
IBM® WebSphere® Host Publisher
Administrator’s and User’s Guide
Version 4.0

GC31-8728-03

���

IBM® WebSphere® Host Publisher
Administrator’s and User’s Guide
Version 4.0

GC31-8728-03

���

Note
Before using this information and the product it supports, be sure to read the general information under “Appendix F.
Notices” on page 153.

4th Edition (April, 2002)

© Copyright International Business Machines Corporation 1999, 2002. All rights reserved.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

Contents

Chapter 1. Introducing Host Publisher. . 1
What is Host Publisher? 1

How does Host Publisher compare with
WebSphere Application Server? 3
How does Host Publisher compare with Host
On-Demand? 3
What are the advantages of Host Publisher? . . . 4

What is Host Publisher Studio? 4
What is Host Publisher Server? 5
What’s new in Host Publisher Version 4.0? 5

Compatibility with WebSphere Application Server
4.0 5
Web Services 6
Multi-language support. 6
Serviceability 6

Where can I find information online? 6
Manuals 6
Online help 7
Information on the Web 7

Chapter 2. Using Host Publisher Studio
to develop J2EE applications 9
Integration Objects 10

Interacting with a data source 10
Defining connection pools 10

Creating a Host Access Integration Object 12
Building an Integration Object using macros . . 12
Using the Host Access wizard 13
Creating connection pools for Host Access . . . 14
Recording interactions with a host 15
Defining a screen 16
Defining global screens 18
Identifying data to extract 18
Generating an Integration Object 19
Verifying a macro 19
Editing a macro 19
Setting preferences in Host Access 19
Using advanced functions in Host Access . . . 22
Defining user lists 26

Creating a Database Access Integration Object . . . 29
Using the Database Access wizard. 29
Defining database connections 29
Retrieving information from a database 30
Generating an Integration Object 30
Verifying an SQL statement 30
Creating connection pools for Database Access . 31
Using the Options menu in Database Access . . 32

Using Application Integrator to build J2EE
applications that use Integration Objects 33

Specifying Integration Objects to publish to the
application server 34
Using the Application Integrator wizards . . . 34
Previewing a page 37
Sharing application files with other users of Host
Publisher Studio 37

Archiving application files 37
Using the Options menu in Application
Integrator 38

Creating composite applications 39
Combining Integration Object output 39
Sequencing Integration Objects on a single page 40
Sequencing Integration Objects on multiple pages 40
Sequencing Integration Objects between
non-adjacent pages 41

Creating applications that use Enterprise JavaBeans
(EJB) technology 42

Understanding EJB support in Host Publisher . . 42
Creating EJB support files for Integration Objects 44
Creating a Host Publisher application using EJB
Access Beans 44

Importing Java objects 44
Transferring applications to a Host Publisher Server 45

How applications are assembled and packaged 45
Selecting a server 47
Setting security options 49
Modifying applications on the server 49

Enabling tracing 49
Accessing a remote machine using Remote
Integration Objects 50
Using WebSphere Studio tools with Host Publisher
Studio 51
Migrating from previous versions of Host Publisher
Studio 51

Installing Host Publisher Version 4.0 on the
Studio machine 51
Migrating applications in Host Publisher Studio 52

Chapter 3. Using Host Publisher Server
Administration 57
Getting started 57

Starting Host Publisher Server Administration . . 58
Naming an instance of Host Publisher Server . . 58

Using the functions in Host Publisher Server
Administration 58

Selecting host and application server 58
Monitoring server status 58
Providing application passwords 59
Managing licenses 59
Monitoring connection pools 59
Monitoring pool definitions 60
Monitoring connections 60
Monitoring user lists and user list members . . 60
Administering problem determination
components 60
Administering XML Gateway sessions 64
Administering applications 64

Administering Host Publisher from a remote
machine 64
Advanced Server topics 65

© Copyright IBM Corp. 1999, 2002 iii

Securing access to Host Publisher Server
Administration using WebSphere Application
Server 65
Opening Host Publisher Server Administration in
a new browser window 65
Using Display Terminal for testing and
debugging 66
Configuring the Display Terminal function for
iSeries 66

Migrating from previous versions of Host Publisher
on the server 67

Installing Host Publisher Version 4.0 on the
server 67
Migrating applications on the server 68
Removing HTTP session-affinity code 70
Updating server properties files 70

Chapter 4. Using Web Services 71
Creating and deploying a Web Service 71
Accessing Host Publisher from a remote machine
using Web Services 72
Specifying properties for Web Services Integration
Objects 72

Chapter 5. Advanced features 73
Integration Object chaining 73

Deciding when to use Integration Object chaining 73
Using Integration Object chaining 73
Debugging applications that use Integration
Object chaining 77

Performing advanced tasks with Enterprise
JavaBeans (EJB) 78

Modifying Host Publisher EJB-based applications 78
Changing the default values when running in a
non-J2EE environment 79

Application server cloning and load balancing in
WebSphere 79

Load balancing options for the Host Publisher
application server 80
Running chained Integration Objects in cloned
application servers 80
Working with connection pools for applications
in a cloned environment 81
Cloning and user lists 82

Express logon 82
Express logon considerations when using Host
Publisher Studio 83
Configuring express logon in Host Publisher
Server 83

Configuring security 84
Configuring and using Secure Sockets Layer
(SSL) support for host application access . . . 84
Using Host Publisher with forms-based security
and SSL 85

Chapter 6. Using the XML Gateway to
enable simplified access to host
applications 87
Accessing the Host Publisher XML Gateway portal
page 87

Interacting with the host application 87
Configuring time delays for XML Gateway 88
Enhancing the XML Gateway sample servlet . . . 88
Tracing the XML Gateway servlet 89

Chapter 7. Using accessibility
functions in Host Publisher Studio . . 91
Performing basic keyboard tasks 91

Using the menu bar 91
Using a drop-down list box 91
Using a tabbed pane 91

Using the terminal pane in Host Access 92
Using the keypad in Host Access 92
Using keyboard remap in Host Access 93
Using help. 93

Chapter 8. Performance and tuning . . 95
Host Publisher Studio requirements 95
Host Publisher Server requirements 95

Central processing unit (CPU) 95
Memory 97
Network interface card 97
Hard drive 97

Hardware recommendations 98
Server capacity 98

Chapter 9. Troubleshooting 99
Host Publisher problem determination procedure. . 99
Host Publisher Server Administration
Troubleshooting 100

Server prerequisites and general information 100
WebSphere Application Server. 100
Secure Sockets Layer (HTTP server) 101
WebSphere pagecompile. 101

Common problems and limitations 101
Problems with Host Access and execution of
Host Access Integration Objects 101
Problems with Database Access and execution
of database Integration Objects 103
Problems with Application Integrator and
transferring applications. 106
Problems with the Server and execution of
Integration Objects 108
Problems with performance in TN3270E sessions 114

Updating Host Publisher using the Software
Maintenance Utility 115

Command syntax 115
apply 115
restore 116
commit 116
report 116

Contacting IBM for service 117

Appendix A. Technical overview . . . 119
Execution models for Integration Objects 119
An Integration Object running in a WebSphere
Container. 120

Appendix B. Server properties files 123

iv IBM® WebSphere® Host Publisher Administrator’s and User’s Guide

The server.properties file 123
The ras_xxx.properties file 125

Appendix C. Example of developing
an application in Host Publisher
Studio 129
Creating an Integration Object 129
Building the application 133
Transferring the application to a server 135
Deploying the application on WebSphere
Application Server 136
Accessing the application from a browser 136

Appendix D. Examples for designing
custom Web pages 137
Java access to page parameters 137
Redirecting based on Integration Object results . . 137
Invoking Integration Objects based on previous
Integration Object results 137
Building dynamic HTML based on Integration
Object properties 138
Validating user input 138
Testing for successful database record deletion . . 139
Testing for successful database record addition . . 139
Passing Java variables to JavaScript function . . . 140

Using Java to display variables passed into a page 140
Using Java to pad an input value and passing it to
an Integration Object 140
Using a function type passed from a hidden HTML
form variable to determine page to execute . . . 141
Using Java to prevent blank lines in an HTML
table 142
Using Java to control display of an HTML table
based on host results 142
Determining number of page downs and tabs for
making a selection. 143
Changing the action value of a form based on the
clicked button 144
Using HTTP Session object to pass values 144
Disabling the browser back button 144
Using Java to control which HTML table to display
based on host results 145

Appendix E. Glossary 147

Appendix F. Notices 153
Programming interface information 154
Trademarks 155

Index 157

Contents v

vi IBM® WebSphere® Host Publisher Administrator’s and User’s Guide

Chapter 1. Introducing Host Publisher

This book is designed to help application developers use and administer the IBM
WebSphere Host Publisher product. With the information in this book, you can use
Host Publisher to create Web-to-host applications that interact with data
sources—such as host applications and databases—and publish those applications
on the Web.

This book helps you get started quickly and also helps you understand the
underlying concepts involved in using Host Publisher. Additional information
resources include the product Readme, online help, and the Host Publisher Web
site, http://www.ibm.com/software/webservers/hostpublisher. (See “Where can I
find information online?” on page 6). These resources include updates, corrections,
and educational materials.

This book is available in hard copy, in HTML and PDF formats on the installation
CD, and in HTML and PDF formats on the product Web site.

Note: Throughout this book, iSeries™ refers to both iSeries and AS/400®.

What is Host Publisher?
Web-to-host integration is an integral part of many e-businesses. seventy percent of
business-critical data and applications reside on IBM host systems, such as zSeries,
iSeries, and RS/6000®. Making this information available to new users and using it
in new ways across intranets, extranets, and the Internet enables you to reduce
costs, improve services, generate new sources of revenue, and establish a
competitive advantage.

Host Publisher is a set of tools for providing access to data on a legacy data source
(a terminal-oriented host application or database application, for example) on the
World Wide Web or a private intranet. These legacy data sources typically involve
proprietary access and complex applications. Host Publisher enables you to present
end users with the data they need without exposing the way the data is accessed.

You can use Host Publisher to develop applications that, when published on a Web
application server, enable other people to interact with data on a host. For example,
if you have an existing host application that enables users to look up employees’
telephone numbers, you can create a Web page that lets a user with a browser
enter the name of the person he or she wants, and then displays the telephone
number on another page.

You can use Host Publisher Studio to create Integration Objects, which contain logic
to perform host data access and retrieval tasks using 3270, 5250, and virtual
terminal (VT) data streams and relational databases that provide a Java Database
Connectivity (JDBC) interface such as IBM DB2 Universal Database®, Oracle™, and
Sybase. You can then use these Integration Objects to build more sophisticated
Host Publisher applications based on JavaServer Pages (JSP) pages, servlets, or
Enterprise JavaBeans (EJB).

Host Publisher uses IBM WebSphere Application Server to provide a consistent,
reliable execution environment for Host Publisher applications; for example,

© Copyright IBM Corp. 1999, 2002 1

servlets or EJB-based applications, and HTML/JSPs across platforms. Applications
created in Host Publisher Studio can be accessed with all standard Web browsers,
with or without Java.

Host Publisher provides the enterprise-class features you expect, including security,
load balancing, and hot standby. Host Publisher supports Secure Sockets Layer (SSL)
encryption and authentication, as well as DES-encrypted passwords, to provide a
high level of security.

Host Publisher is divided into two major components:
v Host Publisher Studio runs on a Windows-based workstation. It provides a

development environment for creating Web-based applications.
v Host Publisher Server runs on an application server. It provides a runtime

environment for executing J2EE applications created with Host Publisher Studio.

To use Host Publisher, you create Web-to-host applications using Host Publisher
Studio, transfer them to the production server, and provide access to the end user.
Applications built with Host Publisher Studio can contain Integration Objects.
When used with Host Publisher Server, Integration Objects can do the following:
v Automatically establish a connection with a host
v Navigate to and extract data from an application
v Disconnect from the host and end the connection

Host Publisher provides Integration Object chaining. Integration Object chaining
involves constructing a set of Integration Objects that depend on each other to
drive a connection through several states. Chaining can increase performance and
reduce the administration of creating complex applications. For example, you
might use chaining in a typical 3270 application that uses multi-level menus. A
corporate phone directory might have several menus to focus down to the point
where you can list each individual in a particular department. Suppose you want
to display the office address for an individual, return to the department list and
select a new name, and display the second person’s office address. Chaining
enables you to break the task into steps, each of which is represented as a single
Integration Object. The end user does not have to navigate back through several
menus to reach the department list again.

You can optimize connection establishment for each Integration Object by using
connection pooling. Connection pools are defined in Host Publisher Studio and
published to the server. Connection pooling is used to cache ready-to-use
connections in the server, and thereby avoid overhead for the connection setup.
This improves the Web browser response time for displaying a dynamically
generated Web page. A developer-defined number of connections can remain active
in the pool for subsequent requests from any user. Connection pools can eliminate
the overhead of establishing new connections to the host or database for every
Web page request.

Host Publisher provides support for executing Integration Objects remotely. When
you create an Integration Object in Host Publisher Studio, you can define it to use
the Web Services functions provided by WebSphere Studio tools, such as WebSphere
Application Developer. Web Services are standards-based, easily extended software
components. For a description of how Host Publisher provides support for Web
Services, see “Chapter 4. Using Web Services” on page 71.

Host Publisher provides support for executing Integration Objects in EJB containers
to take advantage of the server-side characteristics provided by the EJB

2 IBM® WebSphere® Host Publisher Administrator’s and User’s Guide

architecture. The Host Publisher Studio provides an option to create a Host
Publisher EJB and its support files when you create an Integration Object. The
Host Publisher EJB is a stateful-session EJB capable of running Integration Objects
in an EJB environment. You can use Host Publisher Studio to build EJB-based
applications.

Host Publisher also provides a Web-based terminal emulator function called XML
Gateway. While the key focus of terminal-oriented Integration Objects in Host
Publisher is to encapsulate a complex screen navigation sequence and hide that
detail from the end user, the purpose of XML Gateway is to give the end user
access to each terminal screen of the application and to let him or her control the
screen navigation using a browser-based emulator. This function can be used by a
person who is familiar with a particular terminal-oriented application but who
only has access to a browser with no Java support.

For a detailed description of how a Host Publisher Integration Object executes, see
“Appendix A. Technical overview” on page 119.

How does Host Publisher compare with WebSphere
Application Server?

These two products are complementary. Host Publisher uses the WebSphere
Application Server environment to support J2EE applications that include
Integration Objects created by Host Publisher. You can reuse Integration Objects
within new servlets or custom EJB-based applications using WebSphere
Application Server and your favorite Java interactive development environment (IDE),
such as WebSphere Studio Application Developer. For information about using
Integration Objects in Java servlets and custom EJB-based applications, refer to the
IBM WebSphere Host Publisher Programmer’s Guide and Reference.

How does Host Publisher compare with Host On-Demand?
Host Publisher is a server-based Web-to-host solution. The client workstation
communicates with the application server and the server makes a connection to a
host, accesses an application, and presents data back to the client in the form of an
HTML page.

Host-On-Demand is a client-based Web-to-host solution. After a Java applet
emulator is downloaded from the application server to the client, the client
connects through a TN3270 server to access a host application directly.

Host Publisher is designed primarily to build applications for end users who are
not familiar with typical host screens or how to navigate through legacy
applications and for whom a new, easy-to-use graphical interface is critical. Host
Publisher also addresses the needs of those who are familiar with host applications
but who do not have Java-enabled browsers and therefore require HTML, or who
prefer not to use the green-screen interface. As with Web self-service applications,
these users are familiar with their standard HTML browser, and they are
accustomed to Web response times. Applications for these users might need to
access multiple hosts.

Host On-Demand is IBM’s answer for Java-based host access primarily designed to
meet the needs of intranet and extranet users. These users are familiar with the
original host application screens and can be considered power users who require a
full function emulator. User desktop software is typically well controlled and can
include a Java-enabled browser. Users typically connect for extended periods of
time.

Chapter 1. Introducing Host Publisher 3

What are the advantages of Host Publisher?
Host Publisher is built on open-industry standards, such as Java and HTML. Host
Publisher Studio also creates Web-based applications that are J2EE compliant.
Integration Objects are reusable components that can be used in WebSphere
applications created outside Host Publisher Studio. Likewise, you can use
WebSphere Studio tools to add new business logic to the applications Host
Publisher creates. The Studio also generates fully customizable HTML output with
embedded JavaServer Pages tags. You can use any HTML editor to enhance and
customize the HTML or JSP tags to meet your design guidelines and personal
preferences.

Host Publisher Server provides enterprise-class performance, scalability, and
availability through several key functions, such as chaining, connection pooling,
load balancing, hot standby, and cross-platform portability. Because Host Publisher
Server runs on AIX®, Windows® 2000, Windows NT®, Sun Solaris, and iSeries,
applications created with the common Host Publisher Studio will run unchanged
in all environments.

Host Publisher can be used with the load balancing and workload management
functions in WebSphere to balance workload across a group of Host Publisher
Servers. This provides predictable performance, easy scalability, and hot backup.
The ability to move from one operating system platform to another will enable you
to move your workload to a higher capacity platform as demands increase.

What is Host Publisher Studio?
Host Publisher Studio is a collection of task-oriented, easy-to-use graphical user
interfaces that assist the application developer in managing and creating
Web-to-host publishing applications. It uses task-oriented prompts to guide the
user through the creation process—including recording host and database
interactions, identifying desired data, and labeling that data for retrieval.

Host Publisher Studio automatically generates Java beans called Integration
Objects, which encapsulate the interactions and data retrieval logic. You can use
Host Publisher Studio to generate fully customizable Web pages for modeling
interactions with the Integration Objects and rendering the resulting data. You can
enhance the generated Web pages with your favorite Web authoring tool, such as

Figure 1. Host Publisher working in a typical network

4 IBM® WebSphere® Host Publisher Administrator’s and User’s Guide

WebSphere’s page designer, to meet corporate guidelines on style and image.
When the Web pages are completed, you transfer them to a Host Publisher Server
for production access by end users.

Host Publisher Studio runs on the Windows 98, Windows ME, Windows NT,
Windows 2000, and Windows XP operating systems.

What is Host Publisher Server?
Host Publisher Server provides the runtime environment for supporting J2EE
applications created with Host Publisher Studio. Running on the application server
with the IBM WebSphere Application Server product (WebSphere), it includes
components such as connection management, license monitoring, runtime
administration, express logon, XML Gateway, and log and trace management.

Host Publisher Server is supported on OS/400, AIX, Windows 2000, Windows NT,
and Solaris operating environments.

What’s new in Host Publisher Version 4.0?
This section describes the major new functions in Host Publisher Version 4.0.

Compatibility with WebSphere Application Server 4.0
Host Publisher Server requires that WebSphere Application Server (WebSphere)
4.0.2 be installed, and supports:
v WebSphere 4.0.2 Advanced Edition (AE) and Advanced Edition Single Server

(AEs) for Windows NT, Windows 2000, AIX, Solaris, and iSeries
v WebSphere 4.0.2 Advanced Edition Developer (AEd) for Windows NT and

Windows 2000

As part of the WebSphere 4.0 environment, the following enhancements are made
in Host Publisher:

J2EE application support: Applications produced by Host Publisher Studio comply
with J2EE, an industry-standard architecture that is intended to reduce the cost and
complexity of developing enterprise applications. J2EE applications can be deployed
rapidly and enhanced easily as the enterprise responds to competitive pressures. A
J2EE application takes the form of an .ear (Enterprise Archive) file into which all the
application’s pages, Java objects, and resources are assembled.

If you have Host Publisher applications on the server that were developed with an
earlier level of the product, they must be migrated to Version 4.0. A migration tool
is provided for this purpose.

JavaServer Pages (JSP) 1.1 support: Host Publisher Studio now produces JSP pages
at the JSP 1.1 level. Applications with JSP 1.0 tags will still run, but applications
with JSP 0.91 tags (created prior to Host Publisher Version 3.5) need to be
migrated. Two migration tools—one on the Studio machine and one on the
server—are provided with the product.

Enterprise JavaBeans (EJB) 1.1 support: Host Publisher now builds EJB-based
applications supporting the EJB 1.1 specification level. EJB Access Beans developed
with an earlier version of the product must be migrated to the 1.1 level; a
migration tool is provided as part of Host Publisher Studio.

Chapter 1. Introducing Host Publisher 5

Web Services
Web Services, an application integration technology based on open standards and
implemented in middleware, provides a way for applications to connect and
interact on the Web more easily and efficiently. Host Publisher Integration Objects
and EJB Access Beans are enabled to become Web Services.

Multi-language support
On the server, you can use Host Publisher Server Administration and view the Host
Publisher documentation in languages other than the server’s default language.

Serviceability
The Software Maintenance Utility, a new command-line tool, can help you apply
software fixes. For situations that require the involvement of the IBM Support
Center, this tool also scans the product and creates a package containing
documentation and files for the IBM support team to use in troubleshooting.

Where can I find information online?
You can find the following forms of documentation for Host Publisher online.

Manuals
To access online documentation in either Host Publisher Studio or Host Publisher
Server, you can use a Web browser to open HTML files and book (PDF) files on
your local system.

In Host Publisher Studio
Listed below are the locations for the files for each document, where install_dir is
the directory in which Host Publisher is installed.

IBM WebSphere Host Publisher Administrator’s and User’s Guide
install_dir\Common\doc\guide\guide.htm

To open the book (PDF) version, use the file name guide.pdf instead of
guide.htm.

IBM WebSphere Host Publisher Planning and Installation Guide
install_dir\Common\doc\install\instgd.htm

To open the book (PDF) version, use the file name instgd.pdf instead of
instgd.htm.

IBM WebSphere Host Publisher Programmer’s Guide and Reference
install_dir\Common\doc\proggd\proggd.htm

To open the book (PDF) version, use the file name progguid.pdf instead of
proggd.htm.

IBM WebSphere Host Publisher Messages Reference
install_dir\Common\doc\msgref\msgref.htm

To open the book (PDF) version, use the file name msgref.pdf instead of
msgref.htm.

IBM Host Publisher Readme
install_dir\Common\doc\readme.htm

6 IBM® WebSphere® Host Publisher Administrator’s and User’s Guide

In Host Publisher Server
In Host Publisher Server, the documentation is available in any language you
choose, when WebSphere is running on the server. Open a browser to
http://ServerName/HPDoc/HPDocServlet to choose the desired language and
view the documentation in that language.

Listed below are the file names for each document.

IBM WebSphere Host Publisher Administrator’s and User’s Guide
guide.htm and guide.pdf in \guide subdirectory

IBM WebSphere Host Publisher Planning and Installation Guide
instgd.htm and instgd.pdf in \install subdirectory

IBM WebSphere Host Publisher Programmer’s Guide and Reference
proggd.htm and proggd.pdf in \proggd subdirectory

IBM WebSphere Host Publisher Messages Reference
msgref.htm and msgref.pdf in \msgref subdirectory

IBM Host Publisher Readme
readme.htm

Online help
Online help, including the HTML version of this book, is available from the
product’s graphical user interface. To access online help in Host Publisher Studio,
click the Help button on a Host Publisher product window, click Help from the
menu bar, or press the F1 key. In Host Publisher Server Administration, click the
help icon (a question mark in the upper right corner of the window).

Information on the Web
Find the most up-to-date versions of this document, frequently asked questions
(FAQs), white papers, and additional information at the product Web site:
http://www.ibm.com/software/webservers/hostpublisher.

Chapter 1. Introducing Host Publisher 7

8 IBM® WebSphere® Host Publisher Administrator’s and User’s Guide

Chapter 2. Using Host Publisher Studio to develop J2EE
applications

You want to extend applications to the Web. Where do you start? This chapter
helps you understand the concepts and the steps involved in building Host
Publisher applications.

Use Host Publisher Studio, running on a workstation, to build J2EE applications
that make specific data from the host or database available to end users. Host
Publisher Studio is made up of three components:
v Host Access

v Database Access

v Application Integrator

“Appendix C. Example of developing an application in Host Publisher Studio” on
page 129, contains a step-by-step example of the basic steps: creating an Integration
Object (using the Host Access component), building an application, and
transferring the application to a server. If you are new to Host Publisher, you
might want to use the example to introduce you to the product, and then use this
chapter to increase your understanding of the tasks involved.

Applications built in Host Publisher Studio contain Integration Objects. Integration
Objects are Java beans that encapsulate interactions with a data source, such as a
database or a 3270 application, and return specific data from that source for use as
output to Web pages, EJB applications, J2EE application clients, or Java thin
application clients. Integration Objects connect to the data source, navigate to the
desired data, extract the data, and store the data in properties of the Integration
Object, which can then be accessed by JavaServer Pages (JSP) pages.

A J2EE application is packaged as an .ear (Enterprise Archive) file. The .ear file
includes everything necessary to run the application on Host Publisher Server. The
elements that make up the .ear file cannot be shared with other applications on the
server. However, Host Publisher Studio allows some elements created for one
application to be reused in the creation of other applications. When the application
is built, a copy of the reused element is included in the application’s .ear file.

In a Host Publisher application, the elements that make up the .ear file include
Integration Objects, JSP pages, and support files.

Here is a summary of the steps for creating and building a J2EE application in
Host Publisher Studio:
1. Create an Integration Object in Host Publisher Studio to access a data source

and return desired data. See “Integration Objects” on page 10.
2. Build Web pages that use one or more Integration Objects to form a Web

application. See “Using Application Integrator to build J2EE applications that
use Integration Objects” on page 33.

3. Transfer the Web application to one or more Host Publisher Servers. See
“Transferring applications to a Host Publisher Server” on page 45.

4. Deploy (install) the application using the WebSphere Administrative Console.
Refer to the WebSphere documentation for more information.

© Copyright IBM Corp. 1999, 2002 9

You can also use Host Publisher Studio to create Integration Objects that are run
remotely. The two principal ways to do this are:
v You can create J2EE EJB-based applications. The Web module containing the EJB

Access Beans can be deployed separately from the EJB module, which runs
Integration Objects located on the Host Publisher system. See “Creating
applications that use Enterprise JavaBeans (EJB) technology” on page 42 for
details.

v You can create Integration Objects that take advantage of Web Services function
provided by WebSphere Studio tools at the 4.0.2 level or above, such as
WebSphere Studio Application Developer. With Web Services function, your
Integration Objects can access data from a Java program (applet or application)
running on a remote machine. See “Chapter 4. Using Web Services” on page 71
for details.

Integration Objects
Every Integration Object, whether you create it using the Host Access component or
the Database Access component of Host Publisher Studio, has two characteristics: it
interacts with a data source, and it is associated with a connection pool. The
following sections cover these characteristics that are common to all Integration
Objects.

Later in this chapter, you will find more detailed information about creating
Integration Objects using either the Host Access component or the Database Access
component:
v “Creating a Host Access Integration Object” on page 12, to create Integration

Objects that access data from a 3270, 5250, or VT application
v “Creating a Database Access Integration Object” on page 29, to create Integration

Objects that encapsulate a database statement

Interacting with a data source
Host Access Integration Objects interact with the host application by means of
macros. Macros connect to the host, interact with applications on the host, and
disconnect from the host. See “Building an Integration Object using macros” on
page 12 for details.

Database Access Integration Objects contain SQL statements to access data in the
database. See “Retrieving information from a database” on page 30 for details.

Defining connection pools
Every Integration Object is associated with a connection pool. A connection pool is a
collection of communication links to back-end data sources, such as 3270
applications or databases. When an Integration Object is run on behalf of a client
request and pooling is enabled, the Integration Object obtains an available
connection from a pool, uses it for access to the data source, then returns the
connection to the pool.

For each Integration Object you create, you can create a new connection pool, share
an existing connection pool, or (in Host Access) configure a default connection
pool.

10 IBM® WebSphere® Host Publisher Administrator’s and User’s Guide

After you have defined a connection pool, it can be associated with many different
Integration Objects. A copy of the connection pool becomes part of each application
that includes one of these Integration Objects, after the application is assembled in
Application Integrator.

The information specified in a connection pool
A connection pool specifies several kinds of information, including:
v Data that allows your Host Publisher application to connect to a host. For Host

Access Integration Objects, this data includes the host name. For Database
Access Integration Objects, it includes the URL of the database.

v Whether connection pooling is enabled. Connection pooling is a method of
keeping a connection to a host open for many data transactions, instead of
opening and closing a connection with each new request. Connection pooling is
designed to reduce the response time between a request from a client browser
and the display of the requested information on a Web page.
See “Enabling and disabling connection pooling” for more information.

v Optionally, a user list. User lists contain information about accounts (user IDs)
that a Host Publisher application can use to access a host or database. Each
entry in a user list includes a user ID, password, and description of the account.

v Connect and disconnect macros (in Host Access only).

See “Creating connection pools for Host Access” on page 14 and “Creating
connection pools for Database Access” on page 31 for more component-specific
information about connection pools, connection pooling, and user lists.

Enabling and disabling connection pooling
When connections are pooled, the overhead of establishing a connection is
absorbed in its first use. Each Integration Object that reuses this connection benefits
from the prior establishment of the connection and can run faster.

To illustrate, suppose a database Integration Object requests a connection. If
connection pooling is enabled and a connection is available, the connection has
already been made and is ready to use. If connection pooling is enabled, but a
connection is not available, the connection is created. If connection pooling is
disabled, a connection is always created.

When the Integration Object has completed, the connection is returned to the pool.
If connection pooling is enabled, the connection remains available and can be used
for the next requested connection. If connection pooling is disabled, the connection
is terminated.

For Host Access Integration Objects, when a connection is made to the host the
associated connect macro runs. When the host connection is ended, the disconnect
macro runs. Enabling connection pooling means that the connect macro is run only
when necessary to make a connection available. After a connection is available, it
can be used again and again without the overhead of running the connect and
disconnect macros for each connection request.

User lists
In Database Access, a user list is created by default with the user ID and password
you enter to connect to the database. Because multiple users can access the
database at the same time with the same user ID and password, user lists for
Database Access always contain only one entry.

Chapter 2. Using Host Publisher Studio to develop J2EE applications 11

In Host Access, a user list is not created automatically; you must define it
explicitly, for example, by clicking User List in the Host Configuration window. If
your application will access a host that allows multiple users to logon with the
same user ID, the user list might have only one entry. However, for a single-logon
host, which allows only one connection per user ID, the number of users who can
access the host at the same time using your application is limited to the number of
entries in the user list.

See “Defining user lists” on page 26 for more information about user lists in Host
Access.

Creating a Host Access Integration Object
To create Integration Objects that collect data from applications on the
terminal-oriented host, use the Host Access application. To create the Integration
Objects, you navigate to the information you want using a 3270, 5250, or VT
connection. Host Publisher records the keystrokes you use and lets you define the
host application screens that contain information.

This section provides a general description of the major function of Host Access:
using macros to build Integration Objects. Then it provides information to help
you with the following tasks:
v “Using the Host Access wizard” on page 13
v “Creating connection pools for Host Access” on page 14
v “Recording interactions with a host” on page 15
v “Defining a screen” on page 16
v “Defining global screens” on page 18
v “Identifying data to extract” on page 18
v “Generating an Integration Object” on page 19
v “Verifying a macro” on page 19
v “Editing a macro” on page 19
v “Setting preferences in Host Access” on page 19
v “Using advanced functions in Host Access” on page 22
v “Defining user lists” on page 26

Building an Integration Object using macros
The Host Access application is used to build Integration Objects that access data
from a 3270, 5250, or VT application. To do this, Host Access records macros that
contain information about the way you connect to the host, how you navigate to
the information you want to make available to your end users, and how you
disconnect from the host. These macros become part of the Integration Object you
create.

Host Publisher uses IBM Host On-Demand’s macro facility to provide an interface
where you can interact with a host and record the actions you take. The actions are
recorded as a macro.

A macro is an XML script that defines a set of screens. Each screen includes a
description of the screen, the actions to perform for that screen, and the screen or
screens that can be presented after the actions are performed.

12 IBM® WebSphere® Host Publisher Administrator’s and User’s Guide

Note: Macros are not used by Integration Objects created using the Database
Access application.

Macros work by following a sequence of host screens that you define. As you
navigate through your application using a terminal screen, you define:
v The screens
v The actions to take on each screen (that is, keystrokes)
v Which screens can appear next after the action has completed for a given screen

In Host Access, there are three types of macros:

Connect
Includes the information Host Publisher needs to connect to the host. The
connect macro should contain the steps necessary for logging on to a
system from as many initial states as possible. It should take into account
different paths that might occur because the previous connection failed or
was left in an unknown state. Host Publisher Server uses the connect
macro to attempt to connect to a system and to recover from a
previously-failed connection. See “Recording conditionals” on page 23 for
more information on recording alternate paths.

Data Includes information about navigating to, extracting, and organizing the
data you want to publish.

Disconnect
Includes information about how and when to disconnect from the host.
Typically, this means tearing down the network connection. Disconnect
macros prepare the host connection to cleanly disconnect.

In Host Access, the connect and disconnect macros are part of the connection pool
associated with the Integration Object. Only the data macro is part of the
Integration Object itself.

You can also define loops within the macro and alternate paths (for example, more
than one ″next screen″ for a given screen) to follow. Host Access includes a wizard
that guides you through recording macros, but you can use the Macro menu and
the toolbar to fine-tune them.

When you run your macro on Host Publisher Server by invoking your Integration
Object, your macro looks for the screens you defined to appear on the host
terminal and will execute the actions you defined for each screen.

Integration Object chaining might help improve your application’s response time or
decrease the amount of macro recording you must do. See “Integration Object
chaining” on page 73 for more information.

Experienced users can edit macro scripts after they have been created using Host
Access. See “Editing a macro” on page 19 for more information.

Using the Host Access wizard
When you use Host Access to create an Integration Object, it launches a wizard. To
start Host Access in Windows, click Start > Programs > Host Publisher Studio >
Host Access.

Chapter 2. Using Host Publisher Studio to develop J2EE applications 13

The wizard starts automatically. To use the wizard, provide the information it
requests and click Next to continue until the wizard indicates that the Integration
Object has been created.

The wizard prompts you for the information it needs to define the connection to
the host. It will then connect you to the host server you specify and guide you as
you log on to the host, navigate to the data you want to publish, select and
organize the data, and disconnect from the host.

If you prefer to create your Integration Object manually, you can bypass the
wizard and use the toolbar or menus.

Creating connection pools for Host Access
For each Integration Object, Host Access enables you to create a new connection
pool, configure a default connection pool, or share a connection pool that you have
already defined.

Applications do not share connection pools when they run on the server. But you
can define multiple applications that use the same connection pool; a copy of the
connection pool is included in each application. See “How applications are
assembled and packaged” on page 45 for details.

This section describes the tasks involved in working with connection pools. For a
general description of connection pools in Host Publisher Studio, see “Defining
connection pools” on page 10.)

Defining the connection pool
You can use the Connection Pools tab in Host Access to define connection pools or
follow the Host Access wizard to specify the connection pool. You can also use the
Connection Pools tab to modify attributes of the pools, including connection
configurations and user lists. You cannot use this tab to select the pool an
Integration Object will use; use the Macros tab to select a pool for the Integration
Object.

When you create a new connection pool in Host Access, connection pooling is
enabled by default. However, when you configure a default connection pool,
connection pooling is disabled by default.

To create a new pool, open the Host Access wizard and then:
1. Select Create a new Integration Object, then click Next.
2. Host Configuration appears as the title of the wizard pane. Select Create a new

pool and then specify a pool name.
3. Click Advanced to open the Connection Pool Configuration window where you

can enable connection pooling, specify how many connections you want to
remain active and ready for use, and specify when to release connections. Click
OK when you are done.
Click User List if you want to configure a user list (see “Defining user lists” on
page 26). When you are done configuring a user list, click OK.

4. In the Connection Information section in the wizard pane, define the
connection configuration to use for the pool. Often, this will mean connecting
to a host machine. You need to choose the type of connection you want,
provide the name of the host, either as a TCP/IP hostname or as an IP address,
and provide a specific logical unit (LU) or LU pool name, if any, to use. To save

14 IBM® WebSphere® Host Publisher Administrator’s and User’s Guide

time, you can define a connection to a particular host once, then share the
configuration between pools that connect to the same host.
v To create a new connection configuration, select Create a new connection

configuration and provide the information to establish a connection to the
specified host.

v To use a previously-defined connection configuration, select Share an
existing connection configuration. Then select a name from the list and skip
to the end of the procedure.

5. Click Advanced to open the Connection Configuration window where you can
define connection and security information for new connections. Click OK
when you are done.

6. Specify the host server information.
7. If you enable express logon, when you choose to insert a user ID or password,

you must define an application ID and a user ID and password. (See “Express
logon considerations when using Host Publisher Studio” on page 83 for a
detailed description of configuring for express logon.)

Customizing the connection pool
If you want to edit your connection pool information at any time, you can access
all connection pools created in Host Publisher Studio from the Connection Pools
tab. The pool used by the current Integration Object is highlighted.

Use the tabbed panes on the right to configure connection pooling options. You
can:
v Configure time-outs and connection limits
v Change connection configuration information
v Change the user list associated with an Integration Object
v Edit the properties of a user list member
v Create a new user list

Recording interactions with a host
When you use the Host Access wizard, it guides you as you interact with the host
to navigate to the screen that contains the data you want to publish, indicate the
specific data, and define the way it should be presented. You use a terminal screen
just as you normally would, and Host Publisher records your interactions as a
macro. As you record, macro screens and actions are added to the macro tree view,
which is displayed in the left pane.

In the data macro, you can use the Gather Data and Do not Gather Data choices
to create an Integration Object that extracts data, or to create an Integration Object
that only navigates through selected terminal screens without gathering any data.

Note: The connect and disconnect macros are part of the connection pool, not the
Integration Object itself; however, the data macro is part of the Integration
Object.

As you record your macro, you can stop and start recording at any time. If you
select Connect, Data, or Disconnect macro in the tree diagram and then click
Record, you begin recording at the end of the selected macro if the terminal screen
matches the last screen in the macro selected. If the terminal screen does not match
the last screen in the macro you selected, you cannot begin recording here.

Chapter 2. Using Host Publisher Studio to develop J2EE applications 15

If you select a screen with a definition matching the currently-displayed screen and
then click Record, you begin recording at the selected screen prior to any
previously recorded actions or keystrokes for this screen. If you click Record on
any action or keystroke for a screen with a matching definition, you begin
recording after the selected action or keystroke.

If you select a screen with a definition that does not match the currently-displayed
screen and then click Record, a jump screen is inserted after the currently-selected
screen and you begin recording after the jump screen. (A jump screen is a specific
screen that follows a step in a macro; in effect, the macro jumps to that screen.)

You can use the toolbar and menus to perform many tasks, including:
v Recording interactions without using the wizard
v Defining an entry field
v Adding conditional paths or looping to the macros you create (see “Using input

variables, conditionals, and looping” on page 22)
v Defining a screen

After you stop recording, you can use the shortcut menu to modify a specific step
in the macro by selecting a step in the macro tree and right-clicking on it.

Later, when you execute your Integration Object on the Host Publisher Server,
your recorded macros will run so that the steps you followed to access the data
during creation of the Integration Object are the same steps used to return the data
to the Web browser.

Defining a screen
Defining a screen provides a way for the macro to identify that it has reached the
desired host screen. When the macro plays, it waits until the screen is recognized
as defined before playing more keystrokes. (Each step in a macro has at least one
screen defined as the possible next screen; Host Publisher waits for an expected
screen to appear before playing the actions associated with that screen.)

When you are prompted to define a screen, before you can enter more information
on the host terminal screen, you must either define the screen or respond that you
do not want to define the screen. If you choose not to define the screen, the screen
is unrecognized. When the completed macro plays an unrecognized screen, instead
of waiting for the expected screen, the recorded keystrokes play regardless of
which terminal screen appears.

In addition to the ability to recognize screens by text area, cursor position, and
number of fields, the following recognition capabilities are provided.
v Comparison of text case: Case sensitive is selected by default.
v Comparison of text color to a specified color: You can change the coordinates of

the color region and select different background and foreground colors.
v Comparison of a region to a value: You can change the start and end position

coordinates of the defined region on the terminal screen.
v Comparison of two region values: You can change the start and end position

coordinates of the first and second regions you defined on the terminal screen.
The screen will be recognized whenever the two regions are the same—even if
they are both blank.

16 IBM® WebSphere® Host Publisher Administrator’s and User’s Guide

v Multiple screen recognition criteria: You can combine more than one criteria to
form a logical expression for a single screen, and you can choose whether each
criterion is optional or non-optional.

v Logical NOT: You can match a specified criterion or not match a specified
criterion.

Some tips for defining a screen in a macro are:
v Never define a screen by text that could change over time, such as a connection

identifier, date, time stamp, or user ID.
v Define a screen using specific criteria to ensure that only one screen matches any

set of next screens.
v Define a unique string that can be located anywhere on the screen without

specifying its location; this eliminates the possibility of the string being in a
different position and your screen not being recognized.

v Some screens arrive in segments, depending on the complexity of the screen.
If you specify a screen description that identifies a part of the screen that arrives
in one of the first segments, Host Publisher might recognize the screen and start
performing the actions before the complete presentation space on the terminal
has been updated. Therefore, make sure you always specify a detailed screen
description to ensure that the last screen segment arrives before the actions in
the tag are executed.
To find out whether your host application screens are segmented, turn on
tracing in your host emulator or on the TN3270 server.

Note: Screen segmentation is controlled by the host application and not by
Systems Network Architecture (SNA) parameters such as RU sizes or DLC
MTU sizes. In SNA, a screen segment corresponds to a chain.

v If you cannot determine whether a screen is segmented, and you want to
reliably recognize the screen in a macro, you can edit the macro and add a pause
attribute to the screen that is displayed before the screen in question. Pause is
the time delay, in milliseconds, between when actions of a screen description are
performed and when valid next screens of the screen description are registered
to the Host On-Demand screen recognition logic. The pause default is 200
milliseconds. This attribute must be modified using a text editor. For example:
<screen name="ready.2" entryscreen="true" exitscreen="false"
transient="false" pause="3000">

Notes:

1. If the host application sends various screen segments in response to inbound
keystrokes sent during actions, this delay can be used to ensure that all
segments of the screen update arrive before the next screen match is
attempted. Pause introduces a delay in the macro execution, which affects
performance and response time. If no application screens seen by a macro are
segmented, setting pause to zero might result in improved Host Publisher
runtime performance and scalability.

