IBM® Web Spherem Host Publisher
Programmer’s Guide and Reterence

Version 2 Release 2

<|lI!

IBM® Web Spherem Host Publisher
Programmer’s Guide and Reterence

Version 2 Release 2

<|lI!

Note

Before using this information and the product it supports, be sure to read the general information under m
Notices” on page 53.

First Edition (July 2000)

© Copyright International Business Machines Corporation 2000. All rights reserved.
US Government Users Restricted Rights — Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

Contents

About this information e eV
For more informationV
Informationonthe Webvi

Chapter 1. Programming with IBM © Host

Publisher Integration Objects Co .1
Preparing an Integration Object to run in an IDE or
with a servlet1
Setting up VisualAge for]ava to run an Integratlon
Object . . . e 2
Setting up Symantec Vlsual Cafe to run an

Integration Object. 2
Writing an application to mvoke an Integratlon

Object .3
Writing a servlet to 1nvoke an Integratlon Ob]ect .5
Sample code for initializing and starting the runtime 7
Chapter 2. Using the XML Legacy

Gateway9
The xmlLegacyGateway servlet . (]
The xmlAppData JavaBean11
The HostConnection JavaBean12
Chapter 3. Using Remote Integration

Objects13

© Copyright IBM Corp. 2000

Creating Remote Integration Objects13
Remote Integration Object files . . . R
Obtaining Integration Object data in XML format. . 14

Chapter 4. Host Publisher File formats 17

Integration Object project (hpi) file17
Host Publisher application (.hpa) file.20
Integration Object source (java) file21
JavaServer Pages (JSP) Web page files21
Connection and configuration files26
Format of connection pool specification f11es .27
The application manifest file. . . . B
XML Tags for the application marufest35
Macro script files37
Macro editing tips37
Macro script syntax.37
The server.properties file49
Appendix A. Notices55
Programming interface information56
Appendix B. Trademarks 57
Index59
iii

iV IBM® WebSphere™ Host Publisher Programmer’s Guide and Reference

About this information

This information is designed to help you, the Host Publisher programmer,
understand how to write applications and servlets to invoke Host Publisher
Integration Objects in an integrated development environment (IDE), and how to
use the XML Legacy Gateway and Remote Integration Object functions provided
by Host Publisher. This book also includes information about the file formats and
macro script syntax created by Host Publisher components, which enables you to
edit the files manually.

Additional information resources are available for learning to use Host Publisher
features. These resources include the product README, online help, and product

Web pages. (See I’Eor more information’).

Note: Consult the product README and the Host Publisher Web site,

bttp:/ /www ibm com /software /netwaork /hostpublished, for corrections and

additions to this information.

This book is available as an HTML file on the installation CD, as a PDF file on the
CD, and as an HTML file on the product Web site. Visit the Web site for the most
updated version of this document.

For more information

To access the online Host Publisher Administrator’s and User’s Guide installed
with Host Publisher, use a Web browser to open the following HTML file on your
local system:

AIX /usr/1lpp/HostPublisher/common/doc/lang/guide/guide.htm
NetWare / /ServerName/_IBM_HP_doc_/guide/guide.htm
where ServerName is the name of your server.

Note: If ServerName is not the same as the IP Host Name, use the
IP Host Name in the URL.

0S/400 /QIBM/ProdData/HostPublisher/doc/guide/guide. htm
Solaris /opt/HostPublisher/common/doc/lang/guide/guide.htm
S/390 /usr/lpp/HostPublisher/common/doc/lang/guide/guide. htm

Windows NT install_dir\Common\doc\guide\guide.htm
install_dir is the directory in which Host Publisher is installed.

lang is the language-specific subdirectory for your language, and is one of the

following:

de_DE German
en_US English
es_ES Spanish
fr FR French
it IT [talian

© Copyright IBM Corp. 2000 A%

http://www.ibm.com/software/network/hostpublisher/

ja_JP Japanese

ko_KO Korean

pt_BR Brazilian Portuguese
tr_ TR Turkish

zh_CN Simplified Chinese
zh TW Traditional Chinese

Online help, including the HTML version of this book, is available from the
product’s user interface.

Information on the Web

Find the most up-to-date versions of this document, frequently asked questions
(FAQs), white papers, and additional information at the product Web site:

* hitp://www ibm com/software /network /hostpublishet

Vi IBM® WebSphere™ Host Publisher Programmer’s Guide and Reference

http://www.ibm.com/software/network/hostpublisher/

Chapter 1. Programming with IBM © Host Publisher Integration
Objects

You can use the Integration Objects that Host Publisher creates with integrated
development environments (IDEs), such as IBM VisualAge for Java and Symantec
Visual Café for Java. You can also use Integration Objects with servlets. This
chapter provides instructions for setting up an IDE to work with an Integration
Object, instructions for writing an application or servlet, and sample code to use
when you set up the runtime environment.

Note: Since the Integration Objects will be running outside of the WebSphere
Application Server environment, chaining of Integration Objects is not
supported.

Preparing an Integration Object to run in an IDE or with a servlet

These instructions assume you have already created an Integration Object using the
Host Publisher Database Access or Host Access application, and that the IDE is
running or the servlet is built on the machine where the Host Publisher Server is
installed.

Your integrated development environment (IDE) or servlet will need access to your
Integration Object’s JAR file. This file is located in the Studio_Install_Dir
\Studio\IntegrationObjects\ directory, where Studio_Install_Dir is the Host
Publisher installation directory for the Host Publisher Studio. Copy this file to the
machine where the Host Publisher Server is installed.

To provide the server access to the Integration Object’s connection pool
specifications, copy the following files from

Studio_Install _Dir\Studio\SessionDefs\ to

Server_Install Dir\Server\production\poolspecs\, where Server_Install_Dir is the
Host Publisher Server installation directory:

* connection_name.connspec

* connection_name.poolspec

* connection_name.userpool
where connection_name is the name of the connection you are using for this

Integration Object.

This connection can be the connection you specified when you created your
Integration Object or a different connection. See [Aiti icati i

7 s

or
Qbject” on page 3 for details on how to use a connection other than the one you
specified when you created the Integration Object. If you created your Integration
Object using the Database Access application and selected prompt for connection
values at runtime, you will not have a connection_name.userpool file for this
connection.

If you created your Integration Object using the Host Access application, also copy
the following files from Studio_Install_Dir\Studio\SessionDefs\ to
Server_Install Dir\Server\production\poolspecs\, where Server_Install_Dir is the
Host Publisher Server installation directory:

© Copyright IBM Corp. 2000 1

* connection_namelogon.macro
* connection_namelogoff.macro
* connection_namelogspec.logonspec

where connection_name is the name of the connection you are using for this
Integration Object.

Your IDE or servlet will need access to the following common files located in the
Server_Install_Dir\Common directory:

* HpRtejar

* rasjar

* HPubCommon jar
* habeansnlvjar

Copy the following common files, located in the Studio_Install_Dir\Studio
directory, to the machine where the Host Publisher Server is installed:

e xml4j_ws jar

¢ jsdk.jar

Setting up VisualAge for Java to run an Integration Object

You must have installed IBM VisualAge for Java Version 2.0 with Service Pack
IV2-2 (or later) to run Integration Objects. (Service Pack IV2-2 is available on the
VisualAge Web page as ROLLUP2.)

To set up VisualAge:

1. Import the Common files listed in I'Preparing an Integration Object to run in an

[DE_or with a servlet” on page 1 making sure you include all resource files as
well as class files.

2. If you created your Integration Object using Database Access application and
your database driver is not the JDBC-ODBC Bridge, import the JAR or ZIP file
for the database driver.

3. Import the JAR file for the Integration Object.

You can use VisualAge’s Type Browser and select the BeanInfo tab to view the
Integration Object’s properties and methods that are available for use. These

methods are also described in E'Writing an application to invoke an Integration
l)I M I” : E ; E il.

You are now ready to begin writing.

Setting up Symantec Visual Café to run an Integration Object

2

™

To set up Visual Café:
1. Update your SC.INI classpath setting to include the Common files listed in

7

2. If you created your Integration Object using Database Access application and
your database driver is not the JDBC-ODBC Bridge, update your SC.INI
classpath to include the JAR or ZIP file for the database driver.

3. Select Add Component to Library and add the JAR file of the Integration
Object. Select Project, Options..., and Directories, and add the JAR file to the
Input Class Files list. When you add your Integration Object to the Library,
you will probably see several error messages that say an "exception occurred

IBM® WebSphere™ Host Publisher Programmer’s Guide and Reference

while trying to get the initial value of a property”. Ignore these messages. They
are generated by Visual Café for the getter methods of the Integration Object
that have initial values of null.

If you click on the Integration Object that you added to the Library, its
properties are available in the Property List window of Visual Café. However,
not all properties of the Integration Object will appear in the Visual Café
Property List. Visual Café might not show properties that are indexed (arrays,
for example) or do not have both a getter and setter.

You are now ready to begin writing.

Writing an application to invoke an Integration Object

To write an application that invokes an Integration Object:
1. Initialize and start the server.
2. Create an instance of your Integration Object by calling its constructor.

3. Invoke the methods for the Integration Object instance. You might want to
invoke methods to set properties of input variables. The naming convention for
setter methods is as follows:

void setXyz(String)
where xyz is the name of your input variable.

You can use a different connection than the one you specified when you
created your Integration Object. To specify a different connection pool, invoke
the method

void setHPubStartPoolName(String)

and specify the name of the connection you want to use.

4. Invoke the Integration Object to perform its task (running a macro or querying
a database, for example), using the method

void processRequest()

You can reset the input variables and invoke the processRequest() method
multiple times. The error indications and result values will be reset with each
invocation.

5. Check for errors by invoking
int getHPubErrorOccurred()

If your result is nonzero, an error has occurred. You will have an error
exception and, for Database Access Integration Objects, you might have an
SQL error exception. To get the specific exception for the error, invoke

Exception getHPubErrorException()

You can retrieve the error message by invoking getMessage() on the Exception
object. The messages are documented in the Host Publisher Administrator’s and
User’s Guide. Note that the first seven characters are set to HPSxxxx where xxxx
is the message number.

For Database Access Integration Objects with a nonzero result from
getHPubErrorOccurred(), check to see whether the error message number is in
the range 6205-6209. If so, you have an SQL error exception. In the case where
your database action caused more than one SQL error to be generated, you are
returned the first SQL error. To get the first SQL error exception, invoke

Chapter 1. Programming with IBM® Host Publisher Integration Objects 3

4

IBM®

™

SQLException getHPubSQLErrorException()

In addition to SQL error exceptions, if you created your Integration Object
using Database Access application, you may have an SQL warning exception.
To check for an SQL warning exception, invoke

int getHPubWarningOccurred()

If your result is nonzero, an SQL warning has occurred. Note that you may
have an SQL error exception as well as an SQL warning exception. In the case
where your database action caused more than one SQL warning to be
generated, you are returned the first warning generated. To get the first
warning exception, invoke

SQLWarning getHPubSQLWarningException()
Request the results from your Integration Object.

* If you created your Integration Object using the Host Access application,
retrieve the value for output variables by invoking one of the following
methods:

— Simple text
String getAbc()

where abc is the name of your output variable.
— Tables
- To get an entire column of results
String[] getAbc()

where abc is the name of your output variable.
- To get a single value from a column of results
String getAbc(int) throws ArrayIndexOutOfBoundsException

where abc is the name of your output variable, and int is the index of
the value you want. As you iterate through the array, the method will
throw an ArrayIndexOutOfBoundsException exception when you have
reached the end of the array.

 If you created your Integration Object using the Database Access application
and your Statement Type was Select or Select Unique, your output variables
are the columns of the table you queried. Retrieve the value for output
variables by invoking one of the following methods:

— To get an entire column of results
String[] getTableColumn_()

where Table is the name of the database table and Column is the name of
the column in the table.

— To get a single value from a column of results
String getTableColumn_(int) throws ArrayIndexOutOfBoundsException

where Table is the name of the database table, Column is the name of the
column in the table, and int is the index of the value you want. As you
iterate through the array, the method will throw an
ArraylndexOutOfBoundsException exception when you have reached the
end of the array.

WebSphere ~ Host Publisher Programmer’s Guide and Reference

* If you created your Integration Object using the Database Access application
and your Statement Type was Insert, Update, or Delete, you have only one
output variable. To get the number of rows changed by your database
request, invoke the method

int getHPubNumberOfRowsChanged ()

* Regardless of the application you used to create your Integration Object, you
can invoke the XML method
String getHPubXMLProperties()

which returns the IntegrationObject’s properties and values as an XML
formatted string.

The input variables for all Integration Objects have getter methods
corresponding to each setter method so that you can retrieve those values if
necessary. The signature for these methods is

void getXyz(String)
where xyz is the name of your input variable.

If you are unsure about any input or output variable names that are generated
from data that you entered, look at the properties defined in your Integration
Object’s BeanlInfo java file. The Integration Object’s BeanlInfo java file is found
in the Studio_Install_Dir\Studio\IntegrationObjects\ directory. If you are
using VisualAge for Java, use VisualAge’s Type Browser to view the BeanInfo.

Writing a servlet to invoke an Integration Object

Note: You must set your CLASSPATH so that your servlet can access your
Integration Object’s JAR file as well as the common JAR files listed in

7

To write a servlet that invokes an Integration Object:
1. Create an instance of your Integration Object by calling its constructor.

2. Invoke the methods for the Integration Object. You can invoke methods to set
properties of input variables. The naming convention for setter methods is as
follows:

void setXyz(String)
where xyz is the name of your input variable.

You can use a different connection than the one you specified when you
created your Integration Object. To specify a different connection pool, invoke
the method

void setHPubStartPoolName(String)

specifying the name of the connection you want to use.

3. You must invoke the following method to either specify an error page or
specify null if you don’t want to redirect to an error page. To specify the error
page, invoke the method

void setHPubErrorPage(String)

specifying the name of your error page relative to the location of your servlet.
For example, if your servlet is located one directory above your error page,

Chapter 1. Programming with IBM® Host Publisher Integration Objects 5

specify your error page as "../ErrorPage.jsp”). To specify that you do not want
to redirect to an error page, invoke this method with a null string.

4. Invoke the Integration Object to perform its task (running a macro or querying
a database, for example):
void doHPTransaction(HttpServletRequest, HttpServietResponse)

5. Check for errors. If you redirected to an error page, you should check for error
messages by getting the exception object set by your Integration Object using
your HttpSession object. Refer to the Host Publisher default error page, which
can be found in your Server_Install_Dir\Server\production\documents
directory, for a sample.

If you did not redirect to an error page, invoke the methods described in

UWriting an application to invoke an Integration Qbject” on page 3 to get the

exception objects.

Note: If you redirected to an error page, you must add code to your error page
to invalidate the HttpSession object if one was created for you. Refer to
the Host Publisher default error page, which can be found in your
Server_Install_Dir\Server\production\documents directory, for a
sample of this code. Add this code after you have finished using the
HttpSession object.

6. Request the results from your Integration Object.

* If you created your Integration Object using the Host Access application,
retrieve the value for output variables by invoking one of the following
methods:

— Simple text
String getAbc()

where abc is the name of your output variable.
— Tables
- To get an entire column of results, invoke
String[] getAbc()

where abc is the name of your output variable.
- To get a single value from a column of results, invoke
String getAbc(int) throws ArrayIndexOutOfBoundsException

where abc is the name of your output variable, and int is the index of
the value you want. As you iterate through the array, the method will
throw an ArrayIndexOutOfBoundsException exception when you have
reached the end of the array.

* If you created your Integration Object using the Database Access application
and your Statement Type was Select or Select Unique, your output variables
are the columns of the table you queried.

— To get an entire column of results, invoke
String[] getTableColumn_ ()

where Table is the name of the database table and Column is the name of
the column in the table.

— To get a single value from a column of results, invoke
String getTableColumn_(int) throws ArrayIndexOutOfBoundsException

™

6 IBM® WebSphere™ Host Publisher Programmer’s Guide and Reference

where Table is the name of the database table, Column is the name of the
column in the table, and int is the index of the value you want. As you
iterate through the array, the method will throw an
ArrayIndexOutOfBoundsException exception when you have reached the
end of the array.

