
IBM® WebSphere® Host Access
Transformation Server
Developer’s Guide
Version 4

SC31-6324-00

���

IBM® WebSphere® Host Access
Transformation Server
Developer’s Guide
Version 4

SC31-6324-00

���

Note
Before using this information and the product it supports, be sure to read the general information under Appendix D,
“Notices” on page 159.

First Edition (December 2002)

© Copyright International Business Machines Corporation 2002. All rights reserved.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

Contents

Preface v
Where can I find information about HATS? v

Chapter 1. Using Host Access
Transformation Server (HATS) 1
Understanding HATS application processing. . . . 1
Understanding HATS key concepts and objects . . . 4

Chapter 2. Creating and organizing
projects 7

Chapter 3. Modifying a HATS project . . 11
Overview tab 11
Connection Settings tab 11
Advanced Connection Settings tab. 12
Template tab 12
Text Replacement tab 12
Event Priority tab 13
General tab 13

Application keypad. 14
Host keypad 14
Keyboard support 14
Client locale 15

Source tab 15

Chapter 4. Editing a screen
customization. 17
Overview tab 17
Screen Recognition Criteria tab 17

Field criteria 17
Cursor position criteria 18
Text string location criteria 18
Optional versus non-optional screen recognition
criteria 19
Inverted match of screen recognition criteria . . 19

Actions tab 19
Apply transformation action. 20
Insert global variable action 21
Extract global variable action 21
Set global variable action 22
Execute business logic action 22
Show URL action 23

Source tab 23
Screen customization ordering 23

Chapter 5. Editing a transformation . . 25
Design tab. 25

Insert Host Component wizard 26
Insert Tabbed Folder wizard 27
Insert Macro Key wizard 27
Insert Global Variable wizard 28

Source tab 28
Preview tab 28

Chapter 6. Using templates 31
Creating your own templates 31

Design tab. 32
Source tab 33
Preview tab 33

Chapter 7. Interacting with global
variables 35

Chapter 8. Incorporating macros . . . 37
Overview tab 39
Prompts and Extracts tab 39
Source tab 39

Chapter 9. Adding business logic . . . 41
Incorporating Java code from other applications . . 42

Chapter 10. Integration of Host
Publisher objects 43
Invoking Host Publisher Remote Integration Objects
from HATS 43
Invoking Host Publisher EJB Access Beans and Web
Services from HATS 43

Chapter 11. Enabling print support in
projects 45
Configuring the host print session on 3270 hosts . . 45
Defining print support for your project 45

For 3270 servers 45
For 5250 servers 46

Providing documentation for end users 46

Chapter 12. Enabling keyboard support
in projects 49
Defining keyboard support 50

Changing the appearance of the keypads . . . 50
Providing documentation for end users 51

Chapter 13. Enabling SSL security . . . 53

Chapter 14. Creating custom
components and widgets 55
Creating custom host components and widgets . . 55

Creating a custom host component 57
Creating a custom widget 58
Registering your component or widget 58
HATS Studio support for custom components
and widgets 60

Chapter 15. Administering HATS
applications 63

© Copyright IBM Corp. 2002 iii

Chapter 16. Troubleshooting HATS. . . 65
Message logs and traces 65
Problems and solutions 70

Incorrect data in HATS applications with
non-English locales 70
Thai font size too small for default
transformation 71
End users receiving HTTP 404 error 71

Chapter 17. Messages reference. . . . 73

Chapter 18. Language support 77

Chapter 19. Bi-directional application
support 81
Software environment 81
Working with the host terminal. 81

Capturing screens 82
Recognizing bi-directional host components . . . 82
Controlling the orientation of widgets 83
Global variables 83
Text replacement 83
Enabling the user to reverse the screen direction . . 84
Information for end users 85
Functions for Arabic code pages 85

Symmetric and numeric swapping. 85
Screen captures 86
Other considerations 86

Additions to HATS files 86
Bi-directional APIs 87

ConvertVisualToLogical 87
ConvertLogicalToVisual 87

Appendix A. Component and widget
descriptions and settings. 89
Component and widget settings 89

Host component settings 89
Widget settings 92

Component and widget mapping. 101
HATS:Component tag type and widget attributes 102

Appendix B. HATS Studio files 105
Application files (.hap) 105

<application> tag 105
<sessions> tag 106
<session> tag 106
<otherParameters> tag 110
<eventPriority> tag 111
<event> tag 112
<classSettings> tag 112
<class> tag 112
<setting> tag 112
<textReplacement> tag 114
<replace> tag 114

Template and transformation files (.jsp). 115
Screen customization files (.evnt) 115
Macro files (.hma) 120
Screen capture files (.hsc) 122
Image files (.gif or .jpg) 122
Stylesheet files (.css) 122

Appendix C. Macro script syntax . . . 123
Introduction 123
Macro 124

<HAScript> tag 125
<vars> tag 126
<create> tag 127
<screen> tag. 128
<comment> tag. 128
<description> tag 129
<oia> tag 129
<cursor> tag. 130
<numfields> tag 130
<numinputfields> tag 131
<string> tag 131
<attrib> tag 133
<customreco> tag 133
<varupdate> tag 134
<actions> tag 135
<prompt> tag 135
<input> tag 136
<extract> tag 137
<message> tag 138
<trace> tag 138
<filexfer> tag 138
<pause> tag 140
<mouseclick> tag 140
<boxselection> tag. 140
<commwait> tag 141
<custom> tag 141
<varupdate> tag 142
<playmacro> tag 142
<if> tag 143
<else> tag 144
<runprogram> tag. 144
<nextscreens> tag 145
<nextscreen> tag 145
<recolimit> tag 145
Advanced Screen Recognition 146
Using variables 147

Appendix D. Notices 159
Programming interface information 160
Trademarks 161

Glossary 163

Index 167

iv IBM® WebSphere® Host Access Transformation Server Developer’s Guide

Preface

The HATS Getting Started manual explains how to create HATS projects using the
wizards in the HATS Studio. The information in HATS Developer’s Guide is
designed to help you, the Host Access Transformation Server (HATS) developer,
understand how to modify HATS projects using the HATS Studio editors.

Where can I find information about HATS?
You can find the following documentation online after you have installed HATS:
v PDF versions of HATS Getting Started and HATS Developer’s Guide are

accessible from the Windows Start menu.
v HTML versions of both books are accessible from within the WebSphere Studio

Help menu, and also from the Windows Start menu.
v The HATS Readme file is accessible from the Windows Start menu.
v Context-sensitive help is available on all fields in the HATS wizards and editors.

Press the F1 key to see the help.
v Tips are provided at key points in the process of developing a HATS project.

You can control whether you want to continue to see tips.

To view the documentation before you install HATS, insert the HATS CD and
choose View Documentation from the Welcome screen.

Find the most up-to-date versions of this document, frequently asked questions
(FAQs), white papers, and additional information at the product Web site:
http://www.ibm.com/software/webservers/hats.

© Copyright IBM Corp. 2002 v

getstart02.htm
readme.htm
http://www.ibm.com/software/webservers/hats

vi IBM® WebSphere® Host Access Transformation Server Developer’s Guide

Chapter 1. Using Host Access Transformation Server (HATS)

Suppose you want to make all of your host applications available on the Web.
Suppose that you also want to create a host application that provides the look, feel,
and easy navigation of a Web page, enabling end users to access host application
functions using buttons, drop-down lists, links, and option lists. Host Access
Transformation Server (HATS) not only enables you to customize host applications
to work in this manner, it enables you to customize them without programming.

Using HATS, you can wrap your host application “green screen” with Web-style
borders and add headings, company logos, and links to other Web sites. Global
text replacement on the host screen enables you to give your application a custom
feel. Users can skip unnecessary host screens and be prompted for input. You can
also choose to present any host screen element (such as host application function
keys) in a fully-interactive, Web-style output (such as links) and define where users
will see the output in the application. HATS gives you the control to fully
customize your host application and enhance the ways in which users work with
applications.

HATS macro support enables you to provide programmed navigation through
multiple host screens. For example, a macro can navigate the screens of a host
application to display the first screen the end user needs to see, bypassing all the
screens in between. You can combine data from multiple host screens into a single
HATS screen. HATS global variables can extract data from host screens and enter
the data on other screens. You can use business logic to integrate legacy systems
with other back-end systems in your company, as well as your business partners’
systems. You can also use business logic to perform complex calculations and
automatically enter the results into host forms.

The foundation of HATS is the HATS Studio. The HATS Studio provides you with
all of the necessary tools to create, assemble, and transfer host applications to the
production system for deployment. The resulting host application can be accessed
by end users with standard Web browsers.

Understanding HATS application processing
Before creating a HATS project, you should understand how HATS processes host
applications. As users access each screen of an application, HATS processes the
application as described in the following steps. Figure 1 shows the flow of these
steps. Each italicized term in the following steps is a key concept of HATS. Key
concepts are described in “Understanding HATS key concepts and objects” on
page 4.
1. When the host displays a screen, HATS compares the host screen to each screen

recognition criterion defined in the project’s enabled screen customizations, in the
order defined by event priority, until a match is found.

2. When matched, HATS performs the actions defined for the screen
customization. These actions can include:
v Applying a transformation using the associated template. HATS displays any

host components (defined in the transformation) as HTML widgets.
v Executing business logic

v Interacting with global variables

© Copyright IBM Corp. 2002 1

v Showing a URL
v Playing a macro.

3. If no screen recognition criteria match the host screen, HATS processes the
unmatched screen event. The default action of this event is to display the host
screen using the default transformation and applying the default template.

4. As the host presents each new screen of an application, HATS begins at Step 1
again and proceeds through these steps.

Note: If a macro uses skip-screen processing, those screens are not subject to
these steps.

2 IBM® WebSphere® Host Access Transformation Server Developer’s Guide

Screen customizations are an important concept in the development of a HATS
project. Without screen recognition criteria being defined in a screen customization,
HATS would not know what actions to take when the host screen is encountered.
You can obtain the greatest level of customization for your host application by
applying transformations and displaying host components.

You should familiarize yourself with the basic principles of screen customization
before beginning the development process. The core elements of setting screen
recognition criteria are discussed in Chapter 4, “Editing a screen customization” on
page 17.

Figure 1. HATS screen processing

Chapter 1. Using Host Access Transformation Server (HATS) 3

Understanding HATS key concepts and objects
This section explains key concepts and objects of HATS, some of which are
described in “Understanding HATS application processing” on page 1. Many key
objects in HATS are created using a wizard, but viewed or modified after creation
using an editor.

Project
A collection of HATS resources, created using wizards in HATS Studio and
customized using HATS Studio editors, that are assembled into a HATS
application.

Event
A list of actions performed when the application has reached a certain state.
There are four types of events in HATS applications:
v Connect
v Disconnect
v Unmatched screen
v Matched screen

The first three events are defined by HATS, and you can locate them in the
source/profiles/events/session/main directory path of the Navigator tab of
the HATS Studio. If you want to modify these events for any reason, you can
edit them by double-clicking on the event. The matched screen event is also
known as a screen customization.

Screen customization
A HATS resource, an event, with two parts: a set of screen recognition
criteria, and a list of actions to be taken.

Screen recognition criteria
During project creation, you set screen recognition criteria that HATS
uses to match host screens. Host screens can be recognized by any
combination of criteria including how many input fields or total
fields are on the screen, the coordinates of the cursor’s position, and
text strings on the screen within a defined rectangle or anywhere on
the screen.

When a host displays a screen, HATS searches to see whether the
current host screen matches any of the screen recognition criteria you
set in any screen customizations in your project. If HATS finds a
match, the defined actions for the screen customization are
performed.

For more information on setting screen recognition criteria, see
Chapter 4, “Editing a screen customization” on page 17.

Action
A step that occurs when a host screen is encountered that matches
the screen recognition criteria specified for a screen customization. A
list of actions is part of the definition of each screen customization.

Transformation
A transformation is a JSP file that defines how host components should be
extracted and displayed in a Web presentation. Applying a transformation is
one of the possible actions of a screen customization.

For more information on creating transformations, see Chapter 5, “Editing a
transformation” on page 25.

4 IBM® WebSphere® Host Access Transformation Server Developer’s Guide

Host components
Host components are HATS objects responsible for recognizing
elements of the host screen (such as command lines, function keys,
menus) that you choose to present to the end user of the HATS
application. You can use the set of host components that HATS
supplies, or you can create your own host components. For
information on creating custom host components, see “Creating a
custom host component” on page 57.

For more information on selecting host components to use with your
HATS project, see “Insert Host Component wizard” on page 26.

Widgets
Widgets are HATS objects responsible for creating the HTML output
for host components in the HATS presentation. For example, you can
convert function key host components into button widgets so that the
end user sees the function keys as buttons in the HATS application.
You can use the widgets that come with HATS, or you can create
your own. For information on creating custom widgets, see “Creating
a custom widget” on page 58.

For more information on selecting widgets to use with your HATS
project, see “Insert Host Component wizard” on page 26.

Template
A template is a JSP file that enables you to enhance the appearance of your
project. When creating a HATS project, you select a template to use as the
default template for your project. The template can contain company logos
and information and links to other Web pages. You can select from the
sample templates that are provided with HATS, or you can design custom
templates for your projects using the wizards and editors in HATS Studio.
You can choose which template to apply to the host screen when a
transformation is applied.

In a Web page, the template surrounds the area where the transformation
appears. For more information on associating a template with a
transformation, see Chapter 6, “Using templates” on page 31.

Business logic
Any Java code invoked as an action in an event, such as a screen
customization. Business logic is specific to the application and is not
provided as part of HATS.

For more information about business logic, see Chapter 9, “Adding business
logic” on page 41.

Global variable
A variable used to store a value that can be used throughout the lifetime of
an application. The value of a global variable can be extracted from a host
screen or defined by the developer. Global variables can be used in
templates, transformations, screen customization actions, macros, or business
logic.

For more information about global variables, see Chapter 7, “Interacting with
global variables” on page 35.

Macro
An XML script that defines a set of screens and defines certain actions that
should be taken on those screens. Macros are used to automate end user
interactions with the host. You can record and play macros to skip screens,
prompt users for data input, and extract host screen information. A macro

Chapter 1. Using Host Access Transformation Server (HATS) 5

that skips screens does not require the user to interact with each screen.
Prompt macros request information from the user that is used on other
screens, thereby limiting user interaction with the host. An extract macro can
be used to retrieve information to present to the user.

A macro can be played as an action of a HATS screen customization. It is the
last action defined for a screen customization. For information on playing
macros as an action of a screen customization, see “Actions tab” on page 19.
For more information on incorporating macros into the HATS environment,
refer to Chapter 8, “Incorporating macros” on page 37.

HATS terminal
A connection in HATS Studio to a live host. Using the HATS terminal, you
can capture screens, create screen customizations and transformations, and
record macros. You can also play previously recorded or imported macros.

Screen capture
An XML representation of a host screen, used to create or customize a screen
customization or transformation.

Run on Server
A function in HATS Studio that enables you to run your project on the
WebSphere Studio internal WebSphere Application Server and see the output.
This function is also known as the WebSphere Test Environment (WTE).

Print support
The ability for a developer to specify a printer session to be associated with a
host session, and enable the end user to view host application print jobs,
send them to a printer, or save them to disk.

For more information on print support, see Chapter 11, “Enabling print
support in projects” on page 45.

Keyboard support
The ability for a developer to enable an end user to use a physical keyboard
to interact with the host when the application is run in a Web browser. The
developer also decides whether to include a host keypad, an application
keypad, or both, in a project. If the keypads are included, the developer
decides which keys are included and how those keys and the keypad appear
in the Web browser.

The host keypad is a table of buttons or links that enable the end user to
interact with the host as if they pressed the physical keys on a keyboard.
However, the end user can still use the physical keys on the keyboard instead
of the buttons or links on the host keypad.

The application keypad is a table of buttons or links that enable the end user
to perform tasks related to the application, such as viewing their print jobs or
refreshing the screen.

For more information on keyboard support, see Chapter 12, “Enabling
keyboard support in projects” on page 49.

6 IBM® WebSphere® Host Access Transformation Server Developer’s Guide

Chapter 2. Creating and organizing projects

When you create a new HATS project, a set of folders is created to help you
organize your HATS files. The highest level folder has the same name as the name
you give to your project when you create it. In that folder are other high-level
folders that contain objects defined in your HATS project:
v Project settings
v Screen Customizations
v Transformations
v Templates
v Screen Captures
v Macros

– Macro Event Handlers
v Source
v Common

– Images
– Stylesheets

How to work with the contents of each of these folders is explained in this book.

You can create folders within these high-level folders to help organize your project.
For instance, as you create screen captures for your project, you might want to
create folders under the Screen Captures folder to organize and group the captured
screens. To create a folder, right-click on one of the high-level folders in the tree
and select New HATS > Folder. To move a file into a different folder, right-click
on the file and select move, or you can use the drag-and-drop method. You can
create folders under any of the high-level folders to help organize your files.

HATS projects, created in HATS Studio, are extensions of Web projects in the
WebSphere Studio workbench. For more information about Web projects, open the
Help perspective in the WebSphere Studio workbench and select Application
Developer Documentation. Expand the sections as follows to find information on
Web projects: Concepts > Projects > Web projects.

By default, all HATS applications are stored in one Enterprise Archive file,
HATS.ear. When you assemble your applications and deploy them on WebSphere
Application Server (WAS), the HATS.ear file contains a Web Archive (.war) file
with the resources to run each application, as well as one copy of the HATS
run-time executable code. If you prefer, you can organize your applications
differently, either each in its own .ear file, or in some other combination.

Note: If your .ear file contains the .war files for multiple applications, which is the
default setting, your WebSphere Application Server (WAS) administrator
must use WAS administration to configure the server with Module
Visibility set to Application. If the server is not configured this way, your
applications will not run. Your end users will get the following error
message in their browser: HTTP 404 - File not found when trying to run an
application.

Which .ear file your project files go into is determined when you create the project.
On the first panel of the Create a HATS Project wizard, you can keep the Use

© Copyright IBM Corp. 2002 7

default Enterprise Application project check box checked, in which case project
files are created within HATS.ear, or you can clear the check box and specify a
different .ear file to contain your project’s files. In HATS Studio, you cannot choose
a different .ear file after the project is created. However, you can move projects
from one .ear to another, using the WebSphere Studio application.xml editor.

To move a project, follow these steps:
1. Click the Navigator tab of the HATS Studio to display the .ear files.
2. Expand the .ear file to which you want to move a project. Expand the

META-INF folder and locate the application.xml file.
3. Start the WebSphere Studio application.xml editor by double-clicking the

application.xml file.
4. In the application.xml editor, click the Modules tab to display the .war files for

your projects.
5. Click Add to display the Folder Selection dialog.
6. Select the project you want to add to the .ear file.

Note: Make sure you select the project, and not the .ear file with the same
name.

7. Click OK.

If you want to move a project to another machine with WebSphere Studio installed,
you must export the project as a .zip file before sending the project to another
machine. The following steps explain how to export a project and import it into a
WebSphere Studio installed on another machine.

To export the project from WebSphere Studio to a .zip file:
1. Highlight the project in the HATS Project View tab of the HATS Studio.
2. Select File > Export to open the Export wizard.
3. Select Zip file, and click Next.
4. Check the boxes for both the project name file and the project .ear file.
5. In the Zip file field, type in the destination to where you want to export the

file. You can also select an export destination by clicking Browse.
6. Click Finish.

To import the project in a .zip file into WebSphere Studio:
1. Create a new HATS project.
2. Select File > Import to open the Import wizard.
3. Select Zip file, and click Next.
4. In the Zip file field, type in the location of the .zip file. You can also select the

location by clicking Browse.
5. Click Browse next to the Folder field, and select the name of the new HATS

project you created.
6. Click Finish.
7. When the .zip file is being imported, click Yes to all to overwrite existing files.

The new project will contain the original HATS project.

Consider the effect of the following on your server machine when deciding how to
arrange your projects:

8 IBM® WebSphere® Host Access Transformation Server Developer’s Guide

Disk space
If you create each project in its own .ear file, it has its own copy of the
HATS run-time code, of which there is one copy per .ear file. The run-time
code is approximately 16 MB, so you can multiply that by the number of
projects you have to see how much disk space is consumed on your WAS
machine for each project.

Maintenance
If you update a project and re-deploy it, you are re-deploying all the
projects in that ear file.

Applying service
If an update is required to the HATS run-time executable code, it must be
applied to each copy of the run-time code in each .ear file.

Logging and tracing
Logging and tracing are controlled at the level of the .ear file, not at the
individual HATS application level. If each HATS application is in its own
.ear file, you can control its logging and tracing settings independently of
any other applications. If you have several HATS applications in one .ear
file, logging and tracing settings apply to all HATS applications in the .ear
file. Messages for all HATS applications in the .ear file are inserted into the
same log file, and trace information for all HATS applications is inserted to
the same trace file.

See Chapter 16, “Troubleshooting HATS” on page 65 for more logging and
tracing information.

License tracking
License tracking is also controlled at the level of the .ear file, not at the
individual HATS application level. If each HATS application is in its own
.ear file, license tracking is done independently of other applications. If you
have several HATS applications in one .ear file, license tracking is
performed for all HATS applications in the .ear file. Information about
license usage is kept for all HATS applications in the .ear file, and is
inserted into the same license usage file.

See Chapter 16, “Troubleshooting HATS” on page 65 for more information
on license tracking.

Chapter 2. Creating and organizing projects 9

10 IBM® WebSphere® Host Access Transformation Server Developer’s Guide

Chapter 3. Modifying a HATS project

When you created your project using the HATS Studio Create a Project wizard, the
settings you chose on the panels were saved in a project application (.hap) file. You
can use the project editor to view and modify those settings. You can invoke the
project editor by double-clicking on the Project Settings node under the name of
the project you want to modify in the HATS Project View tab of the HATS Studio.

The settings displayed in the project editor are the settings that are used for the
entire project. If you want to modify any of the settings, you can use the tabs of
the project editor to do so. Changes made in the project editor are automatically
recognized when using Run on Server in the HATS Studio by clicking Refresh on
the application keypad or by displaying a new host screen in the browser.

The following sections describe each tab of the project editor, and explain how they
can be used to modify the project settings.

Overview tab
The Overview tab of the project editor summarizes all of the settings you specified
when you created your project. The only item you can modify on this tab is the
description of your project.

Each of the section headings on the Overview tab is a link to the other tabs of the
project editor.

Connection Settings tab
The Connection Settings tab displays the following items:
v The name of the host to which your project connects. This is either the name or

IP address of the Telnet server.
v The number of the port through which the project connects. Typically, port 23 is

used, but the administrator of the Telnet server may have modified the port
number.

v The type of host session for the project, such as TN3270, TN3270E, or 5250.
v The code page used for the project. Select the codepage for your country.
v The screen size of the host session. The screen size defines the number of rows

and columns in the host screen.
v Whether SSL is enabled for the project.

The host name and port number fields are entry fields. You can change the name
of the host to which your project connects or the port number through which your
project connects by typing over the name and number that appear in these fields.

The type of session, code page, and screen size fields have drop-down lists from
which you can select certain values for the fields.

The SSL enabled checkbox allows you to enable or disable SSL by checking or
clearing the checkbox. If SSL is enabled, you can import the required certificate file
using Import. Refer to Chapter 13, “Enabling SSL security” on page 53 for more
information.

© Copyright IBM Corp. 2002 11

Notes:

1. The values for screen size change depending on the code page and type of host
session you select.

2. If you select a bi-directional (BIDI) code page, refer to “Enabling the user to
reverse the screen direction” on page 84.

Advanced Connection Settings tab
The Advanced Connection Settings tab enables you to specify settings for print
support as well as any additional IBM WebSphere Host On-Demand connection
session parameters you want to use.

Click the Enable print support checkbox if you want print support.

For 3270 hosts, if you check the Enable print support checkbox, you can choose
the paper size, page orientation, and the print font you want to use for printing
jobs from your project from the drop-down lists for each parameter. Refer to
“Defining print support for your project” on page 45 for more information.

For 5250 hosts, if you check the Enable print support checkbox, you must specify
the URL of the iSeries™ for Web Access (IWA) Printer Output window. The default
URL is http://hostname/webaccess/iWASpool, where hostname is the name of the
5250 host. The end user of your application can set print options in the IWA
Printer Output window. Refer to “Defining print support for your project” on
page 45 for more information.

You can add, modify, or remove any IBM WebSphere Host On-Demand session
parameters using the buttons to the right of the table of parameters. If you click
Add, you can select a parameter using the drop-down list next to the Name field.
For a list of the valid parameters that you can add and their descriptions, see
“<otherParameters> tag” on page 110.

Template tab
The Template tab displays the template used to surround a transformation when
applying a transformation is the action of a screen customization in your project.
On this tab, you can change which template to use as the default template.

The default template is the template applied to all transformations in the project,
and the template applied with the default transformation as the default action of
the unmatched screen event. For infomation on how to modify the action of the
unmatched screen event, see “Screen customization ordering” on page 23.

When creating or modifying the actions of a screen customization, you can
override the default template chosen by selecting a different template.

Text Replacement tab
HATS applications can convert text strings on host screens into different strings on
Web pages. These text strings must be protected text strings; that is, strings that are
used only on the screen and never passed to the host application as input. For
example, you can change the text string used as a field label or prompt, but not
the text in an entry field.

12 IBM® WebSphere® Host Access Transformation Server Developer’s Guide

The Text Replacement tab displays a table in which you can specify any text you
want to replace, the text with which you want to replace the original text, and
whether the texts are case sensitive.

Note: Care should be taken when using text replacement. Text replacement with a
disparate number of characters in the strings can cause changes in the
HTML representation of the screen. Depending on the widget used for
presenting a region of a screen, text on a line of the screen could be
contracted, expanded, or forced to a new line.

You can add, modify, or remove any text replacement specifications by using the
buttons to the right of the table of values.

Note: If you select a bi-directional (BIDI) code page, refer to “Additions to HATS
files” on page 86.

Event Priority tab
The Event Priority tab displays a list of the screen customizations contained in
your project.

If the checkbox next to the name of a screen customization is checked, that screen
customization is enabled for the project. When a screen customization is enabled,
and the screen recognition criteria match the host screen, HATS performs the
actions specified for that screen customization, and no more screen customizations
are checked for matches. When a screen customization is disabled, HATS ignores
the screen customization. If you want to test certain screen customizations, you
might want to disable other screen customizations. If so, clear the checkbox while
you are testing.

HATS applications check each incoming host screen against the list of screen
customizations. If there are multiple screen customizations that match a given
screen, the first screen customization that matches the screen is applied. The higher
priority screen customizations should be near the top of the list. For example, you
might have one screen customization that recognizes a few specific screens, and a
second one that recognizes a more general set of screens. If the second screen
customization is higher in the list than the first, a screen might be recognized by
the more general screen recognition criteria and perform the associated actions,
rather than recognizing the screen by the more specific criteria and performing the
associated actions of the first screen customization.

If you want to change the priority of any of the screen customizations, highlight
the screen customization by clicking it. Then click either Up or Down to move the
screen customization higher or lower in the list.

For more information, see “Screen customization ordering” on page 23.

General tab
The General tab displays the settings for host components, widgets, keypads,
keyboard support, and client locale.

You can customize the default project settings for each of these by clicking on the
node in the customization settings tree. To change settings for individual host
components and widgets, you must expand them in the tree to see the individual
host components and widgets. Some of the host components and widgets do not

Chapter 3. Modifying a HATS project 13

have any customizable settings. For information on the settings that can be
customized with the Insert Host Component wizard, see “Component and widget
settings” on page 89.

You can override the default project settings for host components and widgets
when you insert them into transformations. Those modified settings only apply to
the individual instances of those host component or widget in the transformation.
All the other instances of the host component or widget for any transformation in
the project still use the default project settings, unless you modify them. For
example, you have default settings for the VisualTable component. In a single
transformation, you may have two VisualTable components; one that uses the
default settings from the project settings, and another that uses modified settings.

Application keypad
You can customize the following settings for the application keypad:

Show default application keypad
Click the checkbox if you want a default application keypad defined in
templates or transformations to be displayed in the HTML output when
users interact with your application.

Select keys to display
If the Show default application keypad checkbox is checked, you can click
the checkboxes next to each of the keys that you want to include on the
default application keypad in the HTML output.

Display as
Select the value from the drop-down list to determine whether the selected
keys display as buttons or links.

Host keypad
You can customize the following settings for the host keypad:

Show default host keypad
Click the checkbox if you want a default host keypad defined in templates
or transformations to be displayed in the HTML output when users
interact with your application.

Select keys to display
If the Show default host keypad checkbox is checked, you can click the
checkboxes next to each of the keys that you want to include on the
default host keypad in the HTML output. If you want to include all the
available keys, you can click Select all. You can click Deselect all to clear
all of the boxes that are checked.

Display as
Select the value from the drop-down list to determine whether the selected
keys display as buttons or links.

Keyboard support
You can customize the following settings for keyboard support:

Turn keyboard support on
Click the checkbox if you want your end users to be able to use the
physical keyboard keys to interact with the host. This enables the end user
to click representations of host aid keys, such as the function, SYSREQ, or
ATTN keys. However, if keyboard support is turned on, the end user will

14 IBM® WebSphere® Host Access Transformation Server Developer’s Guide

not be able to use those same keys for other functions, such as requesting
help for the browser by pressing the PF1 key.

Turn initial keyboard state on
If the Turn keyboard support on checkbox is checked, you can click this
checkbox to make the keyboard enabled when the HTML output is initially
displayed to the user.

Client locale
You can customize the following settings for the client locale:

Select where to acquire the language to display button captions and messages
Click one of the following radio buttons:

From the browser’s “Accept-Language” header
The language used to display button captions and messages is
determined by the language specified by the end user’s browser.

From the server’s primary locale
The language used to display button captions and messages is
determined by the locale of the machine where the application is
deployed.

Always use the following language
You can select the language to use for button captions and
messages from the drop-down list.

Source tab
The Source tab displays the tags and values in the application.hap file for all the
settings you selected or defaulted to in your project. As you make changes on
other tabs in the project editor, the tags and values displayed in the source file
change to match.

You can also make changes to the tags and values in the source file, and they are
reflected on the appropriate tabs of the project editor. For information about the
tags in the application.hap file, refer to “Application files (.hap)” on page 105.

Chapter 3. Modifying a HATS project 15

16 IBM® WebSphere® Host Access Transformation Server Developer’s Guide

Chapter 4. Editing a screen customization

A screen customization is a HATS resource with two parts: a set of screen
recognition criteria used to match host screens, and a list of actions to be taken
when a host screen matches the screen recognition criteria.

When you created your project in HATS Studio, you used the Create a HATS
Screen Customization wizard to define screen customizations. The recognition
criteria and the actions you defined for the screen customization were saved in a
screen customization (.evnt) file. You can use the screen customization editor to
view and modify those criteria and actions.

You can see the screen customizations you have created by expanding the Screen
Customizations node of the HATS Project View tab of the HATS Studio. You can
invoke the screen customization editor by double-clicking on the name of the
screen customization.

The following sections describe each tab of the screen customization editor.

Overview tab
The Overview tab of the screen customization editor summarizes all of the
information you specified when you created your project. It contains the name and
description of the screen customization, the name and an image of the screen that
was used to create the screen recognition criteria, a summary of the screen
recognition criteria, and a summary of the actions to be taken when the screen is
recognized. On this tab, you can modify the description of the screen
customization, and you can select a different screen to associate with the screen
customization. The selected screen is the screen that is used whenever you make
changes to the screen customization, such as modifying the screen recognition
criteria, or adding actions.

Each of the section headings on the Overview tab is a link to the other tabs of the
screen customization editor.

Screen Recognition Criteria tab
During project creation or customization, you set screen recognition criteria that
HATS uses to match host screens. Host screens can be recognized by any
combination of criteria including how many input fields or total fields are on the
screen, the coordinates of the cursor’s position, and text strings on the screen
within a defined rectangle or anywhere on the screen. The Screen Recognition
Criteria tab of the screen customization editor displays the screen recognition
criteria that you set for the screen customization. You can add, edit, or remove
criteria on this tab.

Field criteria
You can use the total number of fields on a screen, the total number of input fields
on a screen, or both as screen recognition criteria. These are the first two criteria
shown on the Screen Recognition Criteria tab.

© Copyright IBM Corp. 2002 17

If you click the checkbox for these criteria, they are used to recognize the screen.
The fields next to each field criterion show the number of fields and input fields
for the screen specified on the Overview tab. If you change the screen being used
for this screen customization, click Refresh to update the values for the screen you
choose.

Note: If you are using field criteria to recognize screens that have a certain
number of fields, and another screen does not contain the same number of
fields, that screen is not recognized. For example, one screen might have a
list of 10 files with 10 fields. If the host displays a screen with only eight
files in the list and eight fields, the second screen does not match the
number of fields criterion of the screen customization that matched the first
screen.

For an explanation of the Optional and Invert checkboxes, see “Optional versus
non-optional screen recognition criteria” on page 19 and “Inverted match of screen
recognition criteria” on page 19.

Cursor position criteria
You can also use the initial position of the cursor as a screen recognition criterion,
either by itself or in conjunction with other criteria, by clicking the checkbox. The
fields next to the cursor position criterion shows the row and column of the cursor
position for the screen specified on the Overview tab. If you change the screen
being used for this screen customization, click Refresh to update the values for the
initial cursor position row and column on the screen you choose.

For an explanation of the Optional and Invert checkboxes, see “Optional versus
non-optional screen recognition criteria” on page 19 and “Inverted match of screen
recognition criteria” on page 19.

Text string location criteria
Text string location criteria are shown at the bottom of the Screen Recognition
Criteria tab. If you have set a string location as a screen recognition criterion, it is
shown in the table. The table shows what part of the screen contained the string,
shows some of the characters of the text selected, and whether the text is case
sensitive.

If you highlight a row of the table and click Edit, or if you click Add, the Screen
Recognition Criterion dialog appears. In the dialog panel, you can either modify
or specify text string information. The panel shows the screen selected on the
Overview tab.

You can select any text on the screen by drawing a rectangle around the text. Place
your cursor at any point on the screen, click and hold the left mouse button, and
move the cursor to another location on the screen to draw the rectangle. The fields
on the right of the dialog show the text you selected and the starting and ending
row and column numbers of the rectangle. You can specify the part of the screen
that should contain the text by clicking one of the radio buttons for Anywhere on
the screen, At a specified position, or Within a rectangular region. If the text you
selected must be case-sensitive to be recognized as matching the screen recognition
criteria, click the Case sensitive checkbox.

For an explanation of the Optional and Invert checkboxes, see “Optional versus
non-optional screen recognition criteria” on page 19 and “Inverted match of screen
recognition criteria” on page 19.

18 IBM® WebSphere® Host Access Transformation Server Developer’s Guide

Click OK when you have finished your selections.

Optional versus non-optional screen recognition criteria
You can choose whether the screen recognition criteria you set is optional or
non-optional. If you do not check the Optional checkbox, the recognition criterion
is considered non-optional. How you use the Optional checkbox corresponds to
the Host On-Demand screen descriptor attribute, optional.

If you have both optional recognition criteria and non-optional recognition criteria,
HATS checks the non-optional criteria first. If all the non-optional criteria match,
the screen matches. If at least one of the non-optional criteria does not match,
HATS checks the optional criteria. For a screen to match the criteria, HATS must
find all non-optional criteria, or at least one optional criterion. Otherwise, the
screen fails to match. The following example explains this concept in greater detail.

Note: Non-optional does not mean required.

Suppose you defined cursor position location and two text strings with the values
shown in the following example:
Cursor position recognition Optional

Row: 1 Column: 1

String recognition Non-optional
String 1: Welcome
Start position: Row: 1 Column: 6
End position: Row: 1 Column: 12

String 2: Username
Start position: Row 20 Column 10
End position: Row 20 Column 17

In this example, HATS must find both text strings or the cursor position for the
screen to match. Because HATS checks non-optional criteria first, HATS looks for
the text strings first. If HATS cannot find both text strings in the specified regions
of the host screen, then it checks to see if the optional criterion (cursor position)
can be found.

Inverted match of screen recognition criteria
You can choose whether the screen recognition criteria you set matches or does not
match the host screen. If you check the Invert checkbox, the recognition criterion
must not match the screen for the criterion to be considered true.

Conversely, if you do not check the Invert checkbox, the recognition criterion must
match the screen for the criterion to be considered true..

How you use the Invert checkbox corresponds to the Host On-Demand screen
descriptor attribute, invertmatch.

Actions tab
During project creation or customization, when you specified screen recognition
criteria that HATS uses to match host screens, you also defined the actions to be
taken when the host screen is recognized. The Actions tab of the screen
customization editor displays the actions that you defined for the screen

Chapter 4. Editing a screen customization 19

customization. These actions are applied in the order that they are listed. If you
want to change the order of the actions, select one and click Up or Down to move
that actions higher or lower in the list.

You can add, edit, or remove actions on this tab. Choose from the following
actions:
v Apply transformation

v Insert global variable (or a text string onto the host screen)
v Extract global variable

v Set global variable

v Execute business logic

v Show a URL

v Play a macro.

To play a macro, click the checkbox and select the name of the macro to play from
the drop-down list. If you define a macro to be played as an action of this screen
customization, it is the last action applied. You can record macros in the HATS
Studio using the host terminal. You can also import macros created with other
programs, such as the IBM WebSphere Host Publisher Host Access application or
IBM Host On-Demand MacroManager. For more information on importing macros,
see Chapter 8, “Incorporating macros” on page 37.

All other action types and their descriptions are shown in the table on the Actions
tab. If you highlight a row of the table and click Edit, the Edit xxx Action dialog
appears. where xxx is one of the following:
v Apply
v Insert
v Extract
v Set
v Execute
v Show.

If you click Add, the Add Action dialog appears. The dialog panel shows the
screen selected on the Overview tab. In this panel, you can select the action you
want to occur from the drop-down list. Depending on the action you choose, the
rest of the panel displays information that you can specify for that action.

Note: You cannot change the action in the Edit xxx Action dialog. You can only
change the information that applies to the action.

Apply transformation action
If you decide to apply a transformation as the action of this screen customization,
you can select the transformation you want to apply from the drop-down list of
transformations defined in the project.

The Template field has “(default template)” selected by default. Unless you select
a different template to be applied with this particular transformation, the template
that surrounds the transformation in the browser window is the template you
specified as the default template for the project. The drop-down list contains all the
templates defined in the project.

If you want host keys pressed by the end user of your project to be sent to the host
immediately instead of waiting until all actions have been performed, click

20 IBM® WebSphere® Host Access Transformation Server Developer’s Guide

Immediate host keys. On this panel, click the checkboxes of the keys that should
be sent to the host immediately. The immediate sending of these keys applies only
to the current transformation, and not for all transformations in the project.

Insert global variable action
You can insert information onto the host screen. Select whether the information is a
string or a global variable by clicking the appropriate radio button. To insert a
string, type the text in the entry field provided. To insert a global variable, select
the name of an existing global variable from the drop-down list. In either case,
specify the row and column of the screen where the variable should be inserted.

Note: Inserting information onto a host screen must occur before any
transformation occurs for the global variable to appear in the Web page. See
“Actions tab” on page 19 for information on modifying the order of the
actions.

If the value of the global variable is indexed (contains a list of strings), click
Advanced. You must select one of the radio buttons to specify whether all of the
strings are inserted at the specified position one after the other or if the strings are
inserted as separate lines into a rectangular region of the screen.

For more information about global variables, see Chapter 7, “Interacting with
global variables” on page 35.

Extract global variable action
You can extract information from the screen and define it as a global variable.
When you extract a global variable, you can specify a name or select an existing
global variable name from the drop-down list for the Name field. For the region of
the host screen, you define the starting and ending rows and columns for the area
of the screen you want to assign as a global variable.

To specify how text extracted from multiple rows of the host screen is defined in a
global variable, click Advanced. You must select one of the radio buttons to specify
if the extraction should be treated as one string or as a list of strings (indexed). If
you selected an existing global variable in the Name field before you clicked
Advanced, you must select one of the radio buttons specifying how HATS should
handle the extracted data.

There are four options for handling extracted data for existing variables:
v Overwrite the existing value with this new value
v Overwrite the existing value with this new value, starting at the specified index
v Append this new value to the end of the existing value
v Insert this new value into the existing value, at the specified index.

For either of the options that use a specified index, you must enter the number of
the index in the Index field.

The following example illustrates how the variable value is modified based on the
option you choose. Start with an existing indexed variable named “sample”. The
values of “sample” are “a b c d”. The “a” in the value has an index of 0, so the
value of “sample[0]” is “a”, and the “b” in the value has an index of 1, so the
value of “sample[1]” is “b”, and so on. Assume that you extract a new set of
values “e f g”.

Chapter 4. Editing a screen customization 21

v If you select the Overwrite the existing value with this new value radio button,
the value “a b c d” of “sample” is changed to “e f g”.

v If you select the Overwrite the existing value with this new value, starting at
the specified index radio button, and assume an index of 2, the value “a b c d”
of “sample” becomes “a b e f g” .

v If you select the Append this new value to the end of the existing value radio
button, the value “a b c d” of “sample” becomes “a b c d e f g”.

v If you select the Insert this new value into the existing value, at the specified
index radio button, and assume an index of 2, the value “a b c d” of “sample”
becomes “a b e f g c d”.

For more information about global variables, see Chapter 7, “Interacting with
global variables” on page 35.

Set global variable action
You can set global variables to be used by other objects within your project. When
you set a global variable, you can specify a name or select an existing global
variable name from the drop-down list for the Name field. If you select an existing
indexed global variable, click Advanced to specify how to handle the setting of the
value.

There are four options for setting the value for an existing indexed variable:
v Overwrite the existing value with this new value
v Overwrite the existing value with this new value, starting at the specified index
v Append this new value to the end of the existing value
v Insert this new value into the existing value, at the specified index.

For either of the options that use a specified index, you must enter the number of
the index in the Index field.

For an example of how variable value is set based on the option you choose, see
“Extract global variable action” on page 21.

You can specify whether the global variable is set to a fixed constant or a
calculated value by clicking one of the radio buttons. If you are setting the global
variable to a fixed value, type the value in the entry field.

If you are setting the global variable to a calculated value, you specify the
operands to be used and the operation of the calculation. The operands can be
either fixed values that you enter into the field, or you can use the values of
existing global variables for the calculation. If you use an existing indexed global
value, and you want to specify an index of the variable to use as the operand, click
Advanced. Enter the number of the index in the Index field.

For more information about global variables, see Chapter 7, “Interacting with
global variables” on page 35.

Execute business logic action
If you decide to execute some business logic as the action of this screen
customization, you must specify the fully-qualified Java class name and the Java
method for the business logic you want to perform in the fields provided. You can
click Browse next to the Class name field to select a class in which the business
logic method is defined. You can select any class defined under the Source folder
in the HATS Project View tab of the HATS Studio. If you have not created the

22 IBM® WebSphere® Host Access Transformation Server Developer’s Guide

Java code for this business logic, right-click in the HATS Project View tab of the
HATS Studio, and select New HATS > Business Logic to invoke the Create
Business Logic wizard.

For more information about business logic in your projects, see Chapter 9, “Adding
business logic” on page 41.

Show URL action
If you want to show a Web page as the action of this screen customization, you
must specify the URL (uniform resource locator) address of the Web page in the
URL field. With Internet Explorer version 5.0 or higher and Netscape version 6.0 or
higher, the Web page will be shown surrounded by the default template, similar to
the way a transformation is shown. With Netscape version 4, the URL is a link
surrounded by the default template. When the end user clicks the link, a new
window opens with the specified URL.

Source tab
The Source tab displays the tags and values in the sc-name.evnt file for all the
information supplied for the screen customization, where sc-name is the name you
gave to the screen customization when you created it. As you make changes on
other tabs in the screen customization editor, the tags and values displayed in the
source file change to match.

You can also make changes to the tags and values in the source file, and they are
reflected on the appropriate tabs of the screen customization editor. For
information about the tags in the sc-name.evnt file, refer to “Screen customization
files (.evnt)” on page 115.

Screen customization ordering
HATS checks each screen customization in the order that you arranged them
during project creation. You can modify the order of the screen customizations
using the Event Priority tab of the project editor. See “Event Priority tab” on
page 13 for more information.

When a HATS application is running and a new host screen is found, the first
enabled screen customization in the event priority list is checked to determine if
the screen recognition criteria match the host screen. If so, no more screen
customizations are checked for matches, and the actions for the first screen
customization are performed. If not, the next screen customization in the list is
checked to determine if the screen recognition criteria match the host screen. This
continues until the last screen customization in the list is checked.

If there are no screen recognition criteria in the screen customizations that match
the current host screen, HATS processes the unmatched screen event. The HATS
unmatched screen event is a special screen customization that occurs only when no
defined screen customizations match the host screen. The default action of this
event is to display the host screen (default transformation) applying the default
template.

You can modify the actions to be taken if a host screen that does not match any of
your screen customizations. For example, you could create a Web page that tells
the end user that the page was not found and gathers information on how the user
reached that screen. You could use the show URL action to present the Web page.

Chapter 4. Editing a screen customization 23

If you want to modify the action of the unmatched screen event, you can locate the
unmatchedScreen.evnt file in the source/profiles/events/session/main directory
path of the Navigator tab of the HATS Studio. You can invoke the screen
customization editor by double-clicking on the unmatchedScreen.evnt. Click the
Actions tab at the bottom of the editor to display the actions. Click Add, Edit, or
Remove to customize the unmatchedScreen.evnt file.

24 IBM® WebSphere® Host Access Transformation Server Developer’s Guide

Chapter 5. Editing a transformation

A transformation is a JSP file that defines how to customize specific host screens of
your HATS project. Applying a transformation is one of the possible actions of a
screen customization. Some common uses of transformations are:
v Rearranging the presentation of host screen information
v Filtering host screen information that you do not want to show to end users
v Presenting host components as widgets in the Web presentation.

You use the Create a HATS Transformation wizard to define a transformation. The
name, description, and the screen you define for the transformation are saved in a
transformation (.jsp) file. You can use the HTML editor built into WebSphere
Studio to view and modify the information you define for the transformation. See
the WebSphere Studio documentation for more information on using the HTML
editor features.

You can see the transformations you have created by expanding the
Transformations node of the HATS Project View tab of the HATS Studio. To edit a
transformation, you use the HTML editor built into WebSphere Studio. You can
invoke the HTML editor by double-clicking on the name of the transformation.

The following restrictions apply to creating transformations:
v Transformations must be UTF-8 encoded.
v Do not use any JSP variable, CSS class, HATSForm, or any other object that

starts with HATS, hats, or Hats. These names are reserved for use by HATS.

The following sections describe each tab of the HTML editor.

Design tab
The Design tab displays the current view of the transformation as you make
changes to it. While on this tab, you can insert text, graphics, global variables, host
components, tabbed folders, macro keys, host and application keypads, or
individual keys from the keypads.

Note: HATS automatically inserts the default host keypad into each transformation
you create.

You can select these items using the pull-down menus on the menu bar, or the
Insert HATS Component drop-down menu on the HATS Studio toolbar.

If you want to add images to your project, such as those in the WebSphere Studio
Gallery, it is recommended that you import them into the Common/Images directory
of your project. To import images, select File > Import > File System to open the
Import wizard. Select the location of the image source files you want to import in
the Directory field. Select the project_name/webApplication/common/images
directory as the destination Folder. When your image source files are imported,
right-click the on the Images folder, and select Show thumbnails to see the images
in the folder on the Thumbnail tab in the lower right window. You can use the
drag-and-drop method to copy images into the Design tab view of your
transformation.

© Copyright IBM Corp. 2002 25

You can also import images from the WebSphere Studio Gallery tab.

When you click the Insert Host Component, Insert Tabbed Folder, Insert Macro
Key, or Insert Global Variable items on the Insert HATS Tags menu, a wizard
appears for you to define those items.

Insert Host Component wizard
With the Insert Host Component wizard, you select the screen from which you
want to extract a host component. You also select a region on the screen from
which to extract a host component by drawing a rectangle around the text. Place
your cursor at any point on the screen, click and hold the left mouse button, and
move the cursor to another location on the screen to draw the rectangle. The fields
at the bottom of the wizard show the starting and ending row and column
numbers of the rectangle. You can also enter the row and column numbers by
typing the numbers in the fields. If you want to see where the input fields are
defined on the screen, click the Highlight input fields checkbox. When you have
selected the starting and ending row and column numbers of the screen, click Next
to display the rendering options for the host components found in the selected
region.

HATS provides host components and widgets. You can choose one of the host
components and widgets provided or you can create your own custom host
components and widgets. For information on creating custom host components
and widgets, see “Creating custom host components and widgets” on page 55.

Click one of the components in the Component List. The Component Preview
window displays the component if it is found in the screen region. You select the
widget to use to render the host component from the widgets in the corresponding
Widget List that are available to render the component. When you select a widget,
the Widget Preview window displays how the widget is displayed in the final Web
page. A larger widget preview is available if you click the Widget preview in large
window (the magnifying glass). You can click Full page preview to show all the
components on the page along with the associated template. This preview shows
the page as it will appear to the end user.

The default project settings for components and widgets are configured using the
General tab of the project editor. Some components and widgets have settings that
you can customize by clicking Component Settings or Widget Settings. You can
also customize the component and widget settings for a particular transformation
using the Insert Host Component wizard, by clicking Component Settings or
Widget Settings. For information on the settings that can be customized with the
Insert Host Component wizard, see “Component and widget settings” on page 89.

The widgets that are available depend on the selected host components. Table 4 on
page 101 lists the existing HATS host components and their corresponding widgets.

If HATS does not find the component in the screen region, the Component Preview
window displays the message “The selected region does not contain the
component_name component”, where component_name is the component selected in
the Component List. If this message is displayed, you might not have selected a
region that contains the complete component, or you might need to modify the
settings of the component to match the way your host application displays the
component. For example, you may have a Command Line component in the

26 IBM® WebSphere® Host Access Transformation Server Developer’s Guide

region, but your command line uses the token >>> instead of ==>, so you could
change the token attribute of the Command Line component to look for a
command line with the correct token.

Refer to Appendix A, “Component and widget descriptions and settings” on
page 89 for a list of the host components and widgets.

Click Finish when you have made your component and widget selections.

Insert Tabbed Folder wizard
Use this wizard to insert a folder with tabs into your Web page. Tabbed folders are
helpful in organizing your components and information when you have a large
amount of information to display on the Web page. With the Insert Tabbed Folder
wizard, you specify how many tabs you want for your folder. For each tab in the
folder, you also specify the following:
v The label text for the tab
v The host component you want to display on the tab
v The background color for the tab when it is selected
v The background color for the tab when it is not selected

Under the Tab advanced options, if you clear the Use default values checkbox,
you can specify the following:
v The color of the text on the tab when the tab is selected
v The color of the text on the tab when it is not selected
v The color of the tab when you place your cursor over the tab

Under the Folder advanced options, if you clear the Use default values checkbox,
you can specify the following:
v The height of the tab in pixels
v The width of the folder in pixels
v The height of the folder in pixels
v The color of the folder outline

The Preview window shows how the tabbed folder will appear, based on the
selections you make.

Click OK when you have defined all of the tabbed folder options for each tab in
the folder.

You can click Full page preview to show all the components on the page along
with the associated template. This preview shows the page as it will appear to the
end user.

Insert Macro Key wizard
With the Insert Macro Key wizard, you can display a macro on the Web page
presented to the end user. The end user could execute the macro by clicking on a
button or a link, or by selecting the macro from a drop-down list. For example,
your Web page could present a logon screen to the end user, which also has a
button for a logon macro. When the end user clicks the button, the macro plays to
supply a user ID and a password, and navigates to the next screen that the end
user needs to see.

Chapter 5. Editing a transformation 27

To add a macro to your Web page, select one or more macros to add from the list
of macros defined in the project by clicking the checkbox next to the name of the
macro. You also define how to display and initiate the macro from the Web page.
Choose from one of the following:
v Individual button
v Individual link
v An item in a drop-down list.

Note: HATS uses the description of the macro as the text inserted into the Web
page for any of the rendering options. You might want to consider this
when providing a description of the macro, and avoid giving macros long
descriptions.

Insert Global Variable wizard
With the Insert Global Variable wizard, you select a defined global variable from
the drop-down list for which you want to display the value. If the value of the
global variable is indexed (contains a list of strings), click Advanced to display the
Handle Indexed Variables dialog. If you click the Variable is indexed checkbox,
you can select one of the radio buttons to specify whether all indices or only a
single index is inserted. If you select the Show a single index radio button, you
also specify the number of the index to be inserted.

Source tab
The Source tab displays the HTML and JSP tags in the transformation.jsp file
necessary for extracting host components from the host screen, the widgets you
selected to present those host components, and any other items you added to the
transformation. As you make changes on other tabs in the HTML editor, the tags
and attributes displayed in the tags of the source file change to match.

You can also make changes directly to the tags and attributes in the source file, or
you can insert items using the Insert HATS Component drop-down menu on the
HATS Studio toolbar. The items you can insert on the Source tab are the same
items listed on the Design tab. Place your cursor in the source file at the point you
want to insert one of the menu items.

When a host component and its rendering widget have been inserted, you can use
the Edit HATS Component toolbar option to modify the host component and
widget. Before you click Edit HATS Component, make sure your cursor is inside
of the <HATS:Component> tag.

When you make changes to the file displayed on the Source tab, they are reflected
on the appropriate tabs of the HTML editor.

Preview tab
The Preview tab provides a browser preview of the transformation showing the
static HTML content. This is similar to the Design tab, but without the ability to
make changes to it. Items defined with the <HATS:Component> tag are not shown
in the preview. There are other ways to preview your transformation, along with
its associated template.

28 IBM® WebSphere® Host Access Transformation Server Developer’s Guide

As mentioned on the Design tab, you can click Full page preview in the Insert
Host Component wizard or the Insert Tabbed Folder wizard to show all the
components on the page along with the associated template. This preview shows
the page as it will appear to the end user.

Another way to preview your transformation is to use captured screens. For every
transformation you create in your project, HATS creates a captured screen (whether
you requested it or not). You can see the captured screens by expanding the Screen
Captures node of the HATS Project View tab of the HATS Studio. Double-clicking
on the name of the screen capture displays a view of the screen capture with two
tabs, Host Screen and Preview. The Host Screen tab displays the captured screen
as it appears on the host. The Preview tab displays how the transformation is
rendered on the Web page, along with the template associated with the
transformation.

The transformation and template used to generate the preview are based on screen
customizations defined in your project. Preview scans the list of enabled screen
customizations. When a screen customization is encountered that matches the
captured screen, the first action that applies a transformation (along with the
associated template) is used to render the preview. If no matching screen
customization is found, the default template and transformation are used for the
preview.

Chapter 5. Editing a transformation 29

30 IBM® WebSphere® Host Access Transformation Server Developer’s Guide

Chapter 6. Using templates

Templates enable you to further control the appearance of your HATS project. A
template is a JSP file with an area reserved for the host screen that is rendered by a
HATS transformation. The template can contain company logos and information
and links to other Web pages. A template also defines the background color or
image (or both) for the area where the transformed host screen appears.

HATS supplies templates that you can use in your projects. You can see the names
of these templates by expanding the Templates node of the HATS Project View
tab of the HATS Studio. The supplied templates contain HTML and JSP code to
include some or all of the following:
v At least one stylesheet (.css) file
v Borders created using the .gif and .jpg files (located in the Common/Images node)
v The HATS default application keypad
v An area for the host screen rendered with a transformation.

When you created your project in HATS Studio, you selected a template to use as
the default template for your project.

When you create screen customizations, and the action is to apply a
transformation, you can select the template to use when the transformation is
applied. To make your host application consistent across all screens, you can use
the same template for your transformation that you selected for your project
default template. You do this by allowing the template to default to the template
selected for the project, selecting (default template) from the drop-down list. The
(default template) selection is the default when applying a transformation is the
action of a screen customization.

Creating your own templates
You can create your own custom templates to meet functional needs and corporate
style guidelines. You can design custom templates for your projects using the
wizards and editors in HATS Studio. HATS automatically adds the necessary code
to include a stylesheet, the HATS default application keypad, and an area for the
host screen rendered with a transformation to any templates that you create. When
you create your own template, ensure that the following required tags are
included:

<LINK rel=″stylesheet″ href=″xxx″> tag
One or more tags that refers to a stylesheet to define each of the following:
v Appearance of the buttons, links, and keypads
v Colors for the template background and widgets
v The font and size for text.

<HATS:Transform>
This tag defines the location of the transformation that the template
surrounds.

You can see all of the templates, those supplied by HATS and any that you have
created, by expanding the Templates node of the HATS Project View tab of the
HATS Studio. To edit a template, you use the HTML editor built into WebSphere

© Copyright IBM Corp. 2002 31

Studio. You can invoke the HTML editor by double-clicking on the name of the
template. See the WebSphere Studio documentation for more information on using
the HTML editor features.

There are two ways to create your own template:
v Click Create HATS Template on the HATS Studio toolbar to start a new

template.
v Edit one of the supplied templates and make changes to it.

If you want to use your new template as the default template for your project,
make sure you select the name of your template as the default for your project in
the project editor.

The following restrictions apply to creating custom templates:
v Custom templates must be UTF-8 encoded.
v Do not use any JSP variable or CSS class that starts with HATS. These names are

reserved for use by HATS.
v Do not create a form named HATS_form. HATS generates this form while

assembling HTML outputs.
v Do not use a form that encloses the HATS:Transform tag. HATS generates a

form in the place where the HATS:Transform tag is. HTML does not allow
nested forms.

Keep in mind that any changes you make to objects in a project only affect that
project. If you want to use the template you create for other projects, you need to
copy that template to any new projects you create.

The following sections describe each tab of the HTML editor.

Design tab
The Design tab displays the current view of the template as you make changes to
it. While on this tab, additional edit options are available from the WebSphere
Studio toolbar. For example, you can use the Insert drop-down menu from the
toolbar to insert things such as images, photographs, text, and text-formatting
controls. You can add music that plays when the template is displayed, create
layout frames, and add HTML tags. You can also insert global variables, macro
keys, host and application keypads, or individual keys from the keypads.

You can select these items using the pull-down menus on the menu bar, or the
Insert HATS Component drop-down menu on the HATS Studio toolbar.

If you want to add images to your project, it is recommended that you import
them into the Common/Images directory of your project. To import images, select
File > Import > File System to open the Import wizard. Select the location of the
image source files you want to import in the Directory field. Select the
project_name/webApplication/common/images directory as the destination Folder.
When your image source files are imported, right-click on the Images folder, and
select Show thumbnails to see the images in the folder on the Thumbnail tab in
the lower right window. You can use the drag-and-drop method to copy images
into the Design tab view of your template.

When you click the Insert Macro Key or Insert Global Variable items on the
Insert HATS Tags menu, a wizard appears for you to define those items, as you

32 IBM® WebSphere® Host Access Transformation Server Developer’s Guide

can in transformations. See “Insert Macro Key wizard” on page 27 and “Insert
Global Variable wizard” on page 28 for more information about these wizards.

Using stylesheets
You can control elements of output such as font color, size, and background color
in order to maintain the consistency of the area of the screen rendered by HATS
with the style of the template. For example, Cascading Style Sheets (CSS) is a
simple style language that enables attaching style to HTML elements.

HATS provides stylesheets to modify color schemes and font size. At least one of
these stylesheets is applied to the template. While viewing the template on the
Design tab, you can apply these stylesheets to your template. Right-click on the
Stylesheets folder and select Show thumbnails from the pop-up menu. The
stylesheet files are shown in the Thumbnails view below the Design tab. To apply
one of the stylesheets to your template, double-click the stylesheet.

To change the output style of HATS templates, you can edit a stylesheet that was
shipped with HATS. The stylesheets that HATS provides are located in the
Common/Stylesheets node of the HATS Project View tab of the HATS Studio.
Double-click on any stylesheet to edit the file. Read the comments in the file to
determine the functions of the styles included in the stylesheets.

Source tab
The Source tab displays the HTML and JSP tags in the template.jsp file for all the
parts of the template. As you make changes on other tabs in the HTML editor, the
tags and attributes displayed in the tags of the source file change to match.

You can also make changes to the tags and attributes in the source file, and they
are reflected on the appropriate tabs of the HTML editor.

Preview tab
The Preview tab provides a browser preview of the transformation showing the
static HTML content. This is similar to the Design tab, but without the ability to
make changes to it. This preview does not include the transformation.

Chapter 6. Using templates 33

34 IBM® WebSphere® Host Access Transformation Server Developer’s Guide

Chapter 7. Interacting with global variables

A global variable contains a value that can be used to pass information from one
HATS object to another. For example, you can extract information from several
locations on a host screen, perform calculations, and insert the result on the current
screen or a future one. You can build up an array of strings from one or more host
screens and insert them into a transformation. You can extract a string that a user
enters into a field on a Web page and use it elsewhere.

Global variables exist for the time that the HATS application is active. If several
users open host sessions using the same HATS application, the global variables for
each session are used only in that session; they are not shared between different
sessions using the same HATS application. A global variable can contain a numeric
value, a string, or an indexed array of strings. If you use a global variable to
contain an array of strings, you can specify for any action whether you want to use
the entire array, a particular index, or all the values starting at a particular index.
All operations on global variables are case-sensitive. Do not use names beginning
with “HATS” for global variables.

You can set the value of a global variable in these ways:
v With a Set global variable or Extract global variable as an action on a screen

customization or other event
v By prompting the user for a value while running a macro
v By setting the value in a business logic program.

After a global variable has a value, you can use that value in the following ways:
v To calculate the value of another global variable, in a Set global variable action
v To write the value to a host screen, using an Insert global variable action
v To insert the value into a transformation or a template, using the Insert global

variable menu item
v To pass the value to a macro
v To use the value in business logic.

If you insert a global variable into a host screen, you must list this action before
applying a transformation, so that the global variable will appear on the Web page
created from the host screen. See “Actions tab” on page 19 for more information
about specifying actions for screen customizations. For information on inserting
global variables into transformations and templates, refer to “Insert Global Variable
wizard” on page 28.

Global variables can be used with prompt and extract macros to either provide a
value for a prompt or to store a value extracted from the host screen. See
Chapter 8, “Incorporating macros” on page 37 for more information about using
global variables with macros.

To use global variables in business logic, you must check the Get global variable
box in the Create Business Logic wizard. This creates a stub in your business logic
code to give you access to HATS global variables. See Chapter 9, “Adding business
logic” on page 41 for more information about using business logic.

© Copyright IBM Corp. 2002 35

If you want to use a global variable to accumulate strings or a numeric value from
several screens, you can initialize it by adding a Set global variable action to the
connect event. From the HATS Project View tab of the HATS Studio, click the
Navigator tab at the bottom, expand your project, and expand the
source/profiles/events/session/main directory. Double-click connect.evnt to
customize the connect event.

36 IBM® WebSphere® Host Access Transformation Server Developer’s Guide

Chapter 8. Incorporating macros

HATS supports macro-based customization to speed up the host application
process. HATS supports skip-screen macros, prompt macros, and string extract
macros. Skip-screen macros are navigational macros that move the user from one
screen to another screen without displaying intervening screens. When running a
skip-screen macro, HATS does not display any of the bypassed screens of the
macro to the user. After the skip-screen macro has finished, HATS processes the
ending screen (comparing the screen to the defined screen recognition criteria).

Prompt macros contain events to request input from users during the host session.
For example, you can use a prompt macro to ask a user for their user ID and
password before logging them into a host application.

Extract macros contain events to extract host screen information as a string. You
can use an extract macro to connect to a directory-type host application and extract
the results of doing a search in the directory. For example, you can use an extract
macro to extract the results of a search for ″Smith″ in a phone book application.

You can record macros in HATS Studio using the HATS host terminal. On the
HATS host terminal screen, click Record Macro. The Record a Macro wizard
appears and enables you to name the macro, give it a description, and specify
where the macro is saved. Click Finish when you have specifed these items. You
can then use the HATS host terminal screen to navigate through the host
application to any screen.

If you want the macro to prompt the user for information, click Insert Prompt to
display the Insert Prompt wizard. You can give the prompt a name and a default
value. If the information the end user provides, such as a password, should not be
displayed on the host screen, click the Password protect input checkbox. The Row
and Column fields of the Position section of the wizard define where on the host
screen the prompt information provided by the end user is placed. If you place
your cursor at a location on the host screen, such as the field for a password,
before you begin recording the macro, the Row and Column fields are filled with
those values. The Handle Macro Prompt section of the wizard enables you to
determine how the prompt is processed. You can select one of the following radio
buttons:

Show handler
You can select a .jsp file to prompt the end user for the necessary
information, and include a button for the user to submit the information. A
default macro handler is shipped with HATS, and it is named default.jsp.
You can find this file by clicking the HATS Project View tab of the HATS
Studio and expanding the project name, and expanding Macros > Macro
Event Handlers. If you want to create your own handler, ensure that you
return control to the HATS runtime.

Set prompt to string
If you know what value should be returned from a prompt, you can enter
that string in the String field.

Set prompt to global variable
If you want the value of the prompt to be provided by a global variable,

© Copyright IBM Corp. 2002 37

enter a name for the global variable in the Name field or select an existing
variable using the drop-down menu next to the Global variable field.

Click OK when you have made your selections.

If you want the macro to extract information from the host screen, click Insert
Extract to display the Insert Extract wizard. You can specify a name for the extract.
The Start row, Start column, End row, and End column fields of the Position
section of the wizard define from where on the host screen the information is
extracted. If you mark a region of the host screen with a rectangle after you click
Insert Extract, the Position section fields are filled with the values when the Insert
Extract wizard is displayed. The Handle Macro Extract section of the wizard
enables you to determine how the prompt is processed. You can select the
following check boxes:

Show handler
You can select a .jsp file to display the extracted information to the end
user. A default macro handler is shipped with HATS, and it is named
default.jsp. You can find this file by clicking the HATS Project View tab of
the HATS Studio and expanding the project name, and expanding Macros >
Macro Event Handlers. If you want to create your own handler, ensure that
you return control to the HATS runtime.

Save as global variable
You can enter a name for the global variable in the Name field or select an
existing variable using the drop-down menu. You must specify the
extraction format by selecting one of the following radio buttons:
v Extract this region as one string
v Extract this region as a list of strings.

If you selected an existing global variable in the Name field, you must
specify how to handle the existing variable by selecting one of the
following radio buttons:
v Overwrite the existing value with this new value
v Append this new value to the end of the existing value.

Click OK when you have made your selections.

You can also import macros recorded with other programs, such as the IBM
WebSphere Host Publisher or IBM Host On-Demand. To import these macros,
select File > Import > HOD/Host Publisher Macro and click Next to display the
Import a HOD/Host Publisher Macro dialog. Click Add and navigate to the
location of the macro on the file system. Host Publisher macros are typically in a
directory path \hostpub\Studio\IntegrationObjects.

Note: Host Publisher macros with fixed iteration loops continually recognize the
same screen and perform different actions. In HATS, you cannot create a
screen customization to recognize the same screen a second time and
perform a different action than the first time it was recognized. If you
attempt to use a Host Publisher macro with fixed iteration looping, your
project might go into an infinite loop. Host Publisher macros with fixed
iteration looping can be identified by looking at the source code for the
macro. The macro contains customreco and custom tags with ID attributes of
HPubFixedIterationLoop and HPubIncrementLoop, respectively.

38 IBM® WebSphere® Host Access Transformation Server Developer’s Guide

When a macro is listed in a project, it can be defined to run as the action of a
screen customization, when the screen recognition criteria match the host screen.
Playing a macro must be the last action performed for a screen customization.

You can also create a button to play the macro using the transformation editor. See
“Insert Macro Key wizard” on page 27 for more information.

Macros recorded or imported in HATS Studio are saved in a HATS macro (.hma)
file. You can use the macro editor to view and modify those macros.

You can see the macros defined in your project by expanding the Macros node of
the HATS Project View tab of the HATS Studio. You can invoke the macro editor
by double-clicking on the name of the macro.

The following sections describe each tab of the macro editor.

Overview tab
The Overview tab of the macro editor summarizes information about the macro,
such as the name and description. The only item you can modify on this tab is the
description of the macro.

You can click Editor to launch the Host On-Demand macro editor, and modify
settings for the macro. A separate window opens for the macro editor. Refer to
Host On-Demand help documentation for more information on the Host
On-Demand macro editor.

Prompts and Extracts tab
The Prompts and Extracts tab of the macro editor lists the configured macro
prompts and extracts, and how they are handled when the macro is played. You
can edit the HATS-specific properties of a prompt or an extract by selecting it in
the table and clicking Edit.

Source tab
The Source tab displays the tags in the macro-name.hma file for all the attributes
and values for the macro, where macro-name is the name you gave to the macro
when you created it or imported it. As you make changes on other tabs in the
project editor, the tags and attributes displayed in the tags of the source file change
to match.

You can also make changes to the tags and attributes in the source file, and they
are reflected on the appropriate tabs of the macro editor. For more information
about the tags in the macro-name.hma file, refer to “Macro files (.hma)” on page 120
and Appendix C, “Macro script syntax” on page 123.

Chapter 8. Incorporating macros 39

40 IBM® WebSphere® Host Access Transformation Server Developer’s Guide

Chapter 9. Adding business logic

Business logic is any Java code invoked as an action in an event, such as a screen
customization. Business logic is specific to the application and is not provided as
part of HATS.

You can add business logic to your project using the Create Business Logic wizard.
To invoke this wizard, right-click in the HATS Project View tab of the HATS
Studio, and select New HATS > Business Logic. You can also right-click in the
Navigator tab of the HATS Studio, and select New > Other > Host Access
Transformation Server > HATS Business Logic, and then click Next.

In the Create Business Logic wizard, specify the project to which you want to add
the business logic and supply the fully-qualified Java class name. Optionally, you
can supply a package name, or select an existing Java package by clicking Browse.
If you want your business logic to have access to the project global variables, check
the Get global variable checkbox. Click Finish when you have provided the
required information.

You can see the business logic files in the project by expanding the Source folder
on the HATS Project View tab of the HATS Studio. Each package name or class
name appears in the Source folder. Expand the package name folder to see the Java
class name. Double-click on the class name to edit the class.

If you use the Create Business Logic wizard to create business logic, the method is
named “execute” by default. If you write your own class, the method must meet
specific requirements:
v Marked public and static
v Have a return type of void
v Take a com.ibm.hats.common.BusinessLogicInfo object as the only parameter

The method must follow the form:
public static void myMethod (BusinessLogicInfo businesslogic)

followed by your own business logic code.

The BusinessLogicInfo object passed to your custom Java code enables you to
access and use or modify various objects and settings of your HATS project. These
include:
v The javax.servlet.http.HttpServletRequest class
v The javax.servlet.http.HttpServletResponse class
v The connection hashtable, which contains the settings for the connection

information you provided for the application
v Class properties, which provide default settings for objects such as components

and widgets
v The com.ibm.hats.common.GlobalVariable objects in the application
v The com.ibm.hats.common.HostScreen object, which contains “greenscreen”

information
v The java.util.Locale class of the client
v The com.ibm.hats.common.TextReplacementList values and settings

© Copyright IBM Corp. 2002 41

v The client session identifier string
v The current screen orientation of bi-directional sessions
v The existence of the Screen Reverse button in the browser for bi-directional

sessions.

For more information about the classes made available to you, see the Java
documentation at the product Web site
(http://www.ibm.com/software/webservers/hats) for the BusinessLogicInfo class.

Incorporating Java code from other applications
You can incorporate Java code from other existing applications into your HATS
projects in a variety of ways.

If you want to incorporate the source code (.java files) from your existing business
logic so you can modify the code, you can import the .java files into the Source
folder in your existing project. Select File > Import > File System to open the
Import wizard. In the Import wizard, select the location of your source files in the
Directory field. Select the Source folder of your project in the destination Folder
entry field. When your source .java files are imported, they are automatically
compiled and packaged into your HATS project. You can also edit, set breakpoints,
and debug your source files in the WebSphere Studio workbench.

You can also incorporate a Java archive (.jar) file with compiled Java business logic.
This method imports the Java archive file into the .ear project. There will only be a
single copy of the Java file in the .ear file, but it is available to all of the HATS
projects contained in that .ear project. There are three steps to this method.
1. Import the .jar file into the HATS .ear project. Select File > Import > File

System to open the Import wizard. Select the Java archive (.jar) you want to
import in the Directory field. Select your HATS .ear project as the destination
Folder. When your .jar file is imported, click the Navigator tab of the HATS
Studio and expand your HATS ear project. You will see the imported java
archive file.

2. In the Navigator tab of the HATS Studio, select the project in which you want
to invoke your business logic. Right-click on the high level HATS project and
select Properties. In the Properties dialog, select Java Build Path in the left
table and select the Libraries tab on the right. Click Add JARs to display the
JAR Selection dialog. Expand the HATS .ear project, and select the newly
import Java archive file. Click OK in the JAR Selection dialog, and click OK in
the Properties dialog. Repeat this process for all HATS projects for which you
want to use the business logic.

3. In the Navigator tab of the HATS Studio, select the project in which you want
to invoke your business logic. Expand the project, the webApplication folder,
and the META-INF folder. Double-click on the MANIFEST.MF file. Type in the
name of your newly imported jar at the end of the Class-Path: line.

There are other ways to import Java archives into the HATS project. HATS projects
are extensions of Web projects in the WebSphere Studio workbench. For more
information about importing Web projects, open the Help perspective in the
WebSphere Studio workbench and select Application Developer Documentation.
Expand the sections as follows to find information on Web projects: Concepts >
Projects > Web projects.

42 IBM® WebSphere® Host Access Transformation Server Developer’s Guide

http://www.ibm.com/software/webservers/hats

Chapter 10. Integration of Host Publisher objects

Host Publisher and HATS are complementary products you can use together to
accomplish a variety of tasks. You can use Host Publisher objects to incorporate
data from other legacy systems or databases with data from HATS legacy systems.
You can use HATS global variables as a mechanism to share data between HATS
variables and Host Publisher inputs and outputs. From HATS business logic,
templates, and transformations, you can invoke Remote Integration Objects, EJB
Access beans, and Web Services. You can also import Host Publisher macros into
your HATS project. See Chapter 8, “Incorporating macros” on page 37 for
information on importing macros into HATS.

Invoking Host Publisher Remote Integration Objects from HATS
You can invoke Host Publisher Remote Integration Objects from HATS. Although
Host Publisher Server must be installed somewhere in your network to invoke
Remote Integration Objects, it does not need to be installed on the same
WebSphere Application Server as HATS.

To invoke Host Publisher Remote Integration Objects into your HATS project, you
must first import the Remote Integration Objects into your HATS project. Refer to
the section titled “Remote Integration Object Files” in the IBM WebSphere Host
Publisher Programmer’s Guide and Reference for information on importing Host
Publisher Remote Integration Objects into WebSphere Studio workbench. After the
Host Publisher Remote Integration Objects are imported into HATS, you can call
the Remote Integration Objects from your HATS business logic or from HATS
templates or transformations, by using in-line Java code enclosed in <%...%>. See
the section titled “Programming with Remote Integration Objects” in the IBM
WebSphere Host Publisher Programmer’s Guide and Reference for more information.

To invoke a Host Publisher Remote Integration Object from HATS business logic,
right-click in the HATS Project View tab of the HATS Studio and select New
HATS > Business Logic. Enter a Java class name and package name and click
Finish. A skeleton HATS business logic template is displayed. For a sample of the
template updated to execute a Host Publisher Remote Integration Object, see the
product Web site (http://www.ibm.com/software/webservers/hats).

Invoking Host Publisher EJB Access Beans and Web Services from
HATS

You can invoke Host Publisher EJB Access Beans and Host Publisher Web Services
from HATS. Although Host Publisher Server must be installed somewhere in your
network to invoke EJB Access Beans, it does not need to be installed on the same
WebSphere Application Server as HATS.

To invoke Host Publisher EJB Access Beans into your HATS project, you must first
import the EJB Access Beans into your HATS project. Refer to the section titled
“Using EJB Access Beans with Java Application Clients” in the IBM WebSphere Host
Publisher Programmer’s Guide and Reference for information on importing EJB Access
Beans into WebSphere Studio workbench. After the EJB Access Beans are imported
into HATS, you can call EJB Access Beans from your HATS business logic or from
HATS templates or transformations. See the section titled “Programming with Web

© Copyright IBM Corp. 2002 43

http://www.ibm.com/software/webservers/hats

Services Integration Objects and EJB Access Beans” in the IBM WebSphere Host
Publisher Programmer’s Guide and Reference for more information.

44 IBM® WebSphere® Host Access Transformation Server Developer’s Guide

Chapter 11. Enabling print support in projects

As you develop a HATS project, you can establish a print session for the associated
host application. When the HATS project is running on a WebSphere server, an end
user of the application can also print data or display data that is formatted for
printing.

When interacting directly with a host application, an end user activates a physical
printer to print data from the application. When interacting with a HATS
application, the end user does not activate a physical printer. Rather, he or she
generates an Adobe Portable Document Format (PDF) file, which can be displayed
in a Web browser. The PDF file can also be printed.

Note: If a PDF viewer (Adobe Acrobat Reader) is not installed, the user will be
prompted to save the file to disk.

This chapter describes the process for enabling print support in your HATS project
and for using print support as you develop the project in HATS Studio and as the
application is used by an end user.

Configuring the host print session on 3270 hosts
Before setting up print support for your HATS project, make sure that you (or the
system administrator) have performed the following configuration for the host
print session:
v VTAM configuration of a switched major node containing the display and

printer logical units (LUs).
v The printer LUs must be associated with the host application in your Telnet

server configuration.

Refer to the documentation for your 3270 host software for details on how to
perform these steps.

Defining print support for your project
For print support to be available for your project, you must obtain the host name
and the port number for the Telnet server from the system administrator. Enter
these values when you define the connection settings for your project.

For 3270 servers
To define print support when your HATS project interacts with a 3270 server, do
the following:
v Click the Enable print support checkbox on the Advanced Connection Settings

tab of the project editor. You can also set values for the following:
1. Paper size
2. Page orientation, either portrait or landscape.
3. The name of the font to be used in the PDF file. The list of fonts from which

you can choose depends on the codepage setting for the workstation you are
using.

See “Advanced Connection Settings tab” on page 12 for more information.

© Copyright IBM Corp. 2002 45

v Obtain the name of the printer LU from the system administrator.
v In the box for the optional, advanced connection settings for IBM WebSphere

Host On-Demand, click Add.
v Select the LUName parameter using the drop-down list next to the Name field,

and enter the name of the printer LU you obtained from the system
administrator in the Value field.

v Verify with the system administrator that the print subsystem is configured and
active.

v If running on a VM system, identify the printer to use for print jobs.

When an end user of the HATS application issues a command to print files, the
HATS application sends a print job to the printer LU and the HATS runtime
converts the print job to PDF format. Once the PDF is formatted, the end user can
click View Print Jobs on the application keypad to see a list of queued print jobs.

For 5250 servers
To define print support when your HATS project interacts with a 5250 server, click
the Enable print support checkbox in your project settings. Provide a URL for the
iSeries for Web Access (IWA) Printer Output window. The default URL is
http://hostname/webaccess/iWASpool, where hostname is the name of the 5250
server. See “Advanced Connection Settings tab” on page 12 for more information.

You do not need to perform any additional configuration. When an end user of the
HATS application issues a command to print files, IWA converts the host print jobs
into PDF format and facilates the download to the end user. The end user can click
View Print Jobs on the application keypad to display the IWA Printer Output
window. In this window, the end user can select the following print options:
1. PDF device type

2. Paper size

3. Destination

Refer to your IWA documentation for more information on these print options.

Providing documentation for end users
To facilitate use of your HATS project by end users, we recommend that you
provide documentation on how to use the print support in HATS. Your
documentation—provided either in the application’s graphical user interface or in
some other easily displayed form (perhaps a link in your template)—should
describe:
v Using the functions in the Printer Output window, as described below
v If a PDF viewer (Adobe) is not installed, the user is prompted to save the file to

disk.

Note: You might consider adding a link to your application to where the end
user can download a free copy of the Acrobat Reader.

v When the HATS application completes, the printer output window closes
automatically.

v Any application-specific information you choose to include.

To use HATS print support, an end user should follow these steps:
1. Start the HATS application.
2. Print the files.

46 IBM® WebSphere® Host Access Transformation Server Developer’s Guide

3. Click the View Print Jobs button. The Printer Output window displays a list of
print jobs, if any exist.
In the Printer Output window, the end user can click the links for their jobs to
either View or Delete the print job. If the user clicks the view link, the print job
is displayed as a PDF file in Acrobat Reader, if it is available. If not, the user is
prompted to save the file to disk.

Note: While the print jobs are spooling, the user might see the file names for
the print jobs in the printer output window, but View and Delete are
disabled until the conversion to PDF format is complete.

Chapter 11. Enabling print support in projects 47

48 IBM® WebSphere® Host Access Transformation Server Developer’s Guide

Chapter 12. Enabling keyboard support in projects

Users frequently interact with host applications using special keys on the physical
keyboard, such as F1, Attn, and Clear. There are two different ways in which the
end users of your HATS projects can send keystrokes to the host:
v By pressing keys on the physical keyboard. The term keyboard support, as used in

this chapter, refers to this activity.
v By using a keypad—a graphical table of HTML buttons or links that represent

keys on the physical keyboard. The end user clicks on the desired key in the
keypad to send that host key to the host.
There are two keypads in HATS Studio that you can add to your project:
– The host keypad, with keys (such as F1, F2, and Clear) that represent host

keys. These keys control functions on the host. HATS transformations, by
default, include the default host keypad.

– The application keypad, with keys (such as Refresh, Default, and View Print
Jobs) that represent application-level functions. These keys control functions
within the HATS project. HATS templates, by default, include the default
application keypad. The application keypad keys include:

Reset Clears all the fields on the browser page of any entries made by the
end user.

Default
Turns off any customization of the host screen by a transform and
presents the entire host screen as the default view.

Reverse Screen
Toggles the screen image from a left-to-right image to a right-to-left
image or vice-versa, if the application is running on a host with an
Arabic or Hebrew codepage. If an Arabic or Hebrew codepage is not
selected in the project connection settings, this button does not appear
on the application keypad.

Refresh
Refreshes the current browser screen and performs the current action
again.

Disconnect
Disconnects from the host session. If this key is clicked, a link appears
to let the user reconnect to the host.

View Print Jobs
Shows a list of print jobs that the end user has created. If print
support is not enabled for the project, this button does not appear on
the application keypad.

Toggle Keyboard
Toggles support for using the physical keys on the host keyboard. If
keyboard support is not enabled for the project, this button does not
appear on the application keypad.

Note: The text of the button seen by the end user depends on the
state of the keyboard. The button will read “Keyboard on”
when keys are being sent to the browser, and “Keyboard off”
when keys are being sent to the host.

© Copyright IBM Corp. 2002 49

Using the settings on the General tab of the project editor, you can define whether
the project displays keypads, even if the tags for the keypads are included in the
templates or transformations. You can define a subset of keys to display in the
keypads, and whether the keys should appear as buttons or links. You can also
add custom keypads or individual keys to your templates and transformations.

Notes:

1. The default keypads are not defined using HTML tags, so they cannot be
viewed in the Design tab of the HTML editor for a transformation.

2. Custom keypads and individual keys are defined using HTML tags, so they are
displayed in the HTML editor.

3. PF keys on host screens that are transformed using the default transformation
are displayed as buttons or links. These keys are displayed separately from the
default host keypad.

Refer to “General tab” on page 13 for more information about the settings for
keyboard support and keypads.

This chapter explains how to define keyboard support in your HATS project and
contains tips for documenting keyboard support for your end users.

To use keyboard support in HATS projects, the end user’s Web browser must be
either Internet Explorer version 5.0 or higher or Netscape version 6.0 or higher.
Javascript must be enabled in the Web browser.

Defining keyboard support
To define keyboard support in a HATS project, you need to enable keyboard
support in your project, and define the host keypad and the application keypad
keys to include. See “General tab” on page 13 for information about the project
settings for keyboard support and the keypads.

Changing the appearance of the keypads
You can change any of the following items for the keypads:
v Background color for the keypad
v Attributes for buttons (both enabled and disabled):

– Font family
– Font size
– Color
– Background color

v Attributes for links (both enabled and disabled):
– Font family
– Font size
– Color
– Background color

To change style of a keypad for a specific HATS project, change the cascading style
sheet that corresponds to the keypad. In the WebSphere Studio workbench, go to
the HATS Project View tab of the HATS Studio and expand the project name.
Expand Common > Stylesheets. The default keypad stylesheet is keypad.css.

To modify the keypad, double-click on the keypad.css stylesheet open the editor.

50 IBM® WebSphere® Host Access Transformation Server Developer’s Guide

The cascading style sheet defines seven styles:

table.HostKeypad
Host keypad background

table.ApplicationKeypad
Application keypad background

input.HostPFKey
Host keypad PF buttons

input.HostButton
Host keypad buttons

input.ApplicationButton
Application keypad buttons

a.HostKeyLink
Host keypad links

a.ApplicationKeyLink
Application keypad links

Providing documentation for end users
To facilitate use of your HATS project, we recommend that you document the
keyboard settings for your end users—either in the application’s graphical user
interface or in some other easily displayed form (perhaps a link in your template).
Your documentation should describe:
v How to turn keyboard support on and off, using Toggle Keyboard

v The HATS keyboard mapping, as shown in Table 1
v How the Enter key works with tabbed folders; keyboard support must be off

when the user presses the Enter key to display the contents of a different tab,
after using the Tab key to move to a new tab. If keyboard support is not turned
off, the Enter key goes to the host.

v The required level of Web browser for using keyboard support: either Internet
Explorer version 5.0 or higher or Netscape version 6.0 or higher.

Table 1. Key mapping in HATS

Button on button bar Default physical key mapping

F1 – F12 F1 – F12

F13 – F24 Shift + F1 – F12

ENTER Enter

CLEAR Esc

SYSREQ Shift + Esc

ATTN Pause/Break

PAGEUP Page Up

PAGEDN Page Down

PA1 Alt + Delete

PA2 Alt + End

PA3 Alt + Page Down

PRINT Ctrl + P

HELP Ctrl + H

Chapter 12. Enabling keyboard support in projects 51

Table 1. Key mapping in HATS (continued)

Button on button bar Default physical key mapping

Enable/disable keyboard Ctrl + K

Default Alt + Insert

Refresh Alt + Page Up

Reset Ctrl + S

Disconnect Ctrl + D

View print jobs Ctrl + J

Reverse Ctrl + R

52 IBM® WebSphere® Host Access Transformation Server Developer’s Guide

Chapter 13. Enabling SSL security

If you click the SSL enabled checkbox in the Connection Settings of either the
HATS Studio Create a Project wizard or the project editor, you request that data
flowing over the connection to be encrypted to secure the connection.

HATS Studio uses Host On-Demand to provide connection support from HATS
applications to 3270 and 5250 applications using Telnet protocols. HATS uses the
SSL support provided by Host On-Demand for securing these connections. Using a
secure connection over SSL encrypts data flowing over the connection and thus
protects it against observation by a third party.

For a connection to be secured, both the HATS application and the Telnet server it
is connected to must support SSL. To secure the connection, the Telnet server must
provide a certificate, which is used to encrypt the data. This certificate uniquely
identifies a machine on one end of the connection.

HATS verifies that the certificate is signed by a well-known certificate authority.
The well-known certificate authorities for HATS are Thawte, Verisign, and RSA. If
the server has a certificate signed by a well-known certificate authority, the
certificate is guaranteed to be unique and secure, and HATS is not required to have
a copy of the certificate. If the Telnet server has a self-signed certificate, the
administrator of the server generated the certificate based on his or her own
information without using a certificate authority. In that case, HATS must have a
copy of the self-signed certificate to secure the connection.

If a certificate is required by HATS, you can click Import in the Connection
Settings of either the HATS Studio Create a Project wizard or the project editor to
import the required certificate from the Telnet server. When the certificate is
imported, HATS builds a database called CustomizedCAs.class. The database
contains the certificate that you import. The certificate becomes a part of the HATS
project, and it is packaged with the rest of the project files when you assemble the
project.

© Copyright IBM Corp. 2002 53

54 IBM® WebSphere® Host Access Transformation Server Developer’s Guide

Chapter 14. Creating custom components and widgets

Though basic project customization can be accomplished using the Studio, HATS
provides a programming environment for further customization of host
applications. You can program your HATS project to define new host components
or widgets or modify existing host components or widgets.

For a detailed description of host components and widgets, see “Understanding
HATS key concepts and objects” on page 4.

The following sections describe how to create custom host components and
widgets.

Note: If you are using a bi-directional (BIDI) code page, please refer to
“Bi-directional APIs” on page 87.

Creating custom host components and widgets
HATS creates a JSP page (and writes information to a .jsp file) that reflects host
component and widget selections made during transformation configuration in the
HATS Studio. HATS writes this configuration as a set of attributes for the
HATS:Component tag. The HATS:Component tag invokes the code to define host
components and specify widget output.

The following JSP code example shows the format of the HATS:Component tag.
<HATS:Component type=’<HostComponentType>’

widget=’<WidgetStyle>’
row=’1’ col=’1’ erow=’24’ ecol=’80’
label=’<Data on the screen in region (1,1) to (24,80)>’
componentSettings=’’ widgetSettings=’’ />

The attribute data of the HATS:Component tag determine what host component
and widget classes to call and how to present the widget in HTML output. Refer to
“HATS:Component tag type and widget attributes” on page 102 for the values of
the type and widget attributes. The rest of the attributes are described in the list
that follows:

Attribute Description

row The starting row position for host component definition.

col The starting column position for host component definition.

erow The ending row position for host component definition.

ecol The ending column position for host component definition.

label The string to be rendered as HTML text coupled with this host
component.

componentSettings
This is a set of key and value pairs that are sent to the component
class. When you specify componentSettings values, specify them in
the form key:value. If you specify more than one key:value pair,
separate them with an “or bar” (|). For example, <..
componentSettings="key1:value1|key2:value2" ... >.

© Copyright IBM Corp. 2002 55

The componentSettings attribute can be used for advanced
customization of the component. For example, if your command
line uses the token ″>>>″ instead of ″==>″, you can pass this
component setting value here.

Note: The componentSettings and the widgetSettings need to be
combined into a single properties object when they are
passed to the recognize() method of the component, and
the draw() method of the widget. This allows the component
to update any widget settings necessary.

widgetSettings
This is a set of key-value pairs that are sent to the widget class.
When you specify widgetSettings values, specify them in the form
key:value. If you specify more than one key:value pairs, separate
them with an “or bar” (|). For example, <..
widgetSettings="key1:value1|key2:value2" ... >.

The widgetSettings attribute can be used for advanced
customization of the widget. For example, if you want a table to
have a certain number of columns, you can pass this widget setting
here.

Following is a description of how HATS processes each HATS:Component tag that
it encounters in the JSP page.
1. HATS instantiates a component object based on the type attribute setting.

If HATS recognizes the value of the type attribute as one of its components,
HATS instantiates the appropriate component. If HATS does not recognize the
value of the type as one of its components, HATS attempts to instantiate the
custom component. You must specify the fully qualified path, like
com.company.division.product.MyComponentExtract, and place the class file in
either the WEB-INF/classes directory or in a jar file in the WEB-INF/lib directory.
For example, if the type attribute is set to SelectionList, HATS instantiates the
com.ibm.hats.component.SelectionListExtract class.
For a list of valid values for the type attribute (and the corresponding host
component), see “type attribute” on page 102.

2. HATS instantiates a widget object based on the widget attribute setting.
If HATS recognizes the value of the widget attribute as one of its widgets,
HATS instantiates the appropriate widget. If HATS does not recognize the
value of the widget as one of its widgets, HATS attempts to instantiate the
custom widget. You must specify the fully qualified path, like
com.company.division.product.MyWidget, and place the class file in either the
WEB-INF/classes directory or in a jar file in the WEB-INF/lib directory. For
example, if the widget attribute is set to Link, then the
com.ibm.hats.widget.LinkWidget class is instantiated.
For a list of valid values for the widget attribute (and the corresponding
widget), see “widget attribute” on page 102.

3. HATS invokes the component object’s recognize() method.
Each component has a different implementation of the recognize() method.
HATS uses the method to initialize several parameters (such as HostScreen,
start row, start col, end row, and end col). The recognize() method also
performs pattern recognition logic and host screen data location. By default, a
class named ComponentElementPool, which contains several ComponentElement
objects, stores host screen data that the recognize() method locates.

56 IBM® WebSphere® Host Access Transformation Server Developer’s Guide

4. HATS performs text replacement on the ComponentElementPool returned by the
component’s recognize() method.

5. HATS invokes the widget’s draw() method.
The draw() method renders the component as HTML output. The widget
passes the writer object to write HTML to the browser. The draw() method
passes the ComponentElementPool (from Step 3 on page 56) to the widget. The
HTML output is based on the host screen data stored in a
ComponentElementPool object.

Creating a custom host component
You can customize host components by creating a new host component or
modifying an existing host component. If you want to create a new host
component, you must extend the host component abstract class,
com.ibm.hats.component.ComponentExtract, and overwrite the recognize()
method. If you want to modify an existing host component, you must extend an
existing host component class and overwrite its recognize() method.

HATS provides the following host component classes of abstract class
com.ibm.hats.component.ComponentExtract.
v com.ibm.hats.component.CommandLineExtract
v com.ibm.hats.component.FieldExtract
v com.ibm.hats.component.FieldTableExtract
v com.ibm.hats.component.FunctionKeyExtract
v com.ibm.hats.component.DefaultExtract
v com.ibm.hats.component.InputFieldExtract
v com.ibm.hats.component.MenuExtract
v com.ibm.hats.component.SelectionListExtract
v com.ibm.hats.component.SubfileExtract
v com.ibm.hats.component.TextExtract
v com.ibm.hats.component.VisualTableExtract

When HATS runs a project, it instantiates the custom host component based on the
setting of the type attribute of the HATS:Component tag.

The host component class inherits the following methods from the parent class
without implementation:

public ComponentElementPool recognize(HostScreen hostScreen, int startRow,
int startCol, int endRow, int endCol, String label, Properties settings)

The recognize() method initializes many of the data members that are
needed by this class to perform pattern recognition and gathers host screen
data from the HostScreen object. This method has a different
implementation in each host component class. You should overwrite this
method to implement your own pattern recognition logic.

In addition to initializing variables, this method also instantiates an object
named hostComponentData (data type
com.ibm.hats.common.ComponentElementPool) used to store the host screen
data gathered. ComponentElementPool is a container class carrying a vector
of ComponentElement objects and other needed host screen information
(such as cursor position). ComponentElement describes the general
information of host components that widget classes can use to render in
HTML.

Chapter 14. Creating custom components and widgets 57

For a description of the arguments of this method, see the Java
documentation for the recognize() method of the ComponentExtract class
at the product Web site (http://www.ibm.com/software/webservers/hats).

Creating a custom widget
You can customize widgets by creating a new widget or modifying an existing
widget. If you want to create a new widget, you must extend the abstract widget
parent class, com.ibm.hats.widget.Widget, and overwrite the abstract draw()
method. If you want to modify an existing widget, you must extend one of the
following existing widget classes and overwrite one of its methods.
v com.ibm.hats.widget.ButtonWidget
v com.ibm.hats.widget.ButtonTableWidget
v com.ibm.hats.widget.DefaultWidget
v com.ibm.hats.widget.DropDownListWidget
v com.ibm.hats.widget.FieldWidget
v com.ibm.hats.widget.HorizontalBarGraphWidget
v com.ibm.hats.widget.LabelWidget
v com.ibm.hats.widget.LineGraphWidget
v com.ibm.hats.widget.LinkWidget
v com.ibm.hats.widget.OptionListWidget
v com.ibm.hats.widget.SubfileWidget
v com.ibm.hats.widget.TableWidget
v com.ibm.hats.widget.TextInputWidget
v com.ibm.hats.widget.VerticalBarGraphWidget

When HATS runs a project, it instantiates the custom widget based on the setting
of the widget attribute of the HATS:Component tag.

The widget class inherits the following methods from the parent class without
implementation:

public void draw(java.io.Writer out, Object o, Properties widgetSettings)
The draw() method first initializes data members that will be needed to
write the HTML code out. Each widget class has its own implementation
of the draw() method. You should overwrite this method to create a
custom widget.

For a description of the arguments of this method, see the Java
documentation for the draw() method of the Widget class at the product
Web site (http://www.ibm.com/software/webservers/hats).

Registering your component or widget
After creating a custom component or widget, you must import the source code for
the component or widget into the Source folder of your project. Select File >
Import > File System to open the Import wizard. In the Import wizard, select the
location of your source files in the Directory field. Select the Source folder (or a
package in the Source folder) of your project in the destination Folder entry field,
and ensure that the Create complete folder structure checkbox is not checked.
When your source .java files are imported, they are automatically compiled as
.class files and packaged into your HATS project in the webApplication/WEB-
INF/classes/ directory path of the Navigator tab of the HATS Studio.

58 IBM® WebSphere® Host Access Transformation Server Developer’s Guide

http://www.ibm.com/software/webservers/hats
http://www.ibm.com/software/webservers/hats

Host components must map to specific widgets. Custom host components can map
to any existing widget or to a custom widget. After you import your source code
for a custom component or widget into the project’s Source folder, you need to edit
the ComponentWidget.xml file to add your custom component and associate defined
widgets or to associate your custom widgets with components. If you are only
adding a custom widget, you must associate the custom widget with a defined
component.

Registering your custom components and widgets in the ComponentWidget.xml file
makes them available to the HATS Studio, such as in the Insert Host Component
wizard.

To edit the ComponentWidget.xml file, click the Navigator tab of the HATS Studio.
The ComponentWidget.xml file is shown at the bottom of the Navigator view of
your project. The following is a sample of the ComponentWidget.xml file that shows
the HATS-supplied visual table component and one of the associated widgets, the
vertical bar graph widget.
<ComponentWidgetList>

<components>
<component className="com.ibm.hats.component.VisualTableExtract"

displayName="%VISUAL_TABLE_COMPONENT">
<associatedWidgets>

<widget className="com.ibm.hats.widget.VerticalBarGraphWidget"/>
</associatedWidgets>

</component>
</components>

<widgets>
<widget className="com.ibm.hats.widget.VerticalBarGraphWidget"

displayName="%VERTICAL_BAR_GRAPH_WIDGET"/>
</widgets>

</ComponentWidgetList>

As you can see, there are two sections to this file: components and widgets.

The components section contains the list of all registered components. To register a
custom component and make it available to the HATS Studio, add a <component>
tag and the associated <widget> tags to the ComponentWidget.xml file. You must
supply a className, displayName, and the associated widgets.

className
Identifies the Java class that contains the code to recognize the widget. The
class name is usually in the form com.myCompany.myOrg.ClassName.

displayName
Identifies the name by which your custom widget is known, and how it
appears in the list of widgets in the HATS Studio. This name must be
unique among the registered widgets. The form of the displayName for a
custom widget is simply a string, without the percent sign (%). Spaces are
not allowed in the displayName. However, you can use an underscore (_)
in place of a space.

widget
Identifies the widgets associated with this component. There must be a
separate <widget> tag for each associated widget. All of the <widget> tags
for the component must be defined within the <associatedWidgets> tag
and its </associatedWidgets> ending tag. The <widget> tag within the
<associatedWidgets> tag only contains the className attribute, which

Chapter 14. Creating custom components and widgets 59

identifies the Java class that contains the code to link the widget to the
component. The class name is usually in the form
com.myCompany.myOrg.ClassName.

The widgets section contains the list of all registered widgets. To register a widget,
link it to a component, and make it available to the HATS Studio, add a <widget>
tag to the ComponentWidget.xml file. You must supply a className and a
displayName.

className
Identifies the Java class that contains the code to recognize the component.
The class name is usually in the form com.myCompany.myOrg.ClassName.

displayName
Identifies the name by which your custom widget is known, and how it
appears in the list of widgets in the HATS Studio. This name must be
unique among the registered widgets. The form of the displayName for a
custom widget is simply a string, without the percent sign (%). Spaces are
not allowed in the displayName. However, you can use an underscore (_)
in place of a space.

HATS Studio support for custom components and widgets
HATS Studio can support custom components and widgets as well as existing
components and widgets. The graphical user interface (GUI) for inserting or
editing the components and widgets is built dynamically based on information
provided by the component and widget classes. If you want the GUI to support
your custom component or widget, you can override the getPropertyPageCount()
method, and must override the registerProperties() method.

public int getPropertyPageCount()
The getPropertyPageCount() method determines how many wizard pages
are needed in HATS Studio to customize all of the object’s attributes. If
you do not override this method, only one wizard page is used to
customize all of the attributes. Overriding this method allows you more
control over the GUI. For example, you might want to show customizable
attributes on more than one page, or some of the attributes might depend
on the values of other attributes.

The return value for this method is as follows:

int The number of wizard pages needed in HATS Studio to fully
customize all the attributes of this object.

public Vector getCustomProperties(int iPageNumber, Properties properties,
ResourceBundle bundle)

The getCustomProperties() method returns a vector of HCustomProperty
customizable property objects. A customizable property is any property of
the object that can be edited by a HATS Studio project developer using this
component or widget object in a transformation. The components and
widgets use the customizable properties to determine what host
information to look for, or to determine how data should be displayed.

For a description of the arguments of this method, see the Java
documentation at the product Web site
(http://www.ibm.com/software/webservers/hats) for the
getCustomProperties() method of the Component or Widget class.

public HCustomProperty(String name, int type, String label, boolean isRequired,
String[] prefilledValues, String[] prefilledCodes, String defaultValue,

60 IBM® WebSphere® Host Access Transformation Server Developer’s Guide

http://www.ibm.com/software/webservers/hats

ICustomPropertyValidator validator, String helpID)
This is the constructor for a customizable property object.

For a description of the arguments of this constructor, see the Java
documentation at the product Web site
(http://www.ibm.com/software/webservers/hats) for the HCustomProperty
class.

Chapter 14. Creating custom components and widgets 61

http://www.ibm.com/software/webservers/hats

62 IBM® WebSphere® Host Access Transformation Server Developer’s Guide

Chapter 15. Administering HATS applications

The HATS Administration Console enables the system administrator to view
sessions initiated for HATS applications. The panels in HATS administration
display license usage information and session information for applications
included in an .ear file. Each application in an .ear file includes files to support
HATS administration.

To start HATS Administration Console, enter the following URL in your Web
browser:
http://localhost/appname/HATSAdmin/admin.jsp

where localhost is the hostname or IP address of the machine where your HATS
applications are deployed, and appname is the name of an application in the .ear
file.

More than one HATS Administration Console can be started using different
application names included in an .ear file. The panel information in each console
displays the same license usage and session information for the set of applications
contained in the .ear file. The session information can be sorted by application
name, connection identifier, or communication status by clicking the headings
above the session information. On this panel, you can shut down one or more
connections being used by the HATS applications included in the .ear file. You
should encourage your end users to click Disconnect to terminate their session
rather than simply closing the browser window, because sessions stay active for 30
minutes when not terminated properly. This invalidation timeout value is set in
WebSphere Application Server (WAS).

HATS Administration Console is bound to WebSphere security. If WebSphere
security is active on WAS, and the URL to start HATS Administration Console is
entered in a browser, the page is redirected to a HATS Administration Console
login authentication page. You must enter the user ID and password for the WAS
security server before HATS Administration Console can be started.

If WebSphere is running in a cloned environment, HATS Administration Console
does not display all the connections for all clones. To display the connections for a
specific clone, enter the following URL in your Web browser:
http://localhost/appname/HATSAdmin/selectclone.jsp

where localhost is the hostname or IP address of the machine where your HATS
applications are deployed, and appname is the name of an application in the .ear
file. This Web page enables you to select the clone for which you want to view
information. To specify the individual clone, you need to know the session ID
value of the connection for an end user. You need to request that information from
the end user. The end user can find the session ID by viewing the source of their
application Web page, and searching for the following string:
<INPUT TYPE="HIDDEN" NAME="SESSIONID" VALUE="value" />

where value appears like 0000YGDDXENHPWS3XANVO2LUR3Y:tu3bu7f3. Ignore the 0000
in the value. The YGDDXENHPWS3XANVO2LUR3Y is the connection identifier, and the
tu3bu7f3 is the clone ID.

© Copyright IBM Corp. 2002 63

Note: The entire value is not displayed in HATS Administration Console panel
displays; only the YGDDXENHPWS3XANVO2LUR3Y appears in the display.

When you receive the value from your end user, insert it into the Session ID field
of the of selectclone.jsp page and click Submit to display the HATS
Administration Console for the specific clone.

64 IBM® WebSphere® Host Access Transformation Server Developer’s Guide

Chapter 16. Troubleshooting HATS

This chapter provides information that enables you to use message logs and traces
to diagnose problems that could occur when users interact with your HATS
application. It also outlines some problems that could be encountered, and
solutions to those problems.

Message logs and traces
When a HATS application runs in the WebSphere Application Server, logging and
tracing is performed for the application. Logging and tracing is controlled by the
settings of the runtime.properties file. The location of this file differs between the
machine where you installed HATS Studio and the server machine where your
applications run:

HATS Studio (for the Run on Server function)
HATS Studio files are stored on your system under the drive and directory
where you installed your WebSphere Studio program, such as WebSphere
Studio Application Developer. In the workspace subdirectory, a folder with
the Enterprise Application project name you specified when you created
your project resides. The path to the runtime.properties file is
/workspace/fn.ear/runtime.properties, where fn is the Enterprise
Application project name. You can also locate the file on the Navigator tab
of the HATS Studio under the /fn.ear/ folder. Double-click the
runtime.properties file to open the file in a HATS Studio editor.

Server In the drive and directory where you installed WebSphere, there is a folder
named installedApps. In the installedApps subdirectory, a folder with the
Enterprise Application project name you specified when you created your
project resides. The path to the runtime.properties file is
/installedApps/fn.ear/runtime.properties, where fn is the Enterprise
Application project name.

You can use any text editor to modify the runtime.properties file. If you modify
the file, you must stop and restart the server that is running the application for the
changes to take effect.

The runtime.properties file contains the following basic properties:

Note: Names of the properties are case-sensitive. Do not change the property
names.

num_licenses
Specifies the number of licenses you purchased. HATS tracks the number
of HATS connections to host resources and logs a message when the value
exceeds the number of licenses purchased.

The value is an integer. There is no default. Specify num_licenses = – 1 if
you purchased an unlimited license.

licenseTracking
Specifies whether HATS tracks license usage or not. The value is binary.
The default is 0.

0 HATS does not track license usage.

© Copyright IBM Corp. 2002 65

1 HATS tracks license usage for all application servers in a node. The
license usage information is written to a file named licensex.txt in
the log directory of the HATS application installation directory on
the server, where the x is either 1 or 2.

The maximum size of the license usage files is 512 KB. When the
file size of the license1.txt file reaches 512 KB, the file is renamed
to license2.txt and a new license1.txt file is created. The new
license1.txt file contains the most recent license usage information.
When the new license1.txt reaches 512 KB and is renamed, the old
license2.txt is deleted.

The license usage files contain the following information, arranged
in rows, with each row representing one hour of operation. The
values are separated by a space ().
1. Date
2. Time
3. The highest license count since the application was started
4. The highest license count in the last hour (the maximum of the

last 60 entries)
5. The license count for each minute (1– 60)

maxTraceFiles
The maximum number of trace information files. The default is 5.

The base trace file name in runtime.properties is used as a template to
generate unique sets of trace files for each application server. The default
base name for a trace file is trace.txt, which can be changed.

An index (1, 2, 3, and so forth) is added to this name to distinguish
multiple trace files. When trace1.txt reaches maxTraceFileSize, it is closed
and renamed to trace2.txt. A new trace1.txt file is opened.

When the maxTraceFiles number is exceeded, the oldest file is deleted.

The location of the trace*.txt files differs between the machine where you
installed HATS Studio and the server machine where your applications
run:

HATS Studio (for the Run on Server function)
HATS Studio files are stored on your system under the drive and
directory where you installed your WebSphere Studio program,
such as WebSphere Studio Application Developer. In the workspace
subdirectory, a folder with the Enterprise Application project name
you specified when you created your project resides. In the
Enterprise Application project name directory, there is a /logs
directory. The path to the trace*.txt files is
/workspace/fn.ear/logs/trace*.txt, where fn is the Enterprise
Application project name.

Server In the drive and directory where you installed WebSphere, there is
a folder named installedApps. In the installedAppssubdirectory, a
folder with the Enterprise Application project name you specified
when you created your project resides. The path to the trace*.txt
files is installedApps/fn.ear/logs/trace*.txt, where fn is the
Enterprise Application project name.

maxTraceFileSize
Specifies the maximum size, in kilobytes, that a trace file reaches before an
additional trace file is opened.

66 IBM® WebSphere® Host Access Transformation Server Developer’s Guide

The value is a decimal integer. The default is 1024 KB.

traceFile
The name used as a template to generate file names for each set of
application server files to which trace messages are written. The default
base name for a trace file is trace.txt.

maxLogFiles
The maximum number of message files. The default is 2.

The base message log file name in runtime.properties is used as a template
to generate unique sets of message log files for each application server. The
default base name for a log file is messages.txt, which can be changed.

An index (1, 2, 3, and so forth) is added to this name to distinguish
multiple message log files. When messages1.txt reaches maxLogFileSize, it is
closed and renamed to messages2.txt. A new messages1.txt file is opened.

When the maxLogFiles number is exceeded, the oldest file is deleted.

The location of the messages*.txt files differs between the machine where
you installed HATS Studio and the server machine where your
applications run:

HATS Studio (for the Run on Server function)
HATS Studio files are stored on your system under the drive and
directory where you installed your WebSphere Studio program,
such as WebSphere Studio Application Developer. In the workspace
subdirectory, a folder with the Enterprise Application project name
you specified when you created your project resides. In the
Enterprise Application project name directory, there is a /logs
directory. The path to the messages*.txt files is
/workspace/fn.ear/logs/messages*.txt, where fn is the Enterprise
Application project name.

Server In the drive and directory where you installed WebSphere, there is
a folder named installedApps. In the installedAppssubdirectory, a
folder with the Enterprise Application project name you specified
when you created your project resides. The path to the messages*.txt
files isinstalledApps/fn.ear/logs/messages*.txt, where fn is the
Enterprise Application project name.

maxLogFileSize
Specifies the maximum size, in kilobytes, that a message log file reaches
before an additional log file is opened.

The value is a decimal integer. The default is 512 KB.

logFile
The name used as a template to generate file names for each set of
application server files to which log messages are written. The default base
name for a trace file is messages.txt.

The runtime.properties file contains the following HATS server tracing properties:

trace.RUNTIME
Specifies the level of tracing for the main runtime and for all settings
under RUNTIME.* that do not specify a trace level.

The value is an integer from 0–9. The default is 0.

See the description of the tracelevel.* keys for information on values for
this setting.

Chapter 16. Troubleshooting HATS 67

trace.RUNTIME.WIDGET
Specifies the level of tracing for HATS widgets. This setting overrides the
setting of trace.RUNTIME for tracing of widgets.

The value is an integer from 0–9. The default is 0.

See the description of the tracelevel.* keys for information on values for
this setting.

trace.RUNTIME.ACTION
Specifies the level of tracing for HATS event actions. This setting overrides
the setting of trace.RUNTIME for tracing of event actions.

The value is an integer from 0–9. The default is 0.

See the description of the tracelevel.* keys for information on values for
this setting.

trace.RUNTIME.COMPONENT
Specifies the level of tracing for HATS components. This setting overrides
the setting of trace.RUNTIME for tracing of components.

The value is an integer from 0–9. The default is 0.

See the description of the tracelevel.* keys for information on values for
this setting.

trace.UTIL
Specifies the level of tracing for HATS runtime utilities.

The value is an integer from 0–9. The default is 0.

See the description of the tracelevel.* keys for information on values for
this setting.

tracelevel.x
Each of the tracelevel keys specifies as its value a hexadecimal digit string.
This string is a mask which is applied to the tracing feature for
components which use that trace level. Each bit of the digit string controls
one type of tracing for HATS.

The values of tracelevel.1 through tracelevel.7 should not be changed
unless requested by IBM support. Otherwise, specifying these seven
tracelevel.* properties is not necessary.

Tracelevel.8 and tracelevel.9 values can be used to create customized
tracing levels.

The default values are:

tracelevel.1
0000000000020000

tracelevel.2
000000000000020f

tracelevel.3
000000000004023f (minimum)

tracelevel.4
0000000000041a3f

tracelevel.5
00000000000c1bbf (normal)

68 IBM® WebSphere® Host Access Transformation Server Developer’s Guide

tracelevel.6
00000000000c1bbf

tracelevel.7
00000000001c1bbf (maximum)

tracelevel.8
00000000001c1bbf

tracelevel.9
00000000001c1bbf

To customize the trace masks, add together the following (hex) values:

x000001
Informational messages

x000002
Warning messages

x000004
Error messages

x000008
Critical error messages

x000010
API traces

x000020
Callback API traces

x000080
Method entry

x000100
Method exit

x000200
Exceptions

x000400
Miscellaneous traces

x000800
Object creation

x001000
Object disposal

x020000
Reserved

x040000
Miscellaneous data - level 1

x080000
Miscellaneous data - level 2

x100000
Miscellaneous data - level 3

The runtime.properties file contains the following Host On-Demand tracing
properties:

Chapter 16. Troubleshooting HATS 69

Note: You should not enable the Host On-Demand traces (except for PSEVENT,
OIAEVENT, and COMMEVENT) unless requested by IBM Support.

trace.HOD.PS
Specifies the level of Host On-Demand presentation space tracing.

The value is an integer from 0–3. The default is 0.

trace.HOD.DS
Specifies the level of Host On-Demand data stream tracing.

The value is an integer from 0–3. The default is 0.

trace.HOD.TRANSPORT
Specifies the level of Host On-Demand transport tracing.

The value is an integer from 0–3. The default is 0.

trace.HOD.MACRO
Specifies the level of tracing for Host On-Demand macros.

The value is an integer from 0–2. The default is 0.

0 Host On-Demand macro tracing is not enabled.

1 Host On-Demand event tracing is enabled.

2 Host On-Demand support tracing is enabled.

trace.HOD.USERMACRO
Specifies the level of tracing for trace actions in Host On-Demand macros.

The value is an integer from 0–3. The default is 0.

trace.HOD.SESSION
Specifies the level of Host On-Demand session tracing.

The value is an integer from 0–3. The default is 0.

trace.HOD.PSEVENT
Specifies the level of Host On-Demand PS events.

The value is an integer from 0–1. The default is 0.

trace.HOD.OIAEVENT
Specifies the level of Host On-Demand OIA events.

The value is an integer from 0–1. The default is 0.

trace.HOD.COMMEVENT
Specifies the level of Host On-Demand COMM events.

The value is an integer from 0–1. The default is 0.

Problems and solutions
This section describes problems that could occur when users interact with your
HATS application, and solutions to those problems.

Incorrect data in HATS applications with non-English locales
HATS application input can be corrupted in non-English locales and result in
incorrect data being used.

HATS applications rely on input data from Servlet and Java Server Page (JSP)
API’s to retrieve HTML FORM data from the FORM character set and convert it to
Unicode. The Servlet’s getParameter() methods must decide on the character set of

70 IBM® WebSphere® Host Access Transformation Server Developer’s Guide

the FORM. HATS applications create JSPs in all locales using the UTF-8 character
set; so UTF-8 is the required character set for processing HATS application data.

The specification for FORM provides a charset value in the content-type attribute,
but most browsers do not add the charset value to content-type. Also, in
WebSphere Application Server 4.0 (WAS), there is no way for the HATS application
to dynamically specify the character set used for each form; however, you can
assign a character set mapping used by the entire WAS. A customizable properties
file provides a locale-to-character set mapping used by WAS. The file is
\\WebSphere\AppServer\properties\encoding.properties.

The encoding.properties file determines which character set is used in reading
input data. For example:
en=ISO-8859-1
fr=ISO-8859-1
.
.
.
zh=GB2312
zh_TW=Big5

The default ISO-8859 character set works in most cases; however, input data in
non-Latin1, double-byte, and bi-directional locales is frequently corrupted.

To establish UTF-8 as the character set, edit the encoding.properties file.
1. In this file, find the entry for the WAS locale. For example, Traditional Chinese

is zh_TW and Simplified Chinese is zh.
2. Change the value of this entry to UTF-8 for that locale. For example, zh=UTF-8.
3. Save your changes, then restart WAS.
4. You should now be able to run your internationalized HATS application.

Thai font size too small for default transformation
The default font size for HATS applications is 10–point type. For a Thai session,
the default font size is too small; it should be 12–point type. For transformations to
display well on a Thai session, you should increase the font size by applying one
of the supplied stylesheets or modyfing the stylesheet you are using to display the
proper font size.

End users receiving HTTP 404 error
If the end users of your application are receiving an HTTP 404 - File not found
when trying to run an application message, WebSphere Application Server could
be configured incorrectly.

If your deployed .ear file contains the .war files for multiple applications, the
WebSphere Application Server (WAS) administrator must configure the server with
Module Visibility set to Application.

Chapter 16. Troubleshooting HATS 71

72 IBM® WebSphere® Host Access Transformation Server Developer’s Guide

Chapter 17. Messages reference

The messages in this chapter are those that can be issued when your HATS
application runs on the WebSphere Application Server. Messages in HATS Studio
do not have message numbers; error conditions in HATS Studio are displayed at
the top of the wizard panels.

HAT0001 Loading HATS configuration data from
{0}.

Explanation: {0} is the filename of the configuration
data file.

Response: None.

HAT0002 The HATS message log file is {0}.

Explanation: {0} is the filename of the message log
file.

Response: None.

HAT0003 The HATS trace log file is {0}.

Explanation: {0} is the filename of the trace log file.

Response: None.

HAT0040 A program exception occurred. There
may be additional messages in this log
which describe the error. The following
information may help determine the
cause, if this log is requested by IBM
service:

{0}
{1}

Explanation: {0} is the exception message string as
received by Java.

{1} is the exception stack trace.

Response: Check the log for additional messages.

HAT0060 File {0} was not found.

Explanation: {0} is the filename of the missing file.

Response: Contact IBM service for assistance.

HAT0061 Directory {0} was not found.

Explanation: {0} is the missing directory.

Response: Contact IBM service for assistance.

HAT0062 Archive file {0} could not be created.

Explanation: {0} is the filename of the archive file.

Response: Ensure that the application’s connection
settings, specifically the SSL certificate setting, are
correct. Contact IBM service for assistance.

HAT0300 An unexpected exception was received:
{0}

Explanation: {0} is the exception.

Response: If the exception is issued by code written
by a user, such as business logic or custom components
or widgets, contact the programmer who wrote the
code. Otherwise, contact IBM service for assistance.

HAT0350 An error occurred reading the file {0}.

Explanation: {0} is the filename of the file being read.

Response: Ensure that the file exists and is a valid file.
Contact IBM service for assistance.

HAT0351 An error occurred writing the file {0}.

Explanation: {0} is the filename of the file being
written.

Response: Ensure that the filename is valid. Contact
IBM service for assistance.

HAT0352 Cannot find the file named {0}.

Explanation: {0} is the filename of the missing file.

Response: Restore the missing file.

You might need to rebuild the HATS project before the
application is run.

Note: You can set your WebSphere Studio workbench
preferences to perform a build automatically
when a resource has been modified.

HAT0353 Creating the file {0}.

Explanation: {0} is the filename of the file being
created.

Response: This is an informational message. No
response is required.

© Copyright IBM Corp. 2002 73

||

|

|
|
|

|
|

|
|
|

HAT0354 Failed to delete the file named {0}.

Explanation: {0} is the filename of the file that could
not be deleted.

Response: Contact IBM service for assistance.

HAT0360 Licenses used ({0}) exceeding licenses
purchased ({1}).

Explanation: {0} is the number of licenses used.

{1} is the number of licenses purchased.

Response: Verify that the number of licenses you
configured is correct.

HAT0400 An exception occurred creating the host
configuration. A message containing the
exception details follows.

Response: Use the information in the message that
follows to bypass the exception during host
configuration.

HAT0401 Cannot connect to the host using the
following session properties:

{0}

Explanation: {0} is a set of session properties.

Response: Examine the properties to verify that the
named server exists and is available.

HAT0402 Session is in CONNECTION_ACTIVE
state, but not CONNECTION_READY
state. A possible reason could be that
the TN server port specified does not
support the data stream expected.

Session properties being used:
{0}

Explanation: {0} is a set of session properties.

Response: Ensure that the connection type (TN3270,
TN3270E, TN5250) is correct.

HAT0403 Cannot load the application {0}.

Explanation: The application.hap file could not be
loaded for the named application.

{0} is the name of the application.

Response: The required file could not be located or
has been corrupted. Republish the application and
redeploy the .ear file. Tracelevel.3 runtime traces will
display the expected filename and location.

HAT0405 Session is ready, but no host data was
available. Session properties:

{0}

Explanation: {0} displays the session properties.

The host connection came up, but the host sent no
screen data.

Response: Ensure that the application’s connection
settings are correct. Contact IBM service for assistance.

HAT0410 An error occurred while processing this
request.

Detailed error information: {0}

Explanation: {0} is the exception stack trace or other
application programmer information.

This message might be followed by another numbered
message with further information.

Response: If the application is still available, you
might be able to continue the application. To determine
what caused the error, check the other messages
appearing with this message and check the message log
or trace file for additional information.

HAT0411 The host connection is inactive.

Explanation: The host became inactive during the
processing of the application.

Response: If the application is ending normally, no
response is necessary. If the application ends
abnormally, check the message log for additional
information. Also, cnsure that the application’s
connection settings are correct. Additional information
might be found at the Telnet server.

HAT0412 An error occurred while processing an
application Web page ″{0}″.

Explanation: {0} is the name of the Web page (such as
a transformation .jsp) being processed.

Response: Contact IBM service for assistance.

HAT0600 An error occurred while retrieving the
action list for the screen customization
″{0}″.

Explanation: {0} is the name of the screen
customization.

Response: Rebuild the HATS project before the
application is run.

Note: You can set your WebSphere Studio workbench
preferences to perform a build automatically
when a resource has been modified.

74 IBM® WebSphere® Host Access Transformation Server Developer’s Guide

||
|

|

|

|
|

|
|

||
|

|

|
|

|
|

|
|
|
|
|

||

|
|

|
|
|
|
|
|

||
|

|
|

|

||
|
|

|
|

|
|

|
|
|

HAT0601 The action {0} specifies an invalid
parameter.

Explanation: {0} is the name of the action.

Response: Specify a valid parameter for the action.

HAT0602 Cannot insert null value to the host
screen at row {0}, column {1}.

Explanation: {0} is a row number on the host screen.

{1} is a column number on the host screen.

Response: Ensure that the variable inserted onto the
host screen has a value.

HAT0603 Cannot insert the value {0} to the host
screen at row {1}, column {2}, because
the host screen size is {3}.

Explanation: {0} is the value.

{1} is a row number on the host screen.

{2} is a column number on the host screen.

{3} is the host screen size.

Response: Insert a value at the row and column
location that is valid for the host screen size.

HAT0604 An exception occurred while calculating
the value for the global variable {0}. The
action which failed was {1}. A message
containing the exception details follows.

Explanation: {0} is the name of the global variable.

{1} is the name of the action that failed.

Response: Use the information in the message that
follows to bypass the exception during calculation of
the value for the global variable.

HAT0605 An error occurred while processing the
actions for the screen customization
″{0}″.

Explanation: {0} is the name of the screen
customization.

Response: Contact IBM service for assistance.

HAT0606 Global variable ″{0}″ does not exist.

Explanation: {0} is the name of the global variable.

Response: Check the message log for additional
information. Examine the trace file, if one exists. Check
the application’s screen customization actions to ensure
that all required global variables are created.

HAT0607 The index {0} for global variable ″{1}″ is
out of bounds. The global variable has
{2} elements.

Explanation: {0} is the value of the global variable
index.

{1} is the name of the global variable.

{2} is the current size of the global variable.

Response: Check the message log for additional
information. Examine the trace file, if one exists. Check
the application’s screen customization actions to ensure
that all required global variables are created and
contain enough elements to complete the failing action.

HAT0608 Cannot insert the value ″{0}″ to the host
screen at row {1}, column {2}, because
the location is not contained in an
unprotected field.

Explanation: {0} is the name of the global variable.

{1} is a row number on the host screen.

{2} is a column number on the host screen.

Response: Choose a valid row and column location
for the currentl screen. Ensure that the global variable
is being inserted into an unprotected field.

HAT0700 The attribute ″{0}″ of widget setting does
not exist.

Explanation: {0} is the attribute in the widget setting
that does not exist.

Response: Specify a valid attribute in the widget
setting.

HAT0701 The value of attribute ″{0}″ in widget
setting is empty.

Explanation: {0} is the attribute of the widget setting
that is empty.

Response: Specify a value for the attribute in the
widget setting.

HAT0702 The value of attribute ″{0}″ in widget
setting is invalid.

Explanation: {0} is the attribute of the widget setting
that is invalid.

Response: Specify a valid value for the attribute in the
widget setting.

HAT0800 An exception occurred setting the
property of print session. A message
containing the exception details follows.

Response: Use the information in the message that
follows to bypass the exception that occurred while

Chapter 17. Messages reference 75

||
|
|

|
|

|

||

|

|
|
|
|

||
|
|

|
|

|

|

|
|
|
|
|

||
|
|
|

|

|

|

|
|
|

||
|

|
|

|
|

||
|

|
|

|
|

||
|

|
|

|
|

setting the property of the print session.

HAT0801 An exception occurred processing PDF
I/O to client browser. A message
containing the exception details follows.

Response: Use the information in the message that
follows to bypass the exception during processing of
the PDF I/O to the client browser.

76 IBM® WebSphere® Host Access Transformation Server Developer’s Guide

Chapter 18. Language support

The HATS user interface and context-sensitive help are provided in these
languages:
v Brazilian Portuguese
v English
v French
v German
v Italian
v Japanese
v Korean
v Simplified Chinese
v Traditional Chinese

All the languages are installed in a single product image. National language
support is operating-system dependent, so the appropriate font and keyboard
support for the language you want to use must be installed in the operating
system. For example, if you want to use French as the host-session language but
do not have the French font and keyboard support installed, you may not be able
to display the correct characters.

HATS supports the following code pages. You can choose the code page for each
HATS project when you create the project, and you can modify it later in the
project editor.

Table 2. Code pages

Code page Location or usage

037 Belgium
Brazil
Canada
Netherlands
Portugal
United States

273 Austria
Germany

274 Belgium (Old)

275 Brazil (Old)

277 Denmark
Norway

278 Finland
Sweden

280 Italy

284 Spain
Latin-America (Spanish)

285 United Kingdom

290 Japan (Katakana Extended)

297 France

© Copyright IBM Corp. 2002 77

Table 2. Code pages (continued)

Code page Location or usage

420 Arabic Speaking

424 Hebrew (New Code)

500 Multilingual

803 Hebrew (Old Code)

838 Thai

870 Bosnia/Herzegovina
Croatia
Czech Republic
Hungary
Poland
Romania
Slovakia
Slovenia

871 Iceland

875 Greece

924 Multilingual ISO Euro

930 Japanese (Katakana)

933 Korea

937 Taiwan (Traditional Chinese)

939 Japanese (English)

1025 Belarus
Bulgaria
FYR Macedonia
Russia
Serbia/Montenegro (Cyrillic)

1026 Turkey

1047 Open Edition

1112 Latvia
Lithuania

1122 Estonia

1123 Ukraine

1137 Hindi

1140 Belgium Euro
Brazil Euro
Canada Euro
Netherlands Euro
Portugal Euro
United States Euro

1141 Austria Euro
Germany Euro

1142 Denmark Euro
Norway Euro

1143 Finland Euro
Sweden Euro

1144 Italy Euro

78 IBM® WebSphere® Host Access Transformation Server Developer’s Guide

Table 2. Code pages (continued)

Code page Location or usage

1145 Latin-America Euro (Spanish)
Spain Euro

1146 United Kingdom Euro

1147 France Euro

1148 Multilingual Euro

1149 Iceland Euro

1153 Bosnia/Herzegovina Euro
Croatia Euro
Czech Republic Euro
Hungary Euro
Poland Euro
Romania Euro
Slovakia Euro
Slovenia Euro

1154 Belarus Euro
Bulgaria Euro
FYR Macedonia Euro
Russia Euro
Serbia/Montenegro (Cyrillic) Euro

1155 Turkey Euro

1156 Latvia Euro
Lithuania Euro

1157 Estonia Euro

1158 Ukraine Euro

1160 Thai Euro

1364 Korea Euro

1371 Taiwan (Traditional Chinese) Euro

1388 PRC (Simplified Chinese Extended; GB18030)

1390 Japanese (Katakana Unicode Extended)

1399 Japanese (Latin Unicode Extended)

Chapter 18. Language support 79

80 IBM® WebSphere® Host Access Transformation Server Developer’s Guide

Chapter 19. Bi-directional application support

This chapter explains how to use the functions provided by HATS for developing
applications in bi-directional languages. Generally its contents apply to both
Hebrew and Arabic application developers. The functions that are specific to
Arabic users are described separately.

HATS provides these functions to support bi-directional languages:
v Support of bi-directional code pages
v Correct bi-directional text processing and symmetric swapping
v Support of left-to-right and right-to-left screen customization
v A Screen Reverse button to toggle between left-to-right (LTR) and right-to-left

(RTL) screen orientation
v Different levels of user control over screen orientation
v Control over the orientation of host components, widgets, and text, which may

be opposite to general screen orientation
v Visual Input Field support
v Bi-directional text in global variables and text replacement, including different

algorithms for text replacement in screens with left-to-right and right-to-left
orientation.

This chapter explains all these features.

Software environment
The following are required for bidirectional application support:
v The supported browser and its version is Internet Explorer version 5.0 or higher.
v The default locale of the machine where WebSphere Studio is installed should be

set to Arabic for Arabic users and Hebrew for Hebrew users.
v The default locale for the end user client machine must be set to Arabic for

Arabic users and Hebrew for Hebrew users.
v For data input in bi-directional code pages to be processed correctly, UTF-8 must

be specified for Hebrew and Arabic locales in
WebSphere\AppServer\encoding.properties on the machine running the
WebSphere Application Server. See “Incorrect data in HATS applications with
non-English locales” on page 70 for more information.

Working with the host terminal
The HATS host terminal allows Host On-Demand bi-directional-specific keystrokes,
so you can perform the following bi-directional functions. The following host
function keys are available for both 3270 and 5250 sessions:

Ctrl+L: Latin Layer
This key combination changes the language layer to Latin and the operator
information area (OIA) is updated to show English Language.

Ctrl+S: Screen Reverse
If the screen orientation is left-to-right, this key combination changes the
screen image to right-to-left and the language layer changes to Bidi. If the

© Copyright IBM Corp. 2002 81

screen orientation is right-to-left, this key combination reverses the screen
image to left-to-right and the language changes to Latin.

Ctrl+N: Bidi Layer
This key combination changes the language layer to Bidi and the OIA is
updated to show Bidi Language.

Ctrl+F: Field Reverse
If the field orientation is left-to-right, this key combination changes the
field orientation to right-to-left, the cursor moves to the other side of the
field, and the language layer becomes Bidi. If the field orientation is
right-to-left, this key combination changes the field orientation to
left-to-right, the cursor moves to the other side of the field, and the
language layer becomes Latin.

The following host function keys are available only for 3270 sessions:

Ctrl+P: Push
You can enter and edit text in the opposite direction from the field
direction.

Ctrl+O: End Push
Push mode is ended and the cursor moves to the end of the push segment.

Ctrl+A: Auto Push
You can type mixed left-to-right and right-to-left text by changing the
language layer.

The following host function key is available only for 5250 sessions:

Ctrl+C: Close
The data entered in one keystroke direction (either left-to-right or
right-to-left) is concatenated with the data that was previously entered in
the opposite direction. The cursor direction is set to be the same as the
field direction, and the language layer is set to the default for the field
direction. If the screen orientation is currently left-to-right, the cursor is
positioned at the first null to the right of the concatenated text. If the
screen orientation is currently right-to-left, the cursor is positioned at the
first null to the left of the concatenated text.

Capturing screens
In bi-directional sessions, screens can be captured either as left-to-right screens or
as right-to-left screens. Captured screens are displayed exactly as they were
captured. To capture a screen as a right-to-left screen, press Ctrl+S (Screen Reverse)
in a left-to-right screen and click Create Screen Capture.

Recognizing bi-directional host components
Usually the orientation of a host component is the same as the screen orientation.
However, in some cases, the orientation of a host component is the opposite of the
general orientation of the screen. When a HATS project uses a bi-directional code
page, a check box labeled Component orientation opposite to screen orientation
is added to the Insert Host Component wizard. When you add a host component
to a transformation, check this box if the host component’s orientation is the
opposite of the screen orientation. Checking the box enables HATS to recognize
command prompts, function keys, selection lists, and menus whose orientation is
the opposite of the screen orientation.

82 IBM® WebSphere® Host Access Transformation Server Developer’s Guide

Controlling the orientation of widgets
There are two special check boxes that provide you, the BIDI application
developer, control over widget presentation when your application runs in the
WebSphere Application Server:
v Widget Orientation opposite to Screen Orientation
v Text Orientation opposite to Screen Orientation.

On a left-to-right screen, when the Widget Orientation check box is selected, the
GUI image is changed to be right-to-left. Similarly, when the Text Orientation check
box is selected, the text within the GUI image is changed to left-to-right. By
default, selection of the Widget Orientation check box causes the Text Orientation
check box to be selected also. However, you can deselect this check box if desired.

For example, suppose you have the left-to-right screen that contains following text
(capital letters are BIDI data and lower case letters remain as English data):
BIDI TEXT pf01=help

You will customize this screen as RTL. When your application runs, the screen is
displayed as:
TXET IDIB pleh=10fp

From the end user point of view, everything is correct except the function key. The
function key is recognized, but it is displayed backwards.

For the customized screen to appear correctly, you must select the Widget
Orientation opposite to Screen Orientation check box when inserting the function
key host component into a customized screen. By default, the Text Orientation
opposite to Screen Orientation check box is also selected.

When your application runs, the screen is displayed as:
TXET IDIB pf01=help

Global variables
When global variables are extracted, the extracted data is exactly the data that
appears on the screen, including the orientation of the current screen. Any global
variables inserted onto a screen as an action of a screen customization are inserted
according to the screen orientation.

Text replacement
When you use text replacement in Bidi sessions, there are three additional check
boxes you can use:

Match with LTR Screens
This option allows text replacement to be performed correctly for text on a
left-to-right display screen.

Match with RTL Screens
This option allows text replacement to be performed correctly for text on a
right-to-left display screen.

Match with Reversed Screen
If you check this box and the Match with LTR Screen check box, the
reversed string would match in a right-to-left screen. When Reverse Screen
is clicked on a left-to-right screen, the data is consistent.

Chapter 19. Bi-directional application support 83

If you check this box and the Match with RTL Screens check box, the
reversed string would match in a left-to-right screen. When Reverse Screen
is clicked on a right-to-left screen, data is consistent.

You must check either Match with LTR Screen or Match with RTL Screens.

For example, suppose a left-to-right host screen contains the text: NO on. If you
define text replacement to replace “no” with “yes” and ignore the case, the results
depend on the boxes you checked, as follows:

Table 3. Bi-directional text replacement options and results

Options selected LTR screen RTL screen

Match LTR screen only yes on no ON

Match RTL screen only NO on yes ON

Match LTR screen and RTL screen yes on yes ON

Match LTR screen and match reversed
screen

yes on no sey

Match RTL screen and match reversed
screen

NO sey yes ON

Match LTR and RTL screen and match
reversed screen

yes sey yes sey

Enabling the user to reverse the screen direction
You can provide a Screen Reverse button on bi-directional Web pages for the
convenience of your end users. The button appears on the application keypad in
the template. Clicking the button toggles the screen orientation—the operation
performed on legacy systems by pressing the Alt+Enter keys.

When you create a new HATS project and select a bi-directional code page, two
additional check boxes appear: Enable screen reverse for uncustomized screens
and Enable screen reverse for customized screens. These check boxes determine
whether the Screen Reverse button appears on these screens. Initially, only the first
box is enabled. If you check the first box, the second box is enabled. There is no
way to check only the second box.

An uncustomized screen is one that was not matched by any screen customization.
An uncustomized screen, when viewed by the end user, has the same screen
orientation as the previous screen. If the first screen is uncustomized, it defaults to
left-to-right. If the screen orientation was changed on a previous screen, it is
inherited by the next uncustomized screen and reset by the next customized
screen.

The initial screen orientation of customized screens is the same as it was when the
screens were customized. For both customized and uncustomized screens, clicking
Screen Reverse changes the screen orientation. During screen recognition, a
reversed screen is considered different from the same screen before the screen has
been reversed. Therefore, Screen Reverse could cause a screen not to be
recognized. If the developer is confident that all host components that appear on a
customized screen are oriented properly, there is no need to enable the Screen
Reverse button for that screen. It is advisable to disable the Screen Reverse button
for customized screens.

84 IBM® WebSphere® Host Access Transformation Server Developer’s Guide

When the user clicks Screen Reverse, the screen is refreshed and any entries the
user has typed are erased.

Information for end users
End users of HATS applications using bi-directional code pages can perform some
operations unique to these applications. Provide the information in this section to
your end users. If you implement a Screen Reverse button, inform them about its
use.

HATS applications using bi-directional code pages offer a special input field called
a visual input field. Unlike regular fields, which implement logical data input and
presentation, the visual field implements visual data input and presentation. When
entering data in a visual field, you can use these functions:

Alt+Shift: Language selection
This key combination toggles the language layer back and forth between
Latin and the bi-directional language.

Alt+Enter: Screen reverse
This key combination reverses the direction of the screen.

Shift+NumLock: Push
You can enter and edit text whose direction is opposite from the field
direction.

Shift+NumPad: End push
Push mode is ended and the cursor moves to the end of the push segment.

Alt+NumPad: Auto push
You can type mixed left-to-right and right-to-left text by changing the
language layer. Autopush is especially useful for typing digits in
right-to-left fields. The push and end push functions are automatically
activated according to the language of the text being typed. In right-to-left
fields, typing a digit or a Latin letter causes the automatic initiation of
push, without a language change. Additional Latin letters or digits will
continue the push mode; any other character automatically terminates push
mode. This feature allows you to type bi-directional text with imbedded
numbers or Latin words without using push and end push. In left-to-right
fields, typing a bi-directional character causes the automatic initiation of
push. Typing any digit or Latin character causes the automatic termination
of the mode. This enables the end user to type Latin text with imbedded
bi-directional words by using language layer selection rather than push
and end push.

Functions for Arabic code pages
These functions are specific to projects using Arabic code pages.

Symmetric and numeric swapping
These options are effective only in Arabic 3270 sessions. If symmetric swapping is
enabled, swapping characters are swapped in right-to-left screens. If numeric
swapping is enabled, English numerals are replaced by Arabic numerals in
right-to-left screens and Arabic numerals are replaced by English numerals in
right-to-left Screens. These parameters are set on the Advanced Connection
Settings tab of the project editor. HATS host terminal is affected by symmetric
swapping and numeric swapping parameters set by the user when creating the

Chapter 19. Bi-directional application support 85

application. The parameters are identified respectively as symmetricSwapEnabled
and numericSwapEnabled, and the values of the parameters is either true or false.

Screen captures
For an Arabic session with right-to-left captured screens, brackets and numerals are
affected by the symmetric and numeric swapping options of the application. With
WebSphere Studio Application Developer Version 4, to correctly view Arabic
numbers the digit substitution should be set to “Contextual” in the regional
settings.

Other considerations
v When an end user enters data to be submitted to a HATS application, the

shaping of Arabic data and Lam-Alef processing is performed according to the
current screen orientation as the end user views it in the Web browser.

v To view Arabic numbers correctly in widget previews and in the deployed
HATS application, digit substitution should be set to “None” in the regional
settings.

v Screen recognition should always be done with whole Arabic words and not
with a part of an Arabic word.

Additions to HATS files
When a project uses an Arabic code page, screen customization event (.evnt) files
have an additional <orientation>true</orientation> tag within the description tag.
A value of true indicates that the screen is customized as a right-to-left screen;
otherwise it is customized as left-to-right.

When a project uses any bi-directional code page, the application (.hap) file has an
additional enableScrRev attribute of the <session> tag, that can have the following
values:

(blank)
The Screen Reverse button is not placed on any screens.

NotCustomized
The Screen Reverse button is placed only on screens that do not match a
screen customization.

Customized
The Screen Reverse button is placed on all screens.

When a project uses any bi-directional code page, the application (.hap) file has
additional attributes for the <replace> tag within the <textReplacement> tag:

matchLTR
Text is to be replaced when the screen orientation is left-to-right.

matchRTL
Text is to be replaced when the screen orientation is right-to-left.

matchReverse
Text is to be replaced when the screen orientation is reversed.

86 IBM® WebSphere® Host Access Transformation Server Developer’s Guide

Bi-directional APIs
Two Bidi APIs for handling text conversion from visual to logical and vice versa
are included in the HostScreen class, so you can use these APIs when creating
custom widgets and components to handle extraction of data.

ConvertVisualToLogical
public java.lang.String ConvertVisualToLogical(java.lang.String inputBuffer,
boolean isleft-to-rightVisual, boolean isleft-to-rightImplicit)

Converts the given string from visual to implicit format and returns the
implicit format of the string

inputBuffer
The input string in visual format.

isLTRVisual
If true, inputBuffer is in visual left-to-right form.

isLTRimplicit
If true, the output buffer is in implicit left-to-right form.

ConvertLogicalToVisual
public java.lang.String ConvertLogicalToVisual(java.lang.String inputBuffer,
boolean isleft-to-rightImplicit, boolean isleft-to-rightVisual)

Converts the given string from implicit to visual format and returns the
visual format of the string

inputBuffer
The input string in implicit format.

isLTRimplicit
If true, inputBuffer is in implicit left-to-right form.

isLTRVisual
If true, the output buffer is in visual left-to-right form.

Chapter 19. Bi-directional application support 87

88 IBM® WebSphere® Host Access Transformation Server Developer’s Guide

Appendix A. Component and widget descriptions and settings

HATS provides host components and widgets that are used to convert elements of
a host screen to objects that can be displayed on a Web page. Some component and
widget settings can be modified using the wizards and editors in the HATS Studio.
This appendix describes HATS host components and widgets and the settings you
can modify.

Component and widget settings
The components and widgets supplied by HATS have default settings that you can
modify, either for an entire project using the project editor, or for an individual
transformation using the Insert Host Component wizard. Not all components and
widgets have customizable settings.

Host component settings
The settings for a host component specify how that component is to be recognized
on the host screen. Some components’ settings are very simple. For example, the
only setting for a command line is the string of characters that identify a command
line on the host screen. The default value is ===>. If the command lines on your
host screens are preceded by ==>, they would not be recognized using the default
setting. In this case, you would need to modify the setting so that the command
lines would be recognized.

Some host components have more complicated settings. For example, several
settings are used to recognize a function key or a selection list. These settings will
be described under each host component.

HATS provides the following host components:

Command line
Consists of a string and an input field with the format:

==> [input field]

The ==> is called the token.

Token You can specify the token HATS uses to identify the command line. Type
the value of the token that identifies the command line in the entry field.

Default
The contents of the selected region of the host screen. There are no customizable
settings for the default component.

Field
A section of the host screen defined within a user-defined region of the host
screen. There are no customizable settings for the field component.

Field table
A table in which each cell is a field that is defined on the host screen. Each field
becomes a cell of the field table. HATS determines the table size based on the
number of cells in a user-defined rectangular area of a 3270 or 5250 host screen.
There are no customizable settings for the field table component.

© Copyright IBM Corp. 2002 89

Function key
A horizontal list of function key names (F or PF) and host screen string
descriptions with a delimiter between them (usually in the last row of the host
screen). For example, the host screen could contain the following function keys:

F3: Exit F4: Back F5: Fwd

Function keys can have many different appearances on a host screen. To give you
flexibility in recognizing function keys, HATS breaks down the appearance of a
function key string into four parts. For example, a function key might look like
this: PF12=Exit. In this example, the leading token (also known as the start
delimiter) is PF, the delimiter (which separates the key number from the
description) is =, and the description is Exit. There is no string before the leading
token.

String before the leading token
This value is optional. If there is a string that always precedes the start
delimiter, such as ″option″, enter it here.

Start delimiter
This is the string that marks the beginning of a function key string on the
host screen. You can specify more than one value, separated by the ″|″
(vertical bar) character. Any of the values will be recognized as beginning a
function key.

Delimiter
This is the string that divides the function key number from its description.
You can specify more than one value, separated by the ″|″ (vertical bar)
character.

String after the description
This string defines the end of the function key string on the host screen. It
might be a blank character or the beginning of another function key string.
You can specify more than one value, separated by the ″|″ (vertical bar)
character.

Input field
A field in which text can be entered, with or without the field label. There are no
customizable settings for the input field component.

Menu
Similar to the Function key host component; A menu is a list of choices, in which
each choice is typically preceded by a letter or a number, with a delimiter character
separating the letter or number from the text describing that choice. A menu choice
might look like this: option 12.Exit. In this case, the word ″option″ is a string that
precedes all the choices in the menu, and it is called the string before the leading
token. The number 12 is the leading token, the period is the delimiter, and ″Exit″ is
the description. Alternatively, you could have a menu whose choices look like this:
M: OPEN MAIL, where the leading token is a letter, the delimiter is the colon, and
″OPEN MAIL″ is the description. There is no string before the leading token in this
example.

Delimiter
This is the string that divides the menu choice’s leading token from its
description. You can specify more than one value, separated by the ″|″
(vertical bar) character.

90 IBM® WebSphere® Host Access Transformation Server Developer’s Guide

String before the leading token
This value is optional. If there is a string that always precedes the start
delimiter, such as ″option″, enter it here.

Minimum required options
If you do not want to recognize a menu with fewer than a certain number
of options, enter that number here.

Selection list
A selection list is a lot like a menu, in that it presents a list of options, each of
which is preceded by a leading token and a delimiter, such as in the following
examples:

1. Prepare form
2. Work with forms you submitted
3. Work with forms requiring action
or
a. Prepare form
b. Work with forms you submitted
c. Work with forms requiring action

You can set the values of the following:

Leading token type
The leading token can be either a letter or a numeric digit.

Delimiter
This is the string that divides the selection’s leading token from its
description. In the examples, the delimiter is the period (.) following the
numbers and letters. You can specify more than one value, separated by
the ″|″ (vertical bar) character.

String before the leading token
This value is optional. If there is a string that always precedes the leading
token, such as ″option″, enter it here.

Minimum required options
If you do not want to recognize a selection list with fewer than a certain
number of options, enter that number here.

Must be field separated
Check this box if each selection must be in a separate field.

Subfile
An iSeries or AS/400 screen with a pattern containing all of the following:
v A subfile fingerprint in the field attributes
v Subfile actions in the first half of the host screen
v Subfile headings in the first half of the host screen for the data that follows
v A subfile marker in the second half of the host screen (such as More...).
v Subfile data between the headings and marker, containing input fields or

description text arranged in a table pattern.

There are no customizable settings for the subfile component.

Text
Text that is located within a user-defined region of the host screen. There are no
customizable settings for the text component.

Appendix A. Component and widget descriptions and settings 91

Visual table
A table based on the representation of text within a user-defined region of the host
screen. By default, space breaks between text are interpreted as cell boundaries.

You can set the values of the following:

Column delimiter
For any character to be recognized as a column delimiter of a visual table,
the character must be in the same column of each row in the selected
region of the host screen. For example, a region is selected that includes
rows 10 through 20. Assuming that a space is the column delimiter, and
column 12 is assumed to identify a column, a space must be in column 12
of each row beginning at row 10 and continuing through and including
row 20.

In the following example, a space is the column delimiter, and a space
exists in column 7 of the host screen for the entire selected region of two
rows and 10 columns:
rows columns

12345678910
1 aaa cc ee
2 bb ddd fff

For this selected region, HATS displays a 2x2 visual table with the
following contents from the host screen:

aaa cc ee

bb ddd fff

Select from the drop-down list the string used to separate columns in the
table.

Include empty rows
Check this box if you want empty rows in the visual table to appear in the
HTML output. Clear this box if you want empty rows to be omitted.

Rows to exclude
Type the numbers of the rows in the table you want to exclude from the
HTML presentation. If there is more than one row to exclude, separate the
row numbers with a comma (,).

Columns to exclude
Type the numbers of the columns in the table you want to exclude from
the HTML presentation. If there is more than one column to exclude,
separate the row numbers with a comma (,).

Widget settings
When you customize a host component, you are specifying how it will be
recognized. When you customize a widget, you specify how the widget will
appear on the Web page.

You can customize the settings of the following widgets:

Button
Displays the host component as an HTML button. You can configure buttons to
appear as a vertical or horizontal list by adjusting the number of columns in the
display. For example, a HATS project could display buttons in one of the following
configurations:

92 IBM® WebSphere® Host Access Transformation Server Developer’s Guide

[Prepare form] [Work with forms you
submitted]

[Work with forms requiring
your action]

[Prepare form]
[Work with forms you submitted]
[Work with forms requiring your action]

The button widget presents a graphical representation of a link on the Web page,
with a caption that describes its function. A button is created from a host
component such as a function key or an item in a menu or a selection list. You can
customize these settings for buttons:

Number of columns per row
Type the number of columns of buttons you want to display in each row.

Caption type
The values of the leading token and the description are derived from the
host component. Choose whether you want the caption to display the
leading token, the description, or both. For example, if the button
represents a menu item that read 4.Mail, you can have the caption display
4, or Mail, or 4.Mail.

Caption substitution
If you want to replace strings from the host component with new strings in
the button caption, type the substitution values in the form of a=b. If you
substitute more than one string, separate the substitutions with a
semicolon (;).

Button table
Displays a table of buttons created from host components such as menu items,
where the first column contains buttons and the second column contains
descriptive text. For example:

[1] Prepare form
[2] Work with forms you submitted
[3] Work with forms requiring your action

You can customize these settings for button tables:

Number of columns per row
Type the number of buttons you want to display in each row.

Caption substitution
If you want to replace strings from the host component with new strings in
the button caption, type the substitution values in the form of a=b. If you
substitute more than one string, separate the substitutions with a
semicolon (;).

Default
The default widget is used to represent an area of the host screen that might
contain many different host components (the default component). The settings for
the default widget contain information both about recognizing host components
within the selected area of the screen and about how to present them.

The default widget includes numerous settings used to recognize and render PF
keys from the host screen. You can specify two different ways of recognizing and
rendering PF keys. These different ways are specified as the first and second

Appendix A. Component and widget descriptions and settings 93

passes. HATS does not make two complete passes of the screen area; rather, HATS
examines each character in the specified area, looking for PF key strings. If HATS
encounters a character that matches the criteria defined by the first pass, HATS
continues checking the characters that follow to determine whether the string fits
the criteria to identify a PF key sequence of characters. If the first pass does not
identify a PF key sequence, HATS returns to the first character that matched the
first pass criteria. Each character is compared to the second pass criteria, to
determine whether the string fits the criteria to identify a PF key sequence. If a
string is recognized as a PF key sequence according to the first pass criteria, it is
not checked against the second pass criteria.

Preserve and map field colors
Click the checkbox if you want to show the same colors for host fields in
the HTML output.

Use HTML Teletype (monospace) tag
Click the checkbox if you want the HTML text output to be in a
monospace font, which is close to the text spacing on the host screen.

Perform 5250 subfile rendering
Click the checkbox if you want 5250 subfile information rendered as
subfiles in the HTML output.

Perform selection list rendering
Click the checkbox if you want selection list information automatically
rendered in the HTML output. This is useful for applications (such as on
iSeries) that use selections lists on many screens.

Selection list widget
Select one of the following widgets to use for rendering the selection list:
v Button
v Button table
v Dropdown list
v Link
v Option list.

Leading token type
The leading token can be a letter or a numeric digit.

Delimiter
This is the string that divides the selection’s leading token from its
description. In the examples, the delimiter is the period (.) following the
numbers and letters. You can specify more than one value, separated by
the ″|″ (vertical bar) character.

String before the leading token
This value is optional. If there is a string that always precedes the leading
token, such as ″option″, enter it here.

Minimum required options
If you do not want to recognize a selection list with fewer than a certain
number of options, enter that number here.

First row to search for selection list
Type the number of the first row on the host screen where a selection list
might appear.

Last row to search for selection list
Type the number of the last row on the host screen where a selection list
might appear.

94 IBM® WebSphere® Host Access Transformation Server Developer’s Guide

Number of columns per row
Type the number of buttons, links, or options you want to display in each
row. Unless the captions are short, one per row will look best.

Caption type
The values of the leading token and the description are derived from the
host component. Choose whether you want each item of the widget
selected to display the leading token, the description, or both. For example,
if the item represents a menu item that read 4.Mail, you can have the list
item display 4, or Mail, or 4.Mail.

Submit button caption
Determines the text displayed on the submit button. You can select one of
the values from the drop-down list (Submit, Go, or #=), or type the text
you want the button to display in the entry field.

Caption substitution
If you want to replace strings from the host component with new strings
on the button or link or in the drop-down or option list items, type the
substitution values in the form of a=b. If you substitute more than one
string, separate the substitutions with a semicolon (;).

Show submit button
Click the checkbox if you want to show a submit button in the HTML
output. The user must click the button after choosing an option from the
drop-down list or option list.

Must be field separated
Check this box if each selection must be in a separate field.

Use character by character rendering for precise alignment
Select the one of the following values from the drop-down list:

Never Character by character rendering is never used.

Only on pages with popups
Character by character rendering is only used on screens that have
pop-up windows. The pop-up windows often look better with this
alignment.

Always
Character by character rendering is always used.

Convert menus to buttons
Click the checkbox if you want to convert all menus on the host screen to
buttons in the HTML output.

First row to search for menus
Type the number of the first row on the host screen where menus might
appear.

Last row to search for menus
Type the number of the last row on the host screen where menus might
appear.

Substitute buttons or links for PF keys (first pass)
Click the checkbox if you want to substitute buttons or links for PF keys
identified by the criteria specified for the first pass.

First pass HTML control for PF key
You can replace PF keys with links or with buttons. On a link or a button,
you can display the number of the key (such as PF12) or its description
(such as ″Exit″). Choose one of these options from the drop-down list.

Appendix A. Component and widget descriptions and settings 95

First row to search for PF keys
Type the number of the first row on the host screen to search for PF keys
using the first-pass criteria.

Last row to search for PF keys
Type the number of the last row on the host screen to search for PF keys
using the first-pass criteria.

PF key substitution start delimiter
Type the characters that define the beginning delimiter for a PF key for the
first pass through the host screen. For PF12=Exit, PF# is the start delimiter.

PF key substitution middle delimiter
Type the characters that define the delimiter between a PF key and its
description for the first pass through the host screen. For PF12=Exit, = is
the middle delimiter.

PF key substitution end delimiter
Type the characters that define the ending delimiter for a PF key for the
first pass through the host screen. The end delimiter could be something as
simple as the space. However, if there are function key descriptions that
contain a space, such as PF8=Shift Right, a space is not good to use as the
end delimiter. In the example PF8=Shift Right, the end delimiter would
have to be defined as the start of another function key, PF#, or more than a
single space.

Substitute buttons or links for PF keys (second pass)
Click the checkbox if you want to substitute buttons or links for PF keys
identified by the criteria specified for the second pass.

Second pass HTML control for PF key
You can replace PF keys with links or with buttons. On a link or a button,
you can display the number of the key (such as PF12) or its description
(such as ″Exit″). Choose one of these options from the drop-down list.

First row to search for PF keys
Type the number of the first row on the host screen to search for PF keys
using the second-pass criteria.

Last row to search for PF keys
Type the number of the first row on the host screen to search for PF keys
using the second-pass criteria.

PF key substitution start delimiter
Type the characters that define the beginning delimiter for a PF key for the
second pass through the host screen. For PF12=Exit, PF# is the start
delimiter.

PF key substitution middle delimiter
Type the characters that define the delimiter between a PF key and its
description for the second pass through the host screen. For PF12=Exit, = is
the middle delimiter.

PF key substitution end delimiter
Type the characters that define the ending delimiter for a PF key for the
second pass through the host screen. The end delimiter could be something
as simple as the space. However, if there are function key descriptions that
contain a space, such as PF8=Shift Right, a space is not good to use as the
end delimiter. In the example PF8=Shift Right, the end delimiter would
have to be defined as the start of another function key, PF#, or more than a
single space.

96 IBM® WebSphere® Host Access Transformation Server Developer’s Guide

Highlight tables
Click the checkbox if you want to highlight the rows of the table, using
two alternating colors, in the HTML output.

Even tables row color
Shows the background color to use for the even rows in the table. Click the
button to display a color palette if you want to change the color.

Odd tables row color
Shows the background color to use for the odd rows in the table. Click the
button to display a color palette if you want to change the color.

Table title color
Shows the color to use for the title of the table. Edit the entry if you want
to change the color. The Table title color only applies if either the First
line of table is the title or the Line above table is the title box is checked.

Minimum row count in table
If you do not want to recognize a table with fewer than a certain number
of rows, enter that number here.

Minimum column count in table
If you do not want to recognize a table with fewer than a certain number
of columns, enter that number here.

First row to search for tables
Type the number of the first row on the host screen where a table might
appear on the host screen.

Last row to search for tables
Type the number of the last row on the host screen where a table might
appear on the host screen.

First line of table is the title
Click the checkbox if you want the first line of the table to be used as the
title of the table.

Line above table is the title
Click the checkbox if you want the line above the table to be used as the
title of the table.

Drop-down list
A drop-down list widget is a way of representing a large number of choices from a
host menu or selection list without taking up a lot of room on the Web page. In the
following example, HATS displays a drop-down list that shows three items.

Work with forms
Work with forms you submitted
Work with forms requiring your action

You can customize these settings for drop-down lists:

Show submit button
Click the checkbox if you want to show a submit button in the HTML
output. The user must click the button after choosing an option from the
list.

Submit button caption
Determines the text displayed on the submit button. You can select one of
the values from the drop-down list (Submit, Go, or #=), or type the text
you want the button to display in the entry field.

Appendix A. Component and widget descriptions and settings 97

Caption type
The values of the leading token and the description are derived from the
host component. Choose whether you want each item in the drop-down
list to display the leading token, the description, or both. For example, if
the item represents a menu item that read 4.Mail, you can have the list
item display 4, or Mail, or 4.Mail.

Caption substitution
If you want to replace strings from the host component with new strings in
the drop-down list items, type the substitution values in the form of a=b. If
you substitute more than one string, separate the substitutions with a
semicolon (;).

Field
Displays the host component in a field of the HATS project. There are no
customizable settings for the field widget.

Graph
Displays a graph in which the cells of a table (visual or field table) are divided into
data sets.

You can set the values of the following:

Number of data sets
Determines the number of data sets to be included in the graph. The value
defaults to the number of data sets found in the extracted data, but you can
change the number to include only a subset of the data sets. This setting is
only displayed in the settings for the Insert Host Component wizard, because
it depends on the extracted data.

Data set source
Select one of the following values from the drop-down list:

Row
Each row of the table constitutes one set of data to be graphed.

Column
Each column of the table constitutes one set of data to be graphed.

Width
Type the width, in pixels, for the graph.

Height
Type the height, in pixels, for the graph.

Background color
Shows the color to use for the background in the graph. Click the button to
display a color palette if you want to change the background color.

Background image
Type the path and name of the image to display in the background of the
graph. Click the Browse button to locate an image on your system.

X-axis title
Type the text you want to use as the label for the X-axis in the graph.

Y-axis title
Type the text you want to use as the label for the Y-axis in the graph.

Axis color
Shows the color to use for the axis in the graph. Click the button to display a
color palette if you want to change the axis color.

98 IBM® WebSphere® Host Access Transformation Server Developer’s Guide

Label color
Shows the color to use for the label of the graph. Click the button to display
a color palette if you want to change the label color.

As with the Number of data sets, the following are only displayed in the settings
for the Insert Host Component wizard.

Extract data point labels
Click the checkbox if you want to extract row or column labels to show as
labels on the X-axis.

Row or Column
Type in the entry field the number of the row or column to use as
labels on the X-axis. The label for this entry field is dependent
upon the value specified for the Data set source setting. The entry
field label matches the value specified for the Data set source
setting.

Extract data set labels (for legend)
Click the checkbox if you want to extract row or column labels to show as
labels in the graph legend.

’Row’ or ’Column’
Type in the entry field the number of the row or column of text to
use as labels in the graph legend.

The label for this entry field is dependent upon the value specified
for the Data set source setting. The entry field label is the opposite
of the value for the Data set source setting.

Data sets
Click this button to display the Data Source Settings dialog, which enables
you to specify the following additional settings for the data sources:

Data set ’n’, ’row’ or ’column’
The number (’n’) of these fields matches the value specified in the
Data set source setting. Type in the entry field the number of any
row or column of data you want to use for the data set. This enables
you to reorder or duplicate sets of data in the graph.

The last part of the label for this entry field is dependent upon the
value specified for the Data set source setting. The entry field label
matches the value specified for the Data set source setting.

color
There is a color button for each of the Data set ’n’, ’row’ or ’column’
settings. The buttons show the color to use for the data set in the
graph. Click the button to display a color palette if you want to
change the data set color.

Label
Displays text for a labeled field on the host screen as a label for an input field in
the HATS project. There are no customizable settings for the label widget.

Link
The link widget presents a link on the Web page, with a caption that describes its
function. A link is created from a host component such as a function key or an
item in a menu or a selection list. You can configure links to appear as a vertical or
horizontal list by adjusting the number of columns in the display. For example, a
HATS project could display the links in one of the following configurations:

Appendix A. Component and widget descriptions and settings 99

Prepare form Work with forms you
submitted

Work with forms requiring
your action

Prepare form
Work with forms you submitted
Work with forms requiring your action

You can customize these settings for links:

Number of columns per row
Type the number of columns of links you want to display in each row.
Unless the link captions are short, one link per row will look best.

Caption type
The values of the leading token and the description are derived from the
host component. Choose whether you want the link caption to display the
leading token, the description, or both. For example, if the link represents a
menu item that read 4.Mail, you can have the link caption display 4, or
Mail, or 4.Mail.

Caption substitution
If you want to replace strings from the host component with new strings in
the link caption, type the substitution values in the form of a=b. If you
substitute more than one string, separate the substitutions with a
semicolon (;).

Option list
The option list widget is a way of presenting a list of mutually exclusive choices as
radio buttons. For example:

O Prepare form
O Work with forms you submitted
O Work with forms requiring your action

You can customize these settings:

Number of columns per row
Type the number of options you want to display in each row.

Show submit button
Click the checkbox if you want to show a submit button in the HTML
output. The user must click the button after choosing an option from the
list.

Submit button caption
Determines the text displayed on the submit button. You can select one of
the values from the drop-down list (Submit, Go, or #=), or type the text
you want the button to display in the entry field.

Caption type
The values of the leading token and the description are derived from the
host component. Choose whether you want each item in the drop-down
list to display the leading token, the description, or both. For example, if
the item represents a menu item that read 4.Mail, you can have the list
item display 4, or Mail, or 4.Mail.

Caption substitution
If you want to replace strings from the host component with new strings in

100 IBM® WebSphere® Host Access Transformation Server Developer’s Guide

the drop-down list items, type the substitution values in the form of a=b. If
you substitute more than one string, separate the substitutions with a
semicolon (;).

Table
Displays the selected information on the host screen as an HTML table.

You can set the values of the following:

Header row
Type the number of the row in the table on the host screen whose contents
should be used as column headers on the Web page.

Header column
Type the number of the column in the table on the host screen whose
contents should be used as row headers on the Web page.

Read only
Check this box if you want to prevent users from entering text into the
table fields in the HTML output. Clear this box to enable users to enter text
in the table cells.

Row fill
If a row does not have as many cells as other rows, it can be filled in by
expanding the last cell to the end of the table (span) or by adding empty
cells (empty). Choose one of these options from the drop-down list.

Text input
Displays the selected information on the host screen as an input field, with or
without the description. There are no customizable settings for the label widget.

Component and widget mapping
The widgets supplied in HATS Studio for use in displaying host components on a
Web page are mapped to those components. The following table lists the existing
HATS host components and their corresponding widgets.

Table 4. HATS host components and their corresponding widgets

Host component Widget

Command line Text input

Default Default

Field Field

Field table Table
Horizontal bar graph
Vertical bar graph
Line graph

Function key Button
Button table
Link
Option list

Input field Text input

Menu Button
Button table
Dropdown list
Link
Option list

Appendix A. Component and widget descriptions and settings 101

Table 4. HATS host components and their corresponding widgets (continued)

Host component Widget

Selection list Button
Button table
Dropdown list
Link
Option list

Subfile Subfile

Text Label

Visual table Table
Horizontal bar graph
Vertical bar graph
Line graph

HATS:Component tag type and widget attributes
The type and widget attributes of the HATS:Component tag are as follows:

Attribute Description

type The host component type. Valid values (and their corresponding
host component) are:

Type Host component

CommandLine Command line

Default Entire host screen

Field Field

FieldTable Field Table

FunctionKey Function key

InputField Input field

Menu Menu

SelectionList Selection list

Subfile Subfile

Text Text

VisualTable Visual table

widget The widget style. Valid values (and their corresponding widgets)
are:

Widget Widget

Button Button

ButtonTable Button table

Default Entire host screen

DropdownList Drop-down list

Field Field

HorizontalBarGraph Horizontal bar graph

Label Label

102 IBM® WebSphere® Host Access Transformation Server Developer’s Guide

LineGraph Line graph

Link Link

OptionList Option list

Subfile Subfile

Table Table

TextInput Text input

VerticalBarGraph Vertical bar graph

Appendix A. Component and widget descriptions and settings 103

104 IBM® WebSphere® Host Access Transformation Server Developer’s Guide

Appendix B. HATS Studio files

When you use HATS Studio to build your project, files for each component of the
project are created. This appendix tells you where the file is located on your
system, how to view and edit the source for the file, and describes the tags that
make up each file.

Note: If you edit these source files, we recommend you use the HATS Studio
editors.

All of the files you create with HATS Studio are stored on your system under the
drive and directory where you installed your WebSphere Studio program, such as
WebSphere Studio Application Developer. In the workspace subdirectory, a folder
exists for each project with the name you supply when you create the project. For
example, if you create a project and name it Employees, the files are stored in the
following path:
drive:/ws*d_dir/workspace/Employees

where drive and ws*d_dir are the drive and directory where you installed the
WebSphere Studio program.

All of the file locations in this appendix refer to the relative path from the
directory named for your project.

Application files (.hap)
The application file contains XML tags that define the settings you choose when
you create the project.

The application (.hap) file is stored in the project_name/source/profiles directory,
where project_name is the name you gave the project when you created it. You can
view and edit the source of the application file by double-clicking on the Project
Settings node of the HATS Project View to open the project editor. The source for
the file can be viewed by clicking on the Source tab.

You can modify the application file using any of the tabs in the project editor.
HATS Studio updates the affected information on other tabs when you make
changes on any tab.

<application> tag
The <application> tag is the enclosing tag for the project.

The attributes of the <application> tag are:

description
Specifies the description you enter when you create a project.

template
Specifies the name of the default template for the project, which you select
when you create the project. The default template is Simple1.jsp.

© Copyright IBM Corp. 2002 105

<sessions> tag
The <sessions> tag is the enclosing tag for the session characteristics.

The attributes of the <sessions> tag are:

default
Specifies the session configured for the project. This value should always
be main, and main is the default.

<session> tag
The <session> tag specifies the session characteristics for the project.

Note: If you select a bi-directional (BIDI) code page, refer to “Additions to HATS
files” on page 86.

The attributes of the <session> tag are:

codePage
Specifies the numeric code page number for the codepage used in the
project. The default value is 037. You select the codePage value when you
create the project. A code page number might be used for more than one
location or usage. See the description of the codePageKey attribute for the
code page numbers.

codePageKey
Specifies the usage key that corresponds to the numeric codepage. The
default value is KEY_US. Valid values for codePage and the location or
usage key are:

Table 5. Code pages and usage keys

Code page Usage key

037 KEY_BELGIUM
KEY_BRAZIL
KEY_CANADA
KEY_NETHERLANDS
KEY_PORTUGAL
KEY_US

273 KEY_AUSTRIA
KEY_GERMANY

274 KEY_BELGIUM_OLD

275 KEY_BRAZIL_OLD

277 KEY_DENMARK
KEY_NORWAY

278 KEY_FINLAND
KEY_SWEDEN

280 KEY_ITALY

284 KEY_SPAIN
KEY_LATIN_AMERICA

285 KEY_UNITED_KINGDOM

290 KEY_JAPAN_KATAKANA_EX

297 KEY_FRANCE

420 KEY_ARABIC

424 KEY_HEBREW

106 IBM® WebSphere® Host Access Transformation Server Developer’s Guide

Table 5. Code pages and usage keys (continued)

Code page Usage key

500 KEY_MULTILINGUAL

803 KEY_HEBREW_OLD

838 KEY_THAI

870 KEY_BOSNIA_HERZEGOVINA
KEY_CROATIA
KEY_CZECH
KEY_HUNGARY
KEY_POLAND
KEY_ROMANIA
KEY_SLOVAKIA
KEY_SLOVENIA

871 KEY_ICELAND

875 KEY_GREECE

924 KEY_MULTILINGUAL_ISO_EURO

930 KEY_JAPAN_KATAKANA

933 KEY_KOREA_EX

937 KEY_ROC_EX

939 KEY_JAPAN_ENGLISH_EX

1025 KEY_BELARUS
KEY_BULGARIA
KEY_MACEDONIA
KEY_RUSSIA
KEY_SERBIA_MONTEGRO

1026 KEY_TURKEY

1047 KEY_OPEN_EDITION

1112 KEY_LATVIA
KEY_LITHUANIA

1122 KEY_ESTONIA

1123 KEY_UKRAINE

1137 KEY_HINDI

1140 KEY_BELGIUM_EURO
KEY_BRAZIL_EURO
KEY_CANADA_EURO
KEY_NETHERLANDS_EURO
KEY_PORTUGAL_EURO
KEY_US_EURO

1141 KEY_AUSTRIA_EURO
KEY_GERMANY_EURO

1142 KEY_DENMARK_EURO
KEY_NORWAY_EURO

1143 KEY_FINLAND_EURO
KEY_SWEDEN_EURO

1144 KEY_ITALY_EURO

1145 KEY_LATIN_AMERICA_EURO
KEY_SPAIN_EURO

1146 KEY_UNITED_KINGDOM_EURO

Appendix B. HATS Studio files 107

Table 5. Code pages and usage keys (continued)

Code page Usage key

1147 KEY_FRANCE_EURO

1148 KEY_MULTILINGUAL_EURO

1149 KEY_ICELAND_EURO

1153 KEY_BOSNIA_HERZEGOVINA_EURO
KEY_CROATIA_EURO
KEY_CZECH_EURO
KEY_HUNGARY_EURO
KEY_POLAND_EURO
KEY_ROMANIA_EURO
KEY_SLOVAKIA_EURO
KEY_SLOVENIA_EURO

1154 KEY_BELARUS_EURO
KEY_BULGARIA_EURO
KEY_MACEDONIA_EURO
KEY_RUSSIA_EURO
KEY_SERBIA_MONTEGRO_EURO

1155 KEY_TURKEY_EURO

1156 KEY_LATVIA_EURO
KEY_LITHUANIA_EURO

1157 KEY_ESTONIA_EURO

1158 KEY_UKRAINE_EURO

1160 KEY_THAI_EURO

1364 KEY_KOREA_EURO

1371 KEY_ROC_EURO

1388 KEY_PRC_EX_GBK

1390 KEY_JAPAN_KATAKANA_EX_EURO

1399 KEY_JAPAN_ENGLISH_EX_EURO

delayInterval
Specifies the time (in milliseconds) that the server waits until a full host
screen that is not the first host screen has arrived. The initial default value
is 1500 milliseconds.

delayStart
Specifies the time (in milliseconds) that the server waits until the first full
host screen has arrived. The initial default value is 1500 milliseconds.

description
Specifies a description for the session configured for the project. This value
is always empty.

enableSSL
Specifies whether SSL is enabled. Valid values are:

true SSL is enabled for the project.

false SSL is not enabled for the project.

enhanced
Specifies whether the connection is a TN3270E connection. Valid values are
true and false. The initial default is true.

108 IBM® WebSphere® Host Access Transformation Server Developer’s Guide

hostName
Specifies the name of the host to which the project connects.

name Specifies the session configured for the project. This value should always
be main, and main is the initial default.

port Specifies the number of the port through which the connection to the host
is made. The initial default is 23.

printFontName
Specifies the font in which you want your output printed. Valid values
depend on the value of the codePage attribute.

printOrientation
Specifies how your printed output is positioned on the page. Valid values
for printOrientation are:

PDF_ORIENTATION_PORTRAIT
Orients the paper vertically.

PDF_ORIENTATION_LANDSCAPE
Rotates the paper 90 degrees clockwise.

printPaperSize
Specifies the size of the paper on which to print your output. Valid values
for printPaperSize are:

ISO_A3
ISO/DN & JIS A4, 297 x 420 mm

ISO_A4
ISO/DN & JIS A4, 210 x 297 mm

ISO_A5
ISO/DN & JIS A4, 148 x 210 mm

ISO_B4
ISO/DN B4, 250 x 353 mm

ISO_B5
ISO/DN B5, 176 x 250 mm

JIS_B4
JIS B4, 257 x 364 mm

JIS_B5
JIS B5, 182 x 257 mm

ISO_C5
ISO/DN C5, 162 x 229 mm

ISO_DESIGNATED_LONG
ISO/DN Designated Long, 110 x 220 mm

EXECUTIVE
Executive, 7 1/4 x 10 1/2 in

LEDGER
Ledger, 11 x 17 in

NA_LETTER
North American Letter, 8 1/2 x 11 in

NA_LEGAL
North American Legal, 8 1/2 x 14 in

Appendix B. HATS Studio files 109

NA_NUMBER_9_ENVELOPE
North American #9 Business Envelope, 3 7/8 x 8 7/8 in

NA_NUMBER_10_ENVELOPE
North American #10 Business Envelope, 4 1/8 x 9 1/2 in

MONARCH_ENVELOPE
Monarch Envelope, 3 7/8 x 7 1/2 in

CONTINUOUS_80_COLUMNS
Data Processing 80 Columns Continuous Sheet, 8 x 11 in

CONTINUOUS_132_COLUMNS
Data Processing 132 Columns Continuous Sheet, 13 1/5 x 11 in

printSupport
Specifies whether your project includes print capability. Valid values for
printSupport are true and false. The initial default is false.

printURL
Specifies the URL for an iSeries for Web Access (IWA) Printer Output
window on a 5250 server. The default URL is
http://hostname/webaccess/iWASpool, where hostname is the name of the
5250 server.

screenSize
Specifies the number of rows and columns that the host terminal displays.
Valid values for screenSize are:
v 24 x 80
v 27 x 132
v 32 x 80 (3270 only)
v 43 x 80 (3270 only)

The initial default screen size is 24 x 80.

type Specifies the type of terminal the host terminal displays. Valid values for
type are:
v 3270
v 3270E
v 5250

The initial default is 3270.

<otherParameters> tag
The <otherParameters> tag specifies additional Host On-Demand session
parameters.

Host On-Demand session parameters supported by HATS are:

Lamalef
Sets the LamAlef property, which determines whether LamAlef should be
expanded or compressed. This property applies to Arabic sessions only.
Values are in string format. Valid values are:
v LAMALEF_ON
v LAMALEF_OFF

The default is LAMALEF_OFF .

LUName
Sets the LUName property, which is the LU name used during enhanced

110 IBM® WebSphere® Host Access Transformation Server Developer’s Guide

negotiation. This property is only valid when the TNEnhanced property is
true. This property is valid for 3270 sessions only. Values are in string
format. Maximum length of LUName is 17 characters. There is no default.

numeralShape
Sets the numeralShape property. This property applies to bi-directional
sessions only. Values are in string format. The default is NOMINAL.

numericSwapEnabled
Sets the Numeric swapping property. This property applies to Arabic 3270
sessions only. Valid values are true and false. The default is true.

roundTrip
Sets the roundTrip property. This property applies to bi-directional sessions
only. Values are in string format. Valid values are:
v ROUNDTRIP_ON
v ROUNDTRIP_OFF

The default is ROUNDTRIP_ON.

SecurityProtocol
Sets the SecurityProtocol property, which indicates whether to use the TLS
v1.0 protocol or the SSL protocol for providing security. Values are in string
format. The default is TLS.

SSLServerAuthentication
Sets the SSLServerAuthentication property, which indicates whether SSL
server authentication is enabled. Valid values are true and false. The
default is false.

symmetricSwapEnabled
Sets the Symetric swapping property. This property applies to Arabic 3270
sessions only. Valid values are true and false. The default is true.

textOrientation
Sets the textOrientation property. This property applies to bi-directional
sessions only. Values are in string format. Valid values are:
v LEFT_TO_RIGHT
v RIGHT_TO_LEFT

The default is LEFT_TO_RIGHT.

ThaiDisplayMode
Sets Thai display mode property. This property applies to Thai sessions
only. Values are in string format. The default is THAI_MODE_5.

workstationID
Sets the workstationID property, which is used during enhanced
negotiation for 5250. Values are in string format. All lowercase characters
will be converted to uppercase. There is no default.

<eventPriority> tag
The <eventPriority> tag is the enclosing tag for the screen customization events
you defined for the project. The order of the event tags within the <eventPriority>
tag defines which events have higher priority. The highest priority event should be
the first event in the list.

Appendix B. HATS Studio files 111

<event> tag
The <event> tag specifies an event you defined for the project.

The attributes of the <event> tag are:

enabled
Specifies whether the event can occur within the project. Valid values for
enabled are true and false. The default is true.

name Specifies the name you gave the screen customization event when you
defined it. If you store a screen customization file under a folder (or
group), the name of the folder is prepended to the name of the file.

<classSettings> tag
The <classSettings>tag is the enclosing tag for the Java classes you include in the
project.

<class> tag
The <class>tag specifies the Java classes that can be included in an project.

The attributes of the <class> tag are:

name Specifies one of the following Java classes:
v com.ibm.hats.common.ApplicationKeypadTag
v com.ibm.hats.common.HostKeypadTag
v com.ibm.hats.common.KeyboardSupport
v com.ibm.hats.component.*

where * is the name of a component for which you have customized a
setting

v com.ibm.hats.widget.*
where * is the name of a widget for which you have customized a
setting.

v com.ibm.hats.common.ClientLocale

The class names on the name attribute must be enclosed in quotes.

<setting> tag
The <setting>tag specifies the methods included in the Java class.

The attributes of the <setting> tag are:

name Specifies the name of the Java method or a customized setting for a
component, a widget or the locale. The names listed depend on the Java
class in which the methods reside or the name of a component or widget
setting.

For the com.ibm.hats.common.ApplicationKeypadTag class, the methods
are:

show If value=true, shows a keypad in the application.

style Depending on the value attribute, shows the keys defined with
value=true as either a button or a link in the application keypad.

112 IBM® WebSphere® Host Access Transformation Server Developer’s Guide

showKeyboardToggle
If value=true, shows a key in the application keypad for toggling
display of a host keyboard.

showPrintJobs
If value=true, shows a key in the application keypad for showing
print jobs.

showReset
If value=true, shows a Reset key in the application keypad to clear
all the fields on the browser page of any entries made by the end
user.

showReverse
If value=true, shows a Reverse key in the application keypad for
bi-directional support.

showRefresh
If value=true, shows a Refresh key in the application keypad to
refresh the browser window contents using the original
transformation, and restore the input fields to their original value.

showDisconnect
If value=true, shows a Disconnect key in the application keypad to
disconnect from the host.

showDefault
If value=true, shows a Default key in the application keypad to
change the presentation to the default transformation.

For the com.ibm.hats.common.HostKeypadTag class, the methods are:

show If value=true, shows a host keypad in the application.

style Depending on the value attribute, shows the keys defined with
value=true as either a button or a link in the host keypad.

showAttention
If value=true, shows an ATTN key in the host keypad.

showPrint
If value=true, shows a PRINT key in the host keypad for printing
output.

showSystemRequest
If value=true, shows a SYSREQ key in the host keypad.

showClear
If value=true, shows a CLEAR key in the host keypad.

showPageUp
If value=true, shows a Page Up key in the host keypad.

showPageDown
If value=true, shows a Page Down key in the host keypad.

showPA1
If value=true, shows a PA1 key in the host keypad.

showPA2
If value=true, shows a PA2 key in the host keypad.

showPA3
If value=true, shows a PA3 key in the host keypad.

Appendix B. HATS Studio files 113

showEnter
If value=true, shows an Enter key in the host keypad.

showAltView
If value=true, shows an AltView key in the host keypad.

showHelp
If value=true, shows a Help key in the host keypad.

showF1 – showF24
If value=true, shows a Function key with a number in the host
keypad.

For the com.ibm.hats.common.KeyboardSupport class, the methods are:

enable
Depending on the value attribute, enable specifies whether
keyboard support is available in the project.

initialState
If value=true, the initial state of the host keyboard is on (the
physical keys on the keyboard are active).

For the com.ibm.hats.component.* class or com.ibm.hats.widget.* class,
name specifies a customized component or widget setting.

For the com.ibm.hats.common.ClientLocale class, name is always locale.

value For definitions of keypad keys, specifies whether to show the key in the
keypad. Valid values are true and false.

For name=style, specifies how keys defined with value=true are displayed
in the in the host keypad. Valid values are the following:
v Buttons
v Links

For component or widget settings, value specifies what you specified for
the customized setting.

For the com.ibm.hats.common.ClientLocale class, value specifies characters
that identify the country code of the locale.

<textReplacement> tag
The <textReplacement> tag is the enclosing tag for any text replacement values
you define in the project.

<replace> tag
The <replace> tag specifies the text replacement values in a project.

Note: If you are using a bi-directional (BIDI) code page, refer to “Additions to
HATS files” on page 86.

The attributes of the <replace> tag are:

caseSensitive
Specifies whether the case of text replacement values must match before
text replacement occurs. Valid values are true and false.

114 IBM® WebSphere® Host Access Transformation Server Developer’s Guide

from Specifies the text you want to replace. The text on the from attribute must
be enclosed in quotes.

to Specifies the text you want to insert in place of the value specified on the
from attribute. The text on the to attribute must be enclosed in quotes.

Note: Care should be taken when using text replacement. Text replacement with a
disparate number of characters in the strings can cause changes in the
HTML representation of the screen. Depending on the widget used for
presenting a region of a screen, text on a line of the screen could be
contracted, expanded, or forced to a new line.

Template and transformation files (.jsp)
These JavaServer Pages (JSP) files contain HTML and JSP tagging to define how
your project appears in the end user’s browser.

The template .jsp files are stored in the project_name/webApplication/templates
directory. The transformation .jsp files are stored in the
project_name/webApplication/transformations directory.You can view and edit
the source of the .jsp files by double-clicking on the name of the template or
transformation in the HATS Project View to open the JSP editor. The source for
the file can be viewed by clicking on the Source tab.

You can modify the template and transformation files using the Design or the
Source tabs in the JSP editor. HATS Studio updates the affected information on
other tab when you make changes on either tab.

A template .jsp file contains HTML tagging to define links and images for the
project page. The template .jsp file also contains a <HATS:Transform> tag that
defines the transformation to be used with the template to present the page of
your project.

A transformation .jsp file contains HTML tags to describe the layout of the
information presented to the user of the project in a Web browser. The
transformation .jsp file may also contain <HATS:Component> tags that define
HATS components and widgets used to present the page of your project. For more
information on the HATS:Component tag, see “Creating custom host components
and widgets” on page 55.

Screen customization files (.evnt)
The screen customization files define how a host screen is recognized, and also
defines the actions HATS performs when a screen is recognized.

The screen customization (.evnt) files are stored in the
project_name/source/profiles/events/screencustomizations directory. You can
view and edit the source of the screen customization files by double-clicking on the
name of the screen customization in the HATS Project View to open the screen
customization editor. The source for the file can be viewed by clicking on the
Source tab.

You can modify screen customization files using the Screen Recognition Criteria,
Actions, or Source tabs in the editor. HATS Studio updates the affected
information on other tabs when you make changes on any tab.

Appendix B. HATS Studio files 115

The screen customization event files contain tags to define how a host screen is
recognized and the actions to occur when the host screen is recognized. The tags
are:

event Begins the definition of the screen customization. The event tag has the
following attributes:

description
If you supplied a description of the screen customization when you
created it, that description is defined in this attribute.

type For a screen customization, type is always screenRecognize.

actions
Encompasses the actions defined in the screen customization. The possible
actions and their attributes are:

apply Defines the action for applying a transformation. The attributes of
the apply tag are:

immediateKeyset
Defines the host keys sent to the host immediately when
pressed by the end user of your project. If you did not
define any host keys to be sent to the host immediately,
this attribute has an empty value.

template
Names the template file that surrounds the transformation
being applied. If the default template is being used to
surround the transformation, this attribute has an empty
value.

transformation
Names the transformation file that is to be applied for this
action.

insert Defines the action for inserting a global variable or a string. The
attributes of the insert tag are:

row Defines the starting row on the host screen where the value
is to be inserted.

col Defines the starting column on the host screen where the
value is to be inserted.

source Specifies whether the value to be inserted is a string or the
value of a global variable. Valid values are string and
variable.

value Specifies either the string to be inserted onto the host
screen or the name of a global variable from which the
value is taken.

fill If the source of the value to be inserted is an indexed
global variable, fill specifies whether the indices of the
global variable are to be concatenated and inserted at the
specified position, or inserted into a rectangular region of
the host screen. Valid values are concatenate and
rectangular.

index If the source of the value to be inserted is an indexed

116 IBM® WebSphere® Host Access Transformation Server Developer’s Guide

global variable, index specifies the number of the index
that is to be used as the value to be inserted onto the host
screen.

extract Defines the action for extracting a global variable. The attributes of
the extract tag are:

srow Defines the starting row on the host screen of the text
being extracted.

erow Defines the ending row on the host screen of the text being
extracted.

scol Defines the starting column on the host screen of the text
being extracted.

ecol Defines the ending column on the host screen of the text
being extracted.

name Specifies the name of the global variable to which the text
is extracted. This can be an existing global variable or a
new global variable.

overwrite
Specifies whether the text extracted is to overwrite the
value of an existing global variable. Valid values are true
and false.

indexed
Specifies whether the text extracted is a single string or a
list of strings, where each string in the list corresponds to a
single row of text from the extracted region. Valid values
are true and false.

index If an existing global variable is indexed, this attribute
specifies the index number to which the extracted value is
to be written. The effect of this attribute is dependent on
the value of the overwrite attribute. If overwrite=true, the
extracted value overwrites the existing variable, starting at
the specified index. If overwrite=false, the extracted value
is inserted into the existing variable, beginning at the
specified index.

set Defines the action for setting a global variable. The attributes of the
set tag are:

name Specifies the name of the global variable being set. This can
be an existing global variable or a new global variable.

type Specifies whether the value of the global variable being set
comes from a fixed constant or a calculated value. Valid
values are string and calculate.

overwrite
Specifies whether the value being set is to overwrite the
value of an existing global variable. Valid values are true
and false.

index If the value being set is being written to an existing
indexed global variable, this attribute specifies the index
number to which the value being set is written. The effect
of this attribute is dependent on the value of the overwrite
attribute. If overwrite=true, the value being set overwrites

Appendix B. HATS Studio files 117

the existing variable, beginning at the specified index. If
overwrite=false, the value being set is inserted into the
existing variable, beginning at the specified index.

op1 Specifies whether the first operand of a calculated value is
a fixed constant or the value of an existing global variable.
Valid values are a fixed constant or the name of a global
variable.

op1_type
Specifies whether the value of the first operand of a
calculated value is set as a fixed constant or from an
existing global variable. Valid values are string and
variable.

op1_index
If the source of the value of the first operand of a
calculated value is an indexed global variable, op1_index
specifies the number of the index used as the value for the
calculation.

op Specifies the type of operation to occur between the first
and second operands of a calculated value. Valid values
are + (add), - (subtract), * (multiply), / (divide), and %
(percentage).

op2 Specifies whether the second operand of a calculated value
is a fixed constant or the value of an existing global
variable. Valid values are a fixed constant or the name of a
global variable.

op2_type
Specifies whether the value of the first operand of a
calculated value is set as a fixed constant or from an
existing global variable. Valid values are string and
variable.

op2_index
If the source of the value of the second operand of a
calculated value is an indexed global variable, op2_index
specifies the number of the index used as the value for the
calculation.

dec Specifies the number of decimal places to which a
calculated value is rounded. Valid values are 0–999.

execute
Defines the action for executing business logic. The attributes of
the execute tag are:

class Names the Java class that contains your business logic. The
class value is required.

method
Names the method inside the class that executes the
business logic. The method value is required.

package
Names the package that the Java class resides in on your
file system. The package value is optional.

118 IBM® WebSphere® Host Access Transformation Server Developer’s Guide

show Defines the action for showing a URL. The show tag has the
following attribute:

url Identifies the Uniform Resource Locator (URL) of the Web
page to show. This attribute is required.

play Defines the action for playing a macro. The play tag has the
following attribute:

macro Names the macro to be played. This attribute is required.

associatedScreens
The associatedScreens tag encompasses the screen tag that follows.

screen Defines a screen associated with the screen customization. The screen tag
has the following attribute:

name Specifies the name of a captured screen, for which the screen
recognition criteria and actions have been defined.

description
The description tag is the enclosing tag for the description associated with
the screen customization, which is comprised of the oia tag and the string
tag. There are no attributes for the description tag.

oia The oia tag specifies an operator information area (OIA) condition to
match. This tag is optional. The default is to wait for inhibit status.

The attributes of the <oia> tag are:

status If NOTINHIBITED, the OIA must be uninhibited for a match to
occur. If DONTCARE, the OIA inhibit status is ignored. This has
the same effect as not specifying OIA at all. Valid values are
NOTINHIBITED and DONTCARE. This is a required attribute.

optional
If false, this descriptor is considered non-optional during screen
recognition. If the descriptors are comprised of more than one
non-optional descriptor, and more than one optional descriptor, the
non-optional descriptors are checked first. If all of the non-optional
descriptors match, the screen matches. If at least one of the
non-optional descriptors does not match, the optional descriptors
are checked. One of the optional descriptors must match for the
screen to match. Otherwise, the screen fails to match. The value
must be true or false. This attribute is optional. The default is false.

invertmatch
If true, recognition matching passes only if the screen does not
match this description element (boolean not operation). The value
must be true or false. This attribute is optional. The default is false.

string The string tag describes the screen based on a string. The attributes of the
<string> tag are:

value The string value. This value can contain any valid Unicode
character. This is a required attribute.

row The starting row position for a string at an absolute position or in
a rectangle. The value must be a number or an expression that
evaluates to a number. This value is optional. If not specified,
Macro logic searches the entire screen for the string. If specified,
col position is required. <erow> and <ecol> attributes can also be
specified to specify a string in a rectangular area.

Appendix B. HATS Studio files 119

Note: Negative values are valid and are used to indicate relative
position for the bottom of the screen (for example, -1 is the
last row).

col The starting column position for the string at an absolute position
or in a rectangle. The value must be a number or an expression
that evaluates to a number. This attribute is optional.

erow The ending row position for string in a rectangle. The value must
be a number or an expression that evaluates to a number. This
attribute is optional. If both erow and ecol are specified, string is in
a rectangle.

ecol The ending column position for string in a rectangle. The value
must be a number or an expression that evaluates to a number.
This attribute is optional. If both erow and ecol are specified, string
is in a rectangle.

casesense
If true, string comparison is case sensitive. The value must be true
or false or an expression that evaluates to true or false. This
attribute is optional. The default is false.

optional
If false, this descriptor is considered non-optional during screen
recognition. If the descriptors are comprised of more than one
non-optional descriptor, and more than one optional descriptor, the
non-optional descriptors are checked first. If all of the non-optional
descriptors match, the screen matches. If at least one of the
non-optional descriptors does not match, the optional descriptors
are checked. One of the optional descriptors must match for the
screen to match. Otherwise, the screen fails to match. The value
must be true or false or an expression that evaluates to true or
false. This attribute is optional. The default is false.

invertmatch
If true, recognition matching passes only if the screen does not
match this description element (boolean not operation). The value
must be true or false or an expression that evaluates to true or
false. This attribute is optional. The default is false.

Macro files (.hma)
Macro files are stored in the project_name/source/profiles/events/macros
directory. You can view and edit the source of the macro files by double-clicking
on the name of the macro in the HATS Project View to open the macro editor. The
source for the file can be viewed by clicking on the Source tab.

You can modify macro files using the Prompts and Extracts or Source tabs in the
editor. HATS Studio updates the affected information on the other tab when you
make changes on either tab.

Macro files contains tags that define a set of screens. The tags are:

macro Begins the definition of the macro. The macro tag has no attributes.

extracts
The associatedScreens tag encompasses the extract tag that follows. The
extracts tag has no attributes.

120 IBM® WebSphere® Host Access Transformation Server Developer’s Guide

extract The extract tag defines the extraction to occur. The attributes of the extract
tag are:

name Specifies the name of the extraction.

handler
You can select a .jsp file to display the extracted information to the
end user. A default macro handler is shipped with HATS, and it is
named default.jsp. You can find this file by clicking the HATS
Project View tab of the HATS Studio and expanding the project
name, and expanding Macros > Macro Event Handlers. If you want
to create your own handler, ensure that you return control to the
HATS runtime.

showHandler
Specifies whether the extracted information should be shown to the
end user. Valid values are true and false.

save Specifies whether the extracted information is saved to a global
variable. Valid values are true and false.

variableName
If the extracted information is being saved to a global variable,
variableName specifies the name of a new or existing global
variable.

overwrite
If the extracted information is being saved to an existing global
variable, overwrite specifies whether the extracted information is to
overwrite the current value of the existing global variable, or
whether the extracted information is to be appended to the current
value. Valid values are true and false. True specifies that the value
of the existing global variable is overwritten.

indexed
Specifies whether the extracted information is a single string or a
list of strings. Valid values are true and false. True specifies that
the extracted information is a list of strings.

prompts
The prompts tag encompasses the prompt tag that follows. The prompts
tag has no attributes.

prompt
The prompt tag defines the prompt to occur. The attributes of the prompt
tag are:

name Specifies the name of the prompt.

handler
You can select a .jsp file to prompt the end user for the necessary
information, and include a button for the user to submit the
information. A default macro handler is shipped with HATS, and it
is named default.jsp. You can find this file by clicking the HATS
Project View tab of the HATS Studio and expanding the project
name, and expanding Macros > Macro Event Handlers. If you want
to create your own handler, ensure that you return control to the
HATS runtime.

source Specifies whether the value of the prompt is set to a string or the
value of a global variable. Valid values are string and variable.

Appendix B. HATS Studio files 121

variableName
If the value of the prompt is being saved to a global variable,
variableName specifies the name of a new or existing global
variable.

variableIndex
If the value of the prompt is being saved to an indexed global
variable, variableIndex specifies to which index the value should
be assigned. This value is always 0.

value Specifies either the string to be used for the prompt or the name of
a global variable from which the value is taken.

HAScript
The HAScript tag is the main enclosing tag for the other macro tags and
attributes.

For descriptions of the HAScript tag, its attributes, and other tags used
with the HAScript tag in macros, see Appendix C, “Macro script syntax”
on page 123.

Screen capture files (.hsc)
Screen capture files are XML representations of host screens, used to create or
customize screen customizations or transformations.

Screen capture files are stored in the project_name/screens directory. You can view
these files by double-clicking on the name of the screen capture in the HATS
Project View. You cannot edit screen capture files.

Image files (.gif or .jpg)
Image files are used in HATS Studio within template files to create the Web page
displayed to the user of your project.

Image files are stored in the project_name/webApplication/common/images
directory. You can view and edit the image files by double-clicking on the name of
the image in the HATS Project View to open the WebSphere Studio WebArt
Designer.

Stylesheet files (.css)
Stylesheet files are used in HATS Studio within template files to specify
appearance items such as color, font, font size, whitespace, and spacing between
letters.

Stylesheet files are stored in the project_name/webApplication/common/stylesheets
directory. You can edit the stylesheet files by double-clicking on the name of the
stylesheet in the HATS Project View to open the stylesheet editor.

122 IBM® WebSphere® Host Access Transformation Server Developer’s Guide

Appendix C. Macro script syntax

This section is excerpted from the IBM WebSphere Host On-Demand Host Access
Beans for Java Reference. The complete book is included in the Host On-Demand
Host Access Toolkit.

Introduction
IBM Host On-Demand uses XML because a macro is better suited to the state
machine model (the main reason for the move: XML is tailor made for a state
machine).

The idea of a state machine may be fairly new to you. The idea behind a state
machine, especially in the IBM Host On-Demand macro context, is simple. Think
of how you use a host system from a terminal or a terminal emulator (like IBM
Host On-Demand). The process you follow when you interact with a host system
is illustrated in these steps:
1. The host sends an expected screen down to you at your terminal.
2. You look at and understand which screen is presented to you.
3. You take the required actions based on your understanding (type keystrokes,

and so forth).
4. Another screen is presented after these actions.
5. If you see the screen you expected, repeat steps 2, 3, and 4.
6. If you do not see the screen you expected, call the help desk or handle the

error.

This is the idea behind a state machine in the Macro context (although the Macro
can’t call the help desk for you). The states are the screens you expect to see, and
you take actions on those screens to change from one state, or screen, to another.
That’s it, see a screen, perform the action, see the next screen. It is easier to
understand (and program) a macro with this approach than having several
if-then-else and do-while programming statements. Remember, see a screen,
perform the action, see the next screen.

Now take a look at how well suited XML is to coding a macro. Here is an example
of how to specify a logon macro:
<HAScript>

<screen name="Logon" entryscreen="true">
<description>

<string value="Please Logon" casesense="true"/>
<cursor row="12" col="10"/>

</description>
<actions>

<prompt name="ID" row="12" col="10" len="8"/>
<prompt name="Password" row="13" col="10" len="8"/>
<input value="[enter]"/>

</actions>
<nextscreens>

<nextscreen name="Logon.Complete"/>
</nextscreens>

</screen>
<HAScript>

© Copyright IBM Corp. 2002 123

These lines of code demonstrate the power of this . All the screens you expect to
see for a task (like connecting) are coded within <screen> tags in XML. You
describe the screen in a <description> tag, specify the actions for the screen in an
<actions> tag, and specify the screen you want to see next in a <nextscreens> tag.

Keep in mind that the actions happen in sequence. The <screen> tag describes a
logon screen with the text Please Logon on the screen and the screen’s cursor
position at row 12, column 10. If the macro logic sees a screen matching this
description, it prompts the user for an ID and password, places the prompt results
at the specified row and column positions, and sends the ENTER key, effectively
logging on the user. The <nextscreens> tag specifies a list of <nextscreen> tags,
and the <nextscreen> tags list the names of other <screen> tags that appear later
in the macro. If a next screen does not appear, the macro logic returns an error.

Although there are many valid XML tags, XML is not complicated. A screen is
specified with a description, actions, and the next screens. When a macro is played
and a screen matching the description appears, the actions are executed for that
screen and the macro logic monitors the host for any next screens specified.

Macro
The following are valid macro tags:
<HAScript>

<vars>
<create>

<screen>
<comment>
<description>

<oia>
<cursor>
<numfields>
<numinputfields>
<string>
<attrib>
<customreco>
<varupdate>

<actions>
<prompt>
<input>
<extract>
<message>
<trace>
<filexfer>
<pause>
<mouseclick>
<boxselection>
<commwait>
<custom>
<varupdate>
<playmacro>
<if>
<else>
<runprogram>

<nextscreens>
<nextscreen>

<recolimit>

These XML tags and their attributes are valid in the IBM Host On-Demand Macro
XML namespace. This description of the tags is structured like an actual macro file.
The tag and attribute values are not case sensitive.

124 IBM® WebSphere® Host Access Transformation Server Developer’s Guide

Note: All characters in a macro must be Unicode characters. Most text editors
support this by default, because they use the ASCII character set, which is at
the lower end of the Unicode character set.

<HAScript> tag
The HAScript tag is the main enclosing tag for the macro. All other tags at this
level that are not HAScript are ignored by the parser.

Note: You cannot use variables as the values for HAScript tag attributes.

The attributes of the <HAScript> tag are:

name The name of the macro. This attribute is optional. The name can contain
any valid Unicode character.

description
The description of the macro. This attribute is optional. The description can
contain any valid Unicode character.

author The creator of the macro. This attribute is optional. The author can contain
any valid Unicode character.

creationdate
The date the macro was created. This attribute is optional. The creationdate
can contain any valid Unicode character. The date format is not checked.

promptall
This launches all prompts at the beginning of the macro. This attribute is
optional. The default is true. The value must be true or false.

pausetime
The sleep time in milliseconds initiated after a screen is matched. This is
used to let the host quiet down. This attribute is optional. The value must
be a number. The default is 300 milliseconds. If a <pause> tag is specified
for a specific screen, the value specified on the <pause> tag overrides this
value.

Note: The maximum pause time is limited to the platform on which the
macro is running.

timeout
The allowable time in milliseconds between recognition events. If time
expires, the macro goes into the error state. You can override this value in
the <nextscreens> tag. The value must be a number. The default is 60,000
milliseconds (60 seconds).

Note: The maximum pause time is limited to the largest numeric value
supported on the platform on which the macro is running.

suppressclearevents
This is an advanced feature that determines whether the system should
ignore screen events when a host application sends a clear screen
command immediately followed by an end of record indicator in the data
stream. You may want to set this value to true if you have screens in your
application flow that have all blanks in them. If there is a valid blank
screen in the macro and clear commands are not ignored, it is possible that
a screen event with all blanks will be generated by clear commands
coming from an ill-behaved host application. This will cause a screen

Appendix C. Macro script syntax 125

recognition event to be processed and the valid blank screen will match
when it shouldn’t have matched. This attribute is optional. The default is
false. The value must be true or false.

usevars
Determines whether attribute values are interpreted as literal values or as
variables. This attribute is optional. Its value must be true or false. The
default is false; however, if a variable is created using the Host
On-Demand Macro Editor, the value of usevars is automatically set to true.

If you plan to use variables in your macro (including inherited variables
from a parent macro), set this attribute to true. The values of macro
element attributes are then parsed for variable names and arithmetic
operators. (For example, var would be interpreted as a variable.) See
“Using variables” on page 147 for instructions on how to use the reserved
characters single quote (’) and backslash (\).

If you do not plan to use variables in your macro, either set this attribute
to false or leave it unset.. The values of macro element attributes are
interpreted as literal strings or numeric values (as appropriate), including
the names of variables and arithmetic operators.(For example, var would
be interpreted as the literal string “var”; the dollar sign ($) and the
arithmetic operators (+, -, *, and /) would also be interpreted as string
characters.) Leaving the usevars attribute set to false allows macros created
under Host On-Demand Version 6 and earlier to run under Host
On-Demand Version 7 without modification, since variables were not
supported for these releases.

If usevars is set to false and the macro parser finds a <vars> tag in the
macro, the parser displays an error message telling you to set usevars to
true.

Example
<HAScript name="Logon Macro" description="Logs me on" author="btwebb"

creationdate="12/29/1998" promptall="true" pausetime="500" timeout="10000"
usevars="true"> ...

</HAScript>

<vars> tag
Defines variables that are used in the macro if the usevars attribute of the
<HAScript> tag is set to true. (If usevars is set to false and the macro parser finds
a <vars> tag in the macro, the parser displays an error message telling you to set
usevars to true.

There are no attributes for the <vars> tag.

Including the <vars> tag in a macro has the same effect as defining variables
through the Variables tab in the Host On-Demand Macro Editor. The <vars> tag
must occur before the <screen> tag in a macro.

Use the <create> tag to declare variables and assign initial values to them. See
“Using variables” on page 147 for detailed information on how variables can be
used in macros.

Variables can be inherited from another macro. See the description of the
<playmacro> tag for details.

126 IBM® WebSphere® Host Access Transformation Server Developer’s Guide

Example
<HAScript usevars="true">

<vars>
... #Variable declarations

</vars>
</HAScript>

<create> tag
Declares variables and assigns initial values to them. See “Using variables” on
page 147 for detailed information on how variables can be used in macros.

The attributes of the <create> tag are:

name The unique name of the variable. Variable names are specified in the
following format: var_name, where var_name can contain alphanumeric
characters, the dash character (-), and the underscore character (_). Variable
names are case sensitive.

type The data type of the variable. The following data types are supported:

boolean
Represents true or false boolean values.

integer
Represents integer numbers.

double
Represents double-precision numbers.

string Represents text strings.

field Represents text in a field on the terminal screen. The position
within the field is given as row,column. (For example, 2,3
represents the second row, third column of the screen.)

value The inital value that is assigned to the variable. This attribute is optional.
Initial values can be assigned to the different variable types as follows:

boolean
A boolean variable can be assigned a value of either “true” or
“false”. Note that boolean variables are not case sensitive: values
such as “False” or “FALSE” are valid. A string variable or a field
variable can be assigned to a boolean variable, as long as the string
or field variable contains a valid boolean value. The default value
is false.

integer
An integer variable can be assigned an actual integer value (such
as 15 or -2) or the results of an arithmetic operation. The default
value is 0.

double
A double variable can be assigned an actual double-precision value
or the results of an arithmetic operation. The default value is 0.0.

string A string variable can be assigned combinations of boolean, integer,
double, string, or field variables, and actual text strings. The
default value is “”, (an empty string).

field No initial value can be assigned to a field variable. The default
value is an empty field.

Appendix C. Macro script syntax 127

Example
<vars>

<create name="$var_boolean$" type="boolean" value="true"/>
<create name="var_int" type="integer" value="1"/>
<create name="var_double" type="double" value="1.0"/>
<create name="var_string" type="string" value="some_texts"/>
<create name="var_field" type="field" value="field"/>

</vars>

<screen> tag
The <screen> tag is the enclosing tag for the screen.

The attributes of the <screen> tag are:

name The unique identifier for the screen. This attribute is mandatory and must
be a unique string among the other screen IDs. The name can contain any
valid Unicode character.

entryscreen
If true, the screen should be the first screen seen. Any other screen
generates an error. This value must be true or false, or an expression that
evaluates to true or false. This attribute is optional. The default is false.

Note: There can be only one screen with the entryscreen attribute set to
true.

exitscreen
If true, a match on the screen causes the macro to stop playing. You can
have multiple screens with the exitscreen attribute set to true. This value
must be true or false or an expression that evaluates to true or false. This
attribute is optional. The default is false.

transient
If true, the screen is handled as transient. Transient screens exist outside
the normal macro flow. They are matched after nontransient screens. If
you specify next screens in a transient screen, the next screens are
ignored. Use this attribute to specify a throw-away screen that can appear
at any time in the screen flow. This value must be true or false or an
expression that evaluates to true or false. This attribute is optional. The
default is false.

pause Time (in milliseconds) to pause before the screen recognition engine
attempts to match next screens. A value greater or equal to 0 overrides the
value specified on the pausetime attribute of the <HAScript> tag.. The
default value is -1.

Example
<screen name="screen1" entryscreen="true" exitscreen="false" transient="false">
...
</screen>

<comment> tag
The <comment> tag for the screen. This can contain any valid Unicode character.

There are no attributes for the <comment> tag.

Example
<comment> ... </comment>

128 IBM® WebSphere® Host Access Transformation Server Developer’s Guide

<description> tag
The <description> tag is the enclosing tag for the description associated with the
screen.

By default, when the Macro Manager records a macro, the OIA and Field Counts
descriptors are defined to identify the screen. It is recommended that you add
String descriptors for more strict and accurate screen recognition.

The attributes of the <description> tag are:

uselogic
Determines the boolean logic for screen recognition. The numbers in the
value represent the sequential positions of the descriptors in the
<description> tag. There must be a descriptor for each number in the
value. See “Advanced Screen Recognition” on page 146 for detailed
information on using the uselogic attribute.

Example
<description uselogic="1 and (2 or !3)"> ... </description>

<oia> tag
The <oia> tag specifies an operator information area (OIA) condition to match.
This tag is optional. The default is to wait for inhibit status.

The attributes of the <oia> tag are:

status If NOTINHIBITED, the OIA must be uninhibited for a match to occur. If
DONTCARE, the OIA inhibit status is ignored. This has the same effect as
not specifying OIA at all. Valid values are NOTINHIBITED and
DONTCARE. This is a required attribute.

optional
If false, this descriptor is considered non-optional during screen
recognition. If the descriptors are comprised of more than one non-optional
descriptor, and more than one optional descriptor, the non-optional
descriptors are checked first. If all of the non-optional descriptors match,
the screen matches. If at least one of the non-optional descriptors does not
match, the optional descriptors are checked. One of the optional
descriptors must match for the screen to match. Otherwise, the screen fails
to match. The value must be true or false. This attribute is optional. The
default is false.

Note: If the uselogic attribute is specified on the <description> tag, this
attribute is ignored.

invertmatch
If true, recognition matching passes only if the screen does not match this
description element (boolean not operation). The value must be true or
false, or an expression that evaluates to true or false.. This attribute is
optional. The default is false.

Note: If the uselogic attribute is specified on the <description> tag, this
attribute is ignored.

Example
<oia status="NOTINHIBITED" optional="false" invertmatch="false" />

Appendix C. Macro script syntax 129

<cursor> tag
The <cursor> tag describes the screen based on the position of the cursor.

The attributes of the <cursor> tag are:

row The row position of the cursor. The value must be a number or an
expression that evaluates to a number. This is a required attribute.

col The column position of the cursor. The value must be a number or an
expression that evaluates to a number. This is a required attribute.

optional
If false, this descriptor is considered non-optional during screen
recognition. If the descriptors are comprised of more than one non-optional
descriptor, and more than one optional descriptor, the non-optional
descriptors are checked first. If all of the non-optional descriptors match,
the screen matches. If at least one of the non-optional descriptors does not
match, the optional descriptors are checked. One of the optional
descriptors must match for the screen to match. Otherwise, the screen fails
to match. The value must be true or false or an expression that evaluates to
true or false. This attribute is optional. The default is false.

Note: If the uselogic attribute is specified on the <description>, this
attribute is ignored.

invertmatch
If true, recognition matching passes only if the screen does not match this
description element (boolean not operation). The value must be true or
false or an expression that evaluates to true or false. This attribute is
optional. The default is false.

Note: If the uselogic attribute is specified on the <description> tag, this
attribute is ignored.

Example
<cursor row="1" col="1" optional="false" invertmatch="false" />

<numfields> tag
The <numfields> tag defines the total number of fields on the screen. This tag is
optional. The number of fields not used if not specified.

The attributes of the <numfields> tag are:

number
The field count. The value must be a number or an expression that
evaluates to a number. This is a required attribute.

optional
If false, this descriptor is considered non-optional during screen
recognition. If the descriptors are comprised of more than one non-optional
descriptor, and more than one optional descriptor, the non-optional
descriptors are checked first. If all of the non-optional descriptors match,
the screen matches. If at least one of the non-optional descriptors does not
match, the optional descriptors are checked. One of the optional
descriptors must match for the screen to match. Otherwise, the screen fails
to match. The value must be true or false or an expression that evaluates to
true or false. This attribute is optional. The default is false.

130 IBM® WebSphere® Host Access Transformation Server Developer’s Guide

Note: If the uselogic attribute is specified on the <description>, this
attribute is ignored.

invertmatch
If true, recognition matching passes only if the screen does not match this
description element (boolean not operation). The value must be true or
false or an expression that evaluates to true or false. This attribute is
optional. The default is false.

Note: If the uselogic attribute is specified on the <description> tag, this
attribute is ignored.

Example
<numfields number="10" optional="false" invertmatch="false" />

<numinputfields> tag
The <numinputfields> tag defines the total number of input fields on the screen.
This tag is optional. The number of input fields is not used if not specified.

The attributes of the <numinputfields> tag are:

number
The field count. The value must be a number or an expression that
evaluates to a number. This is a required attribute.

optional
If false, this descriptor is considered non-optional during screen
recognition. If the descriptors are comprised of more than one non-optional
descriptor, and more than one optional descriptor, the non-optional
descriptors are checked first. If all of the non-optional descriptors match,
the screen matches. If at least one of the non-optional descriptors does not
match, the optional descriptors are checked. One of the optional
descriptors must match for the screen to match. Otherwise, the screen fails
to match. The value must be true or false or an expression that evaluates to
true or false. This attribute is optional. The default is false.

Note: If the uselogic attribute is specified on the <description>, this
attribute is ignored.

invertmatch
If true, recognition matching passes only if the screen does not match this
description element (boolean not operation). The value must be true or
false or an expression that evaluates to true or false. This attribute is
optional. The default is false.

Note: If the uselogic attribute is specified on the <description> tag, this
attribute is ignored.

Example
<numinputfields number="10" optional="false" invertmatch="false" />

<string> tag
The <string> tag describes the screen based on a string.

The attributes of the <string> tag are:

value The string value. This value can contain any valid Unicode character. This
is a required attribute.

Appendix C. Macro script syntax 131

row The starting row position for a string at an absolute position or in a
rectangle. The value must be a number or an expression that evaluates to a
number. This value is optional. If not specified, Macro logic searches the
entire screen for the string. If specified, col position is required. <erow>
and <ecol> attributes can also be specified to specify a string in a
rectangular area.

Note: Negative values are valid and are used to indicate relative position
for the bottom of the screen (for example, -1 is the last row).

col The starting column position for the string at an absolute position or in a
rectangle. The value must be a number or an expression that evaluates to a
number. This attribute is optional.

erow The ending row position for string in a rectangle. The value must be a
number or an expression that evaluates to a number. This attribute is
optional. If both erow and ecol are specified, string is in a rectangle.

ecol The ending column position for string in a rectangle. The value must be a
number or an expression that evaluates to a number. This attribute is
optional. If both erow and ecol are specified, string is in a rectangle.

casesense
If true, string comparison is case sensitive. The value must be true or false
or an expression that evaluates to true or false. This attribute is optional.
The default is false.

optional
If false, this descriptor is considered non-optional during screen
recognition. If the descriptors are comprised of more than one non-optional
descriptor, and more than one optional descriptor, the non-optional
descriptors are checked first. If all of the non-optional descriptors match,
the screen matches. If at least one of the non-optional descriptors does not
match, the optional descriptors are checked. One of the optional
descriptors must match for the screen to match. Otherwise, the screen fails
to match. The value must be true or false or an expression that evaluates to
true or false. This attribute is optional. The default is false.

Note: If the uselogic attribute is specified on the <description>, this
attribute is ignored.

invertmatch
If true, recognition matching passes only if the screen does not match this
description element (boolean not operation). The value must be true or
false or an expression that evaluates to true or false. This attribute is
optional. The default is false.

Note: If the uselogic attribute is specified on the <description> tag, this
attribute is ignored.

Examples
<string value="hello" row="1" col="1" optional="false" invertmatch="false" />
<string value="hello" row="1" col="1" erow="11" ecol="11" casesense="false"

optional="false" invertmatch="false" />
<string value="hello" />

132 IBM® WebSphere® Host Access Transformation Server Developer’s Guide

<attrib> tag
The <attrib> tag describes the screen based on an attribute. This is an advanced
feature and should only be used if needed. Usually all the other description
elements are enough to describe a screen.

The attributes of the <attrib> tag are:

plane The plane value string that the attribute resides in. Valid values are
COLOR_PLANE, FIELD_PLANE, DBCS_PLANE, GRID_PLANE, and
EXFIELD_PLANE. This is a required attribute.

value The hex value string of the attribute. For example, value=″0xA0″. This is a
required attribute.

row The row position of the attribute. The value must be a number or an
expression that evaluates to a number. This is a required attribute.

col The column position of the attribute. The value must be a number or an
expression that evaluates to a number. This is a required attribute.

optional
If false, this descriptor is considered non-optional during screen
recognition. If the descriptors are comprised of more than one non-optional
descriptor, and more than one optional descriptor, the non-optional
descriptors are checked first. If all of the non-optional descriptors match,
the screen matches. If at least one of the non-optional descriptors does not
match, the optional descriptors are checked. One of the optional
descriptors must match for the screen to match. Otherwise, the screen fails
to match. The value must be true or false or an expression that evaluates to
true or false. This attribute is optional. The default is false.

Note: If the uselogic attribute is specified on the <description> tag, this
attribute is ignored.

invertmatch
If true, recognition matching passes only if the screen does not match this
description element (boolean not operation). The value must be true or
false or an expression that evaluates to true or false. This attribute is
optional. The default is false.

Note: If the uselogic attribute is specified on the <description> tag, this
attribute is ignored.

Example
<attrib value="0x01" row="1" col="1" plane="COLOR_PLANE" optional="false"

invertmatch="false" />

<customreco> tag
The macro logic will call out to any custom recognition listeners for the custom tag
to have the listener do its own custom screen recognition logic.

The attributes of the <customreco> tag are:

ID The unique identifier for the custom description element. Allows for
multiple custom elements. This can be any valid Unicode character. This is
a required attribute.

optional
If false, this descriptor is considered non-optional during screen

Appendix C. Macro script syntax 133

recognition. If the descriptors are comprised of more than one non-optional
descriptor, and more than one optional descriptor, the non-optional
descriptors are checked first. If all of the non-optional descriptors match,
the screen matches. If at least one of the non-optional descriptors does not
match, the optional descriptors are checked. One of the optional
descriptors must match for the screen to match. Otherwise, the screen fails
to match. The value must be true or false or an expression that evaluates to
true or false. This attribute is optional. The default is false.

Note: If the uselogic attribute is specified on the <description> tag, this
attribute is ignored.

invertmatch
If true, recognition matching passes only if the screen does not match this
description element (boolean not operation). The value must be true or
false or an expression that evaluates to true or false. This attribute is
optional. The default is false.

Note: If the uselogic attribute is specified on the <description> tag, this
attribute is ignored.

Example
<customreco id="id1" optional="false" invertmatch="false"/>

<varupdate> tag
Modifies the values of variables. This element may be used anywhere within the
<description> and <actions> tag blocks. For more information about macro
variables, see “Using variables” on page 147.

By default, <varupdate> commands are the first commands to be executed in the
<description> section - regardless of where they occur sequentially in the section.
For example, if you create a String descriptor and use a variable for the string,
then update the variable right after that descriptor, the variable is updated before
the String descriptor is checked for a match. You can change the order of execution
of <varupdate> tags by using the <description> tag’s uselogic attribute; see
“Advanced Screen Recognition” on page 146 for details.

Note: When a <varupdate> tag is used in a <description> block, the variable’s
value is updated when the macro attempts to match that screen, not when
the screen is actually matched. This means that the variable is updated even
if the screen doesn’t match.

The attributes of the <varupdate> tag are:

name The unique name of the variable. Variable names are specified in the
following format: var_name, where var_name is the name assigned to the
variable using the <create> tag.

value The new value to be assigned to the variable. This attribute is optional;
updating with a value of ″″ (null) resets the variable to its default value
(boolean to false, integer to 0, and so forth). Assign values to the different
variable types as follows:

boolean
A boolean variable can be assigned a value of either “true” or
“false”. Note that boolean variables are not case sensitive: values
such as “False” or “FALSE” are valid. A string variable or a field

134 IBM® WebSphere® Host Access Transformation Server Developer’s Guide

variable can be assigned to a boolean variable, as long as the string
or field variable contains a valid boolean value.

integer
An integer variable can be assigned an actual integer value or the
results of an arithmetic operation. An integer variable must be
assigned a valid integer number (for example, 3 or -4). If it is
updated with a non-integer value, the decimal portion of the value
is truncated (for example, if an integer variable is assigned a value
of 4.8, the assigned value is truncated to 4).

double
A double variable can be assigned an actual double-precision value
or the results of an arithmetic operation when it is created.

string A string variable can be assigned combinations of boolean, integer,
double, string, or field variables, and actual text strings. Literal
strings must be enclosed in single quotation marks (’).

field A field position consists of two integers separated by a comma (for
example, 2,3). After a field position value is provided by the
<varupdate> tag, the text of the field containing the specified field
position is assigned to the field variable at run-time. If the value
given for the field position does not evaluate to “integer, integer”
at runtime, a runtime error occurs unless the field’s value has been
set to null (″″). If a field variable is used before a value is assigned
to it with the <varupdate> tag, its value is automatically set to null
(″″).

Example
<screen>

<description>
<varupdate name="$var_boolean$" value="false"/>
<varupdate name="var_int" value="5"/>
<varupdate name="var_double" value="5"/>
<varupdate name="var_string" value="new_texts"/>
<varupdate name="var_field" value="4,5"/>

</description>
</screen>

<actions> tag
The <actions> tag is the enclosing tag for the actions associated with the screen.

The attributes of the <actions> tag are:

promptall
If this value is set to true, the macro bean will gather all prompts within
the current action tag and launch them as one prompt event. The value
must be true or false or an expression that evaluates to true or false. This
attribute is optional. The default is false.

Example
<actions promptall="true"> ... </actions>

<prompt> tag
The <prompt> tag specifies a prompt to be handled for the screen.

The attributes of the <prompt> tag are:

Appendix C. Macro script syntax 135

row The row to place the prompt. The value must be a number or an
expression that evaluates to a number. This is a required attribute.

col The column to place the prompt. The value must be a number or an
expression that evaluates to a number. This is a required attribute.

len The length of the prompt. The value must be a number or an expression
that evaluates to a number. This is a required attribute.

name The name of the prompt. This can be any valid Unicode character. This
attribute is optional.

description
The text that is displayed as the prompt. This can be any valid Unicode
character. The description text must be enclosed in single quotes (’). This
attribute is optional.

default
The prompt’s default value. This can be any valid Unicode character. This
attribute is optional.

clearfield
This clears the host field on placement of prompt text. The value must be
true or false or an expression that evaluates to true or false. This attribute
is optional. The default is false.

encrypted
Use a password echo character. The value must be true or false or an
expression that evaluates to true or false. This attribute is optional. The
default is false.

xlatehostkeys
If true, host key mnemonics (example, [enter]) will be translated. For a list
of key mnemonics, see the Host On-Demand online help. The value must
be true or false or an expression that evaluates to true or false. This
attribute is optional. The default is false. If you do not have this value set
to true (which is normal because you wouldn’t ask users to type key
mnemonics), don’t forget to code an input tag after the prompt(s) for the
current actions to get the prompt data entered onto the host.

assigntovar
Assigns the user’s input to a variable. The entered value must be of the
same data type as the variable; otherwise, an error or an unexpected result
occurs. This attribute is optional.

varupdateonly
If true, assigns the user’s input to a variable without displaying the value
to the screen. The default is false. This attribute is optional.

Example
<prompt name="ID" row="1" col="1" len="8" description="ID for Logon"

default="btwebb" clearfield="true" encrypted="true"
assigntovar="$userID$/>

<input> tag
The <input> tag specifies keystrokes to be placed on the screen.

The attributes of the <input> tag are:

136 IBM® WebSphere® Host Access Transformation Server Developer’s Guide

row The row position to send the keys. The value must be a number or an
expression that evaluates to a number. This attribute is optional. This
defaults to current cursor position.

col The column position to send the keys. The value must be a number or an
expression that evaluates to a number. This attribute is optional. This
defaults to current cursor position.

movecursor
Whether to place the cursor at the end of the input string. The value must
be true or false or an expression that evaluates to true or false. This
attribute is optional. This defaults to false.

value The text that is sent to the screen. This can be any valid Unicode character.
The text must be enclosed in single quotes (’). This is a required attribute.

xlatehostkeys
If true, host key mnemonics (example, [enter]) will be translated. For a list
of key mnemonics, see the Host On-Demand online help. The value must
be true or false or an expression that evaluates to true or false. This
attribute is optional. The default is true.

Example
<input value="IBM[tab] is cool [enter]" row="1" col="1" movecursor="true"

xlatehostkeys="true" />

<extract> tag
The <extract> tag specifies an area where the screen’s contents are to be extracted.

The attributes of the <extract> tag are:

name The name of the extract. This can be any valid Unicode character. The
name must be enclosed in single quotes (’). This attribute is optional.

srow Upper left row of the bounding extract rectangle. The value must be a
number or an expression that evaluates to a number. This is a required
attribute.

scol The upper left column of the bounding extract rectangle. The value must
be a number or an expression that evaluates to a number. This is a
required attribute.

erow The lower right row of the bounding extract rectangle. The value must be a
number or an expression that evaluates to a number. This is a required
attribute.

ecol The lower right column of the bounding extract rectangle. The value must
be a number or an expression that evaluates to a number. This is a
required attribute.

unwrap
If this value is set to true, the macro bean will use the underlying screen
fields to unwrap text that is in a field that spans multiple lines on the
screen. This will result in an extract String array that has less elements
than the row and col values would indicate. The value must be true or
false, or an expression that evaluates to true or false. The default is false.

assigntovar
Assigns the extracted characters to a variable. If multiple rows of text are
extracted, the variable contains values as one row concatenated to the end

Appendix C. Macro script syntax 137

of the next (second row appends to end of first row, third row appends to
second row, and so forth), like the following:
Row1textRow2textRow3textRow4text

The last row does not contain a new line character (/n). The variable can
be of any data type. If the variable is an integer or a double, the extracted
text must be of a matching data type; otherwise an error or unexpected
result occurs.

Example
<extract name="Get Data" srow="1" scol="1" erow="11" ecol="11"

assigntovar=$data_var$ />

<message> tag
The <message> tag specifies a message to be sent to the user.

The attributes of the <message> tag are:

title The title to display in the message dialog. This can be any valid Unicode
character. The message title must be enclosed in single quotes (’). This
attribute is optional. This defaults to macro name.

value The message to display in the dialog. This can be any valid Unicode
character. The message must be enclosed in single quotes (’). This is a
required attribute.

Example
<message value="Accessing Host System" title="Message from IBM" />

<trace> tag
The <trace> tag specifies a string to be sent to one of several trace facilities.

The attributes of the <trace> tag are:

type The type can either be sent to the IBM Host On-Demand trace facility, a
user trace event, or to the command line. Respectively, the types are
HODTRACE, USER, and SYSOUT. This is a required attribute.

value The text that is sent to trace. This can be any valid Unicode character. Trace
value text must be enclosed in single quotes (’). This is a required attribute.

Example
<trace value="hello" type="HODTRACE" />

<filexfer> tag
The <filexfer> tag transfers a file to or from a host system.

The attributes of the <filexfer> tag are:

direction
The direction for the file transfer. The allowable types are SEND (file from
PC to host) and RECEIVE (file from host to PC). This is a required
attribute.

pcfile The PC file name to be used for the file transfer. This should point to a
valid file on your system. This is a required attribute.

138 IBM® WebSphere® Host Access Transformation Server Developer’s Guide

Note: To include a backslash (\) in a file name, you must specify two
backslashes (\\) in the macro; see “Using Special Characters in
Macros” on page 157 for details.

hostfile
The host file name to be used for the file transfer. This should point to a
valid file on your host system. This is a required attribute.

clear Indicates whether the macro bean should clear the host screen before
performing the file transfer. The value must be true or false or an
expression that evaluates to true or false. This attribute is optional.

timeout
Sets the time out value (in milliseconds) for the file transfer. If the transfer
does not complete in this given time, the macro will end in error. The
value must be a number (or an expression that evaluates to a number) in
milliseconds. This attribute is optional and the default is 10000
milliseconds or 10 seconds.

options
Sets the host specific options for the file transfer. Options are different for
every type of host system. See the file transfer bean documentation or
contact your host system administrator for valid options for your host
system. This value must be a Unicode string. This attribute is optional and
the default is no options.

pccodepage
Sets the PC code page to use in the file transfer. The value must be a valid
PC code page. See the Host On-Demand online help for session
configuration for valid code page values. This attribute is optional.

hostorientation
Sets the host character orientation to use in the file transfer. This applies to
BIDI (bidirectional) environments only. See the Host On-Demand online
help for session configuration for valid values. This attribute is optional
and defaults to no value.

pcorientation
Sets the PC character orientation to use in the file transfer. This applies to
BIDI (bidirectional) environments only. See the Host On-Demand online
help for session configuration for valid values. This attribute is optional
and defaults to no value.

pcfiletype
Sets the PC file type to use in the file transfer. This applies to BIDI
(bidirectional) environments only. See the Host On-Demand online help for
session configuration for valid values. This attribute is optional and
defaults to no value.

lamalefexpansion
Sets whether Lam Alef expansion will be used in the file transfer. This
applies to BIDI (bidirectional) environments only. See the Host On-Demand
online help for session configuration for page values. This attribute is
optional and defaults to no value.

lamalefcompression
Sets whether Lam Alef compression will be used in the file transfer. This
applies to BIDI (bidirectional) environments only. See the Host On-Demand
online help for session configuration for page values. This attribute is
optional and defaults to no value.

Appendix C. Macro script syntax 139

Example
<filexfer direction="send" pcfile="c:\myfile.txt" hostfile="myfile text A0" />

<pause> tag
The <pause> tag causes the macro engine to sleep for the number of milliseconds
specified. This action is useful for pausing between several file transfers. The value
specified for the <pause> tag overrides the value specified on the pausetime
attribute of the <HAScript> tag.

The attributes of the <pause> tag are:

value The time to pause. The value must be a number (or an expression that
evaluates to a number) in milliseconds. This attribute is optional. The
default is 10000 milliseconds or 10 seconds.

Example
<pause value="2000" />

<mouseclick> tag
The <mouseclick> tag simulates a user mouse click on the terminal bean. This
essentially sets the cursor at a given row and column position.

The attributes of the <mouseclick> tag are:

row The host screen row position for the mouse click. This must be a number
(or an expression that evaluates to a number) within the host screen
coordinate system (example, 24 rows by 80 columns). This is an optional
attribute and the default value is 1.

col The host screen column position for the mouse click. This must be a
number (or an expression that evaluates to a number) within the host
screen coordinate system (example, 24 rows by 80 columns). This is an
optional attribute and the default value is 1.

Example
<mouseclick row="20" col="16" />

<boxselection> tag
The <boxselection> tag is used for either marking or unmarking the marking
rectangle on the terminal bean.

The attributes of the <boxselection> tag are:

srow The upper left row of the bounding selection rectangle. The value must be
a number (or an expression that evaluates to a number) within the host
screen coordinate system (example, 24 rows by 80 columns). Negative
values are allowed and specify a virtual position from the last row (for
example, if the Screen has 24 rows, a row value of -2 points to the 22nd
row). This is a required attribute.

scol The upper left column of the bounding selection rectangle. The value must
be a number (or an expression that evaluates to a number) within the host
screen coordinate system. Negative values are allowed and specify a
virtual position from the last column. This is a required attribute.

erow The lower right row of the bounding selection rectangle. The value must
be a number (or an expression that evaluates to a number) within the host

140 IBM® WebSphere® Host Access Transformation Server Developer’s Guide

screen coordinate system. Negative values are allowed and specify a
virtual position from the last row. This is a required attribute.

ecol The lower right column of the bounding selection rectangle. The value
must be a number (or an expression that evaluates to a number) within the
host screen coordinate system. Negative values are allowed and specify a
virtual position from the last column. This is a required attribute.

type The type of selection action to perform. The value must be either SELECT
or DESELECT. This is an optional attribute and the default is SELECT.

Example
<boxselection srow="1" scol="1" erow="11" ecol="11" type="SELECT" />

<commwait> tag
The <commwait> tag is used for performing a communication status wait during a
macro’s execution.

The attributes of the <commwait> tag are:

value The type of communication status to wait for. Valid values are
CONNECTION_INIT, CONNECTION_PND_INACTIVE,
CONNECTION_INACTIVE, CONNECTION_PND_ACTIVE,
CONNECTION_ACTIVE, CONNECTION_READY, and
CONNECTION_DEVICE_NAME_READY. The meaning of these types is
documented in the Java documentation for the ECLConnection object in
the Host On-Demand Host Acceess Class Library documentation. The two
most used and most meaningful types are CONNECTION_READY and
CONNECTION_INACTIVE. This is a required attribute.

timeout
Sets the time out value (in milliseconds) for the communication wait. If the
wait does not complete in this given time, the macro will end in error. The
value must be a number (or an expression that evaluates to a number) in
milliseconds. This attribute is optional and the default is no time out.

Example
<commwait value="CONNECTION_READY" timeout="10000" />

<custom> tag
The <custom> tag enables the user to have an exit to Java code. See the Host
On-Demand Java documentation for the MacroActionCustom class.

The attributes of the <custom> tag are:

id The ID of the callout code that the macro bean will use. This can be any
valid Unicode character. This is a required attribute.

args The argument string that can be passed to the callout. This can be any
valid Unicode character. String text must be enclosed in single quotes (’).
This attribute is optional.

Example
<custom id="custom1" args="IBM means world class computers" />

Appendix C. Macro script syntax 141

<varupdate> tag
Modifies the values of variables. This element may be used anywhere within the
<description> and <actions> tag blocks. For more information about macro
variables, see “Using variables” on page 147.

The attributes of the <varupdate> tag are:

name The unique name of the variable. Variable names are specified in the
following format: var_name, where var_name is the name assigned to the
variable using the <create> tag.

value The new value to be assigned to the variable. Assign values to the different
variable types as follows:

boolean
A boolean variable can be assigned a value of either “true” or
“false”. Note that boolean variables are not case sensitive: values
such as “False” or “FALSE” are valid. A string variable or a field
variable can be assigned to a boolean variable, as long as the string
or field variable contains a valid boolean value.

integer
An integer variable can be assigned an actual integer value or the
results of an arithmetic operation. An integer variable must be
assigned a valid integer number (for example, 3 or -4). If it is
updated with a non-integer value, the decimal portion of the value
is truncated (for example, if an integer variable is assigned a value
of 4.8, the assigned value is truncated to 4).

double
A double variable can be assigned an actual double-precision value
or the results of an arithmetic operation when it is created.

string A string variable can be assigned combinations of boolean, integer,
double, string, or field variables, and actual text strings.

field A field position consists of two integers separated by a comma (for
example, 2,3). After a field position value is provided by the
<varupdate> tag, the text of the field containing the specified field
position is assigned to the field variable at run-time. If the value
given for the field position does not evaluate to “integer, integer”
at runtime, the field’s value is an empty string. A run-time error
also occurs if a field variable is used before a value is assigned to it
with the <varupdate> tag.

Example
<screen>

<actions>
<varupdate name="$var_boolean$" value="false"/>
<varupdate name="var_int" value="5"/>
<varupdate name="var_double" value="5"/>
<varupdate name="var_string" value="new_texts"/>
<varupdate name="var_field" value="4,5"/>

</actions>
</screen>

<playmacro> tag
Runs a macro from within another macro. This process is called chaining. The
currently running macro (the parent macro) stops and the macro specified in the

142 IBM® WebSphere® Host Access Transformation Server Developer’s Guide

<playmacro> element (the child macro) begins playing. Only macros that are
available to run in a particular session can be chained.

The <playmacro> tag must be the last action within the same screen. Any actions
after a <playmacro> tag will cause errors to occur. Any actions after a
<playmacro> tag will cause errors to occur. The exception is if a <playmacro> tag
is contained within an <if>-<else > block (that is, a condition must be satisfied for
the macro to play). You can include as many <playmacro> tags in a screen as you
like as long as each one is contained within an <if>-<else > block. Each <if>-<else
> block can only contain one <playmacro> tag and the <playmacro> tag must be
the last action in the block. Control immediately passes to the child macro if it is
executed from within an <if>-<else > block; subsequent tags in the parent macro
are ignored.

If you wish to chain macros in an application that uses the Host On-Demand beans
or HACL APIs, you need to do the following:
v Only managed macros can be chained, so you need to use the MacroManager

bean or implement your own MacroIOProvider class.
v Because macros are chained by macro name, you must assign a name to each

macro that is to be chained.

Note: You cannot use variables as the values for <playmacro> tag attributes.

The attributes of the <playmacro> tag are:

name The name of the macro to be played. This can be any valid unicode
character.

startscreen
The name of the screen at which the macro starts. If a start screen is
specified with *DEFAULT* or is not specified, the macro starts at the
normal macro entry screen. This attribute is optional.

transfervars
Whether the played macro inherits variables from the parent macro. If this
value is set to “Transfer”, the variables in the parent macro (if any) are
transferred to the child macro and are accessible from the child macro. If it
is set to “No Transfer”, the child macro cannot access the parent macro’s
current variables. This attribute is optional. The default value is “No
Transfer”.

Notes:

1. The child macro must set the usevars attribute of its <HAScript> tag to
true in order to inherit variables from the parent macro.

2. If the parent and child macro both have variables with the same name,
the child macro’s variable is used in the child macro.

Example
<actions>

<playmacro name="Macro1" startscreen="intro_screen" transfervars="Transfer" />
</actions>

<if> tag
Allows the macro to perform operations based on the truth or falsehood of some
condition. If the condition evaluates to true, the operations within the <if> block
are performed. If it evaluates to false, they are not. Optionally, an <else> tag can be

Appendix C. Macro script syntax 143

used with an <if> block to specify operations to be performed if the <if> statement
evaluates to false. See “Using conditional (if-else) statements” on page 154 for more
information and examples.

The attributes of the <if> tag are:

condition
Specifies the condition (or conditions) to be evaluated. Each condition must
resolve to a boolean value. Individual conditions are enclosed in
parentheses. You can assign boolean variables or boolean values as the
conditions of an <if> element. In addition, the following equality and
relational operators are supported:
v = =(Equal to)
v != (Not equal to)
v < (Less than)
v > (Greater than)
v <= (Less than or equal to)
v >= (Greater than or equal to)
v ! (Not)

Conditions are evaluated from left to right. The operators && (logical AND)
and || (logical OR) can be used between conditions to perform logical
operations on conditional statements. If you are using a code editor to edit
the macro, you may need to enter && as &&. See “Using
variables” on page 147 for instructions on how to use the reserved
characters single quote (’) and backslash (\).

Example
<actions>

<if conditions="(var_int == 1) || ($var_bool)">
... # Perform macro operations

</if>
</actions>

<else> tag
An <else> tag can be used with an <if> tag to specify operations that are
performed if the <if> conditional statement evaluates to false. This tag can only be
used immediately after an <if> tag. See “Using conditional (if-else) statements” on
page 154 for more information and examples.

Example
<actions>

<if conditions="(var_int > 10>
... # Perform macro operations if var_int is greater than 10

</if>
<else>

... # Perform other macro operations if var_int is less than
or equal to 10

</else>
</actions>

<runprogram> tag
The <runprogram> tag runs an application from a macro.

The attributes of the <runprogram> tag are:

144 IBM® WebSphere® Host Access Transformation Server Developer’s Guide

exe Specifies the full path name of the application to be run. The same types of
applications that run from the Custom Toolbar Application can be run
from a macro’s <runprogram> element.

Note: See “Using variables” on page 147 for instructions on how to use the
reserved characters single quote (’) and backslash (\).

param Passes a parameter (such as a file name) to the application. The name must
be a string enclosed in single quotes (’) or a string variable.

wait If this parameter is set to true, the macro waits for the application to finish
running before resuming play. The default value is false.

assignexitvalue
Assigns the exit value of the application to a variable. The value of the
wait attribute must be set to “true” in order to use the assignexitvalue
attribute.

Example
<runprogram exe="C:\Program Files\Windows NT\Accessories\wordpad.exe"

param="new_file.doc" wait="true"
assignexitvalue="$exitstatus$" />

<nextscreens> tag
The <nextscreens> tag contains all the valid next screens to be recognized after the
current screen’s actions have been executed.

The attributes of the <nextscreens> tag are:

timeout
The allowable time in milliseconds that can elapse between current screen
and any next screen before the macro bean will go into the error state. This
overrides the timeout attribute for the entire macro. The value must be a
number or an expression that evaluates to a number. This attribute is
optional. The default is to use the overall macro timeout.

Example
<nextscreens> ... </nextscreens>

<nextscreen> tag
The <nextscreen> tag forces a next screen. Multiple <nextscreen> tags are allowed.
If a screen appears that is in the macro but is not a next screen, the macro will go
into an error state. If the next screen refers to a screen tag that doesn’t exist, the
macro will have a parse error.

The attributes of the <nextscreen> tag are:

name The name of the <screen> tag that is the valid next screen. This can be any
valid Unicode character. This is a required attribute.

Example
<nextscreen name="screen1" />

<recolimit> tag
The <recolimit> tag is for advanced use only. It is used to enforce a limited
amount of time a screen can be recognized in a row before it goes to the screen
indicated in the goto attribute. This tag is useful for screen looping where you

Appendix C. Macro script syntax 145

know exactly how many times you’ll see a given screen in a row. It also is a
safeguard against infinite screen recognition.

The attributes of the <recolimit> tag are:

value The allowable number of times to recognize a screen. This value must be a
number or an expression that evaluates to a number. This is a required
attribute.

Note: The actions will not be executed the last time the screen is
recognized.

goto The name of the screen to go to when recognition limit has been reached.
This can be any valid Unicode character but the screen must exist in the
macro. For Host Publisher, this attribute is optional. If no goto screen is
given, the macro terminates.

Example
<recolimit value="3" goto="endscreen"/>

Advanced Screen Recognition
The <description> tag defines the recognition criteria for a screen. The optional
attribute of other elements within the <description> tag allows you to constrain the
descriptors in a limited way. For example, consider the following description:
<description>
<oia status="NOTINHIBITED" optional="false" />
<string value="aaaaaaaaaaa" optional="false" />
<string value="bbbbbbbbbbb" optional="true" />
</description>

This screen description matches a screen with an OIA status of NOTINHIBITED
and a string value of “aaaaaaaaaaa” OR a screen with a string vaue of
“bbbbbbbbbbb”. The screen recognition logic first tries to see if all the
optional=“false” descriptors are satisfied. Otherwise it attempts to match any one
optional=“true” descriptor.

You cannot use the optional attribute to decribe a screen as follows: OIA status
NOTINHIBITED and string “aaaaaaaaaaa” OR not oia NOTINHIBITED and string
“bbbbbbbbbbb”.

Optionally, you can set up more sophisticated matching conditions for screen
descriptions by using the uselogic attribute of the <description> tag. This optional
attribute allows you to match screens by specifying logical relationships among the
screen descriptors such as the following:
<description uselogic="(1 and 2) or (!1 and 3)" />
<oia status="NOTINHIBITED" />
<string value="aaaaaaaaaaa" />
<string value="bbbbbbbbbbb" />
</description>

The “!” in “(1 and 2) or (!1 and 3)” /> stands for not. It is the equivalent of the
invertmatch attribute. The numbers represent the descriptors, in the order
specified. In this example, the screen description matches if the OIA status is
NOTINHIBITED and the string value is “aaaaaaaaaaa” OR the OIA status is not
NOTINHIBITED and the string value is “bbbbbbbbbbb”. The key words AND and
OR can be used to represent the logical AND and logical OR operations. These key
words are not case sensitive.

146 IBM® WebSphere® Host Access Transformation Server Developer’s Guide

Keep the following in mind if you decide to use the uselogic attribute:
v The uselogic attribute is not supported in the Host On-Demand graphical user

interface. To use this attribute, you must manually edit a macro file.
v You cannot use variables as the conditions of the uselogic attribute.
v The optional and invertmatch keywords, if specified in a screen descriptor, are

ignored.

Using variables
Variables can be used in macro commands to replace hard-coded values and store
the results of operations, just like in any other programming language. They can be
created by using the graphical user interface of the Macro Editor or by including
the <vars>tag in an existing macro and declaring them with the <create> tag.
Variables can also be inherited from other macros; see the description of the
<playmacro> tag for details.

To use variables within a macro (including inherited variables), set the usevars
attribute of the <HAScript> tag to true. The values of macro tag attributes are then
parsed for variable names and arithmetic operators. The value of the usevars
attribute is automatically set to false unless a variable was created by using the
Host On-Demand Macro Editor. If the value of usevars is false and the macro
parser finds a <vars> tag in the macro, the parser displays an error message telling
you to set usevars to true.

Note: When you create a macro or edit an existing macro in the Macro Editor, the
first time that you check ″Use Variables and Arithmetic Expressions in
Macro″ in the Macro Editor (setting the usevars attribute of the <HAScript>
tag to “true”), Host On-Demand displays a warning that the macro is about
to be converted for use with variables and other advanced macro features.
(Macros created under Version 6 and earlier of Host On-Demand will still
run if they are not converted; the conversion is necessary only to use
variables and some other new features introduced in Version 7.)
v If you click OK, usevars is set to true and the macro is converted. All

attributes that take string arguments (as opposed to boolean, integer, or
keyword arguments) and can be assigned values that are variables or
expressions (that is, not the <HAScript> attributes, screen names, or
uselogic attributes) are converted. Single quotes are placed around all of
the strings that are already assigned to these attributes. For example, if
you had an input action with the value “hi”, it becomes “’hi’”.
Backslashes are placed in front of existing single quotes in the string
(“robin’s” will become “’robin\’s’”), and an extra backslash is placed in
front of existing backslashes (“ab\c” will become “’ab\\c’”).

v If you do not click OK, usevars remains set to false and the macro is not
converted to the new format. You may choose not to convert if you have
already converted your macro, if you would like to convert it by hand, or
if you change your mind about using variables. You can then go into the
code and set usevars to true yourself.

Variables can be used anywhere within a <screen> element. However, a variable
can only be used as a value of an attribute, not as an attribute name. You also
cannot use variables to assign values to <HAScript> attributes, <playmacro>
attributes, the uselogic attribute of the <description> tag, or macro screen names.

Variable names are specified in a macro as $varname$, where varname is the name
assigned to the variable when it was declared using the <create> tag. The

Appendix C. Macro script syntax 147

following example shows how a variable can be created and used to assign a value
to an attribute of a macro element (in this case, the <pause> tag):
<HAScript usevars="true">

<vars>
<create type="integer" name="$pause_length$" value="1000"/>

</vars>
<screen>

...
<pause value="$pause_length$">
...

</screen>
</HAScript>

Variables that are not defined within a macro can be assigned as attribute values
because the variables may be inherited from a parent macro (see the description of
the <playmacro> tag for details). However, when you create a variable, you cannot
set its value to that of an inherited variable because variables are created and
initialized when the macro is parsed, not at run-time.

Variable types
The following types of variables are supported:

boolean
Represents boolean values. A boolean variable can be assigned a value of
either “true” or “false”. Note that boolean variables are not case sensitive:
values such as “False” or “FALSE” are valid. A string variable or a field
variable can be assigned to a boolean variable, as long as the string or field
variable contains a valid boolean value. The default value is false.

integer
Represents integer numbers. An integer variable must be assigned a valid
integer number (for example, 3 or -4). If it is updated with a non-integer
value, the decimal portion of the value is truncated (for example, if an
integer variable is assigned a value of 4.8, the assigned value is truncated
to 4). An integer variable can be assigned an actual integer value or the
results of an arithmetic operation. The default value is 0.

double
Represents double-precision numbers. A double variable can be assigned
an actual double-precision value or the results of an arithmetic operation
when it is created. The default value is 0.0.

string Represents text strings. A string variable can be assigned combinations of
boolean, integer, double, string, or field variables, and actual text strings.
String values must be enclosed in single quotes (’). The default value is “”,
(an empty string).

field Represents text entered into a field on the terminal screen. The position
within the field is given as two integers separated by a comma (for
example, 2,3). Initially, field variables are empty. A field position must be
provided by using the <varupdate> tag, the <prompt> tag, or the <extract>
tag (if it is extracting “integer, integer” values from the screen). The text of
the field containing the specified field position is assigned to the field
variable at run-time. If the value given for the field position does not
evaluate to “integer, integer” at runtime, a runtime error occurs unless the
field’s value has been set to null (″″). If a field variable is used before a
value is assigned to it, its value is automatically set to null (″″).

Updating variables
Variable values can be updated in four different ways:

148 IBM® WebSphere® Host Access Transformation Server Developer’s Guide

v By using the <varupdate> tag to modify the values of variables after they are
created. The entered value must be of the same data type as the variable;
otherwise, an error or an unexpected result occurs.

v By using the assigntovar attribute of the <prompt> tag to assign user input to a
variable. The entered value must be of the same data type as the variable;
otherwise, an error or an unexpected result occurs.

v By using the assigntovar attribute of the <extract> tag to assign screen text to a
variable. This is generally used to store data that is displayed on a terminal
emulator screen (for example, the results of a database query) in a variable for
later use in the macro. You need to specify the starting and ending rows and
columns of the data. If the variable is either an integer or a double, the extracted
text must be of a matching data type; otherwise an error or unexpected result
occurs.

v By using the assignexitvalue of the <runprogram> tag to assign the exit value of
an application that has been launched from the macro to a variable.

Updating variables is especially important for field variables, which cannot be
given a default value and must be assigned a screen position at run-time.

The following example shows the different ways that variables can be updated.
<HAScript usevars="true">

<vars>
<create name="var_bool" type=boolean value="true"/>
<create name="var_int" type="integer" value="1"/>
<create name="$final_count$" type="integer"/>
<create name="var_double" type="double" value="1.0"/>
<create name="var_string" type="string" value="some_texts"/>
<create name="var_field" type="field"/>

</vars>
<screen>

<description>
<varupdate name="var_bool" value="false" />

</description>
</screen>
<actions>

<prompt name="textstring" row="1" col="1" len="72"
description="Enter a text string"
clearfield="true" encrypted="false"
assigntovar=var_string/>

<prompt name="intnumber" row="2" col="1" len="24"
description="Enter an integer"
clearfield="true" encrypted="false"
assigntovar=var_int/>

<varupdate name="var_field" value="4,5" />
<extract name="Get Double value" srow="4" scol="1"

erow="4" ecol="18" assigntovar=var_double />
<runprogram exe="C:\myapps\counter.exe"

wait="true" assignexitvalue="$final_count$"/>
</actions>

</HAScript>

Arithmetic operations
Arithemetic operations can be performed on numbers, integer variables, double
variables, field variable, and string variables. Boolean variables can be used in
concatenation operations. The following operations are supported:
v + - Add

– If the + operator is used on two numbers, they are added.
– If the + operator is used on two strings or a string and a number, the

operands are concatenated.

Appendix C. Macro script syntax 149

v - - Subtract
v * - Multiply
v / - Divide
v % - Mod

Parentheses can be used in expressions.

To display these characters on the screen, specify them as literal strings enclosed in
single quotes (’) - for example, to display the plus sign (+) on the screen, specify
the string ’+’ in the macro. (For instructions on how to use the reserved characters
single quote (’) and backslash (\), see “Using Special Characters in Macros” on
page 157.

Operator precedence is as follows:
1. Parentheses. Operations within parentheses are evaluated first, then the result

is used in any subsequent operations.
2. Multiply, divide, mod
3. Add, concatenate, subtract

The following examples show how to use arithmetic operations on variables. Each
example gives the syntax of the operation and shows its result. In these examples,
the name of the variable is also what the variable evaluates to (for example., 5
has a value of 5).
"(1 + 2) + ’, ’ + (3 + 5)" = 3, 8
"’Hello ’ + $Fred$ + ’!’" = Hello Fred!
"Hi $There$" = Error, need a + sign to join strings
"Hi+$There$" = HiThere
"Hi+’+’+$There$" = Hi+There
"’8.13’ + 12" = 8.1312 (’8.13’ is a string)
"1 + 2 * 5" = 11
"(1 + 2) * 5" = 15
"10 - (2 / 4)" = 9.5
"(10 - 2) / 4" = 2
"11 / 4" = 2.75
"11 % 4" = 3
"11.0 / 4" = 2.75
"11 / 4.0" = 2.75
"11.0 % 4" = 3.0
"’abc1.08e4’ + 3.4e5" = abc1.08e4340000.0
"’5*3’" ="5*3"
"5 + 3" = 53, where 3 is a string variable
"5 + 3" = 8, where 3 is an integer variable
"’abc\\de’" = abc\de
"’that\’s’" = that’s

The following example shows some of the ways that arithmetic operations can be
used when creating, using, and updating variables.
<vars>

<create name="$var_boolean$" type="boolean" value="false" />
<create name="var_int" type="integer" value="100" />
<create name="$var2_int$" type="integer" value="var_int*5" />

#OK to use var_int since it is defined already. Result = 500
<create name="var_double" type="double" value="100.9" />

#Result = 100.9
<create name="$var2_double$" type="double" value="var_int*5" />

#Result = 500.0
<create name="var_string" type="string">
<create name="$var1_string$" type="string" value="FirstString" />

</vars>

150 IBM® WebSphere® Host Access Transformation Server Developer’s Guide

<screen>
<description>

<varupdate name="var_string" value="$var_boolean$$var1_string$++" />
#Result = "falseFirstString+"

<varupdate name="$var2_int$" value="var_int+400" />
#Result = 500

</description>
<actions>

<varupdate name="$var2_double$" value="$var2_int$" />
#Result = 500.0

<varupdate name="var_int" value="var_double" />
#Result = 100 (only gets a whole number part)

<varupdate name="$var2_int$" value="var_double*2" />
#Result = 100.9 *2 = 201 (not 201.8 or 202)
<pause value="var_int" />

#OK
<pause value="var_int* 5" />

#OK
</actions>

</screen>

Be aware of the following:
v If a string or field variable is used as part of an arithmetic expression (not

including concatenation), the user must make sure that the string or field
variable contains only a numeric value; otherwise an error or an unexpected
result can occur at run-time.

v When a double value is assigned to an integer variable, only its whole number
value is assigned to the integer. Whatever is after the decimal point is truncated.

Debugging Variables With MacroActionTrace
If you find that your variables do not seem to contain the right value when you
use them, but cannot print the value with an <input> action without throwing off
your macro, use MacroActionTrace to display their current values.
MacroActionTrace displays variables with their current values as follows:
<vars>
<create name="$var1$" type="string" value="’original’" />
</vars>
.
.
.
<actions>
<trace type="SYSOUT" value="’Before update: ’+$var1$" />
<varupdate name="$var1$" value="’updated’" />
<trace type="SYSOUT" value="’After update: ’+$var1$" />
</actions>

This prints the following to the Java console:
Before update: {$var1$ = original}
After update: {$var1$ = updated}

Using variables in programmed macros
New methods and classes have been added to the Host Access Beans and Host
Access Class Library to allow the use of variables and arithmetic expressions in
programmed macros. The following example is a macro that prompts for the user’s
ID and password, logs the user on to the host, and says “Welcome!”:
<HAScript name="Logon" description="" timeout="60000" pausetime="300"

promptall="true" author="" creationdate="" supressclearevents="false"
usevars="true" >

<screen name="Screen1" entryscreen="true" exitscreen="false" transient="false">

<description>

Appendix C. Macro script syntax 151

<oia status="NOTINHIBITED" optional="false" invertmatch="false" />
</description>

<actions>
<prompt name="’UserID:’" description="" row="20" col="16" len="8"

default="" clearfield="false" encrypted="false" movecursor="true"
xlatehostkeys="true" assigntovar="" varupdateonly="false" />

<input value="’[tab]’" row="0" col="0" movecursor="true"
xlatehostkeys="true" encrypted="false" />

<prompt name="’Password:’" description="" row="21" col="16" len="8"
default="" clearfield="false" encrypted="true" movecursor="true"
xlatehostkeys="true" assigntovar="" varupdateonly="false" />

<input value="’[enter]’" row="0" col="0" movecursor="true"
xlatehostkeys="true" encrypted="false" />

</actions>
<nextscreens timeout="0" >

<nextscreen name="Screen2" />
</nextscreens>

</screen>

<screen name="Screen2" entryscreen="false" exitscreen="true" transient="false">
<description>

<oia status="NOTINHIBITED" optional="false" invertmatch="false" />

<numfields number="7" optional="false" invertmatch="false" />
<numinputfields number="1" optional="false" invertmatch="false"

</description>
<actions>

<message title="" value="’Welcome!’" />
</actions>
<nextscreens timeout="0" >
</nextscreens>

</screen>

</HAScript>

Assume that you want to use this macro in a Host Access Beans program and you
want to store the user ID into a variable and save for later use (for example, in the
Welcome message). You could do this directly by modifying the macro, but one
reason for doing this programmatically would be to avoid having to maintain
many different macros for different situations. You could instead have a base
“skeletal” macro and modify it programmatically depending on the situation. The
following is an example of how you can do this:
// Assume macro is an instantiated Macro with the appropriate listeners set up.
// (See the Javadoc for the Macro bean and the Macro variables demo program,
// MacroVariablesDemo.java, in the Host Access Toolkit samples directory
// for details.)
// Assume macroString is a String containing the previous macro script

macro.setMacro(macroString);
MacroScreens ms = macro.getParsedMacro();
//creates a variable $userid$ with initial value of ""
ms.createVariableString("$userid$", null);
//get the first screen
MacroScreen mscrn = ms.get(0);
//get the actions from the first screen
MacroActions mas = mscrn.getActions();
//get the first prompt action
MacroActionPrompt map = (MacroActionPrompt)mas.get(0);
//assign the prompt response to the variable $userid$
map.setAssignToVar("$userid$");
//get the second screen
MacroScreen mscrn2 = ms.get(1);
//get the actions from the second screen
MacroActions mas2 = mscrn2.getActions();

152 IBM® WebSphere® Host Access Transformation Server Developer’s Guide

//get the message action
MacroActionMessage mam = (MacroActionMessage)mas2.get(0);
//change the message to now be a personalized message using $userid$
mam.setMessage("’Welcome ’ + $userid$ + ’!’");
//reset the macro with the updated MacroScreens
macro.setParsedMacro(ms);
//play the macro with the changes for variables
macro.play();

Suppose you now want to add a second message to the actions for Screen2. In this
message, you want to display the time and date, which you extract from the
screen. You would add the following lines before macro.setParsedMacro(ms):
//create a variable $datetimestamp$ with initial value ""
ms.createVariableString("$datetimestamp$", null);
//create new extract to get date and time from second row of screen
MacroActionExtract mae = new MacroActionExtract(2, 35, 2, 71, "’datetimeextract’");
//assign the date and time string to $datetimestamp$
mae.setAssignToVar("$datetimestamp$");
//add the extract after the first message
mas2.add(mae);
//create a new message to //display the date and //timestamp
mas2.add(mae);
MacroActionMessage mam2 = new MacroActionMessage("’You have logged on at ’

+ $datetimestamp$", "’Date Time Stamp’");
//add the message after the extract
mas2.add(mam2);

Note that at the point when the attribute containing the variable(s) is associated
with the MacroScreens, you must have already created the variable (through one of
the createVariable() methods). For example, this code sequence would also be
valid:
MacroActionExtract mae = new MacroActionExtract(2, 35, 2, 71, "’datetimeextract’");
mae.setAssignToVar("$datetimestamp$");
ms.createVariableString("$datetimestamp$", null);
mas2.add(mae);
MacroActionMessage mam2 = new MacroActionMessage("’You have logged on at

’ + $datetimestamp$", "’Date Time Stamp’");
mas2.add(mam2);

The above sequence is valid because $datetimestamp$ is created before the
MacroActionExtract is added to the MacroActions (which are already associated
with the MacroScreens because they were pulled from the MacroScreens
originally). If the createVariable() method was called at the end of the sequence
above, you would have an invalid sequence because the variable $datetimestamp$
would not have been available at the time that the MacroActionExtract and
MacroActionMessage were added to the MacroActions and associated with the
MacroScreens.

The default value of the MacroScreens method isUseVars() is false. However, if you
call one of the createVariable() methods on your MacroScreens, isUseVars() will
return true automatically. If you don’t create any variables, but want to have your
attributes scanned for variables and arithmetic anyway (for example, you may be
writing a chained child macro that has no variables of its own but is anticipating
some from the parent), you must call setUseVars(true) on your MacroScreens.

Attributes that can now take variables or expressions as arguments have
setAttribute(String) and either getAttributeRaw() or isAttributeRaw() methods
available. If you wanted to use an expression now to represent the row attribute
for a MacroActionInput, you could call setRow(″$rowvar$ + 1″). Subsequently
calling getRow() would return the evaluated value of this expression (an integer),

Appendix C. Macro script syntax 153

whereas calling getRowRaw() would return “$rowvar$ + 1.” Note that if you do
the following you will get a NumberFormatException:
MacroActionInput mai = new MacroActionInput();
mai.setRow("$rowvar$ + 1");
int row = mai.getRow();

This is because mai has not yet been associated with any MacroScreens with
isUseVars() returning true. Therefore, “$rowvar$ + 1.” is being treated as a string
rather than a variable plus one. Note also that if you had call the setAttribute()
methods to set up variables and expressions after the object containing these
attributes have been associated with the MacroScreens, you will likely experience a
savings in processing time as the attributes would otherwise need to be reparsed
for variables/expressions at the point when they are added to the MacroScreens.

The VariableException class is available for catching exceptions such as illegal
expressions (for example, ″45 *″) or illegal arithmetic operands (for example, ″’3a’ *
2″).

A sample program that uses programmed macros, MacroVariablesDemo.java, can
be found in the Host Access Toolkit samples directory. See the readme.txt file for
instructions on how to use this sample application.

Using conditional (if-else) statements
You can use <if> and <else> tags to create conditional statements in macros. A
conditional statement performs operations based on whether a certain condition (or
set of conditions) evaluates to true or false. If the condition evaluates to true, the
operations within the <if> tag block are performed. If it evaluates to false, they are
not. Optionally, an <else> tag block can be used with an <if> block to specify
operations to be performed if the <if> statement evaluates to false.

Conditional <if> - <else> statements are used in <actions> tag blocks and provide
selection structures to control program flow. When used in conjunction with
variables, they are a powerful tool for creating sophisticated macros.

Every <if> statement specifies a condition (or set of conditions) to be evaluated at
macro run-time. The entire set of conditions must resolve to a boolean value.
Individual conditions are enclosed in parentheses (). You can assign boolean
variables or boolean values as the conditions of an <if> element. In addition, the
following equality and relational operators are supported:
v = =(Equal to)
v != (Not equal to)
v < (Less than)
v > (Greater than)
v <= (Less than or equal to)
v >= (Greater than or equal to)

Conditions are evaluated from left to right as follows:
v A number compared to number is a number compare.
v A string compared to string is a string compare.
v A string compared to a number is a string compare.
v A field variable is treated first as a number; if it is not numeric, it is treated as a

string.

154 IBM® WebSphere® Host Access Transformation Server Developer’s Guide

For example, the following conditional evaluates to false because a string is being
compared to a number:
’4.2e2’ == 420

The following conditional evaluates to true because a number is being compared to
a number:
4.2e2 == 420

The operators && (logical AND) and || (logical OR) can be used between
conditions to evaluate their logical relationships. If you are entering && through a
code editor, you may need to enter it as &&.

Parentheses are used to nest conditions. If you want to use an arithmetic
expression with nested expressions (that is, an expression containing parentheses)
as part of your condition, you must first assign that expression to a variable and
use the variable instead THe following example is invalid:
(5 + 2) * 3 == 21

Instead, state the condition as follows:
$expression$ == 21

where $expression$ is a variable that was updated with the value (5 + 2) * 3.

The following example shows an <if> tag with a single condition:
<vars>

<create name="var_string" type="string" value="no"/>
</vars>
<screen>

<description>
... #Screen operations

</description>
</screen>
<actions>

<prompt name="filesend" row="1" col="1" len="10"
description="Send a file? (yes/no)"
clearfield="true" encrypted="false"
assignto=var_string/>

<if condition="(var_string == yes)">
<input value="[clear]"/>
<filexfer direction="send.txt" pcfile="myfile.txt"

pcfile="myfile text a0" />
</if>

</actions>

The following example shows an <if> - <else> statement with multiple conditions:
<vars>

<create name="$condition1$" type="string"/>
<create name="$condition2$" type="boolean" value="false"/>
<create name="$condition3$" type="integer"/>

</vars>
<screen>

<description>
... # Screen elements

</description>
<actions promptall="true">

<extract name="Get condition 1" srow="2" scol="1" erow="2"
ecol="80" assigntovar="$condition1$"/>

<extract name="Get condition 2" srow="3" scol="1" erow="3"
ecol="80" assigntovar="$condition2$"/>

<extract name="Get condition 3" srow="4" scol="1" erow="4"

Appendix C. Macro script syntax 155

ecol="80" assigntovar="$condition3$"/>

<if conditions="(($condition1$!="")&&($condition2])||($condition3$ < 100))">
... # Perform one set of macro actions if $condition1$ is

not an empty string and $condition2$ evaluates to
"true", or if the value of $condition3$ is less
than 100

</if>
<else>

... # Perform a different set of macro actions if the
<if> element conditions are not met.

</else>
</actions>

</screen>

Converting Numbers to and from the Local National Language
Format
Different NLS locales represent numbers in different ways. For example, a decimal
number such as 1234.56 can be represented as 1,234.56, 1234.56, or 1234,56
depending on where you are located. Similarly, depending on the locale, negative
numbers can be indicated with a minus sign either before or after the number (for
example, -78 or 78-).

To enable macros to make use of numbers in local formats, Host On-Demand
supplies two conversion methods:
v $FormatStringToNumber(value)$, which converts a value in a local format to a

double-precision number.
v $FormatNumberToString(value)$, which converts a number to its local format

value.

The local format is determined by checking the NLS locale of the current Host
On-Demand session. The <HAScript> usevars attribute must be set to “true” to
use these conversion methods. Conversion methods can be nested.

These conversion methods can be used as the values of macro attributes in the
same way as variables. As their parameters, they can take numeric values, strings,
or variable expressions that evaluate to a numeric value or string. Parentheses are
reserved. To specify an argument string containing one of these characters (for
example, an arithmetic expression), assign the argument string to a variable first,
then use the variable as the argument.

In the following example, the value 3.24 is converted to its local equivalent (for
example, 3,24) when it is sent to the screen:
<input value="$FormatNumberToString(3.24)$" row="1" col="1"

movecursor="true" xlatehostkeys="false" />

In the following example, the FormatStringToNumber method is used as a
parameter of the FormatNumberToString method, converting the number num
from its local NLS format before performing the arithmetic operation:
$FormatNumberToString(1000 * $FormatStringToNumber($num$)$)$

In the following example, a user is extracting a negative integer value such as 3-
from the screen. To find out whether the extracted value is really a negative
number, it must first be converted to the standard representation of -3 by using the
FormatStringToNumber method. The variable $value$ is a string variable that
holds whatever is extracted from the screen.

156 IBM® WebSphere® Host Access Transformation Server Developer’s Guide

<extract name="Extract" planetype="TEXT_PLANE" srow="1" scol="1"
erow="-1" ecol="-1" unwrap="false" assigntovar="$value$" />

<if condition="($FormatStringToNumber($value$)$< 0)">
#converting 3- to -3 and comparing its value

... #Perform macro actions
</if>

Using Special Characters in Macros: Certain characters in Host On-Demand
macros have special functions depending on whether variables are in use. To use
these characters in a macro, you must enter them in a specific format in the macro
code. This section describes the different ways in which, depending on the
situation, various special (or reserved) characters are specified in macros.

If variables are in use

If variables are in use in the macro (that is, if the <HAScript> tag’s usevars
attribute is set to ″true″), special characters are used in a macro as follows:
v \ - Used to identify special characters. If you want to write a ″\″ character to

the screen, you must enter \\ in the macro. For example, ’C:\\myfile.txt’
writes ″C:\myfile.txt″ to the screen.

v ’ - Used to identify literal strings (such as ’some text’). If you want to actually
write a ″’″ character to the screen, you must enter \’ in the macro. For example,
’it\’s’ writes ″it’s″ to the screen.

v The characters +, -, *, /, %, >, <, =, & and | are evaluated as operators unless
enclosed in single quotes (’) as part of a literal string.

v The characters x identify a variable or method (where x is the variable’s name,
such as $MyVariable$) unless enclosed in single quotes (’) as part of a literal
string.

If variables are not in use

If variables are not in use (that is, if the <HAScript> tag’s usevars attribute is not
set to ″true″), special characters are treated as follows:
v The single quote and backslash characters are not treated specially. For example,

C:\myfile.txt writes ″C:\myfile.txt″ to the screen and it’s writes ″it’s″ to the
screen.

v The characters +, -, *, /, %, $, >, <, =, & and | are evaluated as literal characters,
not operators.

Appendix C. Macro script syntax 157

158 IBM® WebSphere® Host Access Transformation Server Developer’s Guide

Appendix D. Notices

This information was developed for products and services offered in the U.S.A.
IBM may not offer the products, services, or features discussed in this document in
other countries. Consult your local IBM representative for information on the
products and services currently available in your area. Any reference to an IBM
product, program, or service is not intended to state or imply that only that IBM
product, program, or service may be used. Any functionally equivalent product,
program, or service that does not infringe any IBM intellectual property right may
be used instead. However, it is the user’s responsibility to evaluate and verify the
operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter
described in this document. The furnishing of this document does not give you
any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785
U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM
Intellectual Property Department in your country or send inquiries, in writing, to:

IBM World Trade Asia Corporation
Licensing
2-31 Roppongi 3-chome, Minato-ku
Tokyo 106, Japan

The following paragraph does not apply to the United Kingdom or any other
country where such provisions are inconsistent with local law:
INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS
PUBLICATION “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER
EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS
FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of express or
implied warranties in certain transactions, therefore, this statement may not apply
to you.

This information could include technical inaccuracies or typographical errors.
Changes are periodically made to the information herein; these changes will be
incorporated in new editions of the publication. IBM may make improvements
and/or changes in the product(s) and/or the program(s) described in this
publication at any time without notice.

Any references in this information to non-IBM Web sites are provided for
convenience only and do not in any manner serve as an endorsement of those Web
sites. The materials at those Web sites are not part of the materials for this IBM
product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it
believes appropriate without incurring any obligation to you.

© Copyright IBM Corp. 2002 159

Licensees of this program who wish to have information about it for the purpose
of enabling: (i) the exchange of information between independently created
programs and other programs (including this one) and (ii) the mutual use of the
information which has been exchanged, should contact:

IBM Corporation
TL3B/062
3039 Cornwallis Road
RTP, NC 27709-2195
U.S.A.

Such information may be available, subject to appropriate terms and conditions,
including in some cases, payment of a fee.

The licensed program described in this information and all licensed material
available for it are provided by IBM under terms of the IBM Customer Agreement,
IBM International Program License Agreement, or any equivalent agreement
between us.

Information concerning non-IBM products was obtained from the suppliers of
those products, their published announcements or other publicly available sources.
IBM has not tested those products and cannot confirm the accuracy of
performance, compatibility or any other claims related to non-IBM products.
Questions on the capabilities of non-IBM products should be addressed to the
suppliers of those products.

This information contains examples of data and reports used in daily business
operations. To illustrate them as completely as possible, the examples include the
names of individuals, companies, brands, and products. All of these names are
fictitious and any similarity to the names and addresses used by an actual business
enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which
illustrates programming techniques on various operating platforms. You may copy,
modify, and distribute these sample programs in any form without payment to
IBM, for the purposes of developing, using, marketing or distributing application
programs conforming to the application programming interface for the operating
platform for which the sample programs are written. These examples have not
been thoroughly tested under all conditions. IBM, therefore, cannot guarantee or
imply reliability, serviceability, or function of these programs. You may copy,
modify, and distribute these sample programs in any form without payment to
IBM for the purposes of developing, using, marketing, or distributing application
programs conforming to IBM’s application programming interfaces.

If you are viewing this information softcopy, the photographs and color
illustrations may not appear.

Programming interface information
This Developer’s Guide contains information on intended programming interfaces
that allow the customer to write programs to obtain the services of Host Access
Transformation Server.

160 IBM® WebSphere® Host Access Transformation Server Developer’s Guide

Trademarks
The following terms are trademarks of the IBM Corporation in the United States or
other countries or both:
v IBM
v WebSphere

Java and all Java-based trademarks are trademarks of Sun Microsystems, Inc. in the
United States, other countries, or both.

Microsoft and Windows are trademarks or registered trademarks of Microsoft
Corporation in the United States, other countries, or both.

Netscape is a registered trademark of Netscape Communications Corporation in
the United States and other countries.

Other company, product, and service names may be trademarks or service marks
of others.

Appendix D. Notices 161

162 IBM® WebSphere® Host Access Transformation Server Developer’s Guide

Glossary

This glossary lists some of the terms used in this book along with their meanings.

action A step to be executed when an event occurs, such as a host screen
matching the screen recognition criteria specified for a screen
customization. A list of actions is part of the definition of each event,
including the screen customization resource.

application
See HATS application.

application keypad
A set of buttons or links representing application-level functions. (Contrast
with host keypad.)

assemble
To collect the resources of a HATS project, along with the necessary
executable code, into an application .ear file in preparation for transferring
the application to the server.

business logic
Any Java program invoked as an action in an event, such as a screen
customization. Business logic is specific to the application and is not
provided as part of HATS.

component
A visual element of a host screen, such as a command line or menu. HATS
applications transform host components into widgets.

deploy
To make a HATS application ready for use on the server, using functions in
WebSphere Application Server, after transfer has taken place. Note that
WebSphere documentation sometimes uses the term install as a synonym
for this process. (See also transfer.)

developer
The person who uses HATS Studio to develop applications; also
application developer or Web developer. (Contrast with user.)

.ear file
Enterprise Archive. The J2EE-format file containing the project resources
and executable code for a HATS application.

Eclipse
The open-source implementation upon which WebSphere Studio is built
and which is available for download from http://www.eclipse.org.

editor An application that enables a user to modify existing data. In HATS
Studio, editors are used to customize resources that have been created by
wizards.

event An occurrence of interest to a program, for which a specific response in the
form of one or more actions is defined. The matching of a host screen by a
screen customization’s screen recognition criteria is an event, as are a user
connecting to or disconnecting from a HATS application, and the failure of
a host screen to match any screen customizations.

© Copyright IBM Corp. 2002 163

Extensible Markup Language (XML)
A standard metalanguage for defining markup languages that was derived
from and is a subset of SGML.

global variable
A variable used to contain information for the use of actions. The values of
global variables can be extracted from a host screen or elsewhere, and can
be used in templates, transformations, macros, or business logic.

HATS See Host Access Transformation Server.

HATS application
An application that presents a Web-enabled version of a host application to
users. A HATS application is created in HATS Studio from a HATS project
and deployed to WebSphere Application Server.

HATS project
A collection of resources (also sometimes called ″artifacts″) created and
customized in HATS Studio, which can be assembled into a HATS
application.

HATS Studio
The component of HATS that runs on WebSphere Studio and enables you
to work with HATS projects to create HATS applications.

Host Access Transformation Server (HATS)
An IBM software product that enables you to present host applications as
Web-based applications.

host component
See component.

host keypad
A set of buttons or links representing functions typically available from a
host keyboard, such as function keys or the Enter key. (Contrast with
application keypad.)

HTML
Hypertext Markup Language.

J2EE Java 2 Platform, Enterprise Edition. An environment for developing and
deploying enterprise applications, defined by Sun Microsystems Inc. The
J2EE platform consists of a set of services, application programming
interfaces (APIs), and protocols that provide the functionality for
developing multitiered, Web-based applications.

JavaServer Pages (JSP)
A server-side scripting technology that enables Java code to be dynamically
embedded within Web pages (HTML files) and executed when the page is
served, returning dynamic content to a client.

JSP See JavaServer Pages.

macro An XML script that defines a set of screens. Each screen includes a
description of the screen, the actions to perform for that screen, and the
screen or screens that can be presented after the actions are performed. A
macro can be specified as one of the actions to be taken when a host screen
matches the screen recognition criteria of a screen customization.

perspective
In the WebSphere Studio workbench, a group of views that show various
aspects of the resources in the workbench. The HATS perspective is a

164 IBM® WebSphere® Host Access Transformation Server Developer’s Guide

collection of views and editors that allow a developer to create, edit, view,
and run resources which belong to HATS applications.

project
See HATS project.

resource
Any of several data structures included in a HATS project. HATS resources
include templates, screen customizations, transformations, screen captures,
and macros. Other WebSphere Studio plugins sometimes call these
″artifacts.″

Run On Server
A function of WebSphere Studio, which enables the developer to test or
preview a project using the embedded WebSphere Application Server.
Sometimes referred to as ″WAS Test Environment.″

screen capture
An XML representation of a host screen, used to create or customize a
screen customization or transformation.

screen customization
A HATS resource with two parts: a set of screen recognition criteria used
to match host screens, and a list of actions to be taken when a host screen
matches the screen recognition criteria.

screen recognition criteria
A set of criteria used to determine whether a host screen matches a screen
customization and should have that screen customization’s actions applied.

Secure Sockets Layer (SSL)
A security protocol that provides communication privacy. SSL enables
client/server applications to communicate in a way that is designed to
prevent eavesdropping, tampering, and message forgery. SSL was
developed by Netscape Communications Corp. and RSA Data Security, Inc.

source The markup-language files that define a HATS project or one of its
resources. Also the name of a folder contained in each HATS project.

SSL See Secure Sockets Layer.

template
A HATS resource that describes the relatively static portion of the Web
pages presented by the HATS application, including a banner and
navigation area.

transfer
To copy an application .ear file to the server, usually by FTP. (See also
deploy.)

transformation
A HATS resource that specifies how to convert components of a host
screen into widgets on a Web page.

user The end user of an application that runs on the server. (Contrast with
developer.)

WebSphere
A family of IBM software products that provide a development and
deployment environment for basic Web publishing and for
transaction-intensive, enterprise-scale e-business applications.

Glossary 165

WebSphere Application Server
An IBM software product that provides the core software needed to
deploy, integrate and manage e-business applications. HATS applications,
when assembled and transferred to a server, run as WebSphere Application
Server applications.

WebSphere Studio
Any of several IBM software products that provide an integrated
development environment based on the Eclipse open-source platform.

widget
A visual element of a Web page, such as a button, entry field, or
drop-down list. HATS applications transform host components into
widgets.

wizard
An interface that enables you to complete a task in defined steps. HATS
uses wizards to create projects and their resources.

workbench
Synonym for WebSphere Studio.

XML See Extensible Markup Language.

166 IBM® WebSphere® Host Access Transformation Server Developer’s Guide

Index

A
action

apply transformation 20
cxtract global variable 21
execute business logic 22
insert global variable 21
screen customization 4
set global variable 22
show URL 23

actions tab
screen customization 19

actions tag 116, 135
adding business logic 41
advanced connection settings tab

modifying projects 12
application (.hap) file 105
application keypad

HATS 14
settings 14

application processing
HATS 1

application tag 105
apply tag 116
apply transformation action 20
args attribute

custom tag 141
assignexitvalue attribute

runprogram tag 145
assigntovar attribute

extract tag 137
prompt tag 136

associatedScreens tag 119
attrib tag 133
attributes

args
custom tag 141

assignexitvalue
runprogram tag 145

assigntovar
extract tag 137
prompt tag 136

author
HAScript tag 125

casesense
string tag 120, 132

caseSensitive
replace tag 114

class
execute tag 118

clear
filexfer tag 139

clearfield
prompt tag 136

codePage
session tag 106

codePageKey
session tag 106

col
attrib tag 133
cursor tag 130
input tag 137

attributes (continued)
col (continued)

insert tag 116
mouseclick tag 140
prompt tag 136
string tag 120, 132

conditions
if tag 144

creationdate
HAScript tag 125

dec
set tag 118

default
prompt tag 136
sessions tag 106

delayInterval
session tag 108

delayStart
session tag 108

description
application tag 105
event tag 116
HAScript tag 125
prompt tag 136
session tag 108

direction
filexfer tag 138

ecol
boxselection tag 141
extract tag 117, 137
string tag 120, 132

enabled
event tag 112

enableScrRev
session tag 86

enableSSL
session tag 108

encrypted
prompt tag 136

enhanced
session tag 108

entryscreen
screen tag 128

erow
boxselection tag 140
extract tag 117, 137
string tag 120, 132

exe
runprogram tag 144

exitscreen
screen tag 128

fill
insert tag 116

from
replace tag 114

goto
recolimit tag 146

handler
extract tag 121
prompt tag 121

attributes (continued)
hostfile

filexfer tag 139
hostName

session tag 108
hostorientation

filexfer tag 139
id

custom tag 141
ID

customreco tag 133
immediateKeyset

apply tag 116
index

extract tag 117
insert tag 116
set tag 117

indexed
extract tag 117, 121

invertmatch
attrib tag 133
cursor tag 130
customreco tag 134
numfields tag 131
numinputfields tag 131
oia tag 119, 129
string tag 120, 132

lamalefcompression
filexfer tag 139

lamalefexpansion
filexfer tag 139

len
prompt tag 136

macro
play tag 119

method
execute tag 118

movecursor
input tag 137

name
class tag 112
create tag 127
event tag 112
extract tag 117, 121, 137
HAScript tag 125
nextscreen tag 145
playmacro tag 143
prompt tag 121, 136
screen tag 119, 128
session tag 109
set tag 117
setting tag 112
varupdate tag 134, 142

number
numfields tag 130
numinputfields tag 131

op
set tag 118

op1
set tag 118

© Copyright IBM Corp. 2002 167

attributes (continued)
op1_index

set tag 118
op1_type

set tag 118
op2

set tag 118
op2_index

set tag 118
op2_type

set tag 118
optional

attrib tag 133
cursor tag 130
customreco tag 133
numfields tag 130
numinputfields tag 131
oia tag 119, 129
string tag 120, 132

options
filexfer tag 139

overwrite
extract tag 117, 121
set tag 117

package
execute tag 118

param
runprogram tag 145

pause
screen tag 128

pausetime
HAScript tag 125

pccodepage
filexfer tag 139

pcfile
filexfer tag 138

pcfiletype
filexfer tag 139

pcorientation
filexfer tag 139

plane
attrib tag 133

port
session tag 109

printFontName
session tag 109

printOrientation
session tag 109

printPaperSize
session tag 109

printSupport
session tag 110

printURL
session tag 110

promptall
actions tag 135
HAScript tag 125

row
attrib tag 133
cursor tag 130
input tag 136
insert tag 116
mouseclick tag 140
prompt tag 135
string tag 119, 131

save
extract tag 121

attributes (continued)
scol

boxselection tag 140
extract tag 117, 137

screenSize
session tag 110

showHandler
extract tag 121

source
insert tag 116
prompt tag 121

srow
boxselection tag 140
extract tag 117, 137

startscreen
playmacro tag 143

status
oia tag 119, 129

suppressclearevents
HAScript tag 125

template
application tag 105
apply tag 116

timeout
commwait tag 141
filexfer tag 139
HAScript tag 125
nextscreens tag 145

title
message tag 138

to
replace tag 115

transfervars
playmacro tag 143

transformation
apply tag 116

transient
screen tag 128

type
boxselection tag 141
create tag 127
event tag 116
session tag 110
set tag 117
trace tag 138

unwrap
extract tag 137

url
show tag 119

uselogic
description tag 129

usevars
HAScript tag 126

value
attrib tag 133
commwait tag 141
create tag 127
input tag 137
insert tag 116
message tag 138
pause tag 140
prompt tag 122
recolimit tag 146
setting tag 114
string tag 119, 131
tag 134
trace tag 138

attributes (continued)
value (continued)

varupdate tag 142
variableIndex

prompt tag 122
variableName

extract tag 121
prompt tag 122

varupdateonly
prompt tag 136

wait
runprogram tag 145

xlatehostkeys
input tag 137
prompt tag 136

author attribute
HAScript tag 125

B
BIDI support

overview 81
boxselection tag 140
business logic

adding to project 41
creating 41
description 5
executing 22
HATS 5

C
cascading style sheet 50
casesense attribute

string tag 120, 132
caseSensitive attribute

replace tag 114
class attribute

execute tag 118
class tag 112
classSettings tag 112
clear attribute

filexfer tag 139
clearfield attribute

prompt tag 136
client locale 15

HATS 15
settings 15

codePage attribute
session tag 106

codepage support
bi-directional 81

codePageKey attribute
session tag 106

col attribute
attrib tag 133
cursor tag 130
input tag 137
insert tag 116
mouseclick tag 140
prompt tag 136
string tag 120, 132

comment tag 128
commwait tag 141
component 89

settings 89

168 IBM® WebSphere® Host Access Transformation Server Developer’s Guide

component, HATS
custom

HATS Studio support 60
registering 58

components and widgets
mapping 101

conditions attribute
if tag 144

connection settings tab
modifying projects 11

considerations
server 8

create tag 127
creating business logic wizard 41
creationdate attribute

HAScript tag 125
cursor position criteria

screen customization 18
cursor tag 130
custom component, HATS

HATS Studio support 60
registering 58

custom host component
creating 57

custom tag 141
custom widget

creating 58
custom widget, HATS

HATS Studio support 60
registering 58

customreco tag 133
cxtract global variable action 21

D
dec attribute

set tag 118
default attribute

prompt tag 136
sessions tag 106

delayInterval attribute
session tag 108

delayStart attribute
session tag 108

description attribute
application tag 105
event tag 116
HAScript tag 125
prompt tag 136
session tag 108

description tag 119, 129
design tab

template 32
transformation 25

direction attribute
filexfer tag 138

documentation
on the Web v

E
ecol attribute

boxselection tag 141
extract tag 117, 137
string tag 120, 132

editing
files 105
screen customization 17
transformation 25

EJB Access Beans
Host Publisher 43

else tag 144
enabled attribute

event tag 112
enableScrRev attribute

session tag 86
enableSSL attribute

session tag 108
enabling SSL security 53
encrypted attribute

prompt tag 136
end users

keyboard support for 51
print support for 46

enhanced attribute
session tag 108

entryscreen attribute
screen tag 128

erow attribute
boxselection tag 140
extract tag 117, 137
string tag 120, 132

event
HATS 4

event priority tab
modifying projects 13

event tag 112, 116
event tags

actions 116
apply 116
associatedScreens 119
description 119
execute 118
extract 117
insert 116
oia 119
play 119
screen 119
set 117
show 119
string 119

eventPriority tag 111
example

HOD logon macro 126
exe attribute

runprogram tag 144
execute business logic action 22
execute tag 118
exitscreen attribute

screen tag 128
extract macros

description 37
extract tag 117, 121, 137
extracts tag 120

F
field criteria

screen customization 17
files

application (.hap) 105
image 122

files (continued)
log 67
macro (.hma) 120
screen capture (.hsc) 122
screen customization (.evnt) 115
stylesheet (.css) 122
template (.jsp) 115
tracing 66
transformation (.jsp) 115

files, editing 105
filexfer tag 138
fill attribute

insert tag 116
from attribute

replace tag 114

G
general tab

modifying projects 13
global variable

cxtracting 21
description 5
HATS 5
inserting 21, 28
setting 22

global variables, HATS 35
goto attribute

recolimit tag 146

H
handler attribute

extract tag 121
prompt tag 121

HAScript tag 122, 125
HATS

application processing 1
business logic 5
component

HATS Studio support 60
registering 58

event 4
global variable 5
HATS:Component tag

attributes 55
example 55
operations 56

host component
classes 57
creating 57
HATS:Component tag 55
overview 5

host components 89
introduction 1
keyboard support 6
logging 65
macro 5
macros

incorporating 37
print support 6
processing order 1
project 4

global variables 35
modifying 11

Run on Server 6

Index 169

HATS (continued)
screen capture 6
screen customization 4

basic principles 17
screen customization action 4
screen recognition 4
template 5, 31

CSS style 33
designing 32
overview 5

tracing 65
transformation 4

designing 25
troubleshooting 65
widget

classes 58
creating 58
HATS Studio support 60
HATS:Component tag 55
overview 5
registering 58
setWriter() 58

widgets 92
HATS Studio support

custom component 60
custom widget 60

HATS terminal 6
description 6

HATS:Component tag
attributes 55, 102
example 55
operations 56

HOD logon macro
example 126

host applications, Web environment 1
host component 89

custom
creating 57

inserting 26
settings 89

host component, HATS
classes 57
creating 57
custom 57
HATS:Component tag 55
overview 5

host components
HATS 89

host keyboard support
See keyboard support

host keypad
HATS 14
settings 14

Host On-Demand macros
importing 38

Host On-Demand tracing 70
host print support

See print support
Host Publisher

EJB Access Beans 43
Integration Objects 43
remote Integration Objects 43
Web Services 43

Host Publisher macros
importing 38

hostfile attribute
filexfer tag 139

hostName attribute
session tag 108

hostorientation attribute
filexfer tag 139

I
id attribute

custom tag 141
ID attribute

customreco tag 133
if tag 143
image files 122
immediateKeyset attribute

apply tag 116
importing Java code 42
importing macros 38
index attribute

extract tag 117
insert tag 116
set tag 117

indexed attribute
extract tag 117, 121

input tag 136
insert global variable action 21
insert global variable wizard 28
insert host component wizard 26
insert macro key wizard 27
insert prompt wizard 37
insert tabbed folder wizard 27
insert tag 116
Integration Objects

Host Publisher 43
invertmatch attribute

attrib tag 133
cursor tag 130
customreco tag 134
numfields tag 131
numinputfields tag 131
oia tag 119, 129
string tag 120, 132

invertmatch criteria 19

J
Java code

importing 42

K
keyboard support 14

cascading style sheet 50
defining 50
description 6
enabling 49
end users 51
HATS 6, 14
keypads

changing 50
kinds 49
mapped keys 51
mapping 51
overview 49
settings 14

keypad
application 14

keypad (continued)
changing 50
host 14

L
lamalefcompression attribute

filexfer tag 139
lamalefexpansion attribute

filexfer tag 139
len attribute

prompt tag 136
license tracking 66
log files 67
logging 65
logic

business 5

M
macro

description 5
HATS 5

macro (.hma) file 120
macro attribute

play tag 119
macro key

inserting 27
macro script 123
macro tag 120
macro tags

actions 135
attrib 133
boxselection 140
comment 128
commwait 141
create 127
cursor 130
custom 141
customreco 133
description 129
else 144
extract 121, 137
extracts 120
filexfer 138
HAScript 122

overview 125
if 143
input 136
macro 120
message 138
mouseclick 140
nextscreen 145
nextscreens 145
numfields 130
numinputfields 131
oia 129
pause 140
playmacro 142
prompt 121, 135
prompts 121
recolimit 145
runprogram 144
screen 128
string 131
trace 138

170 IBM® WebSphere® Host Access Transformation Server Developer’s Guide

macro tags (continued)
vars 126
varupdate 134, 142

macros
extract 37
importing 38
overview tab 39
prompt 37
prompts and extracts tab 39
recording 37
skip-screen 37
source tab 39

macros, HATS
incorporating 37

mapping
components and widgets 101

message tag 138
messages

runtime 73
messages reference 73
method attribute

execute tag 118
modifying projects 11

advanced connection settings tab 12
connection settings tab 11
event priority tab 13
general tab 13
overview tab 11
source tab 15
template tab 12
text replacement tab 12

mouseclick tag 140
movecursor attribute

input tag 137

N
name attribute

class tag 112
create tag 127
event tag 112
extract tag 117, 121, 137
HAScript tag 125
nextscreen tag 145
playmacro tag 143
prompt tag 121, 136
screen tag 119, 128
session tag 109
set tag 117
setting tag 112
tag 134
varupdate tag 142

nextscreen tag 145
nextscreens tag 145
number attribute

numfields tag 130
numinputfields tag 131

numfields tag 130
numinputfields tag 131

O
oia tag 119, 129
op attribute

set tag 118

op1 attribute
set tag 118

op1_index attribute
set tag 118

op1_type attribute
set tag 118

op2 attribute
set tag 118

op2_index attribute
set tag 118

op2_type attribute
set tag 118

optional attribute
attrib tag 133
cursor tag 130
customreco tag 133
numfields tag 130
numinputfields tag 131
oia tag 119, 129
string tag 120, 132

options attribute
filexfer tag 139

ordering
screen customization 23

otherParameters tag 110
overview tab

macros 39
modifying projects 11
screen customization 17

overwrite attribute
extract tag 117, 121
set tag 117

P
package attribute

execute tag 118
param attribute

runprogram tag 145
pause attribute

screen tag 128
pause tag 140
pausetime attribute

HAScript tag 125
pccodepage attribute

filexfer tag 139
pcfile attribute

filexfer tag 138
pcfiletype attribute

filexfer tag 139
pcorientation attribute

filexfer tag 139
plane attribute

attrib tag 133
play tag 119
playmacro tag 142
port attribute

session tag 109
preview tab

template 33
transformation 28

print support
configuring 45
defining for 3270 servers 45
defining for 5250 servers 46
description 6
enabling 45

print support (continued)
end users 46
HATS 6
overview 45

printFontName attribute
session tag 109

printOrientation attribute
session tag 109

printPaperSize attribute
session tag 109

printSupport attribute
session tag 110

printURL attribute
session tag 110

prmpts and extracts tab
macros 39

project
adding business logic 41
description 4
HATS 4
modifying 11

projects
creating 7
organizing 7

prompt macros
description 37

prompt tag 121, 135
promptall attribute

actions tag 135
HAScript tag 125

prompts tag 121
properties

runtime 65

R
recognition criteria

cursor position 18
field 17
invertmatch 19
non-optional 19
optional 19
text string location 18

recolimit tag 145
record a macro wizard 37
remote Integration Objects

Host Publisher 43
replace tag 114
row attribute

attrib tag 133
cursor tag 130
input tag 136
insert tag 116
mouseclick tag 140
prompt tag 135
string tag 119, 131

Run on Server
description 6
HATS 6

runprogram tag 144
runtime messages 73
runtime properties 65
runtime tracing 67

Index 171

S
save attribute

extract tag 121
scol attribute

boxselection tag 140
extract tag 117, 137

screen capture
description 6
HATS 6

screen capture (.hsc) file 122
screen customization

action 4
actions tab 19
cursor position criteria 18
description 4
editing 17
field criteria 17
HATS 4
ordering 23
overview tab 17
screen recognition criteria tab 17
source tab 23
text string location criteria 18

screen customization (.evnt) file 115
screen customization action

description 4
HATS 4

screen recognition
description 4
HATS 4

screen recognition criteria tab
screen customization 17

screen tag 119, 128
screenSize attribute

session tag 110
server considerations 8

applying service 9
license tracking 9
logging 9
maintenance 9
tracing 9

session tag 106
sessions tag 106
set global variable action 22
set tag 117
setting tag 112
settings 89, 92

application keypad 14
client locale 15
host keypad 14
keyboard support 14

show tag 119
show URL action 23
showHandler attribute

extract tag 121
skip-screen macros

description 37
source attribute

insert tag 116
prompt tag 121

source tab
macros 39
modifying projects 15
screen customization 23
template 33
transformation 28

srow attribute
boxselection tag 140
extract tag 117, 137

SSL security
enabling 53
overview 53

startscreen attribute
playmacro tag 143

status attribute
oia tag 119, 129

string tag 119, 131
style ,sheet cascading 50
stylesheet (.css) file 122
stylesheets

using 33
suppressclearevents attribute

HAScript tag 125
syntax, macro script 123

T
tabbed folder

inserting 27
template

description 5
design tab 32
HATS 5
preview tab 33
source tab 33

template (.jsp) file 115
template attribute

application tag 105
apply tag 116

template tab
modifying projects 12

template, HATS
creating 31
designing 32
overview 5
selecting 31

terminal
HATS 6

text replacement tab
modifying projects 12

text string location criteria
screen customization 18

textReplacement tag 114
timeout attribute

commwait tag 141
filexfer tag 139
HAScript tag 125
nextscreens tag 145

title attribute
message tag 138

to attribute
replace tag 115

trace files 66
trace tag 138
tracing 65

Host On-Demand 70
runtime 67

tracking
license 66

transfervars attribute
playmacro tag 143

transformation
applying 20

transformation (continued)
description 4
design tab 25
editing 25
HATS 4
preview tab 28
source tab 28

transformation (.jsp) file 115
transformation attribute

apply tag 116
transformation, HATS

designing 25
transient attribute

screen tag 128
type attribute

boxselection tag 141
create tag 127
event tag 116
HATS:Component tag 102
session tag 110
set tag 117
trace tag 138

U
unwrap attribute

extract tag 137
URL

showing 23
url attribute

show tag 119
uselogic attribute

description tag 129
usevars attribute

HAScript tag 126
Using stylesheets 33

V
value attribute

attrib tag 133
commwait tag 141
create tag 127
input tag 137
insert tag 116
message tag 138
pause tag 140
prompt tag 122
recolimit tag 146
setting tag 114
string tag 119, 131
tag 134
trace tag 138
varupdate tag 142

variable
global 5

variableIndex attribute
prompt tag 122

variableName attribute
extract tag 121
prompt tag 122

vars tag 126
varupdate tag 134, 142
varupdateonly attribute

prompt tag 136

172 IBM® WebSphere® Host Access Transformation Server Developer’s Guide

W
wait attribute

runprogram tag 145
Web applications 1
Web page

for HATS v
Web Services

Host Publisher 43
widget 92

custom
creating 58

settings 92
widget attribute

HATS:Component tag 102
widget, HATS

classes 58
creating 58
custom 58

HATS Studio support 60
registering 58

HATS:Component tag 55
overview 5
setWriter() 58

widgets
HATS 92

wizard
creating business logic 41
insert global variable 28
insert host component 26
insert macro key 27
insert prompt 37
insert tabbed folder 27
record a macro 37

X
xlatehostkeys attribute

input tag 137
prompt tag 136

xml tags
application 105
class 112
classSettings 112
event 112
eventPriority 111
otherParameters 110
replace 114
session 106
sessions 106
setting 112
textReplacement 114

Index 173

174 IBM® WebSphere® Host Access Transformation Server Developer’s Guide

Readers’ Comments — We’d Like to Hear from You

IBM® WebSphere® Host Access Transformation Server
Developer’s Guide
Version 4

Publication No. SC31-6324-00

Overall, how satisfied are you with the information in this book?

Very Satisfied Satisfied Neutral Dissatisfied Very
Dissatisfied

Overall satisfaction h h h h h

How satisfied are you that the information in this book is:

Very Satisfied Satisfied Neutral Dissatisfied Very
Dissatisfied

Accurate h h h h h

Complete h h h h h

Easy to find h h h h h

Easy to understand h h h h h

Well organized h h h h h

Applicable to your tasks h h h h h

Please tell us how we can improve this book:

Thank you for your responses. May we contact you? h Yes h No

When you send comments to IBM, you grant IBM a nonexclusive right to use or distribute your comments in any
way it believes appropriate without incurring any obligation to you.

Name Address

Company or Organization

Phone No.

Readers’ Comments — We’d Like to Hear from You
SC31-6324-00

SC31-6324-00

����
Cut or Fold
Along Line

Cut or Fold
Along Line

Fold and Tape Please do not staple Fold and Tape

Fold and Tape Please do not staple Fold and Tape

NO POSTAGE
NECESSARY
IF MAILED IN THE
UNITED STATES

BUSINESS REPLY MAIL
FIRST-CLASS MAIL PERMIT NO. 40 ARMONK, NEW YORK

POSTAGE WILL BE PAID BY ADDRESSEE

IBM Corporation
Software Reengineering
Department G7IA/ Bldg 503
Research Triangle Park, NC 27709-9990

_ _

_ _

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_

����

Printed in U.S.A.

SC31-6324-00

	Contents
	Preface
	Where can I find information about HATS?

	Chapter 1. Using Host Access Transformation Server (HATS)
	Understanding HATS application processing
	Understanding HATS key concepts and objects

	Chapter 2. Creating and organizing projects
	Chapter 3. Modifying a HATS project
	Overview tab
	Connection Settings tab
	Advanced Connection Settings tab
	Template tab
	Text Replacement tab
	Event Priority tab
	General tab
	Application keypad
	Host keypad
	Keyboard support
	Client locale

	Source tab

	Chapter 4. Editing a screen customization
	Overview tab
	Screen Recognition Criteria tab
	Field criteria
	Cursor position criteria
	Text string location criteria
	Optional versus non-optional screen recognition criteria
	Inverted match of screen recognition criteria

	Actions tab
	Apply transformation action
	Insert global variable action
	Extract global variable action
	Set global variable action
	Execute business logic action
	Show URL action

	Source tab
	Screen customization ordering

	Chapter 5. Editing a transformation
	Design tab
	Insert Host Component wizard
	Insert Tabbed Folder wizard
	Insert Macro Key wizard
	Insert Global Variable wizard

	Source tab
	Preview tab

	Chapter 6. Using templates
	Creating your own templates
	Design tab
	Using stylesheets

	Source tab
	Preview tab

	Chapter 7. Interacting with global variables
	Chapter 8. Incorporating macros
	Overview tab
	Prompts and Extracts tab
	Source tab

	Chapter 9. Adding business logic
	Incorporating Java code from other applications

	Chapter 10. Integration of Host Publisher objects
	Invoking Host Publisher Remote Integration Objects from HATS
	Invoking Host Publisher EJB Access Beans and Web Services from HATS

	Chapter 11. Enabling print support in projects
	Configuring the host print session on 3270 hosts
	Defining print support for your project
	For 3270 servers
	For 5250 servers

	Providing documentation for end users

	Chapter 12. Enabling keyboard support in projects
	Defining keyboard support
	Changing the appearance of the keypads

	Providing documentation for end users

	Chapter 13. Enabling SSL security
	Chapter 14. Creating custom components and widgets
	Creating custom host components and widgets
	Creating a custom host component
	Creating a custom widget
	Registering your component or widget
	HATS Studio support for custom components and widgets

	Chapter 15. Administering HATS applications
	Chapter 16. Troubleshooting HATS
	Message logs and traces
	Problems and solutions
	Incorrect data in HATS applications with non-English locales
	Thai font size too small for default transformation
	End users receiving HTTP 404 error

	Chapter 17. Messages reference
	Chapter 18. Language support
	Chapter 19. Bi-directional application support
	Software environment
	Working with the host terminal
	Capturing screens

	Recognizing bi-directional host components
	Controlling the orientation of widgets
	Global variables
	Text replacement
	Enabling the user to reverse the screen direction
	Information for end users
	Functions for Arabic code pages
	Symmetric and numeric swapping
	Screen captures
	Other considerations

	Additions to HATS files
	Bi-directional APIs
	ConvertVisualToLogical
	ConvertLogicalToVisual

	Appendix A. Component and widget descriptions and settings
	Component and widget settings
	Host component settings
	Command line
	Default
	Field
	Field table
	Function key
	Input field
	Menu
	Selection list
	Subfile
	Text
	Visual table

	Widget settings
	Button
	Button table
	Default
	Drop-down list
	Field
	Graph
	Label
	Link
	Option list
	Table
	Text input

	Component and widget mapping
	HATS:Component tag type and widget attributes

	Appendix B. HATS Studio files
	Application files (.hap)
	<application> tag
	<sessions> tag
	<session> tag
	<otherParameters> tag
	<eventPriority> tag
	<event> tag
	<classSettings> tag
	<class> tag
	<setting> tag
	<textReplacement> tag
	<replace> tag

	Template and transformation files (.jsp)
	Screen customization files (.evnt)
	Macro files (.hma)
	Screen capture files (.hsc)
	Image files (.gif or .jpg)
	Stylesheet files (.css)

	Appendix C. Macro script syntax
	Introduction
	Macro
	<HAScript> tag
	Example

	<vars> tag
	Example

	<create> tag
	Example

	<screen> tag
	Example

	<comment> tag
	Example

	<description> tag
	Example

	<oia> tag
	Example

	<cursor> tag
	Example

	<numfields> tag
	Example

	<numinputfields> tag
	Example

	<string> tag
	Examples

	<attrib> tag
	Example

	<customreco> tag
	Example

	<varupdate> tag
	Example

	<actions> tag
	Example

	<prompt> tag
	Example

	<input> tag
	Example

	<extract> tag
	Example

	<message> tag
	Example

	<trace> tag
	Example

	<filexfer> tag
	Example

	<pause> tag
	Example

	<mouseclick> tag
	Example

	<boxselection> tag
	Example

	<commwait> tag
	Example

	<custom> tag
	Example

	<varupdate> tag
	Example

	<playmacro> tag
	Example

	<if> tag
	Example

	<else> tag
	Example

	<runprogram> tag
	Example

	<nextscreens> tag
	Example

	<nextscreen> tag
	Example

	<recolimit> tag
	Example

	Advanced Screen Recognition
	Using variables
	Variable types
	Updating variables
	Arithmetic operations
	Debugging Variables With MacroActionTrace
	Using variables in programmed macros
	Using conditional (if-else) statements
	Converting Numbers to and from the Local National Language Format

	Appendix D. Notices
	Programming interface information
	Trademarks

	Glossary
	Index
	Readers’ Comments — We'd Like to Hear from You

