
IBM WebSphere Application Server Network Deployment
for Distributed Platforms, Version 8.5

Overview

���

Note
Before using this information, be sure to read the general information under “Notices” on page 1329.

Compilation date: June 2, 2012

© Copyright IBM Corporation 2012.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

Contents

How to send your comments . xv

Using this PDF . xvii

Chapter 1. Learn about WebSphere applications: Overview and new features 1
Guided activities for the administrative console . 12
Tutorials . 12
Accessing the samples . 12
Development and assembly tools . 15
WebSphere Application Server architecture . 15

Three-tier architectures . 18

Chapter 2. ActivitySessions . 21
The ActivitySession service . 21

Usage model for using ActivitySessions with HTTP sessions 22
ActivitySession and transaction contexts . 24
ActivitySession and transaction container policies in combination 25
ActivitySession samples . 31
ActivitySession service: Resources for learning . 32

Chapter 3. Application profiling . 35
Application profiling . 35

Tasks and units of work considerations . 36
Application profiles . 37
Application profiling tasks . 38

Chapter 4. Asynchronous beans . 41
Asynchronous beans . 41

Work managers . 44
Timer managers . 50
Example: Using connections with asynchronous beans. 51

Chapter 5. Bean Validation . 53
Bean Validation . 53

Chapter 6. Communications Enabled Applications 57
Communications Enabled Applications concepts . 57

CEA call flow . 58
CEA collaboration flow . 59
CEA iWidgets . 61
Collaboration Dialog . 61
Collaborative two-way forms . 64
REST APIs in CEA . 65
Directory conventions . 72

Chapter 7. Client applications . 77
Types of client applications . 77

Terms used for clients . 80
Application Client for WebSphere Application Server 81
Stand-alone thin clients . 81
Java EE client. 82
Java thin client . 83
Applet client . 84

© Copyright IBM Corp. 2012 iii

ActiveX to Enterprise JavaBeans (EJB) Bridge. 85
Pluggable Application Client . 86

Chapter 8. Data access resources . 87
Data concepts. 87

Relational resource adapters and JCA . 87
JDBC providers . 91
Data sources . 93
Data access beans . 94
Connection management architecture . 95
Data access: Resources for learning . 111
Service Data Objects: Resources for learning. 112

Java Persistence API (JPA) architecture. 112
JPA for WebSphere Application Server . 114
wsjpaversion command . 114
wsjpa properties . 116

Transaction support in WebSphere Application Server 117
Resource manager local transaction (RMLT) . 118
Global transactions . 118
Local transaction containment . 119
Local and global transactions . 123
Client support for transactions . 123
Commit priority for transactional resources. 124
Sharing locks between transaction branches . 126
Transactional high availability . 127
Transaction compensation and business activity support. 134
JTA support . 139
SCA transaction intents . 142

Chapter 9. Dynamic caching . 147
Dynamic cache service eviction policies . 147

Disk cache infrastructure enhancements . 147
Eviction policies using the disk cache garbage collector 148
Example: Caching web services . 149
Caching with Servlet 3.0 . 152

Chapter 10. EJB applications . 153
Enterprise beans . 153
Java EE application resource declarations . 154
Message-driven beans - automatic message retrieval 158

Message-driven beans, activation specifications, and listener ports 159
Message processing in ASF mode and non-ASF mode 161
Message-driven beans - JCA components . 165
J2C activation specification configuration and use 166
Message-driven beans - transaction support . 167
Message-driven beans - listener port components 169

Access intent policies for EJB 2.x entity beans . 171
Concurrency control . 171
Read ahead scheme hints . 172
Database deadlocks caused by lock upgrades . 173
Access intent assembly settings . 174

Java Persistence API (JPA) architecture. 176
JPA for WebSphere Application Server . 177
wsjpaversion command . 177
wsjpa properties . 179

Transaction support in WebSphere Application Server 180

iv Overview

Resource manager local transaction (RMLT) . 181
Global transactions . 181
Local transaction containment . 182
Local and global transactions . 186
Client support for transactions . 186
Commit priority for transactional resources. 187
Sharing locks between transaction branches . 189
Transactional high availability . 190
Transaction compensation and business activity support. 197
JTA support . 202
SCA transaction intents . 205

Chapter 11. IBM WebSphere Application Server Developer Tools for Eclipse overviewVersion
8.5 . 211

Chapter 12. The Liberty profile . 213
Liberty profile: Architecture . 214

Programming model support . 217
Liberty profile externals support . 222

Liberty profile: Server configuration . 223
Liberty profile: Configuration elements in the server.xml file 223

Liberty profile: Feature management . 345
Liberty profile: Server features . 345

Liberty profile: Security . 349
Liberty profile: Quick overview of security . 351
Liberty profile: Authentication . 352
Liberty profile: Authorization . 361
Liberty profile: Security public APIs . 363
Configuration differences between the full profile and Liberty profile: security 367

Chapter 13. Mail, URLs, and other Java EE resources 369
Mail service providers and mail sessions . 369

Mail: Resources for learning . 369
JavaMail support for Internet Protocol 6.0 . 370

URLs . 370
URLs: Resources for learning . 370

Chapter 14. Managed beans . 373
Managed beans . 373

Chapter 15. Messaging resources . 375
Styles of messaging in applications . 375
Types of messaging providers . 376
Default messaging . 378

JCA activation specifications and service integration 379
JMS connection factories and service integration 379
JMS queue resources and service integration . 380
JMS topic resources and service integration . 381
The createQueue or createTopic method and the default messaging provider 383
How JMS applications connect to a messaging engine on a bus. 386

Interoperation with WebSphere MQ . 407
Comparison of WebSphere Application Server and WebSphere MQ messaging 407
Interoperation with WebSphere MQ: Comparison of architectures 408
Interoperation with WebSphere MQ: Comparison of key features 410
Interoperation with WebSphere MQ: Key WebSphere MQ concepts 414
Interoperation using the WebSphere MQ messaging provider 416

Contents v

How messages are passed between service integration and a WebSphere MQ network 442
Interoperation using a WebSphere MQ link . 447
Interoperation using a WebSphere MQ server . 470

Message-driven beans - automatic message retrieval 483
Message-driven beans, activation specifications, and listener ports 485
Message processing in ASF mode and non-ASF mode 486
Message-driven beans - JCA components . 491
J2C activation specification configuration and use 492
Message-driven beans - transaction support . 492
Message-driven beans - listener port components 495

JMS interfaces - explicit polling for messages . 496

Chapter 16. Naming and directory . 499
Naming. 499

Namespace logical view . 499
Initial context support . 502
Lookup names support in deployment descriptors and thin clients 503
JNDI support in WebSphere Application Server . 506
Configured name bindings . 506
Namespace federation . 508
Naming roles . 509
Foreign cell bindings . 511
Naming and directories: Resources for learning . 511

Chapter 17. Object Request Broker (ORB) . 513
Object Request Brokers . 513

Logical pool distribution . 513
Object Request Brokers: Resources for learning. 514

Chapter 18. OSGi applications . 515
An introduction to OSGi Applications . 516

Business goals and OSGi Applications . 516
The modularization challenge . 517
The OSGi Framework . 518
Enterprise OSGi standards . 519
The WebSphere programming model and OSGi . 520

The Blueprint Container. 523
Blueprint bundles . 524
Blueprint XML . 524
Beans and the Blueprint Container. 525
Services and the Blueprint Container . 528
References and the Blueprint Container . 529
Scopes and the Blueprint Container . 531
Object values and the Blueprint Container . 532
Object life cycles and the Blueprint Container. 534
Resource references and the Blueprint Container 535
Dynamism and the Blueprint Container . 536
Type converters and the Blueprint Container . 538
JNDI lookup for blueprint components . 538

OSGi bundles and bundle archives . 540
Enterprise bundle archives . 540
Composite bundles . 543
Application bundles, use bundles and provision bundles 544
Web application bundles . 545
EJB bundles . 547
Bundle and package versioning . 547

vi Overview

Manifest files. 548
Example: OSGi bundle manifest file . 548
Example: OSGi composite bundle manifest file . 550
Example: OSGi application manifest file . 552
OSGi deployment manifest file . 555

Provisioning for OSGi applications . 555
OSGi application isolation and sharing . 557
Java 2 security and OSGi Applications . 558
JMS and OSGi Applications . 559
JPA and OSGi Applications . 560
SCA and OSGi Applications . 562
Transactions and OSGi Applications . 562
Bean security and OSGi applications . 565
Enterprise JavaBeans and OSGi Applications. 567

Chapter 19. Portlet applications . 569
Portlet container . 569

Portlets . 569
Portlet filters . 569
Portlet container . 571

Chapter 20. SCA composites . 573
SCA in WebSphere Application Server: Overview . 573
Learn about SCA composites . 576

SCA components . 578
SCA composites . 579
SCA domain . 580
SCA contributions . 580
Security configurations for SCA applications . 583

Unsupported SCA specification sections. 585

Chapter 21. Service integration . 595
Service integration technologies. 595
Service integration buses . 595
Bus members . 598
Messaging engines . 599

Mechanisms for stopping messaging engines. 600
Message points. 601
Messaging engine communication . 606
Security for messaging engines . 611
Applications with a dependency on messaging engine availability 612

Bus destinations . 613
How JMS destinations relate to service integration destinations 615
Queue destinations . 616
Publish/subscribe messaging and topic spaces . 617
Foreign destinations and alias destinations . 622
Permanent bus destinations . 626
Temporary bus destinations . 627
Exception destinations . 628
Destination mediation . 629
Destination routing paths . 630
Message points. 631
Message ordering . 637
Strict message ordering for bus destinations . 639
Message selection and filtering . 641

Message stores . 642

Contents vii

Relative advantages of a file store and a data store 642
File stores. 643
Data stores . 648
Message store high availability . 652

Service integration security . 655
Service integration security planning . 656
Messaging security and multiple security domains 658
Messaging security . 659
Security event logging . 660
Messaging security audit events . 660
Client authentication on a service integration bus 663
Role-based authorization . 664
Destination security . 665
Mediations security . 666
Topic security . 667
Access control for multiple buses . 669
Message security in a service integration bus. 670

High availability and workload sharing . 671
WebSphere Application Server high availability . 671
Workload sharing . 671
High availability . 691
Service integration high availability and workload sharing configurations 694

Mediations . 722
Mediation handlers and mediation handler lists . 723
Transactionality in mediations . 725
Performance tuning for mediations. 725
Performance monitoring for mediations . 726
Concurrent mediations . 726
Mediation points . 726
Mediation context information . 727
Mediations security . 727
Mediation application installation . 728
Mediation programming . 729

Service integration configurations . 731
Bus configurations. 732
Bootstrap members . 761

Service integration notification events . 762
Message reliability levels - JMS delivery mode and service integration quality of service 763
Dynamic reloading of configuration files . 766
Service integration backup. 767

Chapter 22. Session Initiation Protocol (SIP) applications 769
SIP in WebSphere Application Server . 769

SIP applications . 770
SIP container . 783
SIP converged proxy . 783
SIP high availability . 784

Chapter 23. Spring applications . 791
Spring Framework. 791

Presentation layer and the Spring Framework . 791
Data access and the Spring Framework. 791
Transaction support and the Spring Framework . 793
JMX and MBeans with the Spring Framework . 795
JMS and the Spring Framework. 796
Class loaders and the Spring Framework . 797

viii Overview

Thread management and the Spring Framework 797

Chapter 24. Transactions . 799
Transaction support in WebSphere Application Server 799

Resource manager local transaction (RMLT) . 800
Global transactions . 800
Local transaction containment . 801
Local and global transactions . 805
Client support for transactions . 805
Commit priority for transactional resources. 806
Sharing locks between transaction branches . 808
Transactional high availability . 809
Transaction compensation and business activity support. 816
JTA support . 821
SCA transaction intents . 824

Chapter 25. Work area. 829
Overview of work area service . 829

Work area property modes . 830
Nested work areas . 831
Distributed work areas . 832
WorkArea service: Special considerations . 833

Chapter 26. Web applications . 835
Learn about web applications . 835

Web applications . 835
Asynchronous request dispatcher . 847

Sessions . 853
Session management support . 853
Distributed sessions . 854
Memory-to-memory replication . 854
Memory-to-memory session partitioning . 858
Clustered session support . 859
Scheduled invalidation . 859
Base in-memory session pool size. 860
HTTP session invalidation . 861
Write operations . 861
HTTP sessions: Resources for learning . 862

Asynchronous request dispatcher . 862
Asynchronous request dispatcher . 862

Chapter 27. Web services . 869
Overview: Online garden retailer web services scenarios 869

Web services online garden retailer scenario: Static inquiry on supplier 872
Web services online garden retailer scenario: Dynamic inquiry on supplier 874
Web services online garden retailer scenario: Cross supplier inquiry 876

Service-oriented architecture . 879
Web services approach to a service-oriented architecture 879
Web services business models supported in SOA 881

Web services . 882
Web Services for Java EE specification . 883
Artifacts used to develop web services . 885
WSDL . 886
SOAP . 889
JAX-WS . 901
JAXB . 921

Contents ix

JAX-RPC . 923
WS-I Basic Profile . 925
WS-I Attachments Profile . 927

Overview of IBM JAX-RS . 927
Web Services Addressing support . 928

Web Services Addressing overview . 931
Web Services Addressing version interoperability 937
Web Services Addressing application programming model 938
Web Services Addressing annotations . 939
Web Services Addressing security . 941
Web Services Addressing: firewalls and intermediary nodes 941
Web Services Addressing and the service integration bus 946
Web Services Addressing APIs . 947
IBM proprietary Web Services Addressing SPIs . 950

Web Services Resource Framework support . 955
Web Services Resource Framework base faults . 957
Web Services Resource Framework resource property and lifecycle operations 960

Web Services Distributed Management . 963
Web Services Distributed Management resource management 965
Web Services Distributed Management manageability capabilities for WebSphere Application

Server resource types . 965
Web Services Distributed Management support in the application server. 972
Web Services Distributed Management in a stand-alone application server instance 973
Web Services Distributed Management in a WebSphere Application Server, Network Deployment

cell . 974
Web Services Distributed Management in an administrative agent environment 975
Notifications from the application server Web Services Distributed Management resources 976

Web Services Invocation Framework (WSIF) . 977
Goals of WSIF . 978
WSIF Overview. 979

WS-Policy. 982
Web service providers and policy configuration sharing 983
Web service clients and policy configuration to use the service provider policy 985
WS-MetadataExchange requests . 988

WS-ReliableMessaging . 990
WS-ReliableMessaging - How it works . 990
Benefits of using WS-ReliableMessaging . 991
Qualities of service for WS-ReliableMessaging . 991
Use patterns for WS-ReliableMessaging . 993
WS-ReliableMessaging sequences . 996
WS-ReliableMessaging - terminology . 997
WS-ReliableMessaging: supported specifications and standards 998
WS-ReliableMessaging roles and goals . 1000
WS-ReliableMessaging - requirements for interaction with other implementations 1001

WS-Transaction . 1002
Web Services Atomic Transaction support in the application server 1002
Web Services Business Activity support in the application server 1006
Web services transactions, high availability, firewalls and intermediary nodes 1008
Transaction compensation and business activity support 1011
WS-Transaction and mixed-version cells . 1016
Business activity API . 1017

Overview of the Version 3 UDDI registry . 1019
Databases and production use of the UDDI registry 1022
UDDI registry terminology . 1022

Web Services Security concepts . 1025
What is new for securing web services. 1025

x Overview

Web Services Security configuration considerations 1053
Default bindings and runtime properties for Web Services Security 1055
Web Services Security provides message integrity, confidentiality, and authentication 1057

Chapter 28. XML applications . 1131
Overview of XML support. 1131

XSLT 2.0, XPath 2.0, and XQuery 1.0 major new functions 1131
Overview of the XML Samples application . 1133
Building and running a sample XML application . 1136

Chapter 29. What is new in this release . 1139

Chapter 30. Overview and new features for administering applications and their environments 1147
What is new for administrators . 1147
Introduction: System administration . 1147

Welcome to basic administrative architecture . 1148
Introduction: Administrative console . 1150
Introduction: Administrative scripting (wsadmin) 1151
Introduction: Administrative commands . 1152
Introduction: Administrative programs . 1152
Introduction: Administrative configuration data . 1152

Introduction: Environment . 1152
Introduction: Cell-wide settings. 1153
Heterogeneous cells in mixed platforms within a cell 1153

Introduction: Application servers . 1153
Introduction: Application servers . 1154
Introduction: Web servers . 1155
Introduction: Clusters . 1156

Mail, URLs, and other J2EE resources . 1158
Data access resources . 1159
Messaging resources . 1159

Chapter 31. Overview and new features for securing applications and their environment 1161
Security . 1161
What is new for security specialists . 1169
What is new for securing web services. 1169
Security planning overview . 1172
Security considerations when registering a base Application Server node with the administrative

agent . 1182
Security considerations when adding a base Application Server node to WebSphere Application

Server, Network Deployment . 1183
Security: Resources for learning . 1184
Common Criteria (EAL4) support . 1185
Federal Information Processing Standard support . 1186

Chapter 32. Overview and new features for developing applications 1189
What is new for developers . 1189
What is new for deployers . 1190
Learn about WebSphere applications: Overview and new features 1190

Specifications and API documentation . 1200
Introduction: Web services . 1215
Introduction: Messaging resources . 1216
Introduction: Dynamic cache . 1217
Learn about SIP applications . 1219

Learn about WebSphere programming extensions 1220
Introduction: Dynamic cache . 1221

Contents xi

Accessing the samples . 1223
Mail, URLs, and other J2EE resources. 1226
Data access resources . 1226
Messaging resources . 1227

Chapter 33. Overview and new features for monitoring 1229
Performance: Resources for learning . 1229

Chapter 34. Overview and new features for tuning performance 1231

Chapter 35. Overview and new features for troubleshooting 1233
What is new for troubleshooters . 1234

Chapter 36. What has changed in this release . 1235
Transitioning notes for administration topics . 1235
Transitioning notes for development topics . 1236
Transitioning notes for deployment topics . 1237
Transitioning notes for security topics . 1237

Chapter 37. WebSphere Application Server roles and goals 1239

Chapter 38. Fast paths for WebSphere Application Server 1241

Chapter 40. WebSphere platform and related software 1245

Chapter 41. Guided activities for the administrative console 1247

Chapter 42. Tutorials . 1249

Chapter 43. Accessing the samples . 1251

Chapter 44. Using the administrative clients . 1255

Chapter 45. Specifications and API documentation 1257

Chapter 46. WebSphere Application Server architecture 1273
Three-tier architectures . 1276

Chapter 47. Deprecated, stabilized, and removed features 1279
Deprecated features . 1279

Features deprecated in Version 8.5 . 1280
Features deprecated in Version 8.0.0.1 . 1283
Features deprecated in Version 8.0 . 1285
Features deprecated in Version 7.0 . 1290
Features deprecated in Version 6.1 . 1294
Features deprecated in Version 6.0.2 . 1298
Features deprecated in Version 6.0 . 1298
Features deprecated in Version 5.1.1 . 1302
Features deprecated in Version 5.1 . 1302
Features deprecated in Version 5.0.2 . 1306
Features deprecated in Version 5.0.1 . 1308
Features deprecated in Version 5.0 . 1310

Stabilized features . 1312
Removed features . 1314

Features removed in Version 8.5 . 1314
Features removed in Version 8.0 . 1316

xii Overview

Features removed in Version 7.0 . 1318
Features removed in Version 6.1 . 1320
Features removed in Version 6.0 . 1321

Chapter 48. Development and assembly tools . 1323

Chapter 49. Web resources for learning . 1325

Notices . 1329

Trademarks and service marks . 1331

Index . 1333

Contents xiii

xiv Overview

How to send your comments

Your feedback is important in helping to provide the most accurate and highest quality information.

v To send comments on articles in the WebSphere Application Server Information Center

1. Display the article in your Web browser and scroll to the end of the article.

2. Click on the Feedback link at the bottom of the article, and a separate window containing an email
form appears.

3. Fill out the email form as instructed, and submit your feedback.

v To send comments on PDF books, you can email your comments to: wasdoc@us.ibm.com.

Your comment should pertain to specific errors or omissions, accuracy, organization, subject matter, or
completeness of this book. Be sure to include the document name and number, the WebSphere
Application Server version you are using, and, if applicable, the specific page, table, or figure number
on which you are commenting.

For technical questions and information about products and prices, please contact your IBM branch office,
your IBM business partner, or your authorized remarketer. When you send comments to IBM, you grant
IBM a nonexclusive right to use or distribute your comments in any way it believes appropriate without
incurring any obligation to you. IBM or any other organizations will only use the personal information that
you supply to contact you about your comments.

© Copyright IBM Corp. 2012 xv

xvi Overview

Using this PDF

Links

Because the content within this PDF is designed for an online information center deliverable, you might
experience broken links. You can expect the following link behavior within this PDF:

v Links to Web addresses beginning with http:// work.

v Links that refer to specific page numbers within the same PDF book work.

v The remaining links will not work. You receive an error message when you click them.

Print sections directly from the information center navigation

PDF books are provided as a convenience format for easy printing, reading, and offline use. The
information center is the official delivery format for IBM WebSphere Application Server documentation. If
you use the PDF books primarily for convenient printing, it is now easier to print various parts of the
information center as needed, quickly and directly from the information center navigation tree.

To print a section of the information center navigation:

1. Hover your cursor over an entry in the information center navigation until the Open Quick Menu icon
is displayed beside the entry.

2. Right-click the icon to display a menu for printing or searching your selected section of the navigation
tree.

3. If you select Print this topic and subtopics from the menu, the selected section is launched in a
separate browser window as one HTML file. The HTML file includes each of the topics in the section,
with a table of contents at the top.

4. Print the HTML file.

For performance reasons, the number of topics you can print at one time is limited. You are notified if your
selection contains too many topics. If the current limit is too restrictive, use the feedback link to suggest a
preferable limit. The feedback link is available at the end of most information center pages.

© Copyright IBM Corp. 2012 xvii

xviii Overview

Chapter 1. Learn about WebSphere applications: Overview
and new features

Use the Learn about WebSphere applications section as a starting point to study the programing model,
encompassing the many parts used in and by various application types supported by the application
server.

The programming model for applications deployed on this product has the following aspects.

v Java specifications and other open standards for developing applications

v WebSphere® programming model extensions to enhance application functionality

v Containers and services in the application server, used by deployed applications, and which sometimes
can be extended

The diagram shows a single application server installation. The parts pertaining to the programming model
are discussed here. Other parts comprise the product architecture, independent of the various application
types outlined by the programming model. See “WebSphere Application Server architecture” on page 15.

© IBM Corporation 2003 1

Java EE application components

The product supports application components that conform to Java Platform, Enterprise Edition (Java EE)
specifications.

Web applications run in the web container

2 Overview

The web container is the part of the application server in which web application components run.
Web applications are comprised of one or more related servlets, JavaServer Pages technology
(JSP files), and Hyper Text Markup Language (HTML) files that you can manage as a unit.
Combined, they perform a business logic function.

The web container processes servlets, JSP files, and other types of server-side includes. Each
application server runtime has one logical web container, which can be modified, but not created
or removed. Each web container provides the following.

Web container transport chains
Requests are directed to the web container using the web container inbound transport
chain. The chain consists of a TCP inbound channel that provides the connection to the
network, an HTTP inbound channel that serves HTTP requests, and a web container
channel over which requests for servlets and JSP files are sent to the web container for
processing.

Servlet processing
When handling servlets, the web container creates a request object and a response
object, then invokes the servlet service method. The web container invokes the servlet's
destroy method when appropriate and unloads the servlet, after which the JVM performs
garbage collection.

Servlets can perform such tasks as supporting dynamic web page content, providing
database access, serving multiple clients at one time, and filtering data.

JSP files enable the separation of the HTML code from the business logic in web pages.
IBM® extensions to the JSP specification make it easy for HTML authors to add the power
of Java technology to web pages, without being experts in Java programming.

HTML and other static content processing
Requests for HTML and other static content that are directed to the web container are
served by the web container inbound chain. However, in most cases, using an external
web server and web server plug-in as a front end to the web container is more appropriate
for a production environment.

Session management
Support is provided for the javax.servlet.http.HttpSession interface as described in the
Servlet application programming interface (API) specification.

An HTTP session is a series of requests to a servlet, originating from the same user at the
same browser. Sessions allow applications running in a web container to keep track of
individual users. For example, many web applications allow users to dynamically collect
data as they move through the site, based on a series of selections on pages they visit.
Where the user goes next, or what the site displays next, might depend on what the user
has chosen previously from the site. To maintain this data, the application stores it in a
“session”.

SIP applications and their container

SIP applications are Java programs that use at least one Session Initiation Protocol (SIP)
servlet. SIP is used to establish, modify, and terminate multimedia IP sessions including IP
telephony, presence, and instant messaging.

Portlet applications and their container

Portlet applications are special reusable Java servlets that appear as defined regions on
portal pages. Portlets provide access to many different applications, services, and web
content.

EJB applications run in the EJB container

The EJB container provides all of the runtime services needed to deploy and manage enterprise
beans. It is a server process that handles requests for both session and entity beans.

Chapter 1. Learn about WebSphere applications: Overview and new features 3

Enterprise beans are Java components that typically implement the business logic of Java EE
applications, as well as accessing data. The enterprise beans, packaged in EJB modules, installed
in an application server do not communicate directly with the server. Instead, the EJB container is
an interface between EJB components and the application server. Together, the container and the
server provide the enterprise bean runtime environment.

The container provides many low-level services, including threading and transaction support. From
an administrative perspective, the container handles data access for the contained beans. A single
container can host more than one EJB Java archive (JAR) file.

Client applications and other types of clients

In a client-server environment, clients communicate with applications running on the server. Client
applications or application clients generally refers to clients implemented according to a particular set of
Java specifications, and which run in the client container of a Java EE-compliant application server. Other
clients in the WebSphere Application Server environment include clients implemented as web applications
(web clients), clients of web services programs (web services clients), and clients of the product systems
administration (administrative clients).

Client applications and their container
The client container is installed separately from the application server, on the client machine. It
enables the client to run applications in an EJB-compatible Java EE environment. The diagram
shows a Java client running in the client container.

This product provides a convenient launchClient tool for starting the application client, along with
its client container runtime.

Depending on the source of technical information, client applications sometimes are called
application clients. In this documentation, the two terms are synonymous.

Web clients, known also as web browser clients
The diagram shows a web browser client, which can be known simply as a web client, making a
request to the web container of the application server. A web client or web browser client runs in a
web browser, and typically is a web application.

Web services clients
Web services clients are yet another kind of client that might exist in your application serving
environment. The diagram does not depict a web services client. The web services information
includes information about this type of client.

Administrative clients
The diagram shows two kinds of administrative clients: a scripting client and the administrative
console that is the graphical user interface (GUI) for administering this product. Both are accessing
parts of the systems administration infrastructure. In the sense that they are basically the same for
whatever kind of applications you are deploying on the server, administrative clients are part of the
product architecture. However, because many of these clients are programs you create, they are
discussed as part of the programming model for completeness.

Web services

Web services
The diagram shows the web services engine, part of the web services support in the application
server runtime. Web services are self-contained, modular applications that can be described,
published, located, and invoked over a network. They implement a service-oriented architecture
(SOA), which supports the connecting or sharing of resources and data in a flexible and
standardized manner. Services are described and organized to support their dynamic, automated
discovery and reuse.

4 Overview

The product acts as both a web services provider and as a requestor. As a provider, it hosts web
services that are published for use by clients. As a requester, it hosts applications that invoke web
services from other locations. The diagram shows the web services engine in this capacity,
contacting a web services provider or gateway.

SCA composites

Service Component Architecture (SCA)
SCA composites consist of components that implement business functions in the form of services.

Data access, messaging, and Java EE resources

Data access resources
Connection management for access to enterprise information systems (EIS) in the application
server is based on the Java EE Connector Architecture (JCA) specification. The diagram shows
JCA services helping an application to access a database in which the application retrieves and
persists data.

The connection between the enterprise application and the EIS is done through the use of
EIS-provided resource adapters, which are plugged into the application server. The architecture
specifies the connection management, transaction management, and security contracts between
the application server and EIS.

The Connection Manager (not shown) in the application server pools and manages connections. It
is capable of managing connections obtained through both resource adapters defined by the JCA
specification and data sources defined by the JDBC 2.0 Extensions specification.

JDBC resources (JDBC providers and data sources) are a type of Java EE resource used by
applications to access data. Although data access is a broader subject than that of JDBC
resources, this information often groups data access under the heading of Java EE resources for
simplicity.

JCA resource adapters are another type of Java EE resource used by applications. The JCA
defines the standard architecture for connecting the Java EE platform to heterogeneous EIS.
Imagine an ERP, mainframe transaction processing, database systems, and legacy applications
not written in the Java programming language.

The JCA resource adapter is a system-level software driver supplied by EIS vendors or other
third-party vendors. It provides the connectivity between Java EE application servers or clients and
an EIS. To use a resource adapter, install the resource adapter code and create configurations
that use that adapter. The product provides a predefined relational resource adapter for your use.

Messaging resources and messaging engines
JMS support enables applications to exchange messages asynchronously with other JMS clients
by using JMS destinations (queues or topics). Applications can use message-driven beans to
automatically retrieve messages from JMS destinations and JCA endpoints without explicitly polling
for messages.

For inbound non-JMS requests, message-driven beans use a Java EE Connector Architecture
(JCA) 1.5 resource adapter written for that purpose. For JMS messaging, message-driven beans
can use a JCA-based messaging provider such as the default messaging provider that is part of
the product.

The messaging engine supports the following types of message providers.

Default messaging provider (service integration bus)
The default messaging provider uses the service integration bus for transport. The default
message provider provides point-to-point functions, as well as publish and subscribe
functions. Within this provider, you define JMS connection factories and destinations that
correspond to service integration bus destinations.

Chapter 1. Learn about WebSphere applications: Overview and new features 5

WebSphere MQ provider
You can use WebSphere MQ as the external JMS provider. The application server
provides the JMS client classes and administration interface, while WebSphere MQ
provides the queue-based messaging system.

Generic JMS provider
You can use another messaging provider as long as it implements the ASF component of
the JMS 1.0.2 specification. JMS resources for this provider cannot be configured using
the administrative console.

transition: Version 6 replaces the Version 5 concept of a JMS server with a messaging engine
built into the application server, offering the various kinds of providers mentioned
previously. The Version 5 messaging provider is offered for configuring resources for
use with Version 5 embedded messaging. You also can use the Version 5 default
messaging provider with a service integration bus.

EJB 2.1 introduces an ActivationSpec for connecting message-driven beans to
destinations. For compatibility with Version 5, you still can configure JMS
message-driven beans (EJB 2.0) against a listener port. For those message-driven
beans, the message listener service provides a listener manager that controls and
monitors one or more JMS listeners, each of which monitors a JMS destination on
behalf of a deployed message-driven bean.

Service integration bus

The service integration bus provides a unified communication infrastructure for messaging and
service-oriented applications. The service integration bus is a JMS provider that provides reliable
message transport and uses intermediary logic to adapt message flow intelligently into the
network. It supports the attachment of web services requestors and providers. Its capabilities are
fully integrated into product architecture, including the security, system administration, monitoring,
and problem determination subsystems.

The service integration bus is often referred to as just a bus. When used to host JMS applications,
it is often referred to as a messaging bus. It consists of the following parts (not shown at this level
of detail in the diagram).

Bus members
Application servers added to the bus.

Messaging engine
The component that manages bus resources. It provides a connection point for clients to
produce or from where to consume messages.

Destinations
The place within the bus to which applications attach to exchange messages. Destinations
can represent web services endpoints, messaging point-to-point queues, or messaging
publish and subscribe topics. Destinations are created on a bus and hosted on a
messaging engine.

Message store
Each messaging engine uses a set of tables in a supported data store (such as a JDBC
database) to hold information such as messages, subscription information, and transaction
states.

Through the service integration bus web services enablement, you can:

v Make an internal service that is already available at a service destination available as a web
service.

v Make an external web service available at a service destination.

v Use the web services gateway to map an existing service, either an internal service or an
external web service, to a new web service that appears to be provided by the gateway.

6 Overview

Mail, URLs, and other Java EE resources
The following kinds of Java EE resources are used by applications deployed on a J2EE-compliant
application server.

v JDBC resources and other technology for data access (previously discussed)

v JCA resource adapters (previously discussed)

v JMS resources and other messaging support (previously discussed)

v JavaMail support, for applications to send Internet mail

The JavaMail APIs provide a platform and protocol-independent framework for building
Java-based mail client applications. The APIs require service providers, known as protocol
providers, to interact with mail servers that run on the appropriate protocols.

A mail provider encapsulates a collection of protocol providers, including Simple Mail Transfer
Protocol (SMTP) for sending mail; Post Office Protocol (POP) for receiving mail; and Internet
Message Access Protocol (IMAP) as another option for receiving mail. To use another protocol,
you must install the appropriate service provider for the protocol.

JavaMail requires not only service providers, but also the JavaBeans Activation Framework
(JAF), as the underlying framework to handle complex data types that are not plain text, such
as Multipurpose Internet Mail Extensions (MIME), URL pages, and file attachments.

v URLs, for describing logical locations

URL providers implement the functionality for a particular URL protocol, such as HTTP, enabling
communication between the application and a URL resource that is served by a particular
protocol. A default URL provider is included for use by any URL resource with protocols based
on the supported Java Platform, Standard Edition (Java SE) specification, such as HTTP, FTP,
or File. You also can plug in your own URL providers that implement additional protocols.

v Resource environment entries, for mapping logical names to physical names

The java:comp/env environment provides a single mechanism by which both the JNDI name
space objects and local application environment objects can be looked up. The product provides
numerous local environment entries by default.

The Java EE specification also provides a mechanism for defining customer environment entries
by defining entries in the standard deployment descriptor of an application. The Java EE
specification uses the following methods to separate the definition of the resource environment
entry from the application.

– Requiring the application server to provide a mechanism for defining separate administrative
objects that encapsulate a resource environment entry. The administrative objects are
accessible using JNDI in the application server local name space (java:comp/env).

– Specifying the administrative object's JNDI lookup name and expected returned object type.
This specification is performed in the aforementioned resource environment entry in the
deployment descriptor.

The product supports the use of resource environment entries with the following administrative
concepts.

– A resource environment entry defines the binding target (JNDI name), factory class, and
return object type (via the link to a referenceable) of the resource environment entry.

– A referenceable defines the class name of the factory that returns object instances
implementing a Java interface.

– A resource environment provider groups together the referenceable, resource environment
entries and any required custom properties.

Security

Security programming model and infrastructure
The product provides security infrastructure and mechanisms to protect sensitive Java EE

Chapter 1. Learn about WebSphere applications: Overview and new features 7

resources and administrative resources and to address enterprise end-to-end security
requirements on authentication, resource access control, data integrity, confidentiality, privacy, and
secure interoperability.

Security infrastructure and mechanisms protect Java Platform, Enterprise Edition (Java EE)
resources and administrative resources, addressing your enterprise security requirements. In turn,
the security infrastructure of this product works with the existing security infrastructure of your
multiple-tier enterprise computing framework. Based on open architecture, the product provides
many plug-in points to integrate with enterprise software components to provide end-to-end
security.

The security infrastructure involves both a programming model and elements of the product
architecture that are independent of the application type.

Additional services for use by applications

Naming and directory
Each application server provides a naming service that in turn provides a Java Naming and
Directory Interface (JNDI) name space. The service is used to register resources hosted on the
application server. The JNDI implementation is built on top of a Common Object Request Broker
Architecture (CORBA) naming service (CosNaming).

JNDI provides the client-side access to naming and presents the programming model used by
application developers. CosNaming provides the server-side implementation and is where its name
space is actually stored. JNDI essentially provides a client-side wrapper of the name space stored
in CosNaming, and interacts with the CosNaming server on behalf of the client.

Clients of the application server use the naming architecture to obtain references to objects related
to those applications. The objects are bound into a mostly hierarchical structure called the name
space. It consists of a set of name bindings, each one of which is a name relative to a specific
context and the object bound with that name. The name space can be accessed and manipulated
through a name server.

This product provides the following naming and directory features.

v Distributed name space, for additional scalability

v Transient and persistent partitions, for binding at various scopes

v Federated name space structure across multiple servers

v Configured bindings for defining bindings bound by the system at server startup

v Support for CORBA Interoperable Naming Service (INS) object URLs

Note that with the addition of virtual member manager to provide federated repository support for
product security, the product now offers more extensive and sophisticated identity management
capabilities than ever before, especially in combination with other WebSphere and Tivoli® products.

Object Request Broker (ORB)
The product uses an ORB to manage interaction between client applications and server
applications, as well as among product components. An ORB uses IIOP to enable clients to make
requests and receive requests from servers in a network distributed environment.

The ORB provides a framework for clients to locate objects in the network and call operations on
those objects as though the remote objects were located in the same running process as the
client, providing location transparency.

Although not shown in the diagram, one place in which the ORB comes into play is where the
client container is contacting the EJB container on behalf of a Java client.

Transactions
Part of the application server is the transaction service. The product provides advanced
transactional capabilities to help application developers avoid custom coding. It provides support

8 Overview

for the many challenges related to integrating existing software assets with a Java EE
environment. These measures include ActivitySessions (described below).

Applications running on the server can use transactions to coordinate multiple updates to
resources as one unit of work such that all or none of the updates are made permanent.
Transactions are started and ended by applications or the container in which the applications are
deployed.

The application server is a transaction manager that supports coordination of resource managers
and participates in distributed global transactions with other compliant transaction managers.

The server can be configured to interact with databases, JMS queues, and JCA connectors
through their local transaction support when distributed transaction support is not required.

How applications use transactions depends on the type of application, for example:

v A session bean either can manage its transactions itself, or delegate the management of
transactions to the container.

v Entity beans use container-managed transactions.

v Web components, such as servlets, use bean-managed transactions.

The product handles transactions with the following components.

v A transaction manager supports the enlistment of recoverable XAResources and ensures each
resource is driven to a consistent outcome, either at the end of a transaction, or after a failure
and restart of the application server.

v A container manages the enlistment of XAResources on behalf of deployed applications when it
performs updates to transactional resource managers such as databases. Optionally, the
container can control the demarcation of transactions for EJB applications that have enterprise
beans configured for container-managed transactions.

v An API handles bean-managed enterprise beans and servlets, allowing such application
components to control the demarcation of their own transactions.

WebSphere extensions

WebSphere programming model extensions are the programming model benefits you gain by purchasing
this product. They represent leading edge technology to enhance application capability and performance,
and make programming and deployment faster and more productive.

In addition, your applications can use the Eclipse extension framework. Your applications are extensible as
soon as you define an extension point and provide the extension processing code for the extensible area
of the application. You can also plug an application into another extensible application by defining an
extension that adheres to the target extension point requirements. The extension point can find the newly
added extension dynamically and the new function is seamlessly integrated in the existing application. It
works on a cross Java Platform, Enterprise Edition (Java EE) module basis. The application extension
registry uses the Eclipse plug-in descriptor format and application programming interfaces (APIs) as the
standard extensibility mechanism for WebSphere applications. Developers who build WebSphere
application modules can use WebSphere Application Server extensions to implement Eclipse tools and to
provide plug-in modules to contribute functionality such as actions, tasks, menu items, and links at
predefined extension points in the WebSphere application. For more information about this feature, see
Application extension registry.

The various WebSphere programming model extensions, and the corresponding application services that
support them in the application server runtime, can be considered in three groups: Business Object Model
extensions, Business Process Model extensions, and extensions for producing Next Generation
Applications.

Extensions pertaining to the Business Object Model

Chapter 1. Learn about WebSphere applications: Overview and new features 9

Business object model extensions operate with business objects, such as enterprise bean (EJB)
applications.

Application profiling
Application profiling is a WebSphere extension for defining strategies to dynamically control
concurrency, prefetch, and read-ahead.

Application profiling and access intent provide a flexible method to fine-tune application
performance for enterprise beans without impacting source code. Different enterprise beans, and
even different methods in one enterprise bean, can have their own intent to access resources.
Profiling the components based on their access intent increases performance in the application
server runtime.

Dynamic query
Dynamic query is a WebSphere programming extension for unprecedented application flexibility. It
lets you dynamically build and submit queries that select, sort, join, and perform calculations on
application data at runtime. Dynamic Query service provides the ability to pass in and process EJB
query language queries at runtime, eliminating the need to hard-code required queries into
deployment descriptors during application development.

Dynamic query improves enterprise beans by enabling the client to run custom queries on EJB
components during runtime. Until now, EJB lookups and field mappings were implemented at
development time and required further development or reassembly in order to be changed.

Dynamic cache
The dynamic cache service improves performance by caching the output of servlets, commands,
and JSP files. This service within the application server intercepts calls to cacheable objects and
either stores the output of the object or serves the content of the object from the dynamic cache.

Because Java EE applications have high read-write ratios and can tolerate small degrees of
latency in the currency of their data, the dynamic cache can create opportunity for significant gains
in server response time, throughput, and scalability.

Features include cache replication among clusters, cache disk offload, Edge side include caching,
and external caching - the ability to control caches outside of the application server, such as that
of your Web server.

Extensions pertaining to the Business Process Model

Business process model extensions provide process, workflow functionality, and services for the
application server. Use them in conjunction with business integration capabilities.

ActivitySessions
ActivitySessions are a WebSphere extension for reducing the complexity of dealing with
commitment rules and limitations associated with one-phase commit resources.

ActivitySessions provide the ability to extend the scope of multiple local transactions, and to group
them. This enables them to be committed based on deployment criteria or through explicit program
logic.

Web services
Web services are self-contained, modular applications that can be described, published, located,
and invoked over a network. They implement a services oriented architecture (SOA), which
supports the connecting or sharing of resources and data in a very flexible and standardized
manner. Services are described and organized to support their dynamic, automated discovery and
reuse.

Extensions for creating next generation applications

10 Overview

Next generation extentions can be used in applications that need the specific extensions. These enable
next generation development by leveraging the latest innovations that build on today's Java EE standards.
This provides greater control over application development, execution, and performance than was ever
possible before.

Asynchronous beans
Asynchronous beans offer performance enhancements for resource-intensive tasks by enabling
single tasks to run as multiple tasks. Asynchronous scheduling facilities can also be used to
process parallel processing requests in “batch mode” at a designated time. The product provides
full support for asynchronous execution and invocation of threads and components within the
application server. The application server provides execution and security context for the
components, making them an integral part of the application.

Startup beans
Startup beans allow the automatic execution of business logic when the application server starts or
stops. For example, they might be used to pre-fill application-specific caches, initialize
application-level connection pools, or perform other application-specific initialization and
termination procedures.

Object pools
Object pools provide an effective means of improving application performance at runtime, by
allowing multiple instances of objects to be reused. This reuse reduces the overhead associated
with instantiating, initializing, and garbage-collecting the objects. Creating an object pool allows an
application to obtain an instance of a Java object and return the instance to the pool when it has
finished using it.

Internationalization
The internationalization service is a WebSphere extension for improving developer productivity. It
allows you to automatically recognize the time zone and location information of the calling client,
so that your application can act appropriately. The technology enables you to deliver each user,
around the world, the right date and time information, the appropriate currencies and languages,
and the correct date and decimal formats.

Scheduler
The scheduler service is a WebSphere programming extension responsible for starting actions at
specific times or intervals. It helps minimize IT costs and increase application speed and
responsiveness by maximizing utilization of existing computing resources. The scheduler service
provides the ability to process workloads using parallel processing, set specific transactions as
high priority, and schedule less time-sensitive tasks to process during low traffic off-hours.

Work areas
Work areas are a WebSphere extension for improving developer productivity. Work areas provide
a capability much like that of “global variables”. They provide a solution for passing and
propagating contextual information between application components.

Work areas enable efficient sharing of information across a distributed application. For example,
you might want to add profile information as each customer enters your application. By placing this
information in a work area, it will be available throughout your application, eliminating the need to
hand-code a solution or to read and write information to a database.

Chapter 1. Learn about WebSphere applications: Overview and new features 11

Guided activities for the administrative console
The topic describes the guided activities that are available in the administrative console. Guided activities
lead you through common administrative tasks that require you to visit multiple administrative console
pages.

Table 1. Quick reference: Accessing the guided activities. The following table gives you the web address for the
guided activities in the administrative console.

The guided activities are available from the main page of the administrative console. The page is displayed after you
log into the administrative console. To open the console, enter this web address in your web browser:

http://your_fully_qualified_server_name:9060/ibm/console

Depending on your configuration, your web address might differ. Other factors can affect your ability to access the
console. See Starting and logging off the administrative console for details, as needed.

Guided activities display each administrative console page that you need to perform a task, surrounded by
the following information to help you perform the task successfully.

v An introduction to the task, introducing essential concepts and describing when and why to perform the
task

v Other tasks to do before and after performing the task

v The main steps to complete during this task

v Hints and tips to help you avoid and recover from problems

v Links to field descriptions and extended task information in the online documentation

Tutorials
This topic describes how to find tutorials and their accompanying samples, for learning how to accomplish
your goals with the product.

IBM Education Assistant tutorials
The IBM Education Assistant site provides education resources that you can use at your
convenience.

developerWorks tutorials and training
The Tutorials and Training page of developerWorks provides tutorials and other training resources
that you can use at your convenience.

Accessing the samples
The product offers samples that demonstrate common enterprise application tasks. Many samples also
provide instructions for deployment and coding examples.

The product provides samples in two ways:

Plants By WebSphere sample installed with the product
If you select to install samples when installing the product and when creating an application server
profile, the Plants By WebSphere application is included with the product. The application
demonstrates several Java Platform, Enterprise Edition (Java EE) functions, using an online store
that specializes in plant and garden tool sales.

See Installing the Plants By WebSphere sample.

Samples downloadable from the Samples, Version 8.5 information center
The product provides component-specific samples that you can download at any time from a
download site.

v Available samples

12 Overview

http://publib.boulder.ibm.com/infocenter/ieduasst/v1r1m0/index.jsp
http://www.ibm.com/developerworks/training/tutorials.html

v Downloading samples

Installing the Plants By WebSphere sample

To install the Plants By WebSphere sample, perform the following steps.

1. Install the product.

When specifying installation or profile options, select to install the sample applications.

Plants By WebSphere sample is installed in the app_server_root/samples directory. A Plants By
WebSphere pre-built enterprise archive named pbw-ear.ear is in the /samples/PlantsByWebSphere/
pbw-ear/target directory.

Installation instructions are in the /samples/PlantsByWebSphere/docs directory.

You can build or modify the sample source code to support your project. The source code is in a src
directory.

2. To run the sample in a distributed WebSphere Application Server, Network Deployment environment,
install and configure the samples in a stand-alone application server profile installation, and then add
the stand-alone application server profile as a managed node of the deployment manager cell.

You can use a deployment manager administrative console or wsadmin addNode command to make an
application server a managed node of a deployment manager. For the wsadmin addNode command,
use the dmgr_host argument with the -includeapps and -includebuses options.

For example:
addNode.sh/bat dmgr_hostname -includeapps -includebuses

where dmgr_hostname is name of the computer that hosts your deployment manager profile.

3. Start the application server.

Available samples

Samples that you can download include, for example, the following materials:

Service Component Architecture (SCA) samples
The SCA samples support SCA specifications. SCA services are packaged in Java archive (JAR)
files that you import as assets to the product repository and then add as composition units to
business-level applications.

Download SCA.zip, or individual sample files, to a directory on your workstation. You might create
the /samples/sca directory path on your workstation and download SCA sample files to that
directory path.

You must deploy SCA sample files as assets of a business-level application to a Version 8.0 or
later server or cluster or to a Version 7.0 target that is enabled for the Feature Pack for SCA. The
SCA/installableApps directory of SCA.zip contains prebuilt archives that you can deploy as
assets. The other directories contain sample-specific source files, scripts, and instructions for
building deployable archives.

Communications Enabled Applications (CEA) samples
The CEA sample applications provide two main services, telephony access and multi-modal web
interaction. Use this collection of sample applications to explore the services and to use as a
starting point when developing your own communication enabled applications.

OSGi samples
The OSGi samples help you develop and deploy modular applications that use both Java EE and
OSGi technologies.

XML samples
The XML samples demonstrate use of the XML API and supported specifications.

Chapter 1. Learn about WebSphere applications: Overview and new features 13

Internationalization service sample
The Internationalization service sample demonstrates how to use the internationalization service in
Java EE applications, specifically within servlets and enterprise beans.

Web services samples

These samples demonstrate both Java API for XML-based RPC (JAX-RPC) and Java API for XML
Web Services (JAX-WS) web services that use Java Platform, Enterprise Edition (Java EE) beans
and JavaBeans components.

The JAX-WS web service samples demonstrate the implementation of one-way and two-way web
services that highlight the use of web services standards such as WS-Addressing (WS-A) ,
WS-Reliable Messaging (WS-RM), and WS-Secure Conversation (WS-SC) and the SOAP
Message Transmission Optimization Mechanism (MTOM) technology.

Service Data Objects (SDO) sample
This sample demonstrates data access to a relational database through Service Data Objects
(SDO) and Java DataBase Connectivity (JDBC) Mediator technologies.

Downloading samples

You can download samples from the Samples, Version 8.5 information center.

1. Go to the Samples, Version 8.5 information center.

2. Determine which samples you want to download.

3. On the Downloads tab for the samples that you want, click a Download Sample link.

4. In the authentication window, click OK.

5. Download the compressed file, or individual sample files, to a directory on your workstation.

You might create the /samples/sample_type directory path on your workstation and download the
sample files to that directory path.

Many sample compressed files have an /installableApps directory that contains deployable prebuilt
archives. Other directories contain files such as sample-specific source archives, scripts, and instructions
for building deployable archives.

To deploy them to the application server, you can use the administrative console or use the install script
in the app_server_root/samples/bin directory.

Limitations of the samples
v The samples are for demonstration purposes only.

The code that is provided is not intended to run in a secured production environment. The samples
support Java 2 Security, therefore the samples implement policy-based access control that checks for
permissions on protected system resources, such as file I/O.

The samples also support administrative security.

v Many of the samples connect to an Apache Derby database using the embedded framework of Apache
Derby. The embedded framework of Apache Derby has a limitation that only one Java virtual machine
(JVM) can access a given database instance. As a result, in a clustered application server environment,
the second server in the node fails to start the sample applications, because the first server (JVM)
already holds a connection to that database instance.

For applications that require multiple Java virtual machines to access the same Apache Derby instance,
use the Apache Derby networkServer framework.

Additional samples and examples

Samples on developerWorks®

Additional product samples are available on WebSphere developerWorks

14 Overview

http://www.ibm.com/developerworks/websphere/library/samples/AppServer.html

Samples in tutorials
Many product tutorials rely on sample code. To find tutorials that demonstrate specific
technologies, browse the links in “Tutorials” on page 12.

Examples in the product documentation
The product documentation contains many code snippets and examples. To locate these examples
easily, see the developer examples in the Reference section of the information center navigation
for the product edition that you are using.

Development and assembly tools
You can use an Integrated Development Environment to develop, assemble, and deploy Java Platform,
Enterprise Edition (Java EE) modules for WebSphere Application Server.

The IBM Rational® Application Developer for WebSphere Software product and the IBM WebSphere
Application Server Developer Tools for Eclipse product are supported tools for integrated development
environments.

This information center refers to the products as the assembly tools. However, you can use the products to
do more than assemble modules. Use these tools in an integrated development environment to develop,
assemble, and deploy Java EE modules.

The Rational Application Developer for WebSphere Software is a more extensive set of tools supporting
enterprise development. This workbench has integrated support for WebSphere Application Server Version
6.1 and later. This workbench also supports both the OSGi and Java EE programming models, and
contains wizards and visual editors to help you develop Web 2.0, Service Component Architecture (SCA),
Java, and Java EE applications. This product contains code quality tools to help you analyze code and
improve performance. This product integrates with Rational Team Concert to provide a team-based
environment to help developers share information and work collaboratively. The Trial download for Rational
Application Developer is available at http://www.ibm.com/developerworks/downloads/r/rad/.

IBM WebSphere Application Server Developer Tools for Eclipse is a lightweight set of tools for developing,
assembling, and deploying Java EE applications to WebSphere Application Server Version 7.0 and 8.x.
This workbench integrates with the application server to help you to quickly deploy and test applications.
This product contains wizards and visual editors that support the Java EE programming model.

For documentation on the tools, see “Rational Application Developer documentation.” Topics on application
assembly in this information center supplement that documentation.

Important: The assembly tools run on Windows and Linux Intel platforms. Users of WebSphere
Application Server on all platforms must assemble their modules using an assembly tool
installed on Windows or Linux Intel platforms. To install an assembly tool, follow instructions
available with the tool.

WebSphere Application Server architecture
This article introduces the parts of the WebSphere Application Server.

Servers

WebSphere Application Server. An application server is a Java virtual machine (JVM) running user
applications. Application servers use Java technology to extend web server capabilities to handle web
application requests. An application server makes it possible for a server to generate a dynamic,
customized response to a client request. The WebSphere Application Server provides application servers.

For more introduction, refer to “Introduction: Application servers” on page 1154.

Chapter 1. Learn about WebSphere applications: Overview and new features 15

Generic servers. In distributed platforms, you can use the generic servers feature to create a generic
server as an application server instance within the product administration, and associate it with a
non-WebSphere server or process. The generic server can be associated with any server or process that
is necessary to support the application server environment.

For more information, refer to Server collection.

Web servers. In the WebSphere Application Server, an application server works with a web server to
handle requests for web applications. The application server and web server communicate using an HTTP
plug-in for the web server.

For more information, refer to Implementing a web server plug-in.

Clusters

Clusters. In the WebSphere Application Server, Network Deployment product, clusters and cluster
members help you monitor application servers and manage the workloads of servers.

For more information, refer to Balancing workloads.

Core groups

Core groups settings. A core group is a statically defined component of the high availability manager. The
high availability manager is a product function that monitors the application server environment and
provides peer-to-peer failover of application server components.

Core group bridge settings. A core group bridge is a configurable service for communication between core
groups.

For more information, refer to Core groups (high availability domains).

Resources

JMS providers. The product supports messaging by providing a range of Java Message Service (JMS)
providers that conform to the JMS specifications. There are three main types of JMS provider that can be
configured in WebSphere Application Server: The WebSphere Application Server default messaging
provider (uses service integration as the provider), the WebSphere MQ messaging provider (uses your
WebSphere MQ system as the provider) and 3rd party messaging providers (use another company's
product as the provider).

For more information, refer to “Introduction: Messaging resources” on page 1216.

Environment

Cell-wide settings help handle requests among Web applications, web containers, and application servers
in a logical administrative domain called a cell.

Virtual hosts. A virtual host is a configuration enabling a single host to resemble multiple logical hosts.
Each virtual host has a logical name and a list of one or more DNS aliases by which it is known. A DNS
alias is the TCP/IP host name and port number that are used to request the servlet, for example:
hostname:80. The DNS alias might be the host name and port of a web server that routes to the
application server or the actual host name and port on which the application server is listening. Java
Platform, Enterprise Edition (Java EE) web modules are mapped to a virtual host at installation time. Web
modules that use the same virtual host can dispatch to resources within one another.

For more information, refer to Virtual hosts.

16 Overview

WebSphere variables. Variables are used to control settings and properties relating to the server
environment. WebSphere variables are used to configure product path names such as JAVA_HOME,
cell-wide customization values, and the WebSphere Application Server for z/OS® location service.

For more information, refer to WebSphere variables.

Shared libraries. Shared libraries are files used by multiple applications. You can define a shared library at
the cell, node, or server level. You can then associate the library to an application or server in order for the
classes represented by the shared library to be loaded in either a server-wide or application-specific class
loader.

For more information, refer to Managing shared libraries.

Replication domains. Replication is a service that transfers data, objects, or events among application
servers. Data replication service (DRS) is the internal WebSphere Application Server component that
replicates data. Replication domains transfer data, objects, or events for session manager, dynamic cache,
or stateful session beans among application servers in a cluster.

For more information, refer to Data replication.

System administration

Administrative console. The administrative console is a graphical interface that provides many features to
guide you through deployment and systems administration tasks. Use it to explore available management
options.

For more introduction, refer to “Introduction: Administrative console” on page 1150.

Scripting client (wsadmin). The WebSphere administrative (wsadmin) scripting program is a powerful,
non-graphical command interpreter environment enabling you to run administrative operations in a
scripting language. You can also submit scripting language programs to run. The wsadmin tool is intended
for production environments and unattended operations.

For more introduction, refer to “Introduction: Administrative scripting (wsadmin)” on page 1151.

Administrative programs (Java Management Extensions). The product supports a Java programming
interface for developing administrative programs. All of the administrative tools that are supplied with the
product are written according to the API, which is based on the industry standard Java Management
Extensions (JMX) specification.

For more introduction, refer to “Introduction: Administrative programs” on page 1152.

Command line tools. Command-line tools are simple programs that you run from an operating system
command-line prompt to perform specific tasks, as opposed to general purpose administration. Using the
tools, you can start and stop application servers, check server status, add or remove nodes, and complete
similar tasks.

For more introduction, refer to “Introduction: Administrative commands” on page 1152.

Configuration files. Product configuration data resides in XML files that are manipulated by the previously
mentioned administrative clients.

For more introduction, refer to “Introduction: Administrative configuration data” on page 1152.

Chapter 1. Learn about WebSphere applications: Overview and new features 17

Domains (cells, nodes). Servers, nodes and node agents, cells, and the deployment manager are
fundamental concepts in the administrative universe of the product. It is also important to understand the
various processes in the administrative topology and the operating environment in which they apply.

For more introduction, refer to “Welcome to basic administrative architecture” on page 1148.

Monitoring and tuning

Monitoring tools. Performance monitoring is an activity in which you collect and analyze data about the
performance of your applications and their environments. Performance monitoring tools include :

v Performance Monitoring Infrastructure (PMI) for monitoring to understand overall system health. For
more information, see Performance Monitoring Infrastructure (PMI).

v Request metrics for monitoring to understand resource usage. For more information, see Why use
request metrics?.

v Tivoli Performance Viewer (TPV) for viewing the performance data that you collected. For more
information, see Why use Tivoli Performance Viewer?.

Tuning tools. Tuning the product helps you obtain the best performance from your website. Tuning the
product involves analyzing performance data and determining the optimal server configuration. This
determination requires considerable knowledge about the various components in the application server
and their performance characteristics. The performance advisors encapsulate this knowledge, analyze the
performance data and provide configuration recommendations to improve the application server
performance. Therefore, the performance advisors provide a starting point to the application server tuning
process and help you without requiring that you become an expert.

For more information, refer to Obtaining advice from the advisors.

Troubleshooting

Diagnostic tools. Diagnostic tools help you isolate the source of problems. Many diagnostic tools are
available for this product.

For more information, refer to Working with troubleshooting tools.

Support and self-help IBM Support can assist in deciphering the output of diagnostic tools. Refer to the
WebSphere Application Server Technical Support website for current information on known problems and
their resolution. Documents at this site can save you time gathering information that is needed to resolve a
problem.

For more information, refer to the WebSphere Application Server Support page.

Three-tier architectures
WebSphere Application Server provides the application logic layer in a three-tier architecture, enabling
client components to interact with data resources and legacy applications.

Collectively, three-tier architectures are programming models that enable the distribution of application
functionality across three independent systems, typically:

v Client components running on local workstations (tier one)

v Processes running on remote servers (tier two)

v A discrete collection of databases, resource managers, and mainframe applications (tier three)

The following diagram outlines the three tier levels. The tiers are logical . They might or might not be
running on the same physical server.

18 Overview

http://www.ibm.com/software/webservers/appserv/was/support/

First tier. Responsibility for presentation and user interaction resides with the first-tier components. These
client components enable the user to interact with the second-tier processes in a secure and intuitive
manner. WebSphere Application Server supports several client types. Clients do not access the third-tier
services directly. For example, a client component provides a form on which a customer orders products.
The client component submits this order to the second-tier processes, which check the product databases
and perform tasks that are needed for billing and shipping.

Second tier. The second-tier processes are commonly referred to as the “application logic layer”. These
processes manage the business logic of the application, and are permitted access to the third-tier
services. The application logic layer is where most of the processing work occurs. Multiple client
components can access the second-tier processes simultaneously, so this application logic layer must
manage its own transactions.

In the previous example, if several customers attempt to place an order for the same item, of which only
one remains, the application logic layer must determine who has the right to that item, update the
database to reflect the purchase, and inform the other customers that the item is no longer available.
Without an application logic layer, client components access the product database directly. The database
is required to manage its own connections, typically locking out a record that is being accessed. A lock can
occur when an item is placed into a shopping cart, preventing other customers from considering it for
purchase. Separating the second and third tiers reduces the load on the third-tier services, supports more
effective connection management, and can improve overall network performance.

Third tier. The third-tier services are protected from direct access by the client components residing within
a secure network. Interaction must occur through the second-tier processes.

Communication among tiers. All three tiers must communicate with each other. Open, standard protocols
and exposed APIs simplify this communication. You can write client components in any programming
language, such as Java or C++. These clients run on any operating system, by speaking with the
application logic layer. Databases in the third tier can be of any design, if the application layer can query
and manipulate them. The key to this architecture is the application logic layer.

Figure 1. Three tier architecture

Chapter 1. Learn about WebSphere applications: Overview and new features 19

20 Overview

Chapter 2. ActivitySessions

This page provides a starting point for finding information about ActivitySessions, a WebSphere extension
for reducing the complexity of commitment rules and limitations that are associated with one-phase commit
resources.

Use ActivitySessions to extend the scope and group multiple local transactions. With this capability, you
can commit these transactions based on either deployment criteria or through explicit program logic.

The ActivitySession service
The ActivitySession service provides an alternative unit-of-work (UOW) scope to that provided by global
transaction contexts. An ActivitySession context can be longer-lived than a global transaction context and
can encapsulate global transactions.

Support for the ActivitySession service is shown in the following figure:

Although the purpose of a global transaction is to coordinate multiple resource managers, enterprise
applications often use global transaction context as a “session” context through which to access Enterprise
JavaBeans (EJB) instances. An ActivitySession context is such a session context, and can be used in
preference to a global transaction in cases where coordination of two-phase commit resource managers is
not needed. Further, an ActivitySession can be associated with an HttpSession to extend a “client session”
to an HTTP client.

ActivitySession support is available to Web, EJB, and Java platform for enterprise applications client
components. EJB components can be divided into beans that exploit container-managed ActivitySessions
and beans that use bean-managed ActivitySessions.

Figure 2. The ActivitySession service. This figure shows the main components of the ActivitySession service in
WebSphere Application server. For an overview of these components, see the text that accompanies this figure.

© IBM Corporation 2009 21

The ActivitySession service provides a UserActivitySession application programming interface available to
enterprise application components that use bean-managed ActivitySessions for application-managed
demarcation of ActivitySession context. The ActivitySession service also provides a system programming
interface for container-managed demarcation of ActivitySession context and for container-managed
enlistment of one-phase resources (resource manager local transactions (RMLTs)) in such contexts.

The UserActivitySession interface is obtained by a Java Naming and Directory Interface (JNDI) lookup of
java:comp/websphere/UserActivitySession. This interface is not available to enterprise beans that use
container-managed ActivitySessions, and any attempt by such beans to obtain the interface results in a
NotFound exception.

A common scenario is an enterprise application accessing one or more enterprise beans backed by
non-transactional (one-phase commit) resources. The application, or its container, uses the
UserActivitySession interface to define the demarcation boundaries within which operations against the
enterprise beans are grouped and to control whether those grouped operations should be checkpointed or
discarded. The business logic of the enterprise beans does not need to use any ActivitySession interfaces.
The container into which the enterprise beans are deployed ensures that updates to the underlying
one-phase resource managers are coordinated.

The application can checkpoint an ActivitySession to create a new point of consistency within the
ActivitySession without ending the ActivitySession. The application can also use a reset operation to return
work performed in the ActivitySession back to the last point of consistency. The application can end the
ActivitySession with an operation to either checkpoint or reset all resources.

Usage model for using ActivitySessions with HTTP sessions
This topic describes how a Web application that runs in the WebSphere Web container can participate in
an ActivitySession context.

If the Web application is designed such that several servlet invocations occur as part of the same logical
application, then the servlets can use the HttpSession to preserve state across servlet invocations. The
ActivitySession context is one state that can be suspended into the HttpSession and resumed on a future
invocation of a servlet that accesses the HttpSession.

An ActivitySession is associated automatically with an HttpSession, so can be used to extend access to
the ActivitySession over multiple HTTP invocations, over inclusion or forwarding of servlets, and to support
Enterprise JavaBeans (EJB) activation periods that can be determined by the lifecycle of the Web HTTP
client. An ActivitySession context stored in an HttpSession can also be used to relate work for the
ActivitySession back to a specific Web HTTP client.

The Web container manages ActivitySessions based on deployment descriptor attributes associated with
servlets in the Web application module. The two usage models are:
v The Web container starts and ends ActivitySessions.

The Web application invokes a servlet that has been configured for container control of ActivitySessions.
– If an HttpSession exists then it has an associated ActivitySession.
– If an HttpSession does not exist, the servlet can start an HttpSession, which causes an

ActivitySession to be started automatically and associated with the HttpSession.

A servlet cannot start a new HttpSession until an existing HttpSession has been ended. Within an
HttpSession, the Web application can invoke other servlets that can use the associated ActivitySession
context. When the Web application invokes a servlet that ends the HttpSession, the ActivitySession is
ended automatically. This is shown in the following diagram:

22 Overview

v The Web application starts and ends ActivitySessions.