* If you created your Integration Object using the Database Access application
and your Statement Type was Insert, Update, or Delete, you have only one
output variable. To get the number of rows changed by your database
request, invoke the method

int getHPubNumberOfRowsChanged ()

* Regardless of the application you used to create your Integration Object, you
can invoke the XML method
String getHPubXMLProperties()

which returns the IntegrationObject’s properties and values as an XML
formatted string.

The input variables for all Integration Objects have getter methods
corresponding to each setter method so that you may retrieve those values if
necessary. The signature for these methods is

void getXyz(String)
where xyz is the name of your input variable.

To verify input or output variable names that are generated from data that you
entered, look at the properties defined in your Integration Object’s BeanInfo
java file. The Integration Object’s BeanInfo java file is found in the
Studio_Install_Dir\Studio\IntegrationObjects\ directory. If you are using
VisualAge for Java, use VisualAge’s Type Browser to view the BeanInfo.

Sample code for initializing and starting the runtime

Hashtable initParam = new Hashtable();
initParam.put(com.ibm.HostPublisher.Server.ServerConstants.ADMIN_PARAM_INSTALL_DIR,
new String("Server Install Dir"));

try {
com.ibm.HostPublisher.Server.Runtime.init(initParam);
com.ibm.HostPublisher.Server.Runtime.start();

catch (com.ibm.HostPublisher.Server.RteException e)

{

// catch and process exception

}

catch (com.ibm.HostPublisher.Server.RteNeedPassword e)

{

// catch and process exception

}

catch (com.ibm.HostPublisher.Server.RteIsRunning e)
{
// catch and process exception
catch (com.ibm.HostPublisher.Server.RteNotInitialized e)

// catch and process exception

}
where Server_Install_Dir specifies the Host Publisher Server installation directory.

The exceptions in the sample code are:

Chapter 1. Programming with IBM® Host Publisher Integration Objects 7

RteException
A fatal error occurred (such as an invalid ADMIN_PARAM_INSTALL_DIR)

RteNeedPassword
A startup password is required because of encrypted user pools.

RtelsRunning
The system is already started.

RteNotInitialized
The system has not been initialized.

You need to determine how to process each exception and add your own code for
the processing.

™

8 IBM® WebSphere™ Host Publisher Programmer’s Guide and Reference

Chapter 2. Using the XML Legacy Gateway

The Host Publisher XML Legacy Gateway communicates with a host application in

XML data format, and optionally in HTML format. The XML data interface is
encapsulated using a JavaBean. The XML data representing the host application
screens can be modified and integrated into other Java applications, applets,
JavaBeans, or servlets. Interaction with the host program can be manipulated by
Java using XML formatting and techniques. See
overview of the XML Legacy Gateway feature of Host Publisher.

for an architectural

Figure 1. XML Legacy Gateway Architecture

The XML Legacy Gateway provides two components that communicate with a host

application:

¢ The xmlLegacyGateway servlet

* The xmlAppData JavaBean

© Copyright IBM Corp. 2000

> Web Server and WebSphere
A
doGet/doPost/etc...
Y
<«— XmlDataEvent |€—
< <«—— XmlErrorEvent [€—
XSL Processor xmlLegacyGateway servlet E xmiLegacyTraceEvent [«
<«——| xmIHODTraceEvent |€—
A Instantiate
Java Bean
xmlAppData
Acquire/Release Sessions
A
Y
> —] PSEvent —>
Host Publisher Instantiate | HOD Ses:éon Bean
Server Runtime : oD —> ErrorEvent >
— TraceEvent '
TN3270/TN5250

The xmlLegacyGateway servlet

10

The xmlLegacyGateway servlet transforms XML data into HTML format. This
servlet enables viewing of a host screen in a Web browser. A user can interact with
the host screen in the browser by typing in the fields on the screen or by using the
function keys, which are displayed as buttons in the browser. Because the servlet
interacts with the host application, most of the data processing takes place at the
server. This enables browser access to host applications from a thin client.

The servlet uses Extensible Stylesheet Language (XSL) processing to transform
XML data to HTML format. This is a powerful example of how to transform the
host screen into XML data and, through the use of a stylesheet, present it to the
end user in a different format. By replacing or modifying this servlet, the supplied
stylesheet, or both, and by using an XSL processor like the one included in
WebSphere Application Server, the application programmer can easily render host
data onto a variety of devices using a single servlet with multiple stylesheets. The
source code for the servlet is included with the Host Publisher product.

Refer to w to see how the xmlLegacyGateway servlet relates to the other
components of the XML Legacy Gateway.

The xmlLegacyGateway servlet:

1. Is instantiated with form parameters that describe the desired host session.
These parameters describe the telnet name of the host, the terminal format
(3270 or 5250) of the session, and so on.

2. Initiates a host session using Host Publisher and IBM Host On-Demand Java
objects and properties.

3. Instantiates the xmlAppData JavaBean and makes the JavaBean a listener for
Host On-Demand events.

4. Retrieves, after a programmed delay, the current state of the host screen as
XML data from the xmlAppData JavaBean.

5. Formats the XML data as HTML output using an XSL stylesheet and an XSL
processor. This output is returned to the browser.

The HTML output returned to the browser shows how the screen displays on a
traditional terminal. The user can input data directly onto the HTML host screen.
The user can move the cursor to the input fields using the mouse or the Tab key.
The traditional terminal function keys are presented to the user as buttons on the
browser screen. The user can select the buttons using the mouse or using the Tab
key and pressing the Enter key on the keyboard.

Two additional buttons are presented on the user’s browser page: Refresh and
Disconnect. The Refresh button updates the browser’s host screen to the current
state of the host session, ignoring possible input. The Disconnect button terminates
the current host session. Disconnection enables an efficient use of Host Publisher
resources. The user should disconnect the host session when interaction with the
host application is no longer needed.

While the servlet is a useful application, it is an example of how to interact with
Host Publisher to encapsulate host data in XML format. The servlet could be
changed to interact with the host application using XML processing techniques, in
an automated fashion, presenting the user with a specific subset of information
obtained from the host.

IBM® WebSphere™ Host Publisher Programmer’s Guide and Reference

The data can also be rendered in different formats by using a different XSL
sytlesheet when processing the data. The servlet can be changed to render the data
in a format that matches the output preference of the user or the user’s access
device. The servlet can do this at run time by specifying the XSL stylesheet used
for this particular instance of the servlet.

To facilitate the writing of Host Publisher XML Legacy Gateway servlets, the
source code for the xmlLegacyGateway servlet is included with Host Publisher.
HTML documentation is also included. The source code and all documentation can
be accessed starting with the following file:

install_dir\SDK\XLGW\Sample.htmi

where install_dir is the directory in which Host Publisher is installed.

The xmlAppData JavaBean

This JavaBean communicates with the host application using XML data formatting.
A JavaDoc for this JavaBean is included with the HostPublisher installation and
can be accessed starting with the following file:

install_dir\SDK\XLGW\xm1AppDataBean\A11Names.htm]
where install_dir is the directory in which Host Publisher is installed.

Refer to w to see how the xmlAppData JavaBean relates to the other
components of the XML Legacy Gateway:.

The xmlAppData JavaBean contains properties that describe the HostPublisher,
HOD, and TN3270 or TN5250 parameters used to instantiate a host session.

The xmlAppData JavaBean also contains properties that describe the host data as
XML records. These records contain the text of the fields displayed on the screen
and the attributes of the fields. Methods are supplied for reading the fields so they
can be manipulated as an XML document.

The xmlAppData JavaBean contains methods for sending a new screen of data to
the host. This new screen is described by an XML document, which will often be
the previous host data transformed into an XML document, with the user input
fields updated, or a user action specified, or both.

The xmlAppData JavaBean sends xmlDataEvents to all xmlDataEvent listeners. The
data events are sent when the host screen has changed.

The xmlAppData JavaBean interacts with the IBM Host On-Demand (HOD)
session JavaBean using PSEvents. When a PSEvent is received by the xmlAppData
JavaBean, the JavaBean updates its internal objects to reflect the new status of the
host screen. The xmlAppData JavaBean sends an xmlDataEvent to inform its
listeners of the change.

The xmlAppData JavaBean sends xmlErrorEvents to all xmlErrorEvent listeners
when a processing error has been detected.

The xmlAppData JavaBean sends xmlLegacyTraceEvents to all

xmlLegacyTraceEvent listeners for appropriate tracing of the xmlAppData JavaBean
activity.

Chapter 2. Using the XML Legacy Gateway 11

The xmlAppData JavaBean listens for HODTraceEvents and sends the
HODTraceEvents to all xmIHODTraceEvent listeners.

The HostConnection JavaBean

This JavaBean is part of the Host Publisher Server runtime code. A JavaDoc for this
JavaBean is included with the HostPublisher installation and can be accessed
starting with the following file:

install_dir\SDK\XLGW\HostConnectionBean\A11Name.html
where install_dir is the directory in which Host Publisher is installed.
The HostConnection JavaBean contains methods for acquiring and releasing Host

On-Demand session JavaBeans using the Host Publisher Server runtime
environment.

12 1BM® WebSphere™ Host Publisher Programmer’s Guide and Reference

Chapter 3. Using Remote Integration Objects

You can use Remote Integration Objects (RIOs) to access Integration Object data
from a Java program (applet or application) running on a remote machine. The
remote machine requires lightweight RIO JAR files and network access to a Host
Publisher Server; however, it does not require the Host Publisher Server or
WebSphere Application Server.

You can customize the lightweight Java program for specific business needs, such
as correlating data with other JavaBeans or XML data sources. It can be distributed
as a standalone Java application or to a Web server as a downloadable Java applet.

Creating Remote Integration Objects

The following steps create a Java program (applet or application) to access
Integration Object data on a remote machine. In these steps, prefix is the value you
specify in the Remote Integration Object Properties... dialog on the Host Access or
Database Access Options menu (the default is Remote), and IOName is the name
you gave to the Integration Object.

1. Start Host Access or Database Access and open the Integration Object you want
to access remotely.

2. Ensure that Create Remote Integration Object is checked on the Host Access
or Database Access Options menu.

3. Save the Integration Object using the Host Access or Database Access File
menu. You can also select Create Integration Object from the Host Access File

menu. Host Publisher creates the RIO files. Refer to ‘Remate Integration Ohjec

for the names and location of the files that are created.

4. The sample CustomAppIOName.class program will work as it is; however, you
can edit the CustomAppIOName.java file to perform whatever task is required
to access the Integration Object data.

5. Compile the sample CustomAppIOName.java file, which is located in the
\HostPub\Studio\IntegrationObjects\RemoteIO\IOName\ directory, with the
Java compile command:
javac -classpath \HostPub\Common\nano.zip;\HostPub\Studio\RIO.jar;

\HostPub\Common\HPubCommon. jar;\HostPub\Common;
%classpath% CustomAppIOName.java

6. For a Java application, transfer the sample CustomAppIOName.class program,
the RIO supporting JAR files (nano.zip, RIO jar, and HPubCommon jar), and
the RIO proxy file (IntegrationObject\prefixIOName.class) to the remote machine
to execute the java application. JDK 1.1.7 or higher is required for the remote
machine.

For a Java applet, transfer the CustomAppIOName.class program,
AppLoaderIOName.html file, and RIO supporting JAR files (nano.zip, RIOjar,
and HPubCommon jar) to the desired HTTP server for browser download.

Remote Integration Object files

The remote Integration Object file names are derived from the Integration Object
file name. In the following example, the remote Integration Object files were
created for an Integration Object named TestDB in the
\HostPub\Studio\IntegrationObjects\RemoteIO\TestDB\ directory.

© Copyright IBM Corp. 2000 13

IntegrationObject\RemoteTestDB.java RIO proxy source file

IntegrationObject\RemoteTestDB.class | RIO proxy class file

CustomAppTestDB.java Sample Java program source that calls RIO proxy
class

CustomAppTestDB.class Compiled sample Java program

AppLoaderTestDB.html HTML file to load sample Java applet,
CustomAppTestDB.class

XMLTestDB.html HTML file to get Integration Object in XML
format

StyleSheetTestDB.xsl Sample client style sheet

Obtaining Integration Object data in XML format

Integration Object data can be queried from an XML application and from a
browser that supports XML data. The XML application requires an XML parser
and TCP/IP connectivity to a Host Publisher Server. No other packaging is
necessary. When Create Remote Integration Object on the Options menu is
checked, a sample XMLIOName.html file (where IOName is the name you gave to
the Integration Object) is created that extracts Integration Object data in XML
format. To extract the data in XML format, the XML browser or XML application
must send a URL to the Host Publisher Web server as follows:

To request a list of input parameters:
http://yourserver/serviet/RI0Serviet?hPubIntegrationObjectName=IntegrationObject.TestDB
&hPubRequestType=requestInputs
To execute an Integration Object with optional style sheet processing:
http://yourserver/servlet/RI0Serviet?hPubIntegrationObjectName=IntegrationObject.TestDB
&hPubRequestType=execute
&hPubExecuteXML=&EXECUTEXMLDOC

&hPubXMLServerStyleSheet=SERVERSTYLE
&hPubXMLC1ientStyleSheet=CLIENTSTYLE

To execute an Integration Object with input parameters and optional style sheet
processing:
http://yourserver/serviet/RI0Serviet?hPubIntegrationObjectName=IntegrationObject.TestDB
&hPubRequestType=execute
&INPUTNAMEI=INPUTVALI&INPUTNAMEZ=INPUTVALZ. ..

&hPubXMLServerStyleSheet=SERVERSTYLE
&hPubXMLClientStyleSheet=CLIENTSTYLE

Where: TestDB is the name of the Integration Object to execute
SERVERSTYLE is the server style sheet to apply
CLIENTSTYLE is the client style sheet that the browser will apply
INPUTNAME1=INPUTVALI... define the input parameters and values of the
Integration Object

14 1BM® WebSphere™ Host Publisher Programmer’s Guide and Reference

Notes:

1. Each new parameter in the URL begins with an ampersand (&). There should be no
spaces in the URL. If you use either of the optional stylesheet parameters, do not type a
space between the other parameters and the stylesheet parameters.

2. WebSphere Application Server provides two default style sheets: default.xsl and
default2.xsl in the WebSphere directory. If you specify SERVERSTYLE in the URL, enter
the full file path of the server style sheet, for example
\websphere\ AppServer\web\xmI\xsI\default\default.xsl.

3. For CLIENTSTYLE, Host Publisher creates a sample style sheet (StyleSheetlONarme.xsl
where IOName is the name you give to the Integration Object) when you create a
remote Integration Object. Copy the StyleSheet/OName.xsl file from the
\HostPub\Studio\IntegrationObjects\RemoteI0\IOName\ directory to a directory
accessible through the URL. If you specify CLIENTSTYLE in the URL, enter the full file
path of the location where you copied the StyleSheet/OName.xsl file.

The response from the Host Publisher Web server is the XML data defined by the
following Data Type Declaration (DTD):

<?xml version="1.0" standalone="yes">

<IDOCTYPE
<!ELEMENT

<IATTLIST
<!ELEMENT
<!ELEMENT
<IATTLIST
<!ELEMENT
<!ELEMENT
<IATTLIST
<!ELEMENT

1>

com.ibm.HostPublisher.IntegrationObject.properties [

com.ibm.HostPublisher.IntegrationObject.properties
(inputProperties, outputProperties)>

com.ibm.HostPublisher.IntegrationObject.properties name CDATA "">

inputProperties (inputProperty*)>

inputProperty (value)>

inputProperty name CDATA "">

outputProperties (outputPropertys*)>

outputProperty (valuex)>

outputProperty name CDATA "">

value (#PCDATA)>

Chapter 3. Using Remote Integration Objects 15

16 1BM® WebSphere™ Host Publisher Programmer’s Guide and Reference

Chapter 4. Host Publisher File formats

Host Publisher produces applications using standard open formats—such as
HTML pages, Java class files, and XML files. This makes it simple to make changes
to a Host Publisher application after it has been published to a Host Publisher
Server. You don’t have to keep returning to the Host Publisher Studio to make
small changes to your application.

Warning: If you make changes to applications on the server without updating the
files in the Host Publisher Studio, you could lose the changes in the server version
when you next publish your application. Be sure to update the version you keep in
the Host Publisher Studio before you publish those files. There is no automatic
way to synchronize the two versions.

