the OSGi
framework is ideal for starting servers and clients in an OSGi container, which allows you to dynamically add
and update WebSphere® eXtreme Scale plug-ins to the runtime environment.

Before you begin

Read the OSGi framework overview topic to learn more about OSGi support and the benefits that it can offer.

About this task

The following scenarios are about building and running dynamic plug-ins, which allows you to dynamically
install, start, stop, modify, and uninstall plug-ins. You might also complete another likely scenario, which
allows you to use the OSGi framework without dynamic capabilities. You can still package your applications
as bundles, which are defined by and communicated through services. These service-based bundles offer
multiple benefits, which include more efficient development and deployment capabilities.

Scenario goals

After completing this scenario, you will know how to complete the goals:

e Build eXtreme Scale dynamic plug-ins to use in an OSGi environment.
e Run eXtreme Scale containers in an OSGi environment without dynamic capabilities.

1. OSGi framework overview
OSGi defines a dynamic module system for Java. The OSGi service platform has a layered architecture,
and is designed to run on various standard Java profiles. You can start WebSphere eXtreme Scale
servers and clients in an OSGi container.

2. Installing the Eclipse Equinox OSGi framework with Eclipse Gemini for clients and servers
If you want to deploy WebSphere eXtreme Scale in the OSGi framework, then you must set up the
Eclipse Equinox Environment.

3. Running eXtreme Scale containers with non-dynamic plug-ins in an OSGi environment
If you do not need to use the dynamic capability of an OSGi environment, you can still take advantage
of tighter coupling, declarative packaging, and service dependencies that the OSGi framework offers.

4. Administering eXtreme Scale servers and applications in an OSGi environment
Use this topic to install the WebSphere eXtreme Scale server bundle, an optional fragment that allows
loading of your application bundles and non-dynamic user classes, such as plug-ins, agents, data
objects, and so on.

5. Building and running eXtreme Scale dynamic plug-ins for use in an OSGi environment
All eXtreme Scale plug-ins can be configured for an OSGi environment. The primary benefit of dynamic
plug-ins is that they allow you to upgrade them without shutting down the grid. This allows you to
evolve an application without restarting the grid container processes.

6. Running eXtreme Scale containers with dynamic plug-ins in an OSGi environment
If your application is hosted in the Eclipse Equinox OSGi framework with Eclipse Gemini or Apache
Aries, then you can use this task to help you install and configure your WebSphere eXtreme Scale
application in OSGi.

Parent topic: Scenarios

Related concepts:

Samples
System APIs and plug-ins

Related tasks:

Configuring eXtreme Scale plug-ins with OSGi Blueprint

Configuring OSGi-enabled plug-ins using the ObjectGrid descriptor XML file
Building eXtreme Scale dynamic plug-ins

Related information:
Building OSGi applications with the Blueprint Container specification

[(* 0SGi Bundle Activator APl documentation
Spring hamespace schema

http://www.ibm.com/developerworks/opensource/library/os-osgiblueprint/
http://www.osgi.org/javadoc/r4v43/org/osgi/framework/BundleActivator.html
http://static.springsource.org/spring/docs/2.0.x/reference/xsd-config.html

Installing the Eclipse Equinox OSGi framework with Eclipse
Gemini for clients and servers

“11*1f you want to deploy WebSphere® eXtreme Scale in the OSGi framework, then you must set up the
Eclipse Equinox Environment.

About this task

The task requires that you download and install the Blueprint framework, which allows you to later configure
JavaBeans and expose them as services. The use of services is important because you can expose plug-ins
as OSGi services so they can be used by the eXtreme Scale run time environment. The product supports two
blueprint containers within the Eclipse Equinox core OSGi framework: Eclipse Gemini and Apache Aries. Use
this procedure to set up the Eclipse Gemini container.

Procedure

1. Download Eclipse Equinox SDK Version 3.6.1 or later from the Eclipse website. Create a directory for
the Equinox framework, for example: /opt/equinox. These instructions refer to this directory as
equinox_root. Extract the compressed file in the equinox_ root directory.

2. Download the gemini-blueprint incubation 1.0.0 compressed file from the Eclipse website. Extract the
file contents into a temporary directory, and copy the following extracted files to the
equinox_root/plugins directory:

dist/gemini-blueprint-core-1.0.0.jar
dist/gemini-blueprint-extender-1.0.0.jar
dist/gemini-blueprint-io-1.0.0.jar

Attention: Depending on the location where you download the compressed Blueprint file, the
extracted files might have the extension, RELEASE. jar, much like the Spring framework JAR files in the
next step. You must verify that the file names match the file references in the config.ini file.

3. Download the Spring Framework Version 3.0.5 from the following SpringSource web page:
http://www.springsource.com/download/community. Extract it into a temporary directory, and copy the
following extracted files to the equinox root/plugins directory:

org.springframework.aop-3.0.5.RELEASE. jar
org.springframework.asm-3.0.5.RELEASE. jar
org.springframework.beans-3.0.5.RELEASE. jar
org.springframework.context-3.0.5.RELEASE. jar
org.springframework.core-3.0.5.RELEASE. jar
org.springframework.expression-3.0.5.RELEASE. jar

4. Download the AOP Alliance Java™ archive (JAR) file from the SpringSource web page. Copy the
com.springsource.org.aopalliance-1.0.0.jar to the equinox root/plugins directory.

5. Download the Apache commons logging 1.1.1 JAR file from the SpringSource web page. Copy the
com.springsource.org.apache.commons.logging-1.1.1.jar file to the equinox root/plugins
directory.

6. Download the Luminis OSGi Configuration Admin command-line client. Use this JAR file bundle to
manage OSGi administrative configurations. Copy the net.luminis.cmc-0.2.5.jar to the
equinox_root/plugins directory.

7. Download the Apache Felix file installation Version 3.0.2 bundle from the following web page:
http://felix.apache.org/site/index.html. Copy the org.apache. felix.fileinstall-3.0.2.jar file to
the equinox root/plugins directory.

8. Create a configuration directory inside equinox_ root/plugins directory; for example:
mkdir equinox root/plugins/configuration

9. Create the following config.ini file in the equinox root/plugins/configuration directory,
replacing equinox root with the absolute path to your equinox root directory and removing all
trailing spaces after the backslash on each line. You must include a blank line at the end of the file; for
example:

0sgi.noShutdown=true
0sgi.java.profile.bootdelegation=none
org.osgi.framework.bootdelegation=none
eclipse.ignoreApp=true

http://archive.eclipse.org/equinox/drops/R-3.6.1-201009090800/index.php
http://www.eclipse.org/downloads/download.php?file=/blueprint/gemini-blueprint-1.0.0.RELEASE.zip
http://www.springsource.com/download/community
http://ebr.springsource.com/repository/app/bundle/version/detail?name=com.springsource.org.aopalliance&version=1.0.0
http://ebr.springsource.com/repository/app/bundle/version/detail?name=com.springsource.org.apache.commons.logging&version=1.1.1
http://felix.apache.org/site/index.html

0sgi.bundles=\

org.eclipse.osgi.services 3.2.100.v20100503.jar@l:start, \
org.eclipse.osgi.util 3.2.100.v20100503.jar@l:start, \
org.eclipse.equinox.cm 1.0.200.v20100520.jar@l:start, \
com.springsource.org.apache.commons.logging-1.1.1.jar@l:start, \
com.springsource.org.aopalliance-1.0.0.jar@l:start, \
org.springframework.aop-3.0.5.RELEASE.jar@l:start, \
org.springframework.asm-3.0.5.RELEASE.jar@l:start, \
org.springframework.beans-3.0.5.RELEASE. jar@l:start, \
org.springframework.context-3.0.5.RELEASE. jar@l:start, \
org.springframework.core-3.0.5.RELEASE. jar@l:start, \
org.springframework.expression-3.0.5.RELEASE. jar@l:start, \
org.apache.felix.fileinstall-3.0.2.jar@l:start, \
net.luminis.cmc-0.2.5.jar@l:start, \
gemini-blueprint-core-1.0.0.jar@l:start, \
gemini-blueprint-extender-1.0.0.jar@l:start, \
gemini-blueprint-io-1.0.0.jar@l:start

If you have already set up the environment, you can clean up the Equinox plug-in repository by
removing the following directory: equinox root\plugins\configuration\org.eclipse.o0sgi.

10. Run the following commands to start equinox console.

If you are running a different version of Equinox, then your JAR file name is different from the one in
the following example:

java -jar plugins\org.eclipse.osgi 3.6.1.R36x v20100806.jar -console

Installing eXtreme Scale bundles

WebSphere eXtreme Scale includes bundles that can be installed into an Eclipse Equinox OSGi
framework. These bundles are required to start eXtreme Scale servers or use eXtreme Scale clients in
OSGi. You can install the eXtreme Scale bundles using the Equinox console or using the config.ini
configuration file.

Parent topic: Scenario: Using an OSGi environment to develop and run eXtreme Scale plug-ins
Previous topic: OSGi framework overview

Next topic: Running eXtreme Scale containers with non-dynamic plug-ins in an OSGi environment
Parent topic: ' Installing

Related concepts:
OSGi framework overview

Related tasks:
Programming to use the OSGi framework
Updating OSGi services for eXtreme Scale plug-ins with xscmd

Related reference:
Server properties file

Related information:
Introduction: Starting and configuring the eXtreme Scale server and container to run plug-ins in the OSGi
framework

Installing eXtreme Scale bundles

T

~11* WebSphere® eXtreme Scale includes bundles that can be installed into an Eclipse Equinox OSGi
framework. These bundles are required to start eXtreme Scale servers or use eXtreme Scale clients in OSGi.
You can install the eXtreme Scale bundles using the Equinox console or using the config.ini configuration file.

Before you begin

This task assumes that you have installed the following products:

e Eclipse Equinox OSGi framework
e eXtreme Scale stand-alone client or server

About this task

eXtreme Scale includes two bundles. Only one of the following bundles is required in an OSGi framework:
objectgrid.jar

The server bundle is the objectgrid. jar file and is installed with the eXtreme Scale stand-alone server
installation and is required for running eXtreme Scale servers and can also be used for running eXtreme
Scale clients, or local, in-memory caches. The bundle ID for the objectgrid. jar file is
com.ibm.websphere.xs.server_<version>, where the version is in the format: <Version>.<Release>.
<Modification>. For example, the server bundle for this release is

com.ibm.websphere.xs.server 8.5.0.

ogclient.jar

The ogclient. jar bundle is installed with the eXtreme Scale stand-alone and client installations and is
used to run eXtreme Scale clients or local, in-memory caches. The bundle ID for ogclient. jar file is
com.ibm.websphere.xs.client_<version>, where the version is in the format:

<Version> <Release> <Modification. For example, the client bundle for this release is
com.ibm.websphere.xs.server 8.5.0.

For more information about developing eXtreme Scale plug-ins, see the_ System APIs and Plug-ins topic.

Parent topic: |nstalling the Eclipse Equinox OSGi framework with Eclipse Gemini for clients and servers

Related concepts:
Embedded server API

Install the eXtreme Scale client or server bundle into the Eclipse Equinox
OSGi framework using the Equinox console

Procedure

1. Start the Eclipse Equinox framework with the console enabled; for example:

java_home/bin/java -jar
<equinox root>/plugins/org.eclipse.osgi 3.6.1.R36x v20100806.jar -console

2. Install the eXtreme Scale client or server bundle in the Equinox console:
osgi> install file:///<path to bundle>

3. Equinox displays the bundle ID for the newly installed bundle:
Bundle id is 25

4. Start the bundle in the Equinox console, where <id> is the bundle ID assigned when the bundle was
installed:

0sgi> start <id>

5. Retrieve the service status in the Equinox console to verify that the bundle has started; for example:
0sgi> ss
When the bundle starts successfully, the bundle displays the ACTIVE state; for example:

25 ACTIVE com.ibm.websphere.xs.server 8.5.0

Install the eXtreme Scale client or server bundle into the Eclipse Equinox
OSGi framework using the config.ini file

Procedure

1. Copy the eXtreme Scale client or server (objectgrid.jar or ogclient.jar) bundle from the
<wxs install root>/0bjectGrid/lib to the Eclipse Equinox plug-ins directory; for example:
<equinox_root>/plugins

2. Edit the Eclipse Equinox config.ini configuration file, and add the bundle to the osgi.bundles
property; for example:

0sgi.bundles=\

org.eclipse.osgi.services 3.2.100.v20100503.jar@l:start, \
org.eclipse.osgi.util 3.2.100.v20100503.jar@l:start, \
org.eclipse.equinox.cm 1.0.200.v20100520.jar@l:start, \
objectgrid.jar@l:start

Important: Verify that a blank line exists after the last bundle name. Each bundle is separated by a
comma.

3. Start the Eclipse Equinox framework with the console enabled; for example:

java_home/bin/java -jar
<equinox root>/plugins/org.eclipse.osgi 3.6.1.R36x v20100806.jar -console

4. Retrieve the service status in the Equinox console to verify that the bundle has started:
0sgi> ss
When the bundle starts successfully, the bundle displays the ACTIVE state; for example:
25 ACTIVE com.ibm.websphere.xs.server 8.5.0

Results

The eXtreme Scale server or client bundle is installed and started in your Eclipse Equinox OSGi framework.

Running eXtreme Scale containers with non-dynamic plug-ins in
an 0OSGi environment

If you do not need to use the dynamic capability of an OSGi environment, you can still take advantage of
tighter coupling, declarative packaging, and service dependencies that the OSGi framework offers.

Before you begin

1. Develop your application using WebSphere® eXtreme Scale APIs and plug-ins.

2. Package the application in one or more OSGi bundles with the appropriate import or export
dependencies that are declared in one or more bundle manifests. Ensure that all classes or packages
that are required for the plug-ins, agents, data objects, and so on, are exported.

About this task

With dynamic plug-ins, you can upgrade your plug-ins without stopping the grid. To use this capability, the
original and new plug-ins must be compatible. If you do not need to update plug-ins, or can afford to stop the
grid to upgrade them, then you may not need the complexity of dynamic plug-ins. However, there are still
good reasons to run your eXtreme Scale application in an OSGi environment. These reasons include the
tighter coupling, declarative package, service dependencies, and so on.

One concern with hosting the grid or client in an OSGi environment without using dynamic plug-ins (more
specifically, without declaring the plug-ins using OSGi services) is how the eXtreme Scale bundle loads the
plug-in classes. The eXtreme Scale bundle relies on OSGi services to load plug-in classes, which allows the
bundle to invoke object methods on classes in other bundles without directly importing the packages of
those classes.

When the plug-ins are not made available via OSGi services, the eXtreme Scale bundle must be able to load
the plug-in classes directly. Rather than modifying the manifest of the eXtreme Scale bundle to import user
classes and packages, create a bundle fragment that adds the necessary package imports. The fragment can
also import the classes needed for other non-plug-in user classes, such as data objects and agent classes.

Procedure

1. Create an OSGi fragment that uses the eXtreme Scale bundle (client or server, depending on the
intended deployment environment) as its host. The fragment declares dependencies (Import-Package)
on all of the packages that one or more plug-ins must load. For example, if you are installing a
serializer plug-in whose classes reside in the com.mycompany.myapp.serializers package and
depends on classes in the com.mycompany.myapp.common package, then your fragment META-
INF/MANIFEST.MF file resembles the following example:

Bundle-ManifestVersion: 2

Bundle-Name: Plug-in fragment for XS serializers
Bundle-SymbolicName: com.mycompany.myapp.myfragment; singleton:=true
Bundle-Version: 1.0.0

Fragment-Host: com.ibm.websphere.xs.server; bundle-version=7.1.1

Manifest-Version: 1.0

Import-Package: com.mycompany.myapp.serializers,
com.mycompany.myapp.common

This manifest must be packaged in a fragment JAR file, which in this example is
com.mycompany.myapp.myfragment 1.0.0.jar.

2. Deploy both the newly created fragment, the eXtreme Scale bundle, and application bundles to your
OSGi environment. Now, start the bundles.

Results

You can now test and run your application in the OSGi environment without using OSGi services to load user
classes, such as plug-ins and agents.

Parent topic: Scenario: Using an OSGi environment to develop and run eXtreme Scale plug-ins
Previous topic: Installing the Eclipse Equinox OSGi framework with Eclipse Gemini for clients and servers
Next topic: Administering eXtreme Scale servers and applications in an OSGi environment

Related concepts:
Java plug-ins overview

Related tasks:
Starting eXtreme Scale servers using the Eclipse Equinox OSGi framework

Administering eXtreme Scale servers and applications in an
OSGi environment

Use this topic to install the WebSphere® eXtreme Scale server bundle, an optional fragment that allows
loading of your application bundles and non-dynamic user classes, such as plug-ins, agents, data objects,
and so on.

Before you begin

1. Install and start a supported OSGi framework. Currently Equinox is the only supported OSGi
implementation. If your application uses Blueprint, make sure to install and start a supported Blueprint
implementation. Apache Aries and Eclipse Gemini are both supported.

2. Open the OSGi console.

Procedure

1. Install the eXtreme Scale server bundle. You must know the file URL of the bundle Java archive (JAR)
file. For example:

osgi> install file:///home/userl/my0OsgiEnv/plugins/objectgrid.jar
Bundle id is 41

0sgi>

The eXtreme Scale bundle is now installed, but not yet resolved.

2. If the eXtreme Scale server must load user classes directly, rather than using dynamic plug-ins
exposed via OSGi services, then you must also install a user-developed fragment that either provides
those classes or imports them. If you are using dynamic plug-ins and not using agents, you can skip
this step. Here is an example of how to install a custom fragment:

osgi> install file:///home/userl/myOsgiEnv/plugins/myFragment.jar
Bundle id is 42

0sgi> ss

Framework is launched.

id State Bundle

41 INSTALLED com.ibm.websphere.xs.server 7.1.1
42 INSTALLED com.mycompany.myfragment 1.0.0
0sgi>

Now the eXtreme Scale server bundle and the custom fragment that attaches to the bundle are both
installed.

3. Start the eXtreme Scale server bundle; for example:
0sgi> start 41
0sgi> ss

Framework is launched.

id State Bundle

41 ACTIVE com.ibm.websphere.xs.server 7.1.1
Fragments=42

42 RESOLVED com.mycompany.myfragment 1.0.0
Master=41

0sgi>

4. Now install and start all user application bundles using the same previously mentioned commands. To
start a grid on this server, the server and container definition must be declared using Blueprint, or the
application must start the server and container programmatically from a bundle activator or some
other mechanism.

Results
The eXtreme Scale server bundle and application are deployed, started, and ready to accept work.

Parent topic: Scenario: Using an OSGi environment to develop and run eXtreme Scale plug-ins
Previous topic: Running eXtreme Scale containers with non-dynamic plug-ins in an OSGi environment
Next topic: Building and running eXtreme Scale dynamic plug-ins for use in an OSGi environment

Building and running eXtreme Scale dynamic plug-ins for use in
an 0OSGi environment

~1I All eXtreme Scale plug-ins can be configured for an OSGi environment. The primary benefit of dynamic
plug-ins is that they allow you to upgrade them without shutting down the grid. This allows you to evolve an
application without restarting the grid container processes.

About this task

WebSphere® eXtreme Scale OSGi support allows you to deploy the product in an OSGi framework, such as
Eclipse Equinox. Previously, if you wanted to update the plug-ins used by eXtreme Scale, you had to restart
the Java virtual machine (JVM) to apply the new versions of the plug-ins. With the dynamic plug-in support
provided by eXtreme Scale and the ability to update bundles that the OSGi framework provides, you can now
update the plug-in classes without restarting the JVM. These plug-ins are exported by bundles as services.
WebSphere eXtreme Scale accesses the service by looking up the OSGi registry. In the OSGi service platform,
a bundle is a Java archive (JAR) file that contains Java code, resources, and a manifest that describes the
bundle and its dependencies. The bundle is the unit of deployment for an application.

Procedure

1. Build eXtreme Scale dynamic plug-ins.

2. Configure eXtreme Scale plug-ins with OSGi Blueprint.

3. Install and starting OSGi-enabled plug-ins.

Building eXtreme Scale dynamic plug-ins

WebSphere eXtreme Scale includes ObjectGrid and BackingMap plug-ins. These plug-ins are
implemented in Java and are configured using the ObjectGrid descriptor XML file. To create a dynamic
plug-in that can be dynamically upgraded, they need to be aware of ObjectGrid and BackingMap life
cycle events because they might need to complete some actions during an update. Enhancing a plug-
in bundle with life cycle callback methods, event listeners, or both allows the plug-in to complete those
actions at the appropriate times.

Configuring eXtreme Scale plug-ins with OSGi Blueprint
All eXtreme Scale ObjectGrid and BackingMap plug-ins can be defined as OSGi beans and services
using the OSGi Blueprint Service available with Eclipse Gemini or Apache Aries.

Installing and starting OSGi-enabled plug-ins
In this task, you install the dynamic plug-in bundle into the OSGi framework. Then, you start the plug-
in.

Parent topic: Scenario: Using an OSGi environment to develop and run eXtreme Scale plug-ins
Previous topic: Administering eXtreme Scale servers and applications in an OSGi environment
Next topic: Running eXtreme Scale containers with dynamic plug-ins in an OSGi environment

Building eXtreme Scale dynamic plug-ins

~11* WebSphere® eXtreme Scale includes ObjectGrid and BackingMap plug-ins. These plug-ins are
implemented in Java™ and are configured using the ObjectGrid descriptor XML file. To create a dynamic plug-
in that can be dynamically upgraded, they need to be aware of ObjectGrid and BackingMap life cycle events
because they might need to complete some actions during an update. Enhancing a plug-in bundle with life
cycle callback methods, event listeners, or both allows the plug-in to complete those actions at the
appropriate times.

Before you begin

This topic assumes that you have built the appropriate plug-in. For more information about developing
eXtreme Scale plug-ins, see the System APIs and plug-ins topic.

About this task

All eXtreme Scale plug-ins apply to either a BackingMap or ObjectGrid instance. Many plug-ins also interact
with other plug-ins. For example, a Loader and TransactionCallback plug-in work together to properly interact
with a database transaction and the various database JDBC calls. Some plug-ins might also need to cache
configuration data from other plug-ins to improve performance.

The BackingMapLifecycleListener and ObjectGridLifecycleListener plug-ins provide life cycle operations for
the respective BackingMap and ObjectGrid instances. This process allows plug-ins to be notified when the
parent BackingMap or ObjectGrid and their respective plug-ins might be changed. BackingMap plug-ins
implement the BackingMapLifecyleListener interface, and ObjectGrid plug-ins implement the
ObjectGridLifecycleListener interface. These plug-ins are automatically invoked when the life cycle of the
parent BackingMap or ObjectGrid changes. For more information about life cycle plug-ins, see the Managing
plug-in life cycles topic.

You can expect to enhance bundles using the life cycle methods or event listeners in the following common
tasks:
e Starting and stopping resources, such as threads or messaging subscribers.
e Specifying that a notification occur when peer plug-ins have been updated, allowing direct access to
the plug-in and detecting any changes.

Whenever you access another plug-in directly, access that plug-in through the OSGi container to ensure that
all parts of the system reference the correct plug-in. If, for example, some component in the application
directly references, or caches, an instance of a plug-in, it will maintain its reference to that version of the
plug-in, even after that plug-in has been dynamically updated. This behavior can cause application-related
problems as well as memory leaks. Therefore, write code that depends on dynamic plug-ins that obtain its
reference using OSGi, getService() semantics. If the application must cache one or more plug-ins, it listens
for life cycle events using ObjectGridLifecycleListener and BackingMapLifecycleListener interfaces. The
application must also be able to refresh its cache when necessary, in a thread safe manner.

All eXtreme Scale plug-ins used with OSGi must also implement the respective BackingMapPlugin or
ObjectGridPlugin interfaces. New plug-ins such as the MapSerializerPlugin interface enforce this practice.
These interfaces provide the eXtreme Scale runtime environment and OSGi a consistent interface for
injecting state into the plug-in and controlling its life cycle.

Use this task to specify that a notification occurs when peer plug-ins are updated, you might create a listener
factory that produces a listener instance.

Procedure

e Update the ObjectGrid plug-in class to implement the ObjectGridPlugin interface. This interface
includes methods that allow eXtreme Scale to initialize, set the ObjectGrid instance and destroy the
plug-in. See the following code example:

package com.mycompany;

import com.ibm.websphere.objectgrid.plugins.ObjectGridPlugin;

public class MyTranCallback implements TransactionCallback, ObjectGridPlugin {
private ObjectGrid og = null;

private enum State {
NEW, INITIALIZED, DESTROYED

}

private State state = State.NEW;

public void setObjectGrid(ObjectGrid grid) {
this.og = grid;
}

public ObjectGrid getObjectGrid() {
return this.og;
}
void initialize() {
// Handle any plug-in initialization here. This is called by
// eXtreme Scale, and not the 0SGi bean manager.
state = State.INITIALIZED;
}
boolean isInitialized() {
return state == State.INITIALIZED;

}

public void destroy() {
// Destroy the plug-in and release any resources. This
// can be callsed by the 0SGi Bean Manager or by eXtreme Scale.
state = State.DESTROYED;

}

public boolean isDestroyed() {
return state == State.DESTROYED;
}
}

e Update the ObjectGrid plug-in class to implement the ObjectGridLifecycleListener interface. See the
following code example:

package com.mycompany;
import com.ibm.websphere.objectgrid.plugins.ObjectGridLifecycleListener;

import
com.ibm.websphere.objectgrid.plugins.ObjectGridLifecyclelListener.LifecycleEvent;

public class MyTranCallback implements TransactionCallback, ObjectGridPlugin,
ObjectGridLifecycleListener{
public void objectGridStateChanged(LifecycleEvent event) {
switch(event.getState()) {
case NEW:
case DESTROYED:
case DESTROYING:
case INITIALIZING:
break;
case INITIALIZED:
// Lookup a Loader or MapSerializerPlugin using
// 0SGi or directly from the ObjectGrid instance.
lookupOtherPlugins()
break;
case STARTING:
case PRELOAD:
break;
case ONLINE:
if (event.isWritable()) {
startupProcessingForPrimary();
} else {
startupProcessingForReplica();
}
break;
case QUIESCE:
if (event.isWritable()) {
quiesceProcessingForPrimary();
} else {
quiesceProcessingForReplical();

}

break;

case OFFLINE:
shutdownShardComponents() ;
break;

}

e Update a BackingMap plug-in. Update the BackingMap plug-in class to implement the BackingMap plu-
in interface. This interface includes methods that allow eXtreme Scale to initialize, set the BackingMap
instance, and destroy the plug-in. See the following code example:

package com.mycompany;
import com.ibm.websphere.objectgrid.plugins.BackingMapPlugin;

public class MyLoader implements Loader, BackingMapPlugin {
private BackingMap bmap = null;

private enum State {
NEW, INITIALIZED, DESTROYED

}

private State state = State.NEW;

public void setBackingMap(BackingMap map) {
this.bmap = map;

}

public BackingMap getBackingMap() {
return this.bmap;
}
void initialize() {
// Handle any plug-in initialization here. This is called by
// eXtreme Scale, and not the 0SGi bean manager.
state = State.INITIALIZED;
}
boolean isInitialized() {
return state == State.INITIALIZED;

}

public void destroy() {
// Destroy the plug-in and release any resources. This
// can be callsed by the 0SGi Bean Manager or by eXtreme Scale.
state = State.DESTROYED;

}

public boolean isDestroyed() {
return state == State.DESTROYED;
}
}

e Update the BackingMap plug-in class to implement the BackingMapLifecycleListener interface. See the
following code example:

package com.mycompany;
import com.ibm.websphere.objectgrid.plugins.BackingMapLifecycleListener;

import
com.ibm.websphere.objectgrid.plugins.BackingMapLifecyclelListener.LifecycleEvent;

public class MyLoader implements Loader, ObjectGridPlugin,
ObjectGridLifecycleListener{

public void backingMapStateChanged(LifecycleEvent event) {

switch(event.getState()) {
case NEW:
case DESTROYED:
case DESTROYING:
case INITIALIZING:
break;
case INITIALIZED:
// Lookup a MapSerializerPlugin using
// 0SGi or directly from the ObjectGrid instance.
lookupOtherPlugins()
break;
case STARTING:
case PRELOAD:
break;
case ONLINE:
if (event.isWritable()) {
startupProcessingForPrimary();
} else {
startupProcessingForReplica();
}
break;
case QUIESCE:
if (event.isWritable()) {
quiesceProcessingForPrimary();
} else {
quiesceProcessingForReplica();
}
break;
case OFFLINE:
shutdownShardComponents () ;
break;

Results

By implementing the ObjectGridPlugin or BackingMapPlugin interface, eXtreme Scale can control the life
cycle of your plug-in at the right times.

By implementing the ObjectGridLifecycleListener or BackingMapLifecycleListener interface, the plug-in is
automatically registered as a listener of the associated ObjectGrid or BackingMap life cycle events. The
INITIALIZING event is used to signal that all of the ObjectGrid and BackingMap plug-ins have been initialized
and are available for lookup and use. The ONLINE event is used to signal that the ObjectGrid is online and
ready to start processing events.

Parent topic: Building and running eXtreme Scale dynamic plug-ins for use in an OSGi environment
Parent topic: Programming to use the OSGi framework

Related tasks:
Upgrading agents and data models dynamically from OSGi bundles in the Liberty profile

Configuring eXtreme Scale plug-ins with OSGi Blueprint

~1Iv All eXtreme Scale ObjectGrid and BackingMap plug-ins can be defined as OSGi beans and services
using the OSGi Blueprint Service available with Eclipse Gemini or Apache Aries.

Before you begin

Before you can configure your plug-ins as OSGi services, you must first package your plug-ins in an OSGi
bundle, and understand the fundamental principles of the required plug-ins. The bundle must import the
WebSphere® eXtreme Scale server or client packages and other dependent packages required by the plug-
ins, or create a bundle dependency on the eXtreme Scale server or client bundles This topic describes how
to configure the Blueprint XML to create plug-in beans and expose them as OSGi services for eXtreme Scale
to use.

About this task

Beans and services are defined in a Blueprint XML file, and the Blueprint container discovers, creates, and
wires the beans together and exposes them as services. The process makes the beans available to other
OSGi bundles, including the eXtreme Scale server and client bundles.

When creating custom plug-in services for use with eXtreme Scale, the bundle that is to host the plug-ins,
must be configured to use Blueprint. In addition, a Blueprint XML file must be created and stored within the
bundle. Read about building OSGi applications with the Blueprint Container specification for a general
understanding of the specification.

Procedure

1. Create a Blueprint XML file. You can name the file anything. However, you must include the blueprint
namespace:

<?xml version="1.0" encoding="UTF-8"7>
<blueprint xmlns="http://www.o0sgi.org/xmlns/blueprint/v1.0.0">

</blueprint>
2. Create bean definitions in the Blueprint XML file for each eXtreme Scale plug-in.

Beans are defined using the <bean> element and can be wired to other bean references and can
include initialization parameters.

Important: When defining a bean, you must use the correct scope. Blueprint supports the singleton
and prototype scopes. eXtreme Scale also supports a custom shard scope.

Define most eXtreme Scale plug-ins as prototype or shard-scoped beans, since all of the beans must
be unique for each ObjectGrid shard or BackingMap instance it is associated with. Shard-scoped beans
can be useful when using the beans in other contexts to allow retrieving the correct instance.

To define a prototype-scoped bean, use the scope="prototype" attribute on the bean:

<bean id="myPluginBean" class="com.mycompany.MyBean" scope="prototype">

</bean>

To define a shard-scoped bean, you must add the objectgrid namespace to the XML schema, and use
the scope="objectgrid:shard" attribute on the bean:

<?xml version="1.0" encoding="UTF-8"7>

<blueprint xmlns="http://www.o0sgi.org/xmlns/blueprint/v1.0.0"
xmlns:objectgrid="http://www.ibm.com/schema/objectgrid”

xsi:schemalLocation="http://www.ibm.com/schema/objectgrid
http://www.1ibm.com/schema/objectgrid/objectgrid.xsd">

<bean id="myPluginBean" class="com.mycompany.MyBean"
scope="objectgrid:shard">

</bean>

http://www.ibm.com/developerworks/opensource/library/os-osgiblueprint/

3. Create PluginServiceFactory bean definitions for each plug-in bean. All eXtreme Scale beans must have
a PluginServiceFactory bean defined so that the correct bean scope can be applied. eXtreme Scale
includes a BlueprintServiceFactory that you can use. It includes two properties that must be set. You
must set the blueprintContainer property to the blueprintContainer reference, and the beanlid
property must be set to the bean identifier name. When eXtreme Scale looks up the service to
instantiate the appropriate beans, the server looks up the bean component instance using the
Blueprint container.

bean id="myPluginBeanFactory"
class="com.ibm.websphere.objectgrid.plugins.osgi.BluePrintServiceFactory">
<property name="blueprintContainer" ref="blueprintContainer" />
<property name="beanId" value="myPluginBean" />

</bean>

4. Create a service manager for each PluginServiceFactory bean. Each service manager exposes the
PluginServiceFactory bean, using the <service> element. The service element identifies the name to
expose to OSGi, the reference to the PluginServiceFactory bean, the interface to expose, and the
ranking of the service. eXtreme Scale uses the service manager ranking to perform service upgrades
when the eXtreme Scale grid is active. If the ranking is not specified, the OSGi framework assumes a
ranking of 0. Read about updating service rankings for more information.

Blueprint includes several options for configuring service managers. To define a simple service
manager for a PluginServiceFactory bean, create a <service> element for each PluginServiceFactory
bean:

<service ref="myPluginBeanFactory"
interface="com.ibm.websphere.objectgrid.plugins.osgi.PluginServiceFactory"
ranking="1">

</service>

5. Store the Blueprint XML file in the plug-ins bundle. The Blueprint XML file must be stored in the 0SGI -
INF/blueprint directory for the Blueprint container to be discovered.

