‘%r INTERWOVEN

Interwoven TeamXpress™
for Multiplatforms V1.1,
WebSphere™ Edition

Templating and Deployment Guide

© 2001 Interwoven, Inc. All rights reserved.

No part of this publication (hardcopy or electronic form) may be
reproduced or transmitted, in any form or by any means,
electronic, mechanical, photocopying, recording, or otherwise,
without the prior written consent of Interwoven. Information in
this manual is furnished under license by Interwoven, Inc. and
may only be used in accordance with the terms of the license
agreement. If this software or documentation directs you to
copy materials, you must first have permission from the
copyright owner of the materials to avoid violating the law,
which could result in damages or other remedies.

Interwoven, TeamSite, OpenDeploy, and the logo are
registered trademarks of Interwoven, Inc., which may be
registered in certain jurisdictions. TeamXpress, SmartContext,
DataDeploy, Content Express, the tagline and service mark are
trademarks of Interwoven, Inc., which may be registered in
certain jurisdictions. All other trademarks are owned by their
respective owners.

[aN

‘my INTERWOVEN

9

Interwoven, Inc.

1195 West Fremont Ave.

Sunnyvale, CA 94087
http://www.interwoven.com

Printed in the United States of America
Release 1.1

Part # 40- 00- 40- 45- 04- 110- 310

Table of Contents

About ThisBook 5
Notation Conventions 6
Windows Path Name Conventions 7
Support Information 7

Section 1. TeamXpress Templating

Chapter 1: Installing TeamXpress Templating 11
Hardware Requirements 11
Operating System Requirements 11
Installing on Solaris 11
Installing on Windows NT/2000 13
Installing on Client Machines 13
Next Step 14

Chapter 2: Initial Configuration 15
Configuration Overview 15
Configuring the Example Templating Environment 29
Proxy Server Configuration 34
Starting TeamXpress Templating 35

Chapter 3: Setting Up Data Capture Templates 37
Data Capture Template Overview 38
Example Data Capture Templates 39
Data Capture Example 1 39
Data Capture Example 2 57
Data Capture Template DTD 63

Chapter 4: Setting Up Presentation Templates 69
Creating Presentation Templates 69
Custom XML Tags 82
Writing Your Own Tags 127

Chapter 5: Mapping Users, Templates, and Content Records 129
templating.cfg Overview 129

o

‘EXQ. INTERWOVEN

~

Example templating.cfg File 130
templating.cfg DTD 136

Chapter 6: Integrating Templating, DataDeploy, and Workflow 139
Integration Overview 139
Integration Steps 140

Section 2: DataDeploy Administration

Chapter 7: Overview and Installation 145
Overview 145
Client/Server Setup Options 146
Installing DataDeploy 148

Chapter 8: Deployment Concepts 151
Ways to Invoke Deployment 151
Configuration Files 152
Data Organization Within DataDeploy 154
Deployment Scenarios 158

Chapter 9: Configuration File Details and Examples 171
Required Elements 171
Parameter Substitutions 175
Sample TeamXpress-to-Database Configuration File 175
Sample TeamXpress-to-XML Configuration File 196
Sample Database-to-Database Configuration File 197
Sample Database-to-XML Configuration File 198
Sample XML-to-Database Configuration File 200
Sample XML-to-XML Configuration File 202
Starting-State Base Table Configuration File 204
Event 1 Configuration File 205
Event 2 Configuration File 206

Chapter 10: Invoking DataDeploy 207

iwdd.ipl Command 207
Running DataDeploy as a Service 210

2 TeamXpress Templating and Deployment Guide

Chapter 11: Synchronizing OpenDeploy and Data Deploy 211
Overview 211
Software Requirements 213
Program and Configuration Files 213
Synchronized Deployment Process 214
Configuring OpenDeploy 217
Configuring DataDeploy 222
Invoking Synchronized Deployment 227

Section 3: OpenDeploy Administration

Chapter 12: Installing OpenDeploy 231
UNIX 232
Windows NT/2000 235

Chapter 13: Syntax and Options 239
iwdeploy Syntax 239
Options 242

Chapter 14: Configuration Files 251
OpenDeploy Server Configuration Files 251
OpenDeploy Client Configuration Files 253
Scope of Configuration File Options 255
The Authorization Configuration File 258

Chapter 15: Configuration File Options 261
OpenDeploy Client Options 261
OpenDeploy Server Options 289

Chapter 16: Advanced Features 301

Authentication by IP Address 301
Encryption 305
Deploy and Run 313

Chapter 17: Deployment Scenarios 325
Forward Deployment to a Single Server 326
Forward Deployment to Multiple Servers 329
Forward Deployment of Different Directories to Different Servers 333

o

‘EXQ. INTERWOVEN

~

Reverse Deployment 337
Reverting Websites to Previous Versions 346
Deploying Through Firewalls 349

Section 4: Appendices

Appendix A: Creating Data Capture Templates from DTDs 353
Running the CLT on the DTD File 354
The symbol-table.cfg File 354
The datacapture.cfg File 358
Diagram Key 360
Unsupported DTD Features 360
Symbol Table DTD Used for Conversions 361

Appendix B: Using Command-Line Tools 367

Appendix C: DataDeploy Database Auto-Synchronization 383
Overview 383
Software Requirements 383
DAS Program and Configuration Files 384
Configuring DAS 385
Using DAS 392
TeamXpress Event Triggers 396
Logging DAS Activities 398
Disabling DAS 399
iwsyncdb.ipl Usage 399

Appendix D: DataDeploy Database Server Configuration 403
Overview 403
IBM DB2 403
Sybase ASE 404
Informix 405

Appendix E: DataDeploy Querying Tables 407

Appendix F. OpenDeploy Client and Server Configuration File Options 409
Index 413

4 TeamXpress Templating and Deployment Guide

About This Book

The TeamXpress Templating and Deployment Guide contains information on how to:
« install and configure TeamXpress Templating

« develop presentation templates and data capture templates

« install, configure, and use DataDeploy with TeamXpress OpenDeploy

« install and configure OpenDeploy

It is primarily intended for TeamXpress developers and for web server administrators and system
administrators. Many of the operations described in this manual require root (Solaris) or
Administrator (Windows NT® or Windows 2000®) access to the TeamXpress server. If you do not
have root or Administrator access to the TeamXpress server, consult your system administrator.

Windows NT/2000: Users should be familiar with either IIS or Netscape web servers, and with basic
Windows NT/2000 operations such as adding users and modifying ACLs (Access Control Lists).

Solaris: Users of this manual should be familiar with basic UNIX commands and be able to use an
editor such as emacs or vi.

It is also very helpful to be familiar with regular expression syntax. If you are not familiar with regular
expressions, it is recommended that you consult a reference manual such as Mastering Regular
Expressions, by Jeffrey Friedl.

o

‘m’ INTERWOVEN

~

Notation Conventions

This manual uses the following notation conventions:

Convention Definition and Usage
Bold Text that appears in a GUI element (e.g., a menu item, button, or element of a
dialog box) and command names are shown in bold. For example:
Click Edit File in the Button Bar.
Italic Book titles appear in italics.
Terms are italicized the first time they are introduced.
Important information may be italicized for emphasis.
Monospaced Commands, command-line output, and file names are in monospaced type. For
example:
The i wext at t r command-line tool allows you to set and look up
extended attributes on a file.
!V?HIO_S paced Monospaced italics are used for command-line variables.
ltallc
Monospaced Monospaced bold represents user input. The character that appears before a line
bol d of user input represents the command prompt and should not be typed. For
example:
% iwextattr -s project=projl //|WSERVER defaul t/ main/
dev/ WORKAREA/ andr e/ product s/ i ndex. ht
Monospaced Monospaced bold italic text is used to indicate a variable in user input. For
bold italic example
% iwextattr -s project=projectnane workareavpath
means that you must insert the values of pr oj ect name and wor kar eavpat h
when you enter this command.
[] Square brackets surrounding a command-line argument mean that the argument
is optional.
I Vertical bars separating command-line arguments mean that only one of the
arguments can be used.

TeamXpress Templating and Deployment Guide

Windows Path Name Conventions

Windows Path Name Conventions

In most cases, you can specify path names using standard Windows NT/2000 naming conventions
(which allow you to include spaces in path names). However, in some situations it might be necessary
to use MS-DOS naming conventions, which stipulate that no single file or directory name in a path can
contain a space or more than eight characters. If you encounter unexpected system behavior after
entering a path name using Windows NT/2000 naming conventions, enter the path name again using
MS-DQOS conventions. For example, instead of:

>C:\'i w hone\ Program Fi | es\ | nt erwoven
you can try:
>C:\i w home\ Progra~1\1nterw-1

You can use the di r / x command to display the long and short versions of the file names in the
current directory.

Support Information

For support information concerning IBM TeamXpress, refer to the following URL:
http://www-4.ibm.com/software/webservers/teamxpress/support.html.

o

‘m’ INTERWOVEN

~

8 TeamXpress Templating and Deployment Guide

Section 1: TeamXpress
Templating

* Installing TeamXpress Templating

* Initial Configuration

* Setting Up Data Capture Templates

» Setting Up Presentation Templates

» Mapping Users, Templates, and Content Records

* Integrating Templating, DataDeploy, and Workflow

o

‘my INTERWOVEN

~

10 TeamXpress Templating and Deployment Guide

Chapter1

Installing TeamXpress
Templating

TeamXpress 1.0 must be installed on your system before you can install TeamXpress Templating 1.0.
If it is not, see the TeamXpress Administration Guide for installation instructions. Return to this chapter
after TeamXpress is installed.

Hardware Requirements

TeamXpress Templating should be installed on a dual CPU server if you plan to enable data content
record searches. See the TeamXpress Administration Guide for general information on hardware
requirements. On client machines, at least 20 MB of hard disk space is required.

Operating System Requirements

TeamXpress Templating is supported by all of the operating systems that support TeamXpress. See the
TeamXpress Administration Guide for information about supported operating systems.

Installing on Solaris

The TeamXpress templating package for Solaris is available in two forms: a compressed pkgadd
package stream file or a package directory. If you have downloaded the Templating package, it will be
in the compressed package stream form. If you are installing from the CD-ROM, it will be in the
package directory form.

To install the package stream package, perform these steps:
1. Loginas root.

2. If a previous version of TeamXpress Templating was installed, issue the command:
pkgrm | WOVt st

11

o

‘m) INTERWOVEN Installing TeamXpress Templating

~

3. Unzip and transfer the package stream package into a temporary location by issuing the following
command (on one line), where temp_dir is a temporary directory with at least 128 megabytes of
free space:

gunzip < tst.4.5.0.Buil dxxxx.pkg.gz | pkgtrans /dev/fd/0 tenp_dir
| WOVt st

4. Install TeamXpress Templating by issuing the following command:
pkgadd -d tenmp_dir |WOVtst

5. Remove the temporary directory:
#rm-r tenp_dir/| WM st

To install the package directory form, perform these steps:

1. Loginas root.

2. Change to the directory containing the | Wovt st directory. If you are installing from CD-ROM,
this would be:

cd /cdrom
3. Install TeamXpress Templating by issuing the following command:
pkgadd -d . | WOVtst

Once TeamXpress Templating is installed, you must restart the i wor oxy daemon:

1. Loginas root.

2. Issue the following commands:
letc/init.d/iw server stop
/etc/init.d/iw server start

See the TeamXpress Administration Guide for more information about restarting the proxy server.

12 TeamXpress Templating and Deployment Guide

Installing on Windows NT/2000

Installing on Windows NT/2000

Perform the following steps to install TeamXpress Templating on TeamXpress running on a Windows
NT/2000 system:

1.
2.

Log into Windows NT/2000 with Administrator permissions.

Insert the TeamXpress Templating CD into the CD drive. Navigate to the top-level directory and
double click the t enpl at i ng. exe icon. The Interwoven TeamXpress Templating Setup screen
appears.

Click Next. A dialog box appears, prompting for the destination of the TeamXpress Templating
administrative files. It is recommended that you select the default location. If you specify a new
location, it must not be the i w- hone directory.

. Click Next. File names are displayed while the TeamXpress Templating administrative files are

loaded.

. Click OK. The TeamXpress Templating directory structure shown on page 21 is installed in i w-

hore.

. Restart the proxy server:

— Select Settings > Control Panel from the Start menu.
— Open the Services control panel.

— Select Interwoven Proxy from the list of services.

— Click Stop and wait for service to terminate.

— Click Start. See Chapter 7 in the TeamXpress Administration Guide for more information about
restarting the proxy server.

Installing on Client Machines

After TeamXpress Templating is installed and configured on the server, it is available for content
contributors on client machines. When content contributors select File > New Data Record, they
are prompted to install the client-side software. Refer to the TeamXpress User’s Guide for the
procedures.

13

o

‘mv INTERWOVEN Installing TeamXpress Templating

~

Next Step

After you install TeamXpress Templating, you are ready to configure the example templating
environment as described in the Chapter 2, “Initial Configuration.”

14 TeamXpress Templating and Deployment Guide

Chapter 2

Initial Configuration

After TeamXpress Templating is installed on your system, you should perform the initial configuration
described in this chapter. This initial configuration provides a fully functional example TeamXpress
Templating environment to verify that the TeamXpress Templating installation was successful. You can
also use the example templating environment to become familiar with TeamXpress Templating
features. After you are familiar with the example templating environment, you can customize it to
create your own site-specific templating environment as described later in this manual. The
configuration activities described in this chapter should be performed by a system administrator.

This chapter begins with an overview of TeamXpress Templating configuration, followed by the initial
setup activities that will create the example templating environment.

Configuration Overview

TeamXpress Templating provides a highly configurable way to capture, edit, and store data input from
content contributors; define the appearance of displayed data; and integrate captured data with other
products such as TeamXpress Workflow and DataDeploy. The TeamXpress Templating mechanism for
capturing data content from content contributors is separate from the mechanism for defining the
appearance of the content when it is displayed. This architecture allows for unlimited reuse of data
after the data is captured and stored. It also lets you define different appearances and behaviors for the
same data content based on how, when, where, or to whom the data is displayed. You can also use Perl
code to generate content from other sources such as relational databases.

15

‘m’ INTERWOVEN

o

Initial Configuration
~

Configuring TeamXpress Templating consists of:

« Copying a set of example configuration files and directories supplied with TeamXpress Templating
into specific locations in your system’s directory structure. This sets up a fully functional example
templating environment that lets you confirm that the TeamXpress Templating installation was
successful and provides a default environment in which to familiarize yourself with TeamXpress
Templating. See “Configuring the Example Templating Environment” on page 29 for more
information.

« Customizing the templating environment for your specific site by renaming or creating new
configuration files. See Chapter 3, “Setting Up Data Capture Templates.”

Concepts and Definitions

TeamXpress Templating Model

The TeamXpress Templating architecture allows data capture and data presentation to be configured,
executed, and managed separately. The following diagram and sections provide a high-level overview
of this architecture.

16

TeamXpress Templating and Deployment Guide

Configuration Overview

TeamXpress

Data Capture
Templates

(I
.
oo
.
.

Capture
Subsystem

C
>

TeamXpress Templating Overview

/

TeamXpress Client

Page
Generation
Subsystem

N

TeamXpress Server

External

Presentation Templates

Dooggn

Production
Web
Server

17

o

‘mp INTERWOVEN Initial Configuration

~

Data Capture

Content contributors working through the TeamXpress GUI have access to the data capture subsystem.
This subsystem lets content contributors select and work through forms defined by data capture
templates to create or edit data content records, which by default are stored in the TeamXpress file
system.Data is stored as XML and used later to fill in presentation templates to generate multiple
renderings of the content, including for the web and wireless devices. After data content records are
created, they can be displayed via presentation templates or optionally deployed to a database via
DataDeploy.

Data Presentation

After data is captured and stored as data content records, users working through the TeamXpress
Templating GUI, the TeamXpress GUI, or the command line can access the page generation subsystem
to combine a data content record with a presentation template. The end result is a generated output
file that displays the data content in a way defined by the presentation template. Additionally, users can
generate an output file that obtains data from zero or one data content record and from queries to
databases. The generated output file can optionally be deployed to a production web server via
OpenDeploy.

Definitions
The following sections define key TeamXpress Templating terms.

Data Capture Template

A data capture template is an XML file named dat acapt ur e. cf g that defines the form used to capture
data content from content contributors. A data capture template is associated with a category and
type. The category and type define what type of data is required by the data capture template. The
data that a content contributor enters in a data capture template is saved on the TeamXpress file
system in the form of a data content record. See “Data Storage Hierarchy” on page 21 for information
about where data capture templates reside.

18

TeamXpress Templating and Deployment Guide

Configuration Overview

Presentation Template

A presentation template is an XML file that defines how captured data will appear when displayed. A
presentation template is populated with a data content record that was captured earlier (via a data
capture template on the TeamXpress GUI) or from queries to databases. You can configure
TeamXpress Templating to populate any presentation template with any data content record plus any
additional information as required from an relational database. You can use presentation templates
with component templates. A component template is a nested presentation template that is part of
another presentation template. You can also use a single data content record to populate more than
one presentation template, resulting in a different look and feel for the same data record. See “Data
Storage Hierarchy” on page 21 for information about where presentation templates reside.

Data Content Record

A data content record is an XML file containing formatting information interspersed with data that was
captured from a content contributor via the TeamXpress GUI. A data content record is named by the
content contributor when it is saved.

Data Capture Subsystem
The data capture subsystem is a set of Java applications that perform the following functions:

« Read the dat acapt ure. cf g and t enpl at i ng. cf g configuration files to determine what
information should be presented via the TeamXpress GUI to a content contributor.

« Interpret content contributor input.
« Save content contributor input as formatted data content records.

Page Generation Subsystem
The page generation subsystem is a set of programs and libraries that perform the following functions:

 Read the presentation template and t enpl at i ng. cf g configuration files to determine what
information should be presented to a content contributor via the TeamXpress GUI.

« Interpret content contributor input.
« Combine data content records and presentation templates to produce generated output files.

The presentation template compiler is the primary component of the page generation subsystem. It is
a low-level command-line tool that invokes the template parser to create output files. The
presentation template compiler is described in more detail in Appendix B, “Using Command-Line
Tools.”

19

‘m’ INTERWOVEN

o

~

Initial Configuration

Configuration Files
TeamXpress Templating uses the following configuration files:

t enpl at i ng. cf g: The main TeamXpress Templating configuration file. It is an XML file that
resides outside of the TeamXpress file system ini w- hone/ | ocal / conf i g and specifies:

— Which data categories and types are available for use with TeamXpress Templating.

— Which presentation templates can generate HTML files on which TeamXpress branches and/or
directories.

— Which presentation templates can be used with a specific data type.
— Which users or roles are allowed to create or edit data content records for a specific data type.
— The location of the presentation template used for previewing generated HTML files.

See Chapter 5, “Mapping Users, Templates, and Content Records,” for details about customizing
tenpl ati ng. cf g.

dat acapt ur e. cf g: An XML file that defines a data capture template and drives data capture for
a specific data type. As such, it defines the data type itself (i.e., what information the data type will
contain, parameters that define what type of data is legal in any input field, etc.). A

dat acapt ur e. cf g file also specifies the look and feel of the data capture form displayed in the
TeamXpress GUI. A TeamXpress Templating environment can contain any number of

dat acapt ur e. cf g files, differentiated from each other by where they reside in the directory
structure. See “Data Storage Hierarchy” on page 21 for information about where

dat acapt ur e. cf g files reside. See Chapter 3, “Setting Up Data Capture Templates,” for
information about customizing dat acapt ure. cf g.

20

TeamXpress Templating and Deployment Guide

Configuration Overview

Data Storage Hierarchy
TeamXpress Templating uses a data storage hierarchy based on data categories and types. The directory

structure supporting this hierarchy resides in the workarea for each TeamXpress Templating user. The
directory structure follows. Items in boxes are directories; items not in boxes are files.

Workarea

templatedata

|r a Hjto_ria_ls a j| data_category 1 data_category 2
L — —— — — |
|
r— 1
| output | data_type_ data_type
L - — —
datacapture.cfg dat presentation

content_record_1
content_record_2

TeamXpress Templating Directory Structure

The t enpl at edat a directory is at the highest level in the hierarchy.

pres_template_1.tpl
pres_template_2.tpl

21

o

‘mp INTERWOVEN Initial Configuration

~

Data categories are at the next level in the hierarchy and contain one or more data types. For example,
the data category bever ages could contain separate directories for the data typest ea, cof f ee,

mi | k, etc. In addition to residing in this directory structure, data categories and types must also be
listed in the t enpl at i ng. cf g configuration file to be made available to TeamXpress Templating.
See Chapter 5, “Mapping Users, Templates, and Content Records,” for more information. The
conponent s directory that stores component templates and the t ut or i al s directory are optional
subdirectories of t enpl at edat a.

Data type directories each contain a dat acapt ur e. cf g file and the subdirectories dat a and
present at i on. Details for the entire hierarchy are as follows:

File or Directory Description

tenpl at edat a Top-level directory containing subdirectories for data categories,
types, and all associated configuration files. Resides in the
workarea for each user who uses TeamXpress Templating. Can be
renamed and the i w. cf g file modified.

data_category 1 The first major categorization for data on a specific branch.
Named and defined int enpl at i ng. cf g. For example:
/ t enpl at edat a/ bever ages

data_type 1 The first subcategory of data in dat a_cat egor y_1. Named
and defined int enpl at i ng. cf g. For example:

/ t enpl at edat a/ bever ages/ t ea. Each data type in a given
data category has its own subdirectory.

datacapture.cfg The XML configuration file that defines a data capture template
and drives data capture for a specific data type. As such, it defines
the data type itself (i.e., what information the data type will
contain, parameters for what type of data is legal in any input
field, etc.). Specifies the look and feel of the data capture form
displayed in the TeamXpress Templating GUI through which a
content contributor enters data. Each data type must have exactly
one dat acapt ur e. cf g file.

data The directory containing all captured data content records for a
given data type. If necessary, you can define and create a directory
tree underneath the dat a directory. A dat a directory can
contain zero or more data content records.

22 TeamXpress Templating and Deployment Guide

Configuration Overview

File or Directory

Description

content_record_1

The first data content record for a given data type. Each data
content record is an XML file containing formatting information
interspersed with data that was captured from a content
contributor via the TeamXpress Templating GUI. A data content
record is named by the content contributor during data entry. For
example:

/ t enpl at edat a/ bever ages/ t ea/ dat a/ novenber _or der

present ation

The directory containing all presentation templates for a given
data type. The pr esent at i on directory must contain one or
more presentation templates.

pres_template_1.tpl

The first presentation template for a given data type. A data type
can have any number of presentation templates. A single
presentation template is populated by data from zero or one data
content record. A presentation template can have a name of your
choice. For example:

[t enpl at edat a/ bever ages/ t ea/ presentati on/
mont hly_order.tp

components The directory where all component templates are stored. This
directory is not required or may be in another location.

tutorials Examples showing the use of ix_xml tags. This directory is not
required or may be in another location.

data_type 2 A second subcategory of data in data_category_1. For example:

/ t enpl at edat a/ bever ages/ cof f ee

data_category 2

A second major categorization for data on a specific branch. For
example:
/ t enpl at edat a/ f ood

23

o

%. INTERWOVE N

~

Initial Configuration

Process Flow: Creating a New Data Content Record

The following diagram shows the actions that take place when a content contributor creates a new data
content record. Sections following the diagram explain each diagram step and component in detail.

TeamXpress File
System

* datacapture.cfg
* Data content records

Browser

* Contentcontributor
selects New Con-
tent Record in
TeamXpress GUI

* Contentcontributor
fills in data capture
form(s)

Data Capture
Subsystem

® Reads templating.cfg
* Reads datacapture.cfg

* Displays menu choices in
TeamXpress Templating
Creates and saves data

~
~
~
~
~ N 9 Server-Side
~ Workflow
- \ Subsystem
Starts successor
task

Process Flow Overview: Creating a New Data Content Record

templating.cfg
* Overall templating
rules
¢ Template-specific
rules

24

TeamXpress Templating and Deployment Guide

Configuration Overview

1. A content contributor clicks File > New Data Record in the TeamXpress GUI.

2. TeamXpress Templating’s data capture subsystem reads the t enpl at i ng. cf g file to determine
which data types should be displayed in the TeamXpress Templating GUI as choices for the content
contributor. The criteria used for this determination are specified int enpl at i ng. cf g and can
include the content contributor’s login ID, role, or current TeamXpress area or branch. The data
type must also exist as a directory in the content contributor’s workarea.

3. The data capture subsystem displays the appropriate list of data categories and data types in a
Create New Data Record dialog box in the TeamXpress Templating GUI.

4. The content contributor selects a data type. That information is sent back to the data capture sub-
system.

5. The data capture subsystem reads the dat acapt ur e. cf g file for the data type chosen by the con-
tent contributor.

6. The data capture subsystem displays the data capture template (as defined by dat acapt ur e. cf g)
in the data capture form window.

7. The content contributor enters data in the data capture template and selects File > Save As to
name and save the data content record. The new data is sent to the data capture subsystem.

8. Using the data provided by the content contributor, the data capture subsystem writes a data con-
tent record to the TeamXpress file system. Note: The content contributor could also have chosen
to preview the output file. In that situation, the data capture subsystem readst enpl at i ng. cf g
to determine which presentation templates are available for that data type. The content contribu-
tor selects a presentation template and the data capture subsystem displays a preview version of the
data.

9. If creating the data content record is a task associated with a TeamXpress Workflow job, the user
indicates the task has been completed and the TeamXpress workflow subsystem starts the successor
task.

25

‘m’ INTERWOVEN

o

~

Process Flow: Generating an Output File

The following diagram shows the actions that take place when a content contributor generates a new

Initial Configuration

output file by populating a presentation template with a previously captured data content record.
Sections following the diagram explain each diagram step and component in detail.

TeamXpress File
System
Presentation

templates
Data content records

Generated output
files

Browser

* Content contributor
selects Generate in
TeamXpress Templat-
ing

* Content contributor
selects a data content
record and presenta-
tion template

Page Generation
Subsystem

Reads templating.cfg
Reads presentation tem-
plate lists

Displays menu choices in
TeamXpress Templating
Combines data content
records and presentation
templates

Server-Side
Workflow
Subsystem
Starts successor
task

templating.cfg
* Overall templating
rules
* Template-specific
rules

Process Flow Overview: Generating an Output File Using a Data Content Record and a Presentation Template

26

TeamXpress Templating and Deployment Guide

Configuration Overview

. A content contributor clicks File > Generate/Preview Page With from the Templating menu.

. TeamXpress Templating’s page generation subsystem reads the t enpl at i ng. cf g file to deter-
mine which data content records for the selected data type should be displayed in the TeamXpress
GUI as choices for the content contributor to choose from. The criteria used for this determina-
tion are specified int enpl at i ng. cf g and can include the content contributor’s login ID, role, or
current TeamXpress area or branch. The user selects a data content record.

. The page generation subsystem reads the / t enpl at edat a/ data_category/ data_type/ pr esent a-
t i on directory to determine which presentation templates are associated with the selected data

type.

. The page generation subsystem displays lists of the appropriate data content records and presenta-
tion templates in the Generate/Preview File window.

. The content contributor selects a presentation template.

. The page generation subsystem generates an output file by populating the chosen presentation
template with data from the chosen data content record.

. If creating the generated output file is a task associated with a TeamXpress Workflow job, the user
indicates that task has been completed and the TeamXpress workflow subsystem starts the succes-
sor task.

27

o

‘m’ INTERWOVEN

~

The Example Directory Structure

Initial Configuration

The following directory structure is created when you install the TeamXpress Templating example:

i w home
Lexanpl es
L Tenpl ati ng
— README
—config
— READMVE
—tenpl ati ng. cf g. exanpl e
—t enpl at edat a
— READVE

—internet -=
—auction
READVE

dat a
dat acapture.cfg
present ati on

" auction.t pl
—book
—careers
...
—nedi cal
—periodic

—intranet -

weat her

L ...
. custom dt d- exanpl es

— READMVE

L aut hor _subnit_dcr.wft

Example TeamXpress Templating Directory Structure

— aut hor _submit _dcr-0.i pl
— aut hor _submi t _dcr-3.i pl

Data Category: i nt er net

Data Types:

e auction
-« * book

e careers

* nedical

e periodic

e pr

e vyacht

Data Category: i ntr anet

e deptinfo
* weat her

deptinfo :
dept! \ Data Types:
‘\
—PressRel ease \
—wor kf | ow Data Category:

cust om dt d- exanpl es
Data Type:
PressRel ease

28

TeamXpress Templating and Deployment Guide

Configuring the Example Templating Environment

The major components of the i w- hone/ exanpl es/ Tenpl at i ng directory structure are:

 Atop-level README file.
« The confi g directory containing a README file and an example t enpl at i ng. cf g file.

« Thetenpl at edat a directory containing a READVE file and three data category directories,
i nternet,intranet,andcust om dt d- exanpl es. Thei nt er net directory contains several
data type directories (auct i on, book, etc.). Each data type directory contains a
dat acapt ur e. cf g file, a READVE file, and the directories dat a and pr esent at i on. The
present at i on directory for each data type contains at least one presentation template file that
generates an HTML file based on the data content records for that data type. Some data types have
multiple presentation templates, in which case any of the presentation templates can be used for
HTML file generation. The cust om dt d- exanpl es directory contains an example using the
DTD conversion procedures.

« The wor kf | owdirectory containing a READVE file and all the files necessary to create the
workflow job that deploys data content records via DataDeploy. The workflow template
aut hor _subni t _dcr. wft defines the workflow job. The . i pl files define external tasks that
are components of the job. The workflow job defined by these files executes automatically when an
author creates and then submits a data content record to a staging area.

Configuring the Example Templating Environment

The following sections describe how to configure TeamXpress Templating to provide the example
templating environment. After the initial setup is complete, you can:

 Use the example templating environment to become familiar with TeamXpress Templating’s end-
user features as described in the TeamXpress User’s Guide.

 Customize the example templating environment as described in the remainder of this manual to
create your site-specific configuration.

29

o

‘m’ INTERWOVEN

~

Initial Configuration

Perform the following steps to set up the example templating environment. You must copy most of
these files and directories to locations that are specific to your site.

1.

Decide which workarea you will use for the initial TeamXpress Templating setup. Ideally, this

workarea should be on a temporary test branch where you can submit and publish without
affecting the rest of your TeamXpress installation. After TeamXpress Templating is configured in
the workarea on this test branch, you can copy the workarea to a permanent branch pertaining to
your website. You can then submit the workarea to the staging area and then use Get Latest to
propagate the setup to other workareas on the branch.

that might not be documented elsewhere.

. Read each directory’s READVE file for details about directory contents and last-minute information

. Copy the following files to the specified locations, ensuring that all users have read and write per-

mission for each file except where noted otherwise:

Copy/rename this file:

To:

i w- home/ exanpl es/ Tenpl ati ng/
config/tenpl ating. cfg. exanpl e

i w- hone/ | ocal / config/tenplating.cfg
(writable only by system administrators)

i w- home/ exanpl es/ Tenpl ati ng/
t enpl at edat a

The workarea determined in Step 1. Copy the entire
t enpl at edat a directory tree, including the

t enpl at edat a directory itself. Do not change any
directory or file names. The end result should be
wor kar ea_nane/t enpl at edata/

The files aut hor _submi t _dcr. wft inthe

directory i w- hone/ exanpl es/
Tenpl ati ng/ wor kf | ow

The i w- horre/ | ocal / confi g/ wft/def aul t
directory. The end result should be:

i w-hone/ 1 ocal /config/wft/default/
aut hor _subm t _dcr.wft

The files matching the string
aut hor _submit _dcr-*.ipl inthe

directory i w- hone/ exanpl es/
Tenpl ati ng/ wor kf | ow

The i w home/ | ocal / bi n directory. The end result
should be:

i w hone/ | ocal / bi n/ aut hor _submi t _dcr -
0.ipl

i w- hone/ | ocal / bi n/ aut hor _subm t _dcr -
3.1ipl

4. Edit the avai | abl e_t enpl ates. i pl file. See “Editing available_templates.ipl to Initiate \Work-

flows” on page 31.

30

TeamXpress Templating and Deployment Guide

Configuring the Example Templating Environment

After you perform these tasks, the example templating environment is fully functional and integrated
with TeamXpress workflow and DataDeploy. You can use the example templating environment to
create or edit data content records, generate HTML files by combining a data content record with a
presentation template, and deploy a data content record’s extended attributes to a database via
TeamXpress workflow and DataDeploy. See Chapter 6, “Integrating Templating, DataDeploy, and
Workflow,” for more information about integration with workflow and DataDeploy.

Editing available_templates.ipl to Initiate Workflows

The avai | abl e_t enpl at es. i pl file contains a series of el si f statements that specify whether a
particular event will be handled by a workflow. This file integrates workflow with templating. You
only need to configure avai | abl e_t enpl at es. i pl if you want the GUI to prompt the user to add
data content records to a workflow on a create or delete event.

To configure i w- hone/ | ocal / confi g/ wft/avai | abl e_t enpl at es. i pl , you must ensure
that it contains at least one section for the tt _dat a command. The t t _dat a section should return a
list of workflows relevant to creating a new data content record. The following is an example of a

tt _dat a section to include in avai | abl e_t enpl at es. i pl . This section is included in the
TeamXpress Templating distribution ini w- horre/ exanpl es/ Tenpl at i ng/ wor kf | ow READVE.

elsif ($commend eq "tt_data")

{
if ($iwrole =~ mauthor/i || $iwrole =~ nfeditor/i) {
return [
[
nane => ' Author DCR Submit',
file => '"defaul t/author_submt _dcr.wit',
1,
1
}
}

31

o

‘m’ INTERWOVEN

~

Initial Configuration

This section says when authors or editors submit a data content record, they will be prompted to
initiate a workflow job if:

« Creating the data content record was not already part of a workflow.

« Available workflow templates (WFTs) are defined in the t t _dat a section of the
avai | abl e_t enpl at es. i pl configuration file.

The workflow that will be used when a new data content record is submitted is
aut hor _submi t _dcr.wit. Ifthe tt _dat a section returns multiple workflows, the author or
editor is prompted to select a workflow.

Useatt_del et edcr section to specify the workflow that will be called when a data content record
is deleted.

Modifying the TeamXpress iw.cfg File

This section describes some options that may need to be set in the [t eansi t e_t enpl at i ng]
section of the TeamXpress / et ¢/ i w. cf g file.

Saving Preview Files

Previewed templating files are stored in the preview-dir directory. By default, previewed files that have
not been modified in the last 60 minutes are deleted when a preview is performed. You can change the
length of time for deleting files in the / et ¢/ i w. cf g file as follows (where value is a number
representing the number of minutes files are to remain in the preview directory):

[teansite_tenplating]
preview file_max_age=val ue

Identifying the Templating Directory

If you need to change the directory in your workareas where templating content will reside, you can
modify the / et ¢/ i w. cf g file. The default directory is /"t enpl at edat a" .

[teansite_tenplating]
data_root=/"directory"

32 TeamXpress Templating and Deployment Guide

Configuring the Example Templating Environment

Identifying the Templating Interface

By default, TeamXpress Templating 1.0 uses the browser-based interface for displaying the data
capture form. If you want to use the new Java-based interface, include the following line in the / et ¢/
i w. cf g file. This manual describes the features of the Java-based interface.

[teansite_tenplating]
use_java_ui=true

Identifying the Validation Regex

By default, TeamXpress Templating uses basic regex(5) for validation. When using the Java-based user
interface, you should use extended validation regex. Including the following information in the
letcliw cfgfile.

[teanmsite_tenpl ating]
use_ext ended_r egex5=true

Identifying the Preview Directory

You can control the location of preview files by including the following lines in your / et ¢/ i w. cf g
file.

[teansite_tenplating]
use_preconnect _remap=true

When use_preconnect_remap=true, the preview file is placed in the t enpl at edat a/ i w_pr evi ew
directory. The proxy server configuration (page 34) is relevant. The actual preview file is placed in
the preview directory specified in t enpl at i ng. cf g. Each presentation template has a preview
attribute. The default file is called zz_t st _t enp_pr evi ew. *, where the extension is determined
by the extension attribute of the presentation template. The templating preview file name can be
changed by the flag pr evi ew_fi | e_nane:

[teansite_tenpl ating]
previ ew file_nane=fil enane

When the preview file name is changed, users should be notified of the new file name.

33

o

‘mp INTERWOVEN Initial Configuration

~

When use_pr econnect _r emap=f al se, no file cleanup occurs because the files exist outside of
safe directory boundaries. Users should manually remove zz_t st _t enp_pr evi ew. * files (or files
specified by the previ ew_fi | e_nane flag) from their workarea. The iwproxy server configuration
(page 34) is not relevant.

Adding DCR Search to the View Menu

If DataDeploy’s Database Auto Synchronization has been set up, the data content record search feature
is available. You need to uncomment the following line in/ et ¢/ i w. cf g to add the Search Data
Records menu item to the TeamXpress View menu.

#custom nenu_item searchdcr="Vi ew', "Search Data Records",
"iwsearchdcr.cgi", "all","scroll bars=yes, resi zabl e=yes,
wi dt h=640, hei ght =545"

Refer to Chapter 6 of the TeamXpress Administration Guide for information on metadata capture and
search.

Proxy Server Configuration

The TeamXpress Templating installation procedure automatically enables template previewing by
adding the following line to the [i wpr oxy_pr econnect _r emap] section of / et ¢/ i w. cf g:

_regex=(.*/ WORKAREA/ [/]+)/.*\ ?i w dataroot\=(.*)& w_key\ =(.*)=$1/ $2/
i w_preview $3

Under normal circumstances, you do not need to add this line manually. It is shown here in case you
need to verify its existence or accuracy ini w. cf g.

34 TeamXpress Templating and Deployment Guide

Starting TeamXpress Templating

Starting TeamXpress Templating

Perform the following steps to start TeamXpress Templating after you have configured the example
templating environment:

1. Log out of TeamXpress.
2. Log back into TeamXpress.
3. Select File > New Data Record.

4. As prompted, install the client module for TeamXpress Templating.

The example templating environment should now be accessible via the Java-based TeamXpress
Templating GUI as described the TeamXpress User’s Guide.

35

o

‘my INTERWOVEN Initial Configuration

~

36 TeamXpress Templating and Deployment Guide

Chapter 3
Setting Up Data Capture
Templates

This chapter describes how to edit and create data capture templates. It is assumed that the example
templating environment’s directory structure already exists on your system and that you now intend
to customize this environment by creating new data capture templates. See Chapter 2, “Initial
Configuration,” for more information about the example templating environment’s directory
structure.

This chapter contains:

An overview of data capture templates.

Pointers to sample data capture template files that are included with this release of TeamXpress
Templating.

Examples of data capture forms and the data capture template files that generate them.

A sample data content record.

The data capture template document type definition (DTD).

You may also create data capture template files from industry-standard XML DTDs. Refer to
Appendix A, “Creating Data Capture Templates from DTDs.”

37

o

‘mv INTERWOVEN Setting Up Data Capture Templates

~

Data Capture Template Overview

Data capture templates are XML files named dat acapt ur e. cf g that reside in the locations
described in “Data Storage Hierarchy” on page 21. Each dat acapt ur e. cf g file contains the
following components:

Rule set: A set of configuration instructions that controls the appearance and behavior of the data
capture forms displayed in the TeamXpress GUI. A TeamXpress Templating dat acapt ur e. cf g
file must contain exactly one rule set. Each rule set contains one or more of the elements identified by
the % t ens parameter entity reference (currently item or container).

Item: Each item is a single set of data that is to be captured from a content contributor. A rule set
must contain at least one item. Items can be nested within other items. If a rule set contains more
than one item, item names must be unique within any given nesting level. See page 44 for more
information. Each item contains one or more instances.

Instance: Each instance defines how to capture data for an item. An instance also defines an ACL
that determines which if any instance a specific user is allowed to use to enter the data. See page 46
for more information.

The following list describes the characteristics of data capture forms that you can configure in a
dat acapt ur e. cf g file. Additional customization is not available.

The number and appearance of data capture fields in a data capture form.
The content and appearance of labels for each data capture field in a data capture form.
How data will be captured, such as through a check box, radio button, text field, etc.

Characteristics of the data entered in each section’s fields, such as text style (such as bold or
underline), hypertext link, maximum length, whether the data is text or image.

Which fields, if any, must be filled in before the data entry form can be saved.
Which fields can be filled in by a specific content contributor.

Which data entry fields can be displayed multiple times in the same data capture form, and how
many times the field can be displayed.

38

TeamXpress Templating and Deployment Guide

Example Data Capture Templates

When a content contributor finishes filling in a data capture form and selects File > Save, the data
capture subsystem combines the newly entered data with the XML rules defined in the

dat acapt ur e. cf g rule set(s). The end result is a data content record that is an XML file that
associates field names from the data capture form with the values that were entered in those fields by
the content contributor.

Data capture templates should validate against the dat acapt ur e4. 5. dt d file, which can be found
ati w horre/ | ocal / confi g/ dat acapt ure4. 5. dt d.

Example Data Capture Templates

TeamXpress Templating ships with an extensive set of example data capture templates that are
available for use in the example templating environment. See “Configuring the Example Templating

Environment” on page 29 for descriptions and locations. Some of these templates are described in this
section.

Data Capture Example 1

The following sections show a hypothetical Press Release data capture form, the dat acapt ure. cf g
file that generates it, and the data content record that is created when the form is saved.

39

o

%. INTERWOVE N

~

Setting Up Data Capture Templates

Example 1 Data Capture Form

The following is a hypothetical Press Release data capture form. This form is included in the
TeamXpress Templating distribution and is available for use after you configure the example
templating environment.

Vi Press Release - Untitled1 10l =|
File Edit Style “iew Help

| s|a] s|m[@| s8] |u]e] |

Type: internetfr -
Description: Enter Press Release information. * ’

INTERWOVEN

date format is Y™ -hiw-D0
Publish Date I

Headline I

Secondary Headline I

Introductory Paragraph

= Stary

Subheading

= Section Paragraphs

Paragraphs

Author I

Enhdail I

Language

 English ¢ German French Japanese & Chinese ¢ Spanish € ltalian

'5‘ INTERWOVERN

Press Release Data Capture Form (without data)

40 TeamXpress Templating and Deployment Guide

Data Capture Example 1

Example 1 datacapture.cfg File

The dat acapt ur e. cf g file that generates this Press Release data capture form is shown below. Like
all dat acapt ur e. cf g files, it consists of a rule set, items, and instances. See “Diagram Key” on
page 43 for an explanation of each referenced item. For details about additional dat acapt ure. cf g
features not illustrated by this example, see the DTD starting on page 63. An additional sample file
specific to TeamXpress metadata capture is located in the TeamXpress Administration Guide.While the
syntax for the metadata capture version of dat acapt ur e. cf g differs slightly from the TeamXpress
Templating version, it is similar enough to provide a useful detailed example. It is recommended that
you refer to that example in addition to the following one.

<?xm version="1.0" encoding = "UTF-8"? standal Onii"wc'r Identifier
<! DOCTYPE dat acapt ure SYSTEM "dat acapture4.5. dtd"

<dat a- capture-requi rements type="content" nane="pr">

<l-- data-capture-requirenents elenments contain area elenents -->

<rul eset nane="Press Rel ease"> Rule Set (“Press Release”) 2

<descri pti on> _ _ Description 3
Enter Press Rel ease infornmation.
</ description>

. . / Item (*Publish
<i tem name="Publ i sh Date"> Date”) with
<description>date format is YYYY-MWDD<¢—————— gegcription and

</ descri ption> -
<dat abase dat a-type="DATE" data-fornmat="yyyy- MM} dd" >
</ dat abase> ; et
th validat
<text required="t" naxl engt h="10" /\r/::ge)\(/al ation
val idation-regex=""[0-9][0-9][0-9][0-9]-[0-1]
[0-9]-[0-3][0-9]%" />

database elements®
Instance (text) ®

</itenp

<i t em nanme="Headl i ne" > < . 4
<dat abase dat a-type="VARCHAR(100)" /> ftem (Headllng)
<text required="t" maxlength="100" /=€ Instance (text)

</itenp

41

o

‘m’ INTERWOVEN

~

Setting Up Data Capture Templates

<i tem nanme="Secondary Headl i ne">
<dat abase searchabl e="f" data-t
<text maxl engt h="200" />

e="VARCHAR(200) "

</litenp
<i tem name="Introductory F?rfigr aph ltem (“Secondary headline”) 4
<dat abase depl oy- col um= /> 5
<textarea rtf="t" Instance (text)

</t ext area> \ ltem (“Introductory Paragraph™) #
<litenmp i

Instance (textarea with rtf formatting) °

<item name="Story"> < ltem (“Story”) 4
<replicant max="4"> <«—— Instance (replicant) °
<i t em nane="Subheadi ng" ><«—— Nested ltem (“Subheading”) 4

<t ext maxl engt h="100" />« Nested Instance (text) 5
</itenp ' .
<i t em nane="Section Paragraphs" >at— Nested ltem (“Section Paragraphs”)

<replicant max="4"> \
<i tem nane="Par ag Nested Instance (replicant) ®

raphs" >

<textarea required="t"> Nested Item (“Paragraphs”) 4
</ textarea>

</itenp \ Nested Instance (textarea) °

</replicant>
<litenp
</replicant>
<litenp

<i t em nanme="Aut hor" > >/|tem (“Author”) 4
<dat abase dat a-type="VARCHAR(40)" / Instance (text) °
<t ext maxl engt h="40" /> /

<litenpr

@ o 4
<item name="EMajl"> =«————" ltem (“EMail”)

<dat abase dat a-t ype="VARCHAR(60)" /> Instance (text) °
<t ext maxl engt h="60" />

<litenpr

42 TeamXpress Templating and Deployment Guide

Data Capture Example 1

<i t em name="Languages" > ~«——— |tem (“Languages ")*
<dat abase data-type="VARCHAR(10)" /> | ctance (radio)
<radi o>

"English" val ue="English"/>

"German" val ue="Gernman" />

"French" val ue="French" />

'Japanese" val ue="Japanese" /> -
'Chi nese" val ue="Chi nese"/>

'Spani sh" val ue="Spani sh"/>

"Italian" value="Italian"/>

<option | abel
<option | abel
<option | abel
<option | abel
<option | abel
<option | abel
<option | abel
</ radi 0>
</itenp

Subelements
(option) ®

</rul eset >
</ dat a- capt ure-requi remrent s>

Diagram Key

1. DCT Identifier: The <dat a- capt ur e- r equi r enent s> element lets you assign a unique
identifier for each data capture template. Exactly one <dat a- capt ur e- r equi r ement s>
element is required in all dat acapt ur e. cf g files. The name attribute within a <dat a-
capt ur e- r equi r ement s> element is optional. The t ype attribute values—cont ent ,
met adat a, and wor kf | ow—Iet you further describe the type of data that will be captured by the
template. For data capture templates, cont ent should be specified. The information in a <dat a-
capt ur e-r equi r ement s> element is for reference only. None of the information in this
element is stored in the data content record that is created when dat acapt ur e. cf g is processed
by the data capture subsystem.

2. Rule Set: The <r ul eset > element contains all of the items that make up the rule set that defines
the appearance and behavior of the data capture form. A dat acapt ur e. cf g file must contain
exactly one <r ul eset > element. The nane attribute within a <r ul eset > element is also
required. The value of the name attribute appears in the TeamXpress GUI as the name of the data
capture form (Press Release in this example). Optional subelements are <I abel >, <descr i p-
ti on> (see number 3), and (% t ens;) (See number 4). The <I abel > subelement is used to pro-
vide a label on the data capture form. The parameter entity reference (% t ens;) is currently
either <i t em> Or <cont ai ner >. A container is a non-repeating, named set of data capture items.

43

‘m’ INTERWOVEN

o

~

Setting Up Data Capture Templates

A <cont ai ner > may appear anywhere in a data capture template that an <i t en» element may
appear. A container is conceptually similar to an item with a replicant of mi n = 1 and max = 1, but
it is more efficient.

. Description: The optional <descri pt i on>subelement inserts a description in the data capture

form. A <descri pt i on> subelement can reside anywhere inside the <r ul eset > element as a
child element of <r ul eset >.

Item: The <i t en» element assigns a name of your choice to an item and contains the instances
and/or other nested items that specify how to capture data for the item. A <r ul eset > element
can contain any number of <i t en» elements. Each <i t en» element must contain at least one
instance. The optional subelements for <i t en» are <I abel >, <descri pti on>, and

<dat abase>. The <l abel > and <descr i pt i on> subelements consist of character data. The
information provided by <I abel > is used as the field name in the DCT. If <I abel > is not
included, the nane attribute of the <i t en® element is used as the field name. A <descri pti on>
provides more details about what the data capture item represents or the format that may be
required for data entry.

The <dat abase> subelement facilitates the use of the appropriate data type in DataDeploy and
does not impact templating. The <dat abase> subelement has four attributes: depl oy_col urm
specifies whether a column in the DataDeploy table should be built for that item; sear chabl e
can be either "t " (default) or "f " ; dat a- t ype is required and is any valid JDBC database type;
dat a- f or mat describes the format if dat e or t i me is specified for the dat a- t ype attribute. If
a value for dat a- f or mat is specified, the instance should contain a validation regex to force the
correct entry in the field.

Item names must be unique within a nested section. For example, the following syntax is illegal
because it uses the item name Sect i on twice in the same nested section in the <r ul eset >
element:
<rul eset nane="Press Rel ease"
<i tem nanme="Secti on" >
<text size="40" maxl engt h="100">
</text>
</litenp
<i tem nanme="Secti on" >
<text size="80" maxl engt h="200">
</text>
</litenp
</rul eset >

44

TeamXpress Templating and Deployment Guide

Data Capture Example 1

However, the following syntax is legal because it uses the item name Sect i on in different nested

sections:

<rul eset nane="Press Rel ease"
<i tem name="Morni ng Edition">
<replicant required="t" max="4">
<i t em name="Secti on" >
<text size="80" maxl engt h="200">
</text>
<litemp
</replicant>
<litemp
<i tem nanme="Evening Edition">
<replicant required="t" max="4">
<i t em name="Secti on" >

<text size="100" maxl engt h="400">

</text>
<litenp
</replicant>
</litenp
</rul eset >

45

o

‘mv INTERWOVEN Setting Up Data Capture Templates

~

5. Instance: An instance defines how to capture data for an item. An instance can also define an ACL
that determines which (if any) instance a specific user is allowed to use to enter data. Instances can

be any of:
Instance Description
<br owser > Lets a content contributor navigate through the workarea to select a file.

Attributes:

e ceiling-dir: Setsthe upper boundary for navigation. The content
contributor can never go above the current workarea in the directory
structure. The cei | i ng- di r attribute lets you set the ceiling below
the current workarea.

« ext ns: Comma delimited list of file extensions. Files having these
extensions are displayed during navigation.

e initial-dir:Theinitial directory displayed at the start of navigation.
« si ze: The number of characters that can display in the browse field.
« max| engt h: The maximum number of characters the user can enter.

* requi red: Specifies whether data must be captured by this instance.
The default setting isf (not required). Setting it to t specifies that a user
must specify a value for this item.

46 TeamXpress Templating and Deployment Guide

Data Capture Example 1

Instance

Description

<browser>
(continued)

Subelements:

« <al | owed>: Lets you set an ACL to specify which users can or cannot
use a specific instance to enter data. If <al | owed> is not set, any user
can enter data for the instance. The <al | owed> element can have any of
the following subelements:

<cr ed>: Lets you name a user or role in the ACL (e.g., user ="j oe"
orrol e="master").

<and>: Logical and statement for grouping ACL credentials.
<or >: Logical or statement for grouping ACL credentials.

<not >: Logical not statement for negating ACL credentials. Users
who are not allowed do not see the instance on their data capture
form.

See the examples on page 53.

« <cal | out >: Creates a button that calls a Java external program (see
page 54).

type: Mustbe"java-cl ass".

| ocat i on: Specifies the URL of a jar file or class file. The file does
not necessarily have to be on the same server as TeamXpress
Templating.

cl ass: Specifies the actual name of the class in the jar file.

| abel : Label of the button that launches the callout code.

47

o

‘mv INTERWOVEN Setting Up Data Capture Templates

~

Instance Description
<checkbox> | Specifies that data will be captured via one or more check boxes.
Attributes:

 delimiter: Specifies the delimiting character used when data from all
check boxes is concatenated by the data capture subsystem. The default
delimiter is a comma (,).

* required: See <br owser > above.

Subelements:
e <al | owed>: See <br owser > ahove.

e <cal | out >: See <br owser > ahove.

e (%hooser-options;) : Parameter entity reference that has the
following values:
— <i nl i ne>: Provides a method for making server side inline callout
programs that return multiple XML elements to the data capture
form (see page 53 for additional details).

— <opt i on>: Lets you assign a | abel or val ue to a check box so that
a user can enter only the predetermined label or value data by
checking the check box. Also lets you specify whether the check box
is initially displayed as being checked by default. A <checkbox>
element must have at least one <opt i on> subelement. See the DTD
on page 63 for syntax details.

<hidden> Specifies that the data will not be shown in the data capture form. A

<hi dden> field may receive data from a callout program.

Attributes:

* required: See <br owser > above.

Subelements:
e <al | owed>: See <br owser > ahove.

e <cal | out >: See <br owser > ahove.

48 TeamXpress Templating and Deployment Guide

Data Capture Example 1

Instance

Description

<r adi o>

Specifies that data will be captured via one or more radio buttons.
Attributes:

* required: See <br owser > above.
Subelements:

» <al | owed>: See <br owser > above.

» <cal | out >: See <br owser > above.

* <inline>:See <checkbox> above.

» <option>: See <checkbox> above. A <r adi o> element must have at
least one <opt i on> subelement.

<readonly>

Specifies that the data will be shown on the data capture form but will not be
editable.

Subelements:
e <al | owed>: See <br owser > ahove.

e <cal | out >: See <br owser > ahove.

49

o

‘mv INTERWOVEN Setting Up Data Capture Templates

~

Instance Description

<replicant > |Specifies a repeatable instance that can contain multiple nested items and
instances. When there are multiple instances, the first instance whose ACL
allows the current user to enter data will be the instance used for that user.
<r epl i cant > is the only instance that can contain nested items and
instances. Whenever additional iterations of the instance can be displayed
(i.e., if the max threshold has not yet been reached), the
Edit >Insert Above and Edit >Insert Below menu items are active.
Whenever iterations of the instance can be removed (i.e., if the mi n threshold
has not yet been reached), the Edit > Delete menu item is active. If a
<r epl i cant > has four items, the Insert menu item displays another set of
four items in the data capture form.
Attributes:

« defaul t : The number of instance iterations displayed initially in the

data capture form.

« max: The maximum number of items that can reside within the replicant
instance.

i n: The minimum number of items that can reside within the replicant
instance.

« conbi nat i on: Specifies whether the entire set of items will be
replicated when the user requests a replicant or whether the user will be
prompted to select one of the replicant items.

 hi de- name: Determines whether the label displays for each replicant.

Subelements:
« <al | owed>: See <br owser > above.
e <itenp: See Item on page 44.

e <cont ai ner>: A <cont ai ner > i$ a non-repeating, named set of data
capture items. In addition to the conbi nat i on and hi de- name
attributes, you can also include the name attribute to specify the field
name.

50 TeamXpress Templating and Deployment Guide

Data Capture Example 1

Instance Description
<sel ect > Specifies that data will be captured via a drop-down list.
Attributes:
e delimter:See <checkbox> above.
* required: See <br owser > above.
e nul tipl e: Specifies whether more than one item can be selected. The
default value is f (only one item can be selected). Setting
mul ti pl e="t" specifies that a user can select more than one item.
« si ze: The number of selections that display in the selection box at one
time.
 wi dt h: The width of the drop-down or select list.
Subelements:
» <al | owed>: See <br owser > above.
e <cal | out >: See <br owser > above.
« <inline>:See <checkbox> above.
» <option>: See <checkbox> above.
<t ext > Specifies that data will be entered and captured via an unformatted text field.

Attributes:

max| engt h: The maximum number of characters the user can enter.
requi r ed: See <br owser > above.
si ze: The number of characters that display in the text box.

val i dati on-regex: Uses Perl regex syntax to set validation criteria
for text entered by a user. A retry message is displayed in the data
capture form if the entered text does not meet the specified criteria.

Subelements:

<al | owed>: See <br owser > above.

<def aul t > The default text that displays in the field when the data
capture form opens.

<cal | out >: See <br owser > above.

51

o

‘mv INTERWOVEN Setting Up Data Capture Templates

~

Instance Description
<textarea> | Specifies that data will be entered and captured via a text field of a specified
size.
Attributes:
 col s: The width (in characters) of the text area. If rt f="t" is set,
width in pixels.

* required: See <br owser > above.
e rows: The height (in rows) of the text area. If rt f ="t ™ is set, height in
pixels.

« wr ap: Handles word wrapping in text input areas in forms. When of f
is set, lines are sent exactly as typed; when vi rt ual is specified, the
text word wraps in the form, but long lines are sent as one line; when
physi cal isset, the word wraps and text are transmitted at all wrap
points.

» validation-regex: See <t ext > above.

« rtf: Allows user to provide text styles such as bold, italics, and
underscoring.

Subelements:
e <al | owed>: See <br owser > ahove.

o <def aul t >: See <t ext > ahove.
e <cal | out >: See <br owser > ahove.

52 TeamXpress Templating and Deployment Guide

Data Capture Example 1

Details on Attributes and Subelements of Instances

This section provides additional details or examples on the attributes and subelements described in the
table of instances.

The <Al | owed> Attribute
The following code would allow all users except j oe to use the current instance:

<al | oned>
<not >
<cred user="joe">
</ cred>
</ not >
</ al | owed>
In the following example, <al | owed> would set an instance that only editors can use while another

instance is available for all other roles. The first instance a user satisfies is the one that is used.

<item nane= "abc">
<i nstance>
<--only for editors-->
<al | owed> <cred role="editor"/> </all owed>
</instance>
<i nstance>
<l--for everyone else-->
</instance>
</litenr

The <i nl i ne> Subelement
An <i nl i ne> element should have a command attribute such as:

<inline command="/bin/cat /tnp/a /tnp/b"/>

The inline callout program should return a well-formed XML document. The document's outermost
element should be a <subst i t ut i on> element. It should contain any XML that is valid according to
dat acapt ur e4. 5. dt d. That <subst i t ut i on> element will contain six <opt i on> elements,
enumerating a variety of types of yacht hull materials (see page 59).

53

o

‘m) INTERWOVEN Setting Up Data Capture Templates

~

<?xm version="1.0" encodi ng="UTF-8"?>

<substitution>
<option val ue="Lead" |abel ="Lead"/>
<option value="Tin" |abel ="Tin"/>
<option value="Silicon" |abel="Silicon"/>
<option value="Plastic" |abel="Plastic"/>
<option val ue="Paper" | abel =" Paper"/>
<option value="d ass" |abel ="d ass"/>

</ substitution>

This simple callout output a static result. A more sophisticated callout program could query a database
and return the query results as <opt i on> elements.

The <Callout> Subelement

The <cal | out > subelement creates a button on the data capture form that can be programmed to
call a Java program. An interface is provided that declares the | Wpat aCapt ur eCal | out interface.
You need to write a Java class that implements the interface. Java documentation (javadoc) that
describes the API is available once you install TeamXpress Templating. You can access this Javadoc
through a browser at ht t p: / / TeanXpr ess-server/iw j ava-cal | out-api/tree. htm .
Source code and example classes can be accessed at

i w- hone/ | ocal / confi g/java-call out -api .

Example 1 Data Content Record

This section shows the data content record that is created if a content contributor enters the following
data in the Press Release data capture form:

54 TeamXpress Templating and Deployment Guide

Data Capture Example 1

Vi Press Release - Untitled1 [Modified]

File Edit Style “iew Help

| s|a] s|m[@| s8] s|u]e]

Type: internetfr
Description: Enter Press Release information.

INTERWOVEN

date format is Y™ -hiw-D0
Publish Date Igggg.gg.y

Headline |Candidate Joins Race

Secondary Headline I

Introductory Paragraph

= Stary

Subheading

= Section Paragraphs

Paragraphs |3 ney candidate enters the rﬂ
-
4| | »

Author Iea|

Etdail |ea|@examp|e.com

Language

@}

¢ German French ¢ Japanese ¢ Chinese ¢ Spanish € ltalian

°§- INTERWOVEN

Press Release Data Capture Form (with data)

The resulting data content record is as follows:

<?xm version="1.0" encodi ng="UTF-8"?>

<I DOCTYPE record SYSTEM "dcr4.5.dtd">

<record name="eal .pr.1" type="content">
<i tem nanme="Publ i sh Date">

55

o

‘mv INTERWOVEN Setting Up Data Capture Templates

~

<val ue>2000- 08- 28</ val ue>
<litenp
<i tem nane="Headl i ne" >
<val ue>Candi dat e Joi ns Race</val ue>
<litenp
<i t em nanme="Secondary Headl i ne">
<val ue></val ue>
<litenp
<i tem name="Introductory Paragraph">
<val ue></val ue>

<litenp
<itemdelinmter=", " nane="Story">
<val ue>

<i t em name="Subheadi ng" >
<val ue></val ue>

<litenp
<i t em name="Secti on Paragraphs">
<val ue>

<i t em name="Par agr aphs" >
<val ue>A new candi date entered the race as of 8/28/00.

</ val ue>
</litenp
</ val ue>
<litenp
</ val ue>
<litenp

<i t em nane="Aut hor" >
<val ue>eal </ val ue>
<litenp
<i tem nane="EMai |l ">
<val ue>eal @xanpl e. conk/ val ue>
</litenp
<i tem name="Languages" >
<val ue>Engl i sh</ val ue>
</litenp
</record>

56 TeamXpress Templating and Deployment Guide

Data Capture Example 2

Data Capture Example 2

The following sections show a hypothetical Yacht Information data capture form and the
dat acapt ur e. cf g file that generates it.

Example 2 Data Capture Form

The following is a hypothetical Yacht Information data capture form. This form is included in the
TeamXpress Templating distribution and is available for use after you configure the example
templating environment.

57

o

‘m’ INTERWOVEN Setting Up Data Capture Templates
~
V) ¥essel Information - Untitled2 10l =|

File Edit Style “iew Help

S| @] s |m|[@a]| 8| s|u|e=] |

Type internetiyacht -
Description: Allowws the entry of data relating to & sailing vessel and its seasonal charer prices. & ’

INTERWOVERN

Boat Manufacturer I

Boat Model I

Picture | Browse ... |

length in feet, range 0-999

Length |
Rig |sloop [~
HullTYPE o~ ptonohull € Catamaran € Trimaran
Hull Material |FibergIaSS LI
B Pricing

Season a|| vaar
Winter
Spring
Summer
Fall

B Time Periods

Time Period IDay LI
Price I
Humber of Cabins IOne LI
Humber of Staterooms IOne LI

Spinnaker I— Ineluded
Trisal = ncluded

GEMG3 [|ncluded

Ui

B Included
Starm.ib = e udad
Dinghy 7 |ncluded
Literaft = 1 cjuded

EFIRB 1 |ncluded

Detailz

°ﬂ|NTEnwov5N

58 TeamXpress Templating and Deployment Guide

Data Capture Example 2

Example 2 datacapture.cfg File

The dat acapt ur e. cf g file that generates this Yacht Information data capture form is as follows:
<?xm version="1.0" standal one="no"?>
<! DOCTYPE dat acapt ure SYSTEM "dat acapture4.5. dtd">

<dat a- capt ure-requi renents type="content" name="yacht">
<!-- data-capture-requirenents elenents contain area el enents -->
<rul eset name="Vessel |nformation">

<descri ption>
Allows the entry of data relating to a sailing vessel and its
seasonal charter prices.