A Host Publisher application is made up of several types of files. Other files are
only used in the Host Publisher Studio. The sections below describe each file,
explain how it is used, and provide the file format.

Integration Object project (.hpi) file

Host Access and Database Access store project information into .hpi files. These
files describe the details you defined while creating an Integration Object.

Note: The format of the Integration Object project (.hpi) file is shown for
information only. If you manually edit this file, you might receive
unexpected results.

The following is a sample .hpi project file generated by Host Access.

<?xml version="1.0" standalone="yes"?>
<IDOCTYPE com.ibm.HostPublisher.IntegrationObject SYSTEM "io.dtd" []>
<com.ibm.HostPublisher.IntegrationObject name = "callup" type="hod">
<Package name = "IntegrationObject"/>
<Session>
<PooT1Name>callup</PoolName>
</Session>

<OutputVariable name="callupResults" type ="simple">
<ScreenCoordinates x="2" y="14" dx="71" dy="6"/>
<SubVariable name="columnl" type ="array">
<RelativeCoordinates x="0" y="0" dx="26" dy="5"/>
</SubVariable>
<SubVariable name="column2" type ="array">
<RelativeCoordinates x="26" y="0" dx="4" dy="5"/>
</SubVariable>
<SubVariable name="column3" type ="array">
<RelativeCoordinates x="30" y="0" dx="9" dy="5"/>
</SubVariable>
<SubVariable name="column4" type ="array">
<RelativeCoordinates x="39" y="0" dx="9" dy="5"/>
</SubVariable>
<SubVariable name="column5" type ="array">
<RelativeCoordinates x="48" y="0" dx="9" dy="5"/>
<SubVariable name="column6" type ="array">
<RelativeCoordinates x="57" y="0" dx="15" dy="5"/>
</SubVariable>
</OutputVariable>

© Copyright IBM Corp. 2000 17

<HODMacro filename = "callup.macro"/>
<SessionChain>
<StartState name = "Start Label"/>
<EndState name = "The End Label"/>
<Position>middle</Position>
</SessionChain>
<com.ibm.HostPubTlisher.IntegrationObject>

The following is a sample .hpi project file generated by Database Access.

<?xml version="1.0" standalone="yes"?>
<IDOCTYPE com.ibm.HostPublisher.IntegrationObject SYSTEM "io.dtd" []>
<com.ibm.HostPublisher.IntegrationObject name = "QuerySample" type="db">
<Package name = "IntegrationObject"/>
<Session>
<Poo1Name>callup</PoolName>
</Session>

<SQL>SELECT "SHERRI"."DEPARTMENT"."DEPTNO", "SHERRI"."DEPARTMENT"."DEPTNAME",
"SHERRI"."DEPARTMENT"."MGRNO" FROM "SHERRI"."DEPARTMENT"
WHERE (("SHERRI"."DEPARTMENT"."DEPTNQ" <> 'CHY')
AND ("SHERRI"."DEPARTMENT"."DEPTNAME" <> @+)deptname@-)''@+)))
</SqQL>

<JDBCUr1 name="jdbc:db2:Sample"/>

<JDBCDriver name="COM.ibm.db2.jdbc.app.DB2Driver"/>
<com. ibm.HostPublisher.IntegrationObject>
Tag descriptions:
com.ibm.HostPublisher.IntegrationObject

name Specifies the name of this Integration Object. This name
must match the name of the file.

type The type of Integration Object described in this file. Valid
values are hod or db.

HODMacro
filename
Identifies the filename contain the Host On-Demand macro
recorded by the user for this Integration Object.
JDBCDriver
name The JDBC driver name to use for the specified URL.
JDBCUTrl
name The JDBC URL to connect to when executing this
Integration Object.
OutputVariable

Output variables define data that will be extracted during the
macro execution.

name Specifies the variable name provided by the user during
macro recording.

type Specifies the type of variable described by the tag. Valid
values are simple and array. Simple variables are stored
and displayed as single blocks of text. Array variables are
stored as individual lines that can be displayed
individually using the REPEAT tag on a JSP page.

18 IBM® WebSphere™ Host Publisher Programmer’s Guide and Reference

Package

Session

SessionChain

SQL

SubVariable

ScreenCoordinates
Identifies a rectangular region on the application screen
that defines the data to extract.

X Identifies the starting column number. The first
column begins at 1.

y Identifies the starting row number. The first row
begins at 1.

dx Identifies the total number of columns to include in

this variable.

dy Identifies the total number of rows to include in
this variable.

name Specifies the Java package name used when generating the
Java source code for this object.

PoolName

Specifies the connection pool name used by this Integration
Object.

StartState name
The connection start state label given by the user.

EndState name
The connection end state label given by the user.

Position
The position of this Integration Object in the object chain.
Valid values are first, middle, or last.

Identifies the SQL statement to execute for database Integration
Objects.

Subvariables define further detail of the format of data defined by
an output variable. Subvariables are generated when the user
specifies data to be extracted as a table in Host Access. Each
column identified by the user is defined using the SubVariable

tag.
name Specifies the variable name provided by the user during
macro recording.

type Specifies the type of variable described by the tag. Valid
values are simple and array. Simple variables are stored
and displayed as single blocks of text. Array variables are
stored as individual lines that can be displayed
individually using the REPEAT tag on a JSP page.

RelativeCoordinates
Identifies a rectangular region on the application screen
that defines the data to extract.

X Identifies the starting column number. The first
column begins at 1.

Chapter 4. Host Publisher File formats 19

y Identifies the starting row number. The first row
begins at 1.

dx Identifies the total number of columns to include in
this variable.

dy Identifies the total number of rows to include in
this variable.

Host Publisher application (.hpa) file

20

This XML file organizes all of the parts that make up a Host Publisher application,
including Java objects and the Web pages that refer to them. Host Publisher
applications are published to Host Publisher Servers for access by your customers.
When Host Publisher Studio is used to load an existing application, it is this file
that you actually open.

Note: The format of the Host Publisher application (.hpa) file is shown for
information only. If you manually edit this file, you might receive
unexpected results.

Here is a sample of a typical application file:

<?xml version='1.0' encoding='UTF-8'?>
<IDOCTYPE application SYSTEM 'WebBridge.dtd'>
<application>
<appl_name>testdb</appl_name>
<integration_object>
<obj _name>D:\HostPublisher\Studio\IntegrationObjects\EmployeeQuery.jar
</obj_name>
<input_properties>
<input>setLastName</input>
</input_properties>
<output_properties>
<output>getEmployeesEmployeeIDResult</output>
<output>getEmployeesFirstNameResult</output>
<output>getEmployeesExtensionResult</output>
<output>getEmployeesLastNameResult</output>
<output>getLastName</output>
</output_properties>
<execution_method>doHPTransaction</execution_method>
</integration_object>
<page>d:\hostpublisher2\Studio\testdb\output.jsp</page>
<page>d:\hostpublisher2\Studio\testdb\input.jsp</page>
</application>

Tag descriptions:

appl_name
Names the Host Publisher application. This name must match the name of
the file. It is also the name Host Publisher Server uses to track this
application.

execution_method
Specifies the Java method for invoking the Java object once the inputs are
satisfied with data. After the execution method completes, the Java object’s
resulting data can be accessed using its output methods, if there are any.

input Specifies the Java method used to set an input value. For a JavaBean, this
is typically the setter method for a JavaBean property.

input_properties
Specifies the beginning of the list of inputs for this Java object. Inputs

IBM® WebSphere™ Host Publisher Programmer’s Guide and Reference

generally must be satisfied with data before the Java object can be
executed. Each input is specified by a separate input tag under this tag.

integration_object
Specifies beginning of a definition of an Integration Object or other Java
object that was imported into Host Publisher Studio.

obj_name
Specifies the full path to the Integration Object or other Java object within
the file system. If the object is an Integration Object created using one of
the Host Publisher Access applications, this file refers to a JAR file
containing the Integration Object JavaBean and its related files. If this
object is another Java object, this file refers to the file containing that Java
object.

output
Specifies the Java method used to get data values from an Java object. For
a JavaBean, this is typically the getter method for a JavaBean property.

output_properties
Specifies the beginning of the list of outputs for this Java object. Outputs
are used to render Java object data within a Web page. Each output is
specified by a separate output tag under this tag.

page Specifies a Web page that is used, either directly or indirectly, to access
Java objects.

Integration Object source (.java) file

Integration Objects created by Host Publisher Studio are JavaBeans. The JavaBean
files are contained within a JAR file and are generally made up of two files, the
JavaBean class and the JavaBean BeanlInfo class. These class files are generated
based on a template maintained by the Host Publisher Studio and information
provided by you through one of the Host Publisher Access applications.

Since the template is not available to you for customization, and since any time the
Integration Object is modified using a Host Publisher Access application it is
regenerated and compiled, do not customize the source files for the Integration
Objects in any way. Instead, if you require custom logic to make use of Integration
Object data, use JSP tags and additional Java code to include the logic in the Web
pages, or develop another Java class that extends your Integration Object to
customize Integration Object results.

JavaServer Pages (JSP) Web page files

Host Publisher Studio generates JSP pages to manipulate Java objects and their
output. JSP tags are similar to HTML tags, but their purpose is to instantiate Java
objects, execute methods, and access the object’s properties (inputs and outputs).
JSP tags enable you to interact with Java objects using standard Web pages.

The following are sample JSP pages, followed by a description of how the tags are
being used.

JSP page for the EmployeeQuery Integration Object

<HTML>

<BEAN NAME="EmployeeQuery" TYPE="IntegrationObject.EmployeeQuery"
INTROSPECT="yes" CREATE="yes" SCOPE="request">

<BEAN>

<% EmployeeQuery.setHPubStartPoolName("NorthwindLocal"); %>

Chapter 4. Host Publisher File formats 21

22

<% EmployeeQuery.doHPTransaction(request, response); %>

<BODY>

<P>Table:

<TABLE BORDER>

<th>EmployeesEmployeeID</th>

<th>EmployeesFirstName</th>

<th>EmployeesExtension</th>

<REPEAT INDEX=idx1>

<tr>

<td>

<INSERT BEAN =EmployeeQuery PROPERTY =EmployeesEmployeeIDResult>
<INSERT>

</td>

<td>

<INSERT BEAN =EmployeeQuery PROPERTY =EmployeesFirstNameResult>
</INSERT>

</td>

<td>

<INSERT BEAN =EmployeeQuery PROPERTY =EmployeesExtensionResult>
</INSERT>

</td>

</REPEAT>

</TABLE>

</BODY>

</HTML>

JSP page for the QuerySample Integration Object

<HTML>
<BODY>
<BEAN NAME="QuerySample" TYPE="IntegrationObject.QuerySample"
INTROSPECT="yes" CREATE="yes" SCOPE="request">
<BEAN>
<% QuerySample.setHPubStartPoolName("samplePool"); %>
<% QuerySample.doHPTransaction(request, response); %>
<P>FORM METHOD="PQOST" ACTION="<%= response.encodeUrl("querySample.jsp") %>">
<P>P>Department Number
<SELECT NAME ="SHERRIDEPARTMENTDEPTNO_" MULTIPLE SIZE=3>
<REPEAT INDEX=idx1>
<% String str = "<OPTION VALUE=\"" +QuerySample.getSHERRIDEPARTMENTDEPTNO_ (idx1)
+ "\">\n"; out.printin(str); %>
<INSERT BEAN =QuerySample PROPERTY = SHERRIDEPARTMENTDEPTNO >
</INSERT>
</0PTION
</REPEAT>
</SELECT>
<P>Department Name <INPUT TYPE = "text" NAME = "Deptname"
VALUE ="<%=QuerySample.getDeptname() %>">
<P>INPUT TYPE="submit" VALUE="Submit">

</FORM>
</BODY>
<% out.close(); %>
</HTML>

The first page references an Integration Object called EmployeeQuery. After
invoking the object, it renders the object’s output in an HTML table with three
columns. The second page references an Integration Object called QuerySample.
After invoking the object, it renders the object’s output in an HTML form that
enables the user to select a department. The following JSP tags are used on these

pages:
BEAN The BEAN tag identifies a Java object to be instantiated on the page. It
contains the following parameters:

IBM® WebSphere™ Host Publisher Programmer’s Guide and Reference

CREATE
Specifies whether a new instance of this class is to be created. Valid
values are yes and no. Examples of when you would set this value
to no are:

* The Java class can be manipulated statically without the need for
an instance of that class.

* Another JSP page created this Java object instance with a SCOPE
value of session (see the definition of the SCOPE attribute).

INTROSPECT
This turns on automatic introspection for this Java object. This
allows a Web parameter, such as one passed into the page via
another input form page, to automatically have its value set as an
input to the Java object if the parameter has the same name as an
input property. Valid values are yes and no. For example, if the
Web parameter were name=Pam and the EmployeeQuery
Integration Object had a property called name, then WebSphere
Application Server would automatically set the name property of
EmployeeQuery to Pam.

NAME
This is the identifier that is used to reference the instantiated Java
object on the page. In the first example, this is the EmployeeQuery
object. In the second example, this is the QuerySample object. For
convenience, it has the same value as the base name of the
Integration Object’s full class-name
(IntegrationObject. EmployeeQuery or
IntegrationObject.QuerySample), but it does not have to.

SCOPE
This attribute specifies how long the instance of the Java object is
to last. Valid values are request and session.

request
The life of the Java object lasts as long as the request for
this page is being processed. It is discarded when a new
page is requested.

session
The instance of this class is maintained past the current
request, allowing other JSP pages, for example, to access
this object again.

TYPE This refers to the Java object’s full class-package name.

FORM
The FORM tag encompasses the content of an HTML fill-in form. Use this
tag to create fill-in forms with checkboxes, radio buttons, and text input
windows. It contains the following parameters:

ACTION
This parameter specifies the URL to which the FORM tag content
is sent. This parameter is required.

METHOD
When the ACTION parameter indicates an HTTP URL, this
parameter identifies the HTTP method for sending information to
the server. This parameter is optional. Values for this parameter
are:

Chapter 4. Host Publisher File formats 23

GET The form content is appended to the URL.

POST The form content is sent to the server as a message body,
and not as part of the URL.

INDEX
This parameter specifies to the REPEAT tag an optional index variable that
can be used within inline Java code to access the current index value of the
repeat loop.

Inline Java tag (<% %>)
These tags specify the beginning and end of Java code segments that are to
be invoked as they are written. These segments may reference variables
specified within other inline Java tags before these on the same page. As
shown in the examples, these tags can be used to access or execute Java
objects explicitly.

INPUT

This tag specifies a variety of editable fields inside a form. It contains the
following parameters:

NAME
This parameter specifies the variable name for the VALUE
parameter.

TYPE This parameter specifies the type for the INPUT tag. This
parameter is required. Values for this parameter are:

checkbox
INPUT elements are boolean quantities. The default value
is off.

file The INPUT element is a file selection tool, with which the
user can select a file to be sent with the FORM.

hidden
The INPUT element is not displayed to the user.

image The INPUT element is an active inline image.

password
The INPUT element is a single-line text field, but the text
typed in the field is obscured by asterists or some other
method. This is used for password entry.

radio The INPUT element is a radio button. Radio buttons are
linked together by the same NAME parameter.

reset The INPUT element is a reset button. When pressed, all
the fields in the FORM are reset to the values given by
their VALUE parameter, erasing all user input.

submit
The INPUT element is a Submit button. Pressing the
Submit button sends the FORM data to the specified URL.

text The INPUT element is a single-line text entry field. The
physically displayed size of the input field is set by the
SIZE attribute.

VALUE
This parameter specifies the initial value of the INPUT tag.

24 1BM® WebSphere " Host Publisher Programmer’s Guide and Reference

INSERT
This tag inserts an output property value from an Integration Object or
other Java object at the specified location. For the table in the example, the
insert position is a cell within a row of the table. Notice how the REPEAT
tags enclose the creation of a row of data for the table. The REPEAT will
continue until there are no more rows of data to extract. The INSERT tag
can only be used on JavaBeans.