To store the Blueprint XML file in a different directory, you must specify the following Bundle-Blueprint
manifest header:

Bundle-Blueprint: O0SGI-INF/blueprint.xml

Results

The eXtreme Scale plug-ins are now configured to be exposed in an OSGi Blueprint container, In addition, the
ObjectGrid descriptor XML file is configured to reference the plug-ins using the OSGi Blueprint service.

Parent topic: Building and running eXtreme Scale dynamic plug-ins for use in an OSGi environment
Parent topic: Configuring servers for OSGi

Related concepts:

Samples
System APIs and plug-ins

Related tasks:

Configuring OSGi-enabled plug-ins using the ObjectGrid descriptor XML file
Building eXtreme Scale dynamic plug-ins

Scenario: Using an OSGi environment to develop and run eXtreme Scale plug-ins

Related information:
Building OSGi applications with the Blueprint Container specification

[(* 0SGi Bundle Activator APl documentation
Spring hamespace schema

http://www.ibm.com/developerworks/opensource/library/os-osgiblueprint/
http://www.osgi.org/javadoc/r4v43/org/osgi/framework/BundleActivator.html
http://static.springsource.org/spring/docs/2.0.x/reference/xsd-config.html

Installing and starting OSGi-enabled plug-ins

~11* In this task, you install the dynamic plug-in bundle into the OSGi framework. Then, you start the plug-in.
Before you begin

Complete the following tasks before the OSGi-enabled plug-ins are installed and started.

e The eXtreme Scale server or client bundle is installed into the Eclipse Equinox OSGi framework. See
Installing eXtreme Scale bundles.

e One or more dynamic BackingMap or ObjectGrid plug-ins are implemented. See Building eXtreme
Scale dynamic plug-ins.

e The dynamic plug-ins are packaged as OSGi services in OSGi bundles.

About this task

Install the bundle with the Eclipse Equinox console. There are several different methods to install the bundle,
including a modification of the config.ini configuration file. Products that embed Eclipse Equinox include
alternative methods for adding bundles in the config.ini file. For more information, seeEclipse runtime

options.

OSGi allows bundles to be started that have duplicate services. WebSphere eXtreme Scale uses the latest
service ranking. When multiple OSGi frameworks are started in an eXtreme Scale data grid, you must make
sure that the correct service rankings are started on each server. Failure to do so causes the grid to be
started with a mixture of different versions.

To see which versions are in-use by the data grid, use the xscmd utility to check the current and available
rankings. For more information, see Updating OSGi services for eXtreme Scale plug-ins with xscmd.

Procedure

Install the plug-in bundle into the Eclipse Equinox OSGi framework with the OSGi console.

1. Start the Eclipse Equinox framework with the console enabled.

<java home>/bin/java -jar
<equinox_ root>/plugins/org.eclipse.osgi 3.6.1.R36x v20100806.jar -console

2. Install the plug-in bundle in the Equinox console.
osgi> install file:///<path to bundle>
Equinox lists the bundle ID for the newly installed bundle:
Bundle id is 17

3. Enter the following line to start the bundle in the Equinox console, where <id> is the bundle ID
assigned when the bundle was installed:

osgi> start <id>
4. Retrieve the service status in the Equinox console to verify that the bundle started:
0sgi> ss
When the bundle starts, the bundle lists the ACTIVE state, for example:
17 ACTIVE com.mycompany.plugin.bundle VRM

Install the plug-in bundle into the Eclipse Equinox OSGi framework with the config.ini file,.

5. Copy the plug-in bundle into the Eclipse Equinox plug-ins directory: For example:
<equinox root>/plugins

6. Edit the Eclipse Equinox config.ini configuration file, and add the bundle to the osgi.bundles
property. For example:

0sgi.bundles=\
org.eclipse.osgi.services 3.2.100.v20100503.jar@l:start, \

http://help.eclipse.org/helios/topic/org.eclipse.platform.doc.isv/reference/misc/runtime-options.html

org.eclipse.osgi.util 3.2.100.v20100503.jar@l:start, \
org.eclipse.equinox.cm 1.0.200.v20100520.jar@l:start, \
com.mycompany.plugin.bundle VRM.jar@l:start

Important: Verify that there is a blank line after the last bundle name. Each bundle is separated by a
comma.

7. Start the Eclipse Equinox framework with the console enabled. For example:

<java home>/bin/java -jar
<equinox root>/plugins/org.eclipse.osgi 3.6.1.R36x v20100806.jar -console

8. Retrieve the service status in the Equinox console to verify that the bundle started. For example:
0sgi> ss
When the bundle starts, the bundle lists the ACTIVE state; for example:
17 ACTIVE com.mycompany.plugin.bundle VRM

Results

The plug-in bundle is now installed and started. The eXtreme Scale container or client can now be started.
For more information on developing eXtreme Scale plug-ins, see the System APIs and Plug-ins topic.

Parent topic: Building and running eXtreme Scale dynamic plug-ins for use in an OSGi environment
Parent topic: Administering

Running eXtreme Scale containers with dynamic plug-ins in an
OSGi environment

“11*If your application is hosted in the Eclipse Equinox OSGi framework with Eclipse Gemini or Apache

Aries, then you can use this task to help you install and configure your WebSphere® eXtreme Scale
application in OSGi.

Before you begin

Before you start this task, be sure to complete the following tasks:

e Install the Eclipse Equinox OSGi framework with Eclipse Gemini
e Build and run eXtreme Scale dynamic plug-ins for use in an OSGi environment

About this task

With dynamic plug-ins, you can dynamically upgrade the plug-in while the grid is still active. This allows you
to update an application without restarting the grid container processes. For more information about
developingeXtreme Scale plug-ins, see System APls and Plug-ins.

Procedure

1. Configure OSGi-enabled plug-ins using the ObjectGrid descriptor XML file.

2. Start eXtreme Scale container servers using the Eclipse Equinox OSGi framework.

3. Administer OSGi services for eXtreme Scale plug-ins with the xscmd utility.

4. Configure servers with OSGi Blueprint.

Configuring OSGi-enabled plug-ins using the ObjectGrid descriptor XML file
In this task, you add existing OSGi services to a descriptor XML file so that WebSphere eXtreme Scale
containers can recognize and load the OSGi-enabled plug-ins correctly.

Starting eXtreme Scale servers using the Eclipse Equinox OSGi framework
WebSphere eXtreme Scale container servers can be started in an Eclipse Equinox OSGi framework
using several methods.

Administering OSGi-enabled services using the xscmd utility

You can use the xscmd utility to complete administrator tasks, such as viewing services and their
rankings that are being used by each container, and updating the runtime environment to use new
versions of the bundles.

Configuring servers with OSGi Blueprint
You can configure WebSphere eXtreme Scale container servers using an OSGi blueprint XML file,
allowing simplified packaging and development of self-contained server bundles.

Parent topic: Scenario: Using an OSGi environment to develop and run eXtreme Scale plug-ins
Previous topic: Building and running eXtreme Scale dynamic plug-ins for use in an OSGi environment

Configuring OSGi-enabled plug-ins using the ObjectGrid
descriptor XML file

* In this task, you add existing OSGi services to a descriptor XML file so that WebSphere® eXtreme Scale
containers can recognize and load the OSGi-enabled plug-ins correctly.

Before you begin

To configure your plug-ins, be sure to:

e Create your package, and enable dynamic plug-ins for OSGi deployment.
e Have the names of the OSGi services that represent your plug-ins available.

About this task

You have created an OSGi service to wrap your plug-in. Now, these services must be defined in the
objectgrid.xml file so that eXtreme Scale containers can load and configure the plug-in or plug-ins
successfully.

Procedure

1. Any grid-specific plug-ins, such as TransactionCallback, must be specified under the objectGrid
element. See the following example from the objectgrid.xml file:

<?xml version="1.0" encoding="UTF-8"7>

<objectGridConfig xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalLocation="http://ibm.com/ws/objectgrid/config ../objectGrid.xsd"
xmlns="http://ibm.com/ws/objectgrid/config">

<objectGrids>
<objectGrid name="MyGrid" txTimeout="60">
<bean id="myTranCallback" osgiService="myTranCallbackFactory"/>

</objectGrid>
</objectGrids>
/objectGridConfig>

Important: The osgiService attribute value must match the ref attribute value that is specified in
the blueprint XML file, where the service was defined for myTranCallback PluginServiceFactory.

2. Any map-specific plug-ins, such as loaders or serializers, for example, must be specified in the
backingMapPluginCollections element and referenced from the backingMap element. See the following
example from the objectgrid.xml file:

<?xml version="1.0" encoding="UTF-8"7>

objectGridConfig xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalLocation="http://ibm.com/ws/objectgrid/config ../objectGrid.xsd"
xmlns="http://ibm.com/ws/objectgrid/config">
<objectGrids>
<objectGrid name="MyGrid" txTimeout="60">
<backingMap name="MyMapl" lockStrategy="PESSIMISTIC"
copyMode="COPY_TO BYTES" nullValuesSupported="false"
pluginCollectionRef="myPluginCollectionRefl"/>
<backingMap name="MyMap2" lockStrategy="PESSIMISTIC"
copyMode="COPY TO BYTES" nullValuesSupported="false"
pluginCollectionRef="myPluginCollectionRef2"/>

</objectGrid>
</objectGrids>
<backingMapPluginCollections>
<backingMapPluginCollection id="myPluginCollectionRefl">

<bean id="MapSerializerPlugin" osgiService="mySerializerFactory"/>
</backingMapPluginCollection>

<backingMapPluginCollection id="myPluginCollectionRef2">
<bean id="MapSerializerPlugin" osgiService="myOtherSerializerFactory"/>
<bean id="Loader" osgiService="mylLoader"/>
</backingMapPluginCollection>

</backingMapPluginCollections>
</objectGridConfig>

Results

The objectgrid.xml file in this example tells eXtreme Scale to create a grid called MyGrid with two maps,
MyMapl and MyMap2. The MyMapl map uses the serializer wrapped by the OSGi service, mySerializerFactory.
The MyMap2 map uses a serializer from the OSGi service, myOtherSerializerFactory, and a loader from the
OSGi service, myLoader.

Parent topic: Running eXtreme Scale containers with dynamic plug-ins in an OSGi environment
Parent topic: Configuring

Related concepts:

Samples
System APIs and plug-ins

Related tasks:

Configuring eXtreme Scale plug-ins with OSGi Blueprint

Building eXtreme Scale dynamic plug-ins

Scenario: Using an OSGi environment to develop and run eXtreme Scale plug-ins

Related information:
Building OSGi applications with the Blueprint Container specification

[* 0SGi Bundle Activator APl documentation
Spring namespace schema

http://www.ibm.com/developerworks/opensource/library/os-osgiblueprint/
http://www.osgi.org/javadoc/r4v43/org/osgi/framework/BundleActivator.html
http://static.springsource.org/spring/docs/2.0.x/reference/xsd-config.html

Starting eXtreme Scale servers using the Eclipse Equinox OSGi
framework

~1It WebSphere® eXtreme Scale container servers can be started in an Eclipse Equinox OSGi framework
using several methods.

Before you begin

Before you can start an eXtreme Scale container, you must have completed the following tasks:

1. The WebSphere eXtreme Scale server bundle must be installed into Eclipse Equinox.

2. Your application must be packaged as an OSGi bundle.

3. Your WebSphere eXtreme Scale plug-ins (if any) must be packaged as an OSGi bundle. They can be
bundled in the same bundle as your application or as separate bundles.

4. If your container servers are using IBM® eXtremeMemory, you must first configure the native libraries.
For more information, see Configuring IBM eXtremeMemory.

About this task

This task describes how to start an eXtreme Scale container server in an Eclipse Equinox OSGi framework.
You can use any of the following methods to start container servers using the Eclipse Equinox
implementation:

e OSGi Blueprint service

You can include all configuration and metadata in an OSGi bundle. See the following image to
understand the Eclipse Equinox process for this method:

Figure 1. Eclipse Equinox process for including all configuration and metadata in an OSGi bundle

Eclipse Equinox O305i Framework Process

Bundle: Bundie:
COM ibm-websphere.xs.server cnm.mycan:‘;pg rl:";"r' Zomiines
eXlreme Scale Server I
Blueprint XML

[eXxireme Scale Container

< > ObjectGrid AML

Deployment XML

e OSGi Configuration Admin service

You can specify configuration and metadata outside of an OSGi bundle. See the following image to
understand the Eclipse Equinox process for this method:

Figure 2. Eclipse Equinox process for specify configuration and metadata outside of an OSGi bundle

Eclipse Equinox OSGi Framework Process

. h (" =Y _
= Al Configuration Administration Service Server Properties
com.ibm.websphere.xs.server
aXtreme Scale Server " [ManagedService PID |,
I, com.ibm. webspheare_ xs_server

. ; . =
extrame Scale Container |, —— [ManagedServiceFactory PID }f_,_»[ObjectGrid XML

com.ibm.webspheare xs container

A b 4 \‘| Deployment XML

e Programmatically
Supports customized configuration solutions.
In each case, an eXtreme Scale server singleton is configured and one or more containers are configured.

The eXtreme Scale server bundle, objectgrid. jar, includes all of the required libraries to start and run an
eXtreme Scale grid container in an OSGi framework. The server runtime environment communicates with
user-supplied plug-ins and data objects using the OSGi service manager.

Important: After an eXtreme Scale server bundle is started and the eXtreme Scale server is initialized, it
cannot be restarted . The Eclipse Equinox process must be restarted to restart an eXtreme Scale server.

You can use eXtreme Scale support for Spring namespace to configure eXtreme Scale container servers in a
Blueprint XML file. When the server and container XML elements are added to the Blueprint XML file, the
eXtreme Scale namespace handler automatically starts a container server using the parameters that are
defined in the Blueprint XML file when the bundle is started. The handle stops the container when the bundle
is stopped.

To configure eXtreme Scale container servers with Blueprint XML, complete the following steps:

Procedure

e Start an eXtreme Scale container server using OSGi blueprint.

1. Create a container bundle.

2. Install the container bundle into the Eclipse Equinox OSGi framework. See Installing and starting
OSGi-enabled plug-ins.

3. Start the container bundle.

e Start an eXtreme Scale container server using OSGi configuration admin.

1. Configure the server and container using config admin.

2. When the eXtreme Scale server bundle is started, or the persistent identifiers are created with
config admin, the server and container automatically start.

e Start an eXtreme Scale container server using the ServerFactory API. See the server API
documentation.

1. Create an OSGi bundle activator class, and use the eXtreme Scale ServerFactory API to start a
server.

Parent topic: Running eXtreme Scale containers with dynamic plug-ins in an OSGi environment
Parent topic: Administering

Related tasks:
Running eXtreme Scale containers with non-dynamic plug-ins in an OSGi environment

Administering OSGi-enabled services using the xscmd utility

You can use the xscmd utility to complete administrator tasks, such as viewing services and their rankings
that are being used by each container, and updating the runtime environment to use new versions of the
bundles.

About this task

With the Eclipse Equinox OSGi framework, you can install multiple versions of the same bundle, and you can
update those bundles during run time. WebSphere® eXtreme Scale is a distributed environment that runs
the container servers in many OSGi framework instances.

Administrators are responsible for manually copying, installing, and starting bundles into the OSGi
framework. eXtreme Scale includes an OSGi ServiceTrackerCustomizer to track any services that have been
identified as eXtreme Scale plug-ins in the ObjectGrid descriptor XML file. Use the xscmd utility to validate
which version of the plug-in is used, which versions are available to be used, and to perform bundle
upgrades.

eXtreme Scale uses the service ranking number to identify the version of each service. When two or more
services are loaded with the same reference, eXtreme Scale automatically uses the service with the highest
ranking.

Procedure

e Run the osgiCurrent command, and verify that each eXtreme Scale server is using the correct plug-in
service ranking.

Since eXtreme Scale automatically chooses the service reference with the highest ranking, it is
possible that the data grid may start with multiple rankings of a plug-in service.

If the command detects a mismatch of rankings or if it is unable to find a service, a non-zero error
level is set. If the command completed successfully then the error level is set to 0.

The following example shows the output of the osgiCurrent command when two plug-ins are installed
in the same grid on four servers. The loaderPlugin plug-in is using ranking 1, and the txCallbackPlugin
is using ranking 2.

0SGi Service Name Current Ranking ObjectGrid Name MapSet Name Server Name

loaderPlugin 1 MyGrid MapSetA serverl
loaderPlugin 1 MyGrid MapSetA server2
loaderPlugin 1 MyGrid MapSetA server3
loaderPlugin 1 MyGrid MapSetA server4
txCallbackPlugin 2 MyGrid MapSetA serverl
txCallbackPlugin 2 MyGrid MapSetA server2
txCallbackPlugin 2 MyGrid MapSetA server3
txCallbackPlugin 2 MyGrid MapSetA server4

The following example shows the output of the osgiCurrent command when server2 was started with
a newer ranking of the loaderPlugin:

0SGi Service Name Current Ranking ObjectGrid Name MapSet Name Server Name

loaderPlugin 1 MyGrid MapSetA serverl
loaderPlugin 2 MyGrid MapSetA server2
loaderPlugin 1 MyGrid MapSetA server3
loaderPlugin 1 MyGrid MapSetA server4
txCallbackPlugin 2 MyGrid MapSetA serverl
txCallbackPlugin 2 MyGrid MapSetA server2
txCallbackPlugin 2 MyGrid MapSetA server3
txCallbackPlugin 2 MyGrid MapSetA server4

e Run the 0sgiAll command to verify that the plug-in services have been correctly started on each
eXtreme Scale container server.

When bundles start that contain services that an ObjectGrid configuration is referencing, the eXtreme
Scale runtime environment automatically tracks the plug-in, but does not immediately use it. The
0sgiAll command shows which plug-ins are available for each server.

When run without any parameters, all services are shown for all grids and servers. Additional filters,

including the -serviceName <service name> filter can be specified to limit the output to a single
service or a subset of the data grid.

The following example shows the output of the 0sgiAll command when two plug-ins are started on
two servers. The loaderPlugin has both rankings 1 and 2 started and the txCallbackPlugin has ranking
1 started. The summary message at the end of the output confirms that both servers see the same
service rankings:

Server: serverl
0SGi Service Name Available Rankings
loaderPlugin 1, 2
txCallbackPlugin 1

Server: server2
0SGi Service Name Available Rankings
loaderPlugin 1, 2
txCallbackPlugin 1

Summary - All servers have the same service rankings.

The following example shows the output of the 0sgiA1l command when the bundle that includes the
loaderPlugin with ranking 1 is stopped on serverl. The summary message at the bottom of the output
confirms that serverl is now missing the loaderPlugin with ranking 1:

Server: serverl
0SGi Service Name Available Rankings
loaderPlugin 2
txCallbackPlugin 1

Server: server2
0SGi Service Name Available Rankings
loaderPlugin 1, 2
txCallbackPlugin 1

Summary - The following servers are missing service rankings:
Server 0SGi Service Name Missing Rankings

serverl loaderPlugin 1

The following example shows the output if the service name is specified with the -sn argument, but
the service does not exist:

Server: server2
0SGi Service Name Available Rankings

invalidPlugin No service found

Server: serverl
0SGi Service Name Available Rankings

invalidPlugin No service found
Summary - All servers have the same service rankings.

e Run the osgiCheck command to check sets of plug-in services and rankings to see if they are
available.

The osgiCheck command accepts one or more sets of service rankings in the form: -serviceRankings
<service name>;<ranking>[,<serviceName>;<ranking>]

When the rankings are all available, the method returns with an error level of 0. If one or more
rankings are not available, a non-zero error level is set. A table of all of the servers that do not include
the specified service rankings is displayed. Additional filters can be used to limit the service check to a
subset of the available servers in the eXtreme Scale domain.

For example, if the specified ranking or service is absent, the following message is displayed:

Server 0SGi Service Unavailable Rankings
serverl loaderPlugin 3
server2 loaderPlugin 3

e Run the osgiUpdate command to update the ranking of one or more plug-ins for all servers in a single
ObjectGrid and MapSet in a single operation.

The command accepts one or more sets of service rankings in the form: -serviceRankings <service
name>;<ranking>[,<serviceName>;<ranking>] -g <grid name> -ms <mapset name>

With this command, you can complete the following operations:

o Verify that the specified services are available for updating on each of the servers.

o Change the state of the grid to offline using the StateManager interface. See Managing
ObjectGrid availability for more information. This process quiesces the grid and waits until any
running transactions have completed and prevents any new transactions from starting. This
process also signals any ObjectGridLifecycleListener and BackingMapLifecycleListener plug-ins
to discontinue any transactional activity. See Plug-ins for providing event listeners for
information about event listener plug-ins.

o Update each eXtreme Scale container running in an OSGi framework to use the new service
versions.

o Changes the state of the grid to online, allowing transactions to continue.

The update process is idempotent so that if a client fails to complete any one task, it results in the
operation being rolled back. If a client is unable to perform the rollback or is interrupted during the
update process, the same command can be issued again, and it continues at the appropriate step.

If the client is unable to continue, and the process is restarted from another client, use the -force
option to allow the client to perform the update. The osgiUpdate command prevents multiple clients
from updating the same map set concurrently. For more details about the osgiUpdate command, see
Updating OSGi services for eXtreme Scale plug-ins with xscmd.

Updating OSGi services for eXtreme Scale plug-ins with xscmd

WebSphere eXtreme Scale supports upgrading container server plug-in bundles while the grid is
active. This support allows administrators to complete application updates and additions without
needing to restart grid processes.

Parent topic: Running eXtreme Scale containers with dynamic plug-ins in an OSGi environment
Parent topic: Administering

Related tasks:

Updating OSGi services for eXtreme Scale plug-ins with xscmd
Administering with the xscmd utility

Managing ObjectGrid availability

Related reference:
Plug-ins for providing event listeners

Related information:
Eclipse runtime options

http://help.eclipse.org/helios/topic/org.eclipse.platform.doc.isv/reference/misc/runtime-options.html

Configuring servers with OSGi Blueprint

“11* You can configure WebSphere® eXtreme Scale container servers using an OSGi blueprint XML file,
allowing simplified packaging and development of self-contained server bundles.

Before you begin

This topic assumes that the following tasks have been completed:

e The Eclipse Equinox OSGi framework has been installed and started with either the Eclipse Gemini or
Apache Aries blueprint container.

e The eXtreme Scale server bundle has been installed and started.

e The eXtreme Scale dynamic plug-ins bundle has been created.

e The eXtreme Scale ObjectGrid descriptor XML file and deployment policy XML file have been created.

About this task

This task describes how to configure an eXtreme Scale server with a container using a blueprint XML file. The
result of the procedure is a container bundle. When the container bundle is started, the eXtreme Scale server
bundle will track the bundle, parse the server XML and start a server and container.

A container bundle can optionally be combined with the application and eXtreme Scale plug-ins when
dynamic plug-in updates are not required or the plug-ins do not support dynamic updating.

Procedure

1. Create a Blueprint XML file with the objectgrid namespace included. You can name the file anything.
However, it must include the blueprint namespace:

<?xml version="1.0" encoding="UTF-8"7>

<blueprint xmlns="http://www.0sgi.org/xmlns/blueprint/v1.0.0"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance
xmlns:objectgrid="http://www.ibm.com/schema/objectgrid"
xsi:schemalLocation="http://www.ibm.com/schema/objectgrid
http://www.ibm.com/schema/objectgrid/objectgrid.xsd">

</blueprint>

2. Add the XML definition for the eXtreme Scale server with the appropriate server properties. See the
Spring descriptor XML file for details on all available configuration properties. See the following
example of the XML definition:

<objectgrid:server id="xsServer" tracespec="0bjectGrid0SGi=all=enabled"
tracefile="1logs/osgi/wxsserver/trace.log" jmxport="1199" listenerPort="2909">
<objectgrid:catalog host="catserverl.mycompany.com" port="2809" />
<objectgrid:catalog host="catserver2.mycompany.com" port="2809" />
</objectgrid:server>

3. Add the XML definition for the eXtreme Scale container with the reference to the server definition and
the ObjectGrid descriptor XML and ObjectGrid deployment XML files embedded in the bundle; for
example:

<objectgrid:container id="container"
objectgridxml="/META-INF/objectGrid.xml"
deploymentxml="/META-INF/objectGridDeployment.xml"
server="xsServer" />

4. Store the Blueprint XML file in the container bundle. The Blueprint XML must be stored in the 0SGI -
INF/blueprint directory for the Blueprint container to be found.

To store the Blueprint XML in a different directory, you must specify the Bundle-Blueprint manifest
header; for example:

Bundle-Blueprint: O0SGI-INF/blueprint.xml

5. Package the files into a single bundle JAR file. See the following example of a bundle directory
hierarchy:

MyBundle. jar

/META-INF/manifest.mf
/META-INF/objectGrid.xml
/META-INF/objectGridDeployment.xml
/0SGI-INF/blueprint/blueprint.xml

Results

An eXtreme Scale container bundle is now created and can be installed in Eclipse Equinox. When the
container bundle is started, the eXtreme Scale server runtime environment in the eXtreme Scale server
bundle, will automatically start the singleton eXtreme Scale server using the parameters defined in the
bundle, and starts a container server. The bundle can be stopped and started, which results in the container
stopping and starting. The server is a singleton and does not stop when the bundle is started the first time.

Parent topic: Running eXtreme Scale containers with dynamic plug-ins in an OSGi environment
Parent topic: Configuring servers for OSGi

Samples

Several WebSphere® eXtreme Scale tutorials, examples, and samples are available.

Examples
The following topics illustrate key WebSphere eXtreme Scale features.

e DataGrid APl example
e Configuring local deployments

Community samples

The following samples from the |IBM Elastic Caching Community Samples illustrate how to use WebSphere
eXtreme Scale in various environments to exhibit different features of the product.

Articles with tutorials and examples

Table 1. Available articles by feature

Article Features
Building grid-ready ObjectMap API, EntityManager API, queries, agents, Java™
applications SE and EE, statistics, partitioning, administration and

operations, Eclipse

Scalable grid-style computing EntityManager API, agents
and data processing

Building a scalable, resilient, ObjectMap API, replication, partitioning, administration and
high-performance database operations, Eclipse
alternative
Enhancing xsadmin for Administration
WebSphere eXtreme Scale
Redbook: User's Guide All topics
Free trial

To get started using WebSphere eXtreme Scale, download a free trial version. You can develop
innovative, high-performance applications by extending the data caching concept using advanced
features.

Sample properties files
Server properties files contain settings for running your catalog servers and container servers. You can

specify a server properties file for either a stand-alone or WebSphere Application Server configuration.
Client property files contain settings for your client.

Sample: xsadmin utility

With the xsadmin utility, you can format and display textual information about your WebSphere
eXtreme Scale topology. The sample utility provides a method for parsing and discovering current
deployment data, and can be used as a foundation for writing custom utilities.

Related concepts:

Serialization using Java

Serialization overview

Serialization using the DataSerializer plug-ins
ObjectTransformer plug-in

lava plug-ins overview

Plug-ins for serializing cached objects
Serializer programming overview

IBM eXtremeMemory

Serializer programming overview
Serialization overview

Related tasks:

Avoiding object inflation when updating and retrieving cache data
Planning to use IBM eXtremeMemory

Configuring eXtreme Scale plug-ins with OSGi Blueprint

Configuring OSGi-enabled plug-ins using the ObjectGrid descriptor XML file
Building eXtreme Scale dynamic plug-ins

https://www.ibm.com/developerworks/community/blogs/714470bb-75c8-4f99-8aca-766c0d55a21c/tags/sample
http://www.ibm.com/developerworks/websphere/techjournal/1004_brown/1004_brown.html
http://www.ibm.com/developerworks/websphere/techjournal/0712_marshall/0712_marshall.html
http://www.ibm.com/developerworks/websphere/techjournal/0711_chambers/0711_chambers.html
http://www.ibm.com/developerworks/websphere/techjournal/0812_pape/0812_pape.html
http://www.redbooks.ibm.com/abstracts/sg247683.html

Scenario: Using an OSGi environment to develop and run exXtreme Scale plug-ins
Avoiding object inflation when updating and retrieving cache data
Programming to use the OSGi framework

Related information:

[* Oracle Java Serialization API

Building OSGi applications with the Blueprint Container specification
[(* 0SGi Bundle Activator APl documentation

Spring hamespace schema

DataSerializer APl documentation

http://java.sun.com/developer/technicalArticles/Programming/serialization/
http://www.ibm.com/developerworks/opensource/library/os-osgiblueprint/
http://www.osgi.org/javadoc/r4v43/org/osgi/framework/BundleActivator.html
http://static.springsource.org/spring/docs/2.0.x/reference/xsd-config.html

Free trial

To get started using WebSphere® eXtreme Scale, download a free trial version. You can develop innovative,
high-performance applications by extending the data caching concept using advanced features.

Trial download

You can download a free trial version of WebSphere eXtreme Scale, from Download eXtreme Scale trial.

After downloading and unzipping the trial version of eXtreme Scale, navigate to the gettingstarted
directory, and read the GETTINGSTARTED README. txt file. This tutorial gets you started using eXtreme Scale,
create a data grid on several servers, and run some simple applications to store and retrieve data in a grid.
Before deploying eXtreme Scale in a production environment, there are several options to consider, including

the number of servers to use, the amount of storage on each server, and synchronous or asynchronous
replication.

Parent topic: Samples

http://www.ibm.com/developerworks/downloads/ws/wsdg/learn.html

Sample properties files

Server properties files contain settings for running your catalog servers and container servers. You can
specify a server properties file for either a stand-alone or WebSphere® Application Server configuration.
Client property files contain settings for your client.

You can use the following sample properties files that are in the wxs_install root\properties directory to
create your properties file:

e sampleServer.properties

e sampleClient.properties

Parent topic: Samples

Related reference:
Server properties file
Client properties file

Sample: xsadmin utility

With the xsadmin utility, you can format and display textual information about your WebSphere® eXtreme
Scale topology. The sample utility provides a method for parsing and discovering current deployment data,
and can be used as a foundation for writing custom utilities.

Before you begin

e 1 The xsadmin utility is provided as a sample of how you can create custom utilities for your
deployment. The xscmd utility is provided as a supported utility for monitoring and administering your
environment. For more information, see Administering with the xscmd utility.

e For the xsadmin utility to display results, you must have created your data grid topology. Your catalog
servers and container servers must be started. See Starting and stopping stand-alone servers for more
information.

e Verify that the JAVA HOME environment variable is set to use the runtime environment that installed
with the product. If you are using the trial version of the product, you must set the JAVA HOME
environment variable.

About this task

The xsadmin sample utility uses an implementation of Managed Beans (MBeans). This sample monitoring
application enables rapidly integrated monitoring capabilities that you can extend by using the interfaces in
the com.ibm.websphere.objectgrid.management package. You can look at the source code of the xsadmin
sample application in the wxs_home/samples/xsadmin. jar file in a stand-alone installation, or in the
wxs_home/xsadmin. jar file in a WebSphere Application Server installation.

You can use the xsadmin sample utility to view the current layout and specific state of the data grid, such as
map content. In this example, the layout of the data grid in this task consists of a single ObjectGridA data
grid with one MapA map that belongs to the MapSetA map set. This example demonstrates how you can
display all active containers within a data grid and print filtered metrics regarding the map size of the MapA
map. To see all possible command options, run the xsadmin utility without any arguments or with the -help
option.

Procedure

1. Go to the bin directory.
cd wxs_home/bin

2. Run the xsadmin utility.
o To display the online help, run the following command:

[UNIX
xsadmin.sh
| Windows

xsadmin.bat

You must pass in only one of the listed options for the utility to work. If no -g or -m option is
specified, the xsadmin utility prints out information for every grid in the topology.

o To enable statistics for all of the servers, run the following command:

xsadmin.sh ObjectGridA -setstatsspec AlLL=enabled

xsadmin.bat ObjectGridA -setstatsspec ALL=enabled

o To display all online containers for a grid, run the following command:

xsadmin.sh -g ObjectGridA -m MapSetA -containers

xsadmin.bat -g ObjectGridA -m MapSetA -containers
All container information is displayed. An example of the output follows:

Connecting to Catalog service at localhost:1099

*** Show all online containers for grid - ObjectGridA & mapset - MapSetA

Host: 192.168.0.186
Container: serverl C-0, Server:serverl, Zone:DefaultZone
Partition Shard Type

0 Primary

Num containers matching =1
Total known containers =1
Total known hosts =1

Attention: To obtain this information when Transport Layer Security/Secure Sockets Layer
(TLS/SSL) is enabled, you must start the catalog and container servers with the JMX service port
set. To set the JMX service port, you can either use the -JMXServicePort option on the
start0gServer script or you can call the setjMXServicePort method on the ServerProperties
interface.

To connect to the catalog service and display information about MapA, run the following
command:

| UNIX |
xsadmin.sh -g ObjectGridA -m MapSetA -mapsizes -fm MapA
| Windows |

xsadmin.bat -g ObjectGridA -m MapSetA -mapsizes -fm MapA

The size of the specified map is displayed. An example of the output follows:
Connecting to Catalog service at localhost:1099

****Displaying Results for Grid - ObjectGridA, MapSet - MapSetA****x
*** Listing Maps for serverl **x*

Map Name Partition Map Size Used Bytes (B) Shard Type
MapA 0 0 0 Primary

To connect to the catalog service using a specific JMX port and display information about the
MapA map, run the following command: LSS

xsadmin.sh -g ObjectGridA -m MapSetA -mapsizes -fm MapA
-ch CatalogMachine -p 6645

xsadmin.bat -g ObjectGridA -m MapSetA -mapsizes -fm MapA
-ch CatalogMachine -p 6645

The xsadmin sample utility connects to the MBean server that is running on a catalog server. A
catalog server can run as a stand-alone process, WebSphere Application Server process, or
embedded within a custom application process. Use the -ch option to specify the catalog service
host name, and the -p option to specify the catalog service naming port.