2. There is a global pausetime attribute in the first tag in the macro that sets the
default pause time for all screens in that macro. You can override this
attribute by modifying the pause parameter.

v Define global screens and associated actions for those screens that might appear
at any time, such as monthly reminders or messages from colleagues. Global
screens enable you to define a generic action to take (such as a clear screen
command) if such a screen is encountered, enabling the macro to return to the
normal flow. See “Defining global screens” on page 18 below.

Chapter 2. Using Host Publisher Studio to develop J2EE applications 17

Note: If you use Host Access to record your macro, you cannot navigate back
through a screen definition. To change the definition, you must right-click
on the screen in the macro tree and click Modify.

Defining global screens
Global screens handle application screens that might appear at any time during the
execution of your macro. When the same action is required each time such a screen
is encountered, you can use global screens. During the execution of a macro, each
next screen is checked sequentially in the order it is listed. If a next screen does not
match, the set of defined global screens are checked for a match. If a match is
found, the action associated with the global screen is performed and the macro
continues. After the actions associated with the global screen are executed, the next
screens are examined again for matches in the order they are listed.

For example, if you are recording a 3270 VM application logon sequence as a
macro, you might notice that messages sometimes display after you type the user
ID and password. Each time you see one of these messages, you press Clear to
remove the message and continue with the macro. When you record the macro
that defines these message screens, define the screens as global screens and then
press Clear. In this way, you do not need to anticipate when the message screens
will occur. The macro player automatically executes a clear when the screens are
encountered in the connect, data, or disconnect macro.

Identifying data to extract
Extracting data from the host application is one of the major functions of an
Integration Object. This is the data that will be displayed on a Web page in your
Host Publisher application. In Host Access, data is extracted only in the data
macro, and every host screen from which data is extracted must be defined.

If you selected Gather Data in the first window of the data macro, navigate in the
terminal session to the desired data and then select the data for extraction. You can:
v Select a table of data
v Select a region of text data
v Select multiple regions on a screen by choosing Extract More Data

Assign a unique name to each region or box of text you select.

For example, if your Integration Object provides a connection to a telephone
directory application, your Web user might enter a name to search for. The
application displays a table of information about the people whose names match.
You can publish all the columns in the table, or you can specify only some
columns. You might want to publish only the names and phone numbers and not
the office address or job description. You might also want to provide the name of
the person’s manager, which is displayed on another screen. Using Application
Integrator, you can select all the information you want, arrange it, and display it to
the user as though it were one piece of data.

You can also extract data by using an icon on the toolbar or by clicking Insert >
Data Extract from the Macro menu.

Note: If you want an application to trace the x and y screen coordinates of the
data that is being extracted, you can use a customized Integration Object
template. Refer to the IBM WebSphere Host Publisher Programmer’s Guide and
Reference for details about modifying Java coding templates.

18 IBM® WebSphere® Host Publisher Administrator’s and User’s Guide

Generating an Integration Object
After you record your disconnect macro, you create an Integration Object by
clicking File > Save. If you have deselected Automatically Generate Integration
Object on Save, you create an Integration Object by clicking File > Create
Integration Object.

You are prompted to name your Integration Object. Use a unique name for each
Integration Object to avoid overwriting existing objects.

Verifying a macro
After you record a macro, verify that it works correctly. To verify a macro in Host
Access:
1. Open the Integration Object that contains the macro you want to verify. You

will see the steps of your macros displayed in the tree under the Macros tab.
The connect macro is highlighted.

2. On the toolbar, click Play to play the connect macro.
3. If there are no errors, click Play again to play the data macro and inspect the

captured data.
4. Click Play again to play the disconnect macro.

You will get a message if there are errors that prevent the macros from completing.
If a macro does not complete correctly, it might be because there are some screens
that appear that you did not define. You might need to define those screens (often
these are global screens, such as screens that appear at different places and require
you to press Clear or another key to continue).

Editing a macro
Advanced users can edit recorded macros in a text editor. To do this:
1. In the Host Access macro tree, stop recording. Then either right-click the

Connect Macro, Data Macro, or Disconnect Macro and click Modify, or click
Modify from the Edit menu.

2. Click Edit in the Global Macro Information window.
3. Make the necessary changes to the text in the Edit Macro window, then click

OK.
4. Click OK on the Global Macro Information window to update the macro tree.
5. To save your changes, save the Integration Object associated with this macro.

For detailed information about the syntax of macro scripts, refer to the IBM
WebSphere Host Publisher Programmer’s Guide and Reference.

Setting preferences in Host Access
As you become experienced with using Host Access, you can customize it
according to your preferences. This section describes the contents of the Options
menu and describes how to change keyboard settings.

Using the Options menu
This section describes the selections you can make on the Options menu in Host
Access.

Chapter 2. Using Host Publisher Studio to develop J2EE applications 19

You can make these selections at any time, except when a pop-up window has
focus. You can undo them simply by reselecting the appropriate selection. The
current setting is saved by Host Publisher Studio and remains in effect every time
Host Access is started.

Configure Object Chaining: When you select this option, you can enable and
define Integration Object chaining for the Integration Objects you create. See
“Integration Object chaining” on page 73 for a complete description of chaining.

Automatically Generate Integration Objects on Save: When you select this
option, Host Access creates an Integration Object each time you save your macro.
If you do not select this option, you must use File > Create Integration Object to
create an Integration Object.

The default is to create an Integration Object each time you save your macro.

Prompt on Unrecognized Screens: When you select this option, Host Access
prompts you to define the screen whenever you navigate the terminal to an
unrecognized screen while recording.

The default is to prompt.

Show Hidden Fields on Terminal: When you select this option, you can see
hidden fields, such as passwords, on the terminal screen. This helps you navigate
around text areas that contain hidden fields when you extract data.

The default is not to show hidden fields.

Display Warning messages: If you are an experienced user of Host Publisher
Studio, you might not want to see the warning messages that are intended for less
experienced users. When you use Host Access, you can suppress the display of:
v Confirmation messages: Messages that allow you to confirm or cancel a request,

for example, ″Are you sure you want to stop recording?″

To suppress the display of confirmation messages, deselect Options > Display
Warning Messages > Display confirmation messages.

v Validation messages: Messages that warn you about macro conditions that
might cause problems when you play a macro, for example, ″The first screen of
the Connect macro is not defined. The Integration Object might not run. Do you
want to save your changes?″

To suppress the display of validation messages, deselect Options > Display
Warning Messages > Display macro validation messages.

The default is to display all messages. We recommend that you use the default
unless you are an advanced user of Host Publisher Studio.

Play Another Macro: When you are defining a chained Integration Object that is
middle or last in the chain, this option enables you to play the data macros of
preceding Integration Objects in the chain. Select Play Another Macro after the
terminal screen shows a connection and you have stopped all other macros. The
terminal screen must match the first screen of the macro you are playing.

Create EJB 1.1 Integration Object Support: If you select Create EJB 1.1
Integration Object Support, Host Publisher creates the supporting Java files that
enable Integration Objects to be processed in an EJB 1.1 environment. These files
are created when you save the Integration Object. See “Creating applications that

20 IBM® WebSphere® Host Publisher Administrator’s and User’s Guide

use Enterprise JavaBeans (EJB) technology” on page 42 for more information about
incorporating EJB support into your Integration Objects.

The default is to not create the files for EJB 1.1 support.

EJB Integration Object Properties: You can change the suffixes on the names of
some files created for EJB Integration Object support.

The default suffixes are:
v Properties for the Properties Object file
v Helper for the Helper Object
v Access1 for the EJB 1.1 Access Bean

For more information about changing these properties, see “Specifying default
properties for EJB Integration Objects” on page 44.

Create Web Services Integration Object Support: If you select Create Web
Services Integration Object Support, Host Publisher creates the supporting Java
files that enable Integration Objects to be processed in a Web Services environment.
These files are created when you save the Integration Object.

The default is to not create the files for a Web Service.

For more information about creating Web Services, see “Chapter 4. Using Web
Services” on page 71.

Web Services Integration Object Properties: You can change the suffixes on the
names of some files created for Web Services support.

The default suffixes are:
v Properties for the Properties Object file
v Helper for the Helper Object

The suffixes are used only for the Web Services Integration Object associated with
this Integration Object. You can specify different suffixes for each Web Services
Integration Object you create. If you open a different Integration Object, the suffix
is reset to the value you assigned previously to that Integration Object. If you
create a new Integration Object, the suffix defaults to the value in Studio.ini.

For more information about changing these properties, see “Specifying properties
for Web Services Integration Objects” on page 72.

Create Remote Integration Object: If you select Create Remote Integration
Object, Host Publisher creates the supporting Java files and a sample Java
program that retrieves Integration Object data from a remote machine. These files
are created when you save the Integration Object.

We recommend that you use Web Services rather than Remote Integration
Objects—see “Accessing Host Publisher from a remote machine using Web
Services” on page 72 for more information. For information about creating Remote
Integration Objects, see “Accessing a remote machine using Remote Integration
Objects” on page 50.

The default is to not create the files for a Remote Integration Object.

Chapter 2. Using Host Publisher Studio to develop J2EE applications 21

Remote Integration Object Properties: Use this option to change the prefix on the
names of the files created for each Remote Integration Object. See “Accessing a
remote machine using Remote Integration Objects” on page 50 for more
information.

The default prefix is Remote.

Changing keyboard settings
When the terminal pane is visible, you can edit keyboard settings to assign keys or
key combinations as shortcuts to functions in the terminal pane. If you want to
edit keyboard settings, from the menu bar, click Terminal > Keyboard > Edit
Keyboard Settings. Each keyboard configuration is saved as filename.hpk in
Install_dir\Studio\Preferences.

You should not delete any predefined host functions or change the keystrokes
associated with a predefined host function. If you delete a predefined host function
or change its keystrokes, the original values are restored when you save the
keyboard settings. However, you can change or unassign the key assigned to a
predefined host function.

For example, to assign a new function to the F2 key in the Edit Keyboard Settings
window, you would:
1. Select Host Functions in the Category box.
2. Press the Add key to add a new key definition.
3. Assign a new function name—for example, Delete Field—and specify the

appropriate keystrokes. Click OK.
4. Highlight Delete Field in the list, and assign the F2 key to it. When the

warning prompt appears, asking whether you want to reassign F2 to the new
Delete Field function, click Yes.

Note: To delete a keyboard configuration, delete filename.hpk for that
configuration.

Using the keypad
Click Terminal > Keyboard> Show Keypad to display the keypad. The keypad is
displayed in the terminal pane and allows you to select function keys such as PF1
through PF24, PA1, PA2, and Attn.

To send a key to the host, click the key in the keypad or use Tab to move focus to
the key and then press the Spacebar.

Using advanced functions in Host Access
This section describes advanced functions you can use as you develop Integration
Objects in Host Access:
v “Using input variables, conditionals, and looping”
v “Securing passwords and other sensitive data in macros” on page 26

Using input variables, conditionals, and looping
The macros you record using Host Access can be simple or complex. Simple
macros follow a straightforward path; each step leads to only one next step. Most
often, the macros you record will be complex; they will include steps that lead to a
choice of several steps, or they will include sequences of steps that repeat. When
you have an input variable, for example, the user could enter information that
leads to another prompt or to a loop of repeated actions. “Using input variables”
on page 23

22 IBM® WebSphere® Host Publisher Administrator’s and User’s Guide

on page 23 below, “Recording conditionals”, and “Recording loops” on page 24 ,
describe how you can use commands on the toolbar to add complexity to a simple
macro.

Using input variables: You use input variables for information you want the user
(or another Integration Object) to provide. This information is not coded into your
macro and is provided when the user makes a page request. For example, if your
application enables the user to search for information about a person, you could
use an input variable to contain the name to search on.

To insert an input variable:
1. Start recording a macro.
2. When you reach the point where the user will enter information, click the

Insert input variable button on the toolbar.
3. On the window that appears, type a name for the variable and the value for

the field. You use the name when you design a Web page that uses this
Integration Object. For example, you might type person for the input variable
and Smith, Mary for the value of the input variable to be used during macro
recording session. The value you provide is used only in the current recording
and does not become part of the macro. The value can be null.

Recording conditionals: Conditionals enable you to handle the situation where a
host application could respond to a command (or keystrokes) with more than one
screen. Conditionals also enable you to record an alternate path for your macro to
follow. When you record a conditional, your screen will have more than one next
screen defined in the macro tree.

For example, Figure 2 shows an example of a conditional in a connect macro.
When the connection is established, the terminal screen can display either a
logged-in screen or a welcome screen that must be cleared before the logged-in
screen is displayed. You can use Insert Conditional to define how Host Publisher
handles either screen.

Figure 2. Host Publisher conditionals

Chapter 2. Using Host Publisher Studio to develop J2EE applications 23

To insert a conditional in a macro:
1. Record one path through the macro. For example, record the macro with the

connection in a state so that the logged-in screen appears.
2. Put the connection in a different state, then replay the macro and cause the

alternate condition to occur. Another way to cause an alternate condition is to
specify a different value for an input prompt.

3. Host Access will report that a different-than-expected screen was encountered
and display the Macro Play Error window. Click Record an alternate path in
the Macro Play Error window.

4. Record the keystrokes you take to move from the new screen back to the main
path of the macro, then stop recording. You might have several screens to
define before you return to the macro. One way to get back to the main path is
to highlight the last step in the conditional path and then click Jump to
defined screen on the toolbar. On the window that appears, select the name of
the screen in the main path you want to use as the destination for the jump.
You must have already defined the screen before you can select it to be the
destination of a jump.
You can have several conditions for one step of a macro; for example, one
screen might have several next screens associated with it in the macro tree.
Each screen that you define has actions associated with it. When you play your
macro and Host Access encounters one of the possible screens you specify, it
performs the actions associated with that screen.

In the macro tree, the actions and the next screens associated with a screen are
indented under the screen’s entry.

Recording loops: Looping enables you to define an action that should be
repeated.

For example, an application might return a list of data that requires more than one
screen to display. You want your application to retrieve all of the data, so you need
to define the macro in such a way that it displays each screen one at a time,
retrieves data from each screen, and recognizes the last screen. The Start loop
control on the toolbar enables you to do this. Figure 3 on page 25 illustrates the
process.

24 IBM® WebSphere® Host Publisher Administrator’s and User’s Guide

To insert a loop in a macro:
1. Start recording your macro.
2. When you have reached the point where the loop will occur, click Start loop on

the toolbar.
3. The Recording Loop wizard starts and provides the steps you need to perform

to record the loop. Click Next to begin.
4. Follow the wizard instructions about gathering data.
5. Click Next to continue.
6. Type the keystrokes that will cause the terminal to advance to the second

screen in the loop. Click Next.
7. Host Access stops recording your actions. You can now choose to stop the loop

after a fixed number of iterations, or define a unique screen where the loop will
stop. If you define a screen, be sure to supply criteria that uniquely
differentiates that screen from other screens the macro is likely to encounter.

8. If you are defining a unique screen, Host Publisher stops recording while you
navigate to the final screen of the loop. Host Access does not record the steps
you take to navigate to the last screen because when the macro is running, this
screen appears after the loop repeats. After you reach the screen that indicates
the end of the loop, click Next to define the screen. In your definition, identify
something on the screen that is displayed only when the loop is complete; for
example, use words like Bottom or Finished, or use empty screen lines that do
not appear until the last screen of the loop.
If you choose to stop the loop after a fixed number of iterations, decide how
many times you want the loop to repeat. Host Publisher stops recording and
you can navigate to the final screen of the loop.

9. Click Next. The Recording Loop wizard ends and the loop is complete.

Figure 3. Host Publisher looping

Chapter 2. Using Host Publisher Studio to develop J2EE applications 25

Note: If your loop contains a data extraction, when you play the macro in Host
Publisher Studio an extraction occurs every time the loop executes.
However, the macro behaves differently when it is played on the server. On
the server, the extracted data is accumulated and then is returned to the
application as one value at the completion of the loop.

Securing passwords and other sensitive data in macros
When you record a macro using Host Access, you can specify that user ID and
password values be provided to a host application in a variety of ways when your
macro runs on the server.
v They can be hard-coded in the macro; for example, for an iSeries or VT host

where the same user ID and password can be used several times to log on to an
application simultaneously. When you record or play a macro using Host Access,
you might notice that hidden fields on the Host On-Demand terminal are placed
in the macro tree as asterisks; however, when the macro is written out to the file
system on the server or on the Host Publisher Studio machine, these fields are
plain text and your sensitive data is visible.

v The user ID and password parameters can be provided externally (for example,
by using an HTML form in the Web environment), and used to set the
Integration Object’s input properties that represent those macro parameters. To
set up this option, click Insert Input Variable in Host Access.

v One or more user IDs and passwords can be defined in a user list. To define a
user list in Host Access, see the following section, “Defining user lists”.
Application Integrator provides two levels of optional encryption to protect this
information on the server. The user list is not encrypted in Host Publisher
Studio. See “Setting security options” on page 49 for details.

v The user ID and password parameters can be provided using express logon. See
“Express logon” on page 82 for more information.

Defining user lists
User lists contain information about accounts (user IDs) that an application can use
to access a host. Each entry in a user list contains the user ID, password, and
descriptions for an account. This list of user ID and password pairs provides
values for macros to use at runtime when connecting to the data source.

Defining a user list to access a single-logon host
For an application that accesses a single-logon host, it is mandatory that the user
IDs in a user list be unique to the application. This is because a connection cannot
be created when a user ID is already in use—whether by the same application,
another application, or a clone of the application. As a result, an application
requesting such a connection would fail to run.

When you create a user list in Host Access, you can only create one entry (user ID
and password) in the user list. You use this entry to record the connect macro so
that it uses this user list to connect to the host. You can also use this entry to play
the connect macro to test that it is correct. The user list is associated with a
connection pool, which can be used with other Integration Objects that access the
same host.

To help ensure that you have unique user IDs for applications that access a
single-logon host, entries can be added to a user list only in Application Integrator.
When you import an Integration Object associated with a user list into an
application, a copy of the user list you created in Host Access is made in the
application’s directory. Using Application Integrator, you can customize the
application-specific user list by adding users, deleting the entry you used to record

26 IBM® WebSphere® Host Publisher Administrator’s and User’s Guide

the connect macro, and making other changes. This is the user list that eventually
is packaged into your application’s .ear file.

Creating a new user list
To define a new user list, do one of the following:
v Select Create a new pool in the Host Configuration window. When you click the

User List button, you are prompted to name the user list and put one user into
it.

v Click the Connection Pools tab in the Object Configurations pane and select a
connection pool. Then click the User List Configuration tab in the Pool
Configuration window. When you click the New button, you are prompted to
name the user list and put one user into it.

To create a connect macro that will utilize a user list, click the Macro tab and begin
recording your macro. The Integration Object you are recording must use a
connection pool that has a user list. Navigate to the place where you want to enter
the user ID, select Insert User ID from the icon bar or menu bar, and click OK.
The macro tree shows the entry as _userid.

To include the password, navigate to the place where you want to enter the
password, then select Insert Password. The password associated with the user ID
is inserted automatically. The macro tree shows the entry as _password.

If the Integration Object performs several logons to obtain data, and if you
construct your user list so that all the user IDs and passwords are valid for all of
the logons, then you can record your macro using a user ID and password from
the Host Access toolbar for each logon attempt. The same user ID and password
will be used for each logon attempt.

When you play the connect macro to test that it is correct, it uses the user ID and
password in the user list to connect to the host.

Note: Data in user lists can be accessed only from a connect macro. If you write a
data macro that logs on to a host application, you cannot obtain the user ID
and password from a user list; you must use one of the other means defined
in “Securing passwords and other sensitive data in macros” on page 26.

Working with user lists in Host Access and Application
Integrator
Here is the process by which you customize a user list for an application that uses
Host Access Integration Objects:
1. Create an Integration Object that utilizes a user list, as described in “Creating a

new user list”. The list contains one user ID, along with its password and a
description. The list is stored in the SessionDefs directory as a file with the
.userpool extension. (See IBM WebSphere Host Publisher Programmer’s Guide and
Reference for information about Host Publisher file formats.)

2. Using Application Integrator, import the Integration Object with which the user
list is associated into an application. An application-specific copy of the user list
is made in the application’s directory. The application now has its own user list,
which is not shared by other applications.

3. Customize the application-specific user list in Application Integrator. (See
“Connection Pools” on page 38.) Customization tasks include:
v Adding user IDs and passwords for the application to use when it connects

to the host. For single-logon hosts, these user IDs and passwords must be
unique: they cannot be in the user lists for any other applications.

Chapter 2. Using Host Publisher Studio to develop J2EE applications 27

v Deleting the original entry, with which you recorded and tested your connect
macro in Host Access.

v Making other changes if desired.

Note that when you customize an application-specific user list in Application
Integrator, the changes do not affect the original user list you defined in Host
Access. Conversely, if you change a user list in Host Access, the changes do not
affect copies of the user list in applications you have already developed in
Application Integrator.

4. Assemble the application .ear file in Application Integrator by using the
Transfer to Server wizard or by clicking File > Create J2EE Archives. The
application-specific user list is included in the .ear file

If another application imports an Integration Object that uses the same connection
pool (and the same user list), a new application-specific copy of the user list is
created for that application.

Note: There are special considerations for defining user lists in a cloned
environment. See “Cloning and user lists” on page 82 for more information.

Runtime processing of user lists
To illustrate how user lists function when applications are executed on the server,
imagine that you have created an application that connects to a host and has
various user accounts it can access to connect. The accounts have associated user
IDs and passwords.

If you have a user list associated with the connection pool, and you have recorded
your connect macro to use this list, Host Publisher uses the list you defined to
supply the values that it passes on to the host when you run your Integration
Object on Host Publisher Server. If the first user ID in the list is in use, Host
Publisher uses the next user ID (unless you have specified that user IDs can be
connected more than once).

Host Publisher tracks the IDs that are being used and updates the list as IDs
become available for use; for example, imagine your application has three IDs and
passwords as follows:

ID Password

pam pampw

sarkar sarkarpw

villari villaripw

At runtime, if pam is in use, Host Publisher Server uses sarkar. If pam then
becomes available, Host Publisher uses pam for the next connection. If pam and
sarkar are both in use, Host Publisher uses villari. If all three IDs are in use, Host
Publisher rejects the request for a new connection, and your application must wait
for the next available ID.

Customizing a user list created with an earlier version of Host
Publisher
A user list defined in Host Access in Host Publisher Version 4.0 contains only one
entry. A user list defined in a previous version of Host Publisher can contain more
than one entry, but you cannot use Host Access to add additional entries. You must
use Application Integrator to add entries.

28 IBM® WebSphere® Host Publisher Administrator’s and User’s Guide

To modify or delete entries in a user list that was defined in an earlier version of
Host Publisher, click the Connection Pools tab in the left pane, select a connection
pool, and click the User List Configuration tab in the right pane.

When you create an application using Application Integrator, copies of user lists
become application specific. In Application Integrator, the Modify User List button
in the Select Connection Pools window enables you to customize the user list
associated with an application. You can add, edit, or remove users.

For information on adding additional properties to a user list, refer to the IBM
WebSphere Host Publisher Programmer’s Guide and Reference.

Creating a Database Access Integration Object
Use the Database Access application to create Integration Objects that encapsulate
a database statement. To create the Integration Objects, you specify your structured
query language (SQL) statement. If you are querying a database, you specify the
data you want to retrieve from the database table.

This section provides information to help you with the following tasks:
v “Using the Database Access wizard”
v “Defining database connections”
v “Retrieving information from a database” on page 30
v “Generating an Integration Object” on page 30
v “Verifying an SQL statement” on page 30
v “Creating connection pools for Database Access” on page 31
v “Using the Options menu in Database Access” on page 32

Using the Database Access wizard
When you use Database Access to create an Integration Object, it launches the
Database Access wizard. To start Database Access in Windows, click Start >
Programs > Host Publisher Studio > Database Access.

The Database Access wizard starts automatically. Tabs in the wizard guide you
through the process of building and executing a valid SQL statement, as you
provide the requested information for each tab. You can navigate by clicking Back
or Next at the bottom of the window. When you complete the wizard, the
Integration Object is created when you save the file or when you click Finish.

Defining database connections
Before you can build your SQL statement to access the data you want to publish,
you need to connect to your database. Select a database driver. Then replace
[database] in the Database URL field with the name of the database or the host
connection information for the database. Type any required user ID and password.
Click Connect to connect to your database.

Notes:

1. Host Publisher does not install or set up Java Database Connectivity (JDBC)
drivers. You must ensure that the drivers are installed on the machine running
Host Publisher Studio and that they are at the same FixPack level as the drivers
on the server where your applications will run.

Chapter 2. Using Host Publisher Studio to develop J2EE applications 29

2. So that you will be able to connect to your database, you should define the
paths to the JDBC drivers in your machine’s system environment classpath. On
Windows platforms, you access the System Environment window from the
Control Panel.
(You can also define the path on the -classpath statement in the
install_dir\Studio\dbaccess.bat file, and—if you launch Database Access from
the Application Integrator—in the install_dir\Studio\webbridge.bat file, where
install_dir is the directory in which Host Publisher is installed. However, we
recommend that you define the path in your machine’s system environment
classpath instead of in the .bat files.)

Retrieving information from a database
The Database Access wizard helps you navigate to the tables that contain the data
you want, specify conditions to identify the data, and sort the data you want to
publish.

You specify the SQL statement type and select the tables in the database to access.
You determine which columns of the tables to include, applying conditions to the
data in the columns. You can also sort the order in which the data is displayed.

The SQL statement types are:
v Select
v Select Unique
v Insert
v Update
v Delete

After Database Access guides you through creating an Integration Object, you can
use the Application Integrator application to create a Web page where the data will
appear.

Note: When a database query (such as select) is made and the field is empty, the
database returns a value of null. As a result, the Host Publisher database
Integration Object returns a value of null to the invoker. By default, JSP
pages generated in Application Integrator display null values as ″null″—not
as a string of blanks. If you prefer that null values appear as blanks, you
need to modify the JSP pages so that the null values are displayed as blanks.

Generating an Integration Object
After you create your SQL statement, click Finish (or click File > Save) to create an
Integration Object.

After you import a completed Integration Object into an application and publish it,
Host Publisher will use the SQL statement you created to access the data that will
be returned to the Web browser.

Verifying an SQL statement
To verify your generated SQL statement, click Run SQL on the SQL tab. If
successful, a result window displays your results with a maximum number of
records. You can specify the maximum number of records to display by clicking
Run SQL Settings This maximum is only used by Database Access to run a
sample of your SQL statement. The maximum will not be used when your
Integration Object executes on the server; all of your records will be returned when

30 IBM® WebSphere® Host Publisher Administrator’s and User’s Guide

executing on the server. Setting a maximum number of records to display using
Database Access will avoid some out-of-memory conditions because your server is
likely to have more memory than your Studio machine.

If an error occurs when running the generated SQL statement, the Database Access
Exception Window opens. When this window opens, do the following:
1. Note the cause of the error.
2. Click OK to exit the window and return to the SQL tab.
3. Make corrections to the data on the appropriate tabs.
4. Return to the SQL tab.
5. Click Run SQL again.

Creating connection pools for Database Access
You can use the Connection Pools tab in Database Access to define connection
pools. (For a general description of connection pools in Host Publisher Studio, see
“Defining connection pools” on page 10.) You can also use the Connection Pools
tab to modify attributes of the pools, including connection configurations and user
lists.

For each Integration Object, Database Access enables you to create a new
connection pool or share a connection pool that you have already defined.

If you have followed the tabs of the Database Access wizard in order, you have
already connected to a database. The data on the Connection Pools tab will be
primed with the database driver, database URL, user ID, and password you used
when you connected to the database.

The default for connection pooling is disabled. Click Pool Properties if you want
to enable connection pooling for this connection pool. If you do not use connection
pooling, your Integration Object connects to the database each time you request a
connection. Connection pooling keeps one or more connections to the database
initialized, which might reduce the response time between when a client with a
browser requests information and when it is displayed on the page, especially if
you are using a remote database. You specify how many connections you want to
remain active in the pool and ready for use, and when to remove connections from
the pool.

You can create a user list, which contains a user ID and password associated with
a particular connection pool. User lists contain information about accounts (user
IDs, passwords, and descriptions) that a Host Publisher application can use to
access a database. For more information about user lists, see “Defining user lists”
on page 26.

To create a user list in the main Database Access window:
1. Click the Connection Pools tab.
2. Use the fields in the User List Configuration section to supply the user ID and

password your application will use when connecting to the data.
v The user ID and password default to the values used on the Connect tab to

connect to the database.
v The name of the user list defaults to the name given to the Integration Object

when it is saved.

A user list is created by default, unless you select Prompt for connection values at
runtime.

Chapter 2. Using Host Publisher Studio to develop J2EE applications 31

In Database Access, you can update the user list by opening it, clicking the
Connection Pools tab, and modifying the information in the User List
Configuration section.

In Database Access you can specify only one user ID and password for each
connection pool. This is because user IDs and passwords for databases are always
reusable; that is, they can be used by more than one active connection to the
database.

User lists are created in the SessionDefs directory by Database Access. When you
import an Integration Object into an application using the Application Integrator,
the user list is copied to the application directory. This creates an
application-specific copy of the user list, which you can customize. This copy of
the user list becomes part of the application’s .ear file before the application is
transferred to the server.

Using the Options menu in Database Access
This section describes the selections you can make from the Options menu in
Database Access.

You can make these selections at any time, except when a pop-up window has
focus. You can undo them simply by clearing the appropriate selection. The current
setting is saved by Host Publisher Studio and remains in effect every time
Database Access is started.

Create EJB 1.1 Integration Object Support
If you select Create EJB 1.1 Integration Object Support, Host Publisher creates the
supporting Java files that enable Integration Objects to be processed in an EJB 1.1
environment. These files are created when you save the Integration Object. See
“Creating applications that use Enterprise JavaBeans (EJB) technology” on page 42
for more information about incorporating EJB support into your Integration
Objects.

The default is to not create the files for EJB 1.1 support.

EJB Integration Object Properties
You can change the suffixes on the names of some files created for EJB Integration
Object Support.

The default suffixes are:
v Properties for the Properties Object file
v Helper for the Helper Object
v Access1 for the EJB 1.1 Access Bean

For more information about changing these properties, see “Specifying default
properties for EJB Integration Objects” on page 44.

Create Web Services Integration Object Support
If you select Create Web Services Integration Object Support, Host Publisher
creates the supporting Java files that enable Integration Objects to be processed in
a Web Services environment. These files are created when you save the Integration
Object.

The default is to not create the files for a Web Service.

32 IBM® WebSphere® Host Publisher Administrator’s and User’s Guide

For more information about creating Web Services, see “Chapter 4. Using Web
Services” on page 71.

Web Services Integration Object Properties
You can change the suffixes on the names of some files created for Web Services
support.

The default suffixes are:
v Properties for the Properties Object file
v Helper for the Helper Object

The suffixes are used only for the Web Services Integration Object associated with
this Integration Object. You can specify different suffixes for each Web Services
Integration Object you create. If you open a different Integration Object, the suffix
is reset to the value you assigned previously to that Integration Object. If you
create a new Integration Object, the suffix defaults to the value in Studio.ini.

For more information about changing these properties, see “Specifying properties
for Web Services Integration Objects” on page 72.

Create Remote Integration Object
If you select Create Remote Integration Object, Host Publisher creates the
supporting Java files and a sample Java program that retrieves Integration Object
data from a remote machine. These files are created when you save the Integration
Object.

We recommend that you use Web Services rather than Remote Integration
Objects—see “Accessing Host Publisher from a remote machine using Web
Services” on page 72 for more information. For information about creating Remote
Integration Objects, see “Accessing a remote machine using Remote Integration
Objects” on page 50.

The default is to not create the files for a Remote Integration Object.

Remote Integration Object Properties
Use this option to change the prefix on the names of the files created for each
Remote Integration Object. See “Accessing a remote machine using Remote
Integration Objects” on page 50 for more information.

The default prefix is Remote.

Using Application Integrator to build J2EE applications that use
Integration Objects

Use the Application Integrator component of Host Publisher Studio to create Web
pages that use the Integration Objects you created using Host Access or Database
Access. Application Integrator enables you to import the Integration Objects, EJB
Access Beans, and other Java beans or objects. (See “Creating applications that use
Enterprise JavaBeans (EJB) technology” on page 42.)

This section provides information to help you with the following tasks:
v “Specifying Integration Objects to publish to the application server” on page 34
v “Using the Application Integrator wizards” on page 34
v “Previewing a page” on page 37
v “Sharing application files with other users of Host Publisher Studio” on page 37

Chapter 2. Using Host Publisher Studio to develop J2EE applications 33

v “Archiving application files” on page 37
v “Using the Options menu in Application Integrator” on page 38

For information on migrating applications, see “Migrating from previous versions
of Host Publisher Studio” on page 51.

Specifying Integration Objects to publish to the application
server

A Host Publisher application is a collection of Web pages, Integration Objects, and
other Java objects that enable the end user to interact with multiple data sources.

Application Integrator enables you to build a series of Web pages using standard
HTML tags in conjunction with special JavaServer Page (JSP) tags and Java code.
These standard tags manipulate Java objects (such as an Integration Object) on the
Web page. These tags also provide the ability to specify Java object output directly
on the page.

JSP tags are designed for any Java object or bean. You can use Application
Integrator to import other Java classes or beans, in addition to Host Publisher
Integration Objects, into your application and publish them into Web pages.

Application Integrator accepts as input any Integration Objects, other Java
components, or any prebuilt HTML pages to which you want to add data
interactions. The output is a collection of Web pages (JSPs), that have been
generated or modified to interact with Integration Objects.

The next section, Using the Application Integrator wizards, describes the wizards
you use to build your Host Publisher application.

Using the Application Integrator wizards
When you use Application Integrator, you can build your application using
wizards. The wizards guide you through naming the new application, importing
Integration Objects and other Java objects into the application, and creating pages
for publishing data.

To start Application Integrator in Windows, click Start > Programs > Host
Publisher Studio > Application Integrator. Then click Create Application.

You can choose to create a new application or modify an existing application. To
create a new application, specify an application name and follow the wizards using
the Next and Back buttons at the bottom of the wizard windows. You can create
an entire working application using the New Application wizard. Use the buttons
at the bottom of the windows to move from one wizard to another.

During creation of Web pages in the Application Integrator, some of the windows
contain multiple layers of buttons. Carefully review the instructions presented at
the top of each Studio Wizard window. The required steps are listed in
chronological order. Click Next only after you complete all of the actions required
on the current window and are ready to move to the next step in the Web page
creation process. Click Back when you want to return to the previous step in the
Web page creation process. Click Finish only when you are ready to leave the
Application Integrator wizard.

34 IBM® WebSphere® Host Publisher Administrator’s and User’s Guide

If you prefer to create your application manually, you can bypass the wizard and
use the menus. To exit the wizard, click Finish at any time. Some of the items on
the menus launch additional wizards to help you accomplish tasks.

The Application Integrator wizards are:

New Application wizard
This wizard guides you through naming the new application and selecting
the pages and Integration Objects to add to the application. You can use
this wizard to create an entire functioning application, or click the Finish
button at any time to exit the wizard. If you exit before completing the
wizard, use the pull-down menus on the Main window to complete your
application. Launch this wizard by clicking New Application from the File
menu.

New Integration Object wizard
This wizard guides you through adding an Integration Object to a Web
page, defining the Integration Object inputs, and rendering the outputs.
This wizard is launched by the New Application wizard or by clicking
Insert Integration Objectfrom the Insert menu.

New Page wizard
This wizard guides you through creating a new page, naming the page,
and specifying its function. You identify the resources to add to the page,
and whether the resources provide input to an Integration Object or render
the output of an Integration Object. This wizard is launched by the New
Application wizard or by clicking HTML Page from the Create menu.

Insert Output Control wizard
This wizard guides you through adding an output control to the current
page. As part of creating the output control, you specify the Integration
Object output to be displayed with the control. Host Publisher formats
table, list box, text entry, and text area controls for you.

This wizard is launched by the New Page wizard, the New Integration
Object wizard, and by various options on the Insert menu.

Insert an Input wizard
This wizard guides you through adding an input control to the current
page. When creating the input control, identify the form that contains the
new input control and the destination of the submit action for that form (if
you are creating a new form).

Before an Integration Object runs, it might have inputs that require data.
This data can come from an HTML form on another page, or from other
Integration Object output. The wizard guides you through deciding how to
satisfy Integration Object inputs.

Every Integration Object has an associated output method (getter) for each
input variable specified. This enables the page to echo a value from an
Integration Object as output, based on a value sent from another page. For
example, on one page, a user requests the name of a person to use as input
to an Integration Object on another page. The second page searches for a
telephone number for the person and uses the output method for the name
provided as input. You could construct a sentence on the page like this:
The phone number for (name) is (number)

where (name) is the value derived from the input and (number) is the
phone number found by running the Integration Object.

Chapter 2. Using Host Publisher Studio to develop J2EE applications 35

This wizard is launched by the New Page wizard, by the New Integration
Object wizard, and by various options on the Insert menu.

New Error Page wizard
This wizard guides you through defining an error page to display to the
client when an error is encountered during processing of a JSP page in a
Host Publisher application, including Integration Objects and EJB Access
Beans used by the JSP page. Error pages contain code to handle exceptions
and give available information on the type of error found. Use the error
page to inform the client that an error occurred and how to address the
problem, such as calling a service telephone number.

A default error page, DefaultErrorPage.jsp, is provided for you. When you
define a new error page, all the Web pages in your application containing
Integration Objects are updated with the name of the new error page as an
input parameter to their Integration Objects. If you add Integration Objects
to new or existing pages, the new error page name is added as an input
parameter to those Integration Objects as well. (The previous error page
remains in the application unless you remove it.)

By default, the most recent error page you define for an application is
referenced by all the Web pages in the application. However, you can have
some pages refer to a different error page by changing the errorPage
attribute (of the page directive) in those pages.

This wizard is launched by the New Application wizard or by clicking
Error page from the Create menu.

Notes:

1. The default error page, DefaultErrorPage.jsp, is in the language in effect
for the workstation when Application Integrator was started. If you
change the language settings for the workstation before assembling the
application for transfer to the server, DefaultErrorPage.jsp will change
to the language in effect at the time the application is assembled.

2. If you migrate applications from previous versions of Host Publisher,
the error pages they contain are updated to comply with the JSP 1.1
and Java Servlet 2.2 specifications.

Transfer to Server wizard
This wizard guides you through the process of assembling applications
and transferring them to Host Publisher Servers. To launch this wizard,
click File > Transfer to Server.

All Host Publisher Servers to which you want to transfer your application
must be configured using the Host Publisher Server Definition window. To
open this window, click Options > Preferences, then click the Servers tab;
or click Server Info on the first page of the Transfer to Server wizard.

For a complete description of the process for transferring applications to
the server, see “Transferring applications to a Host Publisher Server” on
page 45.

As you use the Transfer to Server wizard, you will encounter two key windows:

Select Connection Pools
When you build your Host Publisher application, each Integration Object
you import has a connection pool associated with it. A copy of the
connection pools is automatically included in each application.

36 IBM® WebSphere® Host Publisher Administrator’s and User’s Guide

Be sure to select all other connection pools the application could use. For
example, if you plan to use different connection pools for production than
you use for developing and testing the application, you might want to
select several connection pools.

The Select Connection Pools window enables you to add and remove
connection pools, and to modify the user lists associated with each
connection pool. It is opened by the Transfer to Server wizard, by clicking
Select Connection Pools from the Options menu, or by clicking Create
J2EE Archives from the File menu.

Modify User List
When you import an Integration Object with a connection pool that
includes a user list, an application-specific copy of the user list is created in
the application directory. Use the Modify User List window to customize
this copy of the user list. When you created the user list, it had only one
user in it. Now, by adding users, deleting users, or editing information
about users, you can customize the application-specific copy of the user
list.

After the application-specific copy of the user list is assembled into an
application’s .ear (Enterprise Archive) file during the transfer-to-server
process, any changes you make in Host Publisher Studio will not be
reflected in the application on the server until you transfer it again.

For more information see “Defining user lists” on page 26.

Previewing a page
When you are creating an HTML or JavaServer page (JSP) in the Application
Integrator, you can preview the page with a Web browser to verify the layout. The
layout of the page is displayed, but the results of the JSP tags, Java code, and
associated Java objects are not shown.

Sharing application files with other users of Host Publisher
Studio

Application Integrator provides the application bundler: a way for you to bundle
application files so you can share them with another user.

Note: Only users who are running the same version level of Host Publisher Studio
can share files.

Click File > Bundle Application Source to create a .zip file of all source files
associated with the current application—including Web pages, Java objects, and
other resources. You can then send the .zip file to another user, who can unzip it
and modify the files in Application Integrator.

Archiving application files
When an application is transferred to the server, all of its associated
files—including Integration Objects, connection pools, and user lists—are packaged
into an .ear (Enterprise Archive) file. For details about how this is done, see “How
applications are assembled and packaged” on page 45.

You can preserve an archive of the application’s .war, .jar, and .ear files without
performing the file transfer. To do so, click Create J2EE Archives from the File
menu. The resulting files are saved in the application directory.

Chapter 2. Using Host Publisher Studio to develop J2EE applications 37

A common use for this function is when you use a WebSphere Studio tool, such as
WebSphere Studio Application Developer, for some of the work of building an
application. See “Using WebSphere Studio tools with Host Publisher Studio” on
page 51 for more information.

Using the Options menu in Application Integrator
This section describes the selections you can make from the Options menu in
Application Integrator.

You can make these selections at any time, except when a pop-up window has
focus. You can undo them simply by clearing the appropriate selection. The current
setting is saved by Host Publisher Studio and remains in effect every time
Application Integrator is started.

Preview Page
Select this option to preview the currently selected page in the Application Pages
pane in a Web browser. The layout of the page is displayed, but the results of the
JSP tags and associated Java objects are not shown.

Use the Preferences window to specify the Web browser for previewing the page.
If you do not specify a browser, Application Integrator uses the system default
browser.

Launch Personal Page Editor
Select this option to launch an editor application that can be used to customize a
Web page (HTML or JSP page). This can be a Web editor or any other text editor
that exists on your system.

When you modify a page, the page must be refreshed from the file system to
display the changes. Click File > Refresh Page to refresh the page.

There is no default page editor. You can specify a default page editor using the
Preferences window.

Preferences
Select this option to display the Preferences window, where you can specify the
directories and paths for components of Host Publisher applications and the
servers to which your applications are transferred.

Connection Pools
Select this option to display the Select Connection Pools window (see page 36),
which lists connection pools associated with your application. Unless you modify
this list, copies of these connection pools are included in the .ear (Enterprise
Archive) file for this application when the application is assembled and transferred
to the server.

See “Defining connection pools” on page 10 for more information about connection
pools.

From the Select Connection Pools window, you can access the Modify User List
window (see page 37).

Display Welcome Screen
When this option is selected, a welcome window opens whenever Application
Integrator is started. Deselect this option if you do not want the welcome window
to open.

38 IBM® WebSphere® Host Publisher Administrator’s and User’s Guide

The default is to display the welcome window.

Application Migration
Some applications created with previous versions of Host Publisher Studio need to
be migrated or they cannot run on a Host Publisher Version 4.0 server.

When this option is selected, Application Integrator checks every application you
open and notifies you when an application needs to be migrated. You are then
given the opportunity to migrate the application. For more about migrating
applications in Host Publisher Studio, see “Migrating applications in Host
Publisher Studio” on page 52.

The default is to perform migration checking. For best performance we recommend
that you migrate all of your applications immediately after you install Host
Publisher Studio, and then use Application Integrator with this option deselected.

Creating composite applications
Composite applications combine multiple Integration Objects to produce a single
stream of output information to the user. Composite applications enable you to use
the output of one Integration Object as input to another or fill a table with data
from several different Integration Objects that access different data sources. The
four ways to produce a composite application using Host Publisher Studio are:
v “Combining Integration Object output”
v “Sequencing Integration Objects on a single page” on page 40
v “Sequencing Integration Objects on multiple pages” on page 40
v “Sequencing Integration Objects between non-adjacent pages” on page 41

Combining Integration Object output
This type of composite application contains multiple Integration Objects on a page
and displays their combined output on the page. For example, a user could use an
application to query his or her own employee information from a central human
resources application and database. The application maintains departmental and
contact information. The database maintains payroll and insurance information.
With two Integration Objects, one that accesses the application and one that
accesses the database, a table can be displayed on an output page containing the
output from both Integration Objects. The information in the table appears to
originate from a single source instead of two different applications.

To create this type of composite application, use the New Application wizard in
Application Integrator:
1. Create a new application.
2. Import the Integration Objects into the application using Import > Integration

Object from the File menu.
3. When defining how the Integration Objects are used, specify that they are to be

added to the same output page.
4. If any of the Integration Objects require input information, specify that the

input controls requesting the input data are all added to the same form on the
same input page.

5. When defining how the output is to be rendered, you work with one
Integration Object at a time. If you want to create an output table combining
data from multiple Integration Objects, close the New Application wizard and
click Insert > Output Control > Table from the menu bar. To select outputs

Chapter 2. Using Host Publisher Studio to develop J2EE applications 39

from multiple Integration Objects, you must insert the output control after the
Integration Objects have executed and gathered data. Therefore, you must
position your cursor after the last Integration Object that you want to include
in the combined output, or click No when prompted Do you want to insert at
the cursor on the current page? to create the table at the logical end of the
page. The wizard guides you through the process of creating a table and
selecting the Integration Object outputs to use to fill the table.

You should have two pages in your application. One page requests input in an
input form and delivers it to the other page. The second page executes the
Integration Objects and displays their data. If the Integration Objects require no
input data, you have no input page.

Sequencing Integration Objects on a single page
You can use one Integration Object to gather data from a data source and send the
data to another Integration Object as input. For example, one Integration Object
takes a user’s name as input and provides as output that user’s employee
department number. This department number is then sent as input to another
Integration Object, which takes the department number and locates the members of
the department using another application. The department list is displayed to the
user on the page.

The easiest way to accomplish this is to have both Integration Objects on the same
output page. Be sure that the Integration Objects appear on the page in the correct
order.

To create this type of composite application, use the New Application wizard in
Application Integrator:
1. Create a new application.
2. Import the Integration Objects into the application using Import > Integration

Object from the File menu.
3. Define the first Integration Object in the logical sequence first. Specify how to

provide input to this Integration Object, if applicable (using another form page,
for example). Do not render any output from this Integration Object on the
page. The output is used by the next Integration Object.

4. Define the second Integration Object. To satisfy its inputs, specify that they are
to be satisfied using other Integration Object output.

5. Select the other Integration Object from that page as providing that output.
Note that Integration Objects accept only single-valued inputs, so you can use
only single-valued outputs from other Integration Objects as input to another
Integration Object.

6. Render the output of the second Integration Object on the page.

You should have two pages in your application. One page requests input in an
input form and delivers it to the other page. The second page executes the first
Integration Object using the input, executes the second Integration Object using the
first Integration Object’s output as input, and displays its own output on the page.

More Integration Objects can be added to the page to lengthen the sequence.

Sequencing Integration Objects on multiple pages
You can use multiple Integration Objects to return data to the user in steps,
enabling the user to act upon the data and return selected data for the next

40 IBM® WebSphere® Host Publisher Administrator’s and User’s Guide

Integration Object to use. For example, an application contains three pages. The
first page uses a phone number-lookup application to request a name. The second
page displays all matches found, enabling the user to select one. The third page
displays the phone number of the selected individual.

This type of composite application consists of an initial form page followed by a
series of pages. Each page contains an Integration Object and an input form filled
with the output from that Integration Object. Each Integration Object executes,
using the selections from the previous page as input, and fills the new input form
on the current page with output. The user can make a selection and continue to
the next Integration Object.

To create this type of composite application, use the New Application wizard in
Application Integrator:
1. Create a new application.
2. Import the Integration Objects into the application using Import > Integration

Object from the File menu.
3. For the first Integration Object, specify that it should be placed on output page

output1. Satisfy the first Integration Object’s inputs using an input form on a
page called inputForm. This inputForm page will submit results to the output1
page.

4. Render the first Integration Object’s output to a list box control. Because a list
box also serves as an input control (you can select an item out of the list), a
form is defined for it on the output1 page. Do not specify a page for this form’s
destination.

5. For the second Integration Object, specify that it should be placed on output
page output2. Satisfy the second Integration Object’s inputs using the input
controls created on page output1. The input form on output1 is modified to
point to output2 as the destination for the data.

6. Specify that the second Integration Object’s output should go into a list box,
creating a new form without a destination page.

7. Repeat steps 5 and 6 for the third Integration Object. Specify output3 as the
output page and output2 as containing the form providing input.

The result is an interactive composite application that enables a user to interact
with data before it is passed to the next Integration Object. The application consists
of four pages: inputForm, output1, output2, and output3. Pages inputForm,
output1, and output2 each have input forms that provide data to the Integration
Object on the next page. Pages output1, output2, and output3 all show the data
resulting from executing the Integration Objects on that page.

Sequencing Integration Objects between non-adjacent pages
You can create a composite application similar to the one described in “Sequencing
Integration Objects on a single page” on page 40, but with Integration Objects that
reside on different pages and do not require user input. The output of one
Integration Object is stored within the Web session and retrieved by another
Integration Object.

You can use this type of composite application to send an output value to an
Integration Object as input on another page where an input form is not involved.
For example, if there is no form between a page containing an Integration Object
that returns an employee’s department number and another page that takes the
department number and returns all of the employees in that department, there is
no way to send data from the first page to the next. Using Host Publisher Studio,

Chapter 2. Using Host Publisher Studio to develop J2EE applications 41

you can cause the first Integration Object to save the department number within
the Web session to be retrieved by the second Integration Object. This method
requires no interaction with the end user and does not demand that the two pages
be adjacent to each other in the logical page hierarchy in your Web site.

To create this type of composite application, use the New Application wizard in
Application Integrator:
1. Create a new application.
2. Import the Integration Objects into the application using Import > Integration

Object from the File menu.
3. For the first Integration Object, specify that it should be executed on page

execute1. If it has inputs to satisfy, create an input form on page input1. To
create a <FORM> tag and to enable session transfer to take place, you must
render at least one variable as a control that will serve as both output and
input; for example, list box, password field, and so forth. This excludes tables
and normal text, for which selection is not possible. The created form must
specify that the expected page of the second Integration Object (execute2) will
appear when the form is submitted. This links the pages as parent/child,
makes the data from the first Integration Object available to that page, and
enables the expected button for the next step.

4. For the second Integration Object, create a new page execute2, then define an
input of this Integration Object that will be satisfied by an Integration Object
output. Select an output variable of the first Integration Object.

When you complete the wizards, a statement will be added to the execute1 page to
insert the Integration Object’s output into the HTTP connection. On execute2, the
value is extracted from the HTTP connection and set as input to the second
Integration Object. You can change the destination of the form to a different page,
or you can remove the form completely if you do not need it for other purposes.
You must ensure that the normal page flow of your application causes execute1 to
always occur before execute2.

Creating applications that use Enterprise JavaBeans (EJB) technology
Enterprise JavaBeans (EJB) is a server-side component architecture that enables
rapid development of versatile, reusable, portable applications. This section
describes common tasks associated with developing Host Publisher EJB
applications.

EJB support in Host Publisher is intended for use by enterprises that run their
back-end servers using EJB technology. With EJB support in Host Publisher, you
can logically (or physically) partition the Integration Object’s function of navigating
and retrieving back-end enterprise data from the presentation and consumption of
that data. This processing model is aligned with the J2EE three-tier application
model.

For a more thorough description of EJB support in Host Publisher, and for
information about how to perform advanced tasks, see “Performing advanced
tasks with Enterprise JavaBeans (EJB)” on page 78.

Understanding EJB support in Host Publisher
Host Publisher provides support for executing Integration Objects in EJB containers
to take advantage of the server-side characteristics provided by the EJB
architecture. This support consists of the following parts:

42 IBM® WebSphere® Host Publisher Administrator’s and User’s Guide

v The Host Publisher EJB, which is a stateful session EJB capable of running
Integration Objects in an EJB environment. (Stateful means that the EJB
maintains a conversational state with the client for the duration of an
application.) This EJB is contained in the .ear file for each application.

v Host Publisher Studio support for the generation of EJB support files for
running Integration Objects. This includes, for each Integration Object, the
generation of an EJB Access Bean that provides the same signature as the real
Integration Object.

v Application Integrator support for building applications using the generated EJB
support files and the Host Publisher EJB.

Because the EJB Access Bean has the same signature as the Integration Object, the
EJB Access Bean can be used in client-side code exactly as the real Integration
Object would have been used. Therefore, the client can be:
v A JSP page or a servlet that uses one or more EJB Access Beans in a J2EE

application where the Integration Objects execute in an EJB container.
v A Java application client that uses one or more EJB Access Beans to execute the

Integration Objects in an EJB container.
v A Java application thin client that uses one or more EJB Access Beans to execute

the Integration Objects in an EJB container.

Refer to the WebSphere documentation for more information about Java
application clients and Java application thin clients.

Figure 4 illustrates the case where:
v The JSPs, packaged together with the EJB Access Beans in the application .war

file, execute in a Web container.
v The Host Publisher EJB, packaged as an EJB .jar file, executes in a WebSphere

EJB container.

Figure 4. Components of a typical EJB application

Chapter 2. Using Host Publisher Studio to develop J2EE applications 43

Creating EJB support files for Integration Objects
If you intend to generate EJB support files for an Integration Object, you must so
indicate before you create the Integration Object. Using Host Access or Database
Access, click Options > Create EJB 1.1 Integration Object Support.

When this option is selected, EJB support files are generated during creation of the
Integration Object. An EJB Access Bean .jar file is created in the \IntegrationObjects
directory, and additional EJB support class files are created to be bundled in the
EJB .jar file of the application. The default name for the EJB Access Bean .jar file is
IONameAccess1.jar, where IOName is the name of the Integration Object.

Specifying default properties for EJB Integration Objects
In Host Access and Database Access, the Options menu has an EJB Integration
Object Properties selection. This option specifies a file suffix that is added to the
names of the files (.class files and .java files) associated with the Integration Object.
The suffix helps you easily locate the EJB-specific files that are generated by Host
Publisher Studio. A default suffix is provided, but you can use the EJB Integration
Objects Properties option to specify a different suffix for the EJB Integration Object
you are currently working on.

The default suffixes are:
v Properties for the Properties Object file
v Helper for the Helper Object
v Access1 for the EJB 1.1 Access Bean

To change the default suffixes for this option, edit the following properties in
Studio.ini:
v EJB_PROPERTIES_SUFFIX
v EJB_HELPER_SUFFIX
v EJB11_ACCESS_SUFFIX

Creating a Host Publisher application using EJB Access
Beans

After EJB Access Bean .jar files are created for Integration Objects, you can use
them with Application Integrator in the same way that you use Integration Object
.jar files to create Host Publisher applications.

You can create JSPs to instantiate, drive, and render the EJB Access Bean output
properties in the same way that you use the original Integration Objects, including
support for EJB Access Beans created for chained Integration Objects.

Before the application is transferred to the server, it is packaged into an .ear
(Enterprise Archive) file that contains a Web module with all of its associated JSPs,
EJB Access Beans, and an EJB module that contains the Host Publisher EJB, helper
classes, and Integration Objects for the application.

Importing Java objects
You can import Java objects into a Host Publisher Studio application. The Java
objects can be Java classes, beans, Host Publisher Integration Objects, or Host
Publisher EJB Access Beans. You can import Java .class files, .zip files, or .jar files.
These files can contain many Java objects. If you select a .zip or .jar file to import,
you choose which Java object to import from the file.

44 IBM® WebSphere® Host Publisher Administrator’s and User’s Guide

If you import an Integration Object generated by one of the Host Publisher
applications, such as the Database Access application or Host Access application,
Application Integrator knows the inputs, outputs, and execution method.

You must ensure that both the class you are importing and all dependencies of that
class can be located in the Java CLASSPATH in effect when the Studio started.

Note: All Host Publisher applications must use UTF-8 encoding. If you import a
Java object that was created outside Host Access or Database Access and
that does not have UTF-8 encoding, you are prompted to migrate your
application when you open it in Application Integrator.

For information about sharing Integration Objects among different users of Host
Publisher Studio, see “Sharing application files with other users of Host Publisher
Studio” on page 37.

Transferring applications to a Host Publisher Server
Application Integrator gives you the ability to transfer your J2EE application to
one or more Host Publisher Servers, making the application ready to install as an
Enterprise Application. Two things happen when you transfer an application to the
server:
v The application and associated files are assembled and packaged into an .ear

(Enterprise Archive) file.
v The .ear file is moved to the specified server or servers using file transfer

protocol (FTP).

When you use the Transfer to Server wizard, you are prompted to select one or
more servers, you can choose security options such as encryption, and you can
make changes to resources such as connection pools and user lists.

How applications are assembled and packaged
Applications produced by Host Publisher Studio comply with J2EE standards. J2EE
applications can be deployed rapidly and enhanced easily as the enterprise
responds to competitive pressures.

In Application Integrator, the Transfer to Server wizard collects the application’s
Web pages, Java objects, and other resources and assembles them into a
J2EE-compliant .ear (Enterprise Archive) file. By default, the .ear file is assembled
in the install_dir\Studio\Publish directory. Then it is copied, along with its
associated .war and .jar files, to the install_dir\Studio\Applications\appname
directory. (install_dir is the directory in which Host Publisher is installed and
appname is the name of the application. Using the Preferences window on the
Options menu, you can modify the directory where assembly takes place.)

Here is the process Application Integrator uses to assemble and package
applications.
1. Application Integrator collects all Java objects and dependent files into

temporary subdirectories for inclusion in the appname.ear, appname.war, and
appnameEJB.jar files it will generate.
v For Host Publisher Integration Objects that are imported into Application

Integrator, the dependent files include the .jar file (which contains the

Chapter 2. Using Host Publisher Studio to develop J2EE applications 45

Integration Object); the connection pool files; the connect, data, and
disconnect macro files; the checkin screen file; and user ID and password list
configuration files.

v For Host Publisher EJB Access Beans that are imported into Application
Integrator, the dependent files include the EJB .jar file as well as all of the
files required for the associated Host Publisher Integration Objects. The EJB
.jar file contains the .class files for the Integration Object—including the
BeanInfo, Helper, Properties, and IOProperties classes. The EJB .jar file also
contains all of the HPubEJB2 interface classes and .properties files.

v For Java objects that are imported into Application Integrator but that are not
Integration Objects, such as Java beans or classes, no dependent files are
included.

v For all Java objects, Host Publisher expects prerequisite Java classes or Java
beans which are not part of the application’s .ear file to be defined in the
CLASSPATH of the destination servers.

2. Application Integrator attempts to locate all dependent files that are needed by
the application, such as image files, multimedia files, and other referenced
pages. Application Integrator locates these dependent files if they are
referenced by relative path names from within a page rather than by Web
addresses (URLs). A relative path name describes the location of the file relative
to the location of the owning file within the same file system.
For example, when an image file is referenced as IMG="images\mailbox.gif",
this indicates that the mailbox.gif image file resides in a subdirectory called
images within the application’s directory.
Only relative path names within the application’s directory structure are
allowed. For example, a relative path such as ..\images\mailbox.gif would be
within a parallel or peer directory to the application’s directory space and
would not be permitted in a J2EE-compliant server environment.
If any files cannot be located based on the location of the owning page,
Application Integrator notifies you that parts are missing. To complete the
page, you need to locate the missing parts and add them to the application’s
directory structure in order for them to be included in the .ear file.
If the resource references a Web address (URL), the page must rely on the
application server, not Application Integrator, to locate the image.

3. Application Integrator generates the following application-specific files. (In each
file name, appname is the name of the application.)
For applications into which Integration Objects are imported:

v appname.war: the .war (Web Archive) file containing the Web pages and
default error pages for the application, along with Integration Objects and
other Java classes or dependent files required by the application.

Note: The default error page, DefaultErrorPage.jsp, is in the language in
effect for the workstation at the time the application is assembled,
even if a different language was in effect when the application was
developed.

v appname.ear: the .ear file, into which all of the application’s pages, Java
objects, and resources are assembled.

For applications into which EJB Access Beans are imported:

v appnameEJB.jar: the .jar file for a Host Publisher EJB-based application. It
contains EJB Integration Objects, the HPubEJB2 class and properties files, and
other dependent files required by the application.

46 IBM® WebSphere® Host Publisher Administrator’s and User’s Guide

v appname.war: the .war (Web Archive) file containing the Web pages and
default error pages for the application.

Note: The default error page, DefaultErrorPage.jsp, is in the language in
effect for the workstation at the time the application is assembled,
even if a different language was in effect when the application was
developed.

v appname.ear: the .ear file, into which all of the application’s pages, Java
objects, and resources, including the appnameEJB.jar file, are assembled.

The files are saved in the application-specific subdirectory,
install_dir\Studio\Applications\appname. The .ear file is also kept temporarily
in the install_dir\Studio\Publish subdirectory until the next application transfer.

After the assembly and packaging are complete, Application Integrator transfers
the .ear file to the specified Host Publisher Server, where it is stored in a staging
subdirectory (WebSphere_install_dir\installableApps\HostPublisher) until it is
deployed. See “Selecting a server” for information about specifying the server.

After your Host Publisher applications are assembled into J2EE applications, they
are self-contained. As such, they no longer share resources such as connection
pools and user lists. So, for example, every Host Publisher application that is
associated with a particular connection pool must include the connection pool
definition in their .ear files. If you subsequently modify the connection pool, you
need to reassemble every application that uses it and then transfer the reassembled
applications to the server. See “How applications are assembled and packaged” on
page 45 for details.

Before you transfer an application to the server, therefore, it is important to insure
that it has all the objects and resources it needs. You can create an .ear file for an
existing application at any time using the Create J2EE Archives wizard. (See
“Archiving application files” on page 37.)

Also, the Transfer to Server wizard gives you the opportunity to update the
configuration information before the transfer takes place. This wizard is described
on page 36.

The J2EE specification provides details about the contents and layout of .ear files,
.war files, and EJB .jar files.

Selecting a server
When the application has been packaged into an .ear file on the Host Publisher
Studio machine, the file transfer protocol (FTP) is used to transfer the .ear file to
the specified servers.

During the transfer process, you are prompted for the servers you want to transfer
the application to. Each server must have a server information definition, created
by clicking Options > Preferences > Servers or by clicking Server Info in the
Transfer to Server wizard. When defining the server information, specify the target
directory for the transfer and the type of platform. This target directory must
correspond to an FTP alias that matches the WebSphere installation directory on
that machine. Therefore, before a transfer can take place, the FTP service on that
server must be configured to allow access to the WebSphere installation directory.

Chapter 2. Using Host Publisher Studio to develop J2EE applications 47

Table 1 lists some examples of target directories by platform:

Table 1. Examples of target directories

AIX /usr/WebSphere/AppServer

Windows C:\WebSphere\AppServer

Note: FTP does not permit the use of a drive
letter as a destination. You must configure
the FTP service you are using on Windows
to have an alias (such as \WebSphere) that
points to C:\YourInstallDirectory. You then
specify \WebSphere as your target directory
for this server.

Solaris /opt/WebSphere/AppServer

iSeries with WebSphere AE /QIBM/ProdData/WebASAdv4/AppServer

iSeries with WebSphere AEs /QIBM/ProdData/WebASAEs4/AppServer

If Host Publisher Studio and Host Publisher Server are installed on the same
system, you still must create a server information definition for the local system.
Specify localhost as the host name so Host Publisher Studio knows to perform a
local file copy instead of using FTP.

You can also use this method to transfer applications to remote Windows NT
servers by sharing the target drive on the local system and performing a local
transfer to that shared drive, again using localhost as the host name. In these
cases, you must specify the drive letter and destination directory; for example:
F:\WebSphere.

If a server was defined in a previous version of Host Publisher
If you defined servers using previous versions of Host Publisher, you must update
those definitions for Host Publisher Version 4.0. If this is the case, the Transfer to
Server wizard issues a message prompting you to update your server definitions.
Previously, applications were transferred to the server directory in which Host
Publisher Server was installed; now, they are transferred to the directory in which
WebSphere is installed (for example c:\WebSphere\AppServer).

Note: The server name displayed in the Server Definition window is a default
value, but it is not necessarily the currently-selected server. To accept the
default value, therefore, you must click OK. Clicking Cancel does not
update the server definition.

If an application already exists on the server
If you transfer an application that has the same name as an existing application, a
warning message displays. You then have the options to:
v Continue the file transfer and overwrite the existing file.
v Stop the file transfer and keep the existing file.

Application transfer places the application files in a staging subdirectory
(WebSphere_install_dir\installableApps\HostPublisher). The situation occurs only
when two applications with the same name are transferred before one of them is
deployed.

48 IBM® WebSphere® Host Publisher Administrator’s and User’s Guide

Setting security options
The Transfer to Server wizard asks you how to secure potentially sensitive user
data contained in user lists, such as passwords. Any data in a user list except the
user ID can be encrypted. You can choose to:
v Not secure the data, leaving the values readable from the configuration files
v Scramble the data (weak encryption)
v Encrypt the data (strong encryption)

Strong encryption requires that you specify an encryption password, which the
server administrator must supply before applications can connect to the host. (See
“Providing application passwords” on page 59.) When a J2EE application
containing a strongly-encrypted user list is deployed on the server, the password
must be specified before the application can service requests. If another user list is
created with a property that requires strong encryption, the same password must
be specified to encrypt that user list. Host Publisher Server can have only one
encryption password, so the same password must be used by all
strongly-encrypted user lists. If weak encryption is used, no password is required.

Modifying applications on the server
We recommend that you use Host Publisher Studio to modify your applications,
but if you want to modify an application on the server you must ensure that the
application’s .ear (Enterprise Archive) file has been expanded before you make
your modifications. You must also use a text editor compliant with UTF-8.
(Because not all operating environments support UTF-8 editors, this might involve
copying the application to a different machine, editing it, and then copying it back
to the server.)

All Host Publisher Version 4.0 text files must be written with UTF-8 encoding.
Whenever you attempt to modify an application on the server, you must use a text
editor compliant with UTF-8. (If you use Host Publisher Studio to modify the
application, Host Publisher checks for UTF-8 encoding and, if necessary, invokes a
migration tool that updates the application so that it is written with UTF-8
encoding.)

Enabling tracing
You can enable tracing for the components of the Host Publisher Studio by editing
the Studio.ini file located in the Studio directory. Find the entry for
ENABLE_TRACE and change it to state ENABLE_TRACE=true. Tracing begins
when the Host Publisher Studio components are restarted.

Trace information is written to separate files for each component:

Application Integrator webbridge.trc

Host Access hostaccess.trc

Database Access dbaccess.trc

The trace files are located in the Studio directory.

Chapter 2. Using Host Publisher Studio to develop J2EE applications 49

Accessing a remote machine using Remote Integration Objects
You might want to write a program that does not execute in WebSphere but that
requires access to an Integration Object. We recommend that you do this using
Web Services—see “Accessing Host Publisher from a remote machine using Web
Services” on page 72 for more information.

However, you can also create Remote Integration Objects (RIOs) for accessing
Integration Object data from a Java program (applet or application) running on a
remote machine. The remote machine requires lightweight RIO .jar files and
network access to a Host Publisher Server; but it does not require Host Publisher
Server or WebSphere Application Server. This might be advantageous if you are
already using RIOs that were developed in previous versions of Host Publisher
and you have not yet developed applications that use Web Services.

You can create a RIO using either Host Access or Database Access at the same time
you create your Integration Object. This RIO is a proxy object with the same
signature as the Integration Object. When your program invokes one of the
methods of the RIO proxy object, the proxy object communicates with a RIO
servlet, running on a WebSphere Web container, that can execute any Integration
Object within that application server. The RIO servlet packages the results of the
Integration Object invocation and passes it back to the RIO proxy object, and
subsequently back to your program.

Each RIO application on the server has its own RIO servlet. When Application
Integrator creates an .ear file for the application, you are given the option of
including RIO support in the application archive.

The protocol used for communication between the proxy object and the servlet
uses XML to encapsulate the method invocation and the input parameters and
output parameters. The XML flows over an HTTP(S) connection. Because XML is
used to interface with the RIO servlet, you can develop an XML application,
written in Java, Perl, C++, or other languages, to access the servlet to execute your

Figure 5. Using Remote Integration Objects

50 IBM® WebSphere® Host Publisher Administrator’s and User’s Guide

Integration Objects. These applications do not require either the RIO proxy object
or the RIO.jar file on the client, but do require HTTP access to the RIOServlet and
an XML parser to process.

To create a RIO, click Options > Create Remote Integration Object as you are
defining your Integration Object. Refer to the IBM WebSphere Host Publisher
Programmer’s Guide and Reference for more detailed information on RIOs.

In Host Access and Database Access, the Options menu has a Remote Integration
Objects Properties selection. With this option you can specify a file prefix that is
added to the names of the files (.java files) associated with the Integration Object.
The prefix helps you easily locate the RIO-specific files that are generated by Host
Publisher Studio. A default prefix is provided, but you can use the Remote
Integration Objects Properties option to specify a different prefix for the RIO you
are currently working on. To change the default value for this option, edit
RIO_NAME_PREFIX in Studio.ini.

Using WebSphere Studio tools with Host Publisher Studio
Integration of Host Publisher with WebSphere Studio tools is flexible, in that you
can choose how to divide work between Host Publisher Studio and the WebSphere
Studio products. (In this section, the term WebSphere Studio refers to any of the
WebSphere Studio tools, such as WebSphere Studio Application Developer.) In
general, Host Publisher Studio is fine-tuned for building Web-to-host applications,
whereas WebSphere Studio provides a more general-purpose studio for building
and managing a wider variety of J2EE applications.

The Host Access and Database Access components of Host Publisher Studio create
Java objects (Integration Objects, EJB Access Beans, Web Services helper files, and
Remote Integration Objects) that encapsulate interactions with legacy data sources.
Application Integrator assembles these Java objects (and optionally JSP pages that
reference the Java objects) into a J2EE .ear file. You can then import the .ear file
you have created with Host Publisher Studio into a new or existing WebSphere
Studio project.

You can also build a J2EE application in WebSphere Studio using Host Publisher
Integration Objects and other Java objects developed in Host Publisher Studio.

Application Integrator enables you to preserve an archive of the application’s .war,
.jar, and .ear files, all of which can be used in conjunction with WebSphere Studio.
See “Archiving application files” on page 37 for more information.

For detailed information on how to perform these tasks, see IBM WebSphere Host
Publisher Programmer’s Guide and Reference.

Migrating from previous versions of Host Publisher Studio
This section describes what you need to do if you are migrating from a previous
version of Host Publisher Studio to Host Publisher Version 4.0. See “Migrating
from previous versions of Host Publisher on the server” on page 67 for information
about migrating in Host Publisher Server.

Installing Host Publisher Version 4.0 on the Studio machine
When migrating from previous versions of Host Publisher Studio to Host Publisher
Version 4.0, you should install Version 4.0 in the same directory path on the Studio

Chapter 2. Using Host Publisher Studio to develop J2EE applications 51

machine if you plan to access your existing applications. It is also strongly
recommended that you uninstall the previous version of Host Publisher before you
install Version 4.0.

Migrating applications in Host Publisher Studio
If you intend to use applications created with previous versions of Host Publisher,
you should consider the following:
v Applications produced by Host Publisher Studio in Version 4.0 follow the J2EE

architecture; as a result, each application exists on the server as an .ear
(Enterprise Archive) file. The .ear file contains one or more J2EE modules, an
application deployment descriptor, and other files referenced by the J2EE
module.
Before they can be run on Version 4.0, all Host Publisher applications on the
Studio machine must be:
– Assembled into .ear files using the Application Integrator component of Host

Publisher Studio
– Transferred to the server using the Transfer to Server wizard

v Some application components created with previous versions of Host Publisher
must be upgraded before they can run on Version 4.0. For example, applications
with JavaServer Pages (JSP) pages and tags at the JSP .91 level must be
upgraded to the JSP 1.1 level. (When you open such an application in
Application Integrator, the Migrate Application window notifies you that the
application needs to be migrated.)

v You might need to change relative path names within an application because, in
a J2EE-compliant server environment, only relative path names within the
application’s directory structure are allowed. For example
IMG="images\mailbox.gif" is allowed because the mailbox.gif image file resides
in a subdirectory called images within the application’s directory. But a relative
path of "..\images\" needs to be recoded and the mailbox.gif file moved to a
subdirectory within the application’s directory.

Note: If an application containing Database Access Integration Objects will attempt
to connect to a remote DB2 database, the JDBC drivers on the server must
be at the same FixPack level as the JDBC driver on the Studio machine
where the Integration Objects were generated. Therefore, you cannot migrate
an application that was built using JDBC 1.0 drivers. You must upgrade the
JDBC driver on the Studio machine, regenerate the Integration Objects in
Database Access, and reassemble the application in Application Integrator.

Using the migration utility in Host Publisher Studio
You can perform migration in Host Publisher Studio in either of two ways:
v Implicitly, when you use Application Integrator with Application Migration

selected on the Options menu. (This is the default selection.)
v Explicitly, by issuing the StudioAppMigrator command from the command line.

Migration performs the following steps for each existing Host Publisher
application:
1. It migrates JavaServer Pages (JSP) pages and tags from previous levels to the

JSP 1.1 level. See “Details of migrating JSP pages” on page 54 for details about
this stage of the migration.

Note: If your application contains custom JSP tags, you must update those tags
before running the migration tool. You can update the tags manually or

52 IBM® WebSphere® Host Publisher Administrator’s and User’s Guide

by running a customized JSP migration utility as described in the IBM
WebSphere Host Publisher Programmer’s Guide and Reference.

2. It ensures that all JSP pages, HTML files, macro files, and session files
generated by Host Publisher Studio are written with UTF-8 encoding. For
example, in each JSP file, the value for the charset parameter is set to UTF-8.

3. It migrates Enterprise JavaBeans (EJB) Access Beans in the application to the
EJB 1.1 level. See “Details of migrating EJB Access Beans” on page 55 for details
about this stage of the migration.

4. It migrates Host Publisher error pages to comply with the JSP 1.1 and Java
Servlet 2.2 specifications.

5. It moves all application-specific files and subdirectories from the \Studio
directory to the \Studio\Applications directory.

The migration tool issues a status message when the migration is complete. You
can check the log file for additional informational and error messages. If you
perform the migration from within Application Integrator, the log file is named
appnamemigration.log (where appname is the name of the application).

Migrating an application in Application Integrator
When you open an application in Application Integrator, it is checked by default to
see whether migration is needed; if so, you are required to migrate the application.

For best performance we recommend that you migrate all of your applications
immediately after you install Version 4.0, and then use Application Integrator with
Application Migration cleared (unchecked) on the Options menu.

Using StudioAppMigrator from the command line
After you install Host Publisher Version 4.0, you can use the StudioAppMigrator
command to perform migration on Host Publisher Version 3.5 and Version 2.2.1
applications. The syntax of the command is:
StudioAppMigrator -s file_list [-l log_file]

The parameters are:

-s file_list
A required parameter specifying the names of one or more Host Publisher
applications to be migrated. When specifying multiple applications, delimit
the applications using semicolons and enclose the list in double quotes.

To migrate all of the Host Publisher applications in a directory, specify the
path name for the directory.

-l log_file
An optional parameter specifying the fully-qualified name of the log file.
The log file contains a detailed record of the migration steps, including any
errors which occurred. If you specify an existing file, the log file is
appended.

If you do not specify this parameter, the log file is saved in the current
directory as StudioAppMigrator.log.

For example:
StudioAppMigrator -s "\myApp\myApp.hpa;\myotherapp\myotherapp.hpa" -l D:\HPlog\HP.log

StudioAppMigrator -s e:\hostpub\studio

Chapter 2. Using Host Publisher Studio to develop J2EE applications 53

Details of migrating JSP pages
Host Publisher Version 4.0 supports 1.0 and 1.1 JSPs. Because Host Publisher
Version 4.0 does not support .91 JSP pages, migration of pages created by versions
2.2.1 and earlier of Host Publisher is required. Host Publisher migration converts
many JSP .91 tags and attributes to JSP 1.1 for you. A list of those tags and
attributes appears later in this section.

Host Publisher migration does not handle every JSP .91 tag and attribute. It
handles all of the .91 tags and attributes that were generated by earlier releases of
Host Publisher Studio. If your JSP page contains tags and attributes that were
added by some means other than creating the page using Host Publisher Studio,
and these tags and attributes are not in the following list, the migration utility does
not convert them. In this case you can do either of the following things:
v Create a customized JSP migration utility as described in the IBM WebSphere

Host Publisher Programmer’s Guide and Reference. You must execute your
customized migration utility before you execute StudioAppMigrator.

v Convert the tags manually, using a text editor compliant with UTF-8.

We recommend that you check the JSP files in your application after performing
Host Publisher migration to make sure all tags were converted.

Here is a list of JSP .91 tags and how they are converted when you migrate your
JSP page to the JSP 1.1 format.

<BEAN>
Replaced with the <jsp:useBean> tag.
<jsp:useBean> id="dBAcc"> type="IntegrationObject.DBAcc"
class="IntegrationObject.DBAcc" scope="request"> </jsp:useBean>

<INSERT></INSERT>
Information between <INSERT> and </INSERT> is replaced with in-line
Java code. For example:
<%= dBAcc.getDB2ADMINEMPLOYEEBIRTHDATE_(_i0) %>

<REPEAT></REPEAT>
Information between <REPEAT> and </REPEAT> is replaced with in-line
Java code.

<REPEAT> is replaced with:
<%
for (int _i0 = 0; _i0 <= 2147483647;_i0++){
try {
%>

where _i0 is the name of the index used in the original REPEAT tag.

</REPEAT> is replaced with:
<%
}
catch (java.lang.ArrayIndexOutOfBoundsException _e0)
{
break;
}
catch (Java.lang.NullPointerException _e)
{
break;
}
}
%>

54 IBM® WebSphere® Host Publisher Administrator’s and User’s Guide

<%@ content_type=″text/html;charset=ISO-8859–1″ %>
Replaced with the following syntax:
<%@ page contentType="text/html;charset=UTF–8" />

In error pages created with Host Publisher Studio V2.2.1:
v The word session is converted to hp_session. The out.close() invocation is

removed.
v The tag com_ibm_HostPublisher_emsg is converted to

com_ibm_HostPub_emsg.

Details of migrating EJB Access Beans
Host Publisher migration creates EJB 1.1 support code in .class and .java files in
the \Studio\IntegrationObjects directory.

Migration generates new EJB 1.1 Access Beans to update EJB 1.0 files. The names
of the files depend on the file suffix you have chosen for your EJB Access Bean.
For example, if you use the default file suffixes (Access1 in Host Publisher Version
4.0 and Access0 in Host Publisher Version 3.5), then a new EJB Access Bean named
IONameAccess1BeanInfo.java is generated, containing updates to
IONameAccess0BeanInfo.java.

Migration also updates .hpa files and JSP pages in the application so they reference
the correct EJB 1.1 file names.

The old EJB Access Bean files (.java and .jar files) are saved in the same directory
with a file extension of .old.

Chapter 2. Using Host Publisher Studio to develop J2EE applications 55

56 IBM® WebSphere® Host Publisher Administrator’s and User’s Guide

Chapter 3. Using Host Publisher Server Administration

After you have published applications to Host Publisher Server, a server
administrator can use an administration interface to manage connections and
perform problem determination. This chapter describes how you can use these
management functions, known as Host Publisher Server Administration.

Host Publisher Server Administration is a part of Host Publisher Server. Host
Publisher Server provides a runtime environment—middleware needed to execute
J2EE applications that access Host Publisher Integration Objects. Host Publisher
Server Administration enables you to manage those middleware components.

Host Publisher Server Administration is Web based. You perform administration
tasks using a Web browser, through a user interface provided by the Host
Publisher Administration servlet, HPAdminServlet.

Using Host Publisher Server Administration, an administrator with the proper
authentication can perform the following types of tasks:
v Selecting a server, and an instance of Host Publisher Server in that server, to

administer
v Monitoring server status: starting and stopping Host Publisher Server
v Supplying passwords required by Host Publisher Server
v Managing licenses: changing the allowed number of licenses on a server running

one or more instances of Host Publisher Server
v Administering connections and connection pools: displaying pool definitions,

pool status, and the status of active connections for Host Publisher Server.
v Displaying user lists
v Performing problem determination: viewing trace and log files, and setting

various options for tracing and logging
v Administering the XML Gateway: configuring the XML Gateway to access hosts

and host applications, and creating a portal for accessing hosts and host
applications

You can use Host Publisher Server Administration from any machine with
HPAdminServlet installed, or remotely using distributed administration. (See
“Administering Host Publisher from a remote machine” on page 64 for details.)

If WebSphere global security is enabled, you must have the proper authentication
to use any of the functions in Host Publisher Server Administration. The
administration client communicates only with administration servers that are at the
same Host Publisher version level.

Other administration topics, which might be of interest to advanced users, are
described in “Advanced Server topics” on page 65.

Getting started
This section describes how to start Host Publisher Server Administration and how
it is assigned a name that identifies it in a WebSphere application server.

© Copyright IBM Corp. 1999, 2002 57

Starting Host Publisher Server Administration
To start Host Publisher Server Administration, load this URL in your browser:
http://server/HPAdmin/main.jsp (where server is your server name)

When you start Server Administration, it uses the default language of the server.
You can, however, change the language by clicking Select Language in the
navigation frame, choosing the language you want, and then restarting the
browser. The new language choice remains in effect for that browser until you
invoke Select Language to change the language again.

Note: If you use a Netscape™ browser, we recommend that you use Netscape 6.1
or later (not 6.0) for Host Publisher Server Administration.

When Host Publisher is installed on the server, WebSphere Application Server is
called HostPubServer and includes three J2EE applications:
v HPAdmin.ear: Host Publisher Server Administration. As you generate new

applications with Host Publisher Studio, you deploy them into the application
server using WebSphere’s Install Enterprise Application wizard.

v xmlLegacyGW.ear: the XML Gateway function.
v HPDoc.ear: Host Publisher documentation.

Naming an instance of Host Publisher Server
Host Publisher Server, when it is initialized in a WebSphere application server,
assigns itself a name that is unique within that machine with respect to other
instances of Host Publisher Server that might be running on other WebSphere
application servers.

The application server name is the same as the fully-qualified name of the
application server, as defined by WebSphere. This name is domain_node_server,
where:
v domain is the name of the WebSphere domain. (Note that the domain name can

be null, in which case there is no underscore character (_) before the name of the
node.)

v node is the name of the WebSphere node.
v server is the name of the WebSphere server.

Using the functions in Host Publisher Server Administration
This section guides you through the various selections on the Host Publisher
Server Administration window.

Selecting host and application server
You can select a host to administer that is already known to the default server, or
you can type the host name or IP address of a new host. You also have the option
of selecting the default application server.

Monitoring server status
This window displays information about the current status of the server, including
the number of licenses installed on this server.

From this window, you can start, stop, or restart the server.

58 IBM® WebSphere® Host Publisher Administrator’s and User’s Guide

Providing application passwords
If users will run applications containing strongly encrypted user lists, you must
provide the Host Publisher encryption key. If users will run applications that use
the express logon feature, you must provide the Host Publisher key ring password
for express logon. Host Publisher Server requires these at runtime so that it can
create the connection.

Supply the encryption key, the key ring password, or both after Host Publisher
Server is started but before users begin making requests that require them. Using
check boxes, you can specify whether the encryption key and the key ring
password are saved to disk so that they are available to Host Publisher Server on
subsequent restarts. (It is recommended that you have security procedures in place
that mitigate the risk of saving passwords to disk.)

For more information about express logon, see “Express logon” on page 82.

Managing licenses
Host Publisher Server tracks the number of connections established to data sources
and automatically logs a message when the value exceeds the number of licenses
purchased. One license is equivalent to the right to use one Host Publisher
connection at a time. The number of licenses applies to all Host Publisher instances
running on all WebSphere application servers on that machine.

Host Publisher Server can optionally track license usage history over time. This
history maintains the maximum number of licenses used (or connections
established at one time) during a one-hour period, logging this information to a
file each hour. By default, this option is set to 0, which means that no license
tracking occurs. In the case of workload management (WLM) configuration, the
license tracking is done across all application servers.

To enable the license tracking option, reset the licenseTracking property in the
server.properties file from 0 to 1. The file license1.txt is created after Host Publisher
is used for one hour and is located in the Log subdirectory under your Host
Publisher installation directory.

For detailed information about editing the server.properties files, see “Appendix B.
Server properties files” on page 123.

If you purchase more licenses and want to change your current value, you can do
so using Host Publisher Server Administration.

Note: When Host Publisher is used in the Web Access environment, Client
Access™ licensing is used, which does not work as previously described.
Refer to WebSphere Application Server iSeries documentation for more
information.

Monitoring connection pools
Connection pools are collections of communication links to back-end data sources,
such as 3270 applications or databases. When an Integration Object is run on
behalf of a client request, the Integration Object obtains an available connection
from a pool, uses it for access to the data source, then returns the connection to the
pool. When connection pooling is enabled, the overhead of establishing a

Chapter 3. Using Host Publisher Server Administration 59

connection is absorbed in its first use. Each Integration Object reusing this
connection benefits from the prior establishment of the connection and can run
faster.

This window displays information about defined connection pools. A connection
pool is not listed until at least one connection is allocated from the pool.

Monitoring pool definitions
A pool definition provides information about a collection of data source
connections. Some related definitions are associated with a pool definition; for
example, connection and macro definitions and user list name. In addition to
creating associations between several other definitions, the pool definition provides
configuration parameters for all connections in the pool, such as minimum and
maximum pool size (in terms of number of active connections) and connection
timers.

This window displays pool definition information for host and database
connections. A pool definition is not listed until at least one connection is allocated
from the defined pool.

Monitoring connections
Each connection shown in these displays represents a communication link to a
back-end data source, such as a 3270 application or a database. The displays enable
you to see details about which users are connecting to which data sources, and
which connection identifiers they are using. You can also shut down sessions.

There are separate displays with which you can monitor:
v All connections
v Host connections: connections to 3270, 5250, or VT applications running on a

host, iSeries server, or other server accessible via Telnet (VT)
v Database connections: connections to databases through the Java Database

Connection (JDBC) interface

Monitoring user lists and user list members
User lists identify the user IDs and other connection-specific parameters associated
with a particular connection pool definition. For systems that allow only a single
connection per user ID, the number of user IDs determines the number of
connections that can be active in a single pool.

For a description of user lists and how they are used, see “Defining user lists” on
page 26.

Administering problem determination components
Host Publisher Server Administration enables you to set up and monitor logging
and tracing to help you resolve problems.

Log and trace file names
The base log and trace file names in server.properties are used as templates to
generate unique sets of log and trace files for each application server. The default
base trace file name is trace.txt; the default base log file name is messages.txt. You
can change these names in server.properties. The application server running Host

60 IBM® WebSphere® Host Publisher Administrator’s and User’s Guide

Publisher is the concatenation of the underscore (_) character, followed by the
name of the Host Publisher Server instance, followed by another underscore (_)
character.

The Host Publisher Server instance ID (for example _SSS_) is then appended to the
base file name to generate the template for the log and trace files for an application
server.

File naming example
Using the trace file as an example, the name becomes trace _SSS_.txt. Finally, an
index (1, 2, 3, and so forth) is added to this name to distinguish multiple files. So,
for example, if the Host Publisher Server instance ID is domain_node_server, the
trace file for the application server is named trace_domain_node_server_.txt. With
multiple trace files configured, the trace file names for this application server are
trace_domain_node_server_1.txt, trace_domain_node_server_2.txt, and so forth.

When trace_domain_node_server_1.txt reaches maxTraceFileSize, it is closed and
renamed to trace_domain_node_server_2.txt. A new trace_domain_node_server_1.txt file
is opened.

When trace_domain_node_server_1.txt reaches maxTraceFileSize again, previous trace
files are renamed—for example, trace_domain_node_server_2.txt is renamed to
trace_domain_node_server_3.txt. Then trace_domain_node_server_1.txt is renamed to
trace_domain_node_server_2.txt, and a new trace_domain_node_server_1.txt file is
opened.

When the maxTraceFiles number is exceeded, the oldest file is deleted.

The same naming scheme is applied to log files. A typical log file, therefore, has a
name like messages_domain_node_server_1.txt.

Version Information
The Version Information window displays the Host Publisher version, build level,
and a list of Authorized Program Analysis Reports (APARs) that have been
applied. Refer to this information when you plan to apply APARs or when you are
talking with the IBM Software Support Center about a problem.

View Log
Using the View Log window, you can view the last 200 lines of the Host Publisher
log file, download the entire file, or clear the file. The log file records information
about three kinds of events:

Error events
Problems that prevent an operation from completing. Error events usually
require that you take some action to correct the problem.

Warning events
Unexpected occurrences that might require action to correct the problem.
Warning events are not as serious as error events.

Information events
Normal occurrences, such as starting and stopping the Host Publisher
Server. Information events do not require any action.

The log file is intended for you to read and use as a reference when
troubleshooting problems. Most of the messages that appear in the log are

Chapter 3. Using Host Publisher Server Administration 61

documented in the IBM WebSphere Host Publisher Messages Reference. That
publication contains suggestions for actions you can take to correct problems,
when necessary.

Note: In Windows NT and Windows 2000, you cannot rename or delete the
standard output and standard error logs while Host Publisher Server is
running. If you want to rename or delete these logs as part of
troubleshooting procedures, to reclaim disk space, or to minimize the size of
an information bundle file, you must stop the application server
representing Host Publisher. However, the WebSphere node can remain
running.

Set Log Options
Using the Set Log Options window, you can control whether information and
warning events are written to the log file, and define the file to which the log
events are written. If the file already exists, new events are appended to it. Error
events are always written to the log file.

The log file name template is messages.txt and is created separately for each
application server. The application server name is added as a suffix to each file
name, in addition to the suffixes used to identify the number of files. For example,
if the application server name is domain_node_server, and the log file name template
defined in server.properties is f:\HP4\Log\messages.txt, and the number of log files
is set to 2, the log files are named as follows.

f:\HP4\Log\messages_domain_node_server_1.txt
f:\HP4\Log\messages_domain_node_server_2.txt

If the file already exists, new events are appended to it.

You can change the template name of messages.txt by editing the server.properties
file.

View Trace
Using the View Trace window, you can view the last 200 lines of the Host
Publisher trace file, download the entire file, or clear the file.

The trace file records details of the internal operation of the Host Publisher Server,
and is not necessarily intended for you to read. Typically, the trace facility is used
when requested by IBM service.

Turning on tracing adversely affects the performance of Host Publisher Server.

Set Trace Options
Using these windows, you can choose to trace one or more of the following:
v Integration Objects on the server
v Host connections, using the tracing facility in Host On-Demand
v Database activity, using the JDBC tracing facility in WebSphere

You can also select the name and location of the trace file.

To set up tracing, use one or more of the following windows:

Server Tracing
Trace events on the server. This window enables you to select one or more
of the following trace sources:

62 IBM® WebSphere® Host Publisher Administrator’s and User’s Guide

Server Tracing
Enables tracing in Host Publisher Server for connections,
administration, and so forth.

Remote Integration Object (RIO) Tracing
Enables tracing in Remote Integration Objects that you have built.

Integration Object Tracing
Enables tracing in specific Integration Objects that you have built.
Use the trace specification field to specify which Integration
Objects to trace.

Note: You must select at least one option to enable any tracing on the
server.

Host Connection Tracing
Select either or both types of tracing options:

User tracing for Host On-Demand macros
Traces the playing of macros. Because it affects system
performance, we recommend that you use this trace only for
debugging macros.

Display Terminal
Enables you to view the host terminal screen (green screen) of any
Host Access Integration Object as it runs in real time on the server.
After you set the trace option, terminal settings are shown for only
newly created connections. For more information about the Display
Terminal, see “Using Display Terminal for testing and debugging”
on page 66.

Host Publisher Server Administration also includes a Display Service
Tracing Options button with which you can initiate traces (if instructed to
do so by IBM service). We recommend that you not use these traces unless you
are asked to do so by IBM service.

Database (JDBC) Tracing
Turn on database tracing. This option enables tracing of all Java Database
Connectivity (JDBC) activity in WebSphere Application Server and directs
the output to the Host Publisher Server trace file.

Note: All JDBC activity, not just Host Publisher’s, is traced when this
option is enabled. It is possible for another application to also enable
JDBC tracing and redirect the output to another location. This would
include Host Publisher trace data.

Trace File Name
The trace file name template is trace.txt and is created separately for each
application server. The application server name is added as a suffix to each
file name, in addition to the suffixes used to identify the number of files;
for example, if the application server name is domain_node_server, the trace
file name template defined in server.properties is f:\HP4\Log\trace.txt, and
the number of trace files is set to 2, the trace files are named as follows.

f:\HP4\Log\trace_domain_node_server_1.txt
f:\HP4\Log\trace_domain_node_server_2.txt

If the file already exists, new events are appended to it.

Chapter 3. Using Host Publisher Server Administration 63

You can change the template name of trace.txt by editing the
server.properties file.

Multiple log and trace files
By default, the size of the log and trace files is 512 KB, and two files are saved. If
you prefer to work with a different number of log or trace files, or if you want to
change the size of the files, you can edit a ras_xxx.properties file, located in the
Server subdirectory where Host Publisher is installed. The keywords and their
default values are:
maxLogFile=2
maxLogFileSize=512k
maxTraceFile=2
maxTraceFileSize=512k

For detailed information about editing ras_xxx.properties files, see “The
ras_xxx.properties file” on page 125.

Administering XML Gateway sessions
Use Host Publisher Server Administration to define, delete, and configure XML
Gateway sessions. When you have defined an XML Gateway session, you can
access a host using the XML Gateway servlet and xmlAppData bean. For details,
see “Chapter 6. Using the XML Gateway to enable simplified access to host
applications” on page 87.

Administering applications
Application administration, formerly a function of Host Publisher Server
Administration, is now done using WebSphere Application Server. For details, refer
to ″Administering Applications″ in the IBM WebSphere InfoCenter.

Administering Host Publisher from a remote machine
Distributed administration enables you to perform administration tasks on
instances of Host Publisher Server running in application server clones defined
using WebSphere. (For more information about cloning, see “Application server
cloning and load balancing in WebSphere” on page 79.)

The Host Publisher Server Administration function consists of two components:
v A Java Remote Method Invocation (RMI)-based Host Publisher administration

server that is created in every Host Publisher Server instance that is initialized in
a WebSphere application server.

v An administration client, HPAdminServlet, that can run in any WebSphere
application server and can manage a Host Publisher Server instance in another
WebSphere application server by making RMI calls to its administration server.
HPAdminServlet is configured within the Host Publisher application server
(HostPubServer), which is defined, using WebSphere configuration, when you
install Host Publisher Server.

Having these two components enables you to administer any Host Publisher
Server instance remotely. Examples of environments where remote administration
is required include those where:
v Cloned application servers are defined within or across machines. In this

instance, an attempt to access the URL for the Host Publisher Administration
servlet cannot be directed to a specific application server, because every
application server is identical.

64 IBM® WebSphere® Host Publisher Administrator’s and User’s Guide

v A Host Publisher user runs Integration Objects in an application server where
HPAdminServlet is not deployed. In this case, the administrator must have
access to at least one application server in which HPAdminServlet is running.

Before you can perform any administration tasks, you must select a Host Publisher
Server instance to administer on a given server machine. The default is the server
instance that is running on the same application server as HPAdminServlet. After
you select the server instance, all administration functions are assumed to apply to
that server instance until the selection is changed.

Advanced Server topics
This section covers advanced topics which might not apply to all users of Host
Publisher Server.

Securing access to Host Publisher Server Administration
using WebSphere Application Server

You can protect a WebSphere Application Server (WebSphere) administrative
domain that consists of a cluster of servers using the same WebSphere
administrative database. When you do this, Host Publisher operations are also
protected. This means that your system administrators must have proper
authentication (user ID and password) to perform Host Publisher administrative
tasks.

The security functions used by Host Publisher in WebSphere are based on the J2EE
form-based authentication process. When you enable global security in WebSphere,
the administrator receives a logon prompt when he or she tries to access Host
Publisher Server Administration. To run the servlet, the administrator must type
the user ID and password that you defined.

When an administrator uses Host Publisher Server Administration to administer
remotely a host or application server (running the Host Publisher server) on a
protected WebSphere Application Server, he or she must provide a user ID and
password. This user ID and password must match the user ID and password used
for authentication on that WebSphere Application Server.

When WebSphere Application Server security is enabled, no Host Publisher Server
Administration operations are available unless the user provides a valid
WebSphere user ID and password.

In addition, when you use Lightweight Third Party Authentication (LTPA) as the
WebSphere authentication mechanism, you must enable WebSphere single sign-on
(SSO). WebSphere SSO requires you to use the fully-qualified host name in the
URL for Host Publisher Server Administration. For example, when SSO is enabled,
you would access Host Publisher Server Administration using
http://hostname.mycompany.com/HPAdmin/main.jsp rather than
http://hostname/HPAdmin/main.jsp.

Opening Host Publisher Server Administration in a new
browser window

If you have a browser window open when you open Host Publisher
Administration, by default the Host Publisher Administration utility opens in the

Chapter 3. Using Host Publisher Server Administration 65

browser window. If you want to open Host Publisher Administration in a new
browser window, you must change your browser settings as follows:
1. In Microsoft® Internet Explorer, click Tools > Internet Options.
2. Click the Advanced tab, then clear the Reuse windows for launching shortcuts

check box.
3. Click Apply.
4. Close, then restart your browser.

Notes:

1. The Reuse windows for launching shortcuts check box is not available in
Microsoft Internet Explorer versions previous to 5.5x.

2. Netscape does not provide options for launching shortcuts.

Using Display Terminal for testing and debugging
When debugging applications on a test system, you can control whether terminal
screens are created on the Server display. Display screens are created only for
connections established while this option is turned on. They are not created for
existing connections or for connections that are idle. However, the Host
Connections page in Host Publisher Server Administration includes a Toggle
Display button that turns Display Terminal on and off for selected connections.

CAUTION:
Turning on the Display Terminal option can seriously affect performance or
overload the server. Do not use this on servers with many connections. Display
Terminal is intended for use in debugging during application development on a
test system; it is not intended for use on a heavily loaded production server.

You can turn Display Terminal on for any new host connections by selecting the
Display Terminal box on the Host Connection Tracing page; however, you can use
Toggle Display to turn Display Terminal on and off at any time, regardless of the
Host Connection Tracing setting.

Notes:

1. To use Display Terminal on OS/400, Remote Abstract Windowing Toolkit
(RAWT) must be enabled.

2. If you are using WebSphere Application Server AE on Windows NT or
Windows 2000, you must enable the WebSphere Administration Server service
to interact with the desktop.

Configuring the Display Terminal function for iSeries
To display and use the Display Terminal check box, some additional configuration
is required on the iSeries WebSphere Application Server and on your choice of a
secondary network system that is capable of supporting Java Abstract Windowing
Toolkit (AWT) JDK™ classes. This configuration is necessary because the iSeries
server does not support graphical display devices as direct connect devices; it does
support them as client and server roles. Java has a graphical solution for this called
Remote AWT. In this case, another system, perhaps Windows NT/9x, acting as an
AWT server, handles the graphical display of the terminal screen and interaction of
Java code running in the primary environment; specifically, Host Publisher Server
for iSeries. Remote AWT works like this:
1. Configure your Windows NT/9x system to run the Java JDK Remote AWT

server/listener.

66 IBM® WebSphere® Host Publisher Administrator’s and User’s Guide

2. Configure your iSeries WebSphere Application Server, which also runs Host
Publisher Server, to send all AWT requests and functions to the Windows
server/listener.

3. When setup and configuration is complete, use OS/400 commands to stop and
start WebSphere Application Server.
Host Publisher Server Administration detects whether Remote AWT is enabled
and, if it is, displays the Display Terminal check box located in Server
Administration at Problem Determination > Set Trace Options > Host
Connection Tracing.

4. Select this check box and submit changes.
5. Click Server Status in Host Publisher Server Administration, then restart Host

Publisher Server to enable Display Terminal support. Whenever the Display
Terminal check box is changed, you must restart Host Publisher Server to
ensure that the new setting is read.

Note: Do not disable Remote AWT without first clearing the Display Terminal
check box and submitting changes in Host Publisher Server Administration.
If you do not follow this sequence, a Host Publisher Server 500 Internal
Server Error will occur every time a Host Access Integration Object is run.
The correct sequence is to clear the Display Terminal check box and submit
changes, then disable Remote AWT support in WebSphere Application
Server.

Migrating from previous versions of Host Publisher on the server
This section describes what you need to do at the server if you are migrating from
a previous version of Host Publisher to Host Publisher Version 4.0. Refer to
“Migrating from previous versions of Host Publisher Studio” on page 51 for
information about migrating in Host Publisher Studio.

Installing Host Publisher Version 4.0 on the server
If you are migrating from a previous version of Host Publisher (Version 3.5 or
Version 2.2.1), we recommend that you follow the procedures in the IBM WebSphere
Host Publisher Planning and Installation Guide. It is especially important that you
uninstall the prior version of Host Publisher before you attempt to upgrade
WebSphere Application Server.

As you install Host Publisher Server Version 4.0, migrate your existing Host
Publisher applications to ensure that they are compatible with WebSphere 4.0. If
you plan to modify the applications—for example to take advantage of new
functions in Version 4.0—you should migrate them on the Studio machine using
the instructions in “Migrating from previous versions of Host Publisher Studio” on
page 51.

However, if you plan to use the applications without making any changes to them,
migrate and deploy them on the server using the instructions in “Migrating
applications on the server” on page 68.

This section also describes optional migration steps you can follow on the server
after installing Host Publisher Version 4.0:
v “Removing HTTP session-affinity code” on page 70.
v “Updating server properties files” on page 70.

Chapter 3. Using Host Publisher Server Administration 67

After the applications have been migrated, deploy them using WebSphere. They
can now be executed in the WebSphere environment.

Migrating applications on the server
All Host Publisher Version 3.5 (and earlier) applications on the server must be
migrated. A Server application migrator utility, provided with Host Publisher
Version 4.0, converts the applications to J2EE applications and updates them so
they are compatible with WebSphere 4.0. After migrating the applications, you
must deploy them using WebSphere before they can be run.

If you have not deleted your existing applications from the server, the installation
process for Host Publisher Version 4.0 gives you the option to invoke the Host
Publisher Server application migrator utility.

However, you can choose to invoke the application migrator utility later, from the
command line, using the AppMigrator command. The command line migration
gives you flexibility in specifying which applications to migrate.

Note: If an application containing Database Access Integration Objects will attempt
to connect to a remote DB2 database, the JDBC drivers on the server must
be at the same FixPack level as the JDBC driver on the Studio machine
where the Integration Objects were generated. Therefore, you cannot migrate
an application that was built using JDBC 1.0 drivers. You must upgrade the
JDBC driver on the Studio machine, regenerate the Integration Objects in
Database Access, and reassemble the application in Application Integrator.

What the application migrator utility does
The Host Publisher Server application migrator utility does the following things
for a Host Publisher application that has an application manifest file in the
install_dir\Server\production\appmanifest directory:
v Converts the application to a J2EE application, and packages it in an .ear file.
v Migrates JSP pages in the application to the JSP 1.1 level. It replaces JSP .91 tags

and their attributes with either JSP 1.1 tags and attributes or with Java code. (See
“Details of migrating JSP pages” on page 54 for details about this part of the
migration.)

v Migrates XML Legacy Gateway sessions to XML Gateway sessions and saves
them in the file install_dir\Server\hPubPortalData.xml.

v Saves the migrated application .ear file in the
install_dir\Server\migration\migratedApps directory.

v Produces a log file in the install_dir\Server\migration\migratedApps directory.

You can invoke the Host Publisher Server application migrator utility when
prompted during installation time, which is recommended, or you can invoke it
later using the AppMigrator command.

Command-line invocation of the application migrator utility
After you install Host Publisher Version 4.0, you can use the AppMigrator
command to perform migration on Host Publisher Version 3.5 (and earlier)
applications. The syntax of the command is:

Windows platforms
AppMigrator -i source_dir [-o hp40_dir -s file_list -l log_file -?]

AIX, Solaris, and OS/400
sh AppMigrator.sh -i source_dir [-o hp40_dir -s file_list -l log_file -?]

68 IBM® WebSphere® Host Publisher Administrator’s and User’s Guide

The parameters are:

-i source_dir
A required parameter specifying the source Host Publisher (Version 3.5 or
Version 2.2.1) directory containing the applications to be migrated. It is
assumed that the applications are in the \Server\production\appmanifest
subdirectory. For example, specify C:\HostPub if the files are in
C:\HostPub\Server\production\appmanifest.

-o output_dir
An optional parameter specifying the Host Publisher Version 4.0
installation directory under which the migrated application .ear files will
be stored. The files will be stored in the \Server\migration\migratedApps
subdirectory. For example, specify C:\HostPub if you want the files stored
in C:\HostPub\Server\migration\migratedApps.

If you do not specify this parameter, the migrated applications are stored
in the \source_dir\Server\migration\migratedApps subdirectory.

-s file_list
An optional parameter specifying the names of one or more Host Publisher
applications. When specifying multiple files, delimit the files using a
semicolon and enclose the list in double quotes.

Specify hPubPortalData.xml to migrate XML Gateway sessions.

If you do not specify this parameter, all Host Publisher applications in the
source directory (except XML Gateway sessions) are migrated.

-l log_file
An optional parameter specifying the fully-qualified name of the log file.
The log file contains a detailed record of the migration steps, including (at
the end of the file) a summary of all errors and the applications for which
they occurred.

If you do not specify this parameter, the log file is saved in the
\output_dir\Server\migration\migratedApps subdirectory with the name
Migrate.log. If you specify a file name without a directory path, the log file
is saved in the same subdirectory with the name you specified.

-? Displays help information.

Examples

Note: The following examples show the Windows command syntax for the Server
application migrator utility.

Example 1: To migrate two applications, fulist and phone, which are stored in
C:\HostPub\Server\production\appmanifest, enter the following:
AppMigrator -i C:\HostPub -s "fulist.application;phone.application"

The two applications are migrated and their .ear files are stored in
C:\HostPub\Server\migration\migratedApps. The log file is stored in the same
subdirectory as Migrate.log.

Example 2: To migrate all of the existing applications in
C:\HostPub\Server\production\appmanifest and store the migrated application
.ear files in D:\HP40\Server\migration\migratedApps, enter the following:
AppMigrator -i C:\HostPub -o D:\HP40 -l MyMigrate.log

Chapter 3. Using Host Publisher Server Administration 69

The log file is stored in D:\HP40\Server\migration\migratedApps as
MyMigrate.log.

Example 3: To migrate all of the existing applications in
C:\HostPub\Server\production\appmanifest, store the migrated application .ear
files in D:\HP40\Server\migration\migratedApps, and store the log file in a
different directory, enter the following:
AppMigrator -i C:\HostPub -o D:\HP40 -l D:\HP40\Server\migration\log\MyMigrate.log

The log file is stored in D:\HP40\Server\migration\log as MyMigrate.log.

Example 4: To migrate XML Gateway sessions in
C:\HostPub\Server\production\appmanifest, enter the following:
AppMigrator -i C:\HostPub -s hPubPortalData.xml

The log file is stored in C:\HostPub\Server\migration\migratedApps as
Migrate.log.

Removing HTTP session-affinity code
To enforce HTTP session affinity in Host Publisher Version 3.5 and earlier releases,
it was necessary to add code to your JSP pages. Although you do not have to
remove this extra code from your migrated applications in Version 4.0, you might
experience a slight performance improvement if you do so.

To remove the session-affinity configuration code, edit the JSP file (using a text
editor compliant with UTF-8) and manually remove the following:
//---
// Establish session affinity to insure the execution of chained bean application
// is performed on the same JVM, giving all IO's in chain access to the same
// connection. If this is the target of form page, the session will have
// been previously established and isNew()will return false.
HttpSession hp_session =request.getSession(true);
if (hp_session.isNew()){

String targetURL =request.getServletPath();
String queryString =request.getQueryString();
if ((queryString !=null)&&(queryString.length()>0)){

targetURL =targetURL +"?"+queryString;
}
response.sendRedirect(response.encodeRedirectURL(targetURL));
return;

}
//---

Updating server properties files
When you install Host Publisher Version 4.0, new server properties files are
created, and they contain the default values shown in “Appendix B. Server
properties files” on page 123. The server properties files are named
server.properties and ras_xxx.properties (where xxx is the name of a particular
application server).

If, while using previous versions of Host Publisher, you modified the default
values in the server properties files, you can edit the new files and restore the
values you were using.

70 IBM® WebSphere® Host Publisher Administrator’s and User’s Guide

Chapter 4. Using Web Services

Web Services provide a way for applications to connect and interact on the Web
more easily and efficiently. Web Services are self-contained, modular applications
that can be described, published, located, and invoked over the Web.
Platform-neutral and based on open standards, Web Services can be combined with
each other in different ways to create business processes that enable you to interact
with customers, employees, and suppliers.

Typically, Web Services use Internet protocols such as HTTP, use XML message
formats, and are plugged into Web Service registries where other developers can
combine and deploy them. Think of them as strategic building blocks for
automated business processes that can be deployed across your enterprise and
shared with other enterprises.

Support for Web Services has been implemented in a number of IBM software
products, including WebSphere Application Server and WebSphere Studio tools
(such as WebSphere Studio Application Developer) at the 4.0.2 level or above.

You can use the Host Access and Database Access components of Host Publisher
Studio to create supporting files that enable Host Publisher Integration Objects and
EJB Access Beans to be deployed as Web Services. Application Integrator assembles
these Java objects (and optionally JSP pages that reference the Java objects) into a
J2EE .ear file. You can then import the .ear file into a new or existing WebSphere
Studio project, where you can create and deploy Web Services.

Creating and deploying a Web Service
To create an Integration Object in Host Publisher and then enable it to become a
Web Service, you perform the following steps:
1. Using Host Publisher Studio, create one or more Integration Objects or EJB

Access Beans with Options > Create Web Services Integration Object Support
checked.

2. Import the Web Services Integration Objects or EJB Access Beans into
Application Integrator. Create an application that consists of Web Services
Integration Objects, EJB Access Beans, or both, and then generate an .ear file for
the application by clicking File > Create J2EE Archives.

3. Import the .ear file into a J2EE-enabled WebSphere Studio tool, such as
WebSphere Studio Application Developer.

4. Use the WebSphere Studio tool to create a Web Service.
5. Generate a sample application and run it to test your Web Service.
6. Complete development and testing of the application you imported in step 3.
7. Deploy the completed application.

For details on performing steps 1 and 2, see “Chapter 2. Using Host Publisher
Studio to develop J2EE applications” on page 9. For a detailed description of the
rest of this process, refer to IBM WebSphere Host Publisher Programmer’s Guide and
Reference.

© Copyright IBM Corp. 1999, 2002 71

Accessing Host Publisher from a remote machine using Web Services
You might want to write a program that does not execute in WebSphere but that
requires access to an Integration Object. In earlier versions of Host Publisher, you
developed Remote Integration Objects (RIOs) to access Integration Object data
from a Java program (applet or application) running on a remote machine. With
the current version, however, you can use Web Services to perform this same
function.

The primary advantages of using Web Services over RIOs are:
v Web Services are strategic. Communication is based on a current,

industry-standard suite of standards, APIs, and implementations such as Web
Services technology framework or service oriented architecture (SOA). They are
based on self-describing Web Service Description Language (WSDL), which is a
descriptive interface and protocol binding language.

v The messaging of Web Services is XML messaging, based on the industry
standard Simple Object Access Protocol (SOAP). SOAP is language-independent
and interoperable between different programming languages executing on
different operating systems.

v Web Services can be published and dynamically located. Universal Description,
Discovery, and Integration (UDDI) is a registry mechanism that you can use to
perform lookups for Web Services descriptions. After lookup, a client application
can dynamically bind directly to Web Services provided by the service provider.

Specifying properties for Web Services Integration Objects
In Host Access and Database Access, the Options menu has a Web Services
Integration Object Properties selection. This option specifies file suffixes that are
added to the names of the files (.class files and .java files) associated with the
Integration Object. The suffixes help you easily locate the Web Services-specific
files that are generated by Host Publisher Studio. Default suffixes are provided, but
you can use the Web Services Integration Objects Properties option to specify
different suffixes for the Web Services Integration Object you are currently working
on.

The default suffixes are:
v Properties for the Properties Object file
v Helper for the Helper Object

To change the default suffixes for all Web Services Integration Objects, edit the
Studio.ini file.

72 IBM® WebSphere® Host Publisher Administrator’s and User’s Guide

Chapter 5. Advanced features

This chapter discusses how to use advanced features in Host Publisher: Integration
Object chaining, advanced EJB topics, cloning and load balancing, express logon,
and security.

Integration Object chaining
When you use the Host Access component of Host Publisher Studio, Integration
Object chaining enables you to create multiple Integration Objects which can be
grouped together into a single major task within your Host Publisher application.
Each Integration Object performs one subtask, and the major task is performed by
an Integration Object chain. When the application is executed, the Integration
Objects execute in sequence, each using the same connection.

This section describes Integration Object chaining in detail and shows you how to
use it in your Host Publisher applications.

Deciding when to use Integration Object chaining
To determine how many Integration Objects are needed in the chain, begin by
listing all of the subtasks that need to be performed. For example, imagine a host
application called fileview that, when invoked, displays a list of files. From the list
of files, a user can select any file by typing 1 next to its name, pressing Enter, then
viewing its contents. There are two tasks to perform here:
1. Obtain the list of files to present to the user.
2. Retrieve file details for a selected file.

Two macros are required because the user must make a decision before the second
macro can execute. The second macro must wait for user input. Defining where
user input is required is the first step in separating your tasks into individual
Integration Objects.

If the user has multiple choices and each choice causes different host actions, then
each choice must be a separate Integration Object. You can then piece together the
Integration Objects dynamically, depending on the selections of the user. An
example of this is a menu of five items. If the user is allowed to select any of the
five choices, each selection must be created as an independent Integration Object.

After you understand the number of distinct tasks in your application, you can
decide how chaining will affect your application. If you have more than two tasks,
chaining might help improve your application’s response time or decrease the
amount of macro recording you must do, thus reducing the overall complexity of
your Integration Objects.

Using Integration Object chaining
Integration Object chaining can be used only with Host Access Integration Objects,
which have connections to a terminal-based application, such as a 3270 application.
An Integration Object in a chain leaves the connection in a state (at a particular
screen). After the Integration Object finishes running, another Integration Object
that begins in that state (that is, at that screen) can run.

© Copyright IBM Corp. 1999, 2002 73

You can use chaining to break up a complex application into multiple tasks, each
task represented by an Integration Object. The Application Integrator component of
Host Publisher Studio ensures that the order in which Integration Objects are
invoked is correct; however, if you edit the .jsp files without using the Studio, you
must ensure that the order of the Integration Objects is correct.

For example, if you have three Integration Objects in a chain-A, B, and C-then you
must use A first, then B, then C. If Integration Object C is invoked before
Integration Object B, then when C requests its connection, the connection is not
available in the correct state, and the Integration Object fails. Host Publisher Studio
ensures the correct order for you.

Figure 6 depicts the lifetime of a connection throughout the execution of three
Integration Objects. Integration Object A is configured as first, Integration Object B
as middle, and Integration Object C as last. Connection state data represents the
connection and the state label of the last Integration Object executed.
1. When Integration Object A begins to execute, it retrieves a connection from the

connection pool. If connection pooling is enabled and a connection is available,
the connection is already logged on and ready. If connection pooling is enabled,
but a connection is not available, the connection is created and the connect
macro is executed. If connection pooling is disabled, a connection is created
and the connect macro is executed.

2. Integration Object A runs the associated data macro, then saves the connection
and its current state for the next invocation. (You would have defined this state
as the stop state label during Integration Object chaining configuration in Host
Access.)

3. When Integration Object B begins to execute, it retrieves a connection and its
state from the connection state data because it is the middle Integration Object.
You must have defined Integration Object B’s start state label as Integration
Object A’s stop state label, which allows these Integration Objects to be
chained.

Figure 6. Connection lifetime with chaining

74 IBM® WebSphere® Host Publisher Administrator’s and User’s Guide

4. When execution completes for Integration Object B, the connection and its state
are saved in the connection state data. (You would have defined this state as
the stop state label during Integration Object chaining configuration in Host
Access.)

5. Integration Object C also retrieves the connection from the connection state
data. When Integration Object C begins to execute, it retrieves a connection and
its state from the connection state data because it is the last Integration Object.
You must have defined Integration Object C’s start state label as Integration
Object B’s stop state label, which allows these Integration Objects to be chained.
Last-in-chain Integration Objects have no end labels because the connection is
always returned to the connection pool.

6. When connection pooling is enabled, the connection returns to the pool;
otherwise, the disconnect macro is executed and the connection ends.

To build an application using Integration Object chaining with Host Publisher
Studio, you must first build the Integration Objects within the Host Access
application, and then import these Integration Objects into Application Integrator
and build Web pages around them.

To build the first Integration Object in the Integration Object chain:
1. Use the wizard in the Host Access application to define a connection as you

normally would (see “Using the Host Access wizard” on page 13 for
information about defining connections). All of the Integration Objects in the
chain will use this same connection pool.

2. Record the connect macro. (See “Recording interactions with a host” on page 15
for additional information.)

3. Record your data macro.
4. You will probably not end your data macro at the same point where you began

(so that another Integration Object can pick up where you’ve stopped).
Navigate to the desired ending point for the data macro, and click Stop
Recording on the toolbar.

5. Navigate back to the point where you can disconnect from the host; that is,
where the data macro of the last bean in the chain ends.

6. Highlight the Disconnect Macro in the macro tree and click Record.
7. Record your disconnect macro.
8. Before you create the Integration Object, click Options > Configure Integration

Object chaining. On the window that opens, specify a stop state label for this
Integration Object and specify that this Integration Object should be first. Host
Publisher uses start and stop state labels to identify the Integration Objects that
can precede or follow this one. For example, if this Integration Object has a
stop state label of connected, only Integration Objects that have connected as a
start state label can follow this Integration Object in a chain.

9. Save the Integration Object.

Note: The connect and disconnect macros are part of the connection pool, not the
Integration Object itself; however, the data macro is part of the Integration
Object.

To build a middle Integration Object in the chain:
1. Use the wizard in the Host Access application to create another Integration

Object. When you define the connection, click Share an existing connection

Chapter 5. Advanced features 75

pool and select the configuration you used for the first Integration Object. All
Integration Objects in the same Integration Object chain must use the same
connection configuration.

2. Either play the connect macro or connect manually.

Note: When you create a middle Integration Object, the connect and disconnect
macros are displayed in the macro tree; however they do not necessarily
run for that Integration Object when it is executed on the server. The
connect macro runs before the first Integration Object and the disconnect
macro runs after the last Integration Object.

3. You can play the data macros of preceding Integration Objects in the chain or
use the terminal to navigate to the correct starting point for this Integration
Object. To play the preceding macros, select Play Another Macro on the
Options menu. Host Access plays the macros of preceding Integration Objects
in the chain that you select. If the macro does not complete successfully, a
window opens telling you why the macro did not play. You can play as many
preceding macros as you want. Then record your new data macro by selecting
Data Macro in the tree and clicking Record.

4. Click Options > Configure Integration Object chaining. On the window that
opens, specify a start state label for this Integration Object that matches the
stop state label of the previous Integration Object in the chain, specify a stop
state label, and specify that this Integration Object should be middle.

5. Save the Integration Object.

To build the last Integration Object in the chain:
1. Use the wizard in the Host Access application to create the final Integration

Object. When you define the connection, click Share an existing connection
pool and select the configuration you used for the first Integration Object. All
Integration Objects in the same Integration Object chain must use the same
connection configuration.

2. Either play the connect macro or connect manually.

Note: When you create the last Integration Object, the full connect and
disconnect macros are displayed in the macro tree; however they do not
necessarily run for that Integration Object when it is executed on the
server. The connect macro runs before the first Integration Object and
disconnect runs after the last Integration Object.

3. You can play the data macros of preceding Integration Objects in the chain or
use the terminal to navigate to the correct starting point for this Integration
Object. To play the preceding macros, select Play Another Macro on the
Options menu. Host Access plays the macros of preceding Integration Objects
in the chain that you select. If the macro does not complete successfully, a
window opens telling you why the macro did not play. You can play as many
preceding macros as you want. Then record your new data macro by selecting
Data Macro in the tree and clicking Record. Be sure to end at the same point
where the first Integration Object in the chain started.

4. Click Options > Configure Integration Object chaining. On the window that
opens, specify a start state label for this Integration Object that matches the
stop state label of the previous Integration Object in the chain, and specify that
this Integration Object should be last.

Note: For the last in the chain, you supply only the start state label.
5. Save the Integration Object.

76 IBM® WebSphere® Host Publisher Administrator’s and User’s Guide

The last Integration Object in your Integration Object chain should return the host
screen to the same state from which the first Integration Object started. To verify
that this happens, play your disconnect macro.

After you have all of your Integration Objects defined, return to Host Publisher
Studio, and import them into a new application. In Application Integrator, the
Available Objects tree, when expanded for an Integration Object, specifies the
logical next and previous Integration Objects for the selected Integration Object.
This makes it easier for you to identify the order in which the Integration Objects
can be used.

When you have finished building your application, transfer it to a server, and
deploy it. (See “Transferring applications to a Host Publisher Server” on page 45
for details.)

Debugging applications that use Integration Object chaining
While Integration Object chaining is a powerful tool for modeling the most
complex host applications, take care when assembling your applications.
Application Integrator helps you build J2EE applications using chained Integration
Objects by ensuring that Integration Objects are invoked in the proper order. This
does not prevent you from trying to put the Integration Objects in a different order
or from linking pages back to other pages that are earlier in the chain. If you do
not use Application Integrator to create the application, there is a risk of creating a
J2EE application with Integration Objects that are invoked out of order; therefore,
you should be aware of the errors you get on the server when this happens.

Remember that the start and stop state labels for an Integration Object should
model the screen that they represent. If an Integration Object starts on screen A
and ends on screen B, the start and stop state labels should be different. If the
Integration Object starts and ends on screen A, then the start and stop state labels
should be the same; however, start and stop state labels are only labels. They have
no direct correlation to the screens they represent. It is possible, for example, to
give all your start and stop state labels the same label, even though the Integration
Objects start and stop on different screens. Likewise, you can give two Integration
Objects start and stop state labels that differ, even if one ends and the other starts
on the same screen. We recommend that each label name uniquely identify a
screen.

If you chain the Integration Objects incorrectly, you will experience problems when
you run your Integration Object on Host Publisher Server. Here are the error
messages you might see on the server and how to debug them.

HPS5075 Received STATE_PLAY_ERROR while playing macro in file zzz.macro
This error occurs when the macro fails to play because it cannot match the
current screen. This might happen if an Integration Object in a chain is
invoked in the correct order (a connection in a specific chain was found for
it to use), but the macro itself failed to play. It can be a problem if your
start and stop state labels are all the same, or at least are the same for two
Integration Objects, and you invoke the Integration Objects out of logical
order.

HPS5035 There is no data source object {0} in HttpSession. A possible cause is
the use of multiple browsers from a single machine to a chained application. See
documentation for more information.

This error occurs when an Integration Object with a start state label of last

Chapter 5. Advanced features 77

Integration Object state fails to retrieve the connection and its state because
its start state label does not match the stop state label of the preceding
Integration Object.

When this happens, determine why this Integration Object is being
invoked out of order.
v Are you sure that another Integration Object (either a first or middle

Integration Object) has already run and has placed its connection in the
state labeled last Integration Object state (its stop state label)?

v Are you sure that the JSP page running this Integration Object was
linked in the correct order?

v Is there another Integration Object on the JSP that should have put the
connection into the state labeled last Integration Object state and that
failed? This does not always prevent other Integration Objects on the
page from being invoked. You might be looking at a chain of errors.

In any case, check the message log for the Host Publisher Server and look
for reasons for the problem. Refer to message HPS5035 in IBM WebSphere
Host Publisher Messages Reference for details.

Performing advanced tasks with Enterprise JavaBeans (EJB)
Enterprise JavaBeans (EJB) is a server-side component architecture that enables
rapid development of versatile, reusable, portable applications. This section
describes the EJB support available in Host Publisher and describes the
configuration tasks you perform for executing Integration Objects in EJB
containers. For a description of the more basic EJB support in Host Publisher, see
“Creating applications that use Enterprise JavaBeans (EJB) technology” on page 42.

A Host Publisher application can take part in WebSphere’s workload management
(WLM) function and is resource-managed by the EJB container, including
passivation and activation of EJB instances as needed.

Note: EJB support can be generated for all Integration Objects except for those
configured to use express logon.

For information about programming with EJB Access Beans, refer to the IBM
WebSphere Host Publisher Programmer’s Guide and Reference.

Modifying Host Publisher EJB-based applications
When you import an EJB Access Bean into your application, the Host Publisher
EJB is included in the .ear file for the application. You can import the .ear file into
the WebSphere application assembly tool to modify the default values set by Host
Publisher Studio.

The following are Host Publisher attributes you might want to modify when
customizing a Host Publisher EJB-based application.
v JNDI name

The JNDI name attribute specifies the network name with which the Host
Publisher EJB is registered in the Java Naming and Directory Interface (JNDI)
directory and is used by the client (the Access Bean) to locate the EJB. In most
cases the default name is appropriate; however, if you want to deploy the Host
Publisher EJB-based application in more than one application server in the same
WebSphere domain, the EJB within each application must have a different JNDI
name.

78 IBM® WebSphere® Host Publisher Administrator’s and User’s Guide

v Timeout value

The Session Timeout attribute specifies the number of seconds of inactivity of a
bean instance before it times out. In most cases, the default value is appropriate;
however, you can specify a different value that is specific to your applications
and work environment. The session timeout value for the installed Host
Publisher EJB is 600.

Changing the default values when running in a non-J2EE
environment

For every Integration Object for which EJB support is generated, an EJB Access
Bean properties file (for example, IONameAccess1.properties) is included in the EJB
Access Bean .jar file. This .properties file specifies parameter values used by the
EJB Access Bean when it runs in a non-J2EE environment—for example, when used
by a Java application thin client. (When running in a J2EE environment, the
deployment descriptor for the EJB .jar file contains corresponding values.)

For a non-J2EE environment, the .properties file specifies the host name and port
number of the JNDI server. The .properties file also specifies the JNDI name of the
Host Publisher EJB, but this value is set by the Host Publisher Application
Integrator when it builds an EJB-based application. The default values assume a
local JNDI server.

To use values other than the defaults for the JNDI server, you can do one of the
following:
v Edit the Hostpub_install_dir\Studio\IntegrationObjects\EJB\AccessEJB.properties

file prior to generating the Integration Object. (This file is used as input to create
the .properties file in the EJB Access Bean .jar file.)

v Replace the .properties file in the EJB Access Bean .jar file with a modified copy
after the .jar file is generated.

Application server cloning and load balancing in WebSphere
WebSphere Application Server provides support for running multiple application
servers on a single machine. Each application server consists of two distinct
execution environments: a Web container for executing applications such as servlets
and JSPs, and an EJB container for executing EJB objects. These application servers
can be clones of each other; that is, they consist of the same EJB objects and
applications. For applications, all clones can process the same URL request.
Alternatively, the application servers can contain unrelated sets of applications and,
for applications, they can process different sets of URLs.

Application servers that are clones of each other can be limited to one machine
(vertical cloning), or be spread across multiple machines (horizontal cloning). Both
types of cloning provide two benefits:
v Improved throughput, because requests can be distributed across multiple

application servers
v Better fault tolerance, because when one application server fails a user still can

request that an application be processed by any of the remaining clones that can
handle the request.

Vertical cloning is also useful when configured on a machine that is powerful
enough that a single application server cannot effectively use all of its processing
power (such as on a multiprocessor machine).

Chapter 5. Advanced features 79

WebSphere provides load balancing mechanisms for forwarding a client’s requests
across multiple cloned application servers to distribute the load on individual
application servers. For more information, refer to the WebSphere InfoCenter
documentation.

Load balancing options for the Host Publisher application
server

Because Host Publisher Integration Objects can execute in any WebSphere
application server on which Host Publisher Server is running, they exploit all the
benefits of WebSphere load balancing and Workload Management (WLM). For
WebSphere Advanced Edition (AE), the Host Publisher installation process
configures a separate WebSphere Application Server (named HostPubServer) in the
machine where Host Publisher is installed.

Because WebSphere enables you to run multiple application servers on a machine,
you can create several variations of this basic configuration. You can:
v Vertically clone the basic HostPubServer application server within a machine.
v In addition to vertically cloning the HostPubServer application server, add

horizontal cloning across machines for scalability and fault tolerance.
v As an alternative to cloning, partition the application servers in a noncloned

setup so that they process different URLs representing different Host Publisher
applications. This prevents applications deployed on one application server from
being affected by application-related problems on another application server.
For example, if the two application servers are called Server1 and Server2, the
Host Publisher application in Server1 can be configured to respond to the URL
.../application1, and the hostpublisher application in Server2 can be configured to
respond to the URL .../application2. This provides a static form of load balancing
based on the request pattern. It also protects each application server from
application-related problems in the other.

Special considerations for running chained Integration Objects in a cloned
configuration are covered in the next section.

Running chained Integration Objects in cloned application
servers

Host Publisher applications consisting of chained Integration Objects that are being
driven by servlets and JSP pages depend on a WebSphere feature called HTTP
session affinity.

When a URL for a servlet or JSP is received by the application server and
forwarded to the WebSphere plug-in, the plug-in normally forwards the request to
any of the cloned application servers that have been configured to process that
URL. However, when WebSphere’s HTTP session affinity feature is enabled (it is
enabled by default), and the browser has included a session ID in the HTTP
request, the normal load-balancing behavior of the plug-in is altered. A session ID
in an HTTP request is either present in a cookie or included in the URL in an
encoded form if URL rewriting is used.

To enforce HTTP session affinity, the plug-in maps the session ID to one of the
clones in such a way that a given session ID is always mapped to the same clone.
Whenever a browser includes a given session ID on its HTTP request, the request
is routed to the same clone. Thus, WebSphere’s session affinity feature creates an

80 IBM® WebSphere® Host Publisher Administrator’s and User’s Guide

affinity between a browser with a given session ID and a given application server
among the clones that can handle that request.

A set of chained Integration Objects share a connection to a host application. This
connection is internally represented as a Java object that is valid only in the
application server in which it is created. Because this object cannot be serialized, it
cannot be written to a file or database by Host Publisher in one application server
and then recreated and used in another. Therefore, execution of all the Integration
Objects in a chained application must occur in the same application server. You can
assure this by enabling WebSphere’s HTTP session affinity feature.

Chained Integration Objects executing in a Web container use the HTTP session
object (a standard, servlet API-defined object used to track a given browser across
HTTP requests) to correlate a browser with the host connection being used by the
chained Integration Objects. If an HTTP session object is not already present, the
first Integration Object in the chain creates it. This ensures that WebSphere creates
a session ID and returns it to the browser along with the HTTP response. The
browser returns this session ID on subsequent requests to execute Integration
Objects, and the session ID is used by WebSphere to direct those requests to the
application server that contains the host connection object for that Integration
Object chain.

When a set of chained Integration Objects are executed in an EJB container using
an instance of the Host Publisher stateful session EJB, and the EJB Access Beans
themselves are executing in a Web container on behalf of a browser, then HTTP
session affinity does not have to be configured in that Web container even if the
EJB Access Beans execute in cloned application servers. This is because whenever a
request to execute an Integration Object is sent by an EJB Access Bean to the Host
Publisher stateful EJB, the request includes the handle of that EJB instance. This
unique handle guarantees that the EJB protocols direct the request to execute the
EJB to the application server running that EJB instance. Therefore, all chained
Integration Objects executed by the Host Publisher EJB instance on behalf of a
browser execute in the same application server.

EJB Access Beans executing in Web containers use the HTTP session object
associated with a browser to store and track the handle of the EJB instance being
used to run Integration Objects for that browser. Therefore, in this configuration,
HTTP session persistence must be configured if HTTP session affinity is not enabled.
HTTP session persistence is a WebSphere feature that enables HTTP session objects
to be serialized to a database by one application server and recreated from that
database in another. This feature enables all EJB Access Beans running in cloned
application servers to access the EJB handle associated with a browser running
chained Integration Objects.

To enforce HTTP session affinity in Host Publisher Version 3.5 and earlier releases,
it was necessary to configure the HTTP session persistence feature in WebSphere.
This is no longer required in Host Publisher Version 4.0.

Working with connection pools for applications in a cloned
environment

When you use WebSphere’s cloning capabilities to create multiple instances of Host
Publisher Server that share the same application files, bear in mind that each
application server running Host Publisher Server enforces connection pooling
restrictions only within the scope of that application server. For example, if an

Chapter 5. Advanced features 81

Integration Object uses a host connection pool with a maximum of 100
connections, but there are three clones running the same application, then there
could be a maximum of 300 connections.

Cloning and user lists
When you create multiple instances of WebSphere application servers running Host
Publisher Server and sharing the same application files, you can use user lists on
multiple-logon hosts without any special considerations.

However, there are special considerations for the use of user lists with single-logon
hosts:
v In vertical cloning, where application-related files are not physically copied to

each application server but are merely represented in memory, you cannot use
user lists. This restriction exists because every application server running Host
Publisher Server would need a user list for its exclusive use; but in fact there is
only one user list.

v In horizontal cloning, where multiple copies of an application are running in
separate application servers, you must modify the user list in each copy of the
application so that no two copies have a user ID in common.

For more information about user lists, see “Defining user lists” on page 26.

Express logon
Express logon enables a user with a Web browser certificate to log on to a host
system through a Web browser without having to enter the user ID and password.
This function is designed to reduce the time spent by an administrator maintaining
host user IDs and passwords. It also is designed to reduce the number of user IDs
and passwords that users have to remember.

In Host Publisher, express logon allows a connect macro to log on to a host
application without the browser user having to enter the user ID and password.
All interaction with the host application is performed by macros executing on the
server. Host Publisher uses express logon to log on to host applications using client
certificates obtained from a browser.

The express logon architecture describes the following key components:
v A Digital Certificate Authentication Server (DCAS) component, provided by

z/OS, that communicates with an enhanced version of the host-based Resource
Access Control Facility (RACF) for user ID and password administration. DCAS
dynamically supplies a user ID and a one-use-only passticket based on an X.509
certificate and the ID of the host application to which you want to log on.

Figure 7. Express logon

82 IBM® WebSphere® Host Publisher Administrator’s and User’s Guide

v A DCAS client that communicates with the DCAS server over a
client-authenticated SSL connection, performing a proprietary protocol to supply
a user ID and passticket.

Host Publisher provides a Java-based DCAS client. To use Host Publisher’s express
logon capability, Integration Objects must be executed by JSPs or servlets, and the
Host Publisher Integration Objects must be enabled for express logon in the Host
Access application. The following things happen when the application containing
the express logon-enabled Integration Objects executes on Host Publisher Server.
v When a Host On-Demand macro is executed to a point where you specified to

insert a user ID or password using Host Access, Host Publisher Server uses
express logon to provide the macro with a user ID or password.

v Host Publisher Server accesses the Web browser’s client certificate using a
servlet API and retrieves the application ID from the macro you recorded in the
Host Access application. You defined the application ID in Host Access when
you chose to insert a user ID or password in your macro. Host Publisher’s
DCAS client passes the certificate and application ID to the DCAS server, and
the DCAS server provides the user ID and password requested by the macro.

Note: The browser must use HTTPS, and you must configure the application
server to require client authentication.

The connection between the DCAS client and the DCAS server must be a
client-authenticated SSL connection. Therefore, to execute express logon-enabled
applications in Host Publisher Server, you must use IBM Key Management to
create a key ring database, a password–protected Java class file that stores the
X.509 certificate used for the client authentication of this connection. (See “IBM
Key Management” on page 84.) You must name the keyring database
HostPubELF.class and save it in <WebSphere_install_dir>\lib\ext. On non-Windows
server platforms, you must create HostPubELF.class in Host Publisher Studio and
transfer it to the WebSphere \lib\ext directory.

The following host applications support express logon: TSO, CICS, IMS, and
NetView. Any 3270 application using RACF for logon validation is a candidate for
express logon.

Express logon considerations when using Host Publisher
Studio

If you enable express logon in the Host Access application, when you choose to
insert a user ID or password, you must define an application ID and a user ID or
password. The application ID is used when you run your Integration Object on
Host Publisher Server. It is not used when recording or playing your macro in
Host Publisher Studio. The user ID and password are only for recording the macro
in Host Access. When you play the macro in Host Access, you must supply the
user ID and password. When you run the macro on Host Publisher Server, the user
ID and password are retrieved from DCAS.

Configuring express logon in Host Publisher Server
The following sections describe considerations for configuring express logon in
Host Publisher Server.

Web browsers and application servers
Your application server requires client authentication from your Web browser.
Refer to your Web browser’s documentation for information on how to set up

Chapter 5. Advanced features 83

certificates for your Web browser. Refer to your application server’s documentation
to set up client authentication over the SSL session.

IBM Key Management
IBM Key Management is a tool you can use to manage your digital certificates.
With IBM Key Management, you can create a new key ring database or a test
digital certificate, add Certificate Authority (CA) roots to your database, copy
certificates from one database to another, request and receive a digital certificate
from a CA, set default keys, and change passwords.

To start the IBM Key Management utility on Windows, click Start and then:
v In Host Publisher Studio, click Programs > Host Publisher Studio> Certificate

Management

v In Host Publisher Server, click Programs > Host Publisher Server> Utilities >
Certificate Management

To start the utility on a Host Publisher Server running AIX, invoke from the
command line:
./usr/lpp/HostPublisher/common/IKeyman/IKeyman.sh

To start the utility on a Host Publisher Server running Solaris, invoke from the
command line:
./opt/HostPublisher/common/IKeyman/IKeyman.sh

For Host Publisher Server on AS/400 , use the Key Management Utility from Host
Publisher Studio and transfer the Express Logon key database file
(HostPubELF.class) to the server with binary FTP.

DCAS server
For more information on how to configure the DCAS server for express logon,
refer to the Setting Up and Using the IBM Express Logon Featureh white paper at
http://www-4.ibm.com/software/network/library/whitepapers/elf.html. Refer to
Part 2: Configuring the Express Logon Feature (ELF).

RACF
You must register all Web browser client certificates with RACF. This associates the
certificates, which are passed by Host Publisher Server to the DCAS server, with
the IDs of users attempting to log on. For more information on RACF commands,
refer to OS/390 SecureWay Security Server RACF Security Administrator’s Guide and
OS/390 SecureWay Security Server RACF Command Language Reference.

WebSphere
For information on how to configure WebSphere for HTTPS access, refer to the
WebSphere documentation.

Configuring security
The following sections describe considerations for configuring security in Host
Publisher.

Configuring and using Secure Sockets Layer (SSL) support
for host application access

The Host Access component of Host Publisher Studio uses Host On-Demand to
provide connection support to 3270, 5250, and VT applications using Telnet
protocols. Host Publisher uses the SSL support provided by Host On-Demand for

84 IBM® WebSphere® Host Publisher Administrator’s and User’s Guide

securing these connections. Using a secure connection over SSL encrypts data
flowing over the connection and thus protects it against observation by a third
party.

For a connection to be secured, both Host Publisher and the Telnet server it is
connected to must support SSL. To secure the connection, the Telnet server must
provide a certificate, which is used to encrypt the data. This certificate uniquely
identifies a machine on one end of the connection. No other server in the network
should have the same certificate. When the server provides this certificate, it is
called server authentication.

If, while defining your Host Access Integration Object’s connection to the host, you
configure SSL support as well as server authentication, you are indicating that you
require the Telnet server to provide the certificate with which to encrypt the data.
If you select the server authentication option when configuring SSL, in addition to
verifying the certificate itself, Host Publisher performs a check to ensure the
server’s TCP/IP address matches the one specified in the certificate. The server’s
address must be a part of the certificate for this option to work.

Host Publisher verifies that the certificate is signed by a well-known certificate
authority. Host Publisher’s well-known certificate authorities are Thawte, Verisign,
and RSA.

If the certificate is not signed by a well-known trusted certificate authority, Host
Publisher is required to have its own version of the server’s certificate for
verification purposes.

To enable server authentication in Host Access, you must build a .class file called
CustomizedCAs.class. You must have a copy of this file on the Studio and on the
server. On Host Publisher Studio, copy this file into the Studio subdirectory
(c:\hostpub\Studio, for example). For WebSphere, copy the file to the
<WebSphere_install_dir>\lib\ext directory.

The gencert.bat tool, part of Host Publisher Studio, is used to generate a certificate
file for SSL enablement. The gencert.bat batch file, when used to generate a new
certificate file, requests that you enter a password. To generate a proper certificate
file, leave the password blank.

To use this utility, type the following command:
c:\install_dir\Studio\gencert.bat certificate_file

where c:\install_dir is the directory where you installed Host Publisher and
certificate_file is the name of the self-signed certificate file from the server.

If the Telnet server has a self-signed certificate, the administrator of the server
generated the certificate based on his or her own information without using a
certificate authority. In that case, Host Publisher must have a copy of the
self-signed certificate to secure the connection; however, if the server has a
certificate signed by a well-known certificate authority, the certificate is guaranteed
to be unique and secure, and Host Publisher is not required to have a copy of the
certificate.

Using Host Publisher with forms-based security and SSL
There are two different security options for Host Publisher: forms-based security
and Secure Sockets Layer (SSL) file transfer. You can select one, both, or none.

Chapter 5. Advanced features 85

Forms-based security is activated when you select Enable Security from the
WebSphere Administrative Console’s Security Center. Forms-based security
prevents unauthorized access to Host Publisher Server Administration.

SSL is activated when you enable SSL support within your Web server. Using SSL
alone does not safeguard Host Publisher Server Administration from unauthorized
access. However, SSL does prevent the monitoring of data passed between a client
(running a Web browser) and a server.

The highest level of security is obtained by enabling both forms-based security and
SSL. If both types of security are enabled and used, users trying to access Host
Publisher Server Administration are prompted for an ID and password. The
password, along with all data sent between the client and the server, is sent in
encrypted form.

Activating forms-based security
To activate forms-based security, select Enable Security from the WebSphere
Administrative Console’s Security Center.

To grant or deny user access to Host Publisher Server Administration, use the Role
Mapping tab in the Security Center. By default, all authenticated users are
authorized to use Host Publisher Server Administration.

Activating SSL
To activate SSL, refer to the documentation for your Web server. After activation, it
is a good idea to verify that an additional Host Alias entry for the SSL port
(usually *:443) has been added.

86 IBM® WebSphere® Host Publisher Administrator’s and User’s Guide

Chapter 6. Using the XML Gateway to enable simplified
access to host applications

The XML Gateway provides an HTML emulator for end-user access to 3270 and
5250 applications, and enables you to write a Java server program to access 3270
and 5250 application data in an XML format. (Refer to the IBM WebSphere Host
Publisher Programmer’s Guide and Reference for information on how to program Java
beans and servlets related to the XML Gateway.) The XML Gateway supplies a
portal to the emulator function, which relies on the XML Gateway servlet for
interaction with the host applications.

The XML Gateway portal consists of the following:
v hPubPortal servlet — the portal servlet through which you can access the XML

Gateway, which consists of host links created through Host Publisher Server
Administration

v XML Gateway servlet (xmlGateway)—a Web-based terminal emulator that
enables interaction with host terminal applications using XML data formats

Accessing the Host Publisher XML Gateway portal page
As an end user, you can use the hPubPortal servlet to access the Host Publisher
portal page at this URL: http://servername/HPXGW/hPubPortal

where servername is the name of the Web server where Host Publisher is installed.

The portal page consists of host links stored in the hPubPortalData.xml file. These
host links use defined parameters to access the XML Gateway servlet, and enable
you to use the XML Gateway servlet to access a desired host session.

Interacting with the host application
Using the XML Gateway servlet to interact with the host application is similar to
using a standard terminal emulator, except data input is performed using a Web
browser as follows:
v The Tab key moves among entry fields
v Normal keyboard input is accepted in the entry fields
v Buttons that perform terminal function key commands (PF1, PF2, Clear, Enter,

and so forth) are present at the bottom of the page.

The XML Gateway servlet provides two additional buttons: Refresh and
Disconnect.

Refresh
Updates the browser page to reflect the latest state of the host application.
This action is necessary because, unlike a traditional emulator, the XML
Gateway servlet does not continuously update the host screen. The servlet
updates the screen only when input is sent to the host application.
Typically, this occurs when you click a function key button, such as Enter.
Refresh enables you to receive an update of the host screen without first
having to issue a command or type data.

© Copyright IBM Corp. 1999, 2002 87

Disconnect
Signals to the XML Gateway servlet that you are finished with the host
application and the host connection. Resources used by this instance of the
servlet are then freed, enabling more efficient access to the resources by
other users. If you do not click Disconnect when you are finished, the host
session is not freed until WebSphere Application Server determines that the
Web session is no longer accessing the servlet. This timeout value is a
configurable WebSphere Application Server parameter; it defaults to 30
minutes.

Note: We recommend that you run only one XML Gateway session from each
browser window, and that each browser window be dedicated to the XML
Gateway session.

Configuring time delays for XML Gateway
The XML Gateway uses specified time delays when interacting with a host
application. These time delays control when the screen is read to display the latest
host screen to the user. To modify or view the values for these delays, you must
use XML Gateway Administration. You cannot modify or view them using Host
Publisher Server Administration.

There are two delays:

Start Delay
Controls when to read the initial screen while accessing the host. The Start
delay default is 2 seconds.

Interval Delay
Recognizes when a screen is no longer changing and is therefore ready to
display to the user. The Interval delay default is 2 seconds.

To override the defaults for these delays, edit the hPubPortalData.xml
configuration file created by Host Publisher Server Administration. This file is
located in the Host Publisher Server installation directory under
Server\hPubPortalData.xml.

Edit this file with a text editor that is compliant with UTF-8. Each record in the file
describes one session as defined with the XML Gateway Administrative servlet.
Specify values for DELAY_START and DELAY_INTERVAL to override the defaults.
Specify the values in milliseconds; for example, a value of 1000 is 1 second.

Enhancing the XML Gateway sample servlet
In addition to being a Web-based terminal emulator, the XML Gateway sample
servlet also enables Host Publisher to interact with host applications using XML
data formats. The servlet can:
v Process host screens as XML data
v Combine the host screen XML data with XML data from other applications
v Present data to an end user in a traditional Web browser format
v Receive user input through the browser
v Use XML techniques to process the browser data
v Use an XML interface to send data back to the host application.

88 IBM® WebSphere® Host Publisher Administrator’s and User’s Guide

Refer to the IBM WebSphere Host Publisher Programmer’s Guide and Reference for
more information on how to use the Host Publisher XML Gateway interface to
write applications and servlets.

Tracing the XML Gateway servlet
To see the trace file, in Host Publisher Server Administration, select Problem
Determination > View Trace. Host Publisher Server Administration regards the
XML Gateway servlet as an Integration Object. The procedures for tracing and
error handling for the servlet are as follows:
1. Open Host Publisher Server Administration.
2. Open Server Tracing.
3. Check the Integration Object tracing box.
4. Click Save.
5. Enter xmlL* to trace the XML Gateway Integration Objects.
6. Click Save.

For more information about tracing and error handling in Host Publisher Server
Administration, refer to “Administering problem determination components” on
page 60.

Chapter 6. Using the XML Gateway to enable simplified access to host applications 89

90 IBM® WebSphere® Host Publisher Administrator’s and User’s Guide

Chapter 7. Using accessibility functions in Host Publisher
Studio

Host Publisher Studio provides certain accessibility functions. This chapter
describes how you can use the keyboard instead of the mouse to perform tasks in
Host Publisher Studio.

Performing basic keyboard tasks
This section describes how to use the keyboard to navigate through the Host
Publisher graphical user interface.

Using the menu bar
To navigate the menu bar and select items on it:
1. Use a mnemonic (such as Alt+F for File), or press F10 to activate the menu bar

and then use the left and right arrow keys to move along the menu bar.
2. When you reach the desired menu, use the up and down arrow keys to select

items in the menu.
3. Enter a mnemonic (such as Ctrl+N for New in the File menu), or press

Spacebar to select the highlighted item in the menu.
4. To leave the menu bar, press Esc.

Using a drop-down list box
To make a selection in a drop-down list box:
1. Move the focus to the list box, using the Tab key.
2. Press F4 to open the list box.
3. Use the up and down arrow keys to select an item in the list.
4. Press F4 or Esc to close the list box.

Using a tabbed pane

To make selections and enter data in a pane with tabbed sections:
1. Use the left and right arrow keys to move focus to the desired tab.
2. Use the Tab key to move focus among the controls for the selected tab.

Figure 8. Using a tabbed pane

© Copyright IBM Corp. 1999, 2002 91

a. When focus is on a text field, type text into the field.
b. When focus is on a button, press Enter to select the button.

3. Use Shift+Tab to return focus to the current tab, then use the left and right
arrow keys to move focus to a different tab.

Using the terminal pane in Host Access
The following list explains the meanings of the different colored borders of the
terminal pane.

yellow
The terminal pane has focus and any keystrokes are sent to the host.

gray The terminal pane has focus, but keystrokes are not sent to the host. The
terminal allows special key combinations, but if you enter any other
keystrokes the border flashes red and you hear a beep.

red You have entered a keystroke that will not be sent to the host.

blue Focus is not on the terminal pane.

Use the following keyboard combinations when the terminal pane has focus:

Ctrl+Tab
Move focus away from the terminal pane to the next control in sequence.

Ctrl+Shift+Tab
Move focus away from the terminal pane to the previous control in
sequence.

Shift+Arrow keys
Draw a box at the cursor position. Use Shift+Arrow keys to extend the box
up, down, to the right, and to the left.

Ctrl+Arrow keys
Move a box.

Using the keypad in Host Access
When the keypad is displayed, it immediately follows the terminal pane in the
focus sequence. It is visually displayed to the right of the terminal pane. When
focus is on the terminal pane, press Ctrl+Tab to move focus to the first button of
the keypad.

To move focus on the keypad, press Tab to move forward and Shift+Tab to move
backward. To move from one column to the next, you must tab through all the
buttons in the column.

To send a key to the host, move the focus to that key and press the Spacebar.
Focus moves either to the wizard pane (if the terminal pane was updated as a
result of the key action) or to the terminal pane (if no update occurred).

Note: When the keypad has focus, you cannot activate the menu bar using
mnemonics or using F10. You must first move focus off the keypad by
tabbing (either backward or forward) until focus is no longer on the keypad.

92 IBM® WebSphere® Host Publisher Administrator’s and User’s Guide

Using keyboard remap in Host Access
The dialog for Load Keyboard Settings is a file chooser with a drop-down list box
for the directory selection and a scroll pane for file selection. You can move from
button to button, and into the scroll pane where the files are listed, with the Tab
key. When the selected button has the focus, execute the action for that button by
pressing either Enter or the Spacebar. When the focus is in the scroll window, you
can move the cursor to select the file you want to load.

To edit keyboard settings, do the following:
1. Press Alt+T to display the choices in the Terminal menu.
2. Press the down arrow key so that Keyboard is highlighted.
3. Press the right arrow key to expand the list of Keyboard selections.
4. Press the Spacebar to select Edit Keyboard Settings.

You can move from button to button and field to field with the Tab key. When a
button has focus, execute the action for that button by pressing the Spacebar. The
dialog for Edit Keyboard Settings requires pressing the Spacebar to execute the
action for the button that has focus.

Using help
In Host Publisher Studio, you can use the keyboard to navigate through the help
window. Use the Ctrl+Tab keys to move from left to right along the toolbar and
through the two panes. (Use Ctrl+Shift+Tab to move in the opposite direction.)

The left pane of help is a tabbed pane. It can be navigated as described in “Using a
tabbed pane” on page 91.

Use Alt+F4 to close the help window.

Chapter 7. Using accessibility functions in Host Publisher Studio 93

94 IBM® WebSphere® Host Publisher Administrator’s and User’s Guide

Chapter 8. Performance and tuning

This chapter summarizes system requirements and recommendations for
improving the performance of Host Publisher.

Host Publisher Studio requirements
Host Publisher Studio requires:
v Intel platforms that support Microsoft Windows 98, Windows ME, Windows NT,

Windows 2000, and Windows XP
v Pentium™ processor with a speed of 366 MHz or greater
v Minimum of 256 MB memory
v Minimum of 120 MB free disk space

Host Publisher Studio is a Java application and therefore makes heavy demands on
the processor. If you are developing multiple complex applications, consider a
more powerful processor.

Host Publisher Server requirements
Host Publisher Server is supported on Intel, pSeries, Sun SPARC, and iSeries
hardware platforms, and performs best on machines that are designed to operate
as servers. These machines are typically built for improved scalability and
performance. Server machines usually have the capacity for large amounts of
memory and offer large Level 1 (L1) and Level 2 (L2) caches.

The four major hardware components that most affect the capacity and
performance of Host Publisher Server are:
v Central processing unit
v Memory
v Network interface card
v Hard drive

Central processing unit (CPU)
Host Publisher runs as a plug-in to WebSphere Application Server and uses Host
On-Demand to manage connections; Host Publisher, WebSphere Application Server,
and Host On-Demand are all Java products. Typically, Java products perform best
on fast or multiple processors. We recommend that Host Publisher run on
processors that are designed to operate as servers. These processors operate at
Java-compatible speed and usually have built-in technologies, such as a processor
cache, that support greater capacity and performance.

Most designed-for-server processors contain two levels of cache: L1 and L2. These
caches act as temporary storage spaces for instructions and data obtained from
slower memory.

For Intel-based servers, Pentium II or greater processors with speeds of 450 MHz
or greater are recommended. Xeon processors provide enhanced performance over
non-Xeon processors.

© Copyright IBM Corp. 1999, 2002 95

For iSeries servers, use a model that is recommended for Java applications. The
AS/400 V4R5 Performance Capabilities Reference (found at http://ca-
web.rchland.ibm.com/perform/perfguideup/V4R5perfguide/V4R5perfguide.pdf)
lists models that are recommended for use with Java applications. For performance
reasons, iSeries models with a processor commercial processing workload (CPW)
rating of 460 or more are recommended. Models with lower processor CPW ratings
might function, but you might not be satisfied with your server performance. Refer
to the most recent AS/400 Performance Capabilities Reference manual for the latest
Java-recommended servers and their processor CPW ratings.

The iSeries models in the Table 2 are recommended; however, all
recently-announced servers might not be included here.

Table 2. iSeries servers

iSeries Model iSeries Feature Processor CPW Rating

820

2398 3200

2397 2000

2396 950

740
2070 4550

2069 3660

730

2068 2890

2067 2000

2066 1050

2065 560

720
2064 1600

2063 810

270
2252 950

2253 2000

170

2388 1090

2386 460

2385 460

650
2243 2340

2240 1794

640
2239 998.6

2238 583.3

530
2162 509.9

2153 459.3

S40
2261 2340

2256 1794

S30

2260 1794

2259 998.6

2258 583.3

S20 2166 759

53S
2157 509.9

2156 459.3

96 IBM® WebSphere® Host Publisher Administrator’s and User’s Guide

Memory
Another essential hardware resource is an adequate amount of physical memory;
you must have enough to avoid memory depletion and excessive disk
input/output.

By design, Java applications do not return their unused storage for reuse. The
application server’s garbage collection facility runs only occasionally to claim
unused storage. To avoid memory depletion between garbage collections, large
amounts of memory are therefore required. In addition, you might want to tune
your server for performance, which almost always affects memory allocation. For
these reasons, you cannot make changes to tuning parameters unless sufficient
physical memory exists on the system.

We recommend that you allocate 512 MB of memory for Host Publisher running
on uniprocessor machines, and 1 GB of memory for multiprocessor machines.
These recommendations are in addition to what is required to run your other
applications.

Network interface card
The network interface card (NIC) can be an important factor in the capacity and
performance of your server. The NIC moves data between the system data bus and
the network media. Because the system data bus can operate at much higher
speeds than the network media, the NIC can become a performance bottleneck. If
the NIC is too slow, your server throughput and capacity will be based mainly on
how fast the NIC can move data to the network media.

Choose a high-performance NIC that is designed for network-intensive
applications. Such a NIC will implement one or more of these features:
v Bus mastering
v RAM buffering
v Direct memory access (DMA)
v Shared memory
v Onboard microprocessor

In addition, you might consider multiple NICs if you find that you saturate a
single NIC and if your server has the capability to handle more workload.

Hard drive
Your server must contain enough hard drive space to accommodate an operating
system, a Java runtime environment (JRE), an application server, the WebSphere
Application Server product, the Host Publisher product, and any other products
you plan to install. Your total disk space requirements should include extra space
for configuration files, product upgrades, user application files, and server
operational files, such as error logs.

Actual disk space requirements are platform dependent. Host Publisher Server
requires 200 MB of hard drive space. We recommend that you allocate at least 400
MB of hard drive space for Host Publisher Server, its operational files, and its user
applications.

Chapter 8. Performance and tuning 97

Hardware recommendations
Table 3 depicts system hardware recommendations for each platform operating as a
standalone Host Publisher server.

Machines with less power or fewer resources might work, but you might not reach
your response time objectives and user capacity goals. Machines that are running
other applications might require more resources, depending upon the resource
consumption of those applications.

Table 3. Host Publisher Server hardware recommendations

Platform Processor Type
Hard Disk

Space
Memory

Intel Pentium 350 MHz or greater 2 GB 2 GB

RS/6000 PowerPC 375 MHz or greater for
uniprocessor machines, PowerPC 332 MHz
or greater for multiprocessor machines

2 GB 2 GB

Sun Sparc UltraSPARC 333 MHz or greater 2 GB 2 GB

iSeries Java-compatible with CPU rating of 460 or
greater

2 GB 2 GB

Server capacity
Many factors determine the number of users that your Host Publisher Server will
support. These factors include, but are not limited to:
v The platform: computer hardware, operating system, and networking software
v The application server: IBM HTTP Server, Microsoft Internet Information

Services, and so forth
v The type of information served: 3270, 5250, database, VT, and so forth
v The application design:

– Connections with pooling enabled or disabled
– Amount of interactions required between the server and the data source to

obtain the requested information
– Other similar factors

v Client usage patterns; for example, how often will users access the server?
v System performance objectives; for example, what are the response time

requirements and what are the server availability requirements?
v Server workload from other applications

It is, therefore, not possible to provide capacities that are accurate in every system
environment for all applications. For accurate capacities for your specific server,
measure your specific applications in your operational environment.

When you estimate server capacity, remember to plan for growth and surges in
user activity.

98 IBM® WebSphere® Host Publisher Administrator’s and User’s Guide

Chapter 9. Troubleshooting

This chapter helps you identify problems and determine solutions with Host
Publisher. If the solution is not documented, you are directed to gather the
necessary information for IBM service.

Host Publisher problem determination procedure
Follow this procedure to resolve a problem found with Host Publisher:
1. Note whether the error occurred in Host Publisher Studio or Host Publisher

Server, the task being performed when the error occurred, and the symptoms of
the error.

2. If the error was caused by a memory shortage for the Java virtual machine,
close some applications to free memory and attempt to perform the task again.

3. See “Common problems and limitations” on page 101. If the symptoms of your
problem are listed, follow the recommended actions to resolve the problem.

4. Refer to the Host Publisher support page at
http://www.ibm.com/software/webservers/hostpublisher/support.html. This
page provides links to technical information such as Host Publisher News,
Service Updates, Hints and Tips, and the Library.
You can go directly to Hints and Tips. Hints and Tips are brief instructions
explaining technical issues that were discovered too late to be included in the
documentation. Hints and Tips cover installation, configuration,
troubleshooting, and usage issues. Hints and Tips are dynamic; they are
updated every few weeks, while the Readme is updated only when a CSD is
made available.

5. If you are running Host Publisher Studio:
v Error output for Host Access and Application Integrator is automatically

routed to the error logs, HostAccess.con and Studio.con, respectively, which
are located in the install_dir\Studio directory. Check these files for error
information.

v To route error output for Database Access to a console window:
a. Copy the file dbaccess.bat, which is located in the install_dir\Studio

directory, to a new .bat file.
b. Edit the new .bat file and make the following changes:

– Remove start /B from the beginning of the file.
– In the invocation section of the file, change javaw to java.

c. Execute the new .bat file from the command line.
v Tracing often provides helpful information for diagnosing problems. See

“Enabling tracing” on page 49 for information about enabling tracing in the
Host Publisher Studio.

v Additional error output might be located in the
messages_HostPubStudio_0822_x.txt file located in the install_dir\Studio
directory.

6. If you are executing your Host Publisher application on the server, check the
Host Publisher logs for error messages that indicate the cause of the problem.
If the error log indicates an internal error and that service should be contacted,
first try to recreate the problem. Turn on all Host Publisher Server trace

© Copyright IBM Corp. 1999, 2002 99

http://www-1.ibm.com/servlet/support/manager?rt=3&rs=133&navkey=1ByProduct&path=Product+Group%3DSoftware%06Product+Family%3DNetworking+and+Communications%06Product+Type%3DHost+Publisher%06category%3DHints+and+tips

options, as well as tracing for the Integration Object being run. Clear the
current Integration Object trace files, then recreate the problem.

Note: Do not turn on Host Connection tracing unless IBM service tells you to
do so.

If the problem appears when starting WebSphere Application Server or Host
Publisher Server, or when accessing the first page of your Host Publisher
application, use the problem determination procedures for WebSphere
Application Server. For information on how to obtain problem determination
data from WebSphere Application Server, access the WebSphere Application
Server Web page at http://www.ibm.com/software/webservers.

7. Contact IBM service to resolve the problem. When you report a problem, be
ready to provide information such as product version, current Authorized
Program Analysis Report (APAR) levels, and so forth. You can obtain this
information by issuing the report command (or, in Host Publisher Server
Administration, by opening the Version Information window). The report
command is located in the install_dir\Common\service directory; see
“Updating Host Publisher using the Software Maintenance Utility” on page 115
for more information.

Host Publisher Server Administration Troubleshooting
The following sections contain suggestions for actions you can take if you have
difficulty using Host Publisher Server Administration.

Server prerequisites and general information
To begin troubleshooting, ensure that the following Host Publisher Server
Administration requirements are met. For more information, refer to the IBM
WebSphere Host Publisher Planning and Installation Guide for your platform.
v Is a supported application server installed?
v Is the correct version of WebSphere Application Server installed?
v Is the locale set correctly on the server on which Host Publisher Server has been

installed?

In addition:
v Examine the application server, WebSphere Application Server, and Host

Publisher log files for information relating to your problem.
v Flush the cache in your Web browser, close all instances of the browser, and

restart.

WebSphere Application Server
To troubleshoot on the application server:
v Make sure that WebSphere is started.
v Make sure that Host Publisher Server is started

1. Start the WebSphere Administrative Console.
2. Click WebSphere Administrative Domain.
3. Click your host name.
4. Make sure that Host Publisher Server (shown as HostPubServer) is listed as

Running.

100 IBM® WebSphere® Host Publisher Administrator’s and User’s Guide

Secure Sockets Layer (HTTP server)
Make sure SSL is configured correctly on the server.
v Are certificates provided?
v Is the SSL port enabled in the application server configuration file? Refer to your

application server documentation for information on enabling the SSL port.
v Is the SSL port configured in the alias list in WebSphere Application Server?

WebSphere pagecompile
If you receive a message saying that main.jsp is not found, it is possible that Host
Publisher Server has been uninstalled and reinstalled on different drives.

WebSphere Application Server compiles JavaServer Pages (JSPs) into Java servlets,
then invokes those servlets to render the actual page to a browser. This Java code
remembers the exact location of the original page (for example,
d:\WebSphere\AppServer\installedApps\HPAdmin.ear\HPAdmin.war\main.jsp)
so that it can reproduce its HTML content. The servlet is rebuilt from the original
JSP only if the page is changed (date stamp is updated). If the location of the JSP
changes, but its date stamp does not, you receive an internal error. WebSphere
reports the error after trying to process the JSP because it can no longer find the
original file. This can happen if you reinstall the same version of Host Publisher
Server in a different location.

To correct this problem, remove WebSphere’s record of the JSP. To do this, remove
the corresponding Java and class files from the WebSphere installation directory;
for example:
d:\WebSphere\AppServer\temp\host_name\hostpubserver\
\HPAdmin.ear\HPAdmin.war\main_jsp*.*

Common problems and limitations
The following sections document common problems and limitations you may
encounter while using Host Publisher. For each symptom, the probable cause and
suggested action is provided.

Problems with Host Access and execution of Host Access
Integration Objects

You might be able to avoid some common pitfalls by having both of the Display
Warning Messages options enabled while you are working in Host Access. This
ensures that you see confirmation messages and validation messages as you
develop you applications. For more information about this option and how to set
it, see “Display Warning messages” on page 20.

Failures creating Integration Objects
When creating an Integration Object, Host Publisher builds Java source code and
assembles it into an executable file. During this process, you might receive a
message stating that the Integration Object could not be created. This message
indicates that the compilation of the generated Java source contained errors.

To solve this problem:
v Refer to the iofailed.txt file located in the install_dir\Studio directory.
v If you have manually modified the host macro files, use the messages in

iofailed.txt to determine whether your changes caused the error. If you have not
customized any of the Host Publisher files, contact IBM and report the problem.

Chapter 9. Troubleshooting 101

Macros fail in Host Access Integration Objects
Macros can fail for many reasons. Successfully running a macro depends on the
application behaving as you expect. The screen flow logic of an application must
not change unpredictably over time. Macros must be recorded such that they can
process the content of the screens they encounter and are be precise in identifying
the screens processed.

See “Defining a screen” on page 16 for some tips for defining a screen in a macro.

Macro Play error in Host Access Integration Objects
If you receive a Macro Play error, your screen definition might be the cause.

If a screen definition uses the cursor position as its recognition criterion and the
screen has more than one action, you might not be able to step through the actions
of this screen or start the play on an action after the first action.

In these cases, Host Access tries to start playing the macro on the given screen
with the given action; however, if the first action has caused the cursor position to
change, the screen no longer meets its recognition criteria.

This problem will not occur if you select Play instead of Step, and start the play
on the first action of the screen or at some position in the macro tree above the
first action.

New tags are deleted from a macro
You can edit macros with the macro editor in Host Access (see “Editing a macro”
on page 19) or another editor that supports UTF-8 encoding. Macro syntax is

defined in the IBM WebSphere Host Publisher Programmer’s Guide and Reference. Not
all tags are displayed in the Host Access macro tree, but all tags are saved in the
macro and used when the macro is played.

The macro file is an XML file. XML standards apply to any data that is typed into
the file. If you add data to the macro that is not recognized as XML data or that
contains a tag that is not recognized as macro syntax, the data is removed from the
macro with no warning when you save the macro in Host Access.

You are notified if there are other syntax errors. If you are using the macro editor,
you are shown a list of the errors and you must correct them before you can save
the macro. Macros containing syntax errors fail to load when Host Access is started
or when an Integration Object that includes the macro is opened. An error message
shows which macro failed, and details are available in the HostAccess.con file.

Private characters display incorrectly on client workstations
The private character editor in Windows 2000 and Windows XP enables an
application developer to extend the font library by defining additional characters.
Host Publisher supports these private characters on Windows 2000 and Windows
XP if they are developed using the Unicode character set (the default) and are
linked to all system fonts.

To ensure that private characters are displayed correctly for users of your Host
Publisher application, you must distribute an up-to-date version of the private
character set to all client workstations where the application will be used. The
private character set is defined in Windows_dir\fonts\eudc.tte, and the copy on
each workstation must reside in the Host Publisher installation directory as
\Studio\jdk\jre\lib\fonts\eudc.ttf.

102 IBM® WebSphere® Host Publisher Administrator’s and User’s Guide

Screen paint problems
To reduce screen painting problems on the Windows 2000 or Windows NT desktop
when you are using the frame minimize, restore, and maximize functions in Host
Publisher Studio applications, make the following changes:

In Windows 2000:

1. Open the Control Panel and click Display.
2. Click the Effects tab.
3. Clear Use transition effect for menus and tooltips.

In Windows 2000 and Windows NT:

Do not use 256 color mode. Use a high color (16 bit) or true color (24 or 32 bit)
mode. To select a color:
1. Right-click on the Windows 2000 or Windows NT desktop.
2. Click Properties.
3. Click the Settings tab.
4. Select a color from the Color Palette.

Host Access through firewall configured in nontransparent mode
When using a firewall configured in nontransparent mode, you might encounter
these problems:
v You cannot draw a box around the Wingate> prompt, which is the only text on

the screen. To identify the screen, you must refer to the cursor position.
v On the next screen, if you try to type the destination IP address (for example,

141.211.228.169), as soon as you type the 1 , Host Publisher changes to a new
screen.

To avoid these problems, configure a port on the proxy server that maps to the
destination address; for example, use the firewall in a transparent mode. This is
similar to the way in which you would configure Host On-Demand’s Redirector.

Problems with Database Access and execution of database
Integration Objects

This section lists common problems associated with the Database Access
application.

Database Access does not start
If Database Access does not start, there might be a conflict between your system
CLASSPATH and the classes upon which Database Access depends. To fix this
problem:
1. Make a note of the JDBC drivers that appear in your CLASSPATH.
2. Edit dbaccess.bat, located in install_dir\Studio.
3. Remove %CLASSPATH% from the -classpath statement and replace it with the

JDBC drivers you use to connect to your database.

Failures creating Integration Objects
When creating an Integration Object, Host Publisher builds Java source code and
assembles it into an executable file. During this process, you might receive a
message stating that the Integration Object could not be created. This message
indicates that the compilation of the generated Java source contained errors.

Chapter 9. Troubleshooting 103

You might find useful information about the cause of the failure in the iofailed.txt
file located in the install_dir\Studio directory.

Microsoft Access date fields do not appear correctly
When you use the JDBC/ODBC bridge to connect to a Microsoft Access database,
Date columns do not appear on the Condition panel of the Database Access
application. This is because the JDBC/ODBC bridge does not correctly report the
column type to the Database Access application.

This is a known JDBC/ODBC bridge driver problem that Host Publisher cannot
correct.

Database interface does not work with Lotus® Domino™ JDBC
driver
The Lotus Domino driver for JDBC is not supported by Host Publisher. This driver
is not JDBC-compliant and is missing some classes required by Host Publisher.

Java errors with Oracle database driver
When you connect to an Oracle database using the Oracle8i 8.1.6 JDBC Thin
Driver, and you use a variable name for a non-character data type and then click
Run SQL, you receive a java.lang.ClassCastException: java.lang.String message.
This problem does not occur when the Integration Object is deployed to a server
and an application invokes the Integration Object.

Run SQL works correctly for a variable that represents a character data type.

Connecting to an iSeries database using Windows 98
If you are running Host Publisher Database Access on Windows 98 and are unable
to connect to an iSeries database, complete the following steps to change your
DBAccess.bat file.
1. Edit the DBAccess.bat file in the HostPub/Studio directory.
2. Remove the double quotes at the beginning and end of the classpath value for

the SET CLASSPATH statement.
3. Save the file.

If you are using Host Publisher Studio to create a database Integration Object by
launching Host Publisher Database Access from within the Application Integrator,
and you are unable to connect to an iSeries database, make the following changes
to your webbridge.bat file.
1. Edit the webbridge.bat file in the HostPub/Studio directory.
2. Remove the double quotes at the beginning and end of the classpath value for

the SET CLASSPATH statement.
3. Save the file.

DBCS User Defined Character (UDC) input in form data
If a DBCS User Defined Character (UDC) is input as text in form data, both
Netscape V6 and Microsoft Internet Explorer encode the UDC incorrectly.

According to standard encoding rules (application/x-www-form-urlencoded), the
browser should convert any non-alphanumeric characters into a percent (%) sign
followed by the hexadecimal code of the character. Netscape V4.7 or newer
correctly encodes each byte of the double-byte UDC.

For example, if you build a Host Publisher Database Access application that used
an HTML form to update database information, a DBCS UDC input using

104 IBM® WebSphere® Host Publisher Administrator’s and User’s Guide

Netscape V6 or Microsoft Internet Explorer appears in your database as ?, whereas
a DBCS UDC input using Netscape V4.7 or newer would appear correctly.

Note: User Defined Characters can be displayed correctly as output by both
Netscape and Microsoft Internet Explorer.

Receive error: No suitable driver found
If you receive a No suitable driver found error, make sure you have added the
JDBC drivers for your database using the WebSphere Application Server console.

Unsupported JDBC Server configuration error (CLI0621E)
You might receive this error message when you run an application containing
Database Access Information Objects on the server, and the application attempts to
connect to a remote DB2 database.

This problem occurs because the JDBC driver on the server is not at the same
FixPack level as the JDBC driver on the Studio machine where the Integration
Objects were generated. If the FixPack levels do not match, you must upgrade the
JDBC driver on the Studio machine, regenerate the Integration Objects in Database
Access, reassemble the application in Application Integrator, and transfer the new
application to the server.

JDBC error: db2jdbc not found error appears in jvm_stderr.txt
If you receive a db2jdbc not found error, make sure you have added the JDBC
drivers for your database using the WebSphere Application Server console.

Connect timeout in a database Integration Object has no effect
The connect timeout value is not implemented by all JDBC drivers.

The JDBC driver will time out while trying to connect to a database, based on the
value for the driver. JDBC driver vendors are expected to implement the connect
timeout value.

Requested data not returned to end user of a Database Access
Integration Object
When you create a Database Access Integration Object, you can specify several
types of conditions on the Condition tab. A runtime requirement exists if you
create a variable for a column with a data type of character (CHAR), and you
select one of the following operators:
v contain the character(s)
v start with the character(s)
v end with the character(s)

When such an Integration Object is run on Host Publisher Server, the end user
must enter the wildcard character (%) to indicate which operator is used. After you
create the Integration Object, the operators can be used interchangeably by
entering the wildcard character in varying positions of the value, as shown in
Table 4.

Table 4. Wildcard values used for operators at runtime

Operator Value

contain the character(s) %value%

start with the character(s) value%

end with the character(s) %value

Chapter 9. Troubleshooting 105

For example, if the Integration Object was created specifying ″contain the
character(s)″ as the operator, the user can change the query by specifying ″%XXX″
as the search criterion; the output shows all values that end with the characters
XXX.

DB2 V6.1 fixpack 5 does not support variables
If you use DB2 Version 6.1 fixpack 5 with Database Access, you might have
difficulty creating variables for SQL statements. After you click Run SQL in the
SQL window, DB2 returns this exception:

COM.ibm.db2.jdbc.DB2Exception: [IBM][CLI Driver] CLI0122E Program
type out of range. SQLSTATE=HY003

To avoid this problem, install fixpack 6 or newer.

Displaying the Specify Variable Value columns on double-byte
systems
When you click Run SQL for an SQL statement containing a variable, the Specify
Variable Value(s) window opens, where you can enter a value.

On a double-byte system, the Name and Type column values might not display.

To correct the problem, try one of the following:
v Click the Name or Type column value that is missing.
v Resize the Specify Variable Value(s) window.
v Cancel the Specify Variable Value(s) window, then click Run SQL again.

Problems with Application Integrator and transferring
applications

This section lists common problems associated with the Application Integrator
component of Host Publisher Studio.

Ownership of installation files on UNIX® operating systems
WebSphere Application Server on Solaris or AIX runs with the user ID and group
of nobody, and Host Publisher runs with the same permissions. Host Publisher
Server application directories must also be owned by the nobody user ID and
group. The user ID specified when transferring applications to a server must be the
nobody user ID.

To change the ownership of all the files shipped with Host Publisher from nobody
to your chosen ID, type the following at a command line after installation:
1. cd /usr

2. find HostPublisher -exec chown new_user_ID {} ";"

3. find HostPublisher -exec chgrpnew_user_group {} ";"

When you specify a Sun Solaris or AIX FTP server (Preferences > Options) in Host
Publisher Studio, or when you configure a server in the Host Publisher Studio
wizard, specify the nobody user ID to use when transferring application files to
that server using FTP.

You must use this new user ID when transferring applications to this Host
Publisher Server.

106 IBM® WebSphere® Host Publisher Administrator’s and User’s Guide

Application Integrator preview function does not display preview
Web page
If Application Integrator does not display your preview Web page (using Netscape
on a Windows system), you must apply a service pack.
v For Windows NT, apply SP5 or higher.
v For Windows 2000, apply SP1 or higher.

Shortcut errors occur when previewing a page with Netscape
Under the following circumstances, shortcut errors might occur when you use
Netscape to preview a page in Application Integrator.
v If you do not have Netscape open and you try to preview a page, you receive

an error message stating that the shortcut was not found; however, the page
loads.

v If you already have Netscape open and you try to preview a page, nothing
displays.

To avoid this problem:
1. Click My Computer on your desktop.
2. From the menu bar, click View > Options. (In Windows 2000, click Tools >

Folder Options.)
3. Click the File Types tab.
4. In the Registered file types box, select Netscape Hypertext Document.
5. Click Edit. (In Windows 2000, click Advanced.)
6. In the Actions list box, select Open.
7. Click Edit.
8. In the Use DDE box, make sure the Application is NSShell (not Netscape).
9. Click OK, then click Close on the next two windows.

This procedure might not prevent the error message if you are running Netscape
Version 6. You can prevent the error message by clearing the Use DDE check box.

Host Publisher experiences a Java page violation on startup
If you are running a keyboard translation application called IME, it is possible that
a Java page violation will occur when you start Host Publisher.

To avoid this problem:
1. From the Start menu, click Windows Update to open your browser to the

Microsoft Web site that provides updates to the Windows platform and IME
updates.

2. Download the updates to your machine.

Unwanted characters display in a VT terminal window
If you are running Host Publisher Studio on Windows, and you click the mouse
inside the text display of a VT session, you might see unwanted garbage characters
displayed on the screen. This usually occurs when the host is in a command-line
mode. The characters usually consist of open brackets, carets, and the letters D and
A.

These characters appear because Host On-Demand gives you the ability to move
the screen cursor using the mouse. Unlike in 3270 or 5250 sessions, however, the
connection to the VT host is asynchronous. As a result, cursor movement, rather
than being a local event on the terminal, is governed by the host, not the terminal.

Chapter 9. Troubleshooting 107

When you click the mouse, the Host On-Demand framework attempts to move the
mouse from its previous location on the screen to the location where the click
occurred. For this to happen in a VT environment, the host has to be notified
through a series of simulated cursor movement keystrokes (arrow keys). If the VT
host is currently running a full-screen application such as an editor, this action is
seamless to the user and the cursor is simply moved from the old location to a
new location. But, if the host is at the command-line prompt where there is no
concept of a full screen, the host rejects the cursor movement keys and returns
them to the terminal. These are the characters you see.

If this problem occurs, simply delete the unwanted characters and proceed.

Problems with the Server and execution of Integration Objects
This section lists common problems associated with the runtime environment in
Host Publisher Server.

Characters in file are not read correctly
When Host Publisher Server reads a file, it assumes that the file was written with
UTF-8 encoding. As a result, files written with native (non-UTF-8) encoding might
be read incorrectly. Moreover, it is possible—particularly in the case of files that
contain double-byte (DBCS) characters—that Host Publisher Server will not
recognize the incorrect characters and will not return an error message.

The best way to avoid this problem is to ensure that all files read by Host
Publisher Server are written with UTF-8 encoding. Your application files are
written with UTF-8 encoding if:
v You use Host Publisher Studio to develop new applications.
v You use the Host Publisher migration tool, StudioAppMigrator, to migrate

applications that were developed prior to Host Publisher Version 4.0.
v You use the AppMigrator tool to migrate applications on the server.
v You use an editor compliant with UTF-8 whenever you edit application files on

the server.

Connection for chained Integration Objects in a cloned
application server
When there are cloned application servers running applications containing chained
Integration Objects, the HttpSession invalidation timer thread runs in the
application server where the HttpSession object was created. A chained application
might not be running in that application server; therefore, on HttpSession timeout,
the connection associated with a chained application might not get cleaned up if
the HttpSession invalidation occurs on a different application server.

The easiest solution is to modify the maxBusyTime in the .poolspec file for the
connection, or use Host Access to set Maximum busy time before disconnection on
the Connection Pool Configuration page.

Error page does not display for an error in the second
Integration Object on a page
If a JSP page contains multiple Integration Objects and an error occurs after output
is written to the HTTP output stream, the error page might display incorrectly. If
enough output is written to the HTTP output stream so that the JSP output buffer
fills before the error occurs, then forwarding of the browser to the error page
might not work. Instead, you might see an error message like Error 500: ERROR:
Cannot forward. Writer or Stream already obtained.

108 IBM® WebSphere® Host Publisher Administrator’s and User’s Guide

To avoid this problem in your JSP page files, ensure that an error is detected before
any substantial output to the page can take place. In the following example, make
sure all Integration Objects have been created and executed before any HTML code
is written to the output stream. Also, explicitly check for errors and stop
processing if any doHPTransaction statements fail. Otherwise, HPS5035 errors can
occur when subsequent Integration Objects try to use the back-end connection.
<%@ page contentType="text/html;charset=UTF-8" errorPage="DefaultErrorPage.jsp">

<jsp:useBean id="Oi7" type="IntegrationObject.Oi7"
class="IntegrationObject.Oi7" scope="request">

<jsp:setProperty name="Oi7 property="*" />
</jsp:useBean>

<jsp:useBean id="Oi8" type="IntegrationObject.Oi8"
class="IntegrationObject.Oi8" scope="request">

<jsp:setProperty name="Oi8 property="*" />
</jsp:useBean>

<HTML>
<BODY>
<% // Only minimal output has been written to the output buffer to this point.

// Now perform the Integration Objects.
Oi7.setHPubStartPoolName("Oi7");
Oi7.doHPTransaction(request,response);

// You can insert code here for retrieving data from the
// previous Integration Object, but don't write any output
// until all of the Integration Objects have executed,
// in case a later one should fail with an error.

// An error in the previous Integration Object will cause a
// BeanException, and the following Integration Object
// will not be called.

Oi8.setHPubStartPoolName("Oi8");
Oi8.doHPTransaction(request,response);

// Now that the Integration Objects have completed without an
// exception occurring, we can begin to write output to the page.

%>
// Insert Java code and HTML here for writing detailed output to the page.

</BODY>
</HTML>

You can also enclose the Integration Object calling and output page writing code in
a try/catch block and handle your own errors separately from the error page:
<% try {

// perform Integration Objects and write output to page (as above)
}
%>
<% // Error handling section -- The Integration Objects will generate BeanException

// if they fail, or we may have another error resulting in an Exception.
// Insert your error handling code in the appropriate place below. Refer
// to DefaultErrorPage.jsp for how the default error page handles exceptions.

} catch (BeanException e) {
// One of the Integration Objects failed. Insert your
// Integration Object error handling code and HTML here.
} catch (Exception e) {
// A failure in the Java code of this JSP file. Insert your
// error handling code and HTML here.
}
%>

Chapter 9. Troubleshooting 109

Multiple accesses to chained Integration Objects from the same
machine (HPS5035) not performing
Netscape browsers use a single HttpSession for Web access, even when accessing
from different browser windows. The multiple windows try to use the same data
source connection resource, resulting in confusion for the chained Integration
Objects. You might see HPS5035 errors as a result. (Refer to IBM WebSphere Host
Publisher Messages Reference for details about message HPS5035.)

To avoid this problem, do not attempt to run multiple chained Integration Object
applications concurrently from the same Netscape client machine.

When you double-click the Internet Explorer icon to open the Internet Explorer
browser, this problem does not occur; however, if you use any method other than
double-clicking the icon to open the browser, the problem occurs.

HPS5035 errors occur when a chained Integration Object attempts to retrieve a data
source resource from the HttpSession, but the resource is not there. This might
occur under the following conditions.
v A single JSP page or servlet runs multiple Integration Objects created with an

earlier release of Host Publisher (Version 3.5 or earlier), without checking to see
whether an error occurred in a previous Integration Object. The previous
Integration Object will not have placed the back-end data resource back in the
HttpSession if it encountered an error. JSP pages or servlets should not attempt
to continue running subsequent chained Integration Objects in this case, but
should instead allow the Integration Object in error to redirect the client to an
error page.
You can protect against this situation by using the following servlet or JSP code:

// Run the Integration Object transaction. Does a sendRedirect() on error.
myBean.doHPTransaction(request, response);
if (myBean.getHPubErrorOccurred() != 0)
{ // Do not call another Integration Object's doHPTransaction() or produce output.

return;
// Instead, we allow the sendRedirect() to answer the client.

}

v A user clicks Submit twice or clicks a link twice before the first click can be
completely processed at the server. An impatient user might click on a link to
the next page of a chained Integration Object application twice rather than
waiting for the next page to process its Integration Object and send the output
page back to the client. The second click causes the next page to be processed
again while the Integration Object still has ownership of the data source
resource. During this processing, a second instance of the Integration Object
cannot find the resource in the HttpSession. This causes an HPS5035 error, while
the output of the first processing is lost.
You can protect against this using the following JavaScript:

<SCRIPT Language="Javascript">
/**
* Prevent multiple Submit or href click invocations from this page. *
* The 'submitFlag' variable is the switch. When the function is *
* called and the flag is zero, 'true' is returned to the onSubmit *
* parameter of the form. Otherwise a 'false' is returned, preventing *
* additional submit buttons/links from being reselected. *
**/
var submitFlag = 0;
function chkSubForm()
{

if (submitFlag == 0)

110 IBM® WebSphere® Host Publisher Administrator’s and User’s Guide

{ submitFlag = 1; // first time a button has been clicked
return true;

}
else
{ return false; // submit has already been clicked
}

}
</SCRIPT>
<a href="<%= response.encodeUrl("TheNextPage.jsp") %>"

onClick="return chkSubForm()">Next

v A long-running Integration Object (usually more than a minute) causes the
application server to time out while Host Publisher and the Integration Object is
still processing. If such a timeout occurs, the application server might destroy
the HTTP connection to the browser client. Internet Explorer sometimes reacts
by immediately requesting the same page again without user intervention. This
second request would be just like clicking Submit or a link twice, causing a
second instance of the Integration Object to run. This second instance fails to
find the data resource in the HttpSession, which causes an HPS5035 error. In this
case, too, the output of the first processing is lost.
The simplest way to prevent this problem is to have no Integration Object run
for a very long time. Alternatively, you might be able to adjust the application
server timeout value.

v The maxBusyTime on a poolspec expires because a chained Integration Object
application is abandoned between Integration Objects. If this occurs, the next
Integration Object in the chain logs an HPS5035 error if a user continues with
the application after the expiration. If you do not want the user to continue, you
should either lengthen or disable the maxBusyTime timer.

v The HttpSession Activity Timeout (set in WebSphere) occurs because a chained
Integration Object application is abandoned mid-application. If this occurs, the
next Integration Object in the chain logs an HPS5035 error if a user continues
with the application after the expiration. If you do not want the user to
continue, you should either lengthen or disable the HttpSession Activity
Timeout.

Server macro play error — unexpected delay or possible hang
If you experience a delay or a session hang while playing a macro in Host
Publisher Server, it might be caused by the insertion of a custom action into the
macro when it was recorded in Host Publisher Studio.

When you are recording a macro in the Host Access component of Host Publisher
Studio, and you perform an action that causes the connection to drop (such as
logoff in a 3270 session), a custom action is inserted into the macro after this
action:
<actions>

<input value="logoff[enter]" row="0" col="0" movecursor="true"
xlatehostkeys="true" encrypted="false" />

<custom id="waitForDisconnect" args="Please DO NOT remove this tag!" />

The purpose of the custom action is to wait for the event associated with the
disconnect to ensure that the connection is dropped and left in the expected state
when the macro is played on the server. The custom action is not displayed in the
macro tree, and when the macro is played in Host Access, the custom action is
ignored. You might not know the action exists unless you edit the macro.

If you manually edit a macro that contains a custom action with
id=″waitForDisconnect″ and remove or modify the previous action so that it no

Chapter 9. Troubleshooting 111

longer causes a disconnect, you must also remove this custom action to prevent an
error when the macro plays on the server.

Macro times out
When a macro times out, or does not receive a response from the host within a
predetermined period of time, it is usually because the macro receives unexpected
screens that it cannot handle. For example, the host might send screens that are
detected by the macro even though they are displayed so quickly they cannot be
detected by the human eye. This might not occur during routine testing but only
during stress conditions.

Sometimes, it is the lack of specific screen identification that contributes to macro
time outs. To enhance your macro’s ability to handle all the screens it receives from
the host, you should use very specific screen identification. At the Host Publisher
support Web site
(http://www.ibm.com/software/webservers/hostpublisher/support.html), you
can view three examples of this problem with detailed information on fixing it. Go
to the Hints and Tips database and search on ″Macro timed out.″

Servlet generated by page compilation reports exception: Wrong
name
This error occurs when aliases in httpd.conf are created using the same characters
but different case; for example, HostPublisher and hostpublisher. Most application
servers do not consider the URL to be case sensitive, so it is possible to specify
/HostPublisher/ or /hostpublisher/ in a URL and have it go to the same resource,
even if the application server is configured only with the alias /HostPublisher/.
The problem is that the PageCompile depends on a case-sensitive path to the
JavaServer Page (JSP). After a URL is used to access a JSP, you must use the same
capitalization within the URL to access that page in the future.

The same problem occurs if you use a different case the second time you reference
a file, for example Tax_Init_Page.jsp and then Tax_init_page.jsp. You must request
the page by the exact name that was first used, and you must delete the
information in the PageCompile.

WebSphere Application Server compiles JSPs into Java servlets, then invokes those
servlets to render the actual page to a browser. This Java code remembers the exact
location of the original page (for example,
d:\WebSphere\AppServer\installedApps\HPAdmin\HPAdmin.war\HPAdmin\main.jsp)
so that it can reproduce its HTML content. The servlet is rebuilt from the original
JSP only if the page is changed (date stamp is updated). If the location of the JSP
changes, but its data stamp does not, you receive an internal error. WebSphere
Application Server reports the error after trying to process the JSP because it can
no longer find the original file. This can happen if you reinstall the same version of
Host Publisher Server in a different location.

To correct this problem, remove WebSphere Application Server’s record of the JSP.
To do this, remove the corresponding Java and class files from the WebSphere
Application Server installation directory; for example:
d:\WebSphere\AppServer\temp\host_name\hostpubserver\
\HPAdmin\HPAdmin.war\HPAdmin\main_xjsp.*

Unable to access Host Publisher directories on iSeries
If you are attempting to access Host Publisher directories from a browser and you
receive a message saying that you are not authorized, add the DirAccess On
statement to the http configuration.

112 IBM® WebSphere® Host Publisher Administrator’s and User’s Guide

Generic Web browser timeout message is received instead of an
expected Host Publisher error message
To avoid this problem, configure the application server and Web browser timeouts
(typically 2 minutes) to be greater than the Host On-Demand Macro Timeout
(default is 60 seconds).

To configure the Host On-Demand Macro Timeout, edit the macro. In the first line
of the HASCRIPT tag, set the timeout field to the desired value (1000 equals 1
second).

When you specify connection pooling values in Host Access and Database Access,
if you set the Maximum Busy Time Before Disconnection to something other than
–1 (never), the sum of this timeout and the Host On-Demand Macro timeout
should be less than the application server and Web browser timeouts.

Note: In some cases, the Maximum Busy Time Before Disconnection expires and
causes the macro to stop; however, a macro timeout error message is
generated instead of the busy timeout error message.

Making WebSphere Application Server handle 100 or more
requests
Host Publisher is configured to handle a maximum of 50 concurrent connections. If
you want more than 100 concurrent connections, you must modify several Host
Publisher Server parameters.
1. Increase Max Heap Size for Host Publisher Server.
2. Increase Max Connections for Host Publisher Servlet Engine.
3. Update the application server configuration.

Most application servers have a configurable limit for the number of concurrent
clients they will support. You might have to modify the application server
configuration to make this limit greater than the Max Connections parameter for
the servlet engine.

After making changes to WebSphere and the application server, stop and restart
both servers to pick up the new changes.

PluginTester servlet for debugging WebSphere Application
Server problems
Host Publisher Version 2.2 and above includes the servlet showCfg, which is the
equivalent of the PluginTester. You can access this servlet at the following URL:
http://server/HPAdmin/showCfg, where server is your local server.

Pages are not returned
The error log indicates that Host Publisher ran out of time while trying to set up a
connection.

To solve this problem, increase the connecttimeout parameter in the application’s
.connspec file, and the timeout attribute of the <HAScript> tag in all the macros.

Shutting down Host Publisher Server
If you shut down Host Publisher Server by shutting down the application server or
the WebSphere Application Server product, host connections might not be cleaned
up properly.

To avoid this problem, stop Host Publisher Server before you stop WebSphere
Application Server.

Chapter 9. Troubleshooting 113

Out-of-memory error starting 20 sessions
Host Publisher creates one thread per pool, and up to 50 threads during session
recovery and shutdown. Host Publisher uses Host On-Demand, which creates a
maximum of 100 threads regardless of how many sessions are created.

When you configure per process thread limits for a platform, remember that the
process is typically used to handle threads of the application server, as well as
threads of the WebSphere Application Server product.

CONNECTION_READY errors in the Host Publisher Server logs
If you see multiple error messages in the Host Publisher Server log file that say
CONNECTION_ACTIVE but not CONNECTION_READY, the following might
have happened:
v You connected to the wrong TN server, for example, a vanilla Telnet server,

instead of a TN3270 server.
v You connected to the correct TN server, but did not give the connection setup

process enough time to complete.

The Host On-Demand connection goes to the CONNECTION_ACTIVE state when
the basic TCP/IP connection between Host On-Demand and the TN server has
been set up successfully. The Host On-Demand connection goes to
CONNECTION_READY state when SSL, basic Telnet negotiation, and 3270
negotiation are completed. This process requires time, due to 3270 negotiation that
involves an SNA session set up between the TN3270 server and the SNA front-end
processor.

You should increase the connecttimeout value in your .connspec file. For example,
if your connecttimeout value is currently 120, try changing it to 1200. Then stop
and restart WebSphere. Changing this value can eliminate most, if not all,
occurrences of this error in your log file.

Problems with performance in TN3270E sessions
If you experience poor performance with Host Publisher applications running in a
TN3270E environment, you might be able to alleviate the problem by setting the
TCPNoDelay property to true in the Host On-Demand session properties for your
application. The Host On-Demand session properties are defined in the .connspec
file for your application. Add the line TCPNoDelay=true to your session properties
in the .connspec file, as illustrated in the following example:
......
<sessionprops>

TCPNoDelay=true
host=ralvm17
autoReconnect=false
SSL=false
TNEnhanced=false
port=23
......

</sessionprops>
......

When executing macros on TN3270E connections, Host Publisher can send
multiple small requests to the TN server as part of the TN3270E protocol, only the
last of which results in a response (screen update) from the host application.
Normally, the Java networking code waits for a small interval between the sending
of subsequent requests to conditionally receive a response from the connection

114 IBM® WebSphere® Host Publisher Administrator’s and User’s Guide

partner, and thus avoids sending many small packets in the network. For host
applications, such responses never arrive, so the wait causes an unnecessary delay
that adversely affects performance.

Setting the TCPNoDelay property to true should improve performance because the
Java networking code does not introduce this unnecessary delay.

Updating Host Publisher using the Software Maintenance Utility
To apply service to Host Publisher, you must use the Software Maintenance Utility.
The Software Maintenance Utility automates the process of installation and, where
necessary, removal of development-supplied fixes to Host Publisher. The Software
Maintenance Utility also stores information about your installation to aid the IBM
Software Support Center in determining the cause of problems you might be
experiencing. You can find out more information about available fixes to Host
Publisher from the Host Publisher Support Web site, at
http://www.ibm.com/software/hostpublisher/support.html.

Visit this Web site first upon experiencing problems with Host Publisher. You
should download and apply any fix that is called a cumulative APAR. Any other
fix is simply an APAR; you can install APARs if it appears that the problems
addressed by an APAR will remedy the problems you are experiencing.

Command syntax
The Software Maintenance Utility consists of five programs with a command-line
interface. From the Host Publisher installation directory, these programs are in the
\Common\service directory. Invoke each command by typing the command in the
service directory, followed by case-sensitive command parameters. There are two
possible parameters that can follow the command. The first parameter is the fix
number, and the second parameter is the component the fix will be applied to,
either Studio or Server. In the event that you only have Studio or Server installed,
you do not need to specify the second parameter.

For Windows 98, Windows NT, and Windows 2000, type the command. For
example, to apply JR12345 to Host Publisher Studio on Windows 2000, type:
apply JR12345 studio

For AIX, Solaris, and OS/400, prefix the name with sh and add the .sh file
extension. For example, to apply JR12345 to Host Publisher Studio on AIX, type:
sh apply.sh JR12345 server

The following commands are available from within the service directory:
v apply
v restore
v commit
v report

apply
Applies a fix to Host Publisher. Once a fix is applied, you should verify that the fix
corrected the problem by attempting to recreate the problem. After you verify that
the fix is working as expected, run the commit command to make the change
permanent. There is no time limit between applying fixes and committing fixes,
but you cannot apply a second fix until the first fix is committed.

Chapter 9. Troubleshooting 115

Examples

Windows 98, Windows NT, Windows 2000:
apply JR12345 studio
apply JR12345 server

AIX, Solaris, OS/400:
sh apply.sh JR12345
sh apply.sh JR12345 server

restore
Removes an applied fix from Host Publisher. If a fix does not correct a problem or
you experience unexpected results, you can reject the fix and restore Host
Publisher to the state prior to applying the fix. After a fix has been removed, you
can reapply the fix at a later time. After a fix has been committed, the fix cannot be
removed.

Examples

Windows 98, Windows NT, Windows 2000:
restore JR12345 studio
restore JR12345 server

AIX, Solaris, OS/400:
sh restore.sh JR12345
sh restore.sh JR12345 server

commit
Makes an applied fix permanent. After you apply a fix and verify that it is
working as expected, you should commit the fix. After a fix has been committed,
you can no longer use the restore command to remove the fix. There is no time
limit between applying fixes and committing fixes, but you cannot apply a second
fix until the first fix is committed.

Examples

Windows 98, Windows NT, Windows 2000:
commit JR12345 studio
commit JR12345 server

AIX, Solaris, OS/400:
sh commit.sh JR12345
sh commit.sh JR12345 server

report
Displays the status of all fixes or a single fix. Issue report to display all fixes; issue
report fix_number to display a single fix.

Examples

Windows 98, Windows NT, Windows 2000:
report
report JR12345

116 IBM® WebSphere® Host Publisher Administrator’s and User’s Guide

AIX, Solaris, OS/400:
sh report.sh
sh report.sh JR12345

Contacting IBM for service
This section lists a number of ways you can reach IBM. Depending on the nature
of your problem or concern, the service representative expects you to provide us
with information so that we can serve you better.

If you have a technical problem, take the time to review and carry out the actions
suggested in this chapter. Use your local support personnel before contacting IBM.
Only persons with in-depth knowledge of the problem should contact IBM;
therefore, support personnel should act as the interface with IBM.

Before you contact IBM, gather the following information:
1. A complete and accurate description of the problem, including whether the

problem occurred in Host Publisher Studio or Host Publisher Server, the task
being performed when the error occurred, and the symptoms of the error.

2. If you are running Host Publisher Studio, use the methods described in 5 on
page 99 to get information about the problem and its cause.

3. If the error occurred in Host Publisher Server while attempting to access an
application, the files for the application might be needed. Refer to the
application’s .ear file on the server.

4. When you report a problem, be ready to provide information such as product
version, current APAR levels, and so forth. You can obtain this information by
issuing the report command. The report command is located in the
install_dir\Common\service directory; refer to “Updating Host Publisher using
the Software Maintenance Utility” on page 115 for more information.

If you determine that you need to contact IBM, you can do any of the following:
v Consult the Customer Service and Support Guide, which is a card contained in the

product package.
v Access the Host Publisher Web page at

http://www.ibm.com/software/webservers/hostpublisher. You can go directly
to the Hints and Tips.

v Access the IBM Personal Software Services Web page, which links to the IBM
Software Support Handbook, at http://ps.software.ibm.com/.

If you are so directed by IBM service, use the hppdtool command to gather
problem determination information from Host Publisher. Following are syntax
examples for hppdtool.

Windows 98, Windows NT, Windows 2000:
hppdtool

AIX, Solaris:
sh hppdtool.sh

OS/400 (hppd400 is the OS/400 version of the hppdtool command):
sh hppd400.sh

When you send information to IBM, you grant IBM a nonexclusive right to use or
distribute the information in any way it believes appropriate without incurring any

Chapter 9. Troubleshooting 117

http://www-1.ibm.com/servlet/support/manager?rt=3&rs=133&navkey=1ByProduct&path=Product+Group%3DSoftware%06Product+Family%3DNetworking+and+Communications%06Product+Type%3DHost+Publisher%06category%3DHints+and+tips

obligation to you.

118 IBM® WebSphere® Host Publisher Administrator’s and User’s Guide

Appendix A. Technical overview

This section provides a brief description of how a Host Publisher application is
built and how it executes on the server. It lists two different ways, or models, for
executing Integration Objects, which are the building blocks for Host Publisher
applications. Then it gives a step-by-step description of how an application is
developed and executed under one of the models, that of an application running in
a Web container.

Integration Objects are Java beans that encapsulate interactions with data sources
like 3270 and 5250 applications and JDBC databases, and return desired data as
Java bean properties. Integration Objects can be embedded within JavaServer Pages
(JSPs), which enable users of a Web browser to interact with the data. You use the
Host Access and Database Access components in Host Publisher Studio to create
Integration Objects, and you use the Application Integrator component in Host
Publisher Studio to create applications that use the Integration Objects.

On the server, Host Publisher applications execute in the WebSphere Application
Server V4.0 environment. They follow the J2EE architecture: each one resides on
the server as an .ear (Enterprise Archive) file and consists of one or more J2EE
modules, an application deployment descriptor, and any other files referenced by
the J2EE modules.

Host Publisher applications can be deployed as Web Services in the WebSphere
environment. For more information about developing such applications, see
“Chapter 4. Using Web Services” on page 71.

Execution models for Integration Objects

There are three primary models for executing Integration Objects that have been
created by Host Publisher Studio. They are:
v An Integration Object executed in a Web context (for example, a Web container)

can be used to build dynamic HTML (or other markup language) content using
JavaServer Pages (JSP) technology. Alternatively, a servlet that drives one or
more Integration Objects can also be developed for dynamic HTML generation.

v An Integration Object can be developed to exploit the benefits of EJB technology
such as resource location, replication and load balancing, and to facilitate its use
in composite EJB applications. Host Publisher Studio provides special support
for building EJB 1.1 support for Integration Object execution, enabling you to
develop applications in which Integration Objects are packaged with EJB Access
Beans and the Host Publisher EJB. See “Creating applications that use Enterprise
JavaBeans (EJB) technology” on page 42 for more information.

v An Integration Object or EJB Access Bean can be developed to become a Web
Service. Typically, Web Services use Internet protocols such as HTTP, use XML
message formats, and are plugged into Web Service registries where other
developers can combine and deploy them. See “Chapter 4. Using Web Services”
on page 71 for more information.

Note: It is also possible to develop Integration Objects and EJB Access Beans that
execute from a non-WebSphere application server. These are called Remote
Integration Objects (RIOs). Rather than developing RIOs, we recommend

© Copyright IBM Corp. 1999, 2002 119

developing Web Services applications, which can perform the same
functions while running in the WebSphere container.

An Integration Object running in a WebSphere Container
To illustrate the basic functions of Host Publisher, the following section elaborates
on the first alternative—an Integration Object using JavaServer Pages. The
following figure illustrates the Host Publisher development and execution
environments for Web-based Host Publisher applications.

The Host Publisher Studio applications, Host Access and Database Access, create
Integration Objects and connection information representing access to either the
host terminal-oriented application or to the relational database (see A in Figure 9.)
In addition, Host Access creates Host On-Demand macros for executing the
connect, data, and disconnect macros for a terminal-oriented application. The
Application Integrator component of Host Publisher Studio uses the Integration
Object to build JSPs that create the Integration Object, set its parameters, execute it,
and retrieve its output (B). These objects and files produced by the Studio are
packaged into a J2EE-compliant .ear file which is transferred to the server, where it
can be executed as a WebSphere application.

When application .ear files are published and deployed to the server, they are
ready to be executed. The execution environment is provided by:
v The Java support provided by an application server created by the WebSphere

Application Server.

Figure 9. Host Publisher development and execution environments

120 IBM® WebSphere® Host Publisher Administrator’s and User’s Guide

v Host Publisher Server, which provides administration support for items such as
connection pooling, connection setup and priming, user ID management,
administration, tracing, and logging.

v Host On-Demand or JDBC code for access to various data sources.

Note: Host Publisher uses the components of the Host On-Demand product, a
Java applet-based terminal emulator, to communicate with
terminal-oriented applications. Host On-Demand consists of a set of
Java-based Telnet (TN) clients that can communicate with:
– TN3270(E) servers for the 3270 data stream to communicate with

z/OS-based applications
– TN5250(E) servers for the 5250 data stream to communicate with

iSeries-based applications
– Telnet servers for the VT datastream to communicate with applications

that run on various UNIX, OS/2®, and other platforms.

Host On-Demand also provides programmatic access to these TN client
functions to create connections to terminal-oriented applications and
navigate through them. Host Publisher uses the programmatic access to
Host On-Demand functions.

Execution of a Studio-generated application starts with a browser accessing an
application .ear file. WebSphere Application Server contains support for JSP
compilation and a Web container that supports the servlet API. The JSP is
compiled into a servlet, and the servlet executed (C).

The resulting servlet first creates an Integration Object, then sets its parameters,
then invokes it. Invocation of an Integration Object begins with it asking the server
for a host connection (E). The server creates the connection either to a TN server
for a terminal-oriented application or to a relational database (D). For
terminal-oriented applications, the server either establishes a new connection and
runs the connect macro using the Host On-Demand API, or it returns an existing
connection from a pool. For database applications, the server either establishes a
connection with the database or it returns an existing connection from a pool.

After the Integration Object acquires the connection, it either runs a data macro (in
the case of a terminal-oriented application) or executes a database statement (in the
case of a database application), and retrieves the data from the data source (F). The
Integration Object’s output properties are now set and ready for retrieval. The rest
of the JSP execution uses those output properties for dynamic HTML generation.
Integration Object execution ends with it returning the connection to the server,
where the server decides whether the connection is returned to a pool or
disconnected, and its output properties set.

Appendix A. Technical overview 121

122 IBM® WebSphere® Host Publisher Administrator’s and User’s Guide

Appendix B. Server properties files

Server properties files are Java properties files that contain Host Publisher Server
settings. There are two types of server properties files: one that contains global
settings for a node, and one that contains settings for a particular application
server. The server properties files are written to the Server directory of the Host
Publisher installation directory on the server. When you use Host Publisher Server
Administration to make changes, the values you specify are written to the server
properties files.

The server properties file for the global settings is server.properties. The file is
created when Host Publisher Server is installed. The server.properties file is primed
with default values when you start the Host Publisher Server for the first time.

The server properties file for a particular application server is ras_xxx.properties,
where xxx represents the application server name (for example,
domain_node_server). There is one server properties file for each Host Publisher
runtime instance running in an application server. The ras_xxx.properties file
contains the trace and log settings for that particular application server. If an
application server starts the Host Publisher runtime instance within the application
server, and the same name is generated for that application server, the trace and
log settings are restored to the values that existed prior to a shutdown.

If no value is specified for any of the properties in the server properties files, Host
Publisher uses the default value defined for that property.

In addition to using Host Publisher Server Administration to update this file, you
can edit the server properties files manually to make changes to the server settings.
If you manually edit the files, you should restart the server to ensure that the
changes you make take effect.

The server.properties file
The server.properties file contains the following properties:

num_licenses
Specifies the number of licenses you purchased.

The value is an integer that is set during installation. There is no default.

Specify num_licenses = –1 if you purchased an unlimited license.

licenseTracking
Specifies whether Host Publisher tracks license usage or not.

Note: You can only modify this property by editing the server.properties
file.

0 Host Publisher does not track license usage.

1 Host Publisher tracks license usage for all application servers in a
node. Host Publisher Server tracks the number of Host Publisher
connections to host or database resources and logs a message when
the value exceeds the number of licenses purchased. The license

© Copyright IBM Corp. 1999, 2002 123

usage information is written to a file named licensex.txt in the log
directory of the Host Publisher installation directory on the server,
where the x is either 1 or 2.

The maximum size of the license usage files is 512 KB. When the
file size of the license1.txt file reaches 512 KB or if the Host
Publisher Server is restarted, the file is renamed to license2.txt, and
a new license1.txt file is created. The new license1.txt file contains
the most recent license usage information. When the new
license1.txt reaches 512 KB and is renamed, the old license2.txt is
deleted.

The license usage files contain the following information, arranged
in rows, with each row representing one hour of operation. The
values are separated by a space ().
1. Date
2. Time
3. The highest license count since the server was started
4. The highest license count in the last hour (the maximum of the

last 60 entries)
5. The license count for each minute (1–60)

The value is binary. The default is 0.

%logFile
The name used as a template to generate names for each application server
file to which log messages are written. Refer to the maxLogFiles property
comment in any ras*.properties file for a description of the algorithm for
generating each log file name. A ras*.properties file is generated for each
WebSphere application server configured to run Host Publisher. When
editing the file, specify any backslash in the path with a double slash (\\).

%traceFile
The name used as a template to generate file names for each application
server file to which Host Publisher trace messages are written. Refer to the
maxTraceFiles property comment in any ras*.properties file for a
description of the algorithm for generating each trace file name. A
ras*.properties file is generated for each WebSphere application server
configured to run Host Publisher. When editing the file, specify any
backslash in the path with a double slash (\\).

%HPAdminPortNumber
The port number used by Host Publisher Server on a machine to enable
each installation running in an application server on that machine to be
administered remotely. Remote administration is currently based on remote
method invocation (RMI).

You can specify any valid TCP port number. The default is 30099.

%stashKeyringPW
Specifies whether the password for the express logon keyring database is
saved in this file. (See %keyringPW below.)

0 The password is not saved in this file.

1 The password is saved in this file.

The value is binary. The default is 0.

124 IBM® WebSphere® Host Publisher Administrator’s and User’s Guide

%stashUserListPW
Specifies whether the password for accessing encrypted user list data is
saved in this file. (See %userListPW below.)

0 The password is not saved in this file.

1 The password is saved in this file.

The value is binary. The default is 0.

%keyringPW
The password used to access the express logon keyring database. This
value is valid if %stashKeyringPW is 1.

%userListPW
The password used to access encrypted user list data. This value is valid if
%stashUserListPW is 1.

The ras_xxx.properties file
The ras_xxx.properties file contains the following properties:

maxLogFiles
The maximum number of log information files.

The base log file name in server.properties is used as a template to
generate unique sets of log files for each application server. The default
base name for a log file is messages.txt, which can be changed in
server.properties. The application server running Host Publisher is the
concatenation of: the underscore (_) character, followed by the name of the
Host Publisher Server instance, followed by another underscore (_)
character.

The Host Publisher Server instance ID (for example _SSS_) is then
appended to the base file name to generate the template for the log files
for an application server. For the log file, this becomes messages _SSS_.txt.
Finally, an index (1, 2, 3, and so forth) is added to this name to distinguish
multiple files. So, for example, if the Host Publisher Server instance ID is
domain_node_server, the log file for the application server is named
messages_domain_node_server_.txt. With multiple log files configured, the log
file names for this application server are messages_domain_node_server_1.txt,
messages_domain_node_server_2.txt, and so forth.

When messages_domain_node_server_1.txt reaches maxLogFileSize, it is
closed and renamed to messages_domain_node_server_2.txt. A new
messages_domain_node_server_1.txt is opened.

When messages_domain_node_server_1.txt reaches maxLogFileSize again,
previous log files are renamed—for example,
messages_domain_node_server_2.txt is renamed to
messages_domain_node_server_3.txt. Then messages_domain_node_server_1.txt is
renamed to messages_domain_node_server_2.txt, and a new
messages_domain_node_server_1.txt file is opened.

When the maxLogFiles number is exceeded, the oldest file is deleted.

maxLogFileSize
Specifies the maximum size, in kilobytes, that a message log file reaches
before an additional log file is opened.

Appendix B. Server properties files 125

Note: You can only modify this property by editing the ras_xxx.properties
file.

The value is an integer. The default is 512 KB.

maxTraceFiles
The maximum number of trace information files.

The base trace file name in server.properties is used as a template to
generate unique sets of trace files for each application server. The default
base name for a trace file is trace.txt, which can be changed in
server.properties. The application server running Host Publisher is the
concatenation of: the underscore (_) character, followed by the name of the
Host Publisher Server instance, followed by another underscore (_)
character.

The Host Publisher Server instance ID (for example _SSS_) is then
appended to the base file name to generate the template for the trace files
for an application server, which becomes trace _SSS_.txt. Finally, an index
(1, 2, 3, and so forth) is added to this name to distinguish multiple trace
files. So, for example, if the Host Publisher Server instance ID is
domain_node_server, the trace file for the application server is named
trace_domain_node_server_.txt. With multiple trace files configured, the trace
file names for this application server are trace_domain_node_server_1.txt,
trace_domain_node_server_2.txt, and so forth.

When trace_domain_node_server_1.txt reaches maxTraceFileSize, it is closed
and renamed to trace_domain_node_server_2.txt. A new
trace_domain_node_server_1.txt is opened.

When trace_domain_node_server_1.txt reaches maxTraceFileSize again,
previous trace files are renamed—for example,
trace_domain_node_server_2.txt is renamed to trace_domain_node_server_3.txt.
Then trace_domain_node_server_1.txt is renamed to
trace_domain_node_server_2.txt, and a new trace_domain_node_server_1.txt file
is opened.

When the maxTraceFiles number is exceeded, the oldest file is deleted.

maxTraceFileSize
Specifies the maximum size, in kilobytes, that a trace file reaches before an
additional trace file is opened.

Note: You can only modify this property by editing the ras_xxx.properties
file.

The value is an integer. The default is 512 KB.

%logMask
Specifies the types of messages that are logged. Add the values for each of
the following message types to determine the value for this property:

1 Informational messages

2 Warning messages

4 Error messages

The value is a decimal integer. The default is 4.

Note: Error messages are always logged.

126 IBM® WebSphere® Host Publisher Administrator’s and User’s Guide

%traceMask
Specifies the types of traces for the Server and the Integration Objects. This
property does not affect JDBC or Host On-Demand tracing. Add the values
for each of the following traces to determine the value for this property:

16 API traces

384 Entry and exit traces

1024 Miscellaneous traces

The value is a decimal integer. The default is 1424, meaning that all trace
types are enabled.

%HODDisplayTerminal
Specifies whether Host On-Demand displays a terminal window for each
connection or not.

0 Host On-Demand does not display a terminal window for each
connection.

1 Host On-Demand displays a terminal window for each connection.

The value is binary. The default is 0.

If %HODDisplayTerminal is 1, when Host Publisher creates a host
connection (for example, in response to a request from an Integration
Object), it automatically creates a host terminal display. If this property is
set to 0, this does not occur; however, whether or not the host terminal
display is created automatically during host connection creation, a Host
Publisher administrator can use Host Publisher Server Administration to
turn host terminal displays on or off for individual host connections.

%HODMacroTracingLevel
Specifies the level of tracing for the Host On-Demand macros.

The value is an integer in the range 0 to 3, where 3 is the maximum level
of tracing. The default is 0, which means there is no tracing.

%HODPSTracingLevel
Specifies the level of tracing for the Host On-Demand presentation space.

The value is an integer in the range 0 to 3, where 3 is the maximum level
of tracing. The default is 0, which means there is no tracing.

%HODSessionTracingLevel
Specifies the level of tracing for Host On-Demand sessions.

The value is an integer in the range 0 to 3, where 3 is the maximum level
of tracing. The default is 0, which means there is no tracing.

%HODSupportTracing
Specifies whether Host On-Demand Support Tracing is enabled.

0 Host On-Demand Support Tracing is not enabled.

1 Host On-Demand Support Tracing is enabled.

The value is binary. The default is 0.

%HODTransportTracingLevel
Specifies the level of tracing for the Host On-Demand transport.

Appendix B. Server properties files 127

The value is an integer in the range 0 to 3, where 3 is the maximum level
of tracing. The default is 0, which means there is no tracing.

%HODUserMacroTracing
Specifies whether Host On-Demand User Macro Tracing is enabled.

0 Host On-Demand User Macro Tracing is not enabled.

1 Host On-Demand User Macro Tracing is enabled.

The value is binary. The default is 0.

%ioPatternKey
One or more patterns specifying the Integration Objects to be traced. (See
%ioTrace below.)

Each pattern can contain one or more wildcard (*) character. For example,
IntegrationObject.Callup* specifies that tracing is enabled for all Integration
Objects that start with the letters Callup. To trace all Integration Objects,
specify IntegrationObject.*

If multiple patterns are specified, they should be delimited with commas.

%ioTracing
Specifies whether Host Publisher traces Integration Objects specified by
%ioPatternKey..

0 Integration Objects are not traced.

1 Integration Objects are traced.

The value is binary. The default is 0.

%JDBCTracing
Specifies how much JDBC activity Host Publisher traces.

0 Host Publisher does not trace JDBC activity.

1 Host Publisher traces all JDBC activity in the application server.

The value is binary. The default is 0.

%rioTracing
Specifies whether Host Publisher traces Remote Integration Object (RIO)
servlet processing.

0 RIO servlet processing is not traced.

1 RIO servlet processing is traced.

The value is binary. The default is 0.

%runtimeTracing
Specifies whether Host Publisher traces runtime activity or not.

0 Host Publisher does not trace runtime activity.

1 Host Publisher does trace the runtime activity.

The value is binary. The default is 0.

128 IBM® WebSphere® Host Publisher Administrator’s and User’s Guide

Appendix C. Example of developing an application in Host
Publisher Studio

In this example, you will develop a simple Host Publisher application that extracts
and displays data from a host application. For example, the host application might
be a company telephone directory that displays employees’ names and phone
numbers. The example guides you through the three major steps of developing an
application:
v Creating an Integration Object
v Building the application
v Transferring the application to a server

During the example you’ll log onto a host session, run an application on the host,
extract data from the application, and log off from the application. Then, using the
Integration Object you built during the first part of the example, you’ll use
Application Integrator to build a Web application. The application will define how
the extracted data is displayed for an end user and how the end user can
manipulate the data.

This example assumes that the following menu items in the Host Access Options
menu are checked (these are the default values):
v Automatically Generate Integration Objects on Save
v Prompt on Unrecognized Screens

In the following steps, the underlined text corresponds to the title that shows in
the wizard pane as you perform each step.

For details about the procedures described in this example, see “Chapter 2. Using
Host Publisher Studio to develop J2EE applications” on page 9.

Creating an Integration Object
1. Open the Application Integrator component of Host Publisher Studio. The

Welcome to Host Publisher! window displays.
2. Click Create Integration Objects.
3. Select Host Access Integration Object to specify the type of Integration Object

you will create.
4. Click OK.

After a few seconds, the Host Publisher Host Access main window displays. Most
Host Access windows are divided into three sections, or panes:
v The Object Configurations pane on the left
v The wizard pane in the upper right
v The terminal pane in the lower right

Note: The terminal pane does not appear until you have connected to the host.

Welcome

Click Next.

© Copyright IBM Corp. 1999, 2002 129

Integration Object

The Create a new Integration Object radio button is selected by default, so click
Next.

Host Configuration

Supply information with which the Host Publisher application connects to the host.
Click Help for more information about the settings.
1. In the Connection Pooling Information box, the Configure a default connection

pool radio button is the default selection.
2. In the Connection Information box, the Create a new connection configuration

radio button is the default selection.
3. In the Host Server Information box, fill in the following fields with your

installation-specific information or accept the defaults.
v Server name – this is always required.
v Terminal type – TN3270 is the default. This is typically used for connecting to

a zSeries (S/390®) host.
v Port number – 23 is the default.
v Code page – defaults to the language setting for your workstation.
v Screen size – 24x80 is the default.

4. Leave the Express Logon enabled box unchecked.
5. Click Next.

The terminal pane, containing a host session, should open. If it does not open,
confirm that you have connectivity to the host and are using the correct host
configuration.

Begin Recording

Click Next to assign a name to the first screen in the host session (the screen
displayed in the terminal pane). This action begins a series of screen-definition
windows.

New Screen Definition

This is the first of four panes that prompt you for information to define a screen.
The panes are presented whenever you define a screen.

Accept the default name Screen1 and click Next.

Add Recognition Criteria to Screen Definition – Screen1

Accept the default, Text Area, to indicate that the screen is recognized by text on
the screen. Click Next.

Text Area Recognition
1. Use the mouse to draw a box around some text on the terminal. Select text that

is unique to this screen and does not appear on other screens.
The box can include more than one line of text. For example, if the words User
ID and Password are on the screen, you can draw a box around them.

2. Click Next.

130 IBM® WebSphere® Host Publisher Administrator’s and User’s Guide

Screen Definition

This is the last screen-definition window. It enables you to add additional screen
recognition criteria.

Click Next.

Connect Your Session

In the terminal pane, connect your session by logging on to the host as you would
from a terminal emulator. The keystrokes you enter are recorded, and you can see
them added to the macro tree in the left pane. This is a tree representation of the
connect macro. (In Host Publisher, a macro is an XML script that defines a set of
screens, actions, and next screens.)

When the terminal screen changes as a result of your input, the Unrecognized
Screen window displays.

Unrecognized Screen

Because the Prompt on Unrecognized Screen option is selected, this window
displays whenever the terminal screen changes to a screen you have not already
defined. (You can check the check box to turn this option off.)

You might have to navigate through more than one screen to reach the data you
want to extract for this example. Throughout this example, whenever you see the
Unrecognized Screen window, perform the following steps:
1. Click Yes.
2. The New Screen Definition window displays. Respond to this window, and to

the screen-definition windows that follow it, as you did for Screen1, accepting
the default screen names.

3. When screen definition is complete, you are returned to one of the following
windows:
v Connect Your Session if you were recording the connect macro.
v Gather Data if you were recording the data macro after selecting Gather

Data.
v Disconnect Your Session if you were recording the disconnect macro.

(The Gather Data and Disconnect Your Session windows are described in the
sections below.)

4. Click Next.

You have finished recording the connect macro, and you are ready to begin
recording the data macro.

Begin Data Macro
1. In the wizard pane, click Gather Data.
2. Click Next.

Gather Data
1. In the terminal pane, navigate to the data you would like to gather. As you

enter keystrokes and define screens, Host Access updates the tree
representation of the data macro in the Object Configurations pane.

Appendix C. Example of developing an application in Host Publisher Studio 131

2. When you reach the screen from which data is to be gathered, define the
screen.

3. Click Next.

Select Data
1. Using the mouse, draw a box in the terminal pane around the data you want to

gather.
2. Click Next.

Data Format
1. Select Extract data as plain text. (Selecting Extract data as a table takes you

through a different set of windows. However, both paths end at the Finish Data
Extraction window.)

2. Click Next.

Text Extraction
1. The terminal pane is replaced by the extracted text. In the wizard pane, enter a

name for the extracted text. You will use this name again later, as you build
your application, but the end user of the application will not see the name.

2. Click Next.

Finish Data Extraction
1. When the data extraction is complete, click Extract more data if you want to

gather more data from the same screen or from another screen in the
application.

2. When you are finished gathering data, select Finished extracting data.
3. Click Next.

Finish Data Macro
1. In the terminal pane, navigate to the screen from which you will log off from

the host. Typically, this is the same screen as the first screen in the data macro.
2. In the wizard pane, click Next.

Note: If the current screen does not match the first screen in the data macro, a
warning message asks whether you would like to proceed. (A similar
warning will also display when you save the Integration Object.) For this
example, which does not involve connection pooling, you can click Yes
in response to the warning.

You have finished recording the data macro, and you are ready to begin recording
the disconnect macro.

Disconnect Your Session
1. In the terminal pane, log off from the host.
2. When the host connection has been terminated, click Next in the wizard pane.

Save Integration Object
1. In the wizard pane, click Next to save your Integration Object. The connection

pool and macros will also be saved.
2. Type a name for the Integration Object and click Save.
3. Wait a few seconds while the Creating Integration Object window displays the

status. Then click OK in the Creating Integration Object window.

132 IBM® WebSphere® Host Publisher Administrator’s and User’s Guide

At this point you can verify that your macros play correctly.
1. Select Connect Macro in the Object Configurations pane.
2. Play the connect macro by clicking the Play Macro icon in the menu bar or by

clicking Macro > Play. Host Access identifies host screens with the criteria you
have defined and sends the keystrokes you recorded for the identified screens
to the host.

3. Select Data Macro in the Object Configurations pane.
4. Play the data macro. A popup window displays the data that is extracted. This

data will be available to send to end users.
5. Select Disconnect Macro in the Object Configurations pane.
6. Play the disconnect macro.

Building the application
To begin building an application which will contain the Integration Object you just
defined:
1. Select File > Exit from the menu bar to exit the Host Access component. You

are returned to Application Integrator.
2. Click Create Application on the welcome window, or select File > New

Application from the menu bar.

New Application
1. Enter the name of the application.
2. Click Next.
3. Click I prefer to start with data.
4. Click Next.
5. Click Import to bring the Integration Object you defined earlier into the

application.
6. Select the Integration Object from the list and click Open.
7. The name of the Integration Object appears in the table with No in the Defined

column. Click Define to create Web pages (HTML and JSP pages) containing
the Integration Object. The Web pages will contain the code required to execute
the methods of the Integration Object and to render (display) the resulting data.

New Integration Object

You’ll now use wizards to define how the data you extracted from the host
application will appear on your Web page. This process is known as rendering.
1. In the first window, Create a new page is the default selection. Type the name

of the page which will display the data output from your Integration Object,
then click Next.
A table displays, containing a list of the output variables you defined in the
Integration Object. These variables represent the data you extracted from the
host application.

2. Select an output for which Single appears in the Values column (meaning that
the data was extracted as a single plain text string), then click Render.

Insert Output Control

This wizard enables you to specify how the selected output data will be displayed
on the Web page. For a single data string, your choices are an edit box or a

Appendix C. Example of developing an application in Host Publisher Studio 133

password box (where an end user can modify the data), or a normal text string
(where the data is displayed and cannot be modified).
1. Select Normal text.
2. Click Next.
3. Type a label to describe to end users what this data represents.
4. Click Finish.

New Integration Object

The output data is now shown in the table with the type of control you selected
(normal text) and the first few words of your label.
1. If you extracted more than one data element from the host application, you can

repeat the previous steps with other output variables.
2. Click Next when you are finished defining your output. You have defined your

output Web page.
3. Click Preview to see the Web page in a Web browser. All you will see now,

however, is the label you defined. The Integration Object gathers data from the
host only after you have imported it into an application and transferred the
application to a Host Publisher Server.

4. Click Finish to finish defining the Integration Object.

New Application

You are returned to the New Application wizard, where you started to define your
Integration Object. At this point you could click Create to create another
Integration Object or Import to add a previously created Integration Object and
repeat the definition process.

To continue with this example, follow these steps:
1. Click Next.
2. Click Create to create an error page—the page that is invoked when an

application error is encountered.

New Error Page

To create a custom error page that will handle execution errors found in your
application, follow these steps.
1. Type the name of the error page.
2. Click Next.
3. Customize the error message that will appear when an error is found. For

example, your error message can tell end users how to reach the support staff
and what information to give them.

4. Click Finish to finish creating the error page.

New Application

Click Finish.

You have finished creating the new application. In the Application Pages pane, on
the right side of the screen, you can see a list of the pages you created. The error
page is displayed at the top of the list because it is the most recent page you
created.

134 IBM® WebSphere® Host Publisher Administrator’s and User’s Guide

You can update your application pages using the menus on the menu bar. Many of
the menu items take you to the same wizards you used to create your application.
You can use them to:
v Add more new pages to the application
v Add additional variables or controls to the pages

When you have finished, click File > Save Application to save the application, or
continue with this example by transferring the application to a Host Publisher
Server.

Transferring the application to a server
From the menu bar , click File > Transfer to Server to begin the process of
assembling your finished application and transferring it to a server.

Transfer to Server

You will use this wizard to create a J2EE .ear (Enterprise Archive) file. The .ear file
will then be transferred to a Host Publisher Server, where you will be able to
execute the application.

The first window in the wizard displays a list of the servers that are already
defined. This example assumes that you have not yet defined a server.
1. Click Server Info.
2. Click Add.

Host Publisher Server Definition

The information you specify here is used to transfer the application .ear file to the
server where it will execute. A Host Publisher Server can either be local (on the
same machine where you created the application, or connected to it by a Local
Area Network) or remote (you must use FTP to reach it).

To define a local server:
1. In the Host Publisher Server TCP/IP host name field, type localhost.
2. In the Login user ID field, type anonymous.
3. Select the server platform—the operating system on which Host Publisher

Server is installed—from the list provided.
4. Modify the text in the WebSphere installation directory field. You will need to

insert the drive letter (for example, C:\) to the left of the text. You will also
need to correct the directory name if WebSphere is installed in a different
directory than the one shown.

5. Click OK.

To define a remote server:
1. In the Host Publisher Server TCP/IP host name field, type the TCP/IP name

for the server, for example servername.mycompany.com.
2. Accept the default provided in the Port number field, unless your system

administrator tells you to use a different value.
3. In the Login user ID field, type a user name which has been defined for FTP to

the WebSphere installation directory on the remote server.
4. Select the server platform—the operating system on which Host Publisher

Server is installed—from the list provided.

Appendix C. Example of developing an application in Host Publisher Studio 135

5. Modify the text in the WebSphere installation directory field. You will need to
insert the drive letter (for example, C:\) to the left of the text. You will also
need to correct the directory name if WebSphere is installed in a different
directory than the one shown.

6. Click OK.

Preferences

Click OK to return to the Transfer to Server wizard.

Transfer to Server
1. Select one or more servers from the list, or click Select All.
2. Click Next.
3. Click Transfer to begin the transfer process. For each remote server you have

selected, you are prompted to provide a password.
Status messages for each transfer are displayed in the status window to inform
you of problems and of successful file transfers. If you need to stop the file
transfer and correct a problem, click Stop.

4. When the transfer is complete, click Save if you want to save the status
messages to a file.

5. Click Finish.

The application is now packaged as an .ear (Enterprise Archive) file and has been
sent to a WebSphere application directory where it is available to be deployed.

Deploying the application on WebSphere Application Server
Refer to the WebSphere InfoCenter for detailed information about deploying or
installing an enterprise application.

For example, if you are using WebSphere Application Server Advanced Edition on
Windows NT, bring up the WebSphere Advanced Administrative console. From the
menu bar, click Console > Wizards > Install Enterprise Application, and follow the
instructions. When you reach the Select Application Server window, select
HostPubServer as the application server on which you want to install the modules
contained in your application.

Ensure that you regenerate the Web Server plug-in and that the Enterprise
Application is started.

Accessing the application from a browser
To access the Web application, load this URL in your browser:
http://server_name/application_name/first_page.jsp.

For example, if your application is named example, the starting page is named
page1, and you transferred the application to a server named abs17, the URL is
http://abs17/example/page1.jsp.

136 IBM® WebSphere® Host Publisher Administrator’s and User’s Guide

Appendix D. Examples for designing custom Web pages

Use the following examples to design custom Web pages. To cut and paste an
example, use the online version of this book, located at Start > Programs > Host
Publisher [Server or Studio] > Library > Administrator’s and User’s Guide.

Note: You can find more code examples on the Host Publisher Web page
(http://www.ibm.com/software/webservers/hostpublisher/library.html)
under Product documentation.

Java access to page parameters
How can I get access to parameters passed to my Web page?

Write a Java scriptlet to call the request.getParameter method and specify the name
of the input parameter.

This example gets the values of input parameters tu_in and dupno_in and places
them in String variables. They are then displayed as part of HTML h2 headers.
<%

String tu_num = request.getParameter("tu_in");
String dup_num = request.getParameter("dup_in");

%>

<h2>Val1 is <%=tu_num %></h2>
<h2>Val2 is <%=dup_num %></h2>

Redirecting based on Integration Object results
How can I test the output of an Integration Object and call subsequent
JavaServer Pages (JSPs) based on the results of my test?

Write a Java scriptlet to get the desired property from the executed Integration
Object. Test the property and redirect to the appropriate JSP based on the test.

This example calls getTaxmenuid and tests the value to determine the page to
redirect to.
<%

String status=Tax_Menu_Init.getTaxmenuid();
if (status.indexOf("Sign") != -1){

response.setStatus(response.SC_MOVED_TEMPORARILY);
response.setHeader("Location","TaxSignon_Error.jsp");

out.close();
return;
}
%>

Invoking Integration Objects based on previous Integration Object
results

How can I test the output of an Integration Object and not invoke a subsequent
Integration Object if the first Integration Object failed?

© Copyright IBM Corp. 1999, 2002 137

Write a Java scriptlet to test a property from the first executed Integration Object.
Use an IF statement for the test and wrap the execution of the subsequent bean
within the IF.

In this example, the Tax_Details_F12 Integration Object will execute only if the
word DUPLICATE is not found in variable status.
<%

String status = Tax_Addr.getTaxstatus();
if (status.indexOf("DUPLICATE") == -1) {
%>

<jsp:useBean id=Tax_Details_F12" type="IntegrationObject.Tax_Details_F12"
class="IntegrationObject.Tax_Details_F12" scope="request">
</jsp:useBean>
<jsp:setProperty name="TaxDetails_F12" property="*" />
<% Tax_Details_F12.setHPubStartPoolName("Tax_Details_F12"); %>
<% Tax_Details_F12.doHPTransaction(request, response); %>

<%}%>

Building dynamic HTML based on Integration Object properties
How can I build dynamic output based on the properties of an Integration
Object?

Write a Java scriptlet that will use out.println to write output into the HTML
stream. Properties of the Integration Object can be embedded in the out.println
statements.
<%
String empno;
try
{
empno = Dbfirst.getDANAPEMPLOYEEEMPNO_(0);
out.println("<P>Employee number: " + empno + "<p>");
out.println(

Dbfirst.getDANAPEMPLOYEELASTNAME_(0) + "," +
Dbfirst.getDANAPEMPLOYEEFIRSTNME_(0) + "" +
Dbfirst.getDANAPEMPLOYEEMIDINIT_(0) + "." +

);

out.println("<p>Show <A HREF=\"showfirst.jsp?empno=" + empno +
"\">Next Employee");
out.println("<p> <A HREF=\"Deleted.jsp?empno=" + empno +
"\">Delete Employee");

}
catch(Exception e)
{
}
%>

Validating user input
How can I validate user input from an HTML form?

Use JavaScript to validate user input on an HTML page.

In this example, the function is called by onSubmit=″return padzero(this);″ on the
input HTML FORM statement. Function padzero ensures that the input value is
numeric and is between 1 and 999999 inclusive.

138 IBM® WebSphere® Host Publisher Administrator’s and User’s Guide

<SCRIPT LANGUAGE="JavaScript1.1">
function padzero(f)
{

var num = parseInt(f.elements[0].value,10);
if (num < 1 \ num > 999999 \ isNaN(num) \

num != f.elements[0].value)
{
alert("Employee Number not valid ... value must be between" + " " 1 and 999999");
return false;
}
var len = f.elements[0].value.length;
var zeros = "";
for (var i = len; i < 6; i++)
zeros = zeros.concat("0");
f.elements[0].value = zeros.concat(f.elements[0].value);
return true;

}
</SCRIPT>

Testing for successful database record deletion
How can I test to ensure a database access record delete is successful?

Use a Java Scriptlet to query the Integration Object.

This example calls getHPubNumberOfRowsChanged and tests to see if a row was
changed.
<%

DbDelete.setHPubStartPoolName("Db");
DbDelete.doHPTransaction(request, response);
int changed;
changed = DbDelete.getHPubNumberOfRowsChanged();

if (changed == 0)
{ out.println("Error deleting employee number"); }

else
if (changed == -1)
{ out.println("No entry found for employee number "); }
else
{ out.println("Successfully deleted employee number"); }

%>

Testing for successful database record addition
How can I test to ensure a database access record addition is successful?

Use a Java Scriptlet to query the Integration Object.

This example calls getHPubNumberOfRowsChanged and tests to see if a row was
changed. Note that a write of the empno and name into the HTML stream is also
in the scriptlet.
<%

DbAddMin.setHPubStartPoolName("Db");
DbAddMin.doHPTransaction(request, response);
int changed;
changed = DbAddMin.getHPubNumberOfRowsChanged();

if (changed == 0)
{ out.println("Error adding employee number"); }
else
{ out.println("Successfully added employee number"); }

Appendix D. Examples for designing custom Web pages 139

out.println("" + DbAddMin.getEmpno());
out.println(" (" + DbAddMin.getLast() + "," + DbAddMin.getFirst() + " " +
DbAddMin.getMiddle() + ".).");

if (changed == 0)
{ out.println("<p>Employee number may already be assigned."); }

%>

Passing Java variables to JavaScript function
How can I pass Java variables to JavaScript?

In this example, maxfields is passed to JavaScript function CheckData.
<% int maxfields = 99; %>

<SCRIPT Language="Javascript">
function CheckData(formitem, max)
{

if (formitem.fgn_number.value > max)
alert("Value is too large. Please re-enter")

}
</SCRIPT>

Sample HTML form to call function:
<FORM Name="testform" Method="pose"

onSubmit="return CheckData(this,<%= maxfields %>)" >
<input type="text" name="fgn_number" size="12" maxlength="12"></p>

</FORM>

Using Java to display variables passed into a page
How do I display the variables that are passed into a page?

Use a Java scriptlet and call request.getParameter(″<name>″), then use out.println.
Parameters are sent to pages as Name/Value pairs.
<%

out.println("Test Bad");
String payee_name = "";
String fgn_input = request.getParameter("fgn_number");
out.println(fgn_input + " ");
out.println(fgn_input.length());

%>

Using Java to pad an input value and passing it to an Integration
Object

How can I pad input data to the correct length without using JavaScript on the
client side?

You can use Java to pad an input variable to the proper length for the host
application.

In this example, the dcn_number is padded to be 9 characters.
<%

String dcn_input = request.getParameter("dcn_number");
String final_dcn_value = "";
dcn_input = dcn_input.trim();
for(int i = dcn_input.length(); i < 9; i++)

final_dcn_value = final_dcn_value.concat("0");

140 IBM® WebSphere® Host Publisher Administrator’s and User’s Guide

dcn_input = final_dcn_value + dcn_input;
%>

<jsp:useBean id="Okdhs_dbupdate" class="IntegrationObject.Okdhs_dbupdate
SCOPE="request">
</jsp:useBean>
<jsp:setProperty name="Okdhs_dbupdate" property="*" />
<% Okdhs_dbupdate.setHPubStartPoolName("OKLADHSDB"); %>
<% Okdhs_dbupdate.setDcn_number(dcn_input); %>
<% Okdhs_dbupdate.doHPTransaction(request, response); %>

Using a function type passed from a hidden HTML form variable to
determine page to execute

How can I use one input form to redirect to different host functions?

Use an onClick method to set a function type in a hidden HTML form variable.
This variable can then be tested by Java to determine correct JSP to handle the
function. A sample form follows the example.
<%

String function_selected = request.getParameter("funtype");
try {

db_pin_value = Okdhs_dbselect.getDMCPEAKEOKLADHSDCN_(0);
if (db_pin_value.indexOf(pin_number) != -1)
{
if(function_selected.indexOf("CHANGE") == -1)

newurl = "cfrr_page.jsp?fgn_number=" + fgn_input;
else

newurl = "change_pin.jsp?fgn_number=" + fgn_input;
} else {
newurl = "cfrr_error.jsp?fgn_number="+

request.getParameter("fgn_number");
response.setStatus(response.SC_MOVED_TEMPORARILY);
response.setHeader("Location",newurl);
}
}

catch(exception e)
{
newurl = "cfrr_error.jsp?fgn_number=" +

request.getParameter("fgn_number");
response.setStatus(response.SC_MOVED_TEMPORARILY);
response.setHeader("Location",newurl);
}

%>

Sample HTML form:
<form name="subform" method="POST"

ACTION="<%=response.encodeURL("csml_page.jsp") %>">
<p align="center">Please type your identification
number
<input type="text" name="fgn_number" size="12" maxlength="12></p>
<p align="center">Please enter your PIN<input

type="password" name="pin_number" size="9" maxlength="9"></p>

<input type="hidden" name="funtype" size="6" maxlength="6">

<p align="center"><input type="submit" value="Inquire" name="B1"
onClick="subform.funtype.value='INQUIRE'">

<input type="reset" value="Clear Form" name="B2">
<input type="submit" value="Change PIN" onClick="subform.funtype.value='CHANGE'">
</p></p>

</form>

Appendix D. Examples for designing custom Web pages 141

Using Java to prevent blank lines in an HTML table
If I extract more data than is available, how do I prevent blank lines from being
added to the HTML table?

Use a Java scriptlet to test the property of the Java bean. If it is blank, break out of
the repeat loop.
<HTML>
<BODY>
<jsp:useBean id="Ha_mcat1" class="IntegrationObject.Ha_mcat1" scope="request">
</jsp:useBean>
<jsp:setProperty name="Ha_mcat1" property="*" />
<% Ha_mcat1.setHPubStartPoolName("mcatpool"); %>
<% Ha_mcat1.doHPTransaction(request, response); %>
<P>Search Results:<TABLE BORDER>
<th>title</th>
<th>author</th>
<% for (int idx1 = 0; idx1 %= 2147483647; idx1++) { try { %><tr>
<%
if (Ha_mcat1.getTitletitle(idx1).indexOf(" ")!=-1) break;
%>
<td><%= Ha_mcat1.getTitletitle(idx1) %></td></tr>
<% }
catch (java.lang.ArrayIndexOutOfBoundsException ae) {
break;
}
catch (java.lang.NullPointerException ae) {
}
}
%>
</TABLE>
</Body>
<% out.close(); %>
</HTML>

Using Java to control display of an HTML table based on host results
If there is no data for the table extracted from the host, how can I prevent the
display of an empty table?

One way is to also extract a status line from the terminal screen, assuming a status
line exists. Then use an if statement to test the status line to determine if the table
should be displayed.

Note: This pertains only to Integration Objects created by the Host Access
application.

<% String status_value = Spurs_add1.getStatus_line();
// If "Vendor not found" was in status line, do not display
// the table and instead display a message.
if (status_value.indexOf("VENDOR NOT FOUND") == -1) {

%>
<P>Vendor Results:<TABLE BORDER>
<th>Vendors</th>
<% for (int idx1 = 0; idx1 <= 2147483647; idx1++) {

try {
%> <tr>

<td><%= Spurs_add1.getVendors_data(idx1_ %></td>
<% } catch (java.lang.ArrayIndexOutOfBoundsException ae) {

break;
} catch (java.lang.NullPointerException ae) {

break;
}

142 IBM® WebSphere® Host Publisher Administrator’s and User’s Guide

}
%>
</TABLE>
<% } else { %>

<h3 align="center">Vendor not found in vendor file.</h3>
<% } %>

Determining number of page downs and tabs for making a selection
How can I code the Host Publisher application such that it selects one item
when the host application contains lists of items on multiple terminal screens?

There are two ways to accomplish this.
1. Use Integration Object chaining and return one screen of items at a time. When

the user clicks an item in the list box, use the index of the selected item to
select the entry on the screen.

2. Return all the items and display them in a list box. Position the host screen on
the first item. Use the following example to calculate the number of page
downs and tabs required to get to the proper entry. The value passed in from
the previous page is the index of the item in the list box.

Note: This pertains only to Integration Objects created by the Host Access
application.

This example assumes there are 9 items per host screen. If your application has a
different number per screen, change this value.
<HTML>
<BODY>
<!-- Retrieve the parameter passed into this page -->
<!-- This parameter indicates which entry was selected from the inspection list -->
<% int selNum = new Integer(request.getParameter("sel")).intValue(); %>

<!-- Calculate the number of pages downs and tabs -->
<% int numPgDowns =0;

numPgDowns = selNum / 9;
int numTabs =0;
numTabs = selNum%9;
out.println("numTabs string is "+numTabs);
out.println("selNum string is "+selNum);

%>

<!-- Build the strings to cause the macro to return to the proper screen -->
<%

String pgDownString = new String();
String tabsString = new String();
//
//out.println("adding "+numPgDowns+" page downs");
//out.println("adding "+numTabs+" tabs");

for(int i =0; i < numPgDowns; i++)
pgDownString=pgDownString+"[pagedn]";

//out.println("page down string is "+pgDownString);
for(int j =0; j < numTabs; j++)

tabsString += "[tab]";

%>

<jsp:useBean id="ha_lab4" class="IntegrationObject.Ha_lab4" scope="request">
</jsp:useBean>
<jsp:setProperty name="Ha_lab4" property="*" />

Appendix D. Examples for designing custom Web pages 143

<% Ha_lab4.setHPubStartPoolName("Halab4"); %>
<% Ha_lab4.setOpt(pgDownString+tabsString); %>
<%Ha_lab4.doHPTransaction(request, response); %>

Changing the action value of a form based on the clicked button
How can I use one form to go to a different page based on the user’s selection?

The action value for a form can be changed dynamically.
<%

String invoice_url = response.encodeURL("WCB_clinic.jsp");

String cheque_url = response.encodeURL("WCB_chk_logon.jsp");
%>
<FORM>

<INPUT type="submit" value="Enter Invoice"
onClick = "document.forms[0].action = '<%=invoice_url %>'">

<INPUT type="submit" value="View Check Information"
onClick = "document.forms[0].action = '<%=cheque_url %>'">

</FORM>

Using HTTP Session object to pass values
How can I pass values from one page to a subsequent page?

Store the values in an HTTP session object.
<!-- First page stores the values. -->
<%
HttpSession sess = request.getSession(true);
if (sess!=null) {

sess.setAttribute("caregiver_type", WCB_caregiver.getCaregiver_type()); ;
sess.setAttribute("caregiver_idn", WCB_caregiver.getCaregiver_idn());

}
%>

<!-- Subsequent page retrieves the values. -->
<%
HttpSession sess = request.getSession(false);
if (sess != null) {

WCB_fee_code.setCaregiver_type((String)sess.getAttribute("caregiver_type"));
WCB_fee_code.setCaregiver_idn((String)sess.getAttribute("caregiver_idn"));

}
%>

Disabling the browser back button
How can I disable the browser back button?

Place the following JavaScript on every page, including the logon page.

This example uses the browser’s history object to tell the browser to go forward
after the page is loaded.
<HTML>
<HEAD>
<SCRIPT Language="Javascript">
function goHist(a)
{

history.go(a); //Go forward one.
}
</SCRIPT>
</head>

144 IBM® WebSphere® Host Publisher Administrator’s and User’s Guide

<body onLoad="goHist(1);">
some HTML ...

</body>
</HTML>

Using Java to control which HTML table to display based on host
results

If there are multiple tables on the JSP that can display, how can I prevent the
display of an empty table HTML on the JSP?

You can extract a property and use Java logic to test that property. Then use an IF
statement to test the status line to determine if the table should display. Note the
use of the ELSE statement.
<HTML>

<%@ page contentType="text/html;charset=UTF-8" errorPage="DefaultErrorPage.jsp" %>
<BODY>
<jsp:useBean id="Mcat_conditional" class="IntegrationObject.Mcat_conditional"
scope="request>
</jsp:useBean>
<jsp:setProperty name="Mcat_conditional" property="*" />
<% Mcat_conditional.setHPubStartPoolName("Mcat_keyw"); %>
<% Mcat_conditional.doHPTransaction(request, response); %>
<% String s = Mcat_conditional.getJim();

if (s.indexOf("NAUGLE J.C.") != -1) {
%>
<P>Author Index Results:<TABLE BORDER>
<th>indexall_data</th>
<% for (int idx1 = 0; idx1 <= 2147483647; idx1++) {

try {
%>
<tr><td><%= Mcat_conditional.getAuthor_indexall_data (idx1) %></td></tr>
<%

}
catch (java.lang.ArrayIndexOutOfBoundsException e) {

break;
}
catch (java.lang.NullPointerException e) {

break;
}

}
%>
</TABLE>
<% } else { %>
<P>Author Guide Results:<TABLE BORDER>
<th>guidelast</th>
<th>guidefirst</th>
<% for (int idx2 = 0; idx2 <= 2147483647; idx2++) {

try {
%>
<tr><td><%= Mcat_conditional.getAuth_guidelast(idx2) %></td>
<td><%= Mcat_conditional.getAuth_guidefirst(idx2) %></td></tr>
<% }

catch (java.lang.ArrayIndexOutOfBoundsException ae) {
break;

}
catch (java.lang.NullPointerException ae) {

break;
}

}
%>

Appendix D. Examples for designing custom Web pages 145

</TABLE>
<% } %>
</BODY>
</HTML>

146 IBM® WebSphere® Host Publisher Administrator’s and User’s Guide

Appendix E. Glossary

This glossary lists some of the terms used in this book along with their meanings.

administrator
The person who uses Host Publisher Server Administration to configure
and monitor Host Publisher Server. Also the person who typically deploys
applications on the server. (Contrast with user.) (See also developer.)

APAR Authorized Program Analysis Report. A code fix generated by IBM service
in response to a software problem.

application bundler
A function in Application Integrator that enables you to create a .zip file
for copying application files to another Host Publisher Studio without
assembling the application into an .ear file. This function is invoked using
Bundle Application Source on the File menu.

Application Integrator
The component of Host Publisher Studio with which the developer creates
applications and transfers them to the server. (See also Database Access
and Host Access.)

application server
A Java virtual machine (JVM) started by WebSphere on a node, on which
assembled applications run.

AppMigrator
A tool in Host Publisher Server that migrates applications to a Host
Publisher 4.0 level. It migrates the applications to JSP 1.1 and EJB 1.1
levels, inserts UTF-8 encoding, updates error pages, and places application
files to install_dir\Server\migration\migratedApps.

assemble
To create application .ear files in preparation for transferring the
application to the server. (Synonymous with package.) (Contrast with
bundle.)

bundle
To collect directory structures and application files in preparation for
sharing the application with another user of Host Publisher Studio. (See
also application bundler.) (Contrast with assemble and package.)

connection pool
A collection of communication links to back-end data sources, such as 3270
applications or databases. When an Integration Object is run on behalf of a
client request, the Integration Object obtains an available connection from a
pool, uses it for access to the data source, then returns the connection to
the pool for reuse by another Integration Object. When connections are
pooled, the overhead of establishing a connection is absorbed in its first
use. Each Integration Object reusing this connection benefits from the prior
establishment of the connection and can run faster. (See also connection
pooling.)

connection pooling
A method of keeping a connection to a host open for many data
transactions, instead of opening and closing a connection with each new
request. Designed to reduce the response time between a request from a

© Copyright IBM Corp. 1999, 2002 147

client browser and the display of the requested information on a Web page,
connection pooling refers to the sharing of connections—which are listed in
a connection pool—by applications. Connection pooling is enabled using
the Host Access component of Host Publisher Studio. (See also connection
pool.)

container
In J2EE, an entity that provides life-cycle management, security,
deployment, and run-time services to components.

Database Access
The component of Host Publisher Studio with which the developer creates
Integration Objects that encapsulate a database statement. (See also
Application Integrator and Host Access.)

deploy
To make a Host Publisher application ready to use on the server, using
functions in WebSphere Application Server, after transfer has taken place.
Note that WebSphere documentation often uses the term install as a
synonym for this process. (See also publish and transfer.)

developer
The person who uses Host Publisher Studio to develop applications; also
application developer or Web developer. (Contrast with user.) (See also
administrator.)

.ear file
The J2EE-format file that contains the Integration Objects, other Java
objects, and configuration information for an application. .ear stands for
Enterprise Archive.

EJB See Enterprise JavaBeans.

EJB container
An application server container that implements the EJB component
contract of the J2EE architecture. This contract specifies a runtime
environment for enterprise beans that includes security, concurrency, life
cycle management, transaction, deployment, and other services.

Enterprise JavaBeans (EJB)

1. A specification of Sun Microsystems, Inc., that is part of the WebSphere
Application Server Advanced Edition. EJB support allows your
application to include sophisticated business components that run on
your server. These components may include business logic with
automatic distributed transactions and persistence to a relational
database.

2. A component architecture defined by Sun Microsystems for the
development and deployment of object-oriented, distributed,
enterprise-level applications. (Trademark of Sun Microsystems, Inc.)

Extensible Markup Language (XML)
A standard metalanguage for defining markup languages that was derived
from and is a subset of SGML.

Host Access
The component of Host Publisher Studio with which the developer creates
Integration Objects that collect data from applications on the
terminal-oriented host. (See also Application Integrator and Database
Access.)

148 IBM® WebSphere® Host Publisher Administrator’s and User’s Guide

Host Publisher Server
The collection of functions that run on the server—including Host
Publisher Server Administration and functions associated with the
execution of applications.

Host Publisher Server Administration
The collection of functions for configuring and monitoring Host Publisher
Server.

Host Publisher Studio
The application-development environment of the Host Publisher product.
It runs on a Windows workstation and consists of three components: Host
Access, Database Access, and Application Integrator.

HTML
Hypertext Markup Language.

install To copy product code from its distribution medium (such as CD or Web
download) and make it ready to use. Note that WebSphere documentation
often uses the term install as a synonym for the deploy process.

Integration Object
Java beans created by Host Access or Database Access that encapsulate
interactions with data sources like 3270 and 5250 applications and JDBC
databases, and return desired data as Java bean properties. Integration
Objects can be embedded within JavaServer Pages (JSPs), which allow
users of a Web browser to interact with the data.

Interactive development environment (IDE)
A program that enables programmers to develop applications through a
graphical user interface. WebSphere Studio tools, such as WebSphere
Studio Application Developer, are examples of IDEs.

J2EE Java 2 Platform, Enterprise Edition. An environment for developing and
deploying enterprise applications, defined by Sun Microsystems Inc. The
J2EE platform consists of a set of services, application programming
interfaces (APIs), and protocols that provide the functionality for
developing multitiered, Web-based applications. (Trademark of Sun
Microsystems, Inc.)

JavaBeans
In Java, a portable, platform-independent reusable component model.
(Trademark of Sun Microsystems, Inc.)

Java Database Connectivity (JDBC)
An industry standard for database-independent connectivity between the
Java platform and a wide range of databases. The JDBC interface provides
a call-level API for SQL-based database access. (Trademark of Sun
Microsystems, Inc.)

Java Naming and Directory Interface (JNDI)
In the WebSphere Studio products, an extension to the Java platform that
provides Java applications with a standard interface to heterogeneous
naming and directory services.

JavaServer Pages (JSP)
A server-side scripting technology that enables Java code to be dynamically
embedded within Web pages (HTML files) and executed when the page is
served, in order to return dynamic content to a client. (Trademark of Sun
Microsystems, Inc.)

JDBC See Java Database Connectivity.

Appendix E. Glossary 149

JNDI See Java Naming and Directory Interface.

JSP See JavaServer Pages.

JVM Java Virtual Machine. See application server.

macro An XML script that defines a set of screens. Each screen includes a
description of the screen, the actions to perform for that screen, and the
screen or screens that can be presented after the actions are performed.
Host Access records macros within an Integration Object.

package
See assemble.

plug-in
A piece of code that interacts with an application server using a standard,
server-specific programming interface.

publish
To transfer an application to the server and then deploy it. (See transfer
and deploy.)

runtime
An instance of Host Publisher Server that provides middleware needed to
execute J2EE applications developed with Host Publisher Studio. The
runtime environment includes a Web-based administration function, Host
Publisher Server Administration, for managing the middleware
components.

Secure Sockets Layer (SSL)
A security protocol that provides communication privacy. SSL enables
client/server applications to communicate in a way that is designed to
prevent eavesdropping, tampering, and message forgery. SSL was
developed by Netscape Communications Corp. and RSA Data Security, Inc.

servlet
An application program, written in the Java programming language, that is
executed on an application server. A reference to a servlet appears in the
markup for a Web page, in the same way that a reference to a graphics file
appears. The application server executes the servlet and sends the results
of the execution (if there are any) to the Web browser.

session
In network architecture, for the purpose of data communication between
functional units, all the activities which take place during the
establishment, maintenance, and release of the connection.

SGML
See Standard Generalized Markup Language.

Simple Object Access Protocol (SOAP)
A lightweight, XML-based protocol for exchanging information in a
decentralized, distributed environment.

SOAP See Simple Object Access Protocol.

Standard Generalized Markup Language (SGML)
A syntax for markup languages that formalizes markup and frees it of
system and processing dependencies.

Software Maintenance Utility
A tool in Host Publisher for applying and committing fixes (APARs).

SSL See Secure Sockets Layer.

150 IBM® WebSphere® Host Publisher Administrator’s and User’s Guide

StudioAppMigrator
A tool in Host Publisher Studio that migrates applications to a Host
Publisher 4.0 level. It migrates the applications to JSP 1.1 and EJB 1.1
levels, inserts UTF-8 encoding, updates error pages, and moves application
directories to install_dir\Studio\applications.

transfer
To copy an application .ear file to the server, usually by FTP. (See also
deploy and publish.)

user The end user of an application that runs on Host Publisher Server.
(Contrast with administrator and developer.)

UDDI See Universal Description, Discovery, and Integration.

Universal Description, Discovery, and Integration (UDDI)
A registry mechanism with which you can perform lookups for
descriptions of Web Services.

user list
A list containing information about accounts (user IDs) that a Host
Publisher application can use to access a host or database. User lists
contain user IDs, passwords, and descriptions for the accounts.

UTF-8 Unicode Transformation Format, 8-bit encoding form, which is designed
for ease of use with existing ASCII-based systems.

VT Virtual terminal.

Web container
A container that implements the Web component contract of the J2EE
architecture.

Web Service
A self-contained, modular application that can be described, published,
located, and invoked over the Web. Platform-neutral and based on open
standards, Web Services can be combined with each other in different ways
to create business processes that enable you to interact with customers,
employees, and suppliers.

WebSphere
A family of IBM software products that provide a development and
deployment environment for basic Web publishing and for
transaction-intensive, enterprise-scale e-business applications.

Note: In this book, WebSphere is often used as a shorthand way of
referring to the WebSphere Application Server product.

WebSphere Application Server
An IBM software product that provides the core software needed to
deploy, integrate and manage e-business applications. Host Publisher
applications, when assembled and transferred to a server, run as
WebSphere Application Server applications.

Note: In this book, WebSphere is often used as a shorthand way of
referring to the WebSphere Application Server product.

XML See Extensible Markup Language.

XML Gateway
A Host Publisher function that provides an HTML emulator for end-user

Appendix E. Glossary 151

access to 3270 and 5250 applications, and enables you to write a Java
server program to access 3270 and 5250 application data in an XML format.

152 IBM® WebSphere® Host Publisher Administrator’s and User’s Guide

Appendix F. Notices

This information was developed for products and services offered in the U.S.A.
IBM may not offer the products, services, or features discussed in this document in
other countries. Consult your local IBM representative for information on the
products and services currently available in your area. Any reference to an IBM
product, program, or service is not intended to state or imply that only that IBM
product, program, or service may be used. Any functionally equivalent product,
program, or service that does not infringe any IBM intellectual property right may
be used instead. However, it is the user’s responsibility to evaluate and verify the
operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter
described in this document. The furnishing of this document does not give you
any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785
U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM
Intellectual Property Department in your country or send inquiries, in writing, to:

IBM World Trade Asia Corporation
Licensing
2-31 Roppongi 3-chome, Minato-ku
Tokyo 106, Japan

The following paragraph does not apply to the United Kingdom or any other
country where such provisions are inconsistent with local law:
INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS
PUBLICATION “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER
EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS
FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of express or
implied warranties in certain transactions, therefore, this statement may not apply
to you.

This information could include technical inaccuracies or typographical errors.
Changes are periodically made to the information herein; these changes will be
incorporated in new editions of the publication. IBM may make improvements
and/or changes in the product(s) and/or the program(s) described in this
publication at any time without notice.

Any references in this information to non-IBM Web sites are provided for
convenience only and do not in any manner serve as an endorsement of those Web
sites. The materials at those Web sites are not part of the materials for this IBM
product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it
believes appropriate without incurring any obligation to you.

© Copyright IBM Corp. 1999, 2002 153

Licensees of this program who wish to have information about it for the purpose
of enabling: (i) the exchange of information between independently created
programs and other programs (including this one) and (ii) the mutual use of the
information which has been exchanged, should contact:

IBM Corporation
TL3B/062
3039 Cornwallis Road
RTP, NC 27709-2195
U.S.A.

Such information may be available, subject to appropriate terms and conditions,
including in some cases, payment of a fee.

The licensed program described in this information and all licensed material
available for it are provided by IBM under terms of the IBM Customer Agreement,
IBM International Program License Agreement, or any equivalent agreement
between us.

Information concerning non-IBM products was obtained from the suppliers of
those products, their published announcements or other publicly available sources.
IBM has not tested those products and cannot confirm the accuracy of
performance, compatibility or any other claims related to non-IBM products.
Questions on the capabilities of non-IBM products should be addressed to the
suppliers of those products.

This information contains examples of data and reports used in daily business
operations. To illustrate them as completely as possible, the examples include the
names of individuals, companies, brands, and products. All of these names are
fictitious and any similarity to the names and addresses used by an actual business
enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which
illustrates programming techniques on various operating platforms. You may copy,
modify, and distribute these sample programs in any form without payment to
IBM, for the purposes of developing, using, marketing or distributing application
programs conforming to the application programming interface for the operating
platform for which the sample programs are written. These examples have not
been thoroughly tested under all conditions. IBM, therefore, cannot guarantee or
imply reliability, serviceability, or function of these programs. You may copy,
modify, and distribute these sample programs in any form without payment to
IBM for the purposes of developing, using, marketing, or distributing application
programs conforming to IBM’s application programming interfaces.

If you are viewing this information softcopy, the photographs and color
illustrations may not appear.

Programming interface information
This Administrator’s and User’s Guide contains information on intended
programming interfaces that allow the customer to write programs to obtain the
services of Host Publisher.

154 IBM® WebSphere® Host Publisher Administrator’s and User’s Guide

Trademarks
The following terms are trademarks of the IBM Corporation in the United States or
other countries or both:
v AIX
v AS/400
v Client Access
v DB2 Universal Database
v IBM
v iSeries
v OS/2
v OS/390
v OS/400
v S/390
v RS/6000
v WebSphere

Other company, product, and service names may be trademarks or service marks
of others.

Pentium is a trademark of Intel Corporation in the United States, other countries,
or both. (For a complete list of Intel trademarks see
http://www.intel.com/sites/corporate/tradmarx.htm.)

Lotus and Domino are trademarks or registered trademarks of Lotus Development
Corporation.

Java and all Java-based trademarks are trademarks of Sun Microsystems, Inc. in the
United States, other countries, or both. SPARC is a trademark of Sun Microsystems,
Inc. in the United States, other countries, or both.

Microsoft, Windows, and Windows NT are trademarks or registered trademarks of
Microsoft Corporation in the United States, other countries, or both.

Netscape is a registered trademark of Netscape Communications Corporation in
the United States and other countries.

Oracle is a registered trademark of Oracle Corporation.

UNIX is a registered trademark in the United States and other countries licensed
exclusively through The Open Group.

Appendix F. Notices 155

156 IBM® WebSphere® Host Publisher Administrator’s and User’s Guide

Index

Special Characters
%HODDisplayTerminal tag

(ras_xxx.properties) 127
%HODMacroTracingLevel tag

(ras_xxx.properties) 127
%HODPSTracingLevel tag

(ras_xxx.properties) 127
%HODSessionTracingLevel tag

(ras_xxx.properties) 127
%HODSupportTracing tag

(ras_xxx.properties) 127
%HODTransportTracingLevel tag

(ras_xxx.properties) 127
%HODUserMacroTracing tag

(ras_xxx.properties) 128
%HPAdminPortNumber

(server.properties) 124
%ioPatternKey tag

(ras_xxx.properties) 128
%ioTracing tag (ras_xxx.properties) 128
%JDBCTracing tag

(ras_xxx.properties) 128
%keyringPW tag (server.properties) 125
%logFile tag (server.properties) 124
%logMask tag (ras_xxx.properties) 126
%runtimeTracing tag

(ras_xxx.properties) 128
%stashKeyringPW tag

(server.properties) 124
%stashUserListPW tag

(server.properties) 124
%traceFile tag (server.properties) 124
%traceMask tag (ras_xxx.properties) 127
%userListPW tag (server.properties) 125
.ear files

assembling 45
creating 37
modifying on server 49
transferring 45

A
accessibility functions 91
administration, Distributed 64
Administrator’s and User’s Guide 6, 7
advanced features

cloning and load balancing in
WebSphere 79

express logon 82
forms-based security 85
Integration Object chaining 73
Secure Sockets Layer (SSL) 84
SSL 85

advanced topics
configuring time delays for XML

Gateway 88
Display Terminal 66
Opening Host Publisher Server

Administration in a new browser
window 65

advanced topics (continued)
securing access to Host Publisher

Server Administration using
WebSphere Application Server 65

advantages of Host Publisher 4
application, example of developing 129
application bundler 37
application files

archiving 37
assembling 45
bundling 37
modifying on server 49
sharing 37
transferring 45

Application Integrator 33
using the wizards 34

application migrator
on Server 68
on Studio machine 52

applications
assembling and packaging 45
composite 39
creating 33
migrating

AppMigrator command 68
in Host Publisher Server 68
in Host Publisher Studio 52
StudioAppMigrator command 52

transferring 45
transferring to Host Publisher

Server 45
AppMigrator command 68
archiving J2EE files 37
assembling applications 45
attributes

for EJB 78
in migrated JSP pages 54
of connection pools 11, 15, 31
of screens 17

B
balancing, load 79
bundle application source 37

C
central processing unit 95
certificate, self-signed 84
chaining

debugging applications that use 77
deciding when to use 73
Integration Object

connection problems in a
clone 108

overview 73
problems with multiple

accesses 110
changing files 49

characters
private 102
screen paint 103

clones, application server
and load balancing 79
and user lists 82
running Integration Objects in 80

combining Integration Object output 39
common problems 101
comparing Host Publisher to

Host On-Demand 3
WebSphere 3

components 4
composite applications 39
conditionals 22, 23
connect macro 12
connection pooling 11
connection pools

and connection pooling 11
creating for Database Access 31
definition 10
Host Publisher Server

Administration 59
in Host Access 14
information in 11
selecting 36

CONNECTION_READY errors 114
connections

administering 60
defining database 29
defining host 14
multiple requests 14

contacting IBM 117
CPU 95
Create J2EE Archives wizard 37
creating a Database Access Integration

Object 30
custom Web pages, designing 136

D
data macro 12, 18
data to extract 18
database, problems connecting to in

iSeries 104
Database Access

connect timeout 105
creating connection pools for 31
does not start 103
generating an Integration Object 30
Options menu 32, 38
requested data not returned to end

user 105
retrieving information 30
wizard 29

database connections, defining 29
database information, retrieving 30
DBCS

characters not read correctly 108
displaying Specify Variable Value

columns 106

© Copyright IBM Corp. 1999, 2002 157

DBCS (continued)
UDC input in form data 104

DCAS server 84
defining

host connections 14
screens 16

designing custom Web pages 136
disconnect macro 12
Display Terminal

for iSeries 63, 66
for testing and debugging 66

distributed administration 64
documentation

help 7
manuals

Administrator’s and User’s
Guide 6, 7

Messages Reference 6, 7
Planning and Installation

Guide 6, 7
Programmer’s Guide and

Reference 6, 7
on the Web 7
Readme 6, 7

drop-down list box 91

E
editing

files on the server 49
macros 19
server properties files 123

EJB
1.1 support 5
Access Beans migration 55
attributes 78
creating a Host Publisher

application 44
creating support files for Integration

Objects 44
modifying 78
overview 42

ELF 82
encryption passwords 49, 59
Enterprise JavaBeans (EJB) 42, 78
error events 61
error page

migration of 55
not displayed 108
wizard in Application Integrator 36

event
error 61
information 61
logging 61
warning 61

examples
designing custom Web pages 136
developing an application 129

execution models for Integration
Objects 119

express logon
and EJB support 78
configuring 83
creating connection pools 15
DCAS server 84
description 82
IBM Key Management 84

express logon (continued)
passwords for 59
RACF 84

extracting data 18

F
features, advanced 73
files

installed on server 58
server properties 123

filtering messages 20
firewall, configuring Host Access

through 103
forms-based security 86

G
Gateway portal, XML 87
global screens 18
glossary 147
green screen (Display Terminal) 63

H
hard drive 97
hardware recommendations 98
help

keyboard shortcuts 93
online 7

Host Access
checking a macro 19
configuring through firewall 103
defining host connections 14
editing a macro 19
generating an Integration Object 19
identifying data to extract 18
keyboard settings 22
Options menu 19
pooling 14
recording interactions with a host 15
using conditionals in 23
wizard 13

host connections, defining 14
host interactions, recording 15
Host On-Demand, compared to Host

Publisher 3
Host Publisher

advantages of 4
components of 4
documentation 6
Host On-Demand and 3
new in Version 4.0 5
overview of 1
problem determination 99
Web site address 1
WebSphere and 3

Host Publisher Server
files installed 58
installing 67
migrating 67
naming an instance 58
overview of 5
performance 95
prerequisites 100
starting 100, 114

Host Publisher Server (continued)
transferring applications to 45

Host Publisher Server Administration
accessing 58
administering connections 60
connection pools 59
displaying version information 61
functions of 57
license management 59
log

setting options for 62
viewing 61

passwords 59
pool definitions 60
problem determination 60
select host and application server 58
server status 58
trace

options 62
viewing 62

user lists 60
Host Publisher Studio

components 9
performance 95
preview page not displayed 107

HTTP server 101

I
IBM, contacting 117
IBM Key Management 84
importing Java objects 44
input variables 22
Insert an Input wizard 35
Insert Output Control wizard 35
installation files, ownership 106
installing Host Publisher Server 67
Integration Object

building J2EE applications 33
chained, in a clone 108
chaining 73
combining output 39
controlling appearance 35
creating

for Database Access 29
for Host Access 12

default values for EJB support 44
definition 1, 9
EJB support files for 44
error page does not display 108
execution models for 119
failure to create 101, 103
generating

in Database Access 30
in Host Access 19

input also shown as an output 35
macro play error in 102
properties for Web Services 72
Remote 50
running in WebSphere container 120
satisfying input 35
sequencing

between non-adjacent pages 41
on multiple pages 40
on single page 40

Web publishing 34

158 IBM® WebSphere® Host Publisher Administrator’s and User’s Guide

Integration Object chain
first 75
last 76
middle 75

iSeries database, problems connecting
to 104

J
J2EE application

.ear file 9
archiving files 37
building in Host Publisher Studio 9
support 5

Java objects, importing 44
JDBC error 105
JSP pages

JSP 1.1 support 5
migration of 54

K
keyboard

remap 93
settings, changing 22

keyboard shortcuts
drop-down list box 91
help 93
keyboard remap 93
menu bar 91
pop-up keypad 92
tabbed pane 91
terminal pane 92

keypad 92

L
label

start 73
stop 73

language, selecting 58
license

enabling tracking option 59
managing usage 59
requests per minute 59

licenseTracking tag
(server.properties) 123

lists, user 28
and cloning 82

load balancing 79
log files

administering 60
controlling options 62
multiple 64
viewing 61

looping
graphical representation 24
inserting in a macro 25

loops, recording 24
Lotus Domino JDBC driver 104

M
macros

connect 12

macros (continued)
data 12
definition 10
disconnect 12
editing 19
Host Access, fail 102
recording 15
securing passwords and other

sensitive data 26
tags deleted 102
timeout problem 112
verifying 19

main.jsp 101
managing licenses 59
manuals

Administrator’s and User’s Guide 6
Messages Reference 6
online

Administrator’s and User’s
Guide 7

Messages Reference 7
Planning and Installation Guide 7
Programmer’s Guide and

Reference 7
Planning and Installation Guide 6
Programmer’s Guide and

Reference 6
maxLogFiles tag (ras_xxx.properties) 125
maxLogFileSize tag

(ras_xxx.properties) 125
maxTraceFiles tag

(ras_xxx.properties) 126
maxTraceFileSize tag

(ras_xxx.properties) 126
memory 97
menu bar 91
messages, filtering 20
Messages Reference 6, 7
Microsoft Access, problems with data

fields 104
migration

applications
in Host Publisher Server 68
in Host Publisher Studio 52

EJB Access Beans 55
Host Publisher Server 67
Host Publisher Studio 51
JSP pages 54
removing HTTP session affinity

code 70
StudioAppMigrator command 52
updating server.properties files 70

Modify User List window 37
modifying applications 49
multi-language support 6
multiple connection requests 14

N
naming objects 19
network interface card 97
New Application wizard 35
New Error Page wizard 36
new function

EJB 1.1 support 5
J2EE application support 5
JSP 1.1 support 5

new function (continued)
multi-language support 6
serviceability improvements 6, 115
Software Maintenance Utility 6, 115
Web Services 6
WebSphere 4.0 compatibility 5

New Integration Object wizard 35
New Page wizard 35
NIC 97
num_licenses tag (server.properties) 123

O
objects, importing Java 44
online help 7
online information 6
opening Host Publisher Server

Administration in a new browser
window 65

Options menu
in Database Access 32, 38
in Host Access 19

Oracle database driver 104
overview

Host Publisher 1
technical 119
using Host Publisher Studio 9

ownership of installation files 106

P
packaging applications 45
page, previewing 37
page design example

building dynamic HTML based on
Integration Object properties 138

changing the action value of a
form 144

determining number of page downs
and tabs for making a selection 143

disabling the browser back
button 144, 145

invoking Integration Objects based on
previous results 137

Java access to page parameters 137
passing Java variables to JavaScript

function 140
redirecting based on Integration

Object results 137
testing for successful database record

addition 139
testing for successful database record

deletion 139
using a function type passed from a

hidden HTML form variable 141
using HTTP session object to pass

values 144
using Java to control display of HTML

table based on best results 142
using Java to display variables passed

into a page 140
using Java to pad an input value and

passing to an Integration
Object 140

using Java to prevent blank lines in an
HTML table 142

Index 159

page design example (continued)
validating user input 138

pagecompile 101
pane

tabbed 91
terminal 92

passwords
for express logon 59
for strong encryption 49, 59
in Server Administration 58, 65
securing in macros 26

performance
CPU 95
hard drive 97
hardware recommendations 98
Host Publisher Server 95
Host Publisher Studio 95
memory 97
network interface card 97
server capacity 98
system requirements 95

Planning and Installation Guide 6, 7
pool definitions 60
pools, connection 10
pop-up keypad 92
prerequisites, Host Publisher Server 100
preview page

not displayed 107
shortcut errors 107

previewing a page 37
private characters 102
problem determination

administering 60
cannot access Host Publisher

directories on iSeries 112
characters not read correctly 108
connecting to an iSeries database 104
connection for chained Integration

Objects in a clone 108
CONNECTION_READY errors 114
contacting IBM 117
Database Access connect timeout 105
Database Access does not start 103
database interface does not work with

Lotus Domino JDBC driver 104
delay or hang playing macro on

server 111
displaying Specify Variable Value

columns (DBCS) 106
error page does not display 108
failures creating integration

objects 101
failures creating Integration

Objects 103
generic browser timeout message

received 113
Host Access macros fail 102
Host Access through firewall 103
Java errors with Oracle database

driver 104
Java page violation on startup 107
JDBC driver mismatch 105
JDBC error 105
macro play error 102
macro times out 112
message HPS5035 110
Microsoft Access date fields 104

problem determination (continued)
multiple accesses to chained

Integration Objects 110
no suitable driver found error 105
out of memory error starting 20

sessions 114
ownership of installation files on

UNIX 106
pages not returned 113
PluginTester servlet for debugging

WebSphere problems 113
poor performance in TN3270E

sessions 114
preview page not displayed 107
private characters 102
requested data not returned to end

user 105
screen paint characters 103
securing passwords and other

sensitive data in macros 26
servlet generated by page compilation

reports exception: Wrong name 112
shortcut errors when previewing a

page 107
shutting down Host Publisher

Server 113
Software Maintenance Utility 115
tags deleted from a macro 102
UDC input in form data 104
unsupported JDBC Server

configuration error 105
unwanted characters in a VT

session 107
variable support in DB2 106
WebSphere handling 100 or more

requests 113
problem determination procedure 99
problems, common 101
Programmer’s Guide and Reference 6, 7

R
RACF 84
ras_xxx.properties tags

%HODDisplayTerminal 127
%HODMacroTracingLevel 127
%HODPSTracingLevel 127
%HODSessionTracingLevel 127
%HODSupportTracing 127
%HODTransportTracingLevel 127
%HODUserMacroTracing 128
%ioPatternKey 128
%ioTracing 128
%JDBCTracing 128
%logMask 126
%runtimeTracing 128
%traceMask tag 127
maxLogFiles 125
maxLogFileSize 125
maxTraceFiles 126
maxTraceFileSize 126

Readme 6, 7
recording a macro 15
Recording loops 24
remap, keyboard shortcuts 93
remote access

using RIOs 50

remote access (continued)
using Web Services 72

Remote Integration Objects
in Options menu 21, 33
properties 22, 33, 51
Web Services as an alternative to 72

requests
multiple connection 14
per minute 59

retrieving database information 30

S
screen, defining 16
screen, global 18
screen paint characters 103
Secure Sockets Layer (SSL)

activating 86
for host application access 84
for Host Publisher Server

Administration 85
HTTP server 101

securing access to Host Publisher Server
Administration using WebSphere
Application Server 65

security
application passwords 59
forms-based 85
passwords 65
Secure Sockets Layer (SSL) 85
setting options 49

Select Connection Pools window 36
select host and application server 58
self-signed certificate 84
sensitive data, securing in macros 26
sequencing Integration Objects 40, 41
server

DCAS 84
modifying files on 49
performance 95
prerequisites 100
selecting 47
server properties files 59, 60, 70, 123
starting 100
status 58

Server Administration
troubleshooting 100
using 58

Server application migrator 68
server capacity 98
server.properties file

editing 123
for managing licenses 59
log and trace files 60
updating 70, 123

server.properties tags
%HPAdminPortNumber 124
%keyringPW 125
%logFile 124
%stashKeyringPW 124
%stashUserListPW 124
%traceFile 124
%userListPW 125
licenseTracking 123
num_licenses 123

serviceability improvements 6

160 IBM® WebSphere® Host Publisher Administrator’s and User’s Guide

servlets
hPubPortal 87
hPubPortalAdmin 87
hPubPortalData.xml 87
PluginTester 113
showCfg 113

setting security options 49
shortcuts 91
showCfg 113
software maintenance 6, 115
Specify Variable Value columns 106
SQL statement

in Database Access Integration
Object 10, 30

verifying 30
SSL 85
start state label 73
state label, start 73
state label, stop 73
stop state label 73
Studio

overview of 4
performance 95
WebSphere 51

Studio application migrator 52
StudioAppMigrator command 52
system requirements 95

T
tabbed pane 91
tags in server.properties 123
technical assistance 115, 117
technical overview 119
terminal pane 92
testing a macro 19
tracing

administering trace files 60
enabling 49
multiple trace files 64
setting options 62
viewing trace 62
XML Gateway servlet 89

Transfer to Server wizard
assembly and packaging 45
description 36
modifying resources using 47
security options 49
selecting the server 47

transferring applications to Host
Publisher Server 45

troubleshooting
general 99
Host Publisher Server

Administration 100
tuning 95

U
UDC input 104
update

files on the server 49
tracing with Software Maintenance

Utility 115
upgrading Host Publisher 115

User Defined Character (UDC)
input 104

user lists
administering 60
and cloning 82
creating in Database Access 31
Database Access 11
Host Access 11

and Application Integrator 27
at runtime 28
customizing 28
defining 27, 28
for single-logon hosts 26

V
variables, input 22
verifying

macros 19
SQL statement 30

Version 4.0 function
EJB 1.1 support 5
J2EE application support 5
JSP 1.1 support 5
multi-language support 6
serviceability improvements 6, 115
Software Maintenance Utility 6, 115
Web Services 6
WebSphere 4.0 compatibility 5

version information, displaying 61

W
warning messages, filtering 20
Web page

creating 33
design examples 136
for Host Publisher 7

Web Services 71
advantages 72
for remote access 72
overview 6

WebSphere
4.0 compatibility in Host Publisher

overview 5
and user lists 82
cloning and load balancing in 79
handling 100 or more requests 113
Host Publisher and 3
load balancing 79
pagecompile 101
Studio tools 51
troubleshooting 100

WebSphere Studio tools 51
white papers 7
wizard

Create J2EE Archives 37
Database Access 29
Host Access 13
Insert an Input 35
Insert Output Control 35
New Application 35
New Error Page 36
New Integration Object 35
New Page 35
Transfer to Server 36

wizards in Application Integrator 34

X
XML Gateway

configuring time delays for 88
description 87

XML Gateway servlet
description 87
enhancing 88
tracing 89

Index 161

162 IBM® WebSphere® Host Publisher Administrator’s and User’s Guide

Readers’ Comments — We’d Like to Hear from You

IBM® WebSphere® Host Publisher
Administrator’s and User’s Guide
Version 4.0

Publication No. GC31-8728-03

Overall, how satisfied are you with the information in this book?

Very Satisfied Satisfied Neutral Dissatisfied Very
Dissatisfied

Overall satisfaction h h h h h

How satisfied are you that the information in this book is:

Very Satisfied Satisfied Neutral Dissatisfied Very
Dissatisfied

Accurate h h h h h

Complete h h h h h

Easy to find h h h h h

Easy to understand h h h h h

Well organized h h h h h

Applicable to your tasks h h h h h

Please tell us how we can improve this book:

Thank you for your responses. May we contact you? h Yes h No

When you send comments to IBM, you grant IBM a nonexclusive right to use or distribute your comments in any
way it believes appropriate without incurring any obligation to you.

Name Address

Company or Organization

Phone No.

Readers’ Comments — We’d Like to Hear from You
GC31-8728-03

GC31-8728-03

����
Cut or Fold
Along Line

Cut or Fold
Along Line

Fold and Tape Please do not staple Fold and Tape

Fold and Tape Please do not staple Fold and Tape

NO POSTAGE
NECESSARY
IF MAILED IN THE
UNITED STATES

BUSINESS REPLY MAIL
FIRST-CLASS MAIL PERMIT NO. 40 ARMONK, NEW YORK

POSTAGE WILL BE PAID BY ADDRESSEE

IBM Corporation
Host Access Information Development
Department E40D/Building 502 Research
Triangle Park, NC 27709-9990

_ _

_ _

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_

����

Part Number: CT0ZWNA

Printed in the United States of America
on recycled paper containing 10%
recovered post-consumer fiber.

GC31-8728-03

(1
P)

P/
N:

CT
0Z

WN
A

	Contents
	Chapter 1. Introducing Host Publisher
	What is Host Publisher?
	How does Host Publisher compare with WebSphere Application Server?
	How does Host Publisher compare with Host On-Demand?
	What are the advantages of Host Publisher?

	What is Host Publisher Studio?
	What is Host Publisher Server?
	What's new in Host Publisher Version 4.0?
	Compatibility with WebSphere Application Server 4.0
	Web Services
	Multi-language support
	Serviceability

	Where can I find information online?
	Manuals
	In Host Publisher Studio
	In Host Publisher Server

	Online help
	Information on the Web

	Chapter 2. Using Host Publisher Studio to develop J2EE applications
	Integration Objects
	Interacting with a data source
	Defining connection pools
	The information specified in a connection pool
	Enabling and disabling connection pooling
	User lists

	Creating a Host Access Integration Object
	Building an Integration Object using macros
	Using the Host Access wizard
	Creating connection pools for Host Access
	Defining the connection pool
	Customizing the connection pool

	Recording interactions with a host
	Defining a screen
	Defining global screens
	Identifying data to extract
	Generating an Integration Object
	Verifying a macro
	Editing a macro
	Setting preferences in Host Access
	Using the Options menu
	Changing keyboard settings
	Using the keypad

	Using advanced functions in Host Access
	Using input variables, conditionals, and looping
	Securing passwords and other sensitive data in macros

	Defining user lists
	Defining a user list to access a single-logon host
	Creating a new user list
	Working with user lists in Host Access and Application Integrator
	Runtime processing of user lists
	Customizing a user list created with an earlier version of Host Publisher

	Creating a Database Access Integration Object
	Using the Database Access wizard
	Defining database connections
	Retrieving information from a database
	Generating an Integration Object
	Verifying an SQL statement
	Creating connection pools for Database Access
	Using the Options menu in Database Access
	Create EJB 1.1 Integration Object Support
	EJB Integration Object Properties
	Create Web Services Integration Object Support
	Web Services Integration Object Properties
	Create Remote Integration Object
	Remote Integration Object Properties

	Using Application Integrator to build J2EE applications that use Integration Objects
	Specifying Integration Objects to publish to the application server
	Using the Application Integrator wizards
	Previewing a page
	Sharing application files with other users of Host Publisher Studio
	Archiving application files
	Using the Options menu in Application Integrator
	Preview Page
	Launch Personal Page Editor
	Preferences
	Connection Pools
	Display Welcome Screen
	Application Migration

	Creating composite applications
	Combining Integration Object output
	Sequencing Integration Objects on a single page
	Sequencing Integration Objects on multiple pages
	Sequencing Integration Objects between non-adjacent pages

	Creating applications that use Enterprise JavaBeans (EJB) technology
	Understanding EJB support in Host Publisher
	Creating EJB support files for Integration Objects
	Specifying default properties for EJB Integration Objects

	Creating a Host Publisher application using EJB Access Beans

	Importing Java objects
	Transferring applications to a Host Publisher Server
	How applications are assembled and packaged
	Selecting a server
	If a server was defined in a previous version of Host Publisher
	If an application already exists on the server

	Setting security options
	Modifying applications on the server

	Enabling tracing
	Accessing a remote machine using Remote Integration Objects
	Using WebSphere Studio tools with Host Publisher Studio
	Migrating from previous versions of Host Publisher Studio
	Installing Host Publisher Version 4.0 on the Studio machine
	Migrating applications in Host Publisher Studio
	Using the migration utility in Host Publisher Studio
	Migrating an application in Application Integrator
	Using StudioAppMigrator from the command line
	Details of migrating JSP pages
	Details of migrating EJB Access Beans

	Chapter 3. Using Host Publisher Server Administration
	Getting started
	Starting Host Publisher Server Administration
	Naming an instance of Host Publisher Server

	Using the functions in Host Publisher Server Administration
	Selecting host and application server
	Monitoring server status
	Providing application passwords
	Managing licenses
	Monitoring connection pools
	Monitoring pool definitions
	Monitoring connections
	Monitoring user lists and user list members
	Administering problem determination components
	Log and trace file names
	File naming example
	Version Information
	View Log
	Set Log Options
	View Trace
	Set Trace Options
	Multiple log and trace files

	Administering XML Gateway sessions
	Administering applications

	Administering Host Publisher from a remote machine
	Advanced Server topics
	Securing access to Host Publisher Server Administration using WebSphere Application Server
	Opening Host Publisher Server Administration in a new browser window
	Using Display Terminal for testing and debugging
	Configuring the Display Terminal function for iSeries

	Migrating from previous versions of Host Publisher on the server
	Installing Host Publisher Version 4.0 on the server
	Migrating applications on the server
	What the application migrator utility does
	Command-line invocation of the application migrator utility
	Examples

	Removing HTTP session-affinity code
	Updating server properties files

	Chapter 4. Using Web Services
	Creating and deploying a Web Service
	Accessing Host Publisher from a remote machine using Web Services
	Specifying properties for Web Services Integration Objects

	Chapter 5. Advanced features
	Integration Object chaining
	Deciding when to use Integration Object chaining
	Using Integration Object chaining
	Debugging applications that use Integration Object chaining

	Performing advanced tasks with Enterprise JavaBeans (EJB)
	Modifying Host Publisher EJB-based applications
	Changing the default values when running in a non-J2EE environment

	Application server cloning and load balancing in WebSphere
	Load balancing options for the Host Publisher application server
	Running chained Integration Objects in cloned application servers
	Working with connection pools for applications in a cloned environment
	Cloning and user lists

	Express logon
	Express logon considerations when using Host Publisher Studio
	Configuring express logon in Host Publisher Server
	Web browsers and application servers
	IBM Key Management
	DCAS server
	RACF
	WebSphere

	Configuring security
	Configuring and using Secure Sockets Layer (SSL) support for host application access
	Using Host Publisher with forms-based security and SSL
	Activating forms-based security
	Activating SSL

	Chapter 6. Using the XML Gateway to enable simplified access to host applications
	Accessing the Host Publisher XML Gateway portal page
	Interacting with the host application
	Configuring time delays for XML Gateway
	Enhancing the XML Gateway sample servlet
	Tracing the XML Gateway servlet

	Chapter 7. Using accessibility functions in Host Publisher Studio
	Performing basic keyboard tasks
	Using the menu bar
	Using a drop-down list box
	Using a tabbed pane

	Using the terminal pane in Host Access
	Using the keypad in Host Access
	Using keyboard remap in Host Access
	Using help

	Chapter 8. Performance and tuning
	Host Publisher Studio requirements
	Host Publisher Server requirements
	Central processing unit (CPU)
	Memory
	Network interface card
	Hard drive

	Hardware recommendations
	Server capacity

	Chapter 9. Troubleshooting
	Host Publisher problem determination procedure
	Host Publisher Server Administration Troubleshooting
	Server prerequisites and general information
	WebSphere Application Server
	Secure Sockets Layer (HTTP server)
	WebSphere pagecompile

	Common problems and limitations
	Problems with Host Access and execution of Host Access Integration Objects
	Failures creating Integration Objects
	Macros fail in Host Access Integration Objects
	Macro Play error in Host Access Integration Objects
	New tags are deleted from a macro
	Private characters display incorrectly on client workstations
	Screen paint problems
	Host Access through firewall configured in nontransparent mode

	Problems with Database Access and execution of database Integration Objects
	Database Access does not start
	Failures creating Integration Objects
	Microsoft Access date fields do not appear correctly
	Database interface does not work with Lotus® Domino™ JDBC driver
	Java errors with Oracle database driver
	Connecting to an iSeries database using Windows 98
	DBCS User Defined Character (UDC) input in form data
	Receive error: No suitable driver found
	Unsupported JDBC Server configuration error (CLI0621E)
	JDBC error: db2jdbc not found error appears in jvm_stderr.txt
	Connect timeout in a database Integration Object has no effect
	Requested data not returned to end user of a Database Access Integration Object
	DB2 V6.1 fixpack 5 does not support variables
	Displaying the Specify Variable Value columns on double-byte systems

	Problems with Application Integrator and transferring applications
	Ownership of installation files on UNIX® operating systems
	Application Integrator preview function does not display preview Web page
	Shortcut errors occur when previewing a page with Netscape
	Host Publisher experiences a Java page violation on startup
	Unwanted characters display in a VT terminal window

	Problems with the Server and execution of Integration Objects
	Characters in file are not read correctly
	Connection for chained Integration Objects in a cloned application server
	Error page does not display for an error in the second Integration Object on a page
	Multiple accesses to chained Integration Objects from the same machine (HPS5035) not performing
	Server macro play error — unexpected delay or possible hang
	Macro times out
	Servlet generated by page compilation reports exception: Wrong name
	Unable to access Host Publisher directories on iSeries
	Generic Web browser timeout message is received instead of an expected Host Publisher error message
	Making WebSphere Application Server handle 100 or more requests
	PluginTester servlet for debugging WebSphere Application Server problems
	Pages are not returned
	Shutting down Host Publisher Server
	Out-of-memory error starting 20 sessions
	CONNECTION_READY errors in the Host Publisher Server logs

	Problems with performance in TN3270E sessions

	Updating Host Publisher using the Software Maintenance Utility
	Command syntax
	apply
	restore
	commit
	report

	Contacting IBM for service

	Appendix A. Technical overview
	Execution models for Integration Objects
	An Integration Object running in a WebSphere Container

	Appendix B. Server properties files
	The server.properties file
	The ras_xxx.properties file

	Appendix C. Example of developing an application in Host Publisher Studio
	Creating an Integration Object
	Building the application
	Transferring the application to a server
	Deploying the application on WebSphere Application Server
	Accessing the application from a browser

	Appendix D. Examples for designing custom Web pages
	Java access to page parameters
	Redirecting based on Integration Object results
	Invoking Integration Objects based on previous Integration Object results
	Building dynamic HTML based on Integration Object properties
	Validating user input
	Testing for successful database record deletion
	Testing for successful database record addition
	Passing Java variables to JavaScript function
	Using Java to display variables passed into a page
	Using Java to pad an input value and passing it to an Integration Object
	Using a function type passed from a hidden HTML form variable to determine page to execute
	Using Java to prevent blank lines in an HTML table
	Using Java to control display of an HTML table based on host results
	Determining number of page downs and tabs for making a selection
	Changing the action value of a form based on the clicked button
	Using HTTP Session object to pass values
	Disabling the browser back button
	Using Java to control which HTML table to display based on host results

	Appendix E. Glossary
	Appendix F. Notices
	Programming interface information
	Trademarks

	Index
	Readers’ Comments — We'd Like to Hear from You