</ description>

<i tem name="Boat Manufacturer">
<dat abase dat a-type="VARCHAR(40)" />
<text required="t" maxl engt h="40" />
</itenpr

<i tem nane="Boat Mbdel ">
<dat abase dat a-type="VARCHAR(40)" />
<text required="t" maxl engt h="40" />
</itenpr

<i tem name="Pi cture">
<dat abase depl oy-col um="f" />
<browser extns=".gif,.jpg"
initial-dir="/tenpl atedata/internet/yacht/imges"/>
</itenp

<i tem name="Lengt h" >

<dat abase dat a-type="SMALLI NT" />

<text required="t" maxlength="3" validation-regex="~[0-9]\{0,\}$" />
<litemp

<i tem name="Ri g" >
<dat abase dat a-type="CHAR(6)" />
<sel ect required="t">
<option selected="t" val ue="Sl oop" | abel =" Sl oop"/>
<option val ue="Ketch" | abel ="Ketch"/>
<option value="Cutter" |abel="Cutter"/>
</ sel ect >
<litemp
<item name="Hul | Type">

59

o

‘my INTERWOVEN

~

<dat abase data-type="CHAR(9)" />
<radi o required="t">

Setting Up Data Capture Templates

<option selected="t" val ue="Mnohul I " | abel =" Monohul | "/ >

<option val ue="Cat amaran" | abel =" Cat amar an"/ >
<option val ue="Tri maran" | abel ="Tri maran"/>
</ radi o>
</itenp

<itemnane="Hull Material">
<dat abase dat a-type="VARCHAR(15)" />
<sel ect required="t">

<I-- To use the exanple server-side
inline callout, uncomment the
next line for Solaris:

<inline command="__I| WHOVE__/iw- perl/bin/iwperl __ I WHOME__/ exanpl es/

Tenpl ati ng/ confi g/ exanpl e_server_side_inline_callout.ipl" />

or this line for Wndows NT/2000:

<inline command="__| WHOVE__/iw perl/bin/iwperl.exe __ | WHOMVE__/exanpl es/
Tenpl ati ng/ confi g/ exanpl e_server_side_inline_callout.ipl" />
replacing "__IWHOVE_ " with
the | ocation of your TeanXpress
installation. -->

<option val ue="Fi bergl ass" | abel ="Fi bergl ass"/ >
<option val ue="Wod" | abel ="Wod"/>
<option val ue="Steel" |abel ="Steel"/>
<option val ue="Al um ni um' | abel =" Al um ni un'/ >
<option val ue="Ferrocenment"” | abel ="Ferrocenent"/>
<option val ue="CQther" |abel ="Q her"/>
</ sel ect >
<litemp

<i tem nanme="Pricing">
<dat abase depl oy-col um="f" />
<replicant mn="1" max="5">
<i t em nane="Season" >
<select required="t" nultiple="t
<option selected="t"
<option value="Wnter" | abel="Wnter"/>
<option val ue="Spring" | abel ="Spring"/>

size="5">

60

val ue="All Year" |abel="Al

TeamXpress Templating and Deployment Guide

Data Capture Example 2

<option val ue="Sunmer" | abel =" Sunmer"/>
<option value="Fall" |abel="Fall"/>
</ sel ect>
</itemp

<i tem nanme="Ti me Periods">
<replicant min="1" max="3">
<i tem name="Ti me Period">
<sel ect required="t">
<option val ue="Day" | abel ="Day"/>
<option val ue="Week" | abel ="Wek"/>
<option val ue="Mnth" | abel ="Mnth"/>
</ sel ect >
<litemp

<item name="Price">
<text required="t" />

<litenpr
</replicant>
</itenr
</replicant>

<litenp

<i t em name="Nunber of Cabins">
<dat abase dat a-type="SMALLI NT" />
<sel ect required="t">
<option val ue="1" | abel ="One"/ >
<option val ue="2" |abel ="Two"/ >
<option val ue="3" | abel ="Three"/>
<option val ue="4" |abel ="Four"/>
<option val ue="5" |abel ="Five"/>
<option val ue="6" | abel ="Si x"/>
</ sel ect >
</itenp

<i tem name="Nunber of Stateroons">

<dat abase dat a-type="SMALLI NT" />

<sel ect required="t">
<option val ue="1" | abel =" One"/ >
<option val ue="2" |abel ="Two"/ >
<option val ue="3" | abel ="Three"/>
<option val ue="4" |abel ="Four"/>
<option val ue="5" |abel ="Five"/>
<option val ue="6" | abel ="Si x"/>

</ sel ect >

o

ﬁ;:g} INTERWOVEN

~

</litenp

<i t em nane=" Spi nnaker" >
<dat abase data-type="CHAR(3)"
<checkbox>
<option val ue="Yes" | abel
</ checkbox>
</itenp

<itemnane="Tri-sail">
<dat abase dat a-type="CHAR(3)"
<checkbox>
<option val ue="Yes" | abel
</ checkbox>
</itenp

<i tem nane="CGenoa" >
<dat abase data-type="CHAR(3)"
<checkbox>
<option val ue="Yes" | abel
</ checkbox>
</itenpr

<i tem name="Ji b" >
<dat abase dat a-type="CHAR(3)"
<checkbox>
<option val ue="Yes" | abe
</ checkbox>
</itenp

<item nane="Storm Ji b">
<dat abase dat a-type="CHAR(3)"
<checkbox>
<option val ue="Yes" | abe
</ checkbox>
<litemp

<i t em nanme="Di nghy" >
<dat abase dat a-type="CHAR(3)"
<checkbox>
<option val ue="Yes" | abe
</ checkbox>
</itenp

<item nane="Liferaft">

Setting Up Data Capture Templates

/>

="Incl uded"/ >

/>

="Incl uded"/ >

/>

="Incl uded"/ >

/>

="Incl uded"/ >

/>

="| ncl uded"/ >

/>

="1 ncl uded"/ >

62

TeamXpress Templating and Deployment Guide

Data Capture Template DTD

<dat abase data-type="CHAR(3)" />
<checkbox>
<option val ue="Yes" | abel ="Incl uded"/ >
</ checkbox>
<litemp

<i tem nane="EPI RB" >
<dat abase data-type="CHAR(3)" />
<checkbox>
<option val ue="Yes" | abel ="Incl uded"/ >
</ checkbox>
</itenp

<item nane="Detail s">
<dat abase depl oy-col um="f" />
<t ext area/ >

</itenr

</rul eset >
</ dat a- capt ur e-r equi r ement s>

Data Capture Template DTD

The following code shows the dat acapt ur e4. 5. dt d file that contains the syntax of the elements
needed to create a dat acapt ur e. cf g file.

<l-- Start with some basic paranmeter entities. -->

<IENTITY % dat a-capture-requirenents-contentspec "rul eset*">
<IENTITY %itens "container|item>

<IENTITY % chooser-options "option|inline">

<l-- The next elenment type is specific to datacapture4.5.dtd. -->

<l-- An 'inline'" elenent should have a 'conmmand' attribute. e.qg.
<inline comand="/bin/cat /tnp/a /tnp/b"/>

The cal l out program should return a well-formed XM. docunent.
The docunent's outernost el ement should be a "substitution”
elenent. It should contain any XM. that is valid according
to this DTD.

63

o

‘mv INTERWOVEN Setting Up Data Capture Templates

~

That "substitution" element's contents will replace the
"inline" elenent in the datacapture.cfg file.

So, if this DCT snippet:

<sel ect >
<inline command="bl ah" />
</ sel ect >

runs the "blah" callout program and that programreturns this text:

<substitution>

<option | abel ="ABC' />
<option |abel ="123" />
<option | abel ="Jackson 5" />
</ substitution>

then the DCT snippet will, after callout execution and inline
substitution, ook Iike:

<sel ect>

<option | abel ="ABC' />

<option |abel ="123" />
| =

<option | abel ="Jackson 5" />
</ sel ect>

>

<! ELEMENT inline EMPTY >
<I ATTLI ST inline

comand CDATA #REQUI RED
>
<l-- The rest of these elenents are common to both

dat acapture4.5.dtd and synbol table4.5.dtd. -->

<! ELEMENT dat a- capture-requirenents (%lat a-capture-requirenments-
contentspec;) >
<! ATTLI ST dat a- capture-requirenents
namne CDATA #1 MPLI ED
type (et adat a| cont ent | wor kf | ow) #REQUI RED

64 TeamXpress Templating and Deployment Guide

Data Capture Template DTD

dtd-systemidentifier CDATA #1 MPLI ED
>

<! ELEMENT rul eset (| abel ?, description?, (%tens;)*)>
<I ATTLI ST rul eset

nane CDATA #REQUI RED
>
<l ELEMENT cont ai ner (1 abel ?, description?, (%tens;)*) >
<I ATTLI ST cont ai ner
nane CDATA #REQUI RED
hi de- nane (t]f) "
conbi nati on (and| or) "and"
>
<IELEMENT item (1 abel ?, descri pti on?, dat abase?(checkbox| radi o
text|textarea| sel ect|replicant| browser|
readonl y| hi dden) +) >
<I ATTLI ST item
nane CDATA #REQUI RED
>
<! ELEMENT | abel (#PCDATA) >
<! ELEMENT descri ption (#PCDATA) >
<! ELEMENT readonly (al l owed?, call out?) >
<! ATTLI ST readonly
r ows CDATA "0"
col s CDATA "0"
>
<! ELEMENT hi dden (al l owed?, call out?) >
<! ATTLI ST hi dden
required (t]f) "fr
>
<! ELEMENT t ext (al |l owed?, default?,callout?) >
<! ATTLI ST text
required (t]f) "fr
max| engt h CDATA " 0"

65

{2:5} INTERWOVEN

o

~

si ze CDATA "o"
val i dati on-regex CDATA #1 MPLI ED
>
<I-- validation-regex is a Perl regex for validating this el ement
<! ELEMENT t ext ar ea (al | oned?, defaul t?, call out?) >
<I ATTLI ST textarea
required (t]f) "
r ows CDATA "o"
col s CDATA "o"
wrap (of f|virtual | physical) "off"
val i dati on-regex CDATA #1 MPLI ED
rtf (t]f) "t
>
<I-- validation-regex is a Perl regex for validating this el ement
<! ELEMENT br owser (al l owed?, cal l out?) >
<! ATTLI ST br owser
required (t]f) "
max| engt h CDATA "o"
si ze CDATA "o
initial-dir CDATA #| MPLI ED
ceiling-dir CDATA #| MPLI ED
extns CDATA #| MPLI ED
>
<! ELEMENT checkbox (al l owed?, cal | out?, (%chooser-options;)+) >
<! ATTLI ST checkbox
required (t]f) "fr
delimter CDATA ",
>
<! ELEMENT radi o (al l owed?, cal | out?, (%chooser-options;)+) >
<I ATTLI ST radi o
required (t]f) "
>
<! ELEMENT sel ect (al l owed?, cal | out?, (%chooser-options;)+) >
<I ATTLI ST sel ect
required (t]f) "
si ze CDATA "o
mul tiple (t]f) "

Setting Up Data Capture Templates

-->

-->

66

TeamXpress Templating and Deployment Guide

Data Capture Template DTD

delimter CDATA "o
wi dt h CDATA #| MPLI ED
>
<l-- The delimter attribute is for nultiple=t only -->
<! ELEMENT repli cant (al l owed?, (% tems;)*)>
<I ATTLI ST replicant
mn CDATA "0"
max CDATA "1
def aul t CDATA "1
conbi nati on (and| or) "and"
hi de- name (t]f) "t
>
<! ELEMENT option EMPTY>
<! ATTLI ST option
sel ected (t]f) "
val ue CDATA #| MPLI ED
| abel CDATA #REQUI RED
>
<l ELEMENT al | owed (cred|and| or|not) >
<! ELEMENT cred EMPTY>
<! ATTLI ST cred
role CDATA #| MPLI ED
user CDATA #| MPLI ED
>
<l ELEMENT and (cred| and| or| not) +>

<! ELEMENT

<! ELEMENT

<! ELEMENT

<! ELEMENT
<!

or (cred|and|or]|not)+>
not (cred|and|or]|not)>
def aul t (#PCDATA) >

cal | out (parant) >
ATTLI ST cal | out

67

o

‘my INTERWOVEN

~

type (java-cl ass)
| abel CDATA
| ocation CDATA
cl ass CDATA
>

<!l ELEMENT par am EMPTY >

<I ATTLI ST param

nane CDATA
val ue CDATA
>

<! ELEMENT dat abase EMPTY >

<! ATTLI ST dat abase
depl oy- col um
sear chabl e
dat a-type
dat a- f or mat
>

(t]f)
(t1f)
CDATA
CDATA

#REQUI RED
#REQUI RED
#REQUI RED
#REQUI RED

#REQUI RED
#REQUI RED

Setting Up Data Capture Templates

v
.y

" VARCHAR(255) "
#| MPLI ED

68

TeamXpress Templating and Deployment Guide

Chapter 4
Setting Up Presentation
Templates

Creating Presentation Templates

Presentation templates are designed to display data. The data may be obtained from the following
sources:

« Data content records

» Queries to relational databases

« Perl-generated output

e Included files

« Included presentation components

You can combine data content records with presentation templates to generate output files. You can
also create output files using relational database queries and output generated via the Perl API.
TeamXpress Templating can generate any text content, including HTML, XML, or any application
server code. Using TeamXpress Templating, you can precompile elements or a dynamic page,
maintain dynamic content as application server code, eliminate the need for sever-side includes, and
output an .asp or .j sp file that can be served dynamically at runtime in the production environment.
At a minimum, TeamXpress Templating can precompile flat HTML files that can sit as static files to
provide maximum performance.

Presentation templates are written in XML and may contain custom Interwoven XML tags, HTML,
and Perl.

The following diagram shows a typical output page and describes how the page is generated.

69

o

‘my INTERWOVEN

~

Standard Header

using an included file instead of an shtml directive.

This included file can be changed
once and the entire site regenerated.

Navigation

Navigation
and Related
Links can be
obtained
from
included files,
included
presentation
templates,
queriestoa
database, or
from code
entered as
CDATA.

Body text, Image, and
Caption are obtained
from the data content
record using iw_xml
tags and HTML code.

Body Text

Image

Related Links

Standard Footer
using an included file.

Generating a Web Page with TeamXpress Templating

Setting Up Presentation Templates

70

TeamXpress Templating and Deployment Guide

Creating Presentation Templates

Presentation templates allow you to:

Use built-in tags to fetch elements from XML data content records, loop on lists, do SQL queries,
perform conditional logic, etc.

Create custom XML tags that encapsulate arbitrary presentation logic. Non-programmers can use
custom high-level visual building blocks without writing any code.

Create custom libraries and invoke them from within the <i w_per | > tag. Lower-level visual
building blocks can be accessed by programmers directly from a template.

Intermix XML and Perl to generate any output format (such as ht m , asp, and j sp). Presentation
information does not need to be hard-coded into the template.

Make common code components reusable across templates.

Create generic components (component templates) that display differently based on the
parameters they are given by their enclosing template.

Eliminate page compilation costs on the production web server, thus increasing scalability of your
web site.

Use component templates. The component template may have key, value parameters passed to it
by the enclosing template. For example, a component template may include an SQL query whose
body depends on parameters from the enclosing template. Component templates do not take a
data content record.

To write a presentation template, you must first know some basic XML. Specifically, an
understanding of the following XML topics is useful:

CDATA
“Well-formed” documents
Entities (e.g., > ; and &l t ;)

A useful reference is ht t p: / / www. xml . coml axml / t est axml . ht m

71

o

ﬁ;:g} INTERWOVEN

~

Setting Up Presentation Templates

Interwoven XML tags are an important part of writing presentation templates. The following is an
overview of the existing tags:

<iw xnl >
<iw_pt>
<i w_val ue>

<iwif>

<i w_t hen>
<iw_ el se>
<iw_ifcase>
<i w_case>

<iw_perl >

<iw.iterate>

<i w_sql _open>
<iw sql _iterate>
<i w_sql _query>
<i w_syst enp

<i w_next >
<iw_|ast>

<i w_i ncl ude>

<i w_r epeat >

Base class for presentation template XML elements.
Specifies that the document is a presentation template, and names it.
Inserts the value of a Perl expression or data content record item.

Provides an expression that is evaluated as being either true or false to
determine whether the <i w_t hen> or <i w_el se> statement will be
used.

Provides contents to be included if the <i w_i f > tag’s expression is true.
Provides contents to be included if the <i w_i f > tag’s expression is false.
Provides for conditional inclusion of contents.

Used with <i w_i f case> for conditional inclusion of contents.

Executes arbitrary Perl code and provides an API for generating input and
using data content records

Iterates through a data content record or Perl list.
Opens a database connection.

Iterates SQL result sets.

Queries a database.

Uses output from an external command.

Skips to the next iteration of a (possibly labeled) loop.
Skips to the last iteration of a (possibly labeled) loop.

Inserts a file or the result of compiling a template component in the
generated HTML.

Allows you to repeat content a given number of times.

For more information about the iw_xml tags, see “Custom XML Tags” on page 82.

72

TeamXpress Templating and Deployment Guide

Creating Presentation Templates

Consider the following guidelines when creating a presentation template:

« When writing presentation templates that obtain information from data content records, refer to
the data capture template that the data content records are based on. Make sure that the names of
the fields are consistent and that you use <i w_i t er at e> tags in the presentation template (see
page 99) if there are r epl i cant tags in the data capture template (see Chapter 3, “Setting Up
Data Capture Templates”).

« Presentation templates must be well-formed XML. Any HTML contained within a presentation
template outside of a CDATA directive must be well-formed in accordance with XML rules.

e The <i w_val ue> tag, unlike all other tags, is interpreted within CDATA sections. If you need to
enclose a large body of text (e.g., HTML) with CDATA, you still have access to data values within
this region.

Using a Presentation Template—An Example

This section provides an overview to show the use of a presentation template. The section includes an
example data content record, a presentation template, and a component template.

The presentation template shows how to use tags to call a component template, include a file, obtain
data from a data content record, and iterate through all values of a field in a data content record.

The Press Release presentation template is shown on page 76. In addition to using HTML, it uses
many of the iw_xml tags. This example is provided as t enpl at edat a/ i nt er net / pr/

present at i on/ nest ed_conponent _exanpl e. t pl inyour TeamXpress Templating installation.
This presentation template calls the si npl e. t pl component template (page 80) and accesses a data
content record (page 74) to obtain values. The generated press release is shown (page 81).

73

{2:5} INTERWOVEN

o

~

Setting Up Presentation Templates

The data content record that contains the data for the Press Release presentation template follows:

<record name="pr2">

<itemdelimter=", " nane="Date">
<val ue>01. 04. 2000</ val ue>
</itemp
<itemdelimter=", " nanme="Headline">
<val ue>l nterwoven, Inc. Files Registration</val ue>
</itenp
<itemdelimter=", " name="Secondary Headline">
<val ue>l nterwoven, Inc., (NASDAQ |WW)</val ue>
</itemp
<itemdelimter=", " name="Introductory Paragraph">

<val ue>l nterwoven, Inc. is a provider of Wb content managenent
solutions. Its products are specifically designed to hel p conpanies
rapidly and efficiently build, maintain and extend m ssion-critical
Web sites and eBusiness applications. |nterwven's principa
product, TeanXpress, conbines the functions of content nanagenent,
version control, workflow and applicati ondevel opnent in an open,

st andar ds-based platformthat allows |arge nunbers of contributors
across an enterprise to add Wb content in a well-nmanaged manner.

</ val ue>

</litenp
<itemdelimter=", " name="Story">
<val ue>
<itemdelinmter=", " name="Subheadi ng">
<val ue>headi ngl</ val ue>
</itenmpr
<itemdelimter=", " nanme="Section Paragraphs">
<val ue>
<itemdelimter=", " nane="Paragraphs">
<val ue>Credit Suisse First Boston will act as the |ead

underwiter of the offering. The co-nmanagers are
Robert son Stephens; Dain Rauscher Wessels; SoundVi ew
Technol ogy Group; and Adanms, Harkness and Hill, Inc.
</val ue>
<litemp
</ val ue>

74

TeamXpress Templating and Deployment Guide

Creating Presentation Templates

<val ue>
<itemdelinmter=", " name="Paragraphs">

<val ue>A registration statenent relating to these
securities has been filed with the Securities and
Exchange Conmi ssi on but has not yet becone
ef fective. These securities nmay not be sold nor may
offers to buy be accepted prior to the time the
regi stration statenent becones effective. This press
rel ease shall not constitute an offer to sell or a
solicitation of an offer to buy, nor shall there be
any sale of these securities in any state or
jurisdiction in which such anoffer, solicitation
or sale would be unlawful prior to registration or
qualification under the securities |aws of any such
state or jurisdiction.</val ue>

<litenp
</ val ue>
</litenpr

</val ue>
</[itenpr
<itemdelimter=", " nanme="Author">

<val ue>ddd</ val ue>
</itemp
<itemdelimter=", " nane="EMail">

<val ue></ val ue>
</litenp

<itemdelimter=", name="Languages" >
<val ue>Engl i sh</val ue>
</litenp
</record>

o

‘mv INTERWOVEN Setting Up Presentation Templates

~

The presentation template for the press release follows:

<?xm version="1.0" encodi ng="1SO 8859-1"?>

. " . Using <i w_pt > to open and
<i w_pt name="PressRel ease" ><! [CDATA] /name the presentation template;
<HTM_> ;

beginning CDATA
<!-- Begin CDATA Tag --> ginning
<l-- HTM. stuff is enclosed in CDATA tag -->

<HEAD>
</ HEAD>
<BODY bgcol or ="#FFFFFF" | i nk="#0033CC' vl i nk="#0033CC" al i nk="0000FF"
TEXT=#000000 BACKGROUND="/tenpl at edat a/i nternet/pr/images/ pi xel .gif">

<TABLE W DTH="720" VALI G\N="top" CELLPADDI NG="0" CELLSPACI NG="0"

BORDER="0" >

<TR><TD W DTH="720">

Using the <i w_i ncl ude> tag to call the

11> <!-- End of CDATA Tag --> si npl e. t pl component template
<l-- nested conponent -->
<iw_include pt='/tenpl at edat a/ conponents/sinple.tpl'>
<! [CDATA[

$i w_paranm{ Headl i ne} = iwpt_dcr_val ue(' dcr. Headline');

11> < %@@ “Headline” value
</iw_include> as a parameter to
h component template
<! [CDATA] </ TD></ TR><TR><TD><TABLE W DTH="720"><TR val i gn="t op" >

<TD valign="top">]]>
<iw_include file="tenpl atedata/internet/pr/iwprnavbar.htm"/>

<I[CDATA[<!-- Begin CDATA Tag -->
</ TD><TD VALI G\="t op" W DTH="510" > Using the <i w_i ncl ude>

11> <!-- End of CDATA Tag --> tag to include an HTML file

<I-- Begin content area -->
<I-- Headline -->

<pP></ P>

</br>

<!-- Secondary Headline -->

<h3> <i w_val ue nane='dcr. Secondary Headline'/> </h3>

76 TeamXpress Templating and Deployment Guide

Creating Presentation Templates

<l-- Date -->
<P> SUNNYVALE, Calif., <iw_value nane="dcr.Date'/>:</P>

<l-- Introductory Paragraph -->
<P><i w_val ue name='dcr. I ntroductory Paragraph' /> </ P>

<l-- Story -->

S . Obtaining a value from a
<iw.iterate var="story' list="dcr.Story'> 9

data content record using

<I-- Subheading --> the <i w_val ue> tag

<i w_val ue name='story. Subheadi ng' / >

Nesting of
<l-- Paragraphs --> <i w_iterate>tags
<iw.iterate var='para_value' list="story. Section Paragraphs'>

<p><i w_val ue name=' para_val ue. Par agr aphs' / ></ p>
</[iw.iterate>
</iw.iterate> Using <i w_i t er at > and
<i w_val ue> to obtain

:;o> Insert 'aboutlWhtml' file --> multiple paragraph values
<iw_include file="tenpl atedatal/internet/pr/aboutl Whtm"'/>
</ p>

<p>For nore information on the conpany and
its software solutions, visit the Interwoven Wb site at
ww. i nt er woven. conx/ a>

or e-mail
<i w_val ue name='dcr. EMail "' />
</ p>

<I-- HTM. stuff is enclosed in CDATA tag -->
<! [CDATA[<l-- Begin CDATA tag --> -~
<p> Opening CDATA
<TABLE W DTH=520 BORDER=0 CELLSPACI NG=10 CELLPADDI NG=0> containing HTML
<TR>

<TD COLSPAN=2 BGCOLOR=#999999>

<I MG SRC="/tenpl atedata/i nternet/pr/i mages/ pi xel . gif">

</ TD>

</ TR>

77

o

‘mv INTERWOVEN Setting Up Presentation Templates

~

<TR>
<TD COLSPAN=2>

<l-- Begin question -->
<CENTER>

How i s Best Buy pushing
billions of dollars in business towards the Wb?</ A>
</ B></ FONT>
</ CENTER>
<!-- End question -->
</ TD>
</ TR>
<TR>
<TD COLSPAN=2>
</ TD>
</ TR>
<TR>
<TD COLSPAN=2 BGCOLOR=#999999>
<I M5 SRC="/tenpl at edat a/i nternet/pr/i mages/ pi xel .gif">
</ TD>
</ TR>
<TR>
<TD W DTH=250 VALI G\N="t op" >
<I MG SRC="/tenpl at edat a/ i nternet/pr/images/ pi xel . gi f"
W DTH=250 HEl GHT=1>
 Qd obal Headquart ers</ B>

I nt erwoven, |nc.
 1195 W Frenont Ave. #2000

Sunnyval e, CA 94087 US
 Phone: (408) 774-2000

</ FONT>
</ TD>
<TD W DTH="250" VALI GN="t op" >

How Can W Serve You?

Let us know at:
i nfo@ nt erwoven. conk/ A>
 or Regi ster
and we will contact you!

<NOBR>Wb Team
webt eam@ nt er woven. conk/ A>
</ NOBR></ FONT>
</ TD>
</ TR>

78 TeamXpress Templating and Deployment Guide

Creating Presentation Templates

<TR>
<TD COLSPAN=2 ALI| GN=CENTER>

 <P CLASS="copyright">
 Copyri ght © 2000
Interwoven, Inc. Al rights reserved. </ P> </ FONT>
</ TD>
</ TR>
</ TABLE>
</ TD>
</ TR>
</ TABLE>
</ TD>
</ TR>
</ TABLE>

</ BODY> Closing CDATA

</ HTML> containing HTML
11> <l-- End CDATA tag -->

</iw_pt> - Closing the
presentation template

79

o

‘my INTERWOVEN

Setting Up Presentation Templates
~

The si npl e. t pl component template is called from the main presentation template. It prints the

headline it obtains from the calling presentation template. The contents of the si npl e. t pl
component template is:

Tag that opens
and names the
<?xm version="1.0" standal one="yes"?> component template
<i w_pt nane="Banner Conponent PT">

<I-- This is a conponent PT that can be used inside another PTs -->
<l-- It prints the title that it got fromthe container PT -->
<TABLE wi dt h="720" align="center">
<TR al i gn="center">
<TD align="left">
<I M5 SRC="/tenpl at edata/i nternet/pr/images/iw | ogo-small.gif"
W DTH="220" HElI GHT="40" BORDER="0"/>
</ TD>
<TD al i gn="center">
<Hl><i w_val ue nanme='$i w_ar g{ Headl i ne}"' / ></ H1>
</ TD>
</ TR>
</ TABLE>
</iw_pt> Tag that obtains the
headline from the
calling template

80

TeamXpress Templating and Deployment Guide

Creating Presentation

Templates

The press release generated from this presentation template, component template, and data content

record would be as follows:

Bty

@ = O e & @ @ @ A A L &W &

Eack Forward Stop Refresh Home Faworites History Search AutoFill Larger Smaller Print Mail Preferences

by

Address: E] | >

s

Ei

[Go] [&)]

Japmu aﬁndJf\uaJeas/\ﬁJo;e!HAsauJoaa{

home 558

point of view 558

products 55
customers 50
partners =3
com pany C55E
investors 00
new s 0
press
coverage
awands
evenls
services 0
library 258
careers 0
feedback 5

INTERWOVEN Interwoven, Inc. Files Registration

Interwoven, Inc, (NASDAQ: IWOV)
SUNNY YALE, Calif., 01 .04.20000:

Interworven, Ine. is a provider of Web conlent management solutions. Tis products are s pecifically designed
1o help com panies rapidly and efficiently build. maintain and extend mission-crilical Web siles and eBusiness
applications. Interwoven's principal product. Teamd press, combines the funclions of conlent management,
version control, workflow and application development in an open, standards-based platform that allow s
large numbers of contributors across an enlerprise o add Web conlent in a well-managed manner.

heading |

Credit Suisse First Boston will actas the lead underwriter of the offering. The co-managers are Robertson
Stephens: Dain Ranscher Wessels: SoundView Technology Group: and Adams. Harkness and Hill, Ine.

A registration stalement relating 1o these securities has been filed with the Securities and Exchange
Commission bul has not yel become effective. These securities may not be sold nor may offers o buy be
accepled prior o the lime the registralion slalement becomes elfective. This press release shall not cons e
an ofler 1o sell or a solicilation of an offer o buy. nor shall there be any sale of these securilies in any slale or

jurisdiction in which such an offer, solicitation or sale would be unlawtul prior o registration or qualification

under the securities laws of any such state or jurisdiction.

For more information on the com pany and its software solutions, visil the Interwoven Web sile al
wWww inlerwoven.com or e-mail

How i Best Buy pushing billions of dollars in business towards the Web?

Clobal Hemlguare s
Inleraoven. Inc.

1195 W. Freman L Ave. $2000
Sunnyvale, CA HOET US
Fhone: (408 2000

How Can W 5enve Yoa?
Ll us Know oL n i G inleraove .coim
or Reglsker and we will conbicl you!

W D TR W DL G e IO 1.0 m

Copyripht € 1999 Inlerwoven, Inc. All rghts reserved.

Local rachine zone

SEID

81

o

‘mv INTERWOVEN Setting Up Presentation Templates

~

Custom XML Tags

A number of custom XML tags are supplied with TeamXpress Templating. All of these tags are derived
from a base class, i w_xni , as shown below.

./ il

iw_pt @
@ @ @ iw_sql_query
D G
@ iw_sql_iterate @

The iw_xml tags are described in this section. Some of the examples are taken from the Yacht Info and
Press Release data capture forms described in the preceding chapter.

Typical man pages are available online for each tag. If iw-home/iw-perl/bin is in your path statement,
you can access these man pages by issuing the command per | doc TeanSi te: : PT: : t ag_name.

82 TeamXpress Templating and Deployment Guide

Custom XML Tags

<i w_case>

The <i w_case> tag is used to perform boolean tests (such as equality, inequality or regex match) on
the value, attribute value, and/or type of the variable specified in the nane attribute of the enclosing
<i w_i f case> tag (page 91).

The content of only one <i w_case> within an <i w_i f case> is selected to form the final output
page. If the boolean test of more than one <i w_case> tag is true, the first true <i w_case> section is
selected (Example 1).

If an <i w_case> tag has no attributes, it becomes the default case of its enclosing <i w_i f case> tag.
You may not use more than one default <i w_case> within the enclosing <i w_i f case>. If a default
<i w_case> is present, it must be the final <i w_case> of the enclosing <i w_i f case>.

Attributes

The <i w_case> tag has the following six optional attributes: val ue, attri b, t ype, op, expr, and
expressi on.

val ue May be used with op and at t ri b. If the variable named in
<i w_i f case> isan XML node, val ue corresponds to the CDATA of
that XML node. If <i w_i f case> names a non-XML node Perl
variable, then val ue refers to the variable's value (Example 2).

attrib Must be used with val ue; may be used with op. The statement
<iw case attrib="x" val ue="y' > istrue if the XML node
being tested by the enclosing <i w_i f case> has an attribute named x
with a value of y.

type May be used with op. When iterating over all XML nodes of all types
withiny, use t ype="..." inan<i w_case> tag to discover the
current node's type.

You may use any combination of the following within the <i w_case>
tags of the same <i w_i f case> statement (the first true <i w_case>
within a given <i w_i f case> statement will be selected):

83

o

‘m) INTERWOVEN Setting Up Presentation Templates

~

val ue

type

expr
expressi on

attrib = val ue="..."
op May be used with val ue and t ype. When testing val ue="..." or
type='...' inan<iw_case> tag, eq (string equality) is the default
op attribute.
op may have the values indicated in the following table:
Value Definition
eq equal to
ne not equal to
I't less than
gt greater than
le less than or equal to
ge greater than or equal to
=~ regular expression match
I~ regular expression does not match
Therefore, op=' =~' val ue='red' means “regex match on the
pattern r ed”. In other words, the <i w_i f case> value contains the
substring r ed.
expr The expr attribute is a more powerful version of the val ue attribute
(but it is less powerful than expr essi on).
Inexpr , the value of the <i w_i f case> is the implicit left-hand side
of the general Perl expression that you provide. This allows you to use
regex patterns drawn from variables, regex switches, etc.
84 TeamXpress Templating and Deployment Guide

Custom XML Tags

expr essi on

The expr essi on attribute of <i w_case> is the completely general
conditional test; nothing is implicit.

Therefore, the following combinations are equivalent (they match
values equal to the string r ed):

<iw_case value = "red' > ..

<iw case op = 'eq' value = "'red > ..

<iw case expr = "eq 'red "> ..

<iw_case expression =" $iw_.ifcase_value eq 'red ">

The following combinations are also equivalent (they match values that
start with the string r ed).

<iw_case op = '=~' value=""red > ..

<iw_case expr = '=~ ["red/'> ..

<iw_case expression ="' $iw_ifcase value =~ /" red/
> L.

Usually, you will only need to use val ue='..."' or type='..."

Note: the i switch means “case insensitive matching” as in the
following example:
<i w_case expr='"=~ /goldfish/i ">

The <i w_i f case> tag uses its name=". . ."' attribute to set three
variables that enclosed tags can inspect:

$iw ifcase type (type)
$iw_ifcase_val ue (val ue)
$iw ifcase_attrib (attribute hash reference)

Typically, only i w_case tags use these variables, but any tag may do
so. This allows i w_i f case to evaluate name="..." only once
regardless of how many <i w_case> tags are inside it.

When one <i w_i f case> tag is nested within another, the inner
$iw ifcase_... variableshide the $i w i f case_. .. variables of
the outer tag. In fact, you can choose non-default names to avoid this.

85

{2:5} INTERWOVEN

o

~

Setting Up Presentation Templates

See the example section of <i w_i f case> (page 91) for more
information.

The following code shows switching on an arbitrary function, | engt h
(this function is a standard/built-in Perl function):

<i w_case expression=

15' >

Example 1

| engt h($i w_i fcase_val ue) >

In the following example, either the first or second <i w_case> statement will be selected, depending

on the information contained in CDATA.

<iw_i fcase nanme='dcr. custoner. | astnane' >
<iw case value="Snith' >
If the CDATA portion of the "
the top-level "customer" tag
the case that will be selecte

</iw_case>

<i w_case type='l ast name' >
This test will always be true
iwifcase is explicitly testi
"l ast name"; however, if the c
the initial iw.case will be s
first (thus the iw _case chain
semantics).

</iw_case>

<i w_case val ue=' Jones' >
This case will never be reach
the first case is false, the
(type='lastnane') will always

</iw_case>

</iw_ifcase>

| ast nane" el enent within
is "Smth", then this is
d.

since the encl osing

ng an XML node of type
ustomer's nane is "Snmith"
el ected since it appears
has if-else-if-else..

ed: even if
second case
be true.

86

TeamXpress Templating and Deployment Guide

Custom XML Tags

Example 2

The following example tests the Oth CDATA section within the egg XML node to check if it is equal
to the string Gr ade A (unless the at t ri b attribute is also used; see at t r i b on page 83).

<i w_i fcase name='dcr. hen. egg' >
<iw _case value='Gade A > ...
</iw_case>

</iw_ifcase>

Example 3
<iw.iterate var ='node_within_y' Ilist="dcr.x.y.*" >
<iw_i fcase name='node_within_y'>
<i w_case type='custoner'>
do this if the node is of type custoner
</iw _case>

</iw_ifcase>
</iw.iterate>

Refer to i w- hone/ exanpl es/ Tenpl ati ng/ t enpl at edat a/tutori al s.

87

o

‘mv INTERWOVEN Setting Up Presentation Templates

~

<i w_el se>

The <i w_el se> tag is used for conditional inclusion of contents. It is used with the <i w_i f > tag and
provides contents to be included if the <i w_i f > tag is false. The <i w_t hen> tag (page 121) is also
used and provides the contents if the <i w_i f > tag (page 89) is true.

Forif-el se-if... conditional statements, you may also use <i w_i f case> (page 91) and
<i w_case> (page 83).

Examples
The following examples take this form:

<iw_if expr='" some logical condition' >
<!-- optional then clause (only included when iw.if is true) -->
<iw then>. ..</iw_then>
<l-- optional else clause (only included when iwif is false) -->
<iw else> ..</iw el se>
</iw.if>
Example 1
<iw_if expr=" {iw.value name="8$iw arg{noo}"/} eq "cow' ' >
<i w_t hen>

do this if the condition is true
</iw_then>
<iw_ el se>

do this if the condition is fal se
</iw_ el se>

</iw_if>
Example 2
<iw.if expr=" ({iw_value name="dcr.xyz"/} > 42) |
({iw_value nane="$iw arg{pdqg}"/} &t; 99)
>
<i w_t hen>

do this if the condition is true
</iw_then>
</liw.if>

88 TeamXpress Templating and Deployment Guide

Custom XML Tags

<iwif>
The <i w_i f > tag is used with an expression that is evaluated to determine whether the <i w_t hen>
(page 121) or <i w_el se> (page 88) statement will be used.

Forif-el se-if... conditional statements, you may also use <i w_i f case> (page 91) and
<i w_case> (page 83).

Attributes
The <i w_i f > tag requires the expr attribute.

expr ="' expression' A Perl logical expression, in XML-encoded form (for example,
'<' mustbeencodedas' & t;' and' & must be represented as

"anp;').

If the expression evaluates to true, the enclosed <i w_t hen> clause is used when generating the
presentation template's output. Otherwise, the optional enclosed <i w_el se> clause is used.

expr may contain one or more instances of {i w_val ue name='...'/} within the logical
expression. This allows the <i w_i f > tag to branch conditionally on values within the data content
record and/or Perl variables.

The semantics of {i w_val ue nane='..."'/} within the expr attribute are identical to the
<i w_val ue> tag (page 122).

Note: Because the character ' <' is not permitted in an attribute list, XML does not accept the
statement:

<iw.if expr="<iw.value name='$nno'/> eq 'cow ">
However, when you use the ' {' character, the statement is accepted:

<iw.if expr="{iw.value nane='"$nmoo'/} eq 'cow ">

For EBNF details, see htt p: / / www. xm . coml axm / t est axm . ht m(search for the
second occurrence of 'AttValue").

89

o

‘mv INTERWOVEN Setting Up Presentation Templates

~

Examples
All three of the following examples take this form:

<iw_if expr='" some logical condition' >

<l-- optional then clause (only used when iw.if is true) -->
<iw then> ..</iw el se>

<fiw.if>

Example 1

<iw_if expr='" {iw.value name="$iw arg{noo}"/} eq "cow' ' >
<i w_t hen>

do this if the condition is true
</iw_then>
<iw_ el se>
do this if the condition is fal se
</iw_ el se>
</[iw.if>

Example 2
<iwif expr=" {iw.value nane="dcr.price"/} > 42 ' >
<i w_t hen>
do this if the condition is true
</iw_then>
<liw.if>

Example 3
<iw_if expr='0">
<i w_t hen>
this statenent is now comment ed out
</iw_t hen>
</iw.if>

TeamXpress Templating and Deployment Guide

Custom XML Tags

<iw_ifcase>

The <i w_i f case> tag is used for conditional inclusion of contents. The <i w_i f case> tag uses its
immediately enclosed <i w_case> (page 83) tags to formasinglei f - el se-i f-el se... chain.

Attributes

The <i w_i f case> tag has one required attribute, name, and three optional attributes,
iw_ifcase_value,iw ifcase type,and iw ifcase attrib.

name Specifies either a Perl variable or an XML node in the data content
record. The semantics are identical to the nane attribute in
<i w_val ue> (page 122):

name COI’I’ESpOﬂdS to

der.x.y y component of top-level DCR/XML node x
hen. egg the egg XML node within the hen node
cow@mo moo attribute of DCR/XML node cow

z the Perl variable $z

$z the Perl variable $z

(....) the result of the Perl expression

The immediately enclosed <i w_case> tags use the value
corresponding to narme to test for conditional inclusion of contents;
the contents of the first <i w_case> tag with a logical test that returns
boolean true are included.

If nane corresponds to an XML node in the DCR (as opposed to
something like a Perl string variable), the immediately enclosed

<i w_case> tags may also use the type and attribute list values of this
XML node to determine which <i w_case> is used.

See <i w_case> (page 83) for more details.

i w_i fcase_val ue See Advanced Usage.

91

o

‘m) INTERWOVEN Setting Up Presentation Templates

~

iw_ifcase_ type See Advanced Usage.

iwifcase attrib See Advanced Usage.

Advanced Usage

The <i w_i f case> tag normally sets three variables that are used by enclosed <i w_case>
statements.

Usually, they are named:

1. $iw_ifcase_val ue (the value of name="..")
2. $iw ifcase_type (thetype of name="..")

3. $iw ifcase_attrib (attribute hash of name="...")

In rare cases, nested <i w_i f case> tags may require inner <i w_case> tags to access the value/
type/attributes of both the inner and outer <i w_i f case>. These optional attributes allow variables
(1), (2), and (3) to have names other than $i w_i f case_. . . .

This allows for code like this:

<iw_ifcase nane='x' iw.ifcase type='x_type' >
<i w_case type="animal'>
<l-- x is of type animal -->
<iw.ifcase name='y' iw.ifcase type='y type'>
<i w_case type='vegetable' >
<l-- y is of type vegetable -->
The type of x is: <iw value nane='x_type'/>
The type of y is: <iw.value nane='y type'/>
</iw_case>
</iw_ifcase>
</iw_case>
</iw_ifcase>

92 TeamXpress Templating and Deployment Guide

Custom XML Tags

Example 1
<iw_ifcase nanme="dcr.x.y' >
<iw case val ue='red' >
The XML node accessed via dcr.x.y has the val ue
</iw_case>

red"

<i w_case op='=~' val ue='green' >
The XML node accessed via dcr.x.y includes the string "green"
</iw_case>

<i w case attrib='"shoesize' value='10">
The XML node accessed via dcr.x.y has a
"shoesi ze" attribute with a value of "10"
</iw _case>

<i w_case>
Thi s case handl es everything el se

</iw_case>

</iw_ifcase>

Example 2

When iterating over every XML node of all types within y, you can use t ype="..." inthe
<i w_case> tag to discover the current node's type.

<iw_iterate var ="an_xm _node_within_y' list="dcr.x.y.*'>
<iw_i fcase name='an_xml _node_within_y'>
<i w_case type='custoner'>
This is an XM. el enent of type "custoner"
See for yourself: <iw value name='$iw.ifcase type'/>
</iw_case>
<iw_case op='=~" type='"zzz_'>
The type of this XML el enent starts with
</iw_case>

227

<i w_case val ue=' zebra' >

Any XML node type whose value is equal to "zebra"
</iw_case>
<i w_case type="animal'>

93

o

‘mv INTERWOVEN Setting Up Presentation Templates

~

The type of this XML node is "animal"
non-zebra ani mal : <i w_val ue nanme="an_xm _node_within_y'/>

</iw_case>

<i w_case>
The default case

</iw_case>

</iw_ifcase>
</iw_.iterate>

94 TeamXpress Templating and Deployment Guide

Custom XML Tags

<i w_i ncl ude>

The <i w_i ncl ude> tag allows you to insert a file or component presentation template at the point

where this tag appears.

Attributes

The <i w_i ncl ude> tag requires one of the two attributes, fi | e or pt, and allows two optional

attributes, i enc and node.

file="filepath'

i enc=" encodi ng'

pt="fil epath’

node=' node’

Specifies the path to the file to include. The contents of the file are
included where the <i w_i ncl ude> tag occurs.

Specifies encoding when a file named by the f i | e attribute is not
encoded in UTF-8. Mandatory when a file specified by thefil e
attribute does not use UTF-8 encoding.

Specifies the path to the presentation template to process and include
at the point where the <i w_i ncl ude> tag occurs. You may nest any
number of templates, although performance may degrade if nesting is
eXCcessive.

Specifies whether f i | epat h is a relative or absolute path
(Example 1).

nmode has three possible values:

 docr oot (default value): The path specified on the command line (via- i w_i ncl ude- | ocati on
pat h) is always prepended to the file name given in the fi | e or pt attribute. See
“lwpt_compile.ipl” on page 372. From the TeamXpress GUI, it is as if the docr oot of the file
system is the base of the user’s workarea.

e ptlocal : Relative path names are relative to the directory of the current presentation template.
However, absolute paths are absolute in relation to the computer’s file system.

« cwd (current working directory). Relative path names are relative to the path specified by the
command line (via-i w_i ncl ude-1 ocati on pat h). However, absolute paths are absolute in
relation to the computer’s file system.

95

o

‘mv INTERWOVEN Setting Up Presentation Templates

~

A file path is relative only under the following conditions:

« OnUnix: file name does not begin with a slash.
« On Windows: file name does not begin with a <dri vel et t er >.

When docr oot mode is used (or when cwd mode is used with a relative path), the
-iw_i ncl ude-1 ocat i on flag must be specified with i wpt _conpi | e.

The following table shows how file paths change given different modes and path types (relative versus
absolute):

Mode Given relative path: Given absolute path:
daught er/ son. ht m / et c/ passwd

docr oot (default) |path/daughter/son. htn pat h/ et c/ passwd

pt | ocal pt pat h/ daught er/ son. ht m / etc/ passwd

cwd pat h/ daught er/ son. ht / et c/ passwd

pt pat h is the path of the current presentation template (or template component).

CDATA
CDATA is an optional tag that is only meaningful in pt -style inclusion.

CDATA may contain Perl code that initializes a hash named % w_par am The % w_par amhash defines
the key, value pairs that are available within the nested template via the % w_ar g hash (Example 2).

Example 1
<iw_include file="exanpl eFile' node=' docroot'/>

The literal contents of the file exanpl eFi | e will be inserted at the point where this tag appears. The
file path can be relative or absolute, based on the node attribute. Since node is docr oot (and if the
path starts with a slash or a drive letter), the file path given on the command line (using the

-iw_i ncl ude-1ocation pat h flag) will be prepended to the file name givenin the fi I e or pt
attribute of i w_i ncl ude.

96 TeamXpress Templating and Deployment Guide

Custom XML Tags

Example 2

If the enclosing template is:

<iw_i ncl ude pt="'he
$i w_paran{col or}
$i w_par an{ noo}
$i w_par an{ headl
11>

</iw_include>

| o_nested.tpl'><![CDATA]

"green";

"cow';

i wpt _dcr _val ue(' dcr. Headl i ne');

ne}

then within the enclosed template, the line:

Your favorite color is <iw.value name='$iw arg{color}'/>!

produces the output:

Your favorite col or

Synopsis

is green!

Various usage examples follow:

<iw_include file

<iw_include file
i enc

<iw_include file
nmode
<i w_i ncl ude pt

<i w_i ncl ude pt
nmode

myfile.htm'/>

myfile. htn'
GB2312' / >

/shared/stuff/a very large_ table. htm"
cwd' />
= nyfile.tpl'/>

myfile.tpl

"ptlocal'/>

97

o

‘my INTERWOVEN

~

<i w_i ncl ude pt
node
<! [CDATA

$i w_par an{ col or}

'h
p

$i w_par an{ noo}

$i w_par an{ headl i ne}

11>

</iw_include>

Setting Up Presentation Templates

ell o_nested.tpl'
tlocal'/>

= Ilredll;

= "cow';

i wpt _dcr _val ue(' dcr. Headl i ne');

98

TeamXpress Templating and Deployment Guide

Custom XML Tags

<iw_iterate>

The <i w_i t er at e> tag is used to iterate over a data content record (DCR) list or a Perl list. The
<i w_i t er at e> tag can be nested to any number of levels; that is, there can be other <i w_i t er at e>
tags inside an <i w_i t er at e> tag.

Attributes

The <i w_i t er at e> tag has two required attributes, I i st and var, and three optional attributes,
order,iteration,andl abel .

var =' vari abl e_nane

list="1ist"'

order='sort_order"’

Defines the iterator variable that contains the current value

within the list. var i abl e_name cannot include the space character.
the var attribute is transformed into a Perl variable of the same name,
which is accessible via <i w_val ue> and within <i w_per | > code.

Specifies the list being iterated over. If the | i st attribute's value is not
enclosed in parentheses, it is assumed to be referring to a DCR list (or
avar -declared iterator into a DCR list). If the list attribute's value is
enclosed in parentheses, then it is a Perl expression that evaluates to a
list. Perl-based lists may be created manually within an <i w_per| >
tag or inserted into the presentation template automatically by other
tags that make use of this feature.

Specifies a function that reorders the list.

i teration='"counter_nane' Overridesthe name of the counter used by tags, such as <i w_i f >,

| abel =' | abel '

to determine how many elements within a list have been iterated

through. The default name of the iteration counter is
iwiteration.

Allows <i w_next > (page 105) and <i w_| ast > (page 104) to exit
deeply nested looping structures.

99

o

{2:5} INTERWOVEN

Setting Up Presentation Templates
~

Example 1
The following example uses the iteration attribute with <i w_i f > and <i w_t hen> tags.

<iw_iterate var ='current_col or
Iist = (@olors)'
iteration='col or_count'>
<iw.iterate var =' current _shape
Iist =' (@hapes)'

iteration='shape_count'>

<iw_.if expr="!(({iw_val ue name="$col or_count"/} +
{iw_val ue name="$shape_count"/}) %0)'>

<iw_t hen>
do sone special magic every
Oth, 10th 20th (..etc) tinme around the | oop
</iw_then>
</iw.if>

Here's a color: <iw_value name='current_color'/>
Here' s a shape: <iw val ue nane='current_shape' />
</iw.iterate>
</iw.iterate>

Example 2
The following example generates Perl variables named " $Headi ng" and " $Sect " .

<iwiterate var='Sect' |ist="dcr.Section >
<iw.iterate var='Heading' |ist= Sect.heading >
<i w_val ue nane=' Headi ng' />
</iw_iterate>
</iw_iterate>

100 TeamXpress Templating and Deployment Guide

Custom XML Tags

Example 3
The following example shows lists created manually with an <i w_per | > tag.

<i w_per | ><! [CDATA[ny %=(kl=>'v1l', k2=>'v2'); 11>
</iw_perl>

<iw_iterate var='$knanme' |ist='(keys %)'>
<i w_val ue nane=' $knane' /> (a key nane in hash %)
</iw_.iterate>

Example 4
The following example iterates in reverse order:

<iwiterate var = 'X
order = 'reverse'
list = 'dcr.data.custoner'>

<i w_val ue nanme='x'/>
</[iw_.iterate>

Example 5

The following example iterates using a custom sort function (in this example, suppose each
cust omer hasal ast name tag enclosed within it):

<i w_per | ><! [CDATA[
sub your function

{
Here's an arbitrary function:
#
sort customers on the basis of
the length of their l[ast nane
I ength(iwpt_dcr_value(' b.lastnane')) <=>
I ength(iwpt_dcr_val ue(' a.lastnane'));
}

11></iw_perl>

<iw.iterate var ='x

101

o

‘mv INTERWOVEN Setting Up Presentation Templates

~

or der "sort your_function'
list = 'dcr.data.custoner'>
<i w_val ue nanme='x'/>
</iw_.iterate>

Synopsis
<iw_iterate var="iter' list="(@n_array)'> ...
</iw_.iterate>

<iw.iterate var="iter' order="reverse' list='"(@n_array)' > ...
</iw_.iterate>

<iw.iterate var="iter' order='sort your_sort_function'
list="(@n_array)' >...
</iw_.iterate>

Advanced:

You can also filter the list. The <i w_i t er at e> tag will iterate over whatever
your _arbitrary_function returns.

<iw.iterate var="iter' order='"your_arbitrary_function'
list="(@n_array)' >...
</iw_.iterate>

<iwiterate var="iter' list=" (@n_array)' |abel=xyz'> ...
</iw_.iterate>

<iw_iterate var="iter' list="(jon())' > ...
</iw_.iterate>

<iwiterate var="iter' list= (keys %)' iteration="iter_hkey' > ...
</iw_.iterate>

<iw.iterate var='Sect' list="dcr.Section" > ...
</iw_iterate>

<iw.iterate var='Sect' list="dcr.Section' iteration="iter_sect'>
</iw_.iterate>

102 TeamXpress Templating and Deployment Guide

Custom XML Tags

<iwiterate var="iter' list="(expr that returns a perl list)'> ..
</iw_.iterate>

If you specify a custom sorting function via the or der attribute, (for example,
conpar e_| ast _nane), you can define it in an <i w_per | > tag

<i w_per | ><! [CDATA[
sub conpare_ | ast _nane
{
i wot _dcr _value('a.last_nanme') cnp
i wot _dcr_val ue(' b.l ast_nane');
}
11>

</iw_perl>

<iw_iterate var =' cust
order ='sort conpare_|l ast_nane'
list ='dcr.custoner'>

<i w_val ue name='cust.first_nane'/>
<i w_val ue name='cust.|ast_name'/>
</iw.iterate>

103

o

{2:5} INTERWOVEN

~

Setting Up Presentation Templates

<iw_| ast >
The <i w_| ast > tag is used to skip to the last iteration of a (possibly labeled) loop.

Attributes
The <i w_| ast > tag has one optional attribute, | abel .

| abel =' | abel ' Allows the flow of control to jump outside of the current loop tag (for
example, <i w_i t er at e>) if no explicit label is given. If a label is
given that corresponds to a loop label set up in<i w_i t er at e> or
elsewhere, then the flow of control passes to immediately outside that
labeled loop. This is useful if you must jump out of a deeply nested
looping structure.

Example 1
<iwiterate var="Sect' list="dcr.Section' iteration=iter_sect
<iw.if expr=" {iw.value nane="iter_sect"/} == o>
<i w_t hen>
<iw_ last/>
<I-- exit the current iw.iterate loop -->
</iw_then>
</[iw.if>

</iw_.iterate>

Example 2
<iw.iterate var =' sone_xxx_el enent
list =" (@xx)'
iteration =" nrow
| abel =' noo' >
<iw.iterate var='"sone_yyy elenment' list="(@yy)' >
<iw.if expr=" {iw_value nane="nrow'/} ==3"' >
<iw_t hen>
<iw_ | ast | abel = noo' /> <!-- deeply nested! -->
</iw_then>
</iw.if>

...do some arbitrary stuff...
</iw.iterate>
</iw_.iterate> <!-- you can directly junp here -->

104 TeamXpress Templating and Deployment Guide

Custom XML Tags

<i w_next >

The <i w_next > tag is used for skipping to the next iteration of a (possibly labeled) loop. It allows the
flow of control to skip to the next element of the current loop tag (for example, <i w_i t er at e>) if
no explicit label is given.

Attributes
The <i w_next > tag has one optional attribute, | abel .

| abel =' 1 abel ' Allows the flow of control to jump outside of the current loop tag (for
example, <i w_i t er at e>) if no explicit label is given. If a label is
given that corresponds to a loop label set up in <i w_i t er at e> or
elsewhere, then the flow of control passes to immediately outside that
labeled loop. This is useful if you must exit a deeply nested looping

structure.
Example 1
<iw_iterate var='"Sect' list="dcr.Section' iteration="iter_sect'>
<iw.if expr=" {iw_value nane="iter_sect"/} ==3"' >
<iw_t hen>
<iwnext/> <l-- skipitem3 -->
</iw_then>
</iw.if>
</iw.iterate>
Example 2
<iwsql iterate result_set = 'hulas
var = 'current _dance
iteration = 'nrow
| abel = '"hul a_l oop' >
<iwif expr=' {iw.value name="nrow'/} ==3"' >
<i w_t hen>
<l-- skip item3 (using optional explicit |oop nane!) -->

<i w_next | abel =" hula_| oop'/>
</iw_then>
<liw.if>
</iw_sql _iterate>

105

o

‘m) INTERWOVEN Setting Up Presentation Templates

~

<i w_perl >

The <i w_per | > tag can be used to insert arbitrary Perl code into the presentation template. It has no
attributes. The actual Perl code must be inside a CDATA section.

« Arbitrary strings may be created as a part of the presentation template's output. For example:
ny $first_name = 'Jon'
i wpt_output ("H there $first_nane");

« Scalars within a data content record may be accessed. For example:
ny $headline = iwpt_dcr_val ue(' dcr. Headline');

« Lists within a data content record may be traversed/accessed. For example:

foreach ny $para_iter
(iwpt _dcr _list('dcr.Story. Section Paragraphs[1]. Paragraphs'))
{

ny $paragraph = iwpt_dcr_value('para_iter') ;
i wpt _output("here is a paragraph:\n$paragraph\n");
}
« Any scalar variable created within an <i w_per | > tag is accessible via the <i w_val ue> tag. See
<i w_val ue> for details.

 The code created by the <i w_per | > tags and the other tag types forms a single program. This
program is what generates the output of i wpt _conpi I e. i pl, which is typically an HTML file
(see Appendix B, “Using Command-Line Tools”).

Therefore, if you set a variable in one <i w_per | > section, it is available in subsequent
<i w_per | > tags as long as it is in scope. If you define a subroutine anywhere, it is accessible
everywhere.

APIs
e iwpt_output ($string)
i wpt _out put ($string, $i enc)

Outputs $st ri ng to the generated page. If the optional $i enc parameter is given, you may
specify the current encoding scheme used by $st ri ng, thus allowing it to be properly UTF-8
normalized (UTF-8 normalization must occur even if the final output is not UTF-8).

* jwpt_dcr_val ue($accessor_string)

Fetches the value of a DCR node. If no such node exists, undef is returned.

106 TeamXpress Templating and Deployment Guide

Custom XML Tags

e iwpt_dcr_Ilist($accessor_string)

Fetches a list of DCR nodes.
e iwpt _get flag paran($flag)

Gets the list of values associated with an i wpt _conpi | e. i pI command-line flag.
e jiwpt_get_ofile_nane()

i wpt _get _ofile_name($part)

Gets the name of the file that i wpt _conpi | e. i pI will output.

If $part is undefined, the entire file name is returned.

If $part is' di rnane' , the directory portion of the name is returned.

If $part is' basename' , the file name (minus the di r name) is returned.
e jwpt_get_dcr_nane()

i wpt _get _dcr_nanme($part)

Gets the name of the DCR used by i wpt _conpi l e. i pl .
e jiwpt_get_pt_nane()

i wpt _get _pt _nanme($part)

Gets the name of the presentation template used by i wpt _conpi l e. i pl .

See corresponding TeansSi t e: : PT: : i w_xml docs for: get _ofil e_name, get _fl ag_par am
get dcr_nane, get _pt_nane.

Example
<iw_pt>
what ever. ..

<i w_per | ><! [CDATA[

access a DCR val ue

ny $headline = iwpt_dcr_val ue('dcr.Headline');
nmy $headline = iwpt_dcr_value('dcr.Headline[0]');
nmy $headline = iwpt_dcr_value('dcr.Headline[1]');
Let's performwhat could be an arbitrarily

conpl ex mani pul ati on of a value. The next |ine

of code makes our headline all upper-case!

107

o

‘mv INTERWOVEN Setting Up Presentation Templates

~

$headl i ne = uc $headl i ne;

now emt it!

i wpt _output(" <h3>Mani pul ated content: </ h3>
<h2> $headl i ne </ h2>

)
W can do anything at all in here, and then

manual | y push our "output" into the page produced

by the presentation-tenplate engine. In fact, our

entire presentation tenplate can be a single iw perl
tag if we w sh!

for (my $i=0; $i<10; ++3$i)
{

}

i wpt _out put ("<h3>Loopi ng over multiple DCRs:</h3>\n");

i wpt _out put ("\'nYou are on Di et Coke nunber: $i\n");

e +
Warning: Miultiple DCRs are not supported in this version due |
tolimtations in the GU and in iwgen/iw egen. |
|
To iterate through nultiple DCRs, |oop over the |
top-level property, 'dcr'. Recall that 'dcr.xyz' |
isinmplicitly the 'xyz' property of dcr[0]; 'dcr[O0].xyz"' |
nmeans the same thing as 'dcr.xyz'. Therefore, a bare |
"der' is the list of all DCRs avail abl e. |
|
NOTE: Follow the arrows to understand the relationship |
between <iw perl>'"s APl for DCRs and the |
<iw.iterate> & <iw val ue> tags. |
2 +

foreach ny $index (iwpt_dcr_list("der'))

{

AN AN

108 TeamXpress Templating and Deployment Guide

Custom XML Tags

index' list="dcr'>

<i w_val ue nane='index. Headl i ne'/ >

<iw_iterate var=

</[iw.iterate>

HHHHEHHHHHEHHHF

I
I
Vv

ny $head = iwpt_dcr_val ue('index. Headline') ;

i wpt _output("
DCR headl i ne:

<h2> $head </ h2>

<p>
)
}
iwpt_output("\n <hr> \n");

11></iw_perl>

what ever. . .
</iw_pt>

109

o

‘m) INTERWOVEN Setting Up Presentation Templates

~

<iw_pt>

The <i w_pt > tag identifies a file as a presentation template and specifies the template’s name. The
<i w_pt > tag must enclose the entire presentation template except the XML declaration. It must be
used exactly once in a presentation template containing tags derived from iw_xml.

For information on i w_pt flags, see “iwpt_compile.ipl” on page 372.

Example
The following code shows correct usage of the <i w_pt > tag:

<?xm version="1.0" standal one="yes"?>
<i w_pt >

</iw_pt>

The following code shows incorrect usage of the <i w_pt > tag:
<?xm version="1.0" standal one="yes"?>
<iw_repeat count=2> ... </iw_repeat>

<iw_pt>

</iw pt>

110 TeamXpress Templating and Deployment Guide

Custom XML Tags

<i w_r epeat >

The <i w_r epeat > tag allows you to repeat the content contained within the <i w_r epeat > tag a
given number of times. You may nest other iw_xml tags within the <i w_r epeat > tag.

Attributes
This tag has one optional attribute, count .

count =' nunber" Specifies the number of times to repeat the content.

Example
The following example repeats the string “Hello! " six times in the generated HTML files:

<i w_repeat count="6">Hello! </iw_repeat>
The result of this code is:

Hello! Hello! Hello! Hello! Hello! Hello!

111

o

‘m) INTERWOVEN Setting Up Presentation Templates

~

<iw sql _iterate>

The <i w_sql _i t er at e> tag is used to iterate SQL result sets. See also <i w_sql _query> on
page 118.

Attributes

The <i w_sql _i t er at e> tag has two mandatory attributes, r esul t _set and var, and two optional
attributes, i t erati on and | abel .

var='vari abl e' Specifies the iterator variable that contains the current value within the
resul t _set (Example 1).

resul t _set =' nane' Specifies the name of the SQL query result set being iterated through.
Similar to the I i st attribute of <i w_i t er at e>.

i teration='"counter_nane' Overrides the name of the counter used by tags like <i w_i f > to
determine how many elements within the result set have been iterated
through so far. The default counter name isi w_sql _i t erati on.