The size of the specified map is displayed. An example of the output follows:
Connecting to Catalog service at CatalogMachine:6645

****x*xDisplaying Results for Grid - ObjectGridA, MapSet - MapSetA*****

*** Listing Maps for serverl **x*
Map Name: MapA Partition #: 0 Map Size: 0 Shard Type: Primary
Server Total: 0

o To connect to a catalog service hosted in a WebSphere Application Server process, perform the
following steps:

The -dmgr option is required when connecting to a catalog service hosted by any WebSphere
Application Server process or cluster of processes. Use the -ch option to specify the host name if
not Localhost, and the -p option to override the catalog service bootstrap port, which uses the
process BOOTSTRAP _ADDRESS. The -p option is only needed if the BOOTSTRAP_ADDRESS is not
set to the default of 9809.

Note: The stand-alone version of WebSphere eXtreme Scale cannot be used to connect to a
catalog service hosted by a WebSphere Application Server process. Use the xsadmin that is
script included in the was_root/bin directory, which is available when the installing WebSphere
eXtreme Scale on WebSphere Application Server or WebSphere Application Server Network
Deployment.

a. Navigate to the WebSphere Application Server bin directory:
cd was_root/bin

b. Launch the xsadmin utility using the following command:

__ UNIX |
xsadmin.sh -g ObjectGridA -m MapSetA -mapsizes -fm MapA -dmgr
__ Windows |
xsadmin.bat -g ObjectGridA -m MapSetA -mapsizes -fm MapA -dmgr
The size of the specified map is displayed.
Connecting to Catalog service at localhost:9809

****Displaying Results for Grid - ObjectGridA, MapSet - MapSetA****x

*** | isting Maps for serverl ***

Map Name: MapA Partition #: 0 Map Size: 0 Shard Type: Primary
Server Total: 0

o To display the configured and runtime placement of your configuration, run one of the following
commands:

xsadmin -placementStatus

xsadmin -placementStatus -g myOG -m myMapSet
xsadmin -placementStatus -m myMapSet

xsadmin -placementStatus -g my0G

You can scope the command to display placement information for the entire configuration, a

single data grid, a single map set, or a combination of a data grid and map set. An example of
the output follows:

kKRR AAXX*Printing Placement Status for Grid - Grid, MapSet -
mapSet**************

<objectGrid name="Grid" mapSetName="mapSet">
<configuration>
<attribute name="placementStrategy" value="FIXED PARTITIONS"/>
<attribute name="numInitialContainers" value="3"/>
<attribute name="minSyncReplicas" value="0"/>
<attribute name="developmentMode" value="true"/>
</configuration>
<runtime>
<attribute name="numContainers" value="3"/>
<attribute name="numMachines" value="1"/>

<attribute name="numOutstandingWorkItems" value="0"/>
</runtime>
</objectGrid>

Creating a configuration profile for the xsadmin utility
You can save your frequently specified parameters for the xsadmin utility in a properties file. As a
result, the xsadmin utility calls are shorter.

xsadmin utility reference
You can pass arguments to the xsadmin utility with two different methods: with a command-line

argument, or with a properties file.

Verbose option for the xsadmin utility

You can use the xsadmin verbose option to troubleshoot problems. Run the xsadmin -v command to
list all configured parameters. The verbose option displays all values in all scopes, including command
line arguments, properties file arguments, and environment-specified arguments. The Effective
arguments section includes the settings that are being used in the environment if you have specified
the same property using multiple scopes.

Parent topic: Samples

Related reference:
xsadmin utility reference

Related information:
4w B* developerWorks: Enhancing xsadmin for WebSphere eXtreme Scale
[(* developerWorks: Enhancing xsadmin for WebSphere eXtreme Scale

http://www.ibm.com/developerworks/websphere/techjournal/0812_pape/0812_pape.html
http://www.ibm.com/developerworks/websphere/techjournal/0812_pape/0812_pape.html

Creating a configuration profile for the xsadmin utility

You can save your frequently specified parameters for the xsadmin utility in a properties file. As a result, the
xsadmin utility calls are shorter.

Before you begin

Create a basic deployment of WebSphere® eXtreme Scale that includes at least one catalog server and at
least one container server. For more information, see startOgServer script.

About this task

See xsadmin utility reference for a list of the properties that you can put in a configuration profile for the
xsadmin utility. If you specify both a properties file and a corresponding parameter as a command line
argument, the command line argument overrides the properties file value.

Procedure

1. Create a configuration profile properties file. This properties file should contain any global properties
that you want to use in all your xsadmin command invocations.

Save the properties file with any name you choose. For example, you might place the file in the
following path: /opt/ibm/WebSphere/wxs71/0bjectGrid/security/<my.properties>.

Replace <my.properties> the name of your file.

For example, you might set the following properties in your file:

o XSADMIN TRUST TYPE=jks
o XSADMIN TRUST PATH=/opt/ibm/WebSphere/wxs71/0bjectGrid/bin/security/key. jks
o XSADMIN USERNAME=ogadmin

2. Run the xsadmin utility with the properties file that you created. Use the -profile parameter to
indicate the location of your properties file. You can also use the -v parameter to display verbose
output.

./xsadmin.sh -1 -v -password xsadmin -ssl -trustPass ogpass -profile
/opt/ibm/WebSphere/wxs71/0bjectGrid/security/<my.properties>

Parent topic: Sample: xsadmin utility

xsadmin utility reference

You can pass arguments to the xsadmin utility with two different methods: with a command-line argument,
or with a properties file.

xsadmin arguments
L@ Note: The xsadmin utility has now been deprecated. Use the xscmd utility instead. The xscmd utility is

provided as a supported utility for monitoring and administering your environment. For more information,
see Administering with the xscmd utility.

You can define a properties file for the xsadmin utility with Version 7.1 Fix 1 or later. By creating a properties
file, you can save some of the frequently used arguments, such as the user name. The properties that you
can add to a properties file are in the following table. If you specify both a property in a properties file and
the equivalent command-line argument, the command-line argument value overrides the properties file
value.

For more information about defining a properties file for the xsadmin utility, see Creating a configuration
profile for the xsadmin utility.

Table 1. Arguments for the xsadmin utility

Equivalent
Property
Command Line Name in
Argument Properties File Description and valid values
-bp n/a
Indicates the listener port.
Default:2809
-ch n/a
Indicates the JMX host name for the catalog server.
Default:localhost
-Clear n/a
Clears the specified map.
Allows the following filters: -fm
-containers n/a For each data grid and map set, displays a list of
container servers.
Allows the following filters: - fnp
-continuous n/a Specify this flag if you want continuous map size
results to monitor the data grid. When you run this
command with the -mapsizes argument, the map
size is displayed every 20 seconds.
-coregroups n/a Displays all core groups for the catalog server. This
argument is used for advanced diagnostics.
-dismissLink n/a
<catalog serv Removes a link between 2 catalog service domains.
ice domain> Provide the name of the foreign catalog service
B domain to which you previously connected with the
-establishLink argument.
-dmgr n/a
Indicates if you are connecting to a WebSphere®
Application Server hosted catalog service.
Default:false
-empties n/a Specify this flag if you want to show empty
containers in the output.
-establishLink n/a
<foreign doma Connects the catalog service domain to a foreign
in name> catalog service domain. Use the following format: -
<hostl:portl, establishLink <foreign domain_name>
host?:nort?. . . <hostl:portl,host2:port2...>.

e — —— -~ -

foreign domain name is the name of the foreign

>
catalog service domain, and
hostl:portl,host2:port2... isa comma-
separated list of catalog server host names and
Object Request Broker (ORB) ports that are running
in this catalog service domain.

-fc n/a Filters for only this container.
If you are filtering container servers in a WebSphere
Application Server Network Deployment
environment, use the following format:
<cell name>/<node name>/<serverName contai
nerSuffix>
Use with the following arguments: -mapsizes,
-teardown,-revisions

-fh n/a Filters for only this host.
Use with the following arguments: -mapsizes,
-teardown,-revisions,-getTraceSpec,-setTraceSpe
,~getStatsSpec,-setStatsSpec,-routetable

-fm n/a Filters only for this map.
Use with the following arguments: -clear,
-mapsizes

-fnp n/a Filters servers that have no primary shards.
Use with the following arguments: -containers

-fp n/a Filters for only this partition.
Use with the following arguments: -mapsizes,
-teardown,-revisions,-getTraceSpec,-setTraceSpe
,~getStatsSpec,-setStatsSpec,-routetable

-fs n/a Filters for only this server.
If you are filtering application servers in a
WebSphere Application Server Network Deployment
environment, use the following format:
<cell name>/<node name>/<server name>
Use with the following arguments: -mapsizes,
-teardown,-revisions,-getTraceSpec,-setTraceSpe
,~getStatsSpec,-setStatsSpec

-fst n/a Filters for only this shard type. Specify P for primary
shards only, A for asynchronous replica shards only,
and S for synchronous replica shards only.
Use with the following arguments: -mapsizes,
-teardown,-revisions,-getTraceSpec,-setTraceSpe
,~getStatsSpec,-setStatsSpec

-fz n/a Filters for only this zone.
Use with the following arguments: -mapsizes,
-teardown,-revisions,-getTraceSpec,-setTraceSpe
,~getStatsSpec,-setStatsSpec,-routetable

-force n/a Forces the action that is in the command, disabling

any preemptive prompts. This argument is useful for
running batched commands.

-9

n/a

Specifies the ObjectGrid name.

-getstatsspec

n/a

Displays the current statistics specification. You can
set the statistics specification with the
-setstatsspec argument.

Allows the following filters: -fst -fc -fz -fs
-th -fp

-getTraceSpec

n/a

Displays the current trace specification. You can set
the trace specification with the -settracespec
argument.

Allows the following filters: -fst -fc -fz -fs
-th -fp

n/a

Displays the help for the xsadmin utility, which
includes a list of arguments.

-hosts

n/a

Displays all of the hosts in the configuration.

-jmxUrl

XSADMIN_JMX_U
RL

Specifies the address of a JMX APl connector server
in the following format:
service:jmx:protocol:sap. The protocol and sap
variable definitions follow:

protocol

Specifies the transport protocol to be used to
connect to the connector server.

sap
Specifies the address at which the connector
server is found.

For more information about the format of the JMX
service URL, see Class [MXServiceURL (Java™ 2
Platform SE 5.0).

n/a

Displays all known data grids and map sets.

-m

n/a

Specifies the name of the map set.

-mapsizes

n/a

Displays the size of each map on the catalog server
to verify that key distribution is uniform over the
shards.

Allows the following filters: -fm -fst -fc -fz
-fs -fh -fp

-mbeanservers

n/a

Displays a list of all MBean server end points.

-overridequorum

n/a

Overrides the quorum setting so that container
server events are not ignored during a data center
failure scenario.

-password XSADMIN_PASS Specifies the password to log in to the xsadmin
WORD utility. Do not specify the password in your
properties file if you want your password to remain
secure.
-p n/a
Indicates the JMX port for the catalog server host.
Default: 1099 or 9809 for a WebSphere Application
Server host, 1099 for stand-alone configurations.
n/a Displays the configured placement and runtime

placementStatus

placement of your configuration. You can scope the
output to a combination of data grids and map sets,
or for the entire configuration:

e Entire configuration:

-placementStatus

— ",

http://download.oracle.com/javase/1.5.0/docs/api/javax/management/remote/JMXServiceURL.html

e or a specific data grid:
-placementStatus -g my grid

e For a specific map set:
-placementStatus -m my mapset

e For a specific data grid and map set:

-placementStatus -g my grid
-m my mapset

-primaries n/a Displays a list of the primary shards.

-profile n/a Specifies a fully qualified path to the properties file
for the xsadmin utility.

-quorumstatus n/a
Displays the status of quorum for the catalog
service.

-releaseShard n/a Used in conjunction with the -reserveShard

<container se argument. The -releaseShard argument must be

rver_name> invoked after a shard has been reserved and placed.

<objectgrid n . The -releaseShard argument invokes the

ame> ContainerMBean.release() method.

<map _set name

>

<partition na

me>

-reserved n/a Used with the -containers argument to display
only shards that have been reserved with the
-reserveShard argument.

-reserveShard n/a Moves a primary shard to the specified container

<container se server. The ContainerMBean.reserve() method is

rver _name> invoked by this argument.

<objectgrid n

ame>

<map_set name

>

<partition na

me>

n/a Attempts to balance requests. Enables future

} rebalancing attempts on the specified ObjectGrid

g

<objectgrid n

ame >

<map_set name

>

-revisions n/a Displays revision identifiers for a catalog service
domain including: each data grid, partition number,
partition type (primary or replica), catalog service
domain, lifetime ID, and number of data revisions
for each specific shard. You can use this argument to
determine if an asynchronous replica or linked
domain is caught up. This argument invokes the
ObjectGridMBean.getKnownRevisions() method.
Allows the following filters: -fst -fc -fz -fs
-fh -fp

-routetable n/a Displays the current state of the data grid from a

client server perspective. The route table is the
information that an ObjectGrid client server uses to
communicate with the data grid. Use the route table

as a diagnostic aid when you are trying to identity
connection problems or TargetNotAvailable
exceptions.

Required arguments: In a stand-alone
environment, you must specify the -bp and -p
parameters with this argument if you are not using
the default values for the bootstrap listener port and
JMX port for the catalog server host.

Allows the following filters: -fz -fh -fp

-settracespec n/a

<trace string Enables trace on servers during run time. See the

> following example:

-setTraceSpec
"ObjectGridReplication=all=enabled"
See Collecting trace and Server trace options for
more information about the trace strings that you
can specify.
Allows the following filters: -fst -fc -fz -fs
-fh -fp
n/a Swaps the specified replica shard from the specified

) container server with the primary shard. By running

syvapShardWithP this command, you can manually balance primary

rimary shards when needed.

<container se

rver name>

<objectgrid n

ame >

<map_set name

>

<partition na

me>

-setstatsspec n/a Enables statistics gathering. This argument invokes

<stats spec> the DynamicServerMBean.setStatsSpec and
DynamicServerMBean.getStatsSpec methods. For
more information, see Enabling statistics.
Allows the following filters: -fm -fst -fc -fz
-fs -fh -fp

n/a Prevents future attempts to balance the specified

) ObjectGrid and map set.

suspendBalancin

g

<objectgrid n

ame>

<map_set name

>

-ssl n/a Indicates that Secure Sockets Layer (SSL) is
enabled.

-teardown n/a

Stops a list or group of catalog and container
servers.

Allows the following filters: -fst -fc -fz -fs
-fh -fp

Format to provide a list of servers:
server name 1,server name 2 ...

To stop all servers in a zone, include the -fz
argument:

—fz <zone name>

To stop all servers on a host, include the -fh
argument:

—fh <host name>

triggerPlacemen
t

n/a

Forces shard placement to run, ignoring the
configured numInitialContainers value in the
deployment XML file. You can use this argument
when you are performing maintenance on your
servers to allow shard placement to continue
running, even though the numInitialContainers
value is lower than the configured value.

-trustPass XSADMIN_TRUST Specifies the password for the specified truststore.

_PASS
-trustPath XSADMIN_TRUST Specifies a path to the truststore file.

_PATH

Example: etc/test/security/server.public
-trustType XSADMIN_TRUST Specifies the type of truststore.
TYPE

a Valid values: JKS, JCEK, PKCS12, and so on.

-unassigned n/a Displays a list of shards that cannot be placed on
the data grid. Shards cannot be placed when the
placement service has a constraint that is
preventing placement.

-username XSADMIN_USER Specifies the user name to log in to the xsadmin

NAME utility.

Y n/a Enables the verbose command-line action. Use this
flag if you are using environment variables, a
properties file, or both to specify certain command-
line arguments, and want to view their values. See
Verbose option for the xsadmin utility for more
information.

-xml n/a Prints the unfiltered output from the

PlacementServiceMBean.listObjectGridPlacement()
method. The other xsadmin arguments filter the
output of this method and organize the data into a
more consumable format.

Parent topic: Sample: xsadmin utility

Related tasks:
Sample: xsadmin utility

Stopping servers gracefully with the xscmd utility

Related information:

dW I:""develoloerWorks: Enhancing xsadmin for WebSphere eXtreme Scale

[* developerWorks: Enhancing xsadmin for WebSphere eXtreme Scale

http://www.ibm.com/developerworks/websphere/techjournal/0812_pape/0812_pape.html
http://www.ibm.com/developerworks/websphere/techjournal/0812_pape/0812_pape.html

Verbose option for the xsadmin utility

You can use the xsadmin verbose option to troubleshoot problems. Run the xsadmin -v command to list all
configured parameters. The verbose option displays all values in all scopes, including command line
arguments, properties file arguments, and environment-specified arguments. The Effective arguments
section includes the settings that are being used in the environment if you have specified the same property
using multiple scopes.

Verbose option example
xsadmin command arguments:

The following text is an example of output when using the verbose option from the command line after you
run the following command with a properties value specified:

./xsadmin -1 -v -username xsadmin -password xsadmin -ssl -trustPass ogpass
-profile /opt/ibm/WebSphere/wxs71/0bjectGrid/security/my.properties

Properties file arguments:

The contents of the /opt/ibm/WebSphere/wxs71/0bjectGrid/security/my.properties properties file
follow:

XSADMIN_ TRUST PASS=ogpass

XSADMIN TRUST TYPE=jks

XSADMIN TRUST PATH=/opt/ibm/WebSphere/wxs71/0bjectGrid/bin/security/key.jks
XSADMIN USERNAME=o0gadmin

XSADMIN PASSWORD=ogpass

Command results:

In the following output from the preceding xsadmin command, the text that is in bold italics indicates
properties and values that are specified both on the command line and in the properties file. In the
Effective command line arguments section, you can see that the command line specified arguments
override the values in the properties file.

Command line specified arguments

3k 3K 3K 3k 3K 3k 3k 5k >k >k >k 3k 5k K >k 3k 5K >k >k >k 5k 5Kk >k >k 5k >k >k >k >k >k >k >k >k >k

XSADMIN USERNAME=xsadmin

XSADMIN PASSWORD=xsadmin

XSADMIN TRUST PATH=<unspecified>

XSADMIN TRUST TYPE=<unspecified>

XSADMIN TRUST PASS=ogpass

XSADMIN PROFILE=/opt/ibm/WebSphere/wxs71/0bjectGrid/security/my.properties
XSADMIN JMX URL=<unspecified>

3k 3K 3K 5k 3k 3k 3K 5k >k >k >k 5K 5k >k >k 5K 5k 3Kk >k >k 5k >k >k >k 5K >k >k >k >k >k >k >k >k Xk

Properties file specified arguments

3K 3k 3K 5K 3K 3k 3k 5k 3K >k >k 5k 5K 3K >k 3k 5K K >k >k 5k 3Kk >k >k 5k 5Kk K >k >k 5K Kk >k >k >k >k >k

XSADMIN USERNAME=o0gadmin

XSADMIN PASSWORD=ogpass

XSADMIN TRUST PATH=/opt/ibm/WebSphere/wxs71/0bjectGrid/bin/security/key. jks
XSADMIN TRUST TYPE=jks

XSADMIN TRUST PASS=ogproppass

XSADMIN JMX URL=<unspecified>

>k 3k 5k >k >k 5k K >k 5k 5K >k >k 5k >k >k 5k >k >k >k >k >k >k 5k >k >k 5k K >k >k >k >k >k >k %

Environment-specified arguments

>k 5k >k 5k >k >k >k >k >k >k >k >k >k >k 5k >k 5k >k 5k >k 5k >k 5k %k 5k >k >k >k >k >k >k >k >k >k
XSADMIN USERNAME=<unspecified>
XSADMIN PASSWORD=<unspecified>
XSADMIN TRUST PATH=<unspecified>
XSADMIN TRUST TYPE=<unspecified>
XSADMIN TRUST PASS=<unspecified>
XSADMIN JMX URL=<unspecified>

>k 5k >k 5k >k 5k >k >k >k >k >k >k >k >k >k >k 5k >k 5k >k 5k >k 5k >k 5K >k >k >k >k >k >k >k >k >k

Effective arguments

3K 3K 3K 3K 3K 5K 5K 5K 5K 5K 5K 5K 5K 5K 5K 5K 3K 5K 3K 3K 3K 3K 3K 3K 3K 3K 3K 3K K >k >k >k >k Xk

XSADMIN USERNAME=xsadmin

XSADMIN PASSWORD=xsadmin

XSADMIN TRUST PATH=/opt/ibm/WebSphere/wxs71/0bjectGrid/bin/security/key. jks

XSADMIN TRUST TYPE=jks

XSADMIN_ TRUST PASS=ogpass

XSADMIN PROFILE=/opt/ibm/WebSphere/wxs71/0bjectGrid/security/my.properties
XSADMIN JMX URL=<unspecified>

SSL authentication enabled: true

3k 3K 3K 3k 3K 3k 3k 5k >k >k 3k 3K 5K K >k 3k 5K >k >k >k 5k 5Kk >k >k 5k 5k >k >k >k >k >k >k >k k

Connecting to Catalog service at localhost:1099

*** Show all 'objectGrid:mapset' names

Grid Name MapSet Name

accounting defaultMapSet

Attention: The XSADMIN PROFILE property, although it displays in the verbose output, is not a valid key that
you can specify in a properties file. The value of this property in the verbose output indicates the property
value that is being used, as indicated in the -profile command line argument.

Output without the verbose option

An example of the same command output without the verbose option enabled follows:

./xsadmin -1 -username xsadmin -password xsadmin -ssl -trustPass ogpass
-profile /opt/ibm/WebSphere/wxs71/0bjectGrid/security/my.properties

Connecting to Catalog service at localhost:1099
*** Show all 'objectGrid:mapset' names

Grid Name MapSet Name

accounting defaultMapSet

Parent topic: Sample: xsadmin utility

Tutorials

You can use tutorials to help you understand product usage scenarios, including
aes entity manager, queries, and security.

Tutorial: Querying a local in-memory data grid

You can develop a local in-memory ObjectGrid that can store order information for a website, and use
the ObjectQuery API to query the data grid.

Tutorial: Storing order information in entities

The tutorial for the entity manager shows you how to use WebSphere® eXtreme Scale to store order
information on a Web site. You can create a simple Java™ Platform, Standard Edition 5 application that
uses an in-memory, local data grid. The entities use Java SE 5 annotations and generics.

Tutorial: Configuring Java SE security
With the following tutorial, you can create a distributed eXtreme Scale environment in a Java Platform,

Standard Edition environment.

Tutorial: Integrate WebSphere eXtreme Scale security with WebSphere Application Server
This tutorial demonstrates how to secure a WebSphere eXtreme Scale server deployment in a
WebSphere Application Server environment.

Tutorial: Integrate WebSphere eXtreme Scale security in a mixed environment with an
external authenticator

This tutorial demonstrates how to secure WebSphere eXtreme Scale servers that are partially deployed
in @ WebSphere Application Server environment.

Tutorial: Running eXtreme Scale bundles in the OSGi framework
The OSGi sample builds on the Google Protocol Buffers serializer samples. When you complete this set
of lessons, you will have run the serializer sample plug-ins in the OSGi framework.

Tutorial: Querying a local in-memory data grid

You can develop a local in-memory ObjectGrid that can store order information for a website, and use the
ObjectQuery API to query the data grid.

Before you begin
Be sure to have objectgrid. jar file in the classpath.

About this task

Each step in the tutorial builds on the previous step. Follow each of the steps to build a simple Java™
Platform, Standard Edition Version 5 or later application that uses an in-memory, local data grid.

1. ObjectQuery tutorial - step 1
With the following steps, you can continue to develop a local, in-memory ObjectGrid that stores order
information for an online retail store using the ObjectMap APIs. You define a schema for the map and
run a query against the map.

2. ObjectQuery tutorial - step 2
With the following steps, you can continue to create an ObjectGrid with one map and an index, along

with a schema for the map. Then you can insert an object into the cache and later retrieve it using a
simple query.

3. ObjectQuery tutorial - step 3
With the following step, you can create an ObjectGrid with two maps and a schema for the maps with
a relationship, then insert objects into the cache and later retrieve them using a simple query.

4. ObjectQuery tutorial - step 4
The following step shows how to create an ObjectGrid with four maps and a schema for the maps.
Some of the maps maintain a one-to-one (unidirectional) and one-to-many (bidirectional) relationship.
After creating the maps, you can then run the sample Application. java program to insert objects
into the cache and run queries to retrieve these objects.

Parent topic: Tutorials

ObjectQuery tutorial - step 1

With the following steps, you can continue to develop a local, in-memory ObjectGrid that stores order
information for an online retail store using the ObjectMap APIs. You define a schema for the map and run a
query against the map.

Procedure

1. Create an ObjectGrid with a map schema.

Create an ObjectGrid with one map schema for the map, then insert an object into the cache and later
retrieve it using a simple query.

OrderBean.java

public class OrderBean implements Serializable {
String orderNumber;
java.util.Date date;
String customerName;
String itemName;
int quantity;
double price;

}

2. Define the primary key.

The previous code shows an OrderBean object. This object implements the java.io.Serializable
interface because all objects in the cache must (by default) be Serializable.

The orderNumber attribute is the primary key of the object. The following example program can be run
in stand-alone mode. You should follow this tutorial in an Eclipse Java™ project that has the
objectgrid. jar file added to the class path.

Application.java

package querytutorial.basic.stepl;
import java.util.Iterator;

import com.ibm.websphere.objectgrid.ObjectGrid;

import com.ibm.websphere.objectgrid.ObjectGridManagerFactory;
import com.ibm.websphere.objectgrid.ObjectMap;

import com.ibm.websphere.objectgrid.Session;

import com.ibm.websphere.objectgrid.config.QueryConfig;
import com.ibm.websphere.objectgrid.config.QueryMapping;
import com.ibm.websphere.objectgrid.query.0ObjectQuery;

public class Application

{

static public void main(String [] args) throws Exception
{
ObjectGrid og =
ObjectGridManagerFactory.getObjectGridManager().createObjectGrid();
og.defineMap("Order");

// Define the schema
QueryConfig queryCfg = new QueryConfig();
queryCfg.addQueryMapping(new QueryMapping("Order",
OrderBean.class.getName(),
"orderNumber", QueryMapping.FIELD ACCESS));
0g.setQueryConfig(queryCfqg);

Session s = o0g.getSession();
ObjectMap orderMap = s.getMap("Order");

s.begin();

OrderBean o = new OrderBean();

O O O O O

(0

.customerName = "John Smith";

.date = new java.util.Date(System.currentTimeMillis());
.itemName = "Widget";

.orderNumber = "1";

.price = 99.99;

.quantity = 1;

orderMap.put(o.orderNumber, o0);

S.

S.

commit();

begin();

ObjectQuery query = s.createObjectQuery("SELECT o FROM Order o WHERE
0.itemName='Widget'");

Iterator result = query.getResultIterator();

0]

= (OrderBean) result.next();

System.out.println("Found order for customer: " + o.customerName);
s.commit();

// Close the session (optional in Version 7.1.1 and later) for improved

performance
s.close();

}

}

This eXtreme Scale application first initializes a local ObjectGrid with an automatically generated
name. Next, the application creates a BackingMap and a QueryConfig that defines what Java type is
associated with the map, the name of the field that is the primary key for the map, and how to access
the data in the object. You then obtain a Session to get the ObjectMap instance and insert an
OrderBean object into the map in a transaction.

After the data is committed into the cache, you can use ObjectQuery to find the OrderBean using any
of the persistent fields in the class. Persistent fields are those that do not have the transient modifier.

Because you did not define any indexes on the BackingMap, ObjectQuery must scan each object in the
map using Java reflection.

What to do next

ObjectQuery tutorial - step 2 demonstrates how an index can be used to optimize the query.

Parent topic: Tutorial: Querying a local in-memory data grid

Next topic: ObjectQuery tutorial - step 2

ObjectQuery tutorial - step 2

With the following steps, you can continue to create an ObjectGrid with one map and an index, along with a
schema for the map. Then you can insert an object into the cache and later retrieve it using a simple query.

Before you begin

Be sure that you have completed ObjectQuery tutorial - step 1 before proceeding with this step of the
tutorial.

Procedure

Schema and index

Application.java

// Create an index
HashIndex idx= new HashIndex();
idx.setName("theItemName");
idx.setAttributeName("itemName") ;
idx.setRangelIndex(true);
idx.setFieldAccessAttribute(true);
orderBMap.addMapIndexPlugin(idx);

}

The index must be a com.ibm.websphere.objectgrid.plugins.index.HashIndex instance with the following
settings:
e The Name is arbitrary, but must be unique for a given BackingMap.
e The AttributeName is the name of the field or bean property which the indexing engine uses to
introspect the class. In this case, it is the name of the field for which you will create an index.
e Rangelndex must always be true.
e FieldAccessAttribute should match the value set in the QueryMapping object when the query schema
was created. In this case, the Java™ object is accessed using the fields directly.

When a query runs that filters on the itemName field, the query engine automatically uses the defined index.
Using the index allows the query to run much faster and a map scan is not needed. The next step
demonstrates how an index can be used to optimize the query.

Next step

Parent topic: Tutorial: Querying a local in-memory data grid
Previous topic: ObjectQuery tutorial - step 1
Next topic: ObjectQuery tutorial - step 3

ObjectQuery tutorial - step 3

With the following step, you can create an ObjectGrid with two maps and a schema for the maps with a
relationship, then insert objects into the cache and later retrieve them using a simple query.

Before you begin

Be sure you have completed ObjectQuery tutorial - step 2 prior to proceeding with this step.

About this task

In this example, there are two maps, each with a single Java™ type mapped to it. The Order map has
OrderBean objects and the Customer map has CustomerBean objects in it.

Procedure

Define maps with a relationship.

OrderBean.java

public class OrderBean implements Serializable {
String orderNumber;
java.util.Date date;
String customerld;
String itemName;
int quantity;
double price;

}

The OrderBean no longer has the customerName in it. Instead, it has the customerld, which is the primary
key for the CustomerBean object and the Customer map.

CustomerBean.java

public class CustomerBean implements Serializable({
private static final long serialVersionUID = 1L;
String id;
String firstName;
String surname;
String address;
String phoneNumber;

}

The relationship between the two types or Maps follows:
Application.java

public class Application

{

static public void main(String [] args)
throws Exception
{
ObjectGrid og =
ObjectGridManagerFactory.getObjectGridManager().createObjectGrid();
og.defineMap("Order");
og.defineMap("Customer");

// Define the schema
QueryConfig queryCfg = new QueryConfig();
queryCfg.addQueryMapping(new QueryMapping(
"Order", OrderBean.class.getName(), "orderNumber",
QueryMapping.FIELD ACCESS));
qgueryCfg.addQueryMapping(new QueryMapping(
"Customer", CustomerBean.class.getName(), "id", QueryMapping.FIELD ACCESS));
queryCfg.addQueryRelationship(new QueryRelationship(
OrderBean.class.getName(), CustomerBean.class.getName(), "customerId",

null));
0g.setQueryConfig(queryCfg);

Session s = og.getSession();
ObjectMap orderMap = s.getMap("Order");
ObjectMap custMap = s.getMap("Customer");

s.begin();

CustomerBean cust = new CustomerBean();
cust.address = "Main Street";
cust.firstName = "John";

cust.surname = "Smith";

cust.id = "CO01";
cust.phoneNumber = "5555551212";
custMap.insert(cust.id, cust);

OrderBean o = new OrderBean();

o.customerId = cust.id;

o.date = new java.util.Date();
0.itemName = "Widget";
o.orderNumber = "1";

0

.price = 99.99;

o.quantity = 1;
orderMap.insert(o.orderNumber, 0);
s.commit();

s.begin();
ObjectQuery query = s.createObjectQuery(
"SELECT ¢ FROM Order o JOIN o.customerId as ¢ WHERE o.itemName='Widget'");
Iterator result = query.getResultlIterator();
cust = (CustomerBean) result.next();

System.out.println("Found order for customer: " + cust.firstName + " " +
cust.surname);
s.commit();
// Close the session (optional in Version 7.1.1 and later) for improved performance
s.close();

}
}

The equivalent XML in the ObjectGrid deployment descriptor follows:

<?xml version="1.0" encoding="UTF-8"7>
<objectGridConfig xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemaLocation="http://ibm.com/ws/objectgrid/config ../objectGrid.xsd"
xmlns="http://ibm.com/ws/objectgrid/config">
<objectGrids>
<objectGrid name="CompanyGrid">
<backingMap name="Order"/>
<backingMap name="Customer"/>

<querySchema>
<mapSchemas>
<mapSchema
mapName="0rder"
valueClass="com.mycompany.OrderBean"
primaryKeyField="orderNumber"
accesslType="FIELD"/>
<mapSchema
mapName="Customer"
valueClass="com.mycompany.CustomerBean"
primaryKeyField="id"
accessType="FIELD"/>
</mapSchemas>
<relationships>
<relationship
source="com.mycompany.OrderBean"
target="com.mycompany.CustomerBean"
relationField="customerId"/>

</relationships>
</querySchema>
</objectGrid>
</objectGrids>
</objectGridConfig>

What to do next

ObjectQuery tutorial - step 4, expands the current step by including field and property access objects and
additional relationships.

Parent topic: Tutorial: Querying a local in-memory data grid
Previous topic: ObjectQuery tutorial - step 2
Next topic: ObjectQuery tutorial - step 4

ObjectQuery tutorial - step 4

The following step shows how to create an ObjectGrid with four maps and a schema for the maps. Some of

the maps maintain a one-to-one (unidirectional) and one-to-many (bidirectional) relationship. After creating

the maps, you can then run the sample Application. java program to insert objects into the cache and run
queries to retrieve these objects.