The Web application invokes a servlet that has been configured for application control of
ActivitySesions.
– If an HttpSession exists and has an associated ActivitySession, the servlet can use or end that

ActivitySession context.
– If an HttpSession does not exist, the servlet can start an HttpSession, but this does not automatically

start an ActivitySession.
– If an HttpSession exists but does not have an associated ActivitySession, the servlet can start a new

ActivitySession. This automatically associates the ActivitySession with the HttpSession. The
ActivitySession lasts either until the ActivitySession is specifically ended or until the HttpSession is
ended.

The servlet cannot start a new ActivitySession until an existing ActivitySession has been ended. The
servlet cannot start a new HttpSession until an existing HttpSession has been ended.

Within an HttpSession, the Web application can invoke other servlets that can use or end an existing
ActivitySession context or, if no ActivitySession exists start a new ActivitySession. When the Web
application invokes a servlet that ends the HttpSession, the ActivitySession is ended automatically. This
is shown in the following diagram:

A Web application can invoke servlets configured for either usage model.

The following points apply to both usage models:
v To end an HttpSession (and any associated ActivitySession), the Web application must invalidate that

session. This causes the ActivitySession to be checkpointed.

Figure 3. Web container control of ActivitySessions. This figure is described in the surrounding text.

Figure 4. Web application control of ActivitySessions,. This figure is described in the surrounding text.

Chapter 2. ActivitySessions 23

v Any downstream enterprise beans activated within the context of an ActivitySession can be held in
memory rather than passivated between servlet invocations, because the client effectively becomes the
Web HTTP client.

v Web applications can be composed of many servlets, and each servlet in the Web application can be
configured with a value for ActivitySessionControl. ActivitySessionControl determines whether the servlet
or its container starts any ActivitySessions.

v An ActivitySession context that encapsulates an active transaction context cannot be associated with an
HttpSession, because a transaction can hold database locks and should be designed to be shortlived. If
an application moves an active transaction to an HttpSession, the transaction is rolled back and the
ActivitySession is suspended into the HTTPSession. In general, you should design applications to use
ActivitySessions or other constructs as the long-lived entities and ACID transactions as short-duration
entities within these.

v Only one ActivitySession can be associated with an HttpSession at any time, for the duration of the
ActivitySession. An ActivitySession associated with an HttpSession remains associated for the duration
of that ActivitySession, and cannot be replaced with another until the first ActivitySession is completed.
The ActivitySession can be accessed by multiple servlets if they have shared access to the
HttpSession.

v ActivitySessions are not persistent. If a persistent HttpSession exists longer than the server hosting it,
any cached ActivitySession is terminated when the hosting server ends.

v If the HttpSession times out before the associated ActivitySession has ended, then the ActivitySession is
reset1. This rolls back the ActivitySession resources to the last point of consistency:
– If the Web application invoked a servlet that has been configured for container control of

ActivitySessions, the ActivitySession resources are rolled back completely.
– If the Web application invoked a servlet that has been configured for application control of

ActivitySessions, the ActivitySession resources are rolled back to the last checkpoint taken by the
servlet, or completely if no checkpoint has been taken.

v If the ActivitySession times out, it is reset to the last point of consistency (see previous item), then the
HttpSession is ended.

ActivitySession and transaction contexts
This topic describes the hierarchical relationship between transaction and ActivitySession contexts. This
relationship, defined by the ActivitySession service, requires that any transaction context be either wholly
inside or wholly outside an ActivitySession context.

An ActivitySession context is very similar to a transaction context and extends the lifecycle choices for
activation of enterprise beans; it can encapsulate one or more transactions. The ActivitySession context is
a distributed context that, like the transaction context, can be bean- or container-managed. An
ActivitySession context is used mainly by a client to scope the lifecycle of an enterprise bean that it uses
either beyond or in the absence of individual transactions started by that client.

ActivitySessions have a lower overhead than transactions and can be used instead of transactions that are
only used to scope the lifecycle of a called enterprise bean. For a bean with an activation policy of
ActivitySession, the duration of any resource manager local transactions (RMLTs) started by that bean can
be bounded by the duration of the ActivitySession instead of the bean method in which the RMLT was
started. This provides flexibility and potential for using RMLTs in an enterprise bean beyond the scenarios
described in the Enterprise JavaBeans (EJB) specifications. The EJB specifications define that RMLTs
need to be completed before the end of the bean method, because the bean method is the only
containment boundary for local transactions available in those specifications.

The following rules defines the relationship between transactions and ActivitySessions.

1. Resetting an ActivitySession causes all the resources involved in the current ActivitySession to be rolled back to the last point of
consistency, but allows further work within the ActivitySession. When the reset completes, the thread is associated with the same
ActivitySession as it was before the reset was called. The ActivitySession resources remain associated with the ActivitySession
although they cannot participate further in the ActivitySession

24 Overview

v The EJB or Web container always uses a local transaction containment (LTC) if there is no global
transaction present. An LTC can be method-scoped or ActivitySession-scoped.

v Before a method dispatch, the container ensures that there is always either an LTC or global transaction
context, but never both contexts.

v ActivitySessions cannot be nested within each other. Any attempt to start a nested ActivitySession
results in a com.ibm.websphere.ActivitySession.NotSupportedException on
UserActivitySession.beginSession().

v An ActivitySession can wholly encapsulate one or more global transactions.
v The application can end an ActivitySession with an operation to either checkpoint or reset all resources.

The endSession(EndModeCheckpoint) operation checkpoints the work coordinated under the
ActivitySession then ends the context. The endSession(EndModeReset) operation resets, to the last
point of consistency, the work coordinated under the ActivitySession then ends the context.

v An ActivitySession cannot be encapsulated by a global transaction nor should ActivitySession and global
transaction boundaries overlap. Any attempt to start an ActivitySession in the presence of a global
transaction context results in a com.ibm.websphere.ActivitySession.NotSupportedException on
UserActivitySession.beginSession(). Any attempt to call endSession(EndModeCheckpoint) on an
ActivitySession that contains an incomplete global transaction results in a
com.ibm.websphere.ActivitySession.ContextPendingException. Neither the global transaction nor the
ActivitySession context are affected. If endSession(EndModeReset) is called then the ActivitySession is
reset and the global transactions marked rollback_only.

v Each global transaction wholly encapsulated by an ActivitySession is independent of every other global
transaction within that ActivitySession. A rollback of one global transaction does not affect any others or
the ActivitySession itself.

v ActivitySession and global transaction contexts can coexist with an ActivitySession encapsulating one or
more serially-running global transactions.

v EJB home methods cannot participate in an ActivitySession because this situation might cause
deadlocks. EJB home methods run in their own independent LTC.

ActivitySession and transaction container policies in combination
This topic provides details about the relationship between the deployment descriptor properties that
determine how the container manages ActivitySession boundaries.

If an enterprise bean uses ActivitySessions, how the EJB container manages ActivitySession boundaries
when delegating a method invocation depends on both the ActivitySession kind and Container
transaction type deployment descriptor attributes configured for the enterprise bean. The following table
lists the relationship between these two properties.

In each row, the final column describes the behavior that the EJB container takes with respect to global
transaction and ActivitySession context, based on the following abbreviations:
Sn An ActivitySession, where n indicates the ActivitySession instance.
Tn A transaction, where n indicates the transaction instance.

In every case where the container does not start or leave a global transaction context associated with the
thread, it starts (or obtains from the bean instance) a local transaction containment and associates that
with the thread. The duration of the local transaction containment is determined by a combination of the
local-transaction boundary descriptor (configured as part of the application deployment descriptor, and not
shown in the following table) and the presence or not of an ActivitySession context, as described in
ActivitySessions and transaction contexts.

The rows highlighted in bold are not allowed.

Chapter 2. ActivitySessions 25

Table 2. Container behavior for activitysession and transaction policies deployment settings

Bean ActivitySession
policy(ActivitySession kind)

Bean transaction
policy(Container transaction

type)

Received contexts Container behavior

Required Required None Start S1, Start T1

S1 Start T1

T1 Suspend T1, Start S1, Start T2

S1, T1 No Action

Requires new None Start S1, Start T1

S1 Start T1

T1 Suspend T1, Start S1, Start T2

S1, T1 Suspend T1, Start T2

Supports None Start S1

S1 No Action

T1 Suspend T1, Start S1

S1, T1 No Action

Not supported None Start S1

S1 No Action

T1 Suspend T1, Start S1

S1, T1 Suspend T1

Mandatory None Exception

S1 Exception

T1 Exception

S1, T1 No action

Never None Start S1

S1 No Action

T1 Suspend T1, Start S1

S1, T1 Exception

26 Overview

Table 2. Container behavior for activitysession and transaction policies deployment settings (continued)

Bean ActivitySession
policy(ActivitySession kind)

Bean transaction
policy(Container transaction

type)

Received contexts Container behavior

Requires new Required None Start S1 + T1

S1 Suspend S1, Start S2 + T1

T1 Suspend T1, Start S1 + T2

S1 + T1 Suspend S1 + T1, Start S2 +
T2

Requires new None Start S1 + T1

S1 Suspend S1, Start S2 + T1

T1 Suspend T1, Start S1 + T2

S1 + T1 Suspend S1 + T1, Start S2 +
T2

Supports None Start S1

S1 Suspend S1, Start S2

T1 Suspend T1, Start S1

S1, T1 Suspend S1 + T1, Start S2

Not supported None Start S1

S1 Suspend S1, Start S2

T1 Suspend T1, Start S1

S1, T1 Suspend S1 + T1, Start S2

Mandatory None Exception

S1 Exception

T1 Exception

S1, T1 Exception

Never None Start S1

S1 Suspend S1, Start S2

T1 Suspend T1, Start S1

S1, T1 Suspend S1 + T1, Start S2

Chapter 2. ActivitySessions 27

Table 2. Container behavior for activitysession and transaction policies deployment settings (continued)

Bean ActivitySession
policy(ActivitySession kind)

Bean transaction
policy(Container transaction

type)

Received contexts Container behavior

Supports Required None Start T1

S1 Start T1

T1 No Action

S1, T1 No Action

Requires new None Start T1

S1 Start T1

T1 Suspend T1, Start T2

S1, T1 Suspend T1, Start T2

Supports None No Action

S1 No Action

T1 No Action

S1, T1 No Action

Not supported None No Action

S1 No Action

T1 Suspend T1

S1, T1 Suspend T1

Mandatory None Exception

S1 Exception

T1 No Action

S1, T1 No Action

Never None No Action

S1 No Action

T1 Exception

S1, T1 Exception

28 Overview

Table 2. Container behavior for activitysession and transaction policies deployment settings (continued)

Bean ActivitySession
policy(ActivitySession kind)

Bean transaction
policy(Container transaction

type)

Received contexts Container behavior

Not supported Required None Start T1

S1 Suspend S1, Start T1

T1 No Action

S1, T1 Suspend S1 + T1, Start T2

Requires new None Start T1

S1 Suspend S1, Start T1

T1 Suspend T1, Start T2

S1, T1 Suspend S1 + T1, Start T2

Supports None No Action

S1 Suspend S1

T1 No Action

S1, T1 Suspend S1 + T1

Not supported None No Action

S1 Suspend S1

T1 Suspend T1

S1, T1 Suspend S1 + T1

Mandatory None Exception

S1 Exception

T1 No Action

S1,T1 Exception

Never None No Action

S1 Suspend S1

T1 Exception

S1, T1 Suspend S1 + T1

Chapter 2. ActivitySessions 29

Table 2. Container behavior for activitysession and transaction policies deployment settings (continued)

Bean ActivitySession
policy(ActivitySession kind)

Bean transaction
policy(Container transaction

type)

Received contexts Container behavior

Mandatory Required None Exception

S1 Start T1

T1 Exception

S1, T1 No Action

Requires new None Exception

S1 Start T1

T1 Exception

S1, T1 Suspend T1, Start T2

Supports None Exception

S1 No Action

T1 Exception

S1, T1 No Action

Not supported None Exception

S1 No Action

T1 Exception

S1, T1 Suspend T1

Mandatory None Exception

S1 Exception

T1 Exception

S1, T1 No Action

Never None Exception

S1 No Action

T1 Exception

S1,T1 Exception

30 Overview

Table 2. Container behavior for activitysession and transaction policies deployment settings (continued)

Bean ActivitySession
policy(ActivitySession kind)

Bean transaction
policy(Container transaction

type)

Received contexts Container behavior

Never Required None Start T1

S1 Exception

T1 No Action

S1, T1 Exception

Requires new None Start T1

S1 Exception

T1 Suspend T1, Start T2

S1,T1 Exception

Supports None No Action

S1 Exception

T1 No Action

S1,T1 Exception

Not supported None No Action

S1 Exception

T1 Suspend T1

S1,T1 Exception

Mandatory None Exception

S1 Exception

T1 No Action

S1,T1 Exception

Never None No Action

S1 Exception

T1 Exception

S1,T1 Exception

Bean managed Bean managed None No Action

S1 Suspend S1

T1 Suspend T1

S1, T1 Suspend S1 + T1

ActivitySession samples
WebSphere Application Server provides some ActivitySession samples.
MasterMind sample

This sample is based on the game MasterMind. It consists of the following components:
v A servlet, configured with the ActivitySession control kind attribute set to Container, that

accesses a stateful session bean.
v A stateful session bean, configured with an activation policy of ActivitySession containing

transient state data.

The servlet begins an HttpSession at the start of each new game, and ends it at the end of each
game; therefore an ActivitySession lasts for the duration of each game. The ActivitySession
activation policy stops the bean from being passivated and therefore the transient data remains in
memory. This sample demonstrates the association between HttpSession and ActivationSession in
the web container, and an ActivitySession-scoped activation policy.

Enterprise application client container and a CMP entity bean backed by a one-phase commit data
source

In this sample, the entity bean is configured with the following properties:

Chapter 2. ActivitySessions 31

v TX_NOT_SUPPORTED
v An ActivitySession container managed policy of REQUIRES
v An LTC boundary of ActivitySession
v An LTC Resolution Control of ContainerAtBoundary

The client accesses the UserActivitySession, begins an ActivitySession, updates two instances of
the bean, then ends the ActivitySession. It does this twice using EndModeReset then
EndModeCheckpoint. This sample demonstrates the following functionality:
v Client access to the UserActivitySession interface
v Multiple resource manager local transactions (RMLTs) being scoped to the ActivitySession and

taking their completion direction automatically from that of the ActivitySession

The entity bean also holds a transient variable that each method call increments (gets and sets for
the persistent data). This value is checked before the end of the ActivitySession to show that the
same bean instance is used. The client checks for the correct results.

An enterprise application client container and two session beans with different ActivitySession
types This sample consists of an enterprise application client container and the following session beans:

v SLB1, a stateless session bean configured with an ActivitySession Type of Bean.
v SFB2, a stateful session bean configured with ActivitySession Type of Requires, an LTC

boundary of ActivitySession, LTC Resolution Contol of APPLICATION, and an LTC Unresolved
Action of ROLLBACK.

Both beans are configured with TX_NOTSUPPORTED.

This sample uses the following steps:
1. The client starts SLB1
2. SLB1 accesses the UserActivitySession interface, begins an ActivitySession, then calls a

method on SFB2
3. SFB2 accesses the UserActivitySession interface, begins an ActivitySession, calls a method on

SFB2
4. SFB2 gets a connection (setAutoCommit false) then uses JDBC to update a single-phase data

source.
5. Optionally, SLB1 calls a separate method on SFB2 to finish the work, either committing or

rolling back the RMLT.
6. SLB1 then ends the ActivitySession with an EndModeCheckpoint.

This sample demonstrates the following functionality:
v The ActivitySession completion direction is unconnected to the direction of the RMLTs, although

the containment of the RMLTs is bound to the ActivitySession.
v The container using the unresolved action when an RMLT is not completed.
v A bean-managed ActivitySessions bean using the UserActivitySession interface.

The sample checks for correct results and reports them back to the client.

ActivitySession service: Resources for learning
Use the links in this topic to find relevant supplemental information about ActivitySessions. The information
resides on IBM and non-IBM Internet sites, whose sponsors control the technical accuracy of the
information.

These links are provided for convenience. Often, the information is not specific to the IBM WebSphere
Application Server product, but is useful all or in part for understanding the product. When possible, links
are provided to technical papers and Redbooks® that supplement the broad coverage of the release
documentation with in-depth examinations of particular product areas.

Programming model and decisions
v The application programming interface (API) reference information.

32 Overview

Programming specifications
v J2EE Activity Service for Extended Transactions
v Java Transaction API (JTA) 1.0.1

Other
v WebSphere Business Integration Server Foundation
v List of IBM WebSphere Redbooks
v WebSphere technical library, including links to white papers

Chapter 2. ActivitySessions 33

http://www.jcp.org/jsr/detail/95.jsp
http://java.sun.com/products/jta/
http://www.ibm.com/software/integration/wbisf/
http://www.redbooks.ibm.com/websphere
http://www.ibm.com/software/websphere/sw-library/

34 Overview

Chapter 3. Application profiling

This page provides a starting point for finding information about application profiling, a WebSphere
extension for defining strategies to dynamically control concurrency, prefetch, and read-ahead.

Application profiling and access intent provide a flexible method to fine-tune application performance for
enterprise beans without impacting source code. Different enterprise beans, and even different methods in
one enterprise bean, can have their own intent to access resources. Profiling the components based on
their access intent increases performance in the application server run time.

The application profiling service is not available for Enterprise JavaBeans (EJB) that are contained in a
web archive (WAR). As a result, application profiling tasks can not be accessed from an EJB in a WAR.

Application profiling
You can use application profiling to identify particular units of work to the product runtime environment.
The run time can tailor its support to the exact requirements of that unit of work.

Application profiling requires accurate knowledge of an application's transactional configuration and the
interaction of the application with its persistent state during the course of each transaction.

You can execute the analysis in either closed world or open world mode. A closed-world analysis assumes
that all possible clients of the application are included in the analysis and that the resulting analysis is
complete and correct. The results of a closed-world analysis report the set of all transactions that can be
invoked by a web, JMS, or application client. The results exclude many potential transactions that never
execute at run time.

An open-world analysis assumes that not all clients are available for analysis or that the analysis cannot
return complete or accurate results. An open-world analysis returns the complete set of possible
transactions.

The results of an analysis persist as an application profiling configuration. The assembly tool establishes
container managed tasks for servlets, JavaServer Pages (JSP) files, application clients, and Message
Driven Beans (MDBs). Application profiles for the tasks are constructed with the appropriate access intent
for the entities enlisted in the transaction represented by the task. However, in practice, there are many
situations where the tool returns at best incomplete results. Not all applications are amenable to static
analysis. Some factory and command patterns make it impossible to determine the call graphs. The tool
does not support the analysis of ActivitySessions.

You should examine the results of the analysis very carefully. In many cases you must manually modify
them to meet the requirements of the application. However, the tool can be an effective starting place for
most applications and may offer a complete and quick configuration of application profiles for some
applications.

Access intent is the only runtime component that makes use of the application profiling functionality. For
example, you can configure one transaction to load an entity bean with strong update locks and configure
another transaction to load the same entity bean without locks.

Application profiling introduces two new concepts in order to achieve this function: tasks and profiles.
Tasks A task is a configurable name for a unit of work. Unit of work in this case means either a

transaction or an ActivitySession. The task name is typically assigned declaratively on a J2EE
component that can initiate a unit of work. Most commonly, the task is configured on a method of
an Enterprise JavaBeans file that is declared either for container-managed transactions or
bean-managed transactions. Any unit of work that begins in the scope of a configured task is
associated with that task name. A unit of work can only be named when it is initiated, and the

© Copyright IBM Corp. 2012 35

name cannot change for the lifetime of that unit of work. A unit of work ignores any subsequent
task name configurations at any point after it has begun. The task is used for the duration of its
unit of work to identify configured policies specific to that unit of work.

Note: If you select the 5.x Compatibility Mode attribute on the Application Profile Service's
console page, then tasks configured on J2EE 1.3 applications are not necessarily
associated with units of work and can arbitrarily be applied and overridden. This is not a
recommended mode of operation and can lead to unexpected deadlocks during database
access. Tasks are not communicated on requests between applications that are running
under the Application Profiling 5.x Compatibility Mode and applications that are not running
under the compatibility mode.

For a Version 6.x client to interact with applications run under the Application Profiling 5.x
Compatibility Mode, you must set the appprofileCompatibility system property to true in the
client process. You can do this by specifying the -CCDappprofileCompatibility=true option
when invoking the launchClient command.

Profiles
A profile is simply a mapping of a task to a set of access intent policies that are configured on
entity beans. When an invocation on a bean (whether by a finder method, a CMR getter, or a
dynamic query) requires data to be retrieved from the back end system, the current task
associated with the request is used to determine the exact requirement of the transaction. The
same bean loads and behaves differently in the context of the task-to-profile mapping. Each profile
provides the developer an opportunity to reconfigure the application's access intent. If a request is
operating in the absence of a task, the runtime environment uses either a method-level access
intent (if any) or a bean-level default access intent.

Note: The application profile configuration is application scope configuration data. If any
Enterprise JavaBean (EJB) module contains an application profile configuration, all other
EJB modules are implicitly regulated by the Application Profiling service even if they do not
contain application profile configuration data.

For example, an application has two EJB modules: EJBModule1 and EJBModule2.

The EJBModule1 has an application profile named AppProfile1. This AppProfile1 is
registered by a task named task1. This task1 becomes a known-to-application task and is
honored when associated with a unit of work within this application. With the presence of
any known-to-application task, method level access intent configurations are ignored and
only bean level access intent configurations are applied.

The EJBModule2 contains no application profile configuration data. All entity beans are not
configured with bean level access intent explicitly, but some methods have method level
access intent configurations. If an entity bean in the EJBModule2 is loaded in a unit of work
that is associated with task1, the bean-level access intent configuration is applied and
method level access intent configuration is ignored. Because the bean level access intent is
not set explicitly, the default bean level access intent, which is wsPessimisticUpdate-
WeakestLockAtLoad, is applied.

Tasks and units of work considerations
The application profiling function works under the unit of work (UOW) concept. UOW in this case means
either a transaction or an ActivitySession.

The task name on a method is used only when a UOW is begun, because of that method being invoked.
This gives it a more predictable data access pattern based on the active unit of work. To be more specific,
this approach ensures that a bean type with only one configured access intent is loaded within a UOW,

36 Overview

because a bean is configured with only one access intent within an application profile. This configured
access intent for a bean type is determined at assembly time and is enforced by the Application Profile
service.

A task name is always associated with a unit of work, and that task name does not change for the duration
of that UOW. When a UOW associated with a method is begun because of that method being invoked, if a
task name is associated with the method then that task name is used to name the UOW. A task assigned
to a unit of work is considered a named UOW.

If a task name is not associated with the method that began the UOW, then a default access intent is used
and the UOW is unnamed. A unit of work can only be named when the UOW is begun and that task name
remains for the life of the UOW. Furthermore, the task assigned to a UOW can never be changed for the
life of that UOW. Any task names associated with a method are ignored if that method does not begin a
UOW (either container managed or component managed).

It is not possible to change the task name assigned to a unit of work. However, it is possible that in a call
sequence consisting of many different application calls a different task name might need to be used for
different calls. In this case it is important for the deployer to begin a new UOW and associate with the
UOW the necessary task name. For example, assume you have the following beans: sb1 is a session
bean, eb2 and eb3 are container managed persistence (CMP) entity beans. When sb1 is called, a
transaction is begun and task 't1' is associated with it. Further assume that sb1 then calls eb2 and eb3. If
neither eb2 or eb3 create a unit of work, then these beans execute within the UOW context from sb1 and
as such its task name (t1). If eb2 or eb3 need to execute within a task name other than t1, then these
beans must define a unit of work and associate with it the appropriate task name.

Note that if an application deployer does not specifically configure a transaction on a method, WebSphere
Application Server creates a global transaction by default. This is important because if a task is defined on
a method, but a UOW is not specifically configured on that method, the EJB container automatically
creates a global transaction on behalf of that method. As such, this task name is associated with the UOW
and any application profiles mapped to this task are used.

Note: If you select the 5.x Compatibility Mode attribute on the Application Profile Service's console page,
then tasks configured on J2EE 1.3 applications are not necessarily associated with units of work
and can arbitrarily be applied and overridden. This is not a recommended mode of operation and
can lead to unexpected deadlocks during database access. Tasks are not communicated on
requests between applications that are running under the Application Profiling 5.x Compatibility
Mode and applications that are not running under the compatibility mode.

Application profiles
An application profile is the set of access intent policies that should be selectively applied for a particular
unit of work (a transaction or ActivitySession).

Application profiling enables applications to run under different sets of policies depending on the active
task under which the application is operating.

The active task depends upon the current unit of work mechanism. If the current unit of work is a global
transaction, then the task is the name associated with that transaction. If the global transaction was not
named when it was initiated, then there is no active task anywhere in the scope of that transaction.

If the current unit of work is a local transaction associated with an ActivitySession, then the task is the
name associated with that ActivitySession. If the ActivitySession was not named when it was initiated, then
there is no active task for any local transaction bound to that ActivitySession. If the current unit of work is
a local transaction that is not associated with an ActivitySession, then the task is the name associated with
that local transaction. If the local transaction was not associated with a task when the local transaction
was initiated, then there is no active task for the duration of that local transaction. In other words, the

Chapter 3. Application profiling 37

active task is the task associated with the unit of work on the thread that is coordinating database
resources. If the controlling unit of work was not associated with a task when that unit of work was
initiated, then there is no active task in the scope of that unit of work.

Note: If you select the 5.x Compatibility Mode attribute on the Application Profile Service's console page,
then tasks configured on J2EE 1.3 applications are not necessarily associated with units of work
and can arbitrarily be applied and overridden. This is not a recommended mode of operation and
can lead to unexpected deadlocks during database access. Tasks are not communicated on
requests between applications that are running under the Application Profiling 5.x Compatibility
Mode and applications that are not running under the compatibility mode.

For a Version 6.x client to interact with applications run under the Application Profiling 5.x
Compatibility Mode, you must set the appprofileCompatibility system property to true in the client
process. You can do this by specifying the -CCDappprofileCompatibility=true option when invoking
the launchClient command.

Consider an application that centralizes the student records for a school district. These records are
frequently accessed by the school district's central office in order to generate reports. The report
generation process would be optimized if it held no locks with the back end system, and if the records
could be read into memory with as few back end operations as possible. Occasionally, however, the
records are updated by the students' instructors. Without the ability to distinguish between transactions,
the developer is forced to assume a worst-case scenario and, wishing to use pessimistic concurrency, lock
the records for all transactions.

Using the application profiling service, the developer can configure in as many ways as necessary the
access intent under which the students' records are loaded. Under one profile, the records can be
configured with an exclusive pessimistic update intent, not only locking-out competing transactions but
ensuring that the student is not removed from the system before the transaction completes. Under another
profile, the records can be configured with an optimistic intent as part of an object graph that is read from
the back end system in a single database operation. The task represented by the pessimistic profile
receives the strong-locking semantics required for certain transactions, while the task represented by the
optimistic profile receives the performance benefits appropriate for other transactions.

Application profiling tasks
Tasks are named units of work. They are the mechanism by which the runtime environment determines
which access intent policies to apply when an entity bean's data is loaded from the back end system.

Application profiles enable developers to configure an entity bean with multiple access intent policies; if
there are n instances of profiles in a given application, each bean can be configured with as many as n
access intent policies.

A task is associated with a transaction or an ActivitySession at the initiation of the unit of work. The task,
which cannot change for the lifetime of the unit of work, is always available anywhere within the scope of
that unit of work to apply the access intent policy configured for that particular unit of work.

If an enterprise application is configured to use application profiling in any part of the application, then
application profiling is active and method-level access intent configurations are ignored when units of
works are associated with known-to-application tasks.

If an entity bean is loaded in a unit of work that is not associated with a task, or is associated with a task
that is unassociated with an application profile, the default bean-level access intent or the method-level
access intent configuration is applied. If a unit of work is associated with a task that is configured with an
application profile, the bean-level access intent configuration within the appropriate application profile is
applied.

38 Overview

Note: The application profile configuration is application scope configuration data. If any Enterprise
Javabeans (EJB) module contains an application profile configuration, all other EJB modules are
implicitly regulated by the Application Profiling service even if they do not contain application profile
configuration data.

For example, an application has two EJB modules: EJBModule1 and EJBModule2.

The EJBModule1 has an application profile named AppProfile1. This AppProfile1 is registered by a
task named task1. This task1 becomes a known-to-application task and is honored when
associated with a unit of work within this application. With the presence of any known-to-application
task, method level access intent configurations are ignored and only bean level access intent
configurations are applied.

The EJBModule2 contains no application profile configuration data. All entity beans are not
configured with bean level access intent explicitly, but some methods have method level access
intent configurations. If an entity bean in the EJBModule2 is loaded in a unit of work that is
associated with task1, the bean-level access intent configuration is applied and method level
access intent configuration is ignored. Because the bean level access intent is not set explicitly, the
default bean level access intent, which is wsPessimisticUpdate-WeakestLockAtLoad, is applied.

The active task depends upon the current unit of work mechanism. If the current unit of work is a global
transaction, then the task is the name associated with that transaction. If the global transaction was not
named when it was initiated, then there is no active task anywhere in the scope of that transaction.

If the current unit of work is a local transaction associated with an ActivitySession, then the task is the
name associated with that ActivitySession. If the ActivitySession was not named when it was initiated, then
there is no active task for any local transaction bound to that ActivitySession. If the current unit of work is
a local transaction that is not associated with an ActivitySession, then the task is the name associated with
that local transaction. If the local transaction was not associated with a task when the local transaction
was initiated, then there is no active task for the duration of that local transaction. In other words, the
active task is the task associated with the unit of work on the thread that is coordinating database
resources. If the controlling unit of work was not associated with a task when that unit of work was
initiated, then there is no active task in the scope of that unit of work.

For example, consider a school district application that calls through a session bean in order to interact
with student records. One method on the session bean allows administrators to modify the students'
records; another method supports student requests to view their own records. Without application profiling,
the two tasks would operate anonymously and the runtime environment would be unable to distinguish
work operating on behalf of one task or the other. To optimize the application, a developer can configure
one of the methods on the session bean with the task "updateRecords" and the other method on the
session bean with the task "readRecords". When registered with an application profile that has the student
bean configured with the appropriate locking access intent, the "updateRecords" task is assured that it is
not unnecessarily blocking transactions that need to only read the records. For more information about the
relationships between tasks and units of work, see “Tasks and units of work considerations” on page 36.

Tasks can be configured to be managed by the container or to be programmatically established by the
application. Container managed tasks can be configured on servlets, JavaServer Pages (JSP) files,
application clients, and the methods of Enterprise JavaBeans (EJB). Configured container-managed tasks
are only associated with units of work that the container initiates after the task name is set. Application
managed tasks can be configured on all J2EE components. In the case of enterprise beans they must be
bean managed transactions."

best-practices: If you select the 5.x Compatibility Mode attribute on the Application Profile Service's
console page, then tasks configured on J2EE 1.3 applications are not necessarily
associated with units of work and can arbitrarily be applied and overridden. This is not a
recommended mode of operation and can lead to unexpected deadlocks during database

Chapter 3. Application profiling 39

access. Tasks are not communicated on requests between applications that are running
under the Application Profiling 5.x Compatibility Mode and applications that are not
running under the compatibility mode.

For a Version 6.x client to interact with applications run under the Application Profiling 5.x
Compatibility Mode, you must set the appprofileCompatibility system property to true in
the client process. You can do this by specifying the -CCDappprofileCompatibility=true
option when invoking the launchClient command.

40 Overview

Chapter 4. Asynchronous beans

This page provides a starting point for finding information about asynchronous beans.

Asynchronous beans and asynchronous scheduling facilities offer performance enhancements for
resource-intensive tasks by enabling single tasks to run as multiple tasks.

Asynchronous beans
An asynchronous bean is a Java object or enterprise bean that can run asynchronously by a Java
Platform, Enterprise Edition (Java EE) application, using the Java EE context of the asynchronous bean
creator.

Asynchronous beans can improve performance by enabling a Java EE program to decompose operations
into parallel tasks. Asynchronous beans support the construction of stateful, active Java EE applications.
These applications address a segment of the application space that Java EE has not previously addressed
(that is, advanced applications that require application threading, active agents within a server application,
or distributed monitoring capabilities).

Asynchronous beans can run using the Java EE security context of the creator Java EE component.
These beans also can run with copies of other Java EE contexts, such as:
v Internationalization context
v Application profiles, which are not supported for Java EE 1.4 applications and deprecated for Java EE

1.3 applications
v Work areas

Asynchronous bean interfaces

Four types of asynchronous beans exist:
Work object

There are two work interfaces that essentially accomplish the same goal. The legacy
Asynchronous Beans work interface is com.ibm.websphere.asynchbeans.Work, and the CommonJ
work interface is commonj.work.Work. A work object runs parallel to its caller using the work
manager startWork or schedule method (startWork for legacy Asynchronous Beans and schedule
for CommonJ). Applications implement work objects to run code blocks asynchronously.

Timer listener
This interface is an object that implements the commonj\timers\TimerListener interface. Timer
listeners are called when a high-speed transient timer expires.

Alarm listener
An alarm listener is an object that implements the com.ibm.websphere.asynchbeans.AlarmListener
interface. Alarm listeners are called when a high-speed transient alarm expires.

Event listener
An event listener can implement any interface. An event listener is a lightweight, asynchronous
notification mechanism for asynchronous events within a single Java virtual machine (JVM). An
event listener typically enables Java EE components within a single application to notify each
other about various asynchronous events.

Supporting interfaces
Work manager

Work managers are thread pools that administrators create for Java EE applications. The
administrator specifies the properties of the thread pool and a policy that determines which Java
EE contexts the asynchronous bean inherits.

CommonJ Work manager
The CommonJ work manager is similar to the work manager. The difference between the two is
that the CommonJ work manager contains a subset of the asynchronous beans work manager

© Copyright IBM Corp. 2012 41

methods. Although CommonJ work manager functions in a Java EE 1.4 environment, each JNDI
lookup of a work manager does not return a new instance of the WorkManager. All the JNDI
lookup of work managers within a scope have the same instance.

Timer manager
Timer managers implement the commonj.timers.TimerManager interface, which enables Java EE
applications, including servlets, EJB applications, and JCA Resource Adapters, to schedule future
timer notifications and receive timer notifications. The timer manager for Application Servers
specification provides an application-server supported alternative to using the J2SE
java.util.Timer class, which is inappropriate for managed environments.

Event source
An event source implements the com.ibm.websphere.asynchbeans.EventSource interface. An
event source is a system-provided object that supports a generic, type-safe asynchronous
notification server within a single JVM. The event source enables event listener objects, which
implement any interface to be registered.

Event source events
Every event source can generate its own events, such as listener count changed. An application
can register an event listener object that implements the class
com.ibm.websphere.asynchbeans.EventSourceEvents. This action enables the application to catch
events such as listeners being added or removed, or a listener throwing an unexpected exception.

Additional interfaces, including alarms and subsystem monitors, are introduced in the Developing
asynchronous scopes topic, which discusses some of the advanced applications of asynchronous beans.

Transactions

Every asynchronous bean method is called using its own transaction, much like container-managed
transactions in typical enterprise beans. It is very similar to the situation when an Enterprise JavaBeans
(EJB) method is called with TX_NOT_SUPPORTED. The runtime starts a local transaction containment
before invoking the method. The asynchronous bean method is free to start its own global transaction if
this transaction is possible for the calling Java EE component. For example, if an enterprise bean creates
the component, the method that creates the asynchronous bean must be TX_BEAN_MANAGED.

When you call an entity bean from within an asynchronous bean, for example, you must have a global
transactional context available on the current thread. Because asynchronous bean objects start local
transactional contexts, you can encapsulate all entity bean logic in a session bean that has a method
marked as TX_REQUIRES or equivalent. This process establishes a global transactional context from
which you can access one or more entity bean methods.

If the asynchronous bean method throws an exception, any local transactions are rolled back. If the
method returns normally, any incomplete local transactions are completed according to the unresolved
action policy configured for the bean. EJB methods can configure this policy using their deployment
descriptor. If the asynchronous bean method starts its own global transaction and does not commit this
global transaction, the transaction is rolled back when the method returns.

Access to Java EE component metadata

If an asynchronous bean is a Java EE component, such as a session bean, its own metadata is active
when a method is called. If an asynchronous bean is a simple Java object, the Java EE component
metadata of the creating component is available to the bean. Like its creator, the asynchronous bean can
look up the java:comp namespace. This look up enables the bean to access connection factories and
enterprise beans, just as it would if it were any other Java EE component. The environment properties of
the creating component also are available to the asynchronous bean.

The java:comp namespace is identical to the one available for the creating component; the same
restrictions apply. For example, if the enterprise bean or servlet has an EJB reference of
java:comp/env/ejb/MyEJB, this EJB reference is available to the asynchronous bean. In addition, all of the

42 Overview

connection factories use the same resource-sharing scope as the creating component.

Connection management

An asynchronous bean method can use the connections that its creating Java EE component obtained
using java:comp resource references. (For more information on resource references, refer to the
References topic). However, the bean method must access those connections using a get, use or close
pattern. There is no connection caching between method calls on an asynchronous bean. The connection
factories or datasources can be cached, but the connections must be retrieved on every method call,
used, and then closed. While the asynchronous bean method can look up connection factories using a
global Java Naming and Directory Interface (JNDI) name, this is not recommended for the following
reasons:
v The JNDI name is hard coded in the application (for example, as a property or string literal).
v The connection factories are not shared because there is no way to specify a sharing scope.

For code examples that demonstrate both the correct and the incorrect ways to access connections from
asynchronous bean methods, refer to the Example: Asynchronous bean connection management topic.

Deferred start of Asynchronous Beans

Asynchronous beans support deferred start by allowing serialization of Java EE service context
information. The WorkWithExecutionContext createWorkWithExecutionContext(Work r) method on the
WorkManager interface will create a snapshot of the Java EE service contexts enabled on the
WorkManager. The resulting WorkWithExecutionContext object can then be serialized and stored in a
database or file. This is useful when it is necessary to store Java EE service contexts such as the current
security identity or Locale and later inflate them and run some work within this context. The
WorkWithExecutionContext object can run using the startWork() and doWork() methods on the
WorkManager interface.

All WorkWithExecutionContext objects must be deserialized by the same application that serialized it. All
EJBs and classes must be present in order for Java to successfully inflate the objects contained within.

Deferred start and security

The asynchronous beans security service context might require Common Secure Interoperability Version 2
(CSIv2) identity assertion to be enabled. Identity assertion is required when a WorkWithExecutionContext
object is deserialized and run to Java Authentication and Authorization Service (JAAS) subject identity
credential assignment. Review the following topics to better understand if you need to enable identity
assertion, when using a WorkWithExecutionContext object:

v Configuring Common Secure Interoperability Version 2 and Security Authentication Service
authentication protocol

v Identity Assertion

There are also issues with interoperating with WorkWithExecutionContext objects from different versions of
the product. Refer to the Interoperating with asynchronous beans topic.

JPA-related limitations

Use of asynchronous beans within a JPA extended persistence context is not supported.

A JPA extended persistence context is inconsistent with the scheduling and multi-threading capabilities of
asynchronous beans and will not be accessible from an asynchronous bean thread.

Chapter 4. Asynchronous beans 43

Likewise, an asynchronous bean should not be created such that it takes a
javax.persistence.EntityManager (or subclass) as a parameter since EntityManager instances are not
intended to be thread safe.

Work managers
A work manager is a thread pool created for Java Platform, Enterprise Edition (Java EE) applications that
use asynchronous beans.

Using the administrative console, an administrator can configure any number of work managers. The
administrator specifies the properties of the work manager, including the Java EE context inheritance
policy for any asynchronous beans that use the work manager. The administrator binds each work
manager to a unique place in Java Naming and Directory Interface (JNDI). You can use work manager
objects in any one of the following interfaces:

v Asynchronous beans

v CommonJ work manager (For details, see the CommonJ work manager section in this article.)

The selected type of interface is resolved during the JNDI lookup time. The interface type is the value that
you specify in the ResourceRef, rather than the interface type specified in the configuration object. For
example, you can have one ResourceRef for each interface per configuration object, and each
ResourceRef lookup returns that appropriate type of instance.

The work managers provide a programming model for the Java EE 1.4 applications. For more information,
see the Programming model section in this article.

Important: The javax.resource.spi.work.WorkManager class is a Java interface to be used by Java EE
Connector Architecture (JCA) resource adapters. It is not an actual implementation of the
WorkManager which is used by Java EE applications.

When writing a Web or Enterprise JavaBeans (EJB) component that uses asynchronous beans, the
developer should include a resource reference in each component that needs access to a work manager.
For more information on resource references, refer to the References topic. The component looks up a
work manager using a logical name in the component, java:comp namespace, just as it looks up a data
source, enterprise bean or connection factory.

The deployer binds physical work managers to logical work managers when the application is deployed.

For example, if a developer needs three thread pools to partition work between bronze, silver, and gold
levels, the developer writes the component to pick a logical pool based on an attribute in the client
application profile. The deployer has the flexibility to decide how to map this request for three thread pools.
The deployer might decide to use a single thread pool on a small machine. In this case, the deployer
binds all three resource references to the same work manager instance (that is, the same JNDI name). A
larger machine might support three thread pools, so the deployer binds each resource reference to a
different work manager. Work managers can be shared between multiple Java EE applications installed on
the same server.

An application developer can use as many logical work managers as necessary. The deployer chooses
whether to map one physical work manager or several to the logical work manager defined in the
application.

All Java EE components that need to share asynchronous scope objects must use the same work
manager. These scope objects have an affinity with a single work manager. An application that uses
asynchronous scopes should verify that all of the components using scope objects use the same work
manager.

44 Overview

When multiple work managers are defined, the underlying thread pools are created in a Java virtual
machine (JVM) only if an application within that JVM looks up the work manager. For example, there might
be ten thread pools (work managers) defined, but none are actually created until an application looks
these pools up.

Important: Asynchronous beans do not support submitting work to remote JVMs.

CommonJ Work Manager

The CommonJ work manager is similar to the work manager. The difference between the two is that the
CommonJ work manager contains a subset of the asynchronous beans work manager methods. Although
CommonJ work manager functions in a Java EE 1.4 environment, the interface does not return a new
instance for each JNDI naming lookup, since this specification is not included in the Java EE specification.

Remote start of work. The CommonJ Work specification optional feature for work running remotely is not
supported. Even if a unit of work implements the java.io.Serializable interface, the unit of work does
not run remotely.

How to look up a work manager

An application can look up a work manager as follows. Here, the component contains a resource
reference named wm/myWorkManager, which was bound to a physical work manager when the component
was deployed:
InitialContext ic = new InitialContext();
WorkManager wm = (WorkManager)ic.lookup("java:comp/env/wm/myWorkManager");

Inheritance Java EE contexts

Asynchronous beans can inherit the following Java EE contexts.
Internationalization context

When this option is selected and the internationalization service is enabled, and the
internationalization context that exists on the scheduling thread is available on the target thread.

Work area
When this option is selected, the work area context for every work area partition that exists on the
scheduling thread is available on the target thread.

Application profile (deprecated)
Application profile context is not supported and not available for Java EE 1.4 applications. For
Java EE 1.3 applications, when this option is selected, the application profile service is enabled,
and the application profile service property, 5.x compatibility mode, is selected. The application
profile task that is associated with the scheduling thread is available on the target thread for Java
EE 1.3 applications. For Java EE 1.4 applications, the application profile task is a property of its
associated unit of work, rather than a thread. This option has no effect on the behavior of the task
in Java EE 1.4 applications. The scheduled work that runs in a Java EE 1.4 application does not
receive the application profiling task of the scheduling thread.

Security
The asynchronous bean can be run as anonymous or as the client authenticated on the thread
that created it. This behavior is useful because the asynchronous bean can do only what the caller
can do. This action is more useful than a RUN_AS mechanism, for example, which prevents this
kind of behavior. When you select the Security option, the JAAS subject that exists on the
scheduling thread is available on the target thread. If not selected, the thread runs anonymously.

Component metadata
Component metadata is relevant only when the asynchronous bean is a simple Java object. If the
bean is a Java EE component, such as an enterprise bean, the component metadata is active.

The contexts that can be inherited depend on the work manager used by the application that creates the
asynchronous bean. Using the administrative console, the administrator defines the sticky context policy of

Chapter 4. Asynchronous beans 45

a work manager by selecting the services on which the work manager is to be made available.

Programming model

Work managers support the following programming models.

v CommonJ Specification. The Application Server Version 6.0 CommonJ programming model uses the
WorkManager and TimerManager to manage threads and timers asynchronously in the Java EE 1.4
environment.

v Asynchronous beans and CommonJ specification extensions. The current asynchronous beans
Event Source, asynchronous scopes, subsystem monitors and Java EE Context interfaces are a part of
the CommonJ extension.

The following table describes the method mapping between the CommonJ and Asynchronous beans APIs.
You can change the current asynchronous beans interfaces to use the CommonJ interface, while
maintaining the same functions.

Table 3. Method mapping between the CommonJ and Asynchronous beans APIs. Method mapping between the
CommonJ and Asynchronous beans APIs

CommonJ package API Asynchronous beans
package

API

Work manager Work manager

Asynchronous beans Field - IMMEDIATE (long) Field - IMMEDIATE (int)

Field - INDEFINITE Field - INDEFINITE

schedule(Work) throws
WorkException,
IllegalArgumentException

startWork(Work) throws
WorkException,
IllegalArgumentException

schedule(Work,
WorkListener) throws
WorkException,
IllegalArgumentException
Important: Configure the
work manager work timeout
property to the value you
previously specified as
timeout_ms on startWork.
The default timeout value is
INDEFINITE.

startWork(Work, timeout_ms,
WorkListener) throws
WorkException,
IllegalArgumentException

waitForAll(workItems,
timeout_ms)

join(workItems, JOIN_AND,
timeout_ms)

waitForAny(workItems,
timeout_ms)

join(workItems, JOIN_OR,
timeout_ms)

WorkItem WorkItem

getResult getResult

getStatus getStatus

WorkListener WorkListener

workAccepted(WorkEvent) workAccepted(WorkEvent)

workCompleted(WorkEvent) workCompleted(WorkEvent)

workRejected(WorkEvent) workRejected(WorkEvent)

workStarted(WorkEvent) workStarted(WorkEvent)

WorkEvent WorkEvent

Field - WORK_ACCEPTED Field - WORK_ACCEPTED

46 Overview

Table 3. Method mapping between the CommonJ and Asynchronous beans APIs (continued). Method mapping
between the CommonJ and Asynchronous beans APIs

Field -
WORK_COMPLETED

Field - WORK_COMPLETED

Field - WORK_REJECTED Field - WORK_REJECTED

Field - WORK_STARTED Field - WORK_STARTED

getException getException

getType getType

getWorkItem().getResult()
Important: This API is valid
only after the work is
complete.

getWork

Work (extends Runnable) Work (Extends Runnable)

isDaemon *

release release

RemoteWorkItem RemoteWorkItem capability
is not provided by
WebSphere Application
Sever. Use Distributed
WorkManager in the
WebSphere Extended
Deployment product.

NA

TimerManager AlarmManager

resume *

schedule(Listener, Date) create(Listener, context, time) **
need to convert the parameters

schedule(Listener, Date,
period)

schedule(Listener, delay,
period)

scheduleAtFixedRate
(Listener, Date, period)

scheduleAtFixedRate
(Listener, delay, period)

stop

suspend

Timer Alarm

cancel cancel

getPeriod

getTimerListener getAlarmListener

scheduledExecutionTime

TimerListener AlarmListener

timerExpired(timer) fired(alarm)

StopTimerListener Not applicable

timerStop(timer)

CancelTimerListener Not applicable

timerCancel(timer)

Chapter 4. Asynchronous beans 47

Table 3. Method mapping between the CommonJ and Asynchronous beans APIs (continued). Method mapping
between the CommonJ and Asynchronous beans APIs

WorkException (Extends Exception) WorkException (Extends WsException)

WorkCompletedException (Extends WorkException) WorkCompletedException (Extends WorkException)

WorkRejectedException (Extends WorkException) WorkRejectedException (Extends WorkException)

For more information on work manager APIs, refer to the Javadoc.

Work manager examples

Table 4. Look up work manager. Work manager

Asynchronous beans CommonJ

InitialContext ctx = new InitialContext();
com.ibm.websphere.asynchbeans.WorkManager wm =
(com.ibm.websphere.asynchbeans.WorkManager)

ctx.lookup(“java:comp/env/wm/MyWorkMgr”);

InitialContext ctx = new InitialContext();
commonj.work.WorkManager wm =
(commonj.work.WorkManager)

ctx.lookup(“java:comp/env/wm/MyWorkMgr”);

Table 5. Create your work using MyWork. MyWork

Asynchronous beans CommonJ

public class MyWork implements
com.ibm.websphere.asynchbeans.Work {
public void release() {

......
}

public void run() {
System.out.println(“Running.....”);

}

public class MyWork implements
commonj.work.Work{

public boolean isDaemon() {
return false;

}
public void release () {

.....
}

public void run () {
System.out.println(“Running.....”);

}

Table 6. Submit the work. Submit work

Asynchronous beans CommonJ

48 Overview

Table 6. Submit the work (continued). Submit work

MyWork work1 = new MyWork();
MyWork work2 = new MyWork();

WorkItem item1;
WorkItem item2;
Item1=wm.startWork(work1);
Item2=wm.startWork(work2);

// case 1: block until all items are done
ArrayList col1 = new ArrayList();
Col1.add(item1);
Col1.add(item2);
wm.join(col1, WorkManager.JOIN_AND,
WorkManager.INDEFINITE);
// when the works are done
System.out.println(“work1 data=”+work1.getData());
System.out.println(“work2 data=”+work2.getData());

// you should complete case 1 before case 2
//case 2: wait up to 1000 milliseconds
for any of the items to complete.
Boolean ret = wm.join(col1,
WorkManager.JOIN_OR, 1000);

MyWork work1 = new MyWork();
MyWork work2 = new MyWork();

WorkItem item1;
WorkItem item2;
Item1=wm.schedule(work1);
Item2=wm.schedule(work2);

// case 1: block until all items are done
Collection col1 = new ArrayList();
col1.add(item1);
col1.add(item2);
wm.waitForAll(col1, WorkManager.INDEFINITE);
// when the works are done
System.out.println(“work1 data=”+work1.getData());
System.out.println(“work2 data=”+work2.getData());

// // you should complete case 1 before case 2
//case 2: wait up to 1000 milliseconds
for any of the items to complete.
Collection finished = wm.waitForAny(col1, 1000);
// check the workItems status
if (finished != null) {

Iterator I = finished.iterator();
if (i.hasNext()) {

WorkItem wi = (WorkItem) i.next();
if (wi.equals(item1)) {

System.out.println(“work1 =
“+ work1.getData());
} else if (wi.equals(item2)) {

System.out.println(“work1 =
“+ work1.getData());
}

}
}

Table 7. Create a timer manager. Timer manager

Asynchronous beans CommonJ

InitialContext ctx = new InitialContext();
com.ibm.websphere.asynchbeans.WorkManager wm =

(com.ibm.websphere.asynchbeans.WorkManager)
ctx.lookup(“java:comp/env/wm/MyWorkMgr”);

AsynchScope ascope;
Try {

Ascope = wm.createAsynchScope(“ABScope”);
} Catch (DuplicateKeyException ex)
{

Ascope = wm.findAsynchScope(“ABScope”);
ex.printStackTrace();

}

// get an AlarmManager
AlarmManager aMgr= ascope.getAlarmManager();

InitialContext ctx = new InitialContext();
Commonj.timers.TimerManager tm =
(commonj.timers.TimerManager)
ctx.lookup(“java:comp/env/tm/MyTimerManager”);

Table 8. Fire the timer. Fire timer

Asynchronous beans CommonJ

Chapter 4. Asynchronous beans 49

Table 8. Fire the timer (continued). Fire timer

// create alarm
ABAlarmListener listener = new ABAlarmListener();
Alarm am =

aMgr.create(listener, “SomeContext”, 1000*60);

// create Timer
TimerListener listener =
new StockQuoteTimerListener(“qqq”,
“johndoe@example.com”);
Timer timer = tm.schedule(listener, 1000*60);

// Fixed-delay: schedule timer to expire in
// 60 seconds from now and repeat every
// hour thereafter.
Timer timer = tm.schedule(listener, 1000*60,
1000*30);

// Fixed-rate: schedule timer to expire in
// 60 seconds from now and repeat every
// hour thereafter
Timer timer = tm.scheduleAtFixedRate(listener,
1000*60, 1000*30);

Timer managers
The timer manager combines the functions of the asynchronous beans alarm manager and asynchronous
scope. So, when a timer manager is created, it internally uses an asynchronous scope to provide the timer
manager life cycle functions.

You can look up the timer manager in the Java Naming and Directory Interface (JNDI) name space. This
capability is different from the alarm manager that is retrieved through the asynchronous beans scope.
Each lookup of the timer manager returns a new logical timer manager that can be destroyed
independently of all other timer managers.

A timer manager can be configured with a number of thread pools through the administrative console. For
deployment you can bind this timer manager to a resource reference at assembly time, so the resource
reference can be used by the application to look up the timer manager.

The Java code to look up the timer manager is:
InitialContext ic = new InitialContext();
TimerManager tm = (TimerManager)ic.lookup(“java:comp/env/tm/TimerManager”);

The programming model for setting up the alarm listener and the timer listener is different. The following
code example shows that difference.

Table 9. Set up the timer listener. Programming model for setting up the timer listener

Asynchronous beans CommonJ

50 Overview

Table 9. Set up the timer listener (continued). Programming model for setting up the timer listener

public class ABAlarmListener implements
AlarmListener {

public void fired(Alarm alarm) {
System.out.println(“Alarm fired.

Context =” + alarm.getContext());
}

public class StockQuoteTimerListener implements
TimerListener {
String context;
String url;

public StockQuoteTimerListener(String context,
String url){

this.context = context;
This.url = url;

}
public void timerExpired(Timer timer) {

System.out.println(“Timer fired. Context =”+
((StockQuoteTimerListener)timer.getTimerListener())
.getContext());

}
public String getContext() {
return context;

}
}

Example: Using connections with asynchronous beans
An asynchronous bean method can use the connections that its creating Java Platform, Enterprise Edition
(Java EE) component obtained using java:comp resource references.

For more information on resource references, refer to the References topic. The following is an example of
an asynchronous bean that uses connections correctly:
class GoodAsynchBean
{
DataSource ds;
public GoodAsynchBean()
throws NamingException
{
// ok to cache a connection factory or datasource
// as class instance data.
InitialContext ic = new InitialContext();
// it is assumed that the created Java EE component has this
// resource reference defined in its deployment descriptor.
ds = (DataSource)ic.lookup("java:comp/env/jdbc/myDataSource");
}
// When the asynchronous bean method is called, get a connection,
// use it, then close it.
void anEventListener()
{
Connection c = null;
try
{
c = ds.getConnection();
// use the connection now...
}
finally
{
if(c != null) c.close();
}
}
}

The following example of an asynchronous bean that uses connections incorrectly:
class BadAsynchBean
{
DataSource ds;
// Do not do this. You cannot cache connections across asynch method calls.

Chapter 4. Asynchronous beans 51

Connection c;

public BadAsynchBean()
throws NamingException
{
// ok to cache a connection factory or datasource as
// class instance data.
InitialContext ic = new InitialContext();
ds = (DataSource)ic.lookup("java:comp/env/jdbc/myDataSource");
// here, you broke the rules...
c = ds.getConnection();
}
// Now when the asynch method is called, illegally use the cached connection
// and you likely see J2C related exceptions at run time.
// close it.
void someAsynchMethod()
{
// use the connection now...
}

}

52 Overview

Chapter 5. Bean Validation

The Bean Validation API is introduced with the Java Enterprise Edition 6 platform as a standard
mechanism to validate Enterprise JavaBeans in all layers of an application, including, presentation,
business and data access. Before the Bean Validation specification, the JavaBeans were validated in each
layer. To prevent the reimplementation of validations at each layer, developers bundled validations directly
into their classes or copied validation code, which was often cluttered. Having one implementation that is
common to all layers of the application simplifies the developers work and saves time.

Bean Validation
The Bean Validation API is introduced with the Java Enterprise Edition 6 platform as a standard
mechanism to validate JavaBeans in all layers of an application, including presentation, business, and data
access.

Before the Bean Validation specification, JavaBeans were validated in each layer. To prevent the
re-implementation of validations at each layer, developers bundled validations directly into their classes or
copied validation code, which was often cluttered. Having one implementation that is common to all layers
of the application simplifies the developers work and saves time.

The Bean Validation specification defines a metadata model and an API that are used to validate
JavaBeans for data integrity. The metadata source is the constraint annotations defined that can be
overridden and extended using XML validation descriptors. The set of APIs provides an ease of use
programming model allowing any application layer to use the same set of validation constraints. Validation
constraints are used to check the value of annotated fields, methods, and types to ensure that they adhere
to the defined constraint.

Constraints can be built in or user-defined. Several built-in annotations are available in the
javax.validation.constraints package. They are used to define regular constraint definitions and for
composing constraints. For a list of built-in constraints, see the topic, Bean validation built-in constraints.
For more details about the Bean Validation metadata model and APIs see the JSR 303 Bean Validation
specification document.

The following example is a simple Enterprise JavaBeans (EJB) class that is decorated with built-in
constraint annotations.
public class Home {

@Size(Max=20)
String builder;
@NotNull @Size(Max=20)
String address;

public String getAddress() {
return address;

}

public String getBuilder() {
return address;

}
public String setAddress(String newAddress) {

return address = newAddress;
}

public String setBuilder(String newBuilder) {
return builder = newBuilder;

}
}

© Copyright IBM Corp. 2012 53

The @Size annotations on builder and address specify that the string value assigned should not be
greater 20 characters. The @NotNull annotation on address indicates that it cannot be null. When the
Home object is validated, the builder and address values are passed to the validator class defined for the
@Size annotation. The address value is also be passed to the @NotNull validator class. The validator
classes handle checking the values for the proper constraints and if any constraint fails validation, a
ConstraintViolation object is created, and is returned in a set to the caller validating the Home object.

Validation APIs

The javax.validation package contains the bean validation APIs that describe how to programmatically
validate JavaBeans.

ConstraintViolation is the class describing a single constraint failure. A set of ConstraintViolation classes is
returned for an object validation. The constraint violation also exposes a human readable message
describing the violation.

ValidationException are raised if a failure happens during validation.

The Validator interface is the main validation API and a Validator instance is the object that is able to
validate the values of the Java object fields, methods, and types. The bootstrapping API is the mechanism
used to get access to a ValidatorFactory that is used to create a Validator instance. For applications
deployed on the product, bootstrapping is done automatically. There are two ways for applications to get
the validator or the ValidatorFactory. One way is injection, for example, using the @Resource annotation,
and the other way is the java: lookup.

The following example uses injection to obtain a ValidatorFactory and a Validator:
@Resource ValidatorFactory _validatorFactory;
@Resource Validator _validator;

Attention: When using @Resource to obtain a Validator or ValidatorFactory, the authenticationType and
shareable elements must not be specified.

The following example uses JNDI to obtain a ValidatorFactory and a Validator:
ValidatorFactory validatorFactory = (ValidatorFactory)context.lookup("java:comp/ValidatorFactory");
Validator validator = (Validator)context.lookup("java:comp/Validator");

Constraint metadata request APIs

The metadata APIs support tool providers, provides integration with other frameworks, libraries, and Java
Platform, Enterprise Edition technologies. The metadata repository of object constraints is accessed
through the Validator instance of a given class.

XML deployment descriptors

Besides declaring constraints in annotations, support exists for using XML to declare your constraints.

The validation XML description is composed of two kinds of xml files. The META-INF/validation.xml file
describes the bean validation configuration for the module. The other XML file type describes constraints
declarations and closely matches the annotations declaration method. By default, all constraint
declarations expressed through annotations are ignored for classes described in XML. It is possible to
force validation to use both the annotations and the XML constraint declarations by using the
ignore-annotation="false" setting on the bean. The product ensures that application modules deployed
containing a validation.xml file and constraints defined in XML files are isolated from other module
validation.xml and constraint files by creating validator instances specific to the module containing the XML
descriptors.

54 Overview

Advanced bean validation concepts

The Bean Validation API provides a set of built-in constraints and an interface that enables you to declare
custom constraints. This is accomplished by creating constraint annotations and declaring an annotation
on a bean type, field, or property. Composing constraints is also done by declaring the constant on
another constraint definition.

The following example shows creating a CommentChecker constraint that is defined to ensure a comment
string field is not null. The comment text is enclosed by brackets, such as [text].
package com.my.company;
import java.lang.annotation.Documented;
import java.lang.annotation.Retention;
import java.lang.annotation.Target;
import static java.lang.annotation.ElementType.METHOD;
import static java.lang.annotation.ElementType.FIELD;
import static java.lang.annotation.RetentionPolicy.RUNTIME;
import javax.validation.Constraint;
import javax.validation.Payload;

@Documented
@Constraint(validatedBy = CommentValidator.class)
@Target({ METHOD, FIELD })
@Retention(RUNTIME)
public @interface CommentChecker {

String message() default "The comment is not valid.";
Class<?>[] groups() default {};
Class<? extends Payload>[] payload() default {};
...}

The next example shows the constraint validator that handles validating elements with the
@CommentChecker annotation. The constraint validator implements the ConstraintValidator interface
provided by the Bean Validation API.
package com.my.company;
import javax.validation.ConstraintValidator;
import javax.validation.ConstraintValidatorContext;
public class CommentValidator implements ConstraintValidator<CommentChecker, String> {

public void initialize(CommentChecker arg0) {
}
public boolean isValid(String comment, ConstraintValidatorContext context) {

if (comment == null) {
// Null comment is not allowed, fail the constraint.
return false;

}
if (!comment.contains("[") && !comment.contains("]")) {

// Can’t find any open or close brackets, fail the constraint
return false;

}
// Ignore leading and trailing spaces
String trimmedComment = comment.trim();
return // validate ’[’ prefix condition

trimmedComment.charAt(0) == ’[’ &&
// validate ’]’ suffix condition
trimmedComment.charAt(trimmedComment.length()!-1) == ’]’;

}
}

After the @CommentChecker is defined, it can be used to ensure that the comment string field is a valid
comment based on the CommentValidator isValid() implementation. The following example shows the use
of the @CommentChecker constraint. When the myChecker bean is validated, the comment string is
validated by the CommentValidator class to ensure the constraints defined are met.

Chapter 5. Bean Validation 55

package com.my.company;
public myChecker {

@CommentChecker
String comment = null;
...

}

The product provides a specific bean validation provider, but it might be necessary for an application to
use or require another provider.

This method can be accomplished by using the validator methods to set the provider programmatically and
create a validation factory. Or, by using the validation.xml default-provider element. The specific provider
that is defined and used to create the validation factory and not the default provider provided by the
application server in the default implementation. If you want to ensure that the user-provided
implementation does not conflict with the default implementation, the server or application class loading
parameter, the class loader order should be set to be loaded with local class loader first (parent last). See
additional information in the class loading documentation on how to set this setting.

The Bean Validation specification indicates that if more than one validation.xml file is found in the class
path, a ValidationException occurs. However, WebSphere Application Server supports an environment
where multiple teams develop modules that are assembled and deployed into the Application Server
together. In this environment, all EJB modules within an application are loaded with the same class loader
and it is possible to configure the application class loaders so that all EJB and web archive (WAR)
modules are loaded by a single class loader. Because of this, the product provides support for multiple
validation.xml files in the same class path.

When an application using bean validation and XML descriptors contains multiple EJB modules and web
modules, each validation.xml file is associated with a validation factory that is specific to that module. In
this environment, any constraint-mapping elements that are defined are only looked up in the module
where the validation.xml file is defined. For example, if an EJB module building.jar contains a
META-INF/validation.xml file and the validation.xml file defined the following constraints, both the
META-INF/constraints-house.xml and META-INF/constraints-rooms.xml files must also be located in the
building.jar file:
<constraint-mapping>META-INF/constraints-house.xml</constaint-mapping>
<constraint-mapping>META-INF/constraints-rooms.xml</constraint-mapping>

The exception to this behavior is when all bean validation constraints classes and configuration are visible
to all application modules. In a case where a single validation.xml file is defined in an EAR file, and no
other validation.xml files are visible in a module's class path, any module that creates a validator factory or
validator will use the validation.xml file that is defined in the EAR file. This makes it possible for other
modules to create a validator factory that uses the validation.xml file of another module, if the class path
has been configured so that both modules are visible on the same class path and only one validation.xml
file is visible to those modules.

For a more detailed understanding about the Bean Validation APIs and metadata see the JSR 303 Bean
Validation specification document.

56 Overview

Chapter 6. Communications Enabled Applications

Communications Enabled Applications (CEA) is a functionality that provides the ability to add dynamic web
communications to any application or business process. The product provides a suite of integrated
telephony and collaborative web services that extends the interactivity of enterprise and web commerce
applications. With the CEA capability, enterprise solution architects and developers can use a single core
application to enable multiple modes of communication. Enterprise developers do not need to have
extensive knowledge of telephony or Session Initiation Protocol (SIP) to implement CEA. The CEA
capability delivers call control, notifications, and interactivity and provides the platform for more complex
communications.

Communications Enabled Applications concepts
Communications Enabled Applications (CEA) is a programming model that provides the ability to add
dynamic web communications to any application or business process.

You can take advantage of integrated telephony and collaborative web services to extend the interactivity
of Enterprise and web commerce applications. With the CEA capability, Enterprise solution architects and
developers can use a single core application to enable multiple modes of communication. Enterprise
developers do not need to have extensive knowledge of telephony or Session Initiation Protocol (SIP) to
implement CEA. The CEA capability delivers call control, notifications, and interactivity and provides the
platform for more complex communications.