It is occasionally useful to override the default name if you wish to nest
<i w_sql _i t er at e> tags and use conditional logic that depends on
the values of outer and inner loop counters within the innermost
looping structure. See <i w_i t er at e> (page 99) for details.

| abel =' | abel Allows <i w_next > (page 105) and <i w_| ast > (page 104) to jump
out of deeply nested looping structures.

112 TeamXpress Templating and Deployment Guide

Custom XML Tags

Note: When the i w_val ue tag accesses a column within an SQL row, it does so like this:
<i w val ue nanme='$current hat->{hat_size}'/>

Here, the var fortheresul t _set "hats" isnamed"current _hat" (current_hat
corresponds to a database row).

Even if a column in the database is specified in upper case, it is always accessed via lower case
within presentation templates (this eliminates database-to-database inconsistencies in the way
case conversion is handled). For example, whether the hat _si ze column is present in the
database as Hat _Si ze or HAT_SI zZE, templates will refer to the database column as

hat _si ze.
Example 1
<iw_sql _open data_source = "dbi: nysql : i w_deno"
user _namne = "root">
<iw_sql _query stnt = 'select * from customer'
result _set = '"all_custoners' />
<iwsqgl_iterate var =' current _customer'’
result_set ='all_custoners'
iteration ='nrow >

Here is a custoner's first nane in the database
<i w val ue nane='$current custoner->{first_nane}'/>
It was on row <iw.val ue nanme="$nrow />
</iw.sql _iterate>
</iw_sql _open>

Example 2

<iw sql iterate var='current_person' result_set=" people’
| abel =" out erl oop' >

<i w_val ue name=' $current _person->{hat_size}'/>

<iw sql iterate var='current_hat' result_set= hats'
iteration='nhats'>
<iw.if expr='{iw.value name="nhat"/} == 13' >
<i w_t hen>
<l-- you can exit out of multiple levels! -->

113

o

‘m) INTERWOVEN Setting Up Presentation Templates

~

<iw_| ast | abel = outerl oop'/>
</iw_t hen>
</[iw.if>
This hat is of size: <iw value nane=' $current hat
->{hat_size}'/>
</iw_sql _iterate>
</iw_sql iterate>

Note: On Windows NT/2000 systems, thei w_sql template tags require a database source name
(DSN) to be configured using the ODBC control panel. The Default Network for the DSN
should be set to TCP/IP rather than Named Pipes in order for Generate HTML or template
preview to connect to the database. From the ODBC control panel, click the System DSN
tab, select LocalServer, click Configure, click Next, and click Client Configuration. In the
SQL Server Client Configuration Utility window, select the Net Library tab, and replace
Named Pipes with TCP/IP.

114 TeamXpress Templating and Deployment Guide

Custom XML Tags

<i w_sql _open>
The <i w_sql _open> tag is used to open a database connection.

Attributes
The <i w_sql _open> tag has one required attribute, dat a_sour ce, and five optional attributes,
user_nane,connection,passmord,aux_env,andattL

data_source='string Specifies the DBI/DBD connection string used to specify the database
and schema to which a connection is being made.

user _name=' nane' Specifies the account name used to make the database connection.
passwor d=' passwor d' Specifies the authorization information for user _nane.
connect i on=' nane' Specifies the name of the SQL connection. Defaults to

i w_sqgl _connect i on. Explicitly naming the connection is useful if
you wish to have multiple database connections open simultaneously
(Example 2).

Note: When an <i w_sql _quer y> is using a database connection that
is not the default (i w_sqgl _connect i on), it must provide the
connection name explicitly.

aux_env='vari abl e' Specifies the auxiliary environment variables needed to make the
connection. Most database drivers do not need this, but Oracle
requires ORACLE_HOVE and ORACLE_SI D to be set (Example 3).

attr="attribute' Specifies the auxiliary DBI/DBD flags for the database.

Default values:

PrintError => 0
Rai seError => 0
Aut oCommit => 1,
LongTruncCk => 1
LongReadLen => 3
ChopBl anks => 1

115

o

{2:5} INTERWOVEN

~

Setting Up Presentation Templates

Each key, value pair that you supply overrides the corresponding
default. For example: attr = " ChopBl anks => 0,
LongReadlLen => 64000" results in:

PrintError => 0,
Rai seError => 0,
Aut oCommit => 1,
LongTruncCk => 1
LongReadLen => 6

0

ChopBl anks =>

400,

Note: For information on Perl DBI/DBD, see Programming the Perl DBI by A. Descartes and T.
Bunce, published by O’Reilly & Associates, ISBN: 1-56592-699-4.

Example 1
<i w_sgl _open data_source
<i w_sgl _query stmt
result_set
<iw sql iterate var
result_set
iteration

"dbi: nmysql :i w_denmp" >
‘select * from custoner’
"all _custoners' />
‘current _custoner’
"all _custoners'
"nrow >

Here is a custoner's first nane in the database
<i w_val ue nanme=' $current _customer->{first_nane}'/>
It was on row. <iw val ue name=' $nrow />
</iw_sql _iterate>
</iw_sql _open>

Example 2

<iw_sql _open data _source = "dbi: nysql:iw denp"
user _nane = "root"
password = "runpl estiltskin"
connection = 'dbh
attr = "Rai seError=> '0",

Aut oCommit=> "1'">
"select * from custoner’
" dbh'

"sth'/>

<iw_sql _query stn
connecti on
result_set

116 TeamXpress Templating and Deployment Guide

Custom XML Tags

<iwsql iterate var="row result_set="sth' >
<i w_val ue name='$row >{property}'/>
</iw.sql _iterate>
</iw_sql _open>

Example 3
<i w_sgl _open data_source = "dbi:Oacle:"
user _nane = "systent
password = "manager"
aux_env = "ORACLE HOWVE => '/opt/oracl e/ 805",

ORACLE_SID => 'newton'" >

<iw sqgl _iterate var =' current _custoner’

result_set ="all_custoners'

iteration = nrow >

Here is a custoner's first nanme in the database:
<i w_val ue nanme=' $current _customer->{first_nane}'/>
It was on row. <iw val ue nanme=' $nrow />

</iw_sql iterate>
</iw_sql _open>

117

o

‘m) INTERWOVEN Setting Up Presentation Templates

~

<i w_sql _query>
The <i w_sql _quer y> tag is used for querying an SQL database.

Attributes

The <i w_sql _quer y> tag has two required attributes, st mt and r esul t _set , and one optional
attribute, connecti on.

stnt ="' query'

result_set='nane'

connecti on=' nange'

Example 1

<iw_sql _open data_source

user _nane
<iw_sql _query stnt

<iw.sqgl_iterate

Specifies the SQL query being issued. The results of this query are
storedinresul t _set. If{iw val ue name='..."'/} appears
within the SQL statement, variable substitution takes place (see
<i w_val ue> page 122).

Example 3 demonstrates both the use of {i w_val ue name='..."'/}
and placing the query st nt within the body of the <i w_sql _query>
tag. This is useful when you have a long query and placing it in the
attribute list is awkward. The statement may be supplied in an
attribute list or the tag body.

Specifies the name of the SQL query result set into which the database
will return all rows matching the request.

Specifies the name of the SQL connection. Defaults to

i w_sql _connect i on. Explicitly naming the connection is useful if
you wish to have multiple database connections open simultaneously
(Example 2).

Note: When an <i w_sql _quer y> is using a database connection that
is not the default (i w_sql _connect i on), it must provide the
connection name explicitly.

"dbi : nysql : i w_deno"

"root">
= 'select * from custoner'
result_set = "all_custoners' />
var =' current _custoner'
result_set ="all_custoners’

118

TeamXpress Templating and Deployment Guide

Custom XML Tags

iteration ='nrow >

Here is a custoner's first nanme in the database
<i w val ue nane=' $current _custoner->{first_nane}'/>

It was on row <iw_val ue nanme="$nrow />
</iw_sql _iterate>
</iw_sqgl _open>

Example 2

<i w_sgl _open connection = 'dbh
dat a_source = 'dbi:nysql:iw _denp
user _nane = 'root
aut h = 'runpl estiltskin
attr = 'Rai seError , 1,

Aut oCommit , 1 ">

'sel ect * from customer'
" dbh'
'rs'/>

<i w_sqgl _query stmt
connecti on
result_set

<iwsqgl iterate var="row result_set='rs'>
<i w_val ue nanme=' $row >{property}'/>
</iw_sql _iterate>

</iw_sql _open>

Example 3
<iw_sqgl _open data_source = "dbi:nysql:iw denpn"
user _namne = "root">
<iw sqgl _query result_set = 'folks_froma conpany' >

select * from custoner
wher e conpany

like "{iw val ue nane='$i w _arg{conpany_nane}'/}"

</iw_sqgl _query>
what ever. ..

</iw_sql _open>

119

o

‘m) INTERWOVEN Setting Up Presentation Templates

~

<i w_systenp
The <i w_syst en® tag inserts the output of an external program into the generated page.

Attributes
The <i w_syst en» tag has one mandatory attribute, command, and one optional attribute, i enc.

conmand=' command' Specifies the command line to be executed. The output of this
command is inserted into the generated HTML page.

i enc="encodi ng' Specifies encoding. When the result of the command line's execution is
non-UTF-8 data, its encoding must be specified via the i enc attribute.

Example
The following example shows proper usage of the command attribute.

<i w system command='Ils -1'/>

120 TeamXpress Templating and Deployment Guide

Custom XML Tags

<i w_t hen>

The <i w_t hen> tag is used for conditional inclusion of contents. It is used with the <i w_i f > tag
(page 89) and provides contents to be included if the <i w_i f > tag is true. The <i w_el se> tag
(page 88) is also used and provides the contents if the <i w_i f > tag is false.

Examples
The following examples take this form:

<iw.if expr=" sone logical condition' >

<l-- optional then clause (only included when iw.if is true) -->
<iw then>...</iw_then>

<l-- optional else clause (only included when iwif is false) -->
<iw else> ..</iw el se>

</[iw.if>

Example 1
<iw_if expr=" {iw.value name="$iw arg{noo}"/} eq "cow' ' >
<i w_t hen>
do this if the condition is true
</iw_then>
<iw_ el se>
do this if the condition is fal se
</iw_ el se>

</iw_if>
Example 2
<iw.if expr=" ({iw_value nanme="dcr.xyz"/} > 42)
({iw.value namre="$iw arg{pdq}"/} &t; 99)
">
<iw_t hen>

do this if the condition is true
</iw_then>
</iw.if>

121

o

‘mv INTERWOVEN Setting Up Presentation Templates

~

<i w_val ue>

The <i w_val ue> tag allows you to insert a Perl value or a value from a data content record where
this tag appears.

Attributes
The <i w_val ue> tag has one required attribute, name, and one optional attribute, i enc.

name='vari abl e_nanme' Specifies the name of the value being put into the generated document.
If vari abl e_name begins with a letter or underscore, the variable
being referred to resides in a data content record. If var i abl e_nane
is undefined, a 0-length string is inserted.

name corresponds to

der.x.y y component of top-level DCR/XML node x

hen. egg the egg XML node within the hen node

cow@mo noo attribute of DCR/XML node cow

z the Perl variable $z

$z the Perl variable $z

(....) the result of the Perl expression

i enc=' encodi ng' Specifies current encoding (input encoding) when the variable

specified by the nane attribute is not UTF-8 normalized. Mandatory
when nane is not UTF-8 normalized. i enc is useful when collecting
data from sources other than data content records (for example, a
database whose content is encoded in BIG5).

122 TeamXpress Templating and Deployment Guide

Custom XML Tags

Example 1
If the value of the Oth headline in a data content record is “Dewey Wins!”, the following:

Fl ash: <iw val ue name='dcr.Headline'/> Read all about it!

compiles into:

Fl ash: Dewey Wns! Read all about it!

Example 2

Every component within a data content record may have a list of subcomponents. Therefore, all
references to subcomponents within a data content record, denoted by “.” (a period) in the nanme
attribute, are implicitly subscripted by [0] unless an explicit subscript is provided.

<i w_val ue nane='dcr. hen. egqg' />
Is the same as:
<i w_val ue nane='dcr[0]. hen[0].egg[0]" >

This means that the <i w_val ue> tag supports immediate access into any part of a data content
record.

Example 3
If the var i abl e_name begins with a $, the data being referred to is a Perl scalar.

Therefore, if the value of the Perl variable $per son is Jon, the following line:
H there <iw_val ue name='$person'/>, how are you?
compiles into:

H there Jon, how are you?

123

o

‘m) INTERWOVEN Setting Up Presentation Templates

~

Ifthe var i abl e_name issurrounded by parentheses, it is treated like a Perl expression, which makes
it easy to call functions and evaluate formulas inline. Therefore:

A day has <iw_val ue nane='(60*60*24)'/> seconds
compiles into:

A day has 86400 seconds!

Example 4

In cases where name consists only of a letter or underscore followed by letters, digits, and/or
underscores, preceding it by a single $ does not matter. Therefore, when this code is used:

<iw_perl| ><I[CDATA[$person = '"Jon';]]></iw_perl>
the following two lines result in equivalent nane values:

<i w_val ue nanme=' $person'/>
<i w_val ue nane=' person'/>

However, the following line is illegal:
<iw_val ue name='$x.y'/>

because the $ implies that x. y is a Perl variable— x. y is not a legal Perl variable name!

Example 5

By default, the value of an XML node is the value of the Oth character data component of the node.
You may explicitly change this default.

Given XML like this:

<?xm version="1.0" encodi ng="UTF-8"?>

<hen>
<egg>t his <yol k>i s an </ yol k>advanced</ egg>
<egg>exanpl e <yol k>i nvol vi ng </yol k>explicit</egg>
<egg>character data <yol k>accessor </yol k>stri ngs! </ egg>
</ hen>

124 TeamXpress Templating and Deployment Guide

Custom XML Tags

the following line:
<i w_val ue nane='dcr. hen.egg[1]'/>

emits example , as does this:
<i w_val ue nane='dcr. hen. egg[1] .character data[0]'/>

However this line:
<i w_val ue nane='dcr. hen. egg. character data[1]'/>

emits advanced and this line:
<i w_val ue nane='dcr. hen. egg[2].character data[l]'/>

emits st ri ngs!

Example 6

The <i w_val ue> tag is unusual because it has two distinct forms:
<iw_val ue name="..." />

and when in a CDATA section, or in various attributes of certain tags,
{iw_value name="..."/}

The second form exists because XML does not allow tags inside of attribute lists; however, sometimes
this is what you need to make coding simpler. Therefore, the following line is permissible:

<iw.if expr=" {iw.value name="$nrow'/} == 3' > ..
Example 7
Both the <i w_val ue name='...'/>tagformandthe {i w val ue name='..."'/} tagform

work within CDATA sections. This makes it easy to do things like emit values within a CDATA section
containing HTML, as shown in the following code:

<sone_arbitrary_t ag><![CDATA

It's ok to use the value tag inside a CDATA section
<iw_val ue name="dcr.x.y'/> this works!
{iw_val ue nanme="dcr.x.y'/} this does too (it nmeans the sane thing)!

<p>
That was fun!

11>

</sone_arbitrary_tag>

125

o

{2:5} INTERWOVEN

~

Setting Up Presentation Templates

Synopsis

<iw_pt>
Explicit dcr value: <iw_.value nane="dcr.stuff[0]'/>
Explicit dcr value: <iw_.value nanme="dcr.stuff[1]'/>

Inplicitly specified dcr value: <iw.value name='dcr.stuff'/>
(note: the default index is always 0).

Access a DCR val ue through an iterator variable ('current_dcr'):
<iw.iterate list="dcr' var='current_dcr'>
<i w_val ue name='current_dcr. Headl i ne' />
</iw.iterate>

Access Perl|l data from XM.:

<i w_per | ><! [CDATA[

$j cox_hai ku = "Cof f ee overl oad \n"
"Rol | er-coaster dosage ride \n"
"Fast, slow, giddy , |ow \n"
$data _encoded in BIG = "'... bigb content..."';

11></iw_perl>

<i w_val ue name='$j cox_hai ku' />
<i w_val ue nane=' $data_encoded in BIG"' ienc='BIG'/>

</iw pt>

126 TeamXpress Templating and Deployment Guide

Writing Your Own Tags

Writing Your Own Tags

If the provided iw_xml tags do not satisfy your needs, it is possible to write your own custom XML
tags. However, this is an advanced exercise.

For assistance in debugging tags and presentation templates, use the - ocode flag on the

i wpt _conpi | e command. Additional debugging help is available with the command / i w- home/
i w-perl/bin/iwperl -w. Youcaninvoke a graphical interface with the command /i w- home/
i wperl/bin/iwerl -d:ptkdb.

127

o

‘mv INTERWOVEN Setting Up Presentation Templates

~

128 TeamXpress Templating and Deployment Guide

Chapter5
Mapping Users, Templates,
and Content Records

This chapter describes how the t enpl at i ng. cf g file maps the interaction between content
contributors, data capture templates, presentation templates, and data content records. Sections in
this chapter discuss the following:

An overview of t enpl at i ng. cf g.

Pointers to sample t enpl at i ng. cf g files that are included with this release of TeamXpress
Templating.

An example of at enpl at i ng. cf g file.

The t enpl ati ng. cf g DTD.

templating.cfg Overview

The t enpl at i ng. cf g file is an XML file that resides outside of the TeamXpress file system in
i w- horre/ | ocal / conf i g. Each TeamXpress Templating installation must have exactly one such
file. By configuring t enpl at i ng. cf g, you can control:

Which data categories and types TeamXpress Templating is aware of.

Which presentation templates can generate HTML files on which branches and/or directories.
Which presentation templates can be used with a specific data type.

Which users or roles are allowed to create or edit data content records for a specific data type.
The location of the presentation template used for previewing generated HTML files.

The following sections describe how to perform these configurations.

129

o

‘mv INTERWOVEN Mapping Users, Templates, and Content Records

~

Example templating.cfg File

TeamXpress Templating ships with the following sample t enpl at i ng. cf g file:

i w- hone/ exanpl es/ Tenpl ati ng/ confi g/ tenpl ati ng. cfg. exanpl e

This is the t enpl at i ng. cf g file that configures the example templating environment described in
Chapter 2, “Initial Configuration.” It configures TeamXpress Templating to recognize and use the
following data categories/types:

cust om dt d- exanpl e/ PressRel ease
i ntranet/deptinfo

nt r anet / weat her
nternet/careers

nt ernet/aucti on

nt er net/ pr

nt er net/ book

nt er net / nedi cal

nt er net/ peri odi c

The following section shows a subset of this file with sections for the Pr essRel ease, dept i nf o,
weat her, car eers, and auct i on data types.

See the diagram key on page 132 for details about each item referenced in the following diagram.

<?xm version="1.0" encodi ng= "UTF-8"? standal one="no"?>
<! DOCTYPE tenpl ating SYSTEM "t enpl ati ng4.5.dtd">

Templating Element *

<tenpl ati ng> —=
<category name="cust om dt d- exanpl es" > <« Data Category Section 2

<l ocati ons>

1 3
<branch vpat h-regex=".*" /> Data Type Section
</l ocati ons> /
<dat a-type nanme="PressRel ease" “dcr-type="xm"/>

<presentation/>
<dat a-type/ >

130 TeamXpress Templating and Deployment Guide

Example templating.cfg File

</ cat egory> ion 2
<category nane="intranet"> P Data Category Section
<l ocati ons>
<branch vpat h-regex=".*" />

</l ocations> /Presentation Template Section #
<dat a-type name="dept | nfo" dcr-type="iwov">
<presentation>

<tenpl ate nane="deptInfo.tpl" extension="htm ">

<l ocat i ons> \
<branch vpat h-regex=".*" previewdir="/">

<directory dir-regex=".*" />
</ branch>
</l ocations> Template to Generated
</tenpl at e> File Mapping ©
</ presentation>
</ data-type>) Generated HTML File
<dat a-type name="weat her" dcr-type="iwov">
<present ation>
<tenpl at e nane="weat her.tpl" extension="htm ">
<l ocati ons>
<branch vpat h-regex=".*" previewdir="/">
<directory dir-regex=".*" />
</ branch>
</l ocations>
</tenpl at e>
</ presentation>
</ dat a-type>
</ cat egory>
<cat egory nanme="internet">
<l ocati ons>
<branch vpat h-regex=".*" [>
</l ocati ons>
<dat a-type nane="careers" dcr-type="iwov">
<presentation>
<t enpl at e nanme="j obDesc.tpl" extension="htmn ">
<l ocati ons>
<branch vpath-regex=".*" previewdir="/">
<directory dir-regex=".*" [>
</ branch>
</l ocations>
</tenpl at e>

Data Type Section 3

Template to Data
Type Mapping®

Location 7

131

o

‘mv INTERWOVEN Mapping Users, Templates, and Content Records

~

</ presentati on>
</ dat a-type>
<dat a-type name="auction" dcr-type="iwov">
<presentation>
<tenpl at e nane="auction.tpl" extension="htm ">
<l ocati ons>
<branch vpat h-regex=".*" previewdir="/">
<directory dir-regex=".*" />
</ branch>
</l ocations>
</tenpl at e>
</ presentation>
</ dat a-type>
</ cat egory>
</tenpl ati ng>

Diagram Key

1. Templating Element: The <t enpl at i ng> element marks the beginning of the
t enpl at i ng. cf g file’s configuration information and identifies the file asat enpl at i ng. cf g
file.

2. Data Category Section: The <cat egor y> element contains information specific to a data cate-
gory (i nt ranet in this example) and makes the data category available for use by TeamXpress
Templating. The <cat egor y> element contains one or more <dat a- t ype> elements. A data cat-
egory must have its own <cat egor y> element int enpl at i ng. cf g in order for TeamXpress
Templating to recognize and use the data category. Even if a data category is located correctly in the
directory structure described on page 21, it will not be recognized by TeamXpress Templating
unless it is named in a <cat egor y> element as shown here. The <cat egor y> element’s name
attribute is required. You can use the <l ocat i ons> element within a <cat egor y> element to
show the branches in which that category will be available. This example shows that i nt r anet
category will be available in all branches.

3. Data Type Section: The <dat a- t ype> element contains information specific to a data type
(car eer s in this example) and makes the data type available for use by TeamXpress Templating. A
data type must have its own <dat a- t ype> element in t enpl at i ng. cf g in order for TeamX-
press Templating to recognize and use the data type. Even if a data type is located correctly in the
directory structure described on page 21, it will not be recognized by TeamXpress Templating

132 TeamXpress Templating and Deployment Guide

Example templating.cfg File

unless it is named in a <dat a- t ype> element as shown here. The attributes for <dat a- t ype>

are nane and dcr - t ype. The <dat a- t ype> element’s nane attribute is required. The dcr -

t ype specifies what kind of DCR to write out. The values are xm and i wov; the default is i wov.

If the value of dcr -t ype is xm :

— The data capture template for that data type needs to have been generated using i wdt d2symand
i wsynRdct .

— The data content records for that data type will be XML documents written according to the
DTD that the data capture template was derived from.

— You must use the Java-based interface. See “Modifying the TeamXpress iw.cfg File” on page 32
for information on enabling it.

The <dat a- t ype> element can contain the following subelements:
— <l ocat i ons>: Shows the branches in which that data type will be available.
— <present ati on>: See Item 4 below.

— <al | owed>: Lets you set an ACL to specify which users can or cannot use a specific data type. If
<al | owed> Is not set, any user can use the data type (see page 53 for additional examples). The
<al | owed> element can have any of the following subelements:

<cred>: Lets you name a user or role in the ACL (e.g.,
user="joe" Orrol e="nmaster").

<and>: Logical and statement for grouping ACL credentials.

<or >: Logical or statement for grouping ACL credentials.

<not >: Logical not statement for negating ACL credentials.

For example, the following allows all users except
j oe to use the current instance:

<al | owed>
<not >
<cred user="joe">
</ cred>
</ not >
</ al | oned>

4. Presentation Template Section: The <pr esent at i on> element marks the beginning of the
section that contains subelements for presentation template mapping. See Items 5, 6, and 7 below.

133

o

‘mv INTERWOVEN Mapping Users, Templates, and Content Records

~

5.

Template to Data Type Mapping: The <t enpl at e> element marks the beginning of the sec-
tion that maps a presentation template to a data type. It specifies which presentation templates are
available for use with the data type named in the <dat a- t ype> element. In the example shown
here, the dept I nf 0. t pI template can be used to display data content records for the dept i nf o
data type. The <t enpl at e> element can contain the following attributes:

— ext ensi on: Specifies the extension that will be used on any files this template generates. This
attribute is required.

— ful | page: Specifies that the generated HTML file is a full atomic HTML page. This attribute is
optional.

— nane: Specifies the presentation template’s file name in the workarea_name/ t enpl at edat a/
data_category/ data_type/ pr esent at i on directory. This attribute is required.

Template to Generated File Mapping: The <br anch> element uses Perl regex (Perlre) syn-
tax to specify on which branches a presentation template can generate a file. The <br anch> ele-
ment can have the following attributes:

— vpat h-r egex: Specifies on which branch(es) files can be generated via this presentation
template. The example shown here (*. *") specifies that all branches can have files generated via
the dept I nf 0. t pl presentation template.

— previ ew di r: Specifies what directory (in an area of a branch) generated files will be
previewed in when you preview a data content record (via the TeamXpress GUI’s Save and
Preview button).

Generated HTML File Locations: The <di r ect or y> element uses regex syntax to specify
where generated HTML files based on this presentation template will reside. This example speci-
fies that generated HTML files based on j obDesc. t pI will reside in the current directory (. *).

The<directory dir-regex="..." /> regular expression matches a directory relative to the
user's workarea. Because the string that is matched against the regex does not begin with a slash, it
Is possible for the string to be empty (i.e., when the directory in question is the top of the
workarea, then an empty string will be matched against the regex).

When Generate/Preview is selected when you are creating or editing a data capture form, only
Presentation Templates with a di r - r egex entry that matches the workarea root, as identified by
the <di r ect or y> element, appear on the Presentation Template selection list.

134

TeamXpress Templating and Deployment Guide

Example templating.cfg File

Setting Previewing Path Variables

The following example describes what happens when a user previews a generated HTML file in
TeamXpress Templating.

If the file is specified with an absolute path (e.g., hr ef =/ mai n/ dev/ i mages/ pi xel . gi f), the
browser searches the absolute path.

The way to configure TeamXpress Templating so that the correct directory is searched is to set
previ ewdi r inthetenpl ati ng. cf g file to point to the directory containing the file. For
example, set the pr evi ew di r variable to / i mages if pi xel . gi f residesin/i mages. Then
pi xel . gi f will be found and displayed during the preview.

To summarize the preview results:

« Ifthe line hr ef =pi xel . gi f appears in the presentation template and the directory containing
pi xel . gi f is named with the pr evi ew- di r variable int enpl at i ng. cf g, pi xel . gi f will
be included in the preview.

 Ifthe line hr ef =absol ut e_pat h_name/ pi xel . gi f, the file pi xel . gi f will be included in
the preview.

The previ ew di r variable (in the t enpl at i ng. cf g file) associated with each presentation
template defines the directory where the preview file will virtually exist during preview time. When a
preview occurs, a temporary file is created in the t enpl at edat a/ i w_pr evi ewdirectory.
However, when a browser is opened and directed to the preview file, the URL that the browser
points to is the URL for the preview file in the directory defined in pr evi ew- di r . During the
preview, a proxy remap occurs, remapping the directory specified in the pr evi ew- di r variable to
the t enpl at edat a/ i w_pr evi ewdirectory. In this way, a preview file can have a virtual location
other than its true location. These temporary files are deleted by the previewing system, based on the
file’s modification time. The default is files that have not been modified in the last 60 minutes are
deleted at preview time. If you do not do another preview, the files will not be deleted. You can
change the time in the i w. cf g file (see “Saving Preview Files” on page 32).

135

o

‘m) INTERWOVEN Mapping Users, Templates, and Content Records

~

templating.cfg DTD
<! ELEMENT tenpl ating (category*) >

<! ELEMENT category (|l ocations?, data-type*) >
<I ATTLI ST category
nane CDATA #REQUI RED
>
<! ELEMENT data-type (Il ocations?, all owed?, presentati on+) >
<I ATTLI ST data-type

nane CDATA #REQUI RED
dcr-type (iwov| xm) "i wov"
>

<! ELEMENT presentation (tenplate*) >

<! ELEMENT tenplate (locations) >
<I ATTLI ST tenpl ate

nane CDATA #REQUI RED
ful | page t]f) "

ext ensi on CDATA #REQUI RED
>

<! ELEMENT | ocations (branch+) >

<! ELEMENT branch (directory*) >
<I' ATTLI ST branch

vpat h-r egex CDATA #REQUI RED
previewdir CDATA #| MPLI ED
>
<l-- "branch' elenents should only contain "directory' elenents

when they are within a 'tenplate' el enent.
The 'previewdir' attribute is required when the 'branch' el ement
iswithin a 'tenplate' elenent. -->

<! ELEMENT directory EMPTY >
<! ATTLI ST directory
dir-regex CDATA #REQUI RED
>

136 TeamXpress Templating and Deployment Guide

templating.cfg DTD

<l-- This is the sane stuff as datacapture4.5.dtd: -->
<! ELEMENT al | owed (cred|and|or|not) >

<! ELEMENT cred EMPTY >
<! ATTLI ST cred

role CDATA #| MPLI ED
user CDATA #| MPLI ED
>

<l ELEMENT and (cred| and|or|not)+ >
<l ELEMENT or (cred|and|or|not)+ >

<l ELEMENT not (cred|and|or]|not) >

137

o

‘mv INTERWOVEN Mapping Users, Templates, and Content Records

~

138 TeamXpress Templating and Deployment Guide

Chapter 6
Integrating Templating,
DataDeploy, and Workflow

This chapter describes how to integrate TeamXpress Templating with DataDeploy and TeamXpress
workflow. Integrating these components lets a content contributor access a data capture template,
create a data content record, and deploy the data content record’s extended attributes to a database via
a TeamXpress workflow job. All of these activities take place as a single, integrated sequence of steps
initiated and executed from the TeamXpress GUI. The entire DataDeploy process runs as a
TeamXpress workflow job, so the content contributor does not need to start DataDeploy manually, or
even be aware that DataDeploy is running.

Note: The configuration steps described in this chapter assume that TeamXpress Templating is already
installed and configured as described in Chapter 2, “Initial Configuration.” DataDeploy must also be
installed on your system.

Refer to the TeamXpress User’s Guide for information on using templating. Refer to the TeamXpress
Administration Guide for information on setting up TeamXpress.

Integration Overview

The following steps show the process flow for creating, saving, submitting, and deploying a data
content record when TeamXpress Templating and DataDeploy are integrated.

1. In the TeamXpress GUI, a content contributor selects File > New Data Record, chooses a data
type, and enters data in the resulting data capture form.

2. The content contributor selects File > Save in the data capture form.

139

o

‘m’ INTERWOVEN Integrating Templating, DataDe-
~ ploy, and Workflow

3. In the TeamXpress GUI, the content contributor navigates to the data type’s dat a directory,
selects a data content record, and clicks Submit. Templating can be configured to automatically
initiate a workflow process upon Save as a convenience to the end user. This can be done in
avai | abl e_t enpl at es. i pl (see “Editing available_templates.ipl to Initiate Workflows” on
page 31).

4. DataDeploy is automatically signaled to perform the following functions:

— Determine which data types are affected by the data content record change.

— Read in all necessary database mapping information from DataDeploy configuration files.

— Populate the database with some or all of elements of the data content record, based on the
mapping file.

— Write a log of all DataDeploy activity to the dd-home/ | og file.

Integration Steps

The following sections describe the configuration steps you must perform on TeamXpress Templating,
TeamXpress workflow, and DataDeploy to integrate them for your specific templating environment.

Integration Steps: TeamXpress Templating

Installing and setting up TeamXpress Templating as described in Chapter 2, “Initial Configuration,”
prepares TeamXpress Templating for integration with DataDeploy and TeamXpress workflow. You do
not need to perform any additional tasks on TeamXpress Templating to enable integration.

Integration Steps: DataDeploy

A DataDeploy configuration file must be created for each type of data content record that will be
deployed. DataDeploy generates these configuration files automatically. However, the information is
provided here for your information. For example, to use DataDeploy to deploy a data content record
that is based on the data capture template / t enpl at edat a/ bever ages/ t ea/

dat acapt ur e. cf g, a DataDeploy configuration file must be created specifically for the data type

t ea. Likewise, to deploy a data content record based on/ t enpl at edat a/ bever ages/ cof f ee/
dat acapt ur e. cf g, a DataDeploy configuration file must be created specifically for the data type
cof f ee.

140 TeamXpress Templating and Deployment Guide

Integration Steps

By default, DataDeploy configuration files for TeamXpress Templating use the following location and
naming conventions:

workarea_name/ t enpl at edat a/ data-category/ data-type/ data-type _dd. cfg

For example:

/ workarea_name/ t enpl at edat a/ beverages/teal/tea _dd. cfg

Or, in the case of the Press Release example shown in “Data Capture Example 1” on page 39:
/ workarea_name/ t enpl at edat a/i nternet/pr/pr_dd. cfg

Refer to Appendix C, “DataDeploy Database Auto-Synchronization” for information on creating the
DataDeploy configuration files and the database tables.

Integration Steps: TeamXpress Workflow

This release of TeamXpress Templating supports a preconfigured templating-specific workflow
template, aut hor _submi t _dcr . wf t . This file is distributed with TeamXpress Templating in

i w- honme/ exanpl es/ Tenpl at i ng/ wor kf | ow It configures the Author DCR Submit workflow
job displayed in the New job window when TeamXpress Templating starts a workflow job. Check the
avai | abl e_t enpl at es. i pl to verify that the workflow is set up and to add additional workflows.
See Chapter 5 of the TeamXpress Administration Guide for an example of the TeamXpress GUI’s New job
window.

141

o

‘m’ INTERWOVEN Integrating Templating, DataDe-
~ ploy, and Workflow

142 TeamXpress Templating and Deployment Guide

Section 2: DataDeploy
Administration

» Overview and Installation

» Deployment Concepts

* Configuration File Details and Examples

* Invoking DataDeploy

* Synchronizing OpenDeploy and Data Deploy

o

‘m’ INTERWOVEN

~

144 TeamXpress Templating and Deployment Guide

Chapter7

Overview and Installation

Overview

DataDeploy lets you transfer extended attribute data between TeamXpress, an external SQL database,
and an XML file. The following table shows which source/destination scenarios are supported:

Destination
TeamXpress | XML Database
N r r
TeamXpress Suop;[ported Supported |Supported
XML Not Supported |Supported
Source Supported
Not Supported |Supported
Database Supported

Supported Data Sources and Destinations

There are several ways that you can configure and execute deployment:

« For all of the supported scenarios shown above, you can manually edit a DataDeploy configuration
file and then execute DataDeploy from the command line. See “Invoking DataDeploy” on page 207
and “Configuration File Details and Examples” on page 171 for more information. Even though
manual configuration and deployment is the least common way to use DataDeploy, the information
in these sections provides a good background for understanding the more commonly used
automated deployment described in the following bullets.

« Alternatively, after a DataDeploy configuration file exists for any supported scenario, you can
automate DataDeploy execution by initiating it from an i wat trigger script or as a TeamXpress
workflow task. For example, you can configure DataDeploy and TeamXpress so that extended

145

o

‘m’ INTERWOVEN

~

Overview and Installation

attribute data is transferred from TeamXpress to a database whenever files are submitted to a

staging area from a workarea. See “Deployment Scenarios” on page 158 for more information
about that specific situation.

« For the TeamXpress-to-database scenario, you can use DataDeploy’s Database Auto-
Synchronization (DAS) module to automate the entire deployment process for TeamXpress
templating users. In this situation, any extended attribute changes resulting from an end user
modifying a data content record via the TeamXpress templating GUI are automatically deployed to
a database. See Appendix C, “DataDeploy Database Auto-Synchronization” for details about DAS.

Note: You can configure DataDeploy to treat deployed extended attributes as either data or stored
procedures. See Item 10, “DataBase Section” in “Sample File Notes” starting on page 181 for more
information.

The following sections describe overall DataDeploy concepts, and how you can install, configure, and
invoke DataDeploy.

Client/Server Setup Options

When deploying to a database, you can set up DataDeploy to operate in either a two-tier or three-tier
architecture. Two-tier architecture incorporates two systems: the TeamXpress server host machine
that executes the DataDeploy client and an application server containing the SQL database. The
application server can be any server on the network (such as the production web server, although this
Is not a system requirement). Two-tier systems are typically used at sites that do not require firewall
protection between the TeamXpress server and the application or production server.

TeamXpress Database
Server Server

Deploy
DataDeploy SQL
Client Database

Two-Tier Architecture

146 TeamXpress Templating and Deployment Guide

Client/Server Setup Options

Three-tier architecture incorporates a third system acting as a DataDeploy server. Three-tier systems
are typically used at sites requiring firewall protection between the TeamXpress server and the
application or production web server.

r— "

TeamXpress I Database
Server 2 DataDeploy server
Deploy | i | Server Deploy
Daga:i;ptloy | —3 {=——/SQL Databasg
| |
L — 4

Three-Tier Architecture

Running the DataDeploy Daemon as a Service

You can optionally configure the I nt er woven Dat aDepl oy service to start the DataDeploy daemon
for 3-tier operation or Database Auto-Synchronization (DAS) operation. When set up for 3-tier
operation, the DataDeploy daemon takes its input from the i wdd. i pI command issued from the
command line. When set up for DAS operation, the DataDeploy daemon takes its input from the

i wsyncdb. i pl script that runs as part of DAS startup. See “Editing iwsyncdb.cfg” on page 386 for
information about specifying DAS or 3-tier operation. See “Invoking DataDeploy” on page 207 for
details about executing i wdd. i pI from the command line. See “Running iwsyncdb.ipl” on page 387
for details about i wsyncdb. i pl .

The I nt erwoven Dat aDepl oy service automatically starts the DataDeploy daemon for DAS
operation if the i wsyncdb. cf g file exists in dd- hore/ conf . Ifi wsyncdb. cf g does not exist, the
I nt erwoven Dat aDepl oy service starts the DataDeploy daemon for 3-tier operation.

147

o

‘mv INTERWOVEN Overview and Installation

~

Installing DataDeploy

Supported Platforms

DataDeploy supports the following database/platform combinations. Any DataDeploy server shown
in the first column can run with any database server shown in the second column. Databases shown in
the third column are specific to the servers shown for that row in the second column. For example, a
system can have a Windows NT/2000 DataDeploy server and a Solaris database server. However,
Microsoft SQL Server databases are not supported on Solaris database servers.

Database Server Database (running on CPU
Platform database server)

Windows NT (x86) 4.0 | Windows NT (x86) 4.0 | IBM DB2 (UDB) 6.1; | 300 MHz Pentium Il
(Service Packs 3, 4, 5, 6a) | (Service Packs 3, 4, 5, | Microsoft SQL Server
6a) 6.5, 7.0; Oracle 8i *;

i Sybase SQL Anywhere
Windows 2000 Server 5/5: Sybase ASE 11.5:

Solaris 2.5.1, 2.6, or 7 : Informix 7.3 :
(32-hit and 64-bit) Windows 2000 IBM DB2 (UDB) 6.1; | 300 MHz Pentium Il

Microsoft SQL Server
6.5, 7.0; Oracle 8i *;
Sybase SQL Anywhere
5.5; Sybase ASE 11.5;
Informix 7.3 **

Solaris 2.5.1, 2.6, or 7 | Oracle 8i *; Sybase | Ultra5 SPARC
(32-bit and 64-bit) SQL Anywhere 5.5;
Sybase ASE 11.5;
Informix 7.3 **

DataDeploy Server

* If you use standard SQL datatypes, no additional Oracle products need to be installed. If you use
Oracle extension datatypes you must also install the OCI client library on the system from
which the i wdd. i pI command is executed.

** Only locally on the same system running DataDeploy.

148 TeamXpress Templating and Deployment Guide

Installing DataDeploy

Additional Drivers for Microsoft SQL Anywhere

To use DataDeploy with Microsoft SQL Anywhere, you must ensure that ODBC driver version
3.70.06.23 or later is installed.

Solaris Systems
Perform the following steps to install DataDeploy on a Solaris system:

1. Go to one of the following directories:
— If TeamXpress is installed but OpenDeploy is not, go to i w- hone.
— If both TeamXpress and OpenDeploy are installed, go to od- horre.
— If OpenDeploy is installed but TeamXpress is not, go to od- horme.
— If neither TeamXpress nor OpenDeploy is installed, go to an installation directory of your
choice.
2. Unzip and untar the DataDeploy tar file dd. t ar . gz:
gunzip < dd.tar.gz | tar -xvpf -
An opendepl oy directory and its associated subdirectories are created if they do not already exist
in the directory from Step 1.
3. Go to the opendepl oy/ i nstal | directory and execute the i wi nst al | dd installation script.
Windows NT/2000 Systems
Perform the following steps to install DataDeploy on a Windows NT/2000 system:
1. Download the DataDeploy bundle from its distribution media. If the file is zipped, unzip it.
2. Double click the DataDeploy bundle icon.
3. If OpenDeploy is already installed on your system:

— The uninstall (administrative) files should reside in a dd- hone location of your choice. This
location must be different than od- hore.

— All other DataDeploy system files are installed automatically in od- hore.
If OpenDeploy is not installed on your system:

149

‘m’ INTERWOVEN

o

Overview and Installation
~

— The uninstall (administrative) files should reside in a dd- horre location of your choice. This
location must be different than i w- hore.

— All other DataDeploy system files are installed automatically in i w- horre.

After DataDeploy is installed, you might need to resynchronize the tracker table. Refer to the

preceding section about installing on Solaris systems to determine whether this procedure is
necessary.

150

TeamXpress Templating and Deployment Guide

Chapter8

Deployment Concepts

This chapter describes the following general deployment concepts and components:

 How different methods of invoking DataDeploy affect the configuration activities you must
perform.

 The roles and components of DataDeploy configuration files.
« How DataDeploy stores and processes data during a deployment.
« What happens during a TeamXpress-to-database deployment.

It is highly recommended that you understand the concepts in this chapter prior to configuring
DataDeploy.

Ways to Invoke Deployment

There are several ways in which to invoke DataDeploy:

 From the command line.

e Fromaniwat trigger script.

« Asa TeamXpress workflow task that is not associated with TeamXpress Templating.
 From the TeamXpress Templating GUI.

All of these methods require the existence of one or more DataDeploy configuration files. The first
three methods require that you manually create these configuration files. The last method creates all

151

o

‘my INTERWOVEN

~

Deployment Concepts

the necessary DataDeploy configuration files automatically after you have performed the necessary
system setup. The following table shows a summary of each invocation method and its related tasks:

Invocation Method

Setup and Invocation Tasks

For More Information See...

Command Line

¢ Manually create a DataDeploy configuration file.
® Execute iwdd.ipl from the command line.

* Deployment occurs when the command is exe-
cuted.

“Configuration File Details
and Examples” on page 171;
“iwdd.ipl Command” on
page 207.

i wat Trigger Script

¢ Manually create a DataDeploy configuration file.

* Create an iwat trigger script containing an
iwdd.ipl command that references the DataDe-
ploy configuration file.

* Deployment occurs when the iwat script is trig-
gered.

“Configuration File Details
and Examples” on page 171;
“iwdd.ipl Command” on
page 207.

Workflow Task

¢ Manually create a DataDeploy configuration file.

* Create a workflow external task containing an
iwdd.ipl command that references the DataDe-
ploy configuration file.

¢ Deployment occurs when the external task is exe-
cuted.

“Configuration File Details
and Examples” on page 171;
“iwdd.ipl Command” on

page 207; “Configuring
TeamXpress Workflow” in the
TeamXpress Administration
Guide.

TeamXpress Templating
GUI

Install TeamXpress Templating.
¢ Configure Database Auto-Synchronization (DAS).

* Deployment occurs automatically whenever an
end user modifies a data content record (DCR)
via the TeamXpress Templating GUI.

“DataDeploy Database Auto-
Synchronization” on page 383

Configuration Files

DataDeploy configuration files let you specify the following:
« What, where, and how data is deployed.

e Whether DataDeploy wil

| run as a client or server.

A TeamXpress/DataDeploy installation can contain any number of configuration files. The most
common scenario is for a system to contain multiple configuration files, one for each specific type of

deployment.

152

TeamXpress Templating and Deployment Guide

Configuration Files

For the “TeamXpress Templating GUI” scenario shown in the preceding table, a DataDeploy
configuration file is automatically created for each data type in the TeamXpress Templating directory
structure. The correct configuration file is then referenced automatically whenever an end user
changes a DCR for a given data type.

For the other scenarios shown in the preceding table, you must create each configuration file
manually, and then name the correct file via a command line option for the i wdd. i pI command.

File Components
All DataDeploy configuration files have the following characteristics:
« Can have any name.
« Arein XML format.
 Reside by default in the dd- hone/ conf directory.

A configuration file is structured as a hierarchy of sections, each letting you control a different
deployment parameter. A file can have any number of sections. Parameters that you can set are:

« Filters that include and exclude possible data sources.

« Substitution rules to replace text and data values automatically during deployment.
« Client-specific parameters and activities.

« Type of deployment (TeamXpress-to-database, XML-to-database, and so on).

« Source of extended attribute data (TeamXpress, a database, or an XML file).

« Destination of extended attribute data (a database or an XML file).

« Details about source and destination data (specific fields to select, type of table to update or create,
and so on).

 SQL commands that execute automatically during deployment.
o Server-specific parameters (for 3-tier systems).

See the sample configuration file sections starting on page 175 for details about configuration file
structure and syntax.

153

o

‘mp INTERWOVEN Deployment Concepts

~

See “Invoking DataDeploy” on page 207 for more information about configuring DataDeploy as a
client or server. See “Configuration File Details and Examples” on page 171 for more information
about controlling all other DataDeploy parameters.

Data Organization Within DataDeploy

When extended attribute data is deployed, it is first extracted from its specified source and
represented internally in DataDeploy as tuples. Tuples can then be deployed into a specified destination
using selection and formatting rules defined in the DataDeploy configuration file(s). You can set tuple
format to narrow or wide. The following section describes tuple format in general, and the differences
between narrow and wide tuples.

Tuple Format

All TeamXpress tuples contain the following extended attribute data:

« Exactly one path element, which is an area-relative path name of the file associated with the tuple’s
key-value pair(s).

« One or more key/value pairs. The key is the name (also known as the class) of the extended
attribute. For example, News- Sect i on is the key of the extended attribute News-
Sect i on: Sports. The value is the data value for tuple’s key. For example, Sports.

« Exactly one state element, which describes the status of the tuple. Possible values are Ori gi nal ,
New Modi fi ed, and Not Pr esent . See “Data Destinations” on page 159 for details about each
state value.

The following sections describe how elements are arranged within narrow and wide tuples.

Narrow Tuples

Narrow tuples contain exactly one path, key, value, and state element. For example, the following
figures show DataDeploy’s internal representation of two narrow tuples. Tuple 1 is for the News-
Sect i on: Sport s extended attribute from the file docr oot / news/ front . ht m . Tuple 2 is for

154 TeamXpress Templating and Deployment Guide

Data Organization Within DataDeploy

the Local e: SF extended attribute from the same file. Note that because a narrow tuple can contain
just one key/value pair, DataDeploy must create multiple tuples (two in this case) if a file’s extended
attributes consist of more than one key/value pair.

Tuple 1 Tuple 2
path = docr oot/ news/front. htni path = docroot/news/front. htn
key = News- Section key = Local e
val ue = Sports val ue = SF

Narrow Tuples

Wide Tuples

Wide tuples contain exactly one path element and one state element, and any number of key/value
pairs. Thus, a file’s extended attribute data can be represented in a single wide tuple even if the
extended attributes consist of more than one key/value pair. The following figure shows DataDeploy’s
internal representation of a wide tuple. The information shown here is the same as that from the
previous example. The only difference is that in this case, DataDeploy was configured to create a wide
tuple.

Tuple 1

path = docroot/news/front. htm
News- Section = Sports

Local e = SF

Wide Tuple

Notice that in a wide tuple, DataDeploy eliminates the key = and val ue = labels for the key and
value data, instead using the format key = val ue for each key/value pair. This arrangement
simplifies the creation of a wide base table as described in “Base Table Format: Wide Tuples” on
page 162.

155

o

‘mp INTERWOVEN Deployment Concepts

~

Support for wide tuples requires that all extended attribute keys be unique. For example, a file cannot
have two keys named Local e. To satisfy this requirement, TeamXpress uses a numeric suffix for key
names that would otherwise be unique. For example, if the file docr oot / news/ front . ht m has
two Local e keys with the values SF and Cakl and, they are named Local e/ 0 and Local e/ 1. The
TeamXpress GUI and metadata capture module automatically enforce this naming convention when
an end user creates extended attributes for a file. The resulting wide tuple in this example is as
follows:

Tuple 1

path = docroot/ news/front. htmn
News- Section = Sports

Locale/0 = SF

Wide Tuple with Similar Keys

Database Object Name Lengths

To overcome the maximum database object name length imposed by database servers, DataDeploy
builds a mapping table called | Wov_I DMAPS in the destination database. For each object name that
exceeds the maximum length limit for the database, this mapping table establishes a relationship
between the original object name and a generated name conforming to the database’s object name
length limits. The generated name is then used in place of the original object name in all database
transactions. This implementation allows table names, column names, constraint names, and view
names to contain any number of characters.

The | WOV_I DVAPS table contains three columns: Type, Longi d, and Shor ti d. The Type column
defines types as follows:

1: Table name

2: Column name
3: View name

4: Constraint name

156 TeamXpress Templating and Deployment Guide

Data Organization Within DataDeploy

The Longi d column contains the entire character string for the object as it appears in the original
source file. The Short i d column contains the generated name conforming to the database’s object
length limits. For example, a typical table might appear as follows:

lyp Longid Shortid

2 | NFORVATI ONO_PRESENTATI ONTI TLE | WC_AABA93A7161
1 | NTRANET_DEPTI NFO__ DATADPLYBRNCH_STAG NG | WI_106342E4D4C4
3 | NTRANET_DEPTI NFO__ DATADPLYBRNCH_STAGQ NG _VI EW IWV_AEGF12D4E

4 | NTRANET_DEPTI NFO__ DATADPLYBRNCH_STAGQ NG_CONSTRAI NT | WO F023AF1290

Because different databases support different maximum object name lengths, the threshold for when a
Shor t i d name is generated depends on the database vendor and/or type. DataDeploy uses the values
set for the max- i d- val ue attribute to determine this threshold. See Item 10, “Database Section” in
“Sample File Notes” starting on page 181 for more information. See also “Table Update Details” on
page 394.

If you construct an SQL statement that performs an activity on a table that was created by
DataDeploy, and if that table contains any database objects whose names exceed the maximum length,
the SQL statement must first reference the mapping table to determine the actual (Longi d) object
name(s). This requirement applies to all SQL statements, including those not executed via
DataDeploy.

Data Types and Sizes

The default data type for deployed data is VARCHAR (300) . You can set different data types, or a
different size for VARCHAR, in the DataDeploy configuration file. See Item 11, “Rows to update” in
“Sample File Notes” starting on page 181 for more information.

Incremental Deployment

DataDeploy can perform incremental deployments, in which it calculates the differences between any
two specified vpaths and produces a delta table of the changes. The vpaths can be any two arbitrary
TeamXpress paths such as edition paths, staging area paths, workarea paths, etc. See Item 6, “Source

157

o

‘m’ INTERWOVEN

~

Deployment Concepts

Type” in “Sample File Notes” starting on page 181 for information about configuring an incremental
deployment.

Deployment Scenarios

This section describes what happens when you execute a TeamXpress-to-database deployment. This
type of deployment is used as an example because it is the most commonly configured deployment
type, it requires the most complex configuration files, and it is the type of deployment that DAS
executes.

See Appendix C, “DataDeploy Database Auto-Synchronization.” See “Sample TeamXpress-to-
Database Configuration File” on page 175 for details about constructing a file to set up this type of
deployment. Other deployment scenarios such as TeamXpress-to-XML, XML-to-XML, and so on,
are essentially variations of the TeamXpress-to-database deployment. These scenarios are described
briefly starting on page 196.

Deploying from TeamXpress to a Database: Overview

Whenever a TeamXpress-to-database deployment finishes executing, the end result is an updated table
on the destination system. This table will be either a base table, delta table, or standalone table,
depending on what type of update you instruct DataDeploy to perform (as defined in the
configuration file’s <updat e> section). Update types are named for the type of table they modify. For
example, a delta update modifies a delta table, and so on.

Details about each type are as follows:

« Base update: Extended attribute data is extracted from a TeamXpress workarea, staging area, or
edition, and is deployed to a base table containing full (as opposed to delta) data about the
extended attributes. The most common sources of data for a base table are staging areas and
editions. Whenever a base table is generated, an entry for that table is recorded in a tracker table
residing in the database. See “Data Synchronization” on page 163 for more information.

« Delta update: On the TeamXpress server, extended attribute data from a workarea is compared to
the extended attribute data in a staging area or edition. Differences—the delta data—are identified
and deployed to a delta table on the destination system. This table contains only the delta data from

158 TeamXpress Templating and Deployment Guide

Deployment Scenarios

the workarea; it does not contain full static data about every item in the workarea (the delta table’s
associated base table should exist from a previous deployment). The relationship between the
workarea data and the data in its parent area (a staging area or edition) is updated in the tracker
table residing in the database. See “Data Synchronization” on page 163 for more information.

- Standalone update: Data is extracted from a TeamXpress workarea, staging area, or edition and is
deployed to a standalone table containing full data about the extended attributes. A standalone
update differs from a base update in that it does not generate an entry in the tracker table.

Data Sources

When you deploy extended attribute data from TeamXpress to a database, you can specify that it come
from a TeamXpress workarea, staging area, or edition. Of these three, workarea data is the only type
that can be deployed using any of the three types of update (base, delta, or standalone). When
deploying staging area or edition data, you should use a base update if you plan subsequent delta table
generation, or a standalone update if you do not need to track the table’s relationship to other tables.
The following table shows which data sources are supported for each type of update:

Update Type
Base Delta Standalone
TeamXpress Workarea Supported Supported Supported
Source Area Staging Area |Supported Not Supported Supported
Edition Supported Not Supported Supported

Supported TeamXpress Source Areas for Different Types of Update

Data Destinations

In a TeamXpress-to-database deployment, the destination of deployed data can be any database on a
DataDeploy server (in a three-tier system) or a database on an application server (on a two-tier
system).

All tuples in all base and standalone tables will have a state of Or i gi nal . This is because all base and
standalone tuples are considered the basis against which delta tuples are compared. See “Updating a
Base Table” on page 166 for an example and more details. The state of a base or standalone tuple does
not reflect how or why it came to reside in the table; it simply identifies it as the basis tuple. In a delta
table, the state identifies the tuple’s status relative to the same tuple in the base or standalone table.

159

o

‘my INTERWOVEN

Deployment Concepts
~

Therefore, a delta table can have tuples states of Ori gi nal , New, Modi fi ed, Or Not Present . The
following table shows the scenarios that can cause these states:

?tggt;?[able tuple Was caused by:

o gi nal Merging delta data from another workarea into a base table via a base update
(such as when submitting the other workarea data to a staging area).

New Generating a new tuple via a delta update (such as when adding a new
extended attribute to a file in a workarea).

Modi i ed Updating a delta table via a delta update.
Data existing in a base area but not in a workarea (such as when the data is

Not Pr esent deleted from the workarea, or when data is newly added to the base area from
a different workarea).

Delta Table Tuple States

160 TeamXpress Templating and Deployment Guide

Deployment Scenarios

Base Table Format: Narrow Tuples
By default, deploying narrow tuples creates a base table in a database containing columns for Path,

Key, Value, and State. For example:

Key-Value List for ,
News- Secti on=Sports, Local e=SF
|
Tuple 1 (Narrow) Tuple 2 (Narrow)

pat h = docroot/ news/front. htmn
key = News- Section

val ue = Sports

pat h = docroot/news/front. htn

key = Local e

val ue = SF

Narrow

Database

v

Path Key Value State
docroot/ news/front. htm News- Section |Sports [Original
docroot/news/front. htm Local e SF Oi gi nal

Narrow Tuple Default Base Table

161

o

‘my INTERWOVEN

Deployment Concepts
~

Base Table Format: Wide Tuples

By default, wide tuples deploy into wide tables, in which key values from the tuple are placed in
separate columns. The end result is a table in which a single file record contains individual key value
columns. For example:

Key-Value List for ,
News- Secti on=Sports, Local e/ 0=SF,

Local e/ 1=0akl and

Tuple 1 (Wide)

pat h = docroot/news/front. htm
News- Section = Sports

Locale/0 = SF

Wide

File News-Section LocaleO |Localel |State
docr oot/ news/front. htn Sports SF Oakland Original

Wide Tuple Default Base Table

It is also possible to deploy narrow tuples into a wide table by configuring DataDeploy to use wide
tuples. When you do, the tuples are deployed to a wide table by default. See “Sample TeamXpress-to-
Database Configuration File” on page 175 for guidelines about specifying wide versus narrow tuples.

162 TeamXpress Templating and Deployment Guide

Deployment Scenarios

You can also deploy narrow tuples to a wide table by manually configuring a set of SQL commands in
the DataDeploy configuration file. These SQL commands would then execute automatically during
deployment. Detailed SQL commands are beyond the scope of this document; you should refer to
third party SQL documentation for more information about that topic.

Note: Table column names cannot contain reserved SQL characters such as dash (-) , slash (/) ,
question mark (?) , percent (% , etc.

Data Synchronization

On the database system, DataDeploy must keep a record of which delta tables are associated with
which base tables. This is necessary so that delta tables from multiple workareas that are associated
with a single base table from a staging area will remain synchronized when changes from one workarea
are submitted to the staging area. This relationship is maintained by the tracker table residing in the
same database as the base and delta tables.

Deploying from TeamXpress to a Database: Details
The most common sequence of events when deploying from TeamXpress to a database is as follows:

1. Generating an initial base table of a staging area or edition.
2. Generating a delta table for each workarea associated with the staging area or edition from Item 1.

3. Configuring TeamXpress to invoke DataDeploy so that the base table from Item 1 is automatically
updated whenever changes are about to be submitted to its corresponding staging area or edition
from a workarea.

Generating an Initial Base Table

Usually, the first action you will instruct DataDeploy to perform is the creation of an initial base table
for a staging area or an edition. The following example shows the creation of a base table BT1 from a
staging area SA1 on a TeamXpress branch such as/ def aul t / mai n/ dev/ br anch1. The
configuration file for this deployment is shown in “Starting-State Base Table Configuration File” on
page 204. Note: In that file, the value of the attribute name in the pat h element is relative to the

163

o

‘m’ INTERWOVEN

~

Deployment Concepts

staging area that is the source of the data being deployed. Based on the preceding conditions, the
following sequence of events occurs. Refer to the figure following this list for a keyed diagram of the

steps.

1. Invoke DataDeploy from the command line, specifying the deployment configuration file that
contains the preceding parameters. DataDeploy reads the configuration file and goes to SA1,

extracting all extended attribute data.

2. DataDeploy creates the Tracker Table (or updates it if it already exists) to track relationships

between base and delta tables.

3. Based on additional information in the configuration file, DataDeploy creates base table BT1 in the
destination database, populating it with the data from Step 1.

TeamXpress
1
#
SAl
WAL
WA2
WA3

DataDeploy

Database

p— BT

Tracker
Table

T

Generating an Initial Base Table

164

TeamXpress Templating and Deployment Guide

Deployment Scenarios

Generating a Delta Table

After creating the initial base table, you will need to generate one or more delta tables based on the
workareas associated with the base table’s staging area. This example shows the creation of a delta
table DT1 from a workarea WAL. It assumes that a base table for SA1 has already been generated, and
that WAL is a workarea of staging area SAL. Based on the preceding conditions, the following
sequence of events occurs. Refer to the figure following this list for a keyed diagram of the steps.

1. Invoke DataDeploy from the command line, specifying the deployment configuration file that
contains the preceding parameters. DataDeploy compares the extended attribute data in WAL with
the same data in SA1 to determine the tuple difference between the two areas.

2. DataDeploy updates the Tracker Table to record that DT1 is a child of BT1.

3. DataDeploy creates DT1, using the delta data it determined in Step 1.If there is no delta data, it
creates an empty delta table.

TeamXpress DataDeploy Database
SAL [~~~ ~~7~ I TTTr 71 BTL .
_ ' 2 > Tracker
1) Table
3
WA2 DT2
WA3 DT3

Generating a Delta Table

165

o

‘mp INTERWOVEN Deployment Concepts

~

Updating a Base Table

After creating the initial base and delta tables, you can configure TeamXpress workflow to
automatically update a base table whenever changes in a workarea are about to be submitted to a
staging area. This example assumes the following:

« You plan to submit afile list (rather than the entire workarea) from workarea WA?2 to a staging area
SAL.

 Abase table BT1 already exists for staging area SAL.

« Delta tables DT1 through DT3 already exist for all workareas (WA1 through WA3) associated with
staging area SA1.

 Atracker table already exists to establish and track the relationships between the base and delta
tables.

Based on the preceding conditions, the following sequence of events occurs. Note that all of the
DataDeploy activity takes place before TeamXpress actually submits the changes from WA2. Refer to
the figure following this list for a keyed diagram of the steps.

1. If the submission occurs as part of a TeamXpress workflow job, the TeamXpress workflow engine
obtains a list of files to be submitted from WA2 to SAL. If Database Auto-Synchronization (DAS) is
configured as described in Appendix C, “DataDeploy Database Auto-Synchronization,” DAS
obtains the list of files to be submitted. This list of files is then passed to DataDeploy (1a in the
following figure).

2. DataDeploy compares the file list items in WA2 with the same items in SAL to determine the tuple
differences between the two areas. These differences will be installed in BT1 in Step 5.

3. DataDeploy checks the tracker table to determine the children of BT1.

4. Original rows from BT1 are propagated to DT1 and DT3 (but not to DT2). This ensures that the
original rows in BT1 are not lost, but instead are stored as now-obsolete data in its child delta
tables.

5. DataDeploy updates BT1 with the data derived earlier in Step 2.

6. DataDeploy removes from DT2 all rows whose path and key values are identical to those being sub-
mitted from WA2 to SA1. This ensures that items not being submitted from WA2 to SA1 are
retained in DT2.

166 TeamXpress Templating and Deployment Guide

Deployment Scenarios

7. The workflow engine completes the submission of the file list to SA1.

TeamXpress

SAl

Workflow

or DAS

la

WA3

WA2 /

DataDeploy

Database
—BT-l P
) 3
pT1 € .
"~ | ~-§ .| Tracker
Table
oT2 |- .
DT3
s

Updating a Base Table

167

o

‘mp INTERWOVEN Deployment Concepts

~

Table Updates

Hypothetical table updates for a scenario fitting this model would proceed as follows. For simplicity,

the tables shown here have column headings identical to the tuple items Path, Key, Value, and State. In
most situations, the columns will have other names. Because the term “key” has a specific meaning in
many database languages, it is recommended that you do not use “key” as a column heading.