Before you begin

Be sure to have completed ObjectQuery tutorial - step 3 prior to continuing with the current step.

About this task

You are required to create four JAVA classes. These are the maps for the ObjectGrid:

OrderBean.java
OrderLineBean.java
CustomerBean.java
ltemBean.java

Figure 1. Order Schema. An Order schema has a one-to-one relationship with Customer and a one-to-many
relationship with OrderLine. The OrderLine map has a one-to-one relationship with Item and includes the
quantity ordered.

Customer Order
id - String 1 * | ordemMumber . String
fistName : String & date java. util. Date
surname - String String itemName
address : String
phoneNumber - String :
n

item OrderLine
id - String 1 1| int: lineNumber
description : String -— int quantity
guantityOnHand : long
price - double

After creating these JAVA classes with these relationships, you can then run the sample Application. java
program. This program lets you insert objects into the cache and retrieve these using several queries.

Procedure

1. Create the following JAVA classes:
OrderBean. java

public class OrderBean implements Serializable {
String orderNumber;
java.util.Date date;
String customerld;
String itemName;
List<Integer> orderlLines;

OrderLineBean.java

public class OrderLineBean implements Serializable {
int lineNumber;
int quantity;
String orderNumber;

String itemId;

CustomerBean. java

public class CustomerBean implements Serializable{
String id;
String firstName;
String surname;
String address;
String phoneNumber;

ItemBean. java

public class ItemBean implements Serializable {
String id;
String description;
long quantityOnHand;
double price;

}

2. After creating the classes, you can run the sample Application. java:

Application.java

public class Application static public void main(String []

args)throws Exception

// Configure programatically

objectGrid og =

ObjectGridManagerFactory.getObjectGridManager().createObjectGrid();

og.defineMap("Order");

og.defineMap("Customer");

og.defineMap("OrderLine");

og.defineMap("Item");

// Define the schema

QueryConfig queryCfg = new QueryConfig();

queryCfg.addQueryMapping(new QueryMapping("Order",
OrderBean.class.getName(), "orderNumber", QueryMapping.FIELD ACCESS));

queryCfg.addQueryMapping(new QueryMapping("Customer",
CustomerBean.class.getName(), "id", QueryMapping.FIELD ACCESS));

queryCfg.addQueryMapping(new QueryMapping("OrderLine",
OrderLineBean.class.getName(), "lineNumber", QueryMapping.FIELD ACCESS));

queryCfg.addQueryMapping(new QueryMapping("Item", ItemBean.class.getName(),
"id", QueryMapping.FIELD ACCESS));

queryCfg.addQueryRelationship(new
QueryRelationship(OrderBean.class.getName(), CustomerBean.class.getName(),
"customerId", null));

queryCfg.addQueryRelationship(new
QueryRelationship(OrderBean.class.getName(), OrderLineBean.class.getName(),

"orderLines", "lineNumber"));

qgueryCfg.addQueryRelationship(new
QueryRelationship(OrderLineBean.class.getName(), ItemBean.class.getName(), "itemId",
null));

0g.setQueryConfig(queryCfqg);

// Get session and maps;

Session s = o0g.getSession();

ObjectMap orderMap = s.getMap("Order");
ObjectMap custMap = s.getMap("Customer");
ObjectMap itemMap = s.getMap("Item");

ObjectMap orderLineMap = s.getMap("OrderLine");

// Add data
s.begin();
CustomerBean aCustomer = new CustomerBean();

aCustomer.address = "Main Street";
aCustomer.firstName = "John";
aCustomer.surname = "Smith";
aCustomer.id = "C001";
aCustomer.phoneNumber = "5555551212";
custMap.insert(aCustomer.id, aCustomer);

// Insert an order with a reference to the customer, but without any
OrderLines yet.

// Because we are using CopyMode.COPY ON READ AND COMMIT, the

// insert won't be copied into the backing map until commit time, so

// the reference is still good.

OrderBean anOrder = new OrderBean();
anOrder.customerId = aCustomer.id;
anOrder.date = new java.util.Date();
anOrder.itemName = "Widget";
anOrder.orderNumber = "1";

anOrder.orderLines = new ArrayList();
orderMap.insert(anOrder.orderNumber, anOrder);

ItemBean anItem = new ItemBean();

anItem.id = "ACO001";

anItem.description = "Description of widget";
anItem.quantityOnHand = 100;

anItem.price = 1000.0;
itemMap.insert(anItem.id, anItem);

// Create the OrderLines and add the reference to

the Order

OrderLineBean anOrderLine = new OrderLineBean();

anOrderLine.lineNumber = 99;

anOrderLine.itemId = anItem.id;

anOrderLine.orderNumber = anOrder.orderNumber;

anOrderLine.quantity = 500;

orderLineMap.insert(anOrderLine.lineNumber, anOrderLine);

anOrder.orderLines.add(Integer.valueOf(anOrderLine.lineNumber));

anOrderLine = new OrderLineBean();
anOrderLine.lineNumber = 100;
anOrderLine.itemId = anItem.id;
anOrderLine.orderNumber = anOrder.orderNumber;
anOrderLine.quantity = 501;
orderLineMap.insert(anOrderLine.lineNumber, anOrderLine);
anOrder.orderLines.add(Integer.valueOf(anOrderLine.lineNumber));
s.commit();

s.begin();
// Find all customers who have ordered a specific item.
ObjectQuery query = s.createObjectQuery("SELECT ¢ FROM Order o JOIN
o.customerId as ¢ WHERE o.itemName='Widget'");
Iterator result = query.getResultlIterator();
aCustomer = (CustomerBean) result.next();

System.out.println("Found order for customer: " + aCustomer.firstName + " "
+ aCustomer.surname);
s.commit();
s.begin();

// Find all OrderLines for customer COOL.
// The query joins are expressed on the foreign keys.
query = s.createObjectQuery("SELECT ol FROM Order o JOIN o.customerId as c
JOIN o.orderLines as ol WHERE c.id='C001'");
result = query.getResultIterator();
System.out.println("Found OrderLines:");
while(result.hasNext()) {
anOrderLine = (OrderLineBean) result.next();
System.out.println(anOrderLine.lineNumber + ", qty=" +
anOrderLine.quantity);

}

// Close the session (optional in Version 7.1.1 and later) for improved
performance
s.close();
}
}

3. Using the XML configuration below (in the ObjectGrid deployment descriptor) is equivalent to the
programmatic approach above.

<?xml version="1.0" encoding="UTF-8"7?><objectGridConfig
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalLocation="http://ibm.com/ws/objectgrid/config
../objectGrid.xsd"xmlns="http://ibm.com/ws/objectgrid/config">
<objectGrids>
<objectGrid name="CompanyGrid">

<backingMap name="Order"/>

<backingMap name="Customer"/>

<backingMap name="OrderLine"/>

<backingMap name="Item"/>

<querySchema>
<mapSchemas>

<mapSchema
mapName="0rder"
valueClass="com.mycompany.OrderBean"
primaryKeyField="orderNumber"
accessType="FIELD"/>

<mapSchema
mapName="Customer"
valueClass="com.mycompany.CustomerBean"
primaryKeyField="1id"
accessType="FIELD"/>

<mapSchema
mapName="0rderLine"
valueClass="com.mycompany.OrderLineBean"
primaryKeyField="
lineNumber"
accessType="FIELD"/>

<mapSchema
mapName="Item"
valueClass="com.mycompany.ItemBean"
primaryKeyField="id"
accessType="FIELD"/>

</mapSchemas>

<relationships>
<relationship

source="com.mycompany.OrderBean"
target="com.mycompany.CustomerBean"
relationField="customerId"/>
<relationship
source="com.mycompany.OrderBean"
target="com.mycompany.OrderLineBean"
relationField="orderLines"
invRelationField="1ineNumber" />
<relationship
source="com.mycompany.0OrderLineBean"
target="com.mycompany.ItemBean"
relationField="itemId"/>
</relationships>
</querySchema>
</objectGrid>
</objectGrids>
</objectGridConfig>

Parent topic: Tutorial: Querying a local in-memory data grid
Previous topic: ObjectQuery tutorial - step 3

Tutorial: Storing order information in entities

The tutorial for the entity manager shows you how to use WebSphere® eXtreme Scale to store order
information on a Web site. You can create a simple Java™ Platform, Standard Edition 5 application that uses
an in-memory, local data grid. The entities use Java SE 5 annotations and generics.

Before you begin

Ensure that you have met the following requirements before you begin the tutorial:

e You must have Java SE 5.
e You must have the objectgrid. jar file in your classpath.

1. Entity manager tutorial: Creating an entity class
Create a local ObjectGrid with one entity by creating an Entity class, registering the entity type, and
storing an entity instance into the cache.

2. Entity manager tutorial: Forming entity relationships
Create a simple relationship between entities by creating two entity classes with a relationship,
registering the entities with the ObjectGrid, and storing the entity instances into the cache.

3. Entity manager tutorial: Order Entity Schema
Create four entity classes by using both single and bidirectional relationships, ordered lists, and foreign
key relationships. The EntityManager APIs are used to persist and find the entities. Building on the
Order and Customer entities that are in the previous parts of the tutorial, this tutorial step adds two
more entities: the Item and OrderLine entities.

4. Entity manager tutorial: Updating entries
If you want to change an entity, you can find the instance, update the instance and any referenced
entities, and commit the transaction.

5. Entity manager tutorial: Updating and removing entries with an index
You can use an index to find, update, and remove entities.

6. Entity manager tutorial: Updating and removing entries by using a query
You can update and remove entities by using a query.

Parent topic: Tutorials

Related concepts:

Caching objects with no relationships involved (ObjectMap API)
Tuning EntityManager interface performance

Caching objects and their relationships (EntityManager API)
Entity manager in a distributed environment

Interacting with EntityManager

EntityManager fetch plan support

Entity query gqueues

Related reference:

Entity performance instrumentation agent
Defining an entity schema

Entity listeners and callback methods
Entity listener examples

EntityTransaction interface

Related information:
APl documentation
Getting started tutorial lesson 2.1: Creating a client application

Entity manager tutorial: Creating an entity class

Create a local ObjectGrid with one entity by creating an Entity class, registering the entity type, and storing
an entity instance into the cache.

Procedure

1. Create the Order object. To identify the object as an ObjectGrid entity, add the @Entity annotation.
When you add this annotation, all serializable attributes in the object are automatically persisted in
eXtreme Scale, unless you use annotations on the attributes to override the attributes. The
orderNumber attribute is annotated with @Id to indicate that this attribute is the primary key. An
example of an Order object follows:

Order.java

@Entity

public class Order

{
@Id String orderNumber;
Date date;
String customerName;
String itemName;
int quantity;
double price;

}

2. Run the eXtreme Scale Hello World application to demonstrate the entity operations. The following
example program can be issued in stand-alone mode to demonstrate the entity operations. Use this
program in an Eclipse Java™ project that has the objectgrid. jar file added to the class path. An
example of a simple Hello world application that uses eXtreme Scale follows:

Application.java

package emtutorial.basic.stepl;

import com.ibm.websphere.objectgrid.ObjectGrid;

import com.ibm.websphere.objectgrid.ObjectGridManagerFactory;
import com.ibm.websphere.objectgrid.Session;

import com.ibm.websphere.objectgrid.em.EntityManager;

public class Application

{

static public void main(String [] args)
throws Exception

{
ObjectGrid og =

ObjectGridManagerFactory.getObjectGridManager().createObjectGrid();
0og.registerEntities(new Class[] {Order.class});

Session s = o0g.getSession();
EntityManager em = s.getEntityManager();

em.getTransaction().begin();

Order o = new Order();

o.customerName = "John Smith";

o.date = new java.util.Date(System.currentTimeMillis());
0.itemName = "Widget";

o.orderNumber = "1";

o.price = 99.99;

o.quantity = 1;

em.persist(o);
em.getTransaction().commit();

em.getTransaction().begin();

}

o0 = (Order)em.find(Order.class, "1");
System.out.println("Found order for customer: " + o.customerName);
em.getTransaction().commit();

This example application performs the following operations:

a.
b.

> @

Initializes a local eXtreme Scale with an automatically generated name.

Registers the entity classes with the application by using the registerEntities API, although using
the registerEntities APl is not always necessary.

Retrieves a Session and a reference to the entity manager for the Session.

Associates each eXtreme Scale Session with a single EntityManager and EntityTransaction. The
EntityManager is now used.

The registerEntities method creates a BackingMap object that is called Order, and associates the
metadata for the Order object with the BackingMap object. This metadata includes the key and
non-key attributes, along with the attribute types and names.

A transaction starts and creates an Order instance. The transaction is populated with some
values. The transaction is then persisted by using the EntityManager.persist method, which
identifies the entity as waiting to be included in the associated map.

The transaction is then committed, and the entity is included in the ObjectMap instance.
Another transaction is made, and the Order object is retrieved by using the key 1. The type cast
on the EntityManager.find method is necessary. The Java SE 5 capability is not used to ensure
that the objectgrid. jar file works on a Java SE Version 5 and later Java virtual machine.

Parent topic: Tutorial: Storing order information in entities
Next topic: Entity manager tutorial: Forming entity relationships

Entity manager tutorial: Forming entity relationships

Create a simple relationship between entities by creating two entity classes with a relationship, registering
the entities with the ObjectGrid, and storing the entity instances into the cache.

Procedure

1. Create the customer entity, which is used to store customer details independently from the Order
object. An example of the customer entity follows:

Customer. java

@Entity

public class Customer

{
@Id String id;
String firstName;
String surname;
String address;
String phoneNumber;

}

This class includes information about the customer such as name, address, and phone number.

2. Create the Order object, which is similar to the Order object in the Entity manager tutorial: Creating an
entity class topic. An example of the order object follows:

Order.java

@Entity
public class Order
{
@Id String orderNumber;
Date date;
@ManyToOne(cascade=CascadeType.PERSIST) Customer customer;
String itemName;
int quantity;
double price;

}

In this example, a reference to a Customer object replaces the customerName attribute. The reference
has an annotation that indicates a many-to-one relationship. A many-to-one relationship indicates that
each order has one customer, but multiple orders might reference the same customer. The cascade
annotation modifier indicates that if the entity manager persists the Order object, it must also persist
the Customer object. If you choose to not set the cascade persist option, which is the default option,
you must manually persist the Customer object with the Order object.

3. Using the entities, define the maps for the ObjectGrid instance. Each map is defined for a specific
entity, and one entity is named Order and the other is named Customer. The following example
application illustrates how to store and retrieve a customer order:

Application.java

public class Application

{
static public void main(String [] args)
throws Exception

{
ObjectGrid og =

ObjectGridManagerFactory.getObjectGridManager().createObjectGrid();
0og.registerEntities(new Class[] {Order.class});

Session s = o0g.getSession();
EntityManager em = s.getEntityManager();

em.getTransaction().begin();

Customer cust = new Customer();
cust.address = "Main Street";

cust.firstName = "John";
cust.surname = "Smith";

cust.id = "CO01";
cust.phoneNumber = "5555551212";

Order o = new Order();
.customer = cust;

.date = new java.util.Date();
.itemName = "Widget";
.orderNumber = "1";

.price = 99.99;

.quantity = 1;

O O O O O O

em.persist(o);
em.getTransaction().commit();

em.getTransaction().begin();

o = (Order)em.find(Order.class, "1");

System.out.println("Found order for customer:
+ o.customer.firstName + " " +

0.customer.surname) ;
em.getTransaction().commit();
// Close the session (optional in Version 7.1.1 and later) for improved
performance
s.close();
}
}

This application is similar to the example application that is in the previous step. In the preceding
example, only a single class Order is registered. WebSphere® eXtreme Scale detects and
automatically includes the reference to the Customer entity, and a Customer instance for John Smith
is created and referenced from the new Order object. As a result, the new customer is automatically
persisted, because the relationship between two orders includes the cascade modifier, which requires
that each object be persisted. When the Order object is found, the entity manager automatically finds
the associated Customer object and inserts a reference to the object.

Parent topic: Tutorial: Storing order information in entities
Previous topic: Entity manager tutorial: Creating an entity class
Next topic: Entity manager tutorial: Order Entity Schema

Entity manager tutorial: Order Entity Schema

Create four entity classes by using both single and bidirectional relationships, ordered lists, and foreign key
relationships. The EntityManager APIs are used to persist and find the entities. Building on the Order and
Customer entities that are in the previous parts of the tutorial, this tutorial step adds two more entities: the
Iltem and OrderLine entities.

About this task

Figure 1. Order Entity Schema. An Order entity has a reference to one customer and zero or more
OrderLines. Each OrderLine entity has a reference to a single item and includes the quantity ordered.

Customer Order
id - String 1 * | ordelumber : Siring
fistName - String £ date java. util. Date
surname . String String itemName
address - String
phoneNumber - String]
n

item OrderLine
id - String 1 1| int: lineNumber
description - String | intquantity
guantityOnHand : long
price : double

Procedure

1. Create the customer entity, which is similar to the previous examples.

Customer. java

@Entity

public class Customer

{
@Id String id;
String firstName;
String surname;
String address;
String phoneNumber;

}

2. Create the Item entity, which holds information about a product that is included in the store's
inventory, such as the product description, quantity, and price.

Item.java

@Entity

public class Item

{
@Id String id;
String description;
long quantityOnHand;
double price;

}

3. Create the OrderLine entity. Each Order has zero or more OrderLines, which identify the quantity of
each item in the order. The key for the OrderLine is a compound key that consists of the Order that
owns the OrderLine and an integer that assigns the order line a number. Add the cascade persist
modifier to every relationship on your entities.

OrderLine.java

@Entity
public class OrderLine

{
@Id @ManyToOne(cascade=CascadeType.PERSIST) Order order;
@Id int lineNumber;
@0OneToOne(cascade=CascadeType.PERSIST) Item item;
int quantity;
double price;

}

4. Create the final Order Object, which has a reference to the Customer for the order and a collection of
OrderLine objects.

Order.java
@Entity
public class Order
{
@Id String orderNumber;
java.util.Date date;
@ManyToOne(cascade=CascadeType.PERSIST) Customer customer;
@0OneToMany(cascade=CascadeType.ALL, mappedBy="order")
@rderBy("lineNumber") List<OrderLine> lines;

}

The cascade ALL is used as the modifier for lines. This modifier signals the EntityManager to cascade
both the PERSIST operation and the REMOVE operation. For example, if the Order entity is persisted or
removed, then all OrderLine entities are also persisted or removed.

If an OrderLine entity is removed from the lines list in the Order object, the reference is then broken.
However, the OrderLine entity is not removed from the cache. You must use the EntityManager remove
API to remove entities from the cache. The REMOVE operation is not used on the customer entity or
the item entity from OrderLine. As a result, the customer entity remains even though the order or item
is removed when the OrderLine is removed.

The mappedBy modifier indicates an inverse relationship with the target entity. The modifier identifies
which attribute in the target entity references the source entity, and the owning side of a one-to-one
or many-to-many relationship. Typically, you can omit the modifier. However, an error is displayed to
indicate that it must be specified if WebSphere® eXtreme Scale cannot discover it automatically. An
OrderLine entity that contains two of type Order attributes in a many-to-one relationship typically
causes the error.

The @OrderBy annotation specifies the order in which each OrderLine entity should be in the lines list.
If the annotation is not specified, then the lines display in an arbitrary order. Although the lines are
added to the Order entity by issuing ArrayList, which preserves the order, the EntityManager does not
necessarily recognize the order. When you issue the find method to retrieve the Order object from the
cache, the list object is not an ArrayList object.

5. Create the application. The following example illustrates the final Order object, which has a reference
to the Customer for the order and a collection of OrderLine objects.

Find the Items to order, which then become Managed entities.

Create the OrderLine and attach it to each Item.

Create the Order and associate it with each OrderLine and the customer.

Persist the order, which automatically persists each OrderLine.

Commit the transaction, which detaches each entity and synchronizes the state of the entities
with the cache.

f. Print the order information. The OrderLine entities are automatically sorted by the OrderLine ID.

®anow

Application.java

static public void main(String [] args)
throws Exception

{

// Add some items to our inventory.
em.getTransaction().begin();
createltems(em);
em.getTransaction().commit();

// Create a new customer with the items in his cart.
em.getTransaction().begin();

Customer cust = createCustomer();

em.persist(cust);

// Create a new order and add an order line for each item.
// Each line item is automatically persisted since the
// Cascade=ALL option is set.
Order order = createOrderFromItems(em, cust, "ORDER 1",
new String[]{"1", "2"}, new int[]{1,3});
em.persist(order);
em.getTransaction().commit();

// Print the order summary
em.getTransaction().begin();

order = (Order)em.find(Order.class, "ORDER 1");
System.out.println(printOrderSummary(order));
em.getTransaction().commit();

}

public static Customer createCustomer() {
Customer cust = new Customer();

cust.address = "Main Street";
cust.firstName = "John";
cust.surname = "Smith";

cust.id = "C001";
cust.phoneNumber = "5555551212";
return cust;

}

public static void createltems(EntityManager em) {
Item iteml = new Item();
iteml.id = "1";
iteml.price = 9.99;
iteml.description = "Widget 1";
iteml.quantityOnHand = 4000;
em.persist(iteml);

Item item2 = new Item();
item2.id = "2";

item2.price = 15.99;
item2.description = "Widget 2";
item2.quantityOnHand = 225;
em.persist(item2);

}

public static Order createOrderFromItems(EntityManager em,
Customer cust, String orderId, String[] itemIds, int[] qty)

Item[] items = getItems(em, itemIds);

Order order = new Order();
order.customer = cust;
order.date = new java.util.Date();
order.orderNumber = orderId;
order.lines = new ArrayList<OrderLine>(items.length);
for(int i=0;i<items.length;i++){
OrderLine line = new OrderLine();
line.lineNumber = i+1;
line.item = items[i];
line.price = line.item.price;
line.quantity = qty[i];
line.order = order;
order.lines.add(line);

}

return order;

}

public static Item[] getItems(EntityManager em, String[] itemIds) {
Item[] items = new Item[itemIds.length];
for(int i=0;i<items.length;i++){
items[i] = (Item) em.find(Item.class, itemIds[i]);

}

return items;

}

The next step is to delete an entity. The EntityManager interface has a remove method that marks an
object as deleted. The application should remove the entity from any relationship collections before

calling the remove method. Edit the references and issue the remove method, or em.remove(object),
as a final step.

Parent topic: Tutorial: Storing order information in entities
Previous topic: Entity manager tutorial: Forming entity relationships
Next topic: Entity manager tutorial: Updating entries

Entity manager tutorial: Updating entries

If you want to change an entity, you can find the instance, update the instance and any referenced entities,
and commit the transaction.

Before you begin
Procedure

Update entries. The following example demonstrates how to find the Order instance, change it and any
referenced entities, and commit the transaction.

public static void updateCustomerOrder(EntityManager em) {
em.getTransaction() .begin();
Order order = (Order) em.find(Order.class, "ORDER 1");
processDiscount(order, 10);
Customer cust = order.customer;
cust.phoneNumber = "5075551234";
em.getTransaction().commit();

}

public static void processDiscount(Order order, double discountPct) {
for(OrderLine line : order.lines) {
line.price = line.price * ((100-discountPct)/100);
}
}

Flushing the transaction synchronizes all managed entities with the cache. When a transaction is committed,
a flush automatically occurs. In this case, the Order becomes a managed entity. Any entities that are
referenced from the Order, Customer, and OrderLine also become managed entities. When the transaction is
flushed, each of the entities are checked to determine if they have been modified. Those that are modified
are updated in the cache. After the transaction completes, by either being committed or rolled back, the
entities become detached and any changes that are made in the entities are not reflected in the cache.

Parent topic: Tutorial: Storing order information in entities
Previous topic: Entity manager tutorial: Order Entity Schema
Next topic: Entity manager tutorial: Updating and removing entries with an index

Entity manager tutorial: Updating and removing entries with an
index

You can use an index to find, update, and remove entities.
Procedure

Update and remove entities by using an index. Use an index to find, update, and remove entities. In the
following examples, the Order entity class is updated to use the @Index annotation. The @Index annotation
signalsWebSphere® eXtreme Scale to create a range index for an attribute. The name of the index is the
same name as the name of the attribute and is always a MapRangelndex index type.

Order.java
@Entity
public class Order
{
@Id String orderNumber;
@Index java.util.Date date;
@0OneToOne(cascade=CascadeType.PERSIST) Customer customer;
@0OneToMany (cascade=CascadeType.ALL, mappedBy="order")
@0rderBy("lineNumber") List<OrderLine> lines; }

The following example demonstrates how to cancel all orders that are submitted within the last minute. Find
the order by using an index, add the items in the order back into the inventory, and remove the order and
the associated line items from the system.

public static void cancelOrdersUsingIndex(Session s)
throws ObjectGridException {
// Cancel all orders that were submitted 1 minute ago
java.util.Date cancelTime = new
java.util.Date(System.currentTimeMillis() - 60000);
EntityManager em = s.getEntityManager();
em.getTransaction().begin();
MapRangeIndex dateIndex = (MapRangeIndex)
s.getMap("Order").getIndex("date");
Iterator<Tuple> orderKeys = datelndex.findGreaterEqual(cancelTime);
while(orderKeys.hasNext()) {
Tuple orderKey = orderKeys.next();
// Find the Order so we can remove it.
Order curOrder = (Order) em.find(Order.class, orderKey);
// Verify that the order was not updated by someone else.
if(curOrder !'= null && curOrder.date.getTime() >=
cancelTime.getTime()) {
for(OrderLine line : curOrder.lines) {
// Add the item back to the inventory.
line.item.quantityOnHand += line.quantity;
line.quantity = 0;
}
em.remove(curOrder);
}
}

em.getTransaction().commit();

}

Parent topic: Tutorial: Storing order information in entities
Previous topic: Entity manager tutorial: Updating entries
Next topic: Entity manager tutorial: Updating and removing entries by using a query

Entity manager tutorial: Updating and removing entries by using
a query

You can update and remove entities by using a query.

Procedure

Update and remove entities by using a query.

Order. java

@Entity

public class Order

{
@Id String orderNumber;
@Index java.util.Date date;
@0OneToOne(cascade=CascadeType.PERSIST) Customer customer;
@OneToMany (cascade=CascadeType.ALL, mappedBy="order")

@0rderBy("lineNumber") List<OrderLine> lines;

}

The order entity class is the same as it is in the previous example. The class still provides the @Index
annotation, because the query string uses the date to find the entity. The query engine uses indices when
they can be used.

public static void cancelOrdersUsingQuery(Session s) {
// Cancel all orders that were submitted 1 minute ago
java.util.Date cancelTime =
new java.util.Date(System.currentTimeMillis() -
60000) ;
EntityManager em = s.getEntityManager();
em.getTransaction() .begin();

// Create a query that will find the order based on date. Since
// we have an index defined on the order date, the query
// will automatically use it.
Query query = em.createQuery("SELECT order FROM Order order
WHERE order.date >= 71");
guery.setParameter(1l, cancelTime);
Iterator<Order> orderIterator = query.getResultIterator();
while(orderIterator.hasNext()) {
Order order = orderIterator.next();
// Verify that the order wasn't updated by someone
else.
// Since the query used an index, there was no
lock on the row.
if(order !'= null && order.date.getTime() >=
cancelTime.getTime()) {
for(OrderLine line : order.lines)

{
// Add the item back to

the inventory.
line.item.quantityOnHand
+= line.quantity;
line.quantity = 0;
}
em. remove(order);
}
}

em.getTransaction().commit();

}

Like the previous example, the cancelOrdersUsingQuery method intends to cancel all orders that were
submitted in the past minute. To cancel the order, you find the order using a query, add the items in the
order back into the inventory, and remove the order and associated line items from the system.

Parent topic: Tutorial: Storing order information in entities
Previous topic: Entity manager tutorial: Updating and removing entries with an index

Tutorial: Configuring Java SE security

With the following tutorial, you can create a distributed eXtreme Scale environment in a Java™ Platform,
Standard Edition environment.

Before you begin
Ensure that you are familiar with the basics of a distributed eXtreme Scale configuration.
About this task

Use this tutorial when you have installed eXtreme Scale in a stand-alone environment. Each step in the
tutorial builds on the previous one. Follow each of the steps to secure a distributed eXtreme Scale and
develop a simple Java SE application to access the secured eXtreme Scale.

Beqin tutorial

1. Java SE security tutorial - Step 1
In order to work with the rest of the tutorial, you need to create and package a simple Java program
and two XML files. These set of files defines a simple ObjectGrid configuration with one ObjectGrid
instance named accounting and a customer map. The SimpleDP.xml file features a deployment
policy of one map set configured with one partition and zero minimum required replicas.

2. Java SE security tutorial - Step 2
Before you can verify that the SimpleApp. java sample runs, you need to start a catalog server and a
container server. After starting these services successfully, you can then launch the client and run the
sample. Additional security features are added incrementally in the steps of the tutorial to increase the
amount of integrated security that is available.

3. Java SE security tutorial - Step 3
The rest of the tutorial demonstrates how to enable client authentication before connecting to an
eXtreme Scale server. To prepare for the next step of this tutorial, you need to package the
SecureSimpleApp.java program into a JAR and create a set of configuration files, which include a
security.xml file, and two JAAS configuration files. The security.xml file lets you write
authentication into the environment, and the JAAS configuration files provide the authentication
mechanism when connecting to the server.

4. Java SE security tutorial - Step 4
Building on the previous step, the following topic shows how to implement client authentication in a
distributed eXtreme Scale environment.

5. Java SE security tutorial - Step 5
After authenticating a client, as in the previous step, you can give security privileges through eXtreme
Scale authorization mechanisms.

6. Java SE security tutorial - Step 6
The following step explains how you can enable a security layer for communication between your
environment's endpoints.

Parent topic: Tutorials

Java SE security tutorial - Step 1

In order to work with the rest of the tutorial, you need to create and package a simple Java program and two
XML files. These set of files defines a simple ObjectGrid configuration with one ObjectGrid instance named

accounting and a customer map. The SimpleDP.xml file features a deployment policy of one map set
configured with one partition and zero minimum required replicas.

Procedure

1. In a command line window, go to the wxs_home directory.

2. Create a directory called applib.

3. Ensure your development environment contains the ogclient. jar file in the classpath. For more

information, see the Programming Guide.

4. Create and compile the following SimpleApp.java class:

SimpleApp.java
// This sample program is provided AS IS and may be used, executed, copied and
modified
// without royalty payment by customer

// (a) for its own instruction and study,
// (b) in order to develop applications designed to run with an IBM WebSphere
product,

// either for customer's own internal use or for redistribution by customer, as part

of such an
// application, in customer's own products.
// Licensed Materials - Property of IBM

// 5724-334 (C) COPYRIGHT International Business Machines Corp. 2007-2009
package com.ibm.websphere.objectgrid.security.sample.guide;

import
import
import
import
import
import

com.
com.
com.
com.
com.
com.

ibm.
ibm.
ibm.

ibm

ibm.
ibm.

websphere.
websphere.
websphere.
.websphere.
websphere.
websphere.

objectgrid
objectgrid
objectgrid
objectgrid
objectgrid
objectgrid

.ClientClusterContext;
.0bjectGrid;
.ObjectGridManager;
.0ObjectGridManagerFactory;
.0ObjectMap;

.Session;

public class SimpleApp {

public static void main(String[] args) throws Exception {

SimpleApp app = new SimpleApp();
app.run(args);

}

/**
* read and write the map
* @throws Exception
*/
protected void run(String[] args) throws Exception {
ObjectGrid og = getObjectGrid(args);

Session session = o0g.getSession();

ObjectMap customerMap = session.getMap("customer");

String customer = (String) customerMap.get("0001");

if (customer == null) {
customerMap.insert("0001",

} else {
customerMap.update("0001",

"fName LlName");

"fName lName");

}

customer = (String) customerMap.get("0001");

// Close the session (optional in Version 7.1.1 and later)
performance

session.close();

for improved

System.out.println("The customer name for ID 0001 is " + customer);

}

/**
* Get the ObjectGrid
* @return an ObjectGrid instance
* @throws Exception
*/
protected ObjectGrid getObjectGrid(String[] args) throws Exception {
ObjectGridManager ogManager =
ObjectGridManagerFactory.getObjectGridManager();

// Create an ObjectGrid

ClientClusterContext ccContext = ogManager.connect("localhost:2809", null,
null);

ObjectGrid og = ogManager.getObjectGrid(ccContext, "accounting");

return og;

}

5. Compile the package with this file and name the JAR sec sample. jar. Put this JAR file in the /applib
directory.

6. Go to the wxs_home directory, and create a directory called xml

7. In thewxs_home/xml directory, create the following configuration files:
SimpleApp.xml

<?xml version="1.0" encoding="UTF-8"7>
<objectGridConfig xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemaLocation="http://ibm.com/ws/objectgrid/config ../objectGrid.xsd"
xmlns="http://ibm.com/ws/objectgrid/config">
<objectGrids>
<objectGrid name="accounting">
<backingMap name="customer" readOnly="false" copyKey="true"/>
</objectGrid>
</objectGrids>
</objectGridConfig>

The following XML file configures the deployment environment.
SimpleDP.xml

<?xml version="1.0" encoding="UTF-8"7>

<deploymentPolicy xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalLocation="http://ibm.com/ws/objectgrid/deploymentPolicy

. ./deploymentPolicy.xsd"
xmlns="http://ibm.com/ws/objectgrid/deploymentPolicy">

<objectgridDeployment objectgridName="accounting">
<mapSet name="mapSetl" numberOfPartitions="1" minSyncReplicas="0"
maxSyncReplicas="2"
maxAsyncReplicas="1">
<map ref="customer"/>
</mapSet>
</objectgridDeployment>
</deploymentPolicy>

Results

These files create a simple ObjectGrid configuration with one ObjectGrid an accounting instance and a
customer map.