Java objects that are not JavaBeans require inline Java code to access the
output method using the index variable on the REPEAT tag. For example,
if there was a Java object on the page called myObject with an indexed
output method called getMyData(), then an inline Java statement might
look like:

<= myObject.getMyData(idx1); %>

The equal sign after the inline Java tag (<%-=) specifies that the return
value from the function should be displayed. Remember, in order for the
REPEAT to be terminated, getMyData(idx1) must throw an
ArraylndexOutOfBounds exception when there is no more data to extract,
or the REPEAT will continue indefinitely.

OPTION
This tag sets the different character-string options for a SELECT tag. The
OPTION tag can contain characters, character references, or entity
references. The VALUE attribute specifies the value assigned to the
OPTION tag.

REPEAT
The REPEAT and end REPEAT (</REPEAT>) tags denote a section of the
page that is to be executed repeatedly until WebSphere Application Server
receives an ArraylndexOutOfBounds exception. The only way to get this
exception is through the use of indexed properties using the INSERT JSP
tag or by throwing the exception yourself using the inline Java code tags.
Therefore, REPEAT tags should not be used without JSP tags between
them.

SELECT
This tag enables the user to select from a set of values presented as a
selectable list of text strings, specified by the OPTION parameter. The
SELECT tag contains the following parameters:

MULTIPLE
This parameter specifies that the user can select multiple items
from a single SELECT tag. If MULTIPLE is not specified, the user
can select only a single item from the SELECT tag. This parameter
is optional.

NAME
This parameter specifies the variable name associated with the
SELECT tag. This parameter is required.

SIZE This parameter specifies the number of displayed text lines. The
default is 1, and the list is often presented as a pull-down menu.

Chapter 4. Host Publisher File formats 25

Connection and configuration files

26

This section describes the format of configuration files used by Host Publisher
Server Administration to configure Host Publisher. The files use XML tags to
structure their content. Host Publisher generates these files along with Integration
Objects and publishes them to the server as part of an application. The
configuration files are the following;:

Connection specification (.connspec)
This file specifies the parameters necessary for establishing a connection to
a data source, such as a 3270 application or a database.

Connection pool specification (.poolspec)
This file defines how to create a pool of connections to a host or database.
It specifies parameters for pools of connections to data sources, such as
3270 applications or databases. It also serves as the main coordinating file
for a complete connection pool definition (including connection, users, and
connect and disconnect macros, if appropriate).

Logon specification (.logonspec)
This file specifies the names of the connect and disconnect macros for Host
Access Integration Objects. If connection pooling is enabled, this file also
specifies the name of the checkin screen.

User pool specification (.userpool)
This file lists the users and any associated user-specific information
necessary for accessing a data source. It is this list of users and the
connection definition that define a pool of connections.

Checkin screen description (.screen)
This Host On-Demand screen description identifies the host screen that
should be active for a connection to be considered ready to be returned to
the connection pool. If a connection is not in that state, it is discarded or
recycled in an attempt to return the connection to that state. If connection
pooling is not enabled, there is no checkin screen for the connection pool.

Application manifest (.application)
This file describes all Web pages, Integration Objects and other Java
objects, and configuration files that an application requires.

This file is generated by Host Publisher Studio when transferring an
application to Host Publisher Server. When the application is deployed into
production by the server, this file ensures that all parts of an application
are moved into the production area.

Macro files (.macro)
For Host Access Integration Objects only, these files specify IBM Host
On-Demand keyboard and screen recognition macros. They are used for
replaying sequences of keystrokes for performing certain tasks for the
Integration Object, such as logging on to a system or accessing a data
screen on an application. See L i ” for more
information on the format of these XML files.

Note: Configuration descriptions might refer to other files that can be referenced
using relative path names. The forward slash (/) is used as a file name
separator, and it is replaced by the platform-specific filename separator
character when Host Publisher Server Administration processes file names.

IBM® WebSphere™ Host Publisher Programmer’s Guide and Reference

Format of connection pool specification files

XML tag conventions

The following sections describe the XML syntax used to define Host Publisher
connections and connection pools, using examples. The following conventions have
been used:

Each file contains a set of tags that correspond to a single instance of the
connection or connection pool that the file describes.

A single top level tag identifies the type of connection being described, such as
<poolconfig> or <connconfig>.

A tag that describes an instance always has a name attribute.

Different object-specific tags are used to distinguish the connections that they are
instances of. For example, a connection pool specification configuration file can
have a <hodpoolspec> or a <dbpoolspec> tag.

Within the tag describing the object of interest are nested tags defining that
object’s properties. Each nested tag within a connection-specific tag is an empty
XML tag, and the value of the property that it represents is specified by an
attribute.

— If the property is a “simple” type (integer or string), the value is specified
using a value attribute.

— If the property is a reference to a DbConnSpec, HodConnspec,
HodLogonSpec, or LocalUserPool specification, a refname attribute is used to
reference that specification’s definition. Another file with that name and a
fixed extension (in the production/poolspecs directory) contains that
specification.

— If the property is a reference to another Java object such as
java.util. Properties, whose string representation can be quite big, the value is
represented using a nonempty nested tag. An example of this is the
sessionprops attribute of the <hodconnspec> tag.

— If the property is a reference to an object that also has an XML representation
(such as an HOD macro), then the object is stored in a separate file, and an
empty tag with a filename attribute is used to reference that file.

Note: The file can be in a subdirectory relative to the
c:/HostPublisher/Server/production/poolspecs directory, where
c:/HostPublisher is the directory where Host Publisher is installed. As in
all other cases, relative pathnames are specified using the separator
character ’/’.

If a property value is not specified in the XML tag, the default value is used
during execution.

Notes:

1. All timeout values are integers (32 bit), and the unit of time is seconds.

2. A timeout value of 0 indicates no waiting. A timeout value of -1 indicates an
infinite wait. For counters, the upper limit is always the maximum value of
the primitive integer type in Java (2,147,483,647).

3. While all attribute values in XML are strings, type information is provided
for each property that the attribute represents since that will limit the string

values that can appear (for example, if boolean, valid values are true and
false).

Chapter 4. Host Publisher File formats 27

28

XML Tags for connection specifications

A file defines each instance of the ConnSpec record. A connection specification
defines how to connect to a data source. Whether connection pooling is used for
this definition is defined by the pool specifications. A connection specification is
nested within a single <connconfig> tag. The <hodconnspec> tag is used to
describe an HodConnSpec record, and the <dbconnspec> tag is used to describe a
DbConnSpec record. These records have different sets of properties, and the nested
tags used to set their values are described in separate sections.

Host On-Demand connections: The following XML tags correspond to properties
of an HodConnSpec record.

connecttimeout
The time, in seconds, that Host Publisher Server will wait while creating a
host connection using Host On-Demand APIs, and priming it by running a
connect macro.

The value is an integer, either -1 or 1 or greater. The default is 120.

disconnecttimeout
The time, in seconds, that Host Publisher Server will wait while running a
disconnect macro and disconnecting a host connection using Host
On-Demand APIs.

The value is an integer, either -1 or 1 or greater. The default is 120.

sessionprops
Contains Host On-Demand connection properties.

singlelogon
Set this value to true if this connection does not allow a user ID and
password to be used for multiple simultaneous sessions. If this value is set
to true and a user pool is defined for this connection, the user
ID/password pairs in that user pool are locked when in use to prevent
their being used by simultaneous connections. If this value is set to true
and a user ID is not available for the user pool, the requester for the
connection waits the amount of time specified by the connecttimeout

property.
Set this value to false if this connection allows a user ID and password to
be used for multiple simultaneous connections. If this value is set to false

and a user pool is defined for this connection, the first user ID/password
pair in the user pool will be reused for each requested connection.

The value is boolean. The default is false.
JDBC connections: The following XML tags correspond to properties of a
DbConnSpec record.

connecttimeout
The time, in seconds, that Host Publisher Server will wait to create a
database connection using JDBC APIs.

The value is an integer, either -1 or 1 or greater. The default is 120.

drivername
The name of a JDBC driver (class) that can be used by Host Publisher
Server to load the driver.

This string value is mandatory.

urlname
This URL must identify the database to which a connection is created.

IBM® WebSphere™ Host Publisher Programmer’s Guide and Reference

This string value is mandatory.

Examples: vm3.connspec

<?xml version="1.0"?7>
<IDOCTYPE connconfig SYSTEM "connconfig.dtd">
<connconfig>
<hodconnspec name="vm3">
<singlelogon value="false"/>
<sessionprops>
SSL=false
fontSize=10
autoReconnect=false
0IAVisible=true
port=23
autoConnect=false
TNEnhanced=false
fontSizeBounded=true
autoFontSize=false
codePage=037
host=ralvm3
screensize=2
sessionType=1
SSLServerAuthentication=false
LUName=
codePageKey=KEY_US
</sessionprops>
<connecttimeout value="120"/>
<disconnecttimeout value="120"/>
</hodconnspec>
</connconfig>

empdb.connspec

<?xml version="1.0"?7>

<IDOCTYPE connconfig SYSTEM "connconfig.dtd">
<connconfig>

<dbconnspec name="empdb">

<drivername value="com.ibm.db2.jdbcdvr"/>

<urlname value="jdbc://myserver.ibm.com/employeedb"/>
<connecttimeout value="60"/>

</dbconnspec>

</connconfig>

XML tags for pool specifications

A file defines each instance of a PoolSpec record. A pool specification defines
whether a connection pool supports connection pooling and defines properties
required to support connection pooling. The pool specification is nested within a
single <poolconfig> tag. Pool specification values are only used if connection
pooling is enabled. See the description of the <poolingenabled> tag for more
information.

The <hodpoolspec> tag is used to describe an HodPoolSpec record, and the
<dbpoolspec> tag is used to describe an DbPoolSpec record. Both objects have the
same set of properties with values defined using the set of nested tags described
below:

connecttimeout
The time, in seconds, for which a requester of a connection waits to acquire
a connection from the pool if no connections are available.

The value is an integer, either -1 or 0 or greater. The default is 120.

If connecttimeout is set to -1, the requester will wait forever.

Chapter 4. Host Publisher File formats 29

30

dbconnspec
A reference to a DbConnSpec specification in another file. This tag (with
different attributes) is used in .connspec files to define DbConnSpec
records.

hodconnspec
A reference to a HodConnSpec specification in another file. This tag (with
different attributes) is also used in .connspec files to define HodConnSpec
records.

hodlogonspec
A reference to a HodLogonSpec specification in another file. This tag (with
different attributes) is also used in .logonspec files to define
HodLogonSpec records.

localuserpool
A reference to a LocalUserPool specification in another file. This tag (with
different attributes) is used in .userpool files to define LocalUserPool
records.

maxbusytime
The time, in seconds, after which a connection is reclaimed, given the
assumption that the Integration Object that acquired the connection is
never going to release it.

The value is an integer, either -1 or 60 or greater. The default is -1.
If maxbusytime is set to -1, a busy connection is never reclaimed.

maxconnections
This is the maximum size of the pool. Once this many connections have
been created and all connections have been acquired, the next requester
will wait unless overflowallowed is set to true. In that case, a new
non-pooled connection is created.

The value is an integer. The default is 1.

maxidletime
The time, in seconds, after which a connection that is idle is removed from
the pool, if the number of connections in the pool exceeds minconnections.

The value is an integer, either -1 or 60 or greater. The default is —1.

If maxidletime is set to -1, an idle connection is never removed from the
pool.

minconnections
The number of active connections in the pool below which idle connections
are not disconnected, regardless of the value of maxidletime. This does not
imply that Host Publisher Server Administration will create that many
connections during initialization. The pool is populated on demand.

The value is an integer. The default is 0.

overflowallowed
If set to true, when a request is received for a connection and none is
available (because the maxconnections limit has been reached), a new
connection outside the pool is created. When this connection is released, it
is ended and discarded.

The value is boolean. The default is false.

poolingenabled
If set to true, connection pooling is enabled and a request to acquire a

IBM® WebSphere™ Host Publisher Programmer’s Guide and Reference

connection from the pool results in an already-initialized connection being

returned to the requester, if one is available. When the requester releases
this connection, it is returned to the pool for later use.

If set to false, connection pooling is disabled and a request to acquire a

connection from the pool results in a new connection being initialized and
returned to the requester. When the requester releases this connection, it is

ended and discarded.

Note: If connection pooling is disabled, the values of the following

properties are ignored:
* maxidletime

* maxbusytime

e connecttimeout

* minconnections

* maxconnections

¢ overflowallowed

The value is boolean. The default is true.

Examples: callup.poolspec

<?xml version="1.0" encoding="UTF-8" ?>

<IDOCTYPE poolconfig SYSTEM "poolconfig.dtd">

<poolconfig>

<hodpoolspec name="callup">
<hodconnspec refname="vmé6conn"/>
<hodlogonspec refname="vm6"/>
<localuserpool refname="vméusers"/>
<maxidletime value="600"/>
<minconnections value="10"/>
<maxconnections value="20"/>

<connecttimeout value="30"/>

<overflowallowed value="true"/>

</hodpoolspec>

</poolconfig>

puborder.poolspec

<?xml version="1.0" encoding="UTF-8" ?>

<IDOCTYPE poolconfig SYSTEM "poolconfig.dtd">

<poolconfig>

<hodpoolspec name="puborder">
<hodconnspec refname="vm6conn"/>
<hodlogonspec refname="vm6"/>
<localuserpool refname="vméusers"/>
<connecttimeout value="30">
<minconnections value="30"/>
<maxconnections value="40"/>

</hodpoolspec>

</poolconfig>

empdb.poolspec

<?xml version="1.0" encoding="UTF-8" ?>
<IDOCTYPE poolconfig SYSTEM "poolconfig.dtd">
<dbpoolspec name="empdb">
<dbconnspec refname="empdbh"/>
<localuserpool refname="empdbusers"/>
<connecttimeout value="20">
<minconnections value="5"/>

Chapter 4. Host Publisher File formats

31

32

<maxconnections value="10"/>
</dbpoolspec>
</poolconfig>

XML Tags for logon and logoff specifications

A file defines each HodLogonSpec record.The logon specification defines
information required by Host On-Demand for logging on and off a connection to a
host. This file is only pertinent to Integration Objects created by the Host Access
application. The <hodlogonspec> tag is used to describe an HodLogonSpec record,
and is nested within a single <logonconfig> tag. The following XML tags
correspond to properties of an HodLogonSpec record.

checkinscreendesc
This value is only applicable if connection pooling is enabled. This is a
string representation of a com.ibm.eNetwork.ECL.ECLScreenDesc object
that is constructed in the Host Publisher Studio. When a connection is
returned to Host Publisher Server, the Server checks the current screen
against this screen description. If the current screen and this screen
description match, the connection is returned to the pool. If the current
screen and this screen description do not match, connection recovery might
be initiated.

This string value is mandatory if connection pooling is enabled.

logoffmacro
References a file containing the Host On-Demand disconnect macro (in
Host On-Demand 4.0-defined XML format). A disconnect macro may not
be needed if the Integration Object’s data macro includes disconnect
actions or if certain public domain hosts do not need a disconnect step.

This file reference value is optional.

logonmacro
References a file containing the Host On-Demand connect macro (in Host
On-Demand 4.0-defined XML format). A connect macro may not be needed
if the Host Access Integration Object’s data macro includes connect actions
or if certain public domain hosts do not need a connect step.

This file reference value is optional.

Example: This is the file vié6.logon. In the example, the file names have been

derived from the record name by adding a standard suffix.

<?xml version="1.0"?>

<IDOCTYPE logonconfig SYSTEM "logonconfig.dtd">

<logonconfig>

<hdlogonspec name="vm6">

<logonmacro filename="vm6_logon.macro"/>

<logoffmacro filename="vm6 logoff.macro"/>
<checkinscreendesc value="vm6_checkin.screen"/>

</hodlogonspec>

</Togonconfig>

XML Tags for user pool specifications
A user pool is a list of user ID/password pairs that are used by a connection pool
to make a connection. A file is used to define each LocalUserPool record.

For hosts that allow a user ID/password pair to be used by simultaneous multiple
connections (for example, AS/400s and JDBC databases), the user pool typically
has one entry. If more than one entry is specified for such a connection, Host

IBM® WebSphere™ Host Publisher Programmer’s Guide and Reference

Publisher Server ignores the other entries when selecting user ID/password pairs
for logging on to the connection, because it will always use the first connection.