Starting State! Event 12 Event 2°
BT1 BT1 BT1
Path |Key [|Value |State Path |Key |Value |State Path |Key |Value |State
P1 K1 V1 | Orig P1 K1 V1 | Orig P1 K1 V1 | Orig
P2 K2 V2 | Orig

DT1
DT1 DT1 Path |Key |Value |State
Path [Key [Value [State Path [Key [Value [State P2 K2 | V2 |NtPres
DT2

Path [Key [Value [State

Sample Table Updates

1. In their starting state, all tables are synchronized. Because there are no differences between SA1,
WAL, and WA2, there is no delta data. Therefore, DT1 and DT2 are empty. This is the starting
state that would exist if you completed the steps described in “Generating an Initial Base Table” on
page 163. The configuration file for generating this initial version of BT1 is shown in “Starting-
State Base Table Configuration File” on page 204.

2. In Event 1, workarea WAZ2 is changed locally with new data P2, K2, and V2, but the changes are
not submitted to staging area SA1. Because the changes are not submitted, you must execute a
delta update so that delta table DT2 reflects the new data in WA2. During this delta update, Data-
Deploy identifies the differences between SA1 and WA2 and records these differences (the delta
data) in DT2. This scenario is similar to the scenario in “Generating a Delta Table” on page 165.
However, in that scenario a delta table did not exist yet and had to be generated for the first time.

168 TeamXpress Templating and Deployment Guide

Deployment Scenarios

In the scenario shown here, the delta tables already exist and therefore only need to be updated.
The configuration file for this delta deployment is shown in “Event 1 Configuration File” on
page 205.

In Event 2, workarea WA2 (complete with its changes from Event 1) is submitted to staging area
SAL. In the configuration file for this deployment, Path and Key were named as the basis-for-com-
parison columns. Therefore, DataDeploy compares the Event 1 values of these columns in BT1 and
DT2, sees that they are different, and determines that the row from DT2 Event 1 should append
rather than replace the data in BT1. DT1 has the new values shown here because WAL now differs
from SAL. If necessary, a Get Latest operation in WAL would bring WA1 into sync with SAL. (Had
Event 1 DT2 contained a P1 K1 V2 row, it would have replaced rather than appended the original
BT1 row. In that case, the original BT1 row would have been propagated to DT1, after which P1
K1 V2 would have replaced P1 K1 V1in BT1. A subsequent Get Latest in WAL would bring WA1
into sync with SA1, and the data in DT1 would be deleted). DT2 is empty because WAL is once
again in sync with SA1. This is the ending state that would exist if you completed the steps
described in “Updating a Base Table” on page 166. The configuration file for this deployment is
shown in “Event 2 Configuration File” on page 206. Note: In that file, all of the itemsinfil el i st
are path-relative to ar ea.

Composite Table Views
There are three ways that you can create table views:

Through SQL commands that you execute manually to query the database after it is created. See
“DataDeploy Querying Tables” on page 407 for more information.

Through SQL commands named in the user - act i on attribute of the DataDeploy configuration
file’s <sgl > element. You run these commands by executing an SQL-specific deployment that you
specify via the command line options i wdd- op=do- sqgl and user - op=anynane. See “Sample
File Notes” on page 181 and “Invoking DataDeploy” on page 207 for more information.

By setting the t abl e- vi ewattribute in the DataDeploy configuration file’s <dat abase> section.
See “Sample File Notes” on page 181 for more information.

The following composite views for workareas WAL and WA2 would result from the scenarios
described in the previous sections. The composite for WAL is the result of querying BT1 and DT1

169

o

‘my INTERWOVEN Deployment Concepts

~

using the SQL statements described in “DataDeploy Querying Tables” on page 407. Likewise, the
composite for WA2 is the result of querying BT1 and DT2.

Starting State Event 1 Event 2
WA1 WA1 WA1
Path |Key |Value |State Path |Key |Value |State Path |Key |Value |State
P1 K1 V1 Orig P1 K1 V1 Orig P1 K1 V1 Orig
WA2 WA2 WA2
Path |Key |Value |State Path |Key |Value |State Path |Key [|Value |State
P1 K1 V1 Orig P1 K1 V1 Orig P1 K1 V1 Orig
P2 K2 V2 New P2 K2 V2 Orig
Composite Table Views

170 TeamXpress Templating and Deployment Guide

Chapter9

Configuration File Detalls and
Examples

This chapter contains the following detailed information about configuration file contents:

Which elements are required in each type of configuration file.

Rules for parameter substitutions within configuration files.

An annotated sample TeamXpress-to-database configuration file.

A sample TeamXpress-to-XML configuration file.

A sample database-to-database configuration file.

A sample database-to-XML configuration file.

A sample XML-to-database configuration file.

A sample XML-to-XML configuration file.

The configuration files for “Starting State,” “Event 1,” and “Event 2" shown on page 168.

Required Elements

The type of deployment (e.g., TeamXpress-to-database, TeamXpress-to-XML, and so on) determines
which configuration file sections are required and which elements can reside in each section. Only a
few parameters are actually required within these sections. The rest are optional, making it possible to
have short, simple configuration files. Section hierarchy and requirements for each supported type of
deployment are as follows. Sections in bold text are required; those in normal text are optional.
Indentation shows nesting levels.

171

o

ﬁ;:g} INTERWOVEN

~

TeamXpress-to-Database

filter
keep
di scard
substitutions
dat a- depl oy- el enent s
client
depl oynent
substitutions
exec- depl oynment
source
Teanti t e- ext ended-attri butes
TeanSite-tenpl ati ng-records
destinations
substitutions

filter

dat abase
sel ect
updat e
sq

server

TeamXpress-to-XML

filter

keep

di scard
substitutions
client

dat a- depl oy- el enent s
depl oynent
substitutions
exec- depl oynment
source
TeanSi t e-extended-attri butes
TeanSite-tenpl ati ng-records
destinations
substitutions
filter
xm -formatt ed-data
server

Configuration File Details and Examples

172

TeamXpress Templating and Deployment Guide

Required Elements

Database-to-Database

filter
keep
di scard
substitutions
dat a- depl oy- el enent s
client
depl oynent
substitutions
exec- depl oynment
source
dat abase
fields
destinations
substitutions

filter

dat abase
sel ect
updat e
sql

server

Database-to-XML

filter
keep
di scard
substitutions
dat a- depl oy- el enent s
client
depl oynent
substitutions
exec- depl oynment
source
dat abase
fields
destinations
substitutions
filter
xm - formatted-data
server

173

o

ﬁ;:g} INTERWOVEN

~

XML-to-Database

filter

keep

di scard
substitutions
client

dat a- depl oy- el enent s
depl oynent
substitutions
exec- depl oynment
source
xm - formatted-data
fields
destinations
substitutions
filter
dat abase
sel ect
updat e
sq
server

XML-to-XML

filter
keep
di scard
substitutions
dat a- depl oy- el enent s
client
depl oynent
substitutions
exec- depl oynment
source
xm -formatted-data
fields
destinations
substitutions
filter
xm -formatted-dat a
server

Configuration File Details and Examples

174

TeamXpress Templating and Deployment Guide

Parameter Substitutions

Parameter Substitutions

Any parameter string in a configuration file can be named using a parameter substitution. You set
parameter string substitutions on the same command line you use to invoke DataDeploy with the
i wdd command. Syntax is as follows:

"var nane=var val ue"

After a string is defined on the command line, all occurrences of $var nane in the configuration file
named on the command line are substituted with the string var val ue. Do not use the following
terms for var nane; they are keywords for the i wdd command and would be interpreted as such:

cfg
depl oyment
i wdd- op

r enot e- host
r enot e- port

Examples of parameter substitution within a configuration file are as follows:

prefix_string_$varnane
$var nane”_suffix_string (where”is a concatenator)
prefix_$varname”_suffix

Sample TeamXpress-to-Database Configuration File

The foll owi ng sanple configuration file shows how to set paranmeters for a typical
TeanXpr ess-t o- dat abase deploynment. It identifies which paranmeters are required,
shows both gl obal and in-flow usage, and is keyed to a conment table follow ng the
file that explains nore details about each section and paraneter. Mst of the
elements in this file are al so used to define types of deploynent other than
TeanXpr ess-t o- dat abase. For exanples of configuration files for these other

depl oynent types, see the sanple file sections starting on page 196.

175

o

‘my INTERWOVEN

Configuration File Details and Examples
~

<l --Sanpl e Dat abDepl oy configuration file --> I
<dat a- depl oy- confi gurati on> - Include file
<dat a- depl oy- el enents filepath="/1ocal/iw home/db.xm"/>
<filter name="MFilter"> -

<l-- This is a filter that can be used by any depl oynent -->
<keep>
<I-- Any of the following (logical OR): -->
<I-- dir2/subdir/index.htm, any *.htm file indirl, -->
<l-- OR anything with key 'guard' AND value 'IGNORE -->
<or >
<field nane="path" match="dir2/subdir/index. htm" />
<field nane="path" match="dirl/*. htm" />
<and>
<I-- Must match all of these (logical AND) -->
<field nane="key" mat ch="guard" />
<field name="val ue" match="1GNORE" /> Filter section
</ and> (global) 2
</ or>
</ keep>
<di scar d>
<l-- Exclude the file dirl/ignorene. htm, anything -->
<I-- with key 'unneededKey', and anything with state -->
<! -- DELETED -->
<or >
<field nane="path" match="dir1/ignorene.htm" />
<field nane="key" mat ch="unneededKkey" />
<field name="state" match="DELETED" />
</ or>
</ di scard>
</filter>
<substitution nanme="d obal Substitution">]
<l-- This substitution can be used by any depl oynment. -->
<I-- It replaces the first occurrence of the string ‘foo’ -->
<I-- in the '"path' field with "bar', and conpletely -->
<I-- replaces the 'value' field with the string ' Special Value'.-->
<field nane="path" match="foo" replace="bar" /> o
<field name="val ue" repl ace="Speci al Val ue" /> Substitution
</ substitution> section (global) 3

176 TeamXpress Templating and Deployment Guide

Sample TeamXpress-to-Database Configuration File

<client>
<l-- This deploynment puts EA data froma TeanXpress area into -->
<!-- a destination database. -->
<depl oyment name="ea-to-db"> g Start of Deployment section 5 (required)
<source> = Start of Source section © (required)
tart of <I-- Pull data tuples from(local) TeamXpress EA's. -->
Client <l-- Only those EA's that are different fromthe -->
_— <l-- ones in the base area will be reported. The -->
section <l-- actual workarea will be taken fromthe 'user' -->
<l-- command-|ine paraneter. -->
» <Teanbit e-extended-attributes
options="differential, wde"
Data type7 ar ea="/ def aul t / mai n/ dev/ br anchx/ WORKAREA/ $user "
(required) base- area="/ def aul t / mai n/ dev/ br anchx/ STAG NG' >
<path nanme="dir1/index.htm" visit-directory="no" />
<pat h name="dir2/subdir" visit-directory="shallow' />
<l-- Use the command-|ine paraneter 'path' -->
<l-- as the pa_t h name. | f_ t he pat h h_appens --> Location of
<l-- to be a directory, visit its children --> 8
<I-- recursively. --> source data
<path nane="$path" visit-directory="deep" /> (area
End of Source <l-- Readalist_of filesfromthef?le -->
. 6 <l-- '/tnp/ SoneFiles'. The default directory -->
secthn <I-- node 'deep’ will be used for each file. -->
(required)

<path filelist="/tnp/SoneFiles" />
</ TeanSi t e- ext ended-attri but es>
</ source>

<I-- Apply global filter "MyFilter' to all tuples --> Call global
. " H n «
<filter use="MFilter" /> filter 2

177

o

‘my INTERWOVEN

~

<substitution>

Configuration File Details and Examples

<l-- Mdify each tuple according to the following -->
<l-- match/replace pairs. In this case: any path -->
<l-- that contains the string 'WORKAREA/.../"'" wll -->
<I-- have the string replaced by ' STAGA NG '; any -->
<I-- path that contains 'EDI TIOV abcd wll be -->
<I-- replaced with '/This/Special/Path', and any -->
<l-- tuple whose key starts with 'BEFORE will be -->
<l-- changed to begin with ' AFTER . -->
<field name="path"
mat ch="(.*)/ WORKAREA/ [N]+/ (.*)" _
repl ace="\ 1/ STAG NG/\ 2" /> Substitution
<field nane="path" section
mat ch="EDI TI ON abcd" (inflow) °
repl ace="/Thi s/ Speci al / Path" />
<field name="key"
mat ch=""BEFORE(. +) "
repl ace="AFTER 1" />
</substitution>
<l-- Also apply the substitution 'd obal Substitution' -->
<substitution use="d obal Substitution" /> < Call global substitution 3
<l-- Start the destinations section. -->
» <desti nati ons
(host =" DDSer ver . i nt er woven. cont
port="1357">
Startof <1.. Filtered and substituted data will be sent to a -->
Destinations<| .. pat aDepl oy server on port 1357 of the machine -->
section 1 <1 -- DDServer.interwoven.com Then -->
(required) <!-- send sone tuples to 'tablel' on the database that -->
<l-- is located using 'jdbc:renote.nachine.com and -->
<l-- provide user 'dba' with password ' ThislsASecret'. -->
<l-- Performany other activities that are associated -->
<I-- with the option 'ea-update'. Tinmeout is 45 secs. -->
<dat abase name="nyproducti ondb" Start of Database
db="host 1: 1357: db1" section and location
tabl e:'('jtbabl el” of destination
user ="dba" 11
passwor d="Thi sl sASecret" gz;zt;isg)
ti meout ="45">
178 TeamXpress Templating and Deployment Guide

Sample TeamXpress-to-Database Configuration File

Rows to

update 12
(required)

Update type
and related
data 13
(required)

T»
Columns to

update 14
(required)

 <sel ect>

<col um nane="Rel at edVal ue"
val ue-fromfiel d="val ue" />
<col um name-fromfi el d="key"
val ue="present" />

</ updat e>

<l-- Select the row whose value in the colum -->
<l-- naned 'filenane' matches the current path, -->
<l-- whose value in colum 'InterestingTag' -->
<I-- matches the current key as nodified by any -->
<!-- substitutions, and that has literal -->
<l-- value 'litData" in colum "info'. -->
<col um nane="fil enane"

val ue-fromfiel d="path" />
<col um nane="I nteresti ngTag"

val ue-fromfiel d="key" />
<col um name="i nf 0"

val ue="litData" />

| </select>
[<update type="delta"

base-t abl e=" Root Tabl el"

state-fiel d="Statel nfo">
<l-- Update colum 'Rel atedVvalue' to contain the -->
<l-- current EA value, and update the colum -->
<l-- whose nane is taken fromthe 'key' field -->
<l-- with the literal value 'present'. The table -->
<l-- being updated is assunmed to be a delta -->
<I-- table nodifying base table 'Root Tabl el'; -->
<I-- the differencing operations are driven by -->
<l-- the value of tuplefield 'Statelnfo'.

179

o

‘mv INTERWOVEN Configuration File Details and Examples

~

 <!-- If it is necessary to create a newtable for -->
<l-- this deployrment, the following SQ statenment -->
<I-- will be used for that purpose (as opposed to -->
<l-- a capriciously chosen internal default) -->
<sqgl action="create">
<l-- This coment should be ignored. However -->
<l-- the paraneter token in the next lineis -->
sl <I-- subject to paraneter substitution. -->
s CREATE TABLE tabl el (
section Path VARCHAR(300) NOT NULL,
KeyName VARCHAR(300) NOT NULL
Val ue VARCHAR(4000) ,
St at e VARCHAR(4000) ,
CONSTRAI NT KVP PRI MARY KEY (Pat h, KeyNane)
)

L </sql >
</ dat abase>
</ desti nati ons>
</ depl oynent >

</client>

<server> N
<!-- The DataDepl oy server will listen on port 1949 of IP -->
<l-- 204.247.118.99 -->

<bi nd i p="204.247.118.99" port="1949" />

<l-- Only accept connections fromthese hosts -->
<al | owed- host s>

<host addr="ddclient.interwven.cont />

<host addr="204.247.118.33" />

</ al | owed- host s> .
Server section 16

<!-- Server-specific deploynment information -->
<f or-depl oynent name="ea-to-db">
<dat abase db="host 1: 1357: db1"
user="scott"
password="tiger" />
</ f or - depl oynent >
</ server>
</ dat a- depl oy- confi gurati on>

180 TeamXpress Templating and Deployment Guide

Sample TeamXpress-to-Database Configuration File

Sample File Notes

1. Include File: You can use <dat a- depl oy- el ement s> to name a file containing data to include
by reference. The file named in <dat a- depl oy- el ement s> can contain any number of
<dat abase>, <fi | ter>, and <subst i t ut i on> elements. It must use the same syntax for
these elements that the main DataDeploy configuration file uses. See Items 2, 3, and 11 in this
section for details. See page 227 for a complete sample include file. If mutually exclusive
attributes are set in the include file and the main DataDeploy configuration file, all are used in
the deployment. If conflicting attributes are set in the two files, those set in the main
DataDeploy configuration file take precedence.

2. Filter section (global): Filters let you explicitly state which tuples will or will not be deployed.
The keep section contains criteria for selecting which tuples are deployed, and the di scar d
section contains criteria for those which are not. Both sections use f i el d tags. All f i el d tags
must contain at least one nane/ mat ch attribute pair. When you deploy from TeamXpress,
name must be either key, val ue, pat h, or st at e (as defined earlier in“Data Organization
Within DataDeploy” on page 154). When you deploy from a source other than TeamXpress,
name can be any be any field name that is valid in the source area. The mat ch attribute names
a targeted value for nane. A filter defined in the nesting level shown here and located before
the Deployment section will be global. Global filters do not become active until they are
called via the <f i I t er > element’s use attribute between the Source and Destinations
sections using the syntax shown later in the sample file. Note that filters can also be defined in
an include file and then be called via the use attribute. If a configuration file does not contain
a filter section, all tuples are deployed (limited only by the type of update being performed).
A configuration file can contain any number of global filter sections. A configuration file can
also contain in-flow filters within a dest i nat i ons section. See Item 10 for details.

3. Substitution section (global): Substitutions let you configure DataDeploy to
automatically replace character strings or entire fields in a table. Substitutions use f i el d tags
that must contain at least one name/ r epl ace attribute pair. As with filters, name is either
key, val ue, pat h, or st at e. The r epl ace attribute is the new string that will overwrite
the existing string or field. Two additional attributes, mat ch and gl obal , are optional.
Common usage examples are as follows:

181

o

‘m’ INTERWOVEN

~

Configuration File Details and Examples

To do this: Include this line in the Substitution section:

Replace all Value field values | <fiel d name="val ue" repl ace="Newal ue"/>
with the string Newval ue

In the Path field, replace first |<field name="path" match="bl ue" replace="red"/
occurrence of bl ue withred |~

In the Path field, replace all <field name="path" natch="blue" replace="red"
occurrences of bl ue withred |9! obal ="yes"/>

In the State field, replace the |<fi el d nane="key" match="Qriginal"
first occurrence of Ori gi nal | T €Pl ace="Not Present "/ >
with Not Pr esent

A substitution defined in the nesting level shown here and located before the Deployment
section will be global. Global substitutions do not become active until they are called via the
<subst i t uti on> element’s use attribute between the Source and Destinations sections
using the syntax shown later in the sample file. Note that substitutions can also be defined in
an include file and then be called via the use attribute. A configuration file can contain any
number of global substitution sections.

4, Client section: The cl i ent section lets you specify a set of client-specific parameters and
activities. A configuration file that is expected to run on a two-tier system or as a client on a
three-tier system must have exactly one client section.

5. Deployment section: The depl oynent section is where you assign a name to each
deployment, and specify deployment source, destination, and update type. You can have any
number of depl oynment sections in a configuration file, and each must have a unique name.
The name shown here, ea- t o- db, i the name you would specify on the command line when
you invoke DataDeploy. The depl oyment section is required in all configuration files. The
<exec- depl oynent > subelement lets you execute one or more deployments that are
defined elsewhere in the same configuration file. Syntax is as follows:

<exec- depl oynent use="dbname" />

where dbnane refers to the name of a database as defined in the nane attribute in a <dat abase>
element.

182 TeamXpress Templating and Deployment Guide

Sample TeamXpress-to-Database Configuration File

6. Source section: The sour ce section resides one nesting level inside the depl oynent
section. It is where you name the type of data to extract from TeamXpress and the location(s)
of that data. Each depl oynent section must have exactly one sour ce section.

7. Source type: The first nesting level within the <sour ce> element contains a subelement
defining what type of data is to be extracted from TeamXpress. This subelement has the

following possible elements:

Subelement

Description

TeanSi te-tenpl ati ng-records

Used when deploying a TeamXpress Templating data
content record from TeamXpress. Supported
options: wi de (default), f ul I (default),
differential.

Teanti t e- ext ended- attri but es

Used when deploying anything other than a data
content record from TeamXpress. Supported
options: nar r ow (default), wi de, f ul I (default),
differential.

xml -formatt ed-dat a

Used when deploying from an XML file. Supported
options: nar r ow (default), wi de, f ul I (default),
differential.

dat abase

Used when deploying from a database. Supported
options: nar r ow (default), wi de, f ul | (default),
differential.

Each of the preceding subelements supports three attributes: opt i ons, ar ea, and base- ar ea.
Details about the opt i ons attribute are as follows:

opti ons Value |Description

wi de Creates a wide table based on wide tuples containing any number of key/
value pairs. Specified in addition to di f f erenti al orful | . The wi de and
nar r owValues are mutually exclusive; you cannot specify both within the
same element. The wi de value is the default for the TeanSi t e-

t enpl ati ng- r ecor ds element.

183

o

‘m) INTERWOVEN Configuration File Details and Examples

~

narrow Creates a 4-column (narrow) table based on narrow tuples. Specified in
additionto di fferential orful | .Thew de and nar r owvalues are
mutually exclusive; you cannot specify both within the same element. The
nar r owValue is the default for the Teansi t e- ext ended- at tri but es,
xm - f or mat t ed- dat a, and dat abase elements. The TeanSi t e-

t enpl at i ng-recor ds element does not support the nar r owvalue.

differential |Instructs DataDeploy to extract just the delta data from a workarea/staging-
area comparison. Normally, you specify di f f er ent i al when performing a
delta update. The di fferential andful | values are mutually exclusive;

you cannot specify both within the same element. The defaultisful I .

full Instructs DataDeploy to create a table populated with all of the data from a
named area. Normally, you specify f ul I when performing a base or
standalone update (update types are defined later in the dest i nat i ons
section). The di fferenti al andful I values are mutually exclusive; you
cannot name both as options within the same element. The defaultisful I .

To configure an incremental deployment, set the <TeanSi t e- ext ended- at t ri but es>0r
<TeanSi t e- t enpl at i ng-r ecor ds> elements as follows. The result is a delta table containing the
differences between vpat h1 and vpat h2.

<Teanti t e- extended-attributes
options="differential"
area="vpat h1"
base- ar ea="vpat h2"

...additional subelenments if necessary...

</ Teanfi t e- ext ended- attri but es>

8. Location of source data: The ar ea attribute defines the TeamXpress workarea, staging
area, or edition from which DataDeploy will extract data. This attribute is required in all
depl oyment sections. The value of ar ea should be the vpath name of the area containing the
changes you intend to deploy. If di f f er ent i al is set, you must also supply a vpath value for
base- ar ea. This value should be the vpath name of the edition or staging area that is the
basis for comparison with the workarea you named in ar ea. The optional pat h element can
have one (but not both) of the following values: nane or fi | el i st . Setting the name
attribute lets you specify a relative path name to a file or directory in the area(s) you named
earlier in ar ea (and base- ar ea if applicable), or stipulate that the path name will be entered

184 TeamXpress Templating and Deployment Guide

Sample TeamXpress-to-Database Configuration File

on the command line when you invoke DataDeploy. See “Parameter Substitutions” on

page 175 for information about entering path names on the command line. Setting the
filelist attribute lets you specify a file containing a list of files, and is typically used when
you perform a delta update of a workarea containing only a few changed files. If you do not
name a pat h value, it defaults to “. ” and DataDeploy performs a deep search of the directory
named in ar ea (and base- ar ea if applicable). The vi si t - di r ect or y attribute lets you
specify DataDeploy’s level of searching within a directory. The three possible values are no,
shal | ow, and deep. Details are as follows:

Value

Description

no

If pat h name is a directory, it is not searched.

shal I ow |If pat h name is a directory, it is searched to the first level.

deep

All directories and all subdirectories found in pat h name are searched recursively.

The default value of vi si t - di rect ory IS deep.

Substitution section (in-flow): In-flow substitutions let you define substitution rules that
apply only to specific parts of a deployment. DataDeploy supports in-flow substitutions within
the depl oynment and dest i nat i ons elements. For example, the in-flow substitution
shown in the sample configuration file is nested one level inside of the depl oyment element,
and therefore applies only to the ea- t o- db deployment. You can also nest in-flow
substitutions one level inside dest i nat i ons elements, in which case the substitution applies
only to a specific destination. In-flow substitutions have the same syntax as global
substitutions. In addition, in-flow substitutions support a gl obal attribute that lets you that
lets you control whether the substitution applies to all occurrences or just the first occurrence
of the matching pattern.

185

o

‘m) INTERWOVEN Configuration File Details and Examples

~

If gl obal is set to no, the substitution applies only to the first occurrence. If it is set to yes,
the substitution applies to all occurrences. For example:

<destinati ons>
<database . . .>
<substi tution name="SubFor Thi sTarget">
<field name="BField" match="froma"
repl ace="to_b"
gl obal ="yes" />
</ substitution>

The example shown in the sample configuration file earlier in this chapter uses Perl 5 regular
expression syntax for mat ch values. A configuration file can contain any number of in-flow
substitution sections.

10. Destinations section: The dest i nat i ons section resides one nesting level inside the
depl oynent section. It is where you name the destination system(s), timeout value,
database, and table, and is also where you define the update type. Each depl oyment section
can have any number of dest i nat i ons sections, allowing you to designate multiple
destinations in a single configuration file. Destination system and timeout details are as
follows. Database, table, and update type are explained later in Item 11.

Attribute Description Required? | Value Syntax

host Machine name of the DataDeploy server (3-tier | No "host name. cont
systems only).

port Port on host to which data will be sent. No " por t number "

ti meout How long the client system will wait for a No "seconds”

response from the remote host during
communication exchange. This tag can also
reside in the Database section, in which case it
has a different definition. See Item 11 for details.

You can also nest in-flow filters within a dest i nat i ons element, in which case the filter applies
only to that specific destination. For example:
<desti nati ons>
<database . . .>
<filter name="FilterForThisTarget">

186 TeamXpress Templating and Deployment Guide

Sample TeamXpress-to-Database Configuration File

<di scar d>

<field nane="AFi el d"

</ di scard>
</filter>

In-flow filters have the same syntax as global filters.

mat ch=""DoNot \ant/.*"/>

11. Database section: The first subelement in the dest i nat i ons section defines the type of
destination for the data. This subelement can be either <dat abase> or <xni - f or mat t ed-
dat a>, depending on whether the destination is a database or an XML file. See “Sample
TeamXpress-to-XML Configuration File” on page 196 for an example of xm - f or mat t ed-
dat a usage. When deployment is to a database, the <dat abase> tag and its name and db
attributes are required in all depl oyment sections. A dest i nat i ons section can have any
number of <dat abase> subelements or a combination of <dat abase> and <xni -

f or mat t ed- dat a> subelements. Syntax for the values db and other attributes of the
<dat abase> tag are as follows:

the nane attribute.

file, you can reference it as a
destination by including it here. If you
reference a database via use, you do
not need to specify nane or db in the
reference because they are already
defined in the include file. However,
you can optionally set db or any other
attribute together with the use
attribute, in which case the explicitly
set attributes take precedence.

Attribute Value Description rlF)Qequired
name Any user-defined database Used to reference the database via the | Only if
name surrounded by double | use attribute elsewhere in the the use
quotes, e.g., configuration file. For example, the | attribute
"nyproduct i ondb" . <exec- dat abase> element could | is used
contain use="rnypr oduct i ondb". |elsewhere
in the file.
db Depends on vendor; see next | Names the address string of the Yes.*
table. destination database.
use The name of the database set by | If a database is defined in an include | No.

187

o

‘m’ INTERWOVEN

~

Configuration File Details and Examples

Attribute value Description giequwed
table Any user-defined table name | Names a destination table in db. Yes.*
surrounded by double quotes,
e.g., "tabl el”.
user Any user name surrounded by | Authorizes a specific database user. Yes.*
double quotes, e.g., "user 1".
password Any user-defined password Names the assigned password for Yes.*
surrounded by double quotes, |user. Note that any password named
e.g., "w2l YS". in a configuration file is not encrypted,
and can be read by anyone having
access to the configuration file.
timeout Any positive integer How long the client system will No.
representing the duration of | attempt to log into the database system
the timeout in seconds, before giving up. This tag can also
surrounded by double quotes, | reside in the Destinations section prior
e.g.,"4". to the Database section, in which case
it has a different definition. See Item
10 for details.
clear-table "yes" OF "no" Specifies whether a delta table should | No.
be cleared before receiving new data.
Useful to set to yes (which is the
default) when deleting many workarea
files prior to submitting. Set to no if
updating extended attributes on
existing files prior to submitting.
table-view "yes" OF "no" Specifies whether to create a view No.
automatically during deployment. The
default is no. Setting to yes is
incompatible with Sybase ASE (but
works correctly with Sybase
SQLAnywhere and all other supported
databases). Setting to yes and using
Sybase ASE will result in an aborted
deployment.
188 TeamXpress Templating and Deployment Guide

Sample TeamXpress-to-Database Configuration File

Attribute Value Description ,F)iequired
vendor "mcrosoft” Specifies Microsoft SQLServer. Setsa | Yes.
default max- i d- | engt h of 128.
"oracle” Specifies an Oracle database. Sets a
default max- i d- I engt h of 30.
"sybase" Specifies Sybase SQLAnywhere. Sets a
default max- i d- | engt h of 128.
"ibm" Specifies IBM DB2. Sets a default
max- i d- | engt h of 30.
"inform x" Specifies an Informix database. Sets a
default max-i d-1ength of 18.
max- i d- Any positive integer Specifies the maximum number of No.**
I'ength appropriate for an object name | characters in any database object name
length (per the documentation | (e.g., column names, table names,
provided by the database etc.), overriding any defaults set via
vendor). the vendor attribute.

* Either here or in the Server section’s Database section. See Item 16.

**Not required, but highly recommended. Even if the appropriate value is set via the vendor default, setting it again in max- i d-
| engt h ensures that the value is explicitly set and easily verified. This also ensures that the value will remain constant should the
default value (as set dynamically by DataDeploy) ever change.

The syntax for the value of the db attribute shown in the preceding table depends on the database

vendor. Details are as follows. Syntax and example lines should all be on one line in the

DataDeploy configuration file. Line breaks shown here are due to formatting constraints of this

document.
Database/Driver Syntax of db Attribute Example
Informix db="//host _nane: port/ db="//
dat abase_nane: | NFORM XSERVER=ser ver |sysl.i nterwoven.com
_name" : 1357/
bank01: | NFORM XSERV
ER= OL_sys1l"
Oracle/JDBC thin db="host _nane: port:instance_identif db="host1:1357: db1"
ier"

189

o

‘m’ INTERWOVEN

~

Configuration File Details and Examples

Database/Driver Syntax of db Attribute Example

Oracle/JDBC OC| * |db="dat abase_t nsnane" db="bankO1"
(See Oracle. _
documentation for details
about configuring TNS
names)

Sybase SQL db="JDBC dat a_source_nane" db="server 1"

Anywhere

Sybase ASE db="host _nane: port/ dat abase_nane" db="sys1.interwoven
.com 1357/ bank01"

Microsoft SQL Server |db="dat a_sour ce_nane" db="bank01"

(See Microsoft
documentation for details
about creating data source
names on Windows NT
and Windows 2000
systems)

IBM DB2 (UDB)

db="//host nane: port/dat abase nane"

db="//host1:1357/db1"

* Used by DataDeploy if Oracle extension datatypes (e.g., CLOB) are used. Requires installation of
the OCI client library on the system from which the i wdd. i pl command is executed.

The <dat abase> subelement also supports the <st or ed- pr ocedur e> subelement, which
allows you to deploy key-value pairs that are treated as a stored procedure. The <st or ed-
procedur e> subelement resides in the first nesting level within the <dat abase> element, and
lets you write a stored procedure using standard SQL syntax as supported by the current database.
You can then store the procedure in the database by deploying it as an extended attribute via
DataDeploy. Syntax is as follows:

<st or ed- pr ocedur e>

<fiel dname prefix="any_prefix_1"/>
<fiel dname prefix="any_prefix_2"/>
<fiel dname prefix="any_prefix_n"/>

</ st or ed- procedur e>

The value of any_pr ef i x can be any case-insensitive character string. DataDeploy will examine
each tuple for key-value pairs in which the key name starts with any of the specified prefix values.

190

TeamXpress Templating and Deployment Guide

Sample TeamXpress-to-Database Configuration File

For each match, the value for that key is treated like a database stored procedure; that is,
DataDeploy does not validate the value of the key-value pair for syntax and semantic correctness.

Instead, DataDeploy passes the value to the database, the key-value pair is not inserted into the

table, and errors (if any) are returned to the user. If creation of stored procedure fails and if the
tuple contains non-stored procedure key-value pairs, the entire deployment is aborted.

12. Rowsto update: The sel ect section is where you select database rows to update with data
from the current tuple. It is also where you can specify a data type for the deployed data other
than the default VARCHAR 300 (you can also set the data type in Update section; see Item 13,
“Update type and related data”). You identify rows by stating one or more matching criteria
for column values in that row. For example, you can select a row whose values in columns
named “color” and “size” are respectively “red” and “small.” Column matching criteria are set
through the col unm tag. Each dat abase section must have exactly one sel ect section, and
each sel ect section must contain at least one col unm tag. Each column tag must contain the
following two attributes:

1) name or nanme-fromfiel d

2) val ue or val ue-fromfiel d

The column tag can optionally contain the dat a- t ype and dat a- f or mat attributes.

Syntax is as follows:

Attribute

Description

Value Syntax

nanme

Specifies a column by name.

Text string containing any
column name from the table
specified by the dat abase tag.

nanme-from
field

Specifies a column name by reference to a
field in the current tuple.

Any of the following: key,
val ue, pat h, st at e.

val ue

Specifies the literal value to match in the
column just named.

Text string containing any table
value.

val ue-from
field

Specifies a value to match by reference to
afield in the current tuple.

Any of the following: key,
val ue, pat h, st at e.

191

o

‘m’ INTERWOVEN

~

Configuration File Details and Examples

dat a-type

Specifies the datatype for the extended
attributes being deployed. If not set,
DataDeploy assumes a data type of
VARCHAR.

Any datatype supported by the
database.

dat a- f or mat

Only required of dat a- t ype is set.

Specifies the format of the extended

attributes being deployed as a date or

time.Can be used only under the

following conditions:

 On an Oracle database server, and
when data-type is either DATE,
DATETI ME, or TI MESTAMR. If you set
dat a- f or mat when any of these con-
ditions do not exist, the setting is
ignored.

« If dat a- t ype IS either DATE or
DATETI ME. The format of the dat a-
f or mat value must conform to the
specification described for the
Si npl eDat eFor mat Java class.

Any valid date or time format.

For example, you would use the following <col urm> element configuration to deploy the
KeyNanel extended attribute values as integers:

<col um name="Val ueCol "
dat a-type="1 NT"
val ue-fromfi el d="KeyNanel" />

Or, to deploy KeyNane1 extended attribute values as a date formatted to show Year -Mont h-Day
Hour s:M nut es:Seconds (assuming an Oracle database):

<col um nane="Val ueCol "
dat a-t ype="DATE"

dat a- f or mat =" YYYY- MM DD HH24: M : SS"

val ue-fromfi el d="KeyNanel" />

If the dat a- t ype attribute is not specified in the DataDeploy configuration file, DataDeploy uses
VARCHAR (300) as the datatype. If a large number of columns are created in the table, the total
size of each row could easily exceed the maximum row size imposed by the database server.

192

TeamXpress Templating and Deployment Guide

Sample TeamXpress-to-Database Configuration File

Therefore, it is recommended that you set the dat a- t ype attribute whenever possible for the
columns defined in the <sel ect > and <updat e> sections of the DataDeploy configuration file.

13. Update type and related data: The updat e section is where you select the type of
update, reference table (if applicable), and the table column(s) to update. Update type can be
del t a, base, or st andal one (the default). Type del t a requires two attributes, base-
tabl e and st ate-fi el d. The base- t abl e attribute names the base table that will be
modified after the delta table (named earlier in the dat abase section) is updated. The
st at e-fi el d attribute names which tuple item will be interpreted as state information.
Each dat abase section must have exactly one updat e section. The relationship between
updat e section settings and the table named earlier in the dat abase section’s t abl e
attribute is as follows:

Ifth ioncontains | And the D .

thtis:e Update section contains sec(zigneco?\g?r?ssihis: The resultis:

type ="base" t abl e="Tabl el1" DataDeploy assumes Tabl el is a base
table. Generates a full base table called
Tabl el or modifies existing full base
table Tabl e1l.

type ="base" t abl e="Tabl e1" DataDeploy assumes Tabl el is a delta

base-tabl e ="Tabl e2" table. Effectively merges rows from
delta table Tabl el into base table
Tabl e2.

type ="delta" tabl e="Tabl el" DataDeploy assumes Tabl el is a delta

base-tabl e ="Tabl e2" table hased on the full base table
Tabl e2. Generates a delta table called
Tabl el or modifies existing delta table
Tabl e1. Does not update Tabl e2
with delta or any other type of data.

14, Columns to update: In the updat e section, you must also select at least one column to
update from the row(s) you specified earlier in the sel ect section. You select columns by
naming matching criteria in col urm tag attributes just as you did in the sel ect section. All
of the attributes shown in the table in Item 13, “Update type and related data,” are supported
in the col unm tag as well.

193

o

‘mv INTERWOVEN Configuration File Details and Examples

~

15. SQL section: The optional sqgl section lets you create SQL commands that override system
defaults and execute automatically during deployment. The sql element supports three
attributes: act i on, user - acti on, and t ype. Details are as follows:

Attribute Value Description

action create Lets you define your own SQL CREATE TABLE
command for table creation during deployment.
Commands set by this attribute override the default
DataDeploy schema for creating tables. The default
schema is SELECT * FROM TABLENAME

show Lets you define your own SQL SELECT command for
the show t abl e operation. Commands set by this
attribute override the default DataDeploy schema.

exi st Lets you define database-specific queries to check for
the existence of a table. Commands set by this attribute
override the default DataDeploy schema.

tracker - exi st Lets you define database-specific queries to check for
the existence of the tracker table. Commands set by this
attribute override the default DataDeploy schema.

tracker-create |Letsyou define your own SQL CREATE TABLE
command for tracker table creation during deployment.
Commands set by this attribute override the default
DataDeploy schema.

user-action |anyname Lets you define any arbitrary SQL command(s) for
execution during deployment. For example:
<sqgl user-action="showiew' type=query>
Arbitrary SQ conmands. . .
</ sql >
The commands specified here execute only if you set the
i wdd- op=do- sql and user - op=anynamne options on
the command line when you invoke DataDeploy.
Because the act i on and user - act i on attributes are
controlled by mutually exclusive command line options,
you cannot execute both attributes at the same time (i.e,
within the same deployment).

194 TeamXpress Templating and Deployment Guide

Sample TeamXpress-to-Database Configuration File

type

query If user - act i on is set, you must also set t ype. Setting
t ype="query" specifies that user - acti on will be a

query.
updat e If user - acti on is set, you must also set t ype. Setting

t ype="updat e" specifies that user - act i on will be
an update.

Note that it is not necessary for the statements in the <sel ect > and <updat e> elements to
match the table schema in an <sql > element.

16.

Server section: The ser ver section lets you specify a set of server-specific parameters. A
deployment that is expected to run on a server in a three-tier system must have exactly one
ser ver section. The bi nd tag lets you specify where on the server machine the DataDeploy
server will listen. Each ser ver section must have exactly one bi nd section. In a bi nd
section, the por t attribute is always required, while the i p attribute is required only if the
server machine has more than one available IP address. The optional al | owed- host s
element lets you specify which hosts are allowed to connect to the DataDeploy server. If you
include an al | owed- host s element, its host subelement must have an addr value in the
form of an alphanumeric machine name or an IP address. The optional f or - depl oynent
element lets you define several client attributes just as you did in the dat abase section (see
Item 11). These attributes are: db, t abl e, user , passwor d, and t i meout . If you set these
attributes here, they override any settings for the same attributes in the client-side dat abase
section. An alternative to including a ser ver section in a client/server configuration file is to
have a separate file containing just a ser ver section. This arrangement allows you to separate
client and server information into different files, which can reside on different machines.

195

o

‘m) INTERWOVEN Configuration File Details and Examples

~

Sample TeamXpress-to-XML Configuration File

The following file configures a typical deployment from TeamXpress to an XML file. The xm -

f or mat t ed- dat a tag has a single attribute, fi I e, which specifies the absolute path and file name of
the destination file. A dest i nat i ons section can have any number of xni - f or mat t ed- dat a
elements, or a combination of xmi - f or mat t ed- dat a and dat abase elements. When deploying to
an XML file, you can also remap field column tags as shown on page 198.

<depl oynent nane="TeanmXpr ess-to-xm ">
<sour ce>
<l-- Pull data tuples from TeanXpress EA's -->
<TeanBi t e-ext ended-attri butes
options="full"
area="/def aul t/ mai n/ dev/ STAG NG' >

<path name="." />
</ TeanSti t e- ext ended- attri but es>
</ source>

<desti nati ons>
<xm -formatted-data fil e="/u/tenp/someTabl e.xm " />
</ destinations>
</ depl oyment >

The following sample file shows the default format of a typical XML destination file:

<?xm version="1.0"?>
<xm -tupl e-data version="2.0">
<dat a-t upl e>
<tuple-field name="pat h">nmydir/f9</tuple-field>
<tuple-field nane="state">Original </tuple-field>
<tuple-field name="val ue">smal | </tupl e-fiel d>
<tuple-field name="key">si ze</tuple-field>
</ dat a-t upl e>
<dat a-t upl e>
<tuple-field name="pat h">nmydir/f9</tuple-field>
<tuple-field name="state">Original </tuple-field>
<tuple-field nanme="val ue">bl ue</tuple-field>
<tuple-field name="key">col or</tuple-field>
</ dat a-t upl e>
</ xm -tupl e- dat a>

196 TeamXpress Templating and Deployment Guide

Sample Database-to-Database Configuration File

Sample Database-to-Database Configuration File

<depl oynent nane="db-to-db">
<source>
<l-- Pull data tuples from databse -->
<dat abase db="server"
user =" DBA
passwor d="SQ."
t abl e="st agi ng" >

<fields>
<field nane="path" colum="Path" />
<field nane="key" col um="KeyNane" />

<field nane="val ue" col um="Val ue" />
<field nane="state" colum="State" />
</fields>
</ dat abase>
</ sour ce>
<desti nati ons>
<l-- Oacle8 on Unix -->
<dat abase db="di ver: 1521:test db"
user="scott"
passwor d="ti ger"
t abl e="soneTabl e" >
<sel ect >
<col um nane="Pat h"
val ue-fromfield="path" /[>
<col um nane="KeyNange"

val ue-fromfiel d="key" />
</ sel ect >
<updat e>
<I-- Update colum 'Value' to contain the -->
<l-- current EA value, and update colum ' State'
<l-- to contain the current state. -->
<!-- This is a k-v-p specification -->

<col um nane="Val ue"
val ue-fromfiel d="val ue" />
<col um nane="St at e"
value-fromfield="state" />
</ updat e>
</ dat abase>
</ desti nati ons>
</ depl oynent >

-->

197

o

‘mv INTERWOVEN Configuration File Details and Examples

~

In this file, the f i el d elements specify which columns in the source database DataDeploy will use
when building a tuple for each row. The sel ect element chooses rows to update in the destination
database. It will choose rows only having unique combinations of the values named in the column
subelements (in this case, pat h and key). See “Sample TeamXpress-to-XML Configuration File” on
page 196 for an example of XML destination file format.

Sample Database-to-XML Configuration File

The following file configures a deployment from a database to an XML file, including remapped field
column tags (as opposed to the default output shown on page 196):

<depl oynent nane="db-to-xm ">

<source>
<l-- Pull data tuples from databse -->
<l-- Oracle8 on Unix -->

<dat abase db="di ver: 1521:test db"
user="scott"
passwor d="ti ger"
t abl e="t upl eTabl e" >

<fields>
<field name="path" colum="EPath" />
<field nane="key" col um="EKeyName" />

<field nane="val ue" col um="EVal ue" />
<field nane="state" colum="EState" />
</fields>
</ dat abase>
</ sour ce>
<desti nati ons>
<xm -formatted-data file="/tnp/tupl eTable. xm ">
</ xm -fornmatted-data>
</ destinations>
</ depl oyment >

198 TeamXpress Templating and Deployment Guide

Sample Database-to-XML Configuration File

The resulting XML output file is as follows:

<?xm version="1.0"7?>
<xm -tupl e-data version="2.0">
<dat a- t upl e>
<tuple-field name="NEWat h">nydir/f9</tuple-field>
<tuple-field name="NEWt ate">Origi nal </tuple-field>
<tuple-field name="NEWal ue">smal | </tupl e-field>
<tuple-field nanme="NEWey" >si ze</tuple-field>
</ dat a-t upl e>
<dat a- t upl e>
<tuple-field name="NEWat h">nydir/f9</tuple-field>
<tuple-field name="NEWt ate">Origi nal </tuple-field>
<tuple-field name="NEWal ue" >bl ue</tupl e-field>
<tupl e-field name="NEWey">col or</tuple-field>
</ dat a-t upl e>
</ xm -t upl e- dat a>

199

o

‘m) INTERWOVEN Configuration File Details and Examples

~

Sample XML-to-Database Configuration File

The following file configures a typical deployment from an XML file to a database:

<depl oynent nane="xm -t o-db">

<source>
<!-- Pull data tuples fromXM file -->
<xm -formatted-data file="/u/iw wcuan/bill Table.xm" >
<fields>
<field name="path" elenment="path" />
<field nane="key" el ement =" key" />
<field nane="val ue" el enent ="val ue" />
<field nane="state" elenent="state" />
</fields>
</ xm -formatted-data>
</ sour ce>

<desti nati ons>
<dat abase db="di ver: 1521:t est db"
user="scott"
password="ti ger"
t abl e=" Tabl eFr omXM." >
<sel ect >
<col um nane="Pat h"
val ue-fromfield="path" /[>

<col um nane="KeyNane"

val ue-fromfiel d="key" />
</ sel ect >
<updat e>
<I-- Update colum ' Rel atedValue' to contain the -->
<l-- current EA value, and update columm 'status' -->
<l-- to contain the current state. -->
<!-- This is a k-v-p specification -->

<col um nane="Val ue"
val ue-fromfiel d="val ue" />
<col um nane="St at e"
value-fromfield="state" />
</ updat e>
</ dat abase>
</ desti nati ons>
</ depl oynent >

200 TeamXpress Templating and Deployment Guide

Sample XML-to-Database Configuration File

In this file, the f i el d elements specify which attributes in the source XML file DataDeploy will use
when building a tuple for each Path-Key-Value-State item in the file. The el enent attribute can
name any valid element; it is not limited to naming just the pat h, key, val ue, Or st at e elements

shown here.

201

o

‘m) INTERWOVEN Configuration File Details and Examples

~

Sample XML-to-XML Configuration File

The following file configures a typical deployment from an XML file to another XML file. This is
different than just copying the source file because it includes an in-flow substitution as described in the
file comments. You can also include filters when configuring an XML-to-XML deployment, although
that feature is not shown here.

<depl oynent nanme="xm -t o-xm ">

<source>
<!-- Pull data tuples fromXM file -->
<xm -formatted-data file="/u/iw wcuan/bill Table.xm" >
<fields>
<field name="path" elenment="path" />
<field nane="key" el ement =" key" />
<field name="val ue" el ement="val ue" />
<field name="state" elenment="state" />
</fields>
</ xm - f ormat t ed- dat a>
</ sour ce>
<substitution>
<!-- Mdify each tuple according to the following -->
<!-- match/replace pairs. In this case: any path -->
<l-- that contains the string 'WORKAREA/.../' will -->
<I-- have the string replaced by ' STAG NG '; any -->
<l-- path that contains 'ED TI OV abcd" will be -->
<I-- replace with '/ This/Special/Path', and any -->
<l-- tuple whose key starts with 'BEFORE' will be -->
<l-- changed to begin with ' AFTER . -->

<field name="path"
mat ch="(.*)/ WORKAREA/ []+/ (. *)"
repl ace="\1/ STAG NG\ 2" />
<field nane="path"
mat ch="EDI TI OV abcd"
repl ace="/Thi s/ Speci al / Path" />
<field name="key"
mat ch=""BEFORE(. +) "
repl ace="AFTER 1" />
</ substitution>
<desti nati ons>
<xm -formatted-data fil e="/u/tenp/someTabl e.xm" />
</ destinati ons>
</ depl oynent >

202 TeamXpress Templating and Deployment Guide

Sample XML-to-XML Configuration File

In this file, the f i el d elements specify which attributes in the source XML file DataDeploy will use
when building a tuple for each Path-Key-Value-State item in the file.

203

o

‘m’ INTERWOVEN

Configuration File Details and Examples
~

Starting-State Base Table Configuration File

The following file generates the initial base table BT1 shown in the Starting State diagram on
page 170:

<depl oynent nane="st agi ng" >
<sour ce>
<l-- Pull data tuples from TeanXpress EA's -->
<TeanBi t e-ext ended-attri butes
options="full"
area="/def aul t/ mai n/ dev/ STAG NG' >

<path name="." />
</ TeanSi t e- ext ended- attri but es>
</ source>
<desti nati ons>
<l-- Oacle8 on Unix -->

<dat abase db="diver: 1521:testdb"
user="scott"
passwor d="ti ger"
t abl e="st agi ng" >
<sel ect >
<col um nane="Pat h"
val ue-fromfield="path" />
<col um nane="KeyNange"
val ue-fromfi el d="key" />
</ sel ect >
<updat e type="base"
state-field="state">

<I-- Update colum 'Value' to contain the -->

<l-- current EA value, and update colum 'State' -->
<l-- to contain the current state. -->
<!-- This is a k-v-p specification -->

<col um nane="Val ue"
val ue-fromfiel d="val ue" />
<col um nane="St at e"
val ue-fromfield="state" />
</ updat e>
</ dat abase>
</ desti nati ons>
</ depl oynent >

204 TeamXpress Templating and Deployment Guide

Event 1 Configuration File

Event 1 Configuration File
The following file configures the delta deployment shown in the Event 1 diagram on page 170:

<depl oynent nane="del ta">
<source>
<TeanBi t e- ext ended-attri butes
options="differential"
base- area="/def aul t/ mai n/ dev/ STAQ NG'
area="/ def aul t / mai n/ dev/ WORKAREA/ $wor kar ea" >

<pat h name="." />
</ Teanti t e- ext ended-attri but es>
</ source>

<desti nati ons>
<dat abase db="di ver: 1521:t est db"
user="scott"
password="ti ger"
t abl e="Del t a_$wor kar ea" >
<sel ect >
<col um nane="Pat h"
val ue-fromfield="path" /[>
<col um nane="Key"
val ue-fromfi el d="key" />
</ sel ect >
<update type="delta"
base-t abl e="st agi ng"
state-field="state">
<col um nane="Val ue"
val ue-fromfiel d="val ue" />
<col um nane="St at e"
value-fromfield="state" />
</ updat e>
</ dat abase>
</ desti nati ons>
</ depl oynent >

Note that this file uses the parameter substitution $wor kar ea in the <dat abase> section. See
“Parameter Substitutions” on page 175 for more information.

205

o

‘mv INTERWOVEN Configuration File Details and Examples

~

Event 2 Configuration File
The following file configures the delta deployment shown in the Event 2 diagram on page 170:

<depl oynent nane="subnit">
<source>
<TeanBi t e- ext ended-attri but es
options="differential"
base- area="/def aul t/ mai n/ dev/ STAG NG'
area="/ def aul t/ mai n/ dev/ WORKAREA/ $wor kar ea" >
<path filelist="/tnp/somefiles" />
</ Teanti t e- ext ended-attri but es>
</ source>
<desti nati ons>
<dat abase db="di ver: 1521:t est db"
user="scott"
password="ti ger"
t abl e="Del t a_%$wor kar ea" >
<sel ect >
<col um nane="Pat h"
val ue-fromfiel d="path" /[>
<col um nane="Key"
val ue-fromfi el d="key" />
</ sel ect >
<updat e type="base"
base-t abl e="st agi ng"
state-field="state">
<col um nane="Val ue"
val ue-fromfiel d="val ue" />
<col um nane="St at e"
value-fromfield="state" />
</ updat e>
</ dat abase>
</ destinations>
</ depl oynent >

206 TeamXpress Templating and Deployment Guide

Chapter 10

Invoking DataDeploy

This chapter describes how to invoke DataDeploy from the command line, and the conditions under
which the DataDeploy daemon runs as a service. You can also use the syntax shown here to invoke
DataDeploy through ani wat trigger script or an external workflow task as described on page 151.

iwdd.ipl Command
Use the i wdd. i pl command to invoke DataDeploy from the command line, in ani wat trigger
script, or as a workflow task. Usage is as follows. Note that i wdd. i pl resides in dd- home/ bi n.

Usage
i wdd. i pl cfg=configfile [deploynent=depl oynmentnane][iwld-op=t abl eopnane]

iwdd. i pl cfg=configfile [deploynent=depl oynent nane][i wdd- op=do-sql] user-
op=anynane nyt abl e=anyt abl e

i wdd. i pl renote-host=hostname [renote-port=portnunber][iwdd-
op=server opnamne]

Syntax
iwdd.ipl cfg Invokes DataDeploy, and optionally performs table
operations.
configfile The name of the DataDeploy configuration file,

including path name (either absolute or relative to the
current directory).

depl oynment =depl oynent nane Invokes DataDeploy as a client. Without this option,
DataDeploy is invoked as a server.

207

o

‘mp INTERWOVEN Invoking DataDeploy

~

depl oyment name The value of the narre attribute of the depl oynent
element.
i wdd- op=t abl eopnane Performs the table operation specified by

t abl eopnane. This is not a standalone option; you
can only use it together with
depl oynment =depl oynent nane.

t abl eopnane Displays or deletes tables as follows:

show- t abl e: Displays an ASCII version of the table
named by t abl e= in the configuration file’s
dat abase section for the specified deployment.

dr op-t abl e: Deletes the same table from the

database.
show t r acker : Displays an ASCII version of the
tracker table.
dr op-t r acker : Deletes the tracker table from the
database.
i wdd- op=do- sql Performs an SQL operation on the named table.
user - op=anynane Performs the user-defined SQL operation defined by

user - act i on=anynane in the DataDeploy
configuration file’s sql element. See Item 14 in
“Sample File Notes” on page 181 section for more
information. You must also set myt abl e=anyt abl e
whenever you set user - op=anynarre.

i wdd renot e- host Performs server operations on the server specified in
host nane.

host nanme The IP address or name of the server host.

r enot e- por t =por t nunber Specifies the port number on the host. Defaults to
1949 if r enot e- por t IS not set.

i wdd- op=ser ver opname Performs the server operation specified by
server opnane. Defaults to pi ng- ser ver if not
set.

208 TeamXpress Templating and Deployment Guide

iwdd.ipl Command

server opnarme pi ng- ser ver : Returns a standard string to verify
the server connection.

st op- ser ver : Waits for current deployment to
complete and then stops the server. All
communication with the server is cut off after you
issue this command.

ki || -server : Stops the server immediately even if a
deployment is running.

Examples

To invoke DataDeploy as a server based on the configuration file / bi n/ conf / ddconfi g. xm :
i wdd. i pIl cfg=/bin/conf/ddconfig.xm

To invoke DataDeploy as a client based on the configuration file / bi n/ conf / ddconfi g. xmi and
the deployment named ea- t o- db:

iwdd. i pIl cfg=/bin/conf/ddconfig.xm deploynent=ea-to-db
To delete the tracker table from the database:

i wdd. i pIl cfg=/bin/conf/ddconfig.xm deploynent=ea-to-db iwdd-op=drop-
tracker

To stop the server on port 1234 of the host exanpl ehost :
i wdd. i pl renote-host =exanpl ehost renote-port=1234 i wdd- op=st op-server
To ping the server on port 1949 of the host exanpl ehost :

i wdd. i pl renot e- host =exanpl ehost

209

o

‘mp INTERWOVEN Invoking DataDeploy

~

Execute the following to invoke DataDeploy as a client to perform the SQL operation showpat hs on
the table pr t abl e. In this example:

« The DataDeploy configuration fileis . . / conf / t enpl at i ng/ extranet/ pr. cf g.
« showpat hs is the value for the user - op attribute in the configuration file’s <sql > element.

e nytabl e="prtabl e" isaparameter substitution for all occurrences of $nmyt abl e in the
configuration file (see “Parameter Substitutions” on page 175 for more information).

iwdd. i pl cfg=../conf/tenplating/extranet/pr.cfg depl oyment="dosql" iwdd-
op=do- sql user-op="showpat hs" nytabl e="prtabl e"

Running DataDeploy as a Service

The I nt erwoven Dat aDepl oy service automatically starts the DataDeploy daemon for DAS
operation if the i wsyncdb. cf g file exists in dd- horre/ conf . If i wsyncdb. cf g does not
exist, the I nt erwoven Dat aDepl oy service starts the DataDeploy daemon for 3-tier
operation.

210 TeamXpress Templating and Deployment Guide

Chapter 11
Synchronizing OpenDeploy
and Data Deploy

This chapter describes the configuration tasks you must perform to synchronize OpenDeploy with
DataDeploy, and how to invoke a deployment after synchronization is complete.

Overview

You can configure your system to deploy file system assets and database assets in the same transactional
deployment. This type of deployment is referred to as synchronized deployment throughout this chapter.

Deploying Different Types of Assets

File system assets are files (HTML, ASCII, etc.) that are typically deployed by previous releases of
OpenDeploy. Database assets are TeamXpress extended attributes and data content records (DCRs)
created through TeamXpress Templating. Deployment of database assets was not supported by
previous releases of OpenDeploy.

A typical scenario for using synchronized deployment involves files that were generated via
TeamXpress Templating. For example, after you configure synchronized deployment, if you deploy
HTML files that were generated by rendering DCRs through presentation templates, the DCRs are
also deployed to database tables residing on the production server. These actions occur as the result of
a single synchronized deployment.

Synchronized deployment is intended primarily for deploying TeamXpress editions. The first
development-to-production deployment of an edition will deploy all files and all database assets.
Subsequent deployments will be dir-diffs between a subsequent edition on the production server and
tuple differences between the current edition and the previous edition.

211

o

‘m’ INTERWOVEN

~

Synchronizing OpenDeploy and
Data Deploy

Synchronized deployment generates or updates one or more base tables on the production server. It
does not generate delta tables. See “Client Configuration File” on page 217 for more information
about what information is deployed to these base tables.

Note: Adding new files or database content to the production server by any method other than the
edition deployment process will create data inconsistencies between assets on the
development and production servers.

Configuration Task Categories

Tasks that you must perform to configure your system for synchronized deployment fall into two
main categories:

« Ensuring that OpenDeploy configuration files are set up correctly on the development and
production servers.

 Ensuring that DataDeploy configuration files are set up correctly on the development server and
production servers.

The rest of this chapter describes:

 The software required for synchronized deployment.
« The files provided with OpenDeploy and DataDeploy to support synchronized deployment.
 An overview of what happens during synchronized deployment.

« OpenDeploy and DataDeploy configuration tasks that you must perform to set up synchronized
deployment.

« How to invoke synchronized deployment.

212 TeamXpress Templating and Deployment Guide

Software Requirements

Software Requirements

Synchronized deployment requires the following software:

 TeamXpress 1.1 on the development server.
« TeamXpress Templating 1.1 on the development server.

« TeamXpress OpenDeploy 4.5.1 on the development and production servers.
« TeamXpress DataDeploy 4.5.1 on the development and production servers.

Program and Configuration Files

The following files control synchronized deployment. All files are installed by default in od- home/
exanpl es/ ddsync. You must manually move them to the locations shown below. See the sections
following the table for configuration instructions and illustrations showing how these files interact.

File

Location

Description

ddsync. i pl

dd- hone/ bi nonthe
development and production
servers.

The DNR script invoked by OpenDeploy
to execute DataDeploy. Do not edit this
file.

dat abase. xni

dd- hone/ conf on the
production server.

The include file for the <dat abase>
elementin| oaddb. cf g. You must
configure this file for your site. See
“Configuring DataDeploy” on page 222
for more information.

subxm db. tenpl at e

dd- hone/ conf on the
development server.

The Template DataDeploy configuration
file used by i wsyncdb. i pl asa basis for
creating the | oaddb. cf g DataDeploy
configuration file. Do not edit this file.

| oaddb. cfg

Generated on the production
server; must be moved to
dd- hone/ conf on the
production server.

The generated DataDeploy configuration
file used to run DataDeploy to update a
database from generated XML files. Do
not edit this file. You can, however
regenerate it from the command line. See
“Configuring DataDeploy” on page 222
for more information.

213

o

‘mv INTERWOVEN Synchronizing OpenDeploy and

~ Data Deploy
File Location Description
tsxni.cfg dd- home/conf on the The DataDeploy configuration file used
development server. to run DataDeploy to generate XML files

from TeamXpress extended attributes
and DCRs. You must configure this file
for your site. See “Configuring
DataDeploy” on page 222 for more

information.
oddd_recei ve. cfg |od-home/ conf onthe OpenDeploy server-side (production
production server. server) configuration file. You must

configure this file for your site. See
“Server Configuration File” on page 221
for more information.

oddd_send. cfg od- hone/ conf onthe OpenDeploy client-side (development
development server. server) configuration file. You must
configure this file for your site. See
“Configuring OpenDeploy” on page 217
for more information.

Synchronized Deployment Process

The following diagram shows the deployment of file system assets and database assets from a
development server to a production server. There are two main deployment paths: one for the file
system assets (labeled “Other Files” in the diagram) and one for the database assets such as TeamXpress
DCRs and extended attributes. The diagram uses the following symbols:

—=> Flow of data such as DCRs and extended attributes.

_>
— — — Flow of OpenDeploy and DataDeploy processes.

The section following the diagram explains all deployment steps in detail.

214 TeamXpress Templating and Deployment Guide

Synchronized Deployment Process

Development Server Production Server

OpenDeploy OpenDeploy
Client Server
Other Files 5 Other Files
0] L1
0] - [][]

C10] 10
10 10
XML Files 5 XML Files

L1 L0

2 10 » [1[]

L0 N
10 C10]

DataDeploy

~
loaddb.cfg

tsxml.cfgy

|
database.xml

TeamXpress
DCRs and EAs

HEN
NN

Synchronized Deployment

215

o

‘mv INTERWOVEN Synchronizing OpenDeploy and
] Data Deploy

Diagram Key

This section explains the actions shown in the preceding diagram. For these actions to take place, you
must have already configured the OpenDeploy and DataDeploy files as described in this chapter. You
must also have already started the OpenDeploy daemon on the production server by executing the

i wdepl oy -s command described in “” on page 222.

1. On the development server, a user invokes OpenDeploy in transactional mode from the command
line via the i wdepl oy - T command. See “Invoking Synchronized Deployment” on page 227 for
syntax details. The client- and server-side OpenDeploy configuration files for this deployment
must be configured to deploy file system assets per a normal deployment, and must also contain
deploy-and-run (DNR) scripts for database asset deployment. See “Configuring OpenDeploy” on
page 217 for details about setting up these OpenDeploy configuration files.