Parent topic: Tutorial: Configuring Java SE security
Next topic: Java SE security tutorial - Step 2

Java SE security tutorial - Step 2

Before you can verify that the SimpleApp. java sample runs, you need to start a catalog server and a
container server. After starting these services successfully, you can then launch the client and run the
sample. Additional security features are added incrementally in the steps of the tutorial to increase the
amount of integrated security that is available.

Before you begin

To successfully complete this step of the tutorial, you should have access to the following files:

e Have access to the compiled sec_sample.jar package. This package contains the SimpleApp.java
program.
e Have access to the necessary configuration files SimpleApp.xml and SimpleDP.xml.

You should have created these files in Java SE security tutorial - Step 1 of this tutorial.

You should also know how to:

e Start and stop a catalog servers and container servers. For more information, see Starting and
stopping stand-alone servers.
e Run the xscmd utility in order verify the map size inserted into the data grid.

Procedure

1. In a command line window, go to the wxs_home/bin directory and start the catalog service.
S UNIX ./startOgServer.sh catalogServer
o MIIIEM startOgServer.bat catalogServer

2. Start a container service named c0:

o MRS BTN . /start0gServer.sh cO -objectGridFile ../xml/SimpleApp.xml -
deploymentPolicyFile ../xml/SimpleDP.xml -catalogServiceEndPoints localhost:2809

o BTN startOgServer.bat cO -objectGridFile ..\xml\SimpleApp.xml -
deploymentPolicyFile ..\xml\SimpleDP.xml -catalogServiceEndPoints localhost:2809

3. After the catalog server and container server have been started, run the sec_sample.jar sample as
follows:

java -classpath ../lib/objectgrid.jar:../applib/sec sample.jar
com.ibm.websphere.objectgrid.security.sample.guide.SimpleApp

java -classpath ..\lib\objectgrid.jar;..\applib\sec sample.jar
com.ibm.websphere.objectgrid.security.sample.qguide.SimpleApp

The output of the sample is: The customer name for ID 0001 is fName 1Name The getObjectGrid
method in this class obtains an ObjectGrid, and the run method reads a record from the customer map
and updates the value in the accounting grid.

4. Verify the size of the "customer" map inserted into the "accounting" grid, by issuing the xscmd
command utility as follows:

o MNTTTRNN BNTTEN . /xscmd.sh -c showMapSizes -g accounting -ms mapSetl
o MM xscmd.bat -c showMapSizes -g accounting -ms mapSetl

5. Stop a container server named c0 with one of the following scripts:
o NN ./stop0gServer.sh c0 -catalogServiceEndPoints localhost:2809
o MM stopOgServer.bat cO -catalogServiceEndPoints localhost:2809
If the server stopped successfully, then you will see the following message:
CWOBJ2512I: ObjectGrid server cO stopped.

6. Stop the catalog server with one of the following scripts:

o MRS BTN . /stopOgServer.sh catalogServer -catalogServiceEndPoints
localhost:2809

o BUIIITEM stop0gServer.bat catalogServer -catalogServiceEndPoints localhost:2809

If the server stopped successfully, then you will see the following message:
CWOBJ2512I: ObjectGrid server catalogServer stopped.

Parent topic: Tutorial: Configuring Java SE security
Previous topic: Java SE security tutorial - Step 1
Next topic: Java SE security tutorial - Step 3

Java SE security tutorial - Step 3

The rest of the tutorial demonstrates how to enable client authentication before connecting to an eXtreme
Scale server. To prepare for the next step of this tutorial, you need to package the SecureSimpleApp.java
program into a JAR and create a set of configuration files, which include a security.xml file, and two JAAS
configuration files. The security.xml file lets you write authentication into the environment, and the JAAS
configuration files provide the authentication mechanism when connecting to the server.

About this task

Procedure

1. In a command line window, go to the wxs_home/applib directory you created in Java SE security
tutorial - Step 1.

2. Create and compile the following SecureSimpleApp. java class:

Attention: In the following example, some lines of code are continued on the next line for publication
purposes.

SecureSimpleApp.java
package com.ibm.websphere.objectgrid.security.sample.guide;

import com.ibm.websphere.objectgrid.ClientClusterContext;

import com.ibm.websphere.objectgrid.ObjectGrid;

import com.ibm.websphere.objectgrid.ObjectGridManager;

import com.ibm.websphere.objectgrid.ObjectGridManagerFactory;

import com.ibm.websphere.objectgrid.security.config.ClientSecurityConfiguration;
import
com.ibm.websphere.objectgrid.security.config.ClientSecurityConfigurationFactory;
import com.ibm.websphere.objectgrid.security.plugins.CredentialGenerator;

import
com.ibm.websphere.objectgrid.security.plugins.builtins.UserPasswordCredentialGenerat
or;

public class SecureSimpleApp extends SimpleApp {
public static void main(String[] args) throws Exception {

SecureSimpleApp app = new SecureSimpleApp();
app.run(args);

}

/*>I<
* Get the ObjectGrid
* @return an ObjectGrid instance
* @throws Exception
*/
protected ObjectGrid getObjectGrid(String[] args) throws Exception {
ObjectGridManager ogManager =
ObjectGridManagerFactory.getObjectGridManager();
ogManager.setTraceFileName("logs/client.log");

ogManager.setTraceSpecification("ObjectGrid*=all=enabled:0RBRas=all=enabled");

// Creates a ClientSecurityConfiguration object using the specified file
ClientSecurityConfiguration clientSC = ClientSecurityConfigurationFactory
.getClientSecurityConfiguration(args[0]);

// Creates a CredentialGenerator using the passed-in user and password.

CredentialGenerator credGen = new UserPasswordCredentialGenerator(args[1l],
args[2]);

clientSC.setCredentialGenerator(credGen);

// Create an ObjectGrid by connecting to the catalog server

ClientClusterContext ccContext = ogManager.connect("localhost:2809",
clientSC, null);

ObjectGrid og = ogManager.getObjectGrid(ccContext, "accounting");

return og;

}

3. Ensure your development environment contains the ogclient. jar file in the classpath. For more
information, see the Programming Guide.

Compile the package with these files and name the JAR sec sample.jar.
Change to the wxs_home directory.
Create a directory called security.

N o u ok

Create a configuration file called security.xml. Server security properties are specified in this file.
These properties are common for both catalog servers and container servers.

security.xml
<?xml version="1.0" encoding="UTF-8"7>
<securityConfig xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalLocation="http://ibm.com/ws/objectgrid/config/security
../objectGridSecurity.xsd"
xmlns="http://ibm.com/ws/objectgrid/config/security">

<security securityEnabled="true" loginSessionExpirationTime="300" >

<authenticator className
="com.ibm.websphere.objectgrid.security.plugins.builtins.KeyStoreLoginAuthenticator"

>
</authenticator>
</security>
</securityConfig>

Parent topic: Tutorial: Configuring Java SE security
Previous topic: Java SE security tutorial - Step 2
Next topic: Java SE security tutorial - Step 4

Java SE security tutorial - Step 4

Building on the previous step, the following topic shows how to implement client authentication in a
distributed eXtreme Scale environment.

Before you begin

Be sure that you have completed Java SE security tutorial - Step 3. You need to have created and complied
the SecureSimpleApp.java sample into a sec_sample. jar file, and created a configuration file called
security.xml.

About this task

With client authentication enabled, a client is authenticated before connecting to the eXtreme Scale server.
This section demonstrates how client authentication can be done in an eXtreme Scale server environment,
using the sample SecureSimpleApp.java.

Client credential

The SecureSimpleApp.java sample uses the following two plug-in implementations to obtain client
credentials:

com.ibm.websphere.objectgrid.security.plugins.builtins.UserPasswordCredential

com.ibm.websphere.objectgrid.security.plugins.builtins.UserPasswordCredentialGenerator

For more information about these plug-ins, see Client authentication programming.

Server authenticator

The example uses an eXtreme Scale built-in implementation: KeyStoreLoginAuthenticator, which is for
testing and sample purposes (a keystore is a simple user registry and should not be used for production). For
more information, see the topic on authenticator plug-in under Client authentication programming.

Procedure

1. In a command line window, go to the wxs_home directory.

2. Change to the wxs_home/security directory you had created in Java SE security tutorial - Step 3.

3. Create a JAAS configuration file that enforces a method of authentication to the server,
0og jaas.config. The KeyStoreLoginAuthenticator referenced in the security.xml file uses a
keystore by using the JAAS login module "KeyStoreLogin". The keystore can be configured as an option
to the KeyStoreLoginModule class.

og jaas.config

KeyStorelLogin{

com.ibm.websphere.objectgrid.security.plugins.builtins.KeyStoreLoginModule required
keyStoreFile="../security/sampleKS. jks" debug = true;

s

BT Important: If you are using Windows, the directory path does not support backslashes. If
you have used backslashes, you must escape any backslash (\) characters in the path. For example, if
you want to use the path C:\opt\ibm, enter C:\\opt\\ibm in the properties file. Windows directories with
spaces are not supported.

4. Change to the java home/bin directory and run the keytool.

5. Change to the wxs home /security directory, and create two users, "manager" and "cashier" with
their own passwords.

a. Use the keytool to create a user "manager" with password "managerl"” in the keystore
sampleKs.jks.

() unix § Linux

keytool -genkey -v -keystore sampleKS.jks -storepass sampleKS1 \
-alias manager -keypass managerl \
-dname CN=manager,0=acme,0U=0GSample -validity 10000

keytool -genkey -v -keystore sampleKS.jks -storepass sampleKS1 ©
-alias manager -keypass managerl ©
-dname CN=manager,0=acme,0U=0GSample -validity 10000

b. Use the keytool to create a user "cashier" with password "cashierl" in the keystore
sampleKsS.jks.
p umix B Linux |

keytool -genkey -v -keystore sampleKS.jks -storepass sampleKS1l \
-alias cashier -keypass cashierl \
-dname CN=cashier,0O=acme,0U=0GSample -validity 10000

keytool -genkey -v -keystore sampleKS.jks -storepass sampleKS1l ©
-alias cashier -keypass cashierl ©
-dname CN=cashier,0=acme,0U=0GSample -validity 10000

. Make a copy of the sampleClient.properties file located in wxs home/properties directory to
wxs home/security/client.properties
P umix B Linux |

cp ../properties/sampleClient.properties client.properties
Sl Windows
copy ..\properties\sampleClient.properties client.properties

. Inthe wxs home/security directory, save it as client.properties

Make the following changes to the client.properties file:

a. securityEnabled: Set securityEnabled to true (default value) enables the client security,
which includes authentication.

b. credentialAuthentication: Set credentialAuthentication to Supported (default value),
which means the client supports credential authentication.

c. transportType: Set transportType to TCP/IP, which means no SSL will be used.

. Copy the sampleServer.properties file into the wxs home/security directory and save it as
server.properties.
S unix § Linux

cp ../properties/sampleServer.properties server.properties

S Windows
copy ..\properties\sampleServer.properties server.properties

Make the following changes in the server.properties file:
a. securityEnabled: Set the securityEnabled attribute to true.
b. transportType: Set transportType attribute to TCP/IP, which means no SSL is used.
c. secureTokenManagerType: Set secureTokenManagerType attribute to none to not configure
the secure token manager.

. Go to the wxs home/bin directory and depending on your platform, issue one of the following
commands to start a catalog server. You need to issue the-clusterSecurityFile and -serverProps
command line options to pass in security properties:

S umix B Linux |

./start0gServer.sh catalogServer -clusterSecurityFile ../security/security.xml
-serverProps ../security/server.properties -jvmArgs
-Djava.security.auth.login.config="../security/og jaas.config"

Ol Windows |

startOgServer.bat catalogServer -clusterSecurityFile ..\security\security.xml
-serverProps ..\security\server.properties -jvmArgs
-Djava.security.auth.login.config="..\security\og jaas.config"

10. Start a container server named c0 with one of the following scripts. The server property file is passed
by issuing -serverProps.

a. Q) unix B Linux |

./start0gServer.sh cO -objectgridFile ../xml/SimpleApp.xml
-deploymentPolicyFile ../xml/SimpleDP.xml

-catalogServiceEndPoints localhost:2809

-serverProps ../security/server.properties

-jvmArgs -Djava.security.auth.login.config="../security/og jaas.config"

startOgServer.bat cO -objectgridFile ..\xml\SimpleApp.xml
-deploymentPolicyFile ..\xml\SimpleDP.xml

-catalogServiceEndPoints localhost:2809

-serverProps ..\security\server.properties

-jvmArgs -Djava.security.auth.login.config="..\security\og jaas.config"

11. After the catalog server and container server have been started, run the sec_sample. jar sample as
follows:

S umix B Linux |
java -classpath ../lib/objectgrid.jar:../applib/sec _sample.jar

com.ibm.websphere.objectgrid.security.sample.guide.SecureSimpleApp
../security/client.properties manager managerl

S Windows
java -classpath ..\lib\objectgrid.jar;..\applib\sec sample.jar

com.ibm.websphere.objectgrid.security.sample.guide.SecureSimpleApp
..\security\client.properties manager managerl

Use a colon (:) for the classpath separator instead of a semicolon (;) as in the previous
example.

After you issue the class, the following output results:
The customer name for ID 0001 is fName 1Name.

12. Verify the size of the "customer" map inserted into the "accounting" grid, by issuing the xscmd
command utility as follows:
o MNILTENNN BNYTTEN . /xscmd.sh -c showMapSizes -g accounting -m customer -username
manager -password managerl
o MM xscmd.bat -c showMapSizes -g accounting -m customer -username manager -
password managerl

13. Optional: To stop the container or catalog servers, you can use the stop0gServer or stopXsServer
command. However you need to provide a security configuration file. The sample client property file
defines the following two properties to generate a userlD/password credential (manager/managerl).

credentialGeneratorClass=com.ibm.websphere.objectgrid.security.plugins.builtins.User
PasswordCredentialGenerator

credentialGeneratorProps=manager managerl

Stop the container cO with the following command.

o MNLITINN BTN . /stopOgServer.sh cO -catalogServiceEndPoints localhost:2809 -
clientSecurityFile ../security/client.properties

o MUIITTEM stop0gServer.bat cO -catalogServiceEndPoints localhost:2809 -
clientSecurityFile ..\security\client.properties

If you do not provide the -clientSecurityFile option, you will see an exception with the following
message.

>> SERVER (1d=39132c¢79, host=9.10.86.47) TRACE START:

>> org.omg.CORBA.NO PERMISSION: Server requires credential authentication but there is
no security context from the client. This usually happens when the client does not
pass a credential the server.

vimcid: 0Ox0
minor code: 0
completed: No

You can also shut down the catalog server using the following command. However, if you want to
continue trying the next step tutorial, you can let the catalog server stay running.

o MNILTERNN BNYTTEN . /stopOgServer.sh catalogServer -catalogServiceEndPoints
localhost:2809 -clientSecurityFile ../security/client.properties

o MUITITEM stopOgServer.bat catalogServer -catalogServiceEndPoints localhost:2809 -
clientSecurityFile ..\security\client.properties

If you do shutdown the catalog server, you will see the following output.
CWOBJ2512I: ObjectGrid server catalogServer stopped

Now, you have successfully made your system partially secure by enabling authentication. You
configured the server to plug in the user registry, configured the client to provide client credentials,
and changed the client property file and cluster XML file to enable authentication.

If you provide an invalidate password, you see an exception stating that the user name or password is
not correct.

For more details about client authentication, see Authenticating application clients.

Next step of tutorial

Parent topic: Tutorial: Configuring Java SE security
Previous topic: Java SE security tutorial - Step 3
Next topic: Java SE security tutorial - Step 5

Related tasks:
tA1+ Configuring security profiles for the xscmd utility

Java SE security tutorial - Step 5

After authenticating a client, as in the previous step, you can give security privileges through eXtreme Scale
authorization mechanisms.

Before you begin

Be sure to have completed Java SE security tutorial - Step 4 prior to proceeding with this task.

About this task

The previous step of this tutorial demonstrated how to enable authentication in an eXtreme Scale grid. As a
result, no unauthenticated client can connect to your server and submit requests to your system. However,
every authenticated client has the same permission or privileges to the server, such as reading, writing, or
deleting data that is stored in the ObjectGrid maps. Clients can also issue any type of query. This section
demonstrates how to use eXtreme Scale authorization to give various authenticated users varying privileges.

Similar to many other systems, eXtreme Scale adopts a permission-based authorization mechanism.
WebSphere® eXtreme Scale has different permission categories that are represented by different permission
classes. This topic features MapPermission. For complete category of permissions, see Client authorization
programming.

In WebSphere eXtreme Scale, the com.ibm.websphere.objectgrid.security.MapPermission class represents
permissions to the eXtreme Scale resources, specifically the methods of ObjectMap or JavaMap interfaces.
WebSphere eXtreme Scale defines the following permission strings to access the methods of ObjectMap and
JavaMap:

read: Grants permission to read the data from the map.

write: Grants permission to update the data in the map.

insert: Grants permission to insert the data into the map.

remove: Grants permission to remove the data from the map.

invalidate: Grants permission to invalidate the data from the map.

all: Grants all permissions to read, write, insert, remote, and invalidate.

The authorization occurs when a client calls a method of ObjectMap or JavaMap. The eXtreme Scale runtime
environment checks different map permissions for different methods. If the required permissions are not
granted to the client, an AccessControlException results.

This tutorial demonstrates how to use Java Authentication and Authorization Service (JAAS) authorization to
grant authorization map accesses for different users.

Procedure

1. Enable eXtreme Scale authorization. To enable authorization on the ObjectGrid, you need to set
the securityEnabled attribute to true for that particular ObjectGrid in the XML file. Enabling security on
the ObjectGrid means that you are enabling authorization. Use the following commands to create a
new ObjectGrid XML file with security enabled.

a. Navigate to the xml directory.
cd objectgridRoot/xml

b. Copy the SimpleApp.xml file to the SecureSimpleApp.xml file.
« TSN

cp SimpleApp.xml SecureSimpleApp.xml

CQ Windows
copy SimpleApp.xml SecureSimpleApp.xml

c. Open the SecureSimpleApp.xml file and add securityEnabled="true" on the ObjectGrid level
as the following XML shows:

<?xml version="1.0" encoding="UTF-8"?7>
<objectGridConfig xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalLocation="http://ibm.com/ws/objectgrid/config ../objectGrid.xsd"
xmlns="http://ibm.com/ws/objectgrid/config">
<objectGrids>
<objectGrid name="accounting" securityEnabled="true">
<backingMap name="customer" readOnly="false" copyKey="true"/>

</objectGrid>
</objectGrids>
</objectGridConfig>

2. Define the authorization policy. In the previous client authentication topic, you created the users,
cashier and manager, in the keystore. In this example, the user "cashier" only has read permissions to
all the maps, and the user "manager" has all permissions. JAAS authorization is used in this example.
You must create a JAAS authorization policy file to grant permissions to principals. Create the following
og auth.policy file in the objectgridRoot/security directory:

og_auth.policy

grant codebase "http://www.ibm.com/com/ibm/ws/objectgrid/security/PrivilegedAction”
principal javax.security.auth.x500.X500Principal "CN=cashier,O=acme,0U=0GSample"

{

permission com.ibm.websphere.objectgrid.security.MapPermission "accounting.*",
n n
read";

}i

grant codebase "http://www.ibm.com/com/ibm/ws/objectgrid/security/PrivilegedAction”
principal javax.security.auth.x500.X500Principal "CN=manager,O=acme,0U=0GSample"

{
permission com.ibm.websphere.objectgrid.security.MapPermission "accounting.*",
Ila'L'LII ;
i
Note:

o The codebase
"http://www.ibm.com/com/ibm/ws/objectgridRoot/security/PrivilegedAction" is a
specially-reserved URL for ObjectGrid. All ObjectGrid permissions granted to principals should
use this special code base.

o The first grant statement grants "read" map permission to principal
"CN=cashier,0=acme, 0U=0GSample", so the cashier has only map read permission to all the
maps in the ObjectGrid accounting.

o The second grant statement grants "all" map permission to principal
"CN=manager,0=acme, 0U=0GSample", so the manager has all permissions to maps in the
ObjectGrid accounting.

Now you can launch a server with an authorization policy. The JAAS authorization policy file can be set
using the standard -D property: -Djava.security.policy=../security/og auth.policy

3. Run the application.
After you create the above files, you can run the application.

Use the following commands to start the catalog server. For more information about starting the
catalog service, see Starting a stand-alone catalog service.

a. Navigate to the bin directory: cd objectgridRoot/bin
b. Start the catalog server.

(O unix § Linux

./start0gServer.sh catalogServer

-clusterSecurityFile ../security/security.xml

-serverProps ../security/server.properties

-jvmArgs -Djava.security.auth.login.config="../security/og jaas.config"

startOgServer.bat catalogServer

-clusterSecurityFile ..\security\security.xml

-serverProps ..\security\server.properties

-jvmArgs -Djava.security.auth.login.config="..\security\og jaas.config"

The security.xml and server.properties files were created in the previous step of this
tutorial.
C. You can then start a secure container server using the following script. Run the following script
from the bin directory:
O Unix B Linux

./start0gServer.sh cO -objectGridFile ../xml/SecureSimpleApp.xml

-deploymentPolicyFile ../xml/SimpleDP.xml
-catalogServiceEndPoints localhost:2809
-serverProps ../security/server.properties

-jvmArgs -Djava.security.auth.login.config="../security/og jaas.config"
-Djava.security.policy="../security/og auth.policy"
Sl Windows

startOgServer.bat cO -objectGridFile ..\xml\SecureSimpleApp.xml
-deploymentPolicyFile ..\xml\SimpleDP.xml

-catalogServiceEndPoints localhost:2809

-serverProps ..\security\server.properties

-jvmArgs -Djava.security.auth.login.config="..\security\og jaas.config"
-Djava.security.policy="..\security\og auth.policy"

Notice the following differences from the previous container server start command:

o The SecureSimpleApp.xml file is used instead of SimpleApp.xml file, which is the result of your
running the sample sec_sample. jar file to set client authentication.

o Another -Djava.security.policy argument was added to set the JAAS authorization policy file to
the container server process.

Use the same command as in the previous step of the tutorial:

a. Navigate to the bin directory.
S umix B Linux |

java -classpath ../lib/objectgrid.jar:../applib/sec sample.jar
com.ibm.websphere.objectgrid.security.sample.guide.SecureSimpleApp
../security/client.properties manager managerl

java -classpath ..\lib\objectgrid.jar;..\applib\sec sample.jar
com.ibm.websphere.objectgrid.security.sample.gquide.SecureSimpleApp
..\security\client.properties manager managerl

b. Because user "manager" has all permissions to maps in the accounting ObjectGrid, the
application runs properly.

Now, instead of using user "manager", use user "cashier" to launch the client application.
c. Navigate to the bin directory.
S unix B Linux |

java -classpath ../lib/objectgrid.jar:../applib/sec sample.jar
com.ibm.ws.objectgrid.security.sample.gquide.SecureSimpleApp
../security/client.properties cashier cashierl

java -classpath ..\lib\objectgrid.jar;..\applib\sec sample.jar
com.ibm.ws.objectgrid.security.sample.guide.SecureSimpleApp
..\security\client.properties cashier cashierl

The following exception results:

Attention: In the following example, some lines of code are continued on the next line for publication
purposes.

Exception in thread "P=387313:0=0:CT"
com.ibm.websphere.objectgrid.TransactionException:
rolling back transaction, see caused by exception
at
com.ibm.ws.objectgrid.SessionImpl. rollbackPMapChanges(SessionImpl.java:1422)
at com.ibm.ws.objectgrid.SessionImpl.commit(SessionImpl.java:1149)
at com.ibm.ws.objectgrid.SessionImpl.mapPostInvoke(SessionImpl.java:2260)
at com.ibm.ws.objectgrid.ObjectMapImpl.update(ObjectMapImpl.java:1062)
at
com.ibm.ws.objectgrid.security.sample.guide.SimpleApp.run(SimpleApp.java:42)
at

com.ibm.ws.objectgrid.security.sample.guide.SecureSimpleApp.main(SecureSimpleApp.jav
a:27)
Caused by: com.ibm.websphere.objectgrid.ClientServerTransactionCallbackException:
Client Services - received exception from remote server:
com.ibm.websphere.objectgrid.TransactionException: transaction rolled back,
see caused by Throwable
at
com.ibm.ws.objectgrid.client.RemoteTransactionCallbackImpl.processReadWriteResponse(
RemoteTransactionCallbackImpl.java:1399)

at
com.ibm.ws.objectgrid.client.RemoteTransactionCallbackImpl.processReadWriteRequestAn
dResponse(
RemoteTransactionCallbackImpl. java:2333)
at

com.ibm.ws.objectgrid.client.RemoteTransactionCallbackImpl.commit(RemoteTransactionC
allbackImpl.java:557)

at com.ibm.ws.objectgrid.SessionImpl.commit(SessionImpl.java:1079)

. 4 more

Caused by: com.ibm.websphere.objectgrid.TransactionException: transaction rolled
back, see caused by Throwable

at
com.ibm.ws.objectgrid.ServerCoreEventProcessor.processLogSequence(ServerCoreEventPro
cessor.java:1133)

at
com.ibm.ws.objectgrid.ServerCoreEventProcessor.processReadWriteTransactionRequest

(ServerCoreEventProcessor.java:910)

at
com.ibm.ws.objectgrid.ServerCoreEventProcessor.processClientServerRequest(ServerCore
EventProcessor.java:1285)

at com.ibm.ws.objectgrid.ShardImpl.processMessage(ShardImpl.java:515)
at com.ibm.ws.objectgrid.partition.IDLShardPOA. invoke(IDLShardPOA.java:154)
at
com.ibm.CORBA.poa.POAServerDelegate.dispatchToServant (POAServerDelegate.java:396)
at
com.ibm.CORBA.poa.POAServerDelegate.internalDispatch(POAServerDelegate.java:331)
at com.ibm.CORBA.poa.POAServerDelegate.dispatch(POAServerDelegate.java:253)
at com.ibm.rmi.iiop.0RB.process(ORB.java:503)
at com.ibm.CORBA.iiop.ORB.process(ORB.java:1553)
at com.ibm.rmi.iiop.Connection.respondTo(Connection.java:2680)
at com.ibm.rmi.iiop.Connection.doWork(Connection.java:2554)
at com.ibm.rmi.iiop.WorkUnitImpl.doWork(WorkUnitImpl.java:62)
at com.ibm.rmi.iiop.WorkerThread.run(ThreadPoolImpl.java:202)
at java.lang.Thread.run(Thread.java:803)
Caused by: java.security.AccessControlException: Access denied (
com.ibm.websphere.objectgrid.security.MapPermission accounting.customer write)
at
java.security.AccessControlContext.checkPermission(AccessControlContext.java:155)
at
com.ibm.ws
.java:141)
at
at
at
at
at
at

.0bjectgrid.security.MapPermissionCheckAction.run(MapPermissionCheckAction

java.security.AccessController.doPrivileged(AccessController.java:275)
javax.security.auth.Subject.doAsPrivileged(Subject.java:727)
com.ibm.ws.objectgrid.security.MapAuthorizer$l.run(MapAuthorizer.java:76)
java.security.AccessController.doPrivileged(AccessController.java:242)
com.ibm.ws.objectgrid.security.MapAuthorizer.check(MapAuthorizer.java:66)

com.ibm.ws

at
com.ibm.ws
:490)

at
com.ibm.ws

at
com.ibm.ws

at
com.ibm.ws

.objectgrid.security.SecuredObjectMapImpl.checkMapAuthorization(SecuredObj
ectMapImpl.

java:429)

.0bjectgrid.security.SecuredObjectMapImpl.update(SecuredObjectMapImpl. java

.objectgrid.SessionImpl.processLogSequence(SessionImpl.java:1913)
.0bjectgrid.SessionImpl.processLogSequence(SessionImpl.java:1805)

.0bjectgrid.ServerCoreEventProcessor.processLogSequence(ServerCoreEventPro

cessor.java:1011)
14 more

This exception occurs because the user "cashier" does not have write permission, so it cannot update
the map customer.

Now your system supports authorization. You can define authorization policies to grant different

permissions to different users. For more information about authorization, see Authorizing application
clients.

What to do next

Complete the next step of the tutorial. See Java SE security tutorial - Step 6.

Parent topic: Tutorial: Configuring Java SE security
Previous topic: Java SE security tutorial - Step 4
Next topic: Java SE security tutorial - Step 6

Java SE security tutorial - Step 6

The following step explains how you can enable a security layer for communication between your
environment's endpoints.

Before you begin

Be sure you have completed Java SE security tutorial - Step 5 prior to proceeding with this task.

About this task

The eXtreme Scale topology supports both Transport Layer Security/Secure Sockets Layer (TLS/SSL) for
secure communication between ObjectGrid endpoints (client, container servers, and catalog servers). This
step of the tutorial builds upon the previous steps to enable transport security.

Procedure

1. Create TLS/SSL keys and keystores.

In order to enable transport security, you must create a keystore and trust store. This exercise only
creates one key and trust-store pair. These stores are used for ObjectGrid clients, container servers,
and catalog servers, and are created with the JDK keytool.

o Create a private key in the keystore

keytool -genkey -alias ogsample -keystore key.jks -storetype JKS -keyalg rsa -
dname "CN=ogsample, 0U=0GSample, O=acme, L=Your City, S=Your State, C=Your
Country" -storepass ogpass -keypass ogpass -validity 3650

Using this command, a keystore key.jks is created with a key "ogsample" stored in it. This
keystore key.jks will be used as the SSL keystore.

o Export the public certificate

keytool -export -alias ogsample -keystore key.jks -file temp.key -storepass
ogpass

Using this command, the public certificate of key "ogsample" is extracted and stored in the file
temp.key.

o Import the client's public certificate to the trust store

keytool -import -noprompt -alias ogsamplepublic -keystore trust.jks -file
temp.key -storepass ogpass

Using this command, the public certificate was added to keystore trust.jks. This trust.jks is used
as the SSL trust store.

2. Configure ObjectGrid property files.

In this step, you must configure the ObjectGrid property files to enable transport security.
First, copy the key.jks and trust.jks files into the objectgridRoot/security directory.

Set the following properties in the client.properties and server.properties file.
transportType=SSL-Required

alias=ogsample
contextProvider=IBMJSSE2
protocol=SSL

keyStoreType=JKS
keyStore=../security/key. jks
keyStorePassword=ogpass
trustStoreType=JKS
trustStore=../security/trust. jks
trustStorePassword=ogpass

transportType: The value of transportType is set to "SSL-Required”, which means the transport
requires SSL. So all the ObjectGrid endpoints (clients, catalog servers, and container servers) should
have SSL configuration set and all transport communication will be encrypted.

The other properties are used to set the SSL configurations. See Transport layer security and secure
sockets layer for a detailed explanation. Make sure you follow the instructions in this topic to update
your orb.properties file.

Make sure you follow this page to update your orb.properties file.

In the server.properties file, you must add an additional property clientAuthentication and set it to
false. On the server side, you do not need to trust the client.

clientAuthentication=false
. Run the application.

The commands that you use in this step are the same as the commands in the Java SE security tutorial
- Step 3 topic.

a. Navigate to the cd objectgridRoot/bin directory, and use the following commands to start a
catalog server:

(O Linux _§ UNIX

./start0gServer.sh catalogServer -clusterSecurityFile
../security/security.xml

-serverProps ../security/server.properties -JMXServicePort 11001
-jvmArgs -Djava.security.auth.login.config="../security/og jaas.config"

startOgServer.bat catalogServer -clusterSecurityFile
..\security\security.xml

-serverProps ..\security\server.properties -JMXServicePort 11001 -jvmArgs
-Djava.security.auth.login.config="..\security\og jaas.config"

The security.xml and server.properties files were created in the Java SE security tutorial -
Step 2 page.

Use the -JMXServicePort option to explicitly specify the JMX port for the server. This option is
required to use the xscmd utility.

b. From the objectgridRoot/bin directory, start a secure ObjectGrid container server:
(Q Linux B UNIX |

./start0gServer.sh cO -objectGridFile ../xml/SecureSimpleApp.xml
-deploymentPolicyFile ../xml/SimpleDP.xml -catalogServiceEndPoints
localhost:2809 -serverProps ../security/server.properties
-JMXServicePort 11002 -jvmArgs

-Djava.security.auth.login.config="../security/og jaas.config"
-Djava.security.policy="../security/og auth.policy"
CQ Windows

startOgServer.bat cO -objectGridFile ..\xml\SecureSimpleApp.xml
-deploymentPolicyFile ..\xml\SimpleDP.xml -catalogServiceEndPoints
localhost: 2809

-serverProps ..\security\server.properties -JMXServicePort 11002
-jvmArgs -Djava.security.auth.login.config="..\security\og jaas.config"
-Djava.security.policy="..\security\og auth.policy"

c. From the objectgridRoot/bin directory, run the following command to complete client
authentication:

Q) unix B Linux |

javaHome/java -classpath ../lib/objectgrid.jar:../applib/sec sample.jar
com.ibm.websphere.objectgrid.security.sample.guide.SecureSimpleApp
../security/client.properties manager managerl

javaHome\java -classpath ..\lib\objectgrid.jar;..\applib\sec sample.jar
com.ibm.websphere.objectgrid.security.sample.gquide.SecureSimpleApp
..\security\client.properties manager managerl

Because user "manager" has permission to all the maps in the accounting ObjectGrid, the
application runs successfully.