Using this simplified programming model for adding web-based communications, Enterprise developers
can do the following:

v Enable any application to quickly add communications support; for example, click-to-call integration

v Enable shared sessions between end users and the company

v Push relevant session data for application use; for example, customer phone numbers

v Deliver automated notifications and instant messaging support

v Provide enterprise-grade security, scalability, and high availability

v Integrate with customer private branch exchange (PBX) systems

CEA has two main services, telephony access and multimodal web interaction:

v Telephony access allows you to create a unified communications environment from within business
applications to increase the efficiency of processes, reduce communications errors, and optimize
business interactions in real time. CEA provides telephony access through a REST interface, through a
web services client, and by using click-to-call widgets.

v Multimodal web interaction allows you to provide session linking (shared sessions) between users
browsing the same website from different locations. With session linking, users can interact dynamically
in collaborative ways, such as cobrowsing or coshopping web sessions. Commerce web sites can use
this service to provide product or customer support, while protecting information on the internal site.
Commerce sites can use the collaborative shopping experience to attract more customers to their sites.
With a combination of click-to-call functionality and multimodal interaction, you can support two-way
synchronized text forms between the user and a customer service representative (CSR).

Note: CEA Dojo widgets encapsulate various user interfaces that are based on the CEA Rest API. These
widgets are deprecated. You can also obtain the source for these widgets from developerWorks.

CEA is based on SIP-enabled services that use Representation State Transfer (REST) servlets and web
services in a converged HTTP and SIP application. CEA includes a library of Dojo-style widgets for use in
web applications. Dojo widgets are prepackaged components of JavaScript and HTML code that add
interactive features that work across platforms and browsers. CEA widgets are extensible, allowing
developers to customize them to handle more advanced tasks.

© IBM Corporation 2009 57

The CEA samples package includes three different sample applications that you can use to explore the
telephony access and multi-modal web interaction services. To learn more, see the information on
accessing the samples and setting up the communications enabled application samples.

CEA call flow
In a Web telephony session, users can make phone calls using the ClicktoCall widget in their Web
browsers. The call flow diagram illustrates the Communications Enabled Applications (CEA) call flow.

Note: The system application must first be configured with the IP private branch exchange (PBX) address.

The following configuration applies to this call flow:

1. A user clicks the ClickToCall widget, which sends an HTTP REST request.

2. The Web container calls the system application.

v An HTTP servlet interprets the REST request.

3. The system application sends SIP messages to the IP PBX using the ECMA TR/87 standard protocol.

In addition to TR/87, PBX vendors can choose to expose a web service interface based on a Web
Services Description Language (WSDL) file that is provided with CEA. This WSDL file is included in
the installation path, app_server_root/systemApps/commsvc.ear/commsvc.rest.war/WEB-INF/wsdl/
ControllerService.wsdl. Using this WSDL file enables you to configure CEA to call out to a PBX
through a web service instead of relying on TR/87.

Restriction: The IP PBX must support the ECMA TR/87 protocol or the CEA web service interface.

4. The IP PBX notifies the user agent client (UAC) to call the user agent server (UAS).

5. A call is established between the two users.

Note: UAC and UAS are SIP instances.

58 Overview

CEA collaboration flow
A Communications Enabled Applications (CEA) Web collaboration session allows dynamic interaction
between users sharing linked browser sessions. Users connect their Web sessions using the CEA
collaboration widget. Use the collaboration flow illustrated in this topic to understand how live Web
collaboration works.

1. User A initiates collaboration by clicking the collaboration widget, which sends a specific HTTP REST
request.

2. The container calls the system application:

v User A is placed in the user registry.

v User A's session is established.

3. The response to User A includes a uniform resource locator (URI) for peers to start collaboration.

4. User A sends User B the “for peer collaboration URI”.

v The “for peer collaboration URI” contains a nonce, a unique identifier which is particular to the
collaboration session. The nonce helps ensure security in the collaboration session.

5. User B responds by sending a request with that URI.

Figure 5. CEA call flow

Chapter 6. Communications Enabled Applications 59

6. The container calls the system application:

v User B is placed in the user registry.

v User A is found in the user registry.

v A “link” is established between them.

7. A response is sent to User B.

v Includes URI to exchange data.

v Activates modal windows in each widget.

8. User B highlights text, scrolls, or fills in a form.

9. User B's widget sends these events through the send URI.

10. The container sends data to User A's session.

11. User A's widget polls for events with the fetch URI.

12. User B's events are captured in User A's widget.

The following diagram shows the collaboration flow between linked user sessions.

Figure 6. CEA Web collaboration

60 Overview

CEA iWidgets
An iWidget is a browser-oriented component designed to work within the framework defined by the iWidget
specification. Such a component only occupies a portion of the overall working canvas and is typically
designed in a way that makes it easy for the canvas assembler to connect the iWidget to other iWidgets
on the canvas.

The ClickToCall, CallNotification and Cobrowse widgets have each been wrapped according to the iWidget
specification and packaged together in an iWidget package (WAR file). This package is included in the
installation path, app_server_root/installableApps/cea.war.

Attention: For instructions on how to publish this iWidget package, see the documentation for the iWidget
container that you plan to use.

After you publish the iWidget package and place the iWidget on a page, the widget loads to the following
state:

The service is currently unavailable.

For most scenarios the iWidget container runs separately from the Communications Enabled Applications
(CEA) application server. This type of environment requires the use of a proxy to proxy the request from
the widget to the Representational State Transfer (REST) service. The proxy mapping must be configured
to proxy GET, POST, PUT, and DELETE methods to:
cea_server:cea_server_port:/commsvc.rest/CommServlet/*

After the proxy is configured, go to the edit settings, view and then choose to edit the widget settings.

From the edit settings page you can configure the various widget attributes to be used by the widget on
the current page. From this page modify the ceaContextRoot setting to point the proxy URL for the REST
service. After you specify the correct ceaContextRoot value, save the settings for the widget to update to
the default state.

For some scenarios it might make sense to hard code the widget attributes before publishing the iWidget
package. To do so, open the cea.war file and modify itemSet "userPrefs" in clickToCall.xml,
callNotification.xml, or cobrowse.xml. Save the changes, and publish the cea.war file to the iWidget
container.
<iw:itemSet id="userPrefs">

<iw:item id="ceaContextRoot" value="/commsvc.rest"/>
<iw:item id="widgetNumber" value=""/>
<iw:item id="enableCollaboration" value="false"/>
<iw:item id="defaultCollaborationUri" value=""/>
<iw:item id="canControlCollaboration" value="false"/>
<iw:item id="highlightElementList" value="DIV,SPAN,TR,TH,TD,P"/>
<iw:item id="isHighlightableCallback" value=""/>
<iw:item id="isClickableCallback" value=""/>

</iw:itemSet>

For more information about iWidgets, see the IBM Mashup Center wiki.

Collaboration Dialog
The Collaboration Dialog allows two users to share information over linked browser sessions. Use this
topic to understand how the Collaboration Dialog works.

The Collaboration Dialog widget is used by the ClickToCall, CallNotification, and Cobrowse widgets to
provide peer-to-peer page sharing and allow one user to control a collaboration session. With the
Collaboration Dialog, page sharing is not screen sharing because each browser makes its own connection
to the server for the content.

Chapter 6. Communications Enabled Applications 61

The Collaboration Dialog interface has three parts. The widget toolbar shows the browser and
collaboration controls for driving the peer-to-peer session. The content pane is the area that loads the
pages that can be shared with the peer. The status bar displays information for the collaboration session.

When two users are involved in a collaboration session, the initiator of the session has control and is the
active peer. The passive peer can see the actions taken by the active peer. If the Grant Control option
(see Collaboration controls) is used, then the active and passive roles can switch. Only one user can have
control at a time.

Browser controls

The Collaboration Dialog give users the following controls to enable page navigation:

v Click the Back icon to go back one page. If Follow Me is enabled, the peer's window is also updated to
load the same page.

v Click the Forward icon to go forward one page. If Follow Me is enabled, the peer's window is also
updated to load the same page.

v Click the Refresh icon to reload the current page. If Follow Me is enabled, the peer's window is also
updated to reload the same page.

v Type a URL into the Location bar and press enter to browse to the page. This URL must be on the
same domain as the page used to display the Collaboration Dialog.

Collaboration controls

The Collaboration Dialog toolbar contains the following collaboration controls: Send Page, Follow Me,
Grant Control, and Highlight.

v The Send Page icon allows the active peer, the user driving the collaboration session, to send the URL
of the current page to the passive peer. The send page function is useful when the active peer only
needs to show the peer certain pages and not the path taken to browse to that page. To send the page,
click the Send Page icon and the current URL of the page is sent to the passive peer.

Remember: The following behavior applies to the send page function:

– The URL of the current page is sent and not the current text in the Location bar.

– Any customization on the current page, for example, a highlight or any changes to the
page made from Ajax requests, are reset when the page reloads.

v The Follow Me icon allows the active peer to send clicks to the passive peer. The Collaboration Dialog
widget captures any clicks that the active peer makes on the page when Follow Me is enabled. This
information is then sent to the passive peer to simulate the clicks in their Collaboration Dialog. To stop
sending this information, the active peer toggles the Follow Me control. The follow me function is useful
when:

– The active peer needs to show the passive peer how to navigate to a page.

– Navigating sites that are built using Web 2.0 technologies; for example, sites using Ajax-style
requests to update content instead of full page refreshes.

HighlightGrant ControlFollow MeSend Pagehttp://localhost:9080/PlantsByWebSphereAjax/index.html

Figure 7. Collaboration Dialog toolbar

Connected Peer Window is Open Controlling Navigation

Figure 8. Collaboration Dialog status bar

62 Overview

v The Grant Control icon allows the active peer to transfer control to the passive peer, providing the
passive peer has the appropriate permission to drive the collaboration session. Once the active and
passive roles are switched, the new active peer will have their collaboration controls enabled. If the
passive peer does not have permission to drive the collaboration session, the Grant Control icon
remains disabled.

v The Highlight icon allows the active peer to highlight a section of the page currently displayed by the
Collaboration Dialog. This information is then sent to the peer, and the same section is highlighted on
their page. Both the active peer and the passive peer can perform highlights. To perform a highlight,
click the Highlight icon, and then move the cursor over the section of the page to be highlighted. As the
cursor moves, the sections change color to show what can be highlighted. Once the user is at the
section they want to highlight, left-click to send the highlight to the peer.

Collaboration Dialog status

The Collaboration Dialog has the following status indicators in the status bar:

v The Connection status icon displays the connection status of the Collaboration Dialog. When either
peer disconnects, this status is updated to show the disconnected status. States included are:
Connected and Disconnected.

v The Peer Window status icon updates as either peer opens and closes their Collaboration Dialog.
States included are: Peer window is open and Peer window is closed.

v The Collaboration Action status icon displays collaboration action and whether the user is currently
controlling the session. States included are: Controlling navigation, Cobrowsing web, Follow me, and
Coauthoring form.

gotcha:

v When URLs are passed between the Collaboration Dialog peers using the Send Page
function, the entire URL is sent to the peer. If the browser for the active peer is on the same
machine as the server, and the active peer uses local host to access the server, this
environment causes issues for the passive peer if they are on separate machines. Because
the entire URL is passed, the passive peer attempts to access the page using local host and a
failure occurs.

When you test the Collaboration Dialog, and the browsers are on separate machines, you
must specify the host name or IP address of the server that is accessible to both peers in the
URL instead of the local host. This process is necessary under the following conditions:

– When you access a page that contains an embedded widget

– When you enter addresses into the Location Bar of the Collaboration Dialog

Note: The sendPageUrlRewriteCallback attribute is added to all the widgets to enable the
application to provide the name of a callback JavaScript function:

sendPageUrlRewriteCallback
A string containing the name of the callback function to run when send page is
called to rewrite the current URL.

This is useful when the peers are accessing the application on different domains or
through a proxy.

v If you want to browse pages by way of Hypertext Transfer Protocol Secure (HTTPS) using the
Collaboration Dialog, the page containing the embedded CEA widget must also be accessed
by means of HTTPS. If you launch one of the CEA widgets from a page accessed through
HTTP, and then during the Collaboration Dialog session you view a page through HTTPS, the
Follow Me and Highlight functionality will not work for that page due to the JavaScript same
origin policy. This same issue occurs if you load the page containing the embedded CEA
widget through HTTPS, and then you try to view a page in the Collaboration Dialog through
HTTP.

Chapter 6. Communications Enabled Applications 63

Collaborative two-way forms
You can use attributes to customize web-based two-way forms.

The Communication Enabled Applications (CEA) two-way form widget is used to create HTML forms in
which two people can collaboratively input text and validate entries. Both users can see the same form.
The fields in the form change in response to input provided by either person.

The writer is the user who is responsible for driving the interaction between the two users.

The reader is the user who is responsible for providing information to the writer. The reader can provide
information verbally to the writer, who copies the information into the form's fields. Since updates to the
fields are visible to the reader, the reader can confirm or validate the correctness of the information. The
reader can be prompted to enter sensitive information into the form, such as credit card numbers. Such
private information is generally filtered so that the writer cannot see it.

Two-way form widgets

Any Dijit form widgets and their subclass widgets that are part of a two-way form automatically
support two-way editing. A widget supporting two-way editing must have an ID specified. You can
specify additional attributes on the widgets to expand their capabilities.

ceaCollabWriteAccess

In a two-way form, fields might exist that only one user should have write access to. For example,
a two-way interaction might involve a salesperson who is responsible for submitting the form,
designated as the writer, and a customer who is responsible for filling out certain portions of the
form, designated as the reader. The reader might be prompted to enter credit card information, for
example, in a particular field. This field must not be editable by the writer. To ensure this, specify
the input field setting for the ceaCollabWriteAccess attribute to "reader":
<input type="text" name="textName" id="textName" value="" size="30"
ceadojoType="dijit.form.TextBox" ceaCollabWriteAccess="reader" />

There might also be input fields that the writer fills out that the reader must not have access to. In
this case, specify the input field setting for the ceaCollabWriteAccess attribute to "writer":
<input type="text" name="textName" id="textName" value="" size="30"
ceadojoType="dijit.form.TextBox" ceaCollabWriteAccess="writer" />

Important: Use this attribute in conjunction with the ceaCollabValidation attribute to ensure that
only one user can change a particular field; thereby preventing both users from being
able to validate the same field.

ceaCollabFilter

The ceaCollabFilter attribute is used to specify a JavaScript method that is used to mask values.
This is useful for fields that contain sensitive information that only one user should be allowed to
see (for example, Social Security numbers). If the attribute has the value default, a default
masking function is used that replaces every character of input with an asterisk. Otherwise, the
value of the attribute is used to call a method that takes a string (the value of the input field) and
is expected to return a masked version of that value.

For example, consider the following JavaScript method, used here as a masking method:
function mask(value) {
return "XXXX";
}

You can specify that this masking function be used with a text input field by specifying it in the
ceaCollabFilter attribute:
<input type="text" name="textName" id="textName" value="" size="30"
ceadojoType="dijit.form.TextBox" ceaCollabFilter="mask" />

ceaCollabValidation

64 Overview

Two-way form functionality allows for validation to occur on any input field. This means that any
change to the input field by one user will require another user to accept or decline the changes.
You can submit the form only after all input fields that require validation have been accepted.

By default, the CEA TwoWayForm widget provides for a simple validation widget that appears
alongside an input field widget when validation is required. To enable this widget, simply set the
value of the ceaCollabValidation attribute on the input field widget to default, for example:
<input type="text" name="textName" id="textName" value="" size="30"
ceadojoType="dijit.form.TextBox" ceaCollabValidation="default" />

In some cases, you might not want to use the default validation widget. You can create your own
by subclassing cea.widget.validation.ValidationWidget and overriding methods related to
creating, showing, and hiding the validation widget. For more information about how a custom
class is implemented, see the JavaScript comments in app_server_root\etc\cea\javascript\
ceadojo\cea\widget\validation\ValidationWidget.js.

ceaCollabName

When validation is defined for an input field, an alert notifies the writer when one or more input
fields have not been validated by the reader. By default, this alert only lists the input field IDs. If a
more descriptive label is needed, use the ceaCollabName attribute on the input field widget, for
example:
<input type="text" name="textName" id="textName" value="" size="30"
ceadojoType="dijit.form.TextBox" ceaCollabValidation="default" />

ceaCollabHandleRemoveNotification/ceaCollabHandleShowNotification

When any field in a two-way form changes, the user gets a notification. By default, the field is
highlighted, and the appearance of the highlighting is determined by the two-way form CSS (the
TwoWayForm.css file referred to earlier in this topic). However, you can change the highlight styling
in the following two ways:

v Changing the styling in TwoWayForm.css or, creating a new CSS file that redefines the styles
present in TwoWayForm.css

v Defining alternative notification methods

Defining alternative notification methods gives you more control over how notifications are
presented to the user, if at all. Define two methods, both of which accept a Dijit widget object. The
first method is used to control removing the notification, and the second is used to control showing
the notification. For example, consider the following JavaScript methods:
function removeFunc(widget) {
ceadijit.hideTooltip (widget.domNode);
}
function showFunc(widget) {
ceadijit.showTooltip ("Value changed", widget.domNode);
}

The alternative notification methods handle showing and hiding a tooltip instead of the default
notification method that involves highlighting a field. To use these methods, specify them in the
ceaCollabHandleRemoveNotification and ceaCollabHandleShowNotification attributes on the
desired input field:
<input type="text" name="textName" id="textName" value="" size="30"
ceadojoType="dijit.form.TextBox"
ceaCollabHandleRemoveNotification="removeFunc"
ceaCollabHandleShowNotification="showFunc" />

REST APIs in CEA
You can use the Communications Enabled Applications (CEA) feature to integrate either web telephony or
web collaboration into applications using a Representational State Transfer (REST) API. REST is a
network architecture that defines how resources on the Internet are accessed. REST is not a standard, but
uses common Internet standards such as HTTP and HTML.

Chapter 6. Communications Enabled Applications 65

REST API overview

The following tables show the REST APIs and commands used in CEA, including a generic list of each
aspect of the requests and responses. Also see the information on accessing telephony and data sharing
browser sessions using REST APIs.

Table 10. REST API overview.

This table shows an overview of the REST API.

HTTP Method and URI Description

PUT /collaborationSession Enable collaboration

GET /collaborationSession; <encodedSession> Get collaboration status

GET /collaborationSession;
<encodedPeerAddressOfRecord>

Start a collaboration session with a peer

DELETE /collaborationSession; <encodedSession> End a collaboration session

POST /collaborationSession/data; <encodedSession> Send data to the collaboration peer

GET /event; <encodedSession> Retrieve event data (call status, collaboration status,
collaboration data)

PUT /call Make a call

GET /call; <encodedSession> Get status on an active call

DELETE /call; <encodedSession> End a call

PUT /callNotification Register for call notification

GET /callNotification; <encodedSession> Get call notification information

DELETE /callNotification; <encodedSession> Unregister for call notification

URI parameters

URI parameters are used by the REST API. These parameters are located after the path portion of the
request URI; for example:
http://host:port/commsvc.rest/CommServlet/collaborationSession?JSON=true&addressOfRecord=tel:987654321

Table 11. URI parameters.

This table shows URI parameters and their descriptions.

Parameter Applicable HTTP Method and URI Description

JSON All Optional parameter that you can use
on any REST request. When the
JSON parameter is detected and set
to true, the REST response is
formatted as JSON; otherwise XML.
The presence of this parameter does
not affect the format of the request.

addressOfRecord PUT /collaborationSession Optional parameter when enabling
collaboration. It allows the specified
value to be used as an identifier of
the session. This identifier gets
exposed to other users of
collaboration. If absent, a random
identifier is created. Whether
specified or not, the identifier is
returned in the response as the
collaborationId.

66 Overview

Table 11. URI parameters (continued).

This table shows URI parameters and their descriptions.

Parameter Applicable HTTP Method and URI Description

peerAddressOfRecord GET /collaborationSession Required parameter when starting a
collaboration session with a peer. It
represents the identifier of the peer to
which a collaboration must be
established. This identifier is the
collaborationId that was returned to
the peer when the peer enabled
collaboration.

returnAllEvents GET /event; <encodedSession> Optional parameter used to get new
events. If set to true, all available
events are returned. Otherwise, only
the next single event is returned. If
this parameter is not used, the default
is to return a single event.

ceaVersion All Required parameter used to declare
the version of the client sending the
request. It is used to support
backward compatibility.

replaceRequest GET /event; <encodedSession> Optional parameter used to force a
new GET /event request to replace an
outstanding GET /event request. The
outstanding request gets a 304 error
response.

Request fields

With some REST APIs, additional information is provided in the body of the HTTP message, which must
be formatted as either XML or JSON. The following table explains those request fields. Some fields are
specific to web telephony or web collaboration while others apply to both. As another reference, see the
schema that describes the REST requests and response format. It is called CommServletSchema.xsd and
can be found in the WebSphere Application Server installation directory under /etc/cea/schema.

Table 12. Request fields.

This table shows request fields and their descriptions.

Request fields Applicable HTTP Method and URI Description

addressOfRecord PUT /call
PUT /callNotification

Required when making a call or
registering for call notification. It
represents the address of record of
the phone making the call, or the
phone registering for call notification.
Common to all address of record
references in this REST API, the
values can be either SIP or TEL
URIs.

peerAddressOfRecord PUT /call This field is required when making a
call. It represents the address of
record of the phone to be called.

collaborationData POST /event; <encodedSession> This field is required when sending
data to a collaboration peer. It
represents the data being sent.

Chapter 6. Communications Enabled Applications 67

Table 12. Request fields (continued).

This table shows request fields and their descriptions.

Request fields Applicable HTTP Method and URI Description

enableCollaboration PUT /call
PUT /callNotification

Optional when either making a call or
registering for call notification. It
allows collaboration to be enabled at
the same time.

peerDeviceControlled PUT /call By default, PUT /call causes the
device associated with the
addressOfRecord to be controlled and
originate the call. When
peerDeviceControlled is set to true,
the device associated with the
peerAddressOfRecord is controlled
and originates the call.

Response fields

The response to the REST API is described in the following table. As with the request fields, some
response fields are specific to web telephony or web collaboration, while others apply to both. Many of the
response fields include URIs that can be used in follow on REST requests. They are encoded to ensure
that subsequent requests, related to the originally passed in address of record, remain associated with the
same session. As another reference, see the schema that describes the REST requests and response
format. It is called CommServletSchema.xsd and can be found in the WebSphere Application Server
installation directory under /etc/cea/schema.

Table 13. Response fields.

This table shows response fields and their descriptions.

Response field Applicable HTTP Method and URI Description

infoMsg All Message indicating the results of the
requested operation.

returnCode All Number that represents the result of
the requested operation. For example,
when a request operation completes
successfully, the response is 200.
This full list of return codes can be
seen in the REST interface schema.
See table 5 for a complete list.

68 Overview

Table 13. Response fields (continued).

This table shows response fields and their descriptions.

Response field Applicable HTTP Method and URI Description

eventList GET /event Array of events (web collaboration
data available, web collaboration
status or call status changes) used in
response to GET /event. Each event
has three fields: type, data, and
infoMsg. The different types include
call status, collaboration status and
collaboration data. The data is
dependent on the event type, but is
similar to the REST response fields of
callStatus and collaborationStatus, or
the data sent with POST /event. The
infoMsg is additional information
about the event. The following is a
JSON formatted eventList:

[{"type":2, "data":
"information from peer",
"infoMsg": "Successfully
fetched data"}]

Possible event types based on their
enum values include:

0: Data Event
1: Call Status Event
2: Web Collab Status Event
3: Failover Event

eventUri All except GET /event This encoded URI is returned from
multiple REST APIs. It can be used to
post new data in a collaboration
session or to poll an event, such as a
change in call status, change in
collaboration status, or new data
becoming available in a collaboration
session. It doesn't return immediately.
It will wait for an event to occur
before a response is sent, or when a
configured amount of time transpires.
You can configure the time from the
administrative console and is called
the Maximum hold time.

callerAddressOfRecord All including /call or /callNotification in
the URI

Address of record for the calling
phone.

calleeAddressOfRecord All including /call or /callNotification in
the URI

Address of record for the phone that
was called.

callServiceUri All including /call or /callNotification in
the URI

Encoded URI is returned from the
make a call request, used for getting
status on, or ending a call.

callNotifyUri All except GET /event This encoded URI is returned from
registering for call notification, used
for monitoring a phone to see if a call
has arrived or to unregister call
notification.

Chapter 6. Communications Enabled Applications 69

Table 13. Response fields (continued).

This table shows response fields and their descriptions.

Response field Applicable HTTP Method and URI Description

callId All including /call or /callNotification in
the URI when a call is active

Call ID associated with the current
active call.

callFailureReason GET /call Upon a failed call, this is a message
indicating the reason for the failure.

callStatus GET /call Represents the status of the call
(initiated, established, failed, cleared).

collaborationStatus All except GET /event Represents the status of a web
collaboration session. Valid states are
as follows: ESTABLISHED,
NOT_ESTABLISHED, STARTING,
and READY.

collaborationServiceUri All except GET /event when
collaboration is enabled

This encoded URI is returned from
the enable collaboration request, used
for getting status or ending a web
collaboration session.

collaborationId All except GET /event when
collaboration is enabled

Unique identifier of a user
collaboration session. If an optional
address of record is provided when
enabling collaboration, then the
collaborationId matches that value.

forPeerCollaborationUri All except GET /event when
collaboration is enabled

URI that a user can send to a peer.
The peer uses it to establish a web
collaboration session. It includes the
peerAddressOfRecord parameter.

peerCollaborationUri All except GET /event when
collaboration is enabled and the peer
in the collaboration session has been
found

This encoded URI can be used to
establish a web collaboration with the
other user on the phone call.

ceaVersion All This string represents the version of
the server.

Return codes

The following table lists the possible return codes seen in the REST response returnCode field.

Table 14. Return codes.

This table shows possible return codes and their descriptions.

Code number Description

200 Similar to an HTTP 200 OK. No problems were detected.

201 Response to the GET /event request if no new events are
found. This return does not imply an error because an
event might not have been generated.

300 REST request was invalid. For example, the HTTP
method and URI did not match what is supported by the
API.

70 Overview

Table 14. Return codes (continued).

This table shows possible return codes and their descriptions.

Code number Description

301 REST request was a follow-on request, such as getting
call or collaboration status, but no existing session
information was found.

302 An error occurred when trying to parse the REST request.
An error exists in the format of the JSON or XML
provided.

303 For telephony-related REST requests, a user name was
not found in the credentials. This would only happen if the
configuration indicates that the user name associated with
a caller should be retrieved from the request credentials.

304 Response to an outstanding GET /event request if, before
a response is sent, a redundant GET /event request is
received.

305 REST request is missing required parameters or fields.
For example, this return results if the API makes a call
that was sent without providing an addressOfRecord
identifying the caller.

306 An unexpected error occurred.

307 A telephony related REST request was made that did not
locate a call.

308 A collaboration-related REST request was made, but
collaboration was not enabled for in the session.

Sample REST requests and responses

Enabling collaboration with JSON
REST Request:

PUT http://host:port/commsvc.rest/CommServlet/collaborationSession?JSON=true&ceaVersion=1.0.0.1

REST Response:
{
"returnCode":200,
"infoMsg":"Successfully enabled collaboration",
"collaborationId":"local.1242138965934_1",
"callNotifyUri":"CommServlet/callerNotification;ibmappid=local.1242138965934_1",
"collaborationStatus":"NOT_ESTABLISHED",
"collaborationServiceUri":"CommServlet/collaborationSession;ibmappid=local.1242138965934_1",
"forPeerCollaborationUri":"CommServlet/collaborationSession?addressOfRecord=local.1242138965934_1",
"eventUri":"CommServlet/event;ibmappid=local.1242138965934_1"
"ceaVersion":"1.0.0.1"
}

Enabling collaboration with XML
REST Request:

PUT http://host:port/commsvc.rest/CommServlet/collaborationSession?ceaVersion=1.0.0.1

REST Response:
<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<CommRestResponse xmlns="http://jaxb.servlet.commsvc.ws.ibm.com/">

<returnCode>200</returnCode>
<infoMsg>Successfully enabled collaboration</infoMsg>
<callNotifyUri>CommServlet/callerNotification;ibmappid=local.1242140626552_1</callNotifyUri>
<collaborationId>local.1242140626552_1</collaborationId>
<collaborationStatus>NOT_ESTABLISHED</collaborationStatus>
<collaborationServiceUri>CommServlet/collaborationSession;ibmappid=local.1242140626552_1</collaborationServiceUri>
<forPeerCollaborationUri>CommServlet/collaborationSession?addressOfRecord=local.1242140626552_1</forPeerCollaborationUri>
<eventUri>CommServlet/event;ibmappid=local.1242140626552_1</eventUri>
<ceaVersion>1.0.0.1</ceaVersion>

</CommRestResponse>

Chapter 6. Communications Enabled Applications 71

Making a call with JSON
REST Request

PUT http://host:port/commsvc.rest/CommServlet/call?JSON=true&ceaVersion=1.0.0.1
{
"enableCollaboration": false,
"addressOfRecord":"sip:phone1@192.168.1.100",
"peerAddressOfRecord":"sip:phone2@192.168.1.100"
}

REST Response:
{
"returnCode":200,
"infoMsg":"Call attempted between sip:phone1@192.168.1.100 and sip:phone2@192.168.1.100.",
"callerAddressOfRecord":"sip:phone1@192.168.1.100",
"calleeAddressOfRecord":"sip:phone2@192.168.1.100",
"callServiceUri":"CommServlet/call;ibmappid=local.1242140626552_42",
"callNotifyUri":"CommServlet/callerNotification;ibmappid=local.1242140626552_42",
"collaborationStatus":"NOT_ESTABLISHED",
"eventUri":"CommServlet/event;ibmappid=local.1242140626552_42"
"ceaVersion":"1.0.0.1"
}

Making a call with XML
REST Request

PUT http://host:port/commsvc.rest/CommServlet/call?ceaVersion=1.0.0.1
<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<CommRestRequest xmlns="http://jaxb.servlet.commsvc.ws.ibm.com/">

<addressOfRecord>sip:phone1@192.168.1.100</addressOfRecord>
<peerAddressOfRecord>sip:phone2@192.168.1.100</peerAddressOfRecord>
<enableCollaboration>true</enableCollaboration>

</CommRestRequest>

REST Response
<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<CommRestResponse xmlns="http://jaxb.servlet.commsvc.ws.ibm.com/">

<returnCode>200</returnCode>
<infoMsg>Call attempted between sip:phone1@192.168.1.100 and sip:phone2@192.168.1.100.</infoMsg>
<callerAddressOfRecord>sip:phone1@192.168.1.100</callerAddressOfRecord>
<calleeAddressOfRecord>sip:phone2@192.168.1.100</calleeAddressOfRecord>
<callServiceUri>CommServlet/call;ibmappid=local.1242140626552_33</callServiceUri>
<callNotifyUri>CommServlet/callerNotification;ibmappid=local.1242140626552_33</callNotifyUri>
<collaborationStatus>NOT_ESTABLISHED</collaborationStatus>
<eventUri>CommServlet/event;ibmappid=local.1242140626552_33</eventUri>
<ceaVersion>1.0.0.1</ceaVersion>

</CommRestResponse>

Directory conventions
References in product information to app_server_root, profile_root, and other directories imply specific
default directory locations. This article describes the conventions in use for WebSphere Application Server.

Default product locations (distributed)

The following file paths are default locations. You can install the product and other components or create
profiles in any directory where you have write access. Multiple installations of WebSphere Application
Server Network Deployment products or components require multiple locations. Default values for
installation actions by root and nonroot users are given. If no nonroot values are specified, then the default
directory values are applicable to both root and nonroot users.

app_client_root

72 Overview

Table 15. Default installation root directories for the Application Client for IBM WebSphere Application Server.

This table shows the default installation root directories for the Application Client for IBM WebSphere Application
Server.
User Directory

Root
/usr/IBM/WebSphere/AppClient (Java EE Application client only)

/opt/IBM/WebSphere/AppClient (Java EE Application client only)

C:\Program Files\IBM\WebSphere\AppClient

Nonroot
user_home/IBM/WebSphere/AppClient (Java EE

Application client only)

C:\IBM\WebSphere\AppClient

app_server_root

Table 16. Default installation directories for WebSphere Application Server.

This table shows the default installation directories for WebSphere Application Server Network Deployment.
User Directory

Root
/usr/IBM/WebSphere/AppServer

/opt/IBM/WebSphere/AppServer

C:\Program Files\IBM\WebSphere\AppServer

Nonroot
user_home/IBM/WebSphere/AppServer

user_home\IBM\WebSphere\AppServer

component_root
The component installation root directory is any installation root directory described in this article.
Some programs are for use across multiple components—in particular, the Web Server Plug-ins,
the Application Client, and the IBM HTTP Server. All of these components are part of the product
package.

gskit_root
IBM Global Security Kit (GSKit) can now be installed by any user. GSKit is installed locally inside
the installing product's directory structure and is no longer installed in a global location on the
target system.

Table 17. Default installation directories for GSKit.

This table shows the default installation root directory for Version 8 of the GSKit, where product_root is the root
directory of the product that is installing GSKit, for example IBM HTTP Server or the web server plug-in.
User Directory

Root and nonroot
product_root/gsk8

product_root\gsk8

profile_root

Chapter 6. Communications Enabled Applications 73

Table 18. Default profile directories.

This table shows the default directories for a profile named profile_name on each distributed operating system.
User Directory

Root
/usr/IBM/WebSphere/AppServer/profiles/profile_name

/opt/IBM/WebSphere/AppServer/profiles/profile_name

C:\Program Files\IBM\WebSphere\AppServer\profiles\profile_name

Nonroot
user_home/IBM/WebSphere/AppServer/profiles

user_home\IBM\WebSphere\AppServer\profiles

plugins_root

Table 19. Default installation root directories for the Web Server Plug-ins.

This table shows the default installation root directories for the Web Server Plug-ins for WebSphere Application
Server.
User Directory

Root
/usr/IBM/WebSphere/Plugins

/opt/IBM/WebSphere/Plugins

C:\Program Files\IBM\WebSphere\Plugins

Nonroot
user_home/IBM/WebSphere/Plugins

C:\IBM\WebSphere\Plugins

wct_root

Table 20. Default installation root directories for the WebSphere Customization Toolbox.

This table shows the default installation root directories for the WebSphere Customization Toolbox.
User Directory

Root
/usr/IBM/WebSphere/Toolbox

/opt/IBM/WebSphere/Toolbox

C:\Program Files\IBM\WebSphere\Toolbox

Nonroot
user_home/IBM/WebSphere/Toolbox

C:\IBM\WebSphere\Toolbox

web_server_root

Table 21. Default installation root directories for the IBM HTTP Server.

This table shows the default installation root directories for the IBM HTTP Server.
User Directory

Root
/usr/IBM/HTTPServer

/opt/IBM/HTTPServer

C:\Program Files\IBM\HTTPServer

74 Overview

Table 21. Default installation root directories for the IBM HTTP Server (continued).

This table shows the default installation root directories for the IBM HTTP Server.
User Directory

Nonroot
user_home/IBM/HTTPServer

C:\IBM\HTTPServer

Chapter 6. Communications Enabled Applications 75

76 Overview

Chapter 7. Client applications

This page provides a starting point for finding information about application clients and client applications.
Application clients provide a framework on which application code runs, so that your client applications can
access information on the application server.

For example, an insurance company can use application clients to help offload work on the server and to
perform specific tasks. Suppose an insurance agent wants to access and compile daily reports. The
reports are based on insurance rates that are located on the server. The agent can use application clients
to access the application server where the insurance rates are located. More introduction...

Types of client applications
You can write client applications that run separately from your application server. A client application uses
the framework provided by an underlying client to access the resources provided by WebSphere
Application Server.

Several types of clients are installed either with WebSphere Application Server or, optionally, with the
Application Client for WebSphere Application Server.

Stand-alone thin clients and resource adapter for JMS
The stand-alone thin clients are small, embeddable Java SE clients that you can run either on
their own or, to provide different features, with one or more other stand-alone thin clients. The
resource adapter for JMS is a stand-alone resource adapter that provides third party application
servers with full connectivity to service integration resources running inside WebSphere Application
Server.

Java EE client
The Java Platform, Enterprise Edition (Java EE) client is a Java EE mode of using the runtime

Figure 9. Clients provided for WebSphere Application Server

© Copyright IBM Corp. 2012 77

environment of either an Application Client installation or a WebSphere Application Server
installation. The Java EE client uses the Client Container in the runtime environment to simplify
access to system services such as security, transactions, naming, and database access for use by
Java EE client applications.

Java thin client
The Java thin client is a Java Platform, Standard Edition (Java SE) mode of using the runtime
environment of either an Application Client installation or aWebSphere Application Server
installation. The Java thin client runtime environment provides the support needed by full-function
Java SE client applications for object resolution, security, Reliability Availability and Serviceability
(RAS), and other services. However, the Java thin client does not support a Client Container that
provides easy access to these services.

Applet client
The Applet client model has a Java applet embedded in a HyperText Markup Language (HTML)
document residing on a remote client machine from the WebSphere Application Server (base).
With this type of client, the user accesses an enterprise bean in the WebSphere Application Server
(base) through the Java applet in the HTML document.

ActiveX to Enterprise JavaBeans (EJB) Bridge (Windows only)
The ActiveX application client model uses the Java Native Interface (JNI) architecture to
programmatically access the Java virtual machine (JVM) API. Therefore the JVM code exists in
the same process space as the ActiveX application (Visual Basic, VBScript, or Active Server
Pages (ASP) files) and remains attached to the process until that process terminates.

Pluggable Application Client for WebSphere Application Server (Windows only)
This client provides a subset of Application Client for WebSphere Application Server features. This
client is supported in Windows only using a Sun JRE in a J2SE mode of operation.

Important: The Pluggable Application Client is deprecated. It is replaced by the stand-alone thin
client, IBM Thin Client for EJB.

The following table provides a comparison of the different types of clients that are available.

Table 22. Client comparison. The first column of this table lists the attributes that are being compared, and the
remaining seven columns show the comparison information for each of the different types of client that are available.

Stand-alone
thin clients

Resource
Adapter for
JMS

Java EE
client (Java
EE mode of
Application
Client)

Java thin
client (Java
SE mode of
Application
Client)

Java EE
client (Java
EE mode of
Application
Server1

Java thin
client (Java
SE mode of
Application
Server) 1

Pluggable
Application
Client
(deprecated)

Unique
characteristics

Embeddable
single jar with
small footprint

JCA v1.5
resource
adapter with
small footprint

Large client
footprint with
many files

Large client
footprint with
many files

Very large
server footprint
with many files

Very large
server footprint
with many files

Large client
footprint with
many files
(subset of
Application
Client for
WebSphere
Application
Server

Supported
execution
environment

Java SE Java EE v1.4
application
server: Apache
Geronimo,
WebSphere
Application
Server
Community
Edition, JBoss

Java EE client
container

Java SE Java EE client
container

Java SE Java SE

78 Overview

Table 22. Client comparison (continued). The first column of this table lists the attributes that are being compared,
and the remaining seven columns show the comparison information for each of the different types of client that are
available.

Stand-alone
thin clients

Resource
Adapter for
JMS

Java EE
client (Java
EE mode of
Application
Client)

Java thin
client (Java
SE mode of
Application
Client)

Java EE
client (Java
EE mode of
Application
Server1

Java thin
client (Java
SE mode of
Application
Server) 1

Pluggable
Application
Client
(deprecated)

Supported
Java vendors

IBM, Sun, and
HP-UX

As per J2EE
vendor

Supplied IBM
application
server

Supplied IBM
application
server

Supplied IBM
application
server

Supplied IBM
application
server

Sun

Supported
Java version

See Table 23
on page 80

v 1.5

v 1.6

Supplied IBM
JRE

Supplied IBM
JRE

Supplied IBM
JRE

Supplied IBM
JRE

1.5+

Supported
transactions

No
transactions
and local
transactions

No
transactions,
local
transactions,
and XA
transactions
for JMS

No
transactions,
and local
transactions
for JMS

No
transactions,
and local
transactions
for JMS

No
transactions,
local
transactions
for JMS

No
transactions,
and local
transactions
for JMS

No
transactions,
and local
transactions
for JMS

Easily
embedded

Yes No No No No No No

Include JNDI
lookup
capability to
WebSphere
Application
Server

Available
through the
Thin Client for
Enterprise
JavaBeans
(EJB)

Not applicable
(relies on host
application
server JNDI)

Yes Yes Yes Yes Yes

Connectivity
support

TCP and SSL TCP and SSL TCP, HTTP,
and SSL

TCP, HTTP,
and SSL

TCP, HTTP,
and SSL

TCP, HTTP,
and SSL

TCP and
HTTP

Notable
restrictions

Thin Client for
JMS does not
support HTTP
connectivity.

For web
services, the
use of
SOAP/JMS is
not supported
by the thin
client
environment

No HTTP
connectivity

None None None None No SSL
support

License type IPLA
(unlimited
copy but no
redistribution),
and ILAN
(redistribution)

IPLA
(unlimited
copy but no
redistribution),
and ILAN
(redistribution)

IPLA
(unlimited
copy but no
redistribution),
and ILAN
(redistribution)

IPLA
(unlimited
copy but no
redistribution),
and ILAN
(redistribution)

IPLA IPLA IPLA
(unlimited
copy but no
redistribution),
and ILAN
(redistribution)

1 The information in this column relates to WebSphere Application Server when used as the client runtime
environment.

The following table provides additional information on the supported JRE versions for stand-alone thin
clients.

Chapter 7. Client applications 79

Table 23. Supported JRE versions. The first column of this table lists the stand-alone thin clients, and the second
column lists the supported JRE versions for each of the stand-alone thin clients.

Type JRE Versions

Enterprise JavaBeans thin client
v 1.5

v 1.6

v 1.7

Java Message Service thin client
v 1.5

v 1.6

v 1.7

Java API for XML-based RPC (JAX-RPC) thin client
v 1.6

v 1.7

Java API for XML-Based Web Services (JAX-WS) thin client
v 1.6

v 1.7

Administrative thin client
v 1.6

v 1.7

Java Persistence API (JPA)
v 1.5

v 1.6

v 1.7

Terms used for clients
Clients provided by WebSphere Application Server, and client applications that you develop, are referred to
by similar terms. The terms described in this topic should help you better understand other client-related
information.

Application Client
Application Client for WebSphere Application Server is the package that you can use to install a
variety of clients.

Application Client also forms the runtime for Java EE clients and Java thin clients on a system that
does not have the Application Server installed.

client Provides a framework on which an application runs, so that the application can access information
on an application server. Clients are provided as part of the Application Client for WebSphere
Application Server or as part of a WebSphere Application Server installation.

Clients are sometimes referred to as “application clients”.

client application
The application program that you develop to access information on an application server. The
application is built on the framework provided by one or more clients.

Java EE client
The Java Platform, Enterprise Edition (Java EE) client is a Java EE mode of using the runtime
environment of either an Application Client installation or a WebSphere Application Server
installation. The Java EE client uses the Client Container in the runtime environment to simplify
access to system services such as security, transactions, naming, and database access for use by
Java EE client applications.

The Java EE client is sometimes referred to as the “Java EE application client” or “J2EE
application client”.

Java thin client
The Java thin client is a JavaPlatform, Standard Edition (Java SE) mode of using the runtime
environment of either an Application Client installation or a WebSphere Application Server
installation. The Java thin client runtime environment provides the support needed by full-function

80 Overview

Java SE client applications for object resolution, security, Reliability Availability and Servicability
(RAS), and other services. However, the Java thin client does not support a Client Container that
provides easy access to these services.

The Java thin client is sometimes referred to as the “Java thin application client”.

stand-alone thin client
Small embeddable Java SE clients that you can use either on their own or, to provide different
features, with one or more other stand-alone thin clients. Stand-alone thin clients are provided as
embeddable JAR files, and have names such as “IBM Thin Client for feature”; for example, “IBM
Thin Client for Java Messaging Service (JMS)”.

Application Client for WebSphere Application Server
Application Client for WebSphere Application Server is the package that you can use to install a variety of
clients. Application Client also forms the runtime for Java EE clients and Java thin clients on a system that
does not have the Application Server installed.

The Application Client for WebSphere Application Server is packaged with the following components:

v Java Runtime Environment (JRE) (or an optional full Software Development Kit) that IBM i provides.

v The runtime environment for Java EE client applications (that use services provided by the Java EE
Client Container)

v The runtime environment for Java thin client applications (Java SE applications that do not use services
provided by the Java EE Client Container)

v An ActiveX to EJB Bridge for ActiveX programs to access enterprise beans through a set of
ActiveX automation objects. (Windows only)

v IBM plug-in for Java platforms for Applet client applications (Windows only)

v A variety of stand-alone thin clients, as embeddable JAR files

Stand-alone thin clients
Small embeddable Java SE clients that you can use either on their own (stand-alone) or, to provide
different features, with one or more other stand-alone thin clients.

The stand-alone thin clients are provided as embeddable JAR files in the %WAS_HOME%/runtimes
directory of either an Application Client installation or a WebSphere Application Server installation.

IBM Thin Client for Java Messaging Service (JMS)
The Thin Client for JMS is a Java service integration bus JMS client designed to run as an
embeddable client in Java SE applications under the IBM, Sun and HP Java run-time
environments (JREs). The client supports no transaction and local transaction models.

IBM Thin Client for Enterprise JavaBeans (EJB)
The Thin Client for EJB allows Java SE applications to access remote Enterprise Java Beans on a
server through Java Naming and Directory Interface (JNDI) look up. It can be embedded in a Java
SE application running under the IBM, Sun, or HP JREs.

IBM Thin Client for Java API for XML-based Web Services (JAX-WS)
The Thin Client for JAX-WS allows Java SE client applications to use JAX-WS to invoke web
services that are hosted by an application server. Such unmanaged client applications can use
JAX-WS APIs to directly inspect a WSDL file and formulate the calls to web services

IBM Thin Client for Java API for XML-based RPC (JAX-RPC)
The Thin Client for JAX-RPC allows Java SE client applications to use JAX-RPC to invoke web
services that are hosted by an application server. Such unmanaged client applications can access
a web service as if the web service is a local object mapped into the client address space even
though the web service provider is located in another part of the world.

Chapter 7. Client applications 81

IBM Thin Client for Java API for RESTful Web Services (JAX-RS)
The Thin Client for JAX-RS is a stand-alone Java SE 6 client environment that enables running
unmanaged JAX-RS RESTful web services client applications in a non-WebSphere environment to
invoke JAX-RS RESTful web services that are hosted by the application server.

IBM Thin Client for Java Persistence API (JPA)
The Thin Client for JPA allows Java SE client applications to use the Java Persistence API (JPA)
to store and retrieve persistent data without the use of an application server.

If you are running two or more of these stand-alone thin clients together, you must obtain all the clients
that you are using from the same installation of Application Client for WebSphere Application Server, the
same installation of the WebSphere Application Server product, or the same service refresh.

Although the stand-alone thin clients can coexist with each other, none of them can coexist with the
Administration Thin Client for WebSphere Application Server.

WebSphere Application Server and IBM Application Client for WebSphere Application Serveralso provide a
resource adapter for JMS that enables a third-party application server to be a stand-alone JMS client of
WebSphere Application Server:

IBM Resource Adapter for JMS with WebSphere Application Server
A Java EE Connector Architecture (JCA) V1.5-compliant resource adapter that runs in a supported
Java EE V1.4 compliant application server. The resource adapter provides full two-phase
transaction support through an XA interface, supports inbound messages through message-driven
beans (MDBs) and supports connection pooling with lazy association.

Java EE client
The Java Platform, Enterprise Edition (Java EE) client is a Java EE mode of using the runtime
environment of either an Application Client installation or a WebSphere Application Server installation. The
Java EE client uses the Client Container in the runtime environment to simplify access to system services
such as security, transactions, naming, and database access for use by Java EE client applications.

The Java EE client is sometimes referred to as the “Java EE application client” or “J2EE application
client”.

The Client Container enables Java EE client applications to use logical names (“nicknames”) for enterprise
beans and local resources, and to leave the resolution of those names to a look up in the Java Naming
and Directory Interface (JNDI) namespace of an application server. Besides simplifying resolution to
enterprise beans and local resources references, this use of logical names and JNDI lookups eliminates
changes to the client application code if the underlying object or resource either changes or moves to a
different application server.

The Java EE client initializes the runtime environment for a Java EE client application. A deployment
descriptor defines the unique initialization for a client application, and defines the logical names used by
the application.

The logical names are defined within the deployment descriptor of a Java EE client application. These
logical deployment descriptors identify enterprise beans or local resources (Java Database Connectivity
(JDBC) data sources, J2C connection factories, Java Message Service (JMS) resources, and JavaMail
and URL APIs) for simplified resolution through JNDI lookup.

Storing the resource information separately from the client application program makes the client application
program portable and more flexible. If you develop a client application using and adhering to the Java EE
platform, you can port the client application from one Java EE platform implementation to another. The
code of the client application does not change, but the application package might need redeployment
using the deployment tool of the new Java EE platform.

82 Overview

Attention: The Java EE client does not support connection pools. The application client calls the
database directly, without a datasource. If you want to use the getConnection() request from a Java EE
client application, configure the JDBC provider in the application deployment descriptors, using Rational®

Application Developer or an assembly tool. The connection is established between the client application
and the database.

The Java EE client uses the Java Remote Method Invocation technology over Internet Inter-Orb Protocol
(RMI-IIOP). Using this protocol enables a Java EE client application to access enterprise bean references
and to use Common Object Request Broker Architecture (CORBA) services provided by the Java EE client
runtime. Use of the RMI-IIOP protocol and the accessibility of CORBA services assist users in developing
a Java EE client application that requires access to both enterprise bean references and CORBA object
references.

Java thin client
The Java thin client is a JavaPlatform, Standard Edition (Java SE) mode of using the runtime environment
of either an Application Client installation or a WebSphere Application Server installation. The Java thin
client runtime environment provides the support needed by full-function Java SE client applications for
object resolution, security, Reliability Availability and Serviceability (RAS), and other services. However, the
Java thin client does not support a Client Container that provides easy access to these services.

The Java thin client is sometimes referred to as the “Java thin application client”.

The Java thin client is designed to support those users who want a full-function Java SE client application
programming environment, to use the supplied IBM JRE, without the overhead of the Java Platform,
Enterprise Edition (Java EE) platform on the client machine.

The Java thin client does not perform initialization of any of the services that the client application might
require. For example, the client application is responsible for the initialization of the naming service, either
through CosNaming or JNDI APIs.

The Java thin client does not support the use of use of logical names (“nicknames”) for enterprise beans
and local resources. When a client application resolves a reference for an enterprise bean (using either
Java Naming and Directory Interface (JNDI) or CosNaming), the application must know the location of the
name server and the fully-qualified name used when the reference was bound into the name space. When
a client application resolves a reference for a local resource, the client application cannot resolve to the
resource through a JNDI lookup. Instead the client application must explicitly create the connection to the
resource using the appropriate API; for example, JDBC or Java Message Service (JMS). If the location of
an enterprise bean or resource changes, the thin client application must also change the value placed on
the lookup() statement.

The Java thin client runtime environment provides support for Java SE client applications to access remote
enterprise beans, and provides the implementation for various enterprise bean services. Client applications
can also use the Java thin client runtime environment to access CORBA objects and CORBA based
services.

The Java thin client uses the RMI-IIOP protocol, which enables the client application to access both
enterprise bean references and CORBA object references. Using this protocol also allows the client
application to use any supported CORBA services. Using the RMI-IIOP protocol along with the accessibility
of CORBA services can help you develop a client application that needs to access both enterprise bean
references and CORBA object references.

If you choose to use both enterprise beans and CORBA programming models in the same client
application, you need to understand the differences between those programming models to manage both
environments. For example, the CORBA programming model requires the CORBA CosNaming name

Chapter 7. Client applications 83

service for object resolution in a name space. The enterprise beans programming model requires the JNDI
name service. The client application must initialize and properly manage these two naming services.

Another difference applies to the enterprise bean model, for which the JNDI implementation initializes the
Object Request Broker (ORB); the client application is unaware that an ORB is present. The CORBA
model, however, requires the client application to explicitly initialize the ORB through the ORB.init() static
method.

Note: The CORBA model does not allow for workload management (WLM) functionality and cluster
failover. Use the enterprise bean model (with JNDI) to access objects in a clustered environment.

The Java thin application client provides a batch command that you can use to set the CLASSPATH and
JAVA_HOME environment variables to enable the Java thin application client run time.

gotcha: When running in an environment that includes Java thin application clients, clients might
suddenly encounter a situation where the port information about the cluster members of the
target cluster has become stale. This situation most commonly occurs when all of the cluster
members have dynamic ports and are restarted during a time period when no requests are being
sent. The client process in this state will eventually attempt to route to the node agent to receive
the new port data for the cluster members, and then use that new port data to route back to the
members of the cluster.

If any issues occur that prevent the client from communicating with the node agent, or that
prevent the new port data being propagated between the cluster members and the node agent,
request failures might occur on the client. In some cases, these failures are temporary. In other
cases you need to restart one or more processes to resolve a failure.

To circumvent the client routing problems that might arise in these cases, you can configure static
ports on the cluster members. With static ports, the port data does not change as a client
process gets information about the cluster members. Even if the cluster members are restarted,
or there are communication or data propagation issues between processes, the port data the
client holds is still valid. This circumvention does not necessarily solve the underlying
communication or data propagation issues, but removes the symptoms of unexpected or uneven
client routing decisions.

Applet client
The Applet client provides a browser-based Java run time capable of interacting with enterprise beans
directly, instead of indirectly through a servlet.

This client is designed to support users who want a browser-based Java client application programming
environment that provides a richer and more robust environment than the one offered by the Applet >
Servlet > enterprise bean model.

The programming model for this client is a hybrid of the Java application thin client and a servlet client.
When accessing enterprise beans from this client, the applet can consider the enterprise bean object
references as CORBA object references.

No tooling support exists for this client to develop, assemble or deploy the applet. You are responsible for
developing the applet, generating the necessary client bindings for the enterprise beans and CORBA
objects, and bundling these pieces together to install or download to the client machine. The Java applet
client provides the necessary run time to support communication between the client and the server. The
applet client run time is provided through the Java applet browser plug-in that you install on the client
machine.

84 Overview

Generate client-side bindings using an assembly tool. An applet can utilize these bindings, or you can
generate client-side bindings using the rmic command. This command is part of the IBM Developer Kit,
Java edition that is installed with the WebSphere Application Server.

The applet client uses the RMI-IIOP protocol. Using this protocol enables the applet to access enterprise
bean references and CORBA object references, but the applet is restricted in using some supported
CORBA services.

If you combine the enterprise bean and CORBA environments in one applet, you must understand the
differences between the two programming models, and you must use and manage each model
appropriately.

The applet environment restricts access to external resources from the browser runtime environment. You
can make some of these resources available to the applet by setting the correct security policy settings in
the WebSphere Application Server client.policy file. If given the correct set of permissions, the applet
client must explicitly create the connection to the resource using the appropriate API. This client does not
perform initialization of any service that the client applet can need. For example, the client application is
responsible for the initialization of the naming service, either through the CosNaming, or the Java Naming
and Directory Interface (JNDI) APIs.

ActiveX to Enterprise JavaBeans (EJB) Bridge
WebSphere Application Server provides an ActiveX to EJB bridge that enables ActiveX programs to
access enterprise beans through a set of ActiveX automation objects.

The bridge accomplishes this access by loading the Java virtual machine (JVM) into any ActiveX
automation container such as Visual Basic, VBScript, and Active Server Pages (ASP).

There are two main environments in which the ActiveX to EJB bridge runs:
v Client applications, such as Visual Basic and VBScript, are programs that a user starts from the

command line, desktop icon, or Start menu shortcut.
v Client services, such as Active Server Pages, are programs started by some automated means like the

Services control panel applet.

The ActiveX to EJB bridge uses the Java Native Interface (JNI) architecture to programmatically access
the JVM code. Therefore the JVM code exists in the same process space as the ActiveX application
(Visual Basic, VBScript, or ASP) and remains attached to the process until that process terminates. To
create JVM code, an ActiveX client program calls the XJBInit() method of the XJB.JClassFactory object.

After an ActiveX client program has initialized the JVM code, the program calls several methods to create
a proxy object for the Java class. When accessing a Java class or object, the real Java object exists in the
JVM code; the automation container contains the proxy for that Java object. The ActiveX program can use
the proxy object to access the Java class, object fields, and methods.

To convert primitive data types, the client program uses the COM IDispatch interface (use of the IUnknown
interface is not directly supported). Primitive data types are automatically converted between native
automation types and Java types. All other types are handled automatically by the proxy objects.

Any exceptions thrown in Java code are encapsulated and thrown again as a COM error, from which the
ActiveX program can determine the actual Java exceptions.

The ActiveX to EJB bridge supports both free-threaded and apartment-threaded access and implements
the free threaded marshaler (FTM) to work in a hybrid environment such as Active Server Pages.

For more information about ActiveX client programming with the ActiveX to EJB bridge, refer to the
Developing ActiveX client application code topic.

Chapter 7. Client applications 85

Pluggable Application Client
The Pluggable Application Client for WebSphere Application Server provides a downloadable run time for
Java client applications to run with the Sun Java Runtime Environment (JRE) on the Windows platform.

Important: The Pluggable Application Client is deprecated. It is replaced by the stand-alone thin client,
IBM Thin Client for EJB.

The Pluggable Application Client runs only on the Windows platform and requires that you have previously
installed the Sun Java Runtime Environment (JRE) files. In all other aspects, the Pluggable Application
Client and the Java thin application client are similar.

86 Overview

Chapter 8. Data access resources

This page provides a starting point for finding information about data access. Various enterprise
information systems (EIS) use different methods for storing data. These backend data stores might be
relational databases, procedural transaction programs, or object-oriented databases.

The flexible IBM WebSphere Application Server provides several options for accessing an information
system backend data store:

v Programming directly to the database through the JDBC 4.0 API, JDBC 3.0 API, or JDBC 2.0 optional
package API.

v Programming to the procedural backend transaction through various J2EE Connector Architecture (JCA)
1.0 or 1.5 compliant connectors.

v Programming in the bean-managed persistence (BMP) bean or servlets indirectly accessing the
backend store through either the JDBC API or JCA-compliant connectors.

v Using container-managed persistence (CMP) beans.

v Using the IBM data access beans, which also use the JDBC API, but give you a rich set of features and
function that hide much of the complexity associated with accessing relational databases.

Service Data Objects (SDO) simplify the programmer experience with a universal abstraction for messages
and data, whether the programmer thinks of data in terms of XML documents or Java objects. For
programmers, SDOs eliminate the complexity of the underlying data access technology such as JDBC,
RMI/IIOP, JAX-RPC, and JMS, and message transport technology such as, java.io.Serializable, DOM
Objects, SOAP, and JMS.

Data concepts

Relational resource adapters and JCA
A resource adapter is a system-level software driver that a Java application uses to connect to an
enterprise information system (EIS). A resource adapter plugs into an application server and provides
connectivity between the EIS, the application server, and the enterprise application.

WebSphere Application Server supports JCA versions 1.0, 1.5 and 1.6, including additional configurable
features for JCA 1.5 resource adapters with activation specifications that handle inbound requests. The
JCA Version 1.6 specification also adds support for Java annotations in RAR modules. For more
information on annotation support see the topic, JCA 1.6 support for annotations in RAR modules.

Data access for container-managed persistence (CMP) beans is indirectly managed by the WebSphere
Persistence Manager. The JCA specification supports persistence manager delegation of the data access
to the JCA resource adapter without knowing the specific backend store. For the relational database
access, the persistence manager uses the relational resource adapter to access the data from the
database.

You can find the supported database platforms for the JDBC API at the WebSphere Application Server
prerequisite website.

Java EE Connector Architecture and WebSphere relational resource adapters

An application server vendor extends its system once to support the Java Platform, Enteprise Edition
Connector Architecture (JCA) and is then assured of seamless connectivity to multiple EISs. Likewise, an
EIS vendor provides one standard resource adapter with the capability to plug into any application server
that supports the connector architecture.

© IBM Corporation 2009 87

The product supports any resource adapter that implements version 1.0, 1.5 and 1.6 of this specification.
IBM includes WebSphere MQ and the Service Integration Bus with the Application Server, and IBM
supplies resource adapters for many enterprise systems separately from the WebSphere Application
Server package, which include but are not limited to, the Customer Information Control System (CICS®),
Host On-Demand (HOD), Information Management System (IMS™), and Systems, Applications, and
Products (SAP) R/3 .

The general approach to writing an application that uses a JCA resource adapter is to develop EJB
session beans or services with tools such as Rational Application Developer. The session bean uses the
javax.resource.cci interfaces to communicate with an enterprise information system through the resource
adapter.

WebSphere Relational Resource Adapter

WebSphere Application Server provides the WebSphere Relational Resource Adapter implementation. This
resource adapter provides data access through JDBC calls to access the database dynamically. The
connection management is based on the JCA connection management architecture and provides
connection pooling, transaction, and security support. The WebSphere RRA is installed and runs as part of
WebSphere Application Server, and needs no further administration.

The RRA supports both the configuration and use of JDBC data sources and JCA connection factories.
The RRA supports the configuration and use of data sources implemented as either JDBC data sources or
Java EE Connector Architecture connection factories. Data sources can be used directly by applications,
or they can be configured for use by container-managed persistence (CMP) entity beans.

For more information about the WebSphere Relational Resource Adapter, see the following topics:

v For information about resource adapters and data access, see the topic Data access portability
features.

v For RRA settings, see the topic WebSphere relational resource adapter settings.

v For information about enterprise beans, see the topic EJB applications.

Using a single instance of a resource adapter
You can restrict certain resource adapters to a single runtime instance inside the Java Virtual Machine
(JVM).

Before you begin

Enabling this setting imposes a highly restrictive environment on the system and should be used with
caution.

About this task

Using the single-instance resource adapter configuration option on some resource adapters can enable
you to set up an environment that optimally behaves. Some resource adapters that support inbound
communications from the enterprise information system (EIS) might require single-instance behavior. By
enabling this setting, server startup time can be optimized. Other resource adapters might not require this
setting. You need to determine if you should configure the resource adapter for single-instance behavior.

Consider using the single-instance resource adapter configuration for testing and troubleshooting
problems. Placing the single-instance restriction on some resource adapters might work as a corrective
action for problems; enabling single-instance behavior on one or more resource adapters thought to be
involved in a problem can help isolate the specific issue.

This design does not allow two resource adapter JavaBeans instances that would return true from the
equals method to coexist in the same JVM, if any one of them is configured as single-instance. For

88 Overview

example, if two applications that have embedded the same resource adapter, or one application that
embeds a resource adapter and the same resource adapter is installed in the server as a stand-alone
resource adapter, are configured on the same server such that even though some of their config attributes
are different, the ones that the equals() method evaluates are equal, this will no longer be allowed, and will
return a ResourceException.

Note: The vendor of a resource adapter which cannot tolerate multiple instances does not have a
JCA-defined method of communicating this. Therefore, it is up to the deployer to recognize the
need, and configure resource adapter(s) for single-instance behavior.

WebSphere relational resource adapter settings
Use this page to view the settings of the WebSphere relational resource adapter. This adapter is
preinstalled in the product to provide access to relational databases.

Restriction: Although the default relational resource adapter settings are viewable, you cannot make
changes to them.

To view this administrative console page, click Resources > Resource adapters > Resource adapters.
Expand the Preferences section at the top of the page. Select Show built-in resources. The table of
configured resource adapters now displays the WebSphere Relational Resource Adapter.

Name:

Specifies the name of the resource provider.

Information Value
Data type String

Description:

Specifies a description of the relational resource adapter.

Information Value
Data type String

Scope:

Specifies the scope of the relational resource adapter.

Information Value
Data type String

Data access portability features
These interfaces work with the relational resource adapter (RRA) to make database-specific functions
operable on connections between the application server and that database.

In other words, your applications can access data from different databases, and use functions that are
specific to the database, without any code changes. Additionally, WebSphere Application Server enables
you to plug in a data source that is not supported by WebSphere persistence. However, the data source
must be implemented as either the XADataSource type or the ConnectionPoolDataSource type, and it
must be in compliance with the JDBC 2.x specification.

You can achieve application portability through the following:
DataStoreHelper interface

With this interface, each data store platform can plug in its own private datastore specific functions

Chapter 8. Data access resources 89

that the relational resource adapter runtime uses. WebSphere Application Server provides an
implementation for each supported JDBC provider.

The interface also provides a GenericDataStoreHelper class for unsupported data sources to use.
You can subclass the GenericDataStoreHelper class or other WebSphere provided helpers to
support any new data source.

Note: If you are configuring data access through a user-defined JDBC provider, do not implement
the DataStoreHelper interface directly. Either subclass the GenericDataStoreHelper class or
subclass one of the DataStoreHelper implementation classes provided by IBM (if your
database behavior or SQL syntax is similar to one of these provided classes).

For more information, see the API documentation DataStoreHelper topic (as listed in the API
documentation index).

The following code segment shows how a new data store helper is created to add new error
mappings for an unsupported data source.
public class NewDSHelper extends GenericDataStoreHelper
{

public NewDSHelper(java.util.Properties dataStoreHelperProperties)
{

super(dataStoreHelperProperties);
java.util.Hashtable myErrorMap = null;
myErrorMap = new java.util.Hashtable();
myErrorMap.put(new Integer(-803), myDuplicateKeyException.class);
myErrorMap.put(new Integer(-1015), myStaleConnectionException.class);
myErrorMap.put("S1000", MyTableNotFoundException.class);
setUserDefinedMap(myErrorMap);
...