The OpenDeploy client starts the client-side DNR script.

2. The client-side DNR script invokes DataDeploy as configured by t sxni . cf g. See “” on page 222
for details about t sxmi . cf g.

3. DataDeploy reads the TeamXpress database assets (DCRs and extended attributes) residing on the
development server.

4. DataDeploy performs a TeamXpress-to-XML deployment, generating XML files based on the
TeamXpress database assets. See “Sample TeamXpress-to-XML Configuration File” on page 196 for
more information about this type of deployment.

5. OpenDeploy deploys the generated XML files and the original file system assets to the production
Server.

6. OpenDeploy is already running on the production server (it was started as a daemon via
i wdepl oy -s prior to Step 1 above). The OpenDeploy daemon starts the server-side DNR
script.

7. The server-side DNR script invokes DataDeploy as configured by | oaddb. cf g and
dat abase. xni .

216 TeamXpress Templating and Deployment Guide

Configuring OpenDeploy

8. DataDeploy reads the generated XML files that were deployed from the development server.

9. DataDeploy performs an XML-to-database deployment, populating the database on the production
server with tuples from the generated XML files. See “Sample XML-to-Database Configuration
File” on page 200 for more information about this type of deployment.

Configuring OpenDeploy

This section describes the steps you must perform to configure OpenDeploy for synchronized
deployment at your site. Configuration steps are:

1. Edit the client configuration file oddd_send. cf g to control OpenDeploy client execution on the
development server.

2. Edit the server configuration file oddd_r ecei ve. cf g to control OpenDeploy server execution
on the production server.

3. Start the OpenDeploy daemon on the production server.

The following sections describe these steps in detalil.

Client Configuration File

The sample client configuration file oddd_send. cf g contains general configuration information and
four DNR scripts (all based on ddsync. i pl). Each DNR script invokes DataDeploy differently
depending upon whether the deployment is full or differential, and whether DataDeploy is invoked on
the development or production server. Full and differential deployments in the context of
synchronized deployment are defined as follows:

With full deployment, new base tables are created for each TeamXpress Templating data type
named int sxm . cf g. Full deployment is typically done once, as the first synchronized
deployment on your system. If you execute a full deployment more than once, existing base tables
are overwritten with new base tables upon each execution.

 With differential deployment, existing base tables are updated with any data that is new or changed
since the last deployment.

217

o

‘mv INTERWOVEN Synchronizing OpenDeploy and
] Data Deploy

To configure oddd_send. cf g for your site, you must edit the general configuration information and
all four DNR scripts as follows.

Note: If a file named oddd_send. cf g already exists on your system, the sample configuration file
should be integrated into the existing version.

1. Open od- home/ conf/ oddd_send. cf g. You will see two main sections labeled Di r - Di f f
Depl oyment with Full Tuple DeployandDir-Di ff Depl oyment with
Differential Tuple Depl oy. Each section contains general configuration information and
two DNR scripts.

2. Change all referencesto/ | ocal /i w- hone to reflect the location of the actual OpenDeploy home
directory.

3. The following line specifies the development server location of the edition that you intend to
deploy in the initial full deployment:

ar ea=/ def aul t / mai n/ dev/ EDI TI OV snapshot

In each occurrence of this line, change / def aul t / mai n/ dev/ EDI TI ON/ snapshot to reflect
the development server location of the edition that you will deploy. This edition is depicted as
“TeamXpress DCRs and EAs” in the diagram on page 215. This line applies to file assets during a
full deployment.

4. The following line specifies the production server location of the destination for deployed file sys-
tem assets:

renote_directory=/tnp/Branchl

In each occurrence of this line, change / t np/ Br anch1 to reflect the production server location of
the destination for deployed file system assets. These assets are depicted as “Other Files” in the
diagram on page 215. This line applies to file assets during both full and differential deployments.

5. The following line specifies the development server location of the more recent edition that you
will use for comparison during differential deployment (in which two editions are compared and
only differences are deployed):

ar ea=/ def aul t/ mai n/ dev/ EDI TI O\ snapshot 2

218 TeamXpress Templating and Deployment Guide

Configuring OpenDeploy

In each occurrence of this line, change / def aul t / mai n/ dev/ EDI TI ON snapshot 2 to reflect
the development server location of the more recently created edition that you will use for
comparison. In the example shown here, snapshot 2 is compared with snapshot , and the
differences are then deployed.

6. The following line specifies the production server location of the destination for generated XML
files during the initial full deployment:

renot e_di rect ory=/tnp/ producti on/ dunpdir

In each occurrence of this line, change / t np/ pr oduct i on/ dunpdi r to reflect the production
server location of the destination for generated XML files. These files are depicted as “XML Files”
in the diagram on page 215. This line applies to XML files during a full deployment.

7. The following line specifies the development server location of the generated XML files during the
initial full deployment:

ar ea=/t np/ devel opnent / dunpdi r

In each occurrence of this line, change / t np/ devel oprent / dunpdi r to reflect the
development server location of the generated XML files. These files are depicted as “XML Files” in
the diagram on page 215. This line applies to XML files during a full deployment.

8. The following line specifies the production server location of the destination for generated XML
files during a differential deployment:

renot e_di rectory=/tnp/production/deltadunpdir

In each occurrence of this line, change / t np/ pr oduct i on/ del t adunpdi r to reflect the
production server location of the destination for generated XML files during a differential
deployment. These files are depicted as “XML Files” in the diagram on page 215.

9. The following line specifies the development server location of the generated XML files during a
differential deployment :

area=/t np/ devel opnent / del t adunpdi r

In each occurrence of this line, change / t np/ devel opment / del t adunpdi r to reflect the
development server location of the generated XML files during a differential deployment. These
files are depicted as “XML Files” in the diagram on page 215.

219

o

‘m’ INTERWOVEN

~

Synchronizing OpenDeploy and
Data Deploy

10.Wherever / t enp/ devel oprent , / t enp/ pr oduct i on, dunpdi r, and del t adunpdi r occur
in the DNR scripts, change them to match the values determined in the preceding steps.

11.Where snapshot 2 occurs in the differential deployment DNR script, change it to match the
development server location of the more recently created edition that you will use for comparison
in a differential deployment.

Syntax of ddsync.ipl
This section shows the full syntax for the ddsync. i pI DNR script.

Usage
ddsync.ipl area_top dunp_dir dunp full area
ddsync.ipl area_top dunp_dir dunp differential area basearea
ddsync.ipl area_top dunp_dir |oad full
ddsync.ipl area_top dunp_dir |load differential
area_t op The absolute path to top of the area directory.
dunp_dir The relative path to the dump directory in ar ea.
dunp Dumps TeamXpress metadata to generated XML
(“dump”) files.
| oad Populates database table(s) with data from generated
XML (“dump”) files.
full Specifies entire area traversal.
differential Specifies comparison between two areas.
basear ea Specifies the originally-created area for use in
comparison during a differential deployment. Valid
only if di f ferenti al Is set.
ar ea Specifies the current area (i.e., the more recently
created area for use in comparision during a
differential deployment).
220 TeamXpress Templating and Deployment Guide

Configuring OpenDeploy

Logging ddsync.ipl Execution
A log of ddsync. i pl execution is maintained in dd- | og- hore/ ddsync_dunp_| oad. | og

Supported OpenDeploy Modes

Whenever you invoke a synchronized deployment, you must execute OpenDeploy in forward dir-diff
mode. TeamXpress-based, file list, and reverse deployments are not supported. See “Invoking
Synchronized Deployment” on page 227 for appropriate command-line syntax for invoking in dir-diff
mode.

Configuration File Location
After you configure oddd_send. cf g, ensure that it resides in od- hone/ conf .

Server Configuration File

The sample server configuration file od- hone/ conf / oddd_r ecei ve. cf g is shown below. You
must edit it to reflect your system’s port number and the TeamXpress server name. You must also edit
the values of / t mp/ Branchi and / t np/ pr oduct i on so that they match the values you entered in
oddd_send. cf g.

#

Test file for self-host deployment of sonme dir
#

SERVER- S| DE

#

port=1999

ti meout =600

#require_abs_script _pat h=y

TeanSi te_server =pegasus
#key_fil e=/secrets/sone-shared-secret-file
al l owed_directory /tnp/ Branchl
al l owed_directory [t p/ production

Configuration File Location
After you configure oddd_r ecei ve. cf g, ensure that it resides in od- home/ conf .

221

o

‘mv INTERWOVEN Synchronizing OpenDeploy and
] Data Deploy

Starting the OpenDeploy Server Daemon

After configuring the server configuration file, start the OpenDeploy server daemon on the
production server by executing the following command:

i wdeploy -S -f oddd_receive.cfg

Configuring DataDeploy

This section describes the steps you must perform to configure DataDeploy for synchronized
deployment at your site. Configuration steps are:

1. Edit the configuration file t sxmi . cf g.
2. Generate the configuration file | oaddb. cf g.
3. Edit the configuration include file dat abase. xn .

4. Verify that the configuration files reside in the appropriate directories.
The following sections describe these steps in detalil.

Interaction Between Files

The following diagram shows the interaction between DataDeploy configuration files during a
synchronized deployment. The section following the diagram explains each component in detail.

222 TeamXpress Templating and Deployment Guide

Configuring DataDeploy

Development Server

Production Server

DataDeploy

e

DataDeploy
P
1 -
~
tsxml.cfg
TeamXpress Templating Directories
* WORKAREA
Lt errpl at eda
—I nt ern
Must \ L boo
match s dat
'—dat aca ture
resen
book.t

loaddb.cfg database.xml

Synchronized Deployment: DataDeploy Configuration Files

Diagram Key

1. When DataDeploy is invoked on the development server via the ddsync. i pI DNR script, the

deployment is based on the dd- hone/ t sxm . cf g file. Prior to invoking the synchronized

deployment, you must have edited this file manually so that it names each TeamXpress Templating

data category and type that will be deployed to a generated XML file.

Data categories and types are determined by examining the t enpl at edat a directory structure

that was set up as described in the TeamXpress Templating documentation. By default,

t sxn . cf g contains the example data categories and types that are distributed with TeamXpress

o

‘mv INTERWOVEN Synchronizing OpenDeploy and
] Data Deploy

Templating. The example in the diagram shows the part of this directory structure containing the
book data type within the i nt er net data category. See “Editing tsxml.cfg” on page 224 for
details about how to list data categories and types.

You do not need to list every data category and type from the t enpl at edat a directory structure
intsxm . cf g. You only need to list the data types that you intend to deploy. However, each data
type that you list in t sxm . cf g must exist in the t enpl at edat a directory structure. If you list
data types in t sxmi . cf g that do not exist in the directory structure, the deployment will fail.

Each data type that you list in t sxm . cf g will be deployed to its own generated XML file.

2. When DataDeploy is invoked on the production server via the ddsync. i pl DNR script, the
deployment is based on the dd- hone/ | oaddb. cf g file. Prior to invoking the synchronized
deployment, you must have generated this file on the development server and then moved it to
dd- home on the production server. You should not edit | oaddb. cf g directly; doing so will cre-
ate inconsistencies between assets on the development and production servers. See “Generating
loaddb.cfg” on page 226 for details.

3. The information in | oaddb. cf g is supplemented by dat abase. xni , which is analogous to an
include file. The dat abase. xni file is named in the <dat a- depl oy- el enent s> element in
| oaddb. cf g. You must edit dat abase. xni to configure it for your site. See “Editing data-
base.xml” on page 227 for details. See “Configuration File Details and Examples” for information
about <dat a- depl oy- el ement s> syntax.

Editing tsxml.cfg

Prior to invoking a synchronized deployment, you must edit t sxmi . cf g as described in this section
and ensure that it is installed in dd- homre/ conf on the development server. The following excerpts
are from the version of t sxmi . cf g that is shipped with DataDeploy. See the diagram key following
the diagram for details.

224 TeamXpress Templating and Deployment Guide

Configuring DataDeploy

<dat a- depl oy- confi gurati on>

<client>
<l-- -->
<l-- Paraneters: -->
<I-- node ={ full | differential } -->
<l-- -->
<I-- if node == full -->
<I-- nybasearea = dunmy -->
<I-- nmyar ea = absolute vpath to any area -->
<I-- -->
<I-- if node == differential -->
<I-- nmybasearea = absolute vpath to prev edition -->
<I-- nyar ea = absolute vpath to curr edition -->
<l-- -->
<depl oynment nanme="TeanXpr ess_net adat a" >4 Deployment section for
<sour ce> — . 1
<TeanBi t e- ext ended-attri butes extended atributes
opti ons = "wi de, $node"
base-area = "$nybasearea"
area = "$nyarea" >
<pat h name ="
visit-directory = "deep" />
</ TeanSfi t e- ext ended-attri but es>
</ sour ce>

<desti nati ons>
<xm -formatted-data fil e="TeantSi t e_net adat a. dunp” />
</ destinations>
</ depl oynent >

<depl oynment nane="i nternet_book"> Deployment section for first
<sour ce> < 2
<TeanSite-tenpl ati ng-records data category/type
options = "wi de, $node"
base-area = "$nybasearea”
area = "$nyarea" >
<path nane = "t enpl at edat a/ i nt er net / book"
visit-directory = "deep" />
</ TeanSi t e-t enpl at i ng-records>
</ sour ce>

<desti nati ons>
<xm -formatted-data fil e="internet_book. dunp"” />
</ destinati ons>
</ depl oynent >

225

o

‘mv INTERWOVEN Synchronizing OpenDeploy and
] Data Deploy

Sample File Notes

1. Deployment section for extended attributes: Configures deployment of TeamXpress
extended attributes to generated XML (“dump”) files. Do not edit this section of t sxmi . cf g.

2. Deployment section for first data category/type: Configures deployment of DCRs to
generated XML (“dump”) files. The section shown in this example instructs DataDeploy to
execute a deployment that creates a single XML file (i nt er net _book. dunp) containing
DCRs for the i nt er net /book data category/type. Note that the i nt er net data category
and book data type match the data category and type shown in the t enpl at edat a directory
structure in the diagram on page 223. The default t sxni . cf g file included with DataDeploy
contains several additional <depl oyment > sections for the other data categories and types
that exist in the default TeamXpress Templating t enpl at edat a directory structure. Those
sections are not shown here due to space constraints.

You must create a <depl oyment > section int sxni . cf g for each data category and type that
you intend to deploy via synchronized deployment. To do this, copy and edit the

<depl oyment > section shown in this example, replacing all occurrences of i nt er net and
book with the appropriate data category and type (respectively) from your site’s

t enpl at edat a directory structure. Repeat this process as necessary to create a

<depl oyment > section int sxm . cf g for each data type that you intend to deploy.

Generating loaddb.cfg

You must generate | oaddb. cf g prior to invoking the first synchronized deployment. After that
initial generation, it should not be necessary to regenerate | oaddb. cf g. The | oaddb. cf g file must
reside on the production server. However, the TeamXpress Templating information needed to
generate | oaddb. cf g resides on the development server. Therefore, you must generate

| oaddb. cf g on the development server and then move it to dd- hone/ conf on the production
server after it is generated.

Execute the following command on the development server to generate | oaddb. cf g in the

t ar get - pat h directory of your choice. The path listed in ar ea- vpat h names the area containing
the TeamXpress Templating directory structure as shown in “TeamXpress Templating Directories” in
the diagram on page 223.

226 TeamXpress Templating and Deployment Guide

Invoking Synchronized Deployment

dd- hone/ bi n/i wsyncdb. i pl -genl oadcfg target-path/loaddb.cfg area-vpath

After | oaddb. cf g is generated, move it to dd- hone/ conf on the production server. Then change
the <dat a- depl oy- el ement s> file path so that it contains the full pathname to the
dat abase. xm file.

Editing database.xml

The following sample dat abase. xm file is distributed with DataDeploy. Prior to invoking a
synchronized deployment, you must edit dat abase. xn as described in this section and ensure that
it is installed in dd- home/ conf on the production server.

<dat a- depl oy- el ement s>

<dat abase nane "nyproducti ondb” <«—— Do not edit the name attribute.

db = "server"

user = " DBA" ~€———— Edit the db, user, password,
passwor d = "SQ" and vendor attributes.
vendor = "SYBASE" />

</ dat a- depl oy- el emrent s>

The database name nypr oduct i ondb is hardcoded in other program files and should not be edited in
dat abase. xni . However, you must edit the db, user , passwor d, and vendor attributes per the
syntax described in Item 11 on page 187 so that they are specific to your system.

Configuration File Locations

After configuring the DataDeploy configuration files, ensure that they reside in the locations shown in
“Program and Configuration Files” on page 213.

Invoking Synchronized Deployment

After you have configured OpenDeploy and DataDeploy as described earlier in this chapter, you can
invoke a synchronized deployment from the development server.

When you invoke synchronized deployment, you can chose either of the following deployment types:

227

o

‘m) INTERWOVEN Synchronizing OpenDeploy and
] Data Deploy

« Full deployment, in which new base tables are created for each data type named in t sxmi . cf g. Full
deployment is typically done once, as the first synchronized deployment on your system. If you
execute a full deployment more than once, existing base tables are overwritten with new base
tables upon each execution.

« Differential deployment, in which existing base tables are updated with any data that is new or
changed since the last deployment.

Issue the following command on the development server to execute a full deployment:

i wdeploy -T -f oddd_send.cfg full _tuple_depl oy

Issue the following command on the development server to execute a differential deployment:
iwdeploy -T -f oddd_send.cfg delta_tuple_depl oy

If any part of a synchronized deployment fails, the entire deployment is restored back to the previous
state. For example, if the DataDeploy component fails, the files deployed by OpenDeploy files are
reverted. If the OpenDeploy component fails, the DataDeploy component will not be invoked.

228 TeamXpress Templating and Deployment Guide

Section 3: OpenDeploy
Administration

* Installing OpenDeploy

« Syntax and Options

* Configuration Files

« Configuration File Options
* Advanced Features

» Deployment Scenarios

o

‘m’ INTERWOVEN

~

230 TeamXpress Templating and Deployment Guide

Chapter 12

Installing OpenDeploy

OpenDeploy consists of a deployment client which resides on the TeamXpress or development server,
and a deployment server which resides on the production server. Before using OpenDeploy, you must
set up configuration files for the types of deployment you want (see Chapter 17, “Deployment
Scenarios”).

TN

U

OpenDeploy

client

4

ductiName

Fr

=
Tk

:

—>

N

OpenDeploy

server

N~

Production server

Development (ProductName) server

The rest of this chapter describes how to install the OpenDeploy client and server. Installation on a
UNIX system such as Solaris is covered in the following section. Installation on a Windows NT/2000
system follows the UNIX section.

231

o

‘mp INTERWOVEN Installing OpenDeploy

~

UNIX

Before You Begin

You should perform the following tasks before installing the OpenDeploy client and server on a UNIX
system:

1.

If you are installing the OpenDeploy client on a system without TeamXpress, you will need to
specify a directory where the OpenDeploy tar file will be loaded and uncompressed. It is
recommended that you determine which directory this will be before starting the installation
procedure.

During installation of the OpenDeploy server, you will be prompted to specify the production
server’s port number, the name of the production server, and the default directory on the produc-
tion server where website content will be deployed. It is recommended that you determine this
information before starting the installation procedure.

Installing the OpenDeploy Client

The following sections describe how to install the OpenDeploy client on development servers with
and without TeamXpress.

Development Server With TeamXpress
To install the OpenDeploy client on a development server that has TeamXpress installed:

1.

Copy the OpenDeploy tar file to your development server and decompress the tar file:
% gunzip -c opendeploy.tar.gz | (cd /'iwgethone'; tar xvpf -)
In the OpenDeploy home directory (i w- home/ opendepl oy), runi wi nst al | od:

% cd i w hone/ opendepl oy
%install/iw nstall od

When the OpenDeploy installation script prompts you to select the installation type, select 1
(source/client installation).

The OpenDeploy client will install on your development server. The installation process will cre-
ate the log file i w- hone/ | og/ depl oyEvent s. | og.

232

TeamXpress Templating and Deployment Guide

UNIX

Development Server Without TeamXpress
To install the OpenDeploy client on a development server that does not have TeamXpress installed:

1.

Copy the OpenDeploy tar file into the directory on your development server where you want to
uncompress and expand it, and decompress the tar file:

% gunzip -c opendeploy.tar.gz | (cd /parent_dir; tar xvpf -)

. In the OpenDeploy home directory (par ent _di r/ opendepl oy), runi wi nst al | od:

% cd parent _dir/ opendepl oy
%install/iw nstallod

. When the OpenDeploy installation script prompts you to select the installation type, select 1

(source/client installation).

. The OpenDeploy client will install on your development server. The installation process will cre-

ate the log file opendepl oy/ | og/ depl oyEvent s. | og.

Installing the OpenDeploy Server
To install the OpenDeploy server:

1.

Copy the OpenDeploy tar file into the directory on your production server where you want to
uncompress and expand it. Decompress the tar file:

% gunzip -c opendeploy.tar.gz | (cd /parent_dir; tar xvpf -)
In the OpenDeploy home directory (par ent _di r/ opendepl oy), run the i wi nst al | od pro-
gram:

% cd parent _dir/ opendepl oy
%install/iw nstall od

. When the OpenDeploy installation script prompts you to select the installation type, select 2 (tar-

get/server installation).

. The OpenDeploy installation script will prompt you to specify some default parameters, such as

port number, the name of the production server, and the directory to deploy to. These parameters
will be used in a simple default configuration file, which the installation script will display. You can
change any of these parameters by modifying the default configuration file or by using a different
configuration file when you invoke the i wdepl oy server.

233

o

‘mp INTERWOVEN Installing OpenDeploy

~

The OpenDeploy server installation script installs the following files:

/ et c/ i wopendepl oy. cfg Contains the directory path to the OpenDeploy

(if TeamXpress is not installed) home directory.

/etc/init.d/iw deploy The start/stop script for the OpenDeploy server.

/ etc/rc3.d/ S80i w. depl oy Hard linkto/ etc/init.d/iw depl oy (starts the
OpenDeploy server at UNIX system startup time).

/ etc/rc3. d/ K80i w. depl oy Hard linkto/ et c/init. d/iw. depl oy (Stops the
OpenDeploy server at UNIX system shutdown
time).

opendepl oy/ conf/iwodserver. cfg Default server configuration file.

opendepl oy/ | og Contains OpenDeploy log files.

OpenDeploy for UNIX creates a server log file with the level of verbose logging specified when the
OpenDeploy server is invoked. This log is automatically generated in opendepl oy/

i wdepl oy. | og. If this log file starts to take up too much space, you can stop the OpenDeploy
service, save the log file in another location, and restart the service. If the OpenDeploy server does
not appear to be running, check this log file for information about the possible causes.

Uninstalling OpenDeploy
To uninstall OpenDeploy:

In the OpenDeploy home directory (opendepl oy) on the development server, run the
i wuni nst al | od program:

% cd i w home/ opendepl oy
% install/iwininstall od

Repeat the process on the production server.

234 TeamXpress Templating and Deployment Guide

Windows NT/2000

Invoking Deployment

Before you invoke the OpenDeploy client and server, you must have configuration files set up for both
the client and the server (see Chapter 14, “Configuration Files”). You should also have a good
understanding of OpenDeploy syntax and options (see Chapter 13, “Syntax and Options”).

You can invoke deployment either manually or through/ et c/i ni t. d/ i w. depl oy.
To invoke deployment manually:

1. Assuperuser on the production server, invoke the i wdepl oy server, either manually:*
% iwdeploy -S -fd destConfigFile -V level -t tenmpFilePath &
or by editing the / et ¢/ i ni t. d/ i w. depl oy script to use the options you want, and invoking it:
% /etc/init.d/iw deploy start

2. On the development server, invoke the i wdepl oy client, either manually or through custom
scripts using the TeamXpress suite of command triggers. The arguments you use for the i wde-
pl oy client will depend on the type of deployment you want to invoke.

Windows NT/2000

Installing the OpenDeploy Client and Server
To install the OpenDeploy client on the development server:

1. Double-click on the self-extracting installation file OpenDepl . exe.

2. The installation files will extract themselves and begin installing OpenDeploy. Follow the direc-
tions in the onscreen installation prompts.

3. After completing the installation tasks described in the prompts, you must also make sure that the
TP environment variable is set on the production server. Select Settings > Control Panel from
the Windows NT/2000 Start menu.

1. If you have just killed the i wdep! oy server process and are now invoking it again, it can fail to bind to the port. Wait three minutes
for the TCP/IP connection, then try again.

235

o

‘mp INTERWOVEN Installing OpenDeploy

~

9.

. Open the System Control Panel.

. Select the Environment tab. Scroll through the list of variables in the System Variables window.

If T™MP appears in that window, then the variable is set and the OpenDeploy installation procedure
is finished. You do not need to perform steps 6-10.

Note: Make sure that the TMP variable you see is the System environment variable, not the User
environment variable.

If the T™MP variable does not appear, then continue to steps 6-10 to set the variable.

. To set the T™P variable, click on one of the settings in the System Variables window.

. Change the setting in the Variable box to TP (this change will not alter the existing system vari-

able; it will add a new one).

. Change the setting in the Value box to the location where you want to put temporary files (usually

C:\ TEMP).
Click OK.

10.You will need to reboot the server before using OpenDeploy.

The installation procedure sets a Registry key
(HKEY_LOCAL_MACHI NE\ Sof t war e\ | nt er woven\ OpenDepl oy) with three values:

od- home The directory where OpenDeploy was installed (default:

C.\ Program Fi | es\ | nt er woven\ QpenDepl oy)

od- I oghome | The directory for OpenDeploy’s log files (default:

C:\ Program Fi | es\ | nt er woven\ OpenDepl oy)

Ver si on Current version of OpenDeploy

To install the OpenDeploy server:

Repeat steps 1-10 (above) on the production server.

236

TeamXpress Templating and Deployment Guide

Windows NT/2000

Uninstalling OpenDeploy
To uninstall OpenDeploy:

1. Select Start > Settings > Control Panels.
2. Double-click on the Add/Remove Programs Control Panel icon.

3. Locate Interwoven OpenDeploy in the Control Panel, and click Add/Remove. UninstallShield
will detect the existing OpenDeploy installation and remove the software.

Invoking OpenDeploy

Before you invoke the OpenDeploy client and server, you must have configuration files set up for both
the client and the server (see Chapter 14, “Configuration Files”). You should also have a good
understanding of OpenDeploy syntax and options (see Chapter 13, “Syntax and Options”).

Invoking the OpenDeploy Server
To invoke the OpenDeploy server:

1. On the production server, select Settings > Control Panel from the Windows NT/2000 Start
menu.

2. Open the Services Control Panel.
3. Select OpenDeploy from the list of services.

4. Type all the arguments you want to use (e. g. configuration file and type of logging) in the Startup
Parameters box. When specifying paths to files, be sure to use double backslashes (\ \) anywhere
you would normally use single backslashes (\).

If OpenDeploy is invoked as a service, it will use the - S (server) option by default. If no
configuration file is specified on the command line, OpenDeploy will use the default configuration
file (OpenDepl oy/ conf /i wodser ver . cf g).

237

o

‘EXQ. INTERWOVEN

~

Installing OpenDeploy

Services E
Service Status Startup
Alerter Manual -
ClipBook Server Manual Start |
Computer Browser Started Automatic
DHCP Client Disabled St |
Directory Replicator Manual
EventLog Started Automatic ﬂl
115 Admin Service Started I anual i |
Intenwoven OpenDeploy M anual —
Intenwoven TeamSite Started Automatic Sl |
Messenger Started Automatic | ==
Hiw! Profiles. .. |
Startup Parameters:
I-S -fd di'yideplovtest iremobe_receive.cfg Help |

The Windows NT Services Window
5. Click the Start button.

OpenDeploy for Windows NT/2000 creates a server trace file with the level of verbose logging
specified when the OpenDeploy server is invoked. This log is automatically generated in the location
you specify at the time of installation, with the name depl oySvr Tracedat e. i d. t xt . Every restart
of the service will create a new log file. If this log file gets too large, you can stop the OpenDeploy
service, save the log file in another location, and restart the service.

To check the status of the OpenDeploy server, use the Windows NT/2000 Task Manager. If the
OpenDeploy service does not appear, check the trace file.

Invoking the OpenDeploy Client
Before you can invoke the OpenDeploy client, you must invoke the OpenDeploy server.

To invoke the OpenDeploy client:

You can invoke the OpenDeploy client (on the development server) manually or through custom
scripts. The OpenDeploy client is manually invoked from the command prompt. The arguments you
use for the i wdepl oy client will depend on the type of deployment you want to invoke.

238 TeamXpress Templating and Deployment Guide

Chapter 13

Syntax and Options

This chapter discusses the syntax and options of the i wdepl oy command line tool (CLT).

iwdeploy Syntax

The syntax for i wdepl oy is exactly the same in both UNIX and Windows NT/2000—only the means
of invoking it differs. If you are invoking the i wdepl oy server through the Windows NT/2000
Services Control Panel, you only need to type the arguments you want to use in the Startup
Parameters box.

Server Usage

iwdeploy -S [-h] [-v] [{-f|-fd} destConfigFile] [-fs srcConfigFile]
[-V level] [-t tempFilePath] [-i package_name] [-auth AuthFil e]

Client Usage

iwdeploy [-h] [-v] [{-f|-fs} srcConfigFile] [-fd destConfigFile] [-r] [-T]
[-V Ievel] [-events] [-log option] [-logpath dirPath] [-t tenpFil ePath]
[-o0 package_nane] depl oynment nane [paranrval ue] +

General options

-h Displays usage message.
-V Displays version.
-V | evel Specifies verbose logging level (1-4): the default is

maximum verbosity (see page 243).

239

o

ﬁ;:g} INTERWOVEN

~

Server mode options
-S
-fs srcConfigFile

{-f|-fd} destConfigFile

-t tenpFil ePath
-i package_name
-auth AuthFile

Client mode options
{-f|-fs} srcConfigFile

-fd destConfigFile

-r
-T
-events

-l og option

-l ogpath dirPath
-t tenpFil ePath

depl oynment _name

Syntax and Options

Server mode.

Specifies a source configuration file (only needed for
reverse deployment, see page 337).

Specifies a destination configuration file. If you are
using the default configuration file, you do not need to
specify it. - f is an option provided for backward
compatibility.

Specifies a path for temporary file created during
deployment (needs space for up to ~5 Mb).

Unpacks the deployment package created using the - o
option.

Specifies the authorization file to use (see page 258).

Specifies a source deployment configuration file. If
you are using the default configuration file, you do not
need to specify this option. - f is an option provided
for backward compatibility.

Specifies a destination configuration file (only needed
for reverse deployment—see page 337).

Pull mode (reverse deployment—see page 337).
Transaction-based deployment (see page 242).
Specifies logging for Event Reporting (see page 249).
Specifies the logging option

[submit| publish|trace] (see page 243).
Specifies a log directory path (see page 243).

Specifies a path for temporary file created during
deployment (needs space for up to ~5 Mb).

Name of the deployment to invoke (see page 253).

240

TeamXpress Templating and Deployment Guide

iwdeploy Syntax

[par ankval ue] + Parameters that override configuration file parameters
(for a full list of configuration file parameters, see
“OpenDeploy Client Options” on page 261).

-0 package_name Creates a deployment package that can be transferred
to the production server by alternate means (e.g., via
email, manually, etc.). This option can only be used if
TeamXpress-based comparison or a file list is used to
determine which files to deploy.

Any configuration file parameter can be specified on the command line. These parameters will
override parameters specified in the configuration file. In the case where parameters specified on the
command line contradict parameters specified in the configuration file, the command-line parameters
will be used.

Specifying Paths

UNIX
When specifying paths in UNIX, always use forward slashes.

Windows NT/2000

When specifying paths in the Windows NT/2000 Startup Parameters box, you can use either forward
or back slashes. However, back slashes must be escaped by a preceding back slash. For example, the
following path:

c:\iw hone\conf\iwodserver. cfg
will not work. Instead, specify all path names using one of the following conventions:

c:\\iw hone\\conf\\iwodserver.cfg

c:/iw home/conf/iwodserver.cfg

When specifying paths in configuration files or at the Command Prompt, use single backslashes.

241

o

‘mp INTERWOVEN Syntax and Options

~

Options

Transactional Deployment

OpenDeploy’s transactional deployment option allows you to ensure website integrity by making sure
that if the deployment process is interrupted, the original website is preserved on the webserver.

To invoke transactional deployment, use the - T option when invoking the OpenDeploy client:
% i wdepl oy -fs srcConfigFile -T depl oynent _nane

Sequence of Events

The following events occur when you invoke transactional deployment:

1. Thei wdepl oy server is informed that it will be using transactional mode.

Changes are detected on the i wdepl oy server side.

The i wdepl oy server issues “get file” directives to the client.

The i wdepl oy server records the filepaths in an internal file list.

o &~ LN

The i wdepl oy server makes copies of the original files:
cp file file.iwold

6. Upon receiving files, the i wdepl oy server renames them with a . i wnew suffix. When all “gets”
are done, three instances of every deployed file will exist: *. i wol d, *. i wnew and the original
file.

7. Thei wdepl oy server renames the new files:
m/ file.iwnew file'
8. The i wdepl oy server deletes the old files:

rm*.iwold

If any step of this process fails, the deployment is cancelled and the temporary files are removed. The
original website files will be untouched.

242 TeamXpress Templating and Deployment Guide

Options

Logging
OpenDeploy generates logging output for each deployment. You can specify the level of detail you
want to include in a log, as well as what to name it and where to put it.

To configure OpenDeploy’s logging option, invoke the i wdepl oy client with the - v,- | og and
-1 ogpat h options:

% iwdeploy -fs srcConfigFile -V level -1og option -1ogpath abs-path
depl oynment _name

Verbose Levels

The - v option allows you to specify the level of detail you want to include in a log. You can specify
verbose logging levels from 1 to 4, where Level 1 is the least verbose, and Level 4 is the most (Level 4
only applies to the server log). See the log examples later in this chapter for examples of each level.

When afile or directory is deployed, the reason why it is deployed is included in the log:

m ssi ng-in-dest |For directory difference comparison, the element is not on the target server.
For TeamXpress-based comparison, the element is not in the
previ ous_ar ea Version path.

m ssing-in-src |Fordirectory difference comparison, the element is not in the development
server. For TeamXpress-based comparison, the element is not in the ar ea
version path.

src-is-newer For directory difference comparison, the element is newer on the
development server. For TeamXpress-based comparison, the element in the
ar ea vpath is newer.

src-is-ol der Applies only when r ever t is specified. For directory difference comparison,
the element is older on the development server. For TeamXpress-based
comparison, the element in the ar ea vpath is older.

type-different |Elementswith the same name are of different types depending on where they
reside. For example, the element found on one server or area is a file, while
the element with the same path on the other server or area is a directory.

user-different |User is different (does not apply to Windows NT/2000).
group-different Group is different (does not apply to Windows NT/2000).

243

‘my INTERWOVEN Syntax and Options

~

mode-di fferent | Permissions are different (does not apply to Windows NT/2000).

si ze-different |Filesize is different.
no-prev-area TeamXpress-based comparison did not have pr evi ous_ar ea specified.

file list The file was specified in a file list.

Here are some sample server and client logs, showing the level of detail for the - v 1 through - Vv 4
options. In the - v 4 example, only the lines beginning with (2) are logged if you set the - v 2
option, lines beginning with (2) and (3) are logged with the - v 3 option, while all of the lines
shown here are displayed if you specify the - v 4 option. Unnumbered lines are logged in all cases.

244 TeamXpress Templating and Deployment Guide

Options

V1

-V 4

Server log
server: Waiting for connection...
server: Received connect request! (1)
Protocol Version(2.2) OK
platform: server(UNIX), client(UNIX)
Transaction Mode: OFF
Mode(normal)
Protocol (normal)
Host(bogus)
Name(forward_deploy)
server: Number of local_directories to deploy: 1
server: Destination directory [/tmp/Branchl]
Options: do_deletes
server: COMPARE - dst[/tmp/Branch1] with
src[/u/iw/andre/deploytest/deploysrc/dir3]

server: Receiving item(./onedir)

server: Receiving item(./twodir)

server: Receiving item(./onedir/onedir.txt)

server: Receiving item(./twodir/twodir.txt)
Directoriesdeployed: 2 Filesdeployed c 4
Directoriesfailed : 0 Filesfailed : 0
Directoriesdeleted : 0 Filesdeleted : 0

[Thu Apr 29 11:48:42 1999] Deployment COMPLETED

(2) server: Bound to port 1709
server: Waiting for connection...
server: Received connect request! (1)
Protocol Version(2.2) OK
platform: server(UNIX), client(UNIX)
Transaction Mode: OFF
Mode(normal)
Protocol (normal)
Host(bogus)
(2) server: Connection accepted!
Name(forward_deploy)
server: Number of local_directories to deploy: 1
server: Destination directory [/tmp/Branchi]
Options: do_deletes
server: COMPARE - dst[/tmp/Branchl] with src[/u/iw/andre/depl oytest/deploysrc/dir3]
(3) server: Getting directory info for (.)
(4) DIFF LEGEND <name type modDate user group mode size link>
DIFF src(onedir 3 925412751 2413:2200:777 512)
dst(onedir 3 925411586 0:1:40777 112)
(4) DIFF LEGEND <name type modDate user group mode size link>
DIFF sre(twodir 3 925412751 2413:2200:777 512)
dst(twodir 3925411586 0:1:40777 112)
(3) server: Getting directory info for (./onedir)
(4) DIFF LEGEND <name type modDate user group mode size link>
DIFF src(onedir.txt 1 924057137 2413:2200:640 0)
dst(onedir.txt 1 924057137 0:1:100640 0)
(3) server: Getting directory info for (./twodir)
(4) DIFF LEGEND <name type modDate user group mode size link>
DIFF sre(twodir.txt 1 924057147 2413:2200:6400)
dst(twodir.txt 1 924057147 0:1:100640 0)
(2) server: COMPARING done
(3) server: DEPLOY ING to destination path [/tmp/Branchl]
(3) directive[reason src-is-newer]
(3) directive[get ./onedir]
server: Receiving item(./onedir)
(3) server: dir for tempfile [/tmp/Branch1]
(3) directivefreason user-different]
(3) directive[reason src-is-newer]
(3) directive[get ./twodir]
server: Receiving item(./twodir)
(3) server: dir for tempfile [/tmp/Branch1]
(3) directivefreason user-different]
(3) directive[get ./onedir/onedir.txt]
server: Receiving item(./onedir/onedir.txt)
(3) server: dir for tempfile [/tmp/Branchl/onedir]
(3) server: file created[/tmp/Branch1/onedir/onedir.txt-iwtmp]
(3) Cleaning: /tmp/Branchl/onedir/onedir.txt
(3) server: Renamed [/tmp/Branchl/onedir/onedir.txt-iwtmp] to
[/tmp/Branch1/onedir/onedir.txt]
(3) directivefreason user-different]
(3) directive[get ./twodir/twodir.txt]
server: Receiving item(./twodir/twodir.txt)
(3) server: dir for tempfile [/tmp/Branchl/twodir]
(3) server: file created|/tmp/Branchl/twodir/twodir.txt-iwtmp]
(3) Cleaning: /tmp/Branchl/twodir/twodir.txt
(3) server: Renamed [/tmp/Branchl/twodir/twodir.txt-iwtmp] to
[/tmp/Branchl/twodir/twodir.txt]
(3) directive[reason user-different]
Directoriesdeployed: 2 Filesdeployed : 4
Directoriesfailed : 0 Filesfailed : 0
Directoriesdeleted : 0 Filesdeleted : 0
[Thu Apr 29 11:48:42 1999] Deployment COMPLETED

245

o

‘m’ INTERWOVEN Syntax and Options
~
V1 -V 4
Client log
[Thu Apr 2912:06:21 1999] opendeploy ~ 19990429.292.1 andre [Thu Apr 29 12:06:211999] opendeploy ~ 19990429.292.1 andre
INITIATED dir-diff forward_deploy sirius brain INITIATED dir-diff forward_deploy sirius brain
Protocol Version(2.2) OK Protocol Version(2.2) OK
Transaction Mode: OFF Transaction Mode: OFF
Mode(normal) Mode(normal)
Protocol (normal) Protocol (normal)
hostname(bogus) hostname(bogus)
Name(forward_deploy) Name(forward_deploy)
client: Local_directoriesto deploy: 1 client: Local_directoriesto deploy: 1
client: Options: do_deletes client: Options: do_deletes
client: DEPLOYING - [/u/iw/andre/deploytest/deploysrc/dir3] to (3) client: COMPARE Phase
[/tmp/Branch1] (2) client: Sending directory info for []
client: Sending [./one.txt] [reason src-is-newer] -- OK (2) client: Sending directory info for [./onedir]
client: Sending [./onedir] [reason user-different] -- OK (2) client: Sending directory info for [./twodir]
client: Sending [./two.txt] [reason src-is-newer] -- OK client: DEPLOY ING - [/u/iw/andre/depl oytest/deploysrc/dir3] to [/tmp/Branchil]
client: Sending [./twodir] [reason user-different] -- OK (3) client: Received 'get' request for (/one.txt)
client: Sending [./onedir/onedir.txt] [reason user-different] -- OK client: Sending [./onetxt] [reason src-is-newer] -- OK
client: Sending [./twodir/twodir.txt] [reason user-different] -- OK (3) client: Received 'get' request for (/onedir)
client: *** Note: UNENCRY PTED deployment was configured *** client: Sending [./onedir] [reason user-different] -- OK
client: Remote status: server-OK (3) client: Received 'get' request for (./two.txt)

[ThuApr2912:06:221999] opendeploy ~ 19990429.292.2 andre client: Sending [./two.txt] [reason src-is-newer] -- OK
COMPLETED /ufliw/andre/deploytest/deploysrc forward_deploy 9l 11 !

srius brain (3) client: Received 'get' request for (./twodir)

[Thu Apr 29 12:06:22 1999] 19990429.202.2 STATS client: Sending [./twodir] [reason user-different] -- OK
DEPLOYMENT /u/iw/andre/deploytest/deploysrc -~ (3) client: Received 'get’ request for (./onedir/onedir.txt)
forward_deploy OK client: Sending [./onedir/onedir.txt] [reason user-different] -- OK
Directoriesdeployed: 2 Filesdeployed : 4 (3) client: Received 'get' request for (./twodir/twodir.txt)
Directoriesfailed : 0 Filesfailed : 0 client: Sending [./twodir/twodir.txt] [reason user-different] -- OK
Directoriesdeleted : 0 Filesdeleted : 0 client: *** Note: UNENCRY PTED deployment was configured ***

client: Remote status: server-OK

[Thu Apr 29 12:06:22 1999] opendeploy ~ 19990429.292.2 andre
COMPLETED /u/iw/andre/deploytest/deploysrc forward_deploy sirius
brain

[Thu Apr 29 12:06:22 1999] 19990429.292.2 STATS DEPLOYMENT
Juliw/andre/depl oytest/deploysrc -- forward_deploy OK
Directoriesdeployed: 2 Filesdeployed : 4

Directoriesfailled : 0 Filesfailed : 0

Directoriesdeleted : 0 Filesdeleted : 0

246 TeamXpress Templating and Deployment Guide

Options

Log Names and Locations

The - | og option has three possible values: t r ace, submi t , or publ i sh. If no option is specified,
the log data will be sent to st dout . This option only applies to the OpenDeploy client. Under UNIX,
the server-side log file is located in opendepl oy/ i wdepl oy. | og. Under Windows NT/2000, a
server-side log file is automatically generated in the location you specify at the time of installation.

The t r ace option creates the following log file under UNIX:
MODETr aceDATE. t ag. | og

or, under Windows NT/2000:
MODETr aceDATE. t ag. t xt

The submi t option creates the following log file under UNIX:
MODESubmi t DATE. t ag. | og

or, under Windows NT/2000:
MODESubni t DATE. t ag. t xt

The publ i sh option creates the following log file under UNIX:
MODEPubl i shEDI TI ONDATE. t ag. | og

or, under Windows NT/2000:

MODEPubl i shEDI TI ONDATE. t ag. t xt

247

o

‘mp INTERWOVEN Syntax and Options

~

where:
MODE = {depl oy| reverse}
EDI TION = [edition-nane]
DATE = [yyyymud]

tag = the OpenDeploy session tag

For example, if i wdepl oy were called by the TeamXpress command line tool i wat sub, you would
use the - 1 og subni t option. Ifi wdepl oy were called by the TeamXpress command line tool

i wat pub, you would use the - | og publ i sh option. A timed deployment might use the - | og

t r ace option. These naming options are for convenience in identifying the deployment trigger
only—they do not affect the contents of the logs.

On Windows NT/2000, each deployment session creates a new trace log file. Script output is stored
in a separate trace log file from the server trace log.

To specify the location of the log file, use the - | ogpat h option. The specified path must be an
absolute path. The default path is:

i w hone/ | og

Ifi w- horre cannot be found, the default path under UNIX will be:
[var/adm

or, under Windows NT/2000:

C.\installation directory\CpenDepl oy\l og

248 TeamXpress Templating and Deployment Guide

Options

Event Reporting

If you are using OpenDeploy in conjunction with TeamXpress, you can integrate OpenDeploy logging
with the TeamXpress Global Report Center. To activate this option, specify the - event s tag when
you invoke the client for each deployment you want recorded in the Global Report Center:

% i wdepl oy -fs srcConfigFile -events depl oynent nane

The log data that will be fed into the reporting system will be generated in a depl oyEvents. | og
file.

249

o

‘my INTERWOVEN Syntax and Options

~

250 TeamXpress Templating and Deployment Guide

Chapter 14

Configuration Files

Configuration files for i wdepl oy specify all the options needed for deployment. At least two such
files, one for client configuration and one for the server, are required for any deployment scenario.
Some scenarios require multiple client and server configuration files (see Chapter 17, “Deployment
Scenarios,” for examples of configuration files for common scenarios). Typical options to set in client
and server configuration files include source and destination directories, which files to exclude from
deployment, what permissions to set on deployed files, and many others (see Chapter 15,
“Configuration File Options”).

Configuration files for i wdepl oy (both client and server) are exactly the same under both UNIX and
Windows NT/2000, except for pathnames, which must be specified according to platform.

OpenDeploy Server Configuration Files

The structure of the server configuration file is a shallow hierarchy of sections. Sections are delimited
by an opening keyword (e.g. TeanSi t e_ser ver =nanme, which specifies the beginning of a

TeanSi t e_ser ver section) and a closing ; on a line by itself. A server configuration file may
contain one or more named depl oynent sections. Each depl oynent section contains an

al | owed_di rect ory section and may contain a depl oy_run_scri pt section. Lines containing
comments can appear anywhere in the configuration file.

The default server configuration file is located in opendepl oy\ conf\i w. odser ver. cf g for
UNIX or C:\ Program Fi | es\ | nt erwoven\ QpenDepl oy\ conf\i wodserver. cfg for
Windows NT/2000. The following examples illustrate the structure of OpenDeploy server
configuration files.

251

o

{2:5} INTERWOVEN

~

UNIX
port=1701

TeanSti t e_server =devel opnent 1. exanpl e. com
al | oned_di rectory=/1ocal / andr e/ depl oydi r
key_file=/ul/iw andre/secret_file.txt
depl oynment =depl oyandr e
client_is_trusted=no

al owed_directory=/usr/local/etc/httpd/htdocs

excl ude_pattern=script_one

depl oy_run_script=script_one
as=andre
when=server before_depl oy
wher e=/ hone/ andr e

Windows NT/2000
port=1701

Teanti t e_server =devel opnment 1. exanpl e. com
key fil e=d:\depl oy\encryptkey
al | owed_di rect ory=d: \ depl oydst 1\ cont ent
depl oynment =depl oyandr e
client _is_trusted=no
al | owed_di rect ory=d: \ depl oydst 2\ cont ent
excl ude_pattern=script_one

depl oy_run_script=script_one
as=andre
when=ser ver _bef ore_depl oy
wher e=d: \ depl oydst 3\ cont ent

Configuration Files

Global options
TeamXpress server
section: specifies

Deployment
section: specifies

Deploy-Run-Script

section: specifies

Global options

TeamXpress server
section: specifies

Deployment
section: specifies

Deploy-Run-Script
section: specifies

Chapter 15, “Configuration File Options,” contains a full list of i wdepl oy server configuration

options.

252 TeamXpress Templating and Deployment Guide

OpenDeploy Client Configuration Files

OpenDeploy Client Configuration Files

The structure of the client configuration file is a shallow hierarchy of sections. Sections are delimited
by an opening keyword (e.g. depl oyment =nane, which specifies the beginning of a depl oyment
section) and a closing ; on a line by itself. A client configuration file contains one or more named
depl oynent sections. Each deployment section contains one or more | ocal _di r ect ory sections.
Lines containing comments can appear anywhere in the configuration file. While there is no default
client configuration file, OpenDeploy comes with a sample file (/ conf /i w. odcl i ent . exanpl e or
C:\ Program Fi |l es\ | nt erwoven\ OpenDepl oy\ conf\ i wodcl i ent) that can be a useful

starting point.

Here is a sample client configuration file that corresponds to the server configuration file shown

earlier in this chapter:

host name=devel opnent 1. exanpl e. com
source_excl ude_pattern=~$%
key_file=/ul/iw andre/secret_file.txt
depl oynment =depl oyandr e
renot e_server=productionl. exanpl e. com
remote_port=1701
ar ea=// | WBERVER/ def aul t / mai n/ dev/ WORKAREA/ andr e
do_del etes
| ocal _directory=htm
renote_directory=/usr/local/etc/httpd/ htdocs
source_excl ude=t est
excl ude=l og

| ocal _directory=cgi-bin
renot e_directory=/usr/local/scripts/cgi-bin
sour ce_excl ude=t est
excl ude=l og

depl oyrment =depl oychri s
renot e_server=producti on2. exanpl e. com
remote_port=1701
area=// | WBERVER/ def aul t / mai n/ dev/ WORKAREA/ chri s

Global

Deployment

Local

Local

Deployment

253

o

‘mv INTERWOVEN Configuration Files

~

| ocal _directory=htmn Local
renote_directory=/usr/local/etc/httpd/ htdocs
excl ude=l og

This configuration file contains two depl oyment Sections, depl oyandr e and depl oychri s. The
depl oyandr e deployment section contains two | ocal _di r ect ory sections and the

depl oychri s section one. Each deployment section corresponds to a single set of transfer
operations to a single machine. If you were to invoke the i wdepl oy client as

% i wdepl oy depl oyandre

with the preceding configuration file, the i wdepl oy client would transfer the files and directories in

the ht mi directory of workarea andr e to / usr /1 ocal / et ¢/ ht t pd/ ht docs and the cgi - bi n
directory to/ usr/1 ocal / scri pt s/ cgi - bi n on producti onl. exanpl e. com

Chapter 15, “Configuration File Options,” contains a full list of the i wdepl oy client configuration
options.

Coordinating Server and Client Configuration Files

Several client and server options correspond to each other, and must specify the same value for a
deployment to proceed:

Server option Client option Description

port renot e_port Port to listen on/port to send to.

TeanSi te_server host nane The server on which the OpenDeploy client
resides.

key_file key_file File to be used in encryption.

deployment deployment Section of the client and server configuration
files to use (only required on the server if
client_is_trusted=no is specified).

1. TeamXpress areas are specified using version paths, or vpaths. For a full explanation of vpaths, consult Administering TeamXpress.

254 TeamXpress Templating and Deployment Guide

Scope of Configuration File Options

Server option Client option Description

al lowed_directory |remote_directory |Directory on the production server to which
content is to be deployed.

Scope of Configuration File Options

The options specified in the configuration files apply only to particular sections. For example, in the
client configuration file, the do_del et es directive is only used by | ocal _di r ect ory sections.
However, where you specify do_del et es controls which | ocal _di r ect ory Sections it applies to.
You can specify do_del et es (and most other options) in an enclosing section and have it apply to all
following | ocal _di r ect ory sections.

Global options must be specified at the global level. Deployment options are normally specified in a
depl oynent section, in which case they will apply only to that deployment, but they can be also
specified at the global level, in which case they will apply to all succeeding deployments unless
contradicted at a lower level. On the client, local directory options are normally specified at the

| ocal _di rectory level, in which case they will apply only to the local directory, but they can also
be specified at the depl oyment level, in which case they will apply to all local directories in that
deployment section unless contradicted at the | ocal _di rect ory level. Local directory options can
even be specified at the global level, in which they will apply to all succeeding deployments unless
contradicted at a lower level.

The only exception to these scoping rules is Deploy and Run. All Deploy and Run options must be
contained withinadepl oy_run_scri pt section, which must be specified at the local directory level
or, on the server, at the deployment level.

The examples on the following two pages show how the level at which an option is specified affects
the behavior of the deployment.

255

o

‘mv INTERWOVEN Configuration Files

~

For example, if your configuration file contains:

host =devel oprent 1. exanpl e. com
depl oyment =andr e
renot e_server =productionl. exanpl e. com
ar ea=// | WBERVER/ def aul t / mai n/ dev/ WORKAREA/ andr e
| ocal _directory=deno
renote_directory=/stuff/denmo
do_del et es

| ocal _directory=test
renote_directory=/stuff2/test

then do_del et es applies to the deno | ocal _di r ect ory section, but not to the t est
| ocal _di rect ory section. If instead you have:

host =devel oprent 1. exanpl e. com
depl oyment =andr e
renot e_server =productionl. exanpl e. com
ar ea=// | WBERVER/ def aul t / mai n/ dev/ WORKAREA/ andr e
do_del et es
| ocal _directory=deno
renote_directory=/stuff/deno

| ocal _directory=test
renote_directory=/stuff2/test

then do_del et es applies to both | ocal _di r ect ory sections. It would not apply to any
deployment sections which followed the andr e section.

256 TeamXpress Templating and Deployment Guide

Scope of Configuration File Options

If you have:

host name=devel opnent 1. exanpl e. com
do_del et es
depl oyment =andr e
renot e_server=productionl. exanpl e. com
ar ea=// | WBERVER/ def aul t / mai n/ dev/ WORKAREA/ andr e
| ocal _directory=deno
renote_directory=/stuff/denmo

| ocal _directory=test
renote_directory=/stuff2/test

then do_del et es would apply to the andr e deployment section and all following deployment
sections, but not to any deployment sections which came before it. Finally, if you have:

host =devel oprent 1. exanpl e. com
depl oynment =andr e
renot e_server =productionl. exanpl e. com
ar ea=// | WBERVER/ def aul t / mai n/ dev/ WORKAREA/ andr e
do_del et es
| ocal _directory=test
renote_directory=/stuff2/test
dont _do

| ocal _directory=deno
renote_directory=/stuff/deno

then do_del et es would apply to deno, but not to t est because t est contains the local directory
option dont _do, which directly contradicts do_del et es.

Options specified on the command line behave as if they were options specified at the beginning of the
configuration file (i.e., at the global level).

257

o

‘mv INTERWOVEN Configuration Files

~

Use of Client versus Server Configuration Options

Several configuration options can be specified in either the client or the server configuration files. The
behavior of these options depends on how the cl i ent _i s_t r ust ed option is specified. If the client
Is trusted, then the client configuration file options are used. The server configuration options are
used only if they do not contradict the options specified on the client.

If the client is not trusted, then the server-side options override all options specified on the client. The
only client options that get used are the name of the deployment section to deploy to, which content
on the client-side to deploy, and any other specifications that are processed on the client side only. For
example, the sour ce_excl ude option applies exclusively to the OpenDeploy client, so it cannot be
overridden by any option specified on the OpenDeploy server. The r enot e_di r ect or y client
option will also be used if it falls under an al | owed_di r ect ory (as specified on the server).

The Authorization Configuration File

The authorization configuration file allows you to specify which users and groups can perform a
particular named deployment to a particular destination server. This file exists on the destination
server that it applies to, and it applies only when cl i ent _i s_t r ust ed=no is specified in the server
configuration file.

This configuration file contains any number of lines in the following format:
depl oyrment =al | owed_1i st

where depl oyment is the name of the deployment specified in the client and server configuration
files, and al | owed_| i st isa comma-separated list of allowed users and groups. For example, an
authorization configuration file might contain the following lines:

depl oyUNI X=chri s, andre, t susers
depl oyt est =andr e

or, for Windows NT/2000:

depl oyW nNT=EXAMPLE\ chri s, EXAMPLE\ andr e, EXAMPLE\ t suser s
depl oyt est =EXAMPLE\ andr e

258 TeamXpress Templating and Deployment Guide

The Authorization Configuration File

Note that on Windows NT/2000, users must be specified with domain names.

Ifclient_is_trusted=no is specified in the server configuration file, and a named deployment is
invoked by a user who is not authorized to do so, it will fail. If cl i ent _i s_t r ust ed=no is specified
in the server configuration file, and a named deployment that is not specified in this configuration file
is invoked, it will fail.

To pass the authorization file to the OpenDeploy server, use the - aut h command line option.

259

o

‘my INTERWOVEN Configuration Files

~

260 TeamXpress Templating and Deployment Guide

Chapter 15

Configuration File Options

OpenDeploy configuration options are specified in the client and server configuration files. Most
options are specified in the client configuration file, or at the command line when invoking the client.
These are described in the following section. Options specified in the server configuration file are
described in “OpenDeploy Server Options” on page 289.

OpenDeploy Client Options

The client options allow you to specify the following:
 Deployment sections (See page 262)

 Deployment targets (see page 262)

« Locations of files to be deployed (see page 263)

« Which files to deploy (see page 265)

« Which files to exclude (see page 275)

« Which files to rename or delete during deployment (see page 280)
« Changes to file permissions during deployment (see page 281)
 Encryption (see page 285)

 Deploy and Run (see page 286)

« Links handling (see page 288)

 Deployment configuration debugging (see page 288)

Note that the behavior of many configuration options depends entirely on how the
client_is_trusted option is specified on the server. If the client is not trusted, then the server-
side options override all options specified on the client. The only client options that get used are the
name of the deployment section to deploy to, which content on the client-side to deploy, and any
other specifications that are processed on the client side only. The r enot e_di r ect or y client option
will also be used if it falls under an al | owed_di r ect ory (as specified on the server).

261

o

ﬁ;:g} INTERWOVEN

~

Configuration File Options

If the client is trusted, then its options are used. The only server options that are used (of the options
that can be specified on either client or server) are the ones that do not contradict the options
specified on the client.

Specifying Deployment Sections

A single client configuration file can be used to invoke several different types of deployment. Each
different type of deployment can be independently configured in deployment sections. Each
configuration file must have at least one deployment section. To specify a new deployment section, use
the depl oyment =narme option.

depl oynment =namne
This is a global option, which begins a deployment section named nane. The name of the section is
used in the command line for the i wdepl oy client.

Specifying Deployment Targets

The deployment options r enot e_port and r enot e_ser ver specify information about the
destination server for deployment. Both of these options are required.

renote_port=#
This specifies the port on which the i wdepl oy server on the destination server is listening, e.g.:

renmote_port=1709

renot e_server =server
This specifies the name of the destination server, e.g.:

renot e_server =producti onl. exanpl e. com

262 TeamXpress Templating and Deployment Guide

OpenDeploy Client Options

renot e_di rectory=absol ute_path
The r enot e_di r ect ory option applies to | ocal _di r ect or y sections, although it may be
specified at a higher level in order to apply to multiple sections. The remote directory must
correspond to the al | owed_di r ect ory specified in the server configuration file, or to one of its
subdirectories. This option is required, and must specify the absolute path on the destination server to
which this | ocal _di r ect or y section should be deployed, e.g.:

| ocal _directory=depl oysrc
renote_directory=d:\depl oydst\ cont ent

Specifying Deployment Timeouts

ti meout =#seconds
This option specifies the number of seconds it will take for the OpenDeploy client process to time
out. ti meout is a deployment option, but it can also be specified at a higher level.

By default, OpenDeploy will time out at 150 seconds. However, if you are doing a TeamXpress
comparison-based deployment, you may need to specify a larger number so that OpenDeploy does
not time out before the comparison is completed. For example:

ti meout =25000

Specifying Locations of Files to Be Deployed

host name=nane
This is a global option that identifies the sending server to the i wdepl oy server. This option is
required, e.g.:

host name=devel opnent 1. exanpl e. com

263

o

‘m) INTERWOVEN Configuration File Options

~

ar ea=pat h
This specifies the area from which all | ocal _di r ect or y sections are based. The path can be a

version path (vpath)1 of the form / /1 WBERVER/ . . . or it can be an absolute path. To specify the
next-to-last edition on a branch, use a vpath ending in / EDI TI O\ | W PREV. To specify the latest
edition on a branch, use a vpath ending in / EDI TI ON. For example:

UNIX absolute path:

area=/i wmt/ def aul t/ mai n/ dev/ EDI TI ON
Windows NT/2000 absolute path:

area=y: \ defaul t\ mai n\ dev\ EDI TI ON
Version path:

area=// 1 WSERVER/ def aul t/ mai n/ dev/ EDI TI ON

| ocal _directory=path
This begins a new | ocal _di r ect ory section. The path specifies a path relative to the enclosing
ar ea from which files and directories should be deployed. For example:

UNIX:
| ocal _directory=htdocs/gifs

1. For more information on version paths, see TeamXpress Commnad-Line Tools. If you are not using TeamXpress, you cannot use version
paths.

264 TeamXpress Templating and Deployment Guide

OpenDeploy Client Options

Windows NT/2000:
| ocal _directory=htdocs\gifs

A configuration file with the following two lines specifies a section that would apply to the
depl oysr c directory in the most recent edition on the dev branch:

area=y: \ defaul t\ mai n\ dev\ EDI TI ON
| ocal _directory=depl oysrc

All lines contained in this section would apply only to this directory.

Specifying Which Files to Deploy
OpenDeploy can use one of three methods to determine which files to deploy:
« Directory comparison
o TeamXpress comparison
« File lists

Directory Comparison

Directory comparison is the default option. It compares the directory being deployed from with the
directory being deployed to. By default, it deploys the files in the directory being deployed from that
are newer than the corresponding files in the directory being deployed to. However, directory
comparison can also use the r ever t option to deploy the older versions of files (to revert to a
previous version of the website), or it can use the dat e_di f f er ent option to deploy files that have
any difference in the date. This option can be specified for an entire configuration file, an entire named
deployment section, or a specific local directory.

265

o

‘my INTERWOVEN

~

Default Directory Comparison

Configuration File Options

With the default option (dat e_di f f erent orrevert isnot specified), only newer files or files
whose size or other attributes are different will be deployed:

Source webserver
(OpenDeploy client)

Destination webserver
(OpenDeploy server)

Action

j filel 9/21/98 3:42 PM 23K

j filel 9/24/98 3:16 PM 23K

not deployed (source is older)

j file2 9/23/98 4:27 PM 98K

j file2 9/23/98 4:27 PM 98K

not deployed (same date, same size)

j file 39/28/98 9:11 AM
35K

=) file 3 7/18/98 4:32 PM
37K

deployed (source is newer)

=] file 4 9/30/98 1:56 PM
56K

=) file 4 9/30/98 1:56 PM
32K

deployed (same date, different size)

j file 5 9/27/98 4:38 PM
56K

X file 5 N/A

deployed (destination file does not exist)

X file 6 N/A

j file 6 9/30/98 2:20 PM
56K

File does not exist on source webserver; if
do_del et es is specified, the destination file
will be deleted. Otherwise, the destination file
will be ignored.

266

TeamXpress Templating and Deployment Guide

OpenDeploy Client Options

The Revert Option

Whenr evert is specified, only older files or files whose size has been changed will be deployed:

Source webserver
(OpenDeploy client)

Destination webserver
(OpenDeploy server)

Action

j filel 9/21/98 3:42 PM 23K

j filel 9/24/98 3:16 PM 23K

deployed (source is older)

j file2 9/23/98 4:27 PM 98K

j file2 9/23/98 4:27 PM 98K

not deployed (same date, same size)

j file 3 9/28/98 9:11 AM
35K

j file 3 7/18/98 4:32 PM
37K

not deployed (source is newer)

j file 4 9/30/98 1:56 PM
56K

j file 4 9/30/98 1:56 PM
32K

deployed (same date, different size)

j file 5 9/27/98 4:38 PM
56K

X file 5 N/A

deployed (destination file does not exist)

X file 6 N/A

j file 6 9/30/98 2:20 PM
56K

File does not exist on source webserver; if
do_del et es is specified, the destination file
will be deleted. Otherwise, the destination file
will be ignored.

To revert a website, specify the r ever t option in the configuration file:

revert

This specifies that only files that are older on the source should be transferred to the destination. By
default files are transferred only if they are newer. This option appliesto | ocal _directory
sections, although it can be specified at a higher level so that it applies to multiple sections.

267

o

‘m’ INTERWOVEN

~

The Date-Different Option
The Date-Different option allows you to deploy any files with differences in date or size:

Configuration File Options

Source webserver
(OpenDeploy client)

Destination webserver
(OpenDeploy server)

Action

j filel 9/21/98 3:42 PM 23K

j filel 9/24/98 3:16 PM 23K

deployed (destination date is different)

j file2 9/23/98 4:27 PM 98K

j file2 9/23/98 4:27 PM 98K

not deployed (same date, same size)

j file 3 9/28/98 9:11 AM
35K

j file 3 7/18/98 4:32 PM
37K

deployed (destination date is different)

j file 4 9/30/98 1:56 PM
56K

j file 4 9/30/98 1:56 PM
32K

deployed (same date, different size)

j file 5 9/27/98 4:38 PM
56K

X file 5 N/A

deployed (destination file does not exist)

X file 6 N/A

j file 6 9/30/98 2:20 PM
56K

File does not exist on source webserver; if
do_del et es is specified, the destination file
will be deleted. Otherwise, the destination file
will be ignored.

To use this option, specify dat e_di f f er ent in the client configuration file.

date_di fferent

If this option is specified, files will be transferred from the source to the destination if the
modification dates of corresponding files are different. The default option is for files to be transferred
only if the modification date of the source file is newer than the modification date of the destination

file.

This option applies to | ocal _di r ect or y sections, although it can be specified at a higher level so
that it applies to multiple sections.

268

TeamXpress Templating and Deployment Guide

OpenDeploy Client Options

Examples

This simple client configuration file uses the default deployment option of directory comparison. It
deploys files from the TeamXpress host devel opment 1. Encryption is not being used. It contains
one named deployment section, def aul t , which deploys files to pr oduct i on1 on port 1701. Files
are to be deployed from the latest edition on the dev branch, and all files contained within that
branch are deployed. The directory on pr oduct i on1 that files are to be deployed to is / usr/

| ocal / et ¢/ httpd/ ht docs. If afile has been deleted from the area being deployed, the
corresponding file will be deleted on the destination server.

host name=devel opnent 1. exanpl e. com
depl oynent =def aul t
renot e_server =productionl. exanpl e. com
renote_port=1701
ar ea=// | WeERVER/ def aul t / mai n/ dev/ EDI TI ON
| ocal _directory=.
renote_directory=/usr/local/etc/httpd/ htdocs
do_del et es

The deployment name is def aul t , and the configuration file is in the default location (/ et c/
i w. depl oy. cf g) so to invoke this deployment you would type (on the source system):

% i wdepl oy defaul t

You can specify any configuration file option on the command line, so to use the OpenDeploy Site
Rollback option without altering the configuration file you would type:

% i wdepl oy default revert
or, to use the date-different option you would type:

% i wdepl oy default date_different

269

o

‘mv INTERWOVEN Configuration File Options

~

To specify the date-different or the revert option in the configuration file, add the option to the
section you want to use this type of deployment in. If you want to use the option for all deployments,
specify it at the global level. To use it for a particular named deployment, specify it in the named
deployment’s section of the configuration file (as shown below). To use it for a particular directory
being deployed, specify it in that local directory section of the named deployment:

host name=devel opnent 1. exanpl e. com
depl oynent =dat edi f f
renot e_server=productionl. exanpl e. com
renmote_port=1701
ar ea=// | WBERVER/ def aul t / mai n/ dev/ EDI Tl ON
date _different
| ocal _directory=.
renote_directory=/usr/local/etc/httpd/ htdocs
do_del etes

TeamXpress Comparison

TeamXpress comparison uses the TeamXpress Compare feature to compare any two TeamXpress
areas and deploy the differences. To use this type of comparison, add the Teansi t e_based and
pr evi ous_ar ea options to the client configuration file. OpenDeploy will compare ar ea (see
page 264) with pr evi ous_ar ea, and deploy the results.

TeantSi t e_based
This option compares ar ea and pr evi ous_ar ea and uses the output of comparison for
deployment. For example:

« Compare a TeamXpress workarea with the staging area and deploy all content modified in the
workarea to the destination server, or

« Compare two editions and deploy incremental changes

This option is specified at the deployment level, and it requires the use of the pr evi ous_ar ea
option.

270 TeamXpress Templating and Deployment Guide

OpenDeploy Client Options

previ ous_area=pat h
This option specifies the TeamXpress area to compare ar ea with. It is a deployment-level option,
and it requires ar ea to be a TeamXpress area, and for the Teansi t e_based option to be specified.
previ ous_ar ea Is specified in the same manner as ar ea:

UNIX absolute path:
previ ous_area=/iwmt/defaul t/ mai n/ dev/| W PREV
Windows NT/2000 absolute path:

previ ous_area=y: \defaul t\ nai n\dev\ | W PREV

Version path:!
previ ous_area=//1 WSERVER/ def aul t / mai n/ dev/ | W PREV

This simple deployment configuration file is the same as the Directory Comparison example (see
page 269), except that it uses TeamXpress comparison to compare the most recent edition on a
branch with the next most recent:

host name=devel opnent 1. exanpl e. com
depl oyment =Teanti t econpar e
renot e_server =productionl. exanpl e. com
renote_port=1701
TeanSi t e_based
ar ea=// | WBERVER/ def aul t / mai n/ dev/ EDI Tl ON
previ ous_ar ea=// | WSBERVER/ def aul t / mai n/ dev/ EDI TI ON/
| W PREV
| ocal _directory=.
renote_directory=/usr/local/etc/httpd/ htdocs
do_del etes

1. For more information on vpaths, or version paths, consult Administering TeamXpress.

271

o

‘m) INTERWOVEN Configuration File Options

~

To invoke this deployment, you would type (on the source server):
% i wdepl oy Teanti t econpare

Alternatively, you could specify the TeanSi t e_based and pr evi ous_ar ea options on the
command line. This command, with the configuration file on page 269, would produce the same
results as the example above.

% i wdepl oy default Teanfite_ based previous_area=//1 WERVER/ def aul t / mai n/
dev/ EDI TI OV | W PREV

File Lists

OpenDeploy can also deploy a list of files. This list can be static, or it can be dynamically generated
(e.q. using the i wevent s command line tool). The list of files is contained in a file that is specified by
thefil e_li st option. For information on using the do_del et es option in conjunction with the
file_list option, also see “File List With Deletions” on page 274.

A typical deployment list looks like:

[ww\/ i ndex. ht m
/[ww/ andr e/ i ndex. ht m
/ ww/ products. ht m

where / www is a directory immediately subordinate to the ar ea root directory.

To deploy a list of files, specify the fi | e_l i st option in the OpenDeploy client configuration file:

272 TeamXpress Templating and Deployment Guide

OpenDeploy Client Options

file_ list=path
This local directory option specifies a path to a file containing a list of paths or version paths to
individual files to be deployed, one file to a line (see above). For named deployments using
file_list,onlyonelocal directory can be specified. The version paths of the individual files must
be relative to the local directory specified. For example, if the | ocal _di r ect ory is/ www, the
version paths listed in the file list would be relative to / www. In addition, if you specify the
file_list option atthe command line, you can stream a list of files for deployment in from st di n
(see the example above). UNIX and Windows NT/2000 examples are as follows:

file_list=/tnp/andre_deploy_list
file_list=C\deploy\andre_deploy_list

This simple deployment configuration file is the same as the examples given in the “Directory
Comparison” and “TeamXpress Comparison” sections, except that it deploys a list of files. In this case,
the file is streamed in from st di n:

host name=devel opnent 1. exanpl e. com
depl oyment=filelist-1
renot e_server =productionl. exanpl e. com
renote_port=1701
file_list=-
ar ea=// | WBERVER/ def aul t / mai n/ dev/ EDI Tl ON
| ocal _directory=
renote_directory=/usr/local/etc/httpd/ htdocs

This deployment would be invoked by the command:
% iwdeploy filelist-1 < /tnp/andre_deploy_li st

where / t np/ andr e_depl oy_1I i st is the file containing the list of files to be deployed.

273

o

‘m’ INTERWOVEN

~

Configuration File Options

This deployment configuration file is the same as the example above, except that the file list is
specified in the configuration file:

host name=devel opnent 1. exanpl e. com
depl oynent=filelist-2
renot e_server=productionl. exanpl e. com
remote_port=1701
file list=/tnp/andre_deploy |ist
ar ea=// | WBERVER/ def aul t / mai n/ dev/ EDI Tl ON
| ocal _directory=.
renote_directory=/usr/local/etc/httpd/ htdocs

To invoke this deployment, you would type (on the source server):
% iwdeploy filelist-2

File List With Deletions

Iffile_list isspecified in the configuration file, then if the files referenced in the file list do not
appear on the source server, but they do appear on the destination server, the files on the destination
server will remain intact.

If do_del et es is specified in additionto fi | e_I i st is specified in the configuration file, then files
referenced in the file list that do not appear on the source server, but which do appear on the
destination server, will be deleted on the destination server.

The following example illustrates the difference between these two modes. Letters A- E represent the
files that are listed in the file list, or that are present on the source or destination servers. A plus sign
(+) indicates that the file has been modified.

File List Source Destination 5;%%:]\’;:;?1? le_list ggitgg\l,v(iatthes option
A A+ A A+ i sent to destination | A+ is sent to destination
B B B B is sent to destination | B is sent to destination
C C+ C+ is created in C+ is created in
destination destination
274 TeamXpress Templating and Deployment Guide

OpenDeploy Client Options

D Dis ignored Dis ignored
E E is ignored E is deleted from
destination

Theuseoffile_list anddo_del et es with directories introduces some additional subtleties:

Result with .
o R : - . Result with
File List Source Destination file_list option do_del et es option
alone
/DirA / IDirANfileA |/DirAfil eA+is IDirAfil eA+ IS
f sent to destination sent to destination

IDrAfileB

IDrA/fileB

to destination

/IDirAfileBissent |/DirA/fil eBissent

to destination

IDirAfileG |/DirAfileGis

ignored in destination

/DirAfileGis
ignored in destination®

/IDirB/fileC |/DirB/fileC

/ Di rBis created in
remote dir, / Di r B/
fil eCiscreated in

/ Di rBis created in
remote dir, / Di r B/
fileCiscreatedin

destination destination
/DirB/fileD /DirB/ fileDis /DirB/fil eDis
ignored ignored

/IDrC

IDirCfileE |/DircCisignored,

/DirClfileEIs
ignored

/ Di r Cis deleted in
destination, / Di r ¢/
fil eEis deleted

IDirClfileF |[/DirC/fileFis

ignored

/DirCfil eEis
deleted

1. /' Dir A/ fil eGisstill ignored because it is not specified inf i [e i st

Specifying Which Files to Exclude

These options allow you to specify particular files or directories not to deploy. All of these options
apply to | ocal _di r ect ory sections, although they can be specified at a higher level to apply to
multiple sections. The options, described later in this section, allow for three main types of exclusion:
on the source server, on the destination server, and on both servers.

275

o

‘mv INTERWOVEN Configuration File Options

~

Excluding Files on the Source

When afile or directory is excluded from deployment, it is treated as though it does not exist. If a file
or directory is excluded only on the source side, and if do_del et es is specified (see page 280), the

corresponding file or directory (if any) on the destination side will be deleted. If do_del et es is not
specified, the corresponding file or directory on the destination side will be ignored. For example:

Source webserver Destination webserver
(OpenDeploy client) (OpenDeploy server)
| j Deployed || j
_j I — - _j RN
/ \ p é N
| |Excluded \ — \
/ Ignored
[| |
j Not deployed | /
\ / \ (deleted*)/
\ /
N j / N \j I s

—_— J—

*These files will be deleted if do_del et es is specified.

Files excluded on the source server

In the example above, files are excluded only on the source server. Any corresponding files on the
destination server will be ignored in the deployment process, unless do_deletes is specified. If
do_deletes is specified, the corresponding files will be deleted.

To exclude files on the source side, use the sour ce_excl ude and sour ce_excl ude_pattern
options. Both of these options can also be specified in the server configuration file. Their behavior will
depend on how the cl i ent _i s_t r ust ed option is specified on the server (see page 290).

sour ce_excl ude=pat h
This specifies a path relative to the | ocal _di r ect or y path that should be excluded from
deployment. The effect of this is as if the specified path did not exist on the source. Any number of
sour ce_excl ude options can be specified.

276 TeamXpress Templating and Deployment Guide

OpenDeploy Client Options

source_excl ude_pattern=pattern
This specifies a regular expression pattern to exclude on the source. The syntax of the patterns is
regex(5) (extended syntax). The items actually compared to the pattern are paths relative to the
| ocal _di rect ory. The paths always begin with . / . Any number of sour ce_excl ude_pattern
options can be specified. For example:

sour ce_excl ude_pattern=""/htdocs/conpany/.*htm "
would exclude all items under subdirectory / ht docs/ conpany thatend inht m .

Excluding Files on the Destination Server

If a file or directory is excluded only on the destination side, and a corresponding file or directory is
deployed from the source, the existing file or directory on the destination side will be overwritten.
For example:

277

o

‘mv INTERWOVEN Configuration File Options

~

Source webserver Destination webserver
(OpenDeploy client) (OpenDeploy server)
| j Deployed | j P —
L Excluded
(gets
j j overwritten)
/

. j | \
| |
| L[Excluded |
| (gets

\ j ignored) //
\

- /
v 2 /
\ j Y
\ J
/
~ -

Files excluded on the destination server

In the example above, files are excluded only on the destination server. Their status will be ignored in
the deployment process. If corresponding files exist on the source server, the excluded files will be
overwritten on the destination server. If no corresponding files exist on the source server, the
excluded files on the destination server will be ignored.

To exclude files on the destination server, use the dest i nat i on_excl ude and

desti nati on_excl ude_pat t er n options. Both of these options can also be specified in the server
configuration file. Their behavior will depend on how the cl i ent _i s_t r ust ed option is specified
in the server configuration file. For more information, see page 290.

desti nati on_excl ude=path

278 TeamXpress Templating and Deployment Guide

OpenDeploy Client Options

This specifies a path relative to the r enot e_di r ect or y path which should be excluded from
deployment. The effect of this is as if the specified path did not exist at the destination. If there is a

corresponding path on the source side, the destination side will be unconditionally overwritten. Any
number of dest i nat i on_excl ude options can be specified.

destinati on_excl ude_pattern=pattern

This specifies a regular expression pattern to exclude at the destination. The syntax of the patterns is
regex(5) (extended syntax). The items actually compared to the pattern are paths relative to the
renot e_di r ect ory. The paths always begin with . / . Any number of
desti nati on_excl ude_pat t er n options can be specified. For example:

destinati on_excl ude_pattern=""/htdocs/conpany/.*htm "

would exclude all items under subdirectory / ht docs/ conpany thatend in ht m .

Excluding Files on Both Servers

If a file or directory is excluded from both the source and destination, the source file will not be
deployed and the destination file will not be overwritten. For example:

Source webserver
(OpenDeploy client)

8 _
/ N

—/—F Excluded \

~— —

Files excluded on both servers

Destination webserver
(OpenDeploy server)

Deployed _j

pd N
7 Excluded\
Not deployed { j and
\ ignored /
\ /
N j e

—

279

o

‘mv INTERWOVEN Configuration File Options

~

In this example, files are excluded on both the source and the destination servers. During
deployment, files that are excluded on both servers are ignored and not deleted.

To exclude files on both servers, use the excl ude and excl ude_pat t er n options. All of these
options can also be specified in the server configuration file. Their behavior will depend on how the
client_is_trusted option is specified in the server configuration file. For more information, see
page 290.

excl ude=pat h
This specifies a path that should be excluded from both the source and destination. The path is relative
tothe | ocal _di r ect ory specification on the source and the r enot e_di r ect or y specification on
the destination server.

excl ude_pattern=pattern
This specifies a regular expression pattern that should be excluded from both the source and
destination. The syntax of the patterns is r egex(5) (extended syntax). The items actually compared
to the pattern are paths relative to the r enot e_di r ect or y. The paths always begin with . / . Any
number of excl ude_pat t er n options can be specified. For example:

exclude_pattern="internal"

would exclude all subdirectory paths containing the name i nt er nal .

Renaming and Deleting Files During Deployment

These options apply to | ocal _di r ect ory sections, although they can be specified at a higher level
to apply to multiple sections.

All of these options can also be specified in the server configuration file. Their behavior will depend
onhow the cli ent _i s_trust ed option is specified in the server configuration file. For more
information, see page 290.

do_del etes
This specifies that files or directories not existing in the source will be deleted on the destination
server. By default they are not.

rename_suf fi x=suffix

280 TeamXpress Templating and Deployment Guide

OpenDeploy Client Options

This specifies a suffix that will be used to rename files normally deleted on the destination server. For
example:

renane_suffix=.old

will rename all files that would otherwise have been deleted to f i | enane. ol d.

Changing Permissions on Files During Deployment

UNIX destination

These local directory options allow you to specify changes in permissions when you are deploying to a
UNIX server. Options marked with an asterisk (*) can only be used when you are deploying from a
UNIX server to a UNIX server. All of these options apply to | ocal _di r ect ory sections, although
they may be specified at a higher level to apply to multiple sections.

All of these options except for gr oup_t r ansl ati ons and user _t r ansl at i ons can also be
specified in the server configuration file. Their behavior will depend on how the
client_is_trusted option is specified in the server configuration file. For more information, see
page 290.

amask=mask
This specifies a bit mask (in octal) to be ANDed with the permission bits of all files and directories. If
you are deploying from a Windows NT/2000 server, the bit mask will be ANDed with the default
permission bits of 664. For example:

amask=011

di r _per meperm ssi on
This specifies the permissions (in octal) given to all deployed directories. For example:

di r _perne755

file_pernmeperm ssion
This specifies the permissions (in octal) given to all deployed files. For example:

file_pernm=755

281

o

‘m) INTERWOVEN Configuration File Options

~

gr oup=gr oupi d
This specifies the group assigned to all deployed files and directories. gr oupi d must be a valid group
name. For example:

group=TeanSti te_users
If gr oup is specified, user must also be specified.

* group_transl ations
This begins a gr oup_t r ansl at i ons section that looks like this:

group_transl ati ons
1=2
2=3
3=4

Each line specifies a source gid and an equivalent destination gid. Source file and directory gids are
translated on transfer to the destination server.

i gnore_groups
This specifies that changes in file and directory group ownership are ignored when comparing source
and destination. By default changes in group ownership are grounds for transfer.

i gnor e_nodes
This specifies that changes in file and directory permissions are ignored when comparing source and
destination. By default changes in permissions are grounds for transfer.

i gnore_users
This specifies that changes in file and directory ownership are ignored when comparing source and
destination. By default changes in ownership are grounds for transfer.

omask=mask
This specifies a bit mask (in octal) to be ORed with the permission bits of all files and directories. If
you are deploying from a Windows NT/2000 server, the bit mask will be ORed with the default
permission bits of 664. For example:

omask=011

282 TeamXpress Templating and Deployment Guide

OpenDeploy Client Options

user=userid
This specifies the user who will own all deployed files and directories. user i d must be a valid user
name. For example:

user =r oot
If user is specified, gr oup must also be specified.

* user _transl ations
This begins auser _t ransl at i ons section that looks like this:

user translations

WN P
1 n
A WN

Each line specifies a source uid and an equivalent destination uid. Source file and directory uids are
translated on transfer to the destination server.

Windows NT/2000 destination

These local directory options allow you to specify changes in permissions when you are deploying to a
Windows NT/2000 server. By default, files will inherit permissions from their parent directories.

All of these options can also be specified in the server configuration file. Their behavior will depend
onhow the cli ent _i s_trust ed option is specified in the server configuration file. For more
information, see page 290. Note that to use these options you must run OpenDeploy as a user who
has “Act as part of the operating system” privileges.

set access=ACL
Replaces the access control lists (ACLs) for the deployed files and directories.

changeaccess=ACL
Modifies the ACL so that the specified users have the specified rights. The new access control entry
(ACE) for each specified user allows only the specified rights, discarding any existing ACE.

283

o

‘m) INTERWOVEN Configuration File Options

~

Windows NT/2000 ACLs

ACLs on Windows NT/2000 have the following syntax (where ACE stands for access control entry):
name: ACE
{ name: ACE, nane: ACE, ... }

nane is one of

user nane
group nane
domai n name\ user namne
domai n nane\ gr oup name

ACEs consist of either per m bi ts or st andard per ns.

per m bi t s is any sequence made of the characters R (read), w(write), X (execute), D (delete), P
(change permissions), and O (take ownership), e.g. RWK.

st andar d per ns is one of the following:

ALL (RWXDPO)
NONE (none)
READ (RX)

WRI TE (W)
CHANGE (RWXD)

For example:
setaccess={ andre: ALL, everyone: RX }

would remove the existing ACL and grant the user andr e full access and the group ever yone read
access to the specified files.

changeaccess={ chris: ALL, everyone:RX }

would remove any existing ACEs for chri s and ever yone, and grant chri s full access and the
group ever yone read access to the specified files. Any other existing ACEs would remain
unchanged.

284 TeamXpress Templating and Deployment Guide

OpenDeploy Client Options

Encryption

OpenDeploy allows two types of encryption: key file and SSL. These types of encryption cannot be
used in conjunction with one another, that is, if you use the key_f i | e option, you cannot use the SSL
options, and vice versa. For more information on OpenDeploy and encryption, see “Encryption” on
page 305.

key_fil eisadeployment option, so you can specify different key files for different deployments, or
you can specify it at the global level and use one key file for all deployments.

The SSL options are global options. These options will apply to all deployments in a given
configuration file. Before you use SSL, you must generate certificates and keys on both the source and
destination servers.

key file=path
This specifies the path to the file that will be used as an encryption key for transfers between the
i wdepl oy client and the i wdepl oy server.

ssl _certificate=path
(Mandatory for SSL encryption) This specifies the path to the SSL public key certificate.

ssl _privat ekey=path
(Mandatory for SSL encryption) This specifies the path to the SSL private key.

ssl _ci pher s=ci phers
(Optional for SSL encryption) This specifies the SSL ciphers to use. Multiple ciphers must be
separated by a colon (:), e.g.:

ssl _ci pher s=EDH- DSS- DES- CBC3- SHA: EXP- EDH- DSS- DES- CBC- SHA

285

o

‘m) INTERWOVEN Configuration File Options

~

Deploy and Run

OpenDeploy’s Deploy and Run feature allows you to specify external scripts to run at various stages of
deployment. For more information on Deploy and Run, see “Deploy and Run” on page 313.

Deploy and Run requires you to create a depl oy_run_scri pt section within a deployment section
of the configuration file. Deploy and Run options cannot be specified at a higher level. All of these
options can also be specified in the server configuration file. Their behavior will depend on how the
client_is_trusted option is specified in the server configuration file. For more information, see
page 290.

depl oy_run_script=script_to_run
(Mandatory) This begins a new depl oy_run_scri pt section. scri pt _t o_r un must be in the
current PATH (e.g. / usr/ 1 ocal / bi n), and the line can contain parameters. For example:

depl oy_run_script=joe_bob -r -q foobar

as=user nane
(UNIX only, optional) This option is specified in adepl oy_r un_scri pt section, and allows you to
run the script as a different user. By default, the script runs as the user who invokes OpenDeploy,
who will need to be root for most purposes.

when=condi ti on
(Mandatory) This option is specified in a depl oy_run_scri pt section, and allows you to specify
when the script is to be run. condi t i on is one of:

client_before_depl oy Execute the script on the client, before deployment.

client_after_depl oy Execute the script on the client, after deployment.
server _bef ore_depl oy Execute the script on the server, before deployment.
server_after_depl oy Execute the script on the server, after deployment.
server_before_file Execute the script on the server, before an individual file is

deployed (may be used in conjunction with the fi | e_mask and
di r _mask options). Exercise caution when using this option, as it
can slow deployment and cause log files to become extremely large.
This option cannot be used for transactional mode deployments.

286 TeamXpress Templating and Deployment Guide

OpenDeploy Client Options

server_after_file Execute the script on the server, after an individual file is deployed
(may be used in conjunction with the fi | e_mask and di r _mask
options). Exercise caution when using this option, as it can slow
deployment and cause log files to become extremely large. This
option cannot be used for transactional mode deployments.

server_before_dir Execute the script on the server, before a directory is deployed
(may be used in conjunction with the di r _mask option).This
option cannot be used for transactional mode deployments.

server_after_dir Execute the script on the server, after a directory is deployed (may
be used in conjunction with the di r _nmask option).This option
cannot be used for transactional mode deployments.

client_after_deploy,server_after_depl oy,server_after file,and
server _af t er _di r may use one of two modifiers, on_success or on_f ai | ur e. For example:

when=client_after _deploy on failure
would specify an action to be performed on the client after a failed deployment.
If the deployment is a reverse deployment, all scripts will execute on the client.

di r_mask=dir
This option is specified in a depl oy_run_scri pt section. di r isa regular expression specifying
the directories on which the script will be executed, e. g., */ cgi - bi n/ *. The expression matches
server-side absolute paths. This option only applies to the bef or e_di r and af t er _di r conditions.

file _mask=file
This option is specified in a depl oy_run_scri pt section. fi | e isa regular expression specifying
the files on which the script will be executed, e. g., . *\ . ht ml . The expression matches server-side
absolute paths. This option only applies to the bef ore_fil e and af t er _fi | e conditions.

async=yes
This option is specified in a depl oy_run_scri pt section, and will run the script asynchronously.
Exercise caution when using this mode, as it could cause many scripts to be run at the same time.
The output from scripts run asynchronously is not captured.

287

o

‘mv INTERWOVEN Configuration File Options

~

wher e=di r
This option is specified in adepl oy_run_scri pt section. di r specifies the directory to navigate to
before executing the script.

Links

The options that configure OpenDeploy’s behavior with regard to symbolic links do not apply to
OpenDeploy for Windows NT/2000.

These options apply to | ocal _di r ect ory sections, although they may be specified at a higher level
to apply to multiple sections. They allow you to specify whether symbolic links should be transferred
as-is, or whether they should actually be followed, so that items that they point to are transferred.

destination_follow_|inks
This specifies that symbolic links on the destination server will be followed, i.e., not treated as links,
which is the default behavior.

foll ow |inks
This specifies that symbolic links on both the source and destination servers will be followed, i.e.,
not treated as links, which is the default behavior.

source_follow |inks
This specifies that symbolic links on the source server will be followed, i.e., not treated as links,
which is the default behavior.

Debugging Deployment Configuration

OpenDeploy provides an option to facilitate testing of deployment configuration. This option applies
tol ocal _di rect ory sections, although it may be specified at a higher level in order to apply to
multiple sections.

dont _do
This specifies that no files should be transferred. The deployment will proceed normally but nothing
will be changed on the destination side. This option is commonly used to test changes to deployment
configurations.

288 TeamXpress Templating and Deployment Guide

OpenDeploy Server Options

OpenDeploy Server Options

The OpenDeploy server configuration file allows you to specify:
« Connection options (see page 289)

 Deployment sections (see page 290)

« Security options (see page 290)

« Deployment timeouts (see page 291)

 Encryption options (see page 296)

« Which files to exclude (see page 291)

« Which files to rename or delete during deployment (see page 292)
 Changes to file permissions during deployment (see page 293)
« Deploy and Run options (see page 297)

« Authentication by IP Address (see page 300)

Note that many configuration options can be specified in either the client or the server configuration
files. The behavior of these options depends on how the cl i ent _i s_t r ust ed option is specified on
the server. If the client is trusted, then the server configuration options are used only if they do not
contradict the options specified on the client.

If the client is not trusted, then the server-side options override all options specified on the client,
except for specifications that are processed on the client side only.

Specifying Connections and Locations

port =#
This global option specifies the port that the i wdepl oy server will listen to. This must match the
port number specified in the client configuration file. This option must be specified.

TeanSi t e_server =nane
This global option starts a new TeanSi t e_ser ver section. name must be the same as the hostname
specified in the OpenDeploy client configuration file. Each server configuration file must include at
least one TeanSi t e_ser ver section.

289

o

‘mv INTERWOVEN Configuration File Options

~

al | owed_directory=path
This TeamXpress server option specifies an absolute path to a directory into which files can be
placed. The directory specified and any of its children are made valid targets. Each
TeanSi t e_ser ver section must include at least one al | owed_di r ect or y option. You can
specify multiple al | owed_di r ect ory options in a TeanSi t e_ser ver Section.

You can also use the al | owed_di r ect or y option as a deployment-level option to specify a section
of the server configuration file in the same way that | ocal _di r ect ory specifies a section of the
client configuration file (see the example on page 252).

Specifying Deployment Sections
A single server configuration file can be used to configure several different types of deployment. Each
different type of deployment can be independently configured in deployment sections. Each
configuration file must have at least one deployment sectionifcl i ent _i s_t r ust ed=no is specified.
To specify a new deployment section, use the depl oynent =nane option.

depl oynent =nane
Thisisa TeanSi t e_ser ver option, which begins a deployment section named nare. If
client_is_trusted=no is specified, the name of the section must match a deployment section in
the client configuration file.

Security Options

client_is_trusted=yes|no
This option specifies the behavior of all options that can be specified in both client and server
configuration files.

If client_is_trusted=yes, then the client configuration file options are used. The server configuration
options (that can be specified on the client side) are used only if they do not contradict the options
specified on the client. For example, if the client configuration file has a sour ce_excl ude option
and the server configuration file has a dest i nat i on_excl ude option, only the sour ce_excl ude
option is used. Or, if the server configuration file hasa depl oy_run_scri pt section for a particular
deployment, and the client configuration file does not have a depl oy_run_scri pt section for that
deployment, the server’s depl oy_r un_scri pt will not be used.

290 TeamXpress Templating and Deployment Guide

OpenDeploy Server Options

If client_is_trusted=no, then the server-side options override all options specified on the client. The
only client options that get used are the name of the deployment section to deploy to, which content
on the client-side to deploy, and any other specifications that are processed on the client side only.
The r enot e_di r ect ory client option will be used if it falls under an al | owed_di rect ory (as
specified on the server).

client_is_trusted can be specified at any level. As always, specification of this option at a lower
level will supercede specifications at a higher level, for the scope of the lower-level specification only
(see “Scope of Configuration File Options” on page 255).

Specifying Deployment Timeouts

ti meout =#seconds
This option specifies the number of seconds it will take for the OpenDeploy server process to time
out. t i meout is a deployment option, but it can also be specified at a higher level. If this option is
used, it must be specified on both the client and server.

By default, the server process will time out at 150 seconds. However, if you are doing a TeamXpress
comparison-based deployment, you may need to specify a larger number so that the server does not
time out before the comparison is completed. For example:

ti meout =25000

Specifying Which Files to Exclude

These options allow you to specify particular files or directories not to deploy. All of these options
apply to al | owed_di r ect ory sections, although they can be specified at a higher level to apply to
multiple sections. On the OpenDeploy server, you can specify which files to exclude on the
destination server only.

Note that although you can specify excl ude and excl ude_pat t er n on the OpenDeploy server,
they will behave exactly the same as dest i nat i on_excl ude and

desti nati on_excl ude_pat t er n, respectively. If you specify sour ce_excl ude or

sour ce_excl ude_pat t er n, it will be ignored. For more information about excluding files, see
page 275.

291

o

‘mv INTERWOVEN Configuration File Options

~

Excluding Files on the Destination Server

If a file or directory is excluded only on the destination side, and a corresponding file or directory is
deployed from the source, the existing file or directory on the destination side will be overwritten.
For more information, see page 277.

To exclude files on the destination server, use the dest i nati on_excl ude and

desti nati on_excl ude_pat t er n options. All of these options can also be specified in the client
configuration file. Their behavior will depend on how the cl i ent _i s_t r ust ed option is specified
in the server configuration file. For more information, see page 290.

destinati on_excl ude=pat h
This specifies a path relative to the al | owed_di r ect or y path which should be excluded from
deployment. The effect of this is as if the specified path did not exist on the destination server. If
there is a corresponding path on the source side, the destination side will be overwritten (if
client_is_trusted=no). Any number of desti nati on_excl ude options can be specified.

destinati on_excl ude_pattern=pattern
This specifies a regular expression pattern to exclude on the destination server. The syntax of the
patterns is r egex(5) (extended syntax). The items actually compared to the pattern are paths
relative to the r enot e_di r ect or y. The paths always begin with . / . Any number of
desti nati on_excl ude_pat t er n options can be specified. For example:

destinati on_excl ude_pattern=""/htdocs/conpany/.*htm "
would exclude all items under subdirectory / ht docs/ conpany thatend in ht m .

Renaming and Deleting Files During Deployment

These options apply to al | owed_di r ect ory sections, although they can be specified at a higher
level to apply to multiple sections.

All of these options can also be specified in the client configuration file. Their behavior will depend on
how the cl i ent _i s_t rust ed option is specified in the server configuration file. For more
information, see page 290.

292 TeamXpress Templating and Deployment Guide

OpenDeploy Server Options

do_del etes
This specifies that files or directories not existing in the source will be deleted on the destination

server. By default they are not.

rename_suf fi x=suffix
This specifies a suffix that will be used to rename files normally deleted on the destination server. For

example:
renanme_suffix=.old

will rename all files that would otherwise have been deleted to f i | enane. ol d.

Changing Permissions on Files During Deployment

UNIX destination

These al | owed_di r ect or y options allow you to specify changes in permissions when you are
deploying to a UNIX server. Options marked with an asterisk (*) can only be used when you are
deploying from a UNIX server to a UNIX server. All of these options apply to al | owed_di rect ory
sections, although they may be specified at a higher level to apply to multiple sections.

All of these options can also be specified in the client configuration file. Their behavior will depend on
how the cl i ent _i s_t rust ed option is specified in the server configuration file. For more
information, see page 290.

amask=mask
This specifies a bit mask (in octal) to be ANDed with the permission bits of all files and directories. If
you are deploying from a Windows NT/2000 server, the bit mask will be ANDed with the default
permission bits of 664. For example:

amask=011

di r _permeper m ssi on
This specifies the permissions (in octal) given to all deployed directories. For example:

di r _pern=755

293

o

‘m) INTERWOVEN Configuration File Options

~

file_pernm=perm ssion
This specifies the permissions (in octal) given to all deployed files. For example:

file_perm=755

gr oup=gr oupi d
This specifies the group assigned to all deployed files and directories. gr oupi d must be a valid group
name. For example:

group=TeanSti te_users
If gr oup is specified, user must also be specified.

i gnore_groups
This specifies that changes in file and directory group ownership are ignored when comparing source
and destination systems. By default changes in group ownership are grounds for transfer.

i gnor e_nodes
This specifies that changes in file and directory permissions are ignored when comparing source and
destination systems. By default changes in permissions are grounds for transfer.

i gnore_users
This specifies that changes in file and directory ownership are ignored when comparing source and
destination systems. By default changes in ownership are grounds for transfer.

omask=mask
This specifies a bit mask (in octal) to be ORed with the permission bits of all files and directories. If
you are deploying from a Windows NT/2000 server, the bit mask will be ORed with the default
permission bits of 664. For example:

omask=011

user =userid
This specifies the user who will own all deployed files and directories. user i d must be a valid user
name. For example:

user =r oot

If user is specified, gr oup must also be specified.

294 TeamXpress Templating and Deployment Guide

OpenDeploy Server Options

Windows NT/2000 destination

These al | owed_di r ect or y options allow you to specify changes in permissions when you are
deploying to a Windows NT/2000 server. By default, files will inherit permissions from their parent
directories.

All of these options can also be specified in the client configuration file. Their behavior will depend on
how the cl i ent _i s_t r ust ed option is specified in the server configuration file. For more
information, see page 290.

set access=ACL
Replaces the access control lists (ACLs) for the deployed files and directories.

changeaccess=ACL
Modifies the ACL so that the specified users have the specified rights. The new access control entry
(ACE) for each specified user allows only the specified rights, discarding any existing ACE.

Windows NT/2000 ACLs

ACLs on Windows NT/2000 have the following syntax (where ACE stands for access control entry):
name: ACE
{ nanme: ACE, nane: ACE, ... }

nane is one of

user nane

group nane

domai n nane\ user name
donai n nane\ group nane

ACEs consist of either per m bi ts or st andard per ns.

per m bi t s IS any sequence made of the characters R (read), w(write), X (execute), D (delete), P
(change permissions), and O (take ownership), e.g. RWX.

295

o

‘m) INTERWOVEN Configuration File Options

~

standard per ns is one of the following:

ALL (RWXDPO)
NONE (none)
READ (RX)

WRI TE (W)
CHANGE (RWXD)

For example:
setaccess={ andre: ALL, everyone: RX }

would remove the existing ACL and grant the user andr e full access and the group ever yone read
access to the specified files.

changeaccess={ chris:ALL, everyone:RX }

would remove any existing ACEs for chri s and ever yone, and grant chri s full access and the
group ever yone read access to the specified files. Any other existing ACEs would remain
unchanged.

Encryption

OpenDeploy allows two types of encryption: key file and SSL. These types of encryption cannot be
used in conjunction with one another, that is, if you use the key_f i | e option, you cannot use the SSL
options, and vice versa. For more information on encryption, see “Encryption” on page 305.

key _fileisaTeansite_server-level option, so you can specify different key files for different
servers, or you can specify it at the global level and use one key file for all servers.

The SSL options are global options. These options will apply to all servers in a given configuration file.
Before you use SSL, you must generate certificates and keys on both the source and destination
Servers.

key file=path
This specifies the path to the file which will be used as an encryption key for transfers between the
i wdepl oy client and the i wdepl oy server.

296 TeamXpress Templating and Deployment Guide

OpenDeploy Server Options

ssl _certificate=path
(Mandatory for SSL encryption) This specifies the path to the SSL certificate.

ssl _privat ekey=pat h
(Mandatory for SSL encryption) This specifies the path to the SSL private key.

ssl _ci phers=ci phers
(Optional for SSL encryption) This specifies the SSL ciphers to use. Multiple ciphers must be
separated by a colon (:), e.g.:

ssl _ci pher s=EDH- DSS- DES- CBC3- SHA: EXP- EDH- DSS- DES- CBC- SHA

Deploy and Run

If the client is not trusted, Deploy and Run requires you to create a depl oy_run_scri pt Section
within a depl oyment section of the server configuration file. Options that belong in this section
cannot be specified at a higher level.

In addition to the depl oy_run_scri pt options that can be specified on either client or server,
Deploy and Run has two server-only options which allow you to specify security-related settings for
Deploy and Run scripts (di sabl e_scri pts and r equi re_abs_scri pt _pat h). These options
are specified at the global level. For more information on Deploy and Run, see “Deploy and Run” on
page 313.

di sabl e_scri pts=yes
This specifies that Deploy and Run scripts will be disabled on the server. This global option can only
be specified on the server.

requi re_abs_script _pat h=yes
Requires that all scripts be specified using absolute paths, not relative paths. Scripts specified using
relative paths will not be allowed to execute, but the deployment will otherwise proceed normally.
This option must be specified at the global level of the OpenDeploy server configuration file. This
option can only be specified on the server.

297

o

‘m) INTERWOVEN Configuration File Options

~

depl oy_run_script=script_to_run
(Mandatory if cl i ent _i s_t r ust ed=no) This begins a new depl oy_r un_scri pt section
script _to_run must be in the current PATH (e.g. / usr /1 ocal / bi n), and the line can contain

parameters. For example:

depl oy_run_scri pt=joe_bob -r -q foobar

This option can be specified on either the client or server. Its behavior is dependent on the
client _is_trusted option (see page 290).

as=user nane

(UNIX only, optional) This option is specified in adepl oy_r un_scri pt section, and allows you to
run the script as a different user. By default, the script runs as the user who invokes OpenDeploy,
who will need to be root for most purposes. This option can be specified on either the client or
server. Its behavior is dependent onthe cl i ent _i s_t r ust ed option (see page 290).

when=condi ti on

(Mandatory if cl i ent _i s_t r ust ed=no) This option is specified in a depl oy_run_scri pt
section, and allows you to specify when the script is to be run. condi t i on is one of:

server _before_depl oy

Execute the script on the server, before deployment.

server _after_depl oy

Execute the script on the server, after deployment.

server_before file

Execute the script on the server, before an individual file is
deployed (may be used in conjunction with the fi | e_mask and

di r _mask options). Exercise caution when using this option, as it
can slow deployment and cause log files to become extremely large.
This option cannot be used for transactional mode deployments.

server_after _file

Execute the script on the server, after an individual file is deployed
(may be used in conjunction with the fi | e_mask and di r _nask
options). Exercise caution when using this option, as it can slow
deployment and cause log files to become extremely large. This
option cannot be used for transactional mode deployments.

298

TeamXpress Templating and Deployment Guide

OpenDeploy Server Options

server_before_dir Execute the script on the server, before a directory is deployed
(may be used in conjunction with the di r _mask option).This
option cannot be used for transactional mode deployments.

server_after_dir Execute the script on the server, after a directory is deployed (may
be used in conjunction with the di r _nmask option).This option
cannot be used for transactional mode deployments.

server _after_depl oy, server_after_file,andserver_after_dir may use one of two
modifiers, on_success or on_f ai | ur e. For example:

when=server _after _deploy on _failure
would specify an action to be performed on the server after a failed deployment.

If the deployment is a reverse deployment, all scripts will execute on the client. This option can be
specified on either the client or server. Its behavior is dependent onthecl i ent _i s_trusted
option (see page 290).

dir _mask=dir
This option is specified in a depl oy_run_scri pt section. di r isa regular expression specifying
the directories on which the script will be executed, €. g., */ cgi - bi n/ *. The expression matches
server-side absolute paths. This option only applies to the bef or e_di r and af t er _di r conditions.
This option can be specified on either the client or server. Its behavior is dependent on the
client_is_trusted option (see page 290).

file_mask=file
This option is specified in adepl oy_run_scri pt section. fi | e is a regular expression specifying
the files on which the script will be executed, e. g., . *\ . ht m . The expression matches server-side
absolute paths. This option only applies to the bef ore_fi |l e and af t er _fi | e conditions. This
option can be specified on either the client or server. Its behavior is dependent on the
client_is_trusted option (see page 290).

async=yes
This option is specified in a depl oy_run_scri pt section, and will run the script asynchronously.
Exercise caution when using this mode, as it could cause many scripts to be run at the same time.
The output from scripts run asynchronously is not captured. This option can be specified on either
the client or server. Its behavior is dependent on the cl i ent _i s_t r ust ed option (see page 290).

299

o

‘mv INTERWOVEN Configuration File Options

~

wher e=di r
This option is specified in adepl oy_run_scri pt section. di r specifies the directory to navigate to
before executing the script. This option can be specified on either the client or server. Its behavior is

dependent on the cl i ent _i s_t rust ed option (see page 290).

Authentication by IP Address

OpenDeploy has two server options that can work with your firewall to ensure that the OpenDeploy
listener is communicating with a known server in a known manner. For more information about
authentication by IP address, see “Authentication by IP Address” on page 301.

bi nd_addr ess=addr ess
where addr ess specifies the IP address that the OpenDeploy server will use. The value can be a

hostname, which will be validated by a DNS lookup via get host bynane(), or an IP address, which
will be validated by a check viai net _addr () . When bi nd_addr ess is specified together with
por t , OpenDeploy will bind() on the specified bi nd_addr ess and port . If bi nd_addr ess is not
specified, OpenDeploy will bind() only on the specified port and listen on all interfaces.

bi nd_addr ess is a global section option.

al | owed_host s=host | i st
host | i st is a list of the OpenDeploy senders which will be allowed to connect to the OpenDeploy

listener. The list can be space-delimited or comma-delimited, and you can specify either hostnames
or dot-notations. | ocal host and 127. 0. 0. 1 are not valid values within this list. When an
incoming connect request is received, the incoming connecting IP address will be matched against the
IP address(es) converted from the al | owed_host s list. A match with any address in the list will
validate the incoming connection; otherwise the connection will be rejected. al | owed_host s isa
TeanSi t e_ser ver Section option.

300 TeamXpress Templating and Deployment Guide

Chapter 16

Advanced Features

This chapter discusses several OpenDeploy features that may require configuration in areas outside of
the OpenDeploy client and server configuration files. OpenDeploy features that are solely invoked on
the command line or that are configured via configuration files are discussed elsewhere in this manual.
This chapter discusses:

« Authentication by IP address (see page 301)
« Encryption (see page 305)
 Deploy and Run (see page 313)

Authentication by IP Address

OpenDeploy can be configured to work with your firewall to ensure that the OpenDeploy listener is
communicating with a known server in a known manner.

In the following scenario, OpenDeploy is installed on both a single development server and a single
production server. On the production server, OpenDeploy is installed as a service (Windows NT/
2000) or a daemon (UNIX). There is a firewall between the development and production servers,
with all outbound traffic connecting first to the firewall and then to the external location. The
external production server is configured with two IP addressses, only one of which is publicly visible
for accepting web traffic.

Internal network: 10.1.1.0
External network: 10.2.2.0
On internal network:

Web source system: 10.1.1.1

301

o

‘mp INTERWOVEN Advanced Features

~

Firewall: 10.1.1.2

On external network:

Firewall: 10.2.2.2
Web server:
Private: 10.2.2.3
Public: 10.2.2.4

On the production server, OpenDeploy listens on 10. 2. 2. 3 at port 1701. OpenDeploy
communicates securely through the firewall to the OpenDeploy client as follows:

10. 1. 1. 1: (randont) = 10. 1. 1. 2: 50001 [proxy]
10. 2. 2. 2: (randon®) = 10.2.2.3:1701
Note: randoni and r andon® are any dynamically assigned source port numbers.

An = shows a TCP connection from source to destination.
Source and destination are addr ess: port .
[proxy] Is the process on the firewall that's performing the proxying.

In the above example, the OpenDeploy client on the development server would specify the IP address
and port number of the firewall proxy. The firewall proxy, upon making a connection with the
OpenDeploy client, would create a separate connection to the development server and the
development server would communicate directly with the firewall on the production server.

The OpenDeploy server on the production server can be set to listen for connections on a specific
interface. In this example, the OpenDeploy server would only receive connections made by the
firewall at 10. 2. 2. 3 on port 1701 and not on any other IP address (such as the public IP address
assigned to the webserver).

302 TeamXpress Templating and Deployment Guide

Authentication by IP Address

Furthermore, the OpenDeploy server on the production server can be set to receive content only
from a known, trusted source. In this example, the OpenDeploy server can be set to only receive
content from a source IP address of 10. 2. 2. 2—the external address of the firewall. With this option
set, even if an outside user could make a connection to the right IP address at the right port, that user
would need to identify the appropriate internal IP address of the client to establish a connection. The
following diagram shows the sequence of events that occurs when the client tries to connect to the

Server:

Client

Server

Connect

Connect-ack

IP Checking

Server checks that client is an allowed host.

Session-info

Difference-info

Server issues “get” requests to client.

Content-transfer

Files are sent over with ack/nack returned

iR T A i A T AR A iy

End-session-info

413448, 8 8|38

High-level Protocol Diagram

Authentication by IP address uses the following options in the OpenDeploy server configuration file.
These options may be used together or separately:

bi nd_addr ess=addr ess
where addr ess specifies the IP address that the OpenDeploy server will use. The value can be a
hostname, which will be validated by a DNS lookup via get host byname() , or an IP address, which
will be validated by a check viai net _addr () . When bi nd_addr ess is specified together with
por t , OpenDeploy will bind() on the specified bi nd_addr ess and por t . If bi nd_addr ess is not
specified, OpenDeploy will bind() only on the specified port and listen on all interfaces.
bi nd_addr ess is a global section option.

303

o

‘mp INTERWOVEN Advanced Features

~

al | onwed_host s=host | i st
host | i st isa list of the OpenDeploy senders that will be allowed to connect to the OpenDeploy
listener. The list can be space-delimited or comma-delimited, and you can specify either hostnames
or dot-notations. | ocal host and 127. 0. 0. 1 are not valid values within this list. When an
incoming connect request is received, the incoming connecting IP address will be matched against the
IP address(es) converted from the al | owed_host s list. A match with any address in the list will
validate the incoming connection; otherwise the connection will be rejected. al | owed_host s isa
TeanSi t e_ser ver Section option.

If the firewall between the sender and receiver is configured for packet filtering, the OpenDeploy
clientrenot e_server, renot e_port, and host name must match the server’s bi nd_addr ess,
port,and TeanSi t e_ser ver, respectively. If the firewall is configured for proxy operation, the
server’sal | oned_host s must include the external firewall interface.

The following OpenDeploy server configuration file shows how the bi nd_addr ess and
al | owed_host options are used.

Example

#

SERVER- SI DE OPENDEPLOY

#

port=1709

bi nd_addr ess=204. 247. 119. 36

TeanSi te_server=Teanti t el. exanpl e. com
al | oned_host s=204. 247. 119. 36
key file=/uliw andre/depl oytest/encryptkey
al | owed_directory [t np/ uni xuni x/ depl oydst
al | owed_directory /tnp/ Branchl

If the bi nd_addr ess check fails, the following error message will appear:
ERROR Current host not allowed to run i wdepl oy as daenon
If the al | owed_host s check fails, the following error message will appear:

ERROR Connecting host deni ed access

304 TeamXpress Templating and Deployment Guide

Encryption

Encryption

OpenDeploy provides two methods of encryption: weak (40-bit) symmetric and strong (up to 168-
bit) asymmetric key encryption.

Symmetric Key Encryption

OpenDeploy’s key_fi | e option uses a symmetric key algorithm to provide 40-bit encryption
support for content transfers. To configure OpenDeploy for symmetric key deployment, the same
encryption key file must exist on both the source and the destination server. OpenDeploy’s symmetric
key deployment provides basic encryption support with minimal performance impact on content
deployment. However, symmetric 40-bit encryption is breakable by brute force attack with a modest
amount of computing power and is potentially vulnerable to unauthorized users with the same
symmetric key who can intercept data passing over the wire. For sites requiring stronger guarantees
against brute force attacks, and for sites requiring complete certainty that data is only being received
or transmitted by a trusted source, OpenDeploy provides 168-bit asymmetric encryption (discussed
later in this chapter). The following section describes how to specify key files to implement 40-bit
symmetric key encryption.

Key Files

To specify key file (symmetric) encryption, add the following line to both the client and server
configuration files:

key fil e=path-to-keyfile

This specifies the path to the file used as an encryption key for transfers between the i wdepl oy client
and the i wdepl oy server. It must be specified as a deployment option in the client configuration file
and a TeamXpress server option in the server configuration file.

You can use any file as a key file, but you must use the same file on both the development and the
production servers. For cross platform deployments, key files that are plain text files must match
exactly. When using FTP to transfer key files, be sure to use binary mode.

305

o

‘mp INTERWOVEN Advanced Features

~

Asymmetric Key Encryption

OpenDeploy provides up to 168-bit asymmetric key encryption support for secure content transfers.
This deployment option uses a certificate authority (provided with OpenDeploy) to ensure that all
content transfers occur only between known, trusted sources. OpenDeploy’s asymmetric key
algorithm uses public key exchange to authenticate destination servers, and can use any one of a
number of algorithms to encrypt content prior to deployment. OpenDeploy’s asymmetric key
deployment offers the strongest possible encryption support and is unlikely to be broken by any brute
force attack. Furthermore, when used in conjuction with digital certificates for initial server
authentication, OpenDeploy’s asymmetric key encryption is not vulnerable to a man-in-the-middle
attack. OpenDeploy’s asymmetric key encryption provides the strongest possible security support in
exchange for a small performance cost.

168-bit encryption is available only for transfers within the United States of America. For more
information about encryption and ciphers, consult a cryptography reference manual such as Applied
Cryptography (Bruce Schneier, ISBN 0-471-11709-9). You can also set up asymmetric encryption to
provide less than full 168-bit security. See the section “Configuring OpenDeploy for Asymmetric
Encryption” later in this chapter for information about using various ciphers to set different levels of
encryption.

Setting Up SSL
For asymmetric encryption, OpenDeploy uses the SSLeay implementation of SSL.

Before you use OpenDeploy with asymmetric encryption, you must perform the following steps.
These steps create two unique public and private key pairs that are signed by the same certificate
authority. One key pair will be copied to the production server, and be used by the server component
of OpenDeploy. The other key pair will be copied to the development server, and be used by the
client component of OpenDeploy. You must perform all of these steps no matter what level of
asymmetric encryption you intend to set up.

The certificate authority consists of a set of programs used for generating public and private key pairs
and a database containing state information. The programs will be installed in opendepl oy/ bi n.
The database, by default, is contained in the directory where the programs are run. If future public
and private key pairs are created using a different certificate authority, OpenDeploy will not be able
to deploy to or from a host with keys created by an older certificate authority.

306 TeamXpress Templating and Deployment Guide

Encryption

Pass Phrases
In the following steps, you will be prompted as follows for a pass phrase:

Ent er PEM pass phrase:

Give the following response whenever you are prompted:

1234

OpenDeploy requires this particular pass phrase to use the generated certificates.

Setting up the Certificate Authority

UNIX

1.

Create the directory where the certificate authority will be installed, e.g., opendepl oy/ conf /
ca. Navigate to that directory.

Verify that the opendepl oy/ bi n directory is included in the PATH environment variable.

Copy the ssl eay. cnf file from the opendepl oy/ bi n directory into the current working direc-
tory.

Install the new certificate authority:

% CA. sh -newca

When prompted for a pass phrase, enter 1234.

Windows NT/2000
To set up the SSLeay DSA certificate authority:

1. Start a command prompt, cnd. exe. Verify that the PATH environment variable contains

OpenDepl oy\ bi n:

>set PATH

If the PATH does not contain the OpenDepl oy\ bi n directory, add it now:
>set PATH=%PATHY opendepl oy\ bi n

307

o

‘mp INTERWOVEN Advanced Features

~

2. Create the directory where the certificate authority will be installed, e.g.,
OpenDepl oy\ conf\ ca. Navigate to that directory.

3. Copy the ssl eay. cnf file from the QpenDepl oy\ bi n directory into the current working direc-
tory.
4. Generate a DSA parameter file:

>ssl eay dsaparam 512 -out iwoddsa512. pem

5. Generate a DSA certificate (the passphrase is 1234):

>ssleay req -config ssleay.cnf -x509 -newkey dsa:iwoddsa512. pem - out
i woddsaca. pem

When prompted for a pass phrase, enter 1234.
This step also creates a private key infile pri vkey. pemand a public key in file i woddsaca. pem

6. Check the newly generated certificate:
>ssl eay x509 -text -in iwoddsaca. pem

7. Build the certificate authority directory structure and supporting files:
>nkdi r denpCA
>nkdi r denoCA\certs
>nkdi r denpoCA\ crl
>nkdi r denpCA\ private
>nkdi r denmpCA\ newcerts
>echo 01 > denpCA\ seri al
>copy nul denoCA\i ndex. t xt

8. Move the files to their correct places:
>nmove privkey. pem denoCA\ pri vat e\ cakey. pem
>nove i woddsaca. pem denpCA\ cert s\ cacert. pem

308 TeamXpress Templating and Deployment Guide

Encryption

Generating a Certificate

UNIX

To generate a DSA Certificate for OpenDeploy, do the following once for the development and once
for the production server:

1.

Generate a new certificate and key:
% CA. sh -certal

When prompted for a pass phrase, enter 1234.

This step generates a private key file called pri vkey. pemand a certificate file called
newdhsi gned. pem

. Copy the generated keys to the appropriate locations, depending on whether the certificate/key

pair is intended for the client or server component of OpenDeploy. A good place to store certifi-
cates and keys is opendepl oy/ cer t . This directory is not created by the installion process; you
will have to create it manually. You might also want to rename the keys to reflect their role in the
deployment cycle, e.g. client side keyfiles may be called odcl t key. pemand odcl t cert . pem
while server side keyfiles may be called odsvr key. pemand odsvr cert . pem

Windows NT/2000

To generate a DSA Certificate for OpenDeploy, do the following once for the development and once
for the production server:

1.

Generate the DSA Certificate:

>ssleay req -config ssleay.cnf -newkey dsa:iwoddsa512. pem - out
your newr eq. pem

When prompted for a pass phrase, enter 1234. However, the chal | enge passwor d can be any
value.

This step generates a private key in file pri vkey. pem which should be renamed:
>nove privkey. pem odkey. pem

. Sign the certificate:

>ssl eay ca -config ssleay.cnf -in yournew eq. pem -out odcert.pem
When prompted for a pass phrase, enter 1234.

309

o

‘mp INTERWOVEN Advanced Features

~

3. Generate Diffie-Hellman parameters and append them to the certificate:
>ssl eay gendh -rand odcert. pem -out dh. out
>type dh. out >> odcert.pem

4. Copy the generated keys to the appropriate locations, depending on whether the certificate/key
pair is intended for the client or server component of OpenDeploy. A good place to store certifi-
cates and keys is OpenDepl oy/ cer t . This directory is not created by the installation process; you
will have to create it manually. You might also want to rename the keys to reflect their role in the
deployment cycle, e.g. client-side keyfiles could be called odcl t key. pemand odcl t cert . pem
while server-side keyfiles could be called odsvr key. pemand odsvrcert. pem

Configuring OpenDeploy for Asymmetric Encryption

After generating and signing the certificates as described in the preceding sections, you must configure
OpenDeploy to use asymmetric encryption.

Configuration Options

To configure OpenDeploy to use SSL, specify the generated certificate and key files in the i wdepl oy
client and server configuration files as global options:

ssl _certificate=path

ssl _privat ekey=path

You can also specify various ciphers to use in encryption. During a connection, the OpenDeploy client
and server will negotiate which cipher to use. During the negotiation phase, OpenDeploy selects the
highest priority cipher that both client and server support. Specify ciphers as follows:

ssl _ci phers=ci pherli st, where

ci pherli st contains one or more ciphers, ranked left to right from highest priority to lowest
priority, separated by a colon (:), e.g.:

ssl _ci pher s=EDH- DSS- DES- CBC3- SHA: EXP- EDH- DSS- DES- CBC- SHA

ssl _ci pher s is a global option, and it can be specified in the OpenDeploy client or server
configuration file, or in both configuration files. If ssl _ci pher s is not specified, the default is:

310 TeamXpress Templating and Deployment Guide

Encryption

ssl _ci pher s=EDH DSS- DES- CBC3- SHA: EDH- DSS- DES- CBC- SHA: ADH- DES- CBC3-
SHA: ADH DES- CBC- SHA: EXP- ADH- DES- CBC- SHA

Currently the only 168-bit cipher available is EDH- DSS- DES- CBC3- SHA.

Supported Ciphers
OpenDeploy allows you to use the following ciphers:

No-authentication ciphers

ADH- DES- CBC3- SHA
ADH- DES- CBC- SHA

Low strength ciphers
EDH- DSS- DES- CBC- SHA

High strength ciphers
EDH- DSS- DES- CBC3- SHA

Export ciphers

EXP- EDH- DSS- DES- CBC- SHA
EXP- ADH- DES- CBC- SHA

Sample Server Configuration Files

UNIX

port=1709
ssl _certificate=/usr/opendepl oy/ conf/odsvrcert. pem
ssl _privat ekey=/ usr/ opendepl oy/ conf/ odsvrkey. pem
ssl _ci pher s=EDH- DSS- DES- CBC- SHA: EXP- ADH- DES- CBC- SHA
TeanSti t e_server =devel opnent 1. exanpl e. com

al l owed_directory = /tnp/depl oydst

Windows NT/2000

port=1709
ssl _certificate=C \Program Files\Interwoven\ OQpenDepl oy\ conf\ odsvrcert. pem
ssl _privat ekey=C:.\ Program Fi | es\ | nt er woven\ CpenDepl oy\ conf\ odsvr key. pem

311

o

‘mp INTERWOVEN Advanced Features

~

ssl _ci pher s=EDH DSS- DES- CBC- SHA: EXP- ADH- DES- CBC- SHA
Teanti t e_server =devel opnment 1. exanpl e. com
al l owed_directory = D:\depl oydst\cont ent

Sample Client Configuration Files

UNIX

host nane=devel opnent 1. exanpl e. com
renot e_server=productionl. exanpl e. com
renmote_port=1709
ssl _certificate=/usr/iw hone/ opendepl oy/ conf/odcltcert. pem
ssl _privat ekey=/usr/iw hone/ opendepl oy/ conf/ odcl t key. pem
ssl _ci pher s=EDH DSS- DES- CBC- SHA: EXP- ADH- DES- CBC- SHA
depl oynment =depl oy_t o_singl e
area=/u/i w andr e/ depl oy
| ocal _directory=depl oysrc
renote_directory=/tnp/depl oydst

Windows NT/2000

host name=devel opnent 1. exanpl e. com
renot e_server =producti onl. exanpl e. com
renmote_port=1709
ssl _certificate=C \Program Fil es\Interwoven\ OpenDepl oy\ conf\odcl tcert. pem
ssl _privat ekey=C:\ Program Fi | es\ | nt er woven\ OpenDepl oy\ conf\ odcl t key. pem
ssl _ci pher s=EDH- DSS- DES- CBC- SHA: EXP- ADH- DES- CBC- SHA
depl oynment =depl oy_to_singl e

area=y: \ def aul t\ mai n\ dev\ EDI TI ON

| ocal _directory=depl oysrc

renmot e_di rectory=D:\depl oydst\ cont ent

312 TeamXpress Templating and Deployment Guide

Deploy and Run

Deploy and Run

OpenDeploy’s “Deploy and Run” feature allows you to configure OpenDeploy to execute an external
script at a specified stage of deployment. For example, OpenDeploy can be configured to execute a
notification script upon a failed deployment, run a language-checking script during deployment, or
enter items in a Windows NT/2000 server’s Registry after deployment.

Configuring Deploy and Run

If the client is trusted, most Deploy and Run configuration is done in the client configuration file,
although there are also two server configuration file options. The options described in “Client
Configuration” may also be specified on the server. Their behavior is dependent on whether or not the
client is trusted (see “Use of Client versus Server Configuration Options” on page 258). The following
sections describe the changes you can make to both files to set up Deploy and Run.

Client Configuration

To configure Deploy and Run, add a depl oy_run_scri pt section to a deployment section of an
OpenDeploy client configuration file. depl oy_run_scri pt options must be contained within a
deployment section; they cannot be specified at a higher level. However, a single deployment section
can contain multiple depl oy_run_scri pt sections that include different options. The

depl oy_run_scri pt line specifies the script to run and its parameters:

depl oy _run_script=script _to run
(Required) This line can contain parameters, €.g., depl oy_run_scri pt =myscript -r -q

scri pt_t o_run must be in the current PATH (e.g., / usr/ 1 ocal / bi n).
Adepl oy_run_scri pt section can contain the following lines:

as=user nane
(UNIX only, optional) This option allows you to run the script as a different user. By default, the
script runs as the user who invokes OpenDeploy, who will need to be root for most purposes.

when=condi ti on

313

o

‘my INTERWOVEN Advanced Features

~

(Required) where condi t i on is one of the following:

client_before_depl oy |Execute the script on the client, before deployment.

client_after_depl oy | Execute the script on the client, after deployment.

server_before_depl oy |Execute the script on the server, before deployment.

server_after_depl oy | Execute the script on the server, after deployment.

server_before_file Execute the script on the server, before an individual file is deployed
(may be used in conjunction with the fi | e_mask and di r _mask
options). Exercise caution when using this option, as it can slow
deployment and cause log files to become extremely large. This
option cannot be used for transactional mode deployments.

server_after_file Execute the script on the server, after an individual file is deployed
(may be used in conjunction with the fi | e_mask and di r _mask
options). Exercise caution when using this option, as it can slow
deployment and cause log files to become extremely large. This
option cannot be used for transactional mode deployments.

server_before_dir Execute the script on the server, before a directory is deployed (may
be used in conjunction with the di r _mask option).This option
cannot be used for transactional mode deployments.

server_after_dir Execute the script on the server, after a directory is deployed (may be
used in conjunction with the di r _nmask option).This option cannot
be used for transactional mode deployments.

client_after_depl oy, server_after_depl oy,server_after_file,and
server _after_di r may use one of two modifiers, on_success or on_f ai | ur e. For example:

when=client_after_deploy on_failure
would specify an action to be performed on the client after a failed deployment.
If the deployment is a reverse deployment, all scripts will execute on the client.
di r _mask=dir
(Optional) where di r is a regular expression specifying the directories on which the script will be

executed, e. g. . */ cgi - bi n/ . *. The expression matches server-side absolute paths. This option
only applies to the bef or e_di r and af t er _di r conditions.

314 TeamXpress Templating and Deployment Guide

Deploy and Run

file _mask=file
(Optional) where f i | e is a regular expression specifying the files on which the script will be
executed, e. g., . *\ . ht ni . The expression matches server-side absolute paths. This option only
applies to the bef ore_fil eand aft er _fi | e conditions.

async=yes
(Optional) This option will run the script asynchronously. Exercise caution when using this mode, as
it could cause many scripts to be run at the same time. The output from scripts run asynchronously is
not captured.

wher e=di r
(Optional) where di r specifies the directory to navigate to before executing the script.

Examples

The following client configuration file contains two depl oy_run_scri pt sections. The first

depl oy_run_sect i on specifies that the mai | _i nf o script is to run with the parameter

af t er _depl oy. Itis to run on the client after the deployment is completed, whether it succeeds or
fails.

The second depl oy_r un_sect i on specifies that the check_I og_fi | e script is to be run in the
/ home/ andr e directory on the target before and after every successful deployment of a directory or
of a file whose name ends in . | og.

host name=devel opnent 1. exanpl e. com
renot e_server=productionl. exanpl e. com
renote_port=1709
depl oyment =manyscri pts
area=/ u/ i w andr e/ depl oy
| ocal _directory=depl oysrc
renot e_di rectory=/tnp/ depl oydst

depl oy_run_script=mail _info -after_depl oy
when=client _after_depl oy on_success on _failure
async=yes

315

o

‘mp INTERWOVEN Advanced Features

~

depl oy_run_script=check_log file
when=before dir after_dir before file after file on_success
wher e=/ hone/ andr e
file_mask=*.1o0g

The following configuration file invokes a script that sends email to the system administrator when a
deployment fails. The script to send mail is included on the OpenDeploy CD-ROM.

host name = devel opnment 1. exanpl e. com
depl oynent = website
renote_server = productionl. exanpl e. com
remote_port= 1849
key file = /1l ocal/depl oy/ key/ web_key
depl oy_run_script=/1ocal /depl oy/script/nail-admn
as=andre
when=server _after _deploy on failure

area=// | WBERVER/ def aul t / mai n/ dev/ EDI Tl ON
| ocal _directory = .
renote_directory = /local/docroot
do_del etes

The following configuration file invokes a script that stops and restarts the webserver on the
production server before the deployment starts. The production server in this example is a
Windows NT/2000 server running Microsoft 11S. The scripts to start and stop the webserver are
included on the OpenDeploy CD-ROM.

Due to the constraints of page width, some of the lines in the configuration file below may appear to
wrap. Lines in an actual OpenDeploy configuration file should never wrap.

host name = devel opnment 1. exanpl e. com

depl oyment = website-nt
renote_server = productionl. exanpl e. com
remote_port= 1849
key file = d:\depl oy\website-nt.key

316 TeamXpress Templating and Deployment Guide

Deploy and Run

depl oy_run_script=
"d:\program fil es\interwoven\ TeamXpress\i w perl\bin\iwperl.exe"
d:\depl oy\script\stop-iis.ip
when=server _before_depl oy
depl oy_run_script=
"d:\programfiles\interwven\ TeamXpress\i w perl\bin\iwperl.exe"
d:\depl oy\script\start-iis.ip
when=server _after_depl oy

ar ea=// | WeERVER/ def aul t / mai n/ dev/ EDI Tl ON
| ocal _directory = .
renote_directory = d:\website

Further sample configuration files and their corresponding scripts are available on the OpenDeploy
CD-ROM.

Server Configuration

Deploy and Run uses two global server configuration options. Server configuration files can also
contain a depl oy_run_scri pt section which specifies the same options as are used on the client.
This section will only be used if the client is not trusted.

di sabl e_scri pts=yes
Disables the Deploy and Run feature. To disable Deploy and Run, include this option at the global
level of the OpenDeploy server configuration file.

requi re_abs_scri pt_pat h=yes| no
Requires that all scripts be specified using absolute paths, not relative paths. Scripts specified using
relative paths will not be allowed to execute, but the deployment will otherwise proceed normally.
This option must be specified at the global level of the OpenDeploy server configuration file.

Examples
The following server configuration file disables the Deploy and Run feature:

port=1709
di sabl e_scri pt s=yes

317

o

{2:5} INTERWOVEN

~

Advanced Features

Teanti t e_server =devel opnment 1. exanpl e. com
key fil e=/u/iw andre/ depl oy/ encrypt key
al l owed_directory = /tnp/depl oydst

The following server configuration file requires Deploy and Run scripts to use absolute paths:

port=1709

requi re_abs_scri pt_pat h=yes

Teanti t e_server =devel opnment 1. exanpl e. com
key file=/u/iw andre/ depl oy/ encrypt key
al l owed_directory = /tnp/depl oydst

Log Files and Scripts
The following steps execute whenever Deploy and Run calls a script that executes on the OpenDeploy
server:
1. The OpenDeploy server spawns a process that will execute the script.

2. If Deploy and Run is set to run scripts synchronously, a pipe is created between the OpenDeploy
server process and the script process. The script will receive input through st di n from the
OpenDeploy server process, and it will write output through st dout and st der r to the
OpenDeploy server process.

3. st di n of the script process receives an XML representation of the OpenDeploy log file in its cur-

rent state.
v Q stdout
—>
Oper;.De::)on deploy OpenDeploy stderr
clien > server
i XML log)
t
melgg)ry stdin SCrip

4. The script executes, and the results are sent to st dout . Errors are sent to st derr.

318 TeamXpress Templating and Deployment Guide

Deploy and Run

If the scripts are not run in asynchronous mode, the OpenDeploy process receives the results and

sends them to the OpenDeploy log (results of scripts run in asynchronous mode are not logged). If
the results are well-formed (that is, they conform to the XML DTD), they are parsed and sent to

the log as XML objects. If they are not well-formed, they are not parsed, but they are still sent to

the log.

Because well-formed results are parsed by the server, it is possible for a script to cause
OpenDeploy to abort deployment by generating certain responses in XML, e. ¢., resul t =" - 2"
(see “The OpenDeploy Log File DTD” on page 320) .

This process is repeated each time Deploy and Run calls a script.

v Q stdout
OpenDeploy OpenDeploy stderr
client server
in stdout
- ipt
me}g‘; Y stderr serip
I L —

“Logging” on page 243 for an explanation of client and server log files).

> log
OpenDeploy OpenDeploy
client server
transfer in- server
memory H—Jm
log log

5. At the end of a deployment, the server log is written to a file, and transferred to the client (see

On UNIX, output from scripts is appended to the OpenDeploy log file. On Windows NT/2000,
however, each deployment session creates a new trace log file, named as described on page 247.
Script output is stored in a separate trace log file from the server trace log.

319

o

‘mp INTERWOVEN Advanced Features

~

In this manner, future scripts can parse the output of past scripts. For example, a script might extract
information about which files were deleted during the last deployment. Sample code illustrating how
to parse the OpenDeploy log file is included on the OpenDeploy CD-ROM. Also see “Parsing the
OpenDeploy Log File” on page 322.

The OpenDeploy Log File DTD

The XML representation of the log file has the following DTD:

<! DOCTYPE | og [
<! ELEMENT | og ANY>
<! ATTLI ST | og target CDATA "">
<! ATTLI ST | og acti on CDATA "0">
<I ATTLI ST | og date CDATA "0">
<! ATTLI ST | og result CDATA "0">
<! ATTLI ST | og response CDATA "">
<! ELEMENT | og_el emrent ANY>
<! ATTLI ST | og_el enent target CDATA "">
<! ATTLI ST | og_el enrent acti on CDATA "0">
<! ATTLI ST | og_el emrent date CDATA "0">
<! ATTLI ST | og_el enent result CDATA "0">
<! ATTLI ST | og_el ement response CDATA "">
1>

In an OpenDeploy XML log file:
t ar get specifies the target, e.g., the name of the file or directory deployed.

act i on is one of the following numbers:

|Name Description

0 |UNDEFINED Undefined action.

1 |LOG_ELEMENT_DEPLOY_FILE Deploy a file.

2 |LOG_ELEMENT_DEPLQY_DIRECTORY |Deploy a directory.

3 |LOG_ELEMENT_SUMMARY Contains summary of events.
4 | LOG_ELEMENT_RUN_SCRIPT Run a script.

320 TeamXpress Templating and Deployment Guide

Deploy and Run

dat e specifies the date (in number of seconds since January 1, 1970).

resul t is one of the following numbers:

Name

Description

-2 |LOG_ELEMENT_ABORT

The result of the action was to signal the deployment to do a hard
abort (the deployment stops immediately. If the deployment was
transactional, the files on the production server will be returned
to their original state).

-1 |LOG_ELEMENT_ERROR

The action returned an error.

0 |LOG_ELEMENT OK

The action returned a satisfactory result and the item should be
printed to st dout in all cases.

1 |LOG_ELEMENT_OK1

The action returned a satisfactory result which should be printed
to st dout pif the verbosity level is set to a value greater than or
equal to 1.

2 |LOG_ELEMENT_OK2

The action returned a satisfactory result which should be printed
to st dout pif the verbosity level is set to a value greater than or
equal to 2.

3 |LOG_ELEMENT OK3

The action returned a satisfactory result which should be printed
to st dout pif the verbosity level is set to a value greater than or
equal to 3.

4 | LOG_ELEMENT_OK4

The action returned a satisfactory result which should be printed
to st dout pif the verbosity level is set to a value greater than or
equal to 4.

5 |LOG_ELEMENT OK5

The action returned a satisfactory result which should be printed
to st dout pif the verbosity level is set to a value greater than or
equal to 5.

r esponse is the text response for the action.

321

o

‘mp INTERWOVEN Advanced Features

~

For example, a log file might contain the following line:

<l og_el ement target="/tnp/Branchl/src/pm" action="2" date="925263642"
result="0" response="" />

indicating that the target was / t np/ Br anch1/ src/ pnt , the action was to deploy a directory, the
result was satisfactory, and there was no text response for this action.

Parsing the OpenDeploy Log File
To parse OpenDeploy XML log files:

1.

Install the XM_: : Par ser module (packaged with OpenDeploy in the exanpl es/ xm - per |
directory as xmi . t ar . gz, or see your local CPAN mirror ht t p: / / www. per | . comi CPAN).
This package requires a version of Perl more recent than 5.004. See the README file for
installation directions.

. Set the search path for modules. Perl looks in well-known places for Perl modules, stored in the

@ NC list. For example, to ensure that the OpenDeploy XML module | WKML. pmy in / usr/
opendepl oy/ | i b, is found by Perl, use the statement

@NC = (@NC, "/usr/opendeploy/lib");
This line should be followed by:
require 1 WKM;

which includes all elements contained within the OpenDeploy XML module into the custom
script.

322

TeamXpress Templating and Deployment Guide

Deploy and Run

3. Scripts triggered by OpenDeploy 4.2 read input from standard input, process the data, and report
back results on standard output. The programming model reflects this. The data will be parsed by
the following line of code:

ny($xm obj) = | WKM_: : Get LogDat aFr onSTDI N() ;

The script can obtain a list of files and directories for which deployment succeeded:
ny(@ _success) = $xm _obj -> GetSucceededFiles();

and a list of files and directories that failed to be deployed:

ny(@_failure) = $xm _obj -> GetFailedFiles();

The script can process these lists with the necessary logic.

4. To report results back to the OpenDeploy process, print a single line of XML to standard output:
printf ("<response code=\"%\">\n", $retval);

where $r et val corresponds to one of the result values listed on page 321. Note especially that a
value of - 2 will cause the deployment to be aborted.

323

o

‘my INTERWOVEN Advanced Features

~

324 TeamXpress Templating and Deployment Guide

Chapter 17

Deployment Scenarios

This chapter describes the most common deployment scenarios and provides examples of the
configuration files necessary for their implementation. The most common deployment scenarios are:

1. Forward deployment to a single server

Forward deployment to multiple servers

Forward deployment of different directories to different servers
Reverse deployment

Reverting the website

e o &~ WP

Deploying through firewalls

Any of these types of deployment can be triggered in various ways. For example, deployment can be
triggered:

e manually

« on publication of an edition (using the TeamXpress i wat pub command trigger)
« on submission of a workarea (using the TeamXpress i wat sub command trigger)
« atacertain time (using cr on or at)

In the first case, the i wdepl oy client is called from the command line. In the other three, it is called
by custom scripts. This chapter describes how to deploy manually from the command line.

The following sections include simple deployment configuration files for each of the six scenarios
listed above. You can modify these configuration files to suit your individual site’s needs.

325

o

‘m’ INTERWOVEN

~

Forward Deployment to a Single Server

Deployment Scenarios

Forward deployment takes all the files to be deployed (as specified in the client configuration file) and
deploys them to the production server. The method used to determine which files to deploy is

specified in the i wdepl oy client configuration file (see page 265).

Development
webserver

AN
>

OpenDeploy
client

~—

Forward deployment

—

firewall

Production
webserver

TN
N

OpenDeploy
server

N

This deployment requires a configuration file for the i wdepl oy client on the development server and
a configuration file for the i wdepl oy server on the production server. For this example, the

i wdepl oy server configuration file will be named r enot e_r ecei ve. cf g and the i wdepl oy client
configuration file will be named | ocal _send. cf g. The configuration files used for this example are

included in the following sections.

1. Toinitiate deployment on a UNIX production server, issue the following command from the
production server command line prompt:

% i wdepl oy -S -fd path/ renote_recei ve. cfg

Or, on a Windows NT/2000 server:

>i wdepl oy -S -fd path\renote_recei ve. cfg

Alternatively, you can invoke the OpenDeploy server from the Services control panel, and type - S
-fd path\\renote_recei ve. cf g in the Startup Parameters box (see page 239).

326

TeamXpress Templating and Deployment Guide

Forward Deployment to a Single Server

The i wdepl oy server will listen for incoming connections on the port specified in its
configuration file (r emot e_r ecei ve. cf g)

2. On a UNIX development server, issue the following command from the command line prompt:
% i wdepl oy -fs path/local _send.cfg deploy_to_single
Or, on a Windows NT/2000 development server:
> wdepl oy -fs path\local _send.cfg deploy_to_single

The i wdepl oy client will attempt to connect to the i wdepl oy server process on the production
server. It will use the renot e_server andrenote_port listedinl ocal _send. cf g to
determine which server to connect to.

Note: the port number listed in both configuration files must be the same for the connection to be
established. You may also need to open the specified port if a firewall is in place.

3. Thei wdepl oy client will read the global parameters of the configuration file, find the
depl oy_t o_si ngl e deployment section of the configuration file, read its parameters, and
deploy the specified content.

OpenDeploy Server Configuration

The server configuration file r enot e_r ecei ve. cf g specifies the port number that the i wdepl oy
server will listen to, and the key file for establishing a handshake. This file must be located on the
production server. The following server configuration files allow you to execute forward deployment
to a single server:

UNIX
Basi c i wdepl oy SERVER configuration file
port=1709

Teanti t e_server =devel opnent 1. exanpl e. com
key file=/u/iw andre/depl oy/ encrypt key
al l owed_directory = /tnp/depl oydst

Windows NT/2000

Basi c i wdepl oy SERVER configuration file
port=1709
Teanti t e_server =devel opnent 1. exanpl e. com

327

o

‘mv INTERWOVEN Deployment Scenarios

~

key_fil e=d:\depl oy\ encrypt key
al l owed_directory = d:\depl oydst\ cont ent

OpenDeploy Client Configuration

The client configuration file r enot e_send. cf g specifies all the deployment options for the files or
directories being deployed. This file must be located on the TeamXpress (development) server. The
following client configuration files allow you to execute forward deployment to a single server:

Forward depl oynent to a single server
#
iwdepl oy CLIENT config file

host name=devel opnent 1. exanpl e. com

renot e_server=productionl. exanpl e. com

renot e_port=1709

depl oynent =depl oy _to_singl e
area=/u/i w andr e/ depl oy
key file=/uliw andre/depl oy/ encrypt key
| ocal _directory=depl oysrc

renote_directory=/tnp/depl oydst

Windows NT/2000

Forward deploynment to a single server
#
iwdepl oy CLIENT config file

host nanme=devel oprent 1. exanpl e. com
renot e_server =producti onl. exanpl e. com

328 TeamXpress Templating and Deployment Guide

Forward Deployment to Multiple Servers

renmote_port=1709
depl oynment =depl oy_to_singl e
area=y:\defaul t\ mai n\ dev\ EDI TI ON
key file=d:\depl oy\encryptkey
| ocal _directory=depl oysrc
renote_directory=d:\depl oydst\ cont ent

Forward Deployment to Multiple Servers

In this deployment scenario, the i wdepl oy client takes all the files to be deployed (as specified in the
client configuration file) and deploys them to multiple production servers.

Development Production servers

webserver

/\ \

s
OpenDeploy [—— | » ~—

client e S OpenDeploy
servers
N
k‘/ firewall \\

N

Forward deployment to multiple servers

This deployment requires a configuration file for the i wdepl oy client on the development server and
a configuration file for the i wdepl oy server on each production server. For this example, the
production host configuration files will be all be named r enot e_r ecei ve. cf g and the TeamXpress
host configuration file will be named | ocal _send. cf g. The configuration files used for this
example are included in the following section.

1. To initiate deployment on UNIX production servers, issue the following command from the
command line prompt on each production server:

% iwdeploy -S -fd path/renote_receive.cfg

329

o

‘mv INTERWOVEN Deployment Scenarios

~

Or, on Windows NT/2000 production servers:
> wdepl oy -S -fd path\renote_receive.cfg

Alternatively, you can invoke the OpenDeploy server from the Services control panel, and type
-S -fd path\\renote_receive. cf g in the Startup Parameters box (see page 239).

The i wdepl oy server will listen for incoming connections on the port specified in its
configuration file (r enot e_r ecei ve. cf g).

2. Ona UNIX development server, issue the following commands from the command line prompt:

% i wdepl oy -fs path/local _send.cfg deploy_to_srvil

% i wdepl oy -fs path/local _send.cfg deploy_to_srv2

% i wdepl oy -fs path/local _send.cfg deploy_to_srv3

Or, from a Windows NT/2000 development server:

> wdepl oy -fs path\local _send.cfg deploy to _srvl

>i wdepl oy -fs path\local _send.cfg deploy_to_srv2

> wdepl oy -fs path\local _send.cfg deploy to _srv3

Alternatively, you can write a script to invoke the i wdepl oy client.

The i wdepl oy client will attempt to connect to the i wdepl oy Server process on the production
server. It will use the renot e_server andrenote_port listedinl ocal _send. cf g to
determine which computer to connect to.

Note: the port number listed in both configuration files must be the same for the connection to be
established. You might also need to open the specified port if a firewall is in place.

3. Thei wdepl oy client will read the global parameters of the configuration file, find the specified
deployment sections of the configuration file, read their parameters, and deploy the specified con-
tent.

OpenDeploy Server Configuration

The server configuration file r enot e_r ecei ve. cf g specifies the port number that the i wdepl oy
server will listen to, and the key file for establishing a handshake. This file must be located on the
production host. The following server configuration files allow you to execute forward deployment to
multiple servers:

330 TeamXpress Templating and Deployment Guide

Forward Deployment to Multiple Servers

UNIX
Basi c i wdepl oy SERVER configuration file
port=1709

Teanti t e_server =devel opnment 1. exanpl e. com
key file=/u/iw andre/ depl oy/ encrypt key
al l owed_directory = /tnp/depl oydst

Windows NT/2000

Basi c i wdepl oy SERVER configuration file
port=1709
TeanSti t e_server=devel opnent 1. exanpl e. com

key fil e=d:\depl oy\encryptkey

al l owed_directory = d:\depl oydst\cont ent

OpenDeploy Client Configuration

The client configuration file r enot e_send. cf g specifies all the deployment options for the files or
directories being deployed. This file must be located on the development server. The following client
configuration files allow you to execute forward deployment to multiple servers:

Forward depl oynent to nultiple servers
#
iwdepl oy CLIENT config file

host name=devel opnent 1. exanpl e. com

depl oynment =depl oy_to_srvl
renot e_server=productionl. exanpl e. com
remote_port=1709
area=/ u/ i w andr e/ depl oy
key file=/ul/iw andre/depl oy/ encrypt key
| ocal _directory=depl oysrc

renote_directory=/tnp/depl oydst

331

o

‘my INTERWOVEN Deployment Scenarios

~

depl oyment =depl oy_to_srv2
renot e_server =producti on2. exanpl e. com
remote_port=1710
area=/u/i w andr e/ depl oy
key file=/u/iw andre/depl oy/ encrypt key
| ocal _directory=depl oysrc
renot e_di rectory=/tnp/ depl oydst

depl oyment =depl oy_to_srv3
renot e_server =producti on3. exanpl e. com
remote_port=1711
area=/u/i w andr e/ depl oy
key file=/u/iw andre/depl oy/ encrypt key
| ocal _directory=depl oysrc
renot e_di rectory=/tnp/ depl oydst

Windows NT/2000

Forward depl oynent to nultiple servers
#
iwdepl oy CLIENT config file

host name=devel oprent 1. exanpl e. com
depl oyrment =depl oy_to_srvl
renot e_server =producti onl. exanpl e. com
renote_port=1709
area=y: \ def aul t\ mai n\ dev\ EDI TI ON
key file=d:\depl oy\encryptkey
| ocal _directory=depl oysrc
renmot e_di rectory=d: \ depl oydst\ cont ent

depl oynment =depl oy_to_srv2
renot e_server =producti on2. exanpl e. com

332 TeamXpress Templating and Deployment Guide

Forward Deployment of Different Directories to Different Servers

remote_port=1710
area=y:\def aul t\ mai n\ dev\ EDI TI ON
key file=d:\depl oy\encryptkey

| ocal _directory=depl oysrc

renote_directory=d:\depl oydst\ cont ent

depl oyment =depl oy_to_srv3
renot e_server =producti on3. exanpl e. com
remote_port=1711
area=y:\ def aul t\ mai n\ dev\ EDI TI ON
key fil e=d:\depl oy\encryptkey
| ocal _directory=depl oysrc

Forward Deployment of Different Directories to Different

Servers

In this scenario, the i wdepl oy client takes the files to be deployed in certain directories on the
development server (as specified in the client configuration file) and deploys them to different

renot e_di rectory=d: \ depl oydst\ cont ent

production servers.

Production servers

Development

O

webserver
v OpenDeploy
OpenDeploy Sever /\
T | OvenDeploy
cgi-bin htdocs \ Server
firewall

Forward deployment of different directories to different servers

333

o

‘mv INTERWOVEN Deployment Scenarios

~

This deployment requires a configuration file for the i wdepl oy client on the development server and
a configuration file for the i wdepl oy server on each production server. For this example, the server
configuration files on the production servers will be all be named r enot e_r ecei ve. cf g and the
client configuration file on the development server will be named | ocal _send. cf g. The
configuration files used for this example are included in the following section.

1.

To initiate deployment on UNIX production servers, issue the following command from the
command line prompt on each production server:

% iwdeploy -S -fd path/renote_receive.cfg
Or, on Windows NT/2000 production servers:
> wdeploy -S -fd path\renote_receive.cfg

Alternatively, you can invoke the OpenDeploy server from the Services control panel, and type - S
-fd path\\renote_recei ve. cf g in the Startup Parameters box (see page 239).

The i wdepl oy server will listen for incoming connections on the port specified in its
configuration file (r enot e_r ecei ve. cf g).

. On a UNIX development server, issue the following commands from the command line prompt:

% i wdepl oy -fs path/local _send.cfg deploy_to_srvil

% i wdepl oy -fs path/local _send.cfg deploy to srv2

Or, from a Windows NT/2000 development server:

> wdepl oy -fs path\local _send.cfg deploy to _srvl

>i wdepl oy -fs path\local _send.cfg deploy_to_srv2

Alternatively, you can write a script to invoke the i wdepl oy client.

The i wdepl oy client will attempt to connect to the i wdepl oy Server process on the production

server. It will use the renot e_server andrenot e_port listed in| ocal _send. cf g to
determine which computer to connect to.

Note: the port number listed in both configuration files must be the same for the connection to be
established. You might also need to open the specified port if a firewall is in place.

. Thei wdepl oy client will read the global parameters of the configuration file, find the appropriate

deployment sections of the configuration file, read their parameters, and deploy the specified con-
tent.

334

TeamXpress Templating and Deployment Guide

Forward Deployment of Different Directories to Different Servers

OpenDeploy Server Configuration

The server configuration file r enot e_r ecei ve. cf g specifies the port number that the i wdepl oy
server process will listen to, and the key file for establishing a handshake. This configuration file must
be located on the production server. The following server configuration files allow you to deploy
different directories to different production servers.

UNIX
Basi c i wdepl oy SERVER configuration file
port=1709

Teanti t e_server =devel opnment 1. exanpl e. com
key file=/u/iw andre/depl oy/ encrypt key
al l owed_directory = /tnp/depl oydst

Windows NT/2000
Basi c i wdepl oy SERVER configuration file
port=1709
TeanSti t e_server=devel opnent 1. exanpl e. com
key fil e=d:\depl oy\encryptkey
al l owed_directory = d:\depl oydst\cont ent

OpenDeploy Client Configuration

The client configuration file r enot e_send. cf g specifies all the deployment options for the files or
directories being deployed. This file must be located on the development server. The following client
configuration files allow you to deploy different directories to different production servers.

Forward depl oynment of different directories
to different servers

#

iwdepl oy CLIENT config file

#

335

o

{2:5} INTERWOVEN

~

host name=devel opnent 1. exanpl e. com

depl oyment =depl oy_to_srvl
renot e_server =productionl. exanpl e. com
renote_port=1709
area=/u/i w andr e/ depl oy
key file=/u/iw andre/depl oy/ encrypt key
| ocal _directory=htdocs
renot e_di rectory=/tnp/depl oydst 1

depl oyment =depl oy_to_srv2
renot e_server =producti on2. exanpl e. com
remote_port=1710
area=/u/i w andr e/ depl oy
key file=/u/iw andre/depl oy/ encrypt key
| ocal _directory=cgi-bin
renot e_di rectory=/tnp/depl oydst 2

Windows NT/2000

Forward depl oynment of different directories

to different servers
#
iwdepl oy CLIENT config file

host name=devel oprent 1. exanpl e. com

depl oynment =depl oy_to_srvl
renot e_server =producti onl. exanpl e. com
renote_port=1709
area=y: \ def aul t\ mai n\ dev\ EDI TI ON
key file=d:\depl oy\encryptkey
| ocal _directory=htdocs

renot e_directory=d: \depl oydst\contentl

Deployment Scenarios

336

TeamXpress Templating and Deployment Guide

Reverse Deployment

depl oynment =depl oy_to_srv2
renot e_server=producti on2. exanpl e. com
renote_port=1710
area=y:\def aul t\ mai n\ dev\ EDI TI ON
key file=d:\depl oy\ encryptkey
| ocal _directory=cgi-bin
renot e_di rectory=d: \ depl oydst\ cont ent 2

Reverse Deployment

Reverse deployment is used when changes are made directly to the production server and need to be
brought back into TeamXpress for development and versioning. OpenDeploy checks to see which files
have changed on the production server and copies them into a workarea on the development server.
The files can then be submitted to the staging area so that users can check their work in the context of
the staging area, and bring the changed files from the staging area into their individual workareas.

337

o

‘my INTERWOVEN Deployment Scenarios

~

Development
webserver
(developmentl.example.com)

contributor OpenDeploy client
workareas

Production server
(productionl.example.com)

AN

\agmg area edition v
submlt (publish | forward deploy »| OpenDeploy

server
reverse

deployment
workarea

A~

Forward deployment combined with periodic reverse deployment

submit GQQ
reverse o
deployment &'

N~

firewall

In the scenario above, forward deployment is combined with a periodic reverse deployment to a
workarea created for that purpose. Triggering of reverse deployment and the submission of the
reverse deployed content is handled by custom scripts.

Reverse deployment requires a total of four configuration files—two on the development server and
two on the production server.

The two configuration files for the i wdepl oy client on the development server (in this example,
devel opment 1. exanpl e. com) are:

* |ocal _dumrmy_send.cfg
* |ocal _receive.cfg

338 TeamXpress Templating and Deployment Guide

Reverse Deployment

The two configuration files for the i wdepl oy server on each production server (in this example,
product i onl. exanpl e. com) are:

* renote_receive.cfg
* renote_send.cfg

The configuration files used for this example are included in the following section.

1. To initiate deployment from a UNIX production server, issue the following command from the
production server command line prompt:

% iwdeploy -S -fd path/renote_receive.cfg -fs path/renote_send. cfg
Or, on a Windows NT/2000 production server:
> wdeploy -S -fd path\renote receive.cfg -fs path\renote _send. cfg

Alternatively, you can invoke the OpenDeploy server from the Services control panel, and type - S
-fd path\\renote_receive.cfg -fs path\\renote_send. cf g in the Startup
Parameters box (see page 239).

The i wdepl oy server will listen for incoming connections on the port specified in
renote_receive. cfg.

2. Ona UNIX development server, issue the following command from the command line prompt:
% iwdeploy -r -fs path/local _dummy_send.cfg -fd path/local receive.cfg
reverse_depl oy
Or, from a Windows NT/2000 development server:

> wdepl oy -r -fs path\local _dumy_send.cfg -fd path\local _receive.cfg
reverse_depl oy

In the preceding example, - r specifies a reverse deployment and r ever se_depl oy is the name
of the deployment in | ocal _dunmy_send. cf g.

The i wdepl oy client on the development server will attempt to connect to the i wdepl oy server
process on the production server. It will use the r enot e_ser ver and r enot e_port definitions
listed in | ocal _dunmy_send. cf g to determine which computer to connect to. The i wdepl oy
server will be listening to the server and port specified in r enot e_r ecei ve. cf g.

Note: the port number listed in both configuration files must be the same for the connection to be
established. You might also need to open the specified port if a firewall is in place.

339

o

‘mv INTERWOVEN Deployment Scenarios

~

3. Thei wdepl oy server on the production server will recognize that a reverse deployment is under-
way. It will check r enot e_send. cf g to determine what files to push to the i wdepl oy client.
The i wdepl oy client will determine where to put the files using | ocal _r ecei ve. cf g.

OpenDeploy Server Configuration

renote_send. cfg

The server configuration file r enot e_send. cf g provides sending parameters such as source area,
local and remote directories, file exclusion filters, and permission filters.

host nane specifies the production server that will be receiving content.
remot e_ser ver specifies the development server that will be sending content.

ar ea specifies the directory containing the local directory of files to be sent back to the development
server.

| ocal _di rect ory specifies the directory (relative to ar ea) on the production server that contains
the files to be sent. | ocal _di rect ory and ar ea make up the full path of the directory to be sent.

renot e_di r ect ory specifies the directory on the development server that will receive content.

The following server configuration files allow you to execute reverse deployment from the
production server.

340 TeamXpress Templating and Deployment Guide

Reverse Deployment

Reverse depl oynent
#
iwdepl oy SERVER source config file

host name=pr oduct i onl. exanpl e. com

depl oyment =r ever se_depl oy
renot e_server=devel opnent 1. exanpl e. com
renmote_port=1709
area=/ u/i w andr e/ depl oy
key file=/ul/iw andre/depl oy/ encrypt key
| ocal _directory=depl oysrc

renote_directory=/tnp/depl oydst

Windows NT/2000

Reverse depl oynent
#
iwdepl oy SERVER source config file

host name=pr oduct i onl. exanpl e. com
depl oyrment =r ever se_depl oy
renot e_server=devel opnent 1. exanpl e. com
renmote_port=1709
area=y:\defaul t\ mai n\ dev\ EDI TI ON
key file=d:\depl oy\encryptkey
| ocal _directory=depl oysrc
renot e_directory=d: \ depl oydst\ cont ent

341

o

‘mv INTERWOVEN Deployment Scenarios

~

renote_receive.cfg

The server configuration file r enot e_r ecei ve. cf g is used to specify the port number that the

i wdepl oy server process will listen to, and the key file for establishing a handshake.

TeanSi t e_ser ver IS the development server that will receive content from the production server.
The following server configuration files allow you to execute reverse deployment from the production
server.

Reverse depl oynent
#
iwdepl oy SERVER config file

port=1709
TeanSti t e_server=producti onl. exanpl e. com
key file=/u/iw andre/depl oy/ encrypt key

Windows NT/2000

Reverse depl oynent
#
iwdepl oy SERVER config file

port=1709
TeanSti t e_server=producti onl. exanpl e. com
key file=key file=d:\depl oy\encryptkey

342 TeamXpress Templating and Deployment Guide

Reverse Deployment

OpenDeploy Client Configuration

| ocal _dummy_send. cf g

On the development server, | ocal _dummy_send. cf g specifies the port number that the
i wdepl oy client will attempt to contact on the production server. host nane specifies the
development server, and r enot e_ser ver specifies the production server.

Also, a dummy deployment must be specified. This dummy deployment name will be passed to the
production host and must match a valid deployment name in the production host's

renot e_send. cf g. A dummy area for the dummy deployment is also needed, although it is
disregarded.

host name is the name of the development server.

renot e_ser ver is the name of the production server.

remot e_por t must be the same port number that is specified in all the other configuration files.
depl oyment is the name of the dummy deployment.

ar ea I the name of a directory. Although this directory is not used in deployment, it must be a valid
directory.

key_fil eisoptional, but if it is included in one of the four configuration files, it must be included in
them all, and it must match the key file specified in the i wdepl oy server configuration files. The
following client configuration files allow you to execute reverse deployment from the production
server.

343

o

‘my INTERWOVEN Deployment Scenarios

~

Reverse depl oynent
#
iwdepl oy CLIENT 'dumry' config file

host name=devel opnent 1. exanpl e. com
renot e_server=productionl. exanpl e. com
renote_port=1709

depl oynment =r ever se_depl oy
area=/u/i w andr e/ depl oy
key file=/ul/iw andre/depl oy/ encrypt key

Windows NT/2000

Reverse depl oynent
#
iwdepl oy CLI ENT 'dunmmy' config file

host name=devel opnent 1. exanpl e. com
renot e_server=productionl. exanpl e. com
renmote_port=1709

depl oyrment =r ever se_depl oy
area=y:\def aul t\ mai n\ dev\ EDI TI ON
key file=d:\depl oy\encryptkey

344 TeamXpress Templating and Deployment Guide

Reverse Deployment

| ocal _receive.cfg
Because the development server will receive files, | ocal _r ecei ve is needed only to specify:
« which servers are allowed to deploy to the development server,
o the key file, and
« alist of allowed directories that can be deployed to on the local host.

Teansi t e_ser ver specifies the production server that will send content to the development server.
key_fil e (if included) must match the key file specified in all the other configuration files.

al | owed_di rect ory specifies the directory on the development server that will receive the
content.

The following client configuration files allow you to execute reverse deployment from the production
server.

Reverse depl oynent
iwdepl oy CLI ENT destination config file

port=1709

TeanSti t e_server=producti onl. exanpl e. com
key file=/ul/iw andre/ depl oy/ encrypt key
al l owed_directory = /tnp/depl oydst

Windows NT/2000

Reverse depl oynent
iwdepl oy CLI ENT destination config file

port=1709
Teanti t e_server=producti onl. exanpl e. com
key fil e=d:\depl oy\encryptkey
al l owed_directory = d:\depl oydst\cont ent

345

o

‘mv INTERWOVEN Deployment Scenarios

~

Reverting Websites to Previous Versions

OpenDeploy uses Interwoven Site Rollback technology to allow users to revert the production server
to an earlier version of the website. OpenDeploy uses directory comparison (see page 265) to
compare the files in the deployment directory on the development server and the directory being
deployed to on the production server. It then deploys the files that have older timestamps.

This deployment requires a configuration file for the i wdepl oy client on the development server and
a configuration file for the i wdepl oy server on the production server. For this example, the server
configuration file will be named r enot e_r ecei ve. cf g and the client configuration file on the
development server will be named | ocal _send. cf g. The configuration files used for this example
are included in the following sections.

1.

To initiate deployment on a UNIX production server, issue the following command from the
production server command line prompt:

% iwdeploy -S -fd path/renote_receive.cfg
Or, on a Windows NT/2000 production server:
> wdeploy -S -fd path\renote_receive.cfg

Alternatively, you can invoke the OpenDeploy server from the Services control panel, and type -
S -fd path\\renote_receive. cf g in the Startup Parameters box (see page 239).

The i wdepl oy server will listen for incoming connections on the port specified in its
configuration file (r enot e_r ecei ve. cf g).

. On a UNIX development server, issue the following command from the command line prompt:

% i wdepl oy -fs path/local _send.cfg revert
Or, from a Windows NT/2000 development server:
> wdepl oy -fs path\local _send.cfg revert

The i wdepl oy client will attempt to connect to the i wdepl oy Server process on the production
server. It will use the renot e_server andrenote_port listedinl ocal _send. cf g to
determine which computer to connect to.

Note: the port number listed in both configuration files must be the same for the connection to be
established. You might also need to open the specified port if a firewall is in place.

346

TeamXpress Templating and Deployment Guide

Reverting Websites to Previous Versions

3. The OpenDeploy client will read the global parameters of the configuration file, find the r ever t
deployment section of the configuration file, read its parameters, and deploy the specified content.

OpenDeploy Server Configuration

The server configuration file r enot e_r ecei ve. cf g specifies the port number that the i wdepl oy
server process will listen to, and the key file for establishing a handshake. This configuration file must
be located on the production server. The following server configuration files allow you to execute Site
Rollback.

UNIX
Basi c i wdepl oy SERVER configuration file
port=1709

Teanti t e_server=devel opnent 1. exanpl e. com
key file=/ul/iw andre/depl oy/ encrypt key
al l owed_directory = /tnp/depl oydst

Windows NT/2000

Basi c i wdepl oy SERVER configuration file
port=1709
Teanti t e_server =devel opnment 1. exanpl e. com

key fil e=d:\depl oy\ encrypt key

al l owed_directory = d:\depl oydst\cont ent

OpenDeploy Client Configuration

The client configuration file r enot e_send. cf g specifies all the deployment options for the files or
directories being deployed. This configuration file must be located on the development server. The
following client configuration files allow you to excute Site Rollback.

Revert the website
#

347

o

‘my INTERWOVEN Deployment Scenarios

~

iwdepl oy CLIENT config file

host name=devel opnent 1. exanpl e. com
renot e_server =productionl. exanpl e. com
renmote_port=1709

depl oyment =r evert
area=/u/ i w andr e/ depl oyt est
key file=/u/iw andre/depl oytest/encryptkey
revert
| ocal _directory=depl oysrc
renot e_di rect ory=/tnp/ depl oydst

Windows NT/2000

Revert the website
#
iwdepl oy CLIENT config file

host name=devel opnent 1. exanpl e. com
renot e_server =producti onl. exanpl e. com
renote_port=1709

depl oynment =r evert
area=y: \ def aul t\ mai n\ dev\ EDI Tl ON
key file=d:\depl oy\encryptkey
revert
| ocal _directory=depl oysrc
renmot e_di rectory=d: \ depl oydst\ cont ent

348 TeamXpress Templating and Deployment Guide

Deploying Through Firewalls

Deploying Through Firewalls

To deploy your website through a firewall:

1. Open the outhound port specified in the i wdepl oy client and server configuration files.

2. Invoke your deployment.

3. (Optional) Close the port.

If you cannot open a port:

1. Use the i wdepl oy client’s depl oyment _package option (- o) to create a deployment package:
% i wdepl oy -0 packagenane -fs srcConfigFile depl oyment_name

2. Transfer the package to the production server by the method of your choice.

3. Use the i wdepl oy server’s depl oynent _package option (- i) to deploy the deployment pack-
age:
% i wdeploy -S -i packagenanme -fd destConfigFile

349

o

‘my INTERWOVEN Deployment Scenarios

~

350 TeamXpress Templating and Deployment Guide

Section 4: Appendices

 Creating Data Capture Templates from DTDs

* Using Command-Line Tools

 DataDeploy Database Auto-Synchronization
 DataDeploy Database Server Configuration
 DataDeploy Querying Tables

» OpenDeploy Client and Server Configuration File Options

o

‘m’ INTERWOVEN

~

352 TeamXpress Templating and Deployment Guide

Appendix A

Creating Data Capture
Templates from DTDs

You can create dat acapt ur e. cf g files that define data capture templates (DCTs) from industry-
standard XML DTDs. These data capture templates display as data capture forms in TeamXpress
Templating. A list of the steps to convert DTDs is outlined here. Refer to the remainder of this
appendix for details and examples of the files at each step in the processing of creating the

dat acapt ur e. cf g file.

1. Verify that the DTD is correct.

2. Runthe i wdt d2symCLT to convert the DTD.
3. Copy the output from the i wdt d2symCLT to synbol -t abl e. cf g.
4

. Optionally modify the synbol - t abl e. cf g to change the nane attribute of the i t enr ef subele-
ment of the <r ul eset >, and save the file.

Make any additional edits to add items such as labels and descriptions to <i t ens> and save the file.
Run the i wsyndct CLT.

Copy the output file to dat acapt ur e. cf g.

®© N o O

Identify the new dat acapt ure. cf g file in the t enpl at i ng. cf g file.

Be sure to save all your intermediate output files along with the DTD and the final
dat acapt ur e. cf g file. It is recommended that these files be versioned in TeamXpress.

The file will contain <syrbol > elements that define the elements from the DTD. Refer to the
Symbol Table DTD in “Symbol Table DTD Used for Conversions” on page 361 for information on the
<synbol -t abl e> and <synbol > elements.

In this final file, <symbol > elements have been changed to <i t en» elements.

353

o

‘mv INTERWOVEN Creating Data Capture Templates
~ from DTDs

Running the CLT on the DTD File

The following file is a sample DTD, named si npl e. dt d.

<l-- This is a sinple exanple DITD
It is a "Hello, world!" type of DID
-->

<! ELEMENT si npl e- exanpl e (nessage) >
<I ATTLI ST si npl e- exanpl e

col or (red| bl ue| green) #| MPLI ED
>
<! ELEMENT nessage (#PCDATA) >

Run the i wdt d2symCLT on the DTD, specifying the complete path to the DTD, to create the file
that begins on the next page by changing to the directory containing the DTD:

cd Y:\defaul t\ mai n\ WORKAREA\ chri s\t enpl at edat a\i nt er net\ si npl e- exanpl e
(the reference to the Y: drive is not needed for Solaris platforms) and issuing the command:
i wdt d2sym si npl e. dtd > i wdt d2sym out

Refer to the Appendix B, “Using Command-Line Tools” for additional details oni wdt d2sym

The symbol-table.cfg File

The following file is the output from the i wdt d2symCLT (i wdt d2sym out), which has been
copied to a file named synbol - t abl e. cf g and then edited.

354 TeamXpress Templating and Deployment Guide

The symbol-table.cfg File

<?xm version="1.0" encodi ng="UTF-8"?>

<! DOCTYPE dat a- capt ure-requi rements SYSTEM "dat acapture4.5.dtd">
Reference to simple.dtd
maintained. 1

<dat a- capture-requi renments dtd-systemidentifier="sinple.dtd" name=
type="content">

<symbol -t abl e> _ - XML elements entered as
<symbol nane="si npl e- exanpl e"> symbols. 2

<cont ai ner conbi nati on="and" hi de- nane= nane="si npl e- exanpl e" >
<itenref name="{iw attributes}"/>
<cont ai ner conbi nati on="and" hi de-nanme="t"
nane="{iw sub_el ements}[0] ">
<l'abel >XM. sub- el ement s</| abel > A <container> contains an
<itenref name="nessage"/>
</ cont ai ner >

</ cont ai ner > A set of attributes also

</ synbol > / become a <symbol>. 4

<synbol regex=""(.*/)?sinple-exanple/{iwattributes}$">

<itemref>. 3

<cont ai ner conbi nati on="and" hi de- nane="t"
nane="{iw attributes}">
<item nane="col or">

<select multiple="f" required="f" size="0" w dth="0">
<option | abel ="red" selected="f" value="red"/>
<option | abel ="blue" sel ected="f" val ue="bl ue"/>

<option | abel ="green" sel ected=" val ue="green"/>
</ sel ect > \
<litenmp
</ cont ai ner >
</ synbol >

The color attribute. ®

355

o

‘mv INTERWOVEN Creating Data Capture Templates

~

<rul eset name="This is ny only rule">«——

from DTDs

The message element as a
§ § / #PCDATA item. ©
<synbol nanme="nmessage" >

<cont ai ner conbi nati on="and" hi de-nane="f" name="nessage">
<cont ai ner comnbi nati on="and" hi de-nane="t"
nanme="{iw _sub_el enents}[0] ">
<l abel >XM_ sub- el enent s</| abel >
<i t em name="#PCDATA" >
<textarea col s="0" required="
wrap="of f"/>
<litenp
</ cont ai ner >
</ cont ai ner >
</ synbol >

rows="0" rtf="f"

</ synbol -t abl e>

. e . Editing the ruleset name. 7
<itenref name="sinple-exanple"/>

</rul eset >

</ dat a- capt ur e-requi r emrent s>

356

TeamXpress Templating and Deployment Guide

The symbol-table.cfg File

Diagram Key

1.

This file maintained a reference to the DTD from which it originated, in the dt d- syst em
i denti fi er attribute of the dat a- capt ur e- r equi r enent s element.

. This file was generated directly from an industry-standard XML DTD. Each XML element

becomes a <synbol > element in the <synbol -t abl e>.

. Every element type declared in the DTD is represented in its <synbol > as a <cont ai ner >. A

<cont ai ner > that represents an XML element type will contain an <i t enr ef > element for the
element type's attributes, if any. A <cont ai ner > that represents an XML element type will con-
tain another <cont ai ner > for its subelements. A <cont ai ner > that represents a set of the sub-
elements of an XML element type will contain an <i t enr ef > reference for each subelement type
it refers to. This XML element type (si npl e- exanpl e) has a simple content specification
(message), so there is just one <i t enr ef >.

The set of attributes for each element type also becomes a <synbol >.

. The set of attributes of an element type is represented in its <symbol >asa <cont ai ner >. There

is only one attribute, col or. Because it was an enumerated attribute, it is represented here by a
<sel ect > element.

Here is the message element type. Its content specification was also simple: #PCDATA. A charac-
ter data reference in the DTD is transformed into a data capture <i t en»> named #PCDATA.

. The nane attribute of the itemref subelement of the <r ul eset > defaults to the name of the first

element type declared in the DTD. The ruleset contains a single <i t enr ef >. The i t enr ef
nane defaults to the synbol nane. This <i t enr ef > references the outermost element of the
XML documents that will be generated as DCRs. In this example, the r ul eset name was edited.

You may manually add items such as labels and descriptions to this file. Examples of edits you may
want to make would be to add <I abel > and <descri pti on> elements to <i t ens> and
<cont ai ner s> and to specify <ni n>and <max> valuesina <repl i cant > element.

357

o

‘m’ INTERWOVEN

Creating Data Capture Templates
~

from DTDs

The datacapture.cfg File
The next step is to run the i wsyn2dct CLT on the edited synbol - t abl e. cf g file.
Run the i wsynedct CLT by issuing the command:

i wsynmPdct synbol -table.cfg > i wsynRdct . out
Refer to Appendix B, “Using Command-Line Tools” for additional details oni wsyn®dct .

Copy i wsyn2dct . out to dat acapt ur e. cf g. A sample dat acapt ur e. cf g file follows.

358 TeamXpress Templating and Deployment Guide

The datacapture.cfg File

<?xm version="1.0" encodi ng="UTF-8"?>
<! DOCTYPE dat a- capt ure-requi rements SYSTEM "dat acapture4.5.dtd">

Reference to simple.dtd maintained.

<dat a- capt ure-requi renents dtd-systemidentifier="sinple.dtd"

name="" type="content">

o . The added <ruleset>. 2
<rul eset name="This is ny only rule">=«—
<l abel >This is my only rul e</|abel >
<cont ai ner combi nati on="and" hi de-nane=
<l abel >si npl e- exanpl e</| abel >
<cont ai ner comnbi nati on="and" hi de-nane="t"
nanme="{iw attributes}"> -«
<l abel >{iw attributes}</Iabel >
<i t em name="col or" >
<l abel >col or </ | abel >
<select multiple="f" required="
<option | abel ="red" sel ected="
<option | abel ="bl ue" sel ect ed="
<option | abel ="green" sel ect ed="
</ sel ect>
<litenp
</ cont ai ner >
<cont ai ner conbi nati on="and" hi de-nane="t" 4

name="{i w_sub_el enents}[0] "> / (message) in <container>.
<l abel >XM. sub- el enent s</| abel >

<cont ai ner conbi nati on="and" hi de-nanme="f"
<| abel >nessage</ | abel >
<cont ai ner conbi nati on="and" hi de-nanme="t"
name="{iw_sub_el enents}[0] ">
<l abel >XM_ sub- el enent s</| abel >
<i t em nane="#PCDATA" >
<l abel >#PCDATA</ | abel >
<textarea col s="0" required="
wrap="of f"/>
<litenp
</ cont ai ner >
</ cont ai ner >
</ cont ai ner >
</ cont ai ner >
</rul eset >

nane="si npl e- exanpl e" >

{iw_attributes} in
<container>. 3

size="0" w dth="0">
val ue="red"/ >

val ue="bl ue"/ >
val ue="green"/>

nanme="nessage" >

rows="0" rtf="f"

359

o

‘mv INTERWOVEN Creating Data Capture Templates
~ from DTDs

Diagram Key

1. Notice that the name of the original DTD has made it all the way to this datacapture.cfg file. That
dtd-systemidentifier will be used in the document type declaration of data content
records generated from this DCT.

2. The <rul eset > used to contain a single <i t enr ef >, referring to si npl e- exanpl e. That ref-
erence was expanded, using the symbol table, into a <cont ai ner >.

3. Thereference to {i w_attri but es} was expanded into a <cont ai ner >.

4. The reference to message expanded into a <cont ai ner >.

Unsupported DTD Features

A few features in DTDs are not supported by the CLTs and the conversion process:

« Anelement <sect i on> that can legally, according to the DTD, contain another <sect i on>
element is not supported to an arbitrary depth. The data capture template author must decide the
depth to which an element can recursively contain elements of the same type. This is done with a
regex on the <synbol > element.

An example of this section of a DTD is:

<! ELEMENT body (section)*>

<l ELEMENT section (title|paragraph|sub-section)*>
<! ELEMENT subsection (section)*>

The following is an example of a regex that captures a <sect i on> element with another
<sect i on> element:

<synbol regex=""(.*/)?section/(.*/)?section$">

The following is an example of a regex that captures a <sect i on> element with another
<sect i on> element within another <sect i on> element:

<synbol regex=""(.*/)?section/(.*/)?section/(.*/)?section$">

360 TeamXpress Templating and Deployment Guide

Symbol Table DTD Used for Conversions

The first regex would catch a two-deep nesting level (anything greater than or equal to two), and
the second regex would catch any nesting level 3 or greater. The regex <symbol
name="sect i on">would catch all levels.

Therefore, these symbols need to be ordered in the synbol - t abl e by depth, e.g.:

<synbol regex=""(.*/)?section/(.*/)7?section/(.*/)?section$">
</ synbol >
<synmbol regex=""(.*/)?section/(.*/)7?section$">
</ synbol >
<synmbol nanme="section">
</ synbol >
« The validity constraints for the | D, | DREF, | DREFS, ENTI TY, ENTI TI ES, NMTOKEN, and
NMTOKENS attribute types are not enforced.

For an explanation of the validity constraints, refer to section 3.3.1 of the XML 1.0 specification,
located at ht t p: / / waww. w3. or g/ TR/ 1998/ REC- xm - 19980210.

Symbol Table DTD Used for Conversions

The synbol t abl e4. 5. dt d file is the DTD file that reflects the element types used when industry
standard DTDs are converted to dat acapt ur e. cf g files. The parameter entities in the

synbol t abl e4. 5. dt d are different from the parameter entities in the dat acapt ur e4. 5. dt d.
Additionally, the element types <synbol - t abl e>, <synbol >, and <i t enr ef > apply only to the
synbol t abl e4. 5. dt d.

<l-- synboltable4.5. dtd -->

<l-- Start with sone basic paraneter entities. -->

<IENTITY % dat a-capture-requirenents-contentspec
synbol -t abl e, rul eset *" >

<IENTITY %itens "container|itenfitenref">

<IENTITY % chooser-options "option">

<l --These next three el enent types are specific to synboltable4.5.dtd.-->

361

o

{2:5} INTERWOVEN

~

Creating Data Capture Templates

from DTDs
<l ELEMENT synbol -t abl e (symbol *) >
<! ELEMENT synbol (%tems;)? >
<! ATTLI ST synbol
name CDATA #1 MPLI ED
regex CDATA #| MPLI ED
>
<! ELEMENT it enr ef EMPTY >
<! ATTLI ST i t enr ef
name CDATA #REQUI RED
>
<l-- The rest of these elenments are comon to both
dat acapture4.5.dtd and synboltable4.5.dtd. -->
<! ELEMENT dat a- capt ure-requirenments
(%dat a- capt ur e-requi r ement s- cont ent spec;) >
<I ATTLI ST dat a-capture-requirenments
name CDATA #1 MPLI ED
type (et adat a| cont ent | wor kf | ow) #REQUI RED
dtd-systemidentifier CDATA #1 MPLI ED
>

<l-- The '"dtd-systemidentifier’

attribute is a UR

i ndi cating the

DTD from whence a particul ar data-capture-requirenments was

derived, if any.

I n TeanXpress Tenpl ati ng,

the value of this attribute is used as

the systemidentifier of the docunent type declaration of a DCR

if and only if that DCR s type
tenpl ati ng. cfg.

>

<! ELEMENT rul eset
<!l ATTLI ST rul eset
nane
>

CDATA

<! ELEMENT cont ai ner (I abel ?, descri
<I ATTLI ST cont ai ner

is "xm", as defined in

(1 abel ?, description?, (%temns;)*) >

#REQUI RED

ption?, (%tens;)*) >

362

TeamXpress Templating and Deployment Guide

Symbol Table DTD Used for Conversions

nane CDATA #REQUI RED
hi de- nane (t]f) "
conbi nati on (and| or) "and"
>
<! ELEMENT item (1 abel ?, descri pti on?, dat abase?, (checkbox| radi o

text|textarea| sel ect|replicant| browser|
readonl y| hi dden) +) >

<I ATTLI ST item
name CDATA #REQUI RED
>
<! ELEMENT | abel (#PCDATA) >
<l ELEMENT description (#PCDATA) >
<! ELEMENT readonly (al l owed?, cal l out?) >
<! ELEMENT hi dden (al l owed?, cal l out?) >
<! ATTLI ST hi dden
required (t]f) "
>
<! ELEMENT t ext (al l owed?, cal | out ?, defaul t?) >
<! ATTLI ST text
required (t]f) "
maxl| engt h CDATA "o"
si ze CDATA "o"
val i dati on-regex CDATA #| MPLI ED
>
<l-- validation-regex is a Perl regex for validating this elenent -->
<! ELEMENT text area (al l owed?, cal | out?, default?) >
<I ATTLI ST textarea
required (t]f) "
r ows CDATA "o"
col s CDATA "o"
wr ap (of f| virtual | physical) "of f"
val i dati on-regex CDATA #1 MPLI ED
rtf (t]f) "
>
<l-- validation-regex is a Perl regex for validating this elenent -->

363

o

{2:5} INTERWOVEN

~

Creating Data Capture Templates
from DTDs

<! ELEMENT br owser (al l owed?, cal l out?) >
<I ATTLI ST browser
required (t]f) "
max| engt h CDATA "o"
si ze CDATA "o"
initial-dir CDATA #1 MPLI ED
ceiling-dir CDATA #1 MPLI ED
ext ns CDATA #1 MPLI ED
>
<! ELEMENT checkbox (al I owed?, cal | out ?, (%€hooser-options;)+) >
<I ATTLI ST checkbox
required (t]f) "
delimter CDATA ",
>
<! ELEMENT radi o (al I owed?, cal | out ?, (%€hooser-options;)+) >
<I ATTLI ST radi o
required (t]f) "
>
<! ELEMENT sel ect (al I owed?, cal | out ?, (%€hooser-options;)+) >
<! ATTLI ST sel ect
required (t]f) "
si ze CDATA "o"
mul tiple (t|f) "f
delimter CDATA ",
wi dt h CDATA #1 MPLI ED
>
<l-- The delimter attribute is for nmultiple=t only -->
<!l ELEMENT replicant (all owed?, (%tens;)*) >
<I ATTLI ST replicant
mn CDATA "o"
max CDATA "t
def aul t CDATA "
combi nati on (and| or) "and"
hi de- nane (t]f) "
>
<! ELEMENT opti on EMPTY >
364 TeamXpress Templating and Deployment Guide

Symbol Table DTD Used for Conversions

<! ATTLI ST option

<! ELEMENT

<! ELEMENT
<

<! ELEMENT

<! ELEMENT

<! ELEMENT

<! ELEMENT

<! ELEMENT
<

<! ELEMENT
<

sel ected (t]f)

val ue CDATA

| abel CDATA

>

al | owed (cred| and| or| not) >
cred EMPTY >

ATTLI ST cred

rol e CDATA

user CDATA

>

and ((cred|and| or| not)+) >
or ((cred|and|or|not)+) >
not (cred|and| or|not) >
def aul t (#PCDATA) >

cal | out (parant) >

ATTLI ST cal | out

type (j ava-cl ass)

| abel CDATA

| ocati on CDATA

cl ass CDATA

>

param EMPTY >

ATTLI ST param

name CDATA

val ue CDATA

>

n f n
#| MPLI ED
#REQUI RED

#| MPLI ED
#| MPLI ED

#REQUI RED
#REQUI RED
#REQUI RED
#REQUI RED

#REQUI RED
#REQUI RED

365

o

{2:5} INTERWOVEN

~

<! ELEMENT dat abaseEMPTY >

<! ATTLI ST dat abase
depl oy- col um
searchabl e
dat a-type
dat a- f or mat
>

(t]f)
(t1f)
CDATA
CDATA

Creating Data Capture Templates
from DTDs

v
‘i

" VARCHAR(255) "
#| MPLI ED

366

TeamXpress Templating and Deployment Guide

Appendix B

Using Command-Line Tools

You can generate or regenerate HTML files from the command line as well as from the TeamXpress
Templating GUI. Refer to the TeamXpress User’s Guide for information on the GUI.

Both i wgen and i wr egen make use of an underlying low-level presentation template compiler,
called i wpt _conpi | e. i pl . This compiler is available for your use and is especially beneficial when
you are developing, testing, and debugging presentation templates.

The presentation template compiler, i wpt _conpi | e. i pl , isa command-line tool that uses the data
content records, Perl code, and iw_xml tags to produce output. You can use the presentation
template compiler when you are developing new tags.

The i wdt d2symand i wsyndct CLTSs are used to create data capture templates from industry-
standard DTDs. Refer to Appendix A, “Creating Data Capture Templates from DTDs” for examples
of using these CLTs.

Theiwxm _validate.ipl CLT validates XML files againsta DTD.

The upgr ade_dct _cfg. i pl CLT upgrades dat acapt ur e. cf g files from regex5 basic regular
expression syntax to extended regular expressions.

367

o

‘m) INTERWOVEN Using Command-Line Tools

~

i wdct acl eval

Alters a data capture template to have only one data capture instance per item, according to ACLS in
the data capture template (DCT). It evaluates ACLs (set with <al | owed> tags) inside DCTSs. It also

runs server-side callouts. The templating Java client receives a DCT from the TeamXpress server. The
document it receives has been through this ACL evaluation process and the server-side inline callout

substitutions. This CLT is a debugging tool that lets you see the exact DCT that the client sees, which
is not the exact DCT that is in the user's workarea.

Usage:

iwdctacleval [-h|-v][-c] [-€e] -uusernane-r userrol e-w workareadct

Options:
-h Displays this usage message.
-V Displays version number.
-C Displays the Java class path.
-e Sends errors to STDOUT.
- u user name Specifies the name of the current data capture end
user.
-r userrol e Specifies the role of the current data capture end user.
- wwor kar ea Specifies a vpath to the current workarea.
dct Specifies a file-system path to the current data capture
template.
Example:

A data capture template that contains the following section is used:

<item nanme="just chris and andre">
<t ext area><al | oned><cred user="chris" /></all owed></textarea>
<t ext ><al | owed><cred user="andre" /></all owed></text>

</litenpr

368 TeamXpress Templating and Deployment Guide

The CLT:

iwdctacleval -u chris -r editor /default/main/dev/ WORKAREA/ chris /
pat h_t o/ dat acapt ure. cfg

issues the following results for this section:
<item nane="just chris and andre">

<t ext area><al | oned><cred user="chris" /></all owed></t ext area>
<litenpr

However, if you issue the CLT as follows:

iwdctacleval -u andre -r editor /default/main/dev/ WORKAREA/ chris /
pat h_t o/ dat acapt ure. cfg

the following results are obtained for this section:
<i tem name="just chris and andre">

<t ext ><al | owed><cred user="andre" /></all owed></text>
<litenp

369

o

‘m’ INTERWOVEN

~

I wdt d2sym

Converts an XML DTD into a skeletal data capture symbol table configuration file. This output must
be manually modified before further use. The symbol table configuration file will be written to
standard output.

Usage:

Using Command-Line Tools

iwdtd2sym [-h|-v] [-c] [-r ruleset-nanme] [-i itenref-nane] dtd-Ilocation

Example:

-h
-V
-C

-r rul eset - name

-i itenref-name

dtd-l ocation

Displays this usage information.
Displays this command's version number.
Displays the Java class path.

Specifies the name of the ruleset in the outputted
symbol table configuration file. Default is TeamXpress
Tenpl ati ng.

Specifies the name of the itemref in the ruleset in the
outputted symbol table configuration file. Default is
the name of the first element type declared in the
DTD.

Specifies a system literal, which is a URI referencing
an XML DTD. Example URIs are:

docunent . dt d (a file system path)

../ pat h/ t o/ docunment . dt d (a file system path)
http://ww flixm.org/flixm/flixm.dtd
(@URL)

The following line converts the si npl e. dt d file in and outputs it to i wdt d2sym out .

i wdt d2sym si npl e. dtd > i wdt d2sym out

370

TeamXpress Templating and Deployment Guide

I wgen

Generates an HTML file based on a presentation template and a data content record.

iwgen [-h|-v] -t templatevpath -r recordvpath vpath

Usage:

Options:
-h
-V
-t templatevpath
-r recordvpath
vpath

Example:

Displays this usage message.
Displays version number.

Specifies a path to a TeamXpress Templating
presentation template, where templatevpath is either a
relative vpath or an archive-rooted vpath. Server-
rooted vpaths are not supported.

Specifies a path to a TeamXpress Templating data
content record, where recordvpath is either a relative
vpath or an archive-rooted vpath. Server-rooted
vpaths are not supported.

Specifies a path to write the TeamXpress Templating
generated file, where vpath is either a relative vpath or
an archive-rooted vpath. Server-rooted vpaths are not
supported.

The following example generates an HTML file based on the presentation template auct i on. t pl
and the data content record j une_i t ens. The HTML file is written to the file
j une_di spl ay. ht ml in the current workarea. The current working directory is the user’s

workarea. You should enter this as a single line.

% iwgen -t tenplatedatal/internet/auction/presentation/auction.tpl
tenpl at edat a/i nternet/auction/data/june_itens june_display.htm

371

o

‘m’ INTERWOVEN

~

I wpt _conpi le.ipl

Using Command-Line Tools

Invokes the command-line presentation template compiler.

Usage:

i wpt _conpile.ipl -pt filename [-ofil e filename] [-ocode filename]
[-oenc encoding] [-smartwrite] [tag-specificflags

iwpt_conpile.ipl -v | -h
Arguments:

-V
-h

- pt filename
-ofile filename
-ocode filename. i pl

- oenc encoding

-smartwite

Tag-specific flags:

-iw_pt-dcr

-iw pt-arg

Prints the version number on STDOUT.

Prints a help message.

Use the filename presentation template.

Save the output to filename instead of STDOUT.

Writes to a stand-alone program named filename. i pl
that generates the output.

Specifies output encoding, which is UTF-8 by default.
Specify - oenc on the XML declaration line of the
presentation template.

Specifies - of i | e only overwrites filename if it is
different.

The file names that follow this i wpt _conpi | e. i pl
flag must be a valid data content record. i w_pt reads
in the data content record and makes its values
available through i w_val ue.

The key, value pairs that follow this flag are used to
initialize the presentation template arguments within
the template. This is useful when debugging a
component that normally gets its % w_ar g initialized

372

TeamXpress Templating and Deployment Guide

by the % w_par amof its enclosing template’s
<i w_i ncl ude> tag.

-iw_i ncl ude-1 ocation Mandatory when the node attribute of the
i w_i ncl ude tag is docr oot . The file path is
prepended to the file name provided in thefil e
attribute to form a complete file path (used to
virtualize the inclusion).

Example 1

This compilation line usesi w_pt - dcr to obtain data from a single data content record named
x. dcr.

i wpt_conpile.ipl -pt xxx.iwpt -iw pt-dcr x.dcr -ofile xxx.htm
Example 2

This example usesi w_pt - ar g to initialize presentation template arguments.

iwpt _conpile.ipl -pt x.pt -iwpt-arg kl=vl k2="val 2"

causes $i w_ar g{ k1} tobesettov1 and $i w ar g{ k2} tobesettoval 2.
Therefore, in a template you could say:

<i w_val ue name="$i w_arg{k1}"/>and you would get v1.

Example 3
This example uses the - i w_i ncl ude- | ocat i on flag.

i wpt _conpile -iw_include-location /x/y/z ...other flags/args...

373

o

‘mv INTERWOVEN Using Command-Line Tools

~

The limitations to using i wpt _conmpi | e. i pl directly are:

« Output pages are not associated with data content records.

 The output pages are editable pages (using SmartContext Editing) but they cannot be accessed
through the TeamXpress Templating GUI.

When you call the presentation template compiler, you can specify command line arguments and
flags. Command-line flags are specific to and used by various iw_xml tags rather than being used
directly by the compiler. They are specified as part of the i wpt _conpi | e. i pl command.

When a presentation template is processed from the presentation template compiler, the following
steps are performed:

1. The presentation template is compiled using the command-line utility i wpt _conpi | e. i pl. It
may use zero or one XML-based data content records.

2. An XML parser reads the presentation template. As the parser reads, it encounters XML tags.

3. A tag object of the appropriate type is created and the parser calls that object's member functions,
passing it relevant information, such as attribute list key, value data.

4. The tag object's member function emits a snippet of Perl.

5. Collectively, all the snippets of Perl that these tag object member functions emit as the parser scans
the template from a program.

6. This program runs, and the result is the document (typically HTML) that merges content with
look-and-feel instructions.

374 TeamXpress Templating and Deployment Guide

| W egen

Regenerates an HTML file that was generated by TeamXpress Templating based on a presentation
template and a data content record. Use this command to update a generated HTML file if the
presentation template or data content record that the file is based on was modified.

Usage:

i wegen [-h|-v] vpath

Options:
-h Displays this usage message.
-V Displays version number.
vpath Specifies the path to the file that will be regenerated,
where vpath is either a relative vpath or an archive-
rooted vpath. Server-rooted vpaths are not supported.
Example:

The following example regenerates the HTML file j une_di spl ay. ht m , which resides in the
current workarea.

% i wegen june_display. htn

375

o

‘m’ INTERWOVEN

Using Command-Line Tools
~

I wsynRdct

Transforms a data capture symbol table into a data capture template (DCT). The DCT will be written
to standard output.

Usage:

i wsynedct [-h]-v] [-C] synbol -tabl e

-h Displays this usage information.

-V Displays this command's version number.

-C Displays the Java class path.

synmbol -t abl e Specifies a file containing a data capture symbol table.

Example:
The following command converts a symbol table into a data capture template:

i wsynmRdct synbol -table.cfg > i wsynRdct . out

376 TeamXpress Templating and Deployment Guide

I wxml _val i date.ipl

Validates a list of XML files against a DTD (and can also check to see if the XML files are well-
formed).

Usage:
iwxm _validate.ipl [-max_errors n] [-d level] [-well] x.xm [y.xm [...]]
iwkm _validate.ipl -h |-V

-max_errorsn Displays maximum of n errors before quitting

XML validation on the current file. The default is to
report all errors.

-d | evel Sets debug verbosity level (where | evel is0-3); the
default debug verbosity level is 2.

Debug
level Displays
0 Nothing
1 A terse message on failure
2 Parsing warnings and failures
3 Messages on success and failure
-wel | Checks to see if XML is well-formed, but does not
validate.
-h Displays this usage information.
-V Displays this command's version number.
Example:

Given an XML file (e.g., x. xm):

<?xm version="1.0" standal one="no"?>
<! DOCTYPE a SYSTEM "x. dtd">
<a>

377

o

‘my INTERWOVEN

~

Using Command-Line Tools

<b p='c'>this
<b p='a'>is
<b p='zzzzzz' >a valid
<b p="b'>xm file
</ a>

anda DTD (e.g., x. dt d):

< ELEMENT a (b*)>

<! ELEMENT b (#PCDATA) >

<I ATTLI ST b p CDATA #REQUI RED>
the command line:

iwxnm _validate.ipl x.xm

will return with no output and an exit status indicating success since x. xm is a valid XML file.

378 TeamXpress Templating and Deployment Guide

upgrade_dct _cfg.ipl

The upgr ade_dct _cfg. i pl CLT upgrades dat acapt ur e. cf g files from regex5 basic regular
expression syntax to extended regular expressions. The meanings of the original basic regular
expressions are preserved, but the extended regex grammar provides more expressive power for
validating user input.

This upgrade is required when moving from the browser-based data capture interface of TeamXpress
Templating to the Java-based interface; however, you can use extended regular expressions in the
browser-based interface. Only validation-regex attributes containing the following characters are
affected: + 2 | ()

Usage:

upgrade_dct _cfg.ipl [-log file] [-inplace] [-n] [-d verbosity]
[-no_iwcfg_update] [-force] [-no_stagi ng_update]
[directory_nane|fil e_nane] +

upgrade_dct _cfg.ipl -v |[-h

-log file The name of the file to which log information is sent.
By default, log information is printed on STDOUT.
For example, if - 1 og xxx is used, all log information
is sent to the file named xxx.

-inpl ace Do not make backup copies of the
dat acapt ur e. cf g files; without this switch,
dat acapt ur e. cf g.backup files are placed in the
same directories as the dat acapt ur e. cf g files.

-n Do not write or modify any dat acapt ure. cf g
files; just determine which ones require an upgrade.
Do not modify / et c/ i w. cf g.

-no_i wef g_updat e Do not modify anything ini w. cf g. By default,
running this utility sets
use_ext ended_r egex5=t r ue within the
[teansite_tenplating] section of
/etc/iwcfg.

379

o

‘m’ INTERWOVEN

~

-force

-no_stagi ng_updat e

-d verbosity

Verbosity Displays
0 Nothing
Only files requiring upgrade

Using Command-Line Tools

This utility should run at most once on the root of
TeamXpress branching structure (e.g., / i wmt) since
the conversion from basic regexes to extended
regexes is one-way. If

use_ext ended_r egex5=t r ue is already set within
the [t eansi te_t enpl ati ng] section of i w. cf g,
it is assumed that no further conversion of

dat acapt ur e. cf g files is required, and this utility
will exit with a diagnostic message. To override this
behavior, use the - f or ce flag.

Do not attempt to upgrade dat acapt ur e. cf g files
that are already in the staging area. By default,

dat acapt ur e. cf g files in the staging area are
upgraded by creating a temporary workarea, doing an
update of the relevant files, and then automatically
checking in the changes.

Set the debug verbosity level:

1
2 Changed and unchanged files (default)
3 Information from Level 2 plus low-

level trade messages

4 Information from Level 3 with

extensive trace messages
-h

-V
Example:

upgr ade_dct _cfg.ipl $i wrount

Displays this usage information.
Displays this command's version number.

CAUTION: You should not run this utility more than once on $i wount (see - f or ce for details).

380

TeamXpress Templating and Deployment Guide

Background:
In basic regular expressions (the old default):

Character Meaning

+ a single instance of the '+' character

? a single instance of the '?' character

I a single instance of the '|' character

\ (and\) used for grouping

\{ and\} used for expressing ranges of instances

In extended regular expressions:

Character Meaning

+ one or more instance

? Zero or one instance

I either the left or the right hand alternative
(and) used for grouping

{ and} used for expressing ranges of instances

In extended regular expressions, if you wish to use a literal +, |, (,), {, or } character in your
regex, you must escape it witha\ . For example:

The basic validation regex ~\ (hi\)\{2, 5\} iswrittenas~(hi){2, 5} after the conversion to
extended regular expressions.

A Dbasic regex like you+me must now be expressed as you\ +me because + means one or more.
Therefore, the extended regex you+ne matches strings like youre, youune, youuure, etc.

You should probably revisit your validation regexes, since the extended regular expressions now
being used allow for stricter input checking.

381

o

‘mv INTERWOVEN Using Command-Line Tools

~

382 TeamXpress Templating and Deployment Guide

Appendix C

DataDeploy Database Auto-
Synchronization

This appendix describes how to configure and use the database auto-synchronization (DAS) module.

Overview

The DAS module is bundled with DataDeploy. After you configure DAS, it automatically deploys data
content records (DCRs) to a database whenever a TeamXpress user performs any of the following
actions:

« Creates, changes, or deletes a DCR through the TeamXpress templating GUI.

« Creates, changes, or deletes a file, TeamXpress area, or branch containing extended attributes via
the command line.

« Creates, changes, or deletes a file, TeamXpress area, or branch containing extended attributes via
the TeamXpress file system interface.

DAS accomplishes this by running DataDeploy as a daemon, and by using various TeamXpress events
as triggers to initiate deployment. The following sections describe how to configure and run DAS.

Software Requirements

To use DAS, you must first install and configure the following Interwoven products:
« TeamXpress (see the TeamXpress Administration Guide)

« TeamXpress Templating

 DataDeploy

383

o

{2:5} INTERWOVEN

~

DataDeploy Database Auto-Synchronization

DAS Program and Configuration Files

The following files control the operation of DAS. All but the last file, i w. cf g, are installed
automatically when you install DataDeploy (i w. cf g is installed automatically with TeamXpress). See
the sections following the table for configuration instructions.

File

Location

Description

daenon. cfg

dd- hone/ conf

Configuration file used by the DataDeploy daemon for
start-up. You do not need to configure daenon. cf g
before running DAS. However, you can optionally add
<al | owed- host s> and <bi nd> tags to daenon. cf g
to further control access to the database server. See
Item 16 in “Sample File Notes"for more information.

ddcfg. tenplate

dd- hone/ conf

Template DataDeploy configuration file used by
ddgen. i pl as a basis for creating all the working
DataDeploy configuration files for the templating data
types. You must configure ddcf g. t enpl at e as
described in “Editing ddcfg.template and drop.cfg” on
page 385 before running DAS.

ddgen. i pl

dd- hone/ bi n

DataDeploy configuration file generator. You do not
need to configure ddgen. i pl before running DAS.

drop. cfg

dd- hone/ conf

Utility configuration file used by the DataDeploy
daemon when dropping tables. You must configure

dr op. cf g as described in “Editing ddcfg.template and
drop.cfg” on page 385 before running DAS.

iwsyncdb.cfg

dd- home/conf

Configuration file for i wsyncdb. i pl . Controls name
and port number for the DataDeploy daemon host. Also
controls DataDeploy event logging. See “Editing
iwsyncdb.cfg” on page 386 for more information.

i wsyncdb. i pl

dd- hone/ bi n

TeamXpress event trigger program and CLT. You do not
need to configure i wsyncdb. i pl before running
DAS.

iw.cfg

/etc

Controls whether file renaming, moving, and deletion
will trigger deployment. See “Editing iw.cfg” on
page 387 for more information.

384

TeamXpress Templating and Deployment Guide

Configuring DAS

Configuring DAS

You must perform the following steps to configure DAS following a DataDeploy installation:
« Edit configuration files that are specific to DataDeploy.

« Edit the main TeamXpress configuration file, i w. cf g.

 Run the main DataDeploy configuration script, i wsyncdb. i pl .

The following sections describe these steps in detalil.

Editing DataDeploy Configuration Files

This section describes how to configure the ddcf g. t enpl at e, dr op. cf g, and i wsyncdb. i pl
files with your site-specific information.

Editing ddcfg.template and drop.cfg

You must set the following attributes in each <dat abase> element in ddcf g. t enpl at e and
drop. cfg:

Attribute Setto...
db The host, port, and name of the destination database. Syntax is
"host nane: port nunber : dbnane"
user The user name that DataDeploy uses when logging into the database server.
password The password for user. Note that any password named here is not
encrypted, and can be read by anyone having access to ddcf g. t enpl at e.

385

o

‘m’ INTERWOVEN

~

DataDeploy Database Auto-Synchronization

For example, the following settings configure ddcf g. t enpl at e so that DataDeploy will connect to
the database server as mar ket i ng (using the password $al 45) and deploy data to the mar ket i ngdb

database on port 1521 of the server dbser ver 1:

<dat abase db
user
password

"mar ket i ng"
" $al 45"

“dbserver1: 1521: mar ket i ngdb"

You must configure these settings within each occurrence of the <dat abase> element. For example,
if the <dat abase> element occurs four times in ddcf g. t enpl at e, you must configure these
settings identically in all four locations. The same requirement applies to dr op. cf g. You must
reconfigure these settings in both files whenever you change to a different database, user, or

password.

Editing iwsyncdb.cfg

The dd- hone/ conf /i wsyncdb. cf g file controls the following DataDeploy parameters.

Parameter

Setting in iwsyncdb.cfg

DataDeploy daemon host port number (host name is set
automatically to the local host name of the TeamXpress
server).

Set daenmon_por t =nunber . For example,

to set the port number to 3456, enter
daemon_port =3456

Logging of DataDeploy events.

Set suppr ess_| og=yes to disable
logging. Set to no to enable logging.

DataDeploy 3-tier or DAS operation.

Set rode=das to enable DAS mode. Set
node=3t i er to enable 3-tier mode.

386 TeamXpress Templating and Deployment Guide

Configuring DAS

Editing iw.cfg

You must edit the [iwserver] section of / et ¢/ i w. cf g as follows to support DAS recognition of
TeamXpress events. Once configured, DAS will support these events whether they are initiated from
the TeamXpress GUI, the TeamXpress file system interface, or the command line (via standard OS
commands or TeamXpress command-line tools such asi wext at t r).

TeamXpress Event Setting in iw.cfg
Rename a file. log_renamefse=yes
Move a file. log_renamefse=yes
Delete afile. log_syncdestroy=yes
Set extended attributes on a file. | og_set ea=no

Delete extended attributes from a file. | og_set ea=no

Revert a file containing extended attributes to an earlier version. |l og_syncrevert =yes

Runningi wsyncdb. i pl
This section describes how to run the i wsyncdb. i pl script, which performs the following activities:
« Generates DataDeploy configuration files for use by the DataDeploy daemon.

« Submits the generated DataDeploy configuration files to the staging area and publishes an edition
based on the updated staging area.

« Establishes TeamXpress events as triggers for automatic data deployment.
« Starts the DataDeploy daemon.
« Creates initial base and delta tables in the destination database for the updated TeamXpress areas.

The following sections and diagrams explain these activities in detail.

387

o

‘m) INTERWOVEN DataDeploy Database Auto-Synchronization

~

Starting iwsyncdb.ipl
Enter the following command to start the i wsyncdb. i pl script:

dd- home/ bi n/i wsyncdb.ipl -initial workarea_vpath

For wor kar ea_vpat h, specify the full path to the TeamXpress Templating workarea that was set up
earlier as described in Chapter 2, “Initial Configuration.” For example, you would enter the following
if the TeamXpress Templating subbranch b1 and workarea wa are on the def aul t / mai n branch, and
dd- homre IS/ usr /i w- hone/ dat adepl oy:

[usr/iw hore/ dat adepl oy/ bi n/iwsyncdb.ipl -initial /default/nain/dev/bl/ WORKAREA/
wl

iwsyncdb.ipl Activities

The following figures show the activities that take place when i wsyncdb. i pl runs. Activities are
grouped as follows:

 Figure 1: Generation of DataDeploy Configuration Files

« Figure 2: Other DAS Setup Activities

All of the activities shown in Figures 1 and 2 take place when you enter i wsyncdb. i pl on the
command line. You do not need to enter i wsyncdb. i pl asecond time to initiate the activities
shown in Figure 2.

388 TeamXpress Templating and Deployment Guide

Configuring DAS

Generation of DataDeploy Configuration Files

The following figure shows how DataDeploy configuration files are generated, submitted, and
published when the i wsyncdb. i pl script runs. See the diagram key following the diagram for details

about each step.

datacapture.cfg for
data type X

datacapture.cfg for
data type Y

datacapture.cfg for
data type Z

Command Line

® User issues
iwsyncdb.ipl -
i ni tial command

ddgen.ipl script

* Reads datacapture.cfg
for each data type

* Reads ddcfg.template

* Creates DataDeploy
configuration files based

on datacapture.cfg and
ddcfg.template

DataDeploy
configuration file
X_dd.cfg

Rl

DataDeploy
configuration file
Y_dd.cfg

DataDeploy
configuration file
Z_dd.cfg

ddcfg.template file

® Used as basis for
DataDeploy
configuration files
generated by
ddgen.ipl

Figure 1: Generation of DataDeploy Configuration Files

TeamXpress GUI

¢ DataDeploy
configuration
files submitted

¢ Edition pub-
lished

389

o

‘mv INTERWOVEN DataDeploy Database Auto-Synchronization

~

Figure 1 Diagram Key

1. Theiwsyncdb.ipl -initial command isexecuted from the command line as described in
“Starting iwsyncdb.ipl” on page 388. The i wsyncdb. i pl script starts the ddgen. i pl script.

2. The ddgen. i pl script reads the TeamXpress dat acapt ur e. cf g file for each data type that
exists in wor kar ea_vpat h specified in Step 1. For example, if the TeamXpress templating
directory structure in wor kar ea_vpat h contains the data types X, Y, and z, the
dat acapt ur e. cf g file for each is read by ddgen. i pl .

3. The ddgen. i pl script uses ddcf g. t enpl at e as the base format of the DataDeploy
configuration files that it will generate for each data type.

4. Based on ddcf g. t enpl at e and the dat acapt ur e. cf g files for each data type, ddgen. i pl
creates DataDeploy configuration files for each data type. Continuing with the example from Step
2, the DataDeploy configuration files X_dd. cf g, Y_dd. cf g, and Z_dd. cf g are created. These
configuration files configure a TeamXpress-to-database deployment similar to that described in
“Sample TeamXpress-to-Database Configuration File” on page 175. The ndc_dd. cf g file is also
created to ensure that DataDeploy remains synchronized with other TeamXpress features such as
metadata capture and metadata search.

5. The newly generated DataDeploy configuration files are submitted to the staging area, and an
edition based on the updated staging area is published.
Other DAS Setup Activities

The following figure shows how the remaining DAS setup activities take place when the
i wsyncdb. i pl script runs. See the diagram key following the diagram for details about each step.

390 TeamXpress Templating and Deployment Guide

Configuring DAS

TeamXpress Event
Subsystem
* TeamXpress events
registered as
DataDeploy
6 triggers

Command Line

® iwsyncdb.ipl -
initial (contin- / 8 daemon.cfg
ved) DataDeploy Daemon * DataDeploy dae-

* Reads daemon.cfg for mon startup infor-

startup information
* Runs continuously
¢ Automatically deploys
data when TeamXpress
trigger events occur

Figure 2: Other DAS Setup Activities

Figure 2 Diagram Key

6.

The i wsyncdb. i pl script registers a default set of TeamXpress events as triggers that will
automatically initiate deployment. See “TeamXpress Event Triggers” on page 396 for details about
which events are registered as triggers.

. Theiwsyncdb. i pl script starts the DataDeploy daemon.

391

o

‘m’ INTERWOVEN

~

DataDeploy Database Auto-Synchronization

8. The DataDeploy daemon reads the daeron. cf g file, which contains additional daemon startup
information. The daemon finishes its startup, and runs continuously until DAS is disabled as
described in “Disabling DAS” on page 399.

9. The DataDeploy daemon creates the following in the destination database:
— Initial wide base tables for the branch.
— Initial delta tables and views for the workarea.

DAS is now configured and ready for use. The only time you need to repeat any configuration step is
when you enable a different database, user, or password. If you add new templating branches,
workareas, or files through the TeamXpress GUI, DAS automatically generates the necessary
DataDeploy configuration files and initial tables.

Using DAS

After DAS is configured, it is transparent to TeamXpress templating end users. Therefore, there are no
additional tasks that an end user must perform to use DAS. The following diagram shows how DAS
automatically updates the necessary tables when a TeamXpress trigger event occurs. See the diagram
key following the diagram for details about each step.

392 TeamXpress Templating and Deployment Guide

Using DAS

TeamXpress GUI

* End user
activity results
in TeamXpress
trigger event

Figure 3: Using DAS

iwsyncdb.ipl script

® Receives and interprets
data from TeamXpress
trigger event

® Passes data to

DataDeploy daemon

DataDeploy Daemon

* Determines which Dat-
aDeploy configuration
file to use

* Deploys data to database

393

o

‘mv INTERWOVEN DataDeploy Database Auto-Synchronization

~

Figure 3 Diagram Key

1.

TeamXpress templating end user activity (i.e., any activity shown in “TeamXpress Event Triggers”
on page 396) results in a TeamXpress event trigger. The event trigger starts the i wsyncdb. i pl
script and sends the changed data to the script.

. Theiwsyncdb. i pl script sends the DCR data to the DataDeploy daemon. The daemon

determines which DataDeploy configuration file(s) to use for the deployment. For TeamXpress
events (e.g., Create Branch) that are not specific to a single file, the daemon uses the

t enpl at i ng. cf g file to determine which data types (and therefore which DataDeploy
configuration files) are affected by the TeamXpress event. For example, in the case of a Create
Branch TeamXpress event, the daemon reads t enpl at i ng. cf g to determine which data types
exist in the branch. The daemon then uses the DataDeploy configuration files for each affected data
type when deploying the new data to the database.

For events that are file-specific (e.g., renaming a file, etc.), the daemon uses the information from
the TeamXpress event information module to determine which file is affected and which
DataDeploy configuration file to use.

. The daemon uses the appropriate DataDeploy configuration file(s) to update the affected base and

delta tables in the database. The following section, “Table Update Details” describes these updates.

Table Update Details

This section describes how the base and delta tables described in the preceding section change as data
Is deployed. This example shows a hypothetical update to a data content record. In this example:

Data category isi nt er net .
Data type is pr (press release).
Branch is b1.

Workarea is wi.

394

TeamXpress Templating and Deployment Guide

Using DAS

Table Naming Conventions
Base and delta tables use the following naming convention:

dat acat egory_dat at ype___branchname_ar eanane

Note the use of double underbars between dat acat egor y_dat at ype and
br anchnane_ar eanane. For example:

internet_pr__bl_staging (abase table for the staging area on the def aul t / mai n/ dev/ b1
branch)

i nternet _pr__bl_wor kar ea_wl (a delta table for the workarea w1 on the def aul t / mai n/
dev/ bl branch)

Table Update Examples

When the initial wide base table is created as described earlier in Figure 2, Step 9, it contains a Path
column, a State column, and columns for each item in the data content record. In this starting state,
the table does not yet contain any values. Assuming that first three items are Pr essDat e, Headl i ne,
and Pi cture:

Path State PressDate |Headline Picture

Wide Base Table for Staging Area (Starting State)

When the initial delta table is created, it contains the same columns as the initial base table, plus values
for each item:

Path State PressDate |Headline Picture
f1l New 11/17/99 |New Candi date Enters Race cand. gi f

Delta Table for Workarea (Starting State)

395

o

‘m’ INTERWOVEN

~

When the data content record is saved, its delta table values are transferred to the base table, and its

own cells are cleared:

DataDeploy Database Auto-Synchronization

Path State PressDate |Headline Picture

f1l New 11/ 17/ 99 |New Candi date Enters Race cand. gi f
Base Table for Staging Area (Ending State)

Path State PressDate |Headline Picture

Delta Table for Workarea (Ending State)

TeamXpress Event Triggers

DAS interprets the following TeamXpress events as deployment triggers. The event can be initiated
from the TeamXpress GUI, the TeamXpress file system interface, or the command line. Whenever
one of these events occurs, the delta and base tables are updated as shown here.

TeamXpress Event Delta Table Action Base Table Action
Create Branch None. Build empty base tables.
Create Workarea Build delta tables. None.
Delete Branch Drop delta tables. Drop base tables.
Delete Workarea Drop delta tables. None.
Modify DCR Update or insert a new row. None.
Add DCR Insert a new row. None.
Delete DCR Insert or update the Not Present row. | None.

396

TeamXpress Templating and Deployment Guide

TeamXpress Event Triggers

TeamXpress Event

Delta Table Action

Base Table Action

Submit modified DCR

1. The Previous Staging row is
propagated to all workareas except the
submitting workarea.

2. Delete Previous Staging row from
submitting workarea.

Update the Staging row.

Submit added DCR

1. The Placeholder row marked NOT-
PRESENT is propagated to all
workareas except the submitting
workarea.

2. Delete the Placeholder row from
the submitting workarea.

Update the Staging row.

Submit deleted DCR

1. The previous Staging row is
propagated to all workareas except the
submitting workarea.

2. Delete the previous Staging row
from the submitting workarea.

Update the Staging row.

Get Latest (workarea) Rebuild the delta tables. None.
Copy To (any area) Rebuild the delta tables. None.
Rename Workarea 1. Drop the old delta tables. None.

2. Regenerate new delta tables.

Rename Branch

None.

1. Drop the old base tables.

2. Regenerate new base
tables.

Rename Directory Regenerate new delta tables. None.
Rename File 1. Delete the row for the old file None.
name.
2. Add a row for the new file name.
Move File 1. Delete the row for the old file None.

name.
2. Add a row for the new file name.

397

o

‘sgﬁv INTERWOVEN DataDeploy Database Auto-Synchronization

~

TeamXpress Event Delta Table Action Base Table Action

Delete File If a row for the file exists in the base | None.
table, the row in the delta table is
marked NOT-PRESENT. If no row
existed in the base table, the row in the
delta table is deleted.

Set extended attributes Insert or update the row. None.

Delete extended attributes | In a wide table, rows are updated. Ina | None.
narrow table, the row is deleted or
marked NOT-PRESENT.

Revert Use the data from the earlier version of | None.
the file (selected in the TeamXpress
GUI) to update or insert a new row.

Logging DAS Activities

By default, all DAS activities are logged in dd- hone/ i wevent s. | og. If this logging has an adverse
affect on system performance, you can optionally turn off logging for any of the TeamXpress events
shown in the table in “Editing iw.cfg” on page 387. Use the following event names when disabling

logging:

RenanmeFSE

SyncDest r oy

Set EA

Del et eEA

SyncRevert

For example, to prevent Rename events from being logged, set the following ini w. cf g:
i wevent s_excl ude=" RenaneFSE"

You can also use regular expressions with the following syntax to further control event logging:

renanefse_filter="REGEX"

398 TeamXpress Templating and Deployment Guide

Disabling DAS

For example, to specify that only Rename events occurring in the workarea bi | | are logged:

[iwserver]
renamefse filter="/default/min/dev/ WORKAREA/ bi || "

This entry sets regular expressions, one of which must match the event line (as seen in
i wevent s. | og) in order for an event to be logged. If these are empty or absent, all corresponding
events are logged.

Disabling DAS

Issue the following command to remove the TeamXpress event trigger scripts and stop the DataDeploy
daemon:

dd- hore/ bi n/ i wsyncdb. i pl -uninstall
To re-enable DAS after it has been disabled, issue the following command:
dd- hore/ bi n/i wsyncdb. i pl -instal

Note that you do not need to regenerate the dat acapt ur e. cf g files that were generated earlier
during DAS configuration. See the next section, “iwsyncdb.ipl Usage” for more information about the
i wsyncdb. i pl command.

iwsyncdb.ipl Usage

Usage

i wsyncdb.ipl [
-h | -install | -uninstall | -iwat | -iwmat |
-startddd | -stopddd | -ddgen vpath [dcr-type] [-force] |
-initial vpath [dcr-type] | -ndcddgen [-force] |
-resyncbr vpath [dcr-type] | -resyncwa vpath [dcr-type] |
-rnbr vpath [dcr-type] | -rmwa vpath [dcr-type] |
-showbase vpath [dcr-type] | -showdelta vpath [dcr-type]|
-showt racker | -synctracker vpath

399

o

‘m’ INTERWOVEN

~

-install
-uni nstal |

- i wat

- i wr mat

-startddd

- st opddd

-ddgen vpath [dcr-type]

DataDeploy Database Auto-Synchronization

Installs the database synchronization triggers and
starts the DataDeploy daemon.

Removes the TeamXpress event trigger scripts and
stops the DataDeploy daemon.

Registers the i wsyncdb trigger scripts.
Unregisters the i wsyncdb trigger scripts.
Starts the DataDeploy daemon.

Stops the DataDeploy daemon.

Generates DataDeploy configuration files for data
types configured in t enpl at edat a/

t enpl at i ng. cf g under the specified workarea
vpat h. The - f or ce option overwrites any existing
configuration files. The optional dcr - t ype setting
specifies a single data type (rather than all data types in
vpat h) to generate a configuration file for. If used,
dcr - t ype must be the last argument in the option
list.

-initial vpath [dcr-type] Generates the initial base and delta tables for the first

- ndcddgen

template-enabled workarea vpat h. The optional
dcr - t ype setting specifies a single data type (rather
than all data types in vpat h) to generate tables for.

Generates the DataDeploy configuration file
mdc_dd. cf g (based oni w- hone/ | ocal / confi g/
dat acapt ur e. cf g) for use by the metadata capture
subsystem. The - f or ce option overwrites any
existing configuration files.

-resyncbr vpath [dcr-type] Regenerates the base tables for the branch named

by vpat h and the workareas for the underlying
workareas. The optional dcr - t ype setting specifies a
single data type (rather than all data types in vpat h)

400

TeamXpress Templating and Deployment Guide

iwsyncdb.ipl Usage

to resync tables for. You should runi wf r eeze to
freeze the backing store before regenerating.

-resyncwa vpath [dcr-type] Regenerates the delta tables for the workarea

-rnbr vpath [dcr-type]

-rmva vpath [dcr-type]

vpat h. The optional dcr - t ype setting specifies a
single data type (rather than all data types in vpat h)
to resync tables for. You should runi wf r eeze to
freeze the backing store before regenerating.

Destroys the base tables for the branch named by
vpat h. The optional dcr - t ype setting specifies a
single data type (rather than all data types in vpat h)
to destroy tables for.

Destroys the delta tables for the workarea named by
vpat h. The optional dcr - t ype setting specifies a
single data type (rather than all data types in vpat h)
to destroy tables for.

- showbase vpath [dcr-type] Shows the base table of the DCR type for the

specified base path (e.g., / def aul t/ mai n/ dev/ br/
STAG NG). The optional dcr - t ype setting specifies a
single data type to display.

-showdel ta vpath [dcr-type] Shows the delta table of the DCR for the specified

-showt r acker

workarea path (e.g., / def aul t / mai n/ dev/ br/
WORKAREA/ wa). The optional dcr - t ype setting
specifies a single data type to display.

Shows the tracker table containing all registered tables
deployed via DataDeploy.

401

o

‘mv INTERWOVEN DataDeploy Database Auto-Synchronization

~

402 TeamXpress Templating and Deployment Guide

Appendix D

DataDeploy Database Server
Configuration

Overview

This appendix describes the database server configuration tasks you must perform to configure the
following databases to work with DataDeploy:

- |IBMDB2UDB6.1
 Sybase ASE 11.5
e Informix 7.3

IBM DB2

DataDeploy supports IBM DB2 UDB 6.1 on Windows NT/2000 systems. The following sections
describe how to configure the database server to work with DataDeploy.

Setting Page and Table Sizes

The default pagesize for a tablespace in DB2 is 16K, which is too small for the examples shipped with
TeamXpress Templating (the examples require that a tablespace of pagesize 32K be already set up on
the DB2 server). Also, the default column size and datatype used by DataDeploy is VARCHAR (300) .
These conditions require that you perform one of the following procedures:

1. Make sure that the default tablespace matches the required pagesize (32K). The default tablespace
is usually named | BVMDEFAULTGROUR. Or:

2. Create a tablespace with the required pagesize (32K) and specify the tablespace name as follows in
the <dat abase> element in the DataDeploy configuration file:
<dat abase db = "//host: port/database"
user = "usernane"
password = "password"

403

o

‘mv INTERWOVEN DataDeploy Database Server Con-

~ figuration
table = "t abl enane”
vendor = "ibnt
t abl espace = "t abl espacenane"

max-id-length = "30">

The t abl espace attribute is valid only for DB2 configuration. It is ignored if you set it when using
any other database.

Installing and Starting JDBC

DB2’s JDBC driver (db2j ava. zi p) is installed with other JDBC drivers (Oracle, Sybase ASE, and
Informix). The driver class COM i bm db2. j dbc. net . DB2Dr i ver that DataDeploy uses to connect
to a DB2 database requires that the DB2 client is also installed. See the documentation supplied by the
database vendor for information about installing the DB2 client.

DB2 does not start the daemon to accept JDBC connections by default. You must do this manually by
executing the following command:

db2j strt port

The por t number you enter on the command line must match the por t number shown in the db
attribute in “Setting Page and Table Sizes” on page 403. If you do not specify a value for por t , it takes
a default value of 6789.

Sybase ASE
DataDeploy supports Sybase ASE 11.5 on Windows NT, Windows 2000, and Solaris systems. The
following sections describe how to configure the database server to work with DataDeploy.

Enabling DDL Statements

You must enable DDL statements for transactions as follows. Note that this cannot be done for the
master db.

1> sp_dbopti on dbname, "ddl in tran", true

404 TeamXpress Templating and Deployment Guide

Informix

Setting Sort Order

Set up case-insensitive sort order for the database by executing the $SYBASE/ bi n/ sqgl | oc utility to
set case-insensitive dictionary order. You will also need to recreate indexes on the database that was
changed, unless the sort order was changed on initial installation.

Install Stored Procedures
Install jconnect 4.2 stored procedures as follows:

1. Download the jConnect 4.2 package from the Sybase website.

2. Follow the instructions in the “Sybase jConnect for JDBC Installation Guide,” Chapter 1, section
“Adaptive Server Enterprise” to install the stored procedures for JDBC support into the database.

Informix

DataDeploy supports Informix 7.3 on Windows NT systems, Windows 2000, and Solaris systems.
The following sections describe how to configure the database server to work with DataDeploy.

Enabling Logging

Any databases created for use with Informix must be created with logging enabled. This can be
accomplished with the Informix tool dbaccess, using an SQL command such as the following:

create database xyzdb with | og

405

o

‘mv INTERWOVEN DataDeploy Database Server Con-

~ figuration

406 TeamXpress Templating and Deployment Guide

Appendix E

DataDeploy Querying Tables

This appendix describes how to query tables through SQL commands that you execute manually after
deployment. Methodology differs depending on table type.

Note: You can also embed SQL commands in the DataDeploy configuration file’s <sqgl > element.
These commands execute automatically during deployment and do not require you to manually query
the database. See “Invoking DataDeploy” on page 207 for more information.

Querying Base and Standalone Tables

You can use simple SQL statements specifying key-value pair criteria when querying a base or

standalone table. For example:
SELECT path FROM st agi ng
VWHERE key = News- Section AND val ue = Sports;

Querying Delta Tables

To query a delta table, you can first create a view consisting of a complex query and then apply a

simple query on the view. For example:
CREATE VI EW ar eavi ew (key, value, path) AS
SELECT key, value, path

FROM sa
VWHERE NOT EXI STS
(SELECT *
FROM wa_x WHERE
wa_x. key = sa. key AND
wa_X.path = sa.path)
UNI ON
SELECT key, value, path
FROM wa_x WHERE wa_x.state != "Not Present’;

SELECT path FROM ar eavi ew
WHERE key = News- Section AND value = Sports

407

o

‘mv INTERWOVEN DataDeploy Querying Tables

~

The CREATE VI Ewcommand in this example is the default DataDeploy schema that executes when
t abl e- vi ewis set to yes in the DataDeploy configuration file’s <dat abase> element.

408 TeamXpress Templating and Deployment Guide

Appendix F

OpenDeploy Clientand Server
Configuration File Options

Many OpenDeploy configuration options may be specified in either the client or server configuration
files. Some must be specified in both. However, some configuration options are specific to client or
server configuration files. The following table lists all available configuration file options, and
whether they are specified on the client or the server.

Configuration File Option ‘ Configuration File ‘ Page

Specifying Connections and Locations

al | owed_directory=path server page 290

port =# server page 289

TeanSi t e_ser ver =nane server page 289

renot e_di rect ory=absol ute_path client page 263

remot e_port=# client page 262

renot e_server =server client page 262

Specifying Timeouts

ti meout =#seconds either pages 263
and 291

Security Options

client_is_trusted=yes|no server page 290

Specifying Deployment Sections

depl oynent =nane client or both pages 262
and 290

Specifying Locations of Files to Be Deployed

area=path client page 264

host name=namne client page 263

409

o

‘mv INTERWOVEN OpenDeploy Client and Server Con-

~ figuration File Options

Configuration File Option Configuration File |Page
| ocal _directory=path client page 264
Specifying Which Files to Deploy
dat e_di f f erent client page 268
file_list=path client page 273
previ ous_ar ea=pat h client page 271
revert client page 267
TeanSi t e_based client page 270
Specifying Which Files to Exclude
desti nation_excl ude=pat h either pages 278
and 292
destination_excl ude_pattern=pattern gither pages 279
and 292
excl ude=pat h client page 280
excl ude_pattern=pattern client page 280
sour ce_excl ude=pat h client page 276
sour ce_excl ude_pattern=pattern client page 277
Renaming and Deleting Files During Deployment
do_del etes either pages 280
and 293
rename_suf fi x=suf fi x either pages 280
and 293
Changing Permissions on Files During Deployment
amask=nmask either pages 281
and 293
changeaccess=ACL either pages 283
and 295
di r _per meper i ssi on either pages 281
and 293

410 TeamXpress Templating and Deployment Guide

Configuration File Option Configuration File |Page

fil e_permeperni ssion either pages 281
and 294

gr oup=gr oupi d either pages 282
and 294

group_transl ations client page 282

i gnor e_gr oups either pages 282
and 294

i gnor e_nodes either pages 282
and 294

i gnor e_users either pages 282
and 294

omask=mask either pages 282
and 294

set access=ACL either pages 283
and 295

user=userid either pages 283
and 294

user _transl ations client page 283

Encryption

key file=path both pages 285
and 296

ssl _certificate=path either pages 285
and 297

ssl _ci pher s=ci phers either pages 285
and 297

ssl _privat ekey=path gither pages 285
and 297

Deploy and Run

as=user nane either pages 286
and 298

411

o

‘mv INTERWOVEN OpenDeploy Client and Server Con-

~ figuration File Options

Configuration File Option Configuration File |Page
async=yes either pages 287
and 299
depl oy_run_script=script_to_run either pages 286
and 298
di r_mask=dir either pages 287
and 299
di sabl e_scri pt s=yes server page 297
file_mask=file either pages 287
and 299
require_abs_scri pt _pat h=yes server page 288
when=condi ti on either pages 286
and 298
wher e=di r either pages 288
and 300
Links
destination_foll ow_|inks client page 288
foll ow_|inks client page 288
source_fol I ow_| i nks client page 288
Debugging Deployment Configuration
dont _do client page 288
Authentication by IP Address
al | owed_host s=host | i st server page 300
bi nd_addr ess=addr ess server page 300

412 TeamXpress Templating and Deployment Guide

Index

A
ACLs 284, 295
evaluating 368
adding replicants 50
advanced features
authentication by IP
address 301
Deploy and Run 313
encryption 305
allowed element 47, 53, 67, 133,
137
allowed users 258
and element 47, 67, 133, 137
architecture
three-tier 145, 147
two-tier 145, 146
asynchronous mode 315, 319
author_submit_dcr.wft 141
authorization configuration
file 258
auto-synchronization, database
see database
available_templates.ipl 30, 140
editing 31

B

base tables 212
generation 163
naming conventions 395
querying 407
updating 166, 394

examples 395
boolean tests 83
branch element 134, 136
browser element 46, 66

C
callout element 47, 54
category 22
category element 132, 136
checkbox element 48, 66
ciphers 311
client configuration files 251,
253, 328, 331, 335, 343
client configuration options 261,
310, 409
client options
changing file permissions 281
debugging 288
deleting files 280
Deploy and Run 286
deployment sections 262
deployment targets 262
deployment timeouts 263
encryption 285
excluding files 275
overview 261
renaming files 280
specifying files to be
deployed 263
symbolic links 288
client versus server 258

clients
trusted 258
CLT
iwdctacleval 368
iwdtd2sym 354, 370
iwgen 371
iwpt_compile.ipl 372
iwregen 375
iwsym2dct 358, 376
iwxml_validate.ipl 377
upgrade_dct.cfg.ipl 379
command line options
client 240
general 239
server 240
comparison
directory 265
file lists 273
reverting files 267
component directory 23
component template 71
example 73
configuration file
authorization 258
configuration files 152, 251
available_templates.ipl 30, 31
client 251, 253, 328, 331, 335,
343
debugging 288
deployment sections 253,
254

413

local directory
sections 253, 254
scope of options 255
components 153
daemon.cfg 384
database auto-
synchronization 384
editing 385
database.xml 213
editing 227
database-to-database 197
database-to-XML 198
datacapture.cfg 20, 22
example 41,59
DataDeploy 140, 212
location 227
ddcfg.template 384
editing 385
ddsync.ipl 213, 220
DNR scripts 217, 218
drop.cfg 384
editing 385
elements
client section 182
columns to update 193
database section 187
Database-to-Database 173
Database-to-XML 173
deployment section 182
destination section 186
filter section 181
include file 181
required 171
rows to update 191
server section 195
source data location 184
source section 183
source type 183
SQL section 194

substitution section 181,
185
TeamXpress-to-
Database 172
TeamXpress-to-XML 172
update type and related
data 193
XML-to-Database 174
XML-to-XML 174
encryption options 310
generated using iwsynch.ipl
script 389
iw.cfg 385
editing 387
iwsynchdb.cfg 384
editing 386
loaddb.cfg 213
generating 226
oddd_receive.cfg 214, 217, 221
location 221
oddd_send.cfg 214, 217, 218,
221
OpenDeploy 212
parameter substitutions 175
presentation template 23
server 221,251, 317, 327, 330,
335, 340
starting-state base table 204
subxmldb.template 213
synchronized deployment 213,
222
TeamXpress-to-database 175
TeamXpress-to-XML 196
templating.cfg 20, 25, 30, 129
example 130
tsxml.cfg 214, 217
editing 224
workflow 30
XML-to-database 200

XML-to-XML 202
configuration options 258, 409
content

conditional inclusion 91

creating 25

creating records 18
conventions

notation 6

path name 7
coordinating server and client

configuration files 254
cred element 47, 67, 133, 137

D
data
sizes 157
types 157
data capture form 40
example 57
data capture subsystem 18, 19
data capture symbol table
creating 370
transforming 376
data capture template
creating 376
creating from DTDs 353
customizing 38
definition 18
DTD 64
example 39
overview 38
data category 22
making available 132
data content record
creating 25
definition 19, 23
example 54,57,73
initiating workflow 31

414

TeamXpress Templating and Deployment Guide

searching 34
data directory 22
data type 22

making available 132
database

auto-synchronization 146, 147,
383

synchronization
deployment 211
data-type element 132, 136
date-different option 268
ddgen.ipl command 384
ddsynch.ipl command 220
logging 221

data synchronization 163
delta table generation 165
destinations 159

details 163

overview 158

tables 168, 169

tuples 159

configuration files 384
configuring 385
disabling 399

event triggers 396
logging 398

overview 383
programs 384
software 383

usage 392

object name lengths 156
servers

configuration 403

syntax 220

usage 220
debugging 127
debugging tags 372
default element 67
deleting files 280, 292
deleting replicants 50
delta tables

generating 165

naming conventions 395

querying 407

database auto-synchronization
triggers 396

executing 145

forward 326

incremental 157

installing 232, 233

invoking, methods 151

of different directories 333

overview 325

reverse 337

scenarios 158

security

IBM DB2 403, 404
Informix 405
Sybase ASE 404
database element 44
datacapture.cfg 20, 22, 25, 38, 41,
353
creating 358
example 59
data-capture-requirements
element 43, 64
DataDeploy
configuration files 140
daemon 147
integrated with TeamXpress
Templating 140
invoking 207
running as a workflow job 139
service 147

updating 394
examples 395
Deploy and Run 297, 313
asynchronous mode 315
configuring the client 313
configuring the server 317
disabling 317
log files 318
scripts
asynchronous mode 319
output 320
specifying 313
deployment
automated 145, 146
comparison 265
configuration files 152
configuring 145, 251
database

encryption 305
server authentication 301

Site Rollback 346
synchronization 211
synchronized

base tables 212

configuration 212, 222

configuration files 213

differential 228

file interaction 222

full 228

invoking 227

OpenDeploy 217, 221

process 214

programs 213

software 213

TeamXpress
templates 211

running 210

base table 163, 166
data sources 159

syntax 239
through firewalls 301, 349

415

to multiple servers 329

transactional 242
deployment directories

specifying 262
deployment options

global 255

local directory 255

scope of 255
deployment sections

multiple 262

specifying 262
deployment targets

specifying 262
description element 44
directory comparison 268
directory element 134, 136
directory structure

contents 22

copying 30

overview 21

sample 28
DTD

converting to data capture

templates 353

data capture 63

sample 354

unsupported features 360

E
EDITION, paths ending in 264
editions
specifying 263
element
allowed 47, 53, 67, 133, 137

category 132, 136
checkbox 48, 66
cred 47,67, 133, 137
data-capture-requirements 43,
64
data-type 132, 136
default 67
description 44
directory 134, 136
inline 48, 53, 60
item 44, 65
locations 136
not 47, 67, 133, 137
option 48, 67
or 47,67, 133, 137
presentation 133, 136
radio 49, 66
replicant 50, 67
ruleset 43, 65
select 51, 66
template 134, 136
templating 132, 136
text 51, 65
textarea 52, 66

encryption 285, 296

asymmetric 306
ciphers 311
configuring for
asymmetric 310
creating key files and
certificates 306
key files 285, 296, 305
SSL 285, 297, 306
symmetric 305

example templating
environment 28, 29
copying 30
excluding files 275, 291

F
file lists 272
file permissions
changing 281, 293
UNIX 281, 293
Windows NT 283, 295
files 41
available_templates.ipl 30
datacapture.cfg 20, 38, 59, 353
deleting 280, 292
DTD 63, 354
excluding 275
iw.cfg 34
renaming 280, 292
sample output from
iwdtd2sym CLT 354
templating.cfg 20
files to be deployed
specifying 263
firewalls 301, 349
forward deployment
of different directories 333
to asingle server 326
to multiple servers 329

G

generated HTML files 18, 26
specifying locations 134

Global Report Center 249

errata 7
evaluating ACLs 368 H

event triggers 396 handling replicated data 99
hosts

and 47, 67, 133, 137
branch 134, 136
browser 46, 66
callout 47, 54

416 TeamXpress Templating and Deployment Guide

limiting access 304
specifying 263
HTML pages
from presentation template
compiler 372
generating 26, 371
regenerating 375

I
IBM DB2

configuration 403

JDBC

installing 404
starting 404

page setup 403

table size 403
incremental deployment 157
Informix

configuration 405

logging, enabling 405
inline element 48, 53, 60
installation

drivers 149

on Solaris 11

on Windows NT 13

Solaris 149

supported platforms 148

Windows NT 149
installing OpenDeploy

UNIX 232

Windows NT 235
instance

defined 38
integrating 31
interaction 222
invoking deployment

UNIX 235

Windows NT 237

IP address
authentication 301
item element 44, 65
defined 38
iw.cfg 34
Iw_case tag 83
iw_else tag 88
iw_if tag 89
iw_ifcase tag 91
iw_include tag 95
iw_iterate tag 99
iw_last tag 104
iw_next tag 105
iw_perl tag 106
IW_PREV, paths ending in 264
iw_pt tag 110
IW_repeat tag 111
iw_sql_iterate tag 112
iw_sql_open tag 115
iw_sql_query 118
iw_sql_query tag 118
Iw_system tag 120
iw_then tag 121
iw_value tag 122
iw_xml tags 82
iwdctacleval 368
iwdd.ipl command 207
examples 209
syntax 207
usage 207
iwdeploy syntax
client 239
server 239
iwdtd2sym 354, 370
iwevents 272
iwgen 371
iwpt_compile.ipl 372
iwregen 375

iwsym2dct 358, 376
iwsynch.ipl command 389
iwsynchdb.ipl command 384
activities 388
running 387
starting 388
usage 399
iwxml_validate 377

J
Java callout 54
JDBC
IBM DB2
installing 404
starting 404

K
key files 305

L

links 288

local directories 263

locations element 136

logs 232, 233, 243
differences between UNIX and

Windows NT 248, 319

in Deploy and Run 318
locations 247
names 247
verbose levels 243

N
name lengths, database

objects 156
narrow tuples see tuples
not element 47, 67, 133, 137
notation conventions 6
notification of deployment 313

417

@)
OpenDeploy
database system assets 211
file system assets 211
server daemon, starting 222
synchronization
deployment 211
overview 211
synchronized deployment
configuration 217
modes, supported 221
option element 48, 67
options
configuration 258
or element 47, 67, 133, 137
output
inserting 120

P
page generation subsystem 18,
19, 27
parameter substitutions 175
path name conventions 7
paths
specifying 241
platforms
Solaris 148
supported 148
Windows 2000 148
Windows NT 148
port number
specifying 262
presentation directory 23
presentation element 133, 136
presentation template 23, 99
adding Perl code 106
compiler 19, 71,372

conditional inclusion of
contents 121
definition 19
evaluating expression 89
example 73
guidelines 73
including contents 88
inserting a value 122
inserting component
template 95
inserting file 95
iterating SQL result sets 112
mapping 133
naming 110
opening database
connection 115
querying a database 118
repeating content 111
skipping to last iteration of
loop 104
skipping to next iteration of
loop 105
preview directory 32, 33
previewing data 135
program
inserting output 120
proxy server configuration 34

R
radio element 49, 66
regular expressions 277, 279, 280,
292
about 5
renaming files 280, 292
replicant element 50, 67
replicants
adding 50
reverse deployment 337

reverting files 267

reverting websites 346

ruleset element 43, 65
defined 38

S
scenarios
deployment 158
source/destination 145
synchronization,
DataDeploy 211
search menu item 34
security
client versus server 289
security options
client-side 290
server-side 290
select element 51, 66
server authentication 303
server configuration files 327,
330, 335, 340
server configuration options 310,
317
server options
authentication by IP
address 300
changing file permissions 293
connections and locations 289
deleting files 292
Deploy and Run 297
deployment sections 290
deployment timeouts 291
encryption 296
excluding files 291
overview 289
renaming files 292
security 290
servers

418

TeamXpress Templating and Deployment Guide

IBM DB2 403
JDBC 404
page sizes 403
table sizes 403
Informix
configuration 405
logging, enabling 405
Sybase ASE 404
DDL statements 404
sort order 405
stored procedures 405
Site Rollback 346
Solaris, installation on 149
source/destination scenarios,
supported 145
specifying
Deploy and Run scripts 313
paths 241
ports 289
server options 289
source servers 289
target directories 289
timeouts 263
SSL 306
standalone tables, querying 407
starting TeamXpress
Templating 34
Sybase ASE
configuration 404
DLL statements, enabling 404
sort order, setting 405
stored procedures,
installing 405
synchronization,
OpenDeploy 211
synchronized deployment see
deployment
syntax

Deploy and Run scripts 313-
318

T
tables
base 163, 166, 212
querying 407
updating 394
delta 165
querying 407
updating 394
naming conventions 395
querying 407
SQL 407
updating 168
examples 395
views, creating 169
tags 118
debugging 127, 372
iw_case 83
iw_else 88
iw_if 89
iw_ifcase 91
iw_include 95
iw_iterate 99
iw_last 104
iW_next 105
iw_perl 106
iw_pt 110
iw_repeat 111
iw_sql_iterate 112
iw_sql_open 115
Iw_system 120
iw_then 121
iw_value 122
target servers
specifying 262
template

component 71
template element 134, 136
templatedata directory 22
copying to workarea 30
templating directory
changing 32
templating element 132, 136
templating environment
example 29
templating.cfg 20, 25, 30
customizing 129
DTD 136
example 130
text element 51, 65
textarea element 52, 66
three-tier architecture 145, 147
timeouts
specifying 263
transactional deployment 242
triggers, event 396
troubleshooting 127
trusted clients 258
tt_data 31
tt_deletedcr 32
tuples 159
defined 154
format 154
narrow 154, 161
wide 155, 162
two-tier architecture 145, 146
type 22

U
uninstalling OpenDeploy
UNIX 234
Windows NT 237
upgrade_dct_cfg 379
user interface

419

setting 33
users
allowed 258

\Y

validating XML 377

validation regexes 44, 51
identifying 33
upgrading 379

vpaths 254

W
websites
reverting 346
wide tuples see tuples
Windows NT, installation on 149
workflow 31
copying files for 30
DataDeploy process 140
initiating 32, 140
integrating with TeamXpress
Templating 140
preconfigured 141
schematic of 24, 26, 389

X

XML 318
validating 377

XML DTD 320

XML log files
parsing 322

420

TeamXpress Templating and Deployment Guide

	Interwoven TeamXpress™ for Multiplatforms V1.1, WebSphere™ Edition
	Table of Contents
	About This Book
	Notation Conventions
	Windows Path Name Conventions
	Support Information

	Section 1: TeamXpress Templating
	Installing TeamXpress Templating
	Hardware Requirements
	Operating System Requirements
	Installing on Solaris
	Installing on Windows NT/2000
	Installing on Client Machines
	Next Step

	Initial Configuration
	Configuration Overview
	Concepts and Definitions
	Process Flow: Creating a New Data Content Record
	Process Flow: Generating an Output File
	The Example Directory Structure

	Configuring the Example Templating Environment
	Editing available_templates.ipl to Initiate Workflows
	Modifying the TeamXpress iw.cfg File

	Proxy Server Configuration
	Starting TeamXpress Templating

	Setting Up Data Capture Templates
	Data Capture Template Overview
	Example Data Capture Templates
	Data Capture Example 1
	Example 1 Data Capture Form
	Example 1 datacapture.cfg File
	Example 1 Data Content Record

	Data Capture Example 2
	Example 2 Data Capture Form
	Example 2 datacapture.cfg File

	Data Capture Template DTD

	Setting Up Presentation Templates
	Creating Presentation Templates
	Using a Presentation Template—An Example

	Custom XML Tags
	Writing Your Own Tags

	Mapping Users, Templates, and Content Records
	templating.cfg Overview
	Example templating.cfg File
	Diagram Key
	Setting Previewing Path Variables

	templating.cfg DTD

	Integrating Templating, DataDeploy, and Workflow
	Integration Overview
	Integration Steps
	Integration Steps: TeamXpress Templating
	Integration Steps: DataDeploy
	Integration Steps: TeamXpress Workflow

	Section 2: DataDeploy Administration
	Overview and Installation
	Overview
	Client/Server Setup Options
	Running the DataDeploy Daemon as a Service

	Installing DataDeploy
	Supported Platforms
	Solaris Systems
	Windows NT/2000 Systems

	Deployment Concepts
	Ways to Invoke Deployment
	Configuration Files
	File Components

	Data Organization Within DataDeploy
	Data Types and Sizes
	Incremental Deployment

	Deployment Scenarios
	Deploying from TeamXpress to a Database: Overview
	Deploying from TeamXpress to a Database: Details

	Configuration File Details and Examples
	Required Elements
	TeamXpress-to-Database
	TeamXpress-to-XML
	Database-to-Database
	Database-to-XML
	XML-to-Database
	XML-to-XML

	Parameter Substitutions
	Sample TeamXpress-to-Database Configuration File
	Sample File Notes

	Sample TeamXpress-to-XML Configuration File
	Sample Database-to-Database Configuration File
	Sample Database-to-XML Configuration File
	Sample XML-to-Database Configuration File
	Sample XML-to-XML Configuration File
	Starting-State Base Table Configuration File
	Event 1 Configuration File
	Event 2 Configuration File

	Invoking DataDeploy
	iwdd.ipl Command
	Usage
	Syntax
	Examples

	Running DataDeploy as a Service

	Synchronizing OpenDeploy and Data Deploy
	Overview
	Deploying Different Types of Assets
	Configuration Task Categories

	Software Requirements
	Program and Configuration Files
	Synchronized Deployment Process
	Configuring OpenDeploy
	Client Configuration File
	Server Configuration File
	Starting the OpenDeploy Server Daemon

	Configuring DataDeploy
	Interaction Between Files
	Editing tsxml.cfg
	Generating loaddb.cfg
	Editing database.xml
	Configuration File Locations

	Invoking Synchronized Deployment

	Section 3: OpenDeploy Administration
	Installing OpenDeploy
	UNIX
	Before You Begin
	Installing the OpenDeploy Client
	Installing the OpenDeploy Server
	Uninstalling OpenDeploy
	Invoking Deployment

	Windows NT/2000
	Installing the OpenDeploy Client and Server
	Uninstalling OpenDeploy
	Invoking OpenDeploy

	Syntax and Options
	iwdeploy Syntax
	Specifying Paths

	Options
	Transactional Deployment
	Logging
	Event Reporting

	Configuration Files
	OpenDeploy Server Configuration Files
	UNIX
	Windows NT/2000

	OpenDeploy Client Configuration Files
	Coordinating Server and Client Configuration Files

	Scope of Configuration File Options
	Use of Client versus Server Configuration Options

	The Authorization Configuration File

	Configuration File Options
	OpenDeploy Client Options
	Specifying Deployment Sections
	Specifying Deployment Targets
	Specifying Deployment Timeouts
	Specifying Locations of Files to Be Deployed
	Specifying Which Files to Deploy
	Specifying Which Files to Exclude
	Renaming and Deleting Files During Deployment
	Changing Permissions on Files During Deployment
	Encryption
	Deploy and Run
	Links
	Debugging Deployment Configuration

	OpenDeploy Server Options
	Specifying Connections and Locations
	Specifying Deployment Sections
	Security Options
	Specifying Deployment Timeouts
	Specifying Which Files to Exclude
	Renaming and Deleting Files During Deployment
	Changing Permissions on Files During Deployment
	Encryption
	Deploy and Run
	Authentication by IP Address

	Advanced Features
	Authentication by IP Address
	Encryption
	Symmetric Key Encryption
	Asymmetric Key Encryption
	Configuring OpenDeploy for Asymmetric Encryption

	Deploy and Run
	Configuring Deploy and Run
	Log Files and Scripts

	Deployment Scenarios
	Forward Deployment to a Single Server
	OpenDeploy Server Configuration
	OpenDeploy Client Configuration

	Forward Deployment to Multiple Servers
	OpenDeploy Server Configuration
	OpenDeploy Client Configuration

	Forward Deployment of Different Directories to Different Servers
	OpenDeploy Server Configuration
	OpenDeploy Client Configuration

	Reverse Deployment
	OpenDeploy Server Configuration
	OpenDeploy Client Configuration

	Reverting Websites to Previous Versions
	OpenDeploy Server Configuration
	OpenDeploy Client Configuration

	Deploying Through Firewalls

	Section 4: Appendices
	Creating Data Capture Templates from DTDs
	Running the CLT on the DTD File
	The symbol-table.cfg File
	Diagram Key

	The datacapture.cfg File
	Diagram Key
	Unsupported DTD Features
	Symbol Table DTD Used for Conversions

	Using Command-Line Tools
	DataDeploy Database Auto- Synchronization
	Overview
	Software Requirements
	DAS Program and Configuration Files
	Configuring DAS
	Editing DataDeploy Configuration Files
	Editing iw.cfg
	Running iwsyncdb.ipl

	Using DAS
	Figure 3 Diagram Key
	Table Update Details

	TeamXpress Event Triggers
	Logging DAS Activities
	Disabling DAS
	iwsyncdb.ipl Usage

	DataDeploy Database Server Configuration
	Overview
	IBM DB2
	Setting Page and Table Sizes
	Installing and Starting JDBC

	Sybase ASE
	Enabling DDL Statements
	Setting Sort Order
	Install Stored Procedures

	Informix
	Enabling Logging

	DataDeploy Querying Tables
	Querying Base and Standalone Tables
	Querying Delta Tables

	OpenDeploy Client and Server Configuration File Options

	Index