4. Use the xscmd utility to show the map sizes of the "accounting" data grid.

a. From the objectgridRoot/bin directory, use the xsemd command to show the map sizes:
g unix B Linux

./xscmd.sh -c showMapsizes -g accounting -m customer -prot SSL

-ts ../security/trust.jks -tsp ogpass -tst jks

-user manager -pwd managerl -ks ../security/key.jks -ksp ogpass -kst JKS
-cxpv IBMJSSE2 -tt SSL-Required

xscmd.bat -c showMapsizes -g accounting -m customer -prot SSL

-ts ..\security\trust.jks -tsp ogpass -tst jks

-user manager -pwd managerl -ks ..\security\key.jks -ksp ogpass -kst JKS
-cxpv IBMJSSE2 -tt SSL-Required

You see the following output.

This administrative utility is provided as a sample only and is not to
be considered a fully supported component of the WebSphere eXtreme Scale
product.

Connecting to Catalog service at localhost:1099

rRkxxokxxkxx Displaying Results for Grid - accounting, MapSet - customer
3K 3K 3K 3K 5K 5K 5K 5K K K K

$* Listing Maps for cQ *

Map Name: customer Partition #: 0 Map Size: 1 Shard Type: Primary

Server Total: 1

Total Domain Count: 1

5. Troubleshoot running the application with an incorrect keystore.

If your truststore does not contain the public certificate of the private key in the keystore, an exception
that the key cannot be trusted occurs.

To show this exception, create another keystore key2. jks.

keytool -genkey -alias ogsample -keystore key2.jks -storetype JKS -keyalg rsa -dname
"CN=ogsample, OU=Your Organizational Unit, O=Your Organization, L=Your City, S=Your
State, C=Your Country" -storepass ogpass -keypass ogpass -validity 3650

Then modify the server.properties file to make the keystore point to this new keystore key2. jks:

keyStore=../security/key2.jks

a. From the cd objectgridRoot/bin directory, assume that you run the following commands,
which use an incorrect keystore, to start the catalog server:

() Linux B UNIX

./startOgServer.sh cO -objectGridFile ../xml/SecureSimpleApp.xml
-deploymentPolicyFile ../xml/SimpleDP.xml -catalogServiceEndPoints
localhost: 2809

-serverProps ../security/server.properties -JMXServicePort 11002 -jvmArgs

-Djava.security.auth.login.config="../security/og jaas.config"
-Djava.security.policy="../security/og auth.policy"
Sl Windows

startOgServer.bat cO -objectGridFile ..\xml\SecureSimpleApp.xml
-deploymentPolicyFile ..\xml/SimpleDP.xml -catalogServiceEndPoints
localhost: 2809

-serverProps ..\security\server.properties -JMXServicePort 11002 -jvmArgs
-Djava.security.auth.login.config="..\security\og jaas.config"
-Djava.security.policy="..\security\og auth.policy"

You receive the following exception:

CWPKIQO22E: SSL HANDSHAKE FAILURE: A signer with SubjectDN "CN=ogsample,

OU=Your Organizational Unit, O=Your Organization, L=Your City, ST=Your State,
C=Your Country" was sent from target host:port "9.23.39.177:36407". The signer
may

need to be added to local trust store
"/opt/IBM/WebSphere/eXtremeScale/ObjectGrid/security/trust.jks"

located in SSL configuration alias "DefaultSystemProperties" loaded from SSL
configuration file "System Properties". The extended error message from the SSL
handshake exception is: "PKIX path building failed:
java.security.cert.CertPathBuilderException:

unable to find valid certification path to requested target".

CWPKIO040I: An SSL handshake failure occurred from a secure client. The
server's SSL signer

has to be added to the client's trust store. A retrieveSigners utility is
provided to download

signers from the server but requires administrative permission. Check with your
administrator

to have this utility run to setup the secure environment before running the
client. Alternatively,

the com.ibm.ssl.enableSignerExchangePrompt can be enabled in ssl.client.props
for "DefaultSSLSettings"

in order to allow acceptance of the signer during the connection attempt.

To correct the exception, change the server.properties file back to use the key. jks file.

Parent topic: Tutorial: Configuring Java SE security
Previous topic: Java SE security tutorial - Step 5

| Next >

Tutorial: Integrate WebSphere eXtreme Scale security with
WebSphere Application Server

This tutorial demonstrates how to secure a WebSphere® eXtreme Scale server deployment in a WebSphere
Application Server environment.

Learning objectives

The learning objectives for this tutorial follow:
e Configure WebSphere eXtreme Scale to use WebSphere Application Server authentication plug-ins
e Configure WebSphere eXtreme Scale transport security to use WebSphere Application Server CSIv2

configuration
e Use Java™ Authentication and Authorization Service (JAAS) authorization in WebSphere Application

Server
e Use a custom login module for group-based JAAS authorization
e Use WebSphere eXtreme Scale xscmd utility in WebSphere Application Server environment

Time required
This tutorial takes approximately 4 hours from start to finish.

| Next >

< Previous | Next >

Introduction: Integrate WebSphere eXtreme Scale security with
WebSphere Application Server using the WebSphere Application
Server Authentication plug-ins

In this tutorial, you integrate WebSphere® eXtreme Scale security with WebSphere Application Server. First,
you configure authentication with a simple web application that uses authenticated user credentials from the
current thread to connect to the ObjectGrid. Then, you investigate the encryption of data that is transferred
between the client and server with transport layer security. To give users varying levels of permissions, you
can configure Java Authentication and Authorization Service (JAAS). After completing the configuration, you
can use the xscmd utility to monitor your data grids and maps.

This tutorial assumes that all of your WebSphere eXtreme Scale clients, container servers, and catalog
servers are deployed in the WebSphere Application Server environment.

Learning objectives
The learning objectives for this tutorial follow:
e Configure WebSphere eXtreme Scale to use WebSphere Application Server authentication plug-ins
e Configure WebSphere eXtreme Scale transport security to use WebSphere Application Server CSIv2
configuration
e Use Java™ Authentication and Authorization Service (JAAS) authorization in WebSphere Application
Server
e Use a custom login module for group-based JAAS authorization
e Use WebSphere eXtreme Scale xscmd utility in WebSphere Application Server environment

Time required
This tutorial takes approximately 4 hours from start to finish.

Skill level
Intermediate.

Audience
Developers and administrators that are interested in the security integration between WebSphere eXtreme
Scale and WebSphere Application Server.

System requirements and topology
e WebSphere Application Server Version 6.1 or Version 7.0.0.11 or later
e Update the Java runtime to apply the following fix: 1279819: IBMJDK FAILS TO READ PRINCIPAL
STATEMENT WITH WHITESPACE FROM SECURITY FILE

This tutorial uses four WebSphere Application Server application servers and one deployment manager to
demonstrate the sample.

Prerequisites
A basic understanding of the following items is helpful before you start this tutorial:

e WebSphere eXtreme Scale programming model
e Basic WebSphere eXtreme Scale security concepts
e Basic WebSphere Application Server security concepts

For a background information about WebSphere eXtreme Scale and WebSphere Application Server security
integration, see Security integration with WebSphere Application Server.

Modules in this tutorial

Module 1: Prepare WebSphere Application Server

Before you start the tutorial to integrate with WebSphere eXtreme Scale, you must create a basic
security configuration in WebSphere Application Server.

Module 2: Configure WebSphere eXtreme Scale to use WebSphere Application Server
Authentication plug-ins

After you have created the WebSphere Application Server configuration, you can integrate WebSphere
eXtreme Scale authentication with WebSphere Application Server.

Module 3: Configure transport security

http://www-01.ibm.com/support/docview.wss?uid=swg1IZ79819

Configure transport security to secure data transfer between the clients and servers in the
configuration.

Module 4: Use Java Authentication and Authorization Service (JAAS) authorization in
WebSphere Application Server

Now that you have configured authentication for clients, you can further configure authentication to
give different users varying permissions. For example, an operator user might only be able to view
data, while an administrator user can perform all operations.

Related concepts:

Security overview

Related tasks:

*11+ Installing WebSphere eXtreme Scale with the installation wizard

Related information:

(* WebSphere Application Server: Securing applications and their environment

< Previous | Next >

http://www14.software.ibm.com/webapp/wsbroker/redirect?version=compass&product=was-nd-mp&topic=welc6topsecuring

< Previous | Next >

Module 1: Prepare WebSphere Application Server

Before you start the tutorial to integrate with WebSphere® eXtreme Scale, you must create a basic security
configuration in WebSphere Application Server.

Learning objectives
With the lessons in this module, you learn how to:
e Configure WebSphere Application Server security to use an internal file-based federated repository as
a user account registry.
e Create user groups and users.
e Create clusters for the application and WebSphere eXtreme Scale servers.

Time required
This module takes approximately 60 minutes.

Lessons in this module

Lesson 1.1: Understand the topology and get the tutorial files

To prepare your environment for the tutorial, you must configure WebSphere Application Server
security. You configure administration and application security using internal file-based federated
repositories as a user account registry.

Lesson 1.2: Configure the WebSphere Application Server environment

To prepare your environment for the tutorial, you must configure WebSphere Application Server
security. Enable administration and application security using internal file-based federated repositories
as a user account registry. Then, you can create server clusters to host the client application and
container servers.

< Previous | Next >

< Previous | Next >

Lesson 1.1: Understand the topology and get the tutorial files

To prepare your environment for the tutorial, you must configure WebSphere® Application Server security.
You configure administration and application security using internal file-based federated repositories as a
user account registry.

This lesson guides you through the sample topology and applications that are used to in the tutorial. To
begin running the tutorial, you must download the applications and place the configuration files in the
correct locations for your environment. You can download the sample application from the WebSphere
eXtreme Scale wiki.

WebSphere Application Server sample topology

This tutorial guides you through creating four WebSphere Application Server application servers to
demonstrate using the sample applications with security enabled. These application servers are grouped into
two clusters, each with two servers:

e appCluster cluster: Hosts the EmployeeManagement sample enterprise application. This cluster has
two application servers: s1 and s2.

e xsCluster cluster: Hosts the eXtreme Scale container servers. This cluster has two application
servers: xsl and xs2.

In this deployment topology, the s1 and s2 application servers are the client servers that access data that is
being stored in the data grid. The xs1 and xs2 servers are the container servers that host the data grid.

The catalog server is deployed in the deployment manager process by default. This tutorial uses the default
behavior. Hosting the catalog server in the deployment manager is not a recommended practice in a
production environment. In a production environment, you should create a catalog service domain to define
where catalog servers start. See Creating catalog service domains in WebSphere Application Server for more
information.

Alternative configuration: You can host all of the application servers in a single cluster, such as in the
appCluster cluster. With this configuration, all of the servers in the cluster are both clients and container
servers. This tutorial uses two clusters to distinguish between the application servers that are hosting the
clients and container servers.

Figure 1. Tutorial topology

Deployment manager

e EE .- - Catalog service
appCluster e
[‘l | I t
)
1 |
! 51 ! |] l
: 52 : A
[| v
| | P Ky
i ~., N e e e =
| & Employee ; fl’i;ff‘rr"' s,
. ! Management module |/~ ¢ xsCluster '
Client . b :
Browser : Servlet JdEE L :
| 1]
xs2 !
| . eXtreme N : :
' : Scale Client HH“"‘H-H ' f/ XSDeployment "
1 -H"\-\._
! " 4 | ' Ty "\ F Object Grid container E
\ d - [
hLS o e e - - _..*"f : i
! - Y |
\ i

-
-
[

Fa
b -

h“--------'---------------—#‘

Applications

In this tutorial, you are using two applications and one shared library file:

https://www.ibm.com/developerworks/community/blogs/714470bb-75c8-4f99-8aca-766c0d55a21c/entry/integrating_websphere_extreme_scale_security_with_websphere_application_server2?lang=en

e EmployeeManagement.ear: The EmployeeManagement.ear application is a simplified Java™ 2 Platform,
Enterprise Edition (J2EE) enterprise application. It contains a web module to manage the employee
profiles. The web module contains the management. jsp file to display, insert, update, and delete
employee profiles that are stored in the container servers.

e XSDeployment.ear: This application contains an enterprise application module with no application
artifacts. The cache objects are packaged in the EmployeeData. jar file. The EmployeeData. jar file is
deployed as a shared library for the XSDeployment. ear file, so that the XSDeployment.ear file can
access the classes. The purpose of this application is to package the eXtreme Scale configuration files.
When this enterprise application is started, the eXtreme Scale configuration files are automatically
detected by the eXtreme Scale run time, so the container servers are created. These configuration
files include the objectGrid.xml and objectGridDeployment.xml files.

e EmployeeData.jar: This jar file contains one class: the
com.ibm.websphere.sample.xs.data.EmployeeData class. This class represents employee data that is
stored in the grid. This Java archive (JAR) file is deployed with the EmployeeManagement.ear and
XSDeployment.ear files as a shared library.

Get the tutorial files

1. Download the WASSecurity.zip and security.zip files. You can download the sample application
from the WebSphere eXtreme Scale wiki.

2. Extract the WASSecurity. zip file to a directory for viewing the binary and source artifacts, for
example the /wxs samples/ directory. This directory is referred to as samples_home for the remainder
of the tutorial. For a description of the contents of the WASSecurity.zip file and how to load the
source into your Eclipse workspace, see the README. txt file in the package.

3. Extract the security.zip file to the samples_home directory. The security.zip file contains the
following security configuration files that are used in this tutorial:

catServer2.props
server2.props
client2.props
securityWAS2.xml
xsAuth2.props

o O o o o

About the configuration files

The objectGrid.xml and objectGridDeployment.xml files create the data grids and maps that store the
application data.

These configuration files must be named objectGrid.xml and objectGridDeployment.xml. When the
application server starts, eXtreme Scale detects these files in the META-INF directory of the EJB and web
modules. If these files are found, it assumed that the Java virtual machine (JVM) acts as a container server
for the defined data grids in the configuration files.

objectGrid.xml file

The objectGrid.xml file defined one ObjectGrid named Grid. The Grid data grid has one map, the Mapl
map, that stores the employee profile for the application.

<?xml version="1.0" encoding="UTF-8"7>

<objectGridConfig xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalLocation="http://ibm.com/ws/objectgrid/config ../objectGrid.xsd"
xmlns="http://ibm.com/ws/objectgrid/config">

<objectGrids>
<objectGrid name="Grid" txTimeout="15">
<backingMap name="Mapl" />
</objectGrid>
</objectGrids>

</objectGridConfig>

objectGridDeployment.xml file

The objectGridDeployment.xml file specifies how to deploy the Grid data grid. When the grid is deployed,
it has five partitions and one synchronous replica.

<?xml version="1.0" encoding="UTF-8"7>
<deploymentPolicy xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"

xsi:schemalLocation="http://ibm.com/ws/objectgrid/deploymentPolicy
../deploymentPolicy.xsd"

https://www.ibm.com/developerworks/community/blogs/714470bb-75c8-4f99-8aca-766c0d55a21c/entry/integrating_websphere_extreme_scale_security_with_websphere_application_server2?lang=en

xmlns="http://ibm.com/ws/objectgrid/deploymentPolicy">

<objectgridDeployment objectgridName="Grid">
<mapSet name="mapSet" numberOfPartitions="5" minSyncReplicas="0"
maxSyncReplicas="1" >
<map ref="Mapl"/>
</mapSet>
</objectgridDeployment>

</deploymentPolicy>

Lesson checkpoint

In this lesson, you learned about the topology for the tutorial and added the configuration files and sample
applications to your environment.

If you want to learn more about automatically starting container servers, see Configuring WebSphere
Application Server applications to automatically start container servers.

< Previous | Next >

< Previous | Next >

Lesson 1.2: Configure the WebSphere Application Server
environment

To prepare your environment for the tutorial, you must configure WebSphere® Application Server security.
Enable administration and application security using internal file-based federated repositories as a user
account registry. Then, you can create server clusters to host the client application and container servers.

The following steps were written using WebSphere Application Server Version 7.0. However, you can also
apply the concepts apply to earlier versions of WebSphere Application Server.

Configure WebSphere Application Server security
1. Configure WebSphere Application Server security.

In the WebSphere Application Server administrative console, click Security > Global Security.

c 9o

Select Federated repositories as the Available realm definition. Click Set as current.
Click Configure.. to go to the Federated repositories panel.
Enter the Primary administrative user name, for example, admin. Click Apply.

When prompted, enter the administrative user password and click OK. Save your changes.

-~ 0 Q 0

On the Global Security page, verify that Federated repositories setting is set to the current
user account registry.

g. Select the following items: Enable administrative security, Enable application security,
and Use Java 2 security to restrict application access to local resources. Click Apply and
save your changes.

h. Restart the deployment manager and any running application servers.

The WebSphere Application Server administrative security is enabled using the internal file-based
federated repositories as the user account registry.

2. Create two user groups: adminGroup and operatorGroup.
a. Click Users and groups > Manage groups > Create...

b. Type adminGroup as the group name. Enter Administration group as the description. Click
Create.

c. Click Create alike. Type operatorGroup as the group name. Enter Operator group as the
description. Click Create.

d. Click Close.

3. Create users adminl and operatorl.

a. Click Users and groups > Manage users > Create...

b. Create a user called adminl with the first name Joe and last name Doe with the password
adminl. Click Create.

c. Create a second user. Click Create alike to create a a user called operatorl with the first name
Jane and last name Doe with the password operatorl. Click Create. Click Close.

4. Add users to the user groups. Add the adminl user to the adminGroup and the operatorl user to the
operatorGroup.

a. Click Users and groups > Manage users.

b. Search for users to add to groups. Click Search.. and set the search for value to an asterisk (*)
to display all the users.

c. From the search result, click the adminl user, and click the Groups tab. Click Add to add the
group.
d. Search the groups to find the available groups. Click the adminGroup and click Add.
e. Repeat these steps to add the operatorl user to the operatorGroup user group.
5. Save your changes, log out of the administrative console, and restart the deployment manager and
node agent to enable the security settings.

You enabled security and created users and user groups have administrative and operator access to your
WebSphere Application Server configuration.

Create server clusters

Create two server clusters in your WebSphere Application Server configuration: The appCluster cluster to

host the sample application for the tutorial and the xsCluster cluster to host the data grid.

1. In the WebSphere Application Server administrative console, open the clusters panel. Click Servers >
Clusters > WebSphere application server clusters > New.

2. Type appCluster as the cluster name, leave the Prefer local option selected, and click Next.

3. Create servers in the cluster. Create a server named s1, keeping the default options. Add an additional
cluster member named s2.

4. Complete the remaining steps in the wizard to create the cluster. Save the changes.
5. Repeat these steps to create the xsCluster cluster. This cluster has two servers, named xs1 and xs2.

Lesson checkpoint

You enabled global security for the WebSphere Application Server cell, created users and user groups, and
created clusters to host the application and data grid.

< Previous | Next >

< Previous | Next >

Module 2: Configure WebSphere eXtreme Scale to use
WebSphere Application Server Authentication plug-ins

After you have created the WebSphere® Application Server configuration, you can integrate WebSphere
eXtreme Scale authentication with WebSphere Application Server.

When a WebSphere eXtreme Scale client connects to a container server that requires authentication, the
client must provide a credential generator represented by the
com.ibm.websphere.objectgrid.security.plugins.CredentialGenerator interface. A credential generator is a
factory to create a client credential. A client credential can be: a user name and password pair, a Kerberos
ticket, a client certificate, or client identification data in any format that the client and server agree upon.
See the Credential APl documentation for more details. In this sample, the WebSphere eXtreme Scale client
is the EmployeeManagment web application that is deployed in the appCluster cluster. The client credential
is a WebSphere security token that represents the web user identity.

Learning objectives

With the lessons in this module, you learn how to:
Configure client server security.

Configure catalog server security.
Configure container server security.

Install and run the sample application.

Time required
This module takes approximately 60 minutes.

Lessons in this module

Lesson 2.1: Configure client server security

The client properties file indicates the CredentialGenerator implementation class to use.

Lesson 2.2: Configure catalog server security

A catalog server contains two different levels of security information: The security properties that are
common to all the WebSphere eXtreme Scale servers, including the catalog service and container
servers, and the security properties that are specific to the catalog server.

Lesson 2.3: Configure container server security

When a container server connects to the catalog service, the container server gets all the security
configurations that are configured in the Object Grid Security XML file, such as authenticator
configuration, the login session timeout value, and other configuration information. A container server
also has its own server-specific security properties in the server property file.

Lesson 2.4: Install and run the sample

After authentication is configured, you can install and run the sample application.

Related reference:

Client properties file
Server properties file

Related information:

Lesson 2.1: Configure client server security
Credential APl documentation
Lesson 2.2: Configure catalog server security

< Previous | Next >

< Previous | Next >

Lesson 2.1: Configure client server security
The client properties file indicates the CredentialGenerator implementation class to use.

Configure the client properties file with the -Dobjectgrid.client.props JVM property. The file name
specified for this property is an absolute file path, such as samples _home/security/client2.props. See
Client properties file for more information about the client properties file.

Related reference:

Client properties file

Related information:

Module 2: Configure WebSphere eXtreme Scale to use WebSphere Application Server Authentication plug-ins
Credential APl documentation

Client properties file contents

This example uses WebSphere Application Server security tokens as the client credential. The
client2.props file is in the samples _home/security directory. The client2.props file includes the
following settings:

securityEnabled

When set to true, indicates that the client must send available security information to the server.
credentialAuthentication

When set to Supported, indicates that the client supports credential authentication.
credentialGeneratorClass

Indicates the com.ibm.websphere.objectgrid.security.plugins.builtins.WSTokenCredentialGenerator class so
the client retrieves the security tokens from the thread. See Security integration with WebSphere
Application Server for more information about how security tokens are retrieved.

Setting the client properties file using Java™ virtual machine (JVM)
properties

In the administrative console, complete the following steps to both the s1 and s2 servers in the appCluster
cluster. If you are using a different topology, complete the following steps to all of the application servers to
which the EmployeeManagement application will be deployed.

1. Servers > WebSphere application servers > server_name > Java and Process Management >
Process definition > Java Virtual Machine.

2. Create the following generic JVM property to set the location of the client properties file:

-Dobjectgrid.client.props=samples home/security/client2.props

3. Click OK and save your changes.

Lesson checkpoint

You edited the client properties file and configured the servers in the appCluster cluster to use the client
properties file. This properties file indicates the CredentialGenerator implementation class to use.

< Previous | Next >

< Previous | Next >

Lesson 2.2: Configure catalog server security

A catalog server contains two different levels of security information: The security properties that are
common to all the WebSphere® eXtreme Scale servers, including the catalog service and container servers,
and the security properties that are specific to the catalog server.

The security properties that are common to the catalog servers and container servers are configured in the
security XML descriptor file. An example of common properties is the authenticator configuration, which
represents the user registry and authentication mechanism. See Security descriptor XML file for more
information about the security properties.

To configure the security XML descriptor file, create a -Dobjectgrid.cluster.security.xml.url property in the
Java™ virtual machine (JVM) argument. The file name specified for this property is in an URL format, such as
file:///samples_home/security/securityWAS2.xml.

Related reference:

Server properties file

Related information:

Module 2: Configure WebSphere eXtreme Scale to use WebSphere Application Server Authentication plug-ins

securityWAS2.xml file

In this tutorial, the securityWAS2.xml file is in the samples_home/security directory. The content of the
securityWAS2.xml file with the comments removed follows:

<securityConfig xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalLocation="http://ibm.com/ws/objectgrid/config/security

../objectGridSecurity.xsd"
xmlns="http://ibm.com/ws/objectgrid/config/security">

<security securityEnabled="true">
<authenticator
className="com.ibm.websphere.objectgrid.security.plugins.builtins.WSTokenAuthentic

ator">
</authenticator>
</security>
</securityConfig>

The following properties are defined in the securityWAS2.xml file:

securityEnabled

The securityEnabled property is set to true, which indicates to the catalog server that the WebSphere
eXtreme Scale global security is enabled.

authenticator

The authenticator is configured as the
com.ibm.websphere.objectgrid.security.plugins.builtins.WSTokenAuthenticator class. With this built-in
implementation of the Authenticator plug-in, the WebSphere eXtreme Scale server can convert the
security tokens to a Subject object. See Security integration with WebSphere Application Server for more
information about how the security tokens are converted.

catServer2.props file

The server property file stores the server-specific properties, which include the server-specific security
properties. See Server properties file for more information. You can configure the server property file with the
-Dobjectgrid.server.props property in the JVM argument. Specify the file name value for this property is
an absolute path, such as samples home/security/catServer2.props. For this tutorial, a
catServer2.props file is included in the samples _home/security directory. The content of the
catServer2.props file with comments removed follows:

securityEnabled
The securityEnabled property is set to true to indicate that this catalog server is a secure server.
credentialAuthentication

The credentialAuthentication property is set to Required, so any client that is connecting to the server is
required to provide a credential.

secureTokenManagerType

The secureTokenManagerType is set to none to indicate that the authentication secret is not encrypted
when joining the existing servers.

authenticationSecret

The authenticationSecret property is set to ObjectGridDefaultSecret. This secret string is used to join
the eXtreme Scale server cluster. When a server joins the data grid, it is challenged to present the secret
string. If the secret string of the joining server matches the string in the catalog server, the joining server
is accepted. If the string does not match, the join request is rejected.

transportType
The transportType property is set to TCP/IP initially. Later in the tutorial, transport security is enabled.

Setting the server properties file with JVM properties

Set the server properties file on the deployment manager server. If you are using a different topology than
the topology for this tutorial, set the server properties file on all of the application servers that you are using
to host catalog servers.

1. Open the Java virtual machine configuration for the server. In the administrative console, click System
administration > Deployment manager > Java and Process Management > Process
definition > Java Virtual Machine.

2. Add the following generic JVM arguments:

-Dobjectgrid.cluster.security.xml.url=file:///samples home/security/securityWAS2.xml
-Dobjectgrid.server.props=samples_home/security/catServer2.props

3. Click OK and save your changes.

Lesson checkpoint

You configured catalog server security by associating the securityWAS2.xml and catServer2.props files
with the deployment manager, which hosts the catalog server process in the WebSphere Application Server
configuration.

< Previous | Next >

< Previous | Next >

Lesson 2.3: Configure container server security

When a container server connects to the catalog service, the container server gets all the security
configurations that are configured in the Object Grid Security XML file, such as authenticator configuration,
the login session timeout value, and other configuration information. A container server also has its own
server-specific security properties in the server property file.

Configure the server property file with the -Dobjectgrid.server.props Java virtual machine (JVM) property.
The file name for this property is an absolute file path, such as samples _home/security/server2.props.

In this tutorial, the container servers are hosted in the xs1 and xs2 servers in the xsCluster cluster.

server2.props file

The server2.props file is in the samples home/security directory under the WASSecurity directory. The
properties that are defined in the server2.props file follow:
securityEnabled

The securityEnabled property is set to true to indicate that this container server is a secure server.
credentialAuthentication

The credentialAuthentication property is set to Required, so any client that is connecting to the server is
required to provide a credential.

secureTokenManagerType

The secureTokenManagerType is set to none to indicate that the authentication secret is not encrypted
when joining the existing servers.

authenticationSecret

The authenticationSecret property is set to ObjectGridDefaultSecret. This secret string is used to join
the eXtreme Scale server cluster. When a server joins the data grid, it is challenged to present the secret
string. If the secret string of the joining server matches the string in the catalog server, the joining server
is accepted. If the string does not match, the join request is rejected.

Setting the server properties file with JVM properties

Set the server properties file on the xs1 and xs2 servers. If you are not using the topology for this tutorial,
set the server properties file on all of the application servers that you are using to host container servers.

1. Open the Java™ virtual machine page for the server. Servers > Application servers > server_name
> Java and Process Management > Process definition > Java Virtual Machine

2. Add the generic JVM arguments:

-Dobjectgrid.server.props=samples _home/security/server2.props

3. Click OK and save your changes.

Lesson checkpoint

Now the WebSphere eXtreme Scale server authentication is secured. By configuring this security, all the
applications that try to connect to the WebSphere eXtreme Scale servers are required to provide a
credential. In this tutorial, the WSTokenAuthenticator is the authenticator. As a result, the client is required to
provide a WebSphere Application Server security token.

< Previous | Next >

< Previous | Next >

Lesson 2.4: Install and run the sample

After authentication is configured, you can install and run the sample application.

Creating a shared library for the EmployeeData. jar file

4,

In the WebSphere Application Server administrative console, open the Shared Libraries page. Click
Environment > Shared libraries.

Choose the cell scope.

Create the shared library. Click New. Enter EmployeeManagementLIB as the Name. Enter the path to
the EmployeeData. jar in the classpath, for example,
samples _home/WASSecurity/EmployeeData.jar.

Click Apply.

Installing the sample

1.

2.

Install the EmployeeManagement.ear file.

a. To begin the installation, click Applications > New application > New Enterprise
Application. Choose the detailed path for installing the application.

b. On the Map modules to servers step, specify the appCluster cluster to install the
EmployeeManagementWeb module.

On the Map shared libraries step, select the EmployeeManagementWeb module.
Click Reference shared libraries. Select the EmployeeManagementLIB library.
Map the webUser role to All Authenticated in Application's Realm.

Click OK.

The clients run in the s1 and s2 servers in this cluster.

-~ 0O Q 0

Install the sample XSDeployment. ear file.
a. To begin the installation, click Applications > New application > New Enterprise
Application. Choose the detailed path for installing the application.

b. On the Map modules to servers step, specify the xsCluster cluster to install the
XSDeploymentWeb web module.

c. On the Map shared libraries step, select the XSDeploymentWeb module.
d. Click Reference shared libraries. Select the EmployeeManagementLIB library.
e. Click OK.

The xs1 and xs2 servers in this cluster host the container servers.

Restart the deployment manager. When the deployment manager starts, the catalog server also
starts. If you look at the SystemQOut. log file of the deployment manager, you can see the following
message that indicates that the eXtreme Scale server properties file is loaded.

CWOBJ0913I: Server property files have been loaded:
/wxs_ samples/security/catServer2.props.

Restart the xsCluster cluster. When the xsCluster starts, the XSDeployment application starts, and a
container server is started on the xs1 and xs2 servers respectively. If you look at the SystemQOut. log
file of the xs1 and xs2 servers, the following message that indicates the server properties file is loaded
is displayed:

CWOBJ0913I: Server property files have been loaded:
/wxs samples/security/server2.props.

Restart the appClusters cluster. When the cluster appCluster starts, the EmployeeManagement
application also starts. If you look at the SystemOut. log file of the s1 and s2 servers, you can see the
following message that indicates that the client properties file is loaded.

CWOBJ0924I: The client property file {0} has been loaded.
You can ighore the warning messages regarding the authenticationRetryCount, transportType, and

clientCertificateAuthentication properties. The default values are be used because the values were not
specified in the properties file.

If you are using WebSphere eXtreme Scale Version 7.0, the English-only CWOBJ9000I message
displays to indicate that the client property file has been loaded. If you do not see the expected
message, verify that you configured the -Dobjectgrid.server.props or -Dobjectgrid.client.props property
in the JVM argument. If you do have the properties configured, make sure the dash (-) is a UTF
character.

Running the sample application

1.

Run the management. jsp file. In a web browser, access http://<your servername>:
<port>/EmployeeManagementWeb/management. jsp. For example, you might use the following URL:
http://localhost:9080/EmployeeManagementWeb/management. jsp.

Provide authentication to the application. Enter the credentials of the user that you mapped to the
webUser role. By default, this user role is mapped to all authenticated users. Type adminl as your user
ID and adminl as your password. A page to display, add, update, and delete employees displays.

Display employees. Click Display an Employee. Enter empl@acme. com as the email address, and click
Submit. A message displays that the employee cannot be found.

Add an employee. click Add an Employee. Enter empl@acme. com as the email address, enter Joe as
the first name, and Doe as the last name. Click Submit. A message displays that an employee with the
empl@acme. com address has been added.

Display the new employee. Click Display an Employee. Enter empl@acme.com as the email address
with empty fields for the first and last names, and click Submit. A message displays that the
employee has been found, and the correct names are displayed in the first name and last name fields.

Delete the employee. Click Delete an employee. Enter empl@acme. com and click Submit. A message
is displayed that the employee has been deleted.

Lesson checkpoint

You installed and ran the sample application. Because this tutorial uses WebSphere Application Server
integration, you cannot see the scenario when a client fails to authenticate to the eXtreme Scale server. If
the user authenticates to the WebSphere Application Server successfully, eXtreme Scale is also successfully
authenticated.

< Previous | Next >

< Previous | Next >

Module 3: Configure transport security
Configure transport security to secure data transfer between the clients and servers in the configuration.

In the previous module in the tutorial, you enabled WebSphere® eXtreme Scale authentication. With
authentication, any application that tries to connect to the WebSphere eXtreme Scale server is required to
provide a credential. Therefore, no unauthenticated client can connect to the WebSphere eXtreme Scale
server. The clients must be an authenticated application that is running in a WebSphere Application Server
cell.

With the configuration up to this module, the data transfer between the clients in the appCluster cluster and
servers in the xsCluster cluster is not encrypted. This configuration might be acceptable if your WebSphere
Application Server clusters are installed on servers behind a firewall. However, in some scenarios, non-
encrypted traffic is not accepted for some reasons even though the topology is protected by firewall. For
example, a government policy might enforce encrypted traffic. WebSphere eXtreme Scale supports Transport
Layer Security/Secure Sockets Layer (TLS/SSL) for secure communication between ObjectGrid endpoints,
which include client servers, container servers, and catalog servers.