For hosts that do not allow a user ID/password pair to be used by simultaneous
multiple connections (for example, 3270 hosts running VM), the Server manages
the user pool by locking user ID/password pairs that are currently in use. A
subsequent request for a connection uses a userID/password pair that is not
locked.

The user pool record can be used to store more than just user IDs and passwords.
You can associate other properties with user IDs as well as passwords. For
instance, you might have a user ID that requires an additional password to log on
to another application as part of the session priming process. In this case, the user
pool would contain a list of user ID/password pairs with an additional password
property associated with each user ID entry. Each property defined in the user
pool can be encrypted, except the user ID, and each property can use a different
level of encryption.

The <schema> tag defines each property that should appear in each entry in the
user list, and the encryption level for each property.

The <localuserpool> tag describes a LocalUserPool record, and is nested within a
single <userconfig> tag. Multiple <entry> tags are used to define the database
entries, one for each user ID, password, and any other properties, using
<property> tags.

The <localuserpool> tag has an optional session attribute. If the session attribute
is present with a value that is not null, at least one property in the user pool is
strongly encrypted. The value for the session attribute is set when a user of Host
Publisher Studio transfers a user pool to the server and selects strong encryption.
The user is prompted for a password to be used for strong encryption. When a
Web application containing a strongly encrypted user pool is deployed on the
Server, the password the user specified for strong encryption must be specified
when the Server is restarted. Without this password, the Server cannot be restarted.
This password is also required by Host Publisher Server Administration when an
administrator modifies the strongly encrypted user pool. If another user pool is
created with a property that requires strong encryption, and is to be deployed to
the same server, the same password must be specified to encrypt that user pool.
The Host Publisher Server can only have one startup password, so the same
password must be used by all strongly encrypted user pools that are to be
deployed to the same server. If weak encryption is used, no password is required.

Examples of User Pool Definitions: vmeé6users.userpool

<?xml version="1.0" encoding="UTF-8"?>
<IDOCTYPE userconfig SYSTEM "userconfig.dtd">
<userconfig>
<schema>
<defineproperty encrypt="0" name="_userid"/>
<defineproperty encrypt="0" name="app_password"/>
<defineproperty encrypt="0" name="_password"/>
</schema>
<localuserpool name="nmOlusers">
<entry key="vméUserid0l">
<property name="userid" value="vméUserid0l"/>
<property name="_password" value="vm6Password0l"/>
<property name="app_password" value="apppwl"/>
</entry>
<entry key="vméUserid02">

Chapter 4. Host Publisher File formats 33

<property name="userid" value="vméUserid02"/>
<property name="_password" value="vm6Password02"/>
<property name="app_password" value="apppw2"/>
</entry>
</1ocaluserpool>
</userconfig>

empdbusers.userpool

<?xml version="1.0" encoding="UTF-8"?>
<IDOCTYPE userconfig SYSTEM "userconfig.dtd">
<userconfig>
<userconfig>
<schema>
<defineproperty encrypt="0" name="_userid"/>
<defineproperty encrypt="2" name="_password"/>
</schema>
<localuserpool name="empdbusers"
session="AAEU2JptbII713UDqtdMHyu590xGde+p+oU8nxtjdMEisfJIpOCsSOMd4gUdpbU5y7kmRe">
<entry key="UserName5">
<property name="_userid" value="UserName5"/>
<property name="_password" value="00+n5wlW3mhej7KWpbh6SEw=="/>
</entry>
<entry key="UserName4'">
<property name="_userid" value="UserName4"/>
<property name="_password" value="h57h1X=hMr113baAuFhk9Q=="/>
</entry>
</1ocaluserpool>
</userconfig>

The application manifest file

34

This file describes, using XML, all the resources that a Host Publisher
Studio-generated application depends on. The application manifest lists the pool
configuration files, Integration Objects and other Java objects, and JSP and HTML
pages used by the application. The manifest is used by Host Publisher Server
during deployment to move files from the staging directory to the production
directory and is also used to remove applications and provide administrative
information.

All document parts that are private to an application, such as Web pages and
images, are copied to an application-specific subdirectory that mirrors the structure
in the Web pages. The Host Publisher Studio is not able to determine the location
of objects added by a developer if they are not stored using relative paths. For
example, if the developer adds HTML to include images using a URL that specifies
an HTTP:// URL, or the files are stored with absolute paths that do not exist on
the development machine, the Host Publisher Studio ignores these files when
transferring files to the Host Publisher Server. If the Host Publisher Studio can
locate the file, it is listed in the application manifest file as part of the list of files to
be transferred to the server.

There is one manifest file per application. Its name is derived from the application
name and should match the subdirectory name under the directory where
application-specific Web document files are transferred; for example, the
c:/HostPublisher/Server/staging/applications subdirectory, where
c:/HostPublisher is the directory where Host Publisher is installed. The file has the
extension .application, and it is located in the application-specific subdirectory.
During deployment the manifest file is moved to the
c:/HostPublisher/Server/production/appmanifests subdirectory.

IBM® WebSphere™ Host Publisher Programmer’s Guide and Reference

XML Tags for the application manifest

There are three main categories of tags in this file, which are used to reference the
parts of an application:

* The <hodpoolspec> and <dbpoolspec> tags are used to identify one or more
connection pools used by the application. These tags identify a connection pool
specification file that has been placed in the staging/shared directory during the
transfer step. The connection pool specification file is used to identify all other
files that together define the pool characteristics.

¢ The <bean> and <beandir> tags are used to reference the Java objects (for
example, Integration Objects) that are used by the application. Either a specific
class or JAR file, or an entire directory of class files, can be specified. All
directory names are relative to the staging/shared directory where Java files are
transferred.

¢ The <document> and <documentdir> tags are used to reference all the Web
document parts (HTML, JSP, GIF, JPEG, and other files) that are used by the
application. Either a specific file, or an entire directory of files, can be specified.
All directory names are relative to the application-specific subdirectory of the
staging/applications directory where the application’s Web document files are
placed during the transfer step.

Note: All Web document files in the application-specific subdirectory referenced
in the manifest are moved to the
c:/HostPublisher/Server/production/documents subdirectory during
deployment, where c:/HostPublisher is the directory where Host Publisher
is installed. During the file copy, the application-specific subdirectory is
also copied. The URLs used to access the Web pages must include the
application name.

The following example illustrates the contents of the application manifest for a
(host-based) application called callup. This file is called callup.application, and will
be in the c:/HostPublisher/Server/staging/applications/callup directory, where
c:/HostPublisher is the directory where Host Publisher is installed, after the transfer
to the server has been completed.

<?xml version="1.0"?>

<IDOCTYPE applconfig SYSTEM "applconfig.dtd">
<applconfig>

<hodpoolspec refname="callup">

<bean filename="com/xyzcorp/callup/callupl.class"/>
<bean filename="com/xyzcorp/callup/callup2.class"/>
<bean filename="xyzcorpmisc.jar"/>

<beandir name="com/xyzcorp/utils"/>

<l-- .java files too, for debugging on the server ? -->
<document filename="callupl.jsp/>

<document filename="callup2.jsp"/>

<document filename="startpage.html"/>

<document filename="errors/errorpage.html"/>
<documentdir name="images"/>

<!-- Entire directory contents should be published/deployed -->
</applconfig>

Directory contents before deployment
The following are the contents of the /var/HostPublisher/Server/staging
directory (for AIX) after the callup application is transferred to the server.

* The shared subdirectory contains the following directories/files:
— com/xyzcorp/callup/callupl.class
— com/xyzcorp/callup/callup2.class

Chapter 4. Host Publisher File formats 35

36

Xyzcorpmisc.jar
com/xyzcorp/utils/utill.class
com/xyzcorp/utils/util2.class

Configuration files that together define the connection poolspec for the callup
application.

- callup.poolspec

- vméconn.connspec
- vmeé.logonspec

- vmé6_logon.macro
- vmé6_logoff.macro
- vméusers.userpool
- vm6_checkin.screen

The applications/callup directory contains the following directories/files:

callupl.jsp, callup2.jsp

startpage.html

errors/errorpage.html

images/logo.gif, images/picl.jpg, images/pic2.jpg
callup.application

Directory contents after deployment
The following are the contents of the /var/HostPublisher/Server/production

directory (for AIX) after Host Publisher Server Administration has copied the files
from the staging directory during the deployment step.

The beans subdirectory contains the following directories/files:

com/xyzcorp/callup/callupl.class
com/xyzcorp/callup/callup2.class
Xyzcorpmisc.jar
com/xyzcorp/utils/utill.class
com/xyzcorp/utils/util2.class

The documents/callup subdirectory contains the following directories/files:

callupl.jsp, callup2.jsp

startpage.html

errors/errorpage.html

images/logo.gif, images/picl.jpg, images/pic2.jpg

The documents/poolspecs directory contains the following files:

callup.poolspec
vmeéconn.connspec
vmeé6.logonspec
vmé6_logon.macro
vmé6_logoff.macro
vmeéusers.userpool
vmé6_checkin.screen

The appmanifests directory contains the file callup.application.

IBM® WebSphere™ Host Publisher Programmer’s Guide and Reference

Macro script files

After a macro script (a .macro file) has been created using the Host Access
application, you might want to manually edit it. Manually editing macro scripts
should only be performed by advanced users.

Connect and disconnect macros created using Host Access are stored in the
Studio_Install_Dir\Studio\SessionDefs directory, where Studio_Install_Dir is the
Host Publisher installation directory for the Host Publisher Studio. Data macros are
stored in the \Studio\IntegrationObjects directory of the Host Publisher
installation directory.

Macro scripts can also be edited directly on the Server. The connect and disconnect
macros are stored in the Server Install Dir\Server\production\poolspecs
directory, where Server_Install_Dir is the Host Publisher Server installation
directory, and data macros are stored in the
Server_Install_Dir\Server\production\beans directory.

Caution: If the application is redeployed, changes made to the macro scripts on the
Server will be lost.

Macro editing tips

When you edit extract coordinates in a data macro, you need to modify the extract
coordinates in the Integration Object’s .hpi file to match the ones you updated in
the macro. After updating the .hpi file, use the Host Access application to
re-generate the Integration Object. If the extract coordinates in the data macro do
not match those in the .hpi file when the Integration Object runs, the data macro
extracts the data based on the macro’s updated coordinates, but the Integration
Object returns the data to your Web application based on the old coordinates. The
data in the resulting Web page might be incorrect.

Macro script syntax

This section is excerpted from the Host On-Demand Bean Reference. The rest of this
book is available on the Web, at

http:/ /www ibm com /software /network /hostondemand /library under “Host

Access Beans for Java”.

Introduction
The IBM Host On-Demand V4 Macro and MacroManager beans now use XML

because a macro is better suited to the state machine model (the main reason for
the move: XML is tailor made for a state machine).

The idea of a state machine may be fairly new to you. The idea behind a state
machine, especially in the IBM Host On-Demand macro context, is simple. Think
of how you use a host system from a terminal or a terminal emulator (like IBM
Host On-Demand). The process you follow when you interact with a host system
is illustrated in these steps:

1. The host sends an expected screen down to you at your terminal.
2. You look at and understand which screen is presented to you.

3. You take the required actions based on your understanding (type keystrokes,
and so forth).

4. Another screen is presented after these actions.

5. If you see the screen you expected, you do this all over again.

Chapter 4. Host Publisher File formats 37

http://www.ibm.com/software/network/hostondemand/library

38

6. If you do not see the screen you expected, call the help desk or handle the
error.

This is the idea behind a state machine in the Macro context (although the Macro
can’t call the help desk for you). The states are the screens you expect to see, and
you take actions on those screens to change from one state, or screen, to another.
That’s it, see a screen, perform the action, see the next screen. It is easier to
understand (and program) a macro with this approach than having several
if-then-else and do-while programming statements. Remember, see a screen,
perform the action, see the next screen.

Now that you understand that a macro is a series of screens with their actions
associated with them, take a look at how well suited XML is to coding a macro.
Here is an example of how to specify a connect macro:
<HAScript>
<screen name="Logon" startscreen="true">
<description>
<string value="Please Log on" casesense="true"/>
<cursor row="12" col="10"/>
</description>
<actions>
<prompt name="ID" row="12" col1="10" len="8"/>
<prompt name="Password" row="13" col="10" len="8"/>
<input value="[enter]"/>
</actions>
<nextscreens>
<nextscreen name="Logon.Complete"/>
</nextscreens>
</screen>
<HAScript>

These few lines of code demonstrate the power of this new syntax. All the screens
you expect to see for a task (like connecting) are coded within <screen> tags in
XML. You describe the screen in a <description> tag, specify the actions for the
screen in an <actions> tag, and specify the screen you want to see next in a
<nextscreens> tag.

With the above example, keep in mind that the actions happen in sequence. The
<screen> tag describes a logon screen with the text Please Log on on the screen
and the screen’s cursor position at row 12, column 10. If the macro logic sees a
screen matching this description, it prompts the user for an ID and password,
places the prompt results at the specified row and column positions, sends the
ENTER key, effectively connecting the user to the host. The <nextscreens> tag
specifies the name of another <screen> tag that appears later in the macro. If the
next screen does not appear, the macro logic returns an error.

Although there are a large number of valid XML tags, XML is not complicated. A
screen is specified with a description, actions, and the next screens. When a macro
is played and a screen matching the description appears, the actions are executed
for that screen and the macro logic monitors the host for any next screens
specified.

Macro Syntax
The following details each valid macro element:

pey

Ecomment]

Koiad

IBM® WebSphere™ Host Publisher Programmer’s Guide and Reference

[P

The following XML tags and their attributes are valid in the IBM Host On-Demand
Macro XML namespace. This description of the tags is structured like an actual
macro file.

Note: The tag and attribute values are not case sensitive.

Attention: All characters in a macro must be Unicode characters. Most text editors
support this by default, because they use the ASCII character set, which is at the
lower end of the Unicode character set.

<HAScript> tag: The <HAScript> tag is the main enclosing tag for the macro. All
other tags at this level that are not HAScript are ignored by the parser.

The attributes of the <HAScript> tag are:

name The name of the macro. This attribute is optional. The name can contain
any valid Unicode character.

description
The description of the macro. This attribute is optional. The description can
contain any valid Unicode character.

author The creator of the macro. This attribute is optional. The author can contain
any valid Unicode character.

creationdate
The date the macro was created. This attribute is optional. The creationdate
can contain any valid Unicode character. The date format is not checked.

promptall
This launches all prompts at the beginning of the macro. This attribute is
optional. The default is true. The value must be true or false.

pausetime
The sleep time in milliseconds initiated after a screen is matched. This is
used to let the host quiet down. This attribute is optional. The default is .2
seconds. The value must be a number.

Note: The maximum pause time is limited to the platform on which the
macro is running.

timeout
The allowable time in milliseconds between recognition events. If time

Chapter 4. Host Publisher File formats 39

expires, the macro goes into the error state. You can override this value in
the <nextscreens> element. The default is one minute. The value must be a
number.

Note: The maximum pause time is limited to the platform on which the
macro is running.

Example:

<HAScript name="Logon Macro" description="Logs me on" author="btwebb"
creationdate="12/29/1998" promptall="true" pausetime="500" timeout="10000" >

</HAScript>
<screen> tag: The <screen> tag is the enclosing tag for the screen.

The attributes of the <screen> tag are:

name The unique identifier for the screen. This attribute is mandatory and must
be a unique string among the other screen IDs. The name can contain any
valid Unicode character.

startscreen
If true, the screen should be the first screen seen. Any other screen
generates an error. This value must be true or false. This attribute is
optional. The default is false.

Note: There can be only one screen with the startscreen attribute set to
true.

stopscreen
If true, a match on the screen causes the macro to stop playing. You can
have multiple screens with the stopscreen attribute set to true. This value
must be true or false. This attribute is optional. The default is false.

transient
If true, the screen is handled as transient. Transient screens exist outside
the normal macro flow. They are matched after nontransient screens. If
you specify next screens in a transient screen, the next screens are
ignored. Use this attribute to specify a screen that can appear at any time
in the screen flow. This value must be true or false. This attribute is
optional. The default is false.

Example:
<screen name="screenl" startscreen="true" stopscreen="false" transient="false">

</screen>

<comment> tag: The <comment> tag for the screen. This can contain any valid
Unicode character.

There are no attributes for the <comment> tag.

Example:
<comment> ... </comment>

<description> tag: The <description> tag is the enclosing tag for the description
associated with the screen.

There are no attributes for the <description> tag.

40 1BM® WebSphere™ Host Publisher Programmer’s Guide and Reference

Example:
<description> ... </description>

<numfields> tag: The <numfields> tag defines the total number of fields on the
screen. This element is optional. The number of fields not used if not specified.

The attributes of the <numfields> tag are:

number
The field count. The value must be a number. This is a required tag.

optional
If true, recognition matching passes the element, if they and all other
description elements that are not optional match; or, if there are no
non-optional elements, and at least one optional element matches. The
value must be true or false. This element is optional. The default is false.

invertmatch
If true, recognition matching passes only if the screen does not match this
description element (boolean not operation). The value must be true or
false. These element is optional. The default is false.

Example:
<numfields number="10" optional="false" invertmatch="false" />

<numinputfields> tag: The <numinputfields> tag defines the total number of
input fields on the screen. This element is optional. The number of input fields is
not used if not specified.

The attributes of the <numinputfields> tag are:

number
The field count. The value must be a number. This is a required tag.

optional
If true, recognition matching passes the element, if they and all other
description elements that are not optional match; or, if there are no
non-optional elements, and at least one optional element matches. The
value must be true or false. This element is optional. The default is false.

invertmatch
If true, recognition matching passes only if the screen does not match this
description element (boolean not operation). The value must be true or
false. These element is optional. The default is false.

Example:
<numinputfields number="10" optional="false" invertmatch="false" />

<oia> tag: The <oia> tag specifies an operator information area (OIA) condition
to match. This element is optional. The default is to wait for inhibit status.

The attributes of the <oia> tag are:

status If NOTINHIBITED, the OIA must be uninhibited for a match to occur. If
DONTCARE, the OIA inhibit status is ignored. This has the same effect as
not specifying OIA at all. Valid values are NOTINHIBITED and
DONTCARE. This is a required tag.

optional
If true, recognition matching passes the element, if they and all other

Chapter 4. Host Publisher File formats 41

description elements that are not optional match; or, if there are no
non-optional elements, and at least one optional element matches. The
value must be true or false. This element is optional. The default is false.

invertmatch
If true, recognition matching passes only if the screen does not match this
description element (boolean not operation). The value must be true or
false. These element is optional. The default is false.

Example:
<oia status="NOTINHIBITED" optional="false" invertmatch="false" />

<string> tag: The <string> tag describes the screen based on a string.

The attributes of the <string> tag are:

value The string value. This value can contain any valid Unicode character. This
is a required tag.

row The starting row position for a string at an absolute position or in a
rectangle. The value must be a number. This value is optional. If not
specified, Macro logic searches the entire screen for the string. If specified,
col position is required. <erow> and <ecol> attributes can also be specified
to specify a string in a rectangular area.

Note: Negative values are valid and are used to indicate relative position
for the bottom of the screen (for example, -1 is the last row).

col The starting column position for the string at an absolute position or in a
rectangle. The value must be a number. This element is optional.

erow The ending row position for string in a rectangle. The value must be a
number. This element is optional. If both erow and ecol are specified,
string is in a rectangle.

ecol The ending column position for string in a rectangle. The value must be a
number. This element is optional. If both erow and ecol are specified,
string is in a rectangle.

casesense
If true, string comparison is case sensitive. The value must be true or false.
This element is optional. The default is false.

optional
If true, recognition matching passes the element, if they and all other
description elements that are not optional match; or, if there are no
non-optional elements, and at least one optional element matches. The
value must be true or false. This element is optional. The default is false.

invertmatch
If true, recognition matching passes only if the screen does not match this
description element (boolean not operation). The value must be true or
false. These element is optional. The default is false.

Examples:

<string value="hello" row="1" col="1" optional="false" invertmatch="false" />

<string value="hello" row="1" col="1" erow="11" ecol="11" casesense="false"
optional="false" invertmatch="false" />

<string value="hello" />

42 1BM® WebSphere™ Host Publisher Programmer’s Guide and Reference

<cursor> tag: The <cursor> tag describes the screen based on the position of the
cursor.

The attributes of the <cursor> tag are:

row The row position of the cursor. The value must be a number. This is a
required tag.

col The column position of the cursor. The value must be a number. This is a
required tag.

optional
If true, recognition matching passes the element, if they and all other
description elements that are not optional match; or, if there are no
non-optional elements, and at least one optional element matches. The
value must be true or false. This element is optional. The default is false.

invertmatch
If true, recognition matching passes only if the screen does not match this
description element (boolean not operation). The value must be true or
false. These element is optional. The default is false.

Example:
<cursor row="1" col="1" optional="false" invertmatch="false" />

<attrib> tag: The <attrib> tag describes the screen based on an attribute. This is
an advanced feature and should only be used if needed. Usually all the other
description elements are enough to describe a screen.

The attributes of the <attrib> tag are:

plane The plane value string that the attribute resides in. Valid values are
COLOR_PLANE, FIELD_PLANE, and EXFIELD_PLANE. This is a required
tag.

value The hex value string of the attribute. Example, value="0xA0". This is a
required tag.

row The row position of the attribute. The value must be a number. This is a
required tag.

col The column position of the attribute. The value must be a number. This is
a required tag.

optional
If true, recognition matching passes the element, if they and all other
description elements that are not optional match; or, if there are no
non-optional elements, and at least one optional element matches. The
value must be true or false. This element is optional. The default is false.

invertmatch
If true, recognition matching passes only if the screen does not match this
description element (boolean not operation). The value must be true or
false. These element is optional. The default is false.

Example:

<attrib value="0x01" row="1" col="1" plane="COLOR_PLANE" optional="false"
invertmatch="false" />

Chapter 4. Host Publisher File formats 43

44

<customreco> tag: The macro logic will call out to any custom recognition
listeners for the custom tag to have the listener do its own custom screen
recognition logic.

The attributes of the <customreco> tag are:

ID The unique identifier for the custom description element. Allows for
multiple custom elements. This can be any valid Unicode character. This is
a required tag.

Example:
<customreco id="idl" />

<actions> tag: The <actions> tag is the enclosing tag for the actions associated
with the screen.
The attributes of the <actions> tag are:

promptall
If this value is set to true, the macro bean will gather all prompts within
the current action tag and launch them as one prompt event. The value
must be true or false. This attribute is optional. The default is false.

Example:
<actions promptall="true"> ... <actions>

<prompt> tag: The <prompt> tag specifies a prompt to be handled for the screen.

The attributes of the <prompt> tag are:

row The row to place the prompt. The value must be a number. This is a
required tag.

col The column to place the prompt. The value must be a number. This is a
required tag.

len The length of the prompt. The value must be a number. This is a required
tag.

name The name of the prompt. This can be any valid Unicode character. This
element is optional.

description
The description of the prompt. This can be any valid Unicode character.
This element is optional.

default
The prompt’s default value. This can be any valid Unicode character. This
element is optional.

clearfield
This clears the host field on placement of prompt text. The value must be
true or false. This element is optional. The default is false.

encrypted
Use a password echo character. The value must be true or false. This
element is optional. The default is false.

xlatehostkeys
If true, host key mnemonics (example, [enter]) will be translated. For a list
of key mnemonics, see the Host Access online help. The value must be true

IBM® WebSphere™ Host Publisher Programmer’s Guide and Reference

or false. This attribute is optional. The default is false. If you do not have
this value set to true (which is normal because you wouldn’t ask users to
type key mnemonics), don’t forget to code an input tag after the prompt(s)
for the current actions to get the prompt data entered onto the host.

Example:

<prompt name="ID" row="1" col="1" len="8" description="ID for Logon"
default="btwebb" clearfield="true" encrypted="true"/>

<extract> tag: The <extract> tag specifies an extract to be handled for the screen.

The attributes of the <extract> tag are:

name The name of the extract. This can be any valid Unicode character. This
element is optional.

srow Upper left row of the bounding extract rectangle. The value must be a
number. This is a required tag.

scol The upper left column of the bounding extract rectangle. The value must
be a number. This is a required tag.

erow The lower right row of the bounding extract rectangle. The value must be a
number. This is a required tag.

ecol The lower right column of the bounding extract rectangle. The value must

be a number. This is a required tag.

Example:
<extract name="Get Data" srow="1" scol="1" erow="11" ecol="11" />

<input> tag: The <input> tag specifies keystrokes to be placed on the screen.

The attributes of the <input> tag are:

row The row position to send the keys. The value must be a number. This
element is optional. This defaults to current cursor position.

col The column position to send the keys. The value must be a number. This
element is optional. This defaults to current cursor position.

movecursor
The place the cursor at the end of the input string. The value must be true
or false. This element is optional. This defaults to false.

value The text that is sent to the screen. This can be any valid Unicode character.
This is a required tag.

xlatehostkeys
If true, host key mnemonics (example, [enter]) will be translated. The value
must be true or false. This element is optional. The default is true.

Example:

<input value="Your[tab]message[enter]" row="1" col="1" movecursor="true"
xlatehostkeys="true">

<message> tag: The <message> tag specifies a message to be sent to the user.

The attributes of the <message> tag are:

title The title to display in the message dialog. This can be any valid Unicode
character. This element is optional. This defaults to macro name.

Chapter 4. Host Publisher File formats 45

46

value The message to display in the dialog. This can be any valid Unicode
character. This is a required tag.

Example:
<message value="yourvalue" title="YourMessage" />

<trace> tag: The <trace> tag specifies a string to be sent to one of several trace
facilities.

The attributes of the <trace> tag are:

type The type can either be sent to IBM Host On-Demand’s trace facility, a user
trace event, or to the command line. Respectively, the types are
HODTRACE, USER, SYSOUT. This is a required tag.

Note: To aid in debugging and controlling Host Publisher macro
execution, set the type attribute to USER.
value The text that is sent to trace. This can be any valid Unicode character. This

is a required tag.

Example:
<trace value="hello" type="HODTRACE" />

<pause> tag: The <pause> tag causes the macro engine to sleep for the number of
milliseconds specified. This action is useful for pausing between several file
transfers.

The attributes of the <pause> tag are:
value The time to pause. The value must be a number (in milliseconds). This

element is optional. The default is 10000 milliseconds or 10 seconds.

Example:
<pause value="10000" />

<custom> tag: The <custom> tag enables the user to have an exit to Java code,
see Host On-Demand’s Java documentation for the MacroActionCustom class.

The attributes of the <custom> tag are:

id The ID of the callout code that the Macro bean will use. This can be any
valid Unicode character. This is a required tag.

args The argument string that can be passed to the callout. This can be any
valid Unicode character. This element is optional.

Example:
<custom id="customl" args="YourArgument" />

<nextscreens> tag: The <nextscreens> tag contains all the valid next screens to be
recognized after the current screen’s actions have been executed. No text is allowed
for the tag.

The attributes of the <nextscreens> tag are:

timeout
The allowable time in milliseconds that can elapse between current screen
and any next screen before the macro bean will go into the error state. This

IBM® WebSphere™ Host Publisher Programmer’s Guide and Reference

overrides the timeout attribute for the entire macro. The value must be a
number. This element is optional. The default is to use the overall macro
timeout.

Example:
<nextscreens> ... </nextscreens>

<nextscreen> tag: The <nextscreen> tag forces a next screen. Multiple
<nextscreen> tags are allowed. If a screen appears that is in the macro but is not a
next screen, the macro will go into an error state. If the next screen refers to a
screen tag that doesn’t exist, the macro will have a parse error.

The attributes of the <nextscreen> tag are:

name The name of the <screen> element that is the valid next screen. This can be
any valid Unicode character. This is a required tag.

Example:
<nextscreen name="screenl" />

<recolimit> tag: The <recolimit> tag is for advanced use only. It is used to
enforce a limited amount of time a screen can be recognized in a row before it
goes to the screen indicated in the goto attribute. This tag is useful for screen
looping where you know exactly how many times you’ll see a given screen in a
row. It also is a safeguard against infinite screen recognition. No text is allowed for
the tag.

The attributes of the <recolimit> tag are:

value The allowable number of times to recognize a screen. This value must be a
number. This is a required tag.

Note: The actions will not be executed the last time the screen is
recognized.

goto The name of the screen to go to when recognition limit has been reached.
This can be any valid Unicode character but the screen must exist in the
macro. This element is optional. If no goto screen is given, the macro
terminates.

Example:
<recolimit value="3" goto="endscreen"/>

A powerful macro
This section gets its name because the following example demonstrates how all of
the tags and their attributes can be used in a macro.

<HAScript name="Logon Macro" description="Logs me on" author="btwebb"
creationdate="12/29/1998" promptall="false" pausetime="500" timeout="10000">
<screen name="Logon" startscreen="true">
<comment>
The screen description and actions for this screen demonstrate
how to use everything. Normally, a screen tag would not be so full.
</comment>
<description>
<oia status="NOTINHIBITED" optional="false" invertmatch="false" />
<string value="Please Log on" casesensitive="true"/>
<cursor row="12" col="10"/>
<numinputfields number="2" optional="false" invertmatch="false" />
<numfields number="10" optional="false" invertmatch="false" />
<string value="Welcome" row="1" col="1" optional="false"
invertmatch="false"/>
<string value="Enter ID" row="1" col="1" erow="11" ecol="11" casesense="false" optional="false"
invertmatch="false" />
<string value="USERID" />

Chapter 4. Host Publisher File formats 47

48

<attrib value="0x01" row="1" col="1" plane="COLOR_PLANE" optional="false" invertmatch="false" />

<customreco id="logon" />
</description>
<actions promptall="true">

<prompt name="ID" row="11" col="10" len="8" description="ID for Logon"

default="btwebb" clearfield="true" encrypted="true" />

<prompt name="Password" row="13" col="10" len="8"/>

<extract name="Get Data" srow="1" scol="1" erow="11" ecol="11" />

<message value="YourMessage" title="Message" />

<trace value="logging on" type="HODTRACE" />

<custom id="Togon" args="YourArgument" />

<input value="[enter]" movecursor="true" xlatehostkeys="true"/>
</actions>
<nextscreens timeout="20000" />

<nextscreen name="Logon.Complete"/>
</nextscreens>
</screen>
<screen name="Logon.Complete" stopscreen="true">
<comment>

This screen just checks to see if we're logged on OK then hits the ENTER key.

Because it is a stop screen we don't have to specify any nextscreens tag.
</comment>
<description>

<oia status="NOTINHIBITED" optional="false" invertmatch="false" />

<string value="Logon Successful, hit ENTER to continue" casesensitive="true"/>
</description>
<actions>

<input value="[enter]"/>
</actions>
</screen>
<screen name="MessageReceived" transient="true">
<comment>

This screen demonstrates the idea of a transient screen. Say our host system can send us

asynchronous messages while we're lTogging on, we just want to clear them. This screen

handles this and is valid anytime a message screen appears. No nextscreens needed here.
</comment>
<description>

<oia status="NOTINHIBITED" optional="false" invertmatch="false" />

<string value="Message received, hit CLEAR to continue"/>
</description>
<actions>

<input value="[clear]"/>
</actions>
</screen>
</HAScript>

Recolimit Demonstration
This macro demonstrates how to extract a list that exists on multiple screens using
the recolimit and invertmatch attributes. The behavior of this macro is as follows:

1. Assume we get to the ExtractScreen.Main screen (recolimit is 1)

2. Data is extracted and PFS8 is sent to page down

3. The ExtractScreen.Main is matched again (recolimit is 2), and so on
4

If recolimit becomes 25, meaning that ExtractScreen.Main was recognized 25
times, the actions for ExtractScreen.Main will not be executed the 25th time.
Instead, the actions for ExtractScreen.Complete will be executed. The actions
are not executed for ExtractScreen.Main to keep from extracting twice if the
ExtractScreen.Complete screen is reached before the recolimit is reached.

5. If ExtractScreen.Complete is matched before the recolimit reaches 25, then we’ll
just get all the data in the system.

<HAScript name="Extracter Macro" description="Gets me data from a 1ist" author="btwebb"
creationdate="12/29/1998" promptall="false" pausetime="500" timeout="10000">

<screen name="ExtractScreen.Main">

<comment>
We'll assume there would be other screens that log us on and get us to this point.
This screen is the main extraction screen, and extracts data only if there is no
blank Tine at the bottom of the screen indicating there isn't anymore data
(invertmatch="true"). To be safe we'll apply a recolimit of 25. This screen does
an extract, then pages down with PF8.

</comment>

<description>

<oja status="NOTINHIBITED" optional="false" invertmatch="false" />

<string value="Data Screen"/>

<string value=" " row="24" col="1" erow="24" ecol="11" invertmatch="true" />

</description>

<actions promptall="true">
<extract name="Get Data" srow="2" scol="1" erow="24" ecol="80" />
<input value="[pf8]"/>

</actions>

IBM® WebSphere™ Host Publisher Programmer’s Guide and Reference

<nextscreens timeout="20000">

<nextscreen name="ExtractScreen.Main"/>

<nextscreen name="ExtractScreen.Complete"/>
</nextscreens>
<recolimit value="25" goto="ExtractScreen.Complete"/>
</screen>
<screen name="ExtractScreen.Complete">
<comment>

This screen is the final extraction screen, and extracts data and sends an exit command.

Note: It is only different from the main screen in that the blanks must be there.

Assume there would be other screens to take care of logging off.
</comment>
<description>

<oia status="NOTINHIBITED" optional="false" invertmatch="false" />

<string value="Data Screen"/>

<string value=" " row="24" col="1" erow="24" ecol="11"/>
</description>
<actions promptall="true">

<extract name="Get Data" srow="2" scol="1" erow="24" ecol="80" />

<input value="exit[enter]"/>
</actions>
<nextscreens timeout="20000">

<nextscreen name="ExtractScreen.Complete"/>
</nextscreens>
</screen>
</HAScript

The server.properties file

The server.properties file is a Java properties file that contains Host Publisher
Server settings. The file is created when Host Publisher Server is installed. The
server.properties file is primed with default values when you start the Host
Publisher Server for the first time. The server.properties file is written to the Server
directory of the Host Publisher installation directory on the server. When you use
Host Publisher Server Administration to make changes, the values you specify are
written to the server.properties file.

If no value is specified for any of the properties listed below, Host Publisher uses
the default value defined for that property.

In addition to using Host Publisher Server Administration to update this file, you
can edit the server.properties file manually to make changes to the server settings.
If you manually edit the file, you should restart the server to ensure that the
changes you make take effect.

The server.properties file contains the following properties:

num_licenses
Specifies the number of licenses you purchased.

The value is an integer. The default is 1.
Specify num_licenses = -1 if you purchased an unlimited license.
licenseTracking

Specifies whether Host Publisher tracks license usage or not.

Note: You can only modify this property by editing the server.properties

file.
0 Host Publisher does not track license usage.
1 Host Publisher tracks license usage. The Host Publisher Server

tracks the number of Host Publisher connections to host or
database resources and logs a message when the value exceeds the
number of licenses purchased. The license usage information is

Chapter 4. Host Publisher File formats 49

50

written to a file named licenseX.txt in the Tog directory of the Host
Publisher installation directory on the server, where the X is either
1or2.

The maximum size of the license usage files is 512 KB. When the
file size of the licensel.txt file reaches 512KB or if the Host
Publisher Server is restarted, the file is renamed to license2.txt, and
a new licensel.txt file is created. The new licensel.txt file contains
the most recent license usage information. When the new
licensel.txt reaches 512KB and is renamed, the old license2.txt is
deleted.

The license usage files contain the following information, arranged
in rows, with one row per hour. The values are separated by a
comma (,).

1. Date

2. Time

3. The highest license count since the server was started
4

. The highest license count in the last hour (the maximum of the
last 60 entries)

5. The license count for each minute (1-60)

The value is binary. The default is 0.

%logFile

Specifies the path and file name of the file to which messages are written.
A backslash in the path should be specified with a double slash (\\).

maxLogFiles

Specifies the maximum number of files for messages.

Note: You can modify this property only by editing the server.properties
file.

In the server.properties file:
1. Set maxLogFiles to the desired number.
2. Optionally, set maxLogFileSize in kilobytes. The default is 512 KB.

The algorithm Host Publisher Server uses to create additional log files
when the file in use is full, is as follows: once the log file becomes full for
the first time, it is renamed by adding a 1 to the end of the name. For
example, messages.txt becomes messagesl.txt. As the size of the file grows,
the following takes place:

1. Host Publisher writes to messages1.txt until it reaches maxLogFileSize.

2. Host Publisher closes and renames the messages1.txt file to
messages2.txt. Host Publisher opens a new file named messages1.txt
and starts logging to that file.

3. When messagesl.txt is full, Host Publisher renames it to messages2.txt,
renames messages2.txt to messages3.txt, and opens a new messagesl.txt
file and starts logging to that file.

4. When the maxLogFiles number is exceeded, Host Publisher deletes the
oldest file, which is the file with the highest number.

There are never more files than the number set for maxLogFiles. For
example, if maxLogFiles is 3 and maxLogFileSize is 1000, Host Publisher
Server eventually creates three log files named messagesl.txt,

IBM® WebSphere™ Host Publisher Programmer’s Guide and Reference

messages2.txt, and messages3.txt. The most recent log entries appear in
messagesl.txt, and its size is less than 1000 kilobytes. The older log entries
appear in messages2.txt and messages3.txt, and each of these files is
approximately 1000 kilobytes in size. All log entries older than those
contained in messages3.txt have been discarded.

The value is an integer. The default is 2.

maxLogFileSize
Specifies the maximum size, in kilobytes, that a message log file reaches
before an additional log file is opened.

Note: You can only modify this property by editing the server.properties
file.

The value is an integer. The default is 512 KB.

%traceFile
Specifies the path and file name of the file to which traces are written. A
backslash in the path should be specified with a double slash (\\).

maxTraceFiles
Specifies the maximum number of files for trace information.

Note: You can only modify this property by editing the server.properties
file.

In the server.properties file:
1. Set maxTraceFiles to the desired number.
2. Optionally, set maxTraceFileSize in kilobytes. The default is 512.

The algorithm Host Publisher Server uses to create additional trace files
when the file in use is full, is as follows: once the trace file becomes full for
the first time, it is renamed by adding a 1 to the end of the name. For
example, trace.txt becomes tracel.txt. As the size of the file grows, the
following takes place:

1. Host Publisher writes to tracel.txt until it reaches maxTraceFileSize.

2. Host Publisher closes and renames the tracel.txt file to trace2.txt. Host
Publisher opens a new file named tracel.txt and starts tracing to that
file.

3. When tracel.txt is full, Host Publisher renames it to trace2.txt, renames
trace2.txt to trace3.txt, and opens a new tracel.txt file and starts tracing
to that file.

4, When the maxTraceFiles number is exceeded, Host Publisher deletes
the oldest file, which is the file with the highest number. There are
never more files than the number set for maxTraceFiles.

The value is an integer. The default is 2.

maxTraceFileSize
Specifies the maximum size, in kilobytes, that a trace file reaches before an
additional trace file is opened.

Note: You can only modify this property by editing the server.properties
file.

The value is an integer. The default is 512 KB.

Chapter 4. Host Publisher File formats 51

52

%logMask
Specifies the types of messages that are logged. Add the values for each of
the following message types to determine the value for this property:

1 Informational messages
2 Warning messages
4 Error messages

The value is a decimal integer. The default is 4.

Note: Error messages are always logged.

Y%traceMask
Specifies the types of traces for the Server and the Integration Objects. This
property does not affect JDBC or Host On-Demand tracing. Add the values
for each of the following traces to determine the value for this property:

1 API traces
4 Entry and exit traces
16 Miscellaneous traces

The value is a decimal integer. The default is 0.

%HODDisplayTerminal
Specifies whether Host On-Demand displays a terminal window for each
connection or not.

0 Host On-Demand does not display a terminal window for each
connection.
1 Host On-Demand displays a terminal window for each connection.

The value is binary. The default is 0.

%HODMacroTracingLevel
Specifies the level of tracing for the Host On-Demand macros.

The value is an integer in the range 0 to 3, where 3 is the maximum level
of tracing. The default is 0, which means there is no tracing.

%HODPSTracingLevel
Specifies the level of tracing for the Host On-Demand presentation space.

The value is an integer in the range 0 to 3, where 3 is the maximum level
of tracing. The default is 0, which means there is no tracing.

%HODTransportTracingLevel
Specifies the level of tracing for the Host On-Demand transport.

The value is an integer in the range 0 to 3, where 3 is the maximum level
of tracing. The default is 0, which means there is no tracing.

%JDBCTracing
Specifies how much JDBC activity Host Publisher traces.

0 Host Publisher does not trace JDBC activity.
1 Host Publisher traces all JDBC activity in the application server.

The value is binary. The default is 0.

IBM® WebSphere™ Host Publisher Programmer’s Guide and Reference

%runtimeTracing
Specifies whether Host Publisher traces runtime activity or not.

0 Host Publisher does not trace runtime activity.

1 Host Publisher does trace the runtime activity.

The value is binary. The default is 0.

%HPAdminFile
Specifies the path and file name of the file that defines the Host Publisher
Server Administration main page. You should never change this value.

autoDeploy
Specifies whether Host Publisher deploys applications that have been
transferred to the server when the server is started.

0 You must deploy published applications manually using Host
Publisher Server Administration.

1 Host Publisher deploys applications automatically when the server
is started.

The value is binary. The default is 0.

Chapter 4. Host Publisher File formats 53

54 1BM® WebSphere™ Host Publisher Programmer’s Guide and Reference

Appendix A. Notices

This information was developed for products and services offered in the U.S.A.
IBM may not offer the products, services, or features discussed in this document in
other countries. Consult your local IBM representative for information on the
products and services currently available in your area. Any reference to an IBM
product, program, or service is not intended to state or imply that only that IBM
product, program, or service may be used. Any functionally equivalent product,
program, or service that does not infringe any IBM intellectual property right may
be used instead. However, it is the user’s responsibility to evaluate and verify the
operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter
described in this document. The furnishing of this document does not give you
any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation

North Castle Drive
Armonk, NY 10504-1785
US.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM
Intellectual Property Department in your country or send inquiries, in writing, to:

IBM World Trade Asia Corporation
Licensing

2-31 Roppongi 3-chome, Minato-ku
Tokyo 106, Japan

The following paragraph does not apply to the United Kingdom or any other
country where such provisions are inconsistent with local law:
INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS
PUBLICATION “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER
EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS
FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of express or
implied warranties in certain transactions, therefore, this statement may not apply
to you.

This information could include technical inaccuracies or typographical errors.
Changes are periodically made to the information herein; these changes will be
incorporated in new editions of the publication. IBM may make improvements
and/or changes in the product(s) and/or the program(s) described in this
publication at any time without notice.

Any references in this information to non-IBM Web sites are provided for
convenience only and do not in any manner serve as an endorsement of those Web
sites. The materials at those Web sites are not part of the materials for this IBM
product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it
believes appropriate without incurring any obligation to you.

© Copyright IBM Corp. 2000 55

Licensees of this program who wish to have information about it for the purpose
of enabling: (i) the exchange of information between independently created
programs and other programs (including this one) and (ii) the mutual use of the
information which has been exchanged, should contact:

IBM Corporation
TL3B/062

3039 Cornwallis Road
RTP, NC 27709-2195
US.A.

Such information may be available, subject to appropriate terms and conditions,
including in some cases, payment of a fee.

The licensed program described in this information and all licensed material
available for it are provided by IBM under terms of the IBM Customer Agreement,
IBM International Program License Agreement, or any equivalent agreement
between us.

Information concerning non-IBM products was obtained from the suppliers of
those products, their published announcements or other publicly available sources.
IBM has not tested those products and cannot confirm the accuracy of
performance, compatibility or any other claims related to non-IBM products.
Questions on the capabilities of non-IBM products should be addressed to the
suppliers of those products.

This information contains examples of data and reports used in daily business
operations. To illustrate them as completely as possible, the examples include the
names of individuals, companies, brands, and products. All of these names are
fictitious and any similarity to the names and addresses used by an actual business
enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which
illustrates programming techniques on various operating platforms. You may copy,
modify, and distribute these sample programs in any form without payment to
IBM, for the purposes of developing, using, marketing or distributing application
programs conforming to the application programming interface for the operating
platform for which the sample programs are written. These examples have not
been thoroughly tested under all conditions. IBM, therefore, cannot guarantee or
imply reliability, serviceability, or function of these programs. You may copy,
modify, and distribute these sample programs in any form without payment to
IBM for the purposes of developing, using, marketing, or distributing application
programs conforming to IBM’s application programming interfaces.

If you are viewing this information softcopy, the photographs and color
illustrations may not appear.

Programming interface information

This User’s Guide contains information on intended programming interfaces that
allow the customer to write programs to obtain the services of Host Publisher.

56 IBM® WebSphere™ Host Publisher Programmer’s Guide and Reference

Appendix B. Trademarks

The following terms are trademarks of the IBM Corporation in the United States or
other countries or both:

o AIX

* DB2 Universal Database
* IBM

* 0S/390

* VisualAge

* WebSphere

Other company, product, and service names may be trademarks or service marks
of others.

ActionMedia, LANDesk, MMX, Pentium and ProShare are trademarks of Intel
Corporation in the United States, other countries, or both.

(For a complete list of Intel trademarks see http:/ /www.intel.com/tradmarx.htm)
Adobe is a trademark of Adobe Systems, Incorporated.

C-bus is a trademark of Corollary, Inc. in the United States, other countries, or
both.

DIGITAL is a trademark of Digital Equipment Corporation.

Java and all Java-based trademarks are trademarks of Sun Microsystems, Inc. in the
United States, other countries, or both.

Lotus and Domino are trademarks or registered trademarks of Lotus Development
Corporation.

Microsoft, Windows, Windows NT, and FrontPage are trademarks or registered
trademarks of Microsoft Corporation in the United States, other countries, or both.

Netscape is a registered trademark of Netscape Communications Corporation in
the United States and other countries.

NetWare, Novell Installation Services (NIS), and NetWare Enterprise Web Server
are registered trademarks of Novell in the United States and other countries.

Oracle is a registered trademark of Oracle Corporation.

PC Direct is a trademark of Ziff Communications Company in the United States,
other countries, or both and is used by IBM Corporation under license.

Sybase and its corresponding logo are property of Sybase, Inc.

UNIX is a registered trademark in the United States and other countries licensed
exclusively through The Open Group.

© Copyright IBM Corp. 2000 57

SET and the SET Logo are trademarks owned by SET Secure Electronic Transaction
LLC. For further information see http://www.setco.org/aboutmark.html.

Visual Café is a trademark of Symantec Corporation in the United States, other
countries, or both.

JAVA

58 IBM® WebSphere™ Host Publisher Programmer’s Guide and Reference

Index

Special Characters

%HODDisplayTerminal tag 52
%HODMacroTracingLevel tag 52
%HODPSTracingLevel tag 52
%HODTransportTracingLevel tag 52
%HPAdminFile tag 53
%]DBCTracing tag 52
%logFile tag 50
%logMask tag 51
Y%runtimeTracing tag 52
%traceFile tag 51
Y%traceMask tag 52
.application, application manifest file 26
.connspec, connection specification
file 26
.hpa, Host Publisher application file 20
hpi, Integration Object project file 17
java, Integration Object source file 21
Jogonspec, logon specification file 26
.macro, macro files 26
.poolspec, connection pool specification
file 26
.screen, checkin screen description
file 26
.userpool, user pool specification file 26

A

ACTION attribute
FORM tag 23
actions tag 44
additional information v
application, using
to invoke an Integration Object 3
application manifest (.application)
file 26
application manifest file 34
example 35
application manifest tags
bean 35
beandir 35
dbpoolspec 35
document 35
documentdir 35
hodpoolspec 35
args attribute
custom tag 46
attrib tag 43
attributes
ACTION
FORM tag 23
args
custom tag 46
author
HAScript tag 39
casesense
string tag 42
clearfield
prompt tag 44
col
attrib tag 43

© Copyright IBM Corp. 2000

attributes (continued)

col (continued)

cursor tag 43

input tag 45

prompt tag 44

string tag 42
CREATE

BEAN tag 22
creationdate

HAScript tag 39
default

prompt tag 44
description

HAScript tag 39

prompt tag 44
ecol

extract tag 45

string tag 42
encrypted

prompt tag 44
EndState name

SessionChain tag 19
erow

extract tag 45

string tag 42
filename

HODMacro tag 18
goto

recolimit tag 47

id

custom tag 46
ID

customreco tag 44
INTROSPECT

BEAN tag 23
invertmatch

attrib tag 43

cursor tag 43

numfields tag 41

numinputfields tag 41

oia tag 42

string tag 42
len

prompt tag 44
METHOD

FORM tag 23
movecursor

input tag 45
MULTIPLE

SELECT tag 25
name

com.ibm.HostPublisher.IntegrationObject

tag 18

extract tag 45
HAScript tag 39
JDBCDriver tag 18
JDBCUrl tag 18
nextscreen tag 47
OutputVariable tag 18
Package tag 19
prompt tag 44

attributes (continued)

name (continued)

screen tag 40

SubVariable tag 19
NAME

BEAN tag 23

INPUT tag 24

SELECT tag 25
number

numfields tag 41

numinputfields tag 41
optional

attrib tag 43

cursor tag 43

numfields tag 41

numinputfields tag 41

oia tag 41

string tag 42
pausetime

HAScript tag 39
plane

attrib tag 43
PoolName

Session tag 19
Position

SessionChain tag 19
promptall

actions tag 44

HAScript tag 39
RelativeCoordinates

SubVariable tag 19
row

attrib tag 43

cursor tag 43

input tag 45

prompt tag 44

string tag 42
scol

extract tag 45
SCOPE

BEAN tag 23
ScreenCoordinates

OutputVariable tag 18
SIZE

SELECT tag 25
Srow

extract tag 45
startscreen

screen tag 40
StartState name

SessionChain tag 19
status

oia tag 41
stopscreen

screen tag 40
timeout

HAScript tag 39

nextscreens tag 46
title

message tag 45

59

attributes (continued) connection pool specification (.poolspec) file locations

transient file 26 after deployment 36
screen tag 40 connection specification (.connspec) before deployment 35
type file 26 filename attribute
com.ibm.HostPublisher.IntegrationObjeconnection specification file HODMacro tag 18
tag 18 example 29 files
OutputVariable tag 18 connecttimeout tag 28, 29 .connspec 1
SubVariable tag 19 connspec file 1 .poolspec 1
trace tag 46 conventions, XML tag 27 .userpool 1
TYPE CREATE attribute habeansnlvjar 2
BEAN tag 23 BEAN tag 22 HpRtejar 2
INPUT tag 24 creationdate attribute HPubCommongjar 2
value HAScript tag 39 jsdkjar 2
attrib tag 43 cursor tag 43 rasjar 2
input tag 45 custom tag 46 SC.INI 2
message tag 45 customreco tag 44 Server
pause tag 46 server.properties 49
recolimit tag 47 Studio
string tag 42 D application manifest 34
trace tag 46 dbconnspec tag 29 application manifest
VALUE dbpoolspec tag 35 (-application) 26
INPUT tag 24 default attribute checkin screen description
xlatehostkeys prompt tag 44 (.screen) 26
input tag 45 deployment connection pool specification
prompt tag 44 file locations after 36 (.poolspec) 26
author attribute file locations before 35 connection specification
HAScript tag 39 description attribute (:connspec) 26
autoDeploy tag 53 HAScript tag 39 Host Publisher application (-hpa
prompt tag 44) 20
description tag 40 Integration Object project
B disconnecttimeout tag 28 (hpi) 17
bean tag 35 document tag 35 Intggration Object source
beandir tag 35 documentation, additional v (java) 21
BeanInfo tab 2 documentdir tag 35 JavaServer Pages (JSP) Web
drivername tag 28 page 21
logon specification
C (logonspec) 26
] E macro (.macro) 26
casesense attribute . user pool specification
string tag 42 ecol attribute (userpool) 26
checkin screen description (.screen) ext.ract tag 45 xml4j_wsjar 2
file 26 .s.trmg tag 42 files, editing 17
checkinscreendesc tag 32 edltf{r;g 17 files, macro 26
Classsgiilﬂ) r;siros manually 37 frequently asked questions vi
clearfield attribute server.properties file 49
prompt tag 44 encrypted attribute G
col attribute prompt tag 44 .
attrib tag 43 EndState name attribute goto amtlbl.lte
cursor tag 43 SessionChain tag 19 recolimit tag 47
input tag 45 entry tag 33
prompt tag 44 erow attribute
string tag 42 extract tag 45 H
comment tag 40 string tag 42 habeansnlvijar file 2
common files, Host Publisher Studio example HAScript tag 39
jsdkjar 2 application manifest 35 HOD connection macro
xml4j_wsjar 2 complete HOD macro 47 example 32
common files, Server connection specification file 29 HOD logon macro
habeansnlvjar 2 HOD connection macro 32 example 40
HpRtejar 2 HOD logon macro 40 hodconnspec tag 30
HPubCommon jar 2 pool specification file 31 hodlogonspec tag 30
rasjar 2 recolimit 48 hodpoolspec tag 35
complete HOD macro user pool definition file 33 Host On-Demand
example 47 extract tag 45 connection files 28
connection pool specification logon and logoff specification 32
connspec file 1 F Host On-Demand connection
poolspec file 1 specification tags
userpool file 1 FAQs vi connecttimeout 28

60 IBM® WebSphere Host Publisher Programmer’s Guide and Reference

Host On-Demand connection
specification tags (continued)

disconnecttimeout 28
sessionprops 28
singlelogon 28

Host Publisher
Web site address vi

Host Publisher application (.hpa) file 20
sample 20

Host Publisher application (.hpa) file tags
appl_name 20
execution_method 20
input 20
input_properties 20
integration_object 21
obj_name 21
output 21
output_properties 21
page 21

Host Publisher Studio, common files
jsdkjar 2
xml4j_wsjar 2

HostConnection JavaBean 12

HpRtejar file 2

HPubCommon jar file 2

IBM VisualAge for Java 1
setting up 2
Type Browser
BeanInfo tab 2
id attribute
custom tag 46
ID attribute
customreco tag 44
IDE
IBM VisualAge for Java 1
Symantec Visual Café 1
idx value 25
information, additional v
input tag 45
integrated development environment
(IDE)
IBM VisualAge for Java 1
Symantec Visual Café 1
Integration Object
connection pool specification
connspec file 1
poolspec file 1
userpool file 1
data in XML format 14
JAR file 1
logon specification
logoff macro 1
logon macro 1
logonspec file 1
remote 13
creating 13
files 13
Integration Object methods
invoking
with a servlet 5
with an application 3
Integration Object project (.hpi) file 17
Database Access sample 18
Host Access sample 17

Integration Object project file tags
com.ibm.HostPublisher.IntegrationObject
HODMacro 18
JDBCDriver 18
JDBCUrl 18
OutputVariable 18
Package 19
Session 19
SessionChain 19
SQL 19
SubVariable 19

Integration Object source (java) file 21

Integration Objects
methods

viewing 2
preparing to run 1
programming with 1

sample code 7
properties

viewing 2

INTROSPECT attribute
BEAN tag 23

invertmatch attribute
attrib tag 43
cursor tag 43
numfields tag 41
numinputfields tag 41
oia tag 42
string tag 42

invoking an Integration Object
with a servlet 5
with an application 3

J

JavaBean
HostConnection 12
xmlAppData 11
JavaServer Pages (JSP) Web page file
samples 21
JavaServer Pages (JSP) Web page file tags
BEAN 22
FORM 23
INDEX 24
Inline Java (<% %>) 24
INPUT 24
INSERT 25
OPTION 25
REPEAT 25
SELECT 25
JavaServer Pages (JSP) Web page files 21
JDBC connection files 28
JDBC connection specification tags
connecttimeout 28
drivername 28
urlname 28

jsdkjar 2

JSP Web pages 21

L

len attribute

prompt tag 44
licenseTracking tag 49
localuserpool tag 30, 33
logoff macro 1
logoffmacro tag 32

logon and logoff specification tags

18 checkinscreendesc 32
logoffmacro 32
logonmacro 32

logon macro 1

logon specification (logonspec) file 26

logonmacro tag 32
logonspec file 1

M

macro (.macro) files 26
macro script syntax 37
macro syntax tags
actions 44
attrib 43
comment 40
cursor 43
custom 46
customreco 44
description 40
extract 45
HAScript 39
input 45
message 45
nextscreen 47
nextscreens 46
numfields 41
numinputfields 41
oia 41
pause 46
prompt 44
recolimit 47
screen 40
string 42
trace 46
macros
editing manually 37
manifest (.application) file,
application 26
maxbusytime tag 30
maxconnections tag 30
maxidletime tag 30
maxLogFiles tag 50
maxLogFileSize tag 51
maxTraceFiles tag 51
maxTraceFileSize tag 51
message tag 45
METHOD attribute
FORM tag 23
methods, Integration Object
viewing 2
minconnections tag 30
movecursor attribute
input tag 45
MULTIPLE attribute
SELECT tag 25

N

name attribute

com.ibm.HostPublisher.IntegrationObject

tag 18

extract tag 45
HAScript tag 39
JDBCDriver tag 18
JDBCUrl tag 18

Index

61

name attribute (continued)
nextscreen tag 47
OutputVariable tag 18
Package tag 19
prompt tag 44
screen tag 40
SubVariable tag 19
NAME attribute
BEAN tag 23
INPUT tag 24
SELECT tag 25
nextscreen tag 47
nextscreens tag 46
num_licenses tag 49
number attribute
numfields tag 41
numinputfields tag 41
numfields tag 41
numinputfields tag 41

O

oia tag 41
optional attribute
attrib tag 43
cursor tag 43
numfields tag 41
numinputfields tag 41
oia tag 41
string tag 42
overflowallowed tag 30

P

pause tag 46
pausetime attribute
HAScript tag 39
plane attribute
attrib tag 43
pool specification file
connection (.poolspec) 26
example 31
user (.userpool) 26
pool specification tags
connecttimeout 29
dbconnspec 29
hodconnspec 30
hodlogonspec 30
localuserpool 30
maxbusytime 30
maxconnections 30
maxidletime 30
minconnections 30
overflowallowed 30
poolingenabled 30
poolingenabled tag 30
PoolName attribute
Session tag 19
poolspec file 1
Position attribute
SessionChain tag 19
programming with Integration Objects 1
sample code 7
prompt tag 44
promptall attribute
actions tag 44
HAScript tag 39

properties, Integration Object
viewing 2
property tag 33

R

rasjar file 2
recolimit 48
example 48
recolimit tag 47
RelativeCoordinates attribute
SubVariable tag 19
Remote Integration Objects 13
creating 13
files 13
row attribute
attrib tag 43
cursor tag 43
input tag 45
prompt tag 44
string tag 42

S

sample code
programming with Integration
Objects 7
samples
Host Publisher application (-hpa)
file 20
Integration Object project (.hpi)
file 17
JavaServer Pages (JSP) Web page
file 21
SC.INI file
classpath 2
schema tag 33
scol attribute
extract tag 45
SCOPE attribute
BEAN tag 23
screen description (.screen) file,
checkin 26
screen tag 40
ScreenCoordinates attribute
OutputVariable tag 18
Server, common files
habeansnlvjar 2
HpRtejar 2
HPubCommon jar 2
rasjar 2
Server files
server.properties 49
server properties file, editing 49
server.properties tags
%HODDisplayTerminal 52
%HODMacroTracingLevel 52
%HODPSTracingLevel 52
%HODTransportTracingLevel 52
%HPAdminFile 53
%]JDBCTracing 52
Y%logFile 50
Y%logMask 51
Y%runtimeTracing 52
Y%traceFile 51
Y%traceMask tag 52
autoDeploy 53

62 IBM® WebSphere " Host Publisher Programmer’s Guide and Reference

server.properties tags (continued)
licenseTracking 49
maxLogFiles 50
maxLogFileSize 51
maxTraceFiles 51
maxTraceFileSize 51
num_licenses 49
servlet
xmlLegacyGateway 10
servlet, using
to invoke an Integration Object 5
sessionprops tag 28
singlelogon tag 28
SIZE attribute
SELECT tag 25
srow attribute
extract tag 45
startscreen attribute
screen tag 40
StartState name attribute
SessionChain tag 19
status attribute
oia tag 41
stopscreen attribute
screen tag 40
string tag 42
Studio files
application manifest 34
application manifest (.application) 26
checkin screen description
(.screen) 26
connection pool specification
(.poolspec) 26
connection specification
(.connspec) 26
Host Publisher application (hpa) 20
Integration Object project (hpi) 17
Integration Object source (java) 21
JavaServer Pages (JSP) Web page 21
logon specification (.logonspec) 26
macro (.macro) 26
user pool specification (.userpool) 26
Symantec Visual Café 1
setting up 2
syntax, macro script 37

T

tag conventions, XML 27
tag descriptions
application manifest 35
connection specifications 28
Host Publisher application (-hpa) 20
Integration Object project file 18
JavaServer pages 22
logon and logoff specification 32
pool specifications 29
server properties 49
user pool specifications 32
timeout attribute
HAScript tag 39
nextscreens tag 46
title attribute
message tag 45
trace tag 46
transient attribute
screen tag 40

type attribute

com.ibm.HostPublisher.IntegrationObject
tag 18

OutputVariable tag 18
SubVariable tag 19
trace tag 46

TYPE attribute
BEAN tag 23
INPUT tag 24

Type Browser
BeanInfo tab 2

U

urlname tag 28
URLs vi
user pool definition file
example 33
user pool specification (.userpool) file 26
user pool specification tags
entry 33
localuserpool 33
property 33
schema 33
userconfig 33
userconfig tag 33
userpool file 1

V

value attribute
attrib tag 43
input tag 45
message tag 45
pause tag 46
recolimit tag 47
string tag 42
trace tag 46
VALUE attribute
INPUT tag 24
viewing
Integration Object methods 2
Integration Object properties 2

W

Web page vi
Web pages, JSP 21
white papers vi

X

xlatehostkeys attribute
input tag 45
prompt tag 44
XML Legacy Gateway 9
HostConnection JavaBean 12
servlet 10
xmlAppData JavaBean 11
XML tag conventions 27
xml4j_ws.jar 2
xmlAppData JavaBean 11
xmlLegacyGateway servlet 10

Index 63

64 IBM® WebSphere" Host Publisher Programmer’s Guide and Reference

Readers’ Comments — We'd Like to Hear from You

IBM® WebSphere™ Host Publisher
Programmer’s Guide and Reference
Version 2 Release 2

Overall, how satisfied are you with the information in this book?

Very Satisfied Satisfied Neutral Dissatisfied Very
Dissatisfied
Opverall satisfaction O O]]]

How satisfied are you that the information in this book is:

Very Satisfied Satisfied Neutral Dissatisfied Very
Dissatisfied
Accurate]]] 0] 0
Complete O O] [0
Easy to find]]] 0] [
Easy to understand O]] 0] 0
Well organized]] 0 0 0J
Applicable to your tasks] | O O]

Please tell us how we can improve this book:

Thank you for your responses. May we contact you? [] Yes [] No

When you send comments to IBM, you grant IBM a nonexclusive right to use or distribute your comments in any
way it believes appropriate without incurring any obligation to you.

Name Address

Company or Organization

Phone No.

Readers’ Comments — We'd Like to Hear from You

Fold and Tape

Please do not staple

BUSINESS REPLY MAIL

FIRST-CLASS MAIL PERMIT NO. 40 ARMONK, NEW YORK

Fold and Tape

POSTAGE WILL BE PAID BY ADDRESSEE

IBM Corporation

Information Development

Department CGMD / Bldg 500

P.O. Box 12195

Research Triangle Park, NC
27709-9990

Please do not staple

NO POSTAGE
NECESSARY

IF MAILED IN THE
UNITED STATES

Cut or Fold
Along Line

Cut or Fold
Along Line

)\ Printed in the United States of America
& on recycled paper containing 10%
recovered post-consumer fiber.