}
}

WSCallHelper class
This class provides two methods that enable you to use vendor-specific methods and classes that
do not conform to the standard JDBC APIs (and are not part of WebSphere Application Server
extension packages).
v jdbcCall() method

By using the static jdbcCall() method, you can invoke vendor-specific, nonstandard JDBC
methods on your JDBC objects. (For more information, see the API documentation
WSCallHelper topic.) The following code segment illustrates using this method with a DB2®

data source:

Connection conn = ds.getConnection();
// get connection attribute
String connectionAttribute =(String) WSCallHelper.jdbcCall(DataSource.class, ds,
"getConnectionAttribute", null, null);
// setAutoClose to false
WSCallHelper.jdbcCall(java.sql.Connection.class,
conn, "setAutoClose",
new Object[] { new Boolean(false)},
new Class[] { boolean.class });
// get data store helper
DataStoreHelper dshelper = WSCallHelper.getDataStoreHelper(ds);

v jdbcPass() method

Use this method to exploit the nonstandard JDBC classes that some database vendors provide.
These classes contain methods that require vendors' proprietary JDBC objects to be passed as
parameters.

In particular, implementations of Oracle can involve use of nonstandard classes furnished by the
vendor. Methods contained within these classes include:
oracle.sql.ArrayDescriptor ArrayDescriptor.createDescriptor(java.lang.String, java.sql.Connection)
oracle.sql.ARRAY new ARRAY(oracle.sql.ArrayDescriptor, java.sql.Connection, java.lang.Object)
oracle.xml.sql.query.OracleXMLQuery(java.sql.Connection, java.lang.String)

90 Overview

oracle.sql.BLOB.createTemporary(java.sql.Connection, boolean, int)
oracle.sql.CLOB.createTemporary(java.sql.Connection, boolean, int)
oracle.xdb.XMLType.createXML(java.sql.Connection, java.lang.String)

The following code sample demonstrates how to use jdbcPass to call the Oracle method
XMLType.createXML on a connection. This Oracle function creates an XML type object out of the
XML data that the database passes to your application.
XMLType poXML = (XMLType)(WSCallHelper.jdbcPass(XMLType.class,
"createXML", new Object[]{conn,poString},
new Class[]{java.sql.Connection.class, java.lang.String.class},
new int[]{WSCallHelper.CONNECTION,WSCallHelper.IGNORE}));

For more examples of using jdbcPass and a complete list of method parameters, see the API
documentation for the WSCallHelper class. In this information center, access the API
documentation with the following steps:
1. Click Reference > Developer API documentation > Application programming interfaces
2. Click com.ibm.websphere.rsadapter
3. Under the Class Summary heading, click WSCallHelper

The first section on jdbcPass discusses using the method to call database static methods. The
second section on jdbcPass addresses database non-static methods.

CAUTION: Use of the jdbcPass() method causes the JDBC object to be used outside of the
protective mechanisms of WebSphere Application Server. Performing certain
operations (such as setting autoCommit, or transaction isolation settings, etc.)
outside of these protective mechanisms will cause problems with the future use of
these pooled connections. IBM does not guarantee stability of the object after
invocation of this method; it is the user's responsibility to ensure that invocation of
this method does not perform operations that harm the object. Use at your own risk.

Because of these potential problems, WebSphere Application Server strictly controls
which methods are allowed to be invoked using the jdbcPass() method support. If
you require support for a method that is not listed previously in this document,
contact WebSphere Application Server Support with information on the method you
require.

JDBC providers
Installed applications use JDBC providers to interact with relational databases.

The JDBC provider object supplies the specific JDBC driver implementation class for access to a specific
vendor database. To create a pool of connections to that database, you associate a data source with the
JDBC provider. Together, the JDBC provider and the data source objects are functionally equivalent to the
Java Platform, Enterprise Edition (Java EE) Connector Architecture (JCA) connection factory, which
provides connectivity with a non-relational database.

For a current list of supported providers, see the WebSphere Application Server prerequisite website. For
detailed descriptions of the providers, including the supported data source classes and their required
properties, refer to the topics on data source required minimum required settings, by vendor.

Configuring QueryTimeout
You can configure a timeout on the data source of an application so that the transaction or statement
timeout occurs if a query fails to return, because of a deadlock or blocked transactions.

Before you begin

Traditional Java Database Connectivity (JDBC) provides a standard interface, called
java.sql.Statement.setQueryTimeout, to limit the number of seconds that a JDBC driver waits for a
statement to execute. This can used by an application to control the maximum amount of time the

Chapter 8. Data access resources 91

application waits for an SQL statement to complete before the request is interrupted. With earlier versions
of WebSphere Application Server, the only way of setting a query timeout is by programmatically
establishing an SQL query timeout in the application by invoking the java.sql.Statement.setQueryTimeout
interface on every statement.

About this task

In Version 8, you can configure this query timeout using either of the following two custom properties at
the data source level:

v webSphereDefaultQueryTimeout establishes a default query timeout, which is the number of seconds
that an SQL statement may execute before timing out. This default value is overridden during a Java
Transaction API (JTA) transaction if the syncQueryTimeoutWithTransactionTimeout custom property is
enabled.

v syncQueryTimeoutWithTransactionTimeout uses the time remaining (if any) in a JTA transaction as the
default query timeout for SQL statements.

By default, query time is disabled. Based on the presence and value of the two new data source custom
properties, a timeout value is calculated of either:

v the time remaining in the current JTA transaction based on the TM timeout setting -
syncQueryTimeoutWithTransactionTimeout

v the absolute number of seconds specified by configuration - webSphereDefaultQueryTimeout

The calculated timeout is then used in conjunction with the JDBC API to set a query timeout value on each
statement.

Procedure
1. Open the administrative console.

2. Go to the WebSphere Application Server Data Source properties panel for the data source.

a. Click Resources > JDBC > Data Sources > data_source

b. Click WebSphere Application Server Data Source properties.

3. Click Custom properties under Additional Properties.

4. Click New.

5. Enter webSphereDefaultQueryTimeout in the Name field.

6. Enter the number of seconds to use for the default query timeout in the Value field. The timeout value
is in seconds. A value of 0 (zero) indicates no timeout.

7. Click OK.

8. Click New.

9. Enter syncQueryTimeoutWithTransactionTimeout in the Name field.

10. Enter true or false in the Value field. A value of true indicates to use the time remaining in a JTA
transaction as the default query timeout.

11. Click OK.

12. Save your changes. The updates go into effect after the server is restarted.

Results

You have configured the query timeout on the data source of your application.

Example

The following example illustrates using webSphereDefaultQueryTimeout = 20 and
syncQueryTimeoutWithTransactionTimeout = true:

92 Overview

statement = connection.createStatement();
statement.executeUpdate(sqlcommand1); // query timeout of 20 seconds is used
statement.executeUpdate(sqlcommand2); // query timeout of 20 seconds is used
transaction.setTransactionTimeout(30);
transaction.begin();
try
{

statement.executeUpdate(sqlcommand3); // query timeout of 30 seconds is used
// assume the above operation took 5 seconds, remaining time = 30 - 5 seconds
statement.executeUpdate(sqlcommand4); // query timeout of 25 seconds is used
// assume the above operation took 10 seconds, , remaining time = 25 - 10 seconds
statement.executeUpdate(sqlcommand5); // query timeout of 15 seconds is used

}
finally
{

transaction.commit();
}
statement.executeUpdate(sqlcommand6); // query timeout of 20 seconds is used

The following example illustrates using webSphereDefaultQueryTimeout = 20 and
syncQueryTimeoutWithTransactionTimeout = false:

statement = connection.createStatement();
statement.executeUpdate(sqlcommand1); // query timeout of 20 seconds is used
statement.executeUpdate(sqlcommand2); // query timeout of 20 seconds is used
transaction.setTransactionTimeout(30);
transaction.begin();
try
{

statement.executeUpdate(sqlcommand3); // query timeout of 20 seconds is used
// assume the above operation took 5 seconds
statement.executeUpdate(sqlcommand4); // query timeout of 20 seconds is used
// assume the above operation took 10 seconds
statement.executeUpdate(sqlcommand5); // query timeout of 20 seconds is used

}
finally
{

transaction.commit();
}
statement.executeUpdate(sqlcommand6); // query timeout of 20 seconds is used

You can override the query timeout for a statement at any time by invoking the
java.sql.Statement.setQueryTimeout interface from your application code.

Data sources
Installed applications use a data source to obtain connections to a relational database. A data source is
analogous to the Java Platform, Enterprise Edition (Java EE) Connector Architecture (JCA) connection
factory, which provides connectivity to other types of enterprise information systems (EIS).

A data source is associated with a JDBC provider, which supplies the driver implementation classes that
are required for JDBC connectivity with your specific vendor database. Application components transact
directly with the data source to obtain connection instances to your database. The connection pool that
corresponds to each data source provides connection management.

You can create multiple data sources with different settings, and associate them with the same JDBC
provider. For example, you might use multiple data sources to access different databases within the same
vendor database application. WebSphere Application Server requires JDBC providers to implement one or
both of the following data source interfaces, which are defined by Sun Microsystems. These interfaces
enable the application to run in a single-phase or two-phase transaction protocol.

Chapter 8. Data access resources 93

v ConnectionPoolDataSource - a data source that supports application participation in local and global
transactions, excepting two-phase commit transactions. When a connection pool data source is involved
in a global transaction, transaction recovery is not provided by the transaction manager. The application
is responsible for providing the backup recovery process if multiple resource managers are involved.

Note: A connection pool data source does support two-phase commit transactions in these cases:
– the data source is making use of Last participant support. Last participant support enables a

single one-phase commit resource to participate in a global transaction with one or more
two-phase commit resources.

For more information, consult the article, Using one-phase and two-phase commit resources in
the same transaction.

v XADataSource - a data source that supports application participation in any single-phase or two-phase
transaction environment. When this data source is involved in a global transaction, the product
transaction manager provides transaction recovery.

Prior to version 5.0 of the application server, the function of data access was provided by a single
connection manager (CM) architecture. This connection manager architecture remains available to support
Java 2 Platform, Enterprise Edition (J2EE) 1.2 applications, but another connection manager architecture
is provided, based on the JCA architecture supporting the J2EE 1.3 application style, J2EE 1.4 and Java
EE applications.

These architectures are represented by two types of data sources. To choose the right data source,
administrators must understand the nature of their applications, EJB modules, and enterprise beans.
v Data source (WebSphere Application Server V4) - This data source is utilizes the original CM

architecture. Applications using this data source behave as if they were running in Version 4.0.
v Data source - This data source uses the JCA standard architecture to provide support for J2EE version

1.3 and 1.4, as well as Java EE applications. It utilizes the JCA connection manager and the relational
resource adapter.

Choice of data source
v J2EE 1.2 application - all EJB 1.1 enterprise beans, JDBC applications, or Servlet 2.2 components must

use the 4.0 data source.
v J2EE 1.3 (and subsequent releases) application -

– EJB 1.1 module - all EJB 1.x beans must use the 4.0 data source.
– EJB 2.0 (and subsequent releases) module - enterprise beans that include container-managed

persistence (CMP) Version 1.x, 2.0, and beyond must use the new data source.
– JDBC applications and Servlet 2.3+ components - must use the new data source.

Data access beans
Data access beans provide a rich set of features and function, while hiding much of the complexity
associated with accessing relational databases.

They are Java classes written to the Enterprise JavaBeans specification.

You can use the data access beans in JavaBeans-compliant tools, such as the IBM Rational Application
Developer. Because the data access beans are also Java classes, you can use them like ordinary classes.

The data access beans (in the package com.ibm.db) offer the following capabilities:

Feature
Details

Caching query results
You can retrieve SQL query results all at once and place them in a cache. Programs using the
result set can move forward and backward through the cache or jump directly to any result row in
the cache.

94 Overview

http://publib.boulder.ibm.com/infocenter/wasinfo/v8r0/index.jsp?topic=/com.ibm.websphere.nd.multiplatform.doc/info/ae/ae/welcome_ndmp.html
http://publib.boulder.ibm.com/infocenter/wasinfo/v8r0/index.jsp?topic=/com.ibm.websphere.nd.multiplatform.doc/info/ae/ae/welcome_ndmp.html

For large result sets, the data access beans provide ways to retrieve and manage packets,
subsets of the complete result set.

Updating through result cache
Programs can use standard Java statements (rather than SQL statements) to change, add, or
delete rows in the result cache. You can propagate changes to the cache in the underlying
relational table.

Querying parameter support
The base SQL query is defined as a Java String, with parameters replacing some of the actual
values. When the query runs, the data access beans provide a way to replace the parameters with
values made available at run time. Default mappings for common data types are provided, but you
can specify whatever your Java program and database require.

Supporting metadata
A StatementMetaData object contains the base SQL query. Information about the query (metadata)
enables the object to pass parameters into the query as Java data types.

Metadata in the object maps Java data types to SQL data types (as well as the reverse). When
the query runs, the Java-datatyped parameters are automatically converted to SQL data types as
specified in the metadata mapping.

When results return, the metadata object automatically converts SQL data types back into the
Java data types specified in the metadata mapping.

Connection management architecture
The connection management architecture for both relational and procedural access to enterprise
information systems (EIS) is based on the Java Platform, Enterprise Edition (Java EE) Connector
Architecture (JCA) specification. The Connection Manager (CM), which pools and manages connections
within an application server, is capable of managing connections obtained through both resource adapters
(RAs) defined by the JCA specification, and data sources defined by the Java Database Connectivity
(JDBC) 2.0 (and later) Extensions specification.

To make data source connections manageable by the CM, the WebSphere Application Server provides a
resource adapter (the WebSphere Relational Resource Adapter) that enables JDBC data sources to be
managed by the same CM that manages JCA connections. From the CM point of view, JDBC data
sources and JCA connection factories look the same. Users of data sources do not experience any
programmatic or behavioral differences in their applications because of the underlying JCA architecture.
JDBC users still configure and use data sources according to the JDBC programming model.

Applications migrating from previous versions of WebSphere Application Server might experience some
behavioral differences because of the specification changes from various Java EE requirements levels.
These differences are not related to the adoption of the JCA architecture.

If you have Java 2 Platform, Enterprise Edition (J2EE) 1.2 applications using the JDBC API that you wish
to run in WebSphere Application Server 6.0 and later, the JDBC CM from Application Server version 4.0 is
still provided as a configuration option. Using this configuration option enables J2EE 1.2 applications to run
unaltered. If you migrate a Version 4.0 application to Version 6.0 or later, using the latest migration tools,
the application automatically uses the Version 4.0 connection manager after migration. However, EJB 2.x
modules in J2EE 1.3, J2EE 1.4 and Java Platform, Enterprise Edition (Java EE) applications cannot use
the JDBC CM from WebSphere Application Server Version 4.0.

Connection pooling
Using connection pools helps to both alleviate connection management overhead and decrease
development tasks for data access.

Each time an application attempts to access a backend store (such as a database), it requires resources
to create, maintain, and release a connection to that datastore. To mitigate the strain this process can
place on overall application resources, the Application Server enables administrators to establish a pool of

Chapter 8. Data access resources 95

backend connections that applications can share on an application server. Connection pooling spreads the
connection overhead across several user requests, thereby conserving application resources for future
requests.

The application server supports JDBC 4.0 APIs for connection pooling and connection reuse. The
connection pool is used to direct JDBC calls within the application, as well as for enterprise beans using
the database.

Benefits of connection pooling

Connection pooling can improve the response time of any application that requires connections, especially
Web-based applications. When a user makes a request over the web to a resource, the resource
accesses a data source. Because users connect and disconnect frequently with applications on the
Internet, the application requests for data access can surge to considerable volume. Consequently, the
total datastore overhead quickly becomes high for Web-based applications, and performance deteriorates.
When connection pooling capabilities are used, however, web applications can realize performance
improvements of up to 20 times the normal results.

With connection pooling, most user requests do not incur the overhead of creating a new connection
because the data source can locate and use an existing connection from the pool of connections. When
the request is satisfied and the response is returned to the user, the resource returns the connection to the
connection pool for reuse. The overhead of a disconnection is avoided. Each user request incurs a fraction
of the cost for connecting or disconnecting. After the initial resources are used to produce the connections
in the pool, additional overhead is insignificant because the existing connections are reused.

When to use connection pooling

Use connection pooling in an application that meets any of the following criteria:
v It cannot tolerate the overhead of obtaining and releasing connections whenever a connection is used.
v It requires Java Transaction API (JTA) transactions within the Application Server.
v It needs to share connections among multiple users within the same transaction.
v It needs to take advantage of product features for managing local transactions within the application

server.
v It does not manage the pooling of its own connections.
v It does not manage the specifics of creating a connection, such as the database name, user name, or

password

Note: Connection pooling is not supported in an application client. The application client calls the
database directly and does not go through a data source. If you want to use the getConnection()
request from the application client, configure the JDBC provider in the application client deployment
descriptors, using Rational Application Developer or an assembly tool. The connection is
established between application client and the database. Application clients do not have a
connection pool, but you can configure JDBC provider settings in the client deployment descriptors.

How connections are pooled together

When you configure a unique data source or connection factory, you must give it a unique Java Naming
and Directory Interface (JNDI) name. This JNDI name, along with its configuration information, is used to
create the connection pool. A separate connection pool exists for each configured data source or
connection factory.

Furthermore, the application server creates a separate instance of the connection pool in each application
server that uses the data source or connection factory. For example:

v If you run a three server cluster in which all of the servers use myDataSource, and myDataSource has
a Maximum Connections setting of 10, then you can generate up to 30 connections (three servers times
10 connections).

96 Overview

Consider how this behavior potentially impacts the number of connections that your backend resource can
support. See the topic, Connection pool settings, for more information.

Other considerations for determining the maximum connections setting:

v Each entity bean transaction requires an additional database connection, dedicated to handling the
transaction.

v If clones are used, one data pool exists for each clone.

v On supported UNIX systems, a separate DB2 process is created for
each connection; these processes quickly affect performance on systems with low memory and cause
errors.

It is also important to note that when using connection sharing, it is only possible to share connections
obtained from the same connection pool.

Connection and connection pool statistics:

WebSphere Application Server supports use of PMI APIs to monitor the performance of data access
applications.

Performance Monitoring Infrastructure (PMI) method calls that are supported in the two existing
Connection Managers (JDBC and J2C) are supported in this version of WebSphere Application Server.
The calls include:
v ManagedConnectionsCreated
v ManagedConnectionsAllocated
v ManagedConnectionFreed
v ManagedConnectionDestroyed
v BeginWaitForConnection
v EndWaitForConnection
v ConnectionFaults
v Average number of ManagedConnections in the pool
v Percentage of the time that the connection pool is using the maximum number of ManagedConnections
v Average number of threads waiting for a ManagedConnection
v Average percent of the pool that is in use
v Average time spent waiting on a request
v Number of ManagedConnections that are in use
v Number of Connection Handles
v FreePoolSize
v UseTime

Java Specification Request (JSR) 77 requires statistical data to be accessed through managed beans
(Mbeans) to facilitate this. The Connection Manager passes the ObjectNames of the Mbeans created for
this pool. In the case of Java Message Service (JMS) null is passed in. The interface used is:
PmiFactory.createJ2CPerf(

String pmiName, // a unique Identifier for JCA /JDBC. This is the
// ConnectionFactory name.

ObjectName providerName,// the ObjectName of the J2CResourceAdapter
// or JDBCProvider Mbean

ObjectName factoryName // the ObjectName of the J2CConnectionFactory
// or DataSourceMbean.

)

The following Unified Modeling Language (UML) diagram shows how JSR 77 requires statistics to be
reported:

Chapter 8. Data access resources 97

JCAConnectionPoolStats and JDBCConnectionPoolStats objects do not have a direct implementing
Mbean; the statistics are gathered through a call to PMI. A J2C resource adapter, and JDBC provider each
contain a list of ConnectionFactory or DataSource ObjectNames, respectively. The ObjectNames are used
by PMI to find the appropriate connection pool in the list of PMI modules.

The JCA 1.5 Specification allows an exception from the matchManagedConnection() method that indicates
that the resource adapter requests that the connection not be pooled. In that case, statistics for that
connection are provided separately from the statistics for the connection pool.

Connection life cycle
A ManagedConnection object is always in one of three states: DoesNotExist, InFreePool, or InUse.

Before a connection is created, it must be in the DoesNotExist state. After a connection is created, it can
be in either the InUse or the InFreePool state, depending on whether it is allocated to an application.

Between these three states are transitions. These transitions are controlled by guarding conditions. A
guarding condition is one in which true indicates when you can take the transition into another legal state.
For example, you can make the transition from the InFreePool state to InUse state only if:
v the application has called the data source or connection factory getConnection() method (the

getConnection condition)
v a free connection is available in the pool with matching properties (the freeConnectionAvailable

condition)
v and one of the two following conditions are true:

Figure 10.

98 Overview

– the getConnection() request is on behalf of a resource reference that is marked unsharable
– the getConnection() request is on behalf of a resource reference that is marked shareable but no

shareable connection in use has the same properties.

This transition description follows:
InFreePool > InUse:
getConnection AND
freeConnectionAvailable AND
NOT(shareableConnectionAvailable)

Here is a list of guarding conditions and descriptions.

Table 24. Guarding conditions. Here is a list of guarding conditions and descriptions.

Condition Description

ageTimeoutExpired Connection is older then its ageTimeout value.

close Application calls close method on the Connection object.

fatalErrorNotification A connection has just experienced a fatal error.

freeConnectionAvailable A connection with matching properties is available in the
free pool.

getConnection Application calls getConnection method on a data source
or connection factory object.

markedStale Connection is marked as stale, typically in response to a
fatal error notification.

noOtherReferences There is only one connection handle to the managed
connection, and the Transaction Service is not holding a
reference to the managed connection.

noTx No transaction is in force.

poolSizeGTMin Connection pool size is greater than the minimum pool
size (minimum number of connections)

poolSizeLTMax Pool size is less than the maximum pool size (maximum
number of connections)

shareableConnectionAvailable The getConnection() request is for a shareable
connection, and one with matching properties is in use
and available to share.

TxEnds The transaction has ended.

unshareableConnectionRequest The getConnection() request is for an unshareable
connection.

unusedTimeoutExpired Connection is in the free pool and not in use past its
unused timeout value.

Getting connections

The first set of transitions covered are those in which the application requests a connection from either a
data source or a connection factory. In some of these scenarios, a new connection to the database results.
In others, the connection might be retrieved from the connection pool or shared with another request for a
connection.

Every connection begins its life cycle in the DoesNotExist state. When an application server starts, the
connection pool does not exist. Therefore, there are no connections. The first connection is not created
until an application requests its first connection. Additional connections are created as needed, according
to the guarding condition.

Chapter 8. Data access resources 99

getConnection AND
NOT(freeConnectionAvailable) AND
poolSizeLTMax AND
(NOT(shareableConnectionAvailable) OR
unshareableConnectionRequest)

This transition specifies that a connection object is not created unless the following conditions occur:
v The application calls the getConnection() method on the data source or connection factory
v No connections are available in the free pool (NOT(freeConnectionAvailable))
v The pool size is less than the maximum pool size (poolSizeLTMax)
v If the request is for a sharable connection and there is no sharable connection already in use with the

same sharing properties (NOT(shareableConnectionAvailable)) OR the request is for an unsharable
connection (unshareableConnectionRequest)

All connections begin in the DoesNotExist state and are only created when the application requests a
connection. The pool grows from 0 to the maximum number of connections as applications request new
connections. The pool is not created with the minimum number of connections when the server starts.

If the request is for a sharable connection and a connection with the same sharing properties is already in
use by the application, the connection is shared by two or more requests for a connection. In this case, a
new connection is not created. For users of the JDBC API these sharing properties are most often
userid/password and transaction context; for users of the Resource Adapter Common Client Interface
(CCI) they are typically ConnectionSpec, Subject, and transaction context.

The transition from the InFreePool state to the InUse state is the most common transition when the
application requests a connection from the pool.
InFreePool>InUse:
getConnection AND
freeConnectionAvailable AND
(unshareableConnectionRequest OR
NOT(shareableConnectionAvailable))

This transition states that a connection is placed in use from the free pool if:
v the application has issued a getConnection() call
v a connection is available for use in the connection pool (freeConnectionAvailable),
v and one of the following is true:

– the request is for an unsharable connection (unsharableConnectionRequest)
– no connection with the same sharing properties is already in use in the transaction.

(NOT(sharableConnectionAvailable)).

Any connection request that a connection from the free pool can fulfill does not result in a new connection
to the database. Therefore, if there is never more than one connection used at a time from the pool by any
number of applications, the pool never grows beyond a size of one. This number can be less than the
minimum number of connections specified for the pool. One way that a pool grows to the minimum
number of connections is if the application has multiple concurrent requests for connections that must
result in a newly created connection.

The idea of connection sharing is seen in the transition on the InUse state.
InUse>InUse:
getConnection AND
ShareableConnectionAvailable

This transition indicates that if an application requests a shareable connection (getConnection) with the
same sharing properties as a connection that is already in use (ShareableConnectionAvailable), the
existing connection is shared.

100 Overview

The same user (user name and password, or subject, depending on authentication choice) can share
connections but only within the same transaction and only when all of the sharing properties match. For
JDBC connections, these properties include the isolation level, which is configurable on the
resource-reference (IBM WebSphere extension) to data source default. For a resource adapter factory
connection, these properties include those specified on the ConnectionSpec object. Because a transaction
is normally associated with a single thread, you should never share connections across threads.

Note: It is possible to see the same connection on multiple threads at the same time, but this situation is
an error state usually caused by an application programming error.

Returning connections

All of the transitions discussed previously involve getting a connection for application use. With that goal,
the transitions result in a connection closing, and either returning to the free pool or being destroyed.
Applications should explicitly close connections (note: the connection that the user gets back is really a
connection handle) by calling close() on the connection object. In most cases, this action results in the
following transition:
InUse>InFreePool:
(close AND
noOtherReferences AND
NoTx AND
UnshareableConnection)
OR
(ShareableConnection AND
TxEnds)

Conditions that cause the transition from the InUse state are:
v If the application or the container calls close() (producing the close condition) and there are no

references (the noOtherReferences condition) either by the application (in the application sharing
condition) or by the transaction manager (in the NoTx condition, meaning that the transaction manager
holds a reference when the connection is enlisted in a transaction), the connection object returns to the
free pool.

v If the connection was enlisted in a transaction but the transaction manager ends the transaction (the
txEnds condition), and the connection was a shareable connection (the ShareableConnection condition),
the connection closes and returns to the pool.

When the application calls close() on a connection, it is returning the connection to the pool of free
connections; it is not closing the connection to the data store. When the application calls close() on a
currently shared connection, the connection is not returned to the free pool. Only after the application
drops the last reference to the connection, and the transaction is over, is the connection returned to the
pool. Applications using unsharable connections must take care to close connections in a timely manner.
Failure to do so can starve out the connection pool, making it impossible for any application running on the
server to get a connection.

When the application calls close() on a connection enlisted in a transaction, the connection is not returned
to the free pool. Because the transaction manager must also hold a reference to the connection object, the
connection cannot return to the free pool until the transaction ends. Once a connection is enlisted in a
transaction, you cannot use it in any other transaction by any other application until after the transaction is
complete.

There is a case where an application calling close() can result in the connection to the data store closing
and bypassing the connection return to the pool. This situation happens if one of the connections in the
pool is considered stale. A connection is considered stale if you can no longer use it to contact the data
store. For example, a connection is marked stale if the data store server is shut down. When a connection
is marked as stale, the entire pool is cleaned out by default because it is very likely that all of the
connections are stale for the same reason (or you can set your configuration to clean just the failing

Chapter 8. Data access resources 101

connection). This cleansing includes marking all of the currently InUse connections as stale so they are
destroyed upon closing. The following transition states the behavior on a call to close() when the
connection is marked as stale:
InUse>DoesNotExist:
close AND
markedStale AND
NoTx AND
noOtherReferences

This transition states that if the application calls close() on the connection and the connection is marked as
stale during the pool cleansing step (markedStale), the connection object closes to the data store and is
not returned to the pool.

Finally, you can close connections to the data store and remove them from the pool.

This transition states that there are three cases in which a connection is removed from the free pool and
destroyed.
1. If a fatal error notification is received from the resource adapter (or data source). A fatal error

notification (FatalErrorNotification) is received from the resource adaptor when something happens to
the connection to make it unusable. All connections currently in the free pool are destroyed.

2. If the connection is in the free pool for longer than the unused timeout period (UnusedTimeoutExpired)
and the pool size is greater than the minimum number of connections (poolSizeGTMin), the connection
is removed from the free pool and destroyed. This mechanism enables the pool to shrink back to its
minimum size when the demand for connections decreases.

3. If an age timeout is configured and a given connection is older than the timeout. This mechanism
provides a way to recycle connections based on age.

Unshareable and shareable connections
The application server supports both unshareable and shareable connections. An unshareable connection
is not shared with other components in the application. The component using this connection has full
control of this connection.

Access to a resource marked as unshareable means that there is a one-to-one relationship between the
connection handle a component is using and the physical connection with which the handle is associated.
This access implies that every call to the getConnection method returns a connection handle solely for the
requesting user. Typically, you must choose unshareable if you might do things to the connection that
could result in unexpected behavior occurring in another application that is sharing the connection (for
example, unexpectedly changing the isolation level).

Marking a resource as shareable allows for greater scalability. Instead of retrieving a new physical
connection from the connection pool for every getConnection() invocation, the physical connection (that is,
managed connection) is shared through multiple connection handles, as long as each getConnection
request has the same connection properties. However, sharing a connection means that each user must
not do anything to the connection that could change its behavior and disrupt a sharing partner (for
example, changing the isolation level). The user also cannot code an application that assumes sharing to
take place because it is up to the run time to decide whether or not to share a particular connection.

Connection property requirements

To permit sharing of connections used within the same transaction, the following data source properties
must be the same:
v Java Naming and Directory Interface (JNDI) name. While not actually a connection property, this

requirement simply means that you can only share connections from the same data source in the same
server.

v Resource authentication
v In relational databases:

– Isolation level (corresponds to access intent policies applied to CMP beans)

102 Overview

– Readonly
– Catalog
– TypeMap

For more information on sharing a connection with a CMP bean, see the topic Sharing a connection with a
CMP bean.

To permit sharing of connections within the same transaction, the following properties must be the same
for the connection factories:
v JNDI name. While not actually a connection property, this requirement simply means that you can only

share connections from the same connection factory in the same server.
v Resource authentication

In addition, the ConnectionSpec object that is used to get the connection must also be the same.

Note: Java Message Service (JMS) connections cannot be shared with non-JMS connections.

JMS connections for the WebSphere MQ JMS Provider cannot be shareable because they are
non-transactional, and the Java™ EE Connector Architecture (JCA) specification only allows
transactional resources to be shareable. If the res-sharing-scope is set to shareable in a JMS
resource reference, the setting will be ignored and unshareable connections will be used. However,
JMS sessions for MQ are transactional, and can be shareable. JMS sessions are shareable by
default, and APAR PK59605 provides the ability to specify unshareable sessions.

JMS connections for the Default Messaging Provider are different. With the Default Messaging
Provider, connections can be shareable. Sessions, on the other hand, are not managed by a
connection pool, and therefore cannot be shareable or unshareable.

Sharing a connection with a CMP bean

The application server allows you to share a physical connection among a CMP bean, a BMP bean, and a
JDBC application to reduce the resource allocation or deadlock scenarios. There are several ways to
ensure that all of these entity beans and the JDBC applications are sharing the same physical connection.

v Sharing a connection between CMP beans or methods

When all CMP bean methods use the same access intent, they all share the same physical connection.
A different access intent policy triggers the allocation of a different physical connection. For example, a
CMP bean has two methods; method 1 is associated with wsPessimisticUpdate intent, whereas method
2 has wsOptimisticUpdate access intent. Method 1 and method 2 cannot share the same physical
connection within a transaction. In other words, an XA data source is required to run in a global
transaction.

You can experience some deadlocks from a database if both methods try to access the same table.
Therefore, sharing a connection is determined by the access intents that are defined in the CMP
methods.

v Sharing a connection between CMP and BMP beans

Remember to first verify that the getConnection methods of both the BMP bean and the CMP bean set
the same connection properties. To match the authentication type of the CMP bean resource, set the
authentication type of the BMP bean resource to container-managed, which is designated in the
deployment descriptor as res-auth = Container.

Additionally, use one of the following options to ensure connection-sharing between the bean types:

– Define the same access intent on both CMP and BMP bean methods. Because both use the same
access intent, they share the same physical connection. The advantage to using this option is that
the backend is transparent to a BMP bean. However, this option also makes the BMP non-portable
because it uses the WebSphere extended API to handle the isolation level. For more information,

Chapter 8. Data access resources 103

refer to the code example in the topic, Example: Accessing data using IBM extended APIs to share
connections between container-managed and bean-managed persistence beans.

– Determine the isolation level that the access intent uses on a CMP bean method, then use the
corresponding isolation level that is specified on the resource reference to look up a data source and
a connection. This option is more of a manual process, and the isolation level might be different from
database to database. For more information refer to the isolation level and access intent mapping
table in the topic, Access intent isolation levels and update locks, and the topic, Isolation level and
resource reference section.

v Sharing a connection between CMP and a JDBC application that is used by a servlet or a
session beanDetermine the isolation level that the access intent uses on a CMP bean method, then
use the corresponding isolation level specified on the resource reference to look up a data source and a
connection. For more information see the topic, Access intent isolation levels, and the topic, Isolation
level and resource reference section.

Factors that determine sharing

The listing here is not an exhaustive one. The product might or might not share connections under
different circumstances.
v Only connections acquired with the same resource reference (resource-ref) that specifies the

res-sharing-scope as shareable are candidates for sharing. The resource reference properties of
res-sharing-scope and res-auth and the IBM extension isolationLevel help determine if it is possible to
share a connection. IBM extension isolationLevel is stored in IBM deployment descriptor extension file;
for example: ibm-ejb-jar-ext.xmi.

Note: For IBM extension and binding files, the .xmi or .xml file name extension is different depending
on whether you are using a pre-Java EE 5 application or module or a Java EE 5 or later
application or module. An IBM extension or binding file is named ibm-*-ext.xmi or ibm-*-bnd.xmi
where * is the type of extension or binding file such as app, application, ejb-jar, or web. The
following conditions apply:

– For an application or module that uses a Java EE version prior to version 5, the file extension
must be .xmi.

– For an application or module that uses Java EE 5 or later, the file extension must be .xml. If
.xmi files are included with the application or module, the product ignores the .xmi files.

However, a Java EE 5 or later module can exist within an application that includes pre-Java EE 5
files and uses the .xmi file name extension.

The ibm-webservices-ext.xmi, ibm-webservices-bnd.xmi, ibm-webservicesclient-bnd.xmi,
ibm-webservicesclient-ext.xmi, and ibm-portlet-ext.xmi files continue to use the .xmi file
extensions.

v You can only share connections that are requested with the same properties.
v Connection sharing only occurs between different component instances if they are within a transaction

(container- or user-initiated transaction).
v Connection sharing only occurs within a sharing boundary. Current® sharing boundaries include

Transactions and LocalTransactionContainment (LTC) boundaries.
v Connection sharing rules within an LTC Scope:

– For shareable connections, only Connection Reuse is allowed within a single component instance.
Connection reuse occurs when the following actions are taken with a connection: get, use,
commit/rollback, close; get, use, commit/rollback, close. Note that if you use the LTC
resolution-control of ContainerAtBoundary then no start/commit is needed because that action is
handled by the container.

The connection returned on the second get is the same connection as that returned on the first get
(if the same properties are used). Because the connection use is serial, only one connection handle
to the underlying physical connection is used at a time, so true connection sharing does not take
place. The term "reuse" is more accurate.

104 Overview

More importantly, the LocalTransactionContainment boundary enclosing both get actions is not
complete; no cleanUp() method is invoked on the ManagedConnection object. Therefore the second
get action inherits all of the connection properties set during the first getConnection() call.

v Shareable connections between transactions (either container-managed transactions (CMT),
bean-managed transactions (BMT), or LTC transactions) follow these caching rules:
– In general, setting properties on shareable connections is not allowed because a user of one

connection handle might not anticipate a change made by another connection handle. This limitation
is part of the Java Platform, Enterprise Edition (Java EE) standard.

– General users of resource adapters can set the connection properties on the connection factory
getConnection() call by passing them in a ConnectionSpec.

However, the properties set on the connection during one transaction are not guaranteed to be the
same when used in the next transaction. Because it is not valid to share connections outside of a
sharing scope, connection handles are moved off of the physical connection with which they are
currently associated when a transaction ends. That physical connection is returned to the free
connection pool. Connections are cleaned before going in the free pool. The next time the handle is
used, it is automatically associated with an appropriate connection. The appropriateness is based on
the security login information, connection properties, and (for the JDBC API) the isolation level
specified in the extended resource reference, passed in on the original request that returned the
current handle. Any properties set on the connection after it was retrieved are lost.

– For JDBC users, the application server provides an extension to enable passing the connection
properties through the ConnectionSpec.

Use caution when setting properties and sharing connections in a local transaction scope. Ensure
that other components with which the connection is shared are expecting the behavior resulting from
your settings.

v You cannot set the isolation level on a shareable connection for the JDBC API using a relational
resource adapter in a global transaction. The product provides an extension to the resource reference to
enable you to specify the isolation level. If your application requires the use of multiple isolation levels,
create multiple resource references and map them to the same data source or connection factory.

Maximal connection sharing

To maximize connection sharing opportunities for an application, ensure that each component has the local
transaction containment (LTC) Resolver attribute set to ContainerAtBoundary. This setting specifies that
the component container, rather than the application code, resolves all resource manager local
transactions (RMLTs) within the LTC scope. The container begins an RMLT when a connection is first used
within the LTC scope, and completes it automatically at the end of the LTC scope.

See the topic, Configuring transactional deployment attributes, for instructions on setting the transaction
resolution control and other attributes.

Connection sharing violations

There is a new exception, the sharing violation exception, that the resource adapter can issue whenever
an operation violates sharing requirements. Possible violations include changing connection attributes,
security settings, or isolation levels, among others. When such a mutable operation is performed against a
managed connection, the sharing violation exception can occur when both of the following conditions are
true:
v The number of connection handles associated with the managed connection is more than one.
v The managed connection is associated with a transaction, either local or XA.

Both the component and the J2C run time might need to detect this sharing violation exception, depending
on when and how the managed connection becomes unshareable. If the managed connection becomes
unshareable because of an operation through the connection handle (for example, you change the
isolation level), then the component needs to process the exception. If the managed connection becomes
unshareable without being recognized by the application server (due to some component interaction with

Chapter 8. Data access resources 105

the connection handle), then the resource adapter can reject the creation of a connection handle by
issuing the sharing violation exception.

Connection handles
A connection handle is a representation of a physical connection. To use a backend resource, such as a
relational database in WebSphere Application Server, you must get a connection to that resource. When
you call the getConnection() method, you get a connection handle returned. The handle is not the physical
connection. The physical connection is managed by the connection manager.

There are two significant configurations that affect how connection handles are used and how they
behave. The first is the res-sharing-scope, which is defined by the resource-reference used to look up the
DataSource or Connection Factory. This property tells the connection manager whether or not you can
share this connection.

The second factor that affects connection handle behavior is the usage pattern. There are essentially two
usage patterns. The first is called the get/use/close pattern. It is used within a single method and without
calling another method that might get a connection from the same data source or connection factory. An
application using this pattern does the following:
1. gets a connection
2. does its work
3. commits (if appropriate)
4. closes the connection.

The second usage pattern is called the cached handle pattern. This is where an application:
1. gets a connection
2. begins a global transaction
3. does work on the connection
4. commits a global transaction
5. does work on the connection again

A cached handle is a connection handle that is held across transaction and method boundaries by an
application. Keep in mind the following considerations for using cached handles:

v Cached handle support requires some additional connection handle management across these
boundaries, which can impact performance. For example, in a JDBC application, Statements,
PreparedStatements, and ResultSets are closed implicitly after a transaction ends, but the connection
remains valid.

v You are encouraged not to cache the connection across the transaction boundary for shareable
connections; the get/use/close pattern is preferred.

v Caching of connection handles across servlet methods is limited to JDBC and Java Message Service
(JMS) resources. Other non-relational resources, such as Customer Information Control System (CICS)
or IMS objects, currently cannot have their connection handles cached in a servlet; you need to get,
use, and close the connection handle within each method invocation. (This limitation only applies to
single-threaded servlets because multithreaded servlets do not allow caching of connection handles.)

v You cannot pass a cached connection handle from one instance of a data access client to another client
instance. Transferring between client instances creates the problematic contingency of one instance
using a connection handle that is referenced by another. This relationship can only cause problems
because connection handle management code processes tasks for each client instance separately.
Hence, connection handle transfers result in run-time scenarios that trigger exceptions. For example:

1. The application code of a client instance that receives a transferred handle closes the handle.

2. If the client instance that retains the original reference to the handle tries to reclaim it, the
application server issues an exception.

The following code segment shows the cached connection pattern.

106 Overview

Connection conn = ds.getConnection();
ut.begin();
conn.prepareStatement("....."); --> Connection runs in global transaction mode
...
ut.commit();
conn.prepareStatement("....."); ---> Connection still valid but runs in autoCommit(True);
...

Unshareable connections

Some characteristics of connection handles retrieved with a res-sharing-scope of unshareable are
described in the following sections.

v The possible benefits of unshared connections
– Your application always maintains a direct link with a physical connection (managed connection).
– The connection always has a one-to-one relationship between the connection handle and the

managed connection.
– In most cases, the connection does not close until the application closes it.
– You can use a cached unshared connection handle across multiple transactions.
– The connection can have a performance advantage in some cached handle situations. Because

unshared connections do not have the overhead of moving connection handles off managed
connections at the end of the transaction, there is less overhead in using a cached unshared
connection.

v The possible drawbacks of unshared connections
– Inefficient use of your connection resources. For example, if within a single transaction you get more

than one connection (with the same properties) using the same data source or connection factory
(same resource-ref) then you use multiple physical connections when you use unshareable
connections.

– Wasted connections. It is important not to keep the connection handle open (that is, your application
does not call the close() method) any longer then it is needed. As long as an unshareable connection
is open, the physical connection is unavailable to any other component, even if your application is
not currently using that connection. Unlike a shareable connection, an ushareable connection is not
closed at the end of a transaction or servlet call.

– Deadlock considerations. Depending on how your components interact with the database within a
transaction, using unshared connections can lead to deadlock in the database. For example, within a
transaction, component A gets a connection to data source X and updates table 1, and then calls
component B. Component B gets another connection to data source X, and updates/reads table 1
(or even worse the same row as component A). In some circumstances, depending on the particular
database, its locking scheme, and the transaction isolation level, a deadlock can occur.

In the same scenario, but with a shared connection, deadlock does not occur because all the work is
done on the same connection. It is worth noting that when writing code that uses shared
connections, you use a strategy that calls for multiple work items to be performed on the same
connection, possibly within the same transaction. If you decide to use an unshareable connection,
you must set the maximum connections property on the connection factory or data source correctly.
An exception might occur for waiting connection requests if you exceed the maximum connections
value, and unshareable connections are not being closed before the connection wait time-out is
exceeded.

Shareable connections

Some characteristics of connection handles that are retrieved with a res-sharing-scope of shareable are
described in the following sections.

v The possible benefits of shared connections
– Within an instance of connection sharing, application components can share a managed connection

with one or more connection handles, depending on how the handle is retrieved and which
connection properties are used.

Chapter 8. Data access resources 107

– They can more efficiently use resources. Shareable connections are not valid outside of their sharing
boundary. For this reason, at the end of a sharing boundary (such as a transaction) the connection
handle is no longer associated with the managed connection it was using within the sharing
boundary (this applies only when using the cached handle pattern). The managed connection is
returned to the free connection pool for reuse. Connection resources are not held longer than the
end of the current sharing scope.

If the cached handle pattern is used, then the next time the handle is used within a new sharing
scope, the application server run time ensures that the handle is reassociated with a managed
connection that is appropriate for the current sharing scope, and has the same properties with which
the handle was originally retrieved. Remember that it is not appropriate to change properties on a
shareable connection. If properties are changed, other components that share the same connection
might experience unexpected behavior. Futhermore, when using cached handles, the value of the
changed property might not be remembered across sharing scopes.

v The possible drawbacks of shared connections
– Sharing within a single component (such as an enterprise bean and its related Java objects) is not

always supported. The current specification allows resource adapters the choice of only allowing one
active connection handle at a time.

If a resource adapter chooses to implement this option then the following scenario results in an
invalid handle exception: A component using shareable connections gets a connection and uses it.
Without closing the connection, the component calls a utility class (Java object) that gets a
connection handle to the same managed connection and uses it. Because the resource adapter only
supports one active handle, the first connection handle is no longer valid. If the utility object returns
without closing its handle, the first handle is not valid and triggers an exception at any attempt to use
it.

Note: This exception occurs only when calling a utility object (a Java object).

Not all resource adapters have this limitation; it occurs only in certain implementations. The
WebSphere Relational Resource Adapter (RRA) does not have this limitation. Any data source used
through the RRA does not have this limitation. If you encounter a resource adapter with this limitation
you can work around it by serializing your access to the managed connection. If you always close
your connection handle before getting another (or close your handle before calling code that gets
another handle), and before returning from a method, you can allow two pieces of code to share the
same managed connection. You simply cannot use the connection for both events at the same time.

– Trying to change the isolation level on a shareable JDBC-based connection in a global transaction
(that is supported by the RRA) causes an exception. The correct way to get connections with
different transaction isolation levels is by configuring the IBM extended resource-reference.

– Closing connection handles for shareable connections by an application is NOT supported and
causes errors. However, you can avoid this limitation by using the Relational Resource Adapter.

Lazy connection association optimization

The Java Platform, Enterprise Edition (Java EE) Connector (J2C) connection manager implemented smart
handle support. This technology enables allocation of a connection handle to an application while the
managed connection associated with that connection handle is used by other applications (assuming that
the connection is not being used by the original application). This concept is part of the Java EE
Connector Architecture (JCA) 1.5 specification. (You can find it in the JCA 1.5 specification document in
the section entitled “Lazy Connection Association Optimization.”) Smart handle support introduces use a
method on the ConnectionManager object, the LazyAssociatableConnectionManager() method , and a new
marker interface, the DissociatableManagedConnection class. You must configure the provider of the
resource adapter to make this functionality available in your environment. (In the case of the RRA,
WebSphere Application Server itself is the provider.) The following code snippet shows how to include
smart handle support:
package javax.resource.spi;
import javax.resource.ResourceException;

108 Overview

interface LazyAssociatableConnectionManager { // application server
void associateConnection(

Object connection, ManagedConnectionFactory mcf,
ConnectionRequestInfo info) throws ResourceException;

}

interface DissociatableManagedConnection { // resource adapter
void dissociateConnections() throws ResourceException;

}

This DissociatableManagedConnection interface introduces another state to the Connection object:
inactive. A Connection can now be active, closed, and inactive. The connection object enters the inactive
state when a corresponding ManagedConnection object is cleaned up. The connection stays inactive until
an application component attempts to re-use it. Then the resource adapter calls back to the connection
manager to re-associate the connection with an active ManagedConnection object.

Transaction type and connection behavior
All connection usage occurs within the scope of either a global transaction or a local transaction
containment (LTC) boundary. Each transaction type places different requirements on connections and
impacts connection settings differently.

Connection sharing and reuse

You can share connections within a global transaction scope (assuming other sharing rules are met). You
can also share connections within a shareable LTC. You can serially reuse connections within an LTC
scope. A get/use/close connection pattern followed by another instance of get/use/close (to the same data
source or connection factory) enables you to reuse the same connection. See the topic, Unshareable and
shareable connections for more details.

JDBC AutoCommit behavior

All JDBC connections, when first obtained through a getConnection() call, contain the setting AutoCommit
= TRUE by default. However, different transaction scope and settings can result in changing, or simply
overriding, the AutoCommit value.
v If you operate within an LTC and have its resolution-control set to Application, AutoCommit remains

TRUE unless changed by the application.
v If you operate within an LTC and have its resolution-control set to ContainerAtBoundary, the application

must not touch the AutoCommit setting. TheWebSphere Application Server run time sets the
AutoCommit value to FALSE before work begins, then commits or rolls back the work, as appropriate, at
the end of the LTC scope.

v If you use a connection within a global transaction, the database ignores the AutoCommit setting so that
the transaction service that controls the commit and rollback processing can manage the transaction.
This action takes place upon first use of the connection to do work, regardless of the user changing the
AutoCommit setting. After the transaction completes, the AutoCommit value returns to the value it had
before the first use of the connection. So even if the AutoCommit value is set to TRUE before the
connection is used in a global transaction, you need not set the value to FALSE because the value is
ignored by the database. In this example, after the transaction completes, the AutoCommit value of the
connection returns to TRUE.

v If you use multiple distinct connections within a global transaction, all work is guaranteed to commit or
roll back together. This is not the case for a local transaction containment (LTC scope). Within an LTC,
work done on one connection commits or rolls back independently from work done on any other
connection within the LTC.

Chapter 8. Data access resources 109

One-phase commit and two-phase commit connections

The type and number of resource managers, such as a database server, that must be accessed by an
application often determines the application transaction requirements. Consequently each type of resource
manager places different requirements on connection behavior.

v A two-phase commit resource manager can support two-phase coordination of a transaction. That
support is necessary for transactions that involve other resource managers; these transactions are
global transactions. See the topic, Transaction support in WebSphere Application Server for further
explanation.

v A one-phase commit resource manager supports only one-phase transactions, or LTC transactions, in
which that resource is the sole participating datastore. See the topic, Transaction support in WebSphere
Application Server for further explanation.

One-phase commit resources are such that work being done on a one phase connection cannot mix with
other connections and ensure that the work done on all of the connections completes or fails atomically.
The product does not allow more than one one-phase commit connection in a global transaction.
Futhermore, it does not allow a one-phase commit connection in a global transaction with one or more
two-phase commit connections. You can coordinate only multiple two-phase commit connections within a
global transaction.

WebSphere Application Server provides last participant support, which enables a single one-phase commit
resource to participate in a global transaction with one or more two-phase commit resources.

Note that any time that you do multiple getConnection() calls using a resource reference that specifies
res-sharing-scope=Unshareable, you get multiple physical connections. This situation also occurs when
res-sharing-scope=Shareable, but the sharing rules are broken. In either case, if you run in a global
transaction, ensure the resources involved are enabled for two-phase commit (also sometimes referred to
as JTA Enabled). Failure to do so results in an XA exception that logs the following message:
WTRN0063E: An illegal attempt to enlist a one phase capable resource with existing two phase capable
resources has occurred.

Application scoped resources
Use this page to view brief descriptions of the resources that are bundled with your application. You can
view individual resource settings by clicking the resource name.

To view this administrative console page, click Applications > Application Types > WebSphere
enterprise applications > application_name > Application scoped resources.

The Application scoped resources link is not present if there are no application scoped resources.

Each table row corresponds to a resource that is bundled with your application. Click a resource name or
the corresponding provider name to view an administrative console page where you can edit the object
configuration settings.

Name:

Specifies the administrative name that was assigned to this resource.

Click this name to view a page where you can edit the configuration settings.

JNDI name:

Specifies the Java Naming and Directory Interface (JNDI) name of the resource.

Information Value
Data type String

110 Overview

Resource type:

Specifies the type of resource, such as a data source or a J2C connection factory.

Provider:

Specifies the resource provider that supplies the class information for this resource object.

Click the provider name to view a page where you can edit the configuration settings.

Description:

Specifies a text description of the resource.

Data access: Resources for learning
Use the following links to find relevant supplemental information about data access. The information
resides on IBM and non-IBM Internet sites, whose sponsors control the technical accuracy of the
information.

These links are provided for convenience. Often, the information is not specific to this product, but it can
be useful for understanding concepts or functions used by the application server. When possible, links are
provided to technical papers and Redbooks that supplement the broad coverage of the release
documentation with in-depth examinations of particular product areas.

View links to additional information:

v “Technologies for data access”

v “Databases” on page 112

v “Tools” on page 112

Technologies for data access
v JDBC 3.0 API Documentation

v Java Persistence API:

– Java Persistence API FAQ

– Introduction to Spring 2 and JPA

v J2EE Connector Architecture Version 1.5 specification

v Enterprise JavaBeans Technology (Source for download of the Enterprise Javabeans 3.0 specification)

v Java 2 Platform, Enterprise Edition (J2EE)

v Container-managed relationships: Enterprise JavaBeans 2.0 Container-Managed Persistence
Example. Although this article addresses the EJB 2.0 specification, you might find parts of it pertinent to
your environment.

v Resource adapters: The J2EE Connector Architecture Resource AdapterDeveloper Technical Articles &
Tips -- Articles: Database Access (Sun Developer Network)

v Java Management Extensions (JMX)

v Miscellaneous articles from the Sun Developer Network and IBM developerWorks websites:

– Sharing connections in WebSphere Application Server V5 This article is still pertinent to WebSphere
Application Server Version 6.0 and later. However, be aware that the container-managed
authentication type is deprecated.

– Database authentication in WebSphere Application Server V5 This article is still pertinent to
WebSphere Application Server Version 6.0 and later. However, be aware that the container-managed
authentication type is now deprecated.

Chapter 8. Data access resources 111

http://java.sun.com/j2se/1.3/docs/guide/jdbc/
http://java.sun.com/javaee/overview/faq/persistence.jsp
http://www.ibm.com/developerworks/edu/j-dw-java-spring2-i.html
http://java.sun.com/j2ee/connector/download.html
http://java.sun.com/products/ejb/
http://java.sun.com/j2ee/
http://developer.java.sun.com/developer/technicalArticles/ebeans/EJB20CMP/
http://developer.java.sun.com/developer/technicalArticles/ebeans/EJB20CMP/
http://java.sun.com/developer/technicalArticles/J2EE/connectorclient/resourceadapter.html
http://java.sun.com/developer/technicalArticles/Database/
http://java.sun.com/developer/technicalArticles/Database/
http://java.sun.com/products/JavaManagement/
http://www.ibm.com/developerworks/websphere/library/techarticles/0404_tang/0404_tang.html
http://www.ibm.com/developerworks/websphere/techjournal/0402_tang/0402_tang.html

– Understanding WebSphere Application Server EJB access intents

v Supported hardware, software, and APIs

Databases
v Cloudscape:

– IBM Cloudscape product information

– IBM Cloudscape information center

v DB2 database software

v Informix®

Tools
v Rational Application Developer for WebSphere Software

Service Data Objects: Resources for learning
Use the following links to find relevant supplemental information about the service data object and various
other functions that can be used with it. The information resides on IBM and non-IBM Internet sites, whose
sponsors control the technical accuracy of the information.

These links are provided for convenience. Often, the information is not specific to this product but is useful
all or in part for understanding the product. When possible, links are provided to technical papers and
Redbooks that supplement the broad coverage of the release documentation with in-depth examinations of
particular product areas.

Service Data Objects

For an introduction to Service Data Objects, refer to:
v Introduction to Service Data Objects

For an overview of the Service Data Objects specification, refer to:
v Service Data Objects

A good place to start to learn about the Eclipse Modeling Framework is:
v EMF Eclipse Modeling Framework

Information about XSD to SDO/EMF mapping for Version 6 can be found at:
v Authoring XML Schemas for use with EMF

Web application presentation layer technologies

For a brief overview of JavaServer Faces, refer to:
v Java Sun J2EE 1.4 tutorial

Good places to start to learn about JavaServer Pages Standard Tag Library are:
v JavaServer Pages Standard Tag Library
v A JSTL primer, Part 1: The expression language

Java Persistence API (JPA) architecture
Data persistence is the ability to maintain data between application executions. Persistence is vital to
enterprise applications because of the required access to relational databases. Applications that are
developed for this environment must manage persistence themselves or use third-party solutions to handle
database updates and retrievals with persistence. The Java Persistence API (JPA) provides a mechanism
for managing persistence and object-relational mapping and functions for the EJB 3.0 and EJB 3.1
specifications.

112 Overview

http://www.ibm.com/developerworks/websphere/techjournal/0406_persson/0406_persson.html
http://www.ibm.com/support/docview.wss?rs=180&uid=swg27006921
http://www.ibm.com/software/data/cloudscape/
http://publib.boulder.ibm.com/infocenter/cscv/v10r1/index.jsp
http://www.ibm.com/software/data/db2/
http://www.ibm.com/software/data/informix/
http://www.ibm.com/software/ad/studiointegration/
http://www-106.ibm.com/developerworks/java/library/j-sdo/
http://www.ibm.com/developerworks/library/specification/ws-sdo/
http://www.eclipse.org/emf/
http://wiki.eclipse.org/Authoring_XML_Schemas_for_use_with_EMF
http://java.sun.com/j2ee/1.4/docs/tutorial/doc/index.html
http://java.sun.com/products/jsp/jstl/index.jsp
http://www-106.ibm.com/developerworks/java/library/j-jstl0211.html

The JPA specification defines the object-relational mapping internally, rather than relying on vendor-specific
mapping implementations. JPA is based on the Java programming model that applies to Java EE
environments, but JPA can function within a Java SE environment for testing application functions.

JPA represents a simplification of the persistence programming model. The JPA specification explicitly
defines the object-relational mapping, rather than relying on vendor-specific mapping implementations. JPA
standardizes the important task of object-relational mapping by using annotations or XML to map objects
into one or more tables of a database. To further simplify the persistence programming model:

v The EntityManager API can persist, update, retrieve, or remove objects from a database

v The EntityManager API and object-relational mapping metadata handle most of the database operations
without requiring you to write JDBC or SQL code to maintain persistence

v JPA provides a query language, extending the independent EJB querying language (also known as
JPQL), that you can use to retrieve objects without writing SQL queries specific to the database you are
working with.

JPA is designed to operate both inside and outside of a Java Enterprise Edition (Java EE) container. When
you run JPA inside a container, the applications can use the container to manage the persistence context.
If there is no container to manage JPA, the application must handle the persistence context management
itself. Applications that are designed for container-managed persistence do not require as much code
implementation to handle persistence, but these applications cannot be used outside of a container.
Applications that manage their own persistence can function in a container environment or a Java SE
environment.

Java EE containers that support the EJB 3.x programming model must support a JPA implementation, also
called a persistence provider. A JPA persistence provider uses the following elements to allow for easier
persistence management in an EJB 3.x environment:

Persistence unit
Consists of the declarative metadata that describes the relationship of entity class objects to a
relational database. The EntityManagerFactory uses this data to create a persistence context that
can be accessed through the EntityManager.

EntityManagerFactory
Used to create an EntityManager for database interactions. The application server containers
typically supply this function, but the EntityManagerFactory is required if you are using JPA
application-managed persistence. An instance of an EntityManagerFactory represents a
Persistence Context.

Persistence context
Defines the set of active instances that the application is manipulating currently. The persistence
context can be created manually or through injection.

EntityManager
The resource manager that maintains the active collection of entity objects that are being used by
the application. The EntityManager handles the database interaction and metadata for
object-relational mappings. An instance of an EntityManager represents a Persistence Context. An
application in a container can obtain the EntityManager through injection into the application or by
looking it up in the Java component name-space. If the application manages its persistence, the
EntityManager is obtained from the EntityManagerFactory.

Chapter 8. Data access resources 113

Attention: Injection of the EntityManager is only supported for the following artifacts:

v EJB 3.x session beans

v EJB 3.x message-driven beans

v Servlets, Servlet Filters, and Listeners

v JSP tag handlers which implement interfaces javax.servlet. jsp.tagext.Tag and
javax.servlet.jsp.tagext.SimpleTag

v JavaServer Faces (JSF) managed beans

v the main class of the application client.

Entity objects
A simple Java class that represents a row in a database table in its simplest form. Entities objects
can be concrete classes or abstract classes. They maintain states by using properties or fields.

For more information about persistence, see the section on Java Persistence API Architecture and the
section on Persistence in the Apache OpenJPA User Guide. For more information and examples on
specific elements of persistence, see the sections on the EntityManagerFactory, and the EntityManager in
the Apache OpenJPA User Guide.

JPA for WebSphere Application Server
Java Persistence API (JPA) 2.0 for WebSphere Application Server is built on the Apache OpenJPA 2.x
open source project.

Apache OpenJPA is a compliant implementation of the JPA specification. Using OpenJPA as a base
implementation, WebSphere Application Server employs extensions to provide additional features and
utilities for WebSphere Application Server customers. Because JPA for WebSphere Application Server is
built from OpenJPA, all OpenJPA function, extensions, and configurations are unaffected by the
WebSphere Application Server extensions. You do not need to make changes to OpenJPA applications to
use these applications in WebSphere Application Server.

JPA for WebSphere Application Server provides more than compatibility with OpenJPA. JPA for
WebSphere Application Server contains a set of tools for application development and deployment. Other
features of JPA for WebSphere Application Server include support for DB2 Optim™ pureQuery Runtime,
DB2 optimizations, JPA Access Intent, enhanced tracing capabilities, command scripts, and translated
message files. The provider of JPA for WebSphere Application Server is
com.ibm.websphere.persistence.PersistenceProviderImpl.

Apache OpenJPA supports the use of properties to configure the persistent environment. JPA for
WebSphere Application Server properties can be specified with either the openjpa or wsjpa prefix. You can
mix the openjpa and wsjpa prefixes as you wish for a common set of properties. Exceptions to the rule are
wsjpa specific configuration properties, which use the wsjpa prefix. When a JPA for WebSphere Application
Server-specific property is used with the openjpa prefix, a warning message is logged indicating that the
offending property is treated as a wsjpa property. The reverse does not hold true for the openjpa prefix. In
that case, the offending property is ignored.

wsjpaversion command
Use this command-line tool to find out information about the installed version of Java Persistence API
(JPA) for WebSphere Application Server.

Run the JPA commands (.bat on Windows or .sh on UNIX) from the <profile_root>/bin directory, to
make sure that you have the latest version of the commands for your release.

114 Overview

Syntax

The command syntax is as follows:

wsjpaversion.sh

wsjpaversion.bat

Usage

The version tool can be useful when debugging problems with JPA in applications and providing customer
support teams with the information about the current JPA environment.

The command is run from the <profile_root> directory.

Examples

Find the version information of your JPA installation example output:
[root@atlanta bin]# ./wsjpaversion.sh
WSJPA 2.1.0-SNAPSHOT
version id: WSJPA-2.1.0-SNAPSHOT-r1119:2233
WebSphere JPA svn revision: 1119:2233

OpenJPA 2.1.0-SNAPSHOT
version id: openjpa-2.1.0-SNAPSHOT-r422266:1069208
Apache svn revision: 422266:1069208

os.name: Linux
os.version: 2.6.18-238.1.1.el5
os.arch: x86

java.version: 1.6.0
java.vendor: IBM Corporation

java.class.path:
/root/tc/WASX/as/dev/JavaEE/j2ee.jar
/root/tc/WASX/as/plugins/com.ibm.ws.jpa.jar
/root/tc/WASX/as/plugins/com.ibm.ws.prereq.commons-collections.jar

/root/tc/WASX/as/profiles/AppSrv01/bin
[root@atlanta bin]#

On Windows operating systems, the output looks like the following:
D:\Users\user\WASV8\IBM\WebSphere\AppServer\bin>wsjpaversion.bat
WSJPA 2.1.0-SNAPSHOT
version id: WSJPA-2.1.0-SNAPSHOT-r1119:2216
WebSphere JPA svn revision: 1119:2216
OpenJPA 2.1.0-SNAPSHOT
version id: openjpa-2.1.0-SNAPSHOT-r422266:1063829
Apache svn revision: 422266:1063829
os.name: Windows 7
os.version: 6.1
os.arch: amd64
java.version: 1.6.0
java.vendor: IBM Corporation
java.class.path:

D:\Users\user\WASV8\IBM\WebSphere\AppServer\dev\JavaEE\j2ee.jar
D:\Users\user\WASV8\IBM\WebSphere\AppServer\plugins\com.ibm.ws.jpa.jar
D:\Users\user\WASV8\IBM\WebSphere\AppServer\plugins\com.ibm.ws.prereq.

commons-collections.jar

Chapter 8. Data access resources 115

.
C:\Program Files (x86)\IBM\Java60\jre\lib\ext\QTJava.zip

user.dir: D:\Users\user\WASV8\IBM\WebSphere\AppServer\bin
D:\Users\user\WASV8\IBM\WebSphere\AppServer\bin>

Examples

Find the version information of your JPA installation example output:
C:\was70-GM>profiles\a1002.07\bin\wsjpaversion.bat
WSJPA 2.0.0-SNAPSHOT
version id: WSJPA-2.0.0-SNAPSHOT-r1118:1843
revision: 1118:1843

OpenJPA 2.0.0-SNAPSHOT
version id: openjpa-2.0.0-SNAPSHOT-r422266:897308
Apache svn revision: 422266:897308

os.name: Windows XP
os.version: 5.1 build 2600 Service Pack 2
os.arch: x86

java.version: 1.6.0
java.vendor: IBM Corporation

java.class.path:
C:\was70-GM\feature_packs\jpa\dev\JavaEE\j2ee.jar
C:\was70-GM\feature_packs\jpa\plugins\com.ibm.ws.jpa.jar
C:\was70-GM\plugins\com.ibm.ws.prereq.commons-collections.jar

user.dir: C:\was70-GM\plugins\com.ibm.ws.jpa.jar

wsjpa properties
The extension properties of Java Persistence API (JPA) for WebSphere Application Server can be
specified with the openjpa or wsjpa prefix. This topic features the wsjpa properties.

wsjpa.AccessIntent
Use this property to define a TaskName that in the persistence.xml file using the wsjpa.AccessIntent
property name in a persistence unit. The property value is a list of TaskNames, entity types and access
intent definitions.

For more information and examples on how the wsjpa.AccessIntent property is used, see the topic
Specifying TaskName in a JPA persistence unit.

wsjpa.jdbc.Schema
Specifies the schema name in a DB2 package collection when using multiple DB2 package collections.

For more information about using the wsjpa.jdbc.Schema property see the topic, Configuring pureQuery to
use multiple DB2 package collections.

wsjpa.jdbc.CollectionId
Specifies the collection Id name in a DB2 package collection when using multiple DB2 package
collections.

For more information about using the wsjpa.jdbc.CollectionId property see the topics, Configuring
pureQuery to use multiple DB2 package collections and Configuring data source JDBC providers to use
pureQuery in a Java SE environment.

116 Overview

Transaction support in WebSphere Application Server
Support for transactions is provided by the transaction service within WebSphere Application Server. The
way that applications use transactions depends on the type of application component.

A transaction is unit of activity, within which multiple updates to resources can be made atomic (as an
indivisible unit of work) such that all or none of the updates are made permanent. For example, during the
processing of an SQL COMMIT statement, the database manager atomically commits multiple SQL
statements to a relational database. In this case, the transaction is contained entirely within the database
manager and can be thought of as a resource manager local transaction (RMLT). In some contexts, a
transaction is referred to as a logical unit of work (LUW). If a transaction involves multiple resource
managers, for example multiple database managers, an external transaction manager is required to
coordinate the individual resource managers. A transaction that spans multiple resource managers is
referred to as a global transaction. WebSphere Application Server is a transaction manager that can
coordinate global transactions, can be a participant in a received global transaction, and can also provide
an environment in which resource manager local transactions can run.

The way that applications use transactions depends on the type of application component, as follows:
v A session bean can use either container-managed transactions (where the bean delegates management

of transactions to the container) or bean-managed transactions (component-managed transactions
where the bean manages transactions itself).

v Entity beans use container-managed transactions.
v Web components (servlets) and application client components use component-managed transactions.

WebSphere Application Server is a transaction manager that supports the coordination of resource
managers through their XAResource interface, and participates in distributed global transactions with
transaction managers that support the CORBA Object Transaction Service (OTS) protocol or Web Service
Atomic Transaction (WS-AtomicTransaction) protocol. WebSphere Application Server also participates in
transactions imported through Java EE Connector 1.5 resource adapters. You can also configure
WebSphere applications to interact with databases, JMS queues, and JCA connectors through their local
transaction support, when you do not require distributed transaction coordination.

Resource managers that offer transaction support can be categorized into those that support two-phase
coordination (by offering an XAResource interface) and those that support only one-phase coordination (for
example through a LocalTransaction interface). The WebSphere Application Server transaction support
provides coordination, within a transaction, for any number of two-phase capable resource managers. It
also enables a single one-phase capable resource manager to be used within a transaction in the absence
of any other resource managers, although a WebSphere transaction is not necessary in this case.

Under normal circumstances, you cannot mix one-phase commit capable resources and two-phase commit
capable resources in the same global transaction, because one-phase commit resources cannot support
the prepare phase of two-phase commit. There are some special circumstances where it is possible to
include mixed-capability resources in the same global transaction:

v In scenarios where there is only a single one-phase commit resource provider that participates in the
transaction and where all the two-phase commit resource-providers that participate in the transaction
are used in a read-only fashion. In this case, the two-phase commit resources all vote read-only during
the prepare phase of two-phase commit. Because the one-phase commit resource provider is the only
provider to complete any updates, the one-phase commit resource does not have to be prepared.

v In scenarios where there is only a single one-phase commit resource provider that participates in the
transaction with one or more two-phase commit resource providers and where last participant support is
enabled. Last participant support enables the use of a single one-phase commit capable resource with
any number of two-phase commit capable resources in the same global transaction. For more
information about last participant support, see Using one-phase and two-phase commit resources in the
same transaction.

Chapter 8. Data access resources 117

http://www.omg.org/cgi-bin/doc?formal/2003-09-02
http://www.ibm.com/developerworks/library/specification/ws-tx/
http://www.ibm.com/developerworks/library/specification/ws-tx/
http://java.sun.com/j2ee/connector/

The ActivitySession service provides an alternative unit-of-work (UOW) scope to that provided by global
transaction contexts. It is a distributed context that can be used to coordinate multiple one-phase resource
managers. The WebSphere EJB container and deployment tooling support ActivitySessions as an
extension to the Java EE programming model. Enterprise beans can be deployed with lifecycles that are
influenced by ActivitySession context, as an alternative to transaction context. An application can then
interact with a resource manager for the period of a client-scoped ActivitySession, rather than only the
duration of an EJB method, and have the resource manager local transaction outcome directed by the
ActivitySession. For more information about ActivitySessions, see Using the ActivitySession service.

Resource manager local transaction (RMLT)
A resource manager local transaction (RMLT) is a resource manager view of a local transaction; that is, it
represents a unit of recovery on a single connection that is managed by the resource manager.

Resource managers include:
v Enterprise Information Systems that are accessed through a resource adapter, as described in the Java

EE Connector Architecture.
v Relational databases that are accessed through a JDBC datasource.
v JMS queue and topic destinations.

Resource managers offer specific interfaces to enable control of their RMLTs. Resource adapter
components of the Java EE connector architecture that include support for local transactions provide a
LocalTransaction interface. The LocalTransaction interface enables applications to request that the
resource adapter commits or rolls back RMLTs. JDBC datasources provide a Connection interface for the
same purpose.

The boundary at which all RMLTs must be complete is defined in WebSphere Application Server by a local
transaction containment (LTC).

Global transactions
If an application uses two or more resources, an external transaction manager is needed to coordinate the
updates to all the resource managers in a global transaction.

Global transaction support is available to web and enterprise bean components and, with some limitations,
to application client components. Enterprise bean components can be subdivided into two categories:
beans that use container-managed transactions (CMT) and beans that use bean-managed transactions
(BMT).

Only BMT enterprise beans, application client components, and web components can use the Java
Transaction API (JTA) UserTransaction interface to define the demarcation of a global transaction. To
obtain the UserTransaction interface, use a Java Naming and Directory Interface (JNDI) lookup of
java:comp/UserTransaction, or use the getUserTransaction method from the SessionContext object.

The UserTransaction interface is not available to CMT enterprise beans. If CMT enterprise beans attempt
to obtain this interface, an exception is thrown, in accordance with the Enterprise JavaBeans (EJB)
specification.

Ensure that programs that perform a JNDI lookup of the UserTransaction interface use an InitialContext
that resolves to a local implementation of the interface. Also ensure that such programs use a JNDI
location that is appropriate for the EJB version.

WebSphere Application Server Version 4 and later releases bind the UserTransaction interface at the JNDI
location that is specified in the EJB Version 1.1 specification. This location is java:comp/UserTransaction.

A web component or enterprise bean (CMT or BMT) can use additional interfaces that provide JTA
support. These interfaces provide the transaction identity and a mechanism to receive notification of

118 Overview

http://java.sun.com/j2ee/connector/index.html
http://java.sun.com/j2ee/connector/index.html

transaction completion. The interfaces include the TransactionSynchronizationRegistry interface, the
ExtendedJTATransaction interface, and the UOWSynchronizationRegistry interface.

Local transaction containment
A local transaction containment (LTC) is used to define the application server behavior in an unspecified
transaction context.

Unspecified transaction context is defined in the Enterprise JavaBeans specification, Version 2.0 and later.
For example, see the specification for this technology.

An LTC is a bounded unit-of-work scope, within which zero or more resource manager local transactions
(RMLT) can be accessed. The LTC defines the boundary at which all RMLTs must be complete; any
incomplete RMLTs are resolved, according to policy, by the container. By default, an LTC is local to a bean
instance; it is not shared across beans, even if those beans are managed by the same container. LTCs
are started by the container before dispatching a method on an enterprise application component, such as
an enterprise bean or servlet, whenever the dispatch occurs in the absence of a global transaction context.
LTCs are completed by the container depending on the application-configured LTC boundary; for example,
at the end of the method dispatch. There is no programmatic interface to the LTC support; LTCs are
managed exclusively by the container. The application deployer configures LTCs on individual application
components, either web application or EJB, by using transaction attributes in the application deployment
descriptor.

A local transaction containment (LTC) might be configured as part of an application component's
deployment descriptor to be shareable across multiple application components, including web application
components and enterprise beans that use container-managed transactions, so that those components
can share connections without using a global transaction. Sharing a single resource manager between
application components improves performance, increases scalability, and reduces lock contention for
resources.

LTCs can be shared across multiple components, including web application components and enterprise
beans that use container-managed transactions. This sharing is useful in situations such as frequent use
of web component include() calls, where a thread can have several connections blocked by LTCs in
different web modules. In this situation, the application might encounter code deadlocks under load, when
threads start to wait for themselves to free connections. To overcome this issue without using a global
transaction, specify that application components can share LTCs by setting the Shareable attribute in the
deployment descriptor of each component. You must use a deployment descriptor; you cannot specify this
attribute if annotation has been used.

When you set the Shareable attribute, the extended deployment descriptor XML file includes the following
line of code:
<local-transaction boundary="BEAN_METHOD" resolver="CONTAINER_AT_BOUNDARY"
unresolved-action="COMMIT" shareable="true"/>

To obtain the full benefits of a shared LTC, also ensure that the resource reference for each component
defaults to shareable connections.

In the following diagram, components 1, 2 and 3 are deployed with the Shareable attribute and component
4 is not. If components 2 and 3 both obtain connections to data source B, and their resource references
for data source B default to shareable connections, they share the connection, but component 4 does not.

Chapter 8. Data access resources 119

Applications that use shareable LTCs cannot explicitly commit or roll back resource manager connections
that are used in a shareable LTC. Although, they can use connections that have an autoCommit capability.
This ensures correct encapsulation of connection usage by each component and protects one component
from having to make any assumptions about the behavior of other components that share the connection.

If an application starts any non-autocommit work in an LTC for which the Resolver attribute is set to
Application and the Shareable attribute is set to true, an exception occurs at run time. For example, on a
JDBC connection, non-autocommit work is work that the application performs after using the
setAutoCommit(false) method to disable the autocommit option on the connection. Enterprise beans that
use bean managed transactions (BMT) cannot be assembled with the Shareable attribute set on the LTC
configuration.

A local transaction containment cannot exist concurrently with a global transaction. If application
component dispatch occurs in the absence of a global transaction, the container always establishes an
LTC for enterprise application components at J2EE 1.3 or later. The only exceptions to this are the
following items:
v Application component dispatch occurs without container interposition, for example, for a stateless

session bean create method or a servlet-initiated thread.
v J2EE 1.2 web components.
v J2EE 1.2 bean-managed transaction (BMT) enterprise beans.

A local transaction containment can be scoped to an ActivitySession context that exists longer than the
enterprise bean method in which it is started, as described in the topic about ActivitySessions and
transaction contexts.

Local transaction containment
IBM WebSphere Application Server supports local transaction containment (LTC), which you can configure
using local transaction extended deployment descriptors. LTC support provides certain advantages to

120 Overview

application programmers. Use the scenarios provided, and the list of points to consider, to help you decide
the best way to configure transaction support for local transactions.

The following sections describe the advantages that LTC support provides, and how to set the local
transaction extended deployment descriptors in each situation.
You can develop an enterprise bean or servlet that accesses one or more databases that are
independent and require no coordination.

If an enterprise bean does not have to use global transactions, it is often more efficient to deploy
the bean with the deployment descriptor for the container transaction type set to NotSupported
instead of Required.

With the extended local transaction support of the application server, applications can perform the
same business logic in an unspecific transaction context as they can in a global transaction. An
enterprise bean, for example, runs in an unspecified transaction context if it is deployed with a
container transaction type of NotSupported or Never.

The extended local transaction support provides a container-managed, implicit local transaction
boundary, within which the container commits application updates and cleans up their connections.
You can design applications with more independence from deployment concerns. This makes
using a container transaction type of Supports much simpler, for example, when the business logic
might be called either with or without a global transaction context.

An application can follow a get-use-close pattern of connection usage, regardless of whether the
application runs in a transaction. The application can depend on the close action behaving in the
same way in all situations, that is, the close action does not cause a rollback to occur on the
connection if there is no global transaction.

There are many scenarios where ACID coordination of multiple resource managers is not needed.
In such scenarios, running business logic in a Transaction policy of NotSupported performs better
than in a policy of Required. This benefit is applied through setting the deployment descriptor, in
the Local Transactions section, of the Resolver attribute to ContainerAtBoundary. With this setting,
application interactions with resource providers, such as databases, are managed within implicit
resource manager local transactions (RMLT) that the container both starts and ends. The
container commits RMLTs at the containment boundary that is specified by the Boundary attribute
in the Local Transactions section; for example, at the end of a method. If the application returns
control to the container by an exception, the container rolls back any RMLTs that it has started.

This usage applies to both servlets and enterprise beans.
You can use local transactions in a managed environment that guarantees cleanup.

Applications that want to control RMLTs, by starting and ending them explicitly, can use the default
setting of Application for the Resolver extended deployment descriptor in the Local Transactions
section. In this situation, the container ensures connection cleanup at the boundary of the local
transaction context.

Java platform for enterprise applications specifications that describe application use of local
transactions do so in the manner provided by the default settings of Application for the Resolver
extended deployment descriptor, and Rollback for the Unresolved action extended deployment
descriptor, in the Local Transactions section. When the Unresolved action extended deployment
descriptor in the Local Transactions section is set to Commit, the container commits any RMLTs
that the application starts but that do not complete when the local transaction containment ends
(for example, when the method ends). This usage applies to both servlets and enterprise beans.

You can extend the duration of a local transaction beyond the duration of an EJB component
method.

The Enterprise JavaBeans (EJB) specifications restrict the use of RMLTs to single EJB methods.
This restriction is because the specifications have no scoping device, beyond a container-imposed
method boundary, to which an RMLT can be extended. You can use the Boundary extended
deployment setting in the Local Transactions section to give the following advantages:
v Significantly extend the use cases of RMLTs.

Chapter 8. Data access resources 121

v Make conversational interactions with one-phase resource managers possible through
ActivitySession support.

You can use an ActivitySession to provide a distributed context with a boundary that is longer than
a single method. You can extend the use of RMLTs over the longer ActivitySession boundary,
which a client can control. The ActivitySession boundary reduces the need to use distributed
transactions where ACID operations on multiple resources are not needed. This benefit is applied
through the Boundary extended deployment setting, in the Local transactions section, of
ActivitySession. Such extended RMLTs can remain under the control of the application, or be
managed by the container, depending on the setting of the Resolver deployment descriptor in the
Local Transactions section.

You can coordinate multiple one-phase resource managers.
For resource managers that do not support XA transaction coordination, a client can use
ActivitySession-bounded local transaction contexts. Such contexts give a client the same ability to
control the completion direction of the resource updates by the resource managers as the client
has for transactional resource managers. A client can start an ActivitySession and call its entity
beans in that context. Those beans can perform their RMLTs within the scope of that
ActivitySession and return without completing the RMLTs. The client can later complete the
ActivitySession in a commit or rollback direction and cause the container to drive the
ActivitySession-bounded RMLTs in that coordinated direction.

You can use shareable LTCs to reduce the number of connections you require.
Application components can share LTCs. If components obtain connections to the same resource
manager, they can share that connection if they run under the same global transaction or
shareable LTC. To configure two components to run under the same shareable LTC, set the
Shareable attribute of the Local Transactions section in the deployment descriptor of each
component. Make sure that the resource reference in the deployment descriptor for each
component uses the default value of Shareable for the res-sharing-scope element, if this element
is specified. A shareable LTC can reduce the numbers of RMLTs an application uses. For example,
an application that makes frequent use of web module include calls can share resource manager
connections between those web modules, exploiting either shareable LTCs, or a global
transaction, reducing lock contention for resources.

Examples of local transaction support configurations

The following list gives scenarios that use local transactions, and points to consider when deciding the
best way to configure the transaction support for an application.
v You want to start and end global transactions explicitly in the application (bean-managed transaction

session beans and servlets only).

For a session bean, set the Transaction type to Bean (to use bean-managed transactions) in the
deployment descriptor of the component. You do not have to do this for servlets.

v You want to access only one XA or non-XA resource in a method.

In the deployment descriptor of the component, in the Local Transactions section, set the Resolver
attribute to ContainerAtBoundary. In the Container Transactions section, set the container transaction
type to Supports.

v You want to access several XA resources atomically across one or more bean methods.

In the deployment descriptor of the component, in the Container Transactions section, set the container
transaction type to Required, RequiresNew, or Mandatory.

v You want to access several non-XA resources in a method without needing to manage your own local
transactions.

In the deployment descriptor of the component, in the Local Transactions section, set the Resolver
attribute to ContainerAtBoundary. In the Container Transactions section, set the container transaction
type to NotSupported.

v You want to access several non-XA resources in a method and want to manage them independently.

122 Overview

In the deployment descriptor of the component, in the Local Transactions section, set the Resolver
attribute to Application and set the Unresolved action attribute to Rollback. In the Container Transactions
section, set the container transaction type to NotSupported.

v You want to access one or more non-XA resources across multiple EJB method calls without needing to
manage your own local transactions.

In the deployment descriptor of the component, in the Local Transactions section, set the Resolver
attribute to ContainerAtBoundary and set the Boundary attribute to ActivitySession. In the Bean Cache
section, set the Activate at attribute to ActivitySession. In the Container Transactions section, set the
container transaction type to NotSupported and set the ActivitySession kind attribute to Required,
RequiresNew, or Mandatory.

v You want to access several non-XA resources across multiple EJB method calls and want to manage
them independently.

In the deployment descriptor of the component, in the Local Transactions section, set the Resolver
attribute to Application and set the Boundary attribute to ActivitySession. In the Bean Cache section, set
the Activate at attribute to ActivitySession. In the Container Transactions section, set the container
transaction type to NotSupported and set the ActivitySession kind attribute to Required, RequiresNew,
or Mandatory.

Local and global transactions
Applications use resources, such as Java Database Connectivity (JDBC) data sources or connection
factories, that are configured through the Resources view of the administrative console. How these
resources participate in a global transaction depends on the underlying transaction support of the resource
provider.

For example, most JDBC providers can provide either XA or non-XA versions of a data source. A non-XA
data source can support only resource manager local transactions (RMLT), but an XA data source can
support two-phase commit coordination, as well as local transactions.

If an application uses two or more resource providers that support only RMLTs, atomicity cannot be
assured because of the one-phase nature of these resources. To ensure atomic behavior, the application
must use resources that support XA coordination and must access those resources in a global transaction.

If an application uses only one RMLT, atomic behavior can be guaranteed by the resource manager, which
can be accessed in a local transaction containment (LTC) context.

An application can also access a single resource manager in a global transaction context, even if that
resource manager does not support the XA coordination. An application can do this because the
application server performs an “only resource optimization” and interacts with the resource manager in a
RMLT. In a global transaction context, any attempt to use more than one resource provider that supports
only RMLTs causes the global transaction to be rolled back.

At any moment, an instance of an enterprise bean can have work outstanding in either a global transaction
context or a local transaction containment context, but not both. An instance of an enterprise bean can
change from running in one type of context to the other (in either direction), if all outstanding work in the
original context is complete. Any violation of this principle causes an exception to be thrown when the
enterprise bean tries to start the new context.

Client support for transactions
Application clients can, within certain limits, support the use of transactions.

Application clients running in an enterprise application client container can explicitly demarcate transaction
boundaries, as described in the topic about using component-managed transactions. Application clients
cannot perform, directly in the client container, transactional work in the context of any global transaction
that they start, because the client container is not a recoverable process.

Chapter 8. Data access resources 123

Application clients can make requests to remote objects, such as enterprise beans, in the context of a
client-initiated transaction. Any transactional work performed in a remote, recoverable, server process is
coordinated as part of the client-initiated transaction. The transaction coordinator is created on the first
server process to which the client-initiated transaction is propagated.

A client can begin a transaction, then, for example, access a JDBC data source directly in the client
process. In such cases, any work performed through the JDBC provider is not coordinated as part of the
global transaction. Instead, the work runs under a resource manager local transaction. The client container
process is non-recoverable and contains no transaction coordinator with which a resource manager can be
enlisted.

A client can begin a transaction, then call a remote application component such as an enterprise bean. In
such cases, the client-initiated transaction context is implicitly propagated to the remote application server,
where a transaction coordinator is created. Any resource managers accessed on the recoverable
application server (or any other application server hosting application components invoked by the client)
are enlisted in the global transaction.

Client application components must be aware that locally-accessed resource managers are not
coordinated by client-initiated transactions. Client applications acknowledge this through a deployment
option that enables access to the UserTransaction interface in the client container. By default, access to
the UserTransaction interface in the client container is not enabled. To enable UserTransaction
demarcation for an application client component, set the “Allow JTA Demarcation” extension property in the
client deployment descriptor. For information about editing the client deployment descriptor, refer to the
Rational Application Developer information.

Commit priority for transactional resources
You can specify the order in which transactional resources are processed during two-phase commit
processing.

If you control the order in which transactional resources are processed during two-phase commit
processing, there are two main benefits:

v One-phase commit optimization occurs more often.

v Potential problems caused by transaction isolation are resolved.

To control the order in which transactional resources are processed during two-phase commit processing,
you specify the commit priority of a resource by setting the commit priority attribute on a resource
reference. The larger the commit priority, the earlier the resource is processed. For example, if a resource
has a commit priority of 10, it is processed before a resource with a commit priority of 1. The commit
priority value is of type int and can be between -2147483648 and 2147483647.

If you do not specify a commit priority value, a default value of zero is assigned to the resource and is
used when ordering resources at run time. If two or more resources are configured with the same priority,
including the default priority, they are processed in an unspecified order with respect to each other.

You can specify the commit priority attribute on a resource reference by using Rational Application
Developer tools. For detailed information, see the Rational Application Developer information center. The
application component must have a deployment descriptor; you cannot specify this attribute if annotation
has been used.

One-phase commit optimization

In a transaction with a two-phase commit, if every resource except the last one enlisted in the transaction
votes read-only, indicating that those resources are not interested in the outcome of the transaction, a

124 Overview

one-phase commit can occur. This means that the transaction service does not have to store resource and
transaction information that it would need to roll back a two-phase commit, and therefore performance is
improved.

You can control the order in which transactional resources are processed during two-phase commit, so
you can process the resources that are most likely to vote read-only first. Therefore, you increase the
chance that a one-phase commit might occur.

Typically, for a given transactional resource, you know the work that is performed at run time, so if you can
control the order in which the resources in a transaction are processed, you can increase the likelihood of
a one-phase commit optimization occurring.

Transaction isolation

When resources are involved in a global transaction, updates that are made as part of a transaction are
not visible outside the transaction until the transaction commits, that is, those resources are isolated. This
isolation can cause problems with other application components that act on the updates after they are
committed. For example, further processing can fail, or can fail intermittently, because updates are order
and time dependent. This problem does not occur with service integration bus messaging work in
WebSphere Application Server, but can be a problem for other messaging providers, for example
WebSphere MQ.

If you specify the order in which transactional resources are committed, problems caused by isolation are
resolved for all transactional systems, not just messaging providers and service integration bus in
particular.

The following example describes how problems might occur when you cannot specify the order in which
transactional resources are committed. An application updates a row in a database table, then sends a
JMS message that triggers additional processing of the row. Both of these actions are performed in the
same global transaction, so they are isolated until their respective resources are committed. If the update
to the row is committed before the message is sent, the processing that is triggered by the message can
access the updated row and process it. If the action to send the message is committed first, this action
might trigger the additional processing of the row before the database has committed the update to the
row. In this situation, the updated row is still isolated and is not visible, so the additional processing of the
row fails.

This problem can be more complicated because it is ordering and timing dependent. If the database is
committed first, the problem does not occur. If the action to send the message is committed first, the
problem might occur, but it depends whether the database work is committed before the message triggers
the further processing of the row. Therefore, the problem can be intermittent, so it is harder to identify its
cause.

Restrictions with earlier versions of WebSphere Application Server

If you specify the commit priority of a resource, that is, specify any value other than the default value 0,
the commit priority is added to the partner log in a recoverable unit section. This section in the log file is
recognized in WebSphere Application Server Version 7.0 or later, but not in earlier versions of the
application server.

Therefore, if an application uses the commit priority attribute, you cannot install that application into a
mixed-version cluster where one or more servers in the cluster are at versions of WebSphere Application
Server that are earlier than Version 7.0.

Also, if an application that uses the commit priority attribute is installed in a cluster, you cannot
subsequently add a server to that cluster if the server is at a version of WebSphere Application Server that
is earlier than Version 7.0.

Chapter 8. Data access resources 125

For general information about different versions of the product, see the topic “Overview of migration,
coexistence, and interoperability”.

Sharing locks between transaction branches
You can specify that multiple application components on different application servers can share access to
data in a single DB2 database under the same global transaction. You specify that the different transaction
branches share locks under the global transaction.

To do this, you set the branch coupling attribute on the resource references for the shared DB2
connections in the application.

Note: Lock sharing in WebSphere Application Server Version 8 is only supported on DB2; setting lock
sharing on a resource reference for a non-DB2 database will result in an exception.

Usually, application components can share locks only when those application components are collocated
on the same server.

Sharing locks between transaction branches means that multiple DB2 Java Database Connectivity (JDBC)
connections to the same database that are in the same transaction, from the same or different servers,
can share locks when accessing data. In this way, multiple components can access the data without
causing timeouts or other unwanted situations.

Sharing locks between transaction branches provides the benefit that two Enterprise JavaBeans (EJBs) on
two servers can share the visibility of data, and the locks to that data, within a distributed transaction.
Therefore, shared access to data does not depend on the location of the application component.

To specify that transaction branches share locks, you set the branch coupling attribute on the DB2
resource reference of the application to a value of tight. For example:
<resource-ref name="jdbc/DataSource_LockSharing" branch-coupling="TIGHT"/>

If you do not specify a branch coupling value, the default value of loose is used, that is, transaction
branches do not share locks.

You can set the branch coupling attribute on the DB2 resource reference of the application by using
Rational Application Developer tools. For detailed information, see the Rational Application Developer
information center. The application component must have a deployment descriptor; you cannot specify this
attribute if annotation has been used.

To share locks between transaction branches in this way, the following conditions apply:

v The database must be DB2 on a distributed or z/OS operating system.

v The JDBC provider must be DB2 Using IBM JCC Driver Version 3.51 and later, Version 3.6 and later, or
Version 4.1 and later.

v Connections must use JDBC type 4 connectivity to one of the following:

– DB2 Universal Database™ (DB2 UDB) Version 8 and later

– DB2 UDB for z/OS Version 8 with program temporary fix (PTF) UK27815 and later

– DB2 UDB for z/OS Version 9.1 with Fix Pack 4 and later

– DB2 UDB for z/OS Version 9.5 and later

Note: An IBM Support Technote is available that provides a complete list of which DB2 versions support
lock sharing. Search the IBM Support Portal for relevant information.

126 Overview

http://www-947.ibm.com/support/entry/portal/All_troubleshooting_links/Software/Information_Management/DB2_for_Linux,_UNIX_and_Windows

Transactional high availability
The high availability of the transaction service enables any server in a cluster to recover the transactional
work for any other server in the same cluster. This facility forms part of the overall WebSphere Application
Server high availability (HA) strategy.

As a vital part of providing recovery for transactions, the transaction service logs information about active
transactional work in the transaction recovery log. The transaction recovery log stores the information in a
persistent form, which means that any transactional work in progress at the time of a server failure can be
resolved when the server is restarted. This activity is known as transaction recovery processing. In
addition to completing outstanding transactions, this processing also ensures that any locks held in the
associated resource managers are released.

Peer recovery processing

The standard recovery process that is performed when an application server restarts is for the server to
retrieve and process the logged transaction information, recover transactional work and complete indoubt
transactions. Completion of the transactional work (and hence the release of any database locks held by
the transactions) takes place after the server successfully restarts and processes its transaction logs. If the
server is slow to recover or requires manual intervention, the transactional work cannot be completed and
access to associated databases is disrupted.

To minimize such disruption to transactional work and the associated databases, WebSphere Application
Server provides a high availability strategy known as transaction peer recovery.

Peer recovery is provided within a server cluster. A peer server (another cluster member) can process the
recovery logs of a failed server while the peer continues to manage its own transactional workload. You do
not have to wait for the failed server to restart, or start a new application server specifically to recover the
failed server.

The peer recovery process is the logical equivalent to restarting the failed server, but does not constitute a
complete restart of the failed server within the peer server. The peer recovery process provides an
opportunity to complete outstanding work; it cannot start new work beyond recovery processing. No
forward processing is possible for the failed server.

Peer recovery moves the high availability requirements away from individual servers and onto the server
cluster. After such failures, the management system of the cluster dispatches new work onto the remaining

Figure 11. Peer recovery

Chapter 8. Data access resources 127

servers; the only difference is the potential drop in overall system throughput. If a server fails, all that is
required is to complete work that was active on the failed server and redirect requests to an alternate
server.

By default, peer recovery is disabled until you enable failover of transaction log recovery in the cluster
configuration, and restart the cluster members. After you enable transaction log recovery, WebSphere
Application Server supports two styles for the initiation of transaction peer recovery: automated and
manual. You determine which style is more appropriate, based on your deployment, and specify that style
by configuring the appropriate high availability policy. This high availability policy is referred to elsewhere in
these topics as the policy for the transaction service.

Automated peer recovery
This style is the default for peer recovery initiation. If an application server fails, WebSphere
Application Server automatically selects a server to undertake peer recovery processing on its
behalf, and passes recovery back to the failed server when it restarts. To use this model, enable
transaction log recovery and configure the recovery log location for each cluster member.

Manual peer recovery
You must explicitly configure this style of peer recovery. If an application server fails, you use the
administrative console to select a server to perform recovery processing on its behalf.

In a HA environment, you must configure the compensation logs as well as the transaction logs. For each
server in the cluster, use the compensation service settings to configure a unique compensation log
location, and ensure that all cluster members can access those compensation logs.

Peer recovery example

The following diagrams illustrate the peer recovery process that takes place if a single server fails. Figure
2 shows three stable servers running in a WebSphere Application Server cluster. The workload is balanced
between these servers, which results in locks held by the back-end database on behalf of each server.

Figure 3 shows the state of the system after server 1 fails without clearing locks from the database.
Servers 2 and 3 can run their existing transactions to completion and release existing locks in the
back-end database, but further access might be impaired because of the locks still held on behalf of server
1. In practice, some level of access by servers 2 and 3 is still possible, assuming appropriately configured
lock granularity, but for this example assume that servers 2 and 3 attempt to access locked records and
become blocked.

Figure 12. Server cluster up and running, just before server failure

128 Overview

Figure 4 shows a peer recovery process for server 1 running inside server 3. The transaction service
portion of the recovery process retrieves the information that is stored by server 1, and uses that
information to complete any indoubt transactions. In this figure, the peer recovery process is partially
complete as some locks are still held by the database on behalf of server 1.

Figure 5 shows the state of the server cluster when the peer recovery process is complete. The system is
in a stable state with just two servers, between which the workload is balanced. Server 1 can be restarted,
and will have no recovery processing of its own to perform.

Figure 13. Server 1 fails. Servers 2 and 3 become blocked as a result

Figure 14. Peer recovery process started in server 3

Chapter 8. Data access resources 129

Deployment for transactional high availability
Before you use the high availability (HA) function, you must consider deployment issues such as your file
system type, or where you plan to store the transaction recovery logs. In particular, your file system type
can have important consequences for your recovery configuration.

Common configuration

Transaction peer recovery requires a common configuration of the resource providers between the
participating server members to undertake peer recovery between servers. Therefore, peer recovery
processing can only take place between members of the same server cluster. Although a cluster can
contain servers that are at different versions of WebSphere Application Server, peer recovery can only be
performed between servers in the cluster that are at Version 6 or later.

Physical storage

For application servers to perform transaction peer recovery for each other, they must be able to access
the transaction recovery logs of all the other members in the cluster. Ensure that the log files are stored on
a medium that is accessible by all members of the cluster, and that each cluster member has a unique log
file location on this medium. This medium, and access to it, for example through a local area network
(LAN), must support the file-based force operation that is used by the recovery log service to force data to
disk. After the force operation is complete, information must be persistently stored on physical disk media.

In a HA environment, application servers must also be able to access the compensation logs. Ensure that
the compensation log files are stored on a medium that is accessible by all members of the cluster, and
that each cluster member has a unique log file location on this medium.

For example, you can use IBM Network attached storage (NAS) (http://www.ibm.com/servers/storage/nas/
index.html) mounted on each node, and shared SCSI drives, but not simple network share. All nodes must
have read and write access to the recovery logs.

Figure 15. Server cluster stable again with just two servers: server 2 and server 3

130 Overview

http://www.ibm.com/servers/storage/nas/index.html
http://www.ibm.com/servers/storage/nas/index.html

In addition, configure the mechanism by which the remote log files are accessed, to exploit any fault
tolerance in the underlying file system. For example, by using the Network File System (NFS) and hard
mounting the remote directory containing the log files by using the -o hard option of the NFS mount
command, the NFS client will try a failed operation repeatedly until the NFS server becomes available
again.

Two types of potential server failure exist: software failure and hardware failure. Software failures generally
do not affect other application servers directly. Even servers on the same physical hardware can undertake
peer recovery processing. If a hardware failure occurs, all the servers that are deployed on the failed
hardware become unavailable. Servers on other hardware are required to handle peer recovery
processing. Any HA configuration requires that servers are deployed across multiple and discrete hardware
systems.

File system

The file system type is an important deployment consideration as it is the main factor in deciding whether
to use automated or manual peer recovery. For more information, see “How to choose between automated
and manual transaction peer recovery.”

How to choose between automated and manual transaction peer recovery:

Your type of file system is the dominant factor in deciding which kind of transaction peer recovery to use.
Different file systems have different behaviors, and the file locking behavior in particular is important when
choosing between automated and manual peer recovery.

WebSphere Application Server high availability (HA) support uses a heartbeat mechanism to determine
whether servers are still running. Servers are considered failed if they stop responding to heartbeat
requests. Some scenarios, such as system overloading and network partitioning (explained elsewhere in
this topic), can cause servers to stop responding to heartbeats, even though the servers are still running.
WebSphere Application Server uses file locking technology to prevent such events from causing
concurrent access to transaction recovery logs, because access to a recovery log by more than one server
can lead to loss of data integrity.

Figure 16. Recovery logs on NAS storage are available to all servers

Chapter 8. Data access resources 131

However, not all file systems provide the necessary file locking semantics, specifically that file locks are
released when a server fails. For example, Network File System Version 4 (NFSv4) provides this release
behavior, whereas Network File System Version 3 (NFSv3) does not.

You can test whether a shared file system can support the failover of transaction logs by running the File
System Locking Protocol Test for WebSphere Application Server. To run the test see, http://www-
01.ibm.com/support/docview.wss?uid=swg24010222.

NFSv4 releases locks held on behalf of a host in case that host fails. Peer recovery can occur
automatically without restarting the failed hardware. Therefore, this version of NFS is better suited for use
with automated peer recovery.

NFSv3 holds file locks on behalf of a failed host until that host can restart. In this context, the host is the
physical machine running the application server that requested the lock and it is the restart of the host, not
the application server, that eventually triggers the locks to release.

To illustrate file locking on NFSv3, consider the behavior when a cluster member fails:

1. Server H is running on host H and holds an exclusive file lock for its own recovery log files.

2. Server P is running on host P and holds an exclusive file lock for its own recovery log files.

3. Host H fails, taking server H with it. The NFS lock manager on the file server holds the locks that are
granted to server H on its behalf.

4. A peer recovery event is triggered in server P for server H by WebSphere Application Server.

5. Server P attempts to gain an exclusive file lock for this peer recovery log, but is unable to do so as it
is held on behalf of server H. The peer recovery process is blocked.

6. At an unspecified time, host H is restarted. The locks held on its behalf are released.

7. The peer recovery process in server P is unblocked and granted the exclusive file locks that are
needed to undertake peer recovery.

8. Peer recovery takes place in server P for server H.

9. Server H is restarted.

10. If peer recovery is still in progress in server P, the recovery is halted.

11. Server P releases the exclusive lock on the recovery logs and returns ownership of the recovery logs
back to server H.

12. Server H obtains the exclusive lock and can now undertake standard transaction logging.

Because of this behavior, on NFSv3 you must disable file locking to use automated peer recovery.
Disabling file locking can lead to concurrent access to recovery logs so it is vital that you protect your
system from system overloading and network partitioning first. Alternatively, you can configure manual peer
recovery, where you prevent concurrent access by manually triggering peer recovery processing only for
servers that have failed.

System overloading
System overloading occurs when a machine becomes very heavily loaded such that response
times are extremely poor and requests begin to time out. Several potential causes exist for such
overloading, including:

v The server is underpowered and cannot handle the workload.

v The server received a temporary surge of requests.

v Insufficient physical memory is available. As a result, the operating system is too busy paging to
give the application server the required CPU time.

Network partitioning
Network partitioning occurs when a communications failure in a network results in two smaller
networks that are independent and cannot contact each other.

132 Overview

http://www-01.ibm.com/support/docview.wss?uid=swg24010222
http://www-01.ibm.com/support/docview.wss?uid=swg24010222

During normal running, two servers on the network exchange heartbeats. During system overloading,
heartbeat operations time out, giving the appearance of a server failure. After network partitioning, each
server is in a separate network and heartbeats cannot pass between them, also giving the appearance of
a server failure.

High availability policies for the transaction service
WebSphere Application Server provides integrated high availability (HA) support in which system
subcomponents, such as the transaction service, are made highly available. An HA policy provides the
logic that governs the manner in which each WebSphere Application Server HA component behaves within
the overall HA framework. For the transaction service, the transaction HA policy provides the logic to
determine which servers own a recovery log at any time.

Typically, transaction policies assign ownership of a recovery log to the server that originally created it (the
home server) and that server can then use the recovery log for both recovery and normal transactional
activity. In the event that the home server is unavailable or fails, ownership can pass to a peer server to
undertake recovery processing.

Conceptually, a policy can be thought of as consisting of two key components, a policy type and a policy
configuration.

Figure 17. Heartbeats in a system running normally, compared to heartbeats after the apparent server failures of
system overloading and network partitioning

Chapter 8. Data access resources 133

Policy type

The policy type determines whether peer recovery initiation is manual or automated. The policy essentially
provides the logic for determining updated recovery log ownership in the event of a server failure. The
following WebSphere Application Server policy types are used for transaction peer recovery (other HA
policy types exist, but are not used by the transaction service):

Static Ownership of the recovery log is defined in the WebSphere Application Server configuration. At run
time, the static policy assigns ownership accordingly. Any changes to ownership require a change
to the static configuration and therefore this policy type is used for manually initiated peer
recovery.

One-of-N
Ownership of the recovery log is determined dynamically by the WebSphere Application Server HA
framework and assigned to exactly one of the N cluster members. This policy type is used for
automated peer recovery.

Transaction compensation and business activity support
A business activity is a collection of tasks that are linked together so that they have an agreed outcome.
Unlike atomic transactions, activities such as sending an email can be difficult or impossible to roll back
atomically, and therefore require a compensation process in the event of an error. The WebSphere
Application Server business activity support provides this compensation ability through business activity
scopes.

When to use business activity support

Use the business activity support when you have an application that requires compensation. An application
requires compensation if its operations cannot be atomically rolled back. Typically, this scenario is because
of one of the following reasons:

v The application uses multiple non-extended-architecture (XA) resources.

v The application uses more than one atomic transaction, for example, enterprise beans that have
Requires new as the setting for the Transaction field in the container transaction deployment
descriptor.

v The application does not run under a global transaction.

The following diagram shows a simple web service application that uses the business activity support. The
Retailer, Warehouse and Manufacturing services are running in non-WebSphere Application
Serverenvironments. The Retailer service calls the Supplier service, running on WebSphere Application
Server, which delegates tasks to the Warehouse and Manufacturing services. The implementation of the
Supplier service contains a stateless session bean, which calls other stateless session beans that are
associated with the Warehouse and Manufacturing services, and that undertake work that can be
compensated. These other session beans each have a compensation handler; a piece of logic that is
associated with an application component at run time, and performs compensation activity such as
resending an email.

134 Overview

Application design

Business activity contexts are propagated with application messages, and can therefore be distributed
between application components that are not co-located in the same server. Unlike atomic transaction
contexts, business activity contexts are propagated on both synchronous (blocking) call-response
messages and asynchronous one-way messages. An application component that runs under a business
activity scope is responsible for ensuring that any asynchronous work it initiates is complete before the
component's own processing is complete. An application that initiates asynchronous work by using a
fire-and-forget message pattern must not use business activity scopes, because such applications have no
means of detecting whether this asynchronous processing has completed.

Only enterprise beans that have container-managed transactions can use the business activity functions.
Enterprise beans that exploit business activity scopes can offer web service interfaces, but can also offer
standard enterprise bean local or remote Java interfaces. Business activity context is propagated in web
service messages by using a standard, interoperable Web Services Business Activity (WS-BA)
CoordinationContext element. WebSphere Application Server can also propagate business activity context
on RMI calls to enterprise beans when Web services are not being used, but this form of the context is not
interoperable with non-WebSphere Application Server environments. You might want to use this
homogeneous scenario if you require compensation for an application that is internal to your business. If
you want to use business activity compensation in a heterogeneous environment, expose your application
components as web services.

Chapter 8. Data access resources 135

Business activity contexts can be propagated across firewalls and outside the WebSphere Application
Server domain. The topology that you use to achieve this propagation can affect the high availability and
affinity behavior of the business activity transaction.

Application development and deployment

WebSphere Application Server provides a programming model for creating business activity scopes, and
for associating compensation handlers with those business activity scopes. WebSphere Application Server
also provides an application programming interface to specify compensation data, and check or alter the
status of a business activity. To use the business activity support you must set certain application
deployment descriptors appropriately, provide a compensation handler class if required, and enable
business activity support on any servers that run the application.

Note: Applications can exploit the business activity support only if you deploy them to a WebSphere
Application Server at Version 6.1 or later. Applications cannot use the business activity support if
you deploy them to a cluster that includes WebSphere Application ServerVersion 6.0.x servers.

Business activity scopes

The scope of a business activity is that of a main WebSphere Application Server unit of work: a global
transaction, an activity session, or local transaction containment (LTC). A business activity scope is not a
new unit of work (UOW); it is an attribute of an existing main UOW. Therefore, a one-to-one relationship
exists between a business activity scope and a UOW.

In a WS-BA deployment, the UOW must be container-managed:

v The UOW can be a container-managed transaction (CMT) enterprise bean that creates a global
transaction.

v The UOW can be a local transaction containment (LTC) where the container is responsible for initiating
and ending resource manager local transactions (RMLTs). That is, in the transactional deployment
descriptor attributes, the Local Transaction attribute Resolver must be set to ContainerAtBoundary. To
use WS-BA, you must not set the Resolver attribute to Application.

Any main UOW can have a business activity scope associated with it. If a component running under a
UOW that is associated with a business activity scope calls another component, that request propagates
the business activity scope; any work done by the new component is associated with the same business
activity scope as the calling component. The called component can create a new UOW, for example if an
enterprise bean has a Transaction setting of Requires new, or runs under the same UOW as the calling
component. If a new UOW is started then a new business activity scope is created and associated with
the new UOW. The newly created business activity scope is a child of the business activity scope
associated with the calling UOW. In the following diagram, EJB1a running under UOW1 calls two
components: EJB1b that also runs under UOW1, and EJB2 that creates a new UOW, UOW2. The
enterprise bean EJB1b, calls another enterprise bean, EJB3, which creates another new UOW, UOW3.
Because each new UOW is created by a calling component whose UOW already has an association with
business activity scope BAScope1, the newly created UOWs are associated with new inner business
activity scopes, BAScope2 and BAScope3.

136 Overview

Inner business activity scopes must complete before the outer business activity scope completes. Inner
business activity scopes, for example BAScope2, have an association with the outer business activity
scope, in this case BAScope1. Each business activity scope is directed to close if its associated UOW
completes successfully, or to compensate if its associated UOW fails. If BAScope2 completes successfully,
any active compensation handlers that are owned by BAScope2 are moved to BAScope1, and are
directed in the same way as the completion direction of BAScope1: either compensate or close. If
BAScope2 fails, the active compensation handlers are compensated automatically, and nothing is moved
to the outer BAScope1. When an inner business activity scope fails, as a result of its associated UOW
failing, an application server exception is thrown to the to calling application component, running in the
outer UOW.

For example, if the inner UOW fails it might throw a TransactionRolledBackException exception. If the
calling application can handle the exception, for example by trying the called component again or by
calling another component, then the calling UOW, and its associated business activity scope, can complete
successfully even though the inner business activity scope failed. If the application design requires the
calling UOW to fail, and for its associated business activity scope to be compensated, then the calling
application component must cause its UOW to fail, for example by allowing any system exception from the
UOW that failed to be handled by its container.

When the outer business activity scope completes, its success or failure determines the completion
direction (close or compensate) of any active compensation handlers that are owned by the outer business
activity scope, including those promoted by the successful completion of inner business activity scopes. If
the outer business activity scope completes successfully, it drives all active compensation handlers to
close. If the outer business activity scope fails, it drives all active compensation handlers to compensate.

This compensation behavior is summarized in the following table.

Chapter 8. Data access resources 137

Table 25. Compensation behavior for a single business activity scope. The table lists the possible combinations of
success and failure for the inner and outer business activity scopes, and the compensation behavior associated with
each combination.

Inner
business
activity scope

Outer
business
activity scope Compensation behavior

Succeeds Succeeds Any compensation handlers that are owned by the inner business activity scope wait for the
outer UOW to complete. When the outer UOW succeeds, the outer business activity scope
drives all compensation handlers to close.

Fails Succeeds Any active compensation handlers that are owned by the inner business activity scope are
compensated. An exception is thrown to the outer UOW; if this exception is caught, when the
outer UOW succeeds, the outer business activity scope drives all remaining active compensation
handlers to close.

Fails Fails Any active compensation handlers that are owned by the inner business activity scope are
compensated. An exception is thrown to the outer UOW; if this exception is not caught, the outer
business activity scope fails. When the outer business activity scope fails, either because of the
unhandled exception or for some other reason, all remaining active compensation handlers are
compensated.

Succeeds Fails Any compensation handlers that are owned by the inner business activity scope wait for the
outer UOW to complete. When the outer UOW fails, the outer business activity scope drives all
compensation handlers to compensate.

When a UOW with an associated business activity scope completes, the business activity scope always
completes in the same direction as the UOW that it is associated with. The only way that you can
influence the direction of the business activity scope is to influence the UOW that it is associated with,
which you can do by using the setCompensateOnly method of the business activity API.

A compensation handler that is registered within a transactional UOW might initially be inactive, depending
on the method invoked from the business activity API. Inactive handlers in this situation become active
when the UOW in which that handler is declared completes successfully. A compensation handler that is
registered outside a transactional UOW always becomes active immediately. For more information, see the
topic about the business activity API.

Each business activity scope in the diagram represents a business activity. For example, the outer
business activity running under BAScope1 can be a holiday booking scenario, with BAScope2 being a
flight booking activity and BAScope3 a hotel booking. If either the flight or hotel bookings fail, the overall
holiday booking by default also fails. Alternatively if, for example, the flight booking fails, you might want
your application to try booking a flight by using another component that represents a different airline. If the
overall holiday booking fails, the application can use compensation handlers to cancel any flights or hotels
that are already successfully booked.

Use of business activity scopes by application components

Application components do not use business activity scopes by default. You use the WebSphere
Application Server assembly tools to specify the use of a business activity scope and to identify any
compensation handler class for the component:

Default configuration
If a business activity context is present on a request received by a component with no business
activity scope configuration, the context is stored by the container but never used during the
method scope of the target component. A new business activity scope is not created. If the target
component invokes another component, the stored business activity context is propagated and can
be used by other compensating components.

Run enterprise bean methods under a business activity scope
Any business activity context present on the incoming request is received by the container and
made available to the target component. If a new UOW is created for the target method, for
example because the enterprise bean method has a Transaction setting of Requires new, the

138 Overview

received business activity scope becomes an outer business activity scope to a newly created
business activity. If the UOW is propagated from the calling component and used by the method,
then the received business activity scope is used by the method. If a business activity scope does
not exist on the invocation, a new business activity scope is created and used by the method.

To create a business activity scope when an enterprise bean is invoked, you must configure the enterprise
bean to run enterprise bean methods under a business activity scope. You must also configure the
deployment descriptors for the method being invoked, to specify the creation of a new UOW upon
invocation. For details, see the topic about creating an application that uses the WS-BA support.

JTA support
Java Transaction API (JTA) support provides application programming interfaces (APIs) in addition to the
UserTransaction interface that is defined in the JTA 1.1 specification.

These interfaces include the TransactionSynchronizationRegistry interface, which is defined in the JTA 1.1
specification, and the following API extensions:
v SynchronizationCallback interface
v ExtendedJTATransaction interface
v UOWSynchronizationRegistry interface
v UOWManager interface

The APIs provide the following functions:

v Access to global and local transaction identifiers associated with the thread.

The global identifier is based on the transaction identifier in the CosTransactions::PropagationContext:
object and the local identifier identifies the transaction uniquely in the local Java virtual machine (JVM).

v A transaction synchronization callback that any enterprise application component can use to register an
interest in transaction completion.

Advanced applications can use this callback to flush updates before transaction completion and clear up
state after transaction completion. Java EE (and related) specifications position this function typically as
the domain of the enterprise application containers.

Components such as persistence managers, resource adapters, enterprise beans, and web application
components can register with a JTA transaction.

The following information is an overview of the interfaces that the JTA support provides. For more detailed
information, see the generated API documentation.

SynchronizationCallback interface

An object implementing this interface is enlisted once through the ExtendedJTATransaction interface, and
receives notification of transaction completion.

Although an object implementing this interface can run on a Java platform for enterprise applications
server, there is no specific enterprise application component active when this object is called. So, the
object has limited direct access to any enterprise application resources. Specifically, the object has no
access to the java: namespace or to any container-mediated resource. Such an object can cache a
reference to an enterprise application component (for example, a stateless session bean) that it delegates
to. The object would then have all the usual access to enterprise application resources. For example, you
might use the object to acquire a Java Database Connectivity (JDBC) connection and flush updates to a
database during the beforeCompletion method.

ExtendedJTATransaction interface

This interface is a WebSphere programming model extension to the Java EE JTA support. An object
implementing this interface is bound, by enterprise application containers in WebSphere Application Server

Chapter 8. Data access resources 139

that support this interface, at java:comp/websphere/ExtendedJTATransaction. Access to this object, when
called from an Enterprise JavaBeans (EJB) container, is not restricted to component-managed
transactions.

An application uses a Java Naming and Directory Interface (JNDI) lookup of java:comp/websphere/
ExtendedJTATransaction to get an ExtendedJTATransaction object, which the application uses as shown in
the following example:
ExtendedJTATransaction exJTA = (ExtendedJTATransaction)ctx.lookup("
java:comp/websphere/ExtendedJTATransaction");
SynchronizationCallback sync = new SynchronizationCallback();
exJTA.registerSynchronizationCallback(sync);

The ExtendedJTATransaction object supports the registration of one or more application-provided
SynchronizationCallback objects. Depending on how the callback is registered, each registered callback is
called at one of the following points:

v At the end of every transaction that runs on the application server, whether the transaction is started
locally or imported

v At the end of the transaction for which the callback was registered

Note: In this release, the registerSynchronizationCallbackForCurrentTran method is deprecated. Use the
registerInterposedSynchronization method of the TransactionSynchronizationRegistry interface
instead.

TransactionSynchronizationRegistry interface

This interface is defined in the JTA 1.1 specification. System-level application components, such as
persistence managers, resource adapters, enterprise beans, and web application components, can use
this interface to register with a JTA transaction. Then, for example, the component can flush a cache when
a transaction completes.

To obtain the TransactionSynchronizationRegistry interface, use a JNDI lookup of java:comp/
TransactionSynchronizationRegistry.

Note: Use the registerInterposedSynchronization method to register a synchronization instance, rather
than the registerSynchronizationCallbackForCurrentTran method of the ExtendedJTATransaction
interface, which is deprecated in this release.

UOWSynchronizationRegistry interface

This interface provides the same functions as the TransactionSynchronizationRegistry interface, but
applies to all types of units of work (UOWs) that WebSphere Application Server supports:
v JTA transactions
v local transaction containments (LTCs)
v ActivitySession contexts

System-level application server components such as persistence managers, resource adapters, enterprise
beans, and web application components can use this interface to register with a JTA transaction. The
component can do the following:

v Register synchronization objects with special ordering semantics.

v Associate resource objects with the UOW.

v Get the context of the current UOW.

v Get the current UOW status.

v Mark the current UOW for rollback.

140 Overview

To obtain the UOWSynchronizationRegistry interface, use a JNDI lookup of java:comp/websphere/
UOWSynchronizationRegistry. This interface is available only in a server environment.

The following example registers an interposed synchronization with the current UOW:
// Retrieve an instance of the UOWSynchronizationRegistry interface from JNDI.
final InitialContext initialContext = new InitialContext();
final UOWSynchronizationRegistry uowSyncRegistry =
(UOWSynchronizationRegistry)initialContext.lookup("java:comp/websphere/UOWSynchronizationRegistry");

// Instantiate a class that implements the javax.transaction.Synchronization interface
final Synchronization sync = new SynchronizationImpl();

// Register the Synchronization object with the current UOW.
uowSynchronizationRegistry.registerInterposedSynchronization(sync);

UOWManager interface

The UOWManager interface is equivalent to the JTA TransactionManager interface, which defines the
methods that allow an application server to manage transaction boundaries. Applications can use the
UOWManager interface to manipulate UOW contexts in the product. The UOWManager interface applies
to all types of UOWs that WebSphere Application Server supports; that is, JTA transactions, local
transaction containments (LTCs), and ActivitySession contexts. Application code can run in a particular
type of UOW without needing to use an appropriately configured enterprise bean. Typically, the logic that
is performed in the scope of the UOW is encapsulated in an anonymous inner class. System-level
application server components such as persistence managers, resource adapters, enterprise beans, and
web application components can use this interface.

WebSphere Application Server does not provide a TransactionManager interface in the API or the system
programming interface (SPI). The UOWManager interface provides equivalent functions, but WebSphere
Application Server maintains control and integrity of the UOW contexts.

To obtain the UOWManager interface in a container-managed environment, use a JNDI lookup of
java:comp/websphere/UOWManager. To obtain the UOWManager interface outside a container-managed
environment, use the UOWManagerFactory class. This interface is available only in a server environment.

You can use the UOWManager interface to migrate a web application to use web components rather than
enterprise beans, but maintain control over the UOWs. For example, a web application currently uses the
UserTransaction interface to begin a global transaction, makes a call to a method on a session enterprise
bean that is configured as not supported to undertake some non-transactional work, and then completes
the global transaction. You can move the logic that is encapsulated in the session EJB method to the run
method of a UOWAction implementation. Then, you replace the code in the web component that calls the
session enterprise bean with a call to the runUnderUOW method of a UOWManager interface to request
that this logic is run in a local transaction. In this way, you maintain the same level of control over the
UOWs as you had with the original application.

The following example performs some transactional work in the scope of a new global transaction. The
transactional work is performed in an anonymous inner-class that implements the run method of the
UOWAction interface. Any checked exceptions that the run method creates do not affect the outcome of
the transaction.
// Retrieve an instance of the UOWManager interface from JNDI.
final InitialContext initialContext = new InitialContext();
final UOWManager uowManager = (UOWManager)initialContext.lookup("java:comp/websphere/UOWManager");

try
{
// Invoke the runUnderUOW method, indicating that the logic should be run in a global
// transaction, and that any existing global transaction should not be joined, that is,
// the work must be performed in the scope of a new global transaction.
uowManager.runUnderUOW(UOWSynchronizationRegistry.UOW_TYPE_GLOBAL_TRANSACTION, false, new UOWAction()
{
public void run() throws Exception
{

Chapter 8. Data access resources 141

// Perform transactional work here.
}

});
}

catch (UOWActionException uowae)
{
// Transactional work resulted in a checked exception being thrown.
}

catch (UOWException uowe)
{
// The completion of the UOW failed unexpectedly. Use the getCause method of the
// UOWException to retrieve the cause of the failure.
}

SCA transaction intents
Service Component Architecture (SCA) provides declarative mechanisms in the form of intents for
describing the transactional environment required by components.

This topic covers:

v “Using a global transaction”

v “Using local transaction containment” on page 144

v “Transaction intent default behavior” on page 145

v “Mapping of SCA intents on services to EJB or Spring transaction attributes” on page 145

v “Obtaining the transaction manager in Spring applications” on page 145

Using a global transaction

Components that use a synchronous interaction style can be part of a single, distributed ACID transaction
within which all transaction resources are coordinated to either atomically commit or roll back. This is
specified by using the managedTransaction.global intent in the requires attribute of the
<implementation.java> element as shown later in this section.
<component name="DataAccessComponent">

<implementation.java class="example.DataAccessImpl"
requires="managedTransaction.global"/>

</component>

For implementation.spring components, specify the transaction attribute in the Spring application context
file. For implementation.jee components, specify the transaction attribute in the Enterprise JavaBeans
(EJB) deployment descriptor.

It is possible to control whether a component's service runs under its client's global transaction by
specifying either the propagatesTransaction or suspendsTransaction intent on the component's <service>
element.

propagatesTransaction
The service runs under its client's global transaction. If the client is not running in a global
transaction or chose not to propagate its global transaction, the service runs in its own global
transaction.

suspendsTransaction
The service runs in its own global transaction separate from the client transaction.

Specify the propagatesTransaction or suspendsTransaction intent on the component's <service> element
only for services in implementation.java components. For implementation.spring components, specify
the transaction attribute in the Spring application context file. For implementation.jee components, specify
the transaction attribute in the EJB deployment descriptor.

142 Overview

It is also possible to control whether a component global transaction is propagated to a referenced service
by specifying either the propagatesTransaction or suspendsTransaction intent on the component
<reference> element.

propagatesTransaction
The component's global transaction is made available to the referenced service. The referenced
service might or may not use this transaction depending on how it is configured.

suspendsTransaction
The component's global transaction is not made available to the referenced service.

You can specify the propagatesTransaction or suspendsTransaction intent on the component's
<reference> element for references in all implementation types.

Transaction context is never propagated on @OneWay methods. The SCA run time ignores
propagatesTransaction for OneWay methods.

Further, the product does not support propagatesTransaction intent on the binding.atom or
binding.jsonrpc elements.

The following example shows the use of the managedTransaction.global, propagatesTransaction, and
suspendsTransaction intents. The DataUpdateComponent runs in its own global transaction, not in its client's
transaction, because suspendsTransaction is specified on its <service> element. Its global transaction is
propagated to the referenced service DataAccessComponent because propagatesTransaction is specified
on its <reference> element.
<component name="DataUpdateComponent">

<implementation.java class="example.DataUpdateImpl"
requires="managedTransaction.global"/>

<service name="DataUpdateService"
requires="suspendsTransaction"/>

<reference name="myDataAccess" target="DataAccessComponent"
requires="propagatesTransaction"/>

</component>

Propagating transactions over the web service binding requires the use of a WebSphere policy set that
contains the WS-Transaction policy type. You can set up this policy set in one of the following ways:

v You can import the WSTransaction policy set that is provided with the product.

v You can create your own policy set and include the WS-Transaction policy type.

The following example assumes the use of the WSTransaction policy set.
<composite name="WSDataUpdateComposite"
xmlns="http://www.osoa.org/xmlns/sca/1.0"
xmlns:ws="http://www.ibm.com/xmlns/prod/websphere/sca/1.0/2007/06">

<component name="WSDataUpdateComponent">
<implementation.java class="example.DataUpdateImpl"

requires="managedTransaction.global"/>
<service name="DataUpdateService"

requires="propagatesTransaction">
<binding.ws ws:wsPolicySet="WSTransaction"/>

</service>
<reference name="myDataBuddy" target="DataBuddyComponent"

requires="propagatesTransaction">
<binding.ws ws:wsPolicySet="WSTransaction"/>

</reference>
</component>

</composite>

Tip: Transaction propagating might not result in a managed connection. Use a qualifying Java EE module
for a managed connection and connection sharing.

Chapter 8. Data access resources 143

Using local transaction containment

Business logic might have to access transactional resource managers without the presence of a global
transaction. A component can be configured to run under local transaction containment (LTC). The SCA
runtime starts an LTC before dispatching a method on the component and completes the LTC at the end
of the method dispatch. The component's interactions with resource providers (such as databases) are
managed within resource manager local transactions (RMLTs). A resource manager local transaction
(RMLT) represents a unit of recovery on a single connection that is managed by the resource manager.

The local transaction containment policy is configured by using an intent. There are two choices:

managedTransaction.local
Use this intent when each interaction with a resource manager should be part of an extended local
transaction that is committed at the end of the method. The SCA runtime wraps interactions with
each resource manager in a resource manager local transaction (RMLT). The SCA runtime
commits each RMLT at the end of method dispatch, unless an unchecked exception occurs, in
which case the SCA runtime stops each RMLT. The component might not use resource manager
commit/rollback interfaces or set AutoCommit to true. If multiple resource managers are used, the
RMLTs are committed independently so it is possible for some to fail and some to succeed. If this
behavior is not what you want, use a global transaction.

noManagedTransaction
The SCA runtime does not wrap interactions with resource managers in a RMLT. The component
implementation manages the start and end of its own RMLTs or gets AutoCommit behavior (which
commits following each use of a resource) by default. The component must complete any RMLTs
prior to the end of the method dispatch otherwise the SCA runtime stops them.

The intent is specified by using the requires attribute on the <implementation.java> element. An example
is shown below.
<component name="DataAccessLocalComponent">

<implementation.java class="example.DataAccessImpl"
requires="managedTransaction.local"/>

</component>

A local transaction cannot be propagated from one component to another. It is an error to specify
propagatesTransaction on a component's <service> if the component uses the managedTransaction.local
or noManagedTransaction intent.

The SCA run time performs a rollback under the following circumstances:

v When managedTransaction.global is used, the SCA run time performs a rollback if the component
method that started the global transaction throws an unchecked exception. An unchecked exception is a
subclass of java.lang.RuntimeException or java.lang.Error. A checked exception does not force a
rollback.

v When managedTransaction.local is used, the SCA run time performs a rollback if the component
method throws an unchecked exception. An unchecked exception is a subclass of
java.lang.RuntimeException or java.lang.Error. A checked exception does not force a rollback.

v When noManagedTransaction is used, the SCA run time performs a rollback of any RMLT that has not
been committed by the component method, regardless of whether the method throws an exception or
not.

When managedTransaction.global or managedTransaction.local is used, the business logic can force a
rollback by using the UOWSynchronization interface.
com.ibm.websphere.uow.UOWSynchronizationRegistry uowSyncRegistry =

com.ibm.wsspi.uow.UOWManagerFactory.getUOWManager();
uowSyncRegistry.setRollbackOnly();

144 Overview

Transaction intent default behavior

If transactional intents are not specified, the default behavior is vendor-specific. If a transactional intent in
not specified for the implementation, the default is managedTransaction.global. If a transactional intent is
not specified for a service or reference, the default is suspendsTransaction. It is recommended to specify
the required intents rather than to rely on default behavior so that the application is portable.

Using @Requires annotation to specify transaction intents

You can also specify transaction intents in the implementation class by using the @Requires annotation.
The general form of the annotation is:
@Requires("{http://www.osoa.org/xmlns/sca/1.0}intent")

For example, you can use the following in the implementation class:
@Requires("{http://www.osoa.org/xmlns/sca/1.0}managedTransaction.global")

You can specify required intents on various elements, including the composite, component,
implementation, service and reference elements. An element inherits the required intents of its parent
element except when they conflict. For example, if a composite element requires
managedTranaction.global and a component element requires managedTransaction.local, then the
component uses managedTransaction.local.

You cannot use the @Requires annotation for implementation.spring components.

Mapping of SCA intents on services to EJB or Spring transaction attributes

The following table contains information from Section 5.3 of the SCA Java EE Integration specification and
lists the mapping of SCA intents on services to EJB or Spring transaction attributes.

Table 26. Mapping of EJB transaction attributes to SCA transaction implementation policies. See Section 5.3 of the
SCA Java EE Integration specification.

EJB transaction attribute
SCA Transaction Policy required
intents on services

SCA Transaction Policy required intents on
implementations

NOT_SUPPORTED suspendsTransaction

REQUIRED propagatesTransaction managedTransaction.global

SUPPORTS propagatesTransaction managedTransaction.global

REQUIRES_NEW suspendsTransaction managedTransaction.global

MANDATORY propagatesTransaction managedTransaction.global

NEVER suspendsTransaction

For MANDATORY and NEVER attributes, policy mapping might not be accurate. These attributes express
responsibilities of the EJB container as well as the EJB implementer rather then express a requirement on
the service consumer.

Obtaining the transaction manager in Spring applications

The product does not support local JNDI lookups in Spring applications that are referenced from SCA
components. Thus, you cannot use <tx:jta-transaction-manager/> in the Spring application context file
to obtain the WebSphere transaction manager.

To obtain the WebSphere transaction manager, add the following definition explicitly to the Spring
application-context.xml file:

Chapter 8. Data access resources 145

<bean id="WASTranMgr" class="com.ibm.wsspi.uow.UOWManagerFactory" factory-method="getUOWManager"/>
<bean id="transactionManager"

class="org.springframework.transaction.jta.WebSphereUowTransactionManager">
<property name="uowManager" ref="WASTranMgr"/>
<property name="autodetectUserTransaction" value="false"/>

</bean>

146 Overview

Chapter 9. Dynamic caching

This page provides a starting point for finding information about the dynamic cache service, which
improves performance by caching the output of servlets, commands, web services, and JavaServer Pages
(JSP) files.

Dynamic caching features include replication of cache entries, cache disk offload, Edge-Side Include
caching, web services, and external caching. Use external caching to control caches outside of the
application server.

Dynamic cache service eviction policies

Disk cache infrastructure enhancements
Several performance enhancements are available for the dynamic cache service.

The dynamic cache service supports persisting objects to disk (specified by a file system location) so that
objects that are evicted from the memory cache are not regenerated by the application server. Objects are
written to disk when they are evicted from memory using a Least Recently Used (LRU) eviction algorithm.
The objects in the memory cache may also be flushed to disk on normal server shutdown. Java objects
that need to be offloaded to the disk should be serializable.

The disk offload function includes the following functions:

v An internal disk cache format for faster deletions and support for new options to limit disk cache size

v The disk cache garbage collector, which evicts objects out of the cache when a configured high
threshold is reached

v Four new performance modes to tune your disk cache performance:

– High performance/memory usage mode - keeps all metadata in system memory and provides the
highest performance

– Balanced performance/memory usage mode - provides optimal balance of performance and memory
usage by keeping some metadata in system memory

– Custom performance/memory usage mode - allows explicit configuration of the memory usage and
customization of performance requirements

– Low performance/memory usage mode - stores most of the metadata on disk for users who are very
constrained on system memory

Limiting the disk cache. The dynamic cache service provides mechanisms to limit the use of the disk
cache by specifying the size of the disk cache in gigabytes, in addition to the maximum number of entries
that are persisted to the disk. The disk cache is considered full when either of these limits is reached and
forms the basis for eviction of objects from the disk. If the cache subsystem cannot offload any more data
to disk, due to either an out-of-disk space condition, insufficient space on disk, or an exception when
writing data to disk as a result of a possibly corrupt disk, the disk offload capability is disabled to prevent
data integrity problems. The event is logged and the disk cache subsystem is deleted. This prevents
serving corrupt data from the cache on a restart. If the option to persist cache data is turned on, some
information such as dependency and template information is flushed to disk on a server shutdown. If a
disk full situation occurs during this shutdown process, any partially-persisted and un-persisted
dependency or template data is removed from the cache. A side effect of this, to preserve integrity, is to
invalidate the cached objects that are associated with the dependency or template data.

Disk cache size in GB. The disk cache size in GB option pertains primarily to the object data (which
includes the cached object, its identifier, and metadata such as expiration time), template information and
dependency information that are written to disk. The cache subsystem allocates separate storage and
volumes (each of which can grow to 1 GB) for object data, templates and dependencies, as needed.

© Copyright IBM Corp. 2012 147

When the total number of volumes on disk exceeds the specified cache size, any subsequent data that is
written to disk is discarded until more space is made available by the disk cache garbage collector. To
preserve data integrity, any information that is related to discarded objects is invalidated as well. The
thresholds for garbage collection (described later in this document) and the disk cache full state are
associated with the space available for object data. It is also possible that in certain, rare scenarios, as
information is flushed to disk, critical system data needs to be written to disk, which may cause the total
file system space required to exceed up to 5% of the specified maximum limit. It is recommended that
there be at least 25% of actual file system space available for disk caching over and exceeds the specified
disk cache size in GB. It is also required that each cache instance has a unique disk offload location and it
is recommended that each offload location be on a dedicated disk partition. The cache file system employs
a logical file manager to manage storage allocation for cached objects, therefore the file system size or the
size of the files in the cache directory may not be an accurate gauge of the available space for the cache
subsystem. At the same time, because of the adjusted limit, the cache subsystem may encounter a cache
full state prior to the approaching the specified maximum limit as measured in allocated file system space.
The PMI counters provide a better picture of how full the cache is.

Disabling the creation of ExtensionRegistry cache files. Whenever a servant restarts, a new
ExtensionRegistry cache file is created in the dynacache directory. These files keep accumulating because
they are never deleted. If you do not need the data that is collected in these cache files, you can add the
disable.dynacache.offload property to the extension registry properties file, and set the value of this
property to true. Setting this property to true disables the creation of ExtensionRegistry cache files for that
server. The extension registry properties file is located at the server configuration level under each profile:
profile_home/config/cells/cell_name/nodes/node_name

/servers/server_name/extensionregistry.properties

Eviction policies using the disk cache garbage collector
The disk cache garbage collector is responsible for evicting objects out of the disk cache, based on a
specified eviction policy.

The garbage collector keeps a certain amount of space on disk available, which is governed by the
configuration attribute that limits the amount of disk space that is used for caching objects. To enable the
eviction policy, enable the Limit disk cache size in GB and/or Limit disk cache size in entries options in the
administrative console.

The garbage collector is triggered when the disk space reaches a specified high threshold (a percentage
of the Limit disk cache size in entries or in GB) and evicts objects, based on the eviction policy, from the
disk in the background until the disk cache size reaches a specified low threshold (a percentage of the
Limit disk cache size in entries or in GB). Eviction triggers when one or both of the high thresholds is
reached for Limit disk cache size in GB and Limit disk cache size in entries. The supported policies are:

v None: This is the default policy. Objects are evicted only when they expire, or if they are invalidated.

v Random: The expired objects are removed first. If the disk size still has not reached the low threshold
limit, objects are picked from the disk cache in random order and removed until the disk size reaches a
low threshold limit.

v Size: The expired objects are removed first. If the disk size still has not reached the low threshold limit,
then largest-sized objects are removed until the disk size reaches a low threshold limit.

Limit disk cache size in GB and High Threshold determines when to trigger eviction and when the disk
cache is considered near full. It is computed as a function of the user-specified limit. If the specified limit is
10 GB (3 GB is the minimum), the cache subsystem initially creates three files that can grow to 1 GB in
size for cache data, dependency ID information, and template information. Each time more space is
needed to contain cache data, dependency ID information, or template information, a new file is created.
Each of these files grow in 1 GB increments until the total number of files that are created is equal to disk
cache in size in GB (in this case ten). Although the initial size of the new file may be much smaller than 1
GB, the dynamic cache service always rounds up to the next GB.

148 Overview

Eviction triggers when the cache data size reaches the high threshold and continues until the cache data
size reaches the low threshold. Calculation of cache data size is dynamic. The following formula describes
how to calculate the actual cache data size limit:
cache data size limit = disk cache size (in GB) - number of dependency files per GB - number of template files

When the cache data size limit is defined, the trigger point is calculated as follows:
eviction trigger point = cache data size limit * high threshold
size of evicted entries = cache data size * (high threshold - low threshold)

Consider the following scenarios:

v Scenario 1

– Disk cache size in GB = 10 GB

– High threshold = 90%

– Low Threshold = 80%

Initially, there is one file for dependency ID and template ID.
cache data size limit = 10-(1+1) = 8 GB
eviction trigger point = 8 * 90% = 7.2 GB
size of evicted entries = 8 * (90% - 80%) = 0.8 GB

In the previous scenario, eviction starts when the data cache size reaches 7.2 GB and continues until
the cache size is 6.4 GB (7.2 - 0.8).

v Scenario 2

In scenario 1, if the dependency files grow to more than 1 GB, an additional dependency file generates.
The eviction trigger point launches dynamically as follows:
cache data size limit = 10 - (2+1) = 7GB
eviction trigger point = 7 * 90% = 6.3GB
size of evicted entries = 7 * (90% - 80%) = 0.7GB

In the previous scenario, eviction starts when the data cache size reaches 6.3 GB, and continues until
the cache size in 5.6 GB (6.3 - 0.7).

Disk cache eviction for limit disk cache size in entries. Consider the following scenario:

v Disk cache size in entries = 100000

v High threshold = 90%

v Low threshold = 80%
eviction trigger point = 100000 * 90% = 90000
number of entries evicted = 100000 * (90% - 80%) = 10000

In this scenario, eviction starts when the number of cache entries reaches 90000 and 10000 entries are
evicted from the cache.

Example: Caching web services
This topic includes examples of building a set of cache policies and SOAP messages for a web services
application.

The following is a example of building a set of cache policies for a simple web services application. The
application in this example stores stock quotes and has operations to read, update the price of, and buy a
given stock symbol.

Following are two SOAP message examples that the application can receive, with accompanying HTTP
Request headers.

Chapter 9. Dynamic caching 149

The first message sample contains a SOAP message for a GetQuote operation, requesting a quote for
IBM. This is a read-only operation that gets its data from the back end, and is a good candidate for
caching. In this example the SOAP message is cached and a timeout is placed on its entries to guarantee
the quotes it returns are current.

Message example 1
POST /soap/servlet/soaprouter
HTTP/1.1
Host: www.myhost.com
Content-Type: text/xml; charset=“utf-8”
SOAPAction: urn:stockquote-lookup
<SOAP-ENV:Envelope xmlns:SOAP-ENV=“http://schemas.xmlsoap.org/soap/envelope/”
SOAP-ENV:encodingStyle=“http://schemas.xmlsoap.org/soap/encoding/”>
<SOAP-ENV:Body>
<m:getQuote xmlns:m=“urn:stockquote”>
<symbol>IBM</symbol>
</m:getQuote>
</SOAP-ENV:Body>
</SOAP-ENV:Envelope>

The SOAPAction HTTP header in the request is defined in the SOAP specification and is used by HTTP
proxy servers to dispatch requests to particular HTTP servers. WebSphere Application Server dynamic
cache can use this header in its cache policies to build IDs without having to parse the SOAP message.

Message example 2 illustrates a SOAP message for a BuyQuote operation. While message 1 is
cacheable, this message is not, because it updates the back end database.

Message example 2
POST /soap/servlet/soaprouter
HTTP/1.1
Host: www.myhost.com
Content-Type: text/xml; charset=“utf-8”
SOAPAction: urn:stockquote-update
<SOAP-ENV:Envelope xmlns:SOAP-ENV=“http://schemas.xmlsoap.org/soap/envelope/”
SOAP-ENV:encodingStyle=“http://schemas.xmlsoap.org/soap/encoding/”>
<SOAP-ENV:Body>
<m:buyStock xmlns:m=“urn:stockquote”>
<symbol>IBM</symbol>
</m:buyStock>
</SOAP-ENV:Body>
</SOAP-ENV:Envelope>

The following graphic illustrates how to invoke methods with the SOAP messages. In web services terms,
especially Web Services Description Language (WSDL), a service is a collection of operations such as
getQuote and buyStock. A body element namespace (urn:stockquote in the example) defines a service,
and the name of the first body element indicates the operation.

150 Overview

The following is an example of WSDL for the getQuote operation:
<?xml version=“1.0”?>
<definitions name=“StockQuoteService-interface”
targetNamespace=“http://www.getquote.com/StockQuoteService-interface”
xmlns:tns=“http://www.getquote.com/StockQuoteService-interface”
xmlns:xsd=“http://www.w3.org/2001/XMLSchema”
xmlns=soap=“http://schemas.xmlsoap.org/wsdl/soap/”
xmlns=“http://schemas.xmlsoap.org/wsdl/”
<message name=“SymbolRequest”>
<part name=“return” type=“xsd:string”/>
</message>
<portType name=“StockQuoteService”>
<operation name=“getQuote”>
<input message=“tns:SymbolRequest”/>
<output message=“tns:QuoteResponse”/>
</operation>
</portType>
<binding name=“StockQuoteServiceBinding”
type=“tns:StockQuoteService”>
<soap:binding style=“rpc” transport=“http://schemas.xmlsoap.org/soap/http”/>
<operation name=“getQuote”>
<soap:operation soapAction=“urn:stockquote-lookup”/>
<input>
<soap:body use=“encoded” namespace=“urn:stockquote”
encodingStyle=“http://schemas.xmlsoap.org/soap/encoding/”/>
</input>
<output>
<soap:body use=“encoded” namespace=“urn:stockquotes”
encodingStyle=“http://schemas.xmlsoap.org/soap/encoding/”/>
</output>
</operation>
</binding>
</definition>

To build a set of cache policies for a web services application, configure WebSphere Application Server
dynamic cache to recognize cacheable service operation of the operation.

WebSphere Application Server inspects the HTTP request to determine whether or not an incoming
message can be cached based on the cache policies defined for an application. In this example, buyStock
and stock-update are not cached, but stockquote-lookup is cached. In the cachespec.xml file for this web
application, the cache policies need defining for these services so that the dynamic cache can handle both
SOAPAction and service operation.

WebSphere Application Server uses the operation and the message body in web services cache IDs, each
of which has a component associated with them. Therefore, each web services <cache-id> rule contains

Chapter 9. Dynamic caching 151

only two components. The first is for the operation. Because you can perform the stockquote-lookup
operation by either using a SOAPAction header or a service operation in the body, you must define two
different <cache-id> elements, one for each method. The second component is of type “body”, and defines
how WebSphere Application Server should incorporate the message body into the cache ID. You can use
a hash of the body, although it is legal to use the literal incoming message in the ID.

The incoming HTTP request is analyzed by WebSphere Application Server to determine which of the
<cache-id> rules match. Then, the rules are applied to form cache or invalidation IDs.

The following is sample code of a cachespec.xml file defining SOAPAction and servicesOperation rules:
<cache>
<cache-entry>
<class>webservice</class>
<name>/soap/servlet/soaprouter</name>
<sharing-policy>not-shared</sharing-policy>
<cache-id>
<component id=“” type=“SOAPAction”>
<value>urn:stockquote-lookup</value>
</component>
<component id=“Hash” type=“SOAPEnvelope”/>
<timeout>3600</timeout>
<priority>1<priority>
</component>
</cache-id>
<cache-id>
<component id=“” type=“serviceOperation”>
<value>urn:stockquote:getQuote</value>
</component>
<component id=“Hash” type=“SOAPEnvelope”/>
<timeout>3600</timeout>
<priority>1</priority>
</component>
</cache-id>

</cache-entry>
</cache>

Caching with Servlet 3.0
Dynamic cache provides servlet caching support for the Servlet 3.0 specification.

Be aware of the following API characteristics when using dynamic cache with Servlet 3.0:

v Dynamic cache wraps the ServletRequest and ServletResponse objects with its own cache application
wrapper objects that extend ServletRequestWrapper and ServletResponseWrapper objects.

v Dynamic cache is always the first asyncListener added to the ServletRequest.

v Users of startAsync (ServletRequest req, ServletResponse res) and public AsyncContext startAsync()
should flush the response before calling this method. Flushing the response ensures that any data that
is written to the wrapped cache response is not lost.

v Do not read from or write to the request and response objects that are passed into public void
addListener (asyncListener, req, res). Additional wrapping might have occurred since the given
AsyncListener was registered, and might be used to release any resources that are associated with
them.

v The do-not-consume property is not supported for Servlet 3.0 when using dynamic cache. The runtime
forces the parent servlet to consume subfragments and the do-not-consume property is ignored.

152 Overview

Chapter 10. EJB applications

This page provides a starting point for finding information about enterprise beans.

Based on the Enterprise JavaBeans (EJB) specification, enterprise beans are Java components that
typically implement the business logic of Java 2 Platform, Enterprise Edition (J2EE) applications as well as
access data.

Enterprise beans
An enterprise bean is a Java component that can be combined with other resources to create Java
applications. There are three types of enterprise beans, entity beans, session beans, and message-driven
beans.

All beans reside in Enterprise JavaBeans (EJB) containers, which provide an interface between the beans
and the application server on which they reside.

EJB 2.1 and earlier versions of the specification define entity beans as a means to store permanent data,
so they require connections to a form of persistent storage. This storage might be a database, an existing
legacy application, a file, or another type of persistent storage.

The EJB 3.0 specification deprecates EJB 1.1-style entity beans. The Java Persistence API (JPA)
specification is intended to replace the deprecated enterprise beans. While the JPA replacement is called
an entity class, it should not be confused with entity enterprise beans. A JPA entity is not an enterprise
bean and is not required to run in an EJB container.

Session beans typically contain the high-level and mid-level business logic for an application. Each method
on a session bean performs a particular high-level operation. For example, submitting an order or
transferring money between accounts. Session beans often invoke methods on entity beans in the course
of their business logic.

Session beans can be either stateful, stateless, or singleton. A stateful bean instance is intended for use
by a single client during its lifetime, where the client performs a series of method calls that are related to
each other in time for that client. One example is a shopping cart where the client adds items to the cart
over the course of an online shopping session. In contrast, a stateless bean instance is typically used by
many clients during its lifetime, so stateless beans are appropriate for business logic operations that can
be completed in the span of a single method invocation. Stateful beans should be used only where
absolutely necessary. Using stateless beans improves the ability to debug, maintain, and scale the
application.

The EJB 3.1 specification introduces singleton session beans. The EJB container initializes only one
instance of a singleton session bean, and that instance is shared by all clients. Because a single instance
is shared by all clients, singleton session beans have special life cycle and concurrency semantics.
Singleton session beans can have business local, business remote, and web service client views; they
cannot have EJB 2.1 local or remote client views.

The EJB 3.x specifications support stateless and stateful session beans. They follow a simple pattern such
as:

v Define the business interface.

v Define the class that implements it.

v Add metadata with annotations or with XML deployment descriptors.

The result of a simple EJB 3.x stateful session bean looks like the following:

© Copyright IBM Corp. 2012 153

package ejb3demo;

@Stateful
public class Cart3Bean implements ShoppingCart {

private ArrayList contents = new ArrayList();

public void addToCart (Object o) {
contents.add(o);

}

public Collection getContents() {
return contents;

}
}

EJB components can use annotations such as @EJB and other injectable @Resource references if the
module is an EJB 3.x module.

Web application clients and application clients can use deployment descriptor-defined EJB references. If
the reference is for an EJB 3.x session bean without a home interface, the reference should be defined
with a null <home> or <local-home> setting in the deployment descriptor.

Web application clients and application clients can also use @EJB injections for references to EJB session
beans within the same enterprise archive (EAR) file, but the binding must either use the AutoLink support
within the container or the annotation must use the name of the reference that is defined by the
deployment descriptor and bound when the application is installed. For more information about AutoLink,
see the topic, “EJB 3.x application bindings support”.

Message-driven beans enable asynchronous message servicing.

v The EJB container and a Java Message Service (JMS) provider work together to process messages.
When a message arrives from another application component through JMS, the EJB container forwards
it through an onMessage method call to a message-driven bean instance, which then processes the
message. In other respects, message-driven beans are similar to stateless session beans.

v The EJB container and a Java Connector Architecture (JCA) resource adapter work together to process
messages from an enterprise information system (EIS). When a message arrives from an EIS, the
resource adapter receives the message and forwards it to a message-driven bean, which then
processes the message. The message-driven bean is provided services such as transaction support by
the EJB container in the same way that other enterprise beans are provided service.

Beans that require data access use data sources, which are administrative resources that define pools of
connections to persistent storage mechanisms.

Java EE application resource declarations
You can configure your Java Enterprise Edition (Java EE) applications to declare dependencies on
external resources and configuration parameters. These resources might be injected into the application
code, or might be accessed by the application through the Java Naming and Directory Interface (JNDI).

Resource references allow an application to define and use logical names that you can bind to resources
when the application is deployed.

The following resource types can be declared by Java EE applications: simple environment entries,
Enterprise JavaBeans (EJB) references, web service references, resource manager connection factory
references, resource environment references, message destination references, persistence unit references,
and persistence context references.

154 Overview

Simple Environment Entries

You can define configuration parameters in your Java EE applications to customize business logic using
simple environment entries. As described in the Java EE 6 application, simple environment entry values
might be one of the following Java types: String, Character, Bye, Short, Integer, Long, Boolean, Double,
Float, Class, and any subclass of Enum.

Note: The Java type, Class, and any subclass of Enum are new in Java EE 6.

The application provider must declare all of the simple environment entries accessed from the application
code. The simple environment entries are declared using either annotations (javax.annotation.Resource) in
the application code, or using env-entry elements in the XML deployment descriptor.

In the following example from an application, annotations declare environment entries:
// Retry interval in milliseconds
@Resource long retryInterval = 3000;

In the previous example, the field default value is 3000. You can use an env-entry-value, which you define
in the XML deployment descriptor to change this value.

In the following example, an application declares a simple environment entry of type Class, and defines
the Class to be injected using an env-entry-value element in the XML deployment descriptor.
@Resource(name=TraceFormatter) Class<?> traceFormatter;

<env-entry>
<env-entry-name>TraceFormatter</env-entry-name>
<env-entry-value>com.sample.trace.StdOutTraceFormatter</env-entry-value>

</env-entry>

In the previous example, the field value is set to the com.sample.trace.StdOutTraceFormatter Class object.

In the following example, an application which declares a simple environment entry called validationMode
as a subclass of Enum in the com.sample.Order class, and configures the Enum value of CALLBACK to
inject using elements in the XML deployment descriptor.
<env-entry>

<env-entry-name>JPAValidation</env-entry-name>
<env-entry-type>javax.persistence.ValidationMode</env-entry-type>
<env-entry-value>CALLBACK</env-entry-value>
<injection-target>

<injection-target-class>com.sample.Order</injection-target-class>
<injection-target-name>validationMode</injection-target-name>

</injection-target>
</env-entry>

In the previous example, the validationMode field is set to the CALLBACK Enum value. Use the same
approach when you use annotations and XML code to declare simple environment entries; for example:
@Resource (name=JPAValidation)
javax.persistence.ValidationMode validationMode;

<env-entry>
<env-entry-name>JPAValidation</env-entry-name>
<env-entry-value>CALLBACK</env-entry-value>

</env-entry>

Note: The simple environment entry support of the Java type, Class, and any subclass of Enum is new
for Java EE 6. Previously, you might have developed your applications to declare these types as
application resources using the resource-env-ref element in the XML deployment descriptor or using

Chapter 10. EJB applications 155

the javax.annotation.Resource annotation. For applications that were using these Java types with
the javax.annotation.Resource annotation, the com.ibm.websphere.ejbcontainer.EE5Compatibility
system property must be enabled. Without the EE5Compatibility system property, the binding-name
element of the resource-env-ref element in the ibm-ejb-jar-bnd.xml file is ignored, since the data
type is now treated as a simple environment entry and not a resource environment reference.

Note: The <lookup-name> deployment descriptor element and the lookup annotation attribute are new in
Java EE 6. They specify the JNDI name of a referenced EJB or resource, relative to the
java:comp/env naming context. If either is used in a simple environment entry, you cannot use an
<env-entry-value> in the same <env-entry>.

Enterprise JavaBeans (EJB) References

As described in the Java EE 6 specification, you can develop your Java EE applications to declare
references to enterprise bean homes or enterprise bean instances using logical names called EJB
references.

When an application declares a reference to an EJB, the EJB that you reference will be resolved with one
of the following techniques.

v Specify an EJB binding in the ibm-ejb-jar-bnd.xml file or ibm-web-bnd.xml file

v Specify an <ejb-link> element in ejb-jar.xml file or web.xml file

v Specify a beanName attribute on the javax.ejb.EJB annotation

v Specify a <lookup-name> element in ejb-jar.xml file or web.xml file

v Specify a lookup attribute on the javax.ejb.EJB annotation

v Locate an enterprise bean that implements the interface declared as the type of the EJB reference
(referred to as AutoLink).

The EJB container attempts to resolve the EJB reference using the previous techniques in the order they
are listed.

Note: If <lookup-name> or lookup is used in an EJB reference, you cannot use <ejb-link> or beanName in
the same EJB reference.

Note: All of the following EJB reference examples assume the SampleCart bean has only a single
interface. If the SampleCart bean had multiple interfaces, then add the following suffix to the end of
the binding, <ejb-link> element, or beanName attribute : !com.sample.Cart.

In the following example, an application declares an EJB reference using an annotation, and provides a
binding for resolution.
@EJB(name="Cart")
Cart shoppingCart;

<ejb-ref name="Cart" binding-name="java:app/SampleEJB/SampleCart"/>

In the following example, an application declares an EJB reference using an annotation, and provides an
ejb-link element for resolution.
@EJB(name="Cart")
Cart shoppingCart;

<ejb-local-ref>
<ejb-ref-name>Cart</ejb-ref-name>
<ejb-link>SampleEJB/SampleCart</ejb-link>

</ejb-local-ref>

156 Overview

In the following example, an application declares an EJB reference using an annotation, and provides a
lookup attribute for resolution, from the source bean com.sample.SourceBean.
@EJB(name="Cart" lookup="java:app/SampleEJB/SampleCart")
Cart shoppingCart;

The application could alternatively declare the EJB reference using the <lookup-name> element in the
XML deployment descriptor, as in the following example.
<ejb-local-ref>

<ejb-ref-name>Cart</ejb-ref-name>
<lookup-name>java:app/SampleEJB/SampleCart</lookup-name>
<injection-target>
<injection-target-class>com.sample.SourceBean</injection-target-class>
<injection-target-name>ShoppingCart</injection-target-name>
</injection-target>

</ejb-local-ref>

In the following example, an application declares an EJB reference using an annotation, and provides a
beanName attribute for resolution.
@EJB(name="Cart" beanName="SampleEJB/SampleCart")
Cart shoppingCart;

Resource Environment References

As described in the Java EE 6 specification, you can develop applications to declare references to
administered objects that are associated with a resource, such as a Connecter CCI InteractionSpec
instance, or other object types managed by the EJB container, including javax.transaction.UserTransaction,
javax.ejb.EJBContext, javax.ejb.TimerServcie, org.omg.CORBA.ORB, javax.validation.Validator,
javax.validation.ValidatorFactory, or javax.enterprise.inject.spi.BeanManager.

When an application declares a reference to an administered object, you must provide a binding to the
administered object when the application is deployed. You can provide the binding using the administrative
console when you deploy the application, or you can add the binding to the WebSphere binding XML file,
ibm-ejb-jar-bnd.xml or ibm-web-bnd.xml.

In the following example, an application declares a resource environment reference, and provides a
binding to the resource:
@Resource(name="jms/ResponseQueue")
Queue responseQueue;

<session name="StatelessSampleBean">
<resource-env-ref name="jms/ResponseQueue" binding-name="Jetstream/jms/ResponseQueue"/>

</session>

The application could alternatively declare the resource environment reference using the lookup attribute,
and not require a binding, as in the following example:
@Resource(name="jms/ResponseQueue", lookup="Jetstream/jms/ResponseQueue")
Queue responseQueue;

<resource-env-ref>
<resource-env-ref-name>jms/ResponseBean</resource-env-ref-name>
<resource-env-ref-type>javax.jms.Queue</resource-env-ref-type>

</resource-env-ref>

When an application declares a reference to a container managed object type, a binding is not used. The
container provides the correct instance of the referenced object. In the following example, an application
declares a resource environment reference to a container-managed object:

Chapter 10. EJB applications 157

@Resource
javax.validation.Validator validator;

Resource References to Resource References

A new lookup field on the @Resource annotation is added with Java EE 6. You can now declare a
resource reference to a resource reference as shown in the following example:
@Resource(name="java:global/env/jdbc/ds1ref",

lookup="java:global/env/jdbc/ds1",
authenticationType=Resource.AuthenticationType.APPLICATION,
shareable=false)

DataSource ds1ref;
@Resource(name="java:global/env/jdbc/ds1refref",

lookup="java:global/env/jdbc/ds1ref",
authenticationType=Resource.AuthenticationType.APPLICATION,
shareable=true)

DataSource ds1refref;

The lookup uses the innermost nesting of references, which in this case is "java:global/env/jdbc/ds1ref".

Message-driven beans - automatic message retrieval
WebSphere Application Server supports the use of message-driven beans as asynchronous message
consumers.

The following figure shows an incoming message being passed automatically to the onMessage() method
of a message-driven bean that is deployed as a listener for the destination. The message-driven bean
processes the message, in this case passing the message on to a business logic bean for business
processing.

A client sends messages to the destination (or endpoint) for which the message-driven bean is deployed
as the message listener. When a message arrives at the destination, the EJB container invokes the
message-driven bean automatically without an application having to explicitly poll the destination. The
message-driven bean implements some business logic to process incoming messages on the destination.

Figure 18. Messaging with message-driven beans

158 Overview

It can be helpful to separate the business logic of your application from the communication interfaces,
such as the JMS request and response handling. To achieve this separation, you can design your
message-driven bean to delegate the business processing of incoming messages to another enterprise
bean. Separating message handling and business processing enables different users to access the same
business logic in different ways, either through incoming messages or, for example, from a WebSphere
J2EE client.

Message-driven beans can be configured as listeners on a Java EE Connector Architecture (JCA) 1.5 or
1.6 resource adapter or against a listener port. With a JCA 1.5 resource adapter, message-driven beans
can handle generic message types, not just JMS messages. This makes message-driven beans suitable
for handling generic requests inbound to WebSphere Application Server from enterprise information
systems through the resource adapter. In the JCA 1.5 specification, such message-driven beans are
commonly called message endpoints or just endpoints.

All message-driven beans must implement the MessageDrivenBean interface. For JMS messaging, a
message-driven bean must also implement the message listener interface, javax.jms.MessageListener.

Messages arriving at a destination being processed by a message-driven bean have no client credentials
associated with them; the messages are anonymous. Security depends on the role specified by the RunAs
Identity for the message-driven bean as an EJB component. For more information about EJB security, see
Securing enterprise bean applications.

For JMS messaging, message-driven beans can use a JMS provider that has a JCA 1.5 resource adapter,
for example the default messaging provider that is part of WebSphere Application Server or the
WebSphere MQ messaging provider. With a JCA 1.5 resource adapter, you deploy EJB 2.1
message-driven beans as JCA 1.5-compliant resources, to use a J2C activation specification. If the JMS
provider does not have a JCA 1.5 resource adapter, for example the V5 default messaging provider, you
must configure JMS message-driven beans against a listener port.

Message-driven beans, activation specifications, and listener ports
Guidelines, related to versions of WebSphere Application Server, to help you choose when to configure
your message-driven beans to work with listener ports rather than activation specifications.

You can configure the following resources for message-driven beans:

v Activation specifications for message-driven beans that comply with Java EE Connector Architecture
(JCA) Version 1.5.

v The message listener service, listener ports, and listeners for any message-driven beans that you want
to deploy against listener ports.

Activation specifications are the standardized way to manage and configure the relationship between an
MDB running in WebSphere Application Server and a destination in WebSphere MQ. They combine the
configuration of connectivity, the Java Message Service (JMS) destination and the runtime characteristics
of the MDB, within a single object.

Activation specifications supersede the use of listener ports, which became a stabilized feature in
WebSphere Application Server Version 7.0 (for more information, see “Stabilized features” on page 1312).
There are several advantages to using activation specifications over listener ports:

v Activation specifications are simple to configure, because they only require two objects: the activation
specification and a message destination. Listener ports require three objects: a connection factory, a
message destination, and the message listener port itself.

v Activation specifications are not limited to the server scope. They can be defined at any administrative
scope in WebSphere Application Server. Message listener ports must be configured at the server scope.
This means that each server in a node requires its own listener port. For example, if a node is made up

Chapter 10. EJB applications 159

of three servers, three separate listener ports must be configured. Activation specifications can be
configured at the node scope, so in the example only one activation specification would be needed.

v Activation specifications are part of the Java Platform, Enterprise Edition Connector Architecture 1.5 and
1.6 standards specification (JCA 1.5 and 1.6). Listener port support in WebSphere Application Server
makes use of the application server facilities interfaces defined in the JMS specification, but is not part
of any specification itself.

For WebSphere Application Server Version 7 and later, listener ports are stabilized. For more information,
read the article on stabilized features. You should plan to migrate your WebSphere MQ message-driven
bean deployment configurations from using listener ports to using activation specifications. However, you
should not begin this migration until you are sure the application does not have to work on application
servers earlier than WebSphere Application Server Version 7. For example, if you have an application
server cluster with some members at Version 6.1 and some at a later version, you should not migrate
applications on that cluster to use activation specifications until after you migrate all the application servers
in the cluster to the later version.

If you want to use message-driven beans with a messaging provider that does not have a JCA Version 1.5
or 1.6 resource adapter, you cannot use activation specifications and therefore you must configure your
beans against a listener port. There are also a few scenarios in which, although you could use activation
specifications, you might still choose to use listener ports. For example, for compatability with existing
message-driven bean applications. Here are some guidelines, related to versions of WebSphere
Application Server, to help you choose when to use listener ports rather than activation specifications:

v WebSphere Application Server Version 4 does not support message-driven beans, so listener ports and
activation specifications are not applicable. WebSphere Application Server Version 4 does support
message beans, but these are not message-driven beans.

v WebSphere Application Server Version 5 supports EJB 2.0 (JMS only) message-driven beans that are
deployed using listener ports. This deployment technology is sometimes called application server facility
(ASF).

v WebSphere Application Server Version 6 continues to support message-driven beans that are deployed
to use listener ports, and also supports JCA, which you can use to deploy message-driven beans that
use activation specifications. This gives you the following options for deploying message-driven beans
on WebSphere Application Server Version 6:

– You must deploy default messaging (service integration bus) message-driven beans to use activation
specifications.

– You must deploy WebSphere MQ message-driven beans to use listener ports.

– You can deploy third-party messaging message-driven beans to use either listener ports or activation
specifications, depending on the facilities available from your third-party messaging provider.

v WebSphere Application Server Version 7.0 or later continues to support the same options for
message-driven bean deployment that WebSphere Application Server Version 6 supports, and adds a
new option for WebSphere MQ message-driven beans. This gives you the following options for
deploying message-driven beans on Version 7.0 or later:

– You must deploy default messaging (service integration bus) message-driven beans to use activation
specifications.

– You can deploy new and existing WebSphere MQ message-driven beans to use listener ports (as on
WebSphere Application Server Version 6) or to use activation specifications.

– You can deploy third-party messaging message-driven beans to use either listener ports or activation
specifications, depending on the facilities available from your third-party messaging provider.

To assist in migrating listener ports to activation specifications, the WebSphere Application Server
administrative console provides a Convert listener port to activation specification wizard on the
Message listener port collection panel. This allows you to convert existing listener ports into activation

160 Overview

specifications. However, this function only creates a new activation specification with the same
configuration used by the listener port. It does not modify application deployments to use the newly
created activation specification.

Message processing in ASF mode and non-ASF mode
Application Server Facilities (ASF) mode is the default method by which the message listener service in
WebSphere Application Server processes messages. This topic explains how WebSphere Application
Server processes messages in ASF mode and how it processes messages when ASF mode is turned off.

For WebSphere Application Server Version 7 and later, listener ports are stabilized. For more information,
read the article on stabilized features. You should plan to migrate your WebSphere MQ message-driven
bean deployment configurations from using listener ports to using activation specifications. However, you
should not begin this migration until you are sure the application does not have to work on application
servers earlier than WebSphere Application Server Version 7. For example, if you have an application
server cluster with some members at Version 6.1 and some at a later version, you should not migrate
applications on that cluster to use activation specifications until after you migrate all the application servers
in the cluster to the later version.

Main features of ASF mode

By default, message-driven beans (MDBs) that are deployed on WebSphere Application Server for use
with listener ports, use ASF mode to monitor JMS destinations and to process messages.

In ASF mode, a thread is allocated for work when a message is detected at the destination for it to
process. The number of threads that can be active concurrently is dictated by the value specified for the
Maximum Sessions property for the listener port.

In client connection (socket attach) mode, each active thread is an individual physical network connection.
You should keep this in mind when you are deciding whether to use ASF or non-ASF mode in your
configuration. If you are using WebSphere MQ Version 7.x as your messaging provider, it is possible to
have up to ten threads sharing a single physical network connection.

If WebSphere MQ is your messaging provider, there are several configurations you can use in ASF mode.
With the following configurations each thread uses a separate physical network connection:

v A WebSphere MQ Version 6.0 queue manager.

v A WebSphere MQ Version 7.x queue manager, using a connection factory that has the Provider
version property set to 6.

v A WebSphere MQ Version 7.x queue manager, using a connection factory that has the Provider
version property set to 7 or unspecified, connecting over a WebSphere MQ channel that has the
SHARECNV (sharing conversations) parameter set to 0.

With the following configuration, threads share a user-defined number of physical network connections:

v A WebSphere MQ Version 7.x queue manager, using a connection factory that has the Provider
version property set to 7 or unspecified, connecting over a WebSphere MQ channel that has the
SHARECNV (sharing conversations) parameter set to 1 or higher. In this case each thread represents an
individual connection to a queue manager. However, each thread does not have its own physical
network connection, Instead, the threads share the number of network connections specified in the
SHARECNV (sharing conversations) parameter.

Chapter 10. EJB applications 161

Main features of non-ASF mode

In non-ASF mode threads are active from the moment that the listener port is turned on. The number of
active threads is dictated by the value specified for the Maximum Sessions property on the listener port. The
number of threads specified in Maximum Sessions are active, regardless of the number of messages that
are available to be processed.

In non-ASF mode, when a listener port browses for messages at the destination, it will take the message
that is first in the queue at the destination for processing. This means that messages are processed close
to the order in which they arrive at the destination.

In client connection (socket attach) mode, each active thread is an individual physical network connection.
You should keep this in mind when you are deciding whether to use ASF or non-ASF mode in your
configuration. If you are using WebSphere MQ Version 7.x as your messaging provider, it is possible to
have up to ten threads sharing a single physical network connection.

If WebSphere MQ is your messaging provider, there are several configurations you can use in non-ASF
mode. With the following configurations each thread uses a separate physical network connection:

v A WebSphere MQ Version 6.0 queue manager.

v A WebSphere MQ Version 7.x queue manager, using a connection factory that has the Provider
version property set to 6.

v A WebSphere MQ Version 7.x queue manager, using a connection factory that has the Provider
version property set to 7 or unspecified, connecting over a WebSphere MQ channel that has the
SHARECNV (sharing conversations) parameter set to 0.

With the following configuration, threads share a user-defined number of physical network connections:

v A WebSphere MQ Version 7.x queue manager, using a connection factory that has the Provider
version property set to 7 or unspecified, connecting over a WebSphere MQ channel that has the
SHARECNV (sharing conversations) parameter set to 1 or higher. In this case each thread represents an
individual connection to a queue manager. However, each thread does not have its own physical
network connection. Instead, the threads share the number of network connections specified in the
SHARECNV (sharing conversations) parameter.

Note: Non-ASF mode cannot be selected on z/OS systems.

How messages are processed in ASF mode
In ASF mode, server sessions and threads are only allocated for work when a message that is suitable for
the message-driven bean (MDB) is detected. The number of threads that an MDB can process
concurrently is determined by the value of the Maximum Sessions property for the listener port.

For WebSphere Application Server Version 7 and later, listener ports are stabilized. For more information,
read the article on stabilized features. You should plan to migrate your WebSphere MQ message-driven
bean deployment configurations from using listener ports to using activation specifications. However, you
should not begin this migration until you are sure the application does not have to work on application
servers earlier than WebSphere Application Server Version 7. For example, if you have an application
server cluster with some members at Version 6.1 and some at a later version, you should not migrate
applications on that cluster to use activation specifications until after you migrate all the application servers
in the cluster to the later version.

The following diagram shows how messaging takes place between WebSphere Application Server and
WebSphere MQ when the message listener service is operating in ASF mode.

Figure 19. Message processing in ASF mode on distributed and IBM i systems

162 Overview

As shown in the diagram, when the message listener service is operating in ASF mode, messages are
processed in the following way:

1. When the listener port is started, it opens a connection to the WebSphere MQ queue manager and
creates an internal queue agent.

2. The queue agent listens to the JMS destination for messages.

3. The queue agent detects a message.

4. The queue agent checks whether the message is suitable for the MDB that is using the listener port.

5. If the message is suitable for the MDB, the listener port allocates a thread from the message listener
service thread pool, and allocates a server session from the application server's server session pool.
If this is the first time the server session has been used since the listener port has been started, it
opens a connection to the JMS provider. The allocated server session runs on the allocated thread.

6. The queue agent passes the ID of the message to the server session. It then starts listening for
messages again.

7. The server session uses the message ID to retrieve the message from the destination.

8. The server session processes the message by calling the onMessage() method of the MDB.

9. When the message has been processed, the server session exits and returns to the application
server session pool. The connection that the server session opened to the JMS provider remains
open so that the server session does not need to re-establish the connection the next time it is used.

10. The thread exits and returns to the message listener service thread pool.

The number of threads that an MDB can process concurrently is determined by the value of the Maximum
Sessions property for the listener port. If you set Maximum Sessions to the default value of 1, this means
that the MDB can only process one message at a time. Therefore, if the queue agent finds a second
message before the first message has finished being processed, the queue agent blocks the second
message until processing of the first message is complete and the server session has become available.

If you want to process more than one message concurrently, you can do this in ASF mode by setting
Maximum Sessions to a value higher than 1. For example, if you set Maximum Sessions to 2, messages are
processed in the following way:

1. The queue agent detects the first message and allocates a thread and a server session as in the first
example. The message is processed using the onMessage() method of the MDB.

2. Whilst the first message is processing, the queue agent starts listening for messages again.

3. The queue agent detects the second message and allocates a second thread and a second server
session. The message is processed using the onMessage() method of the MDB.

4. When the first message is processed, the first server session exits and returns to the server session
pool. The first thread exits and returns to the thread pool.

5. When the second message is processed, the second server session exits and returns to the server
session pool. The second thread exits and returns to the thread pool.

How messages are processed in non-ASF mode
In non-ASF mode threads are active from the moment that the listener port is started. The number of
active threads is dictated by the value specified for Maximum Sessions. The number of threads specified in
Maximum Sessions are active, regardless of the number of messages that are available to be processed.
Each active thread is an individual physical network connection.

If you are using WebSphere MQ Version 7.0 or later as your messaging provider, it is possible to have up
to ten threads sharing a single physical network connection.

For WebSphere Application Server Version 7 and later, listener ports are stabilized. For more information,
read the article on stabilized features. You should plan to migrate your WebSphere MQ message-driven
bean deployment configurations from using listener ports to using activation specifications. However, you
should not begin this migration until you are sure the application does not have to work on application

Chapter 10. EJB applications 163

servers earlier than WebSphere Application Server Version 7. For example, if you have an application
server cluster with some members at Version 6.1 and some at a later version, you should not migrate
applications on that cluster to use activation specifications until after you migrate all the application servers
in the cluster to the later version.

Message processing in non-ASF mode

You activate non-ASF mode by specifying a non-zero value for the NON.ASF.RECEIVE.TIMEOUT message
listener service custom property. NON.ASF.RECEIVE.TIMEOUT acts as a switch that turns off ASF mode, and
also as a timeout value for the receive() method.

Note: The following message listener service custom properties do not work in non-ASF mode:

v SERVER.SESSION.POOL.REAP

v SERVER.SESSION.POOL.UNUSED.TIMEOUT

v SERVER.SESSION.POOL.UNUSED.TIMEOUT.Ipaname

The following diagram shows how message processing takes place between WebSphere Application
Server and WebSphere MQ in non-ASF mode:

As shown in the diagram, when the message listener service is operating in non-ASF mode, messages
are processed in the following way:

1. When the listener port is started, it gets one thread from the message listener service thread pool.

2. The listener port opens a connection to the WebSphere MQ queue manager on the thread and creates
a JMS message consumer. The message consumer listens to the JMS destination which the listener
port is configured to listen to.

3. The listener port creates a transaction to manage the message processing.

4. The thread calls the receive() method on the message consumer to listen for messages at the
destination. If the receive() method does not detect a message in the time specified for
NON.ASF.RECEIVE.TIMEOUT, the application server rolls back the active transaction and starts a new one.
The thread then starts calling the receive() method again.

5. When the message consumer detects a message it checks whether the message is suitable for the
MDB that is using the listener port.

6. If the message is suitable, the receive() method takes it off the destination and sends it to the thread.

7. The thread invokes the onMessage() method of the MDB on the message consumer, and the message
is processed.

8. If the message finishes processing successfully, the transaction commits. If the message does not
process successfully, the transaction rolls back.

9. A new transaction is started and the message consumer calls the receive() method to listen for new
messages.

The number of threads that an MDB can process concurrently is determined by the value of the Maximum
Sessions property for the listener port. If you set Maximum Sessions to the default value of 1, this means
that the MDB can only process one message at a time. If you want to process more than one message
concurrently, you can do this in ASF mode by setting Maximum Sessions to a value higher than 1. For
example, if you set Maximum Sessions to 2, messages are processed in the following way:

1. When the listener port is started, it gets two threads from the message listener service thread pool.

2. The listener port creates a message consumer and a transaction on each thread. The message
consumers listen to the destination which the listener port is configured to listen to.

Figure 20. Message processing in non-ASF mode

164 Overview

3. Both message consumers call the receive() method to listen for messages on the destination. The
consumers compete to get messages from the destination.

4. When one of the consumers successfully retrieves the message, it processes it by calling the
onMessage() method of the MDB. The other message consumer keeps on calling the receive()
method to listen for messages on the destination.

How to avoid unwanted transaction timeouts

If your messaging system is running in non-ASF mode, to avoid unwanted transaction timeouts, you must
allow a sufficient amount of time for processing to be completed before the total transaction lifetime
timeout is reached. Therefore, you must make sure that the value that you specify for the
NON.ASF.RECEIVE.TIMEOUT message listener service custom property is smaller than the value that you
specify for the Total transaction lifetime timeout transaction service property, and also that the
difference between the values of the two properties is greater than the amount of time that the
onMessage() method of the message-driven bean (MDB) takes to process the message.

As the following example shows, if these properties are not correctly configured, transactions can time out
before they are completed. This is because the thread begins calling the receive() method as soon as the
transaction is created. In the following example, NON.ASF.RECEIVE.TIMEOUT is set to 110000 milliseconds
(110 seconds), Total transaction lifetime timeout is set to 120 seconds and the onMessage () method
of the MDB takes 15 seconds to process a message. The example supposes that a message does not
appear at the destination until the receive() method has almost timed out:

1. The listener port starts. It allocates a thread from the thread pool and creates a transaction and a
message consumer on the thread.

2. The thread calls the receive() method to listen for messages.

3. After 110 seconds a message appears at the destination.

4. The thread removes the message from the destination and calls the onMessage() method of the MDB
to begin processing the message.

5. 10 seconds later, the transaction timeout is reached. The application server marks the transaction for
rollback.

6. 5 seconds later, the onMessage() method finishes processing the message and tries to commit the
transaction.

7. The total amount of time that has elapsed since the transaction was started is 125 seconds (110
seconds waiting for a message, plus 15 seconds to process the message). As this is longer than the
transaction timeout, the application server prevents the transaction from being committed, and it is
rolled back.

For further information about how to configure the NON.ASF.RECEIVE.TIMEOUT and Total transaction
lifetime timeout properties to avoid unwanted transaction time outs, see the related tasks.

Message-driven beans - JCA components
There are several administrative components that you configure for message-driven beans as listeners on
a Java EE Connector Architecture (JCA) 1.5 resource adapter.

Components for a JCA resource adapter

When a resource adapter is installed, it provides definitions and classes for administered objects such as
activation specifications. The administrator creates and configures activation specifications with Java
Naming and Directory Interface (JNDI) names that are then available for applications to use.

The JCA resource adapter uses an activation specification to configure a particular endpoint. Each
application that configures one or more endpoints must specify the resource adapter that sends messages

Chapter 10. EJB applications 165

to the endpoint. The application uses the activation specification to provide configuration properties for the
processing of inbound messages.

JMS components used with a JCA messaging provider

Message-driven beans that implement the javax.jms.MessageListener interface can be used with JMS
messaging.

An application that uses JMS messaging needs access at runtime to configured objects such as
connection factories and destinations:

v When the JMS provider is the default JMS provider or the WebSphere MQ messaging provider, the
administrator configures these objects for the JMS provider. For example, to configure a JMS activation
specification for the WebSphere MQ messaging provider, in the WebSphere Application Server
administrative console navigate to Resources > JMS->Activation specifications.

v Otherwise the administrator configures these objects for the JMS resource adapter, which connects the
application to a JMS provider, by navigating to Resources > Resource Adapters.

If the application contains one or more message-driven beans, the administrator must configure either a
JMS activation specification or a message listener port. For JCA-compliant messaging providers, the
administrator usually configures an activation specification. But for the WebSphere MQ messaging provider
there is a choice; the administrator can configure an activation specification or, for compatibility with
previous versions of WebSphere Application Server, the administrator can configure a message listener
port.

The JMS activation specification provides the deployer with information about the configuration properties
of a message-driven bean related to the processing of the inbound messages. For example, a JMS
activation specification specifies the name of the service integration bus to connect to, information about
the message acknowledgement modes, message selectors, destination types, and whether durable
subscriptions are shared across connections with members of a server cluster.

The activation specification identifies a JMS destination by specifying its JNDI name. The message-driven
bean acts as a listener on a specific JMS destination.

The JMS destination refers to a service integration bus destination (or WebSphere MQ destination) that
the administrator must also configure. For more information about JMS resources and service integration,
see “Default messaging” on page 378.

J2C activation specification configuration and use
Configure J2C activation specifications, and use them in the deployment of message-driven beans for JCA
1.5 resources.

J2C activation specifications are part of the configuration of inbound messaging support that can be part of
a JCA 1.5 resource adapter. Each JCA 1.5 resource adapter that supports inbound messaging defines one
or more types of message listener in its deployment descriptor (messagelistener in the ra.xml). The
message listener is the interface that the resource adapter uses to communicate inbound messages to the
message endpoint. A message-driven bean (MDB) is a message endpoint and implements one of the
message listener interfaces provided by the resource adapter. By allowing multiple types of message
listener, a resource adapter can support a variety of different protocols. For example, the interface
javax.jms.MessageListener, is a type of message listener that supports JMS messaging. For each type of
message listener that a resource adapter implements, the resource adapter defines an associated
activation specification (activationspec in the ra.xml). The activation specification is used to set
configuration properties for a particular use of the inbound support for the receiving endpoint.

When an application containing a message-driven bean is deployed, the deployer must select a resource
adapter that supports the same type of message listener that the message-driven bean implements. As

166 Overview

part of the message-driven bean deployment, the deployer needs to specify the properties to set on the
J2C activation specification. Later, during application startup, a J2C activation specification instance is
created, and these properties are set and used to activate the endpoint (that is, to configure the resource
adapter inbound support for the specific message-driven bean).

Applications with message-driven beans can also specify all, some, or none of the configuration properties
needed by the ActivationSpec class, to override those defined by the resource adapter-scoped definition.
These properties, specified as activation-config properties in the deployment descriptor for the application,
are configured when the application is assembled. To change any of these properties requires redeploying
the application. These properties are unique to this applications use and are not shared with other
message-driven beans. Any properties defined in the application deployment descriptor take precedence
over those defined by the resource adapter-scoped definition. This allows application developers to choose
the best defaults for their applications.

Message-driven beans - transaction support
Message-driven beans can handle messages on destinations (or endpoints) within the scope of a
transaction.

Transaction handling when using the Message Listener Service with WebSphere
MQ JMS

There are three possible cases, based on the message-driven bean deployment descriptor setting you
choose: container-managed transaction (required), container-managed transaction (not supported), and
bean-managed transaction.

In the message-driven bean deployment descriptor settings, you can choose whether the message-driven
bean manages its own transactions (bean-managed transaction), or whether a container manages
transactions on behalf of the message-driven bean (container-managed transaction). If you choose
container-managed transactions, in the deployment descriptor notebook, you can select a container
transaction type for each method of the bean to determine whether container transactions are required or
not supported. The default container transaction type is required.

Container-managed transaction (required)

In this case, the application server starts a global transaction before it reads any incoming
message from the destination, and before the onMessage() method of the message-driven bean is
invoked by the application server. This means that other EJBs that are invoked in turn by the
message, and interactions with resources such as databases can all be scoped inside this single
global transaction, within which the incoming message was obtained.

If this application flow completes successfully, the global transaction is committed. If the flow does
not complete successfully, (if the transaction is marked for rollback or if a runtime exception
occurs), the transaction is rolled back, and the incoming message is rolled back onto the
message-driven bean destination.

Container-managed transaction (not supported)

In this case there is no global transaction, but the JMS provider can still deliver a message from a
message-driven bean destination to the application server in a unit of work. You can consider this
as a local transaction, because it does not involve other resources in its transactional scope.

The application server acknowledges message delivery on successful completion of the
onMessage() dispatch of the message-driven bean (using the acknowledgement mode specified by
the assembler of the message-driven bean).

However, the application server does not perform an acknowledge, if an unchecked runtime
exception is thrown from the onMessage() method. So, does the message roll back onto the
message-driven bean destination (or is it acknowledged and deleted)?

Chapter 10. EJB applications 167

The answer depends on whether a syncpoint is used by your JMS provider and can vary
depending on the operating platform (in particular the z/OS operating platform can impart different
behavior here).

If your JMS provider establishes a syncpoint around the message-driven bean message
consumption in this container-managed transaction (not supported) case, the message is rolled
back onto the destination after an unchecked exception.

If a syncpoint is not used, then the message is deleted from the destination after an unchecked
exception.

For related information, see the technote “MDB behavior is different on z/OS than on distributed
when getting nonpersistent messages within syncpoint” at http://www.ibm.com/support/
docview.wss?uid=swg21231549.

Bean-managed transaction

In this case, the action is similar to the container-managed transaction (not supported) case. Even
though there might be a user transaction in this case, any user transaction started within the
onMessage dispatch of the message-driven bean does not include consumption of the message
from the message-driven bean destination within the transaction scope. To do this, use the
container-managed transaction (required) scenario.

Message redelivery

In each of the previous three cases, a message that is rolled back onto the message-driven bean
destination is eventually re-dispatched. If the original rollback was due to a temporary system problem, you
would expect the re-dispatch of the message-driven bean with this message to succeed on re-dispatch. If,
however, the rollback was due to a specific message-related problem, the message would repeatedly be
rolled back and re-dispatched. This is known as a poison message scenario.

If your messaging system uses listener ports, the application server handles this scenario, by tracking the
frequency with which a specific message is dispatched, and by stopping the associated listener port after a
specified number of attempted re-deliveries of that message have occurred.

If your messaging system uses listener ports, you can avoid a poison message scenario by configuring the
following property:

Maximum Retries
The Maximum Retries parameter specifies the number of times that the listener tries to deliver a
specific message to a message-driven bean instance before the listener is stopped.

If this parameter is set to 0 the listener port will stop after a single failure of a message to be
delivered successfully.

For more information about this property, see Listener port settings.

If your messaging system uses activation specifications, the poison message scenario is handled in a
slightly different way. Whereas listener ports track the number of times a specific message has failed and
been re-delivered, activation specifications count the number of sequential message delivery failures.

If your messaging system uses the default messaging provider (service integration), you must configure
the following properties on your activation specification to avoid a poison message scenario:

Automatically stop endpoints on repeated message failure
You must make sure that this option is selected.

This property suspends message delivery to the endpoint when the Sequential failed message
threshold is reached.

168 Overview

http://www.ibm.com/support/docview.wss?uid=swg21231549
http://www.ibm.com/support/docview.wss?uid=swg21231549

Sequential failed message threshold
This parameter determines how many message deliveries can fail before message delivery is
suspended.

To enable this parameter you must have the Automatically stop endpoints on repeated message
failure option selected.

Delay between failing message retries
This parameter specifies how much time must elapse before a message which has failed to be
delivered successfully, is re-delivered.

If you specify 0 for this parameter there will be no delay before a message is re-delivered.

To enable this parameter you must have the Automatically stop endpoints on repeated message
failure option selected.

For more information on these properties, see JMS activation specification [Settings].

If your messaging system uses the WebSphere MQ messaging provider, you must configure the following
properties on your activation specification to avoid a poison message scenario:

Stop endpoint if message delivery fails
You must make sure that this option is selected.

This property suspends message delivery to the endpoint when the Number of sequential
delivery failures before suspending endpoint is reached.

Number of sequential delivery failures before suspending endpoint
This parameter determines how many message deliveries can fail before message delivery is
suspended.

To enable this parameter you must have the Stop endpoint if message delivery fails option
selected.

For more information on these properties, see WebSphere MQ messaging provider activation specification
advanced properties

As an alternative to relying on your application server to stop the listener port or activation specification if a
poison message scenario occurs, you can configure WebSphere MQ to resolve the problem. In
WebSphere MQ specify a backout queue (BOQUEUE), and a backout threshold value (BOTHRESH). If you do
this, WebSphere MQ handles the poison message. For more information about handling poison messages,
see the WebSphere MQ Using Java section of the WebSphere MQ library.

Message-driven beans - listener port components
The WebSphere Application Server support for message-driven beans deployed against listener ports is
based on JMS message listeners and the message listener service, and builds on the application server
facility (ASF) support in the JMS provider.

Note: From WebSphere Application Server Version 7, listener ports are stabilized. For more information,
read the article on stabilized features. For information about the facilities available to aid migration
of configuration information from a listener port to an activation specification for use with the
WebSphere MQ messaging provider, refer to related tasks.

The main components of WebSphere Application Server support for message-driven beans are shown in
the following figure and described after the figure:

Chapter 10. EJB applications 169

http://www.ibm.com/software/integration/wmq/library/

The message listener service is an extension to the JMS functions of the JMS provider and provides a
listener manager, which controls and monitors one or more JMS listeners. Each listener monitors either a
JMS queue destination (for point-to-point messaging) or a JMS topic destination (for publish/subscribe
messaging).

A connection factory is used to create connections with the JMS provider for a specific JMS queue or topic
destination. Each connection factory encapsulates the configuration parameters needed to create a
connection to a JMS destination.

A listener port defines the association between a connection factory, a destination, and a deployed
message-driven bean. Listener ports are used to simplify the administration of the associations between
these resources.

When you deploy a message-driven bean, you associate the bean with a listener port. When a message
arrives on the destination, the listener passes the message to a new instance of a message-driven bean
for processing.

When an application server is started, it initializes the message listener service based on the configuration
data. The message listener service creates a dynamic session thread pool for use by listeners, creates
and starts listeners, and during server termination controls the cleanup of message listener service
resources. Each listener completes several steps for the JMS destination that it is to monitor, including:
v Creating a JMS server session pool, and allocating JMS server sessions and session threads for

incoming messages.
v Interfacing with JMS ASF to create JMS connection consumers to listen for incoming messages.
v If specified, starting a transaction and requesting that it is committed (or rolled back) when the EJB

method has completed.
v Processing incoming messages by invoking the onMessage() method of the specified enterprise bean.

MDB1

Message

Listeners

JMS provider
destinations

MDB2Message-driven beans MDB3 MDB4

LP3

LP2

LP1

D1 D2 D3

CF1

CF2

JMS Provider

Connection
factoriesListener

ports

Connections

JMS
Destinations

WebSphere Application Server

Message
listener service

Figure 21. The main components for message-driven beans

170 Overview

Access intent policies for EJB 2.x entity beans
An access intent policy is a named set of properties or access intents that govern data access for
Enterprise JavaBeans (EJB) persistence. You can assign policies to an entity bean and to individual
methods on an entity bean's home, remote, or local interfaces during assembly. You can set access
intents only within EJB Version 2.x-compliant and later modules for entity beans with CMP Version 2.x.

This product supplies a number of access intent policies that specify permutations of read intent and
concurrency control; the pessimistic and update policy can be qualified further. The selected policy
determines the appropriate isolation level and locking strategy used by the run time environment.

transition: Access intent policies are specifically designed to supplement the use of isolation level and
access intent method-level modifiers found in the extended deployment descriptor for EJB
version 1.1 enterprise beans. You cannot specify isolation level and read-only modifiers for
EJB version 2.x and later enterprise beans.

Access intent policies configured on an entity basis define the default access intent for that entity. The
default access intent controls the entity unless you specify a different access intent policy based on either
method-level configuration or application profiling.

Note: Method level access intents were deprecated in Version 6.x.

You can use application profiling or method level access intent policies to control access intent more
precisely. Method-level access intent policies are named and defined at the module level. A module can
have one or many policies. Policies are assigned, and apply, to individual methods of the declared
interfaces of entity beans and their associated home interfaces. A method-based policy is acted upon by
the combination of the EJB container and persistence manager when the method causes the entity to
load.

For entity beans that are backed by tables with nullable columns, use an optimistic policy with caution. The
top down default mapping excludes nullable fields. You can override this when doing a meet-in-the-middle
mapping. The fields used in overqualified updates are specified in the ejb-rdb mapping. If nullable columns
are selected as overqualified columns, partial update should also be selected.

Note: When using DB2 for z/OS Version 8, nullable OCC columns create no problems. This is true for
JDBC and SQLJ deploy options, and partial and full update.

An entity that is configured with a read-only policy that causes a bean to be activated can cause problems
if updates are attempted within the same transaction. Those changes are not committed, and the process
displays an exception because data integrity might be compromised.

Concurrency control
Concurrency control is the management of contention for data resources. A concurrency control scheme is
considered pessimistic when it locks a given resource early in the data access transaction and does not
release it until the transaction is closed. A concurrency control scheme is considered optimistic when locks
are acquired and released over a short period of time at the end of a transaction.

The objective of optimistic concurrency is to minimize the time that a given resource is unavailable for use
by other transactions. This is especially important with long-running transactions, which under a
pessimistic scheme would lock up a resource for unacceptably long periods of time.

Under an optimistic scheme, locks are obtained immediately before a read operation and released
immediately after. Update locks are obtained immediately before an update operation and held until the
end of the transaction.

Chapter 10. EJB applications 171

To enable optimistic concurrency, this product uses an overqualified update scheme to test if the
underlying data source has been updated by another transaction since the beginning of the current
transaction. With this scheme, the columns marked for update and their original values are added explicitly
through a WHERE clause in the UPDATE statement so that the statement fails if the underlying column
values have been changed. As a result, this scheme can provide column-level concurrency control;
pessimistic schemes can control concurrency at the row level only.

Optimistic schemes typically perform this type of test only at the end of a transaction. If the underlying
columns have not been updated since the beginning of the transaction, pending updates to
container-managed persistence fields are committed and the locks are released. If locks cannot be
acquired or if some other transaction has updated the columns since the beginning of the current
transaction, the transaction is rolled back: All work performed within the transaction is lost.

Pessimistic and optimistic concurrency schemes require different transaction isolation levels. Enterprise
beans that participate in the same transaction and require different concurrency control schemes cannot
operate on the same underlying data connection.

best-practices: Whether to use optimistic concurrency depends on the type of transaction. Transactions
with a high penalty for failure might be better managed with a pessimistic scheme. A
high-penalty transaction is one for which recovery is risky or resource-intensive. For
low-penalty transactions, it is often worth the risk of failure to gain efficiency through the
use of an optimistic scheme. In general, optimistic concurrency is more efficient when
update collisions are expected to be infrequent; pessimistic concurrency is more efficient
when update collisions are expected to occur often.

Read ahead scheme hints
read ahead schemes enable applications to minimize the number of database round trips by retrieving a
working set of container-managed persistence (CMP) beans for the transaction within one query. read
ahead involves activating the requested CMP beans and caching the data for their related beans, which
ensures that data is present for the beans that an application most likely needs next. A read ahead hint is
a representation of the related beans to read. The hint is associated with the findByPrimaryKey method for
the requested bean type, which must be an EJB 2.x-compliant CMP entity bean.

A read ahead hint takes the form of a character string. You do not have to provide the string; the wizard
generates it based on the container-managed relationships (CMRs) that are defined for the bean. The
example is provided later in this section is for supplemental information only. Suppose a CMP bean type A
has a finder method that returns instances of bean A. A read ahead hint for this method is specified using
the following notation: RelB.RelC; RelD

Interpret the preceding notation as follows:
v Bean type A has a CMR with bean types B and D.
v Bean type B has a CMR with bean type C.

For each bean of type A that is retrieved from the database, its directly-related B and D beans and its
indirectly-related C beans are also retrieved. The order of the retrieved bean data columns in each row of
the result set is the same as the order in the read ahead hint: an A bean, a B bean (or null), a C bean (or
null), a D bean (or null). For hints in which the same relationship is mentioned more than once, for
example, RelB.RelC;RelB.RelE, the data columns for a bean occur only once in the result set, at the
position the bean first occupies in the hint.

The tokens shown in the notation, like RelB, must be CMR field names for the relationships, as defined in
the deployment descriptor for the bean. In indirect relationships such as RelB.RelC, RelC is a CMR field
name that is defined in the deployment descriptor for bean type B.

172 Overview

A single read ahead hint cannot refer to the same bean type in more than one relationship. For example, if
a Department bean has an employees relationship with the Employee bean and also has a manager
relationship with the Employee bean, the read ahead hint cannot specify both employees and manager.

For more information about how to set read ahead hints, see the documentation for the Rational
Application Developer product.

Run-time behaviors of read ahead hints

When developing your read ahead hints, consider the following tips and limitations:

v read ahead hints on long or complex paths can result in a query that is too complex to be useful. read
ahead hints on root or leaf inheritance mappings need particular care. Add up the number of tables that
potentially comprise a read ahead preload to gauge the complexity of the join operations that are
required. Consider if the resulting statement constitutes a reasonable query on your target database.

v read ahead hints do not work in the following cases:

– Preload paths across M:N relationships

– Preload paths across recursive enterprise bean relationships or recursive fk relationships

– When a read-head hint applies to a SELECT FOR UPDATE statement that requires a table join in a
database that does not support the combination of those two operations.

Generally, the persistence manager issues a SELECT FOR UPDATE statement for a bean only if the
bean has an access intent that enforces strict locking policies. Strict locking policies require SELECT
FOR UPDATE statements for database select queries. If the database table design requires a join
operation to fulfill the statement, many databases issue exceptions because these databases do not
support table joins with SELECT FOR UPDATE statements. In those cases, WebSphere Application
Server does not implement a read ahead hint. If the database does provide that support, Application
Server implements the read ahead hints that you configure.

DB2 Universal Database V8.2 supports SELECT FOR UPDATE statements with table joins.

Database deadlocks caused by lock upgrades
To avoid database deadlocks caused by lock upgrades, you can change the access intent policy for entity
beans from the default of wsPessimisticUpdate-WeakestLockAtLoad to wsPessimisticUpdate, or you can
use an optimistic locking approach.