In this sample deployment, the eXtreme Scale clients and container servers are all running in the WebSphere
Application Server environment. Client or server properties are not necessary to configure the SSL settings
because the eXtreme Scale transport security is managed by the Application Server Common Secure
Interoperability Protocol Version 2 (CSIV2) transport settings. WebSphere eXtreme Scale servers use the
same Object Request Broker (ORB) instance as the application servers in which they run. Specify all the SSL
settings for client and container servers in the WebSphere Application Server configuration using these CSlv2
transport settings. The catalog server has its own proprietary transport paths that do not use Internet Inter-
ORB Protocol (IIOP) or Remote Method Invocation (RMI). Because of these proprietary transport paths, the
catalog server cannot be managed by the WebSphere Application Server CSIV2 transport settings. Therefore,
you must configure the SSL properties in the server properties file for the catalog server.

Learning objectives

After completing the lessons in this module, you know how to:
Configure CSlv2 inbound and outbound transport.

Add SSL properties to the catalog server properties file.
Check the ORB properties file.

Run the sample.

Time required
This module takes approximately 60 minutes.

Prerequisites
This step of the tutorial builds upon the previous modules. Complete the previous modules in this tutorial
before you configure transport security.

Lessons in this module

Lesson 3.1: Configure CSlv2 inbound and outbound transport

To configure Transport Layer Security/Secure Sockets Layer (TLS/SSL) for the server transport, set the
Common Secure Interoperability Protocol Version 2 (CSIv2) inbound transport and CSlv2 outbound
transport to SSL-Required for all the WebSphere Application Server servers that host clients, catalog
servers, and container servers.

Lesson 3.2: Add SSL properties to the catalog server properties file

The catalog server has its own proprietary transport paths that cannot be managed by the WebSphere
Application Server Common Secure Interoperability Protocol Version 2 (CSIV2) transport settings.
Therefore, you must configure the Secure Sockets Layer (SSL) properties in the server properties file
for the catalog server.

Lesson 3.3: Run the sample

Restart all the servers and run the sample application again. You should be able to run through the
steps without any problems.

< Previous | Next >

< Previous | Next >

< Previous | Next >

Lesson 3.1: Configure CSlv2 inbound and outbound transport

To configure Transport Layer Security/Secure Sockets Layer (TLS/SSL) for the server transport, set the
Common Secure Interoperability Protocol Version 2 (CSIv2) inbound transport and CSlv2 outbound transport
to SSL-Required for all the WebSphere® Application Server servers that host clients, catalog servers, and
container servers.

In the tutorial example topology, you must set these properties for the, s1, s2, xs1, and xs2 application
servers. The following steps configure the inbound and outbound transports for all the servers in the
configuration.

Set the inbound and outbound transports in the administrative console. Make sure that administrative
security is enabled.

e WebSphere Application Server Version 6.1: Click Security > Secure Administration >
Application.. > RMI/IIOP Security and change the transport type to SSL-Required.

e WebSphere Application Server Version 7.0: Click Security > Global Security > RMI/IIOP
Security > CSlv2 inbound communications. Change the transport type under the CSIv2 Transport
Layer to SSL-Required. Repeat this step to configure CSIv2 outbound communications.

You can use centrally managed endpoint security settings, or you can configure SSL repositories. See
Common Secure Interoperability Version 2 transport inbound settings for more information.

< Previous | Next >

< Previous | Next >

http://www14.software.ibm.com/webapp/wsbroker/redirect?version=compass&product=was-nd-dist&topic=usecinboundconn

< Previous | Next >

Lesson 3.2: Add SSL properties to the catalog server properties
file

The catalog server has its own proprietary transport paths that cannot be managed by the WebSphere®
Application Server Common Secure Interoperability Protocol Version 2 (CSIV2) transport settings. Therefore,
you must configure the Secure Sockets Layer (SSL) properties in the server properties file for the catalog
server.

To configure catalog server security, additional steps are necessary because the catalog server has its own
proprietary transport paths. These transport paths cannot be managed by the Application Server CSIV2
transport settings.

1. Edit the SSL properties in the catServer2.props file. To configure catalog server security, uncomment
the following SSL properties in the catalog server properties file. For this tutorial, the catalog server
properties are in the catServer2.props file. Update the keyStore and trustStore properties to refer to
the proper location in your environment.

#alias=default

#contextProvider=IBMJSSE2

#protocol=SSL

#keyStoreType=PK(CS12

#keyStore=/<WAS HOME>/IBM/WebSphere/AppServer/profiles/<DMGR NAME>/config/
cells/<CELL NAME>/nodes/<NODE NAME>/key.pl2

#keyStorePassword=WebAS

#trustStoreType=PKCS12

#trustStore=/<WAS HOME>/IBM/WebSphere/AppServer/profiles/<DMGR NAME>/config/
cells/<CELL NAME>/nodes/<NODE_NAME>/trust.pl2

#trustStorePassword=WebAS

#clientAuthentication=false

The catServer2.props file is using the default WebSphere Application Server node level keystore and
truststore. If you are deploying a more complex deployment environment, you must choose the correct
keystore and truststore. In some cases, you must create a keystore and truststore and import the keys
from keystores from the other servers. Notice that the WebAS string is the default password of the
WebSphere Application Server keystore and truststore. See Default self-signed certificate configuration
for more details.

2. In the catServer2.props file, update the value of the transportType property. For previous steps of the
tutorial, the value was set to TCP/IP. Change the value to SSL-Required.

3. Restart the deployment manager to activate the changes to the catalog server security settings.

Lesson checkpoint
You configured the SSL properties for the catalog server.

< Previous | Next >

http://publib.boulder.ibm.com/infocenter/wasinfo/v6r1/index.jsp?topic=/com.ibm.websphere.express.doc/info/exp/ae/csec_ssldefselfsigncertconf.html

< Previous | Next >

Lesson 3.3: Run the sample

Restart all the servers and run the sample application again. You should be able to run through the steps
without any problems.

See Lesson 2.4: Install and run the sample for more information about running and installing the sample
application.

Lesson checkpoint
You ran the sample application with transport security enabled.

< Previous | Next >

< Previous | Next >

Module 4: Use Java Authentication and Authorization Service
(JAAS) authorization in WebSphere Application Server

Now that you have configured authentication for clients, you can further configure authentication to give
different users varying permissions. For example, an operator user might only be able to view data, while an
administrator user can perform all operations.

After authenticating a client, as in the previous module in this tutorial, you can give security privileges
through eXtreme Scale authorization mechanisms. The previous module of this tutorial demonstrated how to
enable authentication for a data grid using integration with WebSphere® Application Server. As a result, no
unauthenticated client can connect to the eXtreme Scale servers or submit requests to your system.
However, every authenticated client has the same permission or privileges to the server, such as reading,
writing, or deleting data that is stored in the ObjectGrid maps. Clients can also issue any type of query.

This part of the tutorial demonstrates how to use eXtreme Scale authorization to give authenticated users
varying privileges. WebSphere eXtreme Scale uses a permission-based authorization mechanism. You can
assign different permission categories that are represented by different permission classes. This module
features the MapPermission class. For a list of all possible permissions, see Client authorization
programming.

In WebSphere eXtreme Scale, the com.ibm.websphere.objectgrid.security.MapPermission class
represents permissions to the eXtreme Scale resources, specifically the methods of the ObjectMap or
JavaMap interfaces. WebSphere eXtreme Scale defines the following permission strings to access the
methods of ObjectMap and JavaMap:

e read: Grants permission to read the data from the map.
write: Grants permission to update the data in the map.
insert: Grants permission to insert the data into the map.
remove: Grants permission to remove the data from the map.
invalidate: Grants permission to invalidate the data from the map.
all: Grants all permissions to read, write, insert, remote, and invalidate.

The authorization occurs when an eXtreme Scale client uses a data access API, such as the ObjectMap
,JJavaMap, or EntityManager APIs. The run time checks corresponding map permissions when the method is
called. If the required permissions are not granted to the client, an AccessControlException exception results.
This tutorial demonstrates how to use Java Authentication and Authorization Service (JAAS) authorization to
grant authorization map access for different users.

Learning objectives
After completing the lessons in this module, you know how to:

e Enable authorization for WebSphere eXtreme Scale.
e Enable user-based authorization.
e Configure group-based authorization.

Time required
This module takes approximately 60 minutes.

Prerequisites
You must complete the prior modules in this tutorial before configuring authentication.

Lessons in this module

Lesson 4.1: Enable WebSphere eXtreme Scale authorization

To enable authorization in WebSphere eXtreme Scale, you must enable security on a specific
ObjectGrid.

Lesson 4.2: Enable user-based authorization

In the authentication module of this tutorial, you created two users: operatorl and adminl. You can
assign varying permissions to these users with Java Authentication and Authorization Service (JAAS)
authorization.

Lesson 4.3: Configure group-based authorization

In the previous lesson, you assigned individual user-based authorization with user principals in the Java
Authentication and Authorization Service. (JAAS) authorization policy. However, when you have
hundreds or thousands of users, use group-based authorization, which authorizes access based on

groups instead of individual users.

Related concepts:

Client authorization programming

< Previous | Next >

< Previous | Next >

Lesson 4.1: Enable WebSphere eXtreme Scale authorization
To enable authorization in WebSphere® eXtreme Scale, you must enable security on a specific ObjectGrid.

To enable authorization on the ObjectGrid, you must set the securityEnabled attribute to true for that
particular ObjectGrid in the XML file. For this tutorial, you can either use the XSDeployment sec.ear file in
the samples home/WASSecurity directory, which has already has security set in the objectGrid.xml file, or
you can edit the existing objectGrid.xml file to enable security. This lesson demonstrates how to edit the

file to enable security.

1. Extract the files in the XSDeployment.ear file, and then unzip the XSDeploymentWeb.war file.

2. Open the objectGrid.xml file and set the securityEnabled attribute to true on the ObjectGrid level.
See an example of this attribute in the following example:

<?xml version="1.0" encoding="UTF-8"7>

<objectGridConfig xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemaLocation="http://ibm.com/ws/objectgrid/config ../objectGrid.xsd"
xmlns="http://ibm.com/ws/objectgrid/config">

<objectGrids>
<objectGrid name="Grid" securityEnabled="true">
<backingMap name="Mapl" />
</objectGrid>
</objectGrids>

</objectGridConfig>

If you have multiple ObjectGrids defined, then you must set this attribute on each data grid.

3. Repackage the XSDeploymentWeb.war and XSDeployment.ear files to include your changes. Name the
file XSDeployment sec.ear so you do not overwrite the original package.

4. Uninstall the existing XSDeployment application and install the XSDeployment sec.ear file. See Lesson
2.4: Install and run the sample for more information about deploying applications.

Lesson checkpoint

You enabled security on the ObjectGrid, which also enables authorization on the data grid.

< Previous | Next >

< Previous | Next >

Lesson 4.2: Enable user-based authorization

In the authentication module of this tutorial, you created two users: operatorl and adminl. You can assign
varying permissions to these users with Java™ Authentication and Authorization Service (JAAS) authorization.

Defining the Java Authentication and Authorization Service (JAAS)
authorization policy using user principals

You can assign permissions to the users that you previously created. Assign the operatorl user read
permissions only to all maps. Assign the adminl user all permissions. Use the JAAS authorization policy file to
grant permissions to principals.

Edit the JAAS authorization file. The xsAuth2.policy file is in the samples _home/security directory:

grant codebase http://www.ibm.com/com/ibm/ws/objectgrid/security/PrivilegedAction
Principal com.ibm.ws.security.common.auth.WSPrincipalImpl
"defaultWIMFileBasedRealm/operatorl” {

permission com.ibm.websphere.objectgrid.security.MapPermission "Grid.Mapl", "read";

}

grant codebase http://www.ibm.com/com/ibm/ws/objectgrid/security/PrivilegedAction
Principal com.ibm.ws.security.common.auth.WSPrincipalImpl
"defaultWIMFileBasedRealm/adminl" {

permission com.ibm.websphere.objectgrid.security.MapPermission "Grid.Mapl", "all";

}

In this file, the http://www.ibm.com/com/ibm/ws/objectgrid/security/PrivilegedAction codebase is a
specially reserved URL for ObjectGrid. All ObjectGrid permissions that are granted to principals should use
this special code base. The following permissions are assigned in this file:
e The first grant statement grants read map permission to the operatorl principal. The operatorl user
has only map read permission to the Mapl map the Grid ObjectGrid instance.
e The second grant statement grants all map permission to the adminl principal. The adminl user has
all permissions to the Mapl map in the Grid ObjectGrid instance.
e The principal name is defaultWIMFileBasedRealm/operatorl, but not Operatorl. WebSphere
Application Server automatically adds the realm name to the principal name when federated
repositories are used as the user account registry. Adjust this value if needed.

Setting the JAAS authorization policy file using JVM properties

Use the following steps to set JVM properties for the xs1 and xs2 servers, which are in the xsCluster cluster. If
you are using a topology that is different from the sample topology that is used in this tutorial, set the file on
all of your container servers.

1. In the administrative console, click Servers > Application servers > server_name > Java and
Process Management > Process definition > Java Virtual Machine.

2. Add generic JVM arguments.

Note: When containers are running in WebSphere Application Server, you cannot use the -
Djava.security.policy argument because this file overrides the WebSphere Application Server
administrative access authorization. Therefore, use -Djava.security.auth.policy to set the JAAS
authorization policy.

Enter the following generic JVM arguments or replace the -Djava.security.auth.policy entry with
the following text:

-Djava.security.auth.policy=samples home/security/xsAuth2.policy
3. Click OK and save your changes.

Running the sample application to test authorization

You can use the sample application to test the authorization settings. The administrator user continues to
have all permissions in the Mapl map, including displaying and adding employees. The operator user should
only be able to view employees because that user was assigned read permission only.

1. Restart all of the application servers that are running container servers.

2. Open the EmployeeManagementWeb application. In a web browser, open http://<host>:
<port>/EmployeeManagementWeb/management. jsp.

3. Log in to the application as an administrator. Use the user name adminl and password adminl.

4. Attempt to display an employee. Click Display an Employee and search for the authempl@acme. com
email address. A message displays that the user cannot be found.

5. Add an employee. Click Add an Employee. Add the email authempl@acme. com, the first name Joe,
and the last name Doe. Click Submit. A message displays that the employee has been added.

6. Log in as the operator user. Open a second Web browser window and open http://<host>:
<port>/EmployeeManagermentWeb/management. jsp. Use the user name operatorl and password
operatorl.

7. Attempt to display an employee. Click Display an Employee and search for the authempl@acme. com
email address. The employee is displayed.

8. Add an employee. Click Add an Employee. Add the email authemp2@acme. com, the first name Joe,
and the last name Doe. Click Submit. The following message displays:

An exception occurs when Add the employee. See below for detailed exception
messages.

The following exception is in the exception chain:

java.security.AccessControlException: Access denied
(com.ibm.websphere.objectgrid.security.MapPermission Grid.Mapl insert)

This message displays because the operatorl user does not have permission to insert data into the
Mapl map.

If you are running with a version of WebSphere Application Server that is earlier than Version 7.0.0.11, you
might see a java.lang.StackOverflowError error on the container server. This error is caused by a problem
with the IBM Developer Kit. The problem is fixed in the IBM Developer Kit that is shipped with WebSphere
Application Server Version 7.0.0.11 and later.

Lesson checkpoint
In this lesson, you configured authorization by assigning permissions to specific users.

< Previous | Next >

< Previous | Next >

Lesson 4.3: Configure group-based authorization

In the previous lesson, you assigned individual user-based authorization with user principals in the Java™
Authentication and Authorization Service. (JAAS) authorization policy. However, when you have hundreds or
thousands of users, use group-based authorization, which authorizes access based on groups instead of
individual users.

Unfortunately, the Subject object that is authenticated from the WebSphere® Application Server only
contains a user principal. This object does not contain a group principal. You can add a custom login module
to populate the group principal into the Subject object.

For this tutorial, the custom login module is named
com.ibm.websphere.samples.objectgrid.security.Im.WASAddGroupLoginModule. The module is in the
grouplLM. jar file. Place this JAR file in the WAS-INSTALL/1lib/ext directory.

The WASAddGroupLoginModule retrieves the public group credential from the WebSphere Application Server

subject and creates a Group principal, com.ibm.websphere.samples.objectgrid.security. WSGroupPrincipal, to

represent the group. This group principal can then be used for group authorization. The groups are defined in
the xsAuthGroup2.policy file:

grant codebase "http://www.ibm.com/com/ibm/ws/objectgrid/security/PrivilegedAction”
principal com.ibm.websphere.sample.xs.security.WSGroupPrincipal
"defaultWIMFileBasedRealm/cn=operatorGroup,o=defaultWIMFileBasedRealm" {
permission com.ibm.websphere.objectgrid.security.MapPermission "Grid.Mapl", "read";

};

grant codebase "http://www.ibm.com/com/ibm/ws/objectgrid/security/PrivilegedAction”
principal com.ibm.websphere.sample.xs.security.WSGroupPrincipal
"defaultWIMFileBasedRealm/cn=adminGroup,o=defaultWIMFileBasedRealm" {
permission com.ibm.websphere.objectgrid.security.MapPermission "Grid.Mapl", "all";

b
The principal name is the WSGroupPrincipal, which represents the group.

Adding the custom login module

The custom login module must be added to each of the following system login module entries: If you are
using Lightweight Third Party Authentication (LTPA), add the entry to the RMI_INBOUND login modules. LTPA
is the default authentication mechanism for WebSphere Application Server Version 7.0. For a WebSphere
Application Server Network Deployment configuration, you only need to configure the LTPA authentication
mechanism configuration entries.

Use the following steps to configure the supplied
com.ibm.websphere.samples.objectgrid.security.Im.WASAddGroupLoginModule login module:

1. In the administrative console, click Security > Global Security > Java Authentication and
Authorization Service > System logins > login _module_name > JAAS login modules > New.

2. Enter the class name as com.ibm.websphere.sample.xs.security.lm.WASAddGroupLoginModule.
3. Optional: Add a property debug and set the value to true.
4. Click Apply to add the new module to the login module list.

Setting the JAAS Authorization Policy file using JVM Properties

In the administrative console, perform the following steps to xsl1 and xs2 servers in the xsCluster. If a
different deployment topology is used, perform the following steps to the application servers that host the
container servers.

1. In the administrative console, click Servers > Application servers > server_name > Java and
Process management > Process definition > Java virtual machine

2. Add generic JVM arguments.

Note: When containers are running in WebSphere Application Server, you cannot use the -
Djava.security.policy argument because this file overrides the WebSphere Application Server
administrative access authorization. Therefore, use -Djava.security.auth.policy to set the JAAS
authorization policy.

Enter the following generic JVM arguments or replace the -Djava.security.auth.policy entry with
the following text:

-Djava.security.auth.policy=samples home/security/xsAuthGroup2.policy

3. Click OK and save your changes.

Testing group authorization with the sample application

You can test that group authorization is configured by the login module with the sample application.

1. Restart the container servers. For this tutorial, the container servers are the xsl1 and xs2 servers.

2. Log in to the sample application. In a web browser, open http://<host>:
<port>/EmployeeManagementWeb/management. jsp and login with the user name adminl and
password adminl.

3. Display an employee. Click Display an Employee and search for the authemp2@acme. com email
address. A message displays that the user cannot be found.

4. Add an employee. Click Add an Employee. Add the email authemp2@acme. com, the first name Joe,
and the last name Doe. Click Submit. A message displays that the employee has been added.

5. Log in as the operator user. Open a second web browser window and open the following URL.:
http://<host>:<port>/EmployeeManagermentWeb/management. jsp. Use the user name operatorl
and password operatorl.

6. Attempt to display an employee. Click Display an Employee and search for the authemp2@acme. com
email address. The employee is displayed.

7. Add an employee. Click Add an Employee. Add the email authemp3@acme. com, the first name Joe,
and the last name Doe. Click Submit. The following message displays:

An exception occurs when Add the employee. See below for detailed exception
messages.

The following exception is in the exception chain:

java.security.AccessControlException: Access denied
(com.ibm.websphere.objectgrid.security.MapPermission Grid.Mapl insert)

This message displays because the operator user does not have permission to insert data into the
Mapl map.

Lesson checkpoint
You configured groups to simplify the assignment of permission to the users of your application.

< Previous | Next >

< Previous

Module 5: Use the xscmd tool to monitor data grids and maps

You can use the xscmd tool to show the primary data grids and map sizes of the Grid data grid. The xscmd
tool uses the MBean to query all of the data grid artifacts, such as primary shards, replica shards, container
servers, map sizes, and so on.

In this tutorial, the container and catalog servers are running in WebSphere® Application Server application
servers. The WebSphere eXtreme Scale run time registers the Managed Beans (MBean) with the MBean
server that is created by the WebSphere Application Server run time. The security that is used by the xscmd
tool is provided by the WebSphere Application Server MBean security. Therefore, WebSphere eXtreme Scale
specific security configuration is not necessary.

1. Using a command-line tool, open the DMGR_PROFILE/bin directory.

2. Run the xscmd tool.

Use the -c showPlacement -sf P command to list the placement of the primary shards. BTSN
| UNIX |

xscmd.sh -g Grid -ms mapSet -c showPlacement -sf P

xscmd.bat -g Grid -ms mapSet -c showPlacement -sf P

Before you can view the output, you are prompted to log in with your WebSphere Application Server ID
and password.

Related tasks:

Monitoring with the xscmd utility
Administering with the xscmd utility

Lesson checkpoint
You used the xscmd tool in WebSphere Application Server.

< Previous

< Previous | Next >

Tutorial: Integrate WebSphere eXtreme Scale security in a mixed
environment with an external authenticator

This tutorial demonstrates how to secure WebSphere® eXtreme Scale servers that are partially deployed in
a WebSphere Application Server environment.

In the deployment for this tutorial, the container servers are deployed in WebSphere Application Server. The
catalog server is deployed as stand-alone server, and is started in a Java Standard Edition (Java SE)
environment,

Because the catalog server is not deployed in WebSphere Application Server, you cannot use the WebSphere
Application Server Authentication plug-ins. For more information about the process of configuring WebSphere
Application Server Authentication plug-ins, see Tutorial: Integrate WebSphere eXtreme Scale security with
WebSphere Application Server. In this tutorial, a different authenticator is required for catalog server
authentication. You configure a keystore authenticator to authenticate the clients.

Learning objectives
The learning objectives for this tutorial follow:
e Configure WebSphere eXtreme Scale to use the KeyStoreLoginAuthenticator plug-in
e Configure WebSphere eXtreme Scale transport security to use WebSphere Application Server CSlv2
configuration and the WebSphere eXtreme Scale properties file
e Use Java™ Authentication and Authorization Service (JAAS) authorization in WebSphere Application
Server
e Use the xscmd utility to monitor the data grids and maps that you created in the tutorial.

Time required
This tutorial takes approximately 4 hours from start to finish.

< Previous | Next >

< Previous | Next >

Introduction: Security in a mixed environment

In this tutorial, you integrate WebSphere® eXtreme Scale security in a mixed environment. The container
servers run within WebSphere Application Server, and the catalog service runs in stand-alone mode. Because
the catalog server is in stand-alone mode, you must configure an external authenticator.

Important: If both your container servers and catalog server are running within WebSphere Application
Server, you can use the WebSphere Application Server Authentication plug-ins or an external authenticator.
For more information about using the WebSphere Application Server Authentication plug-ins, see Tutorial:
Integrate WebSphere eXtreme Scale security with WebSphere Application Server.

Learning objectives
The learning objectives for this tutorial follow:
e Configure WebSphere eXtreme Scale to use the KeyStoreLoginAuthenticator plug-in
e Configure WebSphere eXtreme Scale transport security to use WebSphere Application Server CSlv2
configuration and the WebSphere eXtreme Scale properties file
e Use Java™ Authentication and Authorization Service (JAAS) authorization in WebSphere Application
Server
e Use the xscmd utility to monitor the data grids and maps that you created in the tutorial.

Time required
This tutorial takes approximately 4 hours from start to finish.

Skill level

Intermediate.

Audience
Developers and administrators that are interested in the security integration between WebSphere eXtreme
Scale and WebSphere Application Server and configuring external authenticators.

System requirements

e WebSphere Application Server Version 6.1 or Version 7.0.0.11 or later with the following fixes
applied:interim fix PM20613 and interim fix PM15818.

e The catalog server must be running on a stand-alone installation, not an installation that is integrated
with WebSphere Application Server.

e Update the Java runtime to apply the following fix: [Z279819: IBM|DK FAILS TO READ PRINCIPAL
STATEMENT WITH WHITESPACE FROM SECURITY FILE

e The stand-alone node that runs the catalog service must use the IBM Software Development Kit
Version 1.6 9. This Software Development Kit is included in the WebSphere Application Server
installation. The catalog server node must be a stand-alone installation because you cannot run the
start0gServer command within an installation of WebSphere eXtreme Scale on WebSphere
Application Server.

This tutorial uses four WebSphere Application Server application servers and one deployment manager to
demonstrate the sample.

Prerequisites

A basic understanding of the following items is helpful before you start this tutorial:
e WebSphere eXtreme Scale programming model
e Basic WebSphere eXtreme Scale security concepts
e Basic WebSphere Application Server security concepts

For a background information about WebSphere eXtreme Scale and WebSphere Application Server security
integration, see Security integration with WebSphere Application Server.

Modules in this tutorial

Module 1: Prepare the mixed WebSphere Application Server and stand-alone environment

Before you start the tutorial, you must create a basic topology that includes container servers that run
within WebSphere Application Server. In this tutorial, the catalog servers run in stand-alone mode.

Module 2: Configure WebSphere eXtreme Scale authentication in a mixed environment

By configuring authentication, you can reliably determine the identity of the requester. WebSphere
eXtreme Scale supports both client-to-server and server-to-server authentication.

http://www-01.ibm.com/support/docview.wss?rs=0&q1=PM20613&uid=swg1PM20613&loc=en_US&cs=utf-8&cc=us&lang=en
http://www-01.ibm.com/support/docview.wss?rs=0&q1=PM20613&uid=swg1PM15818&loc=en_US&cs=utf-8&cc=us&lang=en
http://www-01.ibm.com/support/docview.wss?uid=swg1IZ79819

Module 3: Configure transport security

Configure transport security to secure data transfer between the clients and servers in the
configuration.

Module 4: Use Java Authentication and Authorization Service (JAAS) authorization in
WebSphere Application Server

Now that you have configured authentication for clients, you can further configure authorization to
give different users varying permissions. For example, an "operator" user might only be able to view
data, while a "manager" user can perform all operations.

< Previous | Next >

< Previous | Next >

Module 1: Prepare the mixed WebSphere Application Server and
stand-alone environment

Before you start the tutorial, you must create a basic topology that includes container servers that run within
WebSphere® Application Server. In this tutorial, the catalog servers run in stand-alone mode.

Learning objectives
With the lessons in this module, you learn how to:

e Understand the mixed topology and the files that are necessary for the tutorial
e Configure WebSphere Application Server to run the container servers

Time required
This module takes approximately 60 minutes.

Lessons in this module

Lesson 1.1: Understand the topology and get the tutorial files

To prepare your environment for the tutorial, you must configure the catalog and container servers for
the topology.

Lesson 1.2: Configure the WebSphere Application Server environment

To prepare your environment for the tutorial, you must configure WebSphere Application Server
security. Enable administration and application security using internal file-based federated repositories
as a user account registry. Then, you can create server clusters to host the client application and
container servers. You also must create and start the catalog servers.

< Previous | Next >

< Previous | Next >

Lesson 1.1: Understand the topology and get the tutorial files

To prepare your environment for the tutorial, you must configure the catalog and container servers for the
topology.

This lesson guides you through the sample topology and applications that are used to in the tutorial. To
begin running the tutorial, you must download the applications and place the configuration files in the
correct locations for your environment. You can download the sample application from the IBM elastic
caching community.

Topology
In this tutorial, you create the following clusters in the WebSphere Application Server cell:

e appCluster cluster: Hosts the EmployeeManagement sample enterprise application. This cluster has
two application servers: s1 and s2.

e xsCluster cluster: Hosts the eXtreme Scale container servers. This cluster has two application
servers: xsl and xs2.

In this deployment topology, the s1 and s2 application servers are the client servers that access data that is
being stored in the data grid. The xs1 and xs2 servers are the container servers that host the data grid.

Alternative configuration: You can host all of the application servers in a single cluster, such as in the
appCluster cluster. With this configuration, all of the servers in the cluster are both clients and container
servers. This tutorial uses two clusters to distinguish between the application servers that are hosting the
clients and container servers.

In this tutorial, you configure a catalog service domain that consists of a remote server that is not in the
WebSphere Application Server cell. This configuration is not the default, which results in the catalog servers
running on the deployment manager and other processes in the WebSphere Application Server cell. See
Creating catalog service domains in WebSphere Application Server for more information about creating a
catalog service domain that consists of remote servers.

e oy -
;" appCluster " s =sCluster “*.,ﬁ
1 i ! i
i I I i
E a1 E 1 | xs1 '
| i L |2 |
] o . XSDeployment :
: ' Employee - : Module I
I Management module i !
Client : : : Objact Grid ?ufﬂlz.m? :
Browser] Sarviat i S | | A :
| T,
— e¥ireme T !
9 Scale Client S [
-7 (] i 1
S _—] - 1 [Authanticatar :
L1 % i
I‘l —’_/ *j \ il r"
* i L] &
“-. i O i e .-i-" ."1..__ ________________ |
o WebSphere Application Server call
L
b4
Stand-alone JVi
Catalog service
o |
[1 | S 7
b,
External user registry
| Authenticator q: (keysiora)
Figure 1. Tutorial topology

Applications

In this tutorial, you are using two applications and one shared library file:

e EmployeeManagement.ear: The EmployeeManagement.ear application is a simplified Java™ 2 Platform,
Enterprise Edition (J2EE) enterprise application. It contains a web module to manage the employee
profiles. The web module contains the management. jsp file to display, insert, update, and delete
employee profiles that are stored in the container servers.

e XSDeployment.ear: This application contains an enterprise application module with no application
artifacts. The cache objects are packaged in the EmployeeData. jar file. The EmployeeData. jar file is

https://www.ibm.com/developerworks/community/blogs/714470bb-75c8-4f99-8aca-766c0d55a21c/entry/integrate_websphere_extreme_scale_security_in_a_mixed_environment_with_an_external_authenticator?lang=en

deployed as a shared library for the XSDeployment. ear file, so that the XSDeployment.ear file can
access the classes. The purpose of this application is to package the eXtreme Scale configuration file
and property file. When this enterprise application is started, the eXtreme Scale configuration files are
automatically detected by the eXtreme Scale run time, so the container servers are created. These
configuration files include the objectGrid.xml and objectGridDeployment.xml files.

e EmployeeData. jar: This jar file contains one class: the
com.ibm.websphere.sample.xs.data.EmployeeData class. This class represents employee data that is
stored in the grid. This Java archive (JAR) file is deployed with the EmployeeManagement.ear and
XSDeployment.ear files as a shared library.

Get the tutorial files

1. Download the WASSecurity.zip and security extauth.zip files from the WebSphere eXtreme Scale
wiki.

2. Extract the WASSecurity.zip file to a directory for viewing the binary and source artifacts, for
example a wxs samples/ directory. This directory is referred to as samples_home for the remainder of
the tutorial. Refer to the README. txt file in the package for a description of the contents and how to
load the source into your Eclipse workspace. The following ObjectGrid configuration files are in the
META-INF directory:

o objectGrid.xml
o objectGridDeployment.xml

3. Create a directory to store the property files that are used to secure this environment. For example,
you might create the /opt/wxs/security directory.

4. Extract the security extauth.zip file to samples _home. The security extauth.zip file contains the
following security configuration files that are used in this tutorial:. These configuration files follow:

catServer3.props
server3.props
client3.props
security3.xml
xsAuth3.props
xsjaas3.config
sampleKS3. jks

0O O o O o o o

About the configuration files

The objectGrid.xml and objectGridDeployment.xml files create the data grids and maps that store the
application data.

These configuration files must be named objectGrid.xml and objectGridDeployment.xml. When the
application server starts, eXtreme Scale detects these files in the META-INF directory of the EJB and web
modules. If these files are found, it assumed that the Java virtual machine (JVM) acts as a container server
for the defined data grids in the configuration files.

objectGrid.xml file

The objectGrid.xml file defined one ObjectGrid named Grid. The Grid data grid has one map, the Mapl
map, that stores the employee profile for the application.

<?xml version="1.0" encoding="UTF-8"7>

<objectGridConfig xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalLocation="http://ibm.com/ws/objectgrid/config ../objectGrid.xsd"
xmlns="http://ibm.com/ws/objectgrid/config">

<objectGrids>
<objectGrid name="Grid" txTimeout="15">
<backingMap name="Mapl" />
</objectGrid>
</objectGrids>

</objectGridConfig>

objectGridDeployment.xml file
The objectGridDeployment.xml file specifies how to deploy the Grid data grid. When the grid is deployed,
it has five partitions and one synchronous replica.

<?xml version="1.0" encoding="UTF-8"7>

<deploymentPolicy xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"

https://www.ibm.com/developerworks/wikis/display/extremescale/Integrate+WebSphere+eXtreme+Scale+security+in+a+mixed+environment+with+an+external+authenticator

xsi:schemaLocation="http://ibm.com/ws/objectgrid/deploymentPolicy
../deploymentPolicy.xsd"
xmlns="http://ibm.com/ws/objectgrid/deploymentPolicy">

<objectgridDeployment objectgridName="Grid">
<mapSet name="mapSet" numberOfPartitions="5" minSyncReplicas="0"
maxSyncReplicas="1" >
<map ref="Mapl"/>
</mapSet>
</objectgridDeployment>

</deploymentPolicy>

Lesson checkpoint

In this lesson, you learned about the topology for the tutorial and added the configuration files and sample
applications to your environment.

< Previous | Next >

< Previous | Next >

Lesson 1.2: Configure the WebSphere Application Server
environment

To prepare your environment for the tutorial, you must configure WebSphere® Application Server security.
Enable administration and application security using internal file-based federated repositories as a user
account registry. Then, you can create server clusters to host the client application and container servers.
You also must create and start the catalog servers.

The following steps were written using WebSphere Application Server Version 7.0. However, you can also
apply the concepts apply to earlier versions of WebSphere Application Server.

Configure WebSphere Application Server security

Create and augment profiles for the deployment manager and nodes with WebSphere eXtreme Scale. See
11 Installing WebSphere eXtreme Scale or WebSphere eXtreme Scale Client with WebSphere Application
Server for more information.

Configure WebSphere Application Server security.

In the WebSphere Application Server administrative console, click Security > Global Security.
Select Federated repositories as the Available realm definition. Click Set as current.
Click Configure.. to go to the Federated repositories panel.

Enter the Primary administrative user name, for example, admin. Click Apply.

When prompted, enter the administrative user password and click OK. Save your changes.

-~ 0 o n T D

On the Global Security page, verify that Federated repositories setting is set to the current user
account registry.

g. Select the following items: Enable administrative security, Enable application security, and Use
Java 2 security to restrict application access to local resources. Click Apply and save your
changes.

h. Restart the deployment manager and any running application servers.

The WebSphere Application Server administrative security is enabled using the internal file-based federated
repositories as the user account registry.

Create server clusters

Create two server clusters in your WebSphere Application Server configuration: The appCluster cluster to
host the sample application for the tutorial and the xsCluster cluster to host the data grid.

1. In the WebSphere Application Server administrative console, open the clusters panel. Click Servers >
Clusters > WebSphere application server clusters > New.

2. Type appCluster as the cluster name, leave the Prefer local option selected, and click Next.

3. Create servers in the cluster. Create a server named s1, keeping the default options. Add an additional
cluster member named s2.

4. Complete the remaining steps in the wizard to create the cluster. Save the changes.

5. Repeat these steps to create the xsCluster cluster. This cluster has two servers, named xs1 and xs2.

Create a catalog service domain
After configuring the server cluster and security, you must define where catalog servers start.

Define a catalog service domain in WebSphere eXtreme Scale

1. In the WebSphere Application Server administrative console, click System administration >
WebSphere eXtreme Scale > Catalog service domains.

2. Create the catalog service domain. Click New. Create the catalog service domain with the name
catalogServicel, and enable the catalog service domain as the default.

3. Add remote servers to the catalog service domain. Select Remote server. Provide the host name
where the catalog server is running. Use the listener port value of 16809 for this example.

4. Click OK and save your changes.

Lesson checkpoint

You enabled security in WebSphere Application Server, and created the server topolgy for WebSphere
eXtreme Scale.

< Previous | Next >

< Previous | Next >

Module 2: Configure WebSphere eXtreme Scale authentication in
a mixed environment

By configuring authentication, you can reliably determine the identity of the requester. WebSphere®
eXtreme Scale supports both client-to-server and server-to-server authentication.

Authentication flow

Figure 1. Authentication flow

WebSphere Application WebSphere Application
Saerver JVI Server JVA
. 1 -~
Application module Application module
Client . . :
-_ Grid
Browser Sanvat i) . i el e L
4]
. - | L
L i
L. =]

gXxtremsa
Scale Cliant

s

: _L-"[
, i | Austhenticator J_\
b i)
\\ WebSphere Application Server cell \ \
r x"'\--.:\"\x |1 LY

&2\ | stand-alone JvM Ej \
H'H.H 1_ '|Il '|llI
;:;__] Catalog service "'." \
| /| | N
— | Sy
e |
_ I _"]_h Extarnal user ragistry
(Authanticator I:"L_S) {keystore)

The previous diagram shows two application servers. The first application server hosts the web application,
which is also a WebSphere eXtreme Scale client. The second application server hosts a container server. The
catalog server is running in a stand-alone Java virtual machine (JVM) instead of WebSphere Application
Server.

The arrows marked with numbers in the diagram indicate the authentication flow:

1. An enterprise application user accesses the web browser, and logs in to the first application server
with a user name and password. The first application server sends the client user name and password
to the security infrastructure to authenticate to the user registry. This user registry is a keystore. As a
result, the security information is stored on the WebSphere Application Server thread.

2. The JavaServer Pages (JSP) file acts as a WebSphere eXtreme Scale client to retrieve the security
information from the client property file. The JSP application that is acting as the WebSphere eXtreme
Scale client sends the WebSphere eXtreme Scale client security credential along with the request to
the catalog server. Sending the security credential with the request is considered a runAs model. In a
runAs model, the web browser client runs as a WebSphere eXtreme Scale client to access the data
stored in the container server. The client uses a Java virtual machine (JVM)-wide client credential to
connect to the WebSphere eXtreme Scale servers. Using the runAs model is like connecting to a
database with a data source level user ID and password.

3. The catalog server receives the WebSphere eXtreme Scale client credential, which includes the
WebSphere Application Server security tokens. Then, the catalog server calls the authenticator plug-in
to authenticate the client credential. The authenticator connects to the external user registry and
sends the client credential to the user registry for authentication.

4. The client sends the user ID and password to the container server that is hosted in the application
server.

5. The container service, hosted in the application server, receives the WebSphere eXtreme Scale client
credential, which is the user id and password pair. Then, the container server calls the authenticator
plug-in to authenticate the client credential. The authenticator connects to the keystore user registry
and sends the client credential to the user registry for authentication

Learning objectives
With the lessons in this module, you learn how to:
e Configure WebSphere eXtreme Scale client security.
e Configure WebSphere eXtreme Scale catalog server security.
e Configure WebSphere eXtreme Scale container server security.

e Install and run the sample application.

Time required
This module takes approximately 60 minutes.

Lessons in this module

Lesson 2.1: Configure WebSphere eXtreme Scale client security

You configure the client properties with a properties file. The client properties file indicates the
CredentialGenerator implementation class to use.

Lesson 2.2: Configure catalog server security

A catalog server contains two different levels of security information: The first level contains the
security properties that are common to all the WebSphere eXtreme Scale servers, including the
catalog service and container servers. The second level contains the security properties that are
specific to the catalog server.

Lesson 2.3: Configure container server security

When a container server connects to the catalog service, the container server gets all the security
configurations that are configured in the Object Grid Security XML file. The ObjectGrid Security XML file
defines authenticator configuration, the login session timeout value, and other configuration
information. A container server also has its own server-specific security properties in the server
property file.

Lesson 2.4: Install and run the sample

After authentication is configured, you can install and run the sample application.

< Previous | Next >

< Previous | Next >

Lesson 2.1: Configure WebSphere eXtreme Scale client security

You configure the client properties with a properties file. The client properties file indicates the
CredentialGenerator implementation class to use.

Client properties file contents

The tutorial uses WebSphere Application Server security tokens for the client credential. The
samples home/security extauth directory contains the client3.props file.

The client3.props file includes the following settings:

securityEnabled

Enables WebSphere eXtreme Scale client security. The value is set to true to indicate that the client must
send available security information to the server.

credentialAuthentication

Specifies the client credential authentication support. The value is set to Supported to indicate that the
client supports credential authentication.

credentialGeneratorClass

Specifies the name of the class that implements the
com.ibm.websphere.objectgrid.security.plugins.CredentialGenerator interface. The value is set to the
com.ibm.websphere.objectgrid.security.plugins.builtins. UserPasswordCredentialGenerator class so that the
client retrieves the security information from the UserPasswordCredentialGenerator class.

credentialGeneratorProps

Specifies the user name and password: manager managerl. The user name is manager, and the password
is managerl. You can also use the FilePasswordEncoder.bat|sh command to encode this property using
an exclusive or (xor) algorithm.

Setting the client properties file using Java™ virtual machine (JVM)
properties

In the administrative console, complete the following steps to both the s1 and s2 servers in the appCluster
cluster. If you are using a different topology, complete the following steps to all of the application servers to
which the EmployeeManagement application is deployed.

1. Click Servers > WebSphere application servers > server_name > Java and Process
Management > Process definition > Java Virtual Machine.

2. Create the following generic JVM property to set the location of the client properties file:
-Dobjectgrid.client.props=samples home/security extauth/client3.props

When you connect to a secure data grid, you must configure the client application to provide a valid
client security configuration. You can configure the client security configuration through the client
application, or you can defined the configuration in a client properties file that has the same value of
the JVM property, objectgrid.client.props. When you use the objectgrid.client.props property,
the ObjectGridManager obtains the client security configuration from the client properties file and uses
this information to connect to the data grid.

3. Click OK and save your changes.

Lesson checkpoint

You edited the client properties file and configured the servers in the appCluster cluster to use the client
properties file. This properties file indicates the CredentialGenerator implementation class to use.

< Previous | Next >

< Previous | Next >

Lesson 2.2: Configure catalog server security

A catalog server contains two different levels of security information: The first level contains the security
properties that are common to all the WebSphere® eXtreme Scale servers, including the catalog service and
container servers. The second level contains the security properties that are specific to the catalog server.

The security properties that are common to the catalog servers and container servers are configured in the
security XML descriptor file. An example of common properties is the authenticator configuration, which
represents the user registry and authentication mechanism. See Security descriptor XML file for more
information about the security properties.

To configure the security XML descriptor file in a Java SE environment, use a -clusterSecurityFile option
when you run the start0gServer command. Specify a value in a file format, such as
samples _home/security extauth/security3.xml.

security3.xml file

In this tutorial, the security3.xml file is in the samples _home/security extauth directory. The content of
the security3.xml file with the comments removed follows:

<securityConfig xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalLocation="http://ibm.com/ws/objectgrid/config/security

../objectGridSecurity.xsd"
xmlns="http://ibm.com/ws/objectgrid/config/security">

<security securityEnabled="true">
<authenticator
className="com.ibm.websphere.objectgrid.security.plugins.builtins.KeyStoreLoginAut
henticator">
</authenticator>
</security>
</securityConfig>

The following properties are defined in the security3.xml file:

securityEnabled

The securityEnabled property is set to true, which indicates to the catalog server that the WebSphere
eXtreme Scale global security is enabled.

authenticator

The authenticator is configured as the
com.ibm.websphere.objectgrid.security.plugins.builtins.KeyStoreLoginAuthenticator class. With this built-in
implementation of the Authenticator plug-in, the user ID and password is passed to verify that it is
configured in the keystore file. The KeyStoreLoginAuthenticator class uses a KeyStorelLogin login module
alias, so a Java Authentication and Authorization Service (JAAS) login configuration is required.

catServer3.props file

The server property file stores the server-specific properties, which include the server-specific security
properties. See Server properties file for more information. You can use -serverProps option to specify the
catalog server property when you run the start0gServer command. For this tutorial, a catServer3.props
file is in the c directory. The content of the catServer3.props file with the comments removed follows:

securityEnabled=true
credentialAuthentication=Required
transportType=TCP/IP
secureTokenManagerType=none
authenticationSecret=0bjectGridDefaultSecret

securityEnabled
The securityEnabled property is set to true to indicate that this catalog server is a secure server.
credentialAuthentication

The credentialAuthentication property is set to Required, so any client that is connecting to the server is
required to provide a credential. lin the client property file, the credentialAuthentication value is set to
Supported, so the server receives the credentials that are sent by the client.

file:////dcs/markdown/workspace/Transform/htmlout/0/com.ibm.websphere.extremescale.doc/txsextauthtutauth2.html#xsjaas3.configfile

secureTokenManagerType

The secureTokenManagerType is set to none to indicate that the authentication secret is not encrypted
when joining the existing servers.

authenticationSecret

The authenticationSecret property is set to ObjectGridDefaultSecret. This secret string is used to join
the eXtreme Scale server cluster. When a server joins the data grid, it is challenged to present the secret
string. If the secret string of the joining server matches the string in the catalog server, the joining server
is accepted. If the string does not match, the join request is rejected.

transportType
The transportType property is set to TCP/IP initially. Later in the tutorial, transport security is enabled.

xsjaas3.config file

Because the KeyStoreLoginAuthenticator implementation uses a login module, you must configure the login
model with a JAAS authentication login configuration file. The contents of the xsjaas3.config file follows:

KeyStoreLogin{
com.ibm.websphere.objectgrid.security.plugins.builtins.KeyStoreLoginModule required
keyStoreFile="samples home/security extauth/sampleKS3.jks" debug = true;

};

If you used a location for samples _home other than /wxs samples/, you need to update the location of the
keyStoreFile. This login configuration indicates that the
com.ibm.websphere.objectgrid.security.plugins.builtins.KeyStoreLoginModule module is used as the login
module. The keystore file is set to the sampleKS3. jks file.

W Important: If you are using Windows, the directory path does not support backslashes. If you
have used backslashes, you must escape any backslash (\) characters in the path. For example, if you want
to use the path C:\opt\ibm, enter C:\\opt\\iom in the properties file. Windows directories with spaces are not
supported.

The sampleKS3. jks sample keystore file stores two user IDs and the passwords: manager/managerl and
cashier/cashierl.

You can use the following keytool commands to create this keystore:

e keytool -genkey -v -keystore ./sampleKS3.jks -storepass sampleKS1l
-alias manager -keypass managerl -dname CN=manager,0O=acme,0U=0GSample
-validity 10000

e Kkeytool -genkey -v -keystore ./sampleKS3.jks -storepass sampleKS1l
-alias operator -keypass operatorl -dname CN=operator,O=acme,0U=0GSample
-validity 10000

Start the catalog server with security enabled

To start the catalog server, issue the start0gServer command with the -clusterSecurityFile and
-serverProps parameters to pass in the security properties.

Use a stand-alone installation of WebSphere eXtreme Scale to run the catalog server. When using the stand-
alone installation image, you must use the IBM SDK. You can use the SDK that is included with WebSphere
Application Server by setting the JAVA HOME variable to point to the IBM SDK. For example, set

JAVA HOME=was_root/IBM/WebSphere/AppServer/java/

1. Go to the bin directory.
cd wxs_home/bin

2. Run the start0gServer command.

___ Linux __§ UNIX___

./startOgServer.sh csl -listenerPort 16809 -JMXServicePort 16099 -
catalogServiceEndPoints

csl:[HOST NAME]:16601:16602 -clusterSecurityFile

samples _home/security extauth/security3.xml

-serverProps samples_home/security extauth/catServer3.props -jvmArgs

-Djava.security.auth.login.config="samples home/security extauth/xsjaas3.config"

startOgServer.bat csl -listenerPort 16809 -JMXServicePort 16099 -
catalogServiceEndPoints

csl:[HOST NAME]:16601:16602 -clusterSecurityFile

samples _home/security extauth/security3.xml

-serverProps samples_home/security extauth/catServer3.props -jvmArgs
-Djava.security.auth.login.config="samples home/security extauth/xsjaas3.config"

After you run the start0gServer command, a secure server starts with listener port 16809, client port

16601, peer port 16602, and JMX port 16099. If a port conflict exists, change the port number to an unused
port number.

Stop a catalog server that has security enabled

You can use the stop0gServer command to stop the catalog server.

1. Go to the bin directory.
cd wxs_home/bin

2. Run the stop0gServer command. | UNIX_ |

stopOgServer.sh csl -catalogServiceEndPoints localhost:16809 -clientSecurityFile
samples _home/security extauth/client3.props

stopOgServer.bat csl -catalogServiceEndPoints localhost:16809 -clientSecurityFile
samples _home/security extauth/client3.props

Lesson checkpoint

You configured catalog server security by associating the security3.xml, catServer3.props,
xsjaas3.config files with the catalog service.

< Previous | Next >

< Previous | Next >

Lesson 2.3: Configure container server security

When a container server connects to the catalog service, the container server gets all the security
configurations that are configured in the Object Grid Security XML file. The ObjectGrid Security XML file
defines authenticator configuration, the login session timeout value, and other configuration information. A
container server also has its own server-specific security properties in the server property file.

Configure the server property file with the -Dobjectgrid.server.props Java virtual machine (JVM) property. The
file name specified for this property is an absolute file path, such as
samples _home/security extauth/server3.props.

In this tutorial, the container servers are hosted in the xs1 and xs2 servers in the xsCluster cluster.

server3.props file

The server3.props file is in the samples home/security extauth/ directory. The content of the
server3.props file follows:

securityEnabled=true
credentialAuthentication=Required
secureTokenManagerType=none
authenticationSecret=0bjectGridDefaultSecret

securityEnabled
The securityEnabled property is set to true to indicate that this container server is a secure server.
credentialAuthentication

The credentialAuthentication property is set to Required, so any client that is connecting to the server is
required to provide a credential. In the client property file, the credentialAuthentication property is set to
Supported, so the server receives the credential that is sent by the client.

secureTokenManagerType

The secureTokenManagerType is set to none to indicate that the authentication secret is not encrypted
when joining the existing servers.

authenticationSecret

The authenticationSecret property is set to ObjectGridDefaultSecret. This secret string is used to join
the eXtreme Scale server cluster. When a server joins the data grid, it is challenged to present the secret
string. If the secret string of the joining server matches the string in the catalog server, the joining server
is accepted. If the string does not match, the join request is rejected.

Setting the server properties file with JVM properties

Set the server properties file on the xs1 and xs2 servers. If you are not using the topology for this tutorial,
set the server properties file on all of the application servers that you are using to host container servers.

1. Open the Java™ virtual machine page for the server. Servers > WebSphere application servers >
server_name > Java and Process Management > Process definition > Java Virtual Machine.

2. Add the generic JVM argument:

-Dobjectgrid.server.props=samples home/security extauth/server3.props

3. Click OK and save your changes.

Adding the custom login module

The container server uses the same KeyStoreAuthenticator implementation as the catalog server. The
KeyStoreAuthenticator implementation uses a KeyStoreLogin login module alias, so you must add a custom
login module to the application login model entries.

1. In the WebSphere Application Server administrative console, click Security > Global security > Java
Authentication and Authorization Service.

2. Click Application logins.
3. Click New, add an alias KeyStoreLogin. Click Apply.
4. Under JAAS login modules, click New.

5. Enter com.ibm.websphere.objectgrid.security.plugins.builtins.KeyStoreLoginModule as the
module class name, and choose SUFFICIENT as the authentication strategy. Click Apply.

6. Add the keyStoreFile custom property with value samples _home/security extauth/samplekKsS. jks.

BTN Important: If you are using Windows, the directory path does not support backslashes. If
you have used backslashes, you must escape any backslash (\) characters in the path. For example, if
you want to use the path C:\opt\ibm, enter C:\\opt\\ibm in the properties file. Windows directories with
spaces are not supported.

7. Optional: Add the debug custom property with value true.
8. Save the configuration.
Lesson checkpoint

Now the WebSphere eXtreme Scale server authentication is secured. By configuring this security, all the
applications that try to connect to the WebSphere eXtreme Scale servers are required to provide a
credential. In this tutorial, the KeyStoreLoginAuthenticator is the authenticator. As a result, the client is
required to provide a user name and password.

< Previous | Next >

< Previous | Next >

Lesson 2.4: Install and run the sample

After authentication is configured, you can install and run the sample application.

Creating a shared library for the EmployeeData. jar file

4,

In the WebSphere Application Server administrative console, open the Shared Libraries page. Click
Environment > Shared libraries.

Choose the cell scope.

Create the shared library. Click New. Enter EmployeeManagementLIB as the Name. Enter the path to
the EmployeeData. jar in the classpath, for example,
samples _home/WASSecurity/EmployeeData.jar.

Click Apply.

Installing the sample

1.

2.

Install the EmployeeManagement extauth.ear file under the samples _home/security extauth
directory.

Important: The EmployeeManagement extauth.ear file is different from the

samples _home/WASSecurity/EmployeeManagement.ear file. The manner in which the ObjectGrid
session is retrieved has been updated to use the credential that is cached in the client property file in
the EmployeeManagement extauth.ear application. See the comments in the
com.ibm.websphere.sample.xs.DataAccessor class in the

samples _home/WASSecurity/EmployeeManagementWeb project to see the code that was updated for
this change.

a. To begin the installation, click Applications > New application > New Enterprise
Application. Choose the detailed path for installing the application.

b. On the Map modules to servers step, specify the appCluster cluster to install the
EmployeeManagementWeb module.

On the Map shared libraries step, select the EmployeeManagementWeb module.
Click Reference shared libraries. Select the EmployeeManagementLIB library.
Map the webUser role to All Authenticated in Application's Realm.

Click OK.

The clients run in the s1 and s2 servers in this cluster.

-~ 0O Q 0

Install the sample XSDeployment.ear file that is in the samples_home/WASSecurity directory.

a. To begin the installation, click Applications > New application > New Enterprise
Application. Choose the detailed path for installing the application.

b. On the Map modules to servers step, specify the xsCluster cluster to install the
XSDeploymentWeb web module.

c. On the Map shared libraries step, select the XSDeploymentWeb module.
d. Click Reference shared libraries. Select the EmployeeManagementLIB library.
e. Click OK.

The xs1 and xs2 servers in this cluster host the container servers.

Verify that the catalog server is started. For more information about starting a catalog server for this
tutorial, see Start the catalog server with security enabled.

Restart the xsCluster cluster. When the xsCluster starts, the XSDeployment application starts, and a
container server is started on the xs1 and xs2 servers respectively. If you look at the SystemQOut. log
file of the xs1 and xs2 servers, the following message that indicates the server properties file is loaded
is displayed:

CWOBJ0913I: Server property files have been loaded:
samples home/security extauth/server3.props.

Restart the appClusters cluster. When the cluster appCluster starts, the EmployeeManagement
application also starts. If you look at the SystemOut. log file of the s1 and s2 servers, you can see the
following message that indicates that the client properties file is loaded.

file:////dcs/markdown/workspace/Transform/htmlout/0/com.ibm.websphere.extremescale.doc/txsextauthtutauth2.html#startthecatalogserver

CWOBJ0924I: The client property file {0} has been loaded.

If you are using WebSphere eXtreme Scale Version 7.0, the English-only CWOBJ9000I message
displays to indicate that the client property file has been loaded. If you do not see the expected
message, verify that you configured the -Dobjectgrid.server.props or -Dobjectgrid.client.props property
in the JVM argument. If you do have the properties configured, make sure the dash (-) is a UTF
character.

Running the sample application

1.

Run the management. jsp file. In a web browser, access http://<your servername>:
<port>/EmployeeManagementWeb/management. jsp. For example, you might use the following URL:
http://localhost:9080/EmployeeManagementWeb/management. jsp.

Provide authentication to the application. Enter the credentials of the user that you mapped to the
webUser role. By default, this user role is mapped to all authenticated users. Type any valid user name
and password, such as the administrative user name and password. A page to display, add, update,
and delete employees displays.

Display employees. Click Display an Employee. Enter empl@acme. com as the email address, and click
Submit. A message displays that the employee cannot be found.

Add an employee. click Add an Employee. Enter empl@acme. com as the email address, enter Joe as
the given name, and Doe as the surname. Click Submit. A message displays that an employee with
the empl@acme. com address has been added.

Display the new employee. Click Display an Employee. Enter empl@acme.com as the email address
with empty fields for the first and surnames, and click Submit. A message displays that the employee
has been found, and the correct names are displayed in the given name and surname fields.

Delete the employee. Click Delete an employee. Enter empl@acme. com and click Submit. A message
is displayed that the employee has been deleted.

Because the catalog server transport type is set to TCP/IP, verify that the server s1 and s2 outbound
transport setting is not set to SSL-Required. Otherwise, an exception occurs. If you look at the system out
file of the catalog server, logs/csl/SystemOut. log file, the following debug output to indicates the key
store authentication:

SystemQOut 0 [KeyStoreLoginModule] initialize: Successfully loaded key store
SystemQOut 0 [KeyStoreLoginModule] login: entry

SystemOut 0 [KeyStoreLoginModule] login: user entered user name: manager
SystemOut 0 Print out the certificates:

Lesson checkpoint

You installed and ran the sample application.

< Previous | Next >

< Previous | Next >

Module 3: Configure transport security
Configure transport security to secure data transfer between the clients and servers in the configuration.

In the previous module in the tutorial, you enabled WebSphere® eXtreme Scale authentication. With
authentication, any application that tries to connect to the WebSphere eXtreme Scale server is required to
provide a credential. Therefore, no unauthenticated client can connect to the WebSphere eXtreme Scale
server. The clients must be an authenticated application that is running in a WebSphere Application Server
cell.

With the configuration up to this module, the data transfer between the clients in the appCluster cluster and
servers in the xsCluster cluster is not encrypted. This configuration might be acceptable if your WebSphere
Application Server clusters are installed on servers behind a firewall. However, in some scenarios, non-
encrypted traffic is not accepted for some reasons even though the topology is protected by firewall. For
example, a government policy might enforce encrypted traffic. WebSphere eXtreme Scale supports Transport
Layer Security/Secure Sockets Layer (TLS/SSL) for secure communication between ObjectGrid endpoints,
which include client servers, container servers, and catalog servers.

In this sample deployment, the eXtreme Scale clients and container servers are all running in the WebSphere
Application Server environment. Client or server properties are not necessary to configure the SSL settings
because the eXtreme Scale transport security is managed by the Application Server Common Secure
Interoperability Protocol Version 2 (CSIV2) transport settings. WebSphere eXtreme Scale servers use the
same Object Request Broker (ORB) instance as the application servers in which they run. Specify all the SSL
settings for client and container servers in the WebSphere Application Server configuration using these CSlv2
transport settings. You must configure the SSL properties in the server properties file for the catalog server.

Learning objectives

After completing the lessons in this module, you know how to:
Configure CSlv2 inbound and outbound transport.

Add SSL properties to the catalog server properties file.
Check the ORB properties file.

Run the sample.

Time required
This module takes approximately 60 minutes.

Prerequisites
This step of the tutorial builds upon the previous modules. Complete the previous modules in this tutorial
before you configure transport security.

Lessons in this module

Lesson 3.1: Configure CSIv2 inbound and outbound transport

To configure Transport Layer Security/Secure Sockets Layer (TLS/SSL) for the server transport, set the
Common Secure Interoperability Protocol Version 2 (CSIv2) inbound transport and CSIlv2 outbound
transport to SSL-Required for all the WebSphere Application Server servers that host clients, catalog
servers, and container servers.

Lesson 3.2: Add SSL properties to the catalog server properties file

The catalog server is running outside of WebSphere Application Server, so you must configure the SSL
properties in the server properties file.

Lesson 3.3: Run the sample

Restart all the servers and run the sample application again. You should be able to run through the
steps without any problems.

< Previous | Next >

< Previous | Next >

Lesson 3.2: Add SSL properties to the catalog server properties
file

The catalog server is running outside of WebSphere® Application Server, so you must configure the SSL
properties in the server properties file.

The other reason to configure the SSL properties in the server properties file is because the catalog server
has its own proprietary transport paths that cannot be managed by the WebSphere Application Server
Common Secure Interoperability Protocol Version 2 (CSIV2) transport settings. Therefore, you must configure
the Secure Sockets Layer (SSL) properties in the server properties file for the catalog server.

SSL properties in the catServer3.props file

alias=default

contextProvider=IBMJSSE2

protocol=SSL

keyStoreType=PKCS12
keyStore=/was_root/IBM/WebSphere/AppServer/profiles/
<deployment manager name>/config/cells/<cell name>/nodes/
<node name>/key.pl2

keyStorePassword=WebAS

trustStoreType=PKCS12
trustStore=/was_root/IBM/WebSphere/AppServer/profiles/
<deployment manager name>/config/cells/<cell name>/nodes/
<node name>/trust.pl2

trustStorePassword=WebAS

clientAuthentication=false

The catServer3.props file is using the default WebSphere Application Server node level keystore and
truststore. If you are deploying a more complex deployment environment, you must choose the correct
keystore and truststore. In some cases, you must create a keystore and truststore and import the keys from
keystores from the other servers. Notice that the WebAS string is the default password of the WebSphere
Application Server keystore and truststore. See Default self-signed certificate configuration for more details.

These entries are already included in the samples _home/security extauth/catServer3.props file as
comments. You can uncomment the entries and make the appropriate updates for your installation to the
was_root, <deployment manager name>, <cell name>, and <node name> variables.

After configuring the SSL properties, change the transportType property value from TCP/IP to SSL-Required.

SSL properties in the client3.props file

You must also configure the SSL properties in the client3.props file because this file is used when you stop
the catalog server that is running outside of WebSphere Application Server.

These properties have no effect on the client servers that are running in WebSphere Application Server
because they are using the WebSphere Application Server Common Security Interoperability Protocol Version
2 (CSIV2) transport settings. However, when you stop the catalog server you must provide a client properties
file on the stop0gServer command. Set the following properties in the

<SAMPLES HOME=>/security extauth/client3.props file to match the values specified above in the
catServer3.props file:

#contextProvider=IBMJISSE2

#protocol=SSL

#keyStoreType=PKCS12
#keyStore=/was_root/IBM/WebSphere/AppServer/profiles/
<deployment manager name>/config/cells/<cell name>/nodes/
<node name>/key.pl2

#keyStorePassword=WebAS

#trustStoreType=PKCS12
#trustStore=/was_root/IBM/WebSphere/AppServer/profiles/
<deployment manager name>/config/cells/<cell name>/nodes/
<node name>/trust.pl2

#trustStorePassword=WebAS

As with the catServer3.props file, you can use the comments that are already provided in the

http://publib.boulder.ibm.com/infocenter/wasinfo/v6r1/index.jsp?topic=/com.ibm.websphere.express.doc/info/exp/ae/csec_ssldefselfsigncertconf.html

samples _home/security extauth/client3.props file with appropriate updates to was_root,
<deployment manager name>, <cell name>, and <node name> variables to match your environment.

Lesson checkpoint
You configured the SSL properties for the catalog server.

< Previous | Next >

< Previous | Next >

Lesson 3.3: Run the sample

Restart all the servers and run the sample application again. You should be able to run through the steps
without any problems.

See Lesson 2.4: Install and run the sample for more information about running and installing the sample
application.

< Previous | Next >

< Previous | Next >

Module 4: Use Java Authentication and Authorization Service
(JAAS) authorization in WebSphere Application Server

Now that you have configured authentication for clients, you can further configure authorization to give
different users varying permissions. For example, an "operator" user might only be able to view data, while a
"manager" user can perform all operations.

After authenticating a client, as in the previous module in this tutorial, you can give security privileges
through eXtreme Scale authorization mechanisms. The previous module of this tutorial demonstrated how to
enable authentication for a data grid using integration with WebSphere® Application Server. As a result, no
unauthenticated client can connect to the eXtreme Scale servers or submit requests to your system.
However, every authenticated client has the same permission or privileges to the server, such as reading,
writing, or deleting data that is stored in the ObjectGrid maps. Clients can also issue any type of query.

This part of the tutorial demonstrates how to use eXtreme Scale authorization to give authenticated users
varying privileges. WebSphere eXtreme Scale uses a permission-based authorization mechanism. You can
assign different permission categories that are represented by different permission classes. This module
features the MapPermission class. For a list of all possible permissions, see Client authorization
programming.

In WebSphere eXtreme Scale, the com.ibm.websphere.objectgrid.security.MapPermission class
represents permissions to the eXtreme Scale resources, specifically the methods of the ObjectMap or
JavaMap interfaces. WebSphere eXtreme Scale defines the following permission strings to access the
methods of ObjectMap and JavaMap:

e read: Grants permission to read the data from the map.
write: Grants permission to update the data in the map.
insert: Grants permission to insert the data into the map.
remove: Grants permission to remove the data from the map.
invalidate: Grants permission to invalidate the data from the map.
all: Grants all permissions to read, write, insert, remote, and invalidate.

The authorization occurs when an eXtreme Scale client uses a data access API, such as the ObjectMap
,JJavaMap, or EntityManager APIs. The run time checks corresponding map permissions when the method is
called. If the required permissions are not granted to the client, an AccessControlException exception results.
This tutorial demonstrates how to use Java Authentication and Authorization Service (JAAS) authorization to
grant authorization map access for different users.

Learning objectives
After completing the lessons in this module, you know how to:

e Enable authorization for WebSphere eXtreme Scale.
e Enable user-based authorization.

Time required
This module takes approximately 60 minutes.

Lessons in this module

Lession 4.1: Enable WebSphere eXtreme Scale authorization

To enable authorization in WebSphere eXtreme Scale, you must enable security on a specific
ObjectGrid.

Lesson 4.2: Enable user-based authorization

In the authentication module of this tutorial, you created two users: operator and manager. You can
assign varying permissions to these users with Java Authentication and Authorization Service (JAAS)
authorization.

< Previous | Next >

< Previous | Next >

Lession 4.1: Enable WebSphere eXtreme Scale authorization
To enable authorization in WebSphere® eXtreme Scale, you must enable security on a specific ObjectGrid.

To enable authorization on the ObjectGrid, you must set the securityEnabled attribute to true for that
particular ObjectGrid in the XML file. For this tutorial, you can either use the XSDeployment sec.ear file from
the samples home/WASSecurity directory, which has already has security set in the objectGrid.xml file, or
you can edit the existing objectGrid.xml file to enable security. This lesson demonstrates how to edit the
file to enable security.

1. Optional: Extract the files in the XSDeployment.ear file, and then unzip the XSDeploymentWeb.war file.

2. Optional: Open the objectGrid.xml file and set the securityEnabled attribute to true on the
ObjectGrid level. See an example of this attribute in the following example:

<objectGridConfig xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalLocation="http://ibm.com/ws/objectgrid/config ../objectGrid.xsd"
xmlns="http://ibm.com/ws/objectgrid/config">

<objectGrids>
<objectGrid name="Grid" txTimeout="15" securityEnabled="true">
<backingMap name="Mapl" />
</objectGrid>
</objectGrids>

</objectGridConfig>

If you have multiple ObjectGrids defined, then you must set this attribute on each grid.
3. Optional: Repackage the XSDeploymentWeb.war and XSDeployment.ear files to include your changes.

4. Required: Uninstall the XSDeployment.ear fi