
Interwoven TeamXpress™

for Multiplatforms V1.1,
WebSphere™ Edition

Templating and Deployment Guide

© 2001 Interwoven, Inc. All rights reserved.

No part of this publication (hardcopy or electronic form) may be
reproduced or transmitted, in any form or by any means,
electronic, mechanical, photocopying, recording, or otherwise,
without the prior written consent of Interwoven. Information in
this manual is furnished under license by Interwoven, Inc. and
may only be used in accordance with the terms of the license
agreement. If this software or documentation directs you to
copy materials, you must first have permission from the
copyright owner of the materials to avoid violating the law,
which could result in damages or other remedies.

Interwoven, TeamSite, OpenDeploy, and the logo are
registered trademarks of Interwoven, Inc., which may be
registered in certain jurisdictions. TeamXpress, SmartContext,
DataDeploy, Content Express, the tagline and service mark are
trademarks of Interwoven, Inc., which may be registered in
certain jurisdictions. All other trademarks are owned by their
respective owners.

Interwoven, Inc.

1195 West Fremont Ave.

Sunnyvale, CA 94087

http://www.interwoven.com

Printed in the United States of America

Release 1.1

Part # 40-00-40-45-04-110-310

Table of Contents

About This Book 5
Notation Conventions 6
Windows Path Name Conventions 7
Support Information 7

Section 1: TeamXpress Templating

Chapter 1: Installing TeamXpress Templating 11
Hardware Requirements 11
Operating System Requirements 11
Installing on Solaris 11
Installing on Windows NT/2000 13
Installing on Client Machines 13
Next Step 14

Chapter 2: Initial Configuration 15
Configuration Overview 15
Configuring the Example Templating Environment 29
Proxy Server Configuration 34
Starting TeamXpress Templating 35

Chapter 3: Setting Up Data Capture Templates 37
Data Capture Template Overview 38
Example Data Capture Templates 39
Data Capture Example 1 39
Data Capture Example 2 57
Data Capture Template DTD 63

Chapter 4: Setting Up Presentation Templates 69
Creating Presentation Templates 69
Custom XML Tags 82
Writing Your Own Tags 127

Chapter 5: Mapping Users, Templates, and Content Records 129
templating.cfg Overview 129
1

Example templating.cfg File 130
templating.cfg DTD 136

Chapter 6: Integrating Templating, DataDeploy, and Workflow 139
Integration Overview 139
Integration Steps 140

Section 2: DataDeploy Administration

Chapter 7: Overview and Installation 145
Overview 145
Client/Server Setup Options 146
Installing DataDeploy 148

Chapter 8: Deployment Concepts 151
Ways to Invoke Deployment 151
Configuration Files 152
Data Organization Within DataDeploy 154
Deployment Scenarios 158

Chapter 9: Configuration File Details and Examples 171
Required Elements 171
Parameter Substitutions 175
Sample TeamXpress-to-Database Configuration File 175
Sample TeamXpress-to-XML Configuration File 196
Sample Database-to-Database Configuration File 197
Sample Database-to-XML Configuration File 198
Sample XML-to-Database Configuration File 200
Sample XML-to-XML Configuration File 202
Starting-State Base Table Configuration File 204
Event 1 Configuration File 205
Event 2 Configuration File 206

Chapter 10: Invoking DataDeploy 207
iwdd.ipl Command 207
Running DataDeploy as a Service 210
2 TeamXpress Templating and Deployment Guide

Chapter 11: Synchronizing OpenDeploy and Data Deploy 211
Overview 211
Software Requirements 213
Program and Configuration Files 213
Synchronized Deployment Process 214
Configuring OpenDeploy 217
Configuring DataDeploy 222
Invoking Synchronized Deployment 227

Section 3: OpenDeploy Administration

Chapter 12: Installing OpenDeploy 231
UNIX 232
Windows NT/2000 235

Chapter 13: Syntax and Options 239
iwdeploy Syntax 239
Options 242

Chapter 14: Configuration Files 251
OpenDeploy Server Configuration Files 251
OpenDeploy Client Configuration Files 253
Scope of Configuration File Options 255
The Authorization Configuration File 258

Chapter 15: Configuration File Options 261
OpenDeploy Client Options 261
OpenDeploy Server Options 289

Chapter 16: Advanced Features 301
Authentication by IP Address 301
Encryption 305
Deploy and Run 313

Chapter 17: Deployment Scenarios 325
Forward Deployment to a Single Server 326
Forward Deployment to Multiple Servers 329
Forward Deployment of Different Directories to Different Servers 333
3

Reverse Deployment 337
Reverting Websites to Previous Versions 346
Deploying Through Firewalls 349

Section 4: Appendices

Appendix A: Creating Data Capture Templates from DTDs 353
Running the CLT on the DTD File 354
The symbol-table.cfg File 354
The datacapture.cfg File 358
Diagram Key 360
Unsupported DTD Features 360
Symbol Table DTD Used for Conversions 361

Appendix B: Using Command-Line Tools 367

Appendix C: DataDeploy Database Auto-Synchronization 383
Overview 383
Software Requirements 383
DAS Program and Configuration Files 384
Configuring DAS 385
Using DAS 392
TeamXpress Event Triggers 396
Logging DAS Activities 398
Disabling DAS 399
iwsyncdb.ipl Usage 399

Appendix D: DataDeploy Database Server Configuration 403
Overview 403
IBM DB2 403
Sybase ASE 404
Informix 405

Appendix E: DataDeploy Querying Tables 407

Appendix F: OpenDeploy Client and Server Configuration File Options 409

Index 413
4 TeamXpress Templating and Deployment Guide

About This Book

The TeamXpress Templating and Deployment Guide contains information on how to:

• install and configure TeamXpress Templating

• develop presentation templates and data capture templates

• install, configure, and use DataDeploy with TeamXpress OpenDeploy

• install and configure OpenDeploy

It is primarily intended for TeamXpress developers and for web server administrators and system
administrators. Many of the operations described in this manual require root (Solaris) or
Administrator (Windows NT® or Windows 2000®) access to the TeamXpress server. If you do not
have root or Administrator access to the TeamXpress server, consult your system administrator.

Windows NT/2000: Users should be familiar with either IIS or Netscape web servers, and with basic
Windows NT/2000 operations such as adding users and modifying ACLs (Access Control Lists).

Solaris: Users of this manual should be familiar with basic UNIX commands and be able to use an
editor such as emacs or vi.

It is also very helpful to be familiar with regular expression syntax. If you are not familiar with regular
expressions, it is recommended that you consult a reference manual such as Mastering Regular
Expressions, by Jeffrey Friedl.
5

Notation Conventions

This manual uses the following notation conventions:

Convention Definition and Usage

Bold Text that appears in a GUI element (e.g., a menu item, button, or element of a
dialog box) and command names are shown in bold. For example:

Click Edit File in the Button Bar.

Italic Book titles appear in italics.
Terms are italicized the first time they are introduced.
Important information may be italicized for emphasis.

Monospaced Commands, command-line output, and file names are in monospaced type. For
example:

The iwextattr command-line tool allows you to set and look up
extended attributes on a file.

Monospaced
italic

Monospaced italics are used for command-line variables.

Monospaced
bold

Monospaced bold represents user input. The character that appears before a line
of user input represents the command prompt and should not be typed. For
example:

% iwextattr -s project=proj1 //IWSERVER/default/main/
dev/WORKAREA/andre/products/index.html

Monospaced
bold italic

Monospaced bold italic text is used to indicate a variable in user input. For
example:

% iwextattr -s project=projectname workareavpath

means that you must insert the values of projectname and workareavpath
when you enter this command.

[] Square brackets surrounding a command-line argument mean that the argument
is optional.

| Vertical bars separating command-line arguments mean that only one of the
arguments can be used.
6 TeamXpress Templating and Deployment Guide

Windows Path Name Conventions
Windows Path Name Conventions

In most cases, you can specify path names using standard Windows NT/2000 naming conventions
(which allow you to include spaces in path names). However, in some situations it might be necessary
to use MS-DOS naming conventions, which stipulate that no single file or directory name in a path can
contain a space or more than eight characters. If you encounter unexpected system behavior after
entering a path name using Windows NT/2000 naming conventions, enter the path name again using
MS-DOS conventions. For example, instead of:

>C:\iw-home\Program Files\Interwoven

you can try:

>C:\iw-home\Progra~1\Interw~1

You can use the dir /x command to display the long and short versions of the file names in the
current directory.

Support Information

For support information concerning IBM TeamXpress, refer to the following URL:
http://www-4.ibm.com/software/webservers/teamxpress/support.html.
7

8 TeamXpress Templating and Deployment Guide

Section 1: TeamXpress
Templating
• Installing TeamXpress Templating

• Initial Configuration

• Setting Up Data Capture Templates

• Setting Up Presentation Templates

• Mapping Users, Templates, and Content Records

• Integrating Templating, DataDeploy, and Workflow

10
 TeamXpress Templating and Deployment Guide

Chapter 1

Installing TeamXpress
Templating
TeamXpress 1.0 must be installed on your system before you can install TeamXpress Templating 1.0.
If it is not, see the TeamXpress Administration Guide for installation instructions. Return to this chapter
after TeamXpress is installed.

Hardware Requirements

TeamXpress Templating should be installed on a dual CPU server if you plan to enable data content
record searches. See the TeamXpress Administration Guide for general information on hardware
requirements. On client machines, at least 20 MB of hard disk space is required.

Operating System Requirements

TeamXpress Templating is supported by all of the operating systems that support TeamXpress. See the
TeamXpress Administration Guide for information about supported operating systems.

Installing on Solaris

The TeamXpress templating package for Solaris is available in two forms: a compressed pkgadd
package stream file or a package directory. If you have downloaded the Templating package, it will be
in the compressed package stream form. If you are installing from the CD-ROM, it will be in the
package directory form.

To install the package stream package, perform these steps:

1. Log in as root.

2. If a previous version of TeamXpress Templating was installed, issue the command:

pkgrm IWOVtst
11

Installing TeamXpress Templating
3. Unzip and transfer the package stream package into a temporary location by issuing the following
command (on one line), where temp_dir is a temporary directory with at least 128 megabytes of
free space:

gunzip < tst.4.5.0.Buildxxxx.pkg.gz | pkgtrans /dev/fd/0 temp_dir
IWOVtst

4. Install TeamXpress Templating by issuing the following command:

pkgadd -d temp_dir IWOVtst

5. Remove the temporary directory:

rm -r temp_dir/IWOVtst

To install the package directory form, perform these steps:

1. Log in as root.

2. Change to the directory containing the IWOVtst directory. If you are installing from CD-ROM,
this would be:

cd /cdrom

3. Install TeamXpress Templating by issuing the following command:

pkgadd -d . IWOVtst

Once TeamXpress Templating is installed, you must restart the iwproxy daemon:

1. Log in as root.

2. Issue the following commands:

/etc/init.d/iw.server stop

/etc/init.d/iw.server start

See the TeamXpress Administration Guide for more information about restarting the proxy server.
12 TeamXpress Templating and Deployment Guide

Installing on Windows NT/2000
Installing on Windows NT/2000

Perform the following steps to install TeamXpress Templating on TeamXpress running on a Windows
NT/2000 system:

1. Log into Windows NT/2000 with Administrator permissions.

2. Insert the TeamXpress Templating CD into the CD drive. Navigate to the top-level directory and
double click the templating.exe icon. The Interwoven TeamXpress Templating Setup screen
appears.

3. Click Next. A dialog box appears, prompting for the destination of the TeamXpress Templating
administrative files. It is recommended that you select the default location. If you specify a new
location, it must not be the iw-home directory.

4. Click Next. File names are displayed while the TeamXpress Templating administrative files are
loaded.

5. Click OK. The TeamXpress Templating directory structure shown on page 21 is installed in iw-
home.

6. Restart the proxy server:

– Select Settings > Control Panel from the Start menu.

– Open the Services control panel.

– Select Interwoven Proxy from the list of services.

– Click Stop and wait for service to terminate.

– Click Start. See Chapter 7 in the TeamXpress Administration Guide for more information about
restarting the proxy server.

Installing on Client Machines

After TeamXpress Templating is installed and configured on the server, it is available for content
contributors on client machines. When content contributors select File > New Data Record, they
are prompted to install the client-side software. Refer to the TeamXpress User’s Guide for the
procedures.
13

Installing TeamXpress Templating
Next Step

After you install TeamXpress Templating, you are ready to configure the example templating
environment as described in the Chapter 2, “Initial Configuration.”
14 TeamXpress Templating and Deployment Guide

Chapter 2

Initial Configuration
After TeamXpress Templating is installed on your system, you should perform the initial configuration
described in this chapter. This initial configuration provides a fully functional example TeamXpress
Templating environment to verify that the TeamXpress Templating installation was successful. You can
also use the example templating environment to become familiar with TeamXpress Templating
features. After you are familiar with the example templating environment, you can customize it to
create your own site-specific templating environment as described later in this manual. The
configuration activities described in this chapter should be performed by a system administrator.

This chapter begins with an overview of TeamXpress Templating configuration, followed by the initial
setup activities that will create the example templating environment.

Configuration Overview

TeamXpress Templating provides a highly configurable way to capture, edit, and store data input from
content contributors; define the appearance of displayed data; and integrate captured data with other
products such as TeamXpress Workflow and DataDeploy. The TeamXpress Templating mechanism for
capturing data content from content contributors is separate from the mechanism for defining the
appearance of the content when it is displayed. This architecture allows for unlimited reuse of data
after the data is captured and stored. It also lets you define different appearances and behaviors for the
same data content based on how, when, where, or to whom the data is displayed. You can also use Perl
code to generate content from other sources such as relational databases.
15

Initial Configuration
Configuring TeamXpress Templating consists of:

• Copying a set of example configuration files and directories supplied with TeamXpress Templating
into specific locations in your system’s directory structure. This sets up a fully functional example
templating environment that lets you confirm that the TeamXpress Templating installation was
successful and provides a default environment in which to familiarize yourself with TeamXpress
Templating. See “Configuring the Example Templating Environment” on page 29 for more
information.

• Customizing the templating environment for your specific site by renaming or creating new
configuration files. See Chapter 3, “Setting Up Data Capture Templates.”

Concepts and Definitions

TeamXpress Templating Model

The TeamXpress Templating architecture allows data capture and data presentation to be configured,
executed, and managed separately. The following diagram and sections provide a high-level overview
of this architecture.
16 TeamXpress Templating and Deployment Guide

Configuration Overview
TeamXpress Templating Overview

Data Content Records

Presentation Templates

Generated Files

TeamXpress

Page
Generation
Subsystem

RDB

Production
Web
Server

Data
Capture
Subsystem

Data Capture
Templates

TeamXpress Client

TeamXpress Server

External
17

Initial Configuration
Data Capture
Content contributors working through the TeamXpress GUI have access to the data capture subsystem.
This subsystem lets content contributors select and work through forms defined by data capture
templates to create or edit data content records, which by default are stored in the TeamXpress file
system.Data is stored as XML and used later to fill in presentation templates to generate multiple
renderings of the content, including for the web and wireless devices. After data content records are
created, they can be displayed via presentation templates or optionally deployed to a database via
DataDeploy.

Data Presentation
After data is captured and stored as data content records, users working through the TeamXpress
Templating GUI, the TeamXpress GUI, or the command line can access the page generation subsystem
to combine a data content record with a presentation template. The end result is a generated output
file that displays the data content in a way defined by the presentation template. Additionally, users can
generate an output file that obtains data from zero or one data content record and from queries to
databases. The generated output file can optionally be deployed to a production web server via
OpenDeploy.

Definitions

The following sections define key TeamXpress Templating terms.

Data Capture Template
A data capture template is an XML file named datacapture.cfg that defines the form used to capture
data content from content contributors. A data capture template is associated with a category and
type. The category and type define what type of data is required by the data capture template. The
data that a content contributor enters in a data capture template is saved on the TeamXpress file
system in the form of a data content record. See “Data Storage Hierarchy” on page 21 for information
about where data capture templates reside.
18 TeamXpress Templating and Deployment Guide

Configuration Overview
Presentation Template
A presentation template is an XML file that defines how captured data will appear when displayed. A
presentation template is populated with a data content record that was captured earlier (via a data
capture template on the TeamXpress GUI) or from queries to databases. You can configure
TeamXpress Templating to populate any presentation template with any data content record plus any
additional information as required from an relational database. You can use presentation templates
with component templates. A component template is a nested presentation template that is part of
another presentation template. You can also use a single data content record to populate more than
one presentation template, resulting in a different look and feel for the same data record. See “Data
Storage Hierarchy” on page 21 for information about where presentation templates reside.

Data Content Record
A data content record is an XML file containing formatting information interspersed with data that was
captured from a content contributor via the TeamXpress GUI. A data content record is named by the
content contributor when it is saved.

Data Capture Subsystem
The data capture subsystem is a set of Java applications that perform the following functions:

• Read the datacapture.cfg and templating.cfg configuration files to determine what
information should be presented via the TeamXpress GUI to a content contributor.

• Interpret content contributor input.

• Save content contributor input as formatted data content records.

Page Generation Subsystem
The page generation subsystem is a set of programs and libraries that perform the following functions:

• Read the presentation template and templating.cfg configuration files to determine what
information should be presented to a content contributor via the TeamXpress GUI.

• Interpret content contributor input.

• Combine data content records and presentation templates to produce generated output files.

The presentation template compiler is the primary component of the page generation subsystem. It is
a low-level command-line tool that invokes the template parser to create output files. The
presentation template compiler is described in more detail in Appendix B, “Using Command-Line
Tools.”
19

Initial Configuration
Configuration Files

TeamXpress Templating uses the following configuration files:

• templating.cfg: The main TeamXpress Templating configuration file. It is an XML file that
resides outside of the TeamXpress file system in iw-home/local/config and specifies:

– Which data categories and types are available for use with TeamXpress Templating.

– Which presentation templates can generate HTML files on which TeamXpress branches and/or
directories.

– Which presentation templates can be used with a specific data type.

– Which users or roles are allowed to create or edit data content records for a specific data type.

– The location of the presentation template used for previewing generated HTML files.

See Chapter 5, “Mapping Users, Templates, and Content Records,” for details about customizing
templating.cfg.

• datacapture.cfg: An XML file that defines a data capture template and drives data capture for
a specific data type. As such, it defines the data type itself (i.e., what information the data type will
contain, parameters that define what type of data is legal in any input field, etc.). A
datacapture.cfg file also specifies the look and feel of the data capture form displayed in the
TeamXpress GUI. A TeamXpress Templating environment can contain any number of
datacapture.cfg files, differentiated from each other by where they reside in the directory
structure. See “Data Storage Hierarchy” on page 21 for information about where
datacapture.cfg files reside. See Chapter 3, “Setting Up Data Capture Templates,” for
information about customizing datacapture.cfg.
20 TeamXpress Templating and Deployment Guide

Configuration Overview
Data Storage Hierarchy

TeamXpress Templating uses a data storage hierarchy based on data categories and types. The directory
structure supporting this hierarchy resides in the workarea for each TeamXpress Templating user. The
directory structure follows. Items in boxes are directories; items not in boxes are files.

TeamXpress Templating Directory Structure

The templatedata directory is at the highest level in the hierarchy.

Workarea

templatedata

data_category_1

data_type_

data_category_2

data_type_

. . .

. . .

datacapture.cfg dat presentation

content_record_1

content_record_2
. . .

pres_template_1.tpl

pres_template_2.tpl
. . .

componentstutorials

output
21

Initial Configuration
Data categories are at the next level in the hierarchy and contain one or more data types. For example,
the data category beverages could contain separate directories for the data types tea, coffee,
milk, etc. In addition to residing in this directory structure, data categories and types must also be
listed in the templating.cfg configuration file to be made available to TeamXpress Templating.
See Chapter 5, “Mapping Users, Templates, and Content Records,” for more information. The
components directory that stores component templates and the tutorials directory are optional
subdirectories of templatedata.

Data type directories each contain a datacapture.cfg file and the subdirectories data and
presentation. Details for the entire hierarchy are as follows:

File or Directory Description

templatedata Top-level directory containing subdirectories for data categories,
types, and all associated configuration files. Resides in the
workarea for each user who uses TeamXpress Templating. Can be
renamed and the iw.cfg file modified.

data_category_1 The first major categorization for data on a specific branch.
Named and defined in templating.cfg. For example:
/templatedata/beverages

data_type_1 The first subcategory of data in data_category_1. Named
and defined in templating.cfg. For example:
/templatedata/beverages/tea. Each data type in a given
data category has its own subdirectory.

datacapture.cfg The XML configuration file that defines a data capture template
and drives data capture for a specific data type. As such, it defines
the data type itself (i.e., what information the data type will
contain, parameters for what type of data is legal in any input
field, etc.). Specifies the look and feel of the data capture form
displayed in the TeamXpress Templating GUI through which a
content contributor enters data. Each data type must have exactly
one datacapture.cfg file.

data The directory containing all captured data content records for a
given data type. If necessary, you can define and create a directory
tree underneath the data directory. A data directory can
contain zero or more data content records.
22 TeamXpress Templating and Deployment Guide

Configuration Overview
content_record_1 The first data content record for a given data type. Each data
content record is an XML file containing formatting information
interspersed with data that was captured from a content
contributor via the TeamXpress Templating GUI. A data content
record is named by the content contributor during data entry. For
example:
/templatedata/beverages/tea/data/november_order

presentation The directory containing all presentation templates for a given
data type. The presentation directory must contain one or
more presentation templates.

pres_template_1.tpl The first presentation template for a given data type. A data type
can have any number of presentation templates. A single
presentation template is populated by data from zero or one data
content record. A presentation template can have a name of your
choice. For example:
/templatedata/beverages/tea/presentation/
monthly_order.tpl

components The directory where all component templates are stored. This
directory is not required or may be in another location.

tutorials Examples showing the use of ix_xml tags. This directory is not
required or may be in another location.

data_type_2 A second subcategory of data in data_category_1. For example:
/templatedata/beverages/coffee

data_category_2 A second major categorization for data on a specific branch. For
example:
/templatedata/food

File or Directory Description
23

Initial Configuration
Process Flow: Creating a New Data Content Record

The following diagram shows the actions that take place when a content contributor creates a new data
content record. Sections following the diagram explain each diagram step and component in detail.

Process Flow Overview: Creating a New Data Content Record

TeamXpress File
System

• datacapture.cfg
• Data content records

Browser

• Content contributor
selects New Con-
tent Record in
TeamXpress GUI

• Content contributor
fills in data capture
form(s)

Data Capture
Subsystem

• Reads templating.cfg
• Reads datacapture.cfg
• Displays menu choices in

TeamXpress Templating
• Creates and saves data

templating.cfg

• Overall templating
rules

• Template-specific
rules

Server-Side
Workflow

Subsystem

Starts successor
task

5

1

4 2

6

9

3

7

8

24 TeamXpress Templating and Deployment Guide

Configuration Overview
1. A content contributor clicks File > New Data Record in the TeamXpress GUI.

2. TeamXpress Templating’s data capture subsystem reads the templating.cfg file to determine
which data types should be displayed in the TeamXpress Templating GUI as choices for the content
contributor. The criteria used for this determination are specified in templating.cfg and can
include the content contributor’s login ID, role, or current TeamXpress area or branch. The data
type must also exist as a directory in the content contributor’s workarea.

3. The data capture subsystem displays the appropriate list of data categories and data types in a
Create New Data Record dialog box in the TeamXpress Templating GUI.

4. The content contributor selects a data type. That information is sent back to the data capture sub-
system.

5. The data capture subsystem reads the datacapture.cfg file for the data type chosen by the con-
tent contributor.

6. The data capture subsystem displays the data capture template (as defined by datacapture.cfg)
in the data capture form window.

7. The content contributor enters data in the data capture template and selects File > Save As to
name and save the data content record. The new data is sent to the data capture subsystem.

8. Using the data provided by the content contributor, the data capture subsystem writes a data con-
tent record to the TeamXpress file system. Note: The content contributor could also have chosen
to preview the output file. In that situation, the data capture subsystem reads templating.cfg
to determine which presentation templates are available for that data type. The content contribu-
tor selects a presentation template and the data capture subsystem displays a preview version of the
data.

9. If creating the data content record is a task associated with a TeamXpress Workflow job, the user
indicates the task has been completed and the TeamXpress workflow subsystem starts the successor
task.
25

Initial Configuration
Process Flow: Generating an Output File

The following diagram shows the actions that take place when a content contributor generates a new
output file by populating a presentation template with a previously captured data content record.
Sections following the diagram explain each diagram step and component in detail.

Process Flow Overview: Generating an Output File Using a Data Content Record and a Presentation Template

TeamXpress File
System

• Presentation
templates

• Data content records
• Generated output

files

Browser

• Content contributor
selects Generate in
TeamXpress Templat-
ing

• Content contributor
selects a data content
record and presenta-
tion template

Page Generation
Subsystem

• Reads templating.cfg
• Reads presentation tem-

plate lists
• Displays menu choices in

TeamXpress Templating
• Combines data content

records and presentation
templates

templating.cfg

• Overall templating
rules

• Template-specific
rules

Server-Side
Workflow

Subsystem

Starts successor
task

3

1

5

2

7

4

6

26 TeamXpress Templating and Deployment Guide

Configuration Overview
1. A content contributor clicks File > Generate/Preview Page With from the Templating menu.

2. TeamXpress Templating’s page generation subsystem reads the templating.cfg file to deter-
mine which data content records for the selected data type should be displayed in the TeamXpress
GUI as choices for the content contributor to choose from. The criteria used for this determina-
tion are specified in templating.cfg and can include the content contributor’s login ID, role, or
current TeamXpress area or branch. The user selects a data content record.

3. The page generation subsystem reads the /templatedata/data_category/data_type/presenta-

tion directory to determine which presentation templates are associated with the selected data
type.

4. The page generation subsystem displays lists of the appropriate data content records and presenta-
tion templates in the Generate/Preview File window.

5. The content contributor selects a presentation template.

6. The page generation subsystem generates an output file by populating the chosen presentation
template with data from the chosen data content record.

7. If creating the generated output file is a task associated with a TeamXpress Workflow job, the user
indicates that task has been completed and the TeamXpress workflow subsystem starts the succes-
sor task.
27

Initial Configuration
The Example Directory Structure

The following directory structure is created when you install the TeamXpress Templating example:

Example TeamXpress Templating Directory Structure

README

README

README
templating.cfg.example

examples
Templating

config

templatedata

internet
auction

README

data

datacapture.cfg

presentation

auction.tpl
book

careers

medical

periodic

pr

intranet

deptinfo

workflow
README
author_submit_dcr-0.ipl

author_submit_dcr-3.ipl
author_submit_dcr.wft

iw-home

...

...

...

...

...

...

Data Category: internet

Data Category: intranet

Data Types:

• auction

• book

• careers

• medical

• periodic

• pr

• yacht

weather
...

Data Types:

• deptinfo

• weather

}
custom-dtd-examples

PressRelease

Data Category:
custom-dtd-examples

Data Type:
PressRelease
28 TeamXpress Templating and Deployment Guide

Configuring the Example Templating Environment
The major components of the iw-home/examples/Templating directory structure are:

• A top-level README file.

• The config directory containing a README file and an example templating.cfg file.

• The templatedata directory containing a README file and three data category directories,
internet, intranet, and custom-dtd-examples. The internet directory contains several
data type directories (auction, book, etc.). Each data type directory contains a
datacapture.cfg file, a README file, and the directories data and presentation. The
presentation directory for each data type contains at least one presentation template file that
generates an HTML file based on the data content records for that data type. Some data types have
multiple presentation templates, in which case any of the presentation templates can be used for
HTML file generation. The custom-dtd-examples directory contains an example using the
DTD conversion procedures.

• The workflow directory containing a README file and all the files necessary to create the
workflow job that deploys data content records via DataDeploy. The workflow template
author_submit_dcr.wft defines the workflow job. The .ipl files define external tasks that
are components of the job. The workflow job defined by these files executes automatically when an
author creates and then submits a data content record to a staging area.

Configuring the Example Templating Environment

The following sections describe how to configure TeamXpress Templating to provide the example
templating environment. After the initial setup is complete, you can:

• Use the example templating environment to become familiar with TeamXpress Templating’s end-
user features as described in the TeamXpress User’s Guide.

• Customize the example templating environment as described in the remainder of this manual to
create your site-specific configuration.
29

Initial Configuration
Perform the following steps to set up the example templating environment. You must copy most of
these files and directories to locations that are specific to your site.

1. Decide which workarea you will use for the initial TeamXpress Templating setup. Ideally, this
workarea should be on a temporary test branch where you can submit and publish without
affecting the rest of your TeamXpress installation. After TeamXpress Templating is configured in
the workarea on this test branch, you can copy the workarea to a permanent branch pertaining to
your website. You can then submit the workarea to the staging area and then use Get Latest to
propagate the setup to other workareas on the branch.

2. Read each directory’s README file for details about directory contents and last-minute information
that might not be documented elsewhere.

3. Copy the following files to the specified locations, ensuring that all users have read and write per-
mission for each file except where noted otherwise:

4. Edit the available_templates.ipl file. See “Editing available_templates.ipl to Initiate Work-
flows” on page 31.

Copy/rename this file: To:

iw-home/examples/Templating/
config/templating.cfg.example

iw-home/local/config/templating.cfg
(writable only by system administrators)

iw-home/examples/Templating/
templatedata

The workarea determined in Step 1. Copy the entire
templatedata directory tree, including the
templatedata directory itself. Do not change any
directory or file names. The end result should be
workarea_name/templatedata/....

The files author_submit_dcr.wft in the
directory iw-home/examples/
Templating/workflow

The iw-home/local/config/wft/default
directory. The end result should be:
iw-home/local/config/wft/default/
author_submit_dcr.wft

The files matching the string
author_submit_dcr-*.ipl in the
directory iw-home/examples/
Templating/workflow

The iw-home/local/bin directory. The end result
should be:
iw-home/local/bin/author_submit_dcr-
0.ipl
iw-home/local/bin/author_submit_dcr-
3.ipl
30 TeamXpress Templating and Deployment Guide

Configuring the Example Templating Environment
After you perform these tasks, the example templating environment is fully functional and integrated
with TeamXpress workflow and DataDeploy. You can use the example templating environment to
create or edit data content records, generate HTML files by combining a data content record with a
presentation template, and deploy a data content record’s extended attributes to a database via
TeamXpress workflow and DataDeploy. See Chapter 6, “Integrating Templating, DataDeploy, and
Workflow,” for more information about integration with workflow and DataDeploy.

Editing available_templates.ipl to Initiate Workflows

The available_templates.ipl file contains a series of elsif statements that specify whether a
particular event will be handled by a workflow. This file integrates workflow with templating. You
only need to configure available_templates.ipl if you want the GUI to prompt the user to add
data content records to a workflow on a create or delete event.

To configure iw-home/local/config/wft/available_templates.ipl, you must ensure
that it contains at least one section for the tt_data command. The tt_data section should return a
list of workflows relevant to creating a new data content record. The following is an example of a
tt_data section to include in available_templates.ipl. This section is included in the
TeamXpress Templating distribution in iw-home/examples/Templating/workflow/README.

elsif ($command eq "tt_data")
{

if ($iw_role =~ m/author/i || $iw_role =~ m/editor/i) {
return [

[
name => 'Author DCR Submit',
file => 'default/author_submit_dcr.wft',

],
];

}
}

31

Initial Configuration
This section says when authors or editors submit a data content record, they will be prompted to
initiate a workflow job if:

• Creating the data content record was not already part of a workflow.

• Available workflow templates (WFTs) are defined in the tt_data section of the
available_templates.ipl configuration file.

The workflow that will be used when a new data content record is submitted is
author_submit_dcr.wft. If the tt_data section returns multiple workflows, the author or
editor is prompted to select a workflow.

Use a tt_deletedcr section to specify the workflow that will be called when a data content record
is deleted.

Modifying the TeamXpress iw.cfg File

This section describes some options that may need to be set in the [teamsite_templating]
section of the TeamXpress /etc/iw.cfg file.

Saving Preview Files

Previewed templating files are stored in the preview-dir directory. By default, previewed files that have
not been modified in the last 60 minutes are deleted when a preview is performed. You can change the
length of time for deleting files in the /etc/iw.cfg file as follows (where value is a number
representing the number of minutes files are to remain in the preview directory):

[teamsite_templating]
preview_file_max_age=value

Identifying the Templating Directory

If you need to change the directory in your workareas where templating content will reside, you can
modify the /etc/iw.cfg file. The default directory is /"templatedata".

[teamsite_templating]
data_root=/"directory"
32 TeamXpress Templating and Deployment Guide

Configuring the Example Templating Environment
Identifying the Templating Interface

By default, TeamXpress Templating 1.0 uses the browser-based interface for displaying the data
capture form. If you want to use the new Java-based interface, include the following line in the /etc/
iw.cfg file. This manual describes the features of the Java-based interface.

[teamsite_templating]
use_java_ui=true

Identifying the Validation Regex

By default, TeamXpress Templating uses basic regex(5) for validation. When using the Java-based user
interface, you should use extended validation regex. Including the following information in the
/etc/iw.cfg file.

[teamsite_templating]
use_extended_regex5=true

Identifying the Preview Directory

You can control the location of preview files by including the following lines in your /etc/iw.cfg
file.

[teamsite_templating]
use_preconnect_remap=true

When use_preconnect_remap=true, the preview file is placed in the templatedata/iw_preview
directory. The proxy server configuration (page 34) is relevant. The actual preview file is placed in
the preview directory specified in templating.cfg. Each presentation template has a preview
attribute. The default file is called zz_tst_temp_preview.*, where the extension is determined
by the extension attribute of the presentation template. The templating preview file name can be
changed by the flag preview_file_name:

[teamsite_templating]
preview_file_name=filename

When the preview file name is changed, users should be notified of the new file name.
33

Initial Configuration
When use_preconnect_remap=false, no file cleanup occurs because the files exist outside of
safe directory boundaries. Users should manually remove zz_tst_temp_preview.* files (or files
specified by the preview_file_name flag) from their workarea. The iwproxy server configuration
(page 34) is not relevant.

Adding DCR Search to the View Menu

If DataDeploy’s Database Auto Synchronization has been set up, the data content record search feature
is available. You need to uncomment the following line in /etc/iw.cfg to add the Search Data
Records menu item to the TeamXpress View menu.

#custom_menu_item_searchdcr="View", "Search Data Records",
"iwsearchdcr.cgi", "all","scrollbars=yes,resizable=yes,
width=640,height=545"

Refer to Chapter 6 of the TeamXpress Administration Guide for information on metadata capture and
search.

Proxy Server Configuration

The TeamXpress Templating installation procedure automatically enables template previewing by
adding the following line to the [iwproxy_preconnect_remap] section of /etc/iw.cfg:

_regex=(.*/WORKAREA/[^/]+)/.*\?iw_dataroot\=(.*)&iw_key\=(.*)=$1/$2/
iw_preview/$3

Under normal circumstances, you do not need to add this line manually. It is shown here in case you
need to verify its existence or accuracy in iw.cfg.
34 TeamXpress Templating and Deployment Guide

Starting TeamXpress Templating
Starting TeamXpress Templating

Perform the following steps to start TeamXpress Templating after you have configured the example
templating environment:

1. Log out of TeamXpress.

2. Log back into TeamXpress.

3. Select File > New Data Record.

4. As prompted, install the client module for TeamXpress Templating.

The example templating environment should now be accessible via the Java-based TeamXpress
Templating GUI as described the TeamXpress User’s Guide.
35

Initial Configuration
36 TeamXpress Templating and Deployment Guide

Chapter 3

Setting Up Data Capture
Templates
This chapter describes how to edit and create data capture templates. It is assumed that the example
templating environment’s directory structure already exists on your system and that you now intend
to customize this environment by creating new data capture templates. See Chapter 2, “Initial
Configuration,” for more information about the example templating environment’s directory
structure.

This chapter contains:

• An overview of data capture templates.

• Pointers to sample data capture template files that are included with this release of TeamXpress
Templating.

• Examples of data capture forms and the data capture template files that generate them.

• A sample data content record.

• The data capture template document type definition (DTD).

You may also create data capture template files from industry-standard XML DTDs. Refer to
Appendix A, “Creating Data Capture Templates from DTDs.”
37

Setting Up Data Capture Templates
Data Capture Template Overview

Data capture templates are XML files named datacapture.cfg that reside in the locations
described in “Data Storage Hierarchy” on page 21. Each datacapture.cfg file contains the
following components:

• Rule set: A set of configuration instructions that controls the appearance and behavior of the data
capture forms displayed in the TeamXpress GUI. A TeamXpress Templating datacapture.cfg
file must contain exactly one rule set. Each rule set contains one or more of the elements identified by
the %items parameter entity reference (currently item or container).

• Item: Each item is a single set of data that is to be captured from a content contributor. A rule set
must contain at least one item. Items can be nested within other items. If a rule set contains more
than one item, item names must be unique within any given nesting level. See page 44 for more
information. Each item contains one or more instances.

• Instance: Each instance defines how to capture data for an item. An instance also defines an ACL
that determines which if any instance a specific user is allowed to use to enter the data. See page 46
for more information.

The following list describes the characteristics of data capture forms that you can configure in a
datacapture.cfg file. Additional customization is not available.

• The number and appearance of data capture fields in a data capture form.

• The content and appearance of labels for each data capture field in a data capture form.

• How data will be captured, such as through a check box, radio button, text field, etc.

• Characteristics of the data entered in each section’s fields, such as text style (such as bold or
underline), hypertext link, maximum length, whether the data is text or image.

• Which fields, if any, must be filled in before the data entry form can be saved.

• Which fields can be filled in by a specific content contributor.

• Which data entry fields can be displayed multiple times in the same data capture form, and how
many times the field can be displayed.
38 TeamXpress Templating and Deployment Guide

Example Data Capture Templates
When a content contributor finishes filling in a data capture form and selects File > Save, the data
capture subsystem combines the newly entered data with the XML rules defined in the
datacapture.cfg rule set(s). The end result is a data content record that is an XML file that
associates field names from the data capture form with the values that were entered in those fields by
the content contributor.

Data capture templates should validate against the datacapture4.5.dtd file, which can be found
at iw-home/local/config/datacapture4.5.dtd.

Example Data Capture Templates

TeamXpress Templating ships with an extensive set of example data capture templates that are
available for use in the example templating environment. See “Configuring the Example Templating
Environment” on page 29 for descriptions and locations. Some of these templates are described in this
section.

Data Capture Example 1

The following sections show a hypothetical Press Release data capture form, the datacapture.cfg
file that generates it, and the data content record that is created when the form is saved.
39

Setting Up Data Capture Templates
Example 1 Data Capture Form

The following is a hypothetical Press Release data capture form. This form is included in the
TeamXpress Templating distribution and is available for use after you configure the example
templating environment.

Press Release Data Capture Form (without data)
40 TeamXpress Templating and Deployment Guide

Data Capture Example 1
Example 1 datacapture.cfg File

The datacapture.cfg file that generates this Press Release data capture form is shown below. Like
all datacapture.cfg files, it consists of a rule set, items, and instances. See “Diagram Key” on
page 43 for an explanation of each referenced item. For details about additional datacapture.cfg
features not illustrated by this example, see the DTD starting on page 63. An additional sample file
specific to TeamXpress metadata capture is located in the TeamXpress Administration Guide.While the
syntax for the metadata capture version of datacapture.cfg differs slightly from the TeamXpress
Templating version, it is similar enough to provide a useful detailed example. It is recommended that
you refer to that example in addition to the following one.

<?xml version="1.0" encoding = "UTF-8"? standalone="no"?>
<!DOCTYPE datacapture SYSTEM "datacapture4.5.dtd">

<data-capture-requirements type="content" name="pr">
<!-- data-capture-requirements elements contain area elements -->
<ruleset name="Press Release">

<description>
Enter Press Release information.
</description>

<item name="Publish Date">
<description>date format is YYYY-MM-DD
</description>
<database data-type="DATE" data-format="yyyy-MM-dd">
</database>
<text required="t" maxlength="10"

validation-regex="^[0-9][0-9][0-9][0-9]-[0-1]
[0-9]-[0-3][0-9]$" />

</item>

<item name="Headline">
<database data-type="VARCHAR(100)" />
<text required="t" maxlength="100" />

</item>

Rule Set (“Press Release”) 2

Description 3

Item (“Publish
Date”) with
description and
database elements4

Instance (text) 5

with validation
regex

Item (“Headline”) 4

Instance (text) 5

DCT Identifier 1
41

Setting Up Data Capture Templates
<item name="Secondary Headline">
<database searchable="f" data-type="VARCHAR(200)" />
<text maxlength="200" />

</item>
<item name="Introductory Paragraph">
<database deploy-column="f" />

<textarea rtf="t">
</textarea>

</item>

<item name="Story">
<replicant max="4">

<item name="Subheading">
<text maxlength="100" />

</item>
<item name="Section Paragraphs">

<replicant max="4">
<item name="Paragraphs">

<textarea required="t">
</textarea>

</item>
</replicant>

</item>
</replicant>

</item>

<item name="Author">
<database data-type="VARCHAR(40)" />
<text maxlength="40" />

</item>

<item name="EMail">
<database data-type="VARCHAR(60)" />
<text maxlength="60" />

</item>

Item (“Introductory Paragraph”) 4

Instance (textarea with rtf formatting) 5

Item (“Story”) 4

Instance (replicant) 5

Nested Item (“Subheading”) 4

Nested Instance (text) 5

Nested Item (“Section Paragraphs”) 4

Nested Instance (replicant) 5

Nested Item (“Paragraphs”) 4

Nested Instance (textarea) 5

Item (“Secondary headline”) 4

Instance (text) 5

Item (“Author”) 4

Instance (text) 5

Item (“EMail”) 4

Instance (text) 5
42 TeamXpress Templating and Deployment Guide

Data Capture Example 1
Diagram Key

1. DCT Identifier: The <data-capture-requirements> element lets you assign a unique
identifier for each data capture template. Exactly one <data-capture-requirements>
element is required in all datacapture.cfg files. The name attribute within a <data-
capture-requirements> element is optional. The type attribute values—content,
metadata, and workflow—let you further describe the type of data that will be captured by the
template. For data capture templates, content should be specified. The information in a <data-
capture-requirements> element is for reference only. None of the information in this
element is stored in the data content record that is created when datacapture.cfg is processed
by the data capture subsystem.

2. Rule Set: The <ruleset> element contains all of the items that make up the rule set that defines
the appearance and behavior of the data capture form. A datacapture.cfg file must contain
exactly one <ruleset> element. The name attribute within a <ruleset> element is also
required. The value of the name attribute appears in the TeamXpress GUI as the name of the data
capture form (Press Release in this example). Optional subelements are <label>, <descrip-
tion> (see number 3), and (%items;) (see number 4). The <label> subelement is used to pro-
vide a label on the data capture form. The parameter entity reference (%items;) is currently
either <item> or <container>. A container is a non-repeating, named set of data capture items.

<item name="Languages">
<database data-type="VARCHAR(10)" />
<radio>

<option label="English" value="English"/>
<option label="German" value="German" />
<option label="French" value="French" />
<option label="Japanese" value="Japanese" />
<option label="Chinese" value="Chinese"/>
<option label="Spanish" value="Spanish"/>
<option label="Italian" value="Italian"/>

</radio>
</item>

</ruleset>
</data-capture-requirements>

Item (“Languages ”)4

Instance (radio) 5

Subelements
(option) 5

}

43

Setting Up Data Capture Templates
A <container> may appear anywhere in a data capture template that an <item> element may
appear. A container is conceptually similar to an item with a replicant of min = 1 and max = 1, but
it is more efficient.

3. Description: The optional <description> subelement inserts a description in the data capture
form. A <description> subelement can reside anywhere inside the <ruleset> element as a
child element of <ruleset>.

4. Item: The <item> element assigns a name of your choice to an item and contains the instances
and/or other nested items that specify how to capture data for the item. A <ruleset> element
can contain any number of <item> elements. Each <item> element must contain at least one
instance. The optional subelements for <item> are <label>, <description>, and
<database>. The <label> and <description> subelements consist of character data. The
information provided by <label> is used as the field name in the DCT. If <label> is not
included, the name attribute of the <item> element is used as the field name. A <description>
provides more details about what the data capture item represents or the format that may be
required for data entry.

The <database> subelement facilitates the use of the appropriate data type in DataDeploy and
does not impact templating. The <database> subelement has four attributes: deploy_column
specifies whether a column in the DataDeploy table should be built for that item; searchable
can be either "t" (default) or "f"; data-type is required and is any valid JDBC database type;
data-format describes the format if date or time is specified for the data-type attribute. If
a value for data-format is specified, the instance should contain a validation regex to force the
correct entry in the field.

Item names must be unique within a nested section. For example, the following syntax is illegal
because it uses the item name Section twice in the same nested section in the <ruleset>
element:
<ruleset name="Press Release"

<item name="Section">
<text size="40" maxlength="100">
</text>

</item>
<item name="Section">

<text size="80" maxlength="200">
</text>

</item>
</ruleset>
44 TeamXpress Templating and Deployment Guide

Data Capture Example 1
However, the following syntax is legal because it uses the item name Section in different nested
sections:

<ruleset name="Press Release"
<item name="Morning Edition">

<replicant required="t" max="4">
<item name="Section">

<text size="80" maxlength="200">
</text>

</item>
</replicant>

</item>
<item name="Evening Edition">

<replicant required="t" max="4">
<item name="Section">

<text size="100" maxlength="400">
</text>

</item>
</replicant>

</item>
</ruleset>
45

Setting Up Data Capture Templates
5. Instance: An instance defines how to capture data for an item. An instance can also define an ACL
that determines which (if any) instance a specific user is allowed to use to enter data. Instances can
be any of:

Instance Description

<browser> Lets a content contributor navigate through the workarea to select a file.
Attributes:

• ceiling-dir: Sets the upper boundary for navigation. The content
contributor can never go above the current workarea in the directory
structure. The ceiling-dir attribute lets you set the ceiling below
the current workarea.

• extns: Comma delimited list of file extensions. Files having these
extensions are displayed during navigation.

• initial-dir: The initial directory displayed at the start of navigation.

• size: The number of characters that can display in the browse field.

• maxlength: The maximum number of characters the user can enter.

• required: Specifies whether data must be captured by this instance.
The default setting is f (not required). Setting it to t specifies that a user
must specify a value for this item.
46 TeamXpress Templating and Deployment Guide

Data Capture Example 1
<browser>
(continued)

Subelements:
• <allowed>: Lets you set an ACL to specify which users can or cannot

use a specific instance to enter data. If <allowed> is not set, any user
can enter data for the instance. The <allowed> element can have any of
the following subelements:

– <cred>: Lets you name a user or role in the ACL (e.g., user="joe"
or role="master").

– <and>: Logical and statement for grouping ACL credentials.

– <or>: Logical or statement for grouping ACL credentials.

– <not>: Logical not statement for negating ACL credentials. Users
who are not allowed do not see the instance on their data capture
form.

See the examples on page 53.

• <callout>: Creates a button that calls a Java external program (see
page 54).

– type: Must be "java-class".

– location: Specifies the URL of a jar file or class file. The file does
not necessarily have to be on the same server as TeamXpress
Templating.

– class: Specifies the actual name of the class in the jar file.

– label: Label of the button that launches the callout code.

Instance Description
47

Setting Up Data Capture Templates
<checkbox> Specifies that data will be captured via one or more check boxes.
Attributes:

• delimiter: Specifies the delimiting character used when data from all
check boxes is concatenated by the data capture subsystem. The default
delimiter is a comma (,).

• required: See <browser> above.
Subelements:

• <allowed>: See <browser> above.

• <callout>: See <browser> above.

• (%chooser-options;): Parameter entity reference that has the
following values:

– <inline>: Provides a method for making server side inline callout
programs that return multiple XML elements to the data capture
form (see page 53 for additional details).

– <option>: Lets you assign a label or value to a check box so that
a user can enter only the predetermined label or value data by
checking the check box. Also lets you specify whether the check box
is initially displayed as being checked by default. A <checkbox>
element must have at least one <option> subelement. See the DTD
on page 63 for syntax details.

<hidden> Specifies that the data will not be shown in the data capture form. A
<hidden> field may receive data from a callout program.
Attributes:

• required: See <browser> above.
Subelements:

• <allowed>: See <browser> above.

• <callout>: See <browser> above.

Instance Description
48 TeamXpress Templating and Deployment Guide

Data Capture Example 1
<radio> Specifies that data will be captured via one or more radio buttons.
Attributes:

• required: See <browser> above.
Subelements:

• <allowed>: See <browser> above.

• <callout>: See <browser> above.

• <inline>: See <checkbox> above.

• <option>: See <checkbox> above. A <radio> element must have at
least one <option> subelement.

<readonly> Specifies that the data will be shown on the data capture form but will not be
editable.
Subelements:

• <allowed>: See <browser> above.

• <callout>: See <browser> above.

Instance Description
49

Setting Up Data Capture Templates
<replicant> Specifies a repeatable instance that can contain multiple nested items and
instances. When there are multiple instances, the first instance whose ACL
allows the current user to enter data will be the instance used for that user.
<replicant> is the only instance that can contain nested items and
instances. Whenever additional iterations of the instance can be displayed
(i.e., if the max threshold has not yet been reached), the
Edit >Insert Above and Edit >Insert Below menu items are active.
Whenever iterations of the instance can be removed (i.e., if the min threshold
has not yet been reached), the Edit > Delete menu item is active. If a
<replicant> has four items, the Insert menu item displays another set of
four items in the data capture form.
Attributes:

• default: The number of instance iterations displayed initially in the
data capture form.

• max: The maximum number of items that can reside within the replicant
instance.

• min: The minimum number of items that can reside within the replicant
instance.

• combination: Specifies whether the entire set of items will be
replicated when the user requests a replicant or whether the user will be
prompted to select one of the replicant items.

• hide-name: Determines whether the label displays for each replicant.
Subelements:

• <allowed>: See <browser> above.

• <item>: See Item on page 44.

• <container>: A <container> is a non-repeating, named set of data
capture items. In addition to the combination and hide-name
attributes, you can also include the name attribute to specify the field
name.

Instance Description
50 TeamXpress Templating and Deployment Guide

Data Capture Example 1
<select> Specifies that data will be captured via a drop-down list.
Attributes:

• delimiter: See <checkbox> above.

• required: See <browser> above.

• multiple: Specifies whether more than one item can be selected. The
default value is f (only one item can be selected). Setting
multiple="t" specifies that a user can select more than one item.

• size: The number of selections that display in the selection box at one
time.

• width: The width of the drop-down or select list.
Subelements:

• <allowed>: See <browser> above.

• <callout>: See <browser> above.

• <inline>: See <checkbox> above.

• <option>: See <checkbox> above.

<text> Specifies that data will be entered and captured via an unformatted text field.
Attributes:

• maxlength: The maximum number of characters the user can enter.

• required: See <browser> above.

• size: The number of characters that display in the text box.

• validation-regex: Uses Perl regex syntax to set validation criteria
for text entered by a user. A retry message is displayed in the data
capture form if the entered text does not meet the specified criteria.

Subelements:
• <allowed>: See <browser> above.

• <default>: The default text that displays in the field when the data
capture form opens.

• <callout>: See <browser> above.

Instance Description
51

Setting Up Data Capture Templates
<textarea> Specifies that data will be entered and captured via a text field of a specified
size.
Attributes:

• cols: The width (in characters) of the text area. If rtf="t" is set,
width in pixels.

• required: See <browser> above.

• rows: The height (in rows) of the text area. If rtf="t" is set, height in
pixels.

• wrap: Handles word wrapping in text input areas in forms. When off
is set, lines are sent exactly as typed; when virtual is specified, the
text word wraps in the form, but long lines are sent as one line; when
physical is set, the word wraps and text are transmitted at all wrap
points.

• validation-regex: See <text> above.

• rtf: Allows user to provide text styles such as bold, italics, and
underscoring.

Subelements:
• <allowed>: See <browser> above.

• <default>: See <text> above.

• <callout>: See <browser> above.

Instance Description
52 TeamXpress Templating and Deployment Guide

Data Capture Example 1
Details on Attributes and Subelements of Instances

This section provides additional details or examples on the attributes and subelements described in the
table of instances.

The <Allowed> Attribute

The following code would allow all users except joe to use the current instance:

<allowed>
<not>

<cred user="joe">
</cred>

</not>
</allowed>

In the following example, <allowed> would set an instance that only editors can use while another
instance is available for all other roles. The first instance a user satisfies is the one that is used.

<item name= "abc">
<instance>

<--only for editors-->
<allowed> <cred role="editor"/> </allowed>

</instance>
<instance>

<!--for everyone else-->
</instance>

</item>

The <inline> Subelement

An <inline> element should have a command attribute such as:

<inline command="/bin/cat /tmp/a /tmp/b"/>

The inline callout program should return a well-formed XML document. The document's outermost
element should be a <substitution> element. It should contain any XML that is valid according to
datacapture4.5.dtd. That <substitution> element will contain six <option> elements,
enumerating a variety of types of yacht hull materials (see page 59).
53

Setting Up Data Capture Templates
<?xml version="1.0" encoding="UTF-8"?>
<substitution>

<option value="Lead" label="Lead"/>
<option value="Tin" label="Tin"/>
<option value="Silicon" label="Silicon"/>
<option value="Plastic" label="Plastic"/>
<option value="Paper" label="Paper"/>
<option value="Glass" label="Glass"/>

</substitution>

This simple callout output a static result. A more sophisticated callout program could query a database
and return the query results as <option> elements.

The <Callout> Subelement

The <callout> subelement creates a button on the data capture form that can be programmed to
call a Java program. An interface is provided that declares the IWDataCaptureCallout interface.
You need to write a Java class that implements the interface. Java documentation (javadoc) that
describes the API is available once you install TeamXpress Templating. You can access this Javadoc
through a browser at http://TeamXpress-server/iw/java-callout-api/tree.html.
Source code and example classes can be accessed at
iw-home/local/config/java-callout-api.

Example 1 Data Content Record

This section shows the data content record that is created if a content contributor enters the following
data in the Press Release data capture form:
54 TeamXpress Templating and Deployment Guide

Data Capture Example 1
Press Release Data Capture Form (with data)

The resulting data content record is as follows:

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE record SYSTEM "dcr4.5.dtd">
<record name="eal.pr.1" type="content">
<item name="Publish Date">
55

Setting Up Data Capture Templates
<value>2000-08-28</value>
</item>
<item name="Headline">

<value>Candidate Joins Race</value>
</item>
<item name="Secondary Headline">

<value></value>
</item>
<item name="Introductory Paragraph">

<value></value>
</item>
<item delimiter=", " name="Story">

<value>
<item name="Subheading">

<value></value>
</item>
<item name="Section Paragraphs">

<value>
<item name="Paragraphs">

<value>A new candidate entered the race as of 8/28/00.
</value>

</item>
</value>

</item>
</value>

</item>
<item name="Author">

<value>eal</value>
</item>
<item name="EMail">

<value>eal@example.com</value>
</item>
<item name="Languages">

<value>English</value>
</item>

</record>
56 TeamXpress Templating and Deployment Guide

Data Capture Example 2
Data Capture Example 2

The following sections show a hypothetical Yacht Information data capture form and the
datacapture.cfg file that generates it.

Example 2 Data Capture Form

The following is a hypothetical Yacht Information data capture form. This form is included in the
TeamXpress Templating distribution and is available for use after you configure the example
templating environment.
57

Setting Up Data Capture Templates
58 TeamXpress Templating and Deployment Guide

Data Capture Example 2
Example 2 datacapture.cfg File

The datacapture.cfg file that generates this Yacht Information data capture form is as follows:
<?xml version="1.0" standalone="no"?>
<!DOCTYPE datacapture SYSTEM "datacapture4.5.dtd">

<data-capture-requirements type="content" name="yacht">
<!-- data-capture-requirements elements contain area elements -->
<ruleset name="Vessel Information">

<description>
Allows the entry of data relating to a sailing vessel and its
seasonal charter prices.

</description>

<item name="Boat Manufacturer">
<database data-type="VARCHAR(40)" />
<text required="t" maxlength="40" />

</item>

<item name="Boat Model">
<database data-type="VARCHAR(40)" />
<text required="t" maxlength="40" />

</item>

<item name="Picture">
<database deploy-column="f" />
<browser extns=".gif,.jpg"

initial-dir="/templatedata/internet/yacht/images"/>
</item>

<item name="Length">
<database data-type="SMALLINT" />
<text required="t" maxlength="3" validation-regex="^[0-9]\{0,\}$" />

</item>

<item name="Rig">
<database data-type="CHAR(6)" />
<select required="t">

<option selected="t" value="Sloop" label="Sloop"/>
<option value="Ketch" label="Ketch"/>
<option value="Cutter" label="Cutter"/>

</select>
</item>
<item name="Hull Type">
59

Setting Up Data Capture Templates
<database data-type="CHAR(9)" />
<radio required="t">

<option selected="t" value="Monohull" label="Monohull"/>
<option value="Catamaran" label="Catamaran"/>
<option value="Trimaran" label="Trimaran"/>

</radio>
</item>

<item name="Hull Material">
<database data-type="VARCHAR(15)" />
<select required="t">

<!-- To use the example server-side
inline callout, uncomment the
next line for Solaris:

<inline command="__IW_HOME__/iw-perl/bin/iwperl __IW_HOME__/examples/
Templating/config/example_server_side_inline_callout.ipl" />

or this line for Windows NT/2000:

<inline command="__IW_HOME__/iw-perl/bin/iwperl.exe __IW_HOME__/examples/
Templating/config/example_server_side_inline_callout.ipl" />

replacing "__IW_HOME__" with
the location of your TeamXpress
installation. -->

<option value="Fiberglass" label="Fiberglass"/>
<option value="Wood" label="Wood"/>
<option value="Steel" label="Steel"/>
<option value="Aluminium" label="Aluminium"/>
<option value="Ferrocement" label="Ferrocement"/>
<option value="Other" label="Other"/>

</select>
</item>

<item name="Pricing">
<database deploy-column="f" />
<replicant min="1" max="5">

<item name="Season">
<select required="t" multiple="t" size="5">

<option selected="t" value="All Year" label="All Year"/>
<option value="Winter" label="Winter"/>
<option value="Spring" label="Spring"/>
60 TeamXpress Templating and Deployment Guide

Data Capture Example 2
<option value="Summer" label="Summer"/>
<option value="Fall" label="Fall"/>

</select>
</item>

<item name="Time Periods">
<replicant min="1" max="3">

<item name="Time Period">
<select required="t">

<option value="Day" label="Day"/>
<option value="Week" label="Week"/>
<option value="Month" label="Month"/>

</select>
</item>

<item name="Price">
<text required="t" />

</item>
</replicant>

</item>
</replicant>

</item>

<item name="Number of Cabins">
<database data-type="SMALLINT" />
<select required="t">

<option value="1" label="One"/>
<option value="2" label="Two"/>
<option value="3" label="Three"/>
<option value="4" label="Four"/>
<option value="5" label="Five"/>
<option value="6" label="Six"/>

</select>
</item>

<item name="Number of Staterooms">
<database data-type="SMALLINT" />
<select required="t">

<option value="1" label="One"/>
<option value="2" label="Two"/>
<option value="3" label="Three"/>
<option value="4" label="Four"/>
<option value="5" label="Five"/>
<option value="6" label="Six"/>

</select>
61

Setting Up Data Capture Templates
</item>

<item name="Spinnaker">
<database data-type="CHAR(3)" />
<checkbox>

<option value="Yes" label="Included"/>
</checkbox>

</item>

<item name="Tri-sail">
<database data-type="CHAR(3)" />
<checkbox>

<option value="Yes" label="Included"/>
</checkbox>

</item>

<item name="Genoa">
<database data-type="CHAR(3)" />
<checkbox>

<option value="Yes" label="Included"/>
</checkbox>

</item>

<item name="Jib">
<database data-type="CHAR(3)" />
<checkbox>

<option value="Yes" label="Included"/>
</checkbox>

</item>

<item name="Storm Jib">
<database data-type="CHAR(3)" />
<checkbox>

<option value="Yes" label="Included"/>
</checkbox>

</item>

<item name="Dinghy">
<database data-type="CHAR(3)" />
<checkbox>

<option value="Yes" label="Included"/>
</checkbox>

</item>

<item name="Liferaft">
62 TeamXpress Templating and Deployment Guide

Data Capture Template DTD
<database data-type="CHAR(3)" />
<checkbox>

<option value="Yes" label="Included"/>
</checkbox>

</item>

<item name="EPIRB">
<database data-type="CHAR(3)" />
<checkbox>

<option value="Yes" label="Included"/>
</checkbox>

</item>

<item name="Details">
<database deploy-column="f" />
<textarea/>

</item>

</ruleset>
</data-capture-requirements>

Data Capture Template DTD

The following code shows the datacapture4.5.dtd file that contains the syntax of the elements
needed to create a datacapture.cfg file.

<!-- Start with some basic parameter entities. -->
<!ENTITY % data-capture-requirements-contentspec "ruleset*">
<!ENTITY % items "container|item">
<!ENTITY % chooser-options "option|inline">

<!-- The next element type is specific to datacapture4.5.dtd. -->

<!-- An 'inline' element should have a 'command' attribute. e.g.
<inline command="/bin/cat /tmp/a /tmp/b"/>

The callout program should return a well-formed XML document.
The document's outermost element should be a "substitution"
element. It should contain any XML that is valid according
to this DTD.
63

Setting Up Data Capture Templates
That "substitution" element's contents will replace the
"inline" element in the datacapture.cfg file.

So, if this DCT snippet:

<select>
<inline command="blah" />
</select>

runs the "blah" callout program, and that program returns this text:

<substitution>
<option label="ABC" />
<option label="123" />
<option label="Jackson 5" />
</substitution>

then the DCT snippet will, after callout execution and inline
substitution, look like:

<select>
<option label="ABC" />
<option label="123" />
<option label="Jackson 5" />
</select>
-->

<!ELEMENT inline EMPTY >
<!ATTLIST inline

command CDATA #REQUIRED
>

<!-- The rest of these elements are common to both
datacapture4.5.dtd and symboltable4.5.dtd. -->

<!ELEMENT data-capture-requirements (%data-capture-requirements-
contentspec;) >

<!ATTLIST data-capture-requirements
name CDATA #IMPLIED
type (metadata|content|workflow) #REQUIRED
64 TeamXpress Templating and Deployment Guide

Data Capture Template DTD
dtd-system-identifier CDATA #IMPLIED
>

<!ELEMENT ruleset(label?,description?,(%items;)*)>
<!ATTLIST ruleset

name CDATA #REQUIRED
>

<!ELEMENT container (label?,description?,(%items;)*) >
<!ATTLIST container

name CDATA #REQUIRED
hide-name (t|f) "f"
combination (and|or) "and"
>

<!ELEMENT item (label?,description?,database?(checkbox|radio|
text|textarea|select|replicant|browser|
readonly|hidden)+) >

<!ATTLIST item
name CDATA #REQUIRED
>

<!ELEMENT label (#PCDATA) >
<!ELEMENT description (#PCDATA) >

<!ELEMENT readonly (allowed?,callout?) >
<!ATTLIST readonly

rows CDATA "0"
cols CDATA "0"
>

<!ELEMENT hidden (allowed?,callout?) >
<!ATTLIST hidden

required (t|f) "f"
>

<!ELEMENT text (allowed?,default?,callout?) >
<!ATTLIST text

required (t|f) "f"
maxlength CDATA "0"
65

Setting Up Data Capture Templates
size CDATA "0"
validation-regex CDATA #IMPLIED
>

<!-- validation-regex is a Perl regex for validating this element -->

<!ELEMENT textarea (allowed?,default?,callout?) >
<!ATTLIST textarea

required (t|f) "f"
rows CDATA "0"
cols CDATA "0"
wrap (off|virtual|physical) "off"
validation-regex CDATA #IMPLIED
rtf (t|f) "f"
>

<!-- validation-regex is a Perl regex for validating this element -->

<!ELEMENT browser (allowed?,callout?) >
<!ATTLIST browser

required (t|f) "f"
maxlength CDATA "0"
size CDATA "0"
initial-dir CDATA #IMPLIED
ceiling-dir CDATA #IMPLIED
extns CDATA #IMPLIED
>

<!ELEMENT checkbox (allowed?,callout?,(%chooser-options;)+) >
<!ATTLIST checkbox

required (t|f) "f"
delimiter CDATA ", "
>

<!ELEMENT radio (allowed?,callout?,(%chooser-options;)+) >
<!ATTLIST radio

required (t|f) "f"
>

<!ELEMENT select (allowed?,callout?,(%chooser-options;)+) >
<!ATTLIST select

required (t|f) "f"
size CDATA "0"
multiple (t|f) "f"
66 TeamXpress Templating and Deployment Guide

Data Capture Template DTD
delimiter CDATA ", "
width CDATA #IMPLIED
>

<!-- The delimiter attribute is for multiple=t only -->

<!ELEMENT replicant (allowed?, (%items;)*)>
<!ATTLIST replicant

min CDATA "0"
max CDATA "1"
default CDATA "1"
combination (and|or) "and"
hide-name (t|f) "t"
>

<!ELEMENT option EMPTY>
<!ATTLIST option

selected (t|f) "f"
value CDATA #IMPLIED
label CDATA #REQUIRED
>

<!ELEMENT allowed (cred|and|or|not)>

<!ELEMENT cred EMPTY>
<!ATTLIST cred

role CDATA #IMPLIED
user CDATA #IMPLIED
>

<!ELEMENT and (cred|and|or|not)+>

<!ELEMENT or (cred|and|or|not)+>

<!ELEMENT not (cred|and|or|not)>

<!ELEMENT default (#PCDATA)>

<!ELEMENT callout (param*) >
<!ATTLIST callout
67

Setting Up Data Capture Templates
type (java-class) #REQUIRED
label CDATA #REQUIRED
location CDATA #REQUIRED
class CDATA #REQUIRED
>

<!ELEMENT param EMPTY >
<!ATTLIST param

name CDATA #REQUIRED
value CDATA #REQUIRED
>

<!ELEMENT database EMPTY >
<!ATTLIST database

deploy-column (t|f) "t"
searchable (t|f) "t"
data-type CDATA "VARCHAR(255)"
data-format CDATA #IMPLIED
>

68 TeamXpress Templating and Deployment Guide

Chapter 4

Setting Up Presentation
Templates

Creating Presentation Templates

Presentation templates are designed to display data. The data may be obtained from the following
sources:

• Data content records

• Queries to relational databases

• Perl-generated output

• Included files

• Included presentation components

You can combine data content records with presentation templates to generate output files. You can
also create output files using relational database queries and output generated via the Perl API.
TeamXpress Templating can generate any text content, including HTML, XML, or any application
server code. Using TeamXpress Templating, you can precompile elements or a dynamic page,
maintain dynamic content as application server code, eliminate the need for sever-side includes, and
output an .asp or .jsp file that can be served dynamically at runtime in the production environment.
At a minimum, TeamXpress Templating can precompile flat HTML files that can sit as static files to
provide maximum performance.

Presentation templates are written in XML and may contain custom Interwoven XML tags, HTML,
and Perl.

The following diagram shows a typical output page and describes how the page is generated.
69

Setting Up Presentation Templates
Generating a Web Page with TeamXpress Templating

Standard Header

Standard Footer

Body Text

Image

Caption

Navigation

Related Links

Body text, Image, and
Caption are obtained
from the data content
record using iw_xml

Navigation
and Related
Links can be
obtained
from
included files,
included
presentation
templates,
queries to a
database, or

using an included file instead of an shtml directive.

using an included file.

from code
entered as
CDATA.

tags and HTML code.

This included file can be changed
once and the entire site regenerated.
70 TeamXpress Templating and Deployment Guide

Creating Presentation Templates
Presentation templates allow you to:

• Use built-in tags to fetch elements from XML data content records, loop on lists, do SQL queries,
perform conditional logic, etc.

• Create custom XML tags that encapsulate arbitrary presentation logic. Non-programmers can use
custom high-level visual building blocks without writing any code.

• Create custom libraries and invoke them from within the <iw_perl> tag. Lower-level visual
building blocks can be accessed by programmers directly from a template.

• Intermix XML and Perl to generate any output format (such as html, asp, and jsp). Presentation
information does not need to be hard-coded into the template.

• Make common code components reusable across templates.

• Create generic components (component templates) that display differently based on the
parameters they are given by their enclosing template.

• Eliminate page compilation costs on the production web server, thus increasing scalability of your
web site.

• Use component templates. The component template may have key, value parameters passed to it
by the enclosing template. For example, a component template may include an SQL query whose
body depends on parameters from the enclosing template. Component templates do not take a
data content record.

To write a presentation template, you must first know some basic XML. Specifically, an
understanding of the following XML topics is useful:

• CDATA

• “Well-formed” documents

• Entities (e.g., > and <)

 A useful reference is http://www.xml.com/axml/testaxml.htm.
71

Setting Up Presentation Templates
Interwoven XML tags are an important part of writing presentation templates. The following is an
overview of the existing tags:

For more information about the iw_xml tags, see “Custom XML Tags” on page 82.

<iw_xml> Base class for presentation template XML elements.

<iw_pt> Specifies that the document is a presentation template, and names it.

<iw_value> Inserts the value of a Perl expression or data content record item.

<iw_if> Provides an expression that is evaluated as being either true or false to
determine whether the <iw_then> or <iw_else> statement will be
used.

<iw_then> Provides contents to be included if the <iw_if> tag’s expression is true.

<iw_else> Provides contents to be included if the <iw_if> tag’s expression is false.

<iw_ifcase> Provides for conditional inclusion of contents.

<iw_case> Used with <iw_ifcase> for conditional inclusion of contents.

<iw_perl> Executes arbitrary Perl code and provides an API for generating input and
using data content records

<iw_iterate> Iterates through a data content record or Perl list.

<iw_sql_open> Opens a database connection.

<iw_sql_iterate> Iterates SQL result sets.

<iw_sql_query> Queries a database.

<iw_system> Uses output from an external command.

<iw_next> Skips to the next iteration of a (possibly labeled) loop.

<iw_last> Skips to the last iteration of a (possibly labeled) loop.

<iw_include> Inserts a file or the result of compiling a template component in the
generated HTML.

<iw_repeat> Allows you to repeat content a given number of times.
72 TeamXpress Templating and Deployment Guide

Creating Presentation Templates
Consider the following guidelines when creating a presentation template:

• When writing presentation templates that obtain information from data content records, refer to
the data capture template that the data content records are based on. Make sure that the names of
the fields are consistent and that you use <iw_iterate> tags in the presentation template (see
page 99) if there are replicant tags in the data capture template (see Chapter 3, “Setting Up
Data Capture Templates”).

• Presentation templates must be well-formed XML. Any HTML contained within a presentation
template outside of a CDATA directive must be well-formed in accordance with XML rules.

• The <iw_value> tag, unlike all other tags, is interpreted within CDATA sections. If you need to
enclose a large body of text (e.g., HTML) with CDATA, you still have access to data values within
this region.

Using a Presentation Template—An Example

This section provides an overview to show the use of a presentation template. The section includes an
example data content record, a presentation template, and a component template.

The presentation template shows how to use tags to call a component template, include a file, obtain
data from a data content record, and iterate through all values of a field in a data content record.

The Press Release presentation template is shown on page 76. In addition to using HTML, it uses
many of the iw_xml tags. This example is provided as templatedata/internet/pr/
presentation/nested_component_example.tpl in your TeamXpress Templating installation.
This presentation template calls the simple.tpl component template (page 80) and accesses a data
content record (page 74) to obtain values. The generated press release is shown (page 81).
73

Setting Up Presentation Templates
The data content record that contains the data for the Press Release presentation template follows:

<record name="pr2">
<item delimiter=", " name="Date">

<value>01.04.2000</value>
</item>
<item delimiter=", " name="Headline">

<value>Interwoven, Inc. Files Registration</value>
</item>
<item delimiter=", " name="Secondary Headline">

<value>Interwoven, Inc., (NASDAQ: IWOV)</value>
</item>
<item delimiter=", " name="Introductory Paragraph">

<value>Interwoven, Inc. is a provider of Web content management
solutions. Its products are specifically designed to help companies
rapidly and efficiently build, maintain and extend mission-critical
Web sites and eBusiness applications. Interwoven's principal
product, TeamXpress, combines the functions of content management,
version control, workflow and applicationdevelopment in an open,
standards-based platform that allows large numbers of contributors
across an enterprise to add Web content in a well-managed manner.
</value>

</item>
<item delimiter=", " name="Story">

<value>
<item delimiter=", " name="Subheading">

<value>heading1</value>
</item>
<item delimiter=", " name="Section Paragraphs">

<value>
<item delimiter=", " name="Paragraphs">

<value>Credit Suisse First Boston will act as the lead
underwriter of the offering. The co-managers are
Robertson Stephens; Dain Rauscher Wessels; SoundView
Technology Group; and Adams, Harkness and Hill, Inc.
</value>

</item>
</value>
74 TeamXpress Templating and Deployment Guide

Creating Presentation Templates
<value>
<item delimiter=", " name="Paragraphs">

<value>A registration statement relating to these
securities has been filed with the Securities and
Exchange Commission but has not yet become
effective. These securities may not be sold nor may
offers to buy be accepted prior to the time the
registration statement becomes effective. This press
release shall not constitute an offer to sell or a
solicitation of an offer to buy, nor shall there be
any sale of these securities in any state or
jurisdiction in which such anoffer, solicitation
or sale would be unlawful prior to registration or
qualification under the securities laws of any such
state or jurisdiction.</value>

</item>
</value>

</item>
</value>

</item>
<item delimiter=", " name="Author">

<value>ddd</value>
</item>
<item delimiter=", " name="EMail">

<value></value>
</item>
<item delimiter=", " name="Languages">

<value>English</value>
</item>

</record>
75

Setting Up Presentation Templates
The presentation template for the press release follows:

<?xml version="1.0" encoding="ISO-8859-1"?>
<iw_pt name="PressRelease"><![CDATA[
<HTML>
<!-- Begin CDATA Tag -->
<!-- HTML stuff is enclosed in CDATA tag -->

<HEAD>
</HEAD>
<BODY bgcolor="#FFFFFF" link="#0033CC" vlink="#0033CC" alink="0000FF"
TEXT=#000000 BACKGROUND="/templatedata/internet/pr/images/pixel.gif">

<TABLE WIDTH="720" VALIGN="top" CELLPADDING="0" CELLSPACING="0"
BORDER="0">
<TR><TD WIDTH="720">

]]> <!-- End of CDATA Tag -->
<!-- nested component -->

<iw_include pt='/templatedata/components/simple.tpl'>
<![CDATA[

$iw_param{Headline} = iwpt_dcr_value('dcr.Headline');
]]>

</iw_include>

<![CDATA[</TD></TR><TR><TD><TABLE WIDTH="720"><TR valign="top">
<TD valign="top">]]>

<iw_include file='templatedata/internet/pr/iwprnavbar.html'/>

<![CDATA[<!-- Begin CDATA Tag -->
</TD><TD VALIGN="top" WIDTH="510">

]]> <!-- End of CDATA Tag -->

<!-- Begin content area -->

<!-- Headline -->
<P></P>

</br>

<!-- Secondary Headline -->
<h3> <iw_value name='dcr.Secondary Headline'/> </h3>

Using the <iw_include> tag to call the
simple.tpl component template

Using the <iw_include>
tag to include an HTML file

Using <iw_pt> to open and
name the presentation template;
beginning CDATA

Passing “Headline” value
as a parameter to
component template
76 TeamXpress Templating and Deployment Guide

Creating Presentation Templates
<!-- Date -->
<P> SUNNYVALE, Calif., <iw_value name='dcr.Date'/>:</P>

<!-- Introductory Paragraph -->
<P><iw_value name='dcr.Introductory Paragraph'/> </P>

<!-- Story -->
<iw_iterate var='story' list='dcr.Story'>

<!-- Subheading -->
<iw_value name='story.Subheading'/>

<!-- Paragraphs -->
<iw_iterate var='para_value' list='story.Section Paragraphs'>

<p><iw_value name='para_value.Paragraphs'/></p>
</iw_iterate>

</iw_iterate>

<!-- Insert 'aboutIW.html' file -->
<p>
<iw_include file='templatedata/internet/pr/aboutIW.html'/>
</p>

<p>For more information on the company and
its software solutions, visit the Interwoven Web site at
www.interwoven.com
or e-mail

<iw_value name='dcr.EMail'/>
</p>

<!-- HTML stuff is enclosed in CDATA tag -->
<![CDATA[<!-- Begin CDATA tag -->
<p>
<TABLE WIDTH=520 BORDER=0 CELLSPACING=10 CELLPADDING=0>
<TR>

<TD COLSPAN=2 BGCOLOR=#999999>

</TD>
</TR>

Obtaining a value from a
data content record using
the <iw_value> tag

Using <iw_iterate> and
<iw_value> to obtain
multiple paragraph values

Opening CDATA
containing HTML

Nesting of
<iw_iterate> tags
77

Setting Up Presentation Templates
<TR>
<TD COLSPAN=2>

<!-- Begin question -->
<CENTER>

How is Best Buy pushing
billions of dollars in business towards the Web?

</CENTER>
<!-- End question -->

</TD>
</TR>
<TR>

<TD COLSPAN=2>
</TD>

</TR>
<TR>

<TD COLSPAN=2 BGCOLOR=#999999>

</TD>
</TR>
<TR>

<TD WIDTH=250 VALIGN="top">
<IMG SRC="/templatedata/internet/pr/images/pixel.gif"
WIDTH=250 HEIGHT=1>
 Global Headquarters

Interwoven, Inc.
 1195 W. Fremont Ave. #2000

Sunnyvale, CA 94087 US
 Phone: (408) 774-2000

</TD>
<TD WIDTH="250" VALIGN="top">

How Can We Serve You?

Let us know at:
info@interwoven.com
 or Register
and we will contact you!

<NOBR>Web Team:
webteam@interwoven.com
</NOBR>

</TD>
</TR>
78 TeamXpress Templating and Deployment Guide

Creating Presentation Templates
<TR>
<TD COLSPAN=2 ALIGN=CENTER>

 <P CLASS="copyright">
 Copyright © 2000
Interwoven, Inc. All rights reserved. </P>

</TD>
</TR>

</TABLE>
</TD>
</TR>
</TABLE>
</TD>
</TR>
</TABLE>
</BODY>
</HTML>
]]> <!-- End CDATA tag -->

</iw_pt> Closing the
presentation template

Closing CDATA
containing HTML
79

Setting Up Presentation Templates
The simple.tpl component template is called from the main presentation template. It prints the
headline it obtains from the calling presentation template. The contents of the simple.tpl
component template is:

<?xml version="1.0" standalone="yes"?>
<iw_pt name="Banner Component PT">
<!-- This is a component PT that can be used inside another PTs -->
<!-- It prints the title that it got from the container PT -->
<TABLE width="720" align="center">

<TR align="center">
<TD align="left">

<IMG SRC="/templatedata/internet/pr/images/iw-logo-small.gif"
WIDTH="220" HEIGHT="40" BORDER="0"/>

</TD>
<TD align="center">

<H1><iw_value name='$iw_arg{Headline}'/></H1>
</TD>

</TR>
</TABLE>
</iw_pt>

Tag that opens
and names the
component template

Tag that obtains the
headline from the
calling template
80 TeamXpress Templating and Deployment Guide

Creating Presentation Templates
The press release generated from this presentation template, component template, and data content
record would be as follows:
81

Setting Up Presentation Templates
Custom XML Tags

A number of custom XML tags are supplied with TeamXpress Templating. All of these tags are derived
from a base class, iw_xml, as shown below.

The iw_xml tags are described in this section. Some of the examples are taken from the Yacht Info and
Press Release data capture forms described in the preceding chapter.

Typical man pages are available online for each tag. If iw-home/iw-perl/bin is in your path statement,
you can access these man pages by issuing the command perldoc TeamSite::PT::tag_name.

iw_perl

iw_repeat

iw_xml

iw_elseiw_if

iw_include

iw_iterateiw_value

iw_last

iw_next

iw_pt

iw_then

iw_sql_iterate

iw_sql_open

iw_sql_query

iw_system iw_case

iw_ifcase
82 TeamXpress Templating and Deployment Guide

Custom XML Tags
<iw_case>

The <iw_case> tag is used to perform boolean tests (such as equality, inequality or regex match) on
the value, attribute value, and/or type of the variable specified in the name attribute of the enclosing
<iw_ifcase> tag (page 91).

The content of only one <iw_case> within an <iw_ifcase> is selected to form the final output
page. If the boolean test of more than one <iw_case> tag is true, the first true <iw_case> section is
selected (Example 1).

If an <iw_case> tag has no attributes, it becomes the default case of its enclosing <iw_ifcase> tag.
You may not use more than one default <iw_case> within the enclosing <iw_ifcase>. If a default
<iw_case> is present, it must be the final <iw_case> of the enclosing <iw_ifcase>.

Attributes

The <iw_case> tag has the following six optional attributes: value, attrib, type, op, expr, and
expression.

value May be used with op and attrib. If the variable named in
<iw_ifcase> is an XML node, value corresponds to the CDATA of
that XML node. If <iw_ifcase> names a non-XML node Perl
variable, then value refers to the variable's value (Example 2).

attrib Must be used with value; may be used with op. The statement
<iw_case attrib='x' value='y'> is true if the XML node
being tested by the enclosing <iw_ifcase> has an attribute named x
with a value of y.

type May be used with op. When iterating over all XML nodes of all types
within y, use type='...' in an <iw_case> tag to discover the
current node's type.

You may use any combination of the following within the <iw_case>
tags of the same <iw_ifcase> statement (the first true <iw_case>
within a given <iw_ifcase> statement will be selected):
83

Setting Up Presentation Templates
op May be used with value and type. When testing value='...' or
type='...' in an <iw_case> tag, eq (string equality) is the default
op attribute.

op may have the values indicated in the following table:

Therefore, op='=~' value='red' means “regex match on the
pattern red”. In other words, the <iw_ifcase> value contains the
substring red.

expr The expr attribute is a more powerful version of the value attribute
(but it is less powerful than expression).

In expr, the value of the <iw_ifcase> is the implicit left-hand side
of the general Perl expression that you provide. This allows you to use
regex patterns drawn from variables, regex switches, etc.

value ='...'

type ='...'

expr ='...'

expression ='...'

attrib = '...' value='...'

Value Definition

eq equal to

ne not equal to

lt less than

gt greater than

le less than or equal to

ge greater than or equal to

=~ regular expression match

!~ regular expression does not match
84 TeamXpress Templating and Deployment Guide

Custom XML Tags
The expression attribute of <iw_case> is the completely general
conditional test; nothing is implicit.

Therefore, the following combinations are equivalent (they match
values equal to the string red):

<iw_case value = 'red'> ...
<iw_case op = 'eq' value = 'red'> ...
<iw_case expr = "eq 'red'"> ...
<iw_case expression = " $iw_ifcase_value eq 'red'">
...

The following combinations are also equivalent (they match values that
start with the string red).

<iw_case op = '=~' value='^red'> ...
<iw_case expr = '=~ /^red/'> ...
<iw_case expression = ' $iw_ifcase_value =~ /^red/
'> ...

Usually, you will only need to use value='...' or type='...'

Note: the i switch means “case insensitive matching” as in the
following example:
<iw_case expr='=~ /goldfish/i '>

expression The <iw_ifcase> tag uses its name='...' attribute to set three
variables that enclosed tags can inspect:

 $iw_ifcase_type (type)
$iw_ifcase_value (value)
$iw_ifcase_attrib (attribute hash reference)

Typically, only iw_case tags use these variables, but any tag may do
so. This allows iw_ifcase to evaluate name='...' only once
regardless of how many <iw_case> tags are inside it.

When one <iw_ifcase> tag is nested within another, the inner
$iw_ifcase_... variables hide the $iw_ifcase_... variables of
the outer tag. In fact, you can choose non-default names to avoid this.
85

Setting Up Presentation Templates
See the example section of <iw_ifcase> (page 91) for more
information.

The following code shows switching on an arbitrary function, length
(this function is a standard/built-in Perl function):

<iw_case expression=' length($iw_ifcase_value) >
15'>

Example 1

In the following example, either the first or second <iw_case> statement will be selected, depending
on the information contained in CDATA.

<iw_ifcase name='dcr.customer.lastname'>
<iw_case value='Smith'>

If the CDATA portion of the "lastname" element within
the top-level "customer" tag is "Smith", then this is
the case that will be selected.

</iw_case>
<iw_case type='lastname'>

This test will always be true since the enclosing
iw_ifcase is explicitly testing an XML node of type
"lastname"; however, if the customer's name is "Smith"
the initial iw_case will be selected since it appears
first (thus the iw_case chain has if-else-if-else...
semantics).

</iw_case>
<iw_case value='Jones'>

This case will never be reached: even if
the first case is false, the second case
(type='lastname') will always be true.

</iw_case>
</iw_ifcase>
86 TeamXpress Templating and Deployment Guide

Custom XML Tags
Example 2

The following example tests the 0th CDATA section within the egg XML node to check if it is equal
to the string Grade A (unless the attrib attribute is also used; see attrib on page 83).

<iw_ifcase name='dcr.hen.egg'>
<iw_case value='Grade A'> ...
</iw_case>

</iw_ifcase>

Example 3
<iw_iterate var ='node_within_y' list='dcr.x.y.*'>

<iw_ifcase name='node_within_y'>
<iw_case type='customer'>

do this if the node is of type customer
</iw_case>

...
</iw_ifcase>

</iw_iterate>

Refer to iw-home/examples/Templating/templatedata/tutorials.
87

Setting Up Presentation Templates
<iw_else>

The <iw_else> tag is used for conditional inclusion of contents. It is used with the <iw_if> tag and
provides contents to be included if the <iw_if> tag is false. The <iw_then> tag (page 121) is also
used and provides the contents if the <iw_if> tag (page 89) is true.

For if-else-if... conditional statements, you may also use <iw_ifcase> (page 91) and
<iw_case> (page 83).

Examples

The following examples take this form:

<iw_if expr=' some logical condition ' >
<!-- optional then clause (only included when iw_if is true) -->
<iw_then>...</iw_then>

<!-- optional else clause (only included when iw_if is false) -->
<iw_else>...</iw_else>

</iw_if>

Example 1
<iw_if expr=' {iw_value name="$iw_arg{moo}"/} eq "cow" ' >

<iw_then>
do this if the condition is true

</iw_then>
<iw_else>

do this if the condition is false
</iw_else>

</iw_if>

Example 2
<iw_if expr=' ({iw_value name="dcr.xyz"/} > 42) ||

({iw_value name="$iw_arg{pdq}"/} < 99)
'>

<iw_then>
do this if the condition is true

</iw_then>
</iw_if>
88 TeamXpress Templating and Deployment Guide

Custom XML Tags
<iw_if>

The <iw_if> tag is used with an expression that is evaluated to determine whether the <iw_then>
(page 121) or <iw_else> (page 88) statement will be used.

For if-else-if... conditional statements, you may also use <iw_ifcase> (page 91) and
<iw_case> (page 83).

Attributes

The <iw_if> tag requires the expr attribute.

 expr = 'expression' A Perl logical expression, in XML-encoded form (for example,
'<' must be encoded as '<' and '&' must be represented as
'amp;').

If the expression evaluates to true, the enclosed <iw_then> clause is used when generating the
presentation template's output. Otherwise, the optional enclosed <iw_else> clause is used.

expr may contain one or more instances of {iw_value name='...'/} within the logical
expression. This allows the <iw_if> tag to branch conditionally on values within the data content
record and/or Perl variables.

The semantics of {iw_value name='...'/} within the expr attribute are identical to the
<iw_value> tag (page 122).

 Note: Because the character '<' is not permitted in an attribute list, XML does not accept the
statement:

<iw_if expr="<iw_value name='$moo'/> eq 'cow'">

However, when you use the '{' character, the statement is accepted:

<iw_if expr="{iw_value name='$moo'/} eq 'cow'">

For EBNF details, see http://www.xml.com/axml/testaxml.htm (search for the
second occurrence of 'AttValue').
89

Setting Up Presentation Templates
Examples

All three of the following examples take this form:

<iw_if expr=' some logical condition ' >
<!-- optional then clause (only used when iw_if is true) -->
<iw_then>...</iw_else>

</iw_if>

Example 1
<iw_if expr=' {iw_value name="$iw_arg{moo}"/} eq "cow" ' >

<iw_then>
do this if the condition is true

</iw_then>
<iw_else>

do this if the condition is false
</iw_else>

</iw_if>

Example 2
<iw_if expr=' {iw_value name="dcr.price"/} > 42 ' >

<iw_then>
do this if the condition is true

</iw_then>
</iw_if>

Example 3
<iw_if expr='0'>

<iw_then>
this statement is now commented out!

</iw_then>
</iw_if>
90 TeamXpress Templating and Deployment Guide

Custom XML Tags
<iw_ifcase>

The <iw_ifcase> tag is used for conditional inclusion of contents. The <iw_ifcase> tag uses its
immediately enclosed <iw_case> (page 83) tags to form a single if-else-if-else... chain.

Attributes

The <iw_ifcase> tag has one required attribute, name, and three optional attributes,
iw_ifcase_value, iw_ifcase_type, and iw_ifcase_attrib.

name Specifies either a Perl variable or an XML node in the data content
record. The semantics are identical to the name attribute in
<iw_value> (page 122):

The immediately enclosed <iw_case> tags use the value
corresponding to name to test for conditional inclusion of contents;
the contents of the first <iw_case> tag with a logical test that returns
boolean true are included.

If name corresponds to an XML node in the DCR (as opposed to
something like a Perl string variable), the immediately enclosed
<iw_case> tags may also use the type and attribute list values of this
XML node to determine which <iw_case> is used.

See <iw_case> (page 83) for more details.

iw_ifcase_value See Advanced Usage.

name corresponds to

dcr.x.y y component of top-level DCR/XML node x

hen.egg the egg XML node within the hen node

cow@moo moo attribute of DCR/XML node cow

z the Perl variable $z

$z the Perl variable $z

(....) the result of the Perl expression
91

Setting Up Presentation Templates
iw_ifcase_type See Advanced Usage.

iw_ifcase_attrib See Advanced Usage.

Advanced Usage

The <iw_ifcase> tag normally sets three variables that are used by enclosed <iw_case>
statements.

Usually, they are named:

1. $iw_ifcase_value (the value of name='...')

2. $iw_ifcase_type (the type of name='...')

3. $iw_ifcase_attrib (attribute hash of name='...')

In rare cases, nested <iw_ifcase> tags may require inner <iw_case> tags to access the value/
type/attributes of both the inner and outer <iw_ifcase>. These optional attributes allow variables
(1), (2), and (3) to have names other than $iw_ifcase_....

This allows for code like this:

<iw_ifcase name='x' iw_ifcase_type='x_type'>
<iw_case type='animal'>

<!-- x is of type animal -->
<iw_ifcase name='y' iw_ifcase_type='y_type'>

<iw_case type='vegetable'>
<!-- y is of type vegetable -->
The type of x is: <iw_value name='x_type'/>
The type of y is: <iw_value name='y_type'/>

</iw_case>
</iw_ifcase>

</iw_case>
</iw_ifcase>
92 TeamXpress Templating and Deployment Guide

Custom XML Tags
Example 1
<iw_ifcase name='dcr.x.y'>

<iw_case value='red'>
The XML node accessed via dcr.x.y has the value "red"

</iw_case>

<iw_case op='=~' value='green'>
The XML node accessed via dcr.x.y includes the string "green"

</iw_case>

<iw_case attrib='shoesize' value='10'>
The XML node accessed via dcr.x.y has a
"shoesize" attribute with a value of "10"

</iw_case>

<iw_case>
This case handles everything else

</iw_case>
</iw_ifcase>

Example 2

When iterating over every XML node of all types within y, you can use type='...' in the
<iw_case> tag to discover the current node's type.

<iw_iterate var ='an_xml_node_within_y' list='dcr.x.y.*'>
<iw_ifcase name='an_xml_node_within_y'>

<iw_case type='customer'>
This is an XML element of type "customer"
See for yourself: <iw_value name='$iw_ifcase_type'/>

</iw_case>

<iw_case op='=~' type='^zzz_'>
The type of this XML element starts with "zzz_"

</iw_case>

<iw_case value='zebra'>
Any XML node type whose value is equal to "zebra"

</iw_case>
<iw_case type='animal'>
93

Setting Up Presentation Templates
The type of this XML node is "animal"
non-zebra animal: <iw_value name='an_xml_node_within_y'/>

</iw_case>
<iw_case>

The default case
</iw_case>

</iw_ifcase>
</iw_iterate>
94 TeamXpress Templating and Deployment Guide

Custom XML Tags
<iw_include>

The <iw_include> tag allows you to insert a file or component presentation template at the point
where this tag appears.

Attributes

The <iw_include> tag requires one of the two attributes, file or pt, and allows two optional
attributes, ienc and mode.

file='filepath' Specifies the path to the file to include. The contents of the file are
included where the <iw_include> tag occurs.

ienc='encoding' Specifies encoding when a file named by the file attribute is not
encoded in UTF-8. Mandatory when a file specified by the file
attribute does not use UTF-8 encoding.

pt='filepath' Specifies the path to the presentation template to process and include
at the point where the <iw_include> tag occurs. You may nest any
number of templates, although performance may degrade if nesting is
excessive.

mode='mode' Specifies whether filepath is a relative or absolute path
(Example 1).

mode has three possible values:

• docroot (default value): The path specified on the command line (via -iw_include-location
path) is always prepended to the file name given in the file or pt attribute. See
“iwpt_compile.ipl” on page 372. From the TeamXpress GUI, it is as if the docroot of the file
system is the base of the user’s workarea.

• ptlocal: Relative path names are relative to the directory of the current presentation template.
However, absolute paths are absolute in relation to the computer’s file system.

• cwd (current working directory). Relative path names are relative to the path specified by the
command line (via -iw_include-location path). However, absolute paths are absolute in
relation to the computer’s file system.
95

Setting Up Presentation Templates
A file path is relative only under the following conditions:

• On Unix: file name does not begin with a slash.

• On Windows: file name does not begin with a <driveletter>.

When docroot mode is used (or when cwd mode is used with a relative path), the
-iw_include-location flag must be specified with iwpt_compile.

The following table shows how file paths change given different modes and path types (relative versus
absolute):

ptpath is the path of the current presentation template (or template component).

CDATA

CDATA is an optional tag that is only meaningful in pt-style inclusion.

CDATA may contain Perl code that initializes a hash named %iw_param. The %iw_param hash defines
the key, value pairs that are available within the nested template via the %iw_arg hash (Example 2).

Example 1
<iw_include file='exampleFile' mode='docroot'/>

The literal contents of the file exampleFile will be inserted at the point where this tag appears. The
file path can be relative or absolute, based on the mode attribute. Since mode is docroot (and if the
path starts with a slash or a drive letter), the file path given on the command line (using the
-iw_include-location path flag) will be prepended to the file name given in the file or pt
attribute of iw_include.

Mode Given relative path:
daughter/son.html

Given absolute path:
/etc/passwd

docroot (default) path/daughter/son.html path/etc/passwd

ptlocal ptpath/daughter/son.html /etc/passwd

cwd path/daughter/son.html /etc/passwd
96 TeamXpress Templating and Deployment Guide

Custom XML Tags
Example 2

If the enclosing template is:

<iw_include pt='hello_nested.tpl'><![CDATA[
$iw_param{color} = "green";
$iw_param{moo} = "cow";
$iw_param{headline} = iwpt_dcr_value('dcr.Headline');
]]>

</iw_include>

then within the enclosed template, the line:

Your favorite color is <iw_value name='$iw_arg{color}'/>!

produces the output:

Your favorite color is green!

Synopsis

Various usage examples follow:

<iw_include file ='myfile.html'/>

<iw_include file ='myfile.html'
ienc ='GB2312'/>

<iw_include file ='/shared/stuff/a_very_large_table.html'
mode ='cwd'/>

<iw_include pt ='myfile.tpl'/>

<iw_include pt ='myfile.tpl'
mode ='ptlocal'/>
97

Setting Up Presentation Templates
<iw_include pt ='hello_nested.tpl'
mode ='ptlocal'/>

<![CDATA[
$iw_param{color} = "red";
$iw_param{moo} = "cow";
$iw_param{headline} = iwpt_dcr_value('dcr.Headline');

]]>
</iw_include>
98 TeamXpress Templating and Deployment Guide

Custom XML Tags
<iw_iterate>

The <iw_iterate> tag is used to iterate over a data content record (DCR) list or a Perl list. The
<iw_iterate> tag can be nested to any number of levels; that is, there can be other <iw_iterate>
tags inside an <iw_iterate> tag.

Attributes

The <iw_iterate> tag has two required attributes, list and var, and three optional attributes,
order, iteration, and label.

var='variable_name' Defines the iterator variable that contains the current value
within the list. variable_name cannot include the space character.
the var attribute is transformed into a Perl variable of the same name,
which is accessible via <iw_value> and within <iw_perl> code.

list='list' Specifies the list being iterated over. If the list attribute's value is not
enclosed in parentheses, it is assumed to be referring to a DCR list (or
a var-declared iterator into a DCR list). If the list attribute's value is
enclosed in parentheses, then it is a Perl expression that evaluates to a
list. Perl-based lists may be created manually within an <iw_perl>
tag or inserted into the presentation template automatically by other
tags that make use of this feature.

order='sort_order' Specifies a function that reorders the list.

iteration='counter_name' Overrides the name of the counter used by tags, such as <iw_if>,
to determine how many elements within a list have been iterated
through. The default name of the iteration counter is
iw_iteration.

label='label' Allows <iw_next> (page 105) and <iw_last> (page 104) to exit
deeply nested looping structures.
99

Setting Up Presentation Templates
Example 1

The following example uses the iteration attribute with <iw_if> and <iw_then> tags.

<iw_iterate var ='current_color'
list ='(@colors)'
iteration='color_count'>

<iw_iterate var ='current_shape'
list ='(@shapes)'
iteration='shape_count'>

<iw_if expr='!(({iw_value name="$color_count"/} +
{iw_value name="$shape_count"/}) %10)'>

<iw_then>
do some special magic every
0th, 10th 20th (..etc) time around the loop!

</iw_then>
</iw_if>

Here's a color: <iw_value name='current_color'/>
Here's a shape: <iw_value name='current_shape'/>

</iw_iterate>
</iw_iterate>

Example 2

The following example generates Perl variables named "$Heading" and "$Sect".

<iw_iterate var='Sect' list='dcr.Section'>
<iw_iterate var='Heading' list='Sect.heading'>

<iw_value name='Heading'/>
</iw_iterate>

</iw_iterate>
100 TeamXpress Templating and Deployment Guide

Custom XML Tags
Example 3

The following example shows lists created manually with an <iw_perl> tag.

<iw_perl><![CDATA[my %h=(k1=>'v1', k2=>'v2');]]>
</iw_perl>

<iw_iterate var='$kname' list='(keys %h)'>
<iw_value name='$kname'/> (a key name in hash %h)

</iw_iterate>

Example 4

The following example iterates in reverse order:

<iw_iterate var = 'x'
order = 'reverse'
list = 'dcr.data.customer'>

<iw_value name='x'/>
</iw_iterate>

Example 5

The following example iterates using a custom sort function (in this example, suppose each
customer has a lastname tag enclosed within it):

<iw_perl><![CDATA[
sub your_function
{

Here's an arbitrary function:
#
sort customers on the basis of
the length of their last name

length(iwpt_dcr_value('b.lastname')) <=>
length(iwpt_dcr_value('a.lastname'));

}
]]></iw_perl>

<iw_iterate var = 'x'
101

Setting Up Presentation Templates
order = 'sort your_function'
list = 'dcr.data.customer'>

<iw_value name='x'/>
</iw_iterate>

Synopsis
<iw_iterate var='iter' list='(@an_array)'> ...
</iw_iterate>

<iw_iterate var='iter' order='reverse' list='(@an_array)'> ...
</iw_iterate>

<iw_iterate var='iter' order='sort your_sort_function'
list='(@an_array)'>...
</iw_iterate>

Advanced:

You can also filter the list. The <iw_iterate> tag will iterate over whatever
your_arbitrary_function returns.

<iw_iterate var='iter' order='your_arbitrary_function'
list='(@an_array)'>...
</iw_iterate>

<iw_iterate var='iter' list='(@an_array)' label='xyz'> ...
</iw_iterate>

<iw_iterate var='iter' list='(jon())'> ...
</iw_iterate>

<iw_iterate var='iter' list='(keys %h)' iteration='iter_hkey'> ...
</iw_iterate>

<iw_iterate var='Sect' list='dcr.Section'> ...
</iw_iterate>

<iw_iterate var='Sect' list='dcr.Section' iteration='iter_sect'> ...
</iw_iterate>
102 TeamXpress Templating and Deployment Guide

Custom XML Tags
<iw_iterate var='iter' list='(expr that returns a perl list)'> ...
</iw_iterate>

If you specify a custom sorting function via the order attribute, (for example,
compare_last_name), you can define it in an <iw_perl> tag:

<iw_perl><![CDATA[
sub compare_last_name
{

iwpt_dcr_value('a.last_name') cmp
iwpt_dcr_value('b.last_name');

}
]]>
</iw_perl>

<iw_iterate var ='cust'
order ='sort compare_last_name'
list ='dcr.customer'>

<iw_value name='cust.first_name'/>
<iw_value name='cust.last_name'/>

</iw_iterate>
103

Setting Up Presentation Templates
<iw_last>

The <iw_last> tag is used to skip to the last iteration of a (possibly labeled) loop.

Attributes

The <iw_last> tag has one optional attribute, label.

label='label' Allows the flow of control to jump outside of the current loop tag (for
example, <iw_iterate>) if no explicit label is given. If a label is
given that corresponds to a loop label set up in <iw_iterate> or
elsewhere, then the flow of control passes to immediately outside that
labeled loop. This is useful if you must jump out of a deeply nested
looping structure.

Example 1
<iw_iterate var='Sect' list='dcr.Section' iteration='iter_sect'

<iw_if expr=' {iw_value name="iter_sect"/} == 3 ' >
<iw_then>

<iw_last/>
<!-- exit the current iw_iterate loop -->

</iw_then>
</iw_if>

</iw_iterate>

Example 2
<iw_iterate var ='some_xxx_element'

list ='(@xxx)'
iteration ='nrow'
label ='moo'>

<iw_iterate var='some_yyy_element' list='(@yyy)' >
<iw_if expr=' {iw_value name="nrow"/} == 3 ' >

<iw_then>
<iw_last label='moo'/> <!-- deeply nested! -->

</iw_then>
</iw_if>

...do some arbitrary stuff...
</iw_iterate>

</iw_iterate> <!-- you can directly jump here -->
104 TeamXpress Templating and Deployment Guide

Custom XML Tags
<iw_next>

The <iw_next> tag is used for skipping to the next iteration of a (possibly labeled) loop. It allows the
flow of control to skip to the next element of the current loop tag (for example, <iw_iterate>) if
no explicit label is given.

Attributes

The <iw_next> tag has one optional attribute, label.

label='label' Allows the flow of control to jump outside of the current loop tag (for
example, <iw_iterate>) if no explicit label is given. If a label is
given that corresponds to a loop label set up in <iw_iterate> or
elsewhere, then the flow of control passes to immediately outside that
labeled loop. This is useful if you must exit a deeply nested looping
structure.

Example 1
<iw_iterate var='Sect' list='dcr.Section' iteration='iter_sect'>

<iw_if expr=' {iw_value name="iter_sect"/} == 3 ' >
<iw_then>

<iw_next/> <!-- skip item 3 -->
</iw_then>

</iw_if>
</iw_iterate>

 Example 2
<iw_sql_iterate result_set = 'hulas'

var = 'current_dance'
iteration = 'nrow'
label = 'hula_loop'>

<iw_if expr=' {iw_value name="nrow"/} == 3 ' >
<iw_then>

<!-- skip item 3 (using optional explicit loop name!) -->
<iw_next label='hula_loop'/>

</iw_then>
</iw_if>

</iw_sql_iterate>
105

Setting Up Presentation Templates
<iw_perl>

The <iw_perl> tag can be used to insert arbitrary Perl code into the presentation template. It has no
attributes. The actual Perl code must be inside a CDATA section.

• Arbitrary strings may be created as a part of the presentation template's output. For example:

my $first_name = 'Jon';
iwpt_output("Hi there $first_name");

• Scalars within a data content record may be accessed. For example:

my $headline = iwpt_dcr_value('dcr.Headline');

• Lists within a data content record may be traversed/accessed. For example:

foreach my $para_iter
(iwpt_dcr_list('dcr.Story.Section Paragraphs[1].Paragraphs'))

{
my $paragraph = iwpt_dcr_value('para_iter') ;
iwpt_output("here is a paragraph:\n$paragraph\n");

}

• Any scalar variable created within an <iw_perl> tag is accessible via the <iw_value> tag. See
<iw_value> for details.

• The code created by the <iw_perl> tags and the other tag types forms a single program. This
program is what generates the output of iwpt_compile.ipl, which is typically an HTML file
(see Appendix B, “Using Command-Line Tools”).

Therefore, if you set a variable in one <iw_perl> section, it is available in subsequent
<iw_perl> tags as long as it is in scope. If you define a subroutine anywhere, it is accessible
everywhere.

APIs
• iwpt_output ($string)

iwpt_output ($string,$ienc)

Outputs $string to the generated page. If the optional $ienc parameter is given, you may
specify the current encoding scheme used by $string, thus allowing it to be properly UTF-8
normalized (UTF-8 normalization must occur even if the final output is not UTF-8).

• iwpt_dcr_value($accessor_string)

Fetches the value of a DCR node. If no such node exists, undef is returned.
106 TeamXpress Templating and Deployment Guide

Custom XML Tags
• iwpt_dcr_list($accessor_string)

Fetches a list of DCR nodes.
• iwpt_get_flag_param($flag)

Gets the list of values associated with an iwpt_compile.ipl command-line flag.
• iwpt_get_ofile_name()

iwpt_get_ofile_name($part)

Gets the name of the file that iwpt_compile.ipl will output.

If $part is undefined, the entire file name is returned.

If $part is 'dirname', the directory portion of the name is returned.

If $part is 'basename', the file name (minus the dirname) is returned.
• iwpt_get_dcr_name()

iwpt_get_dcr_name($part)

Gets the name of the DCR used by iwpt_compile.ipl.
• iwpt_get_pt_name()

iwpt_get_pt_name($part)

Gets the name of the presentation template used by iwpt_compile.ipl.

See corresponding TeamSite::PT::iw_xml docs for: get_ofile_name, get_flag_param,
get_dcr_name, get_pt_name.

Example
<iw_pt>

... whatever...

<iw_perl><![CDATA[

access a DCR value
my $headline = iwpt_dcr_value('dcr.Headline');
my $headline = iwpt_dcr_value('dcr.Headline[0]');
my $headline = iwpt_dcr_value('dcr.Headline[1]');

Let's perform what could be an arbitrarily
complex manipulation of a value. The next line
of code makes our headline all upper-case!
107

Setting Up Presentation Templates
$headline = uc $headline;

now emit it!
iwpt_output(" <h3>Manipulated content:</h3>

<h2> $headline </h2>
"

);

We can do anything at all in here, and then
manually push our "output" into the page produced
by the presentation-template engine. In fact, our
entire presentation template can be a single iw_perl
tag if we wish!

for (my $i=0; $i<10; ++$i)
{

iwpt_output("\nYou are on Diet Coke number: $i\n");
}

iwpt_output("<h3>Looping over multiple DCRs:</h3>\n");

#--+
Warning: Multiple DCRs are not supported in this version due |
to limitations in the GUI and in iwgen/iwregen. |
|
To iterate through multiple DCRs, loop over the |
top-level property, 'dcr'. Recall that 'dcr.xyz' |
is implicitly the 'xyz' property of dcr[0]; 'dcr[0].xyz' |
means the same thing as 'dcr.xyz'. Therefore, a bare |
'dcr' is the list of all DCRs available. |
|
NOTE: Follow the arrows to understand the relationship |
between <iw_perl>'s API for DCRs and the |
<iw_iterate> & <iw_value> tags. |
#--+

foreach my $index (iwpt_dcr_list('dcr'))
{

^ ^
| |
108 TeamXpress Templating and Deployment Guide

Custom XML Tags
| |
+-------------------+ +-------+
| |
| |
| V
<iw_iterate var='index' list='dcr'>
|
<iw_value name='index.Headline'/>
|
</iw_iterate> |
|
V

my $head = iwpt_dcr_value('index.Headline') ;

iwpt_output("
DCR headline:

<h2> $head </h2>

<p>
"

);

}
iwpt_output("\n <hr> \n");

]]></iw_perl>

... whatever...
</iw_pt>
109

Setting Up Presentation Templates
<iw_pt>

The <iw_pt> tag identifies a file as a presentation template and specifies the template’s name. The
<iw_pt> tag must enclose the entire presentation template except the XML declaration. It must be
used exactly once in a presentation template containing tags derived from iw_xml.

For information on iw_pt flags, see “iwpt_compile.ipl” on page 372.

Example

The following code shows correct usage of the <iw_pt> tag:

<?xml version="1.0" standalone="yes"?>
<iw_pt>
...
</iw_pt>

The following code shows incorrect usage of the <iw_pt> tag:

<?xml version="1.0" standalone="yes"?>
<iw_repeat count=2> ... </iw_repeat>
<iw_pt>
...
</iw_pt>
110 TeamXpress Templating and Deployment Guide

Custom XML Tags
<iw_repeat>

The <iw_repeat> tag allows you to repeat the content contained within the <iw_repeat> tag a
given number of times. You may nest other iw_xml tags within the <iw_repeat> tag.

Attributes

This tag has one optional attribute, count.

count='number' Specifies the number of times to repeat the content.

Example

The following example repeats the string “Hello! ” six times in the generated HTML files:

<iw_repeat count="6">Hello! </iw_repeat>

The result of this code is:

Hello! Hello! Hello! Hello! Hello! Hello!
111

Setting Up Presentation Templates
<iw_sql_iterate>

The <iw_sql_iterate> tag is used to iterate SQL result sets. See also <iw_sql_query> on
page 118.

Attributes

The <iw_sql_iterate> tag has two mandatory attributes, result_set and var, and two optional
attributes, iteration and label.

var='variable' Specifies the iterator variable that contains the current value within the
result_set (Example 1).

result_set='name' Specifies the name of the SQL query result set being iterated through.
Similar to the list attribute of <iw_iterate>.

iteration='counter_name' Overrides the name of the counter used by tags like <iw_if> to
determine how many elements within the result set have been iterated
through so far. The default counter name is iw_sql_iteration.

It is occasionally useful to override the default name if you wish to nest
<iw_sql_iterate> tags and use conditional logic that depends on
the values of outer and inner loop counters within the innermost
looping structure. See <iw_iterate> (page 99) for details.

label='label' Allows <iw_next> (page 105) and <iw_last> (page 104) to jump
out of deeply nested looping structures.
112 TeamXpress Templating and Deployment Guide

Custom XML Tags
Note: When the iw_value tag accesses a column within an SQL row, it does so like this:

<iw_value name='$current_hat->{hat_size}'/>

Here, the var for the result_set "hats" is named "current_hat" (current_hat
corresponds to a database row).

Even if a column in the database is specified in upper case, it is always accessed via lower case
within presentation templates (this eliminates database-to-database inconsistencies in the way
case conversion is handled). For example, whether the hat_size column is present in the
database as Hat_Size or HAT_SIZE, templates will refer to the database column as
hat_size.

Example 1
<iw_sql_open data_source = "dbi:mysql:iw_demo"

user_name = "root">
<iw_sql_query stmt = 'select * from customer'

result_set = 'all_customers' />
<iw_sql_iterate var ='current_customer'

result_set ='all_customers'
iteration ='nrow'>

Here is a customer's first name in the database:
<iw_value name='$current_customer->{first_name}'/>
It was on row: <iw_value name='$nrow'/>

</iw_sql_iterate>
</iw_sql_open>

Example 2
<iw_sql_iterate var='current_person' result_set='people'

label='outerloop'>

<iw_value name='$current_person->{hat_size}'/>

<iw_sql_iterate var='current_hat' result_set='hats'
iteration='nhats'>

<iw_if expr='{iw_value name="nhat"/} == 13'>
<iw_then>

<!-- you can exit out of multiple levels! -->
113

Setting Up Presentation Templates
<iw_last label='outerloop'/>
</iw_then>

</iw_if>
This hat is of size: <iw_value name='$current_hat

->{hat_size}'/>
</iw_sql_iterate>

</iw_sql_iterate>

Note: On Windows NT/2000 systems, the iw_sql template tags require a database source name
(DSN) to be configured using the ODBC control panel. The Default Network for the DSN
should be set to TCP/IP rather than Named Pipes in order for Generate HTML or template
preview to connect to the database. From the ODBC control panel, click the System DSN
tab, select LocalServer, click Configure, click Next, and click Client Configuration. In the
SQL Server Client Configuration Utility window, select the Net Library tab, and replace
Named Pipes with TCP/IP.
114 TeamXpress Templating and Deployment Guide

Custom XML Tags
<iw_sql_open>

The <iw_sql_open> tag is used to open a database connection.

Attributes

The <iw_sql_open> tag has one required attribute, data_source, and five optional attributes,
user_name, connection, password, aux_env, and attr.

data_source='string' Specifies the DBI/DBD connection string used to specify the database
and schema to which a connection is being made.

user_name='name' Specifies the account name used to make the database connection.

password='password' Specifies the authorization information for user_name.

connection='name' Specifies the name of the SQL connection. Defaults to
iw_sql_connection. Explicitly naming the connection is useful if
you wish to have multiple database connections open simultaneously
(Example 2).

Note: When an <iw_sql_query> is using a database connection that
is not the default (iw_sql_connection), it must provide the
connection name explicitly.

aux_env='variable' Specifies the auxiliary environment variables needed to make the
connection. Most database drivers do not need this, but Oracle
requires ORACLE_HOME and ORACLE_SID to be set (Example 3).

attr='attribute' Specifies the auxiliary DBI/DBD flags for the database.
Default values:

" PrintError => 0,
RaiseError => 0,
AutoCommit => 1,
LongTruncOk => 1,
LongReadLen => 3200,
ChopBlanks => 1,

"

115

Setting Up Presentation Templates
Each key, value pair that you supply overrides the corresponding
default. For example: attr = "ChopBlanks => 0,

LongReadLen => 64000" results in:

" PrintError => 0,
RaiseError => 0,
AutoCommit => 1,
LongTruncOk => 1,
LongReadLen => 6400,
ChopBlanks => 0,

"

Note: For information on Perl DBI/DBD, see Programming the Perl DBI by A. Descartes and T.
Bunce, published by O’Reilly & Associates, ISBN: 1-56592-699-4.

Example 1
<iw_sql_open data_source = "dbi:mysql:iw_demo">

<iw_sql_query stmt = 'select * from customer'
result_set = 'all_customers' />

<iw_sql_iterate var ='current_customer'
result_set ='all_customers'
iteration ='nrow'>

Here is a customer's first name in the database:
<iw_value name='$current_customer->{first_name}'/>
It was on row: <iw_value name='$nrow'/>

</iw_sql_iterate>
</iw_sql_open>

Example 2
<iw_sql_open data_source = "dbi:mysql:iw_demo"

user_name = "root"
password = "rumplestiltskin"
connection = 'dbh'
attr = "RaiseError=> '0',

AutoCommit=> '1'">
<iw_sql_query stmt = 'select * from customer'

connection = 'dbh'
result_set = 'sth'/>
116 TeamXpress Templating and Deployment Guide

Custom XML Tags
<iw_sql_iterate var='row' result_set='sth' >
<iw_value name='$row->{property}'/>

</iw_sql_iterate>
</iw_sql_open>

Example 3
<iw_sql_open data_source = "dbi:Oracle:"

user_name = "system"
password = "manager"
aux_env = "ORACLE_HOME => '/opt/oracle/805',

ORACLE_SID => 'newton'" >

<iw_sql_iterate var ='current_customer'
result_set ='all_customers'
iteration ='nrow'>

Here is a customer's first name in the database:
<iw_value name='$current_customer->{first_name}'/>

It was on row: <iw_value name='$nrow'/>

</iw_sql_iterate>
</iw_sql_open>
117

Setting Up Presentation Templates
<iw_sql_query>

The <iw_sql_query> tag is used for querying an SQL database.

Attributes

The <iw_sql_query> tag has two required attributes, stmt and result_set, and one optional
attribute, connection.

stmt ='query' Specifies the SQL query being issued. The results of this query are
stored in result_set. If {iw_value name='...'/} appears
within the SQL statement, variable substitution takes place (see
<iw_value> page 122).

Example 3 demonstrates both the use of {iw_value name='...'/}
and placing the query stmt within the body of the <iw_sql_query>
tag. This is useful when you have a long query and placing it in the
attribute list is awkward. The statement may be supplied in an
attribute list or the tag body.

result_set='name' Specifies the name of the SQL query result set into which the database
will return all rows matching the request.

connection='name' Specifies the name of the SQL connection. Defaults to
iw_sql_connection. Explicitly naming the connection is useful if
you wish to have multiple database connections open simultaneously
(Example 2).

Note: When an <iw_sql_query> is using a database connection that
is not the default (iw_sql_connection), it must provide the
connection name explicitly.

Example 1
<iw_sql_open data_source = "dbi:mysql:iw_demo"

user_name = "root">
<iw_sql_query stmt = 'select * from customer'

result_set = 'all_customers' />
<iw_sql_iterate var ='current_customer'

result_set ='all_customers'
118 TeamXpress Templating and Deployment Guide

Custom XML Tags
iteration ='nrow'>

Here is a customer's first name in the database:
<iw_value name='$current_customer->{first_name}'/>
It was on row: <iw_value name='$nrow'/>

</iw_sql_iterate>
</iw_sql_open>

Example 2
<iw_sql_open connection = 'dbh'

data_source = 'dbi:mysql:iw_demo'
user_name = 'root'
auth = 'rumplestiltskin'
attr = 'RaiseError , 1,

AutoCommit , 1 '>

<iw_sql_query stmt = 'select * from customer'
connection = 'dbh'
result_set = 'rs'/>

<iw_sql_iterate var='row' result_set='rs'>
<iw_value name='$row->{property}'/>

</iw_sql_iterate>

</iw_sql_open>

Example 3
<iw_sql_open data_source = "dbi:mysql:iw_demo"

user_name = "root">

<iw_sql_query result_set = 'folks_from_a_company'>
select * from customer
where company
like "{iw_value name='$iw_arg{company_name}'/}"

</iw_sql_query>

... whatever...

</iw_sql_open>
119

Setting Up Presentation Templates
<iw_system>
The <iw_system> tag inserts the output of an external program into the generated page.

Attributes

The <iw_system> tag has one mandatory attribute, command, and one optional attribute, ienc.

command='command' Specifies the command line to be executed. The output of this
command is inserted into the generated HTML page.

ienc='encoding' Specifies encoding. When the result of the command line's execution is
non-UTF-8 data, its encoding must be specified via the ienc attribute.

Example

The following example shows proper usage of the command attribute.

<iw_system command='ls -l'/>
120 TeamXpress Templating and Deployment Guide

Custom XML Tags
<iw_then>

The <iw_then> tag is used for conditional inclusion of contents. It is used with the <iw_if> tag
(page 89) and provides contents to be included if the <iw_if> tag is true. The <iw_else> tag
(page 88) is also used and provides the contents if the <iw_if> tag is false.

Examples

The following examples take this form:

<iw_if expr=' some logical condition ' >

<!-- optional then clause (only included when iw_if is true) -->
<iw_then>...</iw_then>

<!-- optional else clause (only included when iw_if is false) -->
<iw_else>...</iw_else>

</iw_if>

Example 1
<iw_if expr=' {iw_value name="$iw_arg{moo}"/} eq "cow" ' >

<iw_then>
do this if the condition is true

</iw_then>
<iw_else>

do this if the condition is false
</iw_else>

</iw_if>

Example 2
<iw_if expr=' ({iw_value name="dcr.xyz"/} > 42)

({iw_value name="$iw_arg{pdq}"/} < 99)
'>

<iw_then>
do this if the condition is true

</iw_then>
</iw_if>
121

Setting Up Presentation Templates
<iw_value>

The <iw_value> tag allows you to insert a Perl value or a value from a data content record where
this tag appears.

Attributes

The <iw_value> tag has one required attribute, name, and one optional attribute, ienc.

name='variable_name' Specifies the name of the value being put into the generated document.
If variable_name begins with a letter or underscore, the variable
being referred to resides in a data content record. If variable_name
is undefined, a 0-length string is inserted.

ienc='encoding' Specifies current encoding (input encoding) when the variable
specified by the name attribute is not UTF-8 normalized. Mandatory
when name is not UTF-8 normalized. ienc is useful when collecting
data from sources other than data content records (for example, a
database whose content is encoded in BIG5).

name corresponds to

dcr.x.y y component of top-level DCR/XML node x

hen.egg the egg XML node within the hen node

cow@moo moo attribute of DCR/XML node cow

z the Perl variable $z

$z the Perl variable $z

(....) the result of the Perl expression
122 TeamXpress Templating and Deployment Guide

Custom XML Tags
Example 1

If the value of the 0th headline in a data content record is “Dewey Wins!”, the following:

Flash: <iw_value name='dcr.Headline'/> Read all about it!

 compiles into:

 Flash: Dewey Wins! Read all about it!

Example 2

Every component within a data content record may have a list of subcomponents. Therefore, all
references to subcomponents within a data content record, denoted by “.” (a period) in the name
attribute, are implicitly subscripted by [0] unless an explicit subscript is provided.

<iw_value name='dcr.hen.egg'/>

 is the same as:

<iw_value name='dcr[0].hen[0].egg[0]'>

This means that the <iw_value> tag supports immediate access into any part of a data content
record.

Example 3

If the variable_name begins with a $, the data being referred to is a Perl scalar.

Therefore, if the value of the Perl variable $person is Jon, the following line:

Hi there <iw_value name='$person'/>, how are you?

compiles into:

Hi there Jon, how are you?
123

Setting Up Presentation Templates
If the variable_name is surrounded by parentheses, it is treated like a Perl expression, which makes
it easy to call functions and evaluate formulas inline. Therefore:

A day has <iw_value name='(60*60*24)'/> seconds

compiles into:

A day has 86400 seconds!

Example 4

In cases where name consists only of a letter or underscore followed by letters, digits, and/or
underscores, preceding it by a single $ does not matter. Therefore, when this code is used:

<iw_perl><![CDATA[$person = 'Jon';]]></iw_perl>

the following two lines result in equivalent name values:

<iw_value name='$person'/>
<iw_value name='person'/>

However, the following line is illegal:

<iw_value name='$x.y'/>

because the $ implies that x.y is a Perl variable— x.y is not a legal Perl variable name!

Example 5

By default, the value of an XML node is the value of the 0th character data component of the node.
You may explicitly change this default.

Given XML like this:

<?xml version="1.0" encoding="UTF-8"?>
<hen>

<egg>this <yolk>is an </yolk>advanced</egg>
<egg>example <yolk>involving </yolk>explicit</egg>
<egg>character data <yolk>accessor </yolk>strings!</egg>

</hen>
124 TeamXpress Templating and Deployment Guide

Custom XML Tags
the following line:
<iw_value name='dcr.hen.egg[1]'/>

emits example , as does this:
<iw_value name='dcr.hen.egg[1].character data[0]'/>

However this line:
<iw_value name='dcr.hen.egg.character data[1]'/>

emits advanced and this line:
<iw_value name='dcr.hen.egg[2].character data[1]'/>

emits strings!

Example 6

The <iw_value> tag is unusual because it has two distinct forms:

 <iw_value name='...' />

 and when in a CDATA section, or in various attributes of certain tags,

 {iw_value name='...'/}

 The second form exists because XML does not allow tags inside of attribute lists; however, sometimes
this is what you need to make coding simpler. Therefore, the following line is permissible:
<iw_if expr=' {iw_value name="$nrow"/} == 3' > ...

Example 7

Both the <iw_value name='...'/> tag form and the {iw_value name='...'/} tag form
work within CDATA sections. This makes it easy to do things like emit values within a CDATA section
containing HTML, as shown in the following code:

<some_arbitrary_tag><![CDATA[

It's ok to use the value tag inside a CDATA section
<iw_value name='dcr.x.y'/> this works!
{iw_value name='dcr.x.y'/} this does too (it means the same thing)!

<p>
That was fun!

]]>
</some_arbitrary_tag>
125

Setting Up Presentation Templates
Synopsis
<iw_pt>

Explicit dcr value: <iw_value name='dcr.stuff[0]'/>

Explicit dcr value: <iw_value name='dcr.stuff[1]'/>

Implicitly specified dcr value: <iw_value name='dcr.stuff'/>
(note: the default index is always 0).

Access a DCR value through an iterator variable ('current_dcr'):

<iw_iterate list='dcr' var='current_dcr'>
<iw_value name='current_dcr.Headline'/>

</iw_iterate>

Access Perl data from XML:

<iw_perl><![CDATA[

$jcox_haiku = "Coffee overload \n" .
"Roller-coaster dosage ride \n" .
"Fast, slow, giddy , low. \n" ;

$data_encoded_in_BIG5 = '... big5 content...';

]]></iw_perl>

<iw_value name='$jcox_haiku'/>
<iw_value name='$data_encoded_in_BIG5' ienc='BIG5'/>

</iw_pt>
126 TeamXpress Templating and Deployment Guide

Writing Your Own Tags
Writing Your Own Tags

If the provided iw_xml tags do not satisfy your needs, it is possible to write your own custom XML
tags. However, this is an advanced exercise.

For assistance in debugging tags and presentation templates, use the -ocode flag on the
iwpt_compile command. Additional debugging help is available with the command /iw-home/
iw-perl/bin/iwperl -w. You can invoke a graphical interface with the command /iw-home/
iw-perl/bin/iwperl -d:ptkdb.
127

Setting Up Presentation Templates
128 TeamXpress Templating and Deployment Guide

Chapter 5

Mapping Users, Templates,
and Content Records
This chapter describes how the templating.cfg file maps the interaction between content
contributors, data capture templates, presentation templates, and data content records. Sections in
this chapter discuss the following:

• An overview of templating.cfg.

• Pointers to sample templating.cfg files that are included with this release of TeamXpress
Templating.

• An example of a templating.cfg file.

• The templating.cfg DTD.

templating.cfg Overview

The templating.cfg file is an XML file that resides outside of the TeamXpress file system in
iw-home/local/config. Each TeamXpress Templating installation must have exactly one such
file. By configuring templating.cfg, you can control:

• Which data categories and types TeamXpress Templating is aware of.

• Which presentation templates can generate HTML files on which branches and/or directories.

• Which presentation templates can be used with a specific data type.

• Which users or roles are allowed to create or edit data content records for a specific data type.

• The location of the presentation template used for previewing generated HTML files.

The following sections describe how to perform these configurations.
129

Mapping Users, Templates, and Content Records
Example templating.cfg File

TeamXpress Templating ships with the following sample templating.cfg file:

iw-home/examples/Templating/config/templating.cfg.example

This is the templating.cfg file that configures the example templating environment described in
Chapter 2, “Initial Configuration.” It configures TeamXpress Templating to recognize and use the
following data categories/types:

custom-dtd-example/PressRelease
intranet/deptinfo
intranet/weather
internet/careers
internet/auction
internet/pr
internet/book
internet/medical
internet/periodic

The following section shows a subset of this file with sections for the PressRelease, deptinfo,
weather, careers, and auction data types.

See the diagram key on page 132 for details about each item referenced in the following diagram.

<?xml version="1.0" encoding= "UTF-8"? standalone="no"?>
<!DOCTYPE templating SYSTEM "templating4.5.dtd">

<templating>
<category name="custom-dtd-examples">

<locations>
<branch vpath-regex=".*" />

</locations>
<data-type name="PressRelease" dcr-type="xml"/>

<presentation/>
<data-type/>

Templating Element 1

Data Category Section 2

Data Type Section 3
130 TeamXpress Templating and Deployment Guide

Example templating.cfg File
</category>
<category name="intranet">

<locations>
<branch vpath-regex=".*" />

</locations>
<data-type name="deptInfo" dcr-type="iwov">

<presentation>
<template name="deptInfo.tpl" extension="html">

<locations>
<branch vpath-regex=".*" preview-dir="/">

<directory dir-regex=".*" />
</branch>

</locations>
</template>

</presentation>
</data-type>
<data-type name="weather" dcr-type="iwov">

<presentation>
<template name="weather.tpl" extension="html">

<locations>
<branch vpath-regex=".*" preview-dir="/">

<directory dir-regex=".*" />
</branch>

</locations>
</template>

</presentation>
</data-type>

</category>
<category name="internet">

<locations>
<branch vpath-regex=".*" />

</locations>
<data-type name="careers" dcr-type="iwov">

<presentation>
<template name="jobDesc.tpl" extension="html">

<locations>
<branch vpath-regex=".*" preview-dir="/">

<directory dir-regex=".*" />
</branch>

</locations>
</template>

Data Category Section 2

Data Type Section 3

Presentation Template Section 4

Template to Data
Type Mapping5

Template to Generated
File Mapping 6

Generated HTML File
Location 7
131

Mapping Users, Templates, and Content Records
</presentation>
</data-type>
<data-type name="auction" dcr-type="iwov">

<presentation>
<template name="auction.tpl" extension="html">

<locations>
<branch vpath-regex=".*" preview-dir="/">

<directory dir-regex=".*" />
</branch>

</locations>
</template>

</presentation>
</data-type>

</category>
</templating>

Diagram Key

1. Templating Element: The <templating> element marks the beginning of the
templating.cfg file’s configuration information and identifies the file as a templating.cfg
file.

2. Data Category Section: The <category> element contains information specific to a data cate-
gory (intranet in this example) and makes the data category available for use by TeamXpress
Templating. The <category> element contains one or more <data-type> elements. A data cat-
egory must have its own <category> element in templating.cfg in order for TeamXpress
Templating to recognize and use the data category. Even if a data category is located correctly in the
directory structure described on page 21, it will not be recognized by TeamXpress Templating
unless it is named in a <category> element as shown here. The <category> element’s name
attribute is required. You can use the <locations> element within a <category> element to
show the branches in which that category will be available. This example shows that intranet
category will be available in all branches.

3. Data Type Section: The <data-type> element contains information specific to a data type
(careers in this example) and makes the data type available for use by TeamXpress Templating. A
data type must have its own <data-type> element in templating.cfg in order for TeamX-
press Templating to recognize and use the data type. Even if a data type is located correctly in the
directory structure described on page 21, it will not be recognized by TeamXpress Templating
132 TeamXpress Templating and Deployment Guide

Example templating.cfg File
unless it is named in a <data-type> element as shown here. The attributes for <data-type>
are name and dcr-type. The <data-type> element’s name attribute is required. The dcr-
type specifies what kind of DCR to write out. The values are xml and iwov; the default is iwov.
If the value of dcr-type is xml:

– The data capture template for that data type needs to have been generated using iwdtd2sym and
iwsym2dct.

– The data content records for that data type will be XML documents written according to the
DTD that the data capture template was derived from.

– You must use the Java-based interface. See “Modifying the TeamXpress iw.cfg File” on page 32
for information on enabling it.

The <data-type> element can contain the following subelements:

– <locations>: Shows the branches in which that data type will be available.

– <presentation>: See Item 4 below.

– <allowed>: Lets you set an ACL to specify which users can or cannot use a specific data type. If
<allowed> is not set, any user can use the data type (see page 53 for additional examples). The
<allowed> element can have any of the following subelements:

<cred>: Lets you name a user or role in the ACL (e.g.,
user="joe" or role="master").

<and>: Logical and statement for grouping ACL credentials.

<or>: Logical or statement for grouping ACL credentials.

<not>: Logical not statement for negating ACL credentials.
For example, the following allows all users except
joe to use the current instance:

<allowed>
<not>

<cred user="joe">
</cred>

</not>
</allowed>

4. Presentation Template Section: The <presentation> element marks the beginning of the
section that contains subelements for presentation template mapping. See Items 5, 6, and 7 below.
133

Mapping Users, Templates, and Content Records
5. Template to Data Type Mapping: The <template> element marks the beginning of the sec-
tion that maps a presentation template to a data type. It specifies which presentation templates are
available for use with the data type named in the <data-type> element. In the example shown
here, the deptInfo.tpl template can be used to display data content records for the deptinfo
data type. The <template> element can contain the following attributes:

– extension: Specifies the extension that will be used on any files this template generates. This
attribute is required.

– fullpage: Specifies that the generated HTML file is a full atomic HTML page. This attribute is
optional.

– name: Specifies the presentation template’s file name in the workarea_name/templatedata/

data_category/data_type/presentation directory. This attribute is required.

6. Template to Generated File Mapping: The <branch> element uses Perl regex (Perlre) syn-
tax to specify on which branches a presentation template can generate a file. The <branch> ele-
ment can have the following attributes:

– vpath-regex: Specifies on which branch(es) files can be generated via this presentation
template. The example shown here (".*") specifies that all branches can have files generated via
the deptInfo.tpl presentation template.

– preview-dir: Specifies what directory (in an area of a branch) generated files will be
previewed in when you preview a data content record (via the TeamXpress GUI’s Save and
Preview button).

7. Generated HTML File Locations: The <directory> element uses regex syntax to specify
where generated HTML files based on this presentation template will reside. This example speci-
fies that generated HTML files based on jobDesc.tpl will reside in the current directory (.*).

The <directory dir-regex="..." /> regular expression matches a directory relative to the
user's workarea. Because the string that is matched against the regex does not begin with a slash, it
is possible for the string to be empty (i.e., when the directory in question is the top of the
workarea, then an empty string will be matched against the regex).

When Generate/Preview is selected when you are creating or editing a data capture form, only
Presentation Templates with a dir-regex entry that matches the workarea root, as identified by
the <directory> element, appear on the Presentation Template selection list.
134 TeamXpress Templating and Deployment Guide

Example templating.cfg File
Setting Previewing Path Variables

The following example describes what happens when a user previews a generated HTML file in
TeamXpress Templating.

If the file is specified with an absolute path (e.g., href=/main/dev/images/pixel.gif), the
browser searches the absolute path.

The way to configure TeamXpress Templating so that the correct directory is searched is to set
preview-dir in the templating.cfg file to point to the directory containing the file. For
example, set the preview-dir variable to /images if pixel.gif resides in /images. Then
pixel.gif will be found and displayed during the preview.

To summarize the preview results:

• If the line href=pixel.gif appears in the presentation template and the directory containing
pixel.gif is named with the preview-dir variable in templating.cfg, pixel.gif will
be included in the preview.

• If the line href=absolute_path_name/pixel.gif, the file pixel.gif will be included in
the preview.

The preview-dir variable (in the templating.cfg file) associated with each presentation
template defines the directory where the preview file will virtually exist during preview time. When a
preview occurs, a temporary file is created in the templatedata/iw_preview directory.
However, when a browser is opened and directed to the preview file, the URL that the browser
points to is the URL for the preview file in the directory defined in preview-dir. During the
preview, a proxy remap occurs, remapping the directory specified in the preview-dir variable to
the templatedata/iw_preview directory. In this way, a preview file can have a virtual location
other than its true location. These temporary files are deleted by the previewing system, based on the
file’s modification time. The default is files that have not been modified in the last 60 minutes are
deleted at preview time. If you do not do another preview, the files will not be deleted. You can
change the time in the iw.cfg file (see “Saving Preview Files” on page 32).
135

Mapping Users, Templates, and Content Records
templating.cfg DTD

<!ELEMENT templating (category*) >

<!ELEMENT category (locations?,data-type*) >
<!ATTLIST category

name CDATA #REQUIRED
>

<!ELEMENT data-type (locations?,allowed?,presentation+) >
<!ATTLIST data-type

name CDATA #REQUIRED
dcr-type (iwov|xml) "iwov"
>

<!ELEMENT presentation (template*) >

<!ELEMENT template (locations) >
<!ATTLIST template

name CDATA #REQUIRED
fullpage t|f) "f"
extension CDATA #REQUIRED
>

<!ELEMENT locations (branch+) >

<!ELEMENT branch (directory*) >
<!ATTLIST branch

vpath-regex CDATA #REQUIRED
preview-dir CDATA #IMPLIED
>

<!-- 'branch' elements should only contain 'directory' elements
when they are within a 'template' element.
The 'preview-dir' attribute is required when the 'branch' element
is within a 'template' element. -->

<!ELEMENT directory EMPTY >
<!ATTLIST directory

dir-regex CDATA #REQUIRED
>

136 TeamXpress Templating and Deployment Guide

templating.cfg DTD
<!-- This is the same stuff as datacapture4.5.dtd: -->

<!ELEMENT allowed (cred|and|or|not) >

<!ELEMENT cred EMPTY >
<!ATTLIST cred

role CDATA #IMPLIED
user CDATA #IMPLIED
>

<!ELEMENT and (cred|and|or|not)+ >

<!ELEMENT or (cred|and|or|not)+ >

<!ELEMENT not (cred|and|or|not) >
137

Mapping Users, Templates, and Content Records
138 TeamXpress Templating and Deployment Guide

Chapter 6

Integrating Templating,
DataDeploy, and Workflow
This chapter describes how to integrate TeamXpress Templating with DataDeploy and TeamXpress
workflow. Integrating these components lets a content contributor access a data capture template,
create a data content record, and deploy the data content record’s extended attributes to a database via
a TeamXpress workflow job. All of these activities take place as a single, integrated sequence of steps
initiated and executed from the TeamXpress GUI. The entire DataDeploy process runs as a
TeamXpress workflow job, so the content contributor does not need to start DataDeploy manually, or
even be aware that DataDeploy is running.

Note: The configuration steps described in this chapter assume that TeamXpress Templating is already
installed and configured as described in Chapter 2, “Initial Configuration.” DataDeploy must also be
installed on your system.

Refer to the TeamXpress User’s Guide for information on using templating. Refer to the TeamXpress
Administration Guide for information on setting up TeamXpress.

Integration Overview

The following steps show the process flow for creating, saving, submitting, and deploying a data
content record when TeamXpress Templating and DataDeploy are integrated.

1. In the TeamXpress GUI, a content contributor selects File > New Data Record, chooses a data
type, and enters data in the resulting data capture form.

2. The content contributor selects File > Save in the data capture form.
139

Integrating Templating, DataDe-
ploy, and Workflow
3. In the TeamXpress GUI, the content contributor navigates to the data type’s data directory,
selects a data content record, and clicks Submit. Templating can be configured to automatically
initiate a workflow process upon Save as a convenience to the end user. This can be done in
available_templates.ipl (see “Editing available_templates.ipl to Initiate Workflows” on
page 31).

4. DataDeploy is automatically signaled to perform the following functions:

– Determine which data types are affected by the data content record change.

– Read in all necessary database mapping information from DataDeploy configuration files.

– Populate the database with some or all of elements of the data content record, based on the
mapping file.

– Write a log of all DataDeploy activity to the dd-home/log file.

Integration Steps

The following sections describe the configuration steps you must perform on TeamXpress Templating,
TeamXpress workflow, and DataDeploy to integrate them for your specific templating environment.

Integration Steps: TeamXpress Templating

Installing and setting up TeamXpress Templating as described in Chapter 2, “Initial Configuration,”
prepares TeamXpress Templating for integration with DataDeploy and TeamXpress workflow. You do
not need to perform any additional tasks on TeamXpress Templating to enable integration.

Integration Steps: DataDeploy

A DataDeploy configuration file must be created for each type of data content record that will be
deployed. DataDeploy generates these configuration files automatically. However, the information is
provided here for your information. For example, to use DataDeploy to deploy a data content record
that is based on the data capture template /templatedata/beverages/tea/
datacapture.cfg, a DataDeploy configuration file must be created specifically for the data type
tea. Likewise, to deploy a data content record based on /templatedata/beverages/coffee/
datacapture.cfg, a DataDeploy configuration file must be created specifically for the data type
coffee.
140 TeamXpress Templating and Deployment Guide

Integration Steps
By default, DataDeploy configuration files for TeamXpress Templating use the following location and
naming conventions:

workarea_name/templatedata/data-category/data-type/data-type_dd.cfg

For example:

/workarea_name/templatedata/beverages/tea/tea_dd.cfg

Or, in the case of the Press Release example shown in “Data Capture Example 1” on page 39:

/workarea_name/templatedata/internet/pr/pr_dd.cfg

Refer to Appendix C, “DataDeploy Database Auto-Synchronization” for information on creating the
DataDeploy configuration files and the database tables.

Integration Steps: TeamXpress Workflow

This release of TeamXpress Templating supports a preconfigured templating-specific workflow
template, author_submit_dcr.wft. This file is distributed with TeamXpress Templating in
iw-home/examples/Templating/workflow. It configures the Author DCR Submit workflow
job displayed in the New job window when TeamXpress Templating starts a workflow job. Check the
available_templates.ipl to verify that the workflow is set up and to add additional workflows.
See Chapter 5 of the TeamXpress Administration Guide for an example of the TeamXpress GUI’s New job
window.
141

Integrating Templating, DataDe-
ploy, and Workflow
142 TeamXpress Templating and Deployment Guide

Section 2: DataDeploy
Administration
• Overview and Installation

• Deployment Concepts

• Configuration File Details and Examples

• Invoking DataDeploy

• Synchronizing OpenDeploy and Data Deploy

144
 TeamXpress Templating and Deployment Guide

Chapter 7

Overview and Installation

Overview

DataDeploy lets you transfer extended attribute data between TeamXpress, an external SQL database,
and an XML file. The following table shows which source/destination scenarios are supported:

Supported Data Sources and Destinations

There are several ways that you can configure and execute deployment:

• For all of the supported scenarios shown above, you can manually edit a DataDeploy configuration
file and then execute DataDeploy from the command line. See “Invoking DataDeploy” on page 207
and “Configuration File Details and Examples” on page 171 for more information. Even though
manual configuration and deployment is the least common way to use DataDeploy, the information
in these sections provides a good background for understanding the more commonly used
automated deployment described in the following bullets.

• Alternatively, after a DataDeploy configuration file exists for any supported scenario, you can
automate DataDeploy execution by initiating it from an iwat trigger script or as a TeamXpress
workflow task. For example, you can configure DataDeploy and TeamXpress so that extended

Destination

TeamXpress XML Database

Source

TeamXpress
Not
Supported

Supported Supported

XML
Not
Supported

Supported Supported

Database
Not
Supported

Supported Supported
145

Overview and Installation
attribute data is transferred from TeamXpress to a database whenever files are submitted to a
staging area from a workarea. See “Deployment Scenarios” on page 158 for more information
about that specific situation.

• For the TeamXpress-to-database scenario, you can use DataDeploy’s Database Auto-
Synchronization (DAS) module to automate the entire deployment process for TeamXpress
templating users. In this situation, any extended attribute changes resulting from an end user
modifying a data content record via the TeamXpress templating GUI are automatically deployed to
a database. See Appendix C, “DataDeploy Database Auto-Synchronization” for details about DAS.

Note: You can configure DataDeploy to treat deployed extended attributes as either data or stored
procedures. See Item 10, “DataBase Section” in “Sample File Notes” starting on page 181 for more
information.

The following sections describe overall DataDeploy concepts, and how you can install, configure, and
invoke DataDeploy.

Client/Server Setup Options

When deploying to a database, you can set up DataDeploy to operate in either a two-tier or three-tier
architecture. Two-tier architecture incorporates two systems: the TeamXpress server host machine
that executes the DataDeploy client and an application server containing the SQL database. The
application server can be any server on the network (such as the production web server, although this
is not a system requirement). Two-tier systems are typically used at sites that do not require firewall
protection between the TeamXpress server and the application or production server.

Two-Tier Architecture

TeamXpress
Server

DataDeploy
Client

SQL
Database

Database
Server

Deploy
146 TeamXpress Templating and Deployment Guide

Client/Server Setup Options
Three-tier architecture incorporates a third system acting as a DataDeploy server. Three-tier systems
are typically used at sites requiring firewall protection between the TeamXpress server and the
application or production web server.

Three-Tier Architecture

Running the DataDeploy Daemon as a Service

You can optionally configure the Interwoven DataDeploy service to start the DataDeploy daemon
for 3-tier operation or Database Auto-Synchronization (DAS) operation. When set up for 3-tier
operation, the DataDeploy daemon takes its input from the iwdd.ipl command issued from the
command line. When set up for DAS operation, the DataDeploy daemon takes its input from the
iwsyncdb.ipl script that runs as part of DAS startup. See “Editing iwsyncdb.cfg” on page 386 for
information about specifying DAS or 3-tier operation. See “Invoking DataDeploy” on page 207 for
details about executing iwdd.ipl from the command line. See “Running iwsyncdb.ipl” on page 387
for details about iwsyncdb.ipl.

The Interwoven DataDeploy service automatically starts the DataDeploy daemon for DAS
operation if the iwsyncdb.cfg file exists in dd-home/conf. If iwsyncdb.cfg does not exist, the
Interwoven DataDeploy service starts the DataDeploy daemon for 3-tier operation.

TeamXpress
Server

DataDeploy
Client

DataDeploy
ServerFi

re
w

al
l

Deploy Deploy
SQL Database

Database
Server
147

Overview and Installation
Installing DataDeploy

Supported Platforms

DataDeploy supports the following database/platform combinations. Any DataDeploy server shown
in the first column can run with any database server shown in the second column. Databases shown in
the third column are specific to the servers shown for that row in the second column. For example, a
system can have a Windows NT/2000 DataDeploy server and a Solaris database server. However,
Microsoft SQL Server databases are not supported on Solaris database servers.

* If you use standard SQL datatypes, no additional Oracle products need to be installed. If you use
Oracle extension datatypes you must also install the OCI client library on the system from
which the iwdd.ipl command is executed.

** Only locally on the same system running DataDeploy.

DataDeploy Server Database Server
Platform

Database (running on
database server) CPU

Windows NT (x86) 4.0
(Service Packs 3, 4, 5, 6a)

Windows 2000 Server

Solaris 2.5.1, 2.6, or 7
(32-bit and 64-bit)

Windows NT (x86) 4.0
(Service Packs 3, 4, 5,
6a)

IBM DB2 (UDB) 6.1;
Microsoft SQL Server
6.5, 7.0; Oracle 8i *;
Sybase SQL Anywhere
5.5; Sybase ASE 11.5;
Informix 7.3 **

300 MHz Pentium II

Windows 2000 IBM DB2 (UDB) 6.1;
Microsoft SQL Server
6.5, 7.0; Oracle 8i *;
Sybase SQL Anywhere
5.5; Sybase ASE 11.5;
Informix 7.3 **

300 MHz Pentium II

Solaris 2.5.1, 2.6, or 7
(32-bit and 64-bit)

Oracle 8i *; Sybase
SQL Anywhere 5.5;
Sybase ASE 11.5;
Informix 7.3 **

Ultra5 SPARC
148 TeamXpress Templating and Deployment Guide

Installing DataDeploy
Additional Drivers for Microsoft SQL Anywhere

To use DataDeploy with Microsoft SQL Anywhere, you must ensure that ODBC driver version
3.70.06.23 or later is installed.

Solaris Systems

Perform the following steps to install DataDeploy on a Solaris system:

1. Go to one of the following directories:

– If TeamXpress is installed but OpenDeploy is not, go to iw-home.

– If both TeamXpress and OpenDeploy are installed, go to od-home.

– If OpenDeploy is installed but TeamXpress is not, go to od-home.

– If neither TeamXpress nor OpenDeploy is installed, go to an installation directory of your
choice.

2. Unzip and untar the DataDeploy tar file dd.tar.gz:

gunzip < dd.tar.gz | tar -xvpf -

An opendeploy directory and its associated subdirectories are created if they do not already exist
in the directory from Step 1.

3. Go to the opendeploy/install directory and execute the iwinstalldd installation script.

Windows NT/2000 Systems

Perform the following steps to install DataDeploy on a Windows NT/2000 system:

1. Download the DataDeploy bundle from its distribution media. If the file is zipped, unzip it.

2. Double click the DataDeploy bundle icon.

3. If OpenDeploy is already installed on your system:

– The uninstall (administrative) files should reside in a dd-home location of your choice. This
location must be different than od-home.

– All other DataDeploy system files are installed automatically in od-home.

If OpenDeploy is not installed on your system:
149

Overview and Installation
– The uninstall (administrative) files should reside in a dd-home location of your choice. This
location must be different than iw-home.

– All other DataDeploy system files are installed automatically in iw-home.

After DataDeploy is installed, you might need to resynchronize the tracker table. Refer to the
preceding section about installing on Solaris systems to determine whether this procedure is
necessary.
150 TeamXpress Templating and Deployment Guide

Chapter 8

Deployment Concepts

This chapter describes the following general deployment concepts and components:

• How different methods of invoking DataDeploy affect the configuration activities you must
perform.

• The roles and components of DataDeploy configuration files.

• How DataDeploy stores and processes data during a deployment.

• What happens during a TeamXpress-to-database deployment.

It is highly recommended that you understand the concepts in this chapter prior to configuring
DataDeploy.

Ways to Invoke Deployment

There are several ways in which to invoke DataDeploy:

• From the command line.

• From an iwat trigger script.

• As a TeamXpress workflow task that is not associated with TeamXpress Templating.

• From the TeamXpress Templating GUI.

All of these methods require the existence of one or more DataDeploy configuration files. The first
three methods require that you manually create these configuration files. The last method creates all
151

Deployment Concepts
the necessary DataDeploy configuration files automatically after you have performed the necessary
system setup. The following table shows a summary of each invocation method and its related tasks:

Configuration Files

DataDeploy configuration files let you specify the following:

• What, where, and how data is deployed.

• Whether DataDeploy will run as a client or server.

A TeamXpress/DataDeploy installation can contain any number of configuration files. The most
common scenario is for a system to contain multiple configuration files, one for each specific type of
deployment.

Invocation Method Setup and Invocation Tasks For More Information See...

Command Line • Manually create a DataDeploy configuration file.
• Execute iwdd.ipl from the command line.
• Deployment occurs when the command is exe-

cuted.

“Configuration File Details
and Examples” on page 171;
“iwdd.ipl Command” on
page 207.

iwat Trigger Script • Manually create a DataDeploy configuration file.
• Create an iwat trigger script containing an

iwdd.ipl command that references the DataDe-
ploy configuration file.

• Deployment occurs when the iwat script is trig-
gered.

“Configuration File Details
and Examples” on page 171;
“iwdd.ipl Command” on
page 207.

Workflow Task • Manually create a DataDeploy configuration file.
• Create a workflow external task containing an

iwdd.ipl command that references the DataDe-
ploy configuration file.

• Deployment occurs when the external task is exe-
cuted.

“Configuration File Details
and Examples” on page 171;
“iwdd.ipl Command” on
page 207; “Configuring
TeamXpress Workflow” in the
TeamXpress Administration
Guide.

TeamXpress Templating
GUI

• Install TeamXpress Templating.
• Configure Database Auto-Synchronization (DAS).
• Deployment occurs automatically whenever an

end user modifies a data content record (DCR)
via the TeamXpress Templating GUI.

“DataDeploy Database Auto-
Synchronization” on page 383
152 TeamXpress Templating and Deployment Guide

Configuration Files
For the “TeamXpress Templating GUI” scenario shown in the preceding table, a DataDeploy
configuration file is automatically created for each data type in the TeamXpress Templating directory
structure. The correct configuration file is then referenced automatically whenever an end user
changes a DCR for a given data type.

For the other scenarios shown in the preceding table, you must create each configuration file
manually, and then name the correct file via a command line option for the iwdd.ipl command.

File Components

All DataDeploy configuration files have the following characteristics:

• Can have any name.

• Are in XML format.

• Reside by default in the dd-home/conf directory.

A configuration file is structured as a hierarchy of sections, each letting you control a different
deployment parameter. A file can have any number of sections. Parameters that you can set are:

• Filters that include and exclude possible data sources.

• Substitution rules to replace text and data values automatically during deployment.

• Client-specific parameters and activities.

• Type of deployment (TeamXpress-to-database, XML-to-database, and so on).

• Source of extended attribute data (TeamXpress, a database, or an XML file).

• Destination of extended attribute data (a database or an XML file).

• Details about source and destination data (specific fields to select, type of table to update or create,
and so on).

• SQL commands that execute automatically during deployment.

• Server-specific parameters (for 3-tier systems).

See the sample configuration file sections starting on page 175 for details about configuration file
structure and syntax.
153

Deployment Concepts
See “Invoking DataDeploy” on page 207 for more information about configuring DataDeploy as a
client or server. See “Configuration File Details and Examples” on page 171 for more information
about controlling all other DataDeploy parameters.

Data Organization Within DataDeploy

When extended attribute data is deployed, it is first extracted from its specified source and
represented internally in DataDeploy as tuples.Tuples can then be deployed into a specified destination
using selection and formatting rules defined in the DataDeploy configuration file(s). You can set tuple
format to narrow or wide. The following section describes tuple format in general, and the differences
between narrow and wide tuples.

Tuple Format

All TeamXpress tuples contain the following extended attribute data:

• Exactly one path element, which is an area-relative path name of the file associated with the tuple’s
key-value pair(s).

• One or more key/value pairs. The key is the name (also known as the class) of the extended
attribute. For example, News-Section is the key of the extended attribute News-
Section:Sports. The value is the data value for tuple’s key. For example, Sports.

• Exactly one state element, which describes the status of the tuple. Possible values are Original,
New, Modified, and NotPresent. See “Data Destinations” on page 159 for details about each
state value.

The following sections describe how elements are arranged within narrow and wide tuples.

Narrow Tuples
Narrow tuples contain exactly one path, key, value, and state element. For example, the following
figures show DataDeploy’s internal representation of two narrow tuples. Tuple 1 is for the News-
Section:Sports extended attribute from the file docroot/news/front.html. Tuple 2 is for
154 TeamXpress Templating and Deployment Guide

Data Organization Within DataDeploy
the Locale:SF extended attribute from the same file. Note that because a narrow tuple can contain
just one key/value pair, DataDeploy must create multiple tuples (two in this case) if a file’s extended
attributes consist of more than one key/value pair.

Narrow Tuples

Wide Tuples
Wide tuples contain exactly one path element and one state element, and any number of key/value
pairs. Thus, a file’s extended attribute data can be represented in a single wide tuple even if the
extended attributes consist of more than one key/value pair. The following figure shows DataDeploy’s
internal representation of a wide tuple. The information shown here is the same as that from the
previous example. The only difference is that in this case, DataDeploy was configured to create a wide
tuple.

Wide Tuple

Notice that in a wide tuple, DataDeploy eliminates the key = and value = labels for the key and
value data, instead using the format key = value for each key/value pair. This arrangement
simplifies the creation of a wide base table as described in “Base Table Format: Wide Tuples” on
page 162.

Tuple 1

path = docroot/news/front.html

key = News-Section

value = Sports

Tuple 2

path = docroot/news/front.html

key = Locale

value = SF

Tuple 1

path = docroot/news/front.html

News-Section = Sports

Locale = SF
155

Deployment Concepts
Support for wide tuples requires that all extended attribute keys be unique. For example, a file cannot
have two keys named Locale. To satisfy this requirement, TeamXpress uses a numeric suffix for key
names that would otherwise be unique. For example, if the file docroot/news/front.html has
two Locale keys with the values SF and Oakland, they are named Locale/0 and Locale/1. The
TeamXpress GUI and metadata capture module automatically enforce this naming convention when
an end user creates extended attributes for a file. The resulting wide tuple in this example is as
follows:

Wide Tuple with Similar Keys

Database Object Name Lengths

To overcome the maximum database object name length imposed by database servers, DataDeploy
builds a mapping table called IWOV_IDMAPS in the destination database. For each object name that
exceeds the maximum length limit for the database, this mapping table establishes a relationship
between the original object name and a generated name conforming to the database’s object name
length limits. The generated name is then used in place of the original object name in all database
transactions. This implementation allows table names, column names, constraint names, and view
names to contain any number of characters.

The IWOV_IDMAPS table contains three columns: Type, Longid, and Shortid. The Type column
defines types as follows:

1: Table name
2: Column name
3: View name
4: Constraint name

Tuple 1

path = docroot/news/front.html

News-Section = Sports

Locale/0 = SF
156 TeamXpress Templating and Deployment Guide

Data Organization Within DataDeploy
The Longid column contains the entire character string for the object as it appears in the original
source file. The Shortid column contains the generated name conforming to the database’s object
length limits. For example, a typical table might appear as follows:

Because different databases support different maximum object name lengths, the threshold for when a
Shortid name is generated depends on the database vendor and/or type. DataDeploy uses the values
set for the max-id-value attribute to determine this threshold. See Item 10, “Database Section” in
“Sample File Notes” starting on page 181 for more information. See also “Table Update Details” on
page 394.

If you construct an SQL statement that performs an activity on a table that was created by
DataDeploy, and if that table contains any database objects whose names exceed the maximum length,
the SQL statement must first reference the mapping table to determine the actual (Longid) object
name(s). This requirement applies to all SQL statements, including those not executed via
DataDeploy.

Data Types and Sizes

The default data type for deployed data is VARCHAR (300). You can set different data types, or a
different size for VARCHAR, in the DataDeploy configuration file. See Item 11, “Rows to update” in
“Sample File Notes” starting on page 181 for more information.

Incremental Deployment

DataDeploy can perform incremental deployments, in which it calculates the differences between any
two specified vpaths and produces a delta table of the changes. The vpaths can be any two arbitrary
TeamXpress paths such as edition paths, staging area paths, workarea paths, etc. See Item 6, “Source

Typ
e Longid Shortid

2 INFORMATION0_PRESENTATIONTITLE IWC_AA6A93A7161

1 INTRANET_DEPTINFO__DATADPLYBRNCH_STAGING IWT_106342E4D4C4

3 INTRANET_DEPTINFO__DATADPLYBRNCH_STAGING_VIEW IWV_AEGF12D4E

4 INTRANET_DEPTINFO__DATADPLYBRNCH_STAGING_CONSTRAINT IWO_F023AF1290
157

Deployment Concepts
Type” in “Sample File Notes” starting on page 181 for information about configuring an incremental
deployment.

Deployment Scenarios

This section describes what happens when you execute a TeamXpress-to-database deployment. This
type of deployment is used as an example because it is the most commonly configured deployment
type, it requires the most complex configuration files, and it is the type of deployment that DAS
executes.

See Appendix C, “DataDeploy Database Auto-Synchronization.” See “Sample TeamXpress-to-
Database Configuration File” on page 175 for details about constructing a file to set up this type of
deployment. Other deployment scenarios such as TeamXpress-to-XML, XML-to-XML, and so on,
are essentially variations of the TeamXpress-to-database deployment. These scenarios are described
briefly starting on page 196.

Deploying from TeamXpress to a Database: Overview

Whenever a TeamXpress-to-database deployment finishes executing, the end result is an updated table
on the destination system. This table will be either a base table, delta table, or standalone table,
depending on what type of update you instruct DataDeploy to perform (as defined in the
configuration file’s <update> section). Update types are named for the type of table they modify. For
example, a delta update modifies a delta table, and so on.

Details about each type are as follows:

• Base update: Extended attribute data is extracted from a TeamXpress workarea, staging area, or
edition, and is deployed to a base table containing full (as opposed to delta) data about the
extended attributes. The most common sources of data for a base table are staging areas and
editions. Whenever a base table is generated, an entry for that table is recorded in a tracker table
residing in the database. See “Data Synchronization” on page 163 for more information.

• Delta update: On the TeamXpress server, extended attribute data from a workarea is compared to
the extended attribute data in a staging area or edition. Differences—the delta data—are identified
and deployed to a delta table on the destination system. This table contains only the delta data from
158 TeamXpress Templating and Deployment Guide

Deployment Scenarios
the workarea; it does not contain full static data about every item in the workarea (the delta table’s
associated base table should exist from a previous deployment). The relationship between the
workarea data and the data in its parent area (a staging area or edition) is updated in the tracker
table residing in the database. See “Data Synchronization” on page 163 for more information.

• Standalone update: Data is extracted from a TeamXpress workarea, staging area, or edition and is
deployed to a standalone table containing full data about the extended attributes. A standalone
update differs from a base update in that it does not generate an entry in the tracker table.

Data Sources

When you deploy extended attribute data from TeamXpress to a database, you can specify that it come
from a TeamXpress workarea, staging area, or edition. Of these three, workarea data is the only type
that can be deployed using any of the three types of update (base, delta, or standalone). When
deploying staging area or edition data, you should use a base update if you plan subsequent delta table
generation, or a standalone update if you do not need to track the table’s relationship to other tables.
The following table shows which data sources are supported for each type of update:

Supported TeamXpress Source Areas for Different Types of Update

Data Destinations

In a TeamXpress-to-database deployment, the destination of deployed data can be any database on a
DataDeploy server (in a three-tier system) or a database on an application server (on a two-tier
system).

All tuples in all base and standalone tables will have a state of Original. This is because all base and
standalone tuples are considered the basis against which delta tuples are compared. See “Updating a
Base Table” on page 166 for an example and more details. The state of a base or standalone tuple does
not reflect how or why it came to reside in the table; it simply identifies it as the basis tuple. In a delta
table, the state identifies the tuple’s status relative to the same tuple in the base or standalone table.

Update Type
Base Delta Standalone

TeamXpress
Source Area

Workarea Supported Supported Supported
Staging Area Supported Not Supported Supported
Edition Supported Not Supported Supported
159

Deployment Concepts
Therefore, a delta table can have tuples states of Original, New, Modified, or NotPresent. The
following table shows the scenarios that can cause these states:

Delta Table Tuple States

A delta table tuple
state of: Was caused by:

Original
Merging delta data from another workarea into a base table via a base update
(such as when submitting the other workarea data to a staging area).

New
Generating a new tuple via a delta update (such as when adding a new
extended attribute to a file in a workarea).

Modified Updating a delta table via a delta update.

NotPresent
Data existing in a base area but not in a workarea (such as when the data is
deleted from the workarea, or when data is newly added to the base area from
a different workarea).
160 TeamXpress Templating and Deployment Guide

Deployment Scenarios
Base Table Format: Narrow Tuples

By default, deploying narrow tuples creates a base table in a database containing columns for Path,
Key, Value, and State. For example:

Narrow Tuple Default Base Table

Path Key Value State
docroot/news/front.html News-Section Sports Original
docroot/news/front.html Locale SF Original

Key-Value List for

Narrow

Database

News-Section=Sports, Locale=SF

Tuple 1 (Narrow)

path = docroot/news/front.html

key = News-Section

value = Sports

Tuple 2 (Narrow)

path = docroot/news/front.html

key = Locale

value = SF
161

Deployment Concepts
Base Table Format: Wide Tuples

By default, wide tuples deploy into wide tables, in which key values from the tuple are placed in
separate columns. The end result is a table in which a single file record contains individual key value
columns. For example:

Wide Tuple Default Base Table

It is also possible to deploy narrow tuples into a wide table by configuring DataDeploy to use wide
tuples. When you do, the tuples are deployed to a wide table by default. See “Sample TeamXpress-to-
Database Configuration File” on page 175 for guidelines about specifying wide versus narrow tuples.

File News-Section Locale0 Locale1 State

docroot/news/front.html Sports SF Oakland Original

Key-Value List for

Wide

News-Section=Sports, Locale/0=SF,
Locale/1=Oakland

Tuple 1 (Wide)

path = docroot/news/front.html

News-Section = Sports

Locale/0 = SF
162 TeamXpress Templating and Deployment Guide

Deployment Scenarios
You can also deploy narrow tuples to a wide table by manually configuring a set of SQL commands in
the DataDeploy configuration file. These SQL commands would then execute automatically during
deployment. Detailed SQL commands are beyond the scope of this document; you should refer to
third party SQL documentation for more information about that topic.

Note: Table column names cannot contain reserved SQL characters such as dash (-), slash (/),
question mark (?), percent (%), etc.

Data Synchronization

On the database system, DataDeploy must keep a record of which delta tables are associated with
which base tables. This is necessary so that delta tables from multiple workareas that are associated
with a single base table from a staging area will remain synchronized when changes from one workarea
are submitted to the staging area. This relationship is maintained by the tracker table residing in the
same database as the base and delta tables.

Deploying from TeamXpress to a Database: Details

The most common sequence of events when deploying from TeamXpress to a database is as follows:

1. Generating an initial base table of a staging area or edition.

2. Generating a delta table for each workarea associated with the staging area or edition from Item 1.

3. Configuring TeamXpress to invoke DataDeploy so that the base table from Item 1 is automatically
updated whenever changes are about to be submitted to its corresponding staging area or edition
from a workarea.

Generating an Initial Base Table

Usually, the first action you will instruct DataDeploy to perform is the creation of an initial base table
for a staging area or an edition. The following example shows the creation of a base table BT1 from a
staging area SA1 on a TeamXpress branch such as /default/main/dev/branch1. The
configuration file for this deployment is shown in “Starting-State Base Table Configuration File” on
page 204. Note: In that file, the value of the attribute name in the path element is relative to the
163

Deployment Concepts
staging area that is the source of the data being deployed. Based on the preceding conditions, the
following sequence of events occurs. Refer to the figure following this list for a keyed diagram of the
steps.

1. Invoke DataDeploy from the command line, specifying the deployment configuration file that
contains the preceding parameters. DataDeploy reads the configuration file and goes to SA1,
extracting all extended attribute data.

2. DataDeploy creates the Tracker Table (or updates it if it already exists) to track relationships
between base and delta tables.

3. Based on additional information in the configuration file, DataDeploy creates base table BT1 in the
destination database, populating it with the data from Step 1.

Generating an Initial Base Table

SA1

WA1

WA2

WA3

TeamXpress DataDeploy Database

BT1

1 3

2

Tracker
Table
164 TeamXpress Templating and Deployment Guide

Deployment Scenarios
Generating a Delta Table

After creating the initial base table, you will need to generate one or more delta tables based on the
workareas associated with the base table’s staging area. This example shows the creation of a delta
table DT1 from a workarea WA1. It assumes that a base table for SA1 has already been generated, and
that WA1 is a workarea of staging area SA1. Based on the preceding conditions, the following
sequence of events occurs. Refer to the figure following this list for a keyed diagram of the steps.

1. Invoke DataDeploy from the command line, specifying the deployment configuration file that
contains the preceding parameters. DataDeploy compares the extended attribute data in WA1 with
the same data in SA1 to determine the tuple difference between the two areas.

2. DataDeploy updates the Tracker Table to record that DT1 is a child of BT1.

3. DataDeploy creates DT1, using the delta data it determined in Step 1.If there is no delta data, it
creates an empty delta table.

Generating a Delta Table

TeamXpress DataDeploy Database

DT1

DT2

DT3

BT1

1
2

3

SA1

WA1

WA2

WA3

Tracker
Table
165

Deployment Concepts
Updating a Base Table

After creating the initial base and delta tables, you can configure TeamXpress workflow to
automatically update a base table whenever changes in a workarea are about to be submitted to a
staging area. This example assumes the following:

• You plan to submit a file list (rather than the entire workarea) from workarea WA2 to a staging area
SA1.

• A base table BT1 already exists for staging area SA1.

• Delta tables DT1 through DT3 already exist for all workareas (WA1 through WA3) associated with
staging area SA1.

• A tracker table already exists to establish and track the relationships between the base and delta
tables.

Based on the preceding conditions, the following sequence of events occurs. Note that all of the
DataDeploy activity takes place before TeamXpress actually submits the changes from WA2. Refer to
the figure following this list for a keyed diagram of the steps.

1. If the submission occurs as part of a TeamXpress workflow job, the TeamXpress workflow engine
obtains a list of files to be submitted from WA2 to SA1. If Database Auto-Synchronization (DAS) is
configured as described in Appendix C, “DataDeploy Database Auto-Synchronization,” DAS
obtains the list of files to be submitted. This list of files is then passed to DataDeploy (1a in the
following figure).

2. DataDeploy compares the file list items in WA2 with the same items in SA1 to determine the tuple
differences between the two areas. These differences will be installed in BT1 in Step 5.

3. DataDeploy checks the tracker table to determine the children of BT1.

4. Original rows from BT1 are propagated to DT1 and DT3 (but not to DT2). This ensures that the
original rows in BT1 are not lost, but instead are stored as now-obsolete data in its child delta
tables.

5. DataDeploy updates BT1 with the data derived earlier in Step 2.

6. DataDeploy removes from DT2 all rows whose path and key values are identical to those being sub-
mitted from WA2 to SA1. This ensures that items not being submitted from WA2 to SA1 are
retained in DT2.
166 TeamXpress Templating and Deployment Guide

Deployment Scenarios
7. The workflow engine completes the submission of the file list to SA1.

Updating a Base Table

SA1

WA1

WA2

WA3

DT1

DT2

DT3

BT1

Workflow
or DAS

1

1a

6

5
7

TeamXpress DataDeploy Database

Tracker
Table

3

4

2

167

Deployment Concepts
Table Updates

Hypothetical table updates for a scenario fitting this model would proceed as follows. For simplicity,
the tables shown here have column headings identical to the tuple items Path, Key, Value, and State. In
most situations, the columns will have other names. Because the term “key” has a specific meaning in
many database languages, it is recommended that you do not use “key” as a column heading.

Sample Table Updates

1. In their starting state, all tables are synchronized. Because there are no differences between SA1,
WA1, and WA2, there is no delta data. Therefore, DT1 and DT2 are empty. This is the starting
state that would exist if you completed the steps described in “Generating an Initial Base Table” on
page 163. The configuration file for generating this initial version of BT1 is shown in “Starting-
State Base Table Configuration File” on page 204.

2. In Event 1, workarea WA2 is changed locally with new data P2, K2, and V2, but the changes are
not submitted to staging area SA1. Because the changes are not submitted, you must execute a
delta update so that delta table DT2 reflects the new data in WA2. During this delta update, Data-
Deploy identifies the differences between SA1 and WA2 and records these differences (the delta
data) in DT2. This scenario is similar to the scenario in “Generating a Delta Table” on page 165.
However, in that scenario a delta table did not exist yet and had to be generated for the first time.

Starting State1

BT1
Path Key Value State

P1 K1 V1 Orig

DT1
Path Key Value State

Event 12

BT1
Path Key Value State

P1 K1 V1 Orig

DT1
Path Key Value State

Event 23

BT1
Path Key Value State

P1 K1 V1 Orig
P2 K2 V2 Orig

DT1
Path Key Value State

P2 K2 V2 NtPres

DT2
Path Key Value State
168 TeamXpress Templating and Deployment Guide

Deployment Scenarios
In the scenario shown here, the delta tables already exist and therefore only need to be updated.
The configuration file for this delta deployment is shown in “Event 1 Configuration File” on
page 205.

3. In Event 2, workarea WA2 (complete with its changes from Event 1) is submitted to staging area
SA1. In the configuration file for this deployment, Path and Key were named as the basis-for-com-
parison columns. Therefore, DataDeploy compares the Event 1 values of these columns in BT1 and
DT2, sees that they are different, and determines that the row from DT2 Event 1 should append
rather than replace the data in BT1. DT1 has the new values shown here because WA1 now differs
from SA1. If necessary, a Get Latest operation in WA1 would bring WA1 into sync with SA1. (Had
Event 1 DT2 contained a P1 K1 V2 row, it would have replaced rather than appended the original
BT1 row. In that case, the original BT1 row would have been propagated to DT1, after which P1
K1 V2 would have replaced P1 K1 V1 in BT1. A subsequent Get Latest in WA1 would bring WA1
into sync with SA1, and the data in DT1 would be deleted). DT2 is empty because WA1 is once
again in sync with SA1. This is the ending state that would exist if you completed the steps
described in “Updating a Base Table” on page 166. The configuration file for this deployment is
shown in “Event 2 Configuration File” on page 206. Note: In that file, all of the items in filelist
are path-relative to area.

Composite Table Views

There are three ways that you can create table views:

• Through SQL commands that you execute manually to query the database after it is created. See
“DataDeploy Querying Tables” on page 407 for more information.

• Through SQL commands named in the user-action attribute of the DataDeploy configuration
file’s <sql> element. You run these commands by executing an SQL-specific deployment that you
specify via the command line options iwdd-op=do-sql and user-op=anyname. See “Sample
File Notes” on page 181 and “Invoking DataDeploy” on page 207 for more information.

• By setting the table-view attribute in the DataDeploy configuration file’s <database> section.
See “Sample File Notes” on page 181 for more information.

The following composite views for workareas WA1 and WA2 would result from the scenarios
described in the previous sections. The composite for WA1 is the result of querying BT1 and DT1
169

Deployment Concepts
using the SQL statements described in “DataDeploy Querying Tables” on page 407. Likewise, the
composite for WA2 is the result of querying BT1 and DT2.

Composite Table Views

Starting State

WA1
Path Key Value State

P1 K1 V1 Orig

WA2
Path Key Value State

P1 K1 V1 Orig

Event 1

WA1
Path Key Value State

P1 K1 V1 Orig

WA2
Path Key Value State

P1 K1 V1 Orig
P2 K2 V2 New

Event 2

WA1
Path Key Value State

P1 K1 V1 Orig

WA2
Path Key Value State

P1 K1 V1 Orig
P2 K2 V2 Orig
170 TeamXpress Templating and Deployment Guide

Chapter 9

Configuration File Details and
Examples
This chapter contains the following detailed information about configuration file contents:

• Which elements are required in each type of configuration file.

• Rules for parameter substitutions within configuration files.

• An annotated sample TeamXpress-to-database configuration file.

• A sample TeamXpress-to-XML configuration file.

• A sample database-to-database configuration file.

• A sample database-to-XML configuration file.

• A sample XML-to-database configuration file.

• A sample XML-to-XML configuration file.

• The configuration files for “Starting State,” “Event 1,” and “Event 2” shown on page 168.

Required Elements

The type of deployment (e.g., TeamXpress-to-database, TeamXpress-to-XML, and so on) determines
which configuration file sections are required and which elements can reside in each section. Only a
few parameters are actually required within these sections. The rest are optional, making it possible to
have short, simple configuration files. Section hierarchy and requirements for each supported type of
deployment are as follows. Sections in bold text are required; those in normal text are optional.
Indentation shows nesting levels.
171

Configuration File Details and Examples
TeamXpress-to-Database
filter

keep
discard

substitutions
data-deploy-elements
client
deployment

substitutions
exec-deployment
source

TeamSite-extended-attributes
TeamSite-templating-records

destinations
substitutions
filter
database

select
update
sql

server

TeamXpress-to-XML
filter

keep
discard

substitutions
client
data-deploy-elements
deployment

substitutions
exec-deployment
source

TeamSite-extended-attributes
TeamSite-templating-records

destinations
substitutions
filter
xml-formatted-data

server
172 TeamXpress Templating and Deployment Guide

Required Elements
Database-to-Database
filter

keep
discard

substitutions
data-deploy-elements
client
deployment

substitutions
exec-deployment
source

database
fields

destinations
substitutions
filter
database

select
update
sql

server

Database-to-XML
filter

keep
discard

substitutions
data-deploy-elements
client
deployment

substitutions
exec-deployment
source

database
fields

destinations
substitutions
filter
xml-formatted-data

server
173

Configuration File Details and Examples
XML-to-Database
filter

keep
discard

substitutions
client
data-deploy-elements
deployment

substitutions
exec-deployment
source

xml-formatted-data
fields

destinations
substitutions
filter
database

select
update
sql

server

XML-to-XML
filter

keep
discard

substitutions
data-deploy-elements
client
deployment

substitutions
exec-deployment
source

xml-formatted-data
fields

destinations
substitutions
filter
xml-formatted-data

server
174 TeamXpress Templating and Deployment Guide

Parameter Substitutions
Parameter Substitutions

Any parameter string in a configuration file can be named using a parameter substitution. You set
parameter string substitutions on the same command line you use to invoke DataDeploy with the
iwdd command. Syntax is as follows:
"varname=varvalue"

After a string is defined on the command line, all occurrences of $varname in the configuration file
named on the command line are substituted with the string varvalue. Do not use the following
terms for varname; they are keywords for the iwdd command and would be interpreted as such:

cfg
deployment
iwdd-op
remote-host
remote-port

Examples of parameter substitution within a configuration file are as follows:

prefix_string_$varname
$varname^_suffix_string (where ^ is a concatenator)
prefix_$varname^_suffix

Sample TeamXpress-to-Database Configuration File

The following sample configuration file shows how to set parameters for a typical
TeamXpress-to-database deployment. It identifies which parameters are required,
shows both global and in-flow usage, and is keyed to a comment table following the
file that explains more details about each section and parameter. Most of the
elements in this file are also used to define types of deployment other than
TeamXpress-to-database. For examples of configuration files for these other
deployment types, see the sample file sections starting on page 196.
175

Configuration File Details and Examples
<!--Sample DataDeploy configuration file -->
<data-deploy-configuration>
<data-deploy-elements filepath="/local/iw-home/db.xml"/>
<filter name="MyFilter">

<!-- This is a filter that can be used by any deployment -->
<keep>

<!-- Any of the following (logical OR): -->
<!-- dir2/subdir/index.html, any *.html file in dir1, -->
<!-- OR anything with key 'guard' AND value 'IGNORE -->

<or>
<field name="path" match="dir2/subdir/index.html" />
<field name="path" match="dir1/*.html" />
<and>

<!-- Must match all of these (logical AND) -->
<field name="key" match="guard" />
<field name="value" match="IGNORE" />

</and>
</or>

</keep>

<discard>
<!-- Exclude the file dir1/ignoreme.html, anything -->
<!-- with key 'unneededKey', and anything with state -->
<!-- DELETED -->

<or>
<field name="path" match="dir1/ignoreme.html" />
<field name="key" match="unneededKey" />
<field name="state" match="DELETED" />

</or>
</discard>

</filter>

<substitution name="GlobalSubstitution">
<!-- This substitution can be used by any deployment. -->
<!-- It replaces the first occurrence of the string ‘foo’ -->
<!-- in the 'path' field with 'bar', and completely -->
<!-- replaces the 'value' field with the string 'SpecialValue'.-->
<field name="path" match="foo" replace="bar" />
<field name="value" replace="SpecialValue" />

</substitution>

Filter section
(global) 2

Substitution
section (global) 3

Include file 1
176 TeamXpress Templating and Deployment Guide

Sample TeamXpress-to-Database Configuration File
<client>
<!-- This deployment puts EA data from a TeamXpress area into -->
<!-- a destination database. -->
<deployment name="ea-to-db">

<source>
<!-- Pull data tuples from (local) TeamXpress EA's. -->
<!-- Only those EA's that are different from the -->
<!-- ones in the base area will be reported. The -->
<!-- actual workarea will be taken from the 'user' -->
<!-- command-line parameter. -->
<TeamSite-extended-attributes

options="differential, wide"
area="/default/main/dev/branchx/WORKAREA/$user"
base-area="/default/main/dev/branchx/STAGING">

<path name="dir1/index.html" visit-directory="no" />
<path name="dir2/subdir" visit-directory="shallow" />

<!-- Use the command-line parameter 'path' -->
<!-- as the path name. If the path happens -->
<!-- to be a directory, visit its children -->
<!-- recursively. -->
<path name="$path" visit-directory="deep" />

<!-- Read a list of files from the file -->
<!-- '/tmp/SomeFiles'. The default directory -->
<!-- mode 'deep' will be used for each file. -->
<path filelist="/tmp/SomeFiles" />

</TeamSite-extended-attributes>
</source>

<!-- Apply global filter 'MyFilter' to all tuples -->
<filter use="MyFilter" />

Start of Deployment section 5 (required)
Start of Source section 6 (required)

Location of
source data 8

(area

End of Source
section 6

(required)

Call global
filter 2

Data type7

(required)

Start of
Client
section4
177

Configuration File Details and Examples
<substitution>
<!-- Modify each tuple according to the following -->
<!-- match/replace pairs. In this case: any path -->
<!-- that contains the string 'WORKAREA/.../' will -->
<!-- have the string replaced by 'STAGING/'; any -->
<!-- path that contains 'EDITION/abcd' will be -->
<!-- replaced with '/This/Special/Path', and any -->
<!-- tuple whose key starts with 'BEFORE' will be -->
<!-- changed to begin with 'AFTER'. -->
<field name="path"

match="(.*)/WORKAREA/[^/]+/(.*)"
replace="\1/STAGING/\2" />

<field name="path"
match="EDITION/abcd"
replace="/This/Special/Path" />

<field name="key"
match="^BEFORE(.+)"
replace="AFTER\1" />

</substitution>
<!-- Also apply the substitution 'GlobalSubstitution' -->
<substitution use="GlobalSubstitution" />

<!-- Start the destinations section. -->
<destinations

host="DDServer.interwoven.com"
port="1357">
<!-- Filtered and substituted data will be sent to a -->
<!-- DataDeploy server on port 1357 of the machine -->
<!-- DDServer.interwoven.com. Then -->
<!-- send some tuples to 'table1' on the database that -->
<!-- is located using 'jdbc:remote.machine.com' and -->
<!-- provide user 'dba' with password 'ThisIsASecret'. -->
<!-- Perform any other activities that are associated -->
<!-- with the option 'ea-update'. Timeout is 45 secs. -->
<database name="myproductiondb"

db="host1:1357:db1"
table="table1"
user="dba"
password="ThisIsASecret"
timeout="45">

Substitution
section
(in-flow) 9

Call global substitution 3

Start of
Destinations
section 10

(required)

Start of Database
section and location
of destination
database 11

(required)
178 TeamXpress Templating and Deployment Guide

Sample TeamXpress-to-Database Configuration File
<select>
<!-- Select the row whose value in the column -->
<!-- named 'filename' matches the current path, -->
<!-- whose value in column 'InterestingTag' -->
<!-- matches the current key as modified by any -->
<!-- substitutions, and that has literal -->
<!-- value 'litData' in column 'info'. -->
<column name="filename"

value-from-field="path" />
<column name="InterestingTag"

value-from-field="key" />
<column name="info"

value="litData" />
</select>

<update type="delta"
base-table="RootTable1"
state-field="StateInfo">

<!-- Update column 'RelatedValue' to contain the -->
<!-- current EA value, and update the column -->
<!-- whose name is taken from the 'key' field -->
<!-- with the literal value 'present'. The table -->
<!-- being updated is assumed to be a delta -->
<!-- table modifying base table 'RootTable1'; -->
<!-- the differencing operations are driven by -->
<!-- the value of tuplefield 'StateInfo'. -->
<column name="RelatedValue"

value-from-field="value" />
<column name-from-field="key"

value="present" />
</update>

Rows to
update 12

(required)

Update type
and related
data 13

(required)

Columns to
update 14

(required)
179

Configuration File Details and Examples
<!-- If it is necessary to create a new table for -->
<!-- this deployment, the following SQL statement -->
<!-- will be used for that purpose (as opposed to -->
<!-- a capriciously chosen internal default) -->
<sql action="create">

<!-- This comment should be ignored. However -->
<!-- the parameter token in the next line is -->
<!-- subject to parameter substitution. -->

CREATE TABLE table1 (
Path VARCHAR(300) NOT NULL,
KeyName VARCHAR(300) NOT NULL,
Value VARCHAR(4000) ,
State VARCHAR(4000) ,
CONSTRAINT KVP PRIMARY KEY (Path,KeyName)

)
</sql>

</database>
</destinations>

</deployment>

</client>

<server>
<!-- The DataDeploy server will listen on port 1949 of IP -->
<!-- 204.247.118.99 -->
<bind ip="204.247.118.99" port="1949" />

<!-- Only accept connections from these hosts -->
<allowed-hosts>

<host addr="ddclient.interwoven.com" />
<host addr="204.247.118.33" />

</allowed-hosts>

<!-- Server-specific deployment information -->
<for-deployment name="ea-to-db">

<database db="host1:1357:db1"
user="scott"
password="tiger" />

</for-deployment>
</server>

</data-deploy-configuration>

Server section 16

SQL
section 15
180 TeamXpress Templating and Deployment Guide

Sample TeamXpress-to-Database Configuration File
Sample File Notes

1. Include File: You can use <data-deploy-elements> to name a file containing data to include
by reference. The file named in <data-deploy-elements> can contain any number of
<database>, <filter>, and <substitution> elements. It must use the same syntax for
these elements that the main DataDeploy configuration file uses. See Items 2, 3, and 11 in this
section for details. See page 227 for a complete sample include file. If mutually exclusive
attributes are set in the include file and the main DataDeploy configuration file, all are used in
the deployment. If conflicting attributes are set in the two files, those set in the main
DataDeploy configuration file take precedence.

2. Filter section (global): Filters let you explicitly state which tuples will or will not be deployed.
The keep section contains criteria for selecting which tuples are deployed, and the discard
section contains criteria for those which are not. Both sections use field tags. All field tags
must contain at least one name/match attribute pair. When you deploy from TeamXpress,
name must be either key, value, path, or state (as defined earlier in“Data Organization
Within DataDeploy” on page 154). When you deploy from a source other than TeamXpress,
name can be any be any field name that is valid in the source area. The match attribute names
a targeted value for name. A filter defined in the nesting level shown here and located before
the Deployment section will be global. Global filters do not become active until they are
called via the <filter> element’s use attribute between the Source and Destinations
sections using the syntax shown later in the sample file. Note that filters can also be defined in
an include file and then be called via the use attribute. If a configuration file does not contain
a filter section, all tuples are deployed (limited only by the type of update being performed).
A configuration file can contain any number of global filter sections. A configuration file can
also contain in-flow filters within a destinations section. See Item 10 for details.

3. Substitution section (global): Substitutions let you configure DataDeploy to
automatically replace character strings or entire fields in a table. Substitutions use field tags
that must contain at least one name/replace attribute pair. As with filters, name is either
key, value, path, or state. The replace attribute is the new string that will overwrite
the existing string or field. Two additional attributes, match and global, are optional.
Common usage examples are as follows:
181

Configuration File Details and Examples
A substitution defined in the nesting level shown here and located before the Deployment
section will be global. Global substitutions do not become active until they are called via the
<substitution> element’s use attribute between the Source and Destinations sections
using the syntax shown later in the sample file. Note that substitutions can also be defined in
an include file and then be called via the use attribute. A configuration file can contain any
number of global substitution sections.

4. Client section: The client section lets you specify a set of client-specific parameters and
activities. A configuration file that is expected to run on a two-tier system or as a client on a
three-tier system must have exactly one client section.

5. Deployment section: The deployment section is where you assign a name to each
deployment, and specify deployment source, destination, and update type. You can have any
number of deployment sections in a configuration file, and each must have a unique name.
The name shown here, ea-to-db, is the name you would specify on the command line when
you invoke DataDeploy. The deployment section is required in all configuration files. The
<exec-deployment> subelement lets you execute one or more deployments that are
defined elsewhere in the same configuration file. Syntax is as follows:

<exec-deployment use="dbname" />

where dbname refers to the name of a database as defined in the name attribute in a <database>
element.

To do this: Include this line in the Substitution section:

Replace all Value field values
with the string Newvalue

<field name="value" replace="Newvalue"/>

In the Path field, replace first
occurrence of blue with red

<field name="path" match="blue" replace="red"/
>

In the Path field, replace all
occurrences of blue with red

<field name="path" match="blue" replace="red"
global="yes"/>

In the State field, replace the
first occurrence of Original
with NotPresent

<field name="key" match="Original"
replace="NotPresent"/>
182 TeamXpress Templating and Deployment Guide

Sample TeamXpress-to-Database Configuration File
6. Source section: The source section resides one nesting level inside the deployment
section. It is where you name the type of data to extract from TeamXpress and the location(s)
of that data. Each deployment section must have exactly one source section.

7. Source type: The first nesting level within the <source> element contains a subelement
defining what type of data is to be extracted from TeamXpress. This subelement has the
following possible elements:

Each of the preceding subelements supports three attributes: options, area, and base-area.
Details about the options attribute are as follows:

Subelement Description

TeamSite-templating-records Used when deploying a TeamXpress Templating data
content record from TeamXpress. Supported
options: wide (default), full (default),
differential.

TeamSite-extended-attributes Used when deploying anything other than a data
content record from TeamXpress. Supported
options: narrow (default), wide, full (default),
differential.

xml-formatted-data Used when deploying from an XML file. Supported
options: narrow (default), wide, full (default),
differential.

database Used when deploying from a database. Supported
options: narrow (default), wide, full (default),
differential.

options Value Description

wide Creates a wide table based on wide tuples containing any number of key/
value pairs. Specified in addition to differential or full. The wide and
narrow values are mutually exclusive; you cannot specify both within the
same element. The wide value is the default for the TeamSite-
templating-records element.
183

Configuration File Details and Examples
To configure an incremental deployment, set the <TeamSite-extended-attributes> or
<TeamSite-templating-records> elements as follows. The result is a delta table containing the
differences between vpath1 and vpath2.

<TeamSite-extended-attributes
options="differential"
area="vpath1"
base-area="vpath2"

...additional subelements if necessary...

</TeamSite-extended-attributes>

8. Location of source data: The area attribute defines the TeamXpress workarea, staging
area, or edition from which DataDeploy will extract data. This attribute is required in all
deployment sections. The value of area should be the vpath name of the area containing the
changes you intend to deploy. If differential is set, you must also supply a vpath value for
base-area. This value should be the vpath name of the edition or staging area that is the
basis for comparison with the workarea you named in area. The optional path element can
have one (but not both) of the following values: name or filelist. Setting the name
attribute lets you specify a relative path name to a file or directory in the area(s) you named
earlier in area (and base-area if applicable), or stipulate that the path name will be entered

narrow Creates a 4-column (narrow) table based on narrow tuples. Specified in
addition to differential or full. The wide and narrow values are
mutually exclusive; you cannot specify both within the same element. The
narrow value is the default for the TeamSite-extended-attributes,
xml-formatted-data, and database elements. The TeamSite-
templating-records element does not support the narrow value.

differential Instructs DataDeploy to extract just the delta data from a workarea/staging-
area comparison. Normally, you specify differential when performing a
delta update. The differential and full values are mutually exclusive;
you cannot specify both within the same element. The default is full.

full Instructs DataDeploy to create a table populated with all of the data from a
named area. Normally, you specify full when performing a base or
standalone update (update types are defined later in the destinations
section). The differential and full values are mutually exclusive; you
cannot name both as options within the same element. The default is full.
184 TeamXpress Templating and Deployment Guide

Sample TeamXpress-to-Database Configuration File
on the command line when you invoke DataDeploy. See “Parameter Substitutions” on
page 175 for information about entering path names on the command line. Setting the
filelist attribute lets you specify a file containing a list of files, and is typically used when
you perform a delta update of a workarea containing only a few changed files. If you do not
name a path value, it defaults to “.” and DataDeploy performs a deep search of the directory
named in area (and base-area if applicable). The visit-directory attribute lets you
specify DataDeploy’s level of searching within a directory. The three possible values are no,
shallow, and deep. Details are as follows:

The default value of visit-directory is deep.

9. Substitution section (in-flow): In-flow substitutions let you define substitution rules that
apply only to specific parts of a deployment. DataDeploy supports in-flow substitutions within
the deployment and destinations elements. For example, the in-flow substitution
shown in the sample configuration file is nested one level inside of the deployment element,
and therefore applies only to the ea-to-db deployment. You can also nest in-flow
substitutions one level inside destinations elements, in which case the substitution applies
only to a specific destination. In-flow substitutions have the same syntax as global
substitutions. In addition, in-flow substitutions support a global attribute that lets you that
lets you control whether the substitution applies to all occurrences or just the first occurrence
of the matching pattern.

Value Description

no If path name is a directory, it is not searched.

shallow If path name is a directory, it is searched to the first level.

deep All directories and all subdirectories found in path name are searched recursively.
185

Configuration File Details and Examples
If global is set to no, the substitution applies only to the first occurrence. If it is set to yes,
the substitution applies to all occurrences. For example:

<destinations>
<database . . .>
<substitution name="SubForThisTarget">

<field name="BField" match="from_a"
replace="to_b"
global="yes" />

</substitution>

The example shown in the sample configuration file earlier in this chapter uses Perl 5 regular
expression syntax for match values. A configuration file can contain any number of in-flow
substitution sections.

10. Destinations section: The destinations section resides one nesting level inside the
deployment section. It is where you name the destination system(s), timeout value,
database, and table, and is also where you define the update type. Each deployment section
can have any number of destinations sections, allowing you to designate multiple
destinations in a single configuration file. Destination system and timeout details are as
follows. Database, table, and update type are explained later in Item 11.

You can also nest in-flow filters within a destinations element, in which case the filter applies
only to that specific destination. For example:

<destinations>
<database . . .>
<filter name="FilterForThisTarget">

Attribute Description Required? Value Syntax

host Machine name of the DataDeploy server (3-tier
systems only).

No "hostname.com"

port Port on host to which data will be sent. No "portnumber"

timeout How long the client system will wait for a
response from the remote host during
communication exchange. This tag can also
reside in the Database section, in which case it
has a different definition. See Item 11 for details.

No "seconds"
186 TeamXpress Templating and Deployment Guide

Sample TeamXpress-to-Database Configuration File
<discard>
<field name="AField" match="^DoNotWant/.*"/>

</discard>
</filter>

In-flow filters have the same syntax as global filters.

11. Database section: The first subelement in the destinations section defines the type of
destination for the data. This subelement can be either <database> or <xml-formatted-
data>, depending on whether the destination is a database or an XML file. See “Sample
TeamXpress-to-XML Configuration File” on page 196 for an example of xml-formatted-
data usage. When deployment is to a database, the <database> tag and its name and db
attributes are required in all deployment sections. A destinations section can have any
number of <database> subelements or a combination of <database> and <xml-
formatted-data> subelements. Syntax for the values db and other attributes of the
<database> tag are as follows:

Attribute Value Description Required
?

name Any user-defined database
name surrounded by double
quotes, e.g.,
"myproductiondb".

Used to reference the database via the
use attribute elsewhere in the
configuration file. For example, the
<exec-database> element could
contain use="myproductiondb".

Only if
the use
attribute
is used
elsewhere
in the file.

db Depends on vendor; see next
table.

Names the address string of the
destination database.

Yes.*

use The name of the database set by
the name attribute.

If a database is defined in an include
file, you can reference it as a
destination by including it here. If you
reference a database via use, you do
not need to specify name or db in the
reference because they are already
defined in the include file. However,
you can optionally set db or any other
attribute together with the use
attribute, in which case the explicitly
set attributes take precedence.

No.
187

Configuration File Details and Examples
table Any user-defined table name
surrounded by double quotes,
e.g., "table1".

Names a destination table in db. Yes.*

user Any user name surrounded by
double quotes, e.g., "user1".

Authorizes a specific database user. Yes.*

password Any user-defined password
surrounded by double quotes,
e.g., "w2lYS".

Names the assigned password for
user. Note that any password named
in a configuration file is not encrypted,
and can be read by anyone having
access to the configuration file.

Yes.*

timeout Any positive integer
representing the duration of
the timeout in seconds,
surrounded by double quotes,
e.g., "4".

How long the client system will
attempt to log into the database system
before giving up. This tag can also
reside in the Destinations section prior
to the Database section, in which case
it has a different definition. See Item
10 for details.

No.

clear-table "yes" or "no" Specifies whether a delta table should
be cleared before receiving new data.
Useful to set to yes (which is the
default) when deleting many workarea
files prior to submitting. Set to no if
updating extended attributes on
existing files prior to submitting.

No.

table-view "yes" or "no" Specifies whether to create a view
automatically during deployment. The
default is no. Setting to yes is
incompatible with Sybase ASE (but
works correctly with Sybase
SQLAnywhere and all other supported
databases). Setting to yes and using
Sybase ASE will result in an aborted
deployment.

No.

Attribute Value Description Required
?

188 TeamXpress Templating and Deployment Guide

Sample TeamXpress-to-Database Configuration File
* Either here or in the Server section’s Database section. See Item 16.

**Not required, but highly recommended. Even if the appropriate value is set via the vendor default, setting it again in max-id-
length ensures that the value is explicitly set and easily verified. This also ensures that the value will remain constant should the
default value (as set dynamically by DataDeploy) ever change.

The syntax for the value of the db attribute shown in the preceding table depends on the database
vendor. Details are as follows. Syntax and example lines should all be on one line in the
DataDeploy configuration file. Line breaks shown here are due to formatting constraints of this
document.

vendor "microsoft" Specifies Microsoft SQLServer. Sets a
default max-id-length of 128.

Yes.

"oracle" Specifies an Oracle database. Sets a
default max-id-length of 30.

"sybase" Specifies Sybase SQLAnywhere. Sets a
default max-id-length of 128.

"ibm" Specifies IBM DB2. Sets a default
max-id-length of 30.

"informix" Specifies an Informix database. Sets a
default max-id-length of 18.

max-id-
length

Any positive integer
appropriate for an object name
length (per the documentation
provided by the database
vendor).

Specifies the maximum number of
characters in any database object name
(e.g., column names, table names,
etc.), overriding any defaults set via
the vendor attribute.

No.**

Database/Driver Syntax of db Attribute Example

Informix db="//host_name:port/
database_name:INFORMIXSERVER=server
_name"

db="//
sys1.interwoven.com
:1357/
bank01:INFORMIXSERV
ER= OL_sys1"

Oracle/JDBC thin db="host_name:port:instance_identif
ier"

db="host1:1357:db1"

Attribute Value Description Required
?

189

Configuration File Details and Examples
* Used by DataDeploy if Oracle extension datatypes (e.g., CLOB) are used. Requires installation of
the OCI client library on the system from which the iwdd.ipl command is executed.

The <database> subelement also supports the <stored-procedure> subelement, which
allows you to deploy key-value pairs that are treated as a stored procedure. The <stored-
procedure> subelement resides in the first nesting level within the <database> element, and
lets you write a stored procedure using standard SQL syntax as supported by the current database.
You can then store the procedure in the database by deploying it as an extended attribute via
DataDeploy. Syntax is as follows:

<stored-procedure>
<fieldname prefix="any_prefix_1"/>
<fieldname prefix="any_prefix_2"/>
<fieldname prefix="any_prefix_n"/>

</stored-procedure>

The value of any_prefix can be any case-insensitive character string. DataDeploy will examine
each tuple for key-value pairs in which the key name starts with any of the specified prefix values.

Oracle/JDBC OCI * db="database_tnsname" db="bank01"

(See Oracle
documentation for details
about configuring TNS
names)

Sybase SQL
Anywhere

db="JDBC_data_source_name" db="server1"

Sybase ASE db="host_name:port/database_name" db="sys1.interwoven
.com:1357/bank01"

Microsoft SQL Server db="data_source_name" db="bank01"

(See Microsoft
documentation for details
about creating data source
names on Windows NT
and Windows 2000
systems)

IBM DB2 (UDB) db="//host_name:port/database_name" db="//host1:1357/db1"

Database/Driver Syntax of db Attribute Example
190 TeamXpress Templating and Deployment Guide

Sample TeamXpress-to-Database Configuration File
For each match, the value for that key is treated like a database stored procedure; that is,
DataDeploy does not validate the value of the key-value pair for syntax and semantic correctness.
Instead, DataDeploy passes the value to the database, the key-value pair is not inserted into the
table, and errors (if any) are returned to the user. If creation of stored procedure fails and if the
tuple contains non-stored procedure key-value pairs, the entire deployment is aborted.

12. Rows to update: The select section is where you select database rows to update with data
from the current tuple. It is also where you can specify a data type for the deployed data other
than the default VARCHAR 300 (you can also set the data type in Update section; see Item 13,
“Update type and related data”). You identify rows by stating one or more matching criteria
for column values in that row. For example, you can select a row whose values in columns
named “color” and “size” are respectively “red” and “small.” Column matching criteria are set
through the column tag. Each database section must have exactly one select section, and
each select section must contain at least one column tag. Each column tag must contain the
following two attributes:

1) name or name-from-field

2) value or value-from-field

The column tag can optionally contain the data-type and data-format attributes.

Syntax is as follows:

Attribute Description Value Syntax

name Specifies a column by name. Text string containing any
column name from the table
specified by the database tag.

name-from-
field

Specifies a column name by reference to a
field in the current tuple.

Any of the following: key,
value, path, state.

value Specifies the literal value to match in the
column just named.

Text string containing any table
value.

value-from-
field

Specifies a value to match by reference to
a field in the current tuple.

Any of the following: key,
value, path, state.
191

Configuration File Details and Examples
For example, you would use the following <column> element configuration to deploy the
KeyName1 extended attribute values as integers:

<column name="ValueCol"
data-type="INT"
value-from-field="KeyName1" />

Or, to deploy KeyName1 extended attribute values as a date formatted to show Year-Month-Day
Hours:Minutes:Seconds(assuming an Oracle database):

<column name="ValueCol"
data-type="DATE"
data-format="YYYY-MM-DD HH24:MI:SS"
value-from-field="KeyName1" />

If the data-type attribute is not specified in the DataDeploy configuration file, DataDeploy uses
VARCHAR (300) as the datatype. If a large number of columns are created in the table, the total
size of each row could easily exceed the maximum row size imposed by the database server.

data-type Specifies the datatype for the extended
attributes being deployed. If not set,
DataDeploy assumes a data type of
VARCHAR.

Any datatype supported by the
database.

data-format Only required of data-type is set.
Specifies the format of the extended
attributes being deployed as a date or
time.Can be used only under the
following conditions:
• On an Oracle database server, and

when data-type is either DATE,
DATETIME, or TIMESTAMP. If you set
data-format when any of these con-
ditions do not exist, the setting is
ignored.

• If data-type is either DATE or
DATETIME. The format of the data-
format value must conform to the
specification described for the
SimpleDateFormat Java class.

Any valid date or time format.
192 TeamXpress Templating and Deployment Guide

Sample TeamXpress-to-Database Configuration File
Therefore, it is recommended that you set the data-type attribute whenever possible for the
columns defined in the <select> and <update> sections of the DataDeploy configuration file.

13. Update type and related data: The update section is where you select the type of
update, reference table (if applicable), and the table column(s) to update. Update type can be
delta, base, or standalone (the default). Type delta requires two attributes, base-
table and state-field. The base-table attribute names the base table that will be
modified after the delta table (named earlier in the database section) is updated. The
state-field attribute names which tuple item will be interpreted as state information.
Each database section must have exactly one update section. The relationship between
update section settings and the table named earlier in the database section’s table
attribute is as follows:

14. Columns to update: In the update section, you must also select at least one column to
update from the row(s) you specified earlier in the select section. You select columns by
naming matching criteria in column tag attributes just as you did in the select section. All
of the attributes shown in the table in Item 13, “Update type and related data,” are supported
in the column tag as well.

If the Update section contains
this:

And the Database
section contains this: The result is:

type ="base" table="Table1" DataDeploy assumes Table1 is a base
table. Generates a full base table called
Table1 or modifies existing full base
table Table1.

type ="base"
base-table ="Table2"

table="Table1" DataDeploy assumes Table1 is a delta
table. Effectively merges rows from
delta table Table1 into base table
Table2.

type ="delta"
base-table ="Table2"

table="Table1" DataDeploy assumes Table1 is a delta
table based on the full base table
Table2. Generates a delta table called
Table1 or modifies existing delta table
Table1. Does not update Table2
with delta or any other type of data.
193

Configuration File Details and Examples
15. SQL section: The optional sql section lets you create SQL commands that override system
defaults and execute automatically during deployment. The sql element supports three
attributes: action, user-action, and type. Details are as follows:

Attribute Value Description

action create Lets you define your own SQL CREATE TABLE
command for table creation during deployment.
Commands set by this attribute override the default
DataDeploy schema for creating tables. The default
schema is SELECT * FROM TABLENAME

show Lets you define your own SQL SELECT command for
the show-table operation. Commands set by this
attribute override the default DataDeploy schema.

exist Lets you define database-specific queries to check for
the existence of a table. Commands set by this attribute
override the default DataDeploy schema.

tracker-exist Lets you define database-specific queries to check for
the existence of the tracker table. Commands set by this
attribute override the default DataDeploy schema.

tracker-create Lets you define your own SQL CREATE TABLE
command for tracker table creation during deployment.
Commands set by this attribute override the default
DataDeploy schema.

user-action anyname Lets you define any arbitrary SQL command(s) for
execution during deployment. For example:
<sql user-action="showview" type=query>
Arbitrary SQL commands...
</sql>

The commands specified here execute only if you set the
iwdd-op=do-sql and user-op=anyname options on
the command line when you invoke DataDeploy.
Because the action and user-action attributes are
controlled by mutually exclusive command line options,
you cannot execute both attributes at the same time (i.e,
within the same deployment).
194 TeamXpress Templating and Deployment Guide

Sample TeamXpress-to-Database Configuration File
Note that it is not necessary for the statements in the <select> and <update> elements to
match the table schema in an <sql> element.

16. Server section: The server section lets you specify a set of server-specific parameters. A
deployment that is expected to run on a server in a three-tier system must have exactly one
server section. The bind tag lets you specify where on the server machine the DataDeploy
server will listen. Each server section must have exactly one bind section. In a bind
section, the port attribute is always required, while the ip attribute is required only if the
server machine has more than one available IP address. The optional allowed-hosts
element lets you specify which hosts are allowed to connect to the DataDeploy server. If you
include an allowed-hosts element, its host subelement must have an addr value in the
form of an alphanumeric machine name or an IP address. The optional for-deployment
element lets you define several client attributes just as you did in the database section (see
Item 11). These attributes are: db, table, user, password, and timeout. If you set these
attributes here, they override any settings for the same attributes in the client-side database
section. An alternative to including a server section in a client/server configuration file is to
have a separate file containing just a server section. This arrangement allows you to separate
client and server information into different files, which can reside on different machines.

type query If user-action is set, you must also set type. Setting
type="query" specifies that user-action will be a
query.

update If user-action is set, you must also set type. Setting
type="update" specifies that user-action will be
an update.
195

Configuration File Details and Examples
Sample TeamXpress-to-XML Configuration File

The following file configures a typical deployment from TeamXpress to an XML file. The xml-
formatted-data tag has a single attribute, file, which specifies the absolute path and file name of
the destination file. A destinations section can have any number of xml-formatted-data
elements, or a combination of xml-formatted-data and database elements. When deploying to
an XML file, you can also remap field column tags as shown on page 198.

<deployment name="TeamXpress-to-xml">
<source>

<!-- Pull data tuples from TeamXpress EA's -->

<TeamSite-extended-attributes
options="full"
area="/default/main/dev/STAGING" >
<path name="." />

</TeamSite-extended-attributes>
</source>
<destinations>

<xml-formatted-data file="/u/temp/someTable.xml" />
</destinations>

</deployment>

The following sample file shows the default format of a typical XML destination file:

<?xml version="1.0"?>
<xml-tuple-data version="2.0">
<data-tuple>

<tuple-field name="path">mydir/f9</tuple-field>
<tuple-field name="state">Original</tuple-field>
<tuple-field name="value">small</tuple-field>
<tuple-field name="key">size</tuple-field>

</data-tuple>
<data-tuple>

<tuple-field name="path">mydir/f9</tuple-field>
<tuple-field name="state">Original</tuple-field>
<tuple-field name="value">blue</tuple-field>
<tuple-field name="key">color</tuple-field>

</data-tuple>
</xml-tuple-data>
196 TeamXpress Templating and Deployment Guide

Sample Database-to-Database Configuration File
Sample Database-to-Database Configuration File

<deployment name="db-to-db">
<source>

<!-- Pull data tuples from databse -->
<database db="server"

user="DBA"
password="SQL"
table="staging">

<fields>
<field name="path" column="Path" />
<field name="key" column="KeyName" />
<field name="value" column="Value" />
<field name="state" column="State" />

</fields>
</database>

</source>
<destinations>

<!-- Oracle8 on Unix -->
<database db="diver:1521:testdb"

user="scott"
password="tiger"
table="someTable">

<select>
<column name="Path"

value-from-field="path" />
<column name="KeyName"

value-from-field="key" />
</select>
<update>

<!-- Update column 'Value' to contain the -->
<!-- current EA value, and update column 'State' -->
<!-- to contain the current state. -->
<!-- This is a k-v-p specification -->
<column name="Value"

value-from-field="value" />
<column name="State"

value-from-field="state" />
</update>

</database>
</destinations>

</deployment>
197

Configuration File Details and Examples
In this file, the field elements specify which columns in the source database DataDeploy will use
when building a tuple for each row. The select element chooses rows to update in the destination
database. It will choose rows only having unique combinations of the values named in the column
subelements (in this case, path and key). See “Sample TeamXpress-to-XML Configuration File” on
page 196 for an example of XML destination file format.

Sample Database-to-XML Configuration File

The following file configures a deployment from a database to an XML file, including remapped field
column tags (as opposed to the default output shown on page 196):

<deployment name="db-to-xml">
<source>

<!-- Pull data tuples from databse -->
<!-- Oracle8 on Unix -->
<database db="diver:1521:testdb"

user="scott"
password="tiger"
table="tupleTable">

<fields>
<field name="path" column="EPath" />
<field name="key" column="EKeyName" />
<field name="value" column="EValue" />
<field name="state" column="EState" />

</fields>
</database>

</source>
<destinations>

<xml-formatted-data file="/tmp/tupleTable.xml">
</xml-formatted-data>

</destinations>
</deployment>
198 TeamXpress Templating and Deployment Guide

Sample Database-to-XML Configuration File
The resulting XML output file is as follows:

<?xml version="1.0"?>
<xml-tuple-data version="2.0">
<data-tuple>

<tuple-field name="NEWpath">mydir/f9</tuple-field>
<tuple-field name="NEWstate">Original</tuple-field>
<tuple-field name="NEWvalue">small</tuple-field>
<tuple-field name="NEWkey">size</tuple-field>

</data-tuple>
<data-tuple>

<tuple-field name="NEWpath">mydir/f9</tuple-field>
<tuple-field name="NEWstate">Original</tuple-field>
<tuple-field name="NEWvalue">blue</tuple-field>
<tuple-field name="NEWkey">color</tuple-field>

</data-tuple>
</xml-tuple-data>
199

Configuration File Details and Examples
Sample XML-to-Database Configuration File

The following file configures a typical deployment from an XML file to a database:

<deployment name="xml-to-db">
<source>

<!-- Pull data tuples from XML file -->
<xml-formatted-data file="/u/iw/wcuan/billTable.xml" >

<fields>
<field name="path" element="path" />
<field name="key" element="key" />
<field name="value" element="value" />
<field name="state" element="state" />

</fields>
</xml-formatted-data>

</source>
<destinations>

<database db="diver:1521:testdb"
user="scott"
password="tiger"
table="TableFromXML">

<select>
<column name="Path"

value-from-field="path" />
<column name="KeyName"

value-from-field="key" />
</select>
<update>

<!-- Update column 'RelatedValue' to contain the -->
<!-- current EA value, and update column 'status' -->
<!-- to contain the current state. -->
<!-- This is a k-v-p specification -->
<column name="Value"

value-from-field="value" />
<column name="State"

value-from-field="state" />
</update>

</database>
</destinations>

</deployment>
200 TeamXpress Templating and Deployment Guide

Sample XML-to-Database Configuration File
In this file, the field elements specify which attributes in the source XML file DataDeploy will use
when building a tuple for each Path-Key-Value-State item in the file. The element attribute can
name any valid element; it is not limited to naming just the path, key, value, or state elements
shown here.
201

Configuration File Details and Examples
Sample XML-to-XML Configuration File

The following file configures a typical deployment from an XML file to another XML file. This is
different than just copying the source file because it includes an in-flow substitution as described in the
file comments. You can also include filters when configuring an XML-to-XML deployment, although
that feature is not shown here.

<deployment name="xml-to-xml">
<source>

<!-- Pull data tuples from XML file -->
<xml-formatted-data file="/u/iw/wcuan/billTable.xml" >

<fields>
<field name="path" element="path" />
<field name="key" element="key" />
<field name="value" element="value" />
<field name="state" element="state" />

</fields>
</xml-formatted-data>

</source>
<substitution>

<!-- Modify each tuple according to the following -->
<!-- match/replace pairs. In this case: any path -->
<!-- that contains the string 'WORKAREA/.../' will -->
<!-- have the string replaced by 'STAGING/'; any -->
<!-- path that contains 'EDITION/abcd' will be -->
<!-- replace with '/This/Special/Path', and any -->
<!-- tuple whose key starts with 'BEFORE' will be -->
<!-- changed to begin with 'AFTER'. -->
<field name="path"

match="(.*)/WORKAREA/[^/]+/(.*)"
replace="\1/STAGING/\2" />

<field name="path"
match="EDITION/abcd"
replace="/This/Special/Path" />

<field name="key"
match="^BEFORE(.+)"
replace="AFTER\1" />

</substitution>
<destinations>

<xml-formatted-data file="/u/temp/someTable.xml" />
</destinations>

</deployment>
202 TeamXpress Templating and Deployment Guide

Sample XML-to-XML Configuration File
In this file, the field elements specify which attributes in the source XML file DataDeploy will use
when building a tuple for each Path-Key-Value-State item in the file.
203

Configuration File Details and Examples
Starting-State Base Table Configuration File

The following file generates the initial base table BT1 shown in the Starting State diagram on
page 170:

<deployment name="staging">
<source>

<!-- Pull data tuples from TeamXpress EA's -->

<TeamSite-extended-attributes
options="full"
area="/default/main/dev/STAGING" >
<path name="." />

</TeamSite-extended-attributes>
</source>
<destinations>

<!-- Oracle8 on Unix -->
<database db="diver:1521:testdb"

user="scott"
password="tiger"
table="staging">
<select>

<column name="Path"
value-from-field="path" />

<column name="KeyName"
value-from-field="key" />

</select>
<update type="base"

state-field="state">
<!-- Update column 'Value' to contain the -->
<!-- current EA value, and update column 'State' -->
<!-- to contain the current state. -->
<!-- This is a k-v-p specification -->
<column name="Value"

value-from-field="value" />
<column name="State"

value-from-field="state" />
</update>

</database>
</destinations>

</deployment>
204 TeamXpress Templating and Deployment Guide

Event 1 Configuration File
Event 1 Configuration File

The following file configures the delta deployment shown in the Event 1 diagram on page 170:

<deployment name="delta">
<source>

<TeamSite-extended-attributes
options="differential"
base-area="/default/main/dev/STAGING"
area="/default/main/dev/WORKAREA/$workarea" >
<path name="." />

</TeamSite-extended-attributes>
</source>
<destinations>

<database db="diver:1521:testdb"
user="scott"
password="tiger"
table="Delta_$workarea">
<select>

<column name="Path"
value-from-field="path" />

<column name="Key"
value-from-field="key" />

</select>
<update type="delta"

base-table="staging"
state-field="state">
<column name="Value"

value-from-field="value" />
<column name="State"

value-from-field="state" />
</update>

</database>
</destinations>

</deployment>

Note that this file uses the parameter substitution $workarea in the <database> section. See
“Parameter Substitutions” on page 175 for more information.
205

Configuration File Details and Examples
Event 2 Configuration File

The following file configures the delta deployment shown in the Event 2 diagram on page 170:

<deployment name="submit">
<source>

<TeamSite-extended-attributes
options="differential"
base-area="/default/main/dev/STAGING"
area="/default/main/dev/WORKAREA/$workarea">
<path filelist="/tmp/somefiles" />

</TeamSite-extended-attributes>
</source>
<destinations>

<database db="diver:1521:testdb"
user="scott"
password="tiger"
table="Delta_$workarea">
<select>

<column name="Path"
value-from-field="path" />

<column name="Key"
value-from-field="key" />

</select>
<update type="base"

base-table="staging"
state-field="state">
<column name="Value"

value-from-field="value" />
<column name="State"

value-from-field="state" />
</update>

</database>
</destinations>

</deployment>
206 TeamXpress Templating and Deployment Guide

Chapter 10

Invoking DataDeploy

This chapter describes how to invoke DataDeploy from the command line, and the conditions under
which the DataDeploy daemon runs as a service. You can also use the syntax shown here to invoke
DataDeploy through an iwat trigger script or an external workflow task as described on page 151.

iwdd.ipl Command

Use the iwdd.ipl command to invoke DataDeploy from the command line, in an iwat trigger
script, or as a workflow task. Usage is as follows. Note that iwdd.ipl resides in dd-home/bin.

Usage
iwdd.ipl cfg=configfile [deployment=deploymentname][iwdd-op=tableopname]

iwdd.ipl cfg=configfile [deployment=deploymentname][iwdd-op=do-sql] user-
op=anyname mytable=anytable

iwdd.ipl remote-host=hostname [remote-port=portnumber][iwdd-
op=serveropname]

Syntax

iwdd.ipl cfg Invokes DataDeploy, and optionally performs table
operations.

configfile The name of the DataDeploy configuration file,
including path name (either absolute or relative to the
current directory).

deployment=deploymentname Invokes DataDeploy as a client. Without this option,
DataDeploy is invoked as a server.
207

Invoking DataDeploy
deploymentname The value of the name attribute of the deployment
element.

iwdd-op=tableopname Performs the table operation specified by
tableopname. This is not a standalone option; you
can only use it together with
deployment=deploymentname.

tableopname Displays or deletes tables as follows:

show-table: Displays an ASCII version of the table
named by table= in the configuration file’s
database section for the specified deployment.

drop-table: Deletes the same table from the
database.

show-tracker: Displays an ASCII version of the
tracker table.

drop-tracker: Deletes the tracker table from the
database.

iwdd-op=do-sql Performs an SQL operation on the named table.

user-op=anyname Performs the user-defined SQL operation defined by
user-action=anyname in the DataDeploy
configuration file’s sql element. See Item 14 in
“Sample File Notes” on page 181 section for more
information. You must also set mytable=anytable
whenever you set user-op=anyname.

iwdd remote-host Performs server operations on the server specified in
hostname.

hostname The IP address or name of the server host.

remote-port=portnumber Specifies the port number on the host. Defaults to
1949 if remote-port is not set.

iwdd-op=serveropname Performs the server operation specified by
serveropname. Defaults to ping-server if not
set.
208 TeamXpress Templating and Deployment Guide

iwdd.ipl Command
serveropname ping-server: Returns a standard string to verify
the server connection.

stop-server: Waits for current deployment to
complete and then stops the server. All
communication with the server is cut off after you
issue this command.

kill-server: Stops the server immediately even if a
deployment is running.

Examples

To invoke DataDeploy as a server based on the configuration file /bin/conf/ddconfig.xml:
iwdd.ipl cfg=/bin/conf/ddconfig.xml

To invoke DataDeploy as a client based on the configuration file /bin/conf/ddconfig.xml and
the deployment named ea-to-db:

iwdd.ipl cfg=/bin/conf/ddconfig.xml deployment=ea-to-db

To delete the tracker table from the database:

iwdd.ipl cfg=/bin/conf/ddconfig.xml deployment=ea-to-db iwdd-op=drop-
tracker

To stop the server on port 1234 of the host examplehost:

iwdd.ipl remote-host=examplehost remote-port=1234 iwdd-op=stop-server

To ping the server on port 1949 of the host examplehost:

iwdd.ipl remote-host=examplehost
209

Invoking DataDeploy
Execute the following to invoke DataDeploy as a client to perform the SQL operation showpaths on
the table prtable. In this example:

• The DataDeploy configuration file is ../conf/templating/extranet/pr.cfg.

• showpaths is the value for the user-op attribute in the configuration file’s <sql> element.

• mytable="prtable" is a parameter substitution for all occurrences of $mytable in the
configuration file (see “Parameter Substitutions” on page 175 for more information).

iwdd.ipl cfg=../conf/templating/extranet/pr.cfg deployment="dosql" iwdd-
op=do-sql user-op="showpaths" mytable="prtable"

Running DataDeploy as a Service

The Interwoven DataDeploy service automatically starts the DataDeploy daemon for DAS
operation if the iwsyncdb.cfg file exists in dd-home/conf. If iwsyncdb.cfg does not
exist, the Interwoven DataDeploy service starts the DataDeploy daemon for 3-tier
operation.
210 TeamXpress Templating and Deployment Guide

Chapter 11

Synchronizing OpenDeploy
and Data Deploy
This chapter describes the configuration tasks you must perform to synchronize OpenDeploy with
DataDeploy, and how to invoke a deployment after synchronization is complete.

Overview

You can configure your system to deploy file system assets and database assets in the same transactional
deployment. This type of deployment is referred to as synchronized deployment throughout this chapter.

Deploying Different Types of Assets

File system assets are files (HTML, ASCII, etc.) that are typically deployed by previous releases of
OpenDeploy. Database assets are TeamXpress extended attributes and data content records (DCRs)
created through TeamXpress Templating. Deployment of database assets was not supported by
previous releases of OpenDeploy.

A typical scenario for using synchronized deployment involves files that were generated via
TeamXpress Templating. For example, after you configure synchronized deployment, if you deploy
HTML files that were generated by rendering DCRs through presentation templates, the DCRs are
also deployed to database tables residing on the production server. These actions occur as the result of
a single synchronized deployment.

Synchronized deployment is intended primarily for deploying TeamXpress editions. The first
development-to-production deployment of an edition will deploy all files and all database assets.
Subsequent deployments will be dir-diffs between a subsequent edition on the production server and
tuple differences between the current edition and the previous edition.
211

Synchronizing OpenDeploy and
Data Deploy
Synchronized deployment generates or updates one or more base tables on the production server. It
does not generate delta tables. See “Client Configuration File” on page 217 for more information
about what information is deployed to these base tables.

Note: Adding new files or database content to the production server by any method other than the
edition deployment process will create data inconsistencies between assets on the
development and production servers.

Configuration Task Categories

Tasks that you must perform to configure your system for synchronized deployment fall into two
main categories:

• Ensuring that OpenDeploy configuration files are set up correctly on the development and
production servers.

• Ensuring that DataDeploy configuration files are set up correctly on the development server and
production servers.

The rest of this chapter describes:

• The software required for synchronized deployment.

• The files provided with OpenDeploy and DataDeploy to support synchronized deployment.

• An overview of what happens during synchronized deployment.

• OpenDeploy and DataDeploy configuration tasks that you must perform to set up synchronized
deployment.

• How to invoke synchronized deployment.
212 TeamXpress Templating and Deployment Guide

Software Requirements
Software Requirements

Synchronized deployment requires the following software:

• TeamXpress 1.1 on the development server.

• TeamXpress Templating 1.1 on the development server.

• TeamXpress OpenDeploy 4.5.1 on the development and production servers.

• TeamXpress DataDeploy 4.5.1 on the development and production servers.

Program and Configuration Files

The following files control synchronized deployment. All files are installed by default in od-home/
examples/ddsync. You must manually move them to the locations shown below. See the sections
following the table for configuration instructions and illustrations showing how these files interact.

File Location Description

ddsync.ipl dd-home/bin on the
development and production
servers.

The DNR script invoked by OpenDeploy
to execute DataDeploy. Do not edit this
file.

database.xml dd-home/conf on the
production server.

The include file for the <database>
element in loaddb.cfg. You must
configure this file for your site. See
“Configuring DataDeploy” on page 222
for more information.

subxmldb.template dd-home/conf on the
development server.

The Template DataDeploy configuration
file used by iwsyncdb.ipl as a basis for
creating the loaddb.cfg DataDeploy
configuration file. Do not edit this file.

loaddb.cfg Generated on the production
server; must be moved to
dd-home/conf on the
production server.

The generated DataDeploy configuration
file used to run DataDeploy to update a
database from generated XML files. Do
not edit this file. You can, however
regenerate it from the command line. See
“Configuring DataDeploy” on page 222
for more information.
213

Synchronizing OpenDeploy and
Data Deploy
Synchronized Deployment Process

The following diagram shows the deployment of file system assets and database assets from a
development server to a production server. There are two main deployment paths: one for the file
system assets (labeled “Other Files” in the diagram) and one for the database assets such as TeamXpress
DCRs and extended attributes. The diagram uses the following symbols:

The section following the diagram explains all deployment steps in detail.

tsxml.cfg dd-home/conf on the
development server.

The DataDeploy configuration file used
to run DataDeploy to generate XML files
from TeamXpress extended attributes
and DCRs. You must configure this file
for your site. See “Configuring
DataDeploy” on page 222 for more
information.

oddd_receive.cfg od-home/conf on the
production server.

OpenDeploy server-side (production
server) configuration file. You must
configure this file for your site. See
“Server Configuration File” on page 221
for more information.

oddd_send.cfg od-home/conf on the
development server.

OpenDeploy client-side (development
server) configuration file. You must
configure this file for your site. See
“Configuring OpenDeploy” on page 217
for more information.

File Location Description

Flow of data such as DCRs and extended attributes.

Flow of OpenDeploy and DataDeploy processes.
214 TeamXpress Templating and Deployment Guide

Synchronized Deployment Process
Synchronized Deployment

Production ServerDevelopment Server

tsxml.cfg

OpenDeploy
Client

DNR Script

DataDeploy

TeamXpress
DCRs and EAs

XML Files

Other Files

OpenDeploy
Server

DNR Script

DataDeploy

XML Files

Other Files

RDBMS

loaddb.cfg

database.xml

1

2

3

4

5

5

8

7

6

9

215

Synchronizing OpenDeploy and
Data Deploy
Diagram Key

This section explains the actions shown in the preceding diagram. For these actions to take place, you
must have already configured the OpenDeploy and DataDeploy files as described in this chapter. You
must also have already started the OpenDeploy daemon on the production server by executing the
iwdeploy -s command described in “” on page 222.

1. On the development server, a user invokes OpenDeploy in transactional mode from the command
line via the iwdeploy -T command. See “Invoking Synchronized Deployment” on page 227 for
syntax details. The client- and server-side OpenDeploy configuration files for this deployment
must be configured to deploy file system assets per a normal deployment, and must also contain
deploy-and-run (DNR) scripts for database asset deployment. See “Configuring OpenDeploy” on
page 217 for details about setting up these OpenDeploy configuration files.

The OpenDeploy client starts the client-side DNR script.

2. The client-side DNR script invokes DataDeploy as configured by tsxml.cfg. See “” on page 222
for details about tsxml.cfg.

3. DataDeploy reads the TeamXpress database assets (DCRs and extended attributes) residing on the
development server.

4. DataDeploy performs a TeamXpress-to-XML deployment, generating XML files based on the
TeamXpress database assets. See “Sample TeamXpress-to-XML Configuration File” on page 196 for
more information about this type of deployment.

5. OpenDeploy deploys the generated XML files and the original file system assets to the production
server.

6. OpenDeploy is already running on the production server (it was started as a daemon via
iwdeploy -s prior to Step 1 above). The OpenDeploy daemon starts the server-side DNR
script.

7. The server-side DNR script invokes DataDeploy as configured by loaddb.cfg and
database.xml.
216 TeamXpress Templating and Deployment Guide

Configuring OpenDeploy
8. DataDeploy reads the generated XML files that were deployed from the development server.

9. DataDeploy performs an XML-to-database deployment, populating the database on the production
server with tuples from the generated XML files. See “Sample XML-to-Database Configuration
File” on page 200 for more information about this type of deployment.

Configuring OpenDeploy

This section describes the steps you must perform to configure OpenDeploy for synchronized
deployment at your site. Configuration steps are:

1. Edit the client configuration file oddd_send.cfg to control OpenDeploy client execution on the
development server.

2. Edit the server configuration file oddd_receive.cfg to control OpenDeploy server execution
on the production server.

3. Start the OpenDeploy daemon on the production server.

The following sections describe these steps in detail.

Client Configuration File

The sample client configuration file oddd_send.cfg contains general configuration information and
four DNR scripts (all based on ddsync.ipl). Each DNR script invokes DataDeploy differently
depending upon whether the deployment is full or differential, and whether DataDeploy is invoked on
the development or production server. Full and differential deployments in the context of
synchronized deployment are defined as follows:

• With full deployment, new base tables are created for each TeamXpress Templating data type
named in tsxml.cfg. Full deployment is typically done once, as the first synchronized
deployment on your system. If you execute a full deployment more than once, existing base tables
are overwritten with new base tables upon each execution.

• With differential deployment, existing base tables are updated with any data that is new or changed
since the last deployment.
217

Synchronizing OpenDeploy and
Data Deploy
To configure oddd_send.cfg for your site, you must edit the general configuration information and
all four DNR scripts as follows.

Note: If a file named oddd_send.cfg already exists on your system, the sample configuration file
should be integrated into the existing version.

1. Open od-home/conf/oddd_send.cfg. You will see two main sections labeled Dir-Diff
Deployment with Full Tuple Deploy and Dir-Diff Deployment with

Differential Tuple Deploy. Each section contains general configuration information and
two DNR scripts.

2. Change all references to /local/iw-home to reflect the location of the actual OpenDeploy home
directory.

3. The following line specifies the development server location of the edition that you intend to
deploy in the initial full deployment:

area=/default/main/dev/EDITION/snapshot

In each occurrence of this line, change /default/main/dev/EDITION/snapshot to reflect
the development server location of the edition that you will deploy. This edition is depicted as
“TeamXpress DCRs and EAs” in the diagram on page 215. This line applies to file assets during a
full deployment.

4. The following line specifies the production server location of the destination for deployed file sys-
tem assets:

remote_directory=/tmp/Branch1

In each occurrence of this line, change /tmp/Branch1 to reflect the production server location of
the destination for deployed file system assets. These assets are depicted as “Other Files” in the
diagram on page 215. This line applies to file assets during both full and differential deployments.

5. The following line specifies the development server location of the more recent edition that you
will use for comparison during differential deployment (in which two editions are compared and
only differences are deployed):

area=/default/main/dev/EDITION/snapshot2
218 TeamXpress Templating and Deployment Guide

Configuring OpenDeploy
In each occurrence of this line, change /default/main/dev/EDITION/snapshot2 to reflect
the development server location of the more recently created edition that you will use for
comparison. In the example shown here, snapshot2 is compared with snapshot, and the
differences are then deployed.

6. The following line specifies the production server location of the destination for generated XML
files during the initial full deployment:

remote_directory=/tmp/production/dumpdir

In each occurrence of this line, change /tmp/production/dumpdir to reflect the production
server location of the destination for generated XML files. These files are depicted as “XML Files”
in the diagram on page 215. This line applies to XML files during a full deployment.

7. The following line specifies the development server location of the generated XML files during the
initial full deployment:

area=/tmp/development/dumpdir

In each occurrence of this line, change /tmp/development/dumpdir to reflect the
development server location of the generated XML files. These files are depicted as “XML Files” in
the diagram on page 215. This line applies to XML files during a full deployment.

8. The following line specifies the production server location of the destination for generated XML
files during a differential deployment:

remote_directory=/tmp/production/deltadumpdir

In each occurrence of this line, change /tmp/production/deltadumpdir to reflect the
production server location of the destination for generated XML files during a differential
deployment. These files are depicted as “XML Files” in the diagram on page 215.

9. The following line specifies the development server location of the generated XML files during a
differential deployment :

area=/tmp/development/deltadumpdir

In each occurrence of this line, change /tmp/development/deltadumpdir to reflect the
development server location of the generated XML files during a differential deployment. These
files are depicted as “XML Files” in the diagram on page 215.
219

Synchronizing OpenDeploy and
Data Deploy
10.Wherever /temp/development, /temp/production, dumpdir, and deltadumpdir occur
in the DNR scripts, change them to match the values determined in the preceding steps.

11.Where snapshot2 occurs in the differential deployment DNR script, change it to match the
development server location of the more recently created edition that you will use for comparison
in a differential deployment.

Syntax of ddsync.ipl

This section shows the full syntax for the ddsync.ipl DNR script.

Usage
ddsync.ipl area_top dump_dir dump full area
ddsync.ipl area_top dump_dir dump differential area basearea
ddsync.ipl area_top dump_dir load full
ddsync.ipl area_top dump_dir load differential

area_top The absolute path to top of the area directory.

dump_dir The relative path to the dump directory in area.

dump Dumps TeamXpress metadata to generated XML
(“dump”) files.

load Populates database table(s) with data from generated
XML (“dump”) files.

full Specifies entire area traversal.

differential Specifies comparison between two areas.

basearea Specifies the originally-created area for use in
comparison during a differential deployment. Valid
only if differential is set.

area Specifies the current area (i.e., the more recently
created area for use in comparision during a
differential deployment).
220 TeamXpress Templating and Deployment Guide

Configuring OpenDeploy
Logging ddsync.ipl Execution

A log of ddsync.ipl execution is maintained in dd-log-home/ddsync_dump_load.log.

Supported OpenDeploy Modes

Whenever you invoke a synchronized deployment, you must execute OpenDeploy in forward dir-diff
mode. TeamXpress-based, file list, and reverse deployments are not supported. See “Invoking
Synchronized Deployment” on page 227 for appropriate command-line syntax for invoking in dir-diff
mode.

Configuration File Location

After you configure oddd_send.cfg, ensure that it resides in od-home/conf.

Server Configuration File

The sample server configuration file od-home/conf/oddd_receive.cfg is shown below. You
must edit it to reflect your system’s port number and the TeamXpress server name. You must also edit
the values of /tmp/Branch1 and /tmp/production so that they match the values you entered in
oddd_send.cfg.

Configuration File Location

After you configure oddd_receive.cfg, ensure that it resides in od-home/conf.

#
Test file for self-host deployment of some dir
#
SERVER-SIDE
#
port=1999
timeout=600
#require_abs_script_path=y
TeamSite_server=pegasus

#key_file=/secrets/some-shared-secret-file
allowed_directory = /tmp/Branch1
allowed_directory = /tmp/production

;

221

Synchronizing OpenDeploy and
Data Deploy
Starting the OpenDeploy Server Daemon

After configuring the server configuration file, start the OpenDeploy server daemon on the
production server by executing the following command:

iwdeploy -S -f oddd_receive.cfg

Configuring DataDeploy

This section describes the steps you must perform to configure DataDeploy for synchronized
deployment at your site. Configuration steps are:

1. Edit the configuration file tsxml.cfg.

2. Generate the configuration file loaddb.cfg.

3. Edit the configuration include file database.xml.

4. Verify that the configuration files reside in the appropriate directories.

The following sections describe these steps in detail.

Interaction Between Files

The following diagram shows the interaction between DataDeploy configuration files during a
synchronized deployment. The section following the diagram explains each component in detail.
222 TeamXpress Templating and Deployment Guide

Configuring DataDeploy
Synchronized Deployment: DataDeploy Configuration Files

Diagram Key

1. When DataDeploy is invoked on the development server via the ddsync.ipl DNR script, the
deployment is based on the dd-home/tsxml.cfg file. Prior to invoking the synchronized
deployment, you must have edited this file manually so that it names each TeamXpress Templating
data category and type that will be deployed to a generated XML file.

Data categories and types are determined by examining the templatedata directory structure
that was set up as described in the TeamXpress Templating documentation. By default,
tsxml.cfg contains the example data categories and types that are distributed with TeamXpress

Production ServerDevelopment Server

TeamXpress Templating Directories

templateda
intern
boo
dat
datacapture.
presentat
book.t

WORKAREA

1

DataDeploy

loaddb.cfg database.xml

DataDeploy

tsxml.cfg

Must
match

2 3
223

Synchronizing OpenDeploy and
Data Deploy
Templating. The example in the diagram shows the part of this directory structure containing the
book data type within the internet data category. See “Editing tsxml.cfg” on page 224 for
details about how to list data categories and types.

You do not need to list every data category and type from the templatedata directory structure
in tsxml.cfg. You only need to list the data types that you intend to deploy. However, each data
type that you list in tsxml.cfg must exist in the templatedata directory structure. If you list
data types in tsxml.cfg that do not exist in the directory structure, the deployment will fail.

Each data type that you list in tsxml.cfg will be deployed to its own generated XML file.

2. When DataDeploy is invoked on the production server via the ddsync.ipl DNR script, the
deployment is based on the dd-home/loaddb.cfg file. Prior to invoking the synchronized
deployment, you must have generated this file on the development server and then moved it to
dd-home on the production server. You should not edit loaddb.cfg directly; doing so will cre-
ate inconsistencies between assets on the development and production servers. See “Generating
loaddb.cfg” on page 226 for details.

3. The information in loaddb.cfg is supplemented by database.xml, which is analogous to an
include file. The database.xml file is named in the <data-deploy-elements> element in
loaddb.cfg. You must edit database.xml to configure it for your site. See “Editing data-
base.xml” on page 227 for details. See “Configuration File Details and Examples” for information
about <data-deploy-elements> syntax.

Editing tsxml.cfg

Prior to invoking a synchronized deployment, you must edit tsxml.cfg as described in this section
and ensure that it is installed in dd-home/conf on the development server. The following excerpts
are from the version of tsxml.cfg that is shipped with DataDeploy. See the diagram key following
the diagram for details.
224 TeamXpress Templating and Deployment Guide

Configuring DataDeploy
<data-deploy-configuration>
<client>

<!-- -->
<!-- Parameters: -->
<!-- mode = { full | differential } -->
<!-- -->
<!-- if mode == full -->
<!-- mybasearea = dummy -->
<!-- myarea = absolute vpath to any area -->
<!-- -->
<!-- if mode == differential -->
<!-- mybasearea = absolute vpath to prev edition -->
<!-- myarea = absolute vpath to curr edition -->
<!-- -->

<deployment name="TeamXpress_metadata">
<source>

<TeamSite-extended-attributes
options = "wide,$mode"
base-area = "$mybasearea"
area = "$myarea" >
<path name = "."

visit-directory = "deep" />
</TeamSite-extended-attributes>

</source>
<destinations>

<xml-formatted-data file="TeamSite_metadata.dump" />
</destinations>

</deployment>

<deployment name="internet_book">
<source>

<TeamSite-templating-records
options = "wide,$mode"
base-area = "$mybasearea"
area = "$myarea" >
<path name = "templatedata/internet/book"

visit-directory = "deep" />
</TeamSite-templating-records>

</source>
<destinations>

<xml-formatted-data file="internet_book.dump" />
</destinations>

</deployment>

Deployment section for
extended attributes 1

Deployment section for first
data category/type 2
225

Synchronizing OpenDeploy and
Data Deploy
Sample File Notes

1. Deployment section for extended attributes: Configures deployment of TeamXpress
extended attributes to generated XML (“dump”) files. Do not edit this section of tsxml.cfg.

2. Deployment section for first data category/type: Configures deployment of DCRs to
generated XML (“dump”) files. The section shown in this example instructs DataDeploy to
execute a deployment that creates a single XML file (internet_book.dump) containing
DCRs for the internet/book data category/type. Note that the internet data category
and book data type match the data category and type shown in the templatedata directory
structure in the diagram on page 223. The default tsxml.cfg file included with DataDeploy
contains several additional <deployment> sections for the other data categories and types
that exist in the default TeamXpress Templating templatedata directory structure. Those
sections are not shown here due to space constraints.

You must create a <deployment> section in tsxml.cfg for each data category and type that
you intend to deploy via synchronized deployment. To do this, copy and edit the
<deployment> section shown in this example, replacing all occurrences of internet and
book with the appropriate data category and type (respectively) from your site’s
templatedata directory structure. Repeat this process as necessary to create a
<deployment> section in tsxml.cfg for each data type that you intend to deploy.

Generating loaddb.cfg

You must generate loaddb.cfg prior to invoking the first synchronized deployment. After that
initial generation, it should not be necessary to regenerate loaddb.cfg. The loaddb.cfg file must
reside on the production server. However, the TeamXpress Templating information needed to
generate loaddb.cfg resides on the development server. Therefore, you must generate
loaddb.cfg on the development server and then move it to dd-home/conf on the production
server after it is generated.

Execute the following command on the development server to generate loaddb.cfg in the
target-path directory of your choice. The path listed in area-vpath names the area containing
the TeamXpress Templating directory structure as shown in “TeamXpress Templating Directories” in
the diagram on page 223.
226 TeamXpress Templating and Deployment Guide

Invoking Synchronized Deployment
dd-home/bin/iwsyncdb.ipl -genloadcfg target-path/loaddb.cfg area-vpath

After loaddb.cfg is generated, move it to dd-home/conf on the production server. Then change
the <data-deploy-elements> file path so that it contains the full pathname to the
database.xml file.

Editing database.xml

The following sample database.xml file is distributed with DataDeploy. Prior to invoking a
synchronized deployment, you must edit database.xml as described in this section and ensure that
it is installed in dd-home/conf on the production server.

The database name myproductiondb is hardcoded in other program files and should not be edited in
database.xml. However, you must edit the db, user, password, and vendor attributes per the
syntax described in Item 11 on page 187 so that they are specific to your system.

Configuration File Locations

After configuring the DataDeploy configuration files, ensure that they reside in the locations shown in
“Program and Configuration Files” on page 213.

Invoking Synchronized Deployment

After you have configured OpenDeploy and DataDeploy as described earlier in this chapter, you can
invoke a synchronized deployment from the development server.

When you invoke synchronized deployment, you can chose either of the following deployment types:

<data-deploy-elements>
<database name = "myproductiondb"

db = "server"
user = "DBA"
password = "SQL"
vendor = "SYBASE" />

</data-deploy-elements>

Do not edit the name attribute.

Edit the db, user, password,
and vendor attributes.
227

Synchronizing OpenDeploy and
Data Deploy
• Full deployment, in which new base tables are created for each data type named in tsxml.cfg. Full
deployment is typically done once, as the first synchronized deployment on your system. If you
execute a full deployment more than once, existing base tables are overwritten with new base
tables upon each execution.

• Differential deployment, in which existing base tables are updated with any data that is new or
changed since the last deployment.

Issue the following command on the development server to execute a full deployment:

iwdeploy -T -f oddd_send.cfg full_tuple_deploy

Issue the following command on the development server to execute a differential deployment:

iwdeploy -T -f oddd_send.cfg delta_tuple_deploy

If any part of a synchronized deployment fails, the entire deployment is restored back to the previous
state. For example, if the DataDeploy component fails, the files deployed by OpenDeploy files are
reverted. If the OpenDeploy component fails, the DataDeploy component will not be invoked.
228 TeamXpress Templating and Deployment Guide

Section 3: OpenDeploy
Administration
• Installing OpenDeploy

• Syntax and Options

• Configuration Files

• Configuration File Options

• Advanced Features

• Deployment Scenarios

230
 TeamXpress Templating and Deployment Guide

Chapter 12

Installing OpenDeploy

OpenDeploy consists of a deployment client which resides on the TeamXpress or development server,
and a deployment server which resides on the production server. Before using OpenDeploy, you must
set up configuration files for the types of deployment you want (see Chapter 17, “Deployment
Scenarios”).

The rest of this chapter describes how to install the OpenDeploy client and server. Installation on a
UNIX system such as Solaris is covered in the following section. Installation on a Windows NT/2000
system follows the UNIX section.

Development (ProductName) server Production server

Pr
od

uc
tN

am
eOpenDeploy

client
OpenDeploy

server
231

Installing OpenDeploy
UNIX

Before You Begin

You should perform the following tasks before installing the OpenDeploy client and server on a UNIX
system:

1. If you are installing the OpenDeploy client on a system without TeamXpress, you will need to
specify a directory where the OpenDeploy tar file will be loaded and uncompressed. It is
recommended that you determine which directory this will be before starting the installation
procedure.

2. During installation of the OpenDeploy server, you will be prompted to specify the production
server’s port number, the name of the production server, and the default directory on the produc-
tion server where website content will be deployed. It is recommended that you determine this
information before starting the installation procedure.

Installing the OpenDeploy Client

The following sections describe how to install the OpenDeploy client on development servers with
and without TeamXpress.

Development Server With TeamXpress

To install the OpenDeploy client on a development server that has TeamXpress installed:

1. Copy the OpenDeploy tar file to your development server and decompress the tar file:

% gunzip -c opendeploy.tar.gz | (cd /‘iwgethome‘; tar xvpf -)

2. In the OpenDeploy home directory (iw-home/opendeploy), run iwinstallod:

% cd iw-home/opendeploy

% install/iwinstallod

3. When the OpenDeploy installation script prompts you to select the installation type, select 1
(source/client installation).

4. The OpenDeploy client will install on your development server. The installation process will cre-
ate the log file iw-home/log/deployEvents.log.
232 TeamXpress Templating and Deployment Guide

UNIX
Development Server Without TeamXpress

To install the OpenDeploy client on a development server that does not have TeamXpress installed:

1. Copy the OpenDeploy tar file into the directory on your development server where you want to
uncompress and expand it, and decompress the tar file:

% gunzip -c opendeploy.tar.gz | (cd /parent_dir; tar xvpf -)

2. In the OpenDeploy home directory (parent_dir/opendeploy), run iwinstallod:

% cd parent_dir/opendeploy

% install/iwinstallod

3. When the OpenDeploy installation script prompts you to select the installation type, select 1
(source/client installation).

4. The OpenDeploy client will install on your development server. The installation process will cre-
ate the log file opendeploy/log/deployEvents.log.

Installing the OpenDeploy Server

To install the OpenDeploy server:

1. Copy the OpenDeploy tar file into the directory on your production server where you want to
uncompress and expand it. Decompress the tar file:

% gunzip -c opendeploy.tar.gz | (cd /parent_dir; tar xvpf -)

2. In the OpenDeploy home directory (parent_dir/opendeploy), run the iwinstallod pro-
gram:

% cd parent_dir/opendeploy

% install/iwinstallod

3. When the OpenDeploy installation script prompts you to select the installation type, select 2 (tar-
get/server installation).

4. The OpenDeploy installation script will prompt you to specify some default parameters, such as
port number, the name of the production server, and the directory to deploy to. These parameters
will be used in a simple default configuration file, which the installation script will display. You can
change any of these parameters by modifying the default configuration file or by using a different
configuration file when you invoke the iwdeploy server.
233

Installing OpenDeploy
The OpenDeploy server installation script installs the following files:

OpenDeploy for UNIX creates a server log file with the level of verbose logging specified when the
OpenDeploy server is invoked. This log is automatically generated in opendeploy/
iwdeploy.log. If this log file starts to take up too much space, you can stop the OpenDeploy
service, save the log file in another location, and restart the service. If the OpenDeploy server does
not appear to be running, check this log file for information about the possible causes.

Uninstalling OpenDeploy

To uninstall OpenDeploy:

In the OpenDeploy home directory (opendeploy) on the development server, run the
iwuninstallod program:

% cd iw-home/opendeploy
% install/iwuninstallod

Repeat the process on the production server.

/etc/iwopendeploy.cfg
(if TeamXpress is not installed)

Contains the directory path to the OpenDeploy
home directory.

/etc/init.d/iw.deploy The start/stop script for the OpenDeploy server.

/etc/rc3.d/S80iw.deploy Hard link to /etc/init.d/iw.deploy (starts the
OpenDeploy server at UNIX system startup time).

/etc/rc3.d/K80iw.deploy Hard link to /etc/init.d/iw.deploy (stops the
OpenDeploy server at UNIX system shutdown
time).

opendeploy/conf/iwodserver.cfg Default server configuration file.

opendeploy/log Contains OpenDeploy log files.
234 TeamXpress Templating and Deployment Guide

Windows NT/2000
Invoking Deployment

Before you invoke the OpenDeploy client and server, you must have configuration files set up for both
the client and the server (see Chapter 14, “Configuration Files”). You should also have a good
understanding of OpenDeploy syntax and options (see Chapter 13, “Syntax and Options”).

You can invoke deployment either manually or through /etc/init.d/iw.deploy.

To invoke deployment manually:

1. As superuser on the production server, invoke the iwdeploy server, either manually:1

% iwdeploy -S -fd destConfigFile -V level -t tempFilePath &

or by editing the /etc/init.d/iw.deploy script to use the options you want, and invoking it:

% /etc/init.d/iw.deploy start

2. On the development server, invoke the iwdeploy client, either manually or through custom
scripts using the TeamXpress suite of command triggers. The arguments you use for the iwde-
ploy client will depend on the type of deployment you want to invoke.

Windows NT/2000

Installing the OpenDeploy Client and Server

To install the OpenDeploy client on the development server:

1. Double-click on the self-extracting installation file OpenDepl.exe.

2. The installation files will extract themselves and begin installing OpenDeploy. Follow the direc-
tions in the onscreen installation prompts.

3. After completing the installation tasks described in the prompts, you must also make sure that the
TMP environment variable is set on the production server. Select Settings > Control Panel from
the Windows NT/2000 Start menu.

1. If you have just killed the iwdeploy server process and are now invoking it again, it can fail to bind to the port. Wait three minutes
for the TCP/IP connection, then try again.
235

Installing OpenDeploy
4. Open the System Control Panel.

5. Select the Environment tab. Scroll through the list of variables in the System Variables window.

If TMP appears in that window, then the variable is set and the OpenDeploy installation procedure
is finished. You do not need to perform steps 6-10.

Note: Make sure that the TMP variable you see is the System environment variable, not the User
environment variable.

If the TMP variable does not appear, then continue to steps 6-10 to set the variable.

6. To set the TMP variable, click on one of the settings in the System Variables window.

7. Change the setting in the Variable box to TMP (this change will not alter the existing system vari-
able; it will add a new one).

8. Change the setting in the Value box to the location where you want to put temporary files (usually
C:\TEMP).

9. Click OK.

10.You will need to reboot the server before using OpenDeploy.

The installation procedure sets a Registry key
(HKEY_LOCAL_MACHINE\Software\Interwoven\OpenDeploy) with three values:

To install the OpenDeploy server:

Repeat steps 1-10 (above) on the production server.

od-home The directory where OpenDeploy was installed (default:
C:\Program Files\Interwoven\OpenDeploy)

od-loghome The directory for OpenDeploy’s log files (default:
C:\Program Files\Interwoven\OpenDeploy)

Version Current version of OpenDeploy
236 TeamXpress Templating and Deployment Guide

Windows NT/2000
Uninstalling OpenDeploy

To uninstall OpenDeploy:

1. Select Start > Settings > Control Panels.

2. Double-click on the Add/Remove Programs Control Panel icon.

3. Locate Interwoven OpenDeploy in the Control Panel, and click Add/Remove. UninstallShield
will detect the existing OpenDeploy installation and remove the software.

Invoking OpenDeploy

Before you invoke the OpenDeploy client and server, you must have configuration files set up for both
the client and the server (see Chapter 14, “Configuration Files”). You should also have a good
understanding of OpenDeploy syntax and options (see Chapter 13, “Syntax and Options”).

Invoking the OpenDeploy Server

To invoke the OpenDeploy server:

1. On the production server, select Settings > Control Panel from the Windows NT/2000 Start
menu.

2. Open the Services Control Panel.

3. Select OpenDeploy from the list of services.

4. Type all the arguments you want to use (e. g. configuration file and type of logging) in the Startup
Parameters box. When specifying paths to files, be sure to use double backslashes (\\) anywhere
you would normally use single backslashes (\).

If OpenDeploy is invoked as a service, it will use the -S (server) option by default. If no
configuration file is specified on the command line, OpenDeploy will use the default configuration
file (OpenDeploy/conf/iwodserver.cfg).
237

Installing OpenDeploy
The Windows NT Services Window

5. Click the Start button.

OpenDeploy for Windows NT/2000 creates a server trace file with the level of verbose logging
specified when the OpenDeploy server is invoked. This log is automatically generated in the location
you specify at the time of installation, with the name deploySvrTracedate.id.txt. Every restart
of the service will create a new log file. If this log file gets too large, you can stop the OpenDeploy
service, save the log file in another location, and restart the service.

To check the status of the OpenDeploy server, use the Windows NT/2000 Task Manager. If the
OpenDeploy service does not appear, check the trace file.

Invoking the OpenDeploy Client

Before you can invoke the OpenDeploy client, you must invoke the OpenDeploy server.

To invoke the OpenDeploy client:

You can invoke the OpenDeploy client (on the development server) manually or through custom
scripts. The OpenDeploy client is manually invoked from the command prompt. The arguments you
use for the iwdeploy client will depend on the type of deployment you want to invoke.
238 TeamXpress Templating and Deployment Guide

Chapter 13

Syntax and Options

This chapter discusses the syntax and options of the iwdeploy command line tool (CLT).

iwdeploy Syntax

The syntax for iwdeploy is exactly the same in both UNIX and Windows NT/2000—only the means
of invoking it differs. If you are invoking the iwdeploy server through the Windows NT/2000
Services Control Panel, you only need to type the arguments you want to use in the Startup
Parameters box.

Server Usage

iwdeploy -S [-h] [-v] [{-f|-fd} destConfigFile] [-fs srcConfigFile]
[-V level] [-t tempFilePath] [-i package_name] [-auth AuthFile]

Client Usage

iwdeploy [-h] [-v] [{-f|-fs} srcConfigFile] [-fd destConfigFile] [-r] [-T]
[-V level] [-events] [-log option] [-logpath dirPath] [-t tempFilePath]
[-o package_name] deployment_name [param=value]+

General options

-h Displays usage message.

-v Displays version.

-V level Specifies verbose logging level (1-4): the default is
maximum verbosity (see page 243).
239

Syntax and Options
Server mode options

-S Server mode.

-fs srcConfigFile Specifies a source configuration file (only needed for
reverse deployment, see page 337).

{-f|-fd} destConfigFile Specifies a destination configuration file. If you are
using the default configuration file, you do not need to
specify it. -f is an option provided for backward
compatibility.

-t tempFilePath Specifies a path for temporary file created during
deployment (needs space for up to ~5 Mb).

-i package_name Unpacks the deployment package created using the -o
option.

-auth AuthFile Specifies the authorization file to use (see page 258).

Client mode options

{-f|-fs} srcConfigFile Specifies a source deployment configuration file. If
you are using the default configuration file, you do not
need to specify this option. -f is an option provided
for backward compatibility.

-fd destConfigFile Specifies a destination configuration file (only needed
for reverse deployment—see page 337).

-r Pull mode (reverse deployment—see page 337).

-T Transaction-based deployment (see page 242).

-events Specifies logging for Event Reporting (see page 249).

-log option Specifies the logging option
[submit|publish|trace] (see page 243).

-logpath dirPath Specifies a log directory path (see page 243).

-t tempFilePath Specifies a path for temporary file created during
deployment (needs space for up to ~5 Mb).

deployment_name Name of the deployment to invoke (see page 253).
240 TeamXpress Templating and Deployment Guide

iwdeploy Syntax
[param=value]+ Parameters that override configuration file parameters
(for a full list of configuration file parameters, see
“OpenDeploy Client Options” on page 261).

-o package_name Creates a deployment package that can be transferred
to the production server by alternate means (e.g., via
email, manually, etc.). This option can only be used if
TeamXpress-based comparison or a file list is used to
determine which files to deploy.

Any configuration file parameter can be specified on the command line. These parameters will
override parameters specified in the configuration file. In the case where parameters specified on the
command line contradict parameters specified in the configuration file, the command-line parameters
will be used.

Specifying Paths

UNIX

When specifying paths in UNIX, always use forward slashes.

Windows NT/2000

When specifying paths in the Windows NT/2000 Startup Parameters box, you can use either forward
or back slashes. However, back slashes must be escaped by a preceding back slash. For example, the
following path:

c:\iw-home\conf\iwodserver.cfg

will not work. Instead, specify all path names using one of the following conventions:

c:\\iw-home\\conf\\iwodserver.cfg

c:/iw-home/conf/iwodserver.cfg

When specifying paths in configuration files or at the Command Prompt, use single backslashes.
241

Syntax and Options
Options

Transactional Deployment

OpenDeploy’s transactional deployment option allows you to ensure website integrity by making sure
that if the deployment process is interrupted, the original website is preserved on the webserver.

To invoke transactional deployment, use the -T option when invoking the OpenDeploy client:

% iwdeploy -fs srcConfigFile -T deployment_name

Sequence of Events

The following events occur when you invoke transactional deployment:

1. The iwdeploy server is informed that it will be using transactional mode.

2. Changes are detected on the iwdeploy server side.

3. The iwdeploy server issues “get file” directives to the client.

4. The iwdeploy server records the filepaths in an internal file list.

5. The iwdeploy server makes copies of the original files:
cp file file.iwold

6. Upon receiving files, the iwdeploy server renames them with a .iwnew suffix. When all “gets”
are done, three instances of every deployed file will exist: *.iwold, *.iwnew, and the original
file.

7. The iwdeploy server renames the new files:

mv file.iwnew file'

8. The iwdeploy server deletes the old files:

rm *.iwold'

If any step of this process fails, the deployment is cancelled and the temporary files are removed. The
original website files will be untouched.
242 TeamXpress Templating and Deployment Guide

Options
Logging

OpenDeploy generates logging output for each deployment. You can specify the level of detail you
want to include in a log, as well as what to name it and where to put it.

To configure OpenDeploy’s logging option, invoke the iwdeploy client with the -V,-log and
-logpath options:

% iwdeploy -fs srcConfigFile -V level -log option -logpath abs-path
deployment_name

Verbose Levels

The -V option allows you to specify the level of detail you want to include in a log. You can specify
verbose logging levels from 1 to 4, where Level 1 is the least verbose, and Level 4 is the most (Level 4
only applies to the server log). See the log examples later in this chapter for examples of each level.

When a file or directory is deployed, the reason why it is deployed is included in the log:

missing-in-dest For directory difference comparison, the element is not on the target server.
For TeamXpress-based comparison, the element is not in the
previous_area version path.

missing-in-src For directory difference comparison, the element is not in the development
server. For TeamXpress-based comparison, the element is not in the area
version path.

src-is-newer For directory difference comparison, the element is newer on the
development server. For TeamXpress-based comparison, the element in the
area vpath is newer.

src-is-older Applies only when revert is specified. For directory difference comparison,
the element is older on the development server. For TeamXpress-based
comparison, the element in the area vpath is older.

type-different Elements with the same name are of different types depending on where they
reside. For example, the element found on one server or area is a file, while
the element with the same path on the other server or area is a directory.

user-different User is different (does not apply to Windows NT/2000).

group-different Group is different (does not apply to Windows NT/2000).
243

Syntax and Options
Here are some sample server and client logs, showing the level of detail for the -V 1 through -V 4
options. In the -V 4 example, only the lines beginning with (2) are logged if you set the -V 2
option, lines beginning with (2) and (3) are logged with the -V 3 option, while all of the lines
shown here are displayed if you specify the -V 4 option. Unnumbered lines are logged in all cases.

mode-different Permissions are different (does not apply to Windows NT/2000).

size-different File size is different.

no-prev-area TeamXpress-based comparison did not have previous_area specified.

file_list The file was specified in a file list.
244 TeamXpress Templating and Deployment Guide

Options
-V 1 -V 4

Server log
server: Waiting for connection...
server: Received connect request! (1)
Protocol Version(2.2) OK

platform: server(UNIX), client(UNIX)
Transaction Mode: OFF
Mode(normal)
Protocol(normal)
Host(bogus)

Name(forward_deploy)
server: Number of local_directories to deploy: 1
server: Destination directory [/tmp/Branch1]
Options: do_deletes
server: COMPARE - dst[/tmp/Branch1] with
src[/u/iw/andre/deploytest/deploysrc/dir3]
server: Receiving item(./onedir)
server: Receiving item(./twodir)
server: Receiving item(./onedir/onedir.txt)
server: Receiving item(./twodir/twodir.txt)
Directories deployed : 2 Files deployed : 4
Directories failed : 0 Files failed : 0
Directories deleted : 0 Files deleted : 0
[Thu Apr 29 11:48:42 1999] Deployment COMPLETED

(2) server: Bound to port 1709
server: Waiting for connection...
server: Received connect request! (1)
Protocol Version(2.2) OK

platform: server(UNIX), client(UNIX)
Transaction Mode: OFF
Mode(normal)
Protocol(normal)
Host(bogus)

(2) server: Connection accepted!
Name(forward_deploy)

server: Number of local_directories to deploy: 1
server: Destination directory [/tmp/Branch1]
Options: do_deletes
server: COMPARE - dst[/tmp/Branch1] with src[/u/iw/andre/deploytest/deploysrc/dir3]
(3) server: Getting directory info for (.)
(4) DIFF LEGEND <name type modDate user group mode size link>
DIFF src(onedir 3 925412751 2413:2200:777 512)

dst(onedir 3 925411586 0:1:40777 112)
(4) DIFF LEGEND <name type modDate user group mode size link>
DIFF src(twodir 3 925412751 2413:2200:777 512)

dst(twodir 3 925411586 0:1:40777 112)
(3) server: Getting directory info for (./onedir)
(4) DIFF LEGEND <name type modDate user group mode size link>
DIFF src(onedir.txt 1 924057137 2413:2200:640 0)

dst(onedir.txt 1 924057137 0:1:100640 0)
(3) server: Getting directory info for (./twodir)
(4) DIFF LEGEND <name type modDate user group mode size link>
DIFF src(twodir.txt 1 924057147 2413:2200:640 0)

dst(twodir.txt 1 924057147 0:1:100640 0)
(2) server: COMPARING done
(3) server: DEPLOYING to destination path [/tmp/Branch1]
(3) directive[reason src-is-newer]
(3) directive[get ./onedir]
server: Receiving item(./onedir)
(3) server: dir for tempfile [/tmp/Branch1]
(3) directive[reason user-different]
(3) directive[reason src-is-newer]
(3) directive[get ./twodir]
server: Receiving item(./twodir)
(3) server: dir for tempfile [/tmp/Branch1]
(3) directive[reason user-different]
(3) directive[get ./onedir/onedir.txt]
server: Receiving item(./onedir/onedir.txt)
(3) server: dir for tempfile [/tmp/Branch1/onedir]
(3) server: file created[/tmp/Branch1/onedir/onedir.txt-iwtmp]
(3) Cleaning: /tmp/Branch1/onedir/onedir.txt
(3) server: Renamed [/tmp/Branch1/onedir/onedir.txt-iwtmp] to
[/tmp/Branch1/onedir/onedir.txt]
(3) directive[reason user-different]
(3) directive[get ./twodir/twodir.txt]
server: Receiving item(./twodir/twodir.txt)
(3) server: dir for tempfile [/tmp/Branch1/twodir]
(3) server: file created[/tmp/Branch1/twodir/twodir.txt-iwtmp]
(3) Cleaning: /tmp/Branch1/twodir/twodir.txt
(3) server: Renamed [/tmp/Branch1/twodir/twodir.txt-iwtmp] to
[/tmp/Branch1/twodir/twodir.txt]
(3) directive[reason user-different]
Directories deployed : 2 Files deployed : 4
Directories failed : 0 Files failed : 0
Directories deleted : 0 Files deleted : 0
[Thu Apr 29 11:48:42 1999] Deployment COMPLETED
245

Syntax and Options
Client log
[Thu Apr 29 12:06:21 1999] opendeploy 19990429.292.1 andre
INITIATED dir-diff forward_deploy sirius brain
Protocol Version(2.2) OK

Transaction Mode: OFF
Mode(normal)
Protocol(normal)
hostname(bogus)
Name(forward_deploy)

client: Local_directories to deploy: 1
client: Options: do_deletes
client: DEPLOYING - [/u/iw/andre/deploytest/deploysrc/dir3] to
[/tmp/Branch1]
client: Sending [./one.txt] [reason src-is-newer] -- OK
client: Sending [./onedir] [reason user-different] -- OK
client: Sending [./two.txt] [reason src-is-newer] -- OK
client: Sending [./twodir] [reason user-different] -- OK
client: Sending [./onedir/onedir.txt] [reason user-different] -- OK
client: Sending [./twodir/twodir.txt] [reason user-different] -- OK
client: *** Note: UNENCRYPTED deployment was configured ***
client: Remote status: server-OK
[Thu Apr 29 12:06:22 1999] opendeploy 19990429.292.2 andre
COMPLETED /u/iw/andre/deploytest/deploysrc forward_deploy
sirius brain
[Thu Apr 29 12:06:22 1999] 19990429.292.2 STATS
DEPLOYMENT /u/iw/andre/deploytest/deploysrc --
forward_deploy OK
Directories deployed : 2 Files deployed : 4
Directories failed : 0 Files failed : 0
Directories deleted : 0 Files deleted : 0

[Thu Apr 29 12:06:21 1999] opendeploy 19990429.292.1 andre
INITIATED dir-diff forward_deploy sirius brain
Protocol Version(2.2) OK

Transaction Mode: OFF
Mode(normal)
Protocol(normal)
hostname(bogus)
Name(forward_deploy)

client: Local_directories to deploy: 1
client: Options: do_deletes
(3) client: COMPARE Phase
(2) client: Sending directory info for [.]
(2) client: Sending directory info for [./onedir]
(2) client: Sending directory info for [./twodir]
client: DEPLOYING - [/u/iw/andre/deploytest/deploysrc/dir3] to [/tmp/Branch1]
(3) client: Received 'get' request for (./one.txt)
client: Sending [./one.txt] [reason src-is-newer] -- OK
(3) client: Received 'get' request for (./onedir)
client: Sending [./onedir] [reason user-different] -- OK
(3) client: Received 'get' request for (./two.txt)
client: Sending [./two.txt] [reason src-is-newer] -- OK
(3) client: Received 'get' request for (./twodir)
client: Sending [./twodir] [reason user-different] -- OK
(3) client: Received 'get' request for (./onedir/onedir.txt)
client: Sending [./onedir/onedir.txt] [reason user-different] -- OK
(3) client: Received 'get' request for (./twodir/twodir.txt)
client: Sending [./twodir/twodir.txt] [reason user-different] -- OK
client: *** Note: UNENCRYPTED deployment was configured ***
client: Remote status: server-OK
[Thu Apr 29 12:06:22 1999] opendeploy 19990429.292.2 andre
COMPLETED /u/iw/andre/deploytest/deploysrc forward_deploy sirius
brain
[Thu Apr 29 12:06:22 1999] 19990429.292.2 STATS DEPLOYMENT
/u/iw/andre/deploytest/deploysrc -- forward_deploy OK
Directories deployed : 2 Files deployed : 4
Directories failed : 0 Files failed : 0
Directories deleted : 0 Files deleted : 0

-V 1 -V 4
246 TeamXpress Templating and Deployment Guide

Options
Log Names and Locations

The -log option has three possible values: trace, submit, or publish. If no option is specified,
the log data will be sent to stdout. This option only applies to the OpenDeploy client. Under UNIX,
the server-side log file is located in opendeploy/iwdeploy.log. Under Windows NT/2000, a
server-side log file is automatically generated in the location you specify at the time of installation.

The trace option creates the following log file under UNIX:

MODETraceDATE.tag.log

or, under Windows NT/2000:

MODETraceDATE.tag.txt

The submit option creates the following log file under UNIX:

MODESubmitDATE.tag.log

or, under Windows NT/2000:

MODESubmitDATE.tag.txt

The publish option creates the following log file under UNIX:

MODEPublishEDITIONDATE.tag.log

or, under Windows NT/2000:

MODEPublishEDITIONDATE.tag.txt
247

Syntax and Options
where:

MODE = {deploy|reverse}

EDITION = [edition-name]

DATE = [yyyymmdd]

tag = the OpenDeploy session tag

For example, if iwdeploy were called by the TeamXpress command line tool iwatsub, you would
use the -log submit option. If iwdeploy were called by the TeamXpress command line tool
iwatpub, you would use the -log publish option. A timed deployment might use the -log
trace option. These naming options are for convenience in identifying the deployment trigger
only—they do not affect the contents of the logs.

 On Windows NT/2000, each deployment session creates a new trace log file. Script output is stored
in a separate trace log file from the server trace log.

To specify the location of the log file, use the -logpath option. The specified path must be an
absolute path. The default path is:

iw-home/log

If iw-home cannot be found, the default path under UNIX will be:

/var/adm

or, under Windows NT/2000:

C:\installation directory\OpenDeploy\log
248 TeamXpress Templating and Deployment Guide

Options
Event Reporting

If you are using OpenDeploy in conjunction with TeamXpress, you can integrate OpenDeploy logging
with the TeamXpress Global Report Center. To activate this option, specify the -events tag when
you invoke the client for each deployment you want recorded in the Global Report Center:

% iwdeploy -fs srcConfigFile -events deployment_name

The log data that will be fed into the reporting system will be generated in a deployEvents.log
file.
249

Syntax and Options
250 TeamXpress Templating and Deployment Guide

Chapter 14

Configuration Files

Configuration files for iwdeploy specify all the options needed for deployment. At least two such
files, one for client configuration and one for the server, are required for any deployment scenario.
Some scenarios require multiple client and server configuration files (see Chapter 17, “Deployment
Scenarios,” for examples of configuration files for common scenarios). Typical options to set in client
and server configuration files include source and destination directories, which files to exclude from
deployment, what permissions to set on deployed files, and many others (see Chapter 15,
“Configuration File Options”).

Configuration files for iwdeploy (both client and server) are exactly the same under both UNIX and
Windows NT/2000, except for pathnames, which must be specified according to platform.

OpenDeploy Server Configuration Files

The structure of the server configuration file is a shallow hierarchy of sections. Sections are delimited
by an opening keyword (e.g. TeamSite_server=name, which specifies the beginning of a
TeamSite_server section) and a closing ; on a line by itself. A server configuration file may
contain one or more named deployment sections. Each deployment section contains an
allowed_directory section and may contain a deploy_run_script section. Lines containing
comments can appear anywhere in the configuration file.

The default server configuration file is located in opendeploy\conf\iw.odserver.cfg for
UNIX or C:\Program Files\Interwoven\OpenDeploy\conf\iwodserver.cfg for
Windows NT/2000. The following examples illustrate the structure of OpenDeploy server
configuration files.
251

Configuration Files
UNIX
port=1701

TeamSite_server=development1.example.com
allowed_directory=/local/andre/deploydir
key_file=/u/iw/andre/secret_file.txt
deployment=deployandre

client_is_trusted=no
allowed_directory=/usr/local/etc/httpd/htdocs

exclude_pattern=script_one
;
deploy_run_script=script_one

as=andre
when=server_before_deploy
where=/home/andre

;
;

;

Windows NT/2000
port=1701

TeamSite_server=development1.example.com
key_file=d:\deploy\encryptkey
allowed_directory=d:\deploydst1\content
deployment=deployandre

client_is_trusted=no
allowed_directory=d:\deploydst2\content

exclude_pattern=script_one
;
deploy_run_script=script_one

as=andre
when=server_before_deploy
where=d:\deploydst3\content

;
;

;

Chapter 15, “Configuration File Options,” contains a full list of iwdeploy server configuration
options.

Global options
TeamXpress server
section: specifies

Deployment
section: specifies

Deploy-Run-Script
section: specifies

Global options
TeamXpress server
section: specifies

Deployment
section: specifies

Deploy-Run-Script
section: specifies
252 TeamXpress Templating and Deployment Guide

OpenDeploy Client Configuration Files
OpenDeploy Client Configuration Files

The structure of the client configuration file is a shallow hierarchy of sections. Sections are delimited
by an opening keyword (e.g. deployment=name, which specifies the beginning of a deployment
section) and a closing ; on a line by itself. A client configuration file contains one or more named
deployment sections. Each deployment section contains one or more local_directory sections.
Lines containing comments can appear anywhere in the configuration file. While there is no default
client configuration file, OpenDeploy comes with a sample file (/conf/iw.odclient.example or
C:\Program Files\Interwoven\OpenDeploy\conf\iwodclient) that can be a useful
starting point.

Here is a sample client configuration file that corresponds to the server configuration file shown
earlier in this chapter:

hostname=development1.example.com
source_exclude_pattern=~$
key_file=/u/iw/andre/secret_file.txt
deployment=deployandre

remote_server=production1.example.com
remote_port=1701
area=//IWSERVER/default/main/dev/WORKAREA/andre
do_deletes
local_directory=html

remote_directory=/usr/local/etc/httpd/htdocs
source_exclude=test
exclude=log

;
local_directory=cgi-bin

remote_directory=/usr/local/scripts/cgi-bin
source_exclude=test
exclude=log

;
;
deployment=deploychris

remote_server=production2.example.com
remote_port=1701
area=//IWSERVER/default/main/dev/WORKAREA/chris

Global

Deployment

Local

Local

Deployment
253

Configuration Files
local_directory=html
remote_directory=/usr/local/etc/httpd/htdocs
exclude=log

;
;

 This configuration file contains two deployment sections, deployandre and deploychris. The
deployandre deployment section contains two local_directory sections and the
deploychris section one. Each deployment section corresponds to a single set of transfer
operations to a single machine. If you were to invoke the iwdeploy client as

% iwdeploy deployandre

with the preceding configuration file, the iwdeploy client would transfer the files and directories in

the html directory of workarea andre1 to /usr/local/etc/httpd/htdocs and the cgi-bin
directory to /usr/local/scripts/cgi-bin on production1.example.com.

Chapter 15, “Configuration File Options,” contains a full list of the iwdeploy client configuration
options.

Coordinating Server and Client Configuration Files

Several client and server options correspond to each other, and must specify the same value for a
deployment to proceed:

1. TeamXpress areas are specified using version paths, or vpaths. For a full explanation of vpaths, consult Administering TeamXpress.

Server option Client option Description

port remote_port Port to listen on/port to send to.
TeamSite_server hostname The server on which the OpenDeploy client

resides.
key_file key_file File to be used in encryption.

deployment deployment Section of the client and server configuration
files to use (only required on the server if
client_is_trusted=no is specified).

Local
254 TeamXpress Templating and Deployment Guide

Scope of Configuration File Options
Scope of Configuration File Options

The options specified in the configuration files apply only to particular sections. For example, in the
client configuration file, the do_deletes directive is only used by local_directory sections.
However, where you specify do_deletes controls which local_directory sections it applies to.
You can specify do_deletes (and most other options) in an enclosing section and have it apply to all
following local_directory sections.

Global options must be specified at the global level. Deployment options are normally specified in a
deployment section, in which case they will apply only to that deployment, but they can be also
specified at the global level, in which case they will apply to all succeeding deployments unless
contradicted at a lower level. On the client, local directory options are normally specified at the
local_directory level, in which case they will apply only to the local directory, but they can also
be specified at the deployment level, in which case they will apply to all local directories in that
deployment section unless contradicted at the local_directory level. Local directory options can
even be specified at the global level, in which they will apply to all succeeding deployments unless
contradicted at a lower level.

The only exception to these scoping rules is Deploy and Run. All Deploy and Run options must be
contained within a deploy_run_script section, which must be specified at the local directory level
or, on the server, at the deployment level.

The examples on the following two pages show how the level at which an option is specified affects
the behavior of the deployment.

allowed_directory remote_directory Directory on the production server to which
content is to be deployed.

Server option Client option Description
255

Configuration Files
For example, if your configuration file contains:

...
host=development1.example.com
deployment=andre

remote_server=production1.example.com
area=//IWSERVER/default/main/dev/WORKAREA/andre
local_directory=demo

remote_directory=/stuff/demo
do_deletes

;
local_directory=test

remote_directory=/stuff2/test
;

;

then do_deletes applies to the demo local_directory section, but not to the test
local_directory section. If instead you have:

...
host=development1.example.com
deployment=andre

remote_server=production1.example.com
area=//IWSERVER/default/main/dev/WORKAREA/andre
do_deletes
local_directory=demo

remote_directory=/stuff/demo
;
local_directory=test

remote_directory=/stuff2/test
;

;

then do_deletes applies to both local_directory sections. It would not apply to any
deployment sections which followed the andre section.
256 TeamXpress Templating and Deployment Guide

Scope of Configuration File Options
If you have:

...
hostname=development1.example.com
do_deletes
deployment=andre

remote_server=production1.example.com
area=//IWSERVER/default/main/dev/WORKAREA/andre
local_directory=demo

remote_directory=/stuff/demo
;
local_directory=test

remote_directory=/stuff2/test
;

;
...

then do_deletes would apply to the andre deployment section and all following deployment
sections, but not to any deployment sections which came before it. Finally, if you have:

...
host=development1.example.com
deployment=andre

remote_server=production1.example.com
area=//IWSERVER/default/main/dev/WORKAREA/andre
do_deletes
local_directory=test

remote_directory=/stuff2/test
dont_do

;
local_directory=demo

remote_directory=/stuff/demo
;

;

then do_deletes would apply to demo, but not to test because test contains the local directory
option dont_do, which directly contradicts do_deletes.

Options specified on the command line behave as if they were options specified at the beginning of the
configuration file (i.e., at the global level).
257

Configuration Files
Use of Client versus Server Configuration Options

Several configuration options can be specified in either the client or the server configuration files. The
behavior of these options depends on how the client_is_trusted option is specified. If the client
is trusted, then the client configuration file options are used. The server configuration options are
used only if they do not contradict the options specified on the client.

If the client is not trusted, then the server-side options override all options specified on the client. The
only client options that get used are the name of the deployment section to deploy to, which content
on the client-side to deploy, and any other specifications that are processed on the client side only. For
example, the source_exclude option applies exclusively to the OpenDeploy client, so it cannot be
overridden by any option specified on the OpenDeploy server. The remote_directory client
option will also be used if it falls under an allowed_directory (as specified on the server).

The Authorization Configuration File

The authorization configuration file allows you to specify which users and groups can perform a
particular named deployment to a particular destination server. This file exists on the destination
server that it applies to, and it applies only when client_is_trusted=no is specified in the server
configuration file.

This configuration file contains any number of lines in the following format:

deployment=allowed_list

where deployment is the name of the deployment specified in the client and server configuration
files, and allowed_list is a comma-separated list of allowed users and groups. For example, an
authorization configuration file might contain the following lines:

deployUNIX=chris,andre,tsusers
deploytest=andre

or, for Windows NT/2000:

deployWinNT=EXAMPLE\chris,EXAMPLE\andre,EXAMPLE\tsusers
deploytest=EXAMPLE\andre
258 TeamXpress Templating and Deployment Guide

The Authorization Configuration File
Note that on Windows NT/2000, users must be specified with domain names.

If client_is_trusted=no is specified in the server configuration file, and a named deployment is
invoked by a user who is not authorized to do so, it will fail. If client_is_trusted=no is specified
in the server configuration file, and a named deployment that is not specified in this configuration file
is invoked, it will fail.

To pass the authorization file to the OpenDeploy server, use the -auth command line option.
259

Configuration Files
260 TeamXpress Templating and Deployment Guide

Chapter 15

Configuration File Options

OpenDeploy configuration options are specified in the client and server configuration files. Most
options are specified in the client configuration file, or at the command line when invoking the client.
These are described in the following section. Options specified in the server configuration file are
described in “OpenDeploy Server Options” on page 289.

OpenDeploy Client Options

The client options allow you to specify the following:

• Deployment sections (see page 262)

• Deployment targets (see page 262)

• Locations of files to be deployed (see page 263)

• Which files to deploy (see page 265)

• Which files to exclude (see page 275)

• Which files to rename or delete during deployment (see page 280)

• Changes to file permissions during deployment (see page 281)

• Encryption (see page 285)

• Deploy and Run (see page 286)

• Links handling (see page 288)

• Deployment configuration debugging (see page 288)

Note that the behavior of many configuration options depends entirely on how the
client_is_trusted option is specified on the server. If the client is not trusted, then the server-
side options override all options specified on the client. The only client options that get used are the
name of the deployment section to deploy to, which content on the client-side to deploy, and any
other specifications that are processed on the client side only. The remote_directory client option
will also be used if it falls under an allowed_directory (as specified on the server).
261

Configuration File Options
If the client is trusted, then its options are used. The only server options that are used (of the options
that can be specified on either client or server) are the ones that do not contradict the options
specified on the client.

Specifying Deployment Sections

A single client configuration file can be used to invoke several different types of deployment. Each
different type of deployment can be independently configured in deployment sections. Each
configuration file must have at least one deployment section. To specify a new deployment section, use
the deployment=name option.

deployment=name

This is a global option, which begins a deployment section named name. The name of the section is
used in the command line for the iwdeploy client.

Specifying Deployment Targets

The deployment options remote_port and remote_server specify information about the
destination server for deployment. Both of these options are required.

remote_port=#

This specifies the port on which the iwdeploy server on the destination server is listening, e.g.:

remote_port=1709

remote_server=server

This specifies the name of the destination server, e.g.:

remote_server=production1.example.com
262 TeamXpress Templating and Deployment Guide

OpenDeploy Client Options
remote_directory=absolute_path

The remote_directory option applies to local_directory sections, although it may be
specified at a higher level in order to apply to multiple sections. The remote directory must
correspond to the allowed_directory specified in the server configuration file, or to one of its
subdirectories. This option is required, and must specify the absolute path on the destination server to
which this local_directory section should be deployed, e.g.:

local_directory=deploysrc
remote_directory=d:\deploydst\content

Specifying Deployment Timeouts

timeout=#seconds

This option specifies the number of seconds it will take for the OpenDeploy client process to time
out. timeout is a deployment option, but it can also be specified at a higher level.

By default, OpenDeploy will time out at 150 seconds. However, if you are doing a TeamXpress
comparison-based deployment, you may need to specify a larger number so that OpenDeploy does
not time out before the comparison is completed. For example:

timeout=25000

Specifying Locations of Files to Be Deployed

hostname=name

This is a global option that identifies the sending server to the iwdeploy server. This option is
required, e.g.:

hostname=development1.example.com
263

Configuration File Options
area=path

This specifies the area from which all local_directory sections are based. The path can be a

version path (vpath)1 of the form //IWSERVER/... or it can be an absolute path. To specify the
next-to-last edition on a branch, use a vpath ending in /EDITION/IW_PREV. To specify the latest
edition on a branch, use a vpath ending in /EDITION. For example:

UNIX absolute path:

area=/iwmnt/default/main/dev/EDITION

Windows NT/2000 absolute path:

area=y:\default\main\dev\EDITION

Version path:

area=//IWSERVER/default/main/dev/EDITION

local_directory=path

This begins a new local_directory section. The path specifies a path relative to the enclosing
area from which files and directories should be deployed. For example:

UNIX:
local_directory=htdocs/gifs

1. For more information on version paths, see TeamXpress Commnad-Line Tools. If you are not using TeamXpress, you cannot use version
paths.
264 TeamXpress Templating and Deployment Guide

OpenDeploy Client Options
Windows NT/2000:
local_directory=htdocs\gifs

A configuration file with the following two lines specifies a section that would apply to the
deploysrc directory in the most recent edition on the dev branch:

area=y:\default\main\dev\EDITION
local_directory=deploysrc

All lines contained in this section would apply only to this directory.

Specifying Which Files to Deploy

OpenDeploy can use one of three methods to determine which files to deploy:

• Directory comparison

• TeamXpress comparison

• File lists

Directory Comparison

Directory comparison is the default option. It compares the directory being deployed from with the
directory being deployed to. By default, it deploys the files in the directory being deployed from that
are newer than the corresponding files in the directory being deployed to. However, directory
comparison can also use the revert option to deploy the older versions of files (to revert to a
previous version of the website), or it can use the date_different option to deploy files that have
any difference in the date. This option can be specified for an entire configuration file, an entire named
deployment section, or a specific local directory.
265

Configuration File Options
Default Directory Comparison
With the default option (date_different or revert is not specified), only newer files or files
whose size or other attributes are different will be deployed:

Source webserver
(OpenDeploy client)

Destination webserver
(OpenDeploy server) Action

 file1 9/21/98 3:42 PM 23K file1 9/24/98 3:16 PM 23K not deployed (source is older)

 file2 9/23/98 4:27 PM 98K file2 9/23/98 4:27 PM 98K not deployed (same date, same size)

 file 3 9/28/98 9:11 AM
35K

 file 3 7/18/98 4:32 PM
37K

deployed (source is newer)

 file 4 9/30/98 1:56 PM
56K

 file 4 9/30/98 1:56 PM
32K

deployed (same date, different size)

 file 5 9/27/98 4:38 PM
56K

file 5 N/A deployed (destination file does not exist)

file 6 N/A file 6 9/30/98 2:20 PM
56K

File does not exist on source webserver; if
do_deletes is specified, the destination file
will be deleted. Otherwise, the destination file
will be ignored.
266 TeamXpress Templating and Deployment Guide

OpenDeploy Client Options
The Revert Option
When revert is specified, only older files or files whose size has been changed will be deployed:

To revert a website, specify the revert option in the configuration file:

revert

This specifies that only files that are older on the source should be transferred to the destination. By
default files are transferred only if they are newer. This option applies to local_directory
sections, although it can be specified at a higher level so that it applies to multiple sections.

Source webserver
(OpenDeploy client)

Destination webserver
(OpenDeploy server) Action

 file1 9/21/98 3:42 PM 23K file1 9/24/98 3:16 PM 23K deployed (source is older)

 file2 9/23/98 4:27 PM 98K file2 9/23/98 4:27 PM 98K not deployed (same date, same size)

 file 3 9/28/98 9:11 AM
35K

 file 3 7/18/98 4:32 PM
37K

not deployed (source is newer)

 file 4 9/30/98 1:56 PM
56K

 file 4 9/30/98 1:56 PM
32K

deployed (same date, different size)

 file 5 9/27/98 4:38 PM
56K

 file 5 N/A deployed (destination file does not exist)

file 6 N/A file 6 9/30/98 2:20 PM
56K

File does not exist on source webserver; if
do_deletes is specified, the destination file
will be deleted. Otherwise, the destination file
will be ignored.
267

Configuration File Options
The Date-Different Option
The Date-Different option allows you to deploy any files with differences in date or size:

To use this option, specify date_different in the client configuration file.

date_different

If this option is specified, files will be transferred from the source to the destination if the
modification dates of corresponding files are different. The default option is for files to be transferred
only if the modification date of the source file is newer than the modification date of the destination
file.

This option applies to local_directory sections, although it can be specified at a higher level so
that it applies to multiple sections.

Source webserver
(OpenDeploy client)

Destination webserver
(OpenDeploy server) Action

 file1 9/21/98 3:42 PM 23K file1 9/24/98 3:16 PM 23K deployed (destination date is different)

 file2 9/23/98 4:27 PM 98K file2 9/23/98 4:27 PM 98K not deployed (same date, same size)

 file 3 9/28/98 9:11 AM
35K

 file 3 7/18/98 4:32 PM
37K

deployed (destination date is different)

 file 4 9/30/98 1:56 PM
56K

 file 4 9/30/98 1:56 PM
32K

deployed (same date, different size)

 file 5 9/27/98 4:38 PM
56K

file 5 N/A deployed (destination file does not exist)

file 6 N/A file 6 9/30/98 2:20 PM
56K

File does not exist on source webserver; if
do_deletes is specified, the destination file
will be deleted. Otherwise, the destination file
will be ignored.
268 TeamXpress Templating and Deployment Guide

OpenDeploy Client Options
Examples
This simple client configuration file uses the default deployment option of directory comparison. It
deploys files from the TeamXpress host development1. Encryption is not being used. It contains
one named deployment section, default, which deploys files to production1 on port 1701. Files
are to be deployed from the latest edition on the dev branch, and all files contained within that
branch are deployed. The directory on production1 that files are to be deployed to is /usr/
local/etc/httpd/htdocs. If a file has been deleted from the area being deployed, the
corresponding file will be deleted on the destination server.

hostname=development1.example.com
deployment=default

remote_server=production1.example.com
remote_port=1701
area=//IWSERVER/default/main/dev/EDITION
local_directory=.

remote_directory=/usr/local/etc/httpd/htdocs
do_deletes

;
;

The deployment name is default, and the configuration file is in the default location (/etc/
iw.deploy.cfg) so to invoke this deployment you would type (on the source system):

% iwdeploy default

You can specify any configuration file option on the command line, so to use the OpenDeploy Site
Rollback option without altering the configuration file you would type:

% iwdeploy default revert

or, to use the date-different option you would type:

% iwdeploy default date_different
269

Configuration File Options
To specify the date-different or the revert option in the configuration file, add the option to the
section you want to use this type of deployment in. If you want to use the option for all deployments,
specify it at the global level. To use it for a particular named deployment, specify it in the named
deployment’s section of the configuration file (as shown below). To use it for a particular directory
being deployed, specify it in that local directory section of the named deployment:

hostname=development1.example.com
deployment=datediff

remote_server=production1.example.com
remote_port=1701
area=//IWSERVER/default/main/dev/EDITION
date_different
local_directory=.

remote_directory=/usr/local/etc/httpd/htdocs
do_deletes

;
;

TeamXpress Comparison

TeamXpress comparison uses the TeamXpress Compare feature to compare any two TeamXpress
areas and deploy the differences. To use this type of comparison, add the TeamSite_based and
previous_area options to the client configuration file. OpenDeploy will compare area (see
page 264) with previous_area, and deploy the results.

TeamSite_based

This option compares area and previous_area and uses the output of comparison for
deployment. For example:

• Compare a TeamXpress workarea with the staging area and deploy all content modified in the
workarea to the destination server, or

• Compare two editions and deploy incremental changes

This option is specified at the deployment level, and it requires the use of the previous_area
option.
270 TeamXpress Templating and Deployment Guide

OpenDeploy Client Options
previous_area=path

This option specifies the TeamXpress area to compare area with. It is a deployment-level option,
and it requires area to be a TeamXpress area, and for the TeamSite_based option to be specified.
previous_area is specified in the same manner as area:

UNIX absolute path:

previous_area=/iwmnt/default/main/dev/IW_PREV

Windows NT/2000 absolute path:

previous_area=y:\default\main\dev\IW_PREV

Version path:1

previous_area=//IWSERVER/default/main/dev/IW_PREV

This simple deployment configuration file is the same as the Directory Comparison example (see
page 269), except that it uses TeamXpress comparison to compare the most recent edition on a
branch with the next most recent:

hostname=development1.example.com
deployment=TeamSitecompare

remote_server=production1.example.com
remote_port=1701
TeamSite_based
area=//IWSERVER/default/main/dev/EDITION
previous_area=//IWSERVER/default/main/dev/EDITION/
IW_PREV
local_directory=.

remote_directory=/usr/local/etc/httpd/htdocs
do_deletes

;
;

1. For more information on vpaths, or version paths, consult Administering TeamXpress.
271

Configuration File Options
To invoke this deployment, you would type (on the source server):

% iwdeploy TeamSitecompare

Alternatively, you could specify the TeamSite_based and previous_area options on the
command line. This command, with the configuration file on page 269, would produce the same
results as the example above.

% iwdeploy default TeamSite_based previous_area=//IWSERVER/default/main/
dev/EDITION/IW_PREV

File Lists

OpenDeploy can also deploy a list of files. This list can be static, or it can be dynamically generated
(e.g. using the iwevents command line tool). The list of files is contained in a file that is specified by
the file_list option. For information on using the do_deletes option in conjunction with the
file_list option, also see “File List With Deletions” on page 274.

A typical deployment list looks like:

/www/index.html
/www/andre/index.html
/www/products.html

where /www is a directory immediately subordinate to the area root directory.

To deploy a list of files, specify the file_list option in the OpenDeploy client configuration file:
272 TeamXpress Templating and Deployment Guide

OpenDeploy Client Options
file_list=path

This local directory option specifies a path to a file containing a list of paths or version paths to
individual files to be deployed, one file to a line (see above). For named deployments using
file_list, only one local directory can be specified. The version paths of the individual files must
be relative to the local directory specified. For example, if the local_directory is /www, the
version paths listed in the file list would be relative to /www. In addition, if you specify the
file_list option at the command line, you can stream a list of files for deployment in from stdin
(see the example above). UNIX and Windows NT/2000 examples are as follows:

file_list=/tmp/andre_deploy_list
file_list=C:\deploy\andre_deploy_list

This simple deployment configuration file is the same as the examples given in the “Directory
Comparison” and “TeamXpress Comparison” sections, except that it deploys a list of files. In this case,
the file is streamed in from stdin:

hostname=development1.example.com
deployment=filelist-1

remote_server=production1.example.com
remote_port=1701
file_list=-
area=//IWSERVER/default/main/dev/EDITION
local_directory=.

remote_directory=/usr/local/etc/httpd/htdocs
;

;

This deployment would be invoked by the command:

% iwdeploy filelist-1 < /tmp/andre_deploy_list

where /tmp/andre_deploy_list is the file containing the list of files to be deployed.
273

Configuration File Options
This deployment configuration file is the same as the example above, except that the file list is
specified in the configuration file:

hostname=development1.example.com
deployment=filelist-2

remote_server=production1.example.com
remote_port=1701
file_list=/tmp/andre_deploy_list
area=//IWSERVER/default/main/dev/EDITION
local_directory=.

remote_directory=/usr/local/etc/httpd/htdocs
;

;

To invoke this deployment, you would type (on the source server):

% iwdeploy filelist-2

File List With Deletions
If file_list is specified in the configuration file, then if the files referenced in the file list do not
appear on the source server, but they do appear on the destination server, the files on the destination
server will remain intact.

If do_deletes is specified in addition to file_list is specified in the configuration file, then files
referenced in the file list that do not appear on the source server, but which do appear on the
destination server, will be deleted on the destination server.

The following example illustrates the difference between these two modes. Letters A-E represent the
files that are listed in the file list, or that are present on the source or destination servers. A plus sign
(+) indicates that the file has been modified.

File List Source Destination Result with file_list
option alone

Result with
do_deletes option

A A+ A A+ is sent to destination A+ is sent to destination

B B B B is sent to destination B is sent to destination

C C+ C+ is created in
destination

C+ is created in
destination
274 TeamXpress Templating and Deployment Guide

OpenDeploy Client Options
The use of file_list and do_deletes with directories introduces some additional subtleties:

Specifying Which Files to Exclude

These options allow you to specify particular files or directories not to deploy. All of these options
apply to local_directory sections, although they can be specified at a higher level to apply to
multiple sections. The options, described later in this section, allow for three main types of exclusion:
on the source server, on the destination server, and on both servers.

D D is ignored D is ignored

E E E is ignored E is deleted from
destination

File List Source Destination
Result with
file_list option
alone

Result with
do_deletes option

/DirA /DirA/
fileA+

/DirA/fileA /DirA/fileA+ is
sent to destination

/DirA/fileA+ is
sent to destination

/DirA/fileB /DirA/fileB /DirA/fileB is sent
to destination

/DirA/fileB is sent
to destination

/DirA/fileG /DirA/fileG is
ignored in destination

/DirA/fileG is
ignored in destination1

1. /DirA/fileG is still ignored because it is not specified in file_list

/DirB/fileC /DirB/fileC /DirB is created in
remote dir, /DirB/
fileC is created in
destination

/DirB is created in
remote dir, /DirB/
fileC is created in
destination

/DirB/fileD /DirB/fileD is
ignored

/DirB/fileD is
ignored

/DirC /DirC/fileE /DirC is ignored,
/DirC/fileE is
ignored

/DirC is deleted in
destination, /DirC/
fileE is deleted

/DirC/fileF /DirC/fileF is
ignored

/DirC/fileE is
deleted
275

Configuration File Options
Excluding Files on the Source

When a file or directory is excluded from deployment, it is treated as though it does not exist. If a file
or directory is excluded only on the source side, and if do_deletes is specified (see page 280), the
corresponding file or directory (if any) on the destination side will be deleted. If do_deletes is not
specified, the corresponding file or directory on the destination side will be ignored. For example:

Files excluded on the source server

In the example above, files are excluded only on the source server. Any corresponding files on the
destination server will be ignored in the deployment process, unless do_deletes is specified. If
do_deletes is specified, the corresponding files will be deleted.

To exclude files on the source side, use the source_exclude and source_exclude_pattern
options. Both of these options can also be specified in the server configuration file. Their behavior will
depend on how the client_is_trusted option is specified on the server (see page 290).

source_exclude=path

This specifies a path relative to the local_directory path that should be excluded from
deployment. The effect of this is as if the specified path did not exist on the source. Any number of
source_exclude options can be specified.

Source webserver
(OpenDeploy client)

Destination webserver
(OpenDeploy server)

Excluded

Deployed

Ignored

(deleted*)
Not deployed

*These files will be deleted if do_deletes is specified.
276 TeamXpress Templating and Deployment Guide

OpenDeploy Client Options
source_exclude_pattern=pattern

This specifies a regular expression pattern to exclude on the source. The syntax of the patterns is
regex(5) (extended syntax). The items actually compared to the pattern are paths relative to the
local_directory. The paths always begin with ./. Any number of source_exclude_pattern
options can be specified. For example:

source_exclude_pattern="^/htdocs/company/.*html"

would exclude all items under subdirectory /htdocs/company that end in html.

Excluding Files on the Destination Server

If a file or directory is excluded only on the destination side, and a corresponding file or directory is
deployed from the source, the existing file or directory on the destination side will be overwritten.
For example:
277

Configuration File Options
Files excluded on the destination server

In the example above, files are excluded only on the destination server. Their status will be ignored in
the deployment process. If corresponding files exist on the source server, the excluded files will be
overwritten on the destination server. If no corresponding files exist on the source server, the
excluded files on the destination server will be ignored.

To exclude files on the destination server, use the destination_exclude and
destination_exclude_pattern options. Both of these options can also be specified in the server
configuration file. Their behavior will depend on how the client_is_trusted option is specified
in the server configuration file. For more information, see page 290.

destination_exclude=path

Source webserver
(OpenDeploy client)

Destination webserver
(OpenDeploy server)

Excluded

Excluded

(gets

(gets

overwritten)

ignored)

Deployed
278 TeamXpress Templating and Deployment Guide

OpenDeploy Client Options
This specifies a path relative to the remote_directory path which should be excluded from
deployment. The effect of this is as if the specified path did not exist at the destination. If there is a
corresponding path on the source side, the destination side will be unconditionally overwritten. Any
number of destination_exclude options can be specified.

destination_exclude_pattern=pattern

This specifies a regular expression pattern to exclude at the destination. The syntax of the patterns is
regex(5) (extended syntax). The items actually compared to the pattern are paths relative to the
remote_directory. The paths always begin with ./. Any number of
destination_exclude_pattern options can be specified. For example:

destination_exclude_pattern="^/htdocs/company/.*html"

would exclude all items under subdirectory /htdocs/company that end in html.

Excluding Files on Both Servers

If a file or directory is excluded from both the source and destination, the source file will not be
deployed and the destination file will not be overwritten. For example:

Files excluded on both servers

Not deployed
ignored

and

Source webserver
(OpenDeploy client)

Destination webserver
(OpenDeploy server)

Excluded
Excluded

Deployed
279

Configuration File Options
In this example, files are excluded on both the source and the destination servers. During
deployment, files that are excluded on both servers are ignored and not deleted.

To exclude files on both servers, use the exclude and exclude_pattern options. All of these
options can also be specified in the server configuration file. Their behavior will depend on how the
client_is_trusted option is specified in the server configuration file. For more information, see
page 290.

exclude=path

This specifies a path that should be excluded from both the source and destination. The path is relative
to the local_directory specification on the source and the remote_directory specification on
the destination server.

exclude_pattern=pattern

This specifies a regular expression pattern that should be excluded from both the source and
destination.The syntax of the patterns is regex(5) (extended syntax). The items actually compared
to the pattern are paths relative to the remote_directory. The paths always begin with ./. Any
number of exclude_pattern options can be specified. For example:

exclude_pattern="internal"

would exclude all subdirectory paths containing the name internal.

Renaming and Deleting Files During Deployment

These options apply to local_directory sections, although they can be specified at a higher level
to apply to multiple sections.

All of these options can also be specified in the server configuration file. Their behavior will depend
on how the client_is_trusted option is specified in the server configuration file. For more
information, see page 290.

do_deletes

This specifies that files or directories not existing in the source will be deleted on the destination
server. By default they are not.

rename_suffix=suffix
280 TeamXpress Templating and Deployment Guide

OpenDeploy Client Options
This specifies a suffix that will be used to rename files normally deleted on the destination server. For
example:

rename_suffix=.old

will rename all files that would otherwise have been deleted to filename.old.

Changing Permissions on Files During Deployment

UNIX destination

These local directory options allow you to specify changes in permissions when you are deploying to a
UNIX server. Options marked with an asterisk (*) can only be used when you are deploying from a
UNIX server to a UNIX server. All of these options apply to local_directory sections, although
they may be specified at a higher level to apply to multiple sections.

All of these options except for group_translations and user_translations can also be
specified in the server configuration file. Their behavior will depend on how the
client_is_trusted option is specified in the server configuration file. For more information, see
page 290.

amask=mask

This specifies a bit mask (in octal) to be ANDed with the permission bits of all files and directories. If
you are deploying from a Windows NT/2000 server, the bit mask will be ANDed with the default
permission bits of 664. For example:

amask=011

dir_perm=permission

This specifies the permissions (in octal) given to all deployed directories. For example:

dir_perm=755

file_perm=permission

This specifies the permissions (in octal) given to all deployed files. For example:

file_perm=755
281

Configuration File Options
group=groupid

This specifies the group assigned to all deployed files and directories. groupid must be a valid group
name. For example:

group=TeamSite_users

If group is specified, user must also be specified.

* group_translations
This begins a group_translations section that looks like this:

group_translations
1=2
2=3
3=4

;

Each line specifies a source gid and an equivalent destination gid. Source file and directory gids are
translated on transfer to the destination server.

ignore_groups

This specifies that changes in file and directory group ownership are ignored when comparing source
and destination. By default changes in group ownership are grounds for transfer.

ignore_modes

This specifies that changes in file and directory permissions are ignored when comparing source and
destination. By default changes in permissions are grounds for transfer.

ignore_users

This specifies that changes in file and directory ownership are ignored when comparing source and
destination. By default changes in ownership are grounds for transfer.

omask=mask

This specifies a bit mask (in octal) to be ORed with the permission bits of all files and directories. If
you are deploying from a Windows NT/2000 server, the bit mask will be ORed with the default
permission bits of 664. For example:

omask=011
282 TeamXpress Templating and Deployment Guide

OpenDeploy Client Options
user=userid

This specifies the user who will own all deployed files and directories. userid must be a valid user
name. For example:

user=root

If user is specified, group must also be specified.

* user_translations
This begins a user_translations section that looks like this:

user_translations
1=2
2=3
3=4

;

Each line specifies a source uid and an equivalent destination uid. Source file and directory uids are
translated on transfer to the destination server.

Windows NT/2000 destination

These local directory options allow you to specify changes in permissions when you are deploying to a
Windows NT/2000 server. By default, files will inherit permissions from their parent directories.

All of these options can also be specified in the server configuration file. Their behavior will depend
on how the client_is_trusted option is specified in the server configuration file. For more
information, see page 290. Note that to use these options you must run OpenDeploy as a user who
has “Act as part of the operating system” privileges.

setaccess=ACL

Replaces the access control lists (ACLs) for the deployed files and directories.

changeaccess=ACL

Modifies the ACL so that the specified users have the specified rights. The new access control entry
(ACE) for each specified user allows only the specified rights, discarding any existing ACE.
283

Configuration File Options
Windows NT/2000 ACLs
ACLs on Windows NT/2000 have the following syntax (where ACE stands for access control entry):
name:ACE
{ name:ACE, name:ACE, ... }

name is one of

user name
group name
domain name\user name
domain name\group name

ACEs consist of either perm bits or standard perms.

perm bits is any sequence made of the characters R (read), W (write), X (execute), D (delete), P
(change permissions), and O (take ownership), e.g. RWX.

standard perms is one of the following:

ALL (RWXDPO)
NONE (none)
READ (RX)
WRITE (W)
CHANGE (RWXD)

For example:

setaccess={ andre:ALL, everyone:RX }

would remove the existing ACL and grant the user andre full access and the group everyone read
access to the specified files.

changeaccess={ chris:ALL, everyone:RX }

would remove any existing ACEs for chris and everyone, and grant chris full access and the
group everyone read access to the specified files. Any other existing ACEs would remain
unchanged.
284 TeamXpress Templating and Deployment Guide

OpenDeploy Client Options
Encryption

OpenDeploy allows two types of encryption: key file and SSL. These types of encryption cannot be
used in conjunction with one another, that is, if you use the key_file option, you cannot use the SSL
options, and vice versa. For more information on OpenDeploy and encryption, see “Encryption” on
page 305.

key_file is a deployment option, so you can specify different key files for different deployments, or
you can specify it at the global level and use one key file for all deployments.

The SSL options are global options. These options will apply to all deployments in a given
configuration file. Before you use SSL, you must generate certificates and keys on both the source and
destination servers.

key_file=path

This specifies the path to the file that will be used as an encryption key for transfers between the
iwdeploy client and the iwdeploy server.

ssl_certificate=path

(Mandatory for SSL encryption) This specifies the path to the SSL public key certificate.

ssl_privatekey=path

(Mandatory for SSL encryption) This specifies the path to the SSL private key.

ssl_ciphers=ciphers

(Optional for SSL encryption) This specifies the SSL ciphers to use. Multiple ciphers must be
separated by a colon (:), e.g.:

ssl_ciphers=EDH-DSS-DES-CBC3-SHA:EXP-EDH-DSS-DES-CBC-SHA
285

Configuration File Options
Deploy and Run

OpenDeploy’s Deploy and Run feature allows you to specify external scripts to run at various stages of
deployment. For more information on Deploy and Run, see “Deploy and Run” on page 313.

Deploy and Run requires you to create a deploy_run_script section within a deployment section
of the configuration file. Deploy and Run options cannot be specified at a higher level. All of these
options can also be specified in the server configuration file. Their behavior will depend on how the
client_is_trusted option is specified in the server configuration file. For more information, see
page 290.

deploy_run_script=script_to_run

(Mandatory) This begins a new deploy_run_script section. script_to_run must be in the
current PATH (e.g. /usr/local/bin), and the line can contain parameters. For example:

deploy_run_script=joe_bob -r -q foobar

as=username

(UNIX only, optional) This option is specified in a deploy_run_script section, and allows you to
run the script as a different user. By default, the script runs as the user who invokes OpenDeploy,
who will need to be root for most purposes.

when=condition

(Mandatory) This option is specified in a deploy_run_script section, and allows you to specify
when the script is to be run. condition is one of:

client_before_deploy Execute the script on the client, before deployment.

client_after_deploy Execute the script on the client, after deployment.

server_before_deploy Execute the script on the server, before deployment.

server_after_deploy Execute the script on the server, after deployment.

server_before_file Execute the script on the server, before an individual file is
deployed (may be used in conjunction with the file_mask and
dir_mask options). Exercise caution when using this option, as it
can slow deployment and cause log files to become extremely large.
This option cannot be used for transactional mode deployments.
286 TeamXpress Templating and Deployment Guide

OpenDeploy Client Options
client_after_deploy, server_after_deploy, server_after_file, and
server_after_dir may use one of two modifiers, on_success or on_failure. For example:

when=client_after_deploy on_failure

would specify an action to be performed on the client after a failed deployment.

If the deployment is a reverse deployment, all scripts will execute on the client.

dir_mask=dir
This option is specified in a deploy_run_script section. dir is a regular expression specifying
the directories on which the script will be executed, e. g., */cgi-bin/*. The expression matches
server-side absolute paths. This option only applies to the before_dir and after_dir conditions.

file_mask=file
This option is specified in a deploy_run_script section. file is a regular expression specifying
the files on which the script will be executed, e. g., .*\.html. The expression matches server-side
absolute paths. This option only applies to the before_file and after_file conditions.

async=yes
This option is specified in a deploy_run_script section, and will run the script asynchronously.

Exercise caution when using this mode, as it could cause many scripts to be run at the same time.
The output from scripts run asynchronously is not captured.

server_after_file Execute the script on the server, after an individual file is deployed
(may be used in conjunction with the file_mask and dir_mask
options). Exercise caution when using this option, as it can slow
deployment and cause log files to become extremely large.This
option cannot be used for transactional mode deployments.

server_before_dir Execute the script on the server, before a directory is deployed
(may be used in conjunction with the dir_mask option).This
option cannot be used for transactional mode deployments.

server_after_dir Execute the script on the server, after a directory is deployed (may
be used in conjunction with the dir_mask option).This option
cannot be used for transactional mode deployments.
287

Configuration File Options
where=dir
This option is specified in a deploy_run_script section. dir specifies the directory to navigate to
before executing the script.

Links

The options that configure OpenDeploy’s behavior with regard to symbolic links do not apply to
OpenDeploy for Windows NT/2000.

These options apply to local_directory sections, although they may be specified at a higher level
to apply to multiple sections. They allow you to specify whether symbolic links should be transferred
as-is, or whether they should actually be followed, so that items that they point to are transferred.

destination_follow_links

This specifies that symbolic links on the destination server will be followed, i.e., not treated as links,
which is the default behavior.

follow_links

This specifies that symbolic links on both the source and destination servers will be followed, i.e.,
not treated as links, which is the default behavior.

source_follow_links

This specifies that symbolic links on the source server will be followed, i.e., not treated as links,
which is the default behavior.

Debugging Deployment Configuration

OpenDeploy provides an option to facilitate testing of deployment configuration. This option applies
to local_directory sections, although it may be specified at a higher level in order to apply to
multiple sections.

dont_do

This specifies that no files should be transferred. The deployment will proceed normally but nothing
will be changed on the destination side. This option is commonly used to test changes to deployment
configurations.
288 TeamXpress Templating and Deployment Guide

OpenDeploy Server Options
OpenDeploy Server Options

The OpenDeploy server configuration file allows you to specify:

• Connection options (see page 289)

• Deployment sections (see page 290)

• Security options (see page 290)

• Deployment timeouts (see page 291)

• Encryption options (see page 296)

• Which files to exclude (see page 291)

• Which files to rename or delete during deployment (see page 292)

• Changes to file permissions during deployment (see page 293)

• Deploy and Run options (see page 297)

• Authentication by IP Address (see page 300)

Note that many configuration options can be specified in either the client or the server configuration
files. The behavior of these options depends on how the client_is_trusted option is specified on
the server. If the client is trusted, then the server configuration options are used only if they do not
contradict the options specified on the client.

If the client is not trusted, then the server-side options override all options specified on the client,
except for specifications that are processed on the client side only.

Specifying Connections and Locations

port=#

This global option specifies the port that the iwdeploy server will listen to. This must match the
port number specified in the client configuration file. This option must be specified.

TeamSite_server=name

This global option starts a new TeamSite_server section. name must be the same as the hostname
specified in the OpenDeploy client configuration file. Each server configuration file must include at
least one TeamSite_server section.
289

Configuration File Options
allowed_directory=path

This TeamXpress server option specifies an absolute path to a directory into which files can be
placed. The directory specified and any of its children are made valid targets. Each
TeamSite_server section must include at least one allowed_directory option. You can
specify multiple allowed_directory options in a TeamSite_server section.

You can also use the allowed_directory option as a deployment-level option to specify a section
of the server configuration file in the same way that local_directory specifies a section of the
client configuration file (see the example on page 252).

Specifying Deployment Sections

A single server configuration file can be used to configure several different types of deployment. Each
different type of deployment can be independently configured in deployment sections. Each
configuration file must have at least one deployment section if client_is_trusted=no is specified.
To specify a new deployment section, use the deployment=name option.

deployment=name

This is a TeamSite_server option, which begins a deployment section named name. If
client_is_trusted=no is specified, the name of the section must match a deployment section in
the client configuration file.

Security Options

client_is_trusted=yes|no

This option specifies the behavior of all options that can be specified in both client and server
configuration files.

If client_is_trusted=yes, then the client configuration file options are used. The server configuration
options (that can be specified on the client side) are used only if they do not contradict the options
specified on the client. For example, if the client configuration file has a source_exclude option
and the server configuration file has a destination_exclude option, only the source_exclude
option is used. Or, if the server configuration file has a deploy_run_script section for a particular
deployment, and the client configuration file does not have a deploy_run_script section for that
deployment, the server’s deploy_run_script will not be used.
290 TeamXpress Templating and Deployment Guide

OpenDeploy Server Options
If client_is_trusted=no, then the server-side options override all options specified on the client. The
only client options that get used are the name of the deployment section to deploy to, which content
on the client-side to deploy, and any other specifications that are processed on the client side only.
The remote_directory client option will be used if it falls under an allowed_directory (as
specified on the server).

client_is_trusted can be specified at any level. As always, specification of this option at a lower
level will supercede specifications at a higher level, for the scope of the lower-level specification only
(see “Scope of Configuration File Options” on page 255).

Specifying Deployment Timeouts

timeout=#seconds

This option specifies the number of seconds it will take for the OpenDeploy server process to time
out. timeout is a deployment option, but it can also be specified at a higher level. If this option is
used, it must be specified on both the client and server.

By default, the server process will time out at 150 seconds. However, if you are doing a TeamXpress
comparison-based deployment, you may need to specify a larger number so that the server does not
time out before the comparison is completed. For example:

timeout=25000

Specifying Which Files to Exclude

These options allow you to specify particular files or directories not to deploy. All of these options
apply to allowed_directory sections, although they can be specified at a higher level to apply to
multiple sections. On the OpenDeploy server, you can specify which files to exclude on the
destination server only.

Note that although you can specify exclude and exclude_pattern on the OpenDeploy server,
they will behave exactly the same as destination_exclude and
destination_exclude_pattern, respectively. If you specify source_exclude or
source_exclude_pattern, it will be ignored. For more information about excluding files, see
page 275.
291

Configuration File Options
Excluding Files on the Destination Server

If a file or directory is excluded only on the destination side, and a corresponding file or directory is
deployed from the source, the existing file or directory on the destination side will be overwritten.
For more information, see page 277.

To exclude files on the destination server, use the destination_exclude and
destination_exclude_pattern options. All of these options can also be specified in the client
configuration file. Their behavior will depend on how the client_is_trusted option is specified
in the server configuration file. For more information, see page 290.

destination_exclude=path

This specifies a path relative to the allowed_directory path which should be excluded from
deployment. The effect of this is as if the specified path did not exist on the destination server. If
there is a corresponding path on the source side, the destination side will be overwritten (if
client_is_trusted=no). Any number of destination_exclude options can be specified.

destination_exclude_pattern=pattern

This specifies a regular expression pattern to exclude on the destination server. The syntax of the
patterns is regex(5) (extended syntax). The items actually compared to the pattern are paths
relative to the remote_directory. The paths always begin with ./. Any number of
destination_exclude_pattern options can be specified. For example:

destination_exclude_pattern="^/htdocs/company/.*html"

would exclude all items under subdirectory /htdocs/company that end in html.

Renaming and Deleting Files During Deployment

These options apply to allowed_directory sections, although they can be specified at a higher
level to apply to multiple sections.

All of these options can also be specified in the client configuration file. Their behavior will depend on
how the client_is_trusted option is specified in the server configuration file. For more
information, see page 290.
292 TeamXpress Templating and Deployment Guide

OpenDeploy Server Options
do_deletes

This specifies that files or directories not existing in the source will be deleted on the destination
server. By default they are not.

rename_suffix=suffix

This specifies a suffix that will be used to rename files normally deleted on the destination server. For
example:

rename_suffix=.old

will rename all files that would otherwise have been deleted to filename.old.

Changing Permissions on Files During Deployment

UNIX destination

These allowed_directory options allow you to specify changes in permissions when you are
deploying to a UNIX server. Options marked with an asterisk (*) can only be used when you are
deploying from a UNIX server to a UNIX server. All of these options apply to allowed_directory
sections, although they may be specified at a higher level to apply to multiple sections.

All of these options can also be specified in the client configuration file. Their behavior will depend on
how the client_is_trusted option is specified in the server configuration file. For more
information, see page 290.

amask=mask

This specifies a bit mask (in octal) to be ANDed with the permission bits of all files and directories. If
you are deploying from a Windows NT/2000 server, the bit mask will be ANDed with the default
permission bits of 664. For example:

amask=011

dir_perm=permission

This specifies the permissions (in octal) given to all deployed directories. For example:

dir_perm=755
293

Configuration File Options
file_perm=permission

This specifies the permissions (in octal) given to all deployed files. For example:

file_perm=755

group=groupid

This specifies the group assigned to all deployed files and directories. groupid must be a valid group
name. For example:

group=TeamSite_users

If group is specified, user must also be specified.

ignore_groups

This specifies that changes in file and directory group ownership are ignored when comparing source
and destination systems. By default changes in group ownership are grounds for transfer.

ignore_modes

This specifies that changes in file and directory permissions are ignored when comparing source and
destination systems. By default changes in permissions are grounds for transfer.

ignore_users

This specifies that changes in file and directory ownership are ignored when comparing source and
destination systems. By default changes in ownership are grounds for transfer.

omask=mask

This specifies a bit mask (in octal) to be ORed with the permission bits of all files and directories. If
you are deploying from a Windows NT/2000 server, the bit mask will be ORed with the default
permission bits of 664. For example:

omask=011

user=userid

This specifies the user who will own all deployed files and directories. userid must be a valid user
name. For example:

user=root

If user is specified, group must also be specified.
294 TeamXpress Templating and Deployment Guide

OpenDeploy Server Options
Windows NT/2000 destination

These allowed_directory options allow you to specify changes in permissions when you are
deploying to a Windows NT/2000 server. By default, files will inherit permissions from their parent
directories.

All of these options can also be specified in the client configuration file. Their behavior will depend on
how the client_is_trusted option is specified in the server configuration file. For more
information, see page 290.

setaccess=ACL

Replaces the access control lists (ACLs) for the deployed files and directories.

changeaccess=ACL

Modifies the ACL so that the specified users have the specified rights. The new access control entry
(ACE) for each specified user allows only the specified rights, discarding any existing ACE.

Windows NT/2000 ACLs
ACLs on Windows NT/2000 have the following syntax (where ACE stands for access control entry):
name:ACE
{ name:ACE, name:ACE, ... }

name is one of

user name
group name
domain name\user name
domain name\group name

ACEs consist of either perm bits or standard perms.

perm bits is any sequence made of the characters R (read), W (write), X (execute), D (delete), P
(change permissions), and O (take ownership), e.g. RWX.
295

Configuration File Options
standard perms is one of the following:

ALL (RWXDPO)
NONE (none)
READ (RX)
WRITE (W)
CHANGE (RWXD)

For example:

setaccess={ andre:ALL, everyone:RX }

would remove the existing ACL and grant the user andre full access and the group everyone read
access to the specified files.

changeaccess={ chris:ALL, everyone:RX }

would remove any existing ACEs for chris and everyone, and grant chris full access and the
group everyone read access to the specified files. Any other existing ACEs would remain
unchanged.

Encryption

OpenDeploy allows two types of encryption: key file and SSL. These types of encryption cannot be
used in conjunction with one another, that is, if you use the key_file option, you cannot use the SSL
options, and vice versa. For more information on encryption, see “Encryption” on page 305.

key_file is a TeamSite_server-level option, so you can specify different key files for different
servers, or you can specify it at the global level and use one key file for all servers.

The SSL options are global options. These options will apply to all servers in a given configuration file.
Before you use SSL, you must generate certificates and keys on both the source and destination
servers.

key_file=path

This specifies the path to the file which will be used as an encryption key for transfers between the
iwdeploy client and the iwdeploy server.
296 TeamXpress Templating and Deployment Guide

OpenDeploy Server Options
ssl_certificate=path

(Mandatory for SSL encryption) This specifies the path to the SSL certificate.

ssl_privatekey=path

(Mandatory for SSL encryption) This specifies the path to the SSL private key.

ssl_ciphers=ciphers

(Optional for SSL encryption) This specifies the SSL ciphers to use. Multiple ciphers must be
separated by a colon (:), e.g.:

ssl_ciphers=EDH-DSS-DES-CBC3-SHA:EXP-EDH-DSS-DES-CBC-SHA

Deploy and Run

If the client is not trusted, Deploy and Run requires you to create a deploy_run_script section
within a deployment section of the server configuration file. Options that belong in this section
cannot be specified at a higher level.

In addition to the deploy_run_script options that can be specified on either client or server,
Deploy and Run has two server-only options which allow you to specify security-related settings for
Deploy and Run scripts (disable_scripts and require_abs_script_path). These options
are specified at the global level. For more information on Deploy and Run, see “Deploy and Run” on
page 313.

disable_scripts=yes

This specifies that Deploy and Run scripts will be disabled on the server. This global option can only
be specified on the server.

require_abs_script_path=yes

Requires that all scripts be specified using absolute paths, not relative paths. Scripts specified using
relative paths will not be allowed to execute, but the deployment will otherwise proceed normally.
This option must be specified at the global level of the OpenDeploy server configuration file. This
option can only be specified on the server.
297

Configuration File Options
deploy_run_script=script_to_run

(Mandatory if client_is_trusted=no) This begins a new deploy_run_script section.
script_to_run must be in the current PATH (e.g. /usr/local/bin), and the line can contain
parameters. For example:

deploy_run_script=joe_bob -r -q foobar

This option can be specified on either the client or server. Its behavior is dependent on the
client_is_trusted option (see page 290).

as=username

(UNIX only, optional) This option is specified in a deploy_run_script section, and allows you to
run the script as a different user. By default, the script runs as the user who invokes OpenDeploy,
who will need to be root for most purposes. This option can be specified on either the client or
server. Its behavior is dependent on the client_is_trusted option (see page 290).

when=condition

(Mandatory if client_is_trusted=no) This option is specified in a deploy_run_script
section, and allows you to specify when the script is to be run. condition is one of:

server_before_deploy Execute the script on the server, before deployment.

server_after_deploy Execute the script on the server, after deployment.

server_before_file Execute the script on the server, before an individual file is
deployed (may be used in conjunction with the file_mask and
dir_mask options). Exercise caution when using this option, as it
can slow deployment and cause log files to become extremely large.
This option cannot be used for transactional mode deployments.

server_after_file Execute the script on the server, after an individual file is deployed
(may be used in conjunction with the file_mask and dir_mask
options). Exercise caution when using this option, as it can slow
deployment and cause log files to become extremely large.This
option cannot be used for transactional mode deployments.
298 TeamXpress Templating and Deployment Guide

OpenDeploy Server Options
server_after_deploy, server_after_file, and server_after_dir may use one of two
modifiers, on_success or on_failure. For example:

when=server_after_deploy on_failure

would specify an action to be performed on the server after a failed deployment.

If the deployment is a reverse deployment, all scripts will execute on the client. This option can be
specified on either the client or server. Its behavior is dependent on the client_is_trusted
option (see page 290).

dir_mask=dir

This option is specified in a deploy_run_script section. dir is a regular expression specifying
the directories on which the script will be executed, e. g., */cgi-bin/*. The expression matches
server-side absolute paths. This option only applies to the before_dir and after_dir conditions.
This option can be specified on either the client or server. Its behavior is dependent on the
client_is_trusted option (see page 290).

file_mask=file

This option is specified in a deploy_run_script section. file is a regular expression specifying
the files on which the script will be executed, e. g., .*\.html. The expression matches server-side
absolute paths. This option only applies to the before_file and after_file conditions. This
option can be specified on either the client or server. Its behavior is dependent on the
client_is_trusted option (see page 290).

async=yes

This option is specified in a deploy_run_script section, and will run the script asynchronously.

Exercise caution when using this mode, as it could cause many scripts to be run at the same time.
The output from scripts run asynchronously is not captured. This option can be specified on either
the client or server. Its behavior is dependent on the client_is_trusted option (see page 290).

server_before_dir Execute the script on the server, before a directory is deployed
(may be used in conjunction with the dir_mask option).This
option cannot be used for transactional mode deployments.

server_after_dir Execute the script on the server, after a directory is deployed (may
be used in conjunction with the dir_mask option).This option
cannot be used for transactional mode deployments.
299

Configuration File Options
where=dir

This option is specified in a deploy_run_script section. dir specifies the directory to navigate to
before executing the script. This option can be specified on either the client or server. Its behavior is
dependent on the client_is_trusted option (see page 290).

Authentication by IP Address

OpenDeploy has two server options that can work with your firewall to ensure that the OpenDeploy
listener is communicating with a known server in a known manner. For more information about
authentication by IP address, see “Authentication by IP Address” on page 301.

bind_address=address

where address specifies the IP address that the OpenDeploy server will use. The value can be a
hostname, which will be validated by a DNS lookup via gethostbyname(), or an IP address, which
will be validated by a check via inet_addr(). When bind_address is specified together with
port, OpenDeploy will bind() on the specified bind_address and port. If bind_address is not
specified, OpenDeploy will bind() only on the specified port and listen on all interfaces.
bind_address is a global section option.

allowed_hosts=hostlist

hostlist is a list of the OpenDeploy senders which will be allowed to connect to the OpenDeploy
listener. The list can be space-delimited or comma-delimited, and you can specify either hostnames
or dot-notations. localhost and 127.0.0.1 are not valid values within this list. When an
incoming connect request is received, the incoming connecting IP address will be matched against the
IP address(es) converted from the allowed_hosts list. A match with any address in the list will
validate the incoming connection; otherwise the connection will be rejected. allowed_hosts is a
TeamSite_server section option.
300 TeamXpress Templating and Deployment Guide

Chapter 16

Advanced Features

This chapter discusses several OpenDeploy features that may require configuration in areas outside of
the OpenDeploy client and server configuration files. OpenDeploy features that are solely invoked on
the command line or that are configured via configuration files are discussed elsewhere in this manual.
This chapter discusses:

• Authentication by IP address (see page 301)

• Encryption (see page 305)

• Deploy and Run (see page 313)

Authentication by IP Address

OpenDeploy can be configured to work with your firewall to ensure that the OpenDeploy listener is
communicating with a known server in a known manner.

In the following scenario, OpenDeploy is installed on both a single development server and a single
production server. On the production server, OpenDeploy is installed as a service (Windows NT/
2000) or a daemon (UNIX). There is a firewall between the development and production servers,
with all outbound traffic connecting first to the firewall and then to the external location. The
external production server is configured with two IP addressses, only one of which is publicly visible
for accepting web traffic.

Internal network: 10.1.1.0

External network: 10.2.2.0

On internal network:

Web source system: 10.1.1.1
301

Advanced Features
 Firewall: 10.1.1.2

On external network:

Firewall: 10.2.2.2

Web server:

Private: 10.2.2.3

Public: 10.2.2.4

On the production server, OpenDeploy listens on 10.2.2.3 at port 1701. OpenDeploy
communicates securely through the firewall to the OpenDeploy client as follows:

10.1.1.1:(random1) 10.1.1.2:50001 [proxy]

10.2.2.2:(random2) 10.2.2.3:1701

Note: random1 and random2 are any dynamically assigned source port numbers.

An shows a TCP connection from source to destination.

 Source and destination are address:port.

 [proxy] is the process on the firewall that's performing the proxying.

In the above example, the OpenDeploy client on the development server would specify the IP address
and port number of the firewall proxy. The firewall proxy, upon making a connection with the
OpenDeploy client, would create a separate connection to the development server and the
development server would communicate directly with the firewall on the production server.

The OpenDeploy server on the production server can be set to listen for connections on a specific
interface. In this example, the OpenDeploy server would only receive connections made by the
firewall at 10.2.2.3 on port 1701 and not on any other IP address (such as the public IP address
assigned to the webserver).
302 TeamXpress Templating and Deployment Guide

Authentication by IP Address
Furthermore, the OpenDeploy server on the production server can be set to receive content only
from a known, trusted source. In this example, the OpenDeploy server can be set to only receive
content from a source IP address of 10.2.2.2—the external address of the firewall. With this option
set, even if an outside user could make a connection to the right IP address at the right port, that user
would need to identify the appropriate internal IP address of the client to establish a connection. The
following diagram shows the sequence of events that occurs when the client tries to connect to the
server:

High-level Protocol Diagram

Authentication by IP address uses the following options in the OpenDeploy server configuration file.
These options may be used together or separately:

bind_address=address

where address specifies the IP address that the OpenDeploy server will use. The value can be a
hostname, which will be validated by a DNS lookup via gethostbyname(), or an IP address, which
will be validated by a check via inet_addr(). When bind_address is specified together with
port, OpenDeploy will bind() on the specified bind_address and port. If bind_address is not
specified, OpenDeploy will bind() only on the specified port and listen on all interfaces.
bind_address is a global section option.

Client Server

Connect

Connect-ack

IP Checking Server checks that client is an allowed host.

Session-info

Difference-info Server issues “get” requests to client.

Content-transfer Files are sent over with ack/nack returned

End-session-info
303

Advanced Features
allowed_hosts=hostlist

hostlist is a list of the OpenDeploy senders that will be allowed to connect to the OpenDeploy
listener. The list can be space-delimited or comma-delimited, and you can specify either hostnames
or dot-notations. localhost and 127.0.0.1 are not valid values within this list. When an
incoming connect request is received, the incoming connecting IP address will be matched against the
IP address(es) converted from the allowed_hosts list. A match with any address in the list will
validate the incoming connection; otherwise the connection will be rejected. allowed_hosts is a
TeamSite_server section option.

If the firewall between the sender and receiver is configured for packet filtering, the OpenDeploy
client remote_server, remote_port, and hostname must match the server’s bind_address,
port, and TeamSite_server, respectively. If the firewall is configured for proxy operation, the
server’s allowed_hosts must include the external firewall interface.

The following OpenDeploy server configuration file shows how the bind_address and
allowed_host options are used.

Example

#
SERVER-SIDE OPENDEPLOY
#
port=1709
bind_address=204.247.119.36
TeamSite_server=TeamSite1.example.com
allowed_hosts=204.247.119.36
key_file=/u/iw/andre/deploytest/encryptkey
allowed_directory = /tmp/unixunix/deploydst
allowed_directory = /tmp/Branch1

;

If the bind_address check fails, the following error message will appear:

ERROR: Current host not allowed to run iwdeploy as daemon

If the allowed_hosts check fails, the following error message will appear:

ERROR: Connecting host denied access
304 TeamXpress Templating and Deployment Guide

Encryption
Encryption

OpenDeploy provides two methods of encryption: weak (40-bit) symmetric and strong (up to 168-
bit) asymmetric key encryption.

Symmetric Key Encryption

OpenDeploy’s key_file option uses a symmetric key algorithm to provide 40-bit encryption
support for content transfers. To configure OpenDeploy for symmetric key deployment, the same
encryption key file must exist on both the source and the destination server. OpenDeploy’s symmetric
key deployment provides basic encryption support with minimal performance impact on content
deployment. However, symmetric 40-bit encryption is breakable by brute force attack with a modest
amount of computing power and is potentially vulnerable to unauthorized users with the same
symmetric key who can intercept data passing over the wire. For sites requiring stronger guarantees
against brute force attacks, and for sites requiring complete certainty that data is only being received
or transmitted by a trusted source, OpenDeploy provides 168-bit asymmetric encryption (discussed
later in this chapter). The following section describes how to specify key files to implement 40-bit
symmetric key encryption.

Key Files

To specify key file (symmetric) encryption, add the following line to both the client and server
configuration files:

key_file=path-to-keyfile

This specifies the path to the file used as an encryption key for transfers between the iwdeploy client
and the iwdeploy server. It must be specified as a deployment option in the client configuration file
and a TeamXpress server option in the server configuration file.

You can use any file as a key file, but you must use the same file on both the development and the
production servers. For cross platform deployments, key files that are plain text files must match
exactly. When using FTP to transfer key files, be sure to use binary mode.
305

Advanced Features
Asymmetric Key Encryption

OpenDeploy provides up to 168-bit asymmetric key encryption support for secure content transfers.
This deployment option uses a certificate authority (provided with OpenDeploy) to ensure that all
content transfers occur only between known, trusted sources. OpenDeploy’s asymmetric key
algorithm uses public key exchange to authenticate destination servers, and can use any one of a
number of algorithms to encrypt content prior to deployment. OpenDeploy’s asymmetric key
deployment offers the strongest possible encryption support and is unlikely to be broken by any brute
force attack. Furthermore, when used in conjuction with digital certificates for initial server
authentication, OpenDeploy’s asymmetric key encryption is not vulnerable to a man-in-the-middle
attack. OpenDeploy’s asymmetric key encryption provides the strongest possible security support in
exchange for a small performance cost.

168-bit encryption is available only for transfers within the United States of America. For more
information about encryption and ciphers, consult a cryptography reference manual such as Applied
Cryptography (Bruce Schneier, ISBN 0-471-11709-9). You can also set up asymmetric encryption to
provide less than full 168-bit security. See the section “Configuring OpenDeploy for Asymmetric
Encryption” later in this chapter for information about using various ciphers to set different levels of
encryption.

Setting Up SSL

For asymmetric encryption, OpenDeploy uses the SSLeay implementation of SSL.

Before you use OpenDeploy with asymmetric encryption, you must perform the following steps.
These steps create two unique public and private key pairs that are signed by the same certificate
authority. One key pair will be copied to the production server, and be used by the server component
of OpenDeploy. The other key pair will be copied to the development server, and be used by the
client component of OpenDeploy. You must perform all of these steps no matter what level of
asymmetric encryption you intend to set up.

The certificate authority consists of a set of programs used for generating public and private key pairs
and a database containing state information. The programs will be installed in opendeploy/bin.
The database, by default, is contained in the directory where the programs are run. If future public
and private key pairs are created using a different certificate authority, OpenDeploy will not be able
to deploy to or from a host with keys created by an older certificate authority.
306 TeamXpress Templating and Deployment Guide

Encryption
Pass Phrases
In the following steps, you will be prompted as follows for a pass phrase:

Enter PEM pass phrase:

Give the following response whenever you are prompted:

1234

OpenDeploy requires this particular pass phrase to use the generated certificates.

Setting up the Certificate Authority

UNIX

1. Create the directory where the certificate authority will be installed, e.g., opendeploy/conf/
ca. Navigate to that directory.

2. Verify that the opendeploy/bin directory is included in the PATH environment variable.

3. Copy the ssleay.cnf file from the opendeploy/bin directory into the current working direc-
tory.

4. Install the new certificate authority:

% CA.sh -newca

When prompted for a pass phrase, enter 1234.

Windows NT/2000

To set up the SSLeay DSA certificate authority:

1. Start a command prompt, cmd.exe. Verify that the PATH environment variable contains
OpenDeploy\bin:

>set PATH

If the PATH does not contain the OpenDeploy\bin directory, add it now:

>set PATH=%PATH%;opendeploy\bin
307

Advanced Features
2. Create the directory where the certificate authority will be installed, e.g.,
OpenDeploy\conf\ca. Navigate to that directory.

3. Copy the ssleay.cnf file from the OpenDeploy\bin directory into the current working direc-
tory.

4. Generate a DSA parameter file:

>ssleay dsaparam 512 -out iwoddsa512.pem

5. Generate a DSA certificate (the passphrase is 1234):

>ssleay req -config ssleay.cnf -x509 -newkey dsa:iwoddsa512.pem -out
iwoddsaca.pem

When prompted for a pass phrase, enter 1234.

This step also creates a private key in file privkey.pem and a public key in file iwoddsaca.pem.

6. Check the newly generated certificate:

>ssleay x509 -text -in iwoddsaca.pem

7. Build the certificate authority directory structure and supporting files:
>mkdir demoCA

>mkdir demoCA\certs

>mkdir demoCA\crl

>mkdir demoCA\private

>mkdir demoCA\newcerts

>echo 01 > demoCA\serial

>copy nul demoCA\index.txt

8. Move the files to their correct places:

>move privkey.pem demoCA\private\cakey.pem

>move iwoddsaca.pem demoCA\certs\cacert.pem
308 TeamXpress Templating and Deployment Guide

Encryption
Generating a Certificate

UNIX

To generate a DSA Certificate for OpenDeploy, do the following once for the development and once
for the production server:

1. Generate a new certificate and key:

% CA.sh -certall

When prompted for a pass phrase, enter 1234.

This step generates a private key file called privkey.pem and a certificate file called
newdhsigned.pem.

2. Copy the generated keys to the appropriate locations, depending on whether the certificate/key
pair is intended for the client or server component of OpenDeploy. A good place to store certifi-
cates and keys is opendeploy/cert. This directory is not created by the installion process; you
will have to create it manually. You might also want to rename the keys to reflect their role in the
deployment cycle, e.g. client side keyfiles may be called odcltkey.pem and odcltcert.pem,
while server side keyfiles may be called odsvrkey.pem and odsvrcert.pem.

Windows NT/2000

To generate a DSA Certificate for OpenDeploy, do the following once for the development and once
for the production server:

1. Generate the DSA Certificate:

>ssleay req -config ssleay.cnf -newkey dsa:iwoddsa512.pem -out
yournewreq.pem

When prompted for a pass phrase, enter 1234. However, the challenge password can be any
value.

This step generates a private key in file privkey.pem, which should be renamed:

>move privkey.pem odkey.pem

2. Sign the certificate:

>ssleay ca -config ssleay.cnf -in yournewreq.pem -out odcert.pem

When prompted for a pass phrase, enter 1234.
309

Advanced Features
3. Generate Diffie-Hellman parameters and append them to the certificate:

>ssleay gendh -rand odcert.pem -out dh.out

>type dh.out >> odcert.pem

4. Copy the generated keys to the appropriate locations, depending on whether the certificate/key
pair is intended for the client or server component of OpenDeploy. A good place to store certifi-
cates and keys is OpenDeploy/cert. This directory is not created by the installation process; you
will have to create it manually. You might also want to rename the keys to reflect their role in the
deployment cycle, e.g. client-side keyfiles could be called odcltkey.pem and odcltcert.pem,
while server-side keyfiles could be called odsvrkey.pem and odsvrcert.pem.

Configuring OpenDeploy for Asymmetric Encryption

After generating and signing the certificates as described in the preceding sections, you must configure
OpenDeploy to use asymmetric encryption.

Configuration Options

To configure OpenDeploy to use SSL, specify the generated certificate and key files in the iwdeploy
client and server configuration files as global options:
ssl_certificate=path
ssl_privatekey=path

You can also specify various ciphers to use in encryption. During a connection, the OpenDeploy client
and server will negotiate which cipher to use. During the negotiation phase, OpenDeploy selects the
highest priority cipher that both client and server support. Specify ciphers as follows:

ssl_ciphers=cipherlist, where

cipherlist contains one or more ciphers, ranked left to right from highest priority to lowest
priority, separated by a colon (:), e.g.:

ssl_ciphers=EDH-DSS-DES-CBC3-SHA:EXP-EDH-DSS-DES-CBC-SHA

ssl_ciphers is a global option, and it can be specified in the OpenDeploy client or server
configuration file, or in both configuration files. If ssl_ciphers is not specified, the default is:
310 TeamXpress Templating and Deployment Guide

Encryption
ssl_ciphers=EDH-DSS-DES-CBC3-SHA:EDH-DSS-DES-CBC-SHA:ADH-DES-CBC3-
SHA:ADH-DES-CBC-SHA:EXP-ADH-DES-CBC-SHA

Currently the only 168-bit cipher available is EDH-DSS-DES-CBC3-SHA.

Supported Ciphers

OpenDeploy allows you to use the following ciphers:

No-authentication ciphers
ADH-DES-CBC3-SHA
ADH-DES-CBC-SHA

Low strength ciphers
EDH-DSS-DES-CBC-SHA

High strength ciphers
EDH-DSS-DES-CBC3-SHA

Export ciphers
EXP-EDH-DSS-DES-CBC-SHA
EXP-ADH-DES-CBC-SHA

Sample Server Configuration Files

UNIX
port=1709
ssl_certificate=/usr/opendeploy/conf/odsvrcert.pem
ssl_privatekey=/usr/opendeploy/conf/odsvrkey.pem
ssl_ciphers=EDH-DSS-DES-CBC-SHA:EXP-ADH-DES-CBC-SHA
TeamSite_server=development1.example.com

allowed_directory = /tmp/deploydst
;

Windows NT/2000
port=1709
ssl_certificate=C:\Program Files\Interwoven\OpenDeploy\conf\odsvrcert.pem
ssl_privatekey=C:\Program Files\Interwoven\OpenDeploy\conf\odsvrkey.pem
311

Advanced Features
ssl_ciphers=EDH-DSS-DES-CBC-SHA:EXP-ADH-DES-CBC-SHA
TeamSite_server=development1.example.com

allowed_directory = D:\deploydst\content
;

Sample Client Configuration Files

UNIX
hostname=development1.example.com
remote_server=production1.example.com
remote_port=1709
ssl_certificate=/usr/iw-home/opendeploy/conf/odcltcert.pem
ssl_privatekey=/usr/iw-home/opendeploy/conf/odcltkey.pem
ssl_ciphers=EDH-DSS-DES-CBC-SHA:EXP-ADH-DES-CBC-SHA
deployment=deploy_to_single

area=/u/iw/andre/deploy
local_directory=deploysrc

remote_directory=/tmp/deploydst
;

;

Windows NT/2000
hostname=development1.example.com
remote_server=production1.example.com
remote_port=1709
ssl_certificate=C:\Program Files\Interwoven\OpenDeploy\conf\odcltcert.pem
ssl_privatekey=C:\Program Files\Interwoven\OpenDeploy\conf\odcltkey.pem
ssl_ciphers=EDH-DSS-DES-CBC-SHA:EXP-ADH-DES-CBC-SHA
deployment=deploy_to_single

area=y:\default\main\dev\EDITION
local_directory=deploysrc

remote_directory=D:\deploydst\content
;

;

312 TeamXpress Templating and Deployment Guide

Deploy and Run
Deploy and Run

OpenDeploy’s “Deploy and Run” feature allows you to configure OpenDeploy to execute an external
script at a specified stage of deployment. For example, OpenDeploy can be configured to execute a
notification script upon a failed deployment, run a language-checking script during deployment, or
enter items in a Windows NT/2000 server’s Registry after deployment.

Configuring Deploy and Run

If the client is trusted, most Deploy and Run configuration is done in the client configuration file,
although there are also two server configuration file options. The options described in “Client
Configuration” may also be specified on the server. Their behavior is dependent on whether or not the
client is trusted (see “Use of Client versus Server Configuration Options” on page 258). The following
sections describe the changes you can make to both files to set up Deploy and Run.

Client Configuration

To configure Deploy and Run, add a deploy_run_script section to a deployment section of an
OpenDeploy client configuration file. deploy_run_script options must be contained within a
deployment section; they cannot be specified at a higher level. However, a single deployment section
can contain multiple deploy_run_script sections that include different options. The
deploy_run_script line specifies the script to run and its parameters:

deploy_run_script=script_to_run

(Required) This line can contain parameters, e.g., deploy_run_script=myscript -r -q

script_to_run must be in the current PATH (e.g., /usr/local/bin).

A deploy_run_script section can contain the following lines:

as=username

(UNIX only, optional) This option allows you to run the script as a different user. By default, the
script runs as the user who invokes OpenDeploy, who will need to be root for most purposes.

when=condition
313

Advanced Features
(Required) where condition is one of the following:

client_after_deploy, server_after_deploy, server_after_file, and
server_after_dir may use one of two modifiers, on_success or on_failure. For example:

when=client_after_deploy on_failure

would specify an action to be performed on the client after a failed deployment.

If the deployment is a reverse deployment, all scripts will execute on the client.

dir_mask=dir
(Optional) where dir is a regular expression specifying the directories on which the script will be
executed, e. g. .*/cgi-bin/.*. The expression matches server-side absolute paths. This option
only applies to the before_dir and after_dir conditions.

client_before_deploy Execute the script on the client, before deployment.

client_after_deploy Execute the script on the client, after deployment.

server_before_deploy Execute the script on the server, before deployment.

server_after_deploy Execute the script on the server, after deployment.

server_before_file Execute the script on the server, before an individual file is deployed
(may be used in conjunction with the file_mask and dir_mask
options). Exercise caution when using this option, as it can slow
deployment and cause log files to become extremely large. This
option cannot be used for transactional mode deployments.

server_after_file Execute the script on the server, after an individual file is deployed
(may be used in conjunction with the file_mask and dir_mask
options). Exercise caution when using this option, as it can slow
deployment and cause log files to become extremely large.This
option cannot be used for transactional mode deployments.

server_before_dir Execute the script on the server, before a directory is deployed (may
be used in conjunction with the dir_mask option).This option
cannot be used for transactional mode deployments.

server_after_dir Execute the script on the server, after a directory is deployed (may be
used in conjunction with the dir_mask option).This option cannot
be used for transactional mode deployments.
314 TeamXpress Templating and Deployment Guide

Deploy and Run
file_mask=file
(Optional) where file is a regular expression specifying the files on which the script will be
executed, e. g., .*\.html. The expression matches server-side absolute paths. This option only
applies to the before_file and after_file conditions.

async=yes
(Optional) This option will run the script asynchronously. Exercise caution when using this mode, as
it could cause many scripts to be run at the same time. The output from scripts run asynchronously is
not captured.

where=dir
(Optional) where dir specifies the directory to navigate to before executing the script.

Examples
The following client configuration file contains two deploy_run_script sections. The first
deploy_run_section specifies that the mail_info script is to run with the parameter
after_deploy. It is to run on the client after the deployment is completed, whether it succeeds or
fails.

The second deploy_run_section specifies that the check_log_file script is to be run in the
/home/andre directory on the target before and after every successful deployment of a directory or
of a file whose name ends in .log.

hostname=development1.example.com
remote_server=production1.example.com
remote_port=1709
deployment=manyscripts
area=/u/iw/andre/deploy
local_directory=deploysrc

remote_directory=/tmp/deploydst
;
deploy_run_script=mail_info -after_deploy

when=client_after_deploy on_success on_failure
async=yes

;

315

Advanced Features
deploy_run_script=check_log_file
when=before_dir after_dir before_file after_file on_success
where=/home/andre
file_mask=*.log

;
;

The following configuration file invokes a script that sends email to the system administrator when a
deployment fails. The script to send mail is included on the OpenDeploy CD-ROM.

hostname = development1.example.com
deployment = website

remote_server = production1.example.com
remote_port= 1849
key_file = /local/deploy/key/web_key
deploy_run_script=/local/deploy/script/mail-admin

as=andre
when=server_after_deploy on_failure
;

area=//IWSERVER/default/main/dev/EDITION
local_directory = .

remote_directory = /local/docroot
do_deletes

;
;

The following configuration file invokes a script that stops and restarts the webserver on the
production server before the deployment starts. The production server in this example is a
Windows NT/2000 server running Microsoft IIS. The scripts to start and stop the webserver are
included on the OpenDeploy CD-ROM.

Due to the constraints of page width, some of the lines in the configuration file below may appear to
wrap. Lines in an actual OpenDeploy configuration file should never wrap.

hostname = development1.example.com
deployment = website-nt
remote_server = production1.example.com
remote_port= 1849
key_file = d:\deploy\website-nt.key
316 TeamXpress Templating and Deployment Guide

Deploy and Run
deploy_run_script=
"d:\program files\interwoven\TeamXpress\iw-perl\bin\iwperl.exe"
d:\deploy\script\stop-iis.ipl

when=server_before_deploy
;

deploy_run_script=
"d:\program files\interwoven\TeamXpress\iw-perl\bin\iwperl.exe"
d:\deploy\script\start-iis.ipl

when=server_after_deploy
;

area=//IWSERVER/default/main/dev/EDITION
local_directory = .

remote_directory = d:\website
;

;

Further sample configuration files and their corresponding scripts are available on the OpenDeploy
CD-ROM.

Server Configuration

Deploy and Run uses two global server configuration options. Server configuration files can also
contain a deploy_run_script section which specifies the same options as are used on the client.
This section will only be used if the client is not trusted.

disable_scripts=yes

Disables the Deploy and Run feature. To disable Deploy and Run, include this option at the global
level of the OpenDeploy server configuration file.

require_abs_script_path=yes|no

Requires that all scripts be specified using absolute paths, not relative paths. Scripts specified using
relative paths will not be allowed to execute, but the deployment will otherwise proceed normally.
This option must be specified at the global level of the OpenDeploy server configuration file.

Examples
The following server configuration file disables the Deploy and Run feature:

port=1709
disable_scripts=yes
317

Advanced Features
TeamSite_server=development1.example.com
key_file=/u/iw/andre/deploy/encryptkey
allowed_directory = /tmp/deploydst

;

The following server configuration file requires Deploy and Run scripts to use absolute paths:

port=1709
require_abs_script_path=yes
TeamSite_server=development1.example.com

key_file=/u/iw/andre/deploy/encryptkey
allowed_directory = /tmp/deploydst

;

Log Files and Scripts

The following steps execute whenever Deploy and Run calls a script that executes on the OpenDeploy
server:

1. The OpenDeploy server spawns a process that will execute the script.

2. If Deploy and Run is set to run scripts synchronously, a pipe is created between the OpenDeploy
server process and the script process. The script will receive input through stdin from the
OpenDeploy server process, and it will write output through stdout and stderr to the
OpenDeploy server process.

3. stdin of the script process receives an XML representation of the OpenDeploy log file in its cur-
rent state.

4. The script executes, and the results are sent to stdout. Errors are sent to stderr.

OpenDeploy
server

script

deploy

XML log

stdout

stderr

in-

log
memory stdin

OpenDeploy
client
318 TeamXpress Templating and Deployment Guide

Deploy and Run
If the scripts are not run in asynchronous mode, the OpenDeploy process receives the results and
sends them to the OpenDeploy log (results of scripts run in asynchronous mode are not logged). If
the results are well-formed (that is, they conform to the XML DTD), they are parsed and sent to
the log as XML objects. If they are not well-formed, they are not parsed, but they are still sent to
the log.

Because well-formed results are parsed by the server, it is possible for a script to cause
OpenDeploy to abort deployment by generating certain responses in XML, e. g., result="-2"
(see “The OpenDeploy Log File DTD” on page 320).

This process is repeated each time Deploy and Run calls a script.

5. At the end of a deployment, the server log is written to a file, and transferred to the client (see
“Logging” on page 243 for an explanation of client and server log files).

On UNIX, output from scripts is appended to the OpenDeploy log file. On Windows NT/2000,
however, each deployment session creates a new trace log file, named as described on page 247.
Script output is stored in a separate trace log file from the server trace log.

OpenDeploy
server

script
stdout

stdout

stderr

in-

log
memory stderr

OpenDeploy
client

OpenDeploy
server

in-

log
memory

OpenDeploy
client

client
log

server
log

transfer
319

Advanced Features
In this manner, future scripts can parse the output of past scripts. For example, a script might extract
information about which files were deleted during the last deployment. Sample code illustrating how
to parse the OpenDeploy log file is included on the OpenDeploy CD-ROM. Also see “Parsing the
OpenDeploy Log File” on page 322.

The OpenDeploy Log File DTD

The XML representation of the log file has the following DTD:

<!DOCTYPE log [
<!ELEMENT log ANY>
<!ATTLIST log target CDATA "">
<!ATTLIST log action CDATA "0">
<!ATTLIST log date CDATA "0">
<!ATTLIST log result CDATA "0">
<!ATTLIST log response CDATA "">
<!ELEMENT log_element ANY>
<!ATTLIST log_element target CDATA "">
<!ATTLIST log_element action CDATA "0">
<!ATTLIST log_element date CDATA "0">
<!ATTLIST log_element result CDATA "0">
<!ATTLIST log_element response CDATA "">

]>

In an OpenDeploy XML log file:

target specifies the target, e.g., the name of the file or directory deployed.

action is one of the following numbers:

Name Description

0 UNDEFINED Undefined action.

1 LOG_ELEMENT_DEPLOY_FILE Deploy a file.

2 LOG_ELEMENT_DEPLOY_DIRECTORY Deploy a directory.

3 LOG_ELEMENT_SUMMARY Contains summary of events.

4 LOG_ELEMENT_RUN_SCRIPT Run a script.
320 TeamXpress Templating and Deployment Guide

Deploy and Run
date specifies the date (in number of seconds since January 1, 1970).

result is one of the following numbers:

response is the text response for the action.

Name Description

-2 LOG_ELEMENT_ABORT The result of the action was to signal the deployment to do a hard
abort (the deployment stops immediately. If the deployment was
transactional, the files on the production server will be returned
to their original state).

-1 LOG_ELEMENT_ERROR The action returned an error.

0 LOG_ELEMENT_OK The action returned a satisfactory result and the item should be
printed to stdout in all cases.

1 LOG_ELEMENT_OK1 The action returned a satisfactory result which should be printed
to stdoutþif the verbosity level is set to a value greater than or
equal to 1.

2 LOG_ELEMENT_OK2 The action returned a satisfactory result which should be printed
to stdoutþif the verbosity level is set to a value greater than or
equal to 2.

3 LOG_ELEMENT_OK3 The action returned a satisfactory result which should be printed
to stdoutþif the verbosity level is set to a value greater than or
equal to 3.

4 LOG_ELEMENT_OK4 The action returned a satisfactory result which should be printed
to stdoutþif the verbosity level is set to a value greater than or
equal to 4.

5 LOG_ELEMENT_OK5 The action returned a satisfactory result which should be printed
to stdoutþif the verbosity level is set to a value greater than or
equal to 5.
321

Advanced Features
For example, a log file might contain the following line:

<log_element target="/tmp/Branch1/src/pmt" action="2" date="925263642"
result="0" response="" />

indicating that the target was /tmp/Branch1/src/pmt, the action was to deploy a directory, the
result was satisfactory, and there was no text response for this action.

Parsing the OpenDeploy Log File

To parse OpenDeploy XML log files:

1. Install the XML::Parser module (packaged with OpenDeploy in the examples/xml-perl
directory as xml.tar.gz, or see your local CPAN mirror http://www.perl.com/CPAN).
This package requires a version of Perl more recent than 5.004. See the README file for
installation directions.

2. Set the search path for modules. Perl looks in well-known places for Perl modules, stored in the
@INC list. For example, to ensure that the OpenDeploy XML module IWXML.pm, in /usr/
opendeploy/lib, is found by Perl, use the statement

@INC = (@INC, "/usr/opendeploy/lib");

This line should be followed by:
require IWXML;

which includes all elements contained within the OpenDeploy XML module into the custom
script.
322 TeamXpress Templating and Deployment Guide

Deploy and Run
3. Scripts triggered by OpenDeploy 4.2 read input from standard input, process the data, and report
back results on standard output. The programming model reflects this. The data will be parsed by
the following line of code:

my($xml_obj) = IWXML::GetLogDataFromSTDIN();

The script can obtain a list of files and directories for which deployment succeeded:

my(@f_success) = $xml_obj -> GetSucceededFiles();

and a list of files and directories that failed to be deployed:

my(@f_failure) = $xml_obj -> GetFailedFiles();

The script can process these lists with the necessary logic.

4. To report results back to the OpenDeploy process, print a single line of XML to standard output:

printf ("<response code=\"%d\">\n", $retval);

where $retval corresponds to one of the result values listed on page 321. Note especially that a
value of -2 will cause the deployment to be aborted.
323

Advanced Features
324 TeamXpress Templating and Deployment Guide

Chapter 17

Deployment Scenarios

This chapter describes the most common deployment scenarios and provides examples of the
configuration files necessary for their implementation. The most common deployment scenarios are:

1. Forward deployment to a single server

2. Forward deployment to multiple servers

3. Forward deployment of different directories to different servers

4. Reverse deployment

5. Reverting the website

6. Deploying through firewalls

Any of these types of deployment can be triggered in various ways. For example, deployment can be
triggered:

• manually

• on publication of an edition (using the TeamXpress iwatpub command trigger)

• on submission of a workarea (using the TeamXpress iwatsub command trigger)

• at a certain time (using cron or at)

In the first case, the iwdeploy client is called from the command line. In the other three, it is called
by custom scripts. This chapter describes how to deploy manually from the command line.

The following sections include simple deployment configuration files for each of the six scenarios
listed above. You can modify these configuration files to suit your individual site’s needs.
325

Deployment Scenarios
Forward Deployment to a Single Server

Forward deployment takes all the files to be deployed (as specified in the client configuration file) and
deploys them to the production server. The method used to determine which files to deploy is
specified in the iwdeploy client configuration file (see page 265).

Forward deployment

This deployment requires a configuration file for the iwdeploy client on the development server and
a configuration file for the iwdeploy server on the production server. For this example, the
iwdeploy server configuration file will be named remote_receive.cfg and the iwdeploy client
configuration file will be named local_send.cfg. The configuration files used for this example are
included in the following sections.

1. To initiate deployment on a UNIX production server, issue the following command from the
production server command line prompt:

% iwdeploy -S -fd path/remote_receive.cfg

Or, on a Windows NT/2000 server:

>iwdeploy -S -fd path\remote_receive.cfg

Alternatively, you can invoke the OpenDeploy server from the Services control panel, and type -S
-fd path\\remote_receive.cfg in the Startup Parameters box (see page 239).

Development
webserver

Production
webserver

firewall

OpenDeploy
client

OpenDeploy
server
326 TeamXpress Templating and Deployment Guide

Forward Deployment to a Single Server
The iwdeploy server will listen for incoming connections on the port specified in its
configuration file (remote_receive.cfg).

2. On a UNIX development server, issue the following command from the command line prompt:
% iwdeploy -fs path/local_send.cfg deploy_to_single

Or, on a Windows NT/2000 development server:

>iwdeploy -fs path\local_send.cfg deploy_to_single

The iwdeploy client will attempt to connect to the iwdeploy server process on the production
server. It will use the remote_server and remote_port listed in local_send.cfg to
determine which server to connect to.

Note: the port number listed in both configuration files must be the same for the connection to be
established. You may also need to open the specified port if a firewall is in place.

3. The iwdeploy client will read the global parameters of the configuration file, find the
deploy_to_single deployment section of the configuration file, read its parameters, and
deploy the specified content.

OpenDeploy Server Configuration

The server configuration file remote_receive.cfg specifies the port number that the iwdeploy
server will listen to, and the key file for establishing a handshake. This file must be located on the
production server. The following server configuration files allow you to execute forward deployment
to a single server:

UNIX

Basic iwdeploy SERVER configuration file
port=1709
TeamSite_server=development1.example.com

key_file=/u/iw/andre/deploy/encryptkey
allowed_directory = /tmp/deploydst

;

Windows NT/2000

Basic iwdeploy SERVER configuration file
port=1709
TeamSite_server=development1.example.com
327

Deployment Scenarios
key_file=d:\deploy\encryptkey
allowed_directory = d:\deploydst\content

;

OpenDeploy Client Configuration

The client configuration file remote_send.cfg specifies all the deployment options for the files or
directories being deployed. This file must be located on the TeamXpress (development) server. The
following client configuration files allow you to execute forward deployment to a single server:

UNIX

#--
#
Forward deployment to a single server
#
iwdeploy CLIENT config file
#
#--
hostname=development1.example.com
remote_server=production1.example.com
remote_port=1709
deployment=deploy_to_single

area=/u/iw/andre/deploy
key_file=/u/iw/andre/deploy/encryptkey
local_directory=deploysrc

remote_directory=/tmp/deploydst
;

;

Windows NT/2000

#--
#
Forward deployment to a single server
#
iwdeploy CLIENT config file
#
#--
hostname=development1.example.com
remote_server=production1.example.com
328 TeamXpress Templating and Deployment Guide

Forward Deployment to Multiple Servers
remote_port=1709
deployment=deploy_to_single

area=y:\default\main\dev\EDITION
key_file=d:\deploy\encryptkey
local_directory=deploysrc

remote_directory=d:\deploydst\content
;

;

Forward Deployment to Multiple Servers

In this deployment scenario, the iwdeploy client takes all the files to be deployed (as specified in the
client configuration file) and deploys them to multiple production servers.

Forward deployment to multiple servers

This deployment requires a configuration file for the iwdeploy client on the development server and
a configuration file for the iwdeploy server on each production server. For this example, the
production host configuration files will be all be named remote_receive.cfg and the TeamXpress
host configuration file will be named local_send.cfg. The configuration files used for this
example are included in the following section.

1. To initiate deployment on UNIX production servers, issue the following command from the
command line prompt on each production server:

% iwdeploy -S -fd path/remote_receive.cfg

firewall

Development
webserver

Production servers

OpenDeploy
client OpenDeploy

servers
329

Deployment Scenarios
Or, on Windows NT/2000 production servers:

>iwdeploy -S -fd path\remote_receive.cfg

Alternatively, you can invoke the OpenDeploy server from the Services control panel, and type
-S -fd path\\remote_receive.cfg in the Startup Parameters box (see page 239).

The iwdeploy server will listen for incoming connections on the port specified in its
configuration file (remote_receive.cfg).

2. On a UNIX development server, issue the following commands from the command line prompt:

% iwdeploy -fs path/local_send.cfg deploy_to_srv1

% iwdeploy -fs path/local_send.cfg deploy_to_srv2

% iwdeploy -fs path/local_send.cfg deploy_to_srv3

Or, from a Windows NT/2000 development server:

>iwdeploy -fs path\local_send.cfg deploy_to_srv1

>iwdeploy -fs path\local_send.cfg deploy_to_srv2

>iwdeploy -fs path\local_send.cfg deploy_to_srv3

Alternatively, you can write a script to invoke the iwdeploy client.

The iwdeploy client will attempt to connect to the iwdeploy server process on the production
server. It will use the remote_server and remote_port listed in local_send.cfg to
determine which computer to connect to.

Note: the port number listed in both configuration files must be the same for the connection to be
established. You might also need to open the specified port if a firewall is in place.

3. The iwdeploy client will read the global parameters of the configuration file, find the specified
deployment sections of the configuration file, read their parameters, and deploy the specified con-
tent.

OpenDeploy Server Configuration

The server configuration file remote_receive.cfg specifies the port number that the iwdeploy
server will listen to, and the key file for establishing a handshake. This file must be located on the
production host. The following server configuration files allow you to execute forward deployment to
multiple servers:
330 TeamXpress Templating and Deployment Guide

Forward Deployment to Multiple Servers
UNIX

Basic iwdeploy SERVER configuration file
port=1709
TeamSite_server=development1.example.com

key_file=/u/iw/andre/deploy/encryptkey
allowed_directory = /tmp/deploydst

;

Windows NT/2000

Basic iwdeploy SERVER configuration file
port=1709
TeamSite_server=development1.example.com

key_file=d:\deploy\encryptkey
allowed_directory = d:\deploydst\content

;

OpenDeploy Client Configuration

The client configuration file remote_send.cfg specifies all the deployment options for the files or
directories being deployed. This file must be located on the development server. The following client
configuration files allow you to execute forward deployment to multiple servers:

UNIX

#--
#
Forward deployment to multiple servers
#
iwdeploy CLIENT config file
#
#--
hostname=development1.example.com
deployment=deploy_to_srv1

remote_server=production1.example.com
remote_port=1709
area=/u/iw/andre/deploy
key_file=/u/iw/andre/deploy/encryptkey
local_directory=deploysrc

remote_directory=/tmp/deploydst
;

331

Deployment Scenarios
;
deployment=deploy_to_srv2

remote_server=production2.example.com
remote_port=1710
area=/u/iw/andre/deploy
key_file=/u/iw/andre/deploy/encryptkey
local_directory=deploysrc

remote_directory=/tmp/deploydst
;

;
deployment=deploy_to_srv3

remote_server=production3.example.com
remote_port=1711
area=/u/iw/andre/deploy
key_file=/u/iw/andre/deploy/encryptkey
local_directory=deploysrc

remote_directory=/tmp/deploydst
;

;

Windows NT/2000

#--
#
Forward deployment to multiple servers
#
iwdeploy CLIENT config file
#
#--
hostname=development1.example.com
deployment=deploy_to_srv1

remote_server=production1.example.com
remote_port=1709
area=y:\default\main\dev\EDITION
key_file=d:\deploy\encryptkey
local_directory=deploysrc

remote_directory=d:\deploydst\content
;

;
deployment=deploy_to_srv2

remote_server=production2.example.com
332 TeamXpress Templating and Deployment Guide

Forward Deployment of Different Directories to Different Servers
remote_port=1710
area=y:\default\main\dev\EDITION
key_file=d:\deploy\encryptkey
local_directory=deploysrc

remote_directory=d:\deploydst\content
;

;
deployment=deploy_to_srv3

remote_server=production3.example.com
remote_port=1711
area=y:\default\main\dev\EDITION
key_file=d:\deploy\encryptkey
local_directory=deploysrc

remote_directory=d:\deploydst\content
;

;

Forward Deployment of Different Directories to Different
Servers

In this scenario, the iwdeploy client takes the files to be deployed in certain directories on the
development server (as specified in the client configuration file) and deploys them to different
production servers.

Forward deployment of different directories to different servers

firewall

Development
webserver

Production servers

cgi-bin htdocs

OpenDeploy
client

OpenDeploy
server

OpenDeploy
server
333

Deployment Scenarios
This deployment requires a configuration file for the iwdeploy client on the development server and
a configuration file for the iwdeploy server on each production server. For this example, the server
configuration files on the production servers will be all be named remote_receive.cfg and the
client configuration file on the development server will be named local_send.cfg. The
configuration files used for this example are included in the following section.

1. To initiate deployment on UNIX production servers, issue the following command from the
command line prompt on each production server:

% iwdeploy -S -fd path/remote_receive.cfg

Or, on Windows NT/2000 production servers:

>iwdeploy -S -fd path\remote_receive.cfg

Alternatively, you can invoke the OpenDeploy server from the Services control panel, and type -S
-fd path\\remote_receive.cfg in the Startup Parameters box (see page 239).

The iwdeploy server will listen for incoming connections on the port specified in its
configuration file (remote_receive.cfg).

2. On a UNIX development server, issue the following commands from the command line prompt:

% iwdeploy -fs path/local_send.cfg deploy_to_srv1

% iwdeploy -fs path/local_send.cfg deploy_to_srv2

Or, from a Windows NT/2000 development server:

>iwdeploy -fs path\local_send.cfg deploy_to_srv1

>iwdeploy -fs path\local_send.cfg deploy_to_srv2

Alternatively, you can write a script to invoke the iwdeploy client.

The iwdeploy client will attempt to connect to the iwdeploy server process on the production
server. It will use the remote_server and remote_port listed in local_send.cfg to
determine which computer to connect to.

Note: the port number listed in both configuration files must be the same for the connection to be
established. You might also need to open the specified port if a firewall is in place.

3. The iwdeploy client will read the global parameters of the configuration file, find the appropriate
deployment sections of the configuration file, read their parameters, and deploy the specified con-
tent.
334 TeamXpress Templating and Deployment Guide

Forward Deployment of Different Directories to Different Servers
OpenDeploy Server Configuration

The server configuration file remote_receive.cfg specifies the port number that the iwdeploy
server process will listen to, and the key file for establishing a handshake. This configuration file must
be located on the production server. The following server configuration files allow you to deploy
different directories to different production servers.

UNIX

Basic iwdeploy SERVER configuration file
port=1709
TeamSite_server=development1.example.com

key_file=/u/iw/andre/deploy/encryptkey
allowed_directory = /tmp/deploydst

;

Windows NT/2000

Basic iwdeploy SERVER configuration file
port=1709
TeamSite_server=development1.example.com

key_file=d:\deploy\encryptkey
allowed_directory = d:\deploydst\content

;

OpenDeploy Client Configuration

The client configuration file remote_send.cfg specifies all the deployment options for the files or
directories being deployed. This file must be located on the development server. The following client
configuration files allow you to deploy different directories to different production servers.

UNIX

#--
#
Forward deployment of different directories
to different servers
#
iwdeploy CLIENT config file
#

335

Deployment Scenarios
#--
hostname=development1.example.com

deployment=deploy_to_srv1
remote_server=production1.example.com
remote_port=1709
area=/u/iw/andre/deploy
key_file=/u/iw/andre/deploy/encryptkey
local_directory=htdocs

remote_directory=/tmp/deploydst1
;

;
deployment=deploy_to_srv2

remote_server=production2.example.com
remote_port=1710
area=/u/iw/andre/deploy
key_file=/u/iw/andre/deploy/encryptkey
local_directory=cgi-bin

remote_directory=/tmp/deploydst2
;

;

Windows NT/2000

#--
#
Forward deployment of different directories
to different servers
#
iwdeploy CLIENT config file
#
#--
hostname=development1.example.com

deployment=deploy_to_srv1
remote_server=production1.example.com
remote_port=1709
area=y:\default\main\dev\EDITION
key_file=d:\deploy\encryptkey
local_directory=htdocs

remote_directory=d:\deploydst\content1
336 TeamXpress Templating and Deployment Guide

Reverse Deployment
;
;
deployment=deploy_to_srv2

remote_server=production2.example.com
remote_port=1710
area=y:\default\main\dev\EDITION
key_file=d:\deploy\encryptkey
local_directory=cgi-bin

remote_directory=d:\deploydst\content2
;

;

Reverse Deployment

Reverse deployment is used when changes are made directly to the production server and need to be
brought back into TeamXpress for development and versioning. OpenDeploy checks to see which files
have changed on the production server and copies them into a workarea on the development server.
The files can then be submitted to the staging area so that users can check their work in the context of
the staging area, and bring the changed files from the staging area into their individual workareas.
337

Deployment Scenarios
Forward deployment combined with periodic reverse deployment

In the scenario above, forward deployment is combined with a periodic reverse deployment to a
workarea created for that purpose. Triggering of reverse deployment and the submission of the
reverse deployed content is handled by custom scripts.

Reverse deployment requires a total of four configuration files—two on the development server and
two on the production server.

The two configuration files for the iwdeploy client on the development server (in this example,
development1.example.com) are:

• local_dummy_send.cfg

• local_receive.cfg

firewall

Development
webserver Production server

contributor
workareas

staging area edition

reverse

workarea

submit publish forward deploy

rev
ers

e d
ep

loy
submit
reverse

deployment

deployment

(development1.example.com) (production1.example.com)

OpenDeploy
server

OpenDeploy client
338 TeamXpress Templating and Deployment Guide

Reverse Deployment
The two configuration files for the iwdeploy server on each production server (in this example,
production1.example.com) are:

• remote_receive.cfg

• remote_send.cfg

 The configuration files used for this example are included in the following section.

1. To initiate deployment from a UNIX production server, issue the following command from the
production server command line prompt:

% iwdeploy -S -fd path/remote_receive.cfg -fs path/remote_send.cfg

Or, on a Windows NT/2000 production server:

>iwdeploy -S -fd path\remote_receive.cfg -fs path\remote_send.cfg

Alternatively, you can invoke the OpenDeploy server from the Services control panel, and type -S
-fd path\\remote_receive.cfg -fs path\\remote_send.cfg in the Startup
Parameters box (see page 239).

The iwdeploy server will listen for incoming connections on the port specified in
remote_receive.cfg.

2. On a UNIX development server, issue the following command from the command line prompt:

% iwdeploy -r -fs path/local_dummy_send.cfg -fd path/local_receive.cfg
reverse_deploy

Or, from a Windows NT/2000 development server:

>iwdeploy -r -fs path\local_dummy_send.cfg -fd path\local_receive.cfg
reverse_deploy

In the preceding example, -r specifies a reverse deployment and reverse_deploy is the name
of the deployment in local_dummy_send.cfg.

The iwdeploy client on the development server will attempt to connect to the iwdeploy server
process on the production server. It will use the remote_server and remote_port definitions
listed in local_dummy_send.cfg to determine which computer to connect to. The iwdeploy
server will be listening to the server and port specified in remote_receive.cfg.

Note: the port number listed in both configuration files must be the same for the connection to be
established. You might also need to open the specified port if a firewall is in place.
339

Deployment Scenarios
3. The iwdeploy server on the production server will recognize that a reverse deployment is under-
way. It will check remote_send.cfg to determine what files to push to the iwdeploy client.
The iwdeploy client will determine where to put the files using local_receive.cfg.

OpenDeploy Server Configuration

remote_send.cfg

The server configuration file remote_send.cfg provides sending parameters such as source area,
local and remote directories, file exclusion filters, and permission filters.

hostname specifies the production server that will be receiving content.

remote_server specifies the development server that will be sending content.

area specifies the directory containing the local directory of files to be sent back to the development
server.

local_directory specifies the directory (relative to area) on the production server that contains
the files to be sent. local_directory and area make up the full path of the directory to be sent.

remote_directory specifies the directory on the development server that will receive content.

The following server configuration files allow you to execute reverse deployment from the
production server.
340 TeamXpress Templating and Deployment Guide

Reverse Deployment
UNIX

#--
#
Reverse deployment
#
iwdeploy SERVER source config file
#
#--
hostname=production1.example.com
deployment=reverse_deploy

remote_server=development1.example.com
remote_port=1709
area=/u/iw/andre/deploy
key_file=/u/iw/andre/deploy/encryptkey
local_directory=deploysrc

remote_directory=/tmp/deploydst
;

;

Windows NT/2000

#--
#
Reverse deployment
#
iwdeploy SERVER source config file
#
#--
hostname=production1.example.com
deployment=reverse_deploy

remote_server=development1.example.com
remote_port=1709
area=y:\default\main\dev\EDITION
key_file=d:\deploy\encryptkey
local_directory=deploysrc

remote_directory=d:\deploydst\content
;

;

341

Deployment Scenarios
remote_receive.cfg

The server configuration file remote_receive.cfg is used to specify the port number that the
iwdeploy server process will listen to, and the key file for establishing a handshake.
TeamSite_server is the development server that will receive content from the production server.
The following server configuration files allow you to execute reverse deployment from the production
server.

UNIX

#--
#
Reverse deployment
#
iwdeploy SERVER config file
#
#--
port=1709
TeamSite_server=production1.example.com
key_file=/u/iw/andre/deploy/encryptkey

Windows NT/2000

#--
#
Reverse deployment
#
iwdeploy SERVER config file
#
#--
port=1709
TeamSite_server=production1.example.com
key_file=key_file=d:\deploy\encryptkey
342 TeamXpress Templating and Deployment Guide

Reverse Deployment
OpenDeploy Client Configuration

local_dummy_send.cfg

On the development server, local_dummy_send.cfg specifies the port number that the
iwdeploy client will attempt to contact on the production server. hostname specifies the
development server, and remote_server specifies the production server.

Also, a dummy deployment must be specified. This dummy deployment name will be passed to the
production host and must match a valid deployment name in the production host's
remote_send.cfg. A dummy area for the dummy deployment is also needed, although it is
disregarded.

hostname is the name of the development server.

remote_server is the name of the production server.

remote_port must be the same port number that is specified in all the other configuration files.

deployment is the name of the dummy deployment.

area is the name of a directory. Although this directory is not used in deployment, it must be a valid
directory.

key_file is optional, but if it is included in one of the four configuration files, it must be included in
them all, and it must match the key file specified in the iwdeploy server configuration files. The
following client configuration files allow you to execute reverse deployment from the production
server.
343

Deployment Scenarios
UNIX

#--
#
Reverse deployment
#
iwdeploy CLIENT 'dummy' config file
#
#--
hostname=development1.example.com
remote_server=production1.example.com
remote_port=1709

deployment=reverse_deploy
area=/u/iw/andre/deploy
key_file=/u/iw/andre/deploy/encryptkey

;

Windows NT/2000

#--
#
Reverse deployment
#
iwdeploy CLIENT 'dummy' config file
#
#--
hostname=development1.example.com
remote_server=production1.example.com
remote_port=1709

deployment=reverse_deploy
area=y:\default\main\dev\EDITION
key_file=d:\deploy\encryptkey

;

344 TeamXpress Templating and Deployment Guide

Reverse Deployment
local_receive.cfg

Because the development server will receive files, local_receive is needed only to specify:

• which servers are allowed to deploy to the development server,

• the key file, and

• a list of allowed directories that can be deployed to on the local host.

TeamSite_server specifies the production server that will send content to the development server.

key_file (if included) must match the key file specified in all the other configuration files.

allowed_directory specifies the directory on the development server that will receive the
content.

The following client configuration files allow you to execute reverse deployment from the production
server.

UNIX

#--
Reverse deployment
iwdeploy CLIENT destination config file
#--
port=1709
TeamSite_server=production1.example.com

key_file=/u/iw/andre/deploy/encryptkey
allowed_directory = /tmp/deploydst

;

Windows NT/2000

#--
Reverse deployment
iwdeploy CLIENT destination config file
#--
port=1709
TeamSite_server=production1.example.com

key_file=d:\deploy\encryptkey
allowed_directory = d:\deploydst\content

;

345

Deployment Scenarios
Reverting Websites to Previous Versions

OpenDeploy uses Interwoven Site Rollback technology to allow users to revert the production server
to an earlier version of the website. OpenDeploy uses directory comparison (see page 265) to
compare the files in the deployment directory on the development server and the directory being
deployed to on the production server. It then deploys the files that have older timestamps.

This deployment requires a configuration file for the iwdeploy client on the development server and
a configuration file for the iwdeploy server on the production server. For this example, the server
configuration file will be named remote_receive.cfg and the client configuration file on the
development server will be named local_send.cfg. The configuration files used for this example
are included in the following sections.

1. To initiate deployment on a UNIX production server, issue the following command from the
production server command line prompt:
% iwdeploy -S -fd path/remote_receive.cfg

Or, on a Windows NT/2000 production server:

>iwdeploy -S -fd path\remote_receive.cfg

Alternatively, you can invoke the OpenDeploy server from the Services control panel, and type -
S -fd path\\remote_receive.cfg in the Startup Parameters box (see page 239).

The iwdeploy server will listen for incoming connections on the port specified in its
configuration file (remote_receive.cfg).

2. On a UNIX development server, issue the following command from the command line prompt:

% iwdeploy -fs path/local_send.cfg revert

Or, from a Windows NT/2000 development server:
>iwdeploy -fs path\local_send.cfg revert

The iwdeploy client will attempt to connect to the iwdeploy server process on the production
server. It will use the remote_server and remote_port listed in local_send.cfg to
determine which computer to connect to.

Note: the port number listed in both configuration files must be the same for the connection to be
established. You might also need to open the specified port if a firewall is in place.
346 TeamXpress Templating and Deployment Guide

Reverting Websites to Previous Versions
3. The OpenDeploy client will read the global parameters of the configuration file, find the revert
deployment section of the configuration file, read its parameters, and deploy the specified content.

OpenDeploy Server Configuration

The server configuration file remote_receive.cfg specifies the port number that the iwdeploy
server process will listen to, and the key file for establishing a handshake. This configuration file must
be located on the production server. The following server configuration files allow you to execute Site
Rollback.

UNIX

Basic iwdeploy SERVER configuration file
port=1709
TeamSite_server=development1.example.com

key_file=/u/iw/andre/deploy/encryptkey
allowed_directory = /tmp/deploydst

;

Windows NT/2000

Basic iwdeploy SERVER configuration file
port=1709
TeamSite_server=development1.example.com

key_file=d:\deploy\encryptkey
allowed_directory = d:\deploydst\content

;

OpenDeploy Client Configuration

The client configuration file remote_send.cfg specifies all the deployment options for the files or
directories being deployed. This configuration file must be located on the development server. The
following client configuration files allow you to excute Site Rollback.

UNIX

#--
#
Revert the website
#

347

Deployment Scenarios
iwdeploy CLIENT config file
#
#--
hostname=development1.example.com
remote_server=production1.example.com
remote_port=1709

deployment=revert
area=/u/iw/andre/deploytest
key_file=/u/iw/andre/deploytest/encryptkey
revert
local_directory=deploysrc

remote_directory=/tmp/deploydst
;

;

Windows NT/2000

#--
#
Revert the website
#
iwdeploy CLIENT config file
#
#--
hostname=development1.example.com
remote_server=production1.example.com
remote_port=1709

deployment=revert
area=y:\default\main\dev\EDITION
key_file=d:\deploy\encryptkey
revert
local_directory=deploysrc

remote_directory=d:\deploydst\content
;

;

348 TeamXpress Templating and Deployment Guide

Deploying Through Firewalls
Deploying Through Firewalls

To deploy your website through a firewall:

1. Open the outbound port specified in the iwdeploy client and server configuration files.

2. Invoke your deployment.

3. (Optional) Close the port.

If you cannot open a port:

1. Use the iwdeploy client’s deployment_package option (-o) to create a deployment package:

% iwdeploy -o packagename -fs srcConfigFile deployment_name

2. Transfer the package to the production server by the method of your choice.

3. Use the iwdeploy server’s deployment_package option (-i) to deploy the deployment pack-
age:

% iwdeploy -S -i packagename -fd destConfigFile
349

Deployment Scenarios
350 TeamXpress Templating and Deployment Guide

Section 4: Appendices
• Creating Data Capture Templates from DTDs

• Using Command-Line Tools

• DataDeploy Database Auto-Synchronization

• DataDeploy Database Server Configuration

• DataDeploy Querying Tables

• OpenDeploy Client and Server Configuration File Options

352
 TeamXpress Templating and Deployment Guide

Appendix A

Creating Data Capture
Templates from DTDs
You can create datacapture.cfg files that define data capture templates (DCTs) from industry-
standard XML DTDs. These data capture templates display as data capture forms in TeamXpress
Templating. A list of the steps to convert DTDs is outlined here. Refer to the remainder of this
appendix for details and examples of the files at each step in the processing of creating the
datacapture.cfg file.

1. Verify that the DTD is correct.

2. Run the iwdtd2sym CLT to convert the DTD.

3. Copy the output from the iwdtd2sym CLT to symbol-table.cfg.

4. Optionally modify the symbol-table.cfg to change the name attribute of the itemref subele-
ment of the <ruleset>, and save the file.

5. Make any additional edits to add items such as labels and descriptions to <items> and save the file.

6. Run the iwsym2dct CLT.

7. Copy the output file to datacapture.cfg.

8. Identify the new datacapture.cfg file in the templating.cfg file.

Be sure to save all your intermediate output files along with the DTD and the final
datacapture.cfg file. It is recommended that these files be versioned in TeamXpress.

 The file will contain <symbol> elements that define the elements from the DTD. Refer to the
Symbol Table DTD in “Symbol Table DTD Used for Conversions” on page 361 for information on the
<symbol-table> and <symbol> elements.

In this final file, <symbol> elements have been changed to <item> elements.
353

Creating Data Capture Templates
from DTDs
Running the CLT on the DTD File

The following file is a sample DTD, named simple.dtd.

Run the iwdtd2sym CLT on the DTD, specifying the complete path to the DTD, to create the file
that begins on the next page by changing to the directory containing the DTD:

cd Y:\default\main\WORKAREA\chris\templatedata\internet\simple-example

(the reference to the Y: drive is not needed for Solaris platforms) and issuing the command:

iwdtd2sym simple.dtd > iwdtd2sym.out

Refer to the Appendix B, “Using Command-Line Tools” for additional details on iwdtd2sym.

The symbol-table.cfg File

The following file is the output from the iwdtd2sym CLT (iwdtd2sym.out), which has been
copied to a file named symbol-table.cfg and then edited.

<!-- This is a simple example DTD.
It is a "Hello, world!" type of DTD.

-->

<!ELEMENT simple-example (message)>
<!ATTLIST simple-example

color (red|blue|green) #IMPLIED
>

<!ELEMENT message (#PCDATA)>
354 TeamXpress Templating and Deployment Guide

The symbol-table.cfg File
<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE data-capture-requirements SYSTEM "datacapture4.5.dtd">

<data-capture-requirements dtd-system-identifier="simple.dtd" name=""
type="content">

<symbol-table>
<symbol name="simple-example">

<container combination="and" hide-name="f" name="simple-example">

<itemref name="{iw_attributes}"/>
<container combination="and" hide-name="t"
name="{iw_sub_elements}[0]">

<label>XML sub-elements</label>
<itemref name="message"/>

</container>
</container>

</symbol>

<symbol regex="^(.*/)?simple-example/{iw_attributes}$">

<container combination="and" hide-name="t"
name="{iw_attributes}">

<item name="color">
<select multiple="f" required="f" size="0" width="0">

<option label="red" selected="f" value="red"/>
<option label="blue" selected="f" value="blue"/>
<option label="green" selected="f" value="green"/>

</select>
</item>

</container>
</symbol>

Reference to simple.dtd
maintained. 1

XML elements entered as
symbols. 2

A <container> contains an
<itemref>. 3

A set of attributes also
become a <symbol>. 4

The color attribute. 5
355

Creating Data Capture Templates
from DTDs
<symbol name="message">
<container combination="and" hide-name="f" name="message">

<container combination="and" hide-name="t"
name="{iw_sub_elements}[0]">

<label>XML sub-elements</label>
<item name="#PCDATA">

<textarea cols="0" required="f" rows="0" rtf="f"
wrap="off"/>

</item>
</container>

</container>
</symbol>

</symbol-table>

<ruleset name="This is my only rule">
<itemref name="simple-example"/>

</ruleset>

</data-capture-requirements>

The message element as a
#PCDATA item. 6

Editing the ruleset name. 7
356 TeamXpress Templating and Deployment Guide

The symbol-table.cfg File
Diagram Key

1. This file maintained a reference to the DTD from which it originated, in the dtd-system-
identifier attribute of the data-capture-requirements element.

2. This file was generated directly from an industry-standard XML DTD. Each XML element
becomes a <symbol> element in the <symbol-table>.

3. Every element type declared in the DTD is represented in its <symbol> as a <container>. A
<container> that represents an XML element type will contain an <itemref> element for the
element type's attributes, if any. A <container> that represents an XML element type will con-
tain another <container> for its subelements. A <container> that represents a set of the sub-
elements of an XML element type will contain an <itemref> reference for each subelement type
it refers to. This XML element type (simple-example) has a simple content specification
(message), so there is just one <itemref>.

4. The set of attributes for each element type also becomes a <symbol>.

5. The set of attributes of an element type is represented in its <symbol> as a <container>. There
is only one attribute, color. Because it was an enumerated attribute, it is represented here by a
<select> element.

6. Here is the message element type. Its content specification was also simple: #PCDATA. A charac-
ter data reference in the DTD is transformed into a data capture <item> named #PCDATA.

7. The name attribute of the itemref subelement of the <ruleset> defaults to the name of the first
element type declared in the DTD. The ruleset contains a single <itemref>. The itemref
name defaults to the symbol name. This <itemref> references the outermost element of the
XML documents that will be generated as DCRs. In this example, the ruleset name was edited.

You may manually add items such as labels and descriptions to this file. Examples of edits you may
want to make would be to add <label> and <description> elements to <items> and
<containers> and to specify <min> and <max> values in a <replicant> element.
357

Creating Data Capture Templates
from DTDs
The datacapture.cfg File

The next step is to run the iwsym2dct CLT on the edited symbol-table.cfg file.

Run the iwsym2dct CLT by issuing the command:

iwsym2dct symbol-table.cfg > iwsym2dct.out

Refer to Appendix B, “Using Command-Line Tools” for additional details on iwsym2dct.

Copy iwsym2dct.out to datacapture.cfg. A sample datacapture.cfg file follows.
358 TeamXpress Templating and Deployment Guide

The datacapture.cfg File
<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE data-capture-requirements SYSTEM "datacapture4.5.dtd">

<data-capture-requirements dtd-system-identifier="simple.dtd"
name="" type="content">
<ruleset name="This is my only rule">

<label>This is my only rule</label>
<container combination="and" hide-name="f" name="simple-example">

<label>simple-example</label>
<container combination="and" hide-name="t"
name="{iw_attributes}">

<label>{iw_attributes}</label>
<item name="color">

<label>color</label>
<select multiple="f" required="f" size="0" width="0">

<option label="red" selected="f" value="red"/>
<option label="blue" selected="f" value="blue"/>
<option label="green" selected="f" value="green"/>

</select>
</item>

</container>
<container combination="and" hide-name="t"
name="{iw_sub_elements}[0]">

<label>XML sub-elements</label>
<container combination="and" hide-name="f" name="message">

<label>message</label>
<container combination="and" hide-name="t"
name="{iw_sub_elements}[0]">

<label>XML sub-elements</label>
<item name="#PCDATA">

<label>#PCDATA</label>
<textarea cols="0" required="f" rows="0" rtf="f"
wrap="off"/>

</item>
</container>

</container>
</container>

</container>
</ruleset>

Reference to simple.dtd maintained.

The added <ruleset>. 2

{iw_attributes} in
<container>. 3

(message) in <container>. 4
359

Creating Data Capture Templates
from DTDs
Diagram Key

1. Notice that the name of the original DTD has made it all the way to this datacapture.cfg file. That
dtd-system-identifier will be used in the document type declaration of data content
records generated from this DCT.

2. The <ruleset> used to contain a single <itemref>, referring to simple-example. That ref-
erence was expanded, using the symbol table, into a <container>.

3. The reference to {iw_attributes} was expanded into a <container>.

4. The reference to message expanded into a <container>.

Unsupported DTD Features

A few features in DTDs are not supported by the CLTs and the conversion process:

• An element <section> that can legally, according to the DTD, contain another <section>
element is not supported to an arbitrary depth. The data capture template author must decide the
depth to which an element can recursively contain elements of the same type. This is done with a
regex on the <symbol> element.

An example of this section of a DTD is:

<!ELEMENT body (section)*>

<!ELEMENT section (title|paragraph|sub-section)*>

<!ELEMENT subsection (section)*>

...

The following is an example of a regex that captures a <section> element with another
<section> element:

<symbol regex="^(.*/)?section/(.*/)?section$">

The following is an example of a regex that captures a <section> element with another
<section> element within another <section> element:
<symbol regex="^(.*/)?section/(.*/)?section/(.*/)?section$">
360 TeamXpress Templating and Deployment Guide

Symbol Table DTD Used for Conversions
The first regex would catch a two-deep nesting level (anything greater than or equal to two), and
the second regex would catch any nesting level 3 or greater. The regex <symbol
name="section"> would catch all levels.

Therefore, these symbols need to be ordered in the symbol-table by depth, e.g.:

<symbol regex="^(.*/)?section/(.*/)?section/(.*/)?section$">
...

</symbol>
<symbol regex="^(.*/)?section/(.*/)?section$">

...
</symbol>
<symbol name="section">

...
</symbol>

• The validity constraints for the ID, IDREF, IDREFS, ENTITY, ENTITIES, NMTOKEN, and
NMTOKENS attribute types are not enforced.

For an explanation of the validity constraints, refer to section 3.3.1 of the XML 1.0 specification,
located at http://www.w3.org/TR/1998/REC-xml-19980210.

Symbol Table DTD Used for Conversions

The symboltable4.5.dtd file is the DTD file that reflects the element types used when industry
standard DTDs are converted to datacapture.cfg files. The parameter entities in the
symboltable4.5.dtd are different from the parameter entities in the datacapture4.5.dtd.
Additionally, the element types <symbol-table>, <symbol>, and <itemref> apply only to the
symboltable4.5.dtd.

<!-- symboltable4.5.dtd -->

<!-- Start with some basic parameter entities. -->
<!ENTITY % data-capture-requirements-contentspec

symbol-table,ruleset*">
<!ENTITY % items "container|item|itemref">
<!ENTITY % chooser-options "option">

<!--These next three element types are specific to symboltable4.5.dtd.-->
361

Creating Data Capture Templates
from DTDs
<!ELEMENT symbol-table (symbol*) >

<!ELEMENT symbol (%items;)? >
<!ATTLIST symbol

name CDATA #IMPLIED
regex CDATA #IMPLIED
>

<!ELEMENT itemref EMPTY >
<!ATTLIST itemref

name CDATA #REQUIRED
>

<!-- The rest of these elements are common to both
datacapture4.5.dtd and symboltable4.5.dtd. -->

<!ELEMENT data-capture-requirements
(%data-capture-requirements-contentspec;)>

<!ATTLIST data-capture-requirements
name CDATA #IMPLIED
type (metadata|content|workflow) #REQUIRED
dtd-system-identifier CDATA #IMPLIED
>

<!-- The 'dtd-system-identifier' attribute is a URI indicating the
DTD from whence a particular data-capture-requirements was
derived, if any.

In TeamXpress Templating, the value of this attribute is used as
the system identifier of the document type declaration of a DCR
if and only if that DCR's type is "xml", as defined in
templating.cfg.
-->

<!ELEMENT ruleset (label?,description?,(%items;)*) >
<!ATTLIST ruleset

name CDATA #REQUIRED
>

<!ELEMENT container (label?,description?,(%items;)*) >
<!ATTLIST container
362 TeamXpress Templating and Deployment Guide

Symbol Table DTD Used for Conversions
name CDATA #REQUIRED
hide-name (t|f) "f"
combination (and|or) "and"
>

<!ELEMENT item (label?,description?,database?,(checkbox|radio|
text|textarea|select|replicant|browser|
readonly|hidden)+) >

<!ATTLIST item
name CDATA #REQUIRED
>

<!ELEMENT label (#PCDATA) >
<!ELEMENT description (#PCDATA) >

<!ELEMENT readonly (allowed?,callout?) >

<!ELEMENT hidden (allowed?,callout?) >
<!ATTLIST hidden

required (t|f) "f"
>

<!ELEMENT text (allowed?,callout?,default?) >
<!ATTLIST text

required (t|f) "f"
maxlength CDATA "0"
size CDATA "0"
validation-regex CDATA #IMPLIED
>

<!-- validation-regex is a Perl regex for validating this element -->
<!ELEMENT textarea (allowed?,callout?,default?) >

<!ATTLIST textarea
required (t|f) "f"
rows CDATA "0"
cols CDATA "0"
wrap (off|virtual|physical) "off"
validation-regex CDATA #IMPLIED
rtf (t|f) "f"
>

<!-- validation-regex is a Perl regex for validating this element -->
363

Creating Data Capture Templates
from DTDs
<!ELEMENT browser (allowed?,callout?) >
<!ATTLIST browser

required (t|f) "f"
maxlength CDATA "0"
size CDATA "0"
initial-dir CDATA #IMPLIED
ceiling-dir CDATA #IMPLIED
extns CDATA #IMPLIED
>

<!ELEMENT checkbox (allowed?,callout?,(%chooser-options;)+) >
<!ATTLIST checkbox

required (t|f) "f"
delimiter CDATA ", "
>

<!ELEMENT radio (allowed?,callout?,(%chooser-options;)+) >
<!ATTLIST radio

required (t|f) "f"
>

<!ELEMENT select (allowed?,callout?,(%chooser-options;)+) >
<!ATTLIST select

required (t|f) "f"
size CDATA "0"
multiple (t|f) "f"
delimiter CDATA ", "
width CDATA #IMPLIED
>

<!-- The delimiter attribute is for multiple=t only -->

<!ELEMENT replicant (allowed?,(%items;)*) >
<!ATTLIST replicant

min CDATA "0"
max CDATA "1"
default CDATA "1"
combination (and|or) "and"
hide-name (t|f) "f"
>

<!ELEMENT option EMPTY >
364 TeamXpress Templating and Deployment Guide

Symbol Table DTD Used for Conversions
<!ATTLIST option
selected (t|f) "f"
value CDATA #IMPLIED
label CDATA #REQUIRED
>

<!ELEMENT allowed (cred|and|or|not) >

<!ELEMENT cred EMPTY >
<!ATTLIST cred

role CDATA #IMPLIED
user CDATA #IMPLIED
>

<!ELEMENT and ((cred|and|or|not)+) >

<!ELEMENT or ((cred|and|or|not)+) >

<!ELEMENT not (cred|and|or|not) >

<!ELEMENT default (#PCDATA) >

<!ELEMENT callout (param*) >
<!ATTLIST callout

type (java-class) #REQUIRED
label CDATA #REQUIRED
location CDATA #REQUIRED
class CDATA #REQUIRED
>

<!ELEMENT param EMPTY >
<!ATTLIST param

name CDATA #REQUIRED
value CDATA #REQUIRED
>

365

Creating Data Capture Templates
from DTDs
<!ELEMENT databaseEMPTY >
<!ATTLIST database

deploy-column (t|f) "t"
searchable (t|f) "t"
data-type CDATA "VARCHAR(255)"
data-format CDATA #IMPLIED
>

366 TeamXpress Templating and Deployment Guide

Appendix B

Using Command-Line Tools
You can generate or regenerate HTML files from the command line as well as from the TeamXpress
Templating GUI. Refer to the TeamXpress User’s Guide for information on the GUI.

Both iwgen and iwregen make use of an underlying low-level presentation template compiler,
called iwpt_compile.ipl. This compiler is available for your use and is especially beneficial when
you are developing, testing, and debugging presentation templates.

The presentation template compiler, iwpt_compile.ipl, is a command-line tool that uses the data
content records, Perl code, and iw_xml tags to produce output. You can use the presentation
template compiler when you are developing new tags.

The iwdtd2sym and iwsym2dct CLTs are used to create data capture templates from industry-
standard DTDs. Refer to Appendix A, “Creating Data Capture Templates from DTDs” for examples
of using these CLTs.

The iwxml_validate.ipl CLT validates XML files against a DTD.

The upgrade_dct_cfg.ipl CLT upgrades datacapture.cfg files from regex5 basic regular
expression syntax to extended regular expressions.
367

Using Command-Line Tools
iwdctacleval

Alters a data capture template to have only one data capture instance per item, according to ACLs in
the data capture template (DCT). It evaluates ACLs (set with <allowed> tags) inside DCTs. It also
runs server-side callouts. The templating Java client receives a DCT from the TeamXpress server. The
document it receives has been through this ACL evaluation process and the server-side inline callout
substitutions. This CLT is a debugging tool that lets you see the exact DCT that the client sees, which
is not the exact DCT that is in the user's workarea.

Usage:

iwdctacleval [-h|-v][-c] [-e] -u username -r userrole -w workarea dct

Options:

-h Displays this usage message.

-v Displays version number.

-c Displays the Java class path.

-e Sends errors to STDOUT.

-u username Specifies the name of the current data capture end
user.

-r userrole Specifies the role of the current data capture end user.

-w workarea Specifies a vpath to the current workarea.

dct Specifies a file-system path to the current data capture
template.

Example:
A data capture template that contains the following section is used:

<item name="just chris and andre">
<textarea><allowed><cred user="chris" /></allowed></textarea>
<text><allowed><cred user="andre" /></allowed></text>

</item>
368 TeamXpress Templating and Deployment Guide

The CLT:

iwdctacleval -u chris -r editor /default/main/dev/WORKAREA/chris /
path_to/datacapture.cfg

issues the following results for this section:

<item name="just chris and andre">
<textarea><allowed><cred user="chris" /></allowed></textarea>

</item>

However, if you issue the CLT as follows:

iwdctacleval -u andre -r editor /default/main/dev/WORKAREA/chris /
path_to/datacapture.cfg

the following results are obtained for this section:

<item name="just chris and andre">
<text><allowed><cred user="andre" /></allowed></text>

</item>
369

Using Command-Line Tools
iwdtd2sym

Converts an XML DTD into a skeletal data capture symbol table configuration file. This output must
be manually modified before further use. The symbol table configuration file will be written to
standard output.

Usage:

iwdtd2sym [-h|-v] [-c] [-r ruleset-name] [-i itemref-name] dtd-location

 -h Displays this usage information.

-v Displays this command's version number.

-c Displays the Java class path.

-r ruleset-name Specifies the name of the ruleset in the outputted
symbol table configuration file. Default is TeamXpress
Templating.

-i itemref-name Specifies the name of the itemref in the ruleset in the
outputted symbol table configuration file. Default is
the name of the first element type declared in the
DTD.

dtd-location Specifies a system literal, which is a URI referencing
an XML DTD. Example URIs are:
document.dtd (a file system path)
../path/to/document.dtd (a file system path)
http://www.flixml.org/flixml/flixml.dtd
(a URL)

Example:
The following line converts the simple.dtd file in and outputs it to iwdtd2sym.out.

iwdtd2sym simple.dtd > iwdtd2sym.out
370 TeamXpress Templating and Deployment Guide

iwgen

Generates an HTML file based on a presentation template and a data content record.

Usage:

iwgen [-h|-v] -t templatevpath -r recordvpath vpath

Options:

-h Displays this usage message.

-v Displays version number.

-t templatevpath Specifies a path to a TeamXpress Templating
presentation template, where templatevpath is either a
relative vpath or an archive-rooted vpath. Server-
rooted vpaths are not supported.

 -r recordvpath Specifies a path to a TeamXpress Templating data
content record, where recordvpath is either a relative
vpath or an archive-rooted vpath. Server-rooted
vpaths are not supported.

 vpath Specifies a path to write the TeamXpress Templating
generated file, where vpath is either a relative vpath or
an archive-rooted vpath. Server-rooted vpaths are not
supported.

Example:
The following example generates an HTML file based on the presentation template auction.tpl
and the data content record june_items. The HTML file is written to the file
june_display.html in the current workarea. The current working directory is the user’s
workarea. You should enter this as a single line.

% iwgen -t templatedata/internet/auction/presentation/auction.tpl
templatedata/internet/auction/data/june_items june_display.html
371

Using Command-Line Tools
iwpt_compile.ipl

Invokes the command-line presentation template compiler.

Usage:

iwpt_compile.ipl -pt filename [-ofile filename] [-ocode filename]
[-oenc encoding] [-smartwrite] [tag-specific flags]

iwpt_compile.ipl -v | -h

Arguments:

-v Prints the version number on STDOUT.

-h Prints a help message.

-pt filename Use the filename presentation template.

-ofile filename Save the output to filename instead of STDOUT.

-ocode filename.ipl Writes to a stand-alone program named filename.ipl
that generates the output.

-oenc encoding Specifies output encoding, which is UTF-8 by default.
Specify -oenc on the XML declaration line of the
presentation template.

-smartwrite Specifies -ofile only overwrites filename if it is
different.

Tag-specific flags:

-iw_pt-dcr The file names that follow this iwpt_compile.ipl
flag must be a valid data content record. iw_pt reads
in the data content record and makes its values
available through iw_value.

-iw_pt-arg The key, value pairs that follow this flag are used to
initialize the presentation template arguments within
the template. This is useful when debugging a
component that normally gets its %iw_arg initialized
372 TeamXpress Templating and Deployment Guide

by the %iw_param of its enclosing template’s
<iw_include> tag.

-iw_include-location Mandatory when the mode attribute of the
iw_include tag is docroot. The file path is
prepended to the file name provided in the file
attribute to form a complete file path (used to
virtualize the inclusion).

Example 1

This compilation line uses iw_pt-dcr to obtain data from a single data content record named
x.dcr.

iwpt_compile.ipl -pt xxx.iwpt -iw_pt-dcr x.dcr -ofile xxx.html

Example 2

This example uses iw_pt-arg to initialize presentation template arguments.

iwpt_compile.ipl -pt x.pt -iw_pt-arg k1=v1 k2="val 2" ...

causes $iw_arg{k1} to be set to v1 and $iw_arg{k2} to be set to val 2.

Therefore, in a template you could say:

<iw_value name="$iw_arg{k1}"/> and you would get v1.

Example 3

This example uses the -iw_include-location flag.

iwpt_compile -iw_include-location /x/y/z ...other flags/args...
373

Using Command-Line Tools
The limitations to using iwpt_compile.ipl directly are:

• Output pages are not associated with data content records.

• The output pages are editable pages (using SmartContext Editing) but they cannot be accessed
through the TeamXpress Templating GUI.

When you call the presentation template compiler, you can specify command line arguments and
flags. Command-line flags are specific to and used by various iw_xml tags rather than being used
directly by the compiler. They are specified as part of the iwpt_compile.ipl command.

When a presentation template is processed from the presentation template compiler, the following
steps are performed:

1. The presentation template is compiled using the command-line utility iwpt_compile.ipl. It
may use zero or one XML-based data content records.

2. An XML parser reads the presentation template. As the parser reads, it encounters XML tags.

3. A tag object of the appropriate type is created and the parser calls that object's member functions,
passing it relevant information, such as attribute list key, value data.

4. The tag object's member function emits a snippet of Perl.

5. Collectively, all the snippets of Perl that these tag object member functions emit as the parser scans
the template from a program.

6. This program runs, and the result is the document (typically HTML) that merges content with
look-and-feel instructions.
374 TeamXpress Templating and Deployment Guide

iwregen

Regenerates an HTML file that was generated by TeamXpress Templating based on a presentation
template and a data content record. Use this command to update a generated HTML file if the
presentation template or data content record that the file is based on was modified.

Usage:

iwregen [-h|-v] vpath

Options:

-h Displays this usage message.

-v Displays version number.

vpath Specifies the path to the file that will be regenerated,
where vpath is either a relative vpath or an archive-
rooted vpath. Server-rooted vpaths are not supported.

Example:
The following example regenerates the HTML file june_display.html, which resides in the
current workarea.

% iwregen june_display.html
375

Using Command-Line Tools
iwsym2dct

Transforms a data capture symbol table into a data capture template (DCT). The DCT will be written
to standard output.

Usage:

iwsym2dct [-h|-v] [-c] symbol-table

-h Displays this usage information.

-v Displays this command's version number.

-c Displays the Java class path.

symbol-table Specifies a file containing a data capture symbol table.

Example:
The following command converts a symbol table into a data capture template:

iwsym2dct symbol-table.cfg > iwsym2dct.out
376 TeamXpress Templating and Deployment Guide

iwxml_validate.ipl

Validates a list of XML files against a DTD (and can also check to see if the XML files are well-
formed).

Usage:

iwxml_validate.ipl [-max_errors n] [-d level] [-well] x.xml [y.xml [...]]

iwxml_validate.ipl -h |-v

-max_errors n Displays maximum of n errors before quitting
XML validation on the current file. The default is to
report all errors.

 -d level Sets debug verbosity level (where level is 0-3); the
default debug verbosity level is 2.

 -well Checks to see if XML is well-formed, but does not
validate.

-h Displays this usage information.

-v Displays this command's version number.

Example:
 Given an XML file (e.g., x.xml):

<?xml version="1.0" standalone="no"?>
<!DOCTYPE a SYSTEM "x.dtd">
<a>

Debug
level Displays

0 Nothing

1 A terse message on failure

2 Parsing warnings and failures

3 Messages on success and failure
377

Using Command-Line Tools
<b p='c'>this
<b p='a'>is
<b p='zzzzzz'>a valid
<b p='b'>xml file

and a DTD (e.g., x.dtd):

<!ELEMENT a (b*)>
<!ELEMENT b (#PCDATA)>
<!ATTLIST b p CDATA #REQUIRED>

the command line:

iwxml_validate.ipl x.xml

 will return with no output and an exit status indicating success since x.xml is a valid XML file.
378 TeamXpress Templating and Deployment Guide

upgrade_dct_cfg.ipl

The upgrade_dct_cfg.ipl CLT upgrades datacapture.cfg files from regex5 basic regular
expression syntax to extended regular expressions. The meanings of the original basic regular
expressions are preserved, but the extended regex grammar provides more expressive power for
validating user input.

This upgrade is required when moving from the browser-based data capture interface of TeamXpress
Templating to the Java-based interface; however, you can use extended regular expressions in the
browser-based interface. Only validation-regex attributes containing the following characters are
affected: + ? | ()

Usage:

upgrade_dct_cfg.ipl [-log file] [-inplace] [-n] [-d verbosity]
[-no_iwcfg_update] [-force] [-no_staging_update]
[directory_name|file_name]+

upgrade_dct_cfg.ipl -v |-h

-log file The name of the file to which log information is sent.
By default, log information is printed on STDOUT.
For example, if -log xxx is used, all log information
is sent to the file named xxx.

-inplace Do not make backup copies of the
datacapture.cfg files; without this switch,
datacapture.cfg.backup files are placed in the
same directories as the datacapture.cfg files.

 -n Do not write or modify any datacapture.cfg
files; just determine which ones require an upgrade.
Do not modify /etc/iw.cfg.

 -no_iwcfg_update Do not modify anything in iw.cfg. By default,
running this utility sets
use_extended_regex5=true within the
[teamsite_templating] section of
/etc/iw.cfg.
379

Using Command-Line Tools
 -force This utility should run at most once on the root of
TeamXpress branching structure (e.g., /iwmnt) since
the conversion from basic regexes to extended
regexes is one-way. If
use_extended_regex5=true is already set within
the [teamsite_templating] section of iw.cfg,
it is assumed that no further conversion of
datacapture.cfg files is required, and this utility
will exit with a diagnostic message. To override this
behavior, use the -force flag.

-no_staging_update Do not attempt to upgrade datacapture.cfg files
that are already in the staging area. By default,
datacapture.cfg files in the staging area are
upgraded by creating a temporary workarea, doing an
update of the relevant files, and then automatically
checking in the changes.

 -d verbosity Set the debug verbosity level:

-h Displays this usage information.

-v Displays this command's version number.

Example:

upgrade_dct_cfg.ipl $iwmount

CAUTION: You should not run this utility more than once on $iwmount (see -force for details).

Verbosity Displays

0 Nothing

1 Only files requiring upgrade

2 Changed and unchanged files (default)

3 Information from Level 2 plus low-
level trade messages

4 Information from Level 3 with
extensive trace messages
380 TeamXpress Templating and Deployment Guide

Background:
In basic regular expressions (the old default):

In extended regular expressions:

In extended regular expressions, if you wish to use a literal +,|,(,),{, or } character in your
regex, you must escape it with a \. For example:

The basic validation regex ^\(hi\)\{2,5\} is written as ^(hi){2,5} after the conversion to
extended regular expressions.

A basic regex like you+me must now be expressed as you\+me because + means one or more.
Therefore, the extended regex you+me matches strings like youme, youume, youuume, etc.

You should probably revisit your validation regexes, since the extended regular expressions now
being used allow for stricter input checking.

Character Meaning

+ a single instance of the '+' character

? a single instance of the '?' character

| a single instance of the '|' character

\(and \) used for grouping

\{ and \} used for expressing ranges of instances

Character Meaning

+ one or more instance

? zero or one instance

| either the left or the right hand alternative

 (and) used for grouping

{ and } used for expressing ranges of instances
381

Using Command-Line Tools
382 TeamXpress Templating and Deployment Guide

Appendix C

DataDeploy Database Auto-
Synchronization
This appendix describes how to configure and use the database auto-synchronization (DAS) module.

Overview

The DAS module is bundled with DataDeploy. After you configure DAS, it automatically deploys data
content records (DCRs) to a database whenever a TeamXpress user performs any of the following
actions:

• Creates, changes, or deletes a DCR through the TeamXpress templating GUI.

• Creates, changes, or deletes a file, TeamXpress area, or branch containing extended attributes via
the command line.

• Creates, changes, or deletes a file, TeamXpress area, or branch containing extended attributes via
the TeamXpress file system interface.

DAS accomplishes this by running DataDeploy as a daemon, and by using various TeamXpress events
as triggers to initiate deployment. The following sections describe how to configure and run DAS.

Software Requirements

To use DAS, you must first install and configure the following Interwoven products:

• TeamXpress (see the TeamXpress Administration Guide)

• TeamXpress Templating

• DataDeploy
383

DataDeploy Database Auto-Synchronization
DAS Program and Configuration Files

The following files control the operation of DAS. All but the last file, iw.cfg, are installed
automatically when you install DataDeploy (iw.cfg is installed automatically with TeamXpress). See
the sections following the table for configuration instructions.

File Location Description

daemon.cfg dd-home/conf Configuration file used by the DataDeploy daemon for
start-up. You do not need to configure daemon.cfg
before running DAS. However, you can optionally add
<allowed-hosts> and <bind> tags to daemon.cfg
to further control access to the database server. See
Item 16 in “Sample File Notes”for more information.

ddcfg.template dd-home/conf Template DataDeploy configuration file used by
ddgen.ipl as a basis for creating all the working
DataDeploy configuration files for the templating data
types. You must configure ddcfg.template as
described in “Editing ddcfg.template and drop.cfg” on
page 385 before running DAS.

ddgen.ipl dd-home/bin DataDeploy configuration file generator. You do not
need to configure ddgen.ipl before running DAS.

drop.cfg dd-home/conf Utility configuration file used by the DataDeploy
daemon when dropping tables. You must configure
drop.cfg as described in “Editing ddcfg.template and
drop.cfg” on page 385 before running DAS.

iwsyncdb.cfg dd-home/conf Configuration file for iwsyncdb.ipl. Controls name
and port number for the DataDeploy daemon host. Also
controls DataDeploy event logging. See “Editing
iwsyncdb.cfg” on page 386 for more information.

iwsyncdb.ipl dd-home/bin TeamXpress event trigger program and CLT. You do not
need to configure iwsyncdb.ipl before running
DAS.

iw.cfg /etc Controls whether file renaming, moving, and deletion
will trigger deployment. See “Editing iw.cfg” on
page 387 for more information.
384 TeamXpress Templating and Deployment Guide

Configuring DAS
Configuring DAS

You must perform the following steps to configure DAS following a DataDeploy installation:

• Edit configuration files that are specific to DataDeploy.

• Edit the main TeamXpress configuration file, iw.cfg.

• Run the main DataDeploy configuration script, iwsyncdb.ipl.

The following sections describe these steps in detail.

Editing DataDeploy Configuration Files

This section describes how to configure the ddcfg.template, drop.cfg, and iwsyncdb.ipl
files with your site-specific information.

Editing ddcfg.template and drop.cfg

You must set the following attributes in each <database> element in ddcfg.template and
drop.cfg:

Attribute Set to...

db The host, port, and name of the destination database. Syntax is
"hostname:portnumber:dbname"

user The user name that DataDeploy uses when logging into the database server.

password The password for user. Note that any password named here is not
encrypted, and can be read by anyone having access to ddcfg.template.
385

DataDeploy Database Auto-Synchronization
For example, the following settings configure ddcfg.template so that DataDeploy will connect to
the database server as marketing (using the password $al45) and deploy data to the marketingdb
database on port 1521 of the server dbserver1:

<database db = "dbserver1:1521:marketingdb"
user = "marketing"
password = "$al45"

You must configure these settings within each occurrence of the <database> element. For example,
if the <database> element occurs four times in ddcfg.template, you must configure these
settings identically in all four locations. The same requirement applies to drop.cfg. You must
reconfigure these settings in both files whenever you change to a different database, user, or
password.

Editing iwsyncdb.cfg

The dd-home/conf/iwsyncdb.cfg file controls the following DataDeploy parameters.

Parameter Setting in iwsyncdb.cfg

DataDeploy daemon host port number (host name is set
automatically to the local host name of the TeamXpress
server).

Set daemon_port=number. For example,
to set the port number to 3456, enter
daemon_port=3456

Logging of DataDeploy events. Set suppress_log=yes to disable
logging. Set to no to enable logging.

DataDeploy 3-tier or DAS operation. Set mode=das to enable DAS mode. Set
mode=3tier to enable 3-tier mode.
386 TeamXpress Templating and Deployment Guide

Configuring DAS
Editing iw.cfg

You must edit the [iwserver] section of /etc/iw.cfg as follows to support DAS recognition of
TeamXpress events. Once configured, DAS will support these events whether they are initiated from
the TeamXpress GUI, the TeamXpress file system interface, or the command line (via standard OS
commands or TeamXpress command-line tools such as iwextattr).

Running iwsyncdb.ipl

This section describes how to run the iwsyncdb.ipl script, which performs the following activities:

• Generates DataDeploy configuration files for use by the DataDeploy daemon.

• Submits the generated DataDeploy configuration files to the staging area and publishes an edition
based on the updated staging area.

• Establishes TeamXpress events as triggers for automatic data deployment.

• Starts the DataDeploy daemon.

• Creates initial base and delta tables in the destination database for the updated TeamXpress areas.

The following sections and diagrams explain these activities in detail.

TeamXpress Event Setting in iw.cfg

Rename a file. log_renamefse=yes

Move a file. log_renamefse=yes

Delete a file. log_syncdestroy=yes

Set extended attributes on a file. log_setea=no

Delete extended attributes from a file. log_setea=no

Revert a file containing extended attributes to an earlier version. log_syncrevert=yes
387

DataDeploy Database Auto-Synchronization
Starting iwsyncdb.ipl

Enter the following command to start the iwsyncdb.ipl script:

dd-home/bin/iwsyncdb.ipl -initial workarea_vpath

For workarea_vpath, specify the full path to the TeamXpress Templating workarea that was set up
earlier as described in Chapter 2, “Initial Configuration.” For example, you would enter the following
if the TeamXpress Templating subbranch b1 and workarea w1 are on the default/main branch, and
dd-home is /usr/iw-home/datadeploy:

/usr/iw-home/datadeploy/bin/iwsyncdb.ipl -initial /default/main/dev/b1/WORKAREA/
w1

iwsyncdb.ipl Activities

The following figures show the activities that take place when iwsyncdb.ipl runs. Activities are
grouped as follows:

• Figure 1: Generation of DataDeploy Configuration Files

• Figure 2: Other DAS Setup Activities

All of the activities shown in Figures 1 and 2 take place when you enter iwsyncdb.ipl on the
command line. You do not need to enter iwsyncdb.ipl a second time to initiate the activities
shown in Figure 2.
388 TeamXpress Templating and Deployment Guide

Configuring DAS
Generation of DataDeploy Configuration Files
The following figure shows how DataDeploy configuration files are generated, submitted, and
published when the iwsyncdb.ipl script runs. See the diagram key following the diagram for details
about each step.

Figure 1: Generation of DataDeploy Configuration Files

ddgen.ipl script
• Reads datacapture.cfg

for each data type
• Reads ddcfg.template
• Creates DataDeploy

configuration files based
on datacapture.cfg and
ddcfg.template

Command Line
• User issues

iwsyncdb.ipl -
initial command

ddcfg.template file
• Used as basis for

DataDeploy
configuration files
generated by
ddgen.ipl

TeamXpress GUI
• DataDeploy

configuration
files submitted

• Edition pub-
lished

DataDeploy
configuration file

X_dd.cfg

datacapture.cfg for
data type X

datacapture.cfg for
data type Y

datacapture.cfg for
data type Z

DataDeploy
configuration file

Y_dd.cfg

DataDeploy
configuration file

Z_dd.cfg

3

1

2

4 5
389

DataDeploy Database Auto-Synchronization
Figure 1 Diagram Key

1. The iwsyncdb.ipl -initial command is executed from the command line as described in
“Starting iwsyncdb.ipl” on page 388. The iwsyncdb.ipl script starts the ddgen.ipl script.

2. The ddgen.ipl script reads the TeamXpress datacapture.cfg file for each data type that
exists in workarea_vpath specified in Step 1. For example, if the TeamXpress templating
directory structure in workarea_vpath contains the data types X, Y, and Z, the
datacapture.cfg file for each is read by ddgen.ipl.

3. The ddgen.ipl script uses ddcfg.template as the base format of the DataDeploy
configuration files that it will generate for each data type.

4. Based on ddcfg.template and the datacapture.cfg files for each data type, ddgen.ipl
creates DataDeploy configuration files for each data type. Continuing with the example from Step
2, the DataDeploy configuration files X_dd.cfg, Y_dd.cfg, and Z_dd.cfg are created. These
configuration files configure a TeamXpress-to-database deployment similar to that described in
“Sample TeamXpress-to-Database Configuration File” on page 175. The mdc_dd.cfg file is also
created to ensure that DataDeploy remains synchronized with other TeamXpress features such as
metadata capture and metadata search.

5. The newly generated DataDeploy configuration files are submitted to the staging area, and an
edition based on the updated staging area is published.

Other DAS Setup Activities
The following figure shows how the remaining DAS setup activities take place when the
iwsyncdb.ipl script runs. See the diagram key following the diagram for details about each step.
390 TeamXpress Templating and Deployment Guide

Configuring DAS
Figure 2: Other DAS Setup Activities

Figure 2 Diagram Key

6. The iwsyncdb.ipl script registers a default set of TeamXpress events as triggers that will
automatically initiate deployment. See “TeamXpress Event Triggers” on page 396 for details about
which events are registered as triggers.

7. The iwsyncdb.ipl script starts the DataDeploy daemon.

Command Line
• iwsyncdb.ipl -

initial (contin-
ued) DataDeploy Daemon

• Reads daemon.cfg for
startup information

• Runs continuously
• Automatically deploys

data when TeamXpress
trigger events occur

TeamXpress Event
Subsystem

• TeamXpress events
registered as
DataDeploy
triggers

daemon.cfg
• DataDeploy dae-

mon startup infor-

6

87

RDBMS
9

391

DataDeploy Database Auto-Synchronization
8. The DataDeploy daemon reads the daemon.cfg file, which contains additional daemon startup
information. The daemon finishes its startup, and runs continuously until DAS is disabled as
described in “Disabling DAS” on page 399.

9. The DataDeploy daemon creates the following in the destination database:

– Initial wide base tables for the branch.

– Initial delta tables and views for the workarea.

DAS is now configured and ready for use. The only time you need to repeat any configuration step is
when you enable a different database, user, or password. If you add new templating branches,
workareas, or files through the TeamXpress GUI, DAS automatically generates the necessary
DataDeploy configuration files and initial tables.

Using DAS

After DAS is configured, it is transparent to TeamXpress templating end users. Therefore, there are no
additional tasks that an end user must perform to use DAS. The following diagram shows how DAS
automatically updates the necessary tables when a TeamXpress trigger event occurs. See the diagram
key following the diagram for details about each step.
392 TeamXpress Templating and Deployment Guide

Using DAS
Figure 3: Using DAS

RDBMS

TeamXpress GUI
• End user

activity results
in TeamXpress
trigger event

iwsyncdb.ipl script
• Receives and interprets

data from TeamXpress
trigger event

• Passes data to
DataDeploy daemon

DataDeploy Daemon
• Determines which Dat-

aDeploy configuration
file to use

• Deploys data to database

3

1

2

393

DataDeploy Database Auto-Synchronization
Figure 3 Diagram Key

1. TeamXpress templating end user activity (i.e., any activity shown in “TeamXpress Event Triggers”
on page 396) results in a TeamXpress event trigger. The event trigger starts the iwsyncdb.ipl
script and sends the changed data to the script.

2. The iwsyncdb.ipl script sends the DCR data to the DataDeploy daemon. The daemon
determines which DataDeploy configuration file(s) to use for the deployment. For TeamXpress
events (e.g., Create Branch) that are not specific to a single file, the daemon uses the
templating.cfg file to determine which data types (and therefore which DataDeploy
configuration files) are affected by the TeamXpress event. For example, in the case of a Create
Branch TeamXpress event, the daemon reads templating.cfg to determine which data types
exist in the branch. The daemon then uses the DataDeploy configuration files for each affected data
type when deploying the new data to the database.

For events that are file-specific (e.g., renaming a file, etc.), the daemon uses the information from
the TeamXpress event information module to determine which file is affected and which
DataDeploy configuration file to use.

3. The daemon uses the appropriate DataDeploy configuration file(s) to update the affected base and
delta tables in the database. The following section, “Table Update Details” describes these updates.

Table Update Details

This section describes how the base and delta tables described in the preceding section change as data
is deployed. This example shows a hypothetical update to a data content record. In this example:

• Data category is internet.

• Data type is pr (press release).

• Branch is b1.

• Workarea is w1.
394 TeamXpress Templating and Deployment Guide

Using DAS
Table Naming Conventions

Base and delta tables use the following naming convention:

datacategory_datatype__branchname_areaname

Note the use of double underbars between datacategory_datatype and
branchname_areaname. For example:

internet_pr__b1_staging (a base table for the staging area on the default/main/dev/b1
branch)

internet_pr__b1_workarea_w1 (a delta table for the workarea w1 on the default/main/
dev/b1 branch)

Table Update Examples

When the initial wide base table is created as described earlier in Figure 2, Step 9, it contains a Path
column, a State column, and columns for each item in the data content record. In this starting state,
the table does not yet contain any values. Assuming that first three items are PressDate, Headline,
and Picture:

Wide Base Table for Staging Area (Starting State)

When the initial delta table is created, it contains the same columns as the initial base table, plus values
for each item:

Delta Table for Workarea (Starting State)

Path State PressDate Headline Picture . . .

Path State PressDate Headline Picture . . .

f1 New 11/17/99 New Candidate Enters Race cand.gif ...
395

DataDeploy Database Auto-Synchronization
When the data content record is saved, its delta table values are transferred to the base table, and its
own cells are cleared:

Base Table for Staging Area (Ending State)

Delta Table for Workarea (Ending State)

TeamXpress Event Triggers

DAS interprets the following TeamXpress events as deployment triggers. The event can be initiated
from the TeamXpress GUI, the TeamXpress file system interface, or the command line. Whenever
one of these events occurs, the delta and base tables are updated as shown here.

TeamXpress Event Delta Table Action Base Table Action

Create Branch None. Build empty base tables.

Create Workarea Build delta tables. None.

Delete Branch Drop delta tables. Drop base tables.

Delete Workarea Drop delta tables. None.

Modify DCR Update or insert a new row. None.

Add DCR Insert a new row. None.

Delete DCR Insert or update the Not Present row. None.

Path State PressDate Headline Picture . . .

f1 New 11/17/99 New Candidate Enters Race cand.gif ...

Path State PressDate Headline Picture . . .
396 TeamXpress Templating and Deployment Guide

TeamXpress Event Triggers
Submit modified DCR 1. The Previous Staging row is
propagated to all workareas except the
submitting workarea.
2. Delete Previous Staging row from
submitting workarea.

Update the Staging row.

Submit added DCR 1. The Placeholder row marked NOT-
PRESENT is propagated to all
workareas except the submitting
workarea.
2. Delete the Placeholder row from
the submitting workarea.

Update the Staging row.

Submit deleted DCR 1. The previous Staging row is
propagated to all workareas except the
submitting workarea.
2. Delete the previous Staging row
from the submitting workarea.

Update the Staging row.

Get Latest (workarea) Rebuild the delta tables. None.

Copy To (any area) Rebuild the delta tables. None.

Rename Workarea 1. Drop the old delta tables.
2. Regenerate new delta tables.

None.

Rename Branch None. 1. Drop the old base tables.
2. Regenerate new base
tables.

Rename Directory Regenerate new delta tables. None.

Rename File 1. Delete the row for the old file
name.
2. Add a row for the new file name.

None.

Move File 1. Delete the row for the old file
name.
2. Add a row for the new file name.

None.

TeamXpress Event Delta Table Action Base Table Action
397

DataDeploy Database Auto-Synchronization
Logging DAS Activities

By default, all DAS activities are logged in dd-home/iwevents.log. If this logging has an adverse
affect on system performance, you can optionally turn off logging for any of the TeamXpress events
shown in the table in “Editing iw.cfg” on page 387. Use the following event names when disabling
logging:

RenameFSE
SyncDestroy
SetEA
DeleteEA
SyncRevert

For example, to prevent Rename events from being logged, set the following in iw.cfg:

iwevents_exclude="RenameFSE"

You can also use regular expressions with the following syntax to further control event logging:

renamefse_filter="REGEX"

Delete File If a row for the file exists in the base
table, the row in the delta table is
marked NOT-PRESENT. If no row
existed in the base table, the row in the
delta table is deleted.

None.

Set extended attributes Insert or update the row. None.

Delete extended attributes In a wide table, rows are updated. In a
narrow table, the row is deleted or
marked NOT-PRESENT.

None.

Revert Use the data from the earlier version of
the file (selected in the TeamXpress
GUI) to update or insert a new row.

None.

TeamXpress Event Delta Table Action Base Table Action
398 TeamXpress Templating and Deployment Guide

Disabling DAS
For example, to specify that only Rename events occurring in the workarea bill are logged:

[iwserver]

renamefse_filter="/default/main/dev/WORKAREA/bill"

This entry sets regular expressions, one of which must match the event line (as seen in
iwevents.log) in order for an event to be logged. If these are empty or absent, all corresponding
events are logged.

Disabling DAS

Issue the following command to remove the TeamXpress event trigger scripts and stop the DataDeploy
daemon:

dd-home/bin/iwsyncdb.ipl -uninstall

To re-enable DAS after it has been disabled, issue the following command:

dd-home/bin/iwsyncdb.ipl -install

Note that you do not need to regenerate the datacapture.cfg files that were generated earlier
during DAS configuration. See the next section, “iwsyncdb.ipl Usage” for more information about the
iwsyncdb.ipl command.

iwsyncdb.ipl Usage

Usage
iwsyncdb.ipl [

-h | -install | -uninstall | -iwat | -iwrmat |
-startddd | -stopddd | -ddgen vpath [dcr-type] [-force] |
-initial vpath [dcr-type] | -mdcddgen [-force] |
-resyncbr vpath [dcr-type] | -resyncwa vpath [dcr-type] |
-rmbr vpath [dcr-type] | -rmwa vpath [dcr-type] |
-showbase vpath [dcr-type] | -showdelta vpath [dcr-type]|
-showtracker | -synctracker vpath
399

DataDeploy Database Auto-Synchronization
]

-install Installs the database synchronization triggers and
starts the DataDeploy daemon.

-uninstall Removes the TeamXpress event trigger scripts and
stops the DataDeploy daemon.

-iwat Registers the iwsyncdb trigger scripts.

-iwrmat Unregisters the iwsyncdb trigger scripts.

-startddd Starts the DataDeploy daemon.

-stopddd Stops the DataDeploy daemon.

-ddgen vpath [dcr-type] Generates DataDeploy configuration files for data
types configured in templatedata/
templating.cfg under the specified workarea
vpath. The -force option overwrites any existing
configuration files. The optional dcr-type setting
specifies a single data type (rather than all data types in
vpath) to generate a configuration file for. If used,
dcr-type must be the last argument in the option
list.

-initial vpath [dcr-type]Generates the initial base and delta tables for the first
template-enabled workarea vpath. The optional
dcr-type setting specifies a single data type (rather
than all data types in vpath) to generate tables for.

-mdcddgen Generates the DataDeploy configuration file
mdc_dd.cfg (based on iw-home/local/config/
datacapture.cfg) for use by the metadata capture
subsystem. The -force option overwrites any
existing configuration files.

-resyncbr vpath [dcr-type]Regenerates the base tables for the branch named
by vpath and the workareas for the underlying
workareas. The optional dcr-type setting specifies a
single data type (rather than all data types in vpath)
400 TeamXpress Templating and Deployment Guide

iwsyncdb.ipl Usage
to resync tables for. You should run iwfreeze to
freeze the backing store before regenerating.

-resyncwa vpath [dcr-type]Regenerates the delta tables for the workarea
vpath. The optional dcr-type setting specifies a
single data type (rather than all data types in vpath)
to resync tables for. You should run iwfreeze to
freeze the backing store before regenerating.

-rmbr vpath [dcr-type] Destroys the base tables for the branch named by
vpath. The optional dcr-type setting specifies a
single data type (rather than all data types in vpath)
to destroy tables for.

-rmwa vpath [dcr-type] Destroys the delta tables for the workarea named by
vpath. The optional dcr-type setting specifies a
single data type (rather than all data types in vpath)
to destroy tables for.

-showbase vpath [dcr-type]Shows the base table of the DCR type for the
specified base path (e.g., /default/main/dev/br/
STAGING). The optional dcr-type setting specifies a
single data type to display.

 -showdelta vpath [dcr-type]Shows the delta table of the DCR for the specified
workarea path (e.g., /default/main/dev/br/
WORKAREA/wa). The optional dcr-type setting
specifies a single data type to display.

-showtracker Shows the tracker table containing all registered tables
deployed via DataDeploy.
401

DataDeploy Database Auto-Synchronization
402 TeamXpress Templating and Deployment Guide

Appendix D

DataDeploy Database Server
Configuration

Overview

This appendix describes the database server configuration tasks you must perform to configure the
following databases to work with DataDeploy:

• IBM DB2 UDB 6.1

• Sybase ASE 11.5

• Informix 7.3

IBM DB2

DataDeploy supports IBM DB2 UDB 6.1 on Windows NT/2000 systems. The following sections
describe how to configure the database server to work with DataDeploy.

Setting Page and Table Sizes

The default pagesize for a tablespace in DB2 is 16K, which is too small for the examples shipped with
TeamXpress Templating (the examples require that a tablespace of pagesize 32K be already set up on
the DB2 server). Also, the default column size and datatype used by DataDeploy is VARCHAR (300).
These conditions require that you perform one of the following procedures:

1. Make sure that the default tablespace matches the required pagesize (32K). The default tablespace
is usually named IBMDEFAULTGROUP. Or:

2. Create a tablespace with the required pagesize (32K) and specify the tablespace name as follows in
the <database> element in the DataDeploy configuration file:
<database db = "//host:port/database"

user = "username"
password = "password"
403

DataDeploy Database Server Con-
figuration
table = "tablename"
vendor = "ibm"
tablespace = "tablespacename"
max-id-length = "30">

The tablespace attribute is valid only for DB2 configuration. It is ignored if you set it when using
any other database.

Installing and Starting JDBC

DB2’s JDBC driver (db2java.zip) is installed with other JDBC drivers (Oracle, Sybase ASE, and
Informix). The driver class COM.ibm.db2.jdbc.net.DB2Driver that DataDeploy uses to connect
to a DB2 database requires that the DB2 client is also installed. See the documentation supplied by the
database vendor for information about installing the DB2 client.

DB2 does not start the daemon to accept JDBC connections by default. You must do this manually by
executing the following command:

db2jstrt port

The port number you enter on the command line must match the port number shown in the db
attribute in “Setting Page and Table Sizes” on page 403. If you do not specify a value for port, it takes
a default value of 6789.

Sybase ASE

DataDeploy supports Sybase ASE 11.5 on Windows NT, Windows 2000, and Solaris systems. The
following sections describe how to configure the database server to work with DataDeploy.

Enabling DDL Statements

You must enable DDL statements for transactions as follows. Note that this cannot be done for the
master db.

 1> sp_dboption dbname, "ddl in tran", true
404 TeamXpress Templating and Deployment Guide

Informix
Setting Sort Order

Set up case-insensitive sort order for the database by executing the $SYBASE/bin/sqlloc utility to
set case-insensitive dictionary order. You will also need to recreate indexes on the database that was
changed, unless the sort order was changed on initial installation.

Install Stored Procedures

Install jconnect 4.2 stored procedures as follows:

1. Download the jConnect 4.2 package from the Sybase website.

2. Follow the instructions in the “Sybase jConnect for JDBC Installation Guide,” Chapter 1, section
“Adaptive Server Enterprise” to install the stored procedures for JDBC support into the database.

Informix

DataDeploy supports Informix 7.3 on Windows NT systems, Windows 2000, and Solaris systems.
The following sections describe how to configure the database server to work with DataDeploy.

Enabling Logging

Any databases created for use with Informix must be created with logging enabled. This can be
accomplished with the Informix tool dbaccess, using an SQL command such as the following:

create database xyzdb with log
405

DataDeploy Database Server Con-
figuration
406 TeamXpress Templating and Deployment Guide

Appendix E

DataDeploy Querying Tables

This appendix describes how to query tables through SQL commands that you execute manually after
deployment. Methodology differs depending on table type.

Note: You can also embed SQL commands in the DataDeploy configuration file’s <sql> element.
These commands execute automatically during deployment and do not require you to manually query
the database. See “Invoking DataDeploy” on page 207 for more information.

Querying Base and Standalone Tables

You can use simple SQL statements specifying key-value pair criteria when querying a base or
standalone table. For example:
SELECT path FROM staging

WHERE key = News-Section AND value = Sports;

Querying Delta Tables

To query a delta table, you can first create a view consisting of a complex query and then apply a
simple query on the view. For example:
CREATE VIEW areaview (key, value, path) AS

SELECT key, value, path
FROM sa
WHERE NOT EXISTS

(SELECT *
FROM wa_x WHERE

wa_x.key = sa.key AND
wa_x.path = sa.path)

UNION
SELECT key, value, path
FROM wa_x WHERE wa_x.state != ’NotPresent’;

SELECT path FROM areaview
WHERE key = News-Section AND value = Sports
407

DataDeploy Querying Tables
The CREATE VIEW command in this example is the default DataDeploy schema that executes when
table-view is set to yes in the DataDeploy configuration file’s <database> element.
408 TeamXpress Templating and Deployment Guide

Appendix F

OpenDeploy Client and Server
Configuration File Options
Many OpenDeploy configuration options may be specified in either the client or server configuration
files. Some must be specified in both. However, some configuration options are specific to client or
server configuration files. The following table lists all available configuration file options, and
whether they are specified on the client or the server.

Configuration File Option Configuration File Page

Specifying Connections and Locations
allowed_directory=path server page 290
port=# server page 289

TeamSite_server=name server page 289

remote_directory=absolute_path client page 263

remote_port=# client page 262

remote_server=server client page 262

Specifying Timeouts

timeout=#seconds either pages 263
and 291

Security Options

client_is_trusted=yes|no server page 290

Specifying Deployment Sections

deployment=name client or both pages 262
and 290

Specifying Locations of Files to Be Deployed

area=path client page 264

hostname=name client page 263
409

OpenDeploy Client and Server Con-
figuration File Options
local_directory=path client page 264

Specifying Which Files to Deploy

date_different client page 268

file_list=path client page 273

previous_area=path client page 271

revert client page 267

TeamSite_based client page 270

Specifying Which Files to Exclude
destination_exclude=path either pages 278

and 292
destination_exclude_pattern=pattern either pages 279

and 292
exclude=path client page 280
exclude_pattern=pattern client page 280
source_exclude=path client page 276
source_exclude_pattern=pattern client page 277

Renaming and Deleting Files During Deployment
do_deletes either pages 280

and 293
rename_suffix=suffix either pages 280

and 293

Changing Permissions on Files During Deployment
amask=mask either pages 281

and 293
changeaccess=ACL either pages 283

and 295
dir_perm=permission either pages 281

and 293

Configuration File Option Configuration File Page
410 TeamXpress Templating and Deployment Guide

file_perm=permission either pages 281
and 294

group=groupid either pages 282
and 294

group_translations client page 282

ignore_groups either pages 282
and 294

ignore_modes either pages 282
and 294

ignore_users either pages 282
and 294

omask=mask either pages 282
and 294

setaccess=ACL either pages 283
and 295

user=userid either pages 283
and 294

user_translations client page 283

Encryption

key_file=path both pages 285
and 296

ssl_certificate=path either pages 285
and 297

ssl_ciphers=ciphers either pages 285
and 297

ssl_privatekey=path either pages 285
and 297

Deploy and Run

as=username either pages 286
and 298

Configuration File Option Configuration File Page
411

OpenDeploy Client and Server Con-
figuration File Options
async=yes either pages 287
and 299

deploy_run_script=script_to_run either pages 286
and 298

dir_mask=dir either pages 287
and 299

disable_scripts=yes server page 297

file_mask=file either pages 287
and 299

require_abs_script_path=yes server page 288
when=condition either pages 286

and 298
where=dir either pages 288

and 300

Links
destination_follow_links client page 288
follow_links client page 288
source_follow_links client page 288

Debugging Deployment Configuration
dont_do client page 288

Authentication by IP Address
allowed_hosts=hostlist server page 300
bind_address=address server page 300

Configuration File Option Configuration File Page
412 TeamXpress Templating and Deployment Guide

Index

A
ACLs 284, 295

evaluating 368
adding replicants 50
advanced features

authentication by IP
address 301

Deploy and Run 313
encryption 305

allowed element 47, 53, 67, 133,
137

allowed users 258
and element 47, 67, 133, 137
architecture

three-tier 145, 147
two-tier 145, 146

asynchronous mode 315, 319
author_submit_dcr.wft 141
authorization configuration

file 258
auto-synchronization, database

see database
available_templates.ipl 30, 140

editing 31

B
base tables 212

generation 163
naming conventions 395
querying 407
updating 166, 394
examples 395
boolean tests 83
branch element 134, 136
browser element 46, 66

C
callout element 47, 54
category 22
category element 132, 136
checkbox element 48, 66
ciphers 311
client configuration files 251,

253, 328, 331, 335, 343
client configuration options 261,

310, 409
client options

changing file permissions 281
debugging 288
deleting files 280
Deploy and Run 286
deployment sections 262
deployment targets 262
deployment timeouts 263
encryption 285
excluding files 275
overview 261
renaming files 280
specifying files to be

deployed 263
symbolic links 288

client versus server 258
clients
trusted 258

CLT
iwdctacleval 368
iwdtd2sym 354, 370
iwgen 371
iwpt_compile.ipl 372
iwregen 375
iwsym2dct 358, 376
iwxml_validate.ipl 377
upgrade_dct.cfg.ipl 379

command line options
client 240
general 239
server 240

comparison
directory 265
file lists 273
reverting files 267

component directory 23
component template 71

example 73
configuration file

authorization 258
configuration files 152, 251

available_templates.ipl 30, 31
client 251, 253, 328, 331, 335,

343
debugging 288
deployment sections 253,

254
413

local directory
sections 253, 254

scope of options 255
components 153
daemon.cfg 384
database auto-

synchronization 384
editing 385

database.xml 213
editing 227

database-to-database 197
database-to-XML 198
datacapture.cfg 20, 22

example 41, 59
DataDeploy 140, 212

location 227
ddcfg.template 384

editing 385
ddsync.ipl 213, 220
DNR scripts 217, 218
drop.cfg 384

editing 385
elements

client section 182
columns to update 193
database section 187
Database-to-Database 173
Database-to-XML 173
deployment section 182
destination section 186
filter section 181
include file 181
required 171
rows to update 191
server section 195
source data location 184
source section 183
source type 183
SQL section 194
414
substitution section 181,
185

TeamXpress-to-
Database 172

TeamXpress-to-XML 172
update type and related

data 193
XML-to-Database 174
XML-to-XML 174

encryption options 310
generated using iwsynch.ipl

script 389
iw.cfg 385

editing 387
iwsynchdb.cfg 384

editing 386
loaddb.cfg 213

generating 226
oddd_receive.cfg 214, 217, 221

location 221
oddd_send.cfg 214, 217, 218,

221
OpenDeploy 212
parameter substitutions 175
presentation template 23
server 221, 251, 317, 327, 330,

335, 340
starting-state base table 204
subxmldb.template 213
synchronized deployment 213,

222
TeamXpress-to-database 175
TeamXpress-to-XML 196
templating.cfg 20, 25, 30, 129

example 130
tsxml.cfg 214, 217

editing 224
workflow 30
XML-to-database 200
TeamXpres
XML-to-XML 202
configuration options 258, 409
content

conditional inclusion 91
creating 25
creating records 18

conventions
notation 6
path name 7

coordinating server and client
configuration files 254

cred element 47, 67, 133, 137

D
data

sizes 157
types 157

data capture form 40
example 57

data capture subsystem 18, 19
data capture symbol table

creating 370
transforming 376

data capture template
creating 376
creating from DTDs 353
customizing 38
definition 18
DTD 64
example 39
overview 38

data category 22
making available 132

data content record
creating 25
definition 19, 23
example 54, 57, 73
initiating workflow 31
s Templating and Deployment Guide

searching 34
data directory 22
data type 22

making available 132
database

auto-synchronization 146, 147,
383
configuration files 384
configuring 385
disabling 399
event triggers 396
logging 398
overview 383
programs 384
software 383
usage 392

object name lengths 156
servers

configuration 403
IBM DB2 403, 404
Informix 405
Sybase ASE 404

database element 44
datacapture.cfg 20, 22, 25, 38, 41,

353
creating 358
example 59

data-capture-requirements
element 43, 64

DataDeploy
configuration files 140
daemon 147
integrated with TeamXpress

Templating 140
invoking 207
running as a workflow job 139
service 147

running 210
synchronization
deployment 211

data-type element 132, 136
date-different option 268
ddgen.ipl command 384
ddsynch.ipl command 220

logging 221
syntax 220
usage 220

debugging 127
debugging tags 372
default element 67
deleting files 280, 292
deleting replicants 50
delta tables

generating 165
naming conventions 395
querying 407
updating 394

examples 395
Deploy and Run 297, 313

asynchronous mode 315
configuring the client 313
configuring the server 317
disabling 317
log files 318
scripts

asynchronous mode 319
output 320
specifying 313

deployment
automated 145, 146
comparison 265
configuration files 152
configuring 145, 251
database

base table 163, 166
data sources 159
data synchronization 163
delta table generation 165
destinations 159
details 163
overview 158
tables 168, 169
tuples 159

database auto-synchronization
triggers 396

executing 145
forward 326
incremental 157
installing 232, 233
invoking, methods 151
of different directories 333
overview 325
reverse 337
scenarios 158
security

encryption 305
server authentication 301

Site Rollback 346
synchronization 211
synchronized

base tables 212
configuration 212, 222
configuration files 213
differential 228
file interaction 222
full 228
invoking 227
OpenDeploy 217, 221
process 214
programs 213
software 213
TeamXpress

templates 211
syntax 239
through firewalls 301, 349
415

to multiple servers 329
transactional 242

deployment directories
specifying 262

deployment options
global 255
local directory 255
scope of 255

deployment sections
multiple 262
specifying 262

deployment targets
specifying 262

description element 44
directory comparison 268
directory element 134, 136
directory structure

contents 22
copying 30
overview 21
sample 28

DTD
converting to data capture

templates 353
data capture 63
sample 354
unsupported features 360

E
EDITION, paths ending in 264
editions

specifying 263
element

allowed 47, 53, 67, 133, 137
and 47, 67, 133, 137
branch 134, 136
browser 46, 66
callout 47, 54
416
category 132, 136
checkbox 48, 66
cred 47, 67, 133, 137
data-capture-requirements 43,

64
data-type 132, 136
default 67
description 44
directory 134, 136
inline 48, 53, 60
item 44, 65
locations 136
not 47, 67, 133, 137
option 48, 67
or 47, 67, 133, 137
presentation 133, 136
radio 49, 66
replicant 50, 67
ruleset 43, 65
select 51, 66
template 134, 136
templating 132, 136
text 51, 65
textarea 52, 66

encryption 285, 296
asymmetric 306
ciphers 311
configuring for

asymmetric 310
creating key files and

certificates 306
key files 285, 296, 305
SSL 285, 297, 306
symmetric 305

errata 7
evaluating ACLs 368
event triggers 396
TeamXpres
example templating
environment 28, 29

copying 30
excluding files 275, 291

F
file lists 272
file permissions

changing 281, 293
UNIX 281, 293
Windows NT 283, 295

files 41
available_templates.ipl 30
datacapture.cfg 20, 38, 59, 353
deleting 280, 292
DTD 63, 354
excluding 275
iw.cfg 34
renaming 280, 292
sample output from

iwdtd2sym CLT 354
templating.cfg 20

files to be deployed
specifying 263

firewalls 301, 349
forward deployment

of different directories 333
to a single server 326
to multiple servers 329

G
generated HTML files 18, 26

specifying locations 134
Global Report Center 249

H
handling replicated data 99
hosts
s Templating and Deployment Guide

limiting access 304
specifying 263

HTML pages
from presentation template

compiler 372
generating 26, 371
regenerating 375

I
IBM DB2

configuration 403
JDBC

installing 404
starting 404

page setup 403
table size 403

incremental deployment 157
Informix

configuration 405
logging, enabling 405

inline element 48, 53, 60
installation

drivers 149
on Solaris 11
on Windows NT 13
Solaris 149
supported platforms 148
Windows NT 149

installing OpenDeploy
UNIX 232
Windows NT 235

instance
defined 38

integrating 31
interaction 222
invoking deployment

UNIX 235
Windows NT 237
IP address
authentication 301

item element 44, 65
defined 38

iw.cfg 34
iw_case tag 83
iw_else tag 88
iw_if tag 89
iw_ifcase tag 91
iw_include tag 95
iw_iterate tag 99
iw_last tag 104
iw_next tag 105
iw_perl tag 106
IW_PREV, paths ending in 264
iw_pt tag 110
iw_repeat tag 111
iw_sql_iterate tag 112
iw_sql_open tag 115
iw_sql_query 118
iw_sql_query tag 118
iw_system tag 120
iw_then tag 121
iw_value tag 122
iw_xml tags 82
iwdctacleval 368
iwdd.ipl command 207

examples 209
syntax 207
usage 207

iwdeploy syntax
client 239
server 239

iwdtd2sym 354, 370
iwevents 272
iwgen 371
iwpt_compile.ipl 372
iwregen 375
iwsym2dct 358, 376
iwsynch.ipl command 389
iwsynchdb.ipl command 384

activities 388
running 387
starting 388
usage 399

iwxml_validate 377

J
Java callout 54
JDBC

IBM DB2
installing 404
starting 404

K
key files 305

L
links 288
local directories 263
locations element 136
logs 232, 233, 243

differences between UNIX and
Windows NT 248, 319

in Deploy and Run 318
locations 247
names 247
verbose levels 243

N
name lengths, database

objects 156
narrow tuples see tuples
not element 47, 67, 133, 137
notation conventions 6
notification of deployment 313
417

O
OpenDeploy

database system assets 211
file system assets 211
server daemon, starting 222
synchronization

deployment 211
overview 211

synchronized deployment
configuration 217
modes, supported 221

option element 48, 67
options

configuration 258
or element 47, 67, 133, 137
output

inserting 120

P
page generation subsystem 18,

19, 27
parameter substitutions 175
path name conventions 7
paths

specifying 241
platforms

Solaris 148
supported 148
Windows 2000 148
Windows NT 148

port number
specifying 262

presentation directory 23
presentation element 133, 136
presentation template 23, 99

adding Perl code 106
compiler 19, 71, 372
418
conditional inclusion of
contents 121

definition 19
evaluating expression 89
example 73
guidelines 73
including contents 88
inserting a value 122
inserting component

template 95
inserting file 95
iterating SQL result sets 112
mapping 133
naming 110
opening database

connection 115
querying a database 118
repeating content 111
skipping to last iteration of

loop 104
skipping to next iteration of

loop 105
preview directory 32, 33
previewing data 135
program

inserting output 120
proxy server configuration 34

R
radio element 49, 66
regular expressions 277, 279, 280,

292
about 5

renaming files 280, 292
replicant element 50, 67
replicants

adding 50
reverse deployment 337
TeamXpres
reverting files 267
reverting websites 346
ruleset element 43, 65

defined 38

S
scenarios

deployment 158
source/destination 145
synchronization,

DataDeploy 211
search menu item 34
security

client versus server 289
security options

client-side 290
server-side 290

select element 51, 66
server authentication 303
server configuration files 327,

330, 335, 340
server configuration options 310,

317
server options

authentication by IP
address 300

changing file permissions 293
connections and locations 289
deleting files 292
Deploy and Run 297
deployment sections 290
deployment timeouts 291
encryption 296
excluding files 291
overview 289
renaming files 292
security 290

servers
s Templating and Deployment Guide

IBM DB2 403
JDBC 404
page sizes 403
table sizes 403

Informix
configuration 405
logging, enabling 405

Sybase ASE 404
DDL statements 404
sort order 405
stored procedures 405

Site Rollback 346
Solaris, installation on 149
source/destination scenarios,

supported 145
specifying

Deploy and Run scripts 313
paths 241
ports 289
server options 289
source servers 289
target directories 289
timeouts 263

SSL 306
standalone tables, querying 407
starting TeamXpress

Templating 34
Sybase ASE

configuration 404
DLL statements, enabling 404
sort order, setting 405
stored procedures,

installing 405
synchronization,

OpenDeploy 211
synchronized deployment see

deployment
syntax
Deploy and Run scripts 313–
318

T
tables

base 163, 166, 212
querying 407
updating 394

delta 165
querying 407
updating 394

naming conventions 395
querying 407
SQL 407
updating 168

examples 395
views, creating 169

tags 118
debugging 127, 372
iw_case 83
iw_else 88
iw_if 89
iw_ifcase 91
iw_include 95
iw_iterate 99
iw_last 104
iw_next 105
iw_perl 106
iw_pt 110
iw_repeat 111
iw_sql_iterate 112
iw_sql_open 115
iw_system 120
iw_then 121
iw_value 122

target servers
specifying 262

template
component 71
template element 134, 136
templatedata directory 22

copying to workarea 30
templating directory

changing 32
templating element 132, 136
templating environment

example 29
templating.cfg 20, 25, 30

customizing 129
DTD 136
example 130

text element 51, 65
textarea element 52, 66
three-tier architecture 145, 147
timeouts

specifying 263
transactional deployment 242
triggers, event 396
troubleshooting 127
trusted clients 258
tt_data 31
tt_deletedcr 32
tuples 159

defined 154
format 154
narrow 154, 161
wide 155, 162

two-tier architecture 145, 146
type 22

U
uninstalling OpenDeploy

UNIX 234
Windows NT 237

upgrade_dct_cfg 379
user interface
419

setting 33
users

allowed 258

V
validating XML 377
validation regexes 44, 51

identifying 33
upgrading 379

vpaths 254

W
websites

reverting 346
wide tuples see tuples
Windows NT, installation on 149
workflow 31

copying files for 30
DataDeploy process 140
initiating 32, 140
integrating with TeamXpress

Templating 140
preconfigured 141
schematic of 24, 26, 389

X
XML 318

validating 377
XML DTD 320
XML log files

parsing 322
420
 TeamXpres
s Templating and Deployment Guide

	Interwoven TeamXpress™ for Multiplatforms V1.1, WebSphere™ Edition
	Table of Contents
	About This Book
	Notation Conventions
	Windows Path Name Conventions
	Support Information

	Section 1: TeamXpress Templating
	Installing TeamXpress Templating
	Hardware Requirements
	Operating System Requirements
	Installing on Solaris
	Installing on Windows NT/2000
	Installing on Client Machines
	Next Step

	Initial Configuration
	Configuration Overview
	Concepts and Definitions
	Process Flow: Creating a New Data Content Record
	Process Flow: Generating an Output File
	The Example Directory Structure

	Configuring the Example Templating Environment
	Editing available_templates.ipl to Initiate Workflows
	Modifying the TeamXpress iw.cfg File

	Proxy Server Configuration
	Starting TeamXpress Templating

	Setting Up Data Capture Templates
	Data Capture Template Overview
	Example Data Capture Templates
	Data Capture Example 1
	Example 1 Data Capture Form
	Example 1 datacapture.cfg File
	Example 1 Data Content Record

	Data Capture Example 2
	Example 2 Data Capture Form
	Example 2 datacapture.cfg File

	Data Capture Template DTD

	Setting Up Presentation Templates
	Creating Presentation Templates
	Using a Presentation Template—An Example

	Custom XML Tags
	Writing Your Own Tags

	Mapping Users, Templates, and Content Records
	templating.cfg Overview
	Example templating.cfg File
	Diagram Key
	Setting Previewing Path Variables

	templating.cfg DTD

	Integrating Templating, DataDeploy, and Workflow
	Integration Overview
	Integration Steps
	Integration Steps: TeamXpress Templating
	Integration Steps: DataDeploy
	Integration Steps: TeamXpress Workflow

	Section 2: DataDeploy Administration
	Overview and Installation
	Overview
	Client/Server Setup Options
	Running the DataDeploy Daemon as a Service

	Installing DataDeploy
	Supported Platforms
	Solaris Systems
	Windows NT/2000 Systems

	Deployment Concepts
	Ways to Invoke Deployment
	Configuration Files
	File Components

	Data Organization Within DataDeploy
	Data Types and Sizes
	Incremental Deployment

	Deployment Scenarios
	Deploying from TeamXpress to a Database: Overview
	Deploying from TeamXpress to a Database: Details

	Configuration File Details and Examples
	Required Elements
	TeamXpress-to-Database
	TeamXpress-to-XML
	Database-to-Database
	Database-to-XML
	XML-to-Database
	XML-to-XML

	Parameter Substitutions
	Sample TeamXpress-to-Database Configuration File
	Sample File Notes

	Sample TeamXpress-to-XML Configuration File
	Sample Database-to-Database Configuration File
	Sample Database-to-XML Configuration File
	Sample XML-to-Database Configuration File
	Sample XML-to-XML Configuration File
	Starting-State Base Table Configuration File
	Event 1 Configuration File
	Event 2 Configuration File

	Invoking DataDeploy
	iwdd.ipl Command
	Usage
	Syntax
	Examples

	Running DataDeploy as a Service

	Synchronizing OpenDeploy and Data Deploy
	Overview
	Deploying Different Types of Assets
	Configuration Task Categories

	Software Requirements
	Program and Configuration Files
	Synchronized Deployment Process
	Configuring OpenDeploy
	Client Configuration File
	Server Configuration File
	Starting the OpenDeploy Server Daemon

	Configuring DataDeploy
	Interaction Between Files
	Editing tsxml.cfg
	Generating loaddb.cfg
	Editing database.xml
	Configuration File Locations

	Invoking Synchronized Deployment

	Section 3: OpenDeploy Administration
	Installing OpenDeploy
	UNIX
	Before You Begin
	Installing the OpenDeploy Client
	Installing the OpenDeploy Server
	Uninstalling OpenDeploy
	Invoking Deployment

	Windows NT/2000
	Installing the OpenDeploy Client and Server
	Uninstalling OpenDeploy
	Invoking OpenDeploy

	Syntax and Options
	iwdeploy Syntax
	Specifying Paths

	Options
	Transactional Deployment
	Logging
	Event Reporting

	Configuration Files
	OpenDeploy Server Configuration Files
	UNIX
	Windows NT/2000

	OpenDeploy Client Configuration Files
	Coordinating Server and Client Configuration Files

	Scope of Configuration File Options
	Use of Client versus Server Configuration Options

	The Authorization Configuration File

	Configuration File Options
	OpenDeploy Client Options
	Specifying Deployment Sections
	Specifying Deployment Targets
	Specifying Deployment Timeouts
	Specifying Locations of Files to Be Deployed
	Specifying Which Files to Deploy
	Specifying Which Files to Exclude
	Renaming and Deleting Files During Deployment
	Changing Permissions on Files During Deployment
	Encryption
	Deploy and Run
	Links
	Debugging Deployment Configuration

	OpenDeploy Server Options
	Specifying Connections and Locations
	Specifying Deployment Sections
	Security Options
	Specifying Deployment Timeouts
	Specifying Which Files to Exclude
	Renaming and Deleting Files During Deployment
	Changing Permissions on Files During Deployment
	Encryption
	Deploy and Run
	Authentication by IP Address

	Advanced Features
	Authentication by IP Address
	Encryption
	Symmetric Key Encryption
	Asymmetric Key Encryption
	Configuring OpenDeploy for Asymmetric Encryption

	Deploy and Run
	Configuring Deploy and Run
	Log Files and Scripts

	Deployment Scenarios
	Forward Deployment to a Single Server
	OpenDeploy Server Configuration
	OpenDeploy Client Configuration

	Forward Deployment to Multiple Servers
	OpenDeploy Server Configuration
	OpenDeploy Client Configuration

	Forward Deployment of Different Directories to Different Servers
	OpenDeploy Server Configuration
	OpenDeploy Client Configuration

	Reverse Deployment
	OpenDeploy Server Configuration
	OpenDeploy Client Configuration

	Reverting Websites to Previous Versions
	OpenDeploy Server Configuration
	OpenDeploy Client Configuration

	Deploying Through Firewalls

	Section 4: Appendices
	Creating Data Capture Templates from DTDs
	Running the CLT on the DTD File
	The symbol-table.cfg File
	Diagram Key

	The datacapture.cfg File
	Diagram Key
	Unsupported DTD Features
	Symbol Table DTD Used for Conversions

	Using Command-Line Tools
	DataDeploy Database Auto- Synchronization
	Overview
	Software Requirements
	DAS Program and Configuration Files
	Configuring DAS
	Editing DataDeploy Configuration Files
	Editing iw.cfg
	Running iwsyncdb.ipl

	Using DAS
	Figure 3 Diagram Key
	Table Update Details

	TeamXpress Event Triggers
	Logging DAS Activities
	Disabling DAS
	iwsyncdb.ipl Usage

	DataDeploy Database Server Configuration
	Overview
	IBM DB2
	Setting Page and Table Sizes
	Installing and Starting JDBC

	Sybase ASE
	Enabling DDL Statements
	Setting Sort Order
	Install Stored Procedures

	Informix
	Enabling Logging

	DataDeploy Querying Tables
	Querying Base and Standalone Tables
	Querying Delta Tables

	OpenDeploy Client and Server Configuration File Options

	Index