When concurrently accessing data, ensure that the application is prepared for database locking that must
occur to secure the integrity of the data.

If an entity bean performs a findByPrimaryKey method, which by default obtains a Read lock in the
database, and the entity bean is updated within the same transaction, a lock upgrade to Exclusive.

If this scenario occurs concurrently on multiple threads, a deadlock can happen. This is because multiple
read locks can be obtained at the same time but one exclusive lock can only be obtained when the other
locks are dropped. Since all transactions are attempting the lock upgrade in this scenario, the one
exclusive lock cannot be obtained.

To avoid this problem, you can change the access intent policy for the entity bean from the default of
wsPessimisticUpdate-WeakestLockAtLoad method to wsPessimisticUpdate method. This change enables
the application to inform the product and the database that the transaction has updated the enterprise
bean. The Update lock is immediately obtained on the findByPrimaryKey method. This avoids the lock
upgrade when the update is performed at a later time.

The preferred technique to define access intent policies is to change the access intent for the entire entity
bean. You can change the access intent for the findByPrimaryKey method, but this was deprecated in
Version 6. You might want to change the access intent for an individual method if, for example, the entity
bean is involved in some transactions that are read only.

Chapter 10. EJB applications 173

An alternative technique is to use an optimistic approach, where the findByPrimaryKey method does not
hold a read lock, so there is no lock upgrade. However, this requires that the application is coded for this
in order to handle rollbacks. Optimistic locking is intended for applications that do not expect database
contention on a regular basis.

To change the access intent policy for an entity bean, you can use the assembly tool to set the bean level,
as described in Applying access intent policies to beans.

Access intent assembly settings
Access intent policies contain data-access settings for use by the persistence manager. Default access
intent policies are configured on the entity bean.

These settings are applicable only for EJB 2.x and EJB 3.x-compliant entity beans that are packaged in
EJB 2.x and EJB 3.x-compliant modules. Connection sharing between beans with bean-managed
persistence and those with container-managed persistence is possible if they all use the same access
intent policy.

Name
Specifies a name for a mapping between an access intent policy and one or more methods.

Description
Contains text that describes the mapping.

Methods - name
Specifies the name of an enterprise bean method, or the asterisk character (*). The asterisk is used to
denote all of the methods of an enterprise bean's remote and home interfaces.

Methods - enterprise bean
Specifies which enterprise bean contains the methods indicated in the Name setting.

Methods - type
Used to distinguish between a method with the same signature that is defined in both the home and
remote interface. Use Unspecified if an access intent policy applies to all methods of the bean.

Information Value
Data type String
Range Valid values are Home, Remote,Local, LocalHome or

Unspecified

Methods - parameters
Contains a list of fully qualified Java type names of the method parameters. This setting is used to identify
a single method among multiple methods with an overloaded method name.

Applied access intent
Specifies how the container must manage data access for persistence. Configurable both as a default
access intent for an entity and as part of a method-level access intent policy.

Information Value
Data type String
Default wsPessimisticUpdate-WeakestLockAtLoad. With Oracle,

this is the same as wsPessimisticUpdate.

174 Overview

Information Value
Range Valid settings are wsPessimisticUpdate,

wsPessimisticUpdate-NoCollision, wsPessimisticUpdate-
Exclusive, wsPessimisticUpdate-WeakestLockAtLoad,
wsPessimisticRead, wsOptimisticUpdate, or
wsOptimisticRead. Only wsPessimisticRead and
wsOptimisticRead are valid when class-level caching is
enabled in the EJB container.

This product supports lazy collections. For each segment of a collection, iterating through the collection
(next()) does not trigger a remote method call to retrieve the next remote reference. Two policies
(wsPessimisticUpdate and wsPessimisticUpdate-Exclusive) are extremely lazy; the collection increment
size is set to 1 to avoid overlocking the application. The other policies have a collection increment size of
25.

If an entity is not configured with an access intent policy, the runtime environment typically uses
wsPessimisticUpdate-WeakestLockAtLoad by default. If, however, the Lifetime in cache property is set on
the bean, the default value of Applied access intent is wsOptimisticRead; updates are not permitted.

Additional information about valid settings follows:

Table 27. Access intents profiles. Here is additional information about valid settings:

Profile name Concurrency control Access type Transaction isolation

wsPessimisticRead (Note 1) pessimistic read For Oracle, read committed.
Otherwise, repeatable read

wsPessimisticUpdate (Note
2)

pessimistic update For Oracle, read committed.
Otherwise, repeatable read

wsPessimisticUpdate-
Exclusive (Note 3)

pessimistic update serializable

wsPessimisticUpdate-
NoCollision (Note 4)

pessimistic update read committed

wsPessimisticUpdate-
WeakestLockAtLoad (Note
5)

pessimistic update Repeatable read

wsOptimisticRead optimistic read read committed

wsOptimisticUpdate (Note
6)

optimistic update read committed

Note:
1. Read locks are held for the duration of the transaction.
2. The generated SELECT FOR UPDATE query grabs locks at the beginning of the transaction.
3. SELECT FOR UPDATE is generated; locks are held for the duration of the transaction.
4. A plain SELECT query is generated. No locks are held, but updates are permitted. Use cautiously. This intent

enables execution without concurrency control.
5. Where supported by the backend, the generated SELECT query does not include FOR UPDATE; locks are

escalated by the persistent store at storage time if updates were made. Otherwise, the same as
wsPessimisticUpdate.

6. Generated overqualified-update query forces failure if CMP column values have changed since the beginning of
the transaction.

Be sure to review the rules for forming overqualified-update query predicates. Certain column types (for example,
BLOB) are ineligible for inclusion in the overqualified-update query predicate and might affect your design.

Chapter 10. EJB applications 175

Java Persistence API (JPA) architecture
Data persistence is the ability to maintain data between application executions. Persistence is vital to
enterprise applications because of the required access to relational databases. Applications that are
developed for this environment must manage persistence themselves or use third-party solutions to handle
database updates and retrievals with persistence. The Java Persistence API (JPA) provides a mechanism
for managing persistence and object-relational mapping and functions for the EJB 3.0 and EJB 3.1
specifications.

The JPA specification defines the object-relational mapping internally, rather than relying on vendor-specific
mapping implementations. JPA is based on the Java programming model that applies to Java EE
environments, but JPA can function within a Java SE environment for testing application functions.

JPA represents a simplification of the persistence programming model. The JPA specification explicitly
defines the object-relational mapping, rather than relying on vendor-specific mapping implementations. JPA
standardizes the important task of object-relational mapping by using annotations or XML to map objects
into one or more tables of a database. To further simplify the persistence programming model:

v The EntityManager API can persist, update, retrieve, or remove objects from a database

v The EntityManager API and object-relational mapping metadata handle most of the database operations
without requiring you to write JDBC or SQL code to maintain persistence

v JPA provides a query language, extending the independent EJB querying language (also known as
JPQL), that you can use to retrieve objects without writing SQL queries specific to the database you are
working with.

JPA is designed to operate both inside and outside of a Java Enterprise Edition (Java EE) container. When
you run JPA inside a container, the applications can use the container to manage the persistence context.
If there is no container to manage JPA, the application must handle the persistence context management
itself. Applications that are designed for container-managed persistence do not require as much code
implementation to handle persistence, but these applications cannot be used outside of a container.
Applications that manage their own persistence can function in a container environment or a Java SE
environment.

Java EE containers that support the EJB 3.x programming model must support a JPA implementation, also
called a persistence provider. A JPA persistence provider uses the following elements to allow for easier
persistence management in an EJB 3.x environment:

Persistence unit
Consists of the declarative metadata that describes the relationship of entity class objects to a
relational database. The EntityManagerFactory uses this data to create a persistence context that
can be accessed through the EntityManager.

EntityManagerFactory
Used to create an EntityManager for database interactions. The application server containers
typically supply this function, but the EntityManagerFactory is required if you are using JPA
application-managed persistence. An instance of an EntityManagerFactory represents a
Persistence Context.

Persistence context
Defines the set of active instances that the application is manipulating currently. The persistence
context can be created manually or through injection.

EntityManager
The resource manager that maintains the active collection of entity objects that are being used by
the application. The EntityManager handles the database interaction and metadata for
object-relational mappings. An instance of an EntityManager represents a Persistence Context. An
application in a container can obtain the EntityManager through injection into the application or by

176 Overview

looking it up in the Java component name-space. If the application manages its persistence, the
EntityManager is obtained from the EntityManagerFactory.

Attention: Injection of the EntityManager is only supported for the following artifacts:

v EJB 3.x session beans

v EJB 3.x message-driven beans

v Servlets, Servlet Filters, and Listeners

v JSP tag handlers which implement interfaces javax.servlet. jsp.tagext.Tag and
javax.servlet.jsp.tagext.SimpleTag

v JavaServer Faces (JSF) managed beans

v the main class of the application client.

Entity objects
A simple Java class that represents a row in a database table in its simplest form. Entities objects
can be concrete classes or abstract classes. They maintain states by using properties or fields.

For more information about persistence, see the section on Java Persistence API Architecture and the
section on Persistence in the Apache OpenJPA User Guide. For more information and examples on
specific elements of persistence, see the sections on the EntityManagerFactory, and the EntityManager in
the Apache OpenJPA User Guide.

JPA for WebSphere Application Server
Java Persistence API (JPA) 2.0 for WebSphere Application Server is built on the Apache OpenJPA 2.x
open source project.

Apache OpenJPA is a compliant implementation of the JPA specification. Using OpenJPA as a base
implementation, WebSphere Application Server employs extensions to provide additional features and
utilities for WebSphere Application Server customers. Because JPA for WebSphere Application Server is
built from OpenJPA, all OpenJPA function, extensions, and configurations are unaffected by the
WebSphere Application Server extensions. You do not need to make changes to OpenJPA applications to
use these applications in WebSphere Application Server.

JPA for WebSphere Application Server provides more than compatibility with OpenJPA. JPA for
WebSphere Application Server contains a set of tools for application development and deployment. Other
features of JPA for WebSphere Application Server include support for DB2 Optim pureQuery Runtime, DB2
optimizations, JPA Access Intent, enhanced tracing capabilities, command scripts, and translated message
files. The provider of JPA for WebSphere Application Server is
com.ibm.websphere.persistence.PersistenceProviderImpl.

Apache OpenJPA supports the use of properties to configure the persistent environment. JPA for
WebSphere Application Server properties can be specified with either the openjpa or wsjpa prefix. You can
mix the openjpa and wsjpa prefixes as you wish for a common set of properties. Exceptions to the rule are
wsjpa specific configuration properties, which use the wsjpa prefix. When a JPA for WebSphere Application
Server-specific property is used with the openjpa prefix, a warning message is logged indicating that the
offending property is treated as a wsjpa property. The reverse does not hold true for the openjpa prefix. In
that case, the offending property is ignored.

wsjpaversion command
Use this command-line tool to find out information about the installed version of Java Persistence API
(JPA) for WebSphere Application Server.

Run the JPA commands (.bat on Windows or .sh on UNIX) from the <profile_root>/bin directory, to
make sure that you have the latest version of the commands for your release.

Chapter 10. EJB applications 177

Syntax

The command syntax is as follows:

wsjpaversion.sh

wsjpaversion.bat

Usage

The version tool can be useful when debugging problems with JPA in applications and providing customer
support teams with the information about the current JPA environment.

The command is run from the <profile_root> directory.

Examples

Find the version information of your JPA installation example output:
[root@atlanta bin]# ./wsjpaversion.sh
WSJPA 2.1.0-SNAPSHOT
version id: WSJPA-2.1.0-SNAPSHOT-r1119:2233
WebSphere JPA svn revision: 1119:2233

OpenJPA 2.1.0-SNAPSHOT
version id: openjpa-2.1.0-SNAPSHOT-r422266:1069208
Apache svn revision: 422266:1069208

os.name: Linux
os.version: 2.6.18-238.1.1.el5
os.arch: x86

java.version: 1.6.0
java.vendor: IBM Corporation

java.class.path:
/root/tc/WASX/as/dev/JavaEE/j2ee.jar
/root/tc/WASX/as/plugins/com.ibm.ws.jpa.jar
/root/tc/WASX/as/plugins/com.ibm.ws.prereq.commons-collections.jar

/root/tc/WASX/as/profiles/AppSrv01/bin
[root@atlanta bin]#

On Windows operating systems, the output looks like the following:
D:\Users\user\WASV8\IBM\WebSphere\AppServer\bin>wsjpaversion.bat
WSJPA 2.1.0-SNAPSHOT
version id: WSJPA-2.1.0-SNAPSHOT-r1119:2216
WebSphere JPA svn revision: 1119:2216
OpenJPA 2.1.0-SNAPSHOT
version id: openjpa-2.1.0-SNAPSHOT-r422266:1063829
Apache svn revision: 422266:1063829
os.name: Windows 7
os.version: 6.1
os.arch: amd64
java.version: 1.6.0
java.vendor: IBM Corporation
java.class.path:

D:\Users\user\WASV8\IBM\WebSphere\AppServer\dev\JavaEE\j2ee.jar
D:\Users\user\WASV8\IBM\WebSphere\AppServer\plugins\com.ibm.ws.jpa.jar
D:\Users\user\WASV8\IBM\WebSphere\AppServer\plugins\com.ibm.ws.prereq.

commons-collections.jar

178 Overview

.
C:\Program Files (x86)\IBM\Java60\jre\lib\ext\QTJava.zip

user.dir: D:\Users\user\WASV8\IBM\WebSphere\AppServer\bin
D:\Users\user\WASV8\IBM\WebSphere\AppServer\bin>

Examples

Find the version information of your JPA installation example output:
C:\was70-GM>profiles\a1002.07\bin\wsjpaversion.bat
WSJPA 2.0.0-SNAPSHOT
version id: WSJPA-2.0.0-SNAPSHOT-r1118:1843
revision: 1118:1843

OpenJPA 2.0.0-SNAPSHOT
version id: openjpa-2.0.0-SNAPSHOT-r422266:897308
Apache svn revision: 422266:897308

os.name: Windows XP
os.version: 5.1 build 2600 Service Pack 2
os.arch: x86

java.version: 1.6.0
java.vendor: IBM Corporation

java.class.path:
C:\was70-GM\feature_packs\jpa\dev\JavaEE\j2ee.jar
C:\was70-GM\feature_packs\jpa\plugins\com.ibm.ws.jpa.jar
C:\was70-GM\plugins\com.ibm.ws.prereq.commons-collections.jar

user.dir: C:\was70-GM\plugins\com.ibm.ws.jpa.jar

wsjpa properties
The extension properties of Java Persistence API (JPA) for WebSphere Application Server can be
specified with the openjpa or wsjpa prefix. This topic features the wsjpa properties.

wsjpa.AccessIntent
Use this property to define a TaskName that in the persistence.xml file using the wsjpa.AccessIntent
property name in a persistence unit. The property value is a list of TaskNames, entity types and access
intent definitions.

For more information and examples on how the wsjpa.AccessIntent property is used, see the topic
Specifying TaskName in a JPA persistence unit.

wsjpa.jdbc.Schema
Specifies the schema name in a DB2 package collection when using multiple DB2 package collections.

For more information about using the wsjpa.jdbc.Schema property see the topic, Configuring pureQuery to
use multiple DB2 package collections.

wsjpa.jdbc.CollectionId
Specifies the collection Id name in a DB2 package collection when using multiple DB2 package
collections.

For more information about using the wsjpa.jdbc.CollectionId property see the topics, Configuring
pureQuery to use multiple DB2 package collections and Configuring data source JDBC providers to use
pureQuery in a Java SE environment.

Chapter 10. EJB applications 179

Transaction support in WebSphere Application Server
Support for transactions is provided by the transaction service within WebSphere Application Server. The
way that applications use transactions depends on the type of application component.

A transaction is unit of activity, within which multiple updates to resources can be made atomic (as an
indivisible unit of work) such that all or none of the updates are made permanent. For example, during the
processing of an SQL COMMIT statement, the database manager atomically commits multiple SQL
statements to a relational database. In this case, the transaction is contained entirely within the database
manager and can be thought of as a resource manager local transaction (RMLT). In some contexts, a
transaction is referred to as a logical unit of work (LUW). If a transaction involves multiple resource
managers, for example multiple database managers, an external transaction manager is required to
coordinate the individual resource managers. A transaction that spans multiple resource managers is
referred to as a global transaction. WebSphere Application Server is a transaction manager that can
coordinate global transactions, can be a participant in a received global transaction, and can also provide
an environment in which resource manager local transactions can run.

The way that applications use transactions depends on the type of application component, as follows:
v A session bean can use either container-managed transactions (where the bean delegates management

of transactions to the container) or bean-managed transactions (component-managed transactions
where the bean manages transactions itself).

v Entity beans use container-managed transactions.
v Web components (servlets) and application client components use component-managed transactions.

WebSphere Application Server is a transaction manager that supports the coordination of resource
managers through their XAResource interface, and participates in distributed global transactions with
transaction managers that support the CORBA Object Transaction Service (OTS) protocol or Web Service
Atomic Transaction (WS-AtomicTransaction) protocol. WebSphere Application Server also participates in
transactions imported through Java EE Connector 1.5 resource adapters. You can also configure
WebSphere applications to interact with databases, JMS queues, and JCA connectors through their local
transaction support, when you do not require distributed transaction coordination.

Resource managers that offer transaction support can be categorized into those that support two-phase
coordination (by offering an XAResource interface) and those that support only one-phase coordination (for
example through a LocalTransaction interface). The WebSphere Application Server transaction support
provides coordination, within a transaction, for any number of two-phase capable resource managers. It
also enables a single one-phase capable resource manager to be used within a transaction in the absence
of any other resource managers, although a WebSphere transaction is not necessary in this case.

Under normal circumstances, you cannot mix one-phase commit capable resources and two-phase commit
capable resources in the same global transaction, because one-phase commit resources cannot support
the prepare phase of two-phase commit. There are some special circumstances where it is possible to
include mixed-capability resources in the same global transaction:

v In scenarios where there is only a single one-phase commit resource provider that participates in the
transaction and where all the two-phase commit resource-providers that participate in the transaction
are used in a read-only fashion. In this case, the two-phase commit resources all vote read-only during
the prepare phase of two-phase commit. Because the one-phase commit resource provider is the only
provider to complete any updates, the one-phase commit resource does not have to be prepared.

v In scenarios where there is only a single one-phase commit resource provider that participates in the
transaction with one or more two-phase commit resource providers and where last participant support is
enabled. Last participant support enables the use of a single one-phase commit capable resource with
any number of two-phase commit capable resources in the same global transaction. For more
information about last participant support, see Using one-phase and two-phase commit resources in the
same transaction.

180 Overview

http://www.omg.org/cgi-bin/doc?formal/2003-09-02
http://www.ibm.com/developerworks/library/specification/ws-tx/
http://www.ibm.com/developerworks/library/specification/ws-tx/
http://java.sun.com/j2ee/connector/

The ActivitySession service provides an alternative unit-of-work (UOW) scope to that provided by global
transaction contexts. It is a distributed context that can be used to coordinate multiple one-phase resource
managers. The WebSphere EJB container and deployment tooling support ActivitySessions as an
extension to the Java EE programming model. Enterprise beans can be deployed with lifecycles that are
influenced by ActivitySession context, as an alternative to transaction context. An application can then
interact with a resource manager for the period of a client-scoped ActivitySession, rather than only the
duration of an EJB method, and have the resource manager local transaction outcome directed by the
ActivitySession. For more information about ActivitySessions, see Using the ActivitySession service.

Resource manager local transaction (RMLT)
A resource manager local transaction (RMLT) is a resource manager view of a local transaction; that is, it
represents a unit of recovery on a single connection that is managed by the resource manager.

Resource managers include:
v Enterprise Information Systems that are accessed through a resource adapter, as described in the Java

EE Connector Architecture.
v Relational databases that are accessed through a JDBC datasource.
v JMS queue and topic destinations.

Resource managers offer specific interfaces to enable control of their RMLTs. Resource adapter
components of the Java EE connector architecture that include support for local transactions provide a
LocalTransaction interface. The LocalTransaction interface enables applications to request that the
resource adapter commits or rolls back RMLTs. JDBC datasources provide a Connection interface for the
same purpose.

The boundary at which all RMLTs must be complete is defined in WebSphere Application Server by a local
transaction containment (LTC).

Global transactions
If an application uses two or more resources, an external transaction manager is needed to coordinate the
updates to all the resource managers in a global transaction.

Global transaction support is available to web and enterprise bean components and, with some limitations,
to application client components. Enterprise bean components can be subdivided into two categories:
beans that use container-managed transactions (CMT) and beans that use bean-managed transactions
(BMT).

Only BMT enterprise beans, application client components, and web components can use the Java
Transaction API (JTA) UserTransaction interface to define the demarcation of a global transaction. To
obtain the UserTransaction interface, use a Java Naming and Directory Interface (JNDI) lookup of
java:comp/UserTransaction, or use the getUserTransaction method from the SessionContext object.

The UserTransaction interface is not available to CMT enterprise beans. If CMT enterprise beans attempt
to obtain this interface, an exception is thrown, in accordance with the Enterprise JavaBeans (EJB)
specification.

Ensure that programs that perform a JNDI lookup of the UserTransaction interface use an InitialContext
that resolves to a local implementation of the interface. Also ensure that such programs use a JNDI
location that is appropriate for the EJB version.

WebSphere Application Server Version 4 and later releases bind the UserTransaction interface at the JNDI
location that is specified in the EJB Version 1.1 specification. This location is java:comp/UserTransaction.

A web component or enterprise bean (CMT or BMT) can use additional interfaces that provide JTA
support. These interfaces provide the transaction identity and a mechanism to receive notification of

Chapter 10. EJB applications 181

http://java.sun.com/j2ee/connector/index.html
http://java.sun.com/j2ee/connector/index.html

transaction completion. The interfaces include the TransactionSynchronizationRegistry interface, the
ExtendedJTATransaction interface, and the UOWSynchronizationRegistry interface.

Local transaction containment
A local transaction containment (LTC) is used to define the application server behavior in an unspecified
transaction context.

Unspecified transaction context is defined in the Enterprise JavaBeans specification, Version 2.0 and later.
For example, see the specification for this technology.

An LTC is a bounded unit-of-work scope, within which zero or more resource manager local transactions
(RMLT) can be accessed. The LTC defines the boundary at which all RMLTs must be complete; any
incomplete RMLTs are resolved, according to policy, by the container. By default, an LTC is local to a bean
instance; it is not shared across beans, even if those beans are managed by the same container. LTCs
are started by the container before dispatching a method on an enterprise application component, such as
an enterprise bean or servlet, whenever the dispatch occurs in the absence of a global transaction context.
LTCs are completed by the container depending on the application-configured LTC boundary; for example,
at the end of the method dispatch. There is no programmatic interface to the LTC support; LTCs are
managed exclusively by the container. The application deployer configures LTCs on individual application
components, either web application or EJB, by using transaction attributes in the application deployment
descriptor.

A local transaction containment (LTC) might be configured as part of an application component's
deployment descriptor to be shareable across multiple application components, including web application
components and enterprise beans that use container-managed transactions, so that those components
can share connections without using a global transaction. Sharing a single resource manager between
application components improves performance, increases scalability, and reduces lock contention for
resources.

LTCs can be shared across multiple components, including web application components and enterprise
beans that use container-managed transactions. This sharing is useful in situations such as frequent use
of web component include() calls, where a thread can have several connections blocked by LTCs in
different web modules. In this situation, the application might encounter code deadlocks under load, when
threads start to wait for themselves to free connections. To overcome this issue without using a global
transaction, specify that application components can share LTCs by setting the Shareable attribute in the
deployment descriptor of each component. You must use a deployment descriptor; you cannot specify this
attribute if annotation has been used.

When you set the Shareable attribute, the extended deployment descriptor XML file includes the following
line of code:
<local-transaction boundary="BEAN_METHOD" resolver="CONTAINER_AT_BOUNDARY"
unresolved-action="COMMIT" shareable="true"/>

To obtain the full benefits of a shared LTC, also ensure that the resource reference for each component
defaults to shareable connections.

In the following diagram, components 1, 2 and 3 are deployed with the Shareable attribute and component
4 is not. If components 2 and 3 both obtain connections to data source B, and their resource references
for data source B default to shareable connections, they share the connection, but component 4 does not.

182 Overview

Applications that use shareable LTCs cannot explicitly commit or roll back resource manager connections
that are used in a shareable LTC. Although, they can use connections that have an autoCommit capability.
This ensures correct encapsulation of connection usage by each component and protects one component
from having to make any assumptions about the behavior of other components that share the connection.

If an application starts any non-autocommit work in an LTC for which the Resolver attribute is set to
Application and the Shareable attribute is set to true, an exception occurs at run time. For example, on a
JDBC connection, non-autocommit work is work that the application performs after using the
setAutoCommit(false) method to disable the autocommit option on the connection. Enterprise beans that
use bean managed transactions (BMT) cannot be assembled with the Shareable attribute set on the LTC
configuration.

A local transaction containment cannot exist concurrently with a global transaction. If application
component dispatch occurs in the absence of a global transaction, the container always establishes an
LTC for enterprise application components at J2EE 1.3 or later. The only exceptions to this are the
following items:
v Application component dispatch occurs without container interposition, for example, for a stateless

session bean create method or a servlet-initiated thread.
v J2EE 1.2 web components.
v J2EE 1.2 bean-managed transaction (BMT) enterprise beans.

A local transaction containment can be scoped to an ActivitySession context that exists longer than the
enterprise bean method in which it is started, as described in the topic about ActivitySessions and
transaction contexts.

Local transaction containment
IBM WebSphere Application Server supports local transaction containment (LTC), which you can configure
using local transaction extended deployment descriptors. LTC support provides certain advantages to

Chapter 10. EJB applications 183

application programmers. Use the scenarios provided, and the list of points to consider, to help you decide
the best way to configure transaction support for local transactions.

The following sections describe the advantages that LTC support provides, and how to set the local
transaction extended deployment descriptors in each situation.
You can develop an enterprise bean or servlet that accesses one or more databases that are
independent and require no coordination.

If an enterprise bean does not have to use global transactions, it is often more efficient to deploy
the bean with the deployment descriptor for the container transaction type set to NotSupported
instead of Required.

With the extended local transaction support of the application server, applications can perform the
same business logic in an unspecific transaction context as they can in a global transaction. An
enterprise bean, for example, runs in an unspecified transaction context if it is deployed with a
container transaction type of NotSupported or Never.

The extended local transaction support provides a container-managed, implicit local transaction
boundary, within which the container commits application updates and cleans up their connections.
You can design applications with more independence from deployment concerns. This makes
using a container transaction type of Supports much simpler, for example, when the business logic
might be called either with or without a global transaction context.

An application can follow a get-use-close pattern of connection usage, regardless of whether the
application runs in a transaction. The application can depend on the close action behaving in the
same way in all situations, that is, the close action does not cause a rollback to occur on the
connection if there is no global transaction.

There are many scenarios where ACID coordination of multiple resource managers is not needed.
In such scenarios, running business logic in a Transaction policy of NotSupported performs better
than in a policy of Required. This benefit is applied through setting the deployment descriptor, in
the Local Transactions section, of the Resolver attribute to ContainerAtBoundary. With this setting,
application interactions with resource providers, such as databases, are managed within implicit
resource manager local transactions (RMLT) that the container both starts and ends. The
container commits RMLTs at the containment boundary that is specified by the Boundary attribute
in the Local Transactions section; for example, at the end of a method. If the application returns
control to the container by an exception, the container rolls back any RMLTs that it has started.

This usage applies to both servlets and enterprise beans.
You can use local transactions in a managed environment that guarantees cleanup.

Applications that want to control RMLTs, by starting and ending them explicitly, can use the default
setting of Application for the Resolver extended deployment descriptor in the Local Transactions
section. In this situation, the container ensures connection cleanup at the boundary of the local
transaction context.

Java platform for enterprise applications specifications that describe application use of local
transactions do so in the manner provided by the default settings of Application for the Resolver
extended deployment descriptor, and Rollback for the Unresolved action extended deployment
descriptor, in the Local Transactions section. When the Unresolved action extended deployment
descriptor in the Local Transactions section is set to Commit, the container commits any RMLTs
that the application starts but that do not complete when the local transaction containment ends
(for example, when the method ends). This usage applies to both servlets and enterprise beans.

You can extend the duration of a local transaction beyond the duration of an EJB component
method.

The Enterprise JavaBeans (EJB) specifications restrict the use of RMLTs to single EJB methods.
This restriction is because the specifications have no scoping device, beyond a container-imposed
method boundary, to which an RMLT can be extended. You can use the Boundary extended
deployment setting in the Local Transactions section to give the following advantages:
v Significantly extend the use cases of RMLTs.

184 Overview

v Make conversational interactions with one-phase resource managers possible through
ActivitySession support.

You can use an ActivitySession to provide a distributed context with a boundary that is longer than
a single method. You can extend the use of RMLTs over the longer ActivitySession boundary,
which a client can control. The ActivitySession boundary reduces the need to use distributed
transactions where ACID operations on multiple resources are not needed. This benefit is applied
through the Boundary extended deployment setting, in the Local transactions section, of
ActivitySession. Such extended RMLTs can remain under the control of the application, or be
managed by the container, depending on the setting of the Resolver deployment descriptor in the
Local Transactions section.

You can coordinate multiple one-phase resource managers.
For resource managers that do not support XA transaction coordination, a client can use
ActivitySession-bounded local transaction contexts. Such contexts give a client the same ability to
control the completion direction of the resource updates by the resource managers as the client
has for transactional resource managers. A client can start an ActivitySession and call its entity
beans in that context. Those beans can perform their RMLTs within the scope of that
ActivitySession and return without completing the RMLTs. The client can later complete the
ActivitySession in a commit or rollback direction and cause the container to drive the
ActivitySession-bounded RMLTs in that coordinated direction.

You can use shareable LTCs to reduce the number of connections you require.
Application components can share LTCs. If components obtain connections to the same resource
manager, they can share that connection if they run under the same global transaction or
shareable LTC. To configure two components to run under the same shareable LTC, set the
Shareable attribute of the Local Transactions section in the deployment descriptor of each
component. Make sure that the resource reference in the deployment descriptor for each
component uses the default value of Shareable for the res-sharing-scope element, if this element
is specified. A shareable LTC can reduce the numbers of RMLTs an application uses. For example,
an application that makes frequent use of web module include calls can share resource manager
connections between those web modules, exploiting either shareable LTCs, or a global
transaction, reducing lock contention for resources.

Examples of local transaction support configurations

The following list gives scenarios that use local transactions, and points to consider when deciding the
best way to configure the transaction support for an application.
v You want to start and end global transactions explicitly in the application (bean-managed transaction

session beans and servlets only).

For a session bean, set the Transaction type to Bean (to use bean-managed transactions) in the
deployment descriptor of the component. You do not have to do this for servlets.

v You want to access only one XA or non-XA resource in a method.

In the deployment descriptor of the component, in the Local Transactions section, set the Resolver
attribute to ContainerAtBoundary. In the Container Transactions section, set the container transaction
type to Supports.

v You want to access several XA resources atomically across one or more bean methods.

In the deployment descriptor of the component, in the Container Transactions section, set the container
transaction type to Required, RequiresNew, or Mandatory.

v You want to access several non-XA resources in a method without needing to manage your own local
transactions.

In the deployment descriptor of the component, in the Local Transactions section, set the Resolver
attribute to ContainerAtBoundary. In the Container Transactions section, set the container transaction
type to NotSupported.

v You want to access several non-XA resources in a method and want to manage them independently.

Chapter 10. EJB applications 185

In the deployment descriptor of the component, in the Local Transactions section, set the Resolver
attribute to Application and set the Unresolved action attribute to Rollback. In the Container Transactions
section, set the container transaction type to NotSupported.

v You want to access one or more non-XA resources across multiple EJB method calls without needing to
manage your own local transactions.

In the deployment descriptor of the component, in the Local Transactions section, set the Resolver
attribute to ContainerAtBoundary and set the Boundary attribute to ActivitySession. In the Bean Cache
section, set the Activate at attribute to ActivitySession. In the Container Transactions section, set the
container transaction type to NotSupported and set the ActivitySession kind attribute to Required,
RequiresNew, or Mandatory.

v You want to access several non-XA resources across multiple EJB method calls and want to manage
them independently.

In the deployment descriptor of the component, in the Local Transactions section, set the Resolver
attribute to Application and set the Boundary attribute to ActivitySession. In the Bean Cache section, set
the Activate at attribute to ActivitySession. In the Container Transactions section, set the container
transaction type to NotSupported and set the ActivitySession kind attribute to Required, RequiresNew,
or Mandatory.

Local and global transactions
Applications use resources, such as Java Database Connectivity (JDBC) data sources or connection
factories, that are configured through the Resources view of the administrative console. How these
resources participate in a global transaction depends on the underlying transaction support of the resource
provider.

For example, most JDBC providers can provide either XA or non-XA versions of a data source. A non-XA
data source can support only resource manager local transactions (RMLT), but an XA data source can
support two-phase commit coordination, as well as local transactions.

If an application uses two or more resource providers that support only RMLTs, atomicity cannot be
assured because of the one-phase nature of these resources. To ensure atomic behavior, the application
must use resources that support XA coordination and must access those resources in a global transaction.

If an application uses only one RMLT, atomic behavior can be guaranteed by the resource manager, which
can be accessed in a local transaction containment (LTC) context.

An application can also access a single resource manager in a global transaction context, even if that
resource manager does not support the XA coordination. An application can do this because the
application server performs an “only resource optimization” and interacts with the resource manager in a
RMLT. In a global transaction context, any attempt to use more than one resource provider that supports
only RMLTs causes the global transaction to be rolled back.

At any moment, an instance of an enterprise bean can have work outstanding in either a global transaction
context or a local transaction containment context, but not both. An instance of an enterprise bean can
change from running in one type of context to the other (in either direction), if all outstanding work in the
original context is complete. Any violation of this principle causes an exception to be thrown when the
enterprise bean tries to start the new context.

Client support for transactions
Application clients can, within certain limits, support the use of transactions.

Application clients running in an enterprise application client container can explicitly demarcate transaction
boundaries, as described in the topic about using component-managed transactions. Application clients
cannot perform, directly in the client container, transactional work in the context of any global transaction
that they start, because the client container is not a recoverable process.

186 Overview

Application clients can make requests to remote objects, such as enterprise beans, in the context of a
client-initiated transaction. Any transactional work performed in a remote, recoverable, server process is
coordinated as part of the client-initiated transaction. The transaction coordinator is created on the first
server process to which the client-initiated transaction is propagated.

A client can begin a transaction, then, for example, access a JDBC data source directly in the client
process. In such cases, any work performed through the JDBC provider is not coordinated as part of the
global transaction. Instead, the work runs under a resource manager local transaction. The client container
process is non-recoverable and contains no transaction coordinator with which a resource manager can be
enlisted.

A client can begin a transaction, then call a remote application component such as an enterprise bean. In
such cases, the client-initiated transaction context is implicitly propagated to the remote application server,
where a transaction coordinator is created. Any resource managers accessed on the recoverable
application server (or any other application server hosting application components invoked by the client)
are enlisted in the global transaction.

Client application components must be aware that locally-accessed resource managers are not
coordinated by client-initiated transactions. Client applications acknowledge this through a deployment
option that enables access to the UserTransaction interface in the client container. By default, access to
the UserTransaction interface in the client container is not enabled. To enable UserTransaction
demarcation for an application client component, set the “Allow JTA Demarcation” extension property in the
client deployment descriptor. For information about editing the client deployment descriptor, refer to the
Rational Application Developer information.

Commit priority for transactional resources
You can specify the order in which transactional resources are processed during two-phase commit
processing.

If you control the order in which transactional resources are processed during two-phase commit
processing, there are two main benefits:

v One-phase commit optimization occurs more often.

v Potential problems caused by transaction isolation are resolved.

To control the order in which transactional resources are processed during two-phase commit processing,
you specify the commit priority of a resource by setting the commit priority attribute on a resource
reference. The larger the commit priority, the earlier the resource is processed. For example, if a resource
has a commit priority of 10, it is processed before a resource with a commit priority of 1. The commit
priority value is of type int and can be between -2147483648 and 2147483647.

If you do not specify a commit priority value, a default value of zero is assigned to the resource and is
used when ordering resources at run time. If two or more resources are configured with the same priority,
including the default priority, they are processed in an unspecified order with respect to each other.

You can specify the commit priority attribute on a resource reference by using Rational Application
Developer tools. For detailed information, see the Rational Application Developer information center. The
application component must have a deployment descriptor; you cannot specify this attribute if annotation
has been used.

One-phase commit optimization

In a transaction with a two-phase commit, if every resource except the last one enlisted in the transaction
votes read-only, indicating that those resources are not interested in the outcome of the transaction, a

Chapter 10. EJB applications 187

one-phase commit can occur. This means that the transaction service does not have to store resource and
transaction information that it would need to roll back a two-phase commit, and therefore performance is
improved.

You can control the order in which transactional resources are processed during two-phase commit, so
you can process the resources that are most likely to vote read-only first. Therefore, you increase the
chance that a one-phase commit might occur.

Typically, for a given transactional resource, you know the work that is performed at run time, so if you can
control the order in which the resources in a transaction are processed, you can increase the likelihood of
a one-phase commit optimization occurring.

Transaction isolation

When resources are involved in a global transaction, updates that are made as part of a transaction are
not visible outside the transaction until the transaction commits, that is, those resources are isolated. This
isolation can cause problems with other application components that act on the updates after they are
committed. For example, further processing can fail, or can fail intermittently, because updates are order
and time dependent. This problem does not occur with service integration bus messaging work in
WebSphere Application Server, but can be a problem for other messaging providers, for example
WebSphere MQ.

If you specify the order in which transactional resources are committed, problems caused by isolation are
resolved for all transactional systems, not just messaging providers and service integration bus in
particular.

The following example describes how problems might occur when you cannot specify the order in which
transactional resources are committed. An application updates a row in a database table, then sends a
JMS message that triggers additional processing of the row. Both of these actions are performed in the
same global transaction, so they are isolated until their respective resources are committed. If the update
to the row is committed before the message is sent, the processing that is triggered by the message can
access the updated row and process it. If the action to send the message is committed first, this action
might trigger the additional processing of the row before the database has committed the update to the
row. In this situation, the updated row is still isolated and is not visible, so the additional processing of the
row fails.

This problem can be more complicated because it is ordering and timing dependent. If the database is
committed first, the problem does not occur. If the action to send the message is committed first, the
problem might occur, but it depends whether the database work is committed before the message triggers
the further processing of the row. Therefore, the problem can be intermittent, so it is harder to identify its
cause.

Restrictions with earlier versions of WebSphere Application Server

If you specify the commit priority of a resource, that is, specify any value other than the default value 0,
the commit priority is added to the partner log in a recoverable unit section. This section in the log file is
recognized in WebSphere Application Server Version 7.0 or later, but not in earlier versions of the
application server.

Therefore, if an application uses the commit priority attribute, you cannot install that application into a
mixed-version cluster where one or more servers in the cluster are at versions of WebSphere Application
Server that are earlier than Version 7.0.

Also, if an application that uses the commit priority attribute is installed in a cluster, you cannot
subsequently add a server to that cluster if the server is at a version of WebSphere Application Server that
is earlier than Version 7.0.

188 Overview

For general information about different versions of the product, see the topic “Overview of migration,
coexistence, and interoperability”.

Sharing locks between transaction branches
You can specify that multiple application components on different application servers can share access to
data in a single DB2 database under the same global transaction. You specify that the different transaction
branches share locks under the global transaction.

To do this, you set the branch coupling attribute on the resource references for the shared DB2
connections in the application.

Note: Lock sharing in WebSphere Application Server Version 8 is only supported on DB2; setting lock
sharing on a resource reference for a non-DB2 database will result in an exception.

Usually, application components can share locks only when those application components are collocated
on the same server.

Sharing locks between transaction branches means that multiple DB2 Java Database Connectivity (JDBC)
connections to the same database that are in the same transaction, from the same or different servers,
can share locks when accessing data. In this way, multiple components can access the data without
causing timeouts or other unwanted situations.

Sharing locks between transaction branches provides the benefit that two Enterprise JavaBeans (EJBs) on
two servers can share the visibility of data, and the locks to that data, within a distributed transaction.
Therefore, shared access to data does not depend on the location of the application component.

To specify that transaction branches share locks, you set the branch coupling attribute on the DB2
resource reference of the application to a value of tight. For example:
<resource-ref name="jdbc/DataSource_LockSharing" branch-coupling="TIGHT"/>

If you do not specify a branch coupling value, the default value of loose is used, that is, transaction
branches do not share locks.

You can set the branch coupling attribute on the DB2 resource reference of the application by using
Rational Application Developer tools. For detailed information, see the Rational Application Developer
information center. The application component must have a deployment descriptor; you cannot specify this
attribute if annotation has been used.

To share locks between transaction branches in this way, the following conditions apply:

v The database must be DB2 on a distributed or z/OS operating system.

v The JDBC provider must be DB2 Using IBM JCC Driver Version 3.51 and later, Version 3.6 and later, or
Version 4.1 and later.

v Connections must use JDBC type 4 connectivity to one of the following:

– DB2 Universal Database (DB2 UDB) Version 8 and later

– DB2 UDB for z/OS Version 8 with program temporary fix (PTF) UK27815 and later

– DB2 UDB for z/OS Version 9.1 with Fix Pack 4 and later

– DB2 UDB for z/OS Version 9.5 and later

Note: An IBM Support Technote is available that provides a complete list of which DB2 versions support
lock sharing. Search the IBM Support Portal for relevant information.

Chapter 10. EJB applications 189

http://www-947.ibm.com/support/entry/portal/All_troubleshooting_links/Software/Information_Management/DB2_for_Linux,_UNIX_and_Windows

Transactional high availability
The high availability of the transaction service enables any server in a cluster to recover the transactional
work for any other server in the same cluster. This facility forms part of the overall WebSphere Application
Server high availability (HA) strategy.

As a vital part of providing recovery for transactions, the transaction service logs information about active
transactional work in the transaction recovery log. The transaction recovery log stores the information in a
persistent form, which means that any transactional work in progress at the time of a server failure can be
resolved when the server is restarted. This activity is known as transaction recovery processing. In
addition to completing outstanding transactions, this processing also ensures that any locks held in the
associated resource managers are released.

Peer recovery processing

The standard recovery process that is performed when an application server restarts is for the server to
retrieve and process the logged transaction information, recover transactional work and complete indoubt
transactions. Completion of the transactional work (and hence the release of any database locks held by
the transactions) takes place after the server successfully restarts and processes its transaction logs. If the
server is slow to recover or requires manual intervention, the transactional work cannot be completed and
access to associated databases is disrupted.

To minimize such disruption to transactional work and the associated databases, WebSphere Application
Server provides a high availability strategy known as transaction peer recovery.

Peer recovery is provided within a server cluster. A peer server (another cluster member) can process the
recovery logs of a failed server while the peer continues to manage its own transactional workload. You do
not have to wait for the failed server to restart, or start a new application server specifically to recover the
failed server.

The peer recovery process is the logical equivalent to restarting the failed server, but does not constitute a
complete restart of the failed server within the peer server. The peer recovery process provides an
opportunity to complete outstanding work; it cannot start new work beyond recovery processing. No
forward processing is possible for the failed server.

Peer recovery moves the high availability requirements away from individual servers and onto the server
cluster. After such failures, the management system of the cluster dispatches new work onto the remaining

Figure 22. Peer recovery

190 Overview

servers; the only difference is the potential drop in overall system throughput. If a server fails, all that is
required is to complete work that was active on the failed server and redirect requests to an alternate
server.

By default, peer recovery is disabled until you enable failover of transaction log recovery in the cluster
configuration, and restart the cluster members. After you enable transaction log recovery, WebSphere
Application Server supports two styles for the initiation of transaction peer recovery: automated and
manual. You determine which style is more appropriate, based on your deployment, and specify that style
by configuring the appropriate high availability policy. This high availability policy is referred to elsewhere in
these topics as the policy for the transaction service.

Automated peer recovery
This style is the default for peer recovery initiation. If an application server fails, WebSphere
Application Server automatically selects a server to undertake peer recovery processing on its
behalf, and passes recovery back to the failed server when it restarts. To use this model, enable
transaction log recovery and configure the recovery log location for each cluster member.

Manual peer recovery
You must explicitly configure this style of peer recovery. If an application server fails, you use the
administrative console to select a server to perform recovery processing on its behalf.

In a HA environment, you must configure the compensation logs as well as the transaction logs. For each
server in the cluster, use the compensation service settings to configure a unique compensation log
location, and ensure that all cluster members can access those compensation logs.

Peer recovery example

The following diagrams illustrate the peer recovery process that takes place if a single server fails. Figure
2 shows three stable servers running in a WebSphere Application Server cluster. The workload is balanced
between these servers, which results in locks held by the back-end database on behalf of each server.

Figure 3 shows the state of the system after server 1 fails without clearing locks from the database.
Servers 2 and 3 can run their existing transactions to completion and release existing locks in the
back-end database, but further access might be impaired because of the locks still held on behalf of server
1. In practice, some level of access by servers 2 and 3 is still possible, assuming appropriately configured
lock granularity, but for this example assume that servers 2 and 3 attempt to access locked records and
become blocked.

Figure 23. Server cluster up and running, just before server failure

Chapter 10. EJB applications 191

Figure 4 shows a peer recovery process for server 1 running inside server 3. The transaction service
portion of the recovery process retrieves the information that is stored by server 1, and uses that
information to complete any indoubt transactions. In this figure, the peer recovery process is partially
complete as some locks are still held by the database on behalf of server 1.

Figure 5 shows the state of the server cluster when the peer recovery process is complete. The system is
in a stable state with just two servers, between which the workload is balanced. Server 1 can be restarted,
and will have no recovery processing of its own to perform.

Figure 24. Server 1 fails. Servers 2 and 3 become blocked as a result

Figure 25. Peer recovery process started in server 3

192 Overview

Deployment for transactional high availability
Before you use the high availability (HA) function, you must consider deployment issues such as your file
system type, or where you plan to store the transaction recovery logs. In particular, your file system type
can have important consequences for your recovery configuration.

Common configuration

Transaction peer recovery requires a common configuration of the resource providers between the
participating server members to undertake peer recovery between servers. Therefore, peer recovery
processing can only take place between members of the same server cluster. Although a cluster can
contain servers that are at different versions of WebSphere Application Server, peer recovery can only be
performed between servers in the cluster that are at Version 6 or later.

Physical storage

For application servers to perform transaction peer recovery for each other, they must be able to access
the transaction recovery logs of all the other members in the cluster. Ensure that the log files are stored on
a medium that is accessible by all members of the cluster, and that each cluster member has a unique log
file location on this medium. This medium, and access to it, for example through a local area network
(LAN), must support the file-based force operation that is used by the recovery log service to force data to
disk. After the force operation is complete, information must be persistently stored on physical disk media.

In a HA environment, application servers must also be able to access the compensation logs. Ensure that
the compensation log files are stored on a medium that is accessible by all members of the cluster, and
that each cluster member has a unique log file location on this medium.

For example, you can use IBM Network attached storage (NAS) (http://www.ibm.com/servers/storage/nas/
index.html) mounted on each node, and shared SCSI drives, but not simple network share. All nodes must
have read and write access to the recovery logs.

Figure 26. Server cluster stable again with just two servers: server 2 and server 3

Chapter 10. EJB applications 193

http://www.ibm.com/servers/storage/nas/index.html
http://www.ibm.com/servers/storage/nas/index.html

In addition, configure the mechanism by which the remote log files are accessed, to exploit any fault
tolerance in the underlying file system. For example, by using the Network File System (NFS) and hard
mounting the remote directory containing the log files by using the -o hard option of the NFS mount
command, the NFS client will try a failed operation repeatedly until the NFS server becomes available
again.

Two types of potential server failure exist: software failure and hardware failure. Software failures generally
do not affect other application servers directly. Even servers on the same physical hardware can undertake
peer recovery processing. If a hardware failure occurs, all the servers that are deployed on the failed
hardware become unavailable. Servers on other hardware are required to handle peer recovery
processing. Any HA configuration requires that servers are deployed across multiple and discrete hardware
systems.

File system

The file system type is an important deployment consideration as it is the main factor in deciding whether
to use automated or manual peer recovery. For more information, see “How to choose between automated
and manual transaction peer recovery” on page 131.

How to choose between automated and manual transaction peer recovery:

Your type of file system is the dominant factor in deciding which kind of transaction peer recovery to use.
Different file systems have different behaviors, and the file locking behavior in particular is important when
choosing between automated and manual peer recovery.

WebSphere Application Server high availability (HA) support uses a heartbeat mechanism to determine
whether servers are still running. Servers are considered failed if they stop responding to heartbeat
requests. Some scenarios, such as system overloading and network partitioning (explained elsewhere in
this topic), can cause servers to stop responding to heartbeats, even though the servers are still running.
WebSphere Application Server uses file locking technology to prevent such events from causing
concurrent access to transaction recovery logs, because access to a recovery log by more than one server
can lead to loss of data integrity.

Figure 27. Recovery logs on NAS storage are available to all servers

194 Overview

However, not all file systems provide the necessary file locking semantics, specifically that file locks are
released when a server fails. For example, Network File System Version 4 (NFSv4) provides this release
behavior, whereas Network File System Version 3 (NFSv3) does not.

You can test whether a shared file system can support the failover of transaction logs by running the File
System Locking Protocol Test for WebSphere Application Server. To run the test see, http://www-
01.ibm.com/support/docview.wss?uid=swg24010222.

NFSv4 releases locks held on behalf of a host in case that host fails. Peer recovery can occur
automatically without restarting the failed hardware. Therefore, this version of NFS is better suited for use
with automated peer recovery.

NFSv3 holds file locks on behalf of a failed host until that host can restart. In this context, the host is the
physical machine running the application server that requested the lock and it is the restart of the host, not
the application server, that eventually triggers the locks to release.

To illustrate file locking on NFSv3, consider the behavior when a cluster member fails:

1. Server H is running on host H and holds an exclusive file lock for its own recovery log files.

2. Server P is running on host P and holds an exclusive file lock for its own recovery log files.

3. Host H fails, taking server H with it. The NFS lock manager on the file server holds the locks that are
granted to server H on its behalf.

4. A peer recovery event is triggered in server P for server H by WebSphere Application Server.

5. Server P attempts to gain an exclusive file lock for this peer recovery log, but is unable to do so as it
is held on behalf of server H. The peer recovery process is blocked.

6. At an unspecified time, host H is restarted. The locks held on its behalf are released.

7. The peer recovery process in server P is unblocked and granted the exclusive file locks that are
needed to undertake peer recovery.

8. Peer recovery takes place in server P for server H.

9. Server H is restarted.

10. If peer recovery is still in progress in server P, the recovery is halted.

11. Server P releases the exclusive lock on the recovery logs and returns ownership of the recovery logs
back to server H.

12. Server H obtains the exclusive lock and can now undertake standard transaction logging.

Because of this behavior, on NFSv3 you must disable file locking to use automated peer recovery.
Disabling file locking can lead to concurrent access to recovery logs so it is vital that you protect your
system from system overloading and network partitioning first. Alternatively, you can configure manual peer
recovery, where you prevent concurrent access by manually triggering peer recovery processing only for
servers that have failed.

System overloading
System overloading occurs when a machine becomes very heavily loaded such that response
times are extremely poor and requests begin to time out. Several potential causes exist for such
overloading, including:

v The server is underpowered and cannot handle the workload.

v The server received a temporary surge of requests.

v Insufficient physical memory is available. As a result, the operating system is too busy paging to
give the application server the required CPU time.

Network partitioning
Network partitioning occurs when a communications failure in a network results in two smaller
networks that are independent and cannot contact each other.

Chapter 10. EJB applications 195

http://www-01.ibm.com/support/docview.wss?uid=swg24010222
http://www-01.ibm.com/support/docview.wss?uid=swg24010222

During normal running, two servers on the network exchange heartbeats. During system overloading,
heartbeat operations time out, giving the appearance of a server failure. After network partitioning, each
server is in a separate network and heartbeats cannot pass between them, also giving the appearance of
a server failure.

High availability policies for the transaction service
WebSphere Application Server provides integrated high availability (HA) support in which system
subcomponents, such as the transaction service, are made highly available. An HA policy provides the
logic that governs the manner in which each WebSphere Application Server HA component behaves within
the overall HA framework. For the transaction service, the transaction HA policy provides the logic to
determine which servers own a recovery log at any time.

Typically, transaction policies assign ownership of a recovery log to the server that originally created it (the
home server) and that server can then use the recovery log for both recovery and normal transactional
activity. In the event that the home server is unavailable or fails, ownership can pass to a peer server to
undertake recovery processing.

Conceptually, a policy can be thought of as consisting of two key components, a policy type and a policy
configuration.

Figure 28. Heartbeats in a system running normally, compared to heartbeats after the apparent server failures of
system overloading and network partitioning

196 Overview

Policy type

The policy type determines whether peer recovery initiation is manual or automated. The policy essentially
provides the logic for determining updated recovery log ownership in the event of a server failure. The
following WebSphere Application Server policy types are used for transaction peer recovery (other HA
policy types exist, but are not used by the transaction service):

Static Ownership of the recovery log is defined in the WebSphere Application Server configuration. At run
time, the static policy assigns ownership accordingly. Any changes to ownership require a change
to the static configuration and therefore this policy type is used for manually initiated peer
recovery.

One-of-N
Ownership of the recovery log is determined dynamically by the WebSphere Application Server HA
framework and assigned to exactly one of the N cluster members. This policy type is used for
automated peer recovery.

Transaction compensation and business activity support
A business activity is a collection of tasks that are linked together so that they have an agreed outcome.
Unlike atomic transactions, activities such as sending an email can be difficult or impossible to roll back
atomically, and therefore require a compensation process in the event of an error. The WebSphere
Application Server business activity support provides this compensation ability through business activity
scopes.

When to use business activity support

Use the business activity support when you have an application that requires compensation. An application
requires compensation if its operations cannot be atomically rolled back. Typically, this scenario is because
of one of the following reasons:

v The application uses multiple non-extended-architecture (XA) resources.

v The application uses more than one atomic transaction, for example, enterprise beans that have
Requires new as the setting for the Transaction field in the container transaction deployment
descriptor.

v The application does not run under a global transaction.

The following diagram shows a simple web service application that uses the business activity support. The
Retailer, Warehouse and Manufacturing services are running in non-WebSphere Application
Serverenvironments. The Retailer service calls the Supplier service, running on WebSphere Application
Server, which delegates tasks to the Warehouse and Manufacturing services. The implementation of the
Supplier service contains a stateless session bean, which calls other stateless session beans that are
associated with the Warehouse and Manufacturing services, and that undertake work that can be
compensated. These other session beans each have a compensation handler; a piece of logic that is
associated with an application component at run time, and performs compensation activity such as
resending an email.

Chapter 10. EJB applications 197

Application design

Business activity contexts are propagated with application messages, and can therefore be distributed
between application components that are not co-located in the same server. Unlike atomic transaction
contexts, business activity contexts are propagated on both synchronous (blocking) call-response
messages and asynchronous one-way messages. An application component that runs under a business
activity scope is responsible for ensuring that any asynchronous work it initiates is complete before the
component's own processing is complete. An application that initiates asynchronous work by using a
fire-and-forget message pattern must not use business activity scopes, because such applications have no
means of detecting whether this asynchronous processing has completed.

Only enterprise beans that have container-managed transactions can use the business activity functions.
Enterprise beans that exploit business activity scopes can offer web service interfaces, but can also offer
standard enterprise bean local or remote Java interfaces. Business activity context is propagated in web
service messages by using a standard, interoperable Web Services Business Activity (WS-BA)
CoordinationContext element. WebSphere Application Server can also propagate business activity context
on RMI calls to enterprise beans when Web services are not being used, but this form of the context is not
interoperable with non-WebSphere Application Server environments. You might want to use this
homogeneous scenario if you require compensation for an application that is internal to your business. If
you want to use business activity compensation in a heterogeneous environment, expose your application
components as web services.

198 Overview

Business activity contexts can be propagated across firewalls and outside the WebSphere Application
Server domain. The topology that you use to achieve this propagation can affect the high availability and
affinity behavior of the business activity transaction.

Application development and deployment

WebSphere Application Server provides a programming model for creating business activity scopes, and
for associating compensation handlers with those business activity scopes. WebSphere Application Server
also provides an application programming interface to specify compensation data, and check or alter the
status of a business activity. To use the business activity support you must set certain application
deployment descriptors appropriately, provide a compensation handler class if required, and enable
business activity support on any servers that run the application.

Note: Applications can exploit the business activity support only if you deploy them to a WebSphere
Application Server at Version 6.1 or later. Applications cannot use the business activity support if
you deploy them to a cluster that includes WebSphere Application ServerVersion 6.0.x servers.

Business activity scopes

The scope of a business activity is that of a main WebSphere Application Server unit of work: a global
transaction, an activity session, or local transaction containment (LTC). A business activity scope is not a
new unit of work (UOW); it is an attribute of an existing main UOW. Therefore, a one-to-one relationship
exists between a business activity scope and a UOW.

In a WS-BA deployment, the UOW must be container-managed:

v The UOW can be a container-managed transaction (CMT) enterprise bean that creates a global
transaction.

v The UOW can be a local transaction containment (LTC) where the container is responsible for initiating
and ending resource manager local transactions (RMLTs). That is, in the transactional deployment
descriptor attributes, the Local Transaction attribute Resolver must be set to ContainerAtBoundary. To
use WS-BA, you must not set the Resolver attribute to Application.

Any main UOW can have a business activity scope associated with it. If a component running under a
UOW that is associated with a business activity scope calls another component, that request propagates
the business activity scope; any work done by the new component is associated with the same business
activity scope as the calling component. The called component can create a new UOW, for example if an
enterprise bean has a Transaction setting of Requires new, or runs under the same UOW as the calling
component. If a new UOW is started then a new business activity scope is created and associated with
the new UOW. The newly created business activity scope is a child of the business activity scope
associated with the calling UOW. In the following diagram, EJB1a running under UOW1 calls two
components: EJB1b that also runs under UOW1, and EJB2 that creates a new UOW, UOW2. The
enterprise bean EJB1b, calls another enterprise bean, EJB3, which creates another new UOW, UOW3.
Because each new UOW is created by a calling component whose UOW already has an association with
business activity scope BAScope1, the newly created UOWs are associated with new inner business
activity scopes, BAScope2 and BAScope3.

Chapter 10. EJB applications 199

Inner business activity scopes must complete before the outer business activity scope completes. Inner
business activity scopes, for example BAScope2, have an association with the outer business activity
scope, in this case BAScope1. Each business activity scope is directed to close if its associated UOW
completes successfully, or to compensate if its associated UOW fails. If BAScope2 completes successfully,
any active compensation handlers that are owned by BAScope2 are moved to BAScope1, and are
directed in the same way as the completion direction of BAScope1: either compensate or close. If
BAScope2 fails, the active compensation handlers are compensated automatically, and nothing is moved
to the outer BAScope1. When an inner business activity scope fails, as a result of its associated UOW
failing, an application server exception is thrown to the to calling application component, running in the
outer UOW.

For example, if the inner UOW fails it might throw a TransactionRolledBackException exception. If the
calling application can handle the exception, for example by trying the called component again or by
calling another component, then the calling UOW, and its associated business activity scope, can complete
successfully even though the inner business activity scope failed. If the application design requires the
calling UOW to fail, and for its associated business activity scope to be compensated, then the calling
application component must cause its UOW to fail, for example by allowing any system exception from the
UOW that failed to be handled by its container.

When the outer business activity scope completes, its success or failure determines the completion
direction (close or compensate) of any active compensation handlers that are owned by the outer business
activity scope, including those promoted by the successful completion of inner business activity scopes. If
the outer business activity scope completes successfully, it drives all active compensation handlers to
close. If the outer business activity scope fails, it drives all active compensation handlers to compensate.

This compensation behavior is summarized in the following table.

200 Overview

Table 28. Compensation behavior for a single business activity scope. The table lists the possible combinations of
success and failure for the inner and outer business activity scopes, and the compensation behavior associated with
each combination.

Inner
business
activity scope

Outer
business
activity scope Compensation behavior

Succeeds Succeeds Any compensation handlers that are owned by the inner business activity scope wait for the
outer UOW to complete. When the outer UOW succeeds, the outer business activity scope
drives all compensation handlers to close.

Fails Succeeds Any active compensation handlers that are owned by the inner business activity scope are
compensated. An exception is thrown to the outer UOW; if this exception is caught, when the
outer UOW succeeds, the outer business activity scope drives all remaining active compensation
handlers to close.

Fails Fails Any active compensation handlers that are owned by the inner business activity scope are
compensated. An exception is thrown to the outer UOW; if this exception is not caught, the outer
business activity scope fails. When the outer business activity scope fails, either because of the
unhandled exception or for some other reason, all remaining active compensation handlers are
compensated.

Succeeds Fails Any compensation handlers that are owned by the inner business activity scope wait for the
outer UOW to complete. When the outer UOW fails, the outer business activity scope drives all
compensation handlers to compensate.

When a UOW with an associated business activity scope completes, the business activity scope always
completes in the same direction as the UOW that it is associated with. The only way that you can
influence the direction of the business activity scope is to influence the UOW that it is associated with,
which you can do by using the setCompensateOnly method of the business activity API.

A compensation handler that is registered within a transactional UOW might initially be inactive, depending
on the method invoked from the business activity API. Inactive handlers in this situation become active
when the UOW in which that handler is declared completes successfully. A compensation handler that is
registered outside a transactional UOW always becomes active immediately. For more information, see the
topic about the business activity API.

Each business activity scope in the diagram represents a business activity. For example, the outer
business activity running under BAScope1 can be a holiday booking scenario, with BAScope2 being a
flight booking activity and BAScope3 a hotel booking. If either the flight or hotel bookings fail, the overall
holiday booking by default also fails. Alternatively if, for example, the flight booking fails, you might want
your application to try booking a flight by using another component that represents a different airline. If the
overall holiday booking fails, the application can use compensation handlers to cancel any flights or hotels
that are already successfully booked.

Use of business activity scopes by application components

Application components do not use business activity scopes by default. You use the WebSphere
Application Server assembly tools to specify the use of a business activity scope and to identify any
compensation handler class for the component:

Default configuration
If a business activity context is present on a request received by a component with no business
activity scope configuration, the context is stored by the container but never used during the
method scope of the target component. A new business activity scope is not created. If the target
component invokes another component, the stored business activity context is propagated and can
be used by other compensating components.

Run enterprise bean methods under a business activity scope
Any business activity context present on the incoming request is received by the container and
made available to the target component. If a new UOW is created for the target method, for
example because the enterprise bean method has a Transaction setting of Requires new, the

Chapter 10. EJB applications 201

received business activity scope becomes an outer business activity scope to a newly created
business activity. If the UOW is propagated from the calling component and used by the method,
then the received business activity scope is used by the method. If a business activity scope does
not exist on the invocation, a new business activity scope is created and used by the method.

To create a business activity scope when an enterprise bean is invoked, you must configure the enterprise
bean to run enterprise bean methods under a business activity scope. You must also configure the
deployment descriptors for the method being invoked, to specify the creation of a new UOW upon
invocation. For details, see the topic about creating an application that uses the WS-BA support.

JTA support
Java Transaction API (JTA) support provides application programming interfaces (APIs) in addition to the
UserTransaction interface that is defined in the JTA 1.1 specification.

These interfaces include the TransactionSynchronizationRegistry interface, which is defined in the JTA 1.1
specification, and the following API extensions:
v SynchronizationCallback interface
v ExtendedJTATransaction interface
v UOWSynchronizationRegistry interface
v UOWManager interface

The APIs provide the following functions:

v Access to global and local transaction identifiers associated with the thread.

The global identifier is based on the transaction identifier in the CosTransactions::PropagationContext:
object and the local identifier identifies the transaction uniquely in the local Java virtual machine (JVM).

v A transaction synchronization callback that any enterprise application component can use to register an
interest in transaction completion.

Advanced applications can use this callback to flush updates before transaction completion and clear up
state after transaction completion. Java EE (and related) specifications position this function typically as
the domain of the enterprise application containers.

Components such as persistence managers, resource adapters, enterprise beans, and web application
components can register with a JTA transaction.

The following information is an overview of the interfaces that the JTA support provides. For more detailed
information, see the generated API documentation.

SynchronizationCallback interface

An object implementing this interface is enlisted once through the ExtendedJTATransaction interface, and
receives notification of transaction completion.

Although an object implementing this interface can run on a Java platform for enterprise applications
server, there is no specific enterprise application component active when this object is called. So, the
object has limited direct access to any enterprise application resources. Specifically, the object has no
access to the java: namespace or to any container-mediated resource. Such an object can cache a
reference to an enterprise application component (for example, a stateless session bean) that it delegates
to. The object would then have all the usual access to enterprise application resources. For example, you
might use the object to acquire a Java Database Connectivity (JDBC) connection and flush updates to a
database during the beforeCompletion method.

ExtendedJTATransaction interface

This interface is a WebSphere programming model extension to the Java EE JTA support. An object
implementing this interface is bound, by enterprise application containers in WebSphere Application Server

202 Overview

that support this interface, at java:comp/websphere/ExtendedJTATransaction. Access to this object, when
called from an Enterprise JavaBeans (EJB) container, is not restricted to component-managed
transactions.

An application uses a Java Naming and Directory Interface (JNDI) lookup of java:comp/websphere/
ExtendedJTATransaction to get an ExtendedJTATransaction object, which the application uses as shown in
the following example:
ExtendedJTATransaction exJTA = (ExtendedJTATransaction)ctx.lookup("
java:comp/websphere/ExtendedJTATransaction");
SynchronizationCallback sync = new SynchronizationCallback();
exJTA.registerSynchronizationCallback(sync);

The ExtendedJTATransaction object supports the registration of one or more application-provided
SynchronizationCallback objects. Depending on how the callback is registered, each registered callback is
called at one of the following points:

v At the end of every transaction that runs on the application server, whether the transaction is started
locally or imported

v At the end of the transaction for which the callback was registered

Note: In this release, the registerSynchronizationCallbackForCurrentTran method is deprecated. Use the
registerInterposedSynchronization method of the TransactionSynchronizationRegistry interface
instead.

TransactionSynchronizationRegistry interface

This interface is defined in the JTA 1.1 specification. System-level application components, such as
persistence managers, resource adapters, enterprise beans, and web application components, can use
this interface to register with a JTA transaction. Then, for example, the component can flush a cache when
a transaction completes.

To obtain the TransactionSynchronizationRegistry interface, use a JNDI lookup of java:comp/
TransactionSynchronizationRegistry.

Note: Use the registerInterposedSynchronization method to register a synchronization instance, rather
than the registerSynchronizationCallbackForCurrentTran method of the ExtendedJTATransaction
interface, which is deprecated in this release.

UOWSynchronizationRegistry interface

This interface provides the same functions as the TransactionSynchronizationRegistry interface, but
applies to all types of units of work (UOWs) that WebSphere Application Server supports:
v JTA transactions
v local transaction containments (LTCs)
v ActivitySession contexts

System-level application server components such as persistence managers, resource adapters, enterprise
beans, and web application components can use this interface to register with a JTA transaction. The
component can do the following:

v Register synchronization objects with special ordering semantics.

v Associate resource objects with the UOW.

v Get the context of the current UOW.

v Get the current UOW status.

v Mark the current UOW for rollback.

Chapter 10. EJB applications 203

To obtain the UOWSynchronizationRegistry interface, use a JNDI lookup of java:comp/websphere/
UOWSynchronizationRegistry. This interface is available only in a server environment.

The following example registers an interposed synchronization with the current UOW:
// Retrieve an instance of the UOWSynchronizationRegistry interface from JNDI.
final InitialContext initialContext = new InitialContext();
final UOWSynchronizationRegistry uowSyncRegistry =
(UOWSynchronizationRegistry)initialContext.lookup("java:comp/websphere/UOWSynchronizationRegistry");

// Instantiate a class that implements the javax.transaction.Synchronization interface
final Synchronization sync = new SynchronizationImpl();

// Register the Synchronization object with the current UOW.
uowSynchronizationRegistry.registerInterposedSynchronization(sync);

UOWManager interface

The UOWManager interface is equivalent to the JTA TransactionManager interface, which defines the
methods that allow an application server to manage transaction boundaries. Applications can use the
UOWManager interface to manipulate UOW contexts in the product. The UOWManager interface applies
to all types of UOWs that WebSphere Application Server supports; that is, JTA transactions, local
transaction containments (LTCs), and ActivitySession contexts. Application code can run in a particular
type of UOW without needing to use an appropriately configured enterprise bean. Typically, the logic that
is performed in the scope of the UOW is encapsulated in an anonymous inner class. System-level
application server components such as persistence managers, resource adapters, enterprise beans, and
web application components can use this interface.

WebSphere Application Server does not provide a TransactionManager interface in the API or the system
programming interface (SPI). The UOWManager interface provides equivalent functions, but WebSphere
Application Server maintains control and integrity of the UOW contexts.

To obtain the UOWManager interface in a container-managed environment, use a JNDI lookup of
java:comp/websphere/UOWManager. To obtain the UOWManager interface outside a container-managed
environment, use the UOWManagerFactory class. This interface is available only in a server environment.

You can use the UOWManager interface to migrate a web application to use web components rather than
enterprise beans, but maintain control over the UOWs. For example, a web application currently uses the
UserTransaction interface to begin a global transaction, makes a call to a method on a session enterprise
bean that is configured as not supported to undertake some non-transactional work, and then completes
the global transaction. You can move the logic that is encapsulated in the session EJB method to the run
method of a UOWAction implementation. Then, you replace the code in the web component that calls the
session enterprise bean with a call to the runUnderUOW method of a UOWManager interface to request
that this logic is run in a local transaction. In this way, you maintain the same level of control over the
UOWs as you had with the original application.

The following example performs some transactional work in the scope of a new global transaction. The
transactional work is performed in an anonymous inner-class that implements the run method of the
UOWAction interface. Any checked exceptions that the run method creates do not affect the outcome of
the transaction.
// Retrieve an instance of the UOWManager interface from JNDI.
final InitialContext initialContext = new InitialContext();
final UOWManager uowManager = (UOWManager)initialContext.lookup("java:comp/websphere/UOWManager");

try
{
// Invoke the runUnderUOW method, indicating that the logic should be run in a global
// transaction, and that any existing global transaction should not be joined, that is,
// the work must be performed in the scope of a new global transaction.
uowManager.runUnderUOW(UOWSynchronizationRegistry.UOW_TYPE_GLOBAL_TRANSACTION, false, new UOWAction()
{
public void run() throws Exception
{

204 Overview

// Perform transactional work here.
}

});
}

catch (UOWActionException uowae)
{
// Transactional work resulted in a checked exception being thrown.
}

catch (UOWException uowe)
{
// The completion of the UOW failed unexpectedly. Use the getCause method of the
// UOWException to retrieve the cause of the failure.
}

SCA transaction intents
Service Component Architecture (SCA) provides declarative mechanisms in the form of intents for
describing the transactional environment required by components.

This topic covers:

v “Using a global transaction” on page 142

v “Using local transaction containment” on page 144

v “Transaction intent default behavior” on page 145

v “Mapping of SCA intents on services to EJB or Spring transaction attributes” on page 145

v “Obtaining the transaction manager in Spring applications” on page 145

Using a global transaction

Components that use a synchronous interaction style can be part of a single, distributed ACID transaction
within which all transaction resources are coordinated to either atomically commit or roll back. This is
specified by using the managedTransaction.global intent in the requires attribute of the
<implementation.java> element as shown later in this section.
<component name="DataAccessComponent">

<implementation.java class="example.DataAccessImpl"
requires="managedTransaction.global"/>

</component>

For implementation.spring components, specify the transaction attribute in the Spring application context
file. For implementation.jee components, specify the transaction attribute in the Enterprise JavaBeans
(EJB) deployment descriptor.

It is possible to control whether a component's service runs under its client's global transaction by
specifying either the propagatesTransaction or suspendsTransaction intent on the component's <service>
element.

propagatesTransaction
The service runs under its client's global transaction. If the client is not running in a global
transaction or chose not to propagate its global transaction, the service runs in its own global
transaction.

suspendsTransaction
The service runs in its own global transaction separate from the client transaction.

Specify the propagatesTransaction or suspendsTransaction intent on the component's <service> element
only for services in implementation.java components. For implementation.spring components, specify
the transaction attribute in the Spring application context file. For implementation.jee components, specify
the transaction attribute in the EJB deployment descriptor.

Chapter 10. EJB applications 205

It is also possible to control whether a component global transaction is propagated to a referenced service
by specifying either the propagatesTransaction or suspendsTransaction intent on the component
<reference> element.

propagatesTransaction
The component's global transaction is made available to the referenced service. The referenced
service might or may not use this transaction depending on how it is configured.

suspendsTransaction
The component's global transaction is not made available to the referenced service.

You can specify the propagatesTransaction or suspendsTransaction intent on the component's
<reference> element for references in all implementation types.

Transaction context is never propagated on @OneWay methods. The SCA run time ignores
propagatesTransaction for OneWay methods.

Further, the product does not support propagatesTransaction intent on the binding.atom or
binding.jsonrpc elements.

The following example shows the use of the managedTransaction.global, propagatesTransaction, and
suspendsTransaction intents. The DataUpdateComponent runs in its own global transaction, not in its client's
transaction, because suspendsTransaction is specified on its <service> element. Its global transaction is
propagated to the referenced service DataAccessComponent because propagatesTransaction is specified
on its <reference> element.
<component name="DataUpdateComponent">

<implementation.java class="example.DataUpdateImpl"
requires="managedTransaction.global"/>

<service name="DataUpdateService"
requires="suspendsTransaction"/>

<reference name="myDataAccess" target="DataAccessComponent"
requires="propagatesTransaction"/>

</component>

Propagating transactions over the web service binding requires the use of a WebSphere policy set that
contains the WS-Transaction policy type. You can set up this policy set in one of the following ways:

v You can import the WSTransaction policy set that is provided with the product.

v You can create your own policy set and include the WS-Transaction policy type.

The following example assumes the use of the WSTransaction policy set.
<composite name="WSDataUpdateComposite"
xmlns="http://www.osoa.org/xmlns/sca/1.0"
xmlns:ws="http://www.ibm.com/xmlns/prod/websphere/sca/1.0/2007/06">

<component name="WSDataUpdateComponent">
<implementation.java class="example.DataUpdateImpl"

requires="managedTransaction.global"/>
<service name="DataUpdateService"

requires="propagatesTransaction">
<binding.ws ws:wsPolicySet="WSTransaction"/>

</service>
<reference name="myDataBuddy" target="DataBuddyComponent"

requires="propagatesTransaction">
<binding.ws ws:wsPolicySet="WSTransaction"/>

</reference>
</component>

</composite>

Tip: Transaction propagating might not result in a managed connection. Use a qualifying Java EE module
for a managed connection and connection sharing.

206 Overview

Using local transaction containment

Business logic might have to access transactional resource managers without the presence of a global
transaction. A component can be configured to run under local transaction containment (LTC). The SCA
runtime starts an LTC before dispatching a method on the component and completes the LTC at the end
of the method dispatch. The component's interactions with resource providers (such as databases) are
managed within resource manager local transactions (RMLTs). A resource manager local transaction
(RMLT) represents a unit of recovery on a single connection that is managed by the resource manager.

The local transaction containment policy is configured by using an intent. There are two choices:

managedTransaction.local
Use this intent when each interaction with a resource manager should be part of an extended local
transaction that is committed at the end of the method. The SCA runtime wraps interactions with
each resource manager in a resource manager local transaction (RMLT). The SCA runtime
commits each RMLT at the end of method dispatch, unless an unchecked exception occurs, in
which case the SCA runtime stops each RMLT. The component might not use resource manager
commit/rollback interfaces or set AutoCommit to true. If multiple resource managers are used, the
RMLTs are committed independently so it is possible for some to fail and some to succeed. If this
behavior is not what you want, use a global transaction.

noManagedTransaction
The SCA runtime does not wrap interactions with resource managers in a RMLT. The component
implementation manages the start and end of its own RMLTs or gets AutoCommit behavior (which
commits following each use of a resource) by default. The component must complete any RMLTs
prior to the end of the method dispatch otherwise the SCA runtime stops them.

The intent is specified by using the requires attribute on the <implementation.java> element. An example
is shown below.
<component name="DataAccessLocalComponent">

<implementation.java class="example.DataAccessImpl"
requires="managedTransaction.local"/>

</component>

A local transaction cannot be propagated from one component to another. It is an error to specify
propagatesTransaction on a component's <service> if the component uses the managedTransaction.local
or noManagedTransaction intent.

The SCA run time performs a rollback under the following circumstances:

v When managedTransaction.global is used, the SCA run time performs a rollback if the component
method that started the global transaction throws an unchecked exception. An unchecked exception is a
subclass of java.lang.RuntimeException or java.lang.Error. A checked exception does not force a
rollback.

v When managedTransaction.local is used, the SCA run time performs a rollback if the component
method throws an unchecked exception. An unchecked exception is a subclass of
java.lang.RuntimeException or java.lang.Error. A checked exception does not force a rollback.

v When noManagedTransaction is used, the SCA run time performs a rollback of any RMLT that has not
been committed by the component method, regardless of whether the method throws an exception or
not.

When managedTransaction.global or managedTransaction.local is used, the business logic can force a
rollback by using the UOWSynchronization interface.
com.ibm.websphere.uow.UOWSynchronizationRegistry uowSyncRegistry =

com.ibm.wsspi.uow.UOWManagerFactory.getUOWManager();
uowSyncRegistry.setRollbackOnly();

Chapter 10. EJB applications 207

Transaction intent default behavior

If transactional intents are not specified, the default behavior is vendor-specific. If a transactional intent in
not specified for the implementation, the default is managedTransaction.global. If a transactional intent is
not specified for a service or reference, the default is suspendsTransaction. It is recommended to specify
the required intents rather than to rely on default behavior so that the application is portable.

Using @Requires annotation to specify transaction intents

You can also specify transaction intents in the implementation class by using the @Requires annotation.
The general form of the annotation is:
@Requires("{http://www.osoa.org/xmlns/sca/1.0}intent")

For example, you can use the following in the implementation class:
@Requires("{http://www.osoa.org/xmlns/sca/1.0}managedTransaction.global")

You can specify required intents on various elements, including the composite, component,
implementation, service and reference elements. An element inherits the required intents of its parent
element except when they conflict. For example, if a composite element requires
managedTranaction.global and a component element requires managedTransaction.local, then the
component uses managedTransaction.local.

You cannot use the @Requires annotation for implementation.spring components.

Mapping of SCA intents on services to EJB or Spring transaction attributes

The following table contains information from Section 5.3 of the SCA Java EE Integration specification and
lists the mapping of SCA intents on services to EJB or Spring transaction attributes.

Table 29. Mapping of EJB transaction attributes to SCA transaction implementation policies. See Section 5.3 of the
SCA Java EE Integration specification.

EJB transaction attribute
SCA Transaction Policy required
intents on services

SCA Transaction Policy required intents on
implementations

NOT_SUPPORTED suspendsTransaction

REQUIRED propagatesTransaction managedTransaction.global

SUPPORTS propagatesTransaction managedTransaction.global

REQUIRES_NEW suspendsTransaction managedTransaction.global

MANDATORY propagatesTransaction managedTransaction.global

NEVER suspendsTransaction

For MANDATORY and NEVER attributes, policy mapping might not be accurate. These attributes express
responsibilities of the EJB container as well as the EJB implementer rather then express a requirement on
the service consumer.

Obtaining the transaction manager in Spring applications

The product does not support local JNDI lookups in Spring applications that are referenced from SCA
components. Thus, you cannot use <tx:jta-transaction-manager/> in the Spring application context file
to obtain the WebSphere transaction manager.

To obtain the WebSphere transaction manager, add the following definition explicitly to the Spring
application-context.xml file:

208 Overview

<bean id="WASTranMgr" class="com.ibm.wsspi.uow.UOWManagerFactory" factory-method="getUOWManager"/>
<bean id="transactionManager"

class="org.springframework.transaction.jta.WebSphereUowTransactionManager">
<property name="uowManager" ref="WASTranMgr"/>
<property name="autodetectUserTransaction" value="false"/>

</bean>

Chapter 10. EJB applications 209

210 Overview

Chapter 11. IBM WebSphere Application Server Developer
Tools for Eclipse overviewVersion 8.5

IBM WebSphere Application Server Developer Tools for Eclipse is a lightweight set of tools for developing,
assembling, and deploying Java EE, OSGi, Web 2.0, and mobile applications to WebSphere Application
Server.

When combined with WebSphere Application Server V8.5 Liberty Profile, WebSphere Application Server
Developer Tools for Eclipse provides a fast and lightweight environment for the rapid development and unit
testing of web, Web 2.0, mobile, and OSGi applications.

Supported programming models

The following table lists the programming models available in IBM WebSphere Application Server Developer Tools for
Eclipse and indicates the application servers that they are supported on.

Programming model

WebSphere
Application Server
V8.5 Liberty Profile

WebSphere
Application Server
V8.5

WebSphere
Application Server
V8.0

WebSphere
Application Server
V7.0

Develop Java EE
applications

Yes
Note: EJB is not
supported.

Yes Yes Yes

Develop JAX-RS
applications

Yes Yes Yes Yes

Develop JAX-WS
applications

No Yes Yes Yes

Develop Web 2.0 and
mobile web
applications

Yes Yes Yes Yes

Develop OSGi
applications

Yes
Note: The following
technologies are
supported:

v Web 2.5

v Web 3.0

v JPA

Yes
Note: The following
technologies are
supported:

v Web 2.5

v Web 3.0

v JPA

v JAX-RS

v JSF

v EJB

Yes
Note: The following
technologies are
supported:

v Web 2.5

v Web 3.0

v JPA

v JAX-RS

v JSF

No

Advanced support

The following features are supported on all WebSphere Application Servers, except the Liberty profile:

v Migrate the server when importing applications targeted to an invalid server.

v Start and stop a remote server.

v Run and debug administrative script files on the server.

Note: The workbench does not support WebSphere Application Server V7.0 feature packs and managed
(federated) WebSphere Application Server Network Deployment environments.

© Copyright IBM Corp. 2012 211

Getting started

To get started, see http://publib.boulder.ibm.com/infocenter/radhelp/v8r5/topic/com.ibm.rad.install.doc/
topics/t_install_wdt.html

Visit the WASdev community site to:

v Participate in or post questions in the forum.

v Learn more about the workbench from the collection of articles and sample code.

v Get community news through blog entries.

v Help improve the workbench by reporting defects and requesting feature enhancements.

Getting help

WebSphere Application Server Developer Tools for Eclipse provides you with access to the Rational
Application Developer documentation.

Note: Some documented features are available only with the full Rational Application Developer for
WebSphere Software product.

For details about how to integrate the workbench with the server, see Testing and publishing on a server

Additional features available with Rational Application Developer for WebSphere
Software

For enterprise-level development, consider using Rational Application Developer as your integrated
development environment. Rational Application Developer provides a complete environment for Java, Java
EE, web, web services, SOA, OSGi, Web 2.0, mobile, and portal designers and developers, including the
server development tools. It also provides integration and support for the following application servers and
associated feature packs:

v WebSphere Application Server V8.5 Liberty Profile

v WebSphere Application Server V8.5

v WebSphere Application Server V8.0

v WebSphere Application Server V7.0

Rational Application Developer accelerates development and unit test to ensure delivery of higher quality
applications. It offers proven tools for teams using emerging trends of Web 2.0, SOA, OSGi, and Cloud
computing that help accelerate adoption and software delivery.

For more information about this product, see Rational Application Developer for WebSphere Software or
IBM WebSphere Application Server Developer Tools for Eclipse, Version 8.5 overview.

212 Overview

http://publib.boulder.ibm.com/infocenter/radhelp/v8r5/topic/com.ibm.rad.install.doc/topics/t_install_wdt.html
http://publib.boulder.ibm.com/infocenter/radhelp/v8r5/topic/com.ibm.rad.install.doc/topics/t_install_wdt.html
https://www.ibm.com/developerworks/mydeveloperworks/blogs/wasdev/entry/home?lang=en
http://publib.boulder.ibm.com/infocenter/radhelp/v8r5/topic/com.ibm.servertools.doc/topics/cservertool_usergoalcontainer.html
http://www-01.ibm.com/software/awdtools/developer/application/
http://publib.boulder.ibm.com/infocenter/radhelp/v8r5/topic/com.ibm.rad.install.doc/topics/wdt_overview.html

Chapter 12. The Liberty profile

The Liberty profile is a highly composable, fast to start, dynamic application server runtime environment.

You can install the server as described in Installing the Liberty profile. Because the Liberty profile does not
include a Java runtime environment (JRE), you have to install a JRE provided by either IBM or Oracle
beforehand. For more information about supported Java environments, and where to get them, see
Minimum supported Java levels.

This server supports two models of application deployment:

v Deploy an application by dropping it into the “dropins” directory.

v Deploy an application by adding it to the server configuration.

The Liberty profile supports a subset of the following parts of the full WebSphere Application Server
programming model:

v Web applications

v OSGi applications

v Java Persistence API (JPA)

Associated services such as transactions and security are only supported as far as is required by these
application types and by JPA.

Features are the units of capability by which you control the pieces of the runtime environment that are
loaded into a particular server. The Liberty profile includes the following main features:

v Bean validation

v Blueprint

v Java API for RESTful Web Services

v Java Database Connectivity (JDBC)

v Java Naming and Directory Interface

v Java Persistence API (JPA)

v Java Server Faces (JSF)

v Java Server Pages (JSP)

v Local connector (for Java Management Extensions (JMX) clients)

v Monitoring

v OSGi JPA (JPA support for OSGi applications)

v Remote connector (for JMX clients)

v Secure Sockets Layer (SSL)

v Security

v Servlet

v Session persistence

v Transaction

v Web application bundle (WAB)

You can work with the runtime environment directly, or using the WebSphere Application Server Developer
Tools for Eclipse.

On distributed platforms, the Liberty profile provides both a development and an operations environment.
On the Mac, it provides a development environment.

© Copyright IBM Corp. 2012 213

Liberty profile: Architecture
The liberty profile is a highly composable, dynamic runtime. OSGi services are used to manage
component lifecycles, and the injection of dependencies and configuration. The server process comprises
a single JVM, the Liberty kernel, and any number of optional features. The feature code and most of the
kernel code runs as OSGi bundles within an OSGi framework. Features provide the programming models
and services required by applications.

The kernel launcher bootstraps the system and starts the OSGi framework. The configuration is parsed,
then the configured features are loaded by the feature manager. The kernel makes extensive use of OSGi
services to provide a highly dynamic runtime. System configuration is managed by the OSGi Configuration
Admin service, and an OSGi Declarative Services component is used to manage the lifecycle of system
services. Application and configuration file changes are detected by the file monitor service, and the
logging service writes messages and debug information to the local file system.

OSGi
framework
(runtime)

Java 6+

Kernel

monitor-1.0

jsp-2.2jsf-2.0

appSecurity-1.0

servlet-3.0

Features

Container

Applications

Figure 29. Liberty profile architecture

214 Overview

Features are specified in the system configuration files (that is, the server.xml file and any other included
files). The server configuration files are used to populate the OSGi Configuration Admin service, which
injects the feature configuration into the feature manager service. The feature manager maps each feature
name to a list of bundles that provide the feature. The bundles are installed into the OSGi framework and
started. The feature manager responds to configuration changes by dynamically adding and removing
features while the server is running.

server.xml

webapp.war trace.log

Service

Feature Manager

OSGi Configuration
Admin

File Monitor

OSGi Declarative
Services

Logging service

Feature bundle

Figure 30. Liberty profile kernel

Chapter 12. The Liberty profile 215

Runtime services provide their configuration defaults so that the configuration you need to specify is kept
to a minimum. You specify the features you need, along with any additions or overrides to the system
defaults, in a server.xml file. You might choose to structure your configuration into a number of separate
files, linked to the parent server.xml file using an “include” syntax. At server startup, or when the user
configuration files are changed, the kernel configuration management parses your configuration and
applies it over the system defaults. The set of configuration properties belonging to each service is injected
into the service each time the configuration is updated.

useful-api-3.2.jar
useful-core-3_.
useful-extras-3.2_.

*
*

/lib/features/useful-3.2.mf

<featureManager>
<feature>useful-3.2</feature>

</featureManager>

server.xml

installs and starts
bundles in OSGi

framework

reads bundle
list

reads
config

injects config

Feature Manager

OSGi Configuration
Admin

Feature bundle

Figure 31. Feature management

216 Overview

The OSGi Declarative Services component is used so that function can be decomposed into discrete
services, which are activated only when needed. This helps the runtime to be “late and lazy”, keeping the
footprint small and the startup fast. Declared services are added to the OSGi service registry, and
dependencies between services can be resolved without loading implementation classes. Service
activation can be delayed until a service is actually used: when the service reference is resolved.
Configuration for each service is injected as the service is activated, and is reinjected if the configuration is
later modified.

Programming model support
This set of tables shows the extent to which each of the major server profiles supports the full WebSphere
Application Server programming model.

Java EE 6 technologies

<include file="more.xml"/>
<include file="evenmore.xml"/>

extra.xml

more.xml

evenmore.xml

<include file="extra.xml"/>

server.xml

Config defaults
Config metadata

injects merged
config into bundles

reads default
config from bundles

merges user
config over

defaults

optional
includes

Kernel bundle

OSGi Configuration
Admin

Config defaults
Config metadata

Feature bundle

Figure 32. Configuration management

Chapter 12. The Liberty profile 217

Ta
bl

e
30

.
Ja

va
E

E
6

su
pp

or
t

by
pr

of
ile

.

A
lis

t
of

Ja
va

E
E

te
ch

no
lo

gi
es

,
su

bd
iv

id
ed

in
to

se
ct

io
ns

fo
r

w
eb

se
rv

ic
es

,
w

eb
ap

pl
ic

at
io

ns
,

en
te

rp
ris

e
ap

pl
ic

at
io

ns
,

m
an

ag
em

en
t

an
d

se
cu

rit
y,

an
d

Ja
va

E
E

-r
el

at
ed

sp
ec

ifi
ca

tio
ns

in
Ja

va
S

E
.

F
or

ea
ch

te
ch

no
lo

gy
th

er
e

is
a

sp
ec

ifi
ca

tio
n

re
fe

re
nc

e,
an

d
an

in
di

ca
tio

n
of

w
he

th
er

th
e

te
ch

no
lo

gy
is

su
pp

or
te

d
by

th
e

fu
ll

pr
of

ile
,

an
d

by
th

e
Li

be
rt

y
pr

of
ile

.

Te
ch

n
o

lo
g

y
S

p
ec

if
ic

at
io

n
re

fe
re

n
ce

F
u

ll
p

ro
fi

le
L

ib
er

ty
p

ro
fi

le

Ja
va

P
la

tf
o

rm
,

E
n

te
rp

ri
se

E
d

it
io

n
6

(J
av

a
E

E
6)

JS
R

31
6

�

W
eb

se
rv

ic
es

te
ch

n
o

lo
g

ie
s

Ja
va

A
P

I
fo

r
R

E
S

T
fu

lW
eb

S
er

vi
ce

s
(J

A
X

-R
S

)
1.

1
JS

R
31

1
�

�

Im
pl

em
en

tin
g

E
nt

er
pr

is
e

W
eb

S
er

vi
ce

s
1.

3
JS

R
10

9
�

Ja
va

A
P

I
fo

r
X

M
L-

B
as

ed
W

eb
S

er
vi

ce
s

(J
A

X
-W

S
)

2.
2

JS
R

22
4

�

Ja
va

A
rc

hi
te

ct
ur

e
fo

r
X

M
L

B
in

di
ng

(J
A

X
B

)
2.

2
JS

R
22

2
�

�

W
eb

S
er

vi
ce

s
M

et
ad

at
a

fo
r

th
e

Ja
va

P
la

tfo
rm

JS
R

18
1

�

Ja
va

A
P

I
fo

r
X

M
L-

B
as

ed
R

P
C

(J
A

X
-R

P
C

)
1.

1
JS

R
10

1
�

Ja
va

A
P

Is
fo

r
X

M
L

M
es

sa
gi

ng
1.

3
JS

R
67

�

Ja
va

A
P

I
fo

r
X

M
L

R
eg

is
tr

ie
s

(J
A

X
R

)
1.

0
JS

R
93

�

W
eb

ap
p

lic
at

io
n

te
ch

n
o

lo
g

ie
s

Ja
va

S
er

vl
et

3.
0

JS
R

31
5

�
�

Ja
va

S
er

ve
r

F
ac

es
2.

0
JS

R
31

4
�

�

Ja
va

S
er

ve
r

P
ag

es
2.

2/
E

xp
re

ss
io

n
La

ng
ua

ge
2.

2
JS

R
24

5
�

�

S
ta

nd
ar

d
Ta

g
Li

br
ar

y
fo

r
Ja

va
S

er
ve

r
P

ag
es

(J
S

T
L)

1.
2

JS
R

52
�

�

D
eb

ug
gi

ng
S

up
po

rt
fo

r
O

th
er

La
ng

ua
ge

s
1.

0
JS

R
45

�
�

E
n

te
rp

ri
se

ap
p

lic
at

io
n

te
ch

n
o

lo
g

ie
s

C
on

te
xt

s
an

d
D

ep
en

de
nc

y
In

je
ct

io
n

fo
r

Ja
va

(W
eb

B
ea

ns
1.

0)
JS

R
29

9
�

D
ep

en
de

nc
y

In
je

ct
io

n
fo

r
Ja

va
1.

0
JS

R
33

0
�

B
ea

n
V

al
id

at
io

n
1.

0
JS

R
30

3
�

�

E
nt

er
pr

is
e

Ja
va

B
ea

ns
3.

1
(in

cl
ud

es
In

te
rc

ep
to

rs
1.

1)
JS

R
31

8
�

Ja
va

E
E

C
on

ne
ct

or
A

rc
hi

te
ct

ur
e

1.
6

JS
R

32
2

�

Ja
va

P
er

si
st

en
ce

2.
0

JS
R

31
7

�
�

218 Overview

Ta
bl

e
30

.
Ja

va
E

E
6

su
pp

or
t

by
pr

of
ile

(c
on

tin
ue

d)
.

A
lis

t
of

Ja
va

E
E

te
ch

no
lo

gi
es

,
su

bd
iv

id
ed

in
to

se
ct

io
ns

fo
r

w
eb

se
rv

ic
es

,
w

eb
ap

pl
ic

at
io

ns
,

en
te

rp
ris

e
ap

pl
ic

at
io

ns
,

m
an

ag
em

en
t

an
d

se
cu

rit
y,

an
d

Ja
va

E
E

-r
el

at
ed

sp
ec

ifi
ca

tio
ns

in
Ja

va
S

E
.

F
or

ea
ch

te
ch

no
lo

gy
th

er
e

is
a

sp
ec

ifi
ca

tio
n

re
fe

re
nc

e,
an

d
an

in
di

ca
tio

n
of

w
he

th
er

th
e

te
ch

no
lo

gy
is

su
pp

or
te

d
by

th
e

fu
ll

pr
of

ile
,

an
d

by
th

e
Li

be
rt

y
pr

of
ile

.

Te
ch

n
o

lo
g

y
S

p
ec

if
ic

at
io

n
re

fe
re

n
ce

F
u

ll
p

ro
fi

le
L

ib
er

ty
p

ro
fi

le

C
om

m
on

A
nn

ot
at

io
ns

fo
r

th
e

Ja
va

P
la

tfo
rm

1.
1

JS
R

25
0

�
�(

T
he

Li
be

rt
y

pr
of

ile
do

es
no

t
su

pp
or

t
@

M
an

ag
ed

B
ea

n.
)

Ja
va

M
es

sa
ge

S
er

vi
ce

A
P

I
1.

1
JS

R
91

4
�

Ja
va

Tr
an

sa
ct

io
n

A
P

I
(J

TA
)

1.
1

JS
R

90
7

�
�

Ja
va

M
ai

l1
.4

JS
R

91
9

�

M
an

ag
em

en
t

an
d

se
cu

ri
ty

te
ch

n
o

lo
g

ie
s

Ja
va

A
ut

he
nt

ic
at

io
n

S
er

vi
ce

P
ro

vi
de

r
In

te
rf

ac
e

fo
r

C
on

ta
in

er
s

JS
R

19
6

�

Ja
va

A
ut

ho
riz

at
io

n
C

on
tr

ac
t

fo
r

C
on

ta
in

er
s

1.
3

JS
R

11
5

�

Ja
va

E
E

A
pp

lic
at

io
n

D
ep

lo
ym

en
t

1.
2

JS
R

88
�

J2
E

E
M

an
ag

em
en

t
1.

1
JS

R
77

�

Ja
va

E
E

-r
el

at
ed

sp
ec

if
ic

at
io

n
s

in
Ja

va
S

E

Ja
va

A
P

I
fo

r
X

M
L

P
ro

ce
ss

in
g

(J
A

X
P

)
1.

3
JS

R
20

6
�

�

Ja
va

D
at

ab
as

e
C

on
ne

ct
iv

ity
4.

0
JS

R
22

1
�

�

Ja
va

M
an

ag
em

en
t

E
xt

en
si

on
s

(J
M

X
)

2.
0

JS
R

25
5

�
�

Ja
va

B
ea

ns
A

ct
iv

at
io

n
F

ra
m

ew
or

k
(J

A
F

)
1.

1
JS

R
92

5
�

�

S
tr

ea
m

in
g

A
P

I
fo

r
X

M
L

(S
tA

X
)

1.
0

JS
R

17
3

�
�

Chapter 12. The Liberty profile 219

Enterprise OSGi technologies

220 Overview

Ta
bl

e
31

.
E

nt
er

pr
is

e
O

S
G

is
up

po
rt

by
pr

of
ile

.

A
lis

t
of

en
te

rp
ris

e
O

S
G

it
ec

hn
ol

og
ie

s,
su

bd
iv

id
ed

in
to

se
ct

io
ns

fo
r

bl
ue

pr
in

t,
w

eb
,

an
d

ot
he

r
en

te
rp

ris
e

te
ch

no
lo

gi
es

.
F

or
ea

ch
te

ch
no

lo
gy

th
er

e
is

a
sp

ec
ifi

ca
tio

n
re

fe
re

nc
e,

an
d

an
in

di
ca

tio
n

of
w

he
th

er
th

e
te

ch
no

lo
gy

is
su

pp
or

te
d

by
th

e
fu

ll
pr

of
ile

,
an

d
by

th
e

Li
be

rt
y

pr
of

ile
.

Te
ch

n
o

lo
g

y
S

p
ec

if
ic

at
io

n
re

fe
re

n
ce

fu
ll

p
ro

fi
le

L
ib

er
ty

p
ro

fi
le

B
lu

ep
ri

n
t-

re
la

te
d

te
ch

n
o

lo
g

ie
s

B
lu

ep
rin

t
C

on
ta

in
er

R
4.

2
E

nt
er

pr
is

e
C

ha
pt

er
12

1
�

�

B
lu

ep
rin

t
Tr

an
sa

ct
io

ns
�

�

B
lu

ep
rin

t
M

an
ag

ed
JP

A
�

�

B
lu

ep
rin

t
S

ec
ur

ity
�

B
lu

ep
rin

t
R

es
ou

rc
e

R
ef

er
en

ce
s

�

W
eb

-r
el

at
ed

te
ch

n
o

lo
g

ie
s

W
eb

A
pp

lic
at

io
n

B
un

dl
es

R
4.

2
E

nt
er

pr
is

e
C

ha
pt

er
12

8
�

�

JN
D

I
R

4.
2

E
nt

er
pr

is
e

C
ha

pt
er

12
6

�
�

JS
P

�
�

JS
T

L
�

�

JS
F

�
�

JA
X

-R
S

�
�

O
th

er
en

te
rp

ri
se

te
ch

n
o

lo
g

ie
s

E
JB

B
un

dl
es

�(
E

JB
le

ve
ls

ea
rli

er
th

an
3.

0
ar

e
no

t
su

pp
or

te
d.

)

R
em

ot
e

S
er

vi
ce

s
R

4.
2

C
om

pe
nd

iu
m

C
ha

pt
er

13
�

S
C

A
C

on
fig

ur
at

io
n

Ty
pe

S
pe

ci
fic

at
io

n
R

4.
2

E
nt

er
pr

is
e

C
ha

pt
er

12
9

�

R
em

ot
e

B
un

dl
e

R
ep

os
ito

rie
s

�

S
IP

�(
S

IP
an

no
ta

tio
ns

ar
e

no
t

su
pp

or
te

d.
)

Chapter 12. The Liberty profile 221

Liberty profile externals support
External functions and resources of the Liberty profile can be used directly, and can be relied on to be in
the next release. Internal or incidental aspects of the profile might change when you apply service, or
upgrade to a future release.

What can I use directly in the profile and rely on being in the next release?

The following resources can be used directly and will continue to be available in the next release:

1. The documented application programming interfaces (APIs).

v Write your code in accordance with the Liberty API documentation.2.

v Compile your code against the JAR files in the wlp/dev directories.

v At run time, the application class loader has visibility to the API that is documented for the features
in your server configuration. See the Liberty feature API documentation.2

2. The server configuration, including features.

3. Commands and scripts in the wlp/bin and wlp/bin/tools directories.

4. Client utilities in the wlp/clients directory.

What should I avoid dependencies on?

Do not build dependencies on incidental aspects of the product, or you might be impacted when applying
service or upgrading to future releases. Examples of product internals that you should avoid relying on
include, but are not restricted to, the following:

v The names of product binary jars, for example those in the wlp/dev directory. Compile your code
against these JAR files by using the tools or using the javac -extlibs option.

v Direct use of the product binaries in the /lib directory. The only JAR files that can be directly invoked
are in the wlp/bin/tools directory.

v Message text that is output by the server at run time.

v The layout of the product install, other than the /wlp/bin and /wlp/dev directories.

v Example and template files in the wlp/templates directory. These files might be modified when you
apply service to your installation.

v Private or third party Java packages that are not explicitly exposed as APIs. These are not visible to the
application class loader at run time.

What might be modified by applying service or an upgrade?

The contents of the following directories and their subdirectories might be modified when service or
upgrade is applied. Do not make your own modifications to files in these locations, or they might be
overwritten by product maintenance or upgrade:

v wlp/bin

v wlp/clients

v wlp/dev

v wlp/lib

v wlp/templates

No modifications will be made to the contents of the following directories. These are your files, and
applying service or upgrade will not modify them:

v wlp/etc (where you might have added a server.env or jvm.options file).

2. The Java API document for each Liberty profile API is detailed in the Programming Interfaces (APIs) section of the information
center, and is also available as a JAR file under the /dev/ibm-api/javadoc directory of the server image.

222 Overview

v wlp/usr (the default location for user configuration and applications).

v Any non-default directory that you designate through the WLP_USER_DIR environment variable.

Liberty profile: Server configuration
The Liberty profile is configured by exception. The runtime environment operates from a set of built-in
configuration defaults, and you only specify the overrides that you need to those defaults. You do this by
editing an XML configuration file; either server.xml or another XML file that is included in server.xml at
run time.

Features are the units of capability by which you control the pieces of the runtime environment that are
loaded into a particular server. They are the primary mechanism that makes the server composable. The
list of features that you specify in the server configuration provides a functional server.

When you first install and start the server, a feature manager and a default server configuration are
available to you:

v By default, a server contains the jsp-2.2 feature, to support servlet and JSP applications. You use the
feature manager to add the features that you need.

v Server configuration is by exception. When you specify the features that you need, the default
configuration of those features provides a rich environment that is designed to cover most common
requirements, so you only need to specify changes from the default.

The configuration has the following characteristics:

v Described in XML files.

v Human-readable, and editable in a text editor.

v Small, easy to back up, and easy to copy to another system.

v Shareable across an application development team.

v Composable, so that features can easily add their own configuration to the system.

v Extensibly-typed, so you don't have to modify the current configuration to work with later versions of the
runtime environment.

v Dynamically responsive to updates.

v Forgiving, so that missing values are assumed and unrecognized properties are ignored.

You can also use a bootstrap.properties file to specify properties that need to be available before the
main configuration is processed, and to define variables that are used in the main configuration.

Liberty profile: Configuration elements in the server.xml file
The application server configuration is described in a series of elements in the server.xml configuration
file. Each element has one or more attributes or sub-elements. This topic contains details of the possible
elements, attributes and sub-elements that can be configured.

List of elements in the server.xml configuration file.
v “activedLdapFilterProperties” on page 225

v “administrator-role” on page 226

v “application” on page 226

v “application-bnd” on page 227

v “applicationMonitor” on page 228

v “authCache” on page 229

v “authData” on page 229

v “authentication” on page 230

Chapter 12. The Liberty profile 223

v “basicRegistry” on page 230

v “bundleRepository” on page 231

v “channelfw” on page 231

v “classloader” on page 232

v “config” on page 233

v “connectionManager” on page 234

v “customLdapFilterProperties” on page 235

v “dataSource” on page 236

v “domino50LdapFilterProperties” on page 239

v “edirectoryLdapFilterProperties” on page 239

v “executor” on page 240

v “featureManager” on page 241

v “fileset” on page 242

v “httpClassification” on page 242

v “httpEncoding” on page 243

v “httpEndpoint” on page 251

v “httpOptions” on page 253

v “httpSession” on page 253

v “httpSessionDatabase” on page 257

v “idsLdapFilterProperties” on page 261

v “iplanetLdapFilterProperties” on page 261

v “jaasLoginContextEntry” on page 262

v “jaasLoginModule” on page 262

v “jdbcDriver” on page 263

v “jndiEntry” on page 264

v “jpa” on page 264

v “jspEngine” on page 265

v “keyStore” on page 266

v “ldapRegistry” on page 266

v “library” on page 270

v “logging” on page 271

v “ltpa” on page 273

v “mimeTypes” on page 273

v “monitor” on page 273

v “nativeTransactionManager” on page 273

v “netscapeLdapFilterProperties” on page 274

v “pluginConfiguration” on page 274

v “properties” on page 275

v “properties.datadirect.sqlserver” on page 276

v “properties.db2.i.native” on page 283

v “properties.db2.i.toolbox” on page 289

v “properties.db2.jcc” on page 299

v “properties.derby.client” on page 306

v “properties.derby.embedded” on page 308

v “properties.informix” on page 309

224 Overview

v “properties.informix.jcc” on page 317

v “properties.microsoft.sqlserver” on page 323

v “properties.oracle” on page 326

v “properties.sybase” on page 327

v “quickStartSecurity” on page 329

v “safAuthorization” on page 329

v “safCredentials” on page 329

v “safRegistry” on page 330

v “safRoleMapper” on page 330

v “securewayLdapFilterProperties” on page 330

v “ssl” on page 331

v “sslDefault” on page 331

v “sslOptions” on page 331

v “tcpOptions” on page 332

v “transaction” on page 332

v “trustAssociation” on page 334

v “virtualHost” on page 335

v “webAppSecurity” on page 336

v “webContainer” on page 338

v “wlmClassification” on page 344

v “zosWorkloadManager” on page 345

activedLdapFilterProperties
Specifies the list of default Active Directory LDAP filters. PID is
com.ibm.ws.security.registry.ldap.internal.filters.actived.

userFilter
An LDAP filter clause for searching the user registry for users.

string

(&(sAMAccountName=%v)(objectcategory=user))

true

groupFilter
An LDAP filter clause for search the user registry for groups.

string

(&(cn=%v)(objectcategory=group))

true

userIdMap
An LDAP filter that maps the name of a user to an LDAP entry.

string

user:sAMAccountName

true

groupIdMap
groupIdFilter.desc

string

*:cn

Chapter 12. The Liberty profile 225

true

groupMemberIdMap
An LDAP filter that identifies user to group memberships.

string

memberof:member

true

administrator-role
A collection of users and/or groups assigned the server administrator role. PID is
com.ibm.ws.management.security.role.administrator.

user
User assigned a role.

string

false

group
Group assigned a role.

string

false

application
Defines the properties of an application. PID is com.ibm.ws.app.manager.

location
Location of an application expressed as an absolute path or a path relative to the server-level apps
directory.

string

true

name
Name of an application.

string

false

type
Type of application archive.

string

false

context-root
Context root of an application.

string

false

autoStart
Indicates whether or not the server should start the application automatically when the server starts.

boolean

true

false

226 Overview

application-bnd
Binds general deployment information included in the application to specific resources. PID is
com.ibm.ws.javaee.dd.appbnd, and it is the child of complex type “application”.

version
Version of the application bindings specification.

string

false

security-role
A role that is mapped to users and groups in a domain user registry.

name
Name of a security role.

string

true

user
A user possessing a security role.

name
Name of a user possessing a security role.

string

true

access-id
A user access ID in the general form user:realmName/userUniqueId. A value will be generated
if one is not specified.

string

false

false

group
A group possessing a security role.

name
Name of a group possessing a security role.

string

true

access-id
Group access ID

string

false

false

special-subject
Name of a special-subject possessing a security role.

type
One of the following special subject types: ALL_AUTHENTICATED_USERS, EVERYONE.

string

Chapter 12. The Liberty profile 227

EVERYONE

ALL_AUTHENTICATED_USERS
All authenticated users

true

false

run-as
ID and password of a user required to access a bean from another bean.

userid
ID of a user required to access a bean from another bean.

string

true

password
Password of a user required to access a bean from another bean. The value can be stored in
clear text or encoded form. To encode the password, use the securityUtility tool with the
encode option.

password (string)

false

false

false

applicationMonitor
Defines how the server responds to application additions, updates, and deletions. PID is
com.ibm.ws.app.manager.monitor.

pollingRate
Rate at which the server checks for application additions, updates, and deletions. Specify a positive
integer followed by a unit of time, which can be hours (h), minutes (m), seconds (s), or milliseconds
(ms). For example, specify 500 milliseconds as 500ms. You can include multiple values in a single
entry. For example, 1s500ms is equivalent to 1.5 seconds.

string

500ms

false

dropins
Location of the application drop-in directory expressed as an absolute path or a path relative to the
server directory.

string

dropins

false

dropinsEnabled
Monitor the drop-in directory for application additions, updates, and deletions.

boolean

true

false

228 Overview

updateTrigger
Application update method or trigger.

string

polled

polled Server will scan for application changes at the polling interval and update any applications that
have detectable changes.

mbean
Server will only update applications when prompted by an MBean called by an external
program such as an integrated development environment or a management application.

disabled
Disables all update monitoring. Application changes will not be applied while the server is
running.

false

authCache
Controls the operation of the authentication cache service. PID is
com.ibm.ws.security.authentication.cache.

initialSize
Initial number of entries supported by the authentication cache.

int

50

false

maxSize
Maximum number of entries supported by the authentication cache.

int

25000

false

timeout
Amount of time after which an entry in the cache will be removed. Specify a positive integer followed
by a unit of time, which can be hours (h), minutes (m), seconds (s), or milliseconds (ms). For example,
specify 500 milliseconds as 500ms. You can include multiple values in a single entry. For example,
1s500ms is equivalent to 1.5 seconds.

string

600s

false

allowBasicAuthLookup
Allow lookup by user ID and hashed password.

boolean

true

false

authData
Authentication data for a JCA connection to an Enterprise Information System (EIS). PID is
com.ibm.ws.security.jca.internal.authdata.config.

Chapter 12. The Liberty profile 229

user
Name of the user to use when connecting to the EIS.

string

true

password
Password of the user to use when connecting to the EIS. The value can be stored in clear text or
encoded form. It is recommended that you encode the password. To do so, use the securityUtility tool
with the encode option.

password (string)

true

authentication
Controls the built-in authentication service configuration. PID is com.ibm.ws.security.authentication.

cacheEnabled
Enables the authentication cache.

boolean

true

true

allowHashtableLoginWithIdOnly
Allow an application to login with just an identity in the hashtable properties. Use this option only when
you have applications that require this and have other means to validate the identity.

boolean

false

false

basicRegistry
A simple XML-based user registry. PID is com.ibm.ws.security.registry.basic.config.

realm
The realm name represents the user registry.

string

BasicRegistry

true

user
A user in a Basic User Registry.

name
Name of a user in a Basic User Registry.

string

true

password
Password of a user in a Basic User Registry. The value can be stored in clear text or encoded
form. It is recommended that you encode the password. To do so, use the securityUtility tool with
the encode option.

password (string)

true

230 Overview

false

group
A group in a Basic User Registry.

name
Name of a group in a Basic User Registry.

string

true

member
A member of a Basic User Registry group.

name
Name of a user in a Basic User Registry group.

string

true

false

false

bundleRepository
EBA bundle repository service. PID is com.ibm.ws.eba.bundle.repository.

filesetRef
Space separated list of fileset references

List of configuration IDs of type fileset (comma-separated string).

false

fileset
Space separated list of fileset references

Element of type fileset.

false

channelfw
Defines channel and chain management settings. PID is com.ibm.ws.channelfw.

chainStartRetryInterval
Time interval between start retries. Specify a positive integer followed by a unit of time, which can be
hours (h), minutes (m), seconds (s), or milliseconds (ms). For example, specify 500 milliseconds as
500ms. You can include multiple values in a single entry. For example, 1s500ms is equivalent to 1.5
seconds.

string

5s

false

chainStartRetryAttempts
Number of retry attempts to make per chain.

int

60

false

Chapter 12. The Liberty profile 231

chainQuiesceTimeout
Default amount of time to wait while quiescing chains. Specify a positive integer followed by a unit of
time, which can be hours (h), minutes (m), seconds (s), or milliseconds (ms). For example, specify 500
milliseconds as 500ms. You can include multiple values in a single entry. For example, 1s500ms is
equivalent to 1.5 seconds.

string

30s

false

warningWaitTime
Amount of time to wait before notifying of a missing factory configuration. Specify a positive integer
followed by a unit of time, which can be hours (h), minutes (m), seconds (s), or milliseconds (ms). For
example, specify 500 milliseconds as 500ms. You can include multiple values in a single entry. For
example, 1s500ms is equivalent to 1.5 seconds.

string

10s

false

classloader
Classloader Service. PID is com.ibm.ws.classloading.classloader, and it is the child of complex type
“application”.

delegation
Controls whether parent classloader is used before or after this classloader.

string

parentFirst

parentFirst
Parent first

parentLast
Parent last

false

privateLibraryRef
List of library references. Library class instances are unique to this classloader, independent of class
instances from other classloaders.

List of configuration IDs of type library (comma-separated string).

false

commonLibraryRef
List of library references. Library class instances are shared with other classloaders.

List of configuration IDs of type library (comma-separated string).

false

apiTypeVisibility
The types of API package this class loader will be able to see, as a comma-separated list of any
combination of the following: spec, ibm-api, ibm-spi, third-party.

string

spec,ibm-api

false

232 Overview

privateLibrary
List of library references. Library class instances are unique to this classloader, independent of class
instances from other classloaders.

Element of type library.

false

commonLibrary
List of library references. Library class instances are shared with other classloaders.

Element of type library.

false

config
Defines how the server processes configuration information. PID is com.ibm.ws.config.

onError
Action to take after a incurring a configuration error.

onError

string

WARN

WARN
Server will issue warning and error messages when it incurs a configuration error.

FAIL Server will issue a warning or error message on the first error occurrence and then stop the
server.

IGNORE
Server will not issue any warning and error messages when it incurs a configuration error.

true

monitorInterval
Rate at which the server checks for configuration updates. Specify a positive integer followed by a unit
of time, which can be hours (h), minutes (m), seconds (s), or milliseconds (ms). For example, specify
500 milliseconds as 500ms. You can include multiple values in a single entry. For example, 1s500ms
is equivalent to 1.5 seconds.

string

500ms

false

updateTrigger
Configuration update method or trigger.

string

polled

polled Server will scan for changes at the polling interval on all the configuration files and update the
runtime configuration with the changes detected.

mbean
Server will only update the configuration when prompted by an MBean called by an external
program such as an integrated development environment or a management application.

disabled
Disables all update monitoring. Configuration changes will not be applied while the server is
running.

Chapter 12. The Liberty profile 233

false

connectionManager
Connection Manager configuration. PID is com.ibm.ws.jca.connectionManager.

agedTimeout
Amount of time before a physical connection can be discarded by pool maintenance. A value of -1
disables this timeout. Specify a positive integer followed by a unit of time, which can be hours (h),
minutes (m), or seconds (s). For example, specify 30 seconds as 30s. You can include multiple values
in a single entry. For example, 1m30s is equivalent to 90 seconds.

string

-1

false

connectionTimeout
Amount of time after which a connection request times out. A value of -1 disables this timeout. Specify
a positive integer followed by a unit of time, which can be hours (h), minutes (m), or seconds (s). For
example, specify 30 seconds as 30s. You can include multiple values in a single entry. For example,
1m30s is equivalent to 90 seconds.

string

30s

false

maxIdleTime
Amount of time after which an unused or idle connection can be discarded during pool maintenance, if
doing so does not reduce the pool below the minimum size. A value of -1 disables this timeout.
Specify a positive integer followed by a unit of time, which can be hours (h), minutes (m), or seconds
(s). For example, specify 30 seconds as 30s. You can include multiple values in a single entry. For
example, 1m30s is equivalent to 90 seconds.

string

30m

false

maxPoolSize
Maximum number of physical connections for a pool. A value of 0 means unlimited.

int

50

false

minPoolSize
Minimum number of physical connections to maintain in the pool. The pool is not pre-populated. Aged
timeout can override the minimum.

int

false

purgePolicy
Specifies which connections to destroy when a stale connection is detected in a pool.

string

EntirePool

234 Overview

EntirePool
When a stale connection is detected, all connections in the pool are marked stale, and when
no longer in use, are closed.

FailingConnectionOnly
When a stale connection is detected, only the connection which was found to be bad is
closed.

ValidateAllConnections
When a stale connection is detected, connections are tested and those found to be bad are
closed.

false

reapTime
Amount of time between runs of the pool maintenance thread. A value of -1 disables pool
maintenance. Specify a positive integer followed by a unit of time, which can be hours (h), minutes
(m), or seconds (s). For example, specify 30 seconds as 30s. You can include multiple values in a
single entry. For example, 1m30s is equivalent to 90 seconds.

string

3m

false

maxConnectionsPerThread
Limits the number of open connections on each thread.

int

false

numConnectionsPerThreadLocal
Caches the specified number of connections for each thread.

int

false

customLdapFilterProperties
Specifies the list of default Custom LDAP filters. PID is
com.ibm.ws.security.registry.ldap.internal.filters.custom.

userFilter
An LDAP filter clause for searching the user registry for users.

string

(&(uid=%v)(objectclass=ePerson))

true

groupFilter
An LDAP filter clause for search the user registry for groups.

string

(&(cn=
%v)(|(objectclass=groupOfNames)(objectclass=groupOfUniqueNames)(objectclass=groupOfURLs)))

true

userIdMap
An LDAP filter that maps the name of a user to an LDAP entry.

string

Chapter 12. The Liberty profile 235

*:uid

true

groupIdMap
groupIdFilter.desc

string

*:cn

true

groupMemberIdMap
An LDAP filter that identifies user to group memberships.

string

ibm-allGroups:member;ibm-
allGroups:uniqueMember;groupOfNames:member;groupOfUniqueNames:uniqueMember

true

dataSource
Defines a data source configuration. PID is com.ibm.ws.jdbc.dataSource.

jndiName
JNDI name for a data source.

string

true

jdbcDriverRef
JDBC driver for a data source.

Configuration ID of type jdbcDriver (string).

false

connectionManagerRef
Connection manager for a data source.

Configuration ID of type connectionManager (string).

false

type
Type of data source.

string

javax.sql.XADataSource

javax.sql.ConnectionPoolDataSource

javax.sql.DataSource

false

connectionSharing
Specifies how connections are matched for sharing.

string

MatchOriginalRequest

MatchOriginalRequest
When sharing connections, match based on the original connection request.

236 Overview

MatchCurrentState
When sharing connections, match based on the current state of the connection.

false

isolationLevel
Default transaction isolation level.

string

TRANSACTION_READ_UNCOMMITTED
Dirty reads, non-repeatable reads and phantom reads can occur.

TRANSACTION_READ_COMMITTED
Dirty reads are prevented; non-repeatable reads and phantom reads can occur.

TRANSACTION_REPEATABLE_READ
Dirty reads and non-repeatable reads are prevented; phantom reads can occur.

TRANSACTION_SERIALIZABLE
Dirty reads, non-repeatable reads and phantom reads are prevented.

TRANSACTION_SNAPSHOT
Snapshot isolation for Microsoft SQL Server JDBC Driver and DataDirect Connect for JDBC
driver.

false

statementCacheSize
Maximum number of cached statements per connection.

int

10

false

transactional
Enable participation in transactions that are managed by the application server.

boolean

true

false

beginTranForResultSetScrollingAPIs
Attempt transaction enlistment when result set scrolling interfaces are used.

boolean

true

false

beginTranForVendorAPIs
Attempt transaction enlistment when vendor interfaces are used.

boolean

true

false

commitOrRollbackOnCleanup
Determines how to clean up connections that might be in a database unit of work (AutoCommit=false)
when the connection is closed or returned to the pool.

string

Chapter 12. The Liberty profile 237

commit
Clean up the connection by committing.

rollback
Clean up the connection by rolling back.

false

queryTimeout
Default query timeout for SQL statements. In a JTA transaction,
syncQueryTimeoutWithTransactionTimeout can override this default. Specify a positive integer followed
by a unit of time, which can be hours (h), minutes (m), or seconds (s). For example, specify 30
seconds as 30s. You can include multiple values in a single entry. For example, 1m30s is equivalent to
90 seconds.

string

false

recoveryAuthDataRef
Authentication data for transaction recovery.

Configuration ID of type authData (string).

false

syncQueryTimeoutWithTransactionTimeout
Use the time remaining (if any) in a JTA transaction as the default query timeout for SQL statements.

boolean

false

false

supplementalJDBCTrace
Supplements the JDBC driver trace that is logged when JDBC driver trace is enabled in
bootstrap.properties. JDBC driver trace specifications include: com.ibm.ws.database.logwriter,
com.ibm.ws.db2.logwriter, com.ibm.ws.derby.logwriter, com.ibm.ws.informix.logwriter,
com.ibm.ws.oracle.logwriter, com.ibm.ws.sqlserver.logwriter, com.ibm.ws.sybase.logwriter.

boolean

false

jdbcDriver
JDBC driver for a data source.

Element of type jdbcDriver.

false

connectionManager
Connection manager for a data source.

Element of type connectionManager.

false

recoveryAuthData
Authentication data for transaction recovery.

Element of type authData.

false

238 Overview

domino50LdapFilterProperties
Specifies the list of default Domino® LDAP filters. PID is
com.ibm.ws.security.registry.ldap.internal.filters.domino50.

userFilter
An LDAP filter clause for searching the user registry for users.

string

(&(uid=%v)(objectclass=Person))

true

groupFilter
An LDAP filter clause for search the user registry for groups.

string

(&(cn=%v)(objectclass=dominoGroup))

true

userIdMap
An LDAP filter that maps the name of a user to an LDAP entry.

string

person:uid

true

groupIdMap
groupIdFilter.desc

string

*:cn

true

groupMemberIdMap
An LDAP filter that identifies user to group memberships.

string

dominoGroup:member

true

edirectoryLdapFilterProperties
Specifies the list of EDirectory LDAP filters. PID is
com.ibm.ws.security.registry.ldap.internal.filters.eDirectory.

userFilter
An LDAP filter clause for searching the user registry for users.

string

(&(cn=%v)(objectclass=Person))

true

groupFilter
An LDAP filter clause for search the user registry for groups.

string

(&(cn=%v)(objectclass=groupOfNames))

true

Chapter 12. The Liberty profile 239

userIdMap
An LDAP filter that maps the name of a user to an LDAP entry.

string

person:cn

true

groupIdMap
groupIdFilter.desc

string

*:cn

true

groupMemberIdMap
An LDAP filter that identifies user to group memberships.

string

groupOfNames:member

true

executor
Defines threading and execution settings for the server. PID is com.ibm.ws.threading.

name
Name of the executor for which the thread is performing work.

string

Default Executor

false

maxThreads
Maximum number of threads that can be associated with the executor. If greater than 0, this value
must be greater than or equal to the value of coreThreads. If the value of maxThreads is less than or
equal to 0, the maximum number of threads is unbounded.

int

-1

false

coreThreads
Steady-state or core number of threads to associate with the executor. The number of threads
associated with the executor will quickly grow to this number. If this value is less than 0, a default
value is used. This default value is calculated based on the number of hardware threads on the
system.

int

-1

false

keepAlive
Amount of time to keep an idle thread in the pool before allowing it to terminate. Specify a positive
integer followed by a unit of time, which can be hours (h), minutes (m), seconds (s), or milliseconds
(ms). For example, specify 500 milliseconds as 500ms. You can include multiple values in a single
entry. For example, 1s500ms is equivalent to 1.5 seconds.

string

240 Overview

60s

false

stealPolicy
The work-stealing policy to employ. The options for this policy determine how work is queued, and how
threads obtain queued work.

string

STRICT

STRICT
All threads that generate work own a local work pile. Threads that are associated with the
executor take work from other threads when the local work pile is exhausted.

LOCAL
A global work queue is used for work that is generated by threads that are not associated with
the executor. Work generated by threads associated with the executor are placed on a local
work pile. This work pile is owned by the generating thread, unless another thread steals it.
Threads that are associated with the executor take work associated with other threads if the
local work pile is empty and there is no work on the global work queue.

NEVER
A global work queue is used to feed work to threads that are associated with the executor. No
stealing will occur.

false

rejectedWorkPolicy
Policy to employ when the executor is unable to stage work for execution.

string

ABORT

ABORT
Raise an exception.

CALLER_RUNS
Execute the work immediately on the caller's thread.

false

featureManager
Defines how the server loads features. PID is com.ibm.ws.kernel.feature.

onError
Action to take after a failure to load a feature.

onError

string

WARN

WARN
Server will issue warning and error messages when it incurs a feature configuration error.

FAIL Server will issue a warning or error message on the first feature configuration error occurrence
and then stop the server.

IGNORE
Server will not issue any warning and error messages when it incurs a feature configuration
error.

true

Chapter 12. The Liberty profile 241

feature
string

false

fileset
Fileset Service. PID is com.ibm.ws.kernel.metatype.helper.fileset.

dir
The base directory to search for files.

string

.

true

caseSensitive
Boolean to indicate whether or not the search should be case sensitive (default: true).

boolean

true

false

includes
The comma or space separated list of file name patterns to include in the search results (default: *).

string

*

false

excludes
The comma or space separated list of file name patterns to exclude from the search results, by default
no files are excluded.

string

false

scanInterval
Scanning interval to check the fileset for changes as a long with a time unit suffix h-hour, m-minute,
s-second, ms-millisecond (e.g. 2ms or 5s). Disabled (scanInterval=0) by default. Specify a positive
integer followed by a unit of time, which can be hours (h), minutes (m), seconds (s), or milliseconds
(ms). For example, specify 500 milliseconds as 500ms. You can include multiple values in a single
entry. For example, 1s500ms is equivalent to 1.5 seconds.

string

0

false

httpClassification
zos.wlm.httpclassification.config.description. PID is com.ibm.ws.zos.wlm.httpclassification, and it is the child
of complex type “wlmClassification”.

transactionClass
Defines the priority

string

false

242 Overview

host
Defines which host to map the transaction class to

string

*

false

port
Defines which port to map the transaction class to

string

*

false

resource
Defines the URI to use when mapping transaction class

string

*

false

method
Defines the HTTP method to map to

string

*

false

httpEncoding
Configuration properties for the HTTP Transport Encoding service. PID is
com.ibm.ws.transport.http.encoding.

converter.Shift_JIS
Converter for Shift_JIS

string

Cp943C

false

converter.EUC-JP
Converter for EUC-JP

string

Cp33722C

false

converter.EUC-KR
Converter for EUC-KR

string

Cp970

false

converter.EUC_KR
Converter for EUC_KR

string

Chapter 12. The Liberty profile 243

Cp970

false

converter.EUC-TW
Converter for EUC-TW

string

Cp964

false

converter.Big5
Converter for Big5

string

Cp950

false

converter.GB2312
Converter for GB2312

string

EUC_CN

false

converter.ISO-2022-KR
Converter for ISO-2022-KR

string

ISO2022KR

false

encoding.en
Encoding for 'en' locale

string

ISO-8859-1

false

encoding.fr
Encoding for 'fr' locale

string

ISO-8859-1

false

encoding.de
Encoding for 'de' locale

string

ISO-8859-1

false

encoding.es
Encoding for 'es' locale

string

244 Overview

ISO-8859-1

false

encoding.pt
Encoding for 'pt' locale

string

ISO-8859-1

false

encoding.da
Encoding for 'da' locale

string

ISO-8859-1

false

encoding.ca
Encoding for 'ca' locale

string

ISO-8859-1

false

encoding.fi
Encoding for 'fi' locale

string

ISO-8859-1

false

encoding.it
Encoding for 'it' locale

string

ISO-8859-1

false

encoding.nl
Encoding for 'nl' locale

string

ISO-8859-1

false

encoding.no
Encoding for 'no' locale

string

ISO-8859-1

false

encoding.sv
Encoding for 'sv' locale

string

Chapter 12. The Liberty profile 245

ISO-8859-1

false

encoding.is
Encoding for 'is' locale

string

ISO-8859-1

false

encoding.eu
Encoding for 'eu' locale

string

ISO-8859-1

false

encoding.cs
Encoding for 'cs' locale

string

ISO-8859-2

false

encoding.hr
Encoding for 'hr' locale

string

ISO-8859-2

false

encoding.hu
Encoding for 'hu' locale

string

ISO-8859-2

false

encoding.lt
Encoding for 'lt' locale

string

ISO-8859-2

false

encoding.pl
Encoding for 'pl' locale

string

ISO-8859-2

false

encoding.sh
Encoding for 'sh' locale

string

246 Overview

ISO-8859-2

false

encoding.sk
Encoding for 'sk' locale

string

ISO-8859-2

false

encoding.sl
Encoding for 'sl' locale

string

ISO-8859-2

false

encoding.sq
Encoding for 'sq' locale

string

ISO-8859-2

false

encoding.fo
Encoding for 'fo' locale

string

ISO-8859-2

false

encoding.ro
Encoding for 'ro' locale

string

ISO-8859-2

false

encoding.mt
Encoding for 'mt' locale

string

ISO-8859-3

false

encoding.et
Encoding for 'et' locale

string

ISO-8859-4

false

encoding.lv
Encoding for 'lv' locale

string

Chapter 12. The Liberty profile 247

ISO-8859-4

false

encoding.be
Encoding for 'be' locale

string

ISO-8859-5

false

encoding.bg
Encoding for 'bg' locale

string

ISO-8859-5

false

encoding.mk
Encoding for 'mk' locale

string

ISO-8859-5

false

encoding.ru
Encoding for 'ru' locale

string

ISO-8859-5

false

encoding.sr
Encoding for 'sr' locale

string

ISO-8859-5

false

encoding.uk
Encoding for 'uk' locale

string

ISO-8859-5

false

encoding.ar
Encoding for 'ar' locale

string

ISO-8859-6

false

encoding.fa
Encoding for 'fa' locale

string

248 Overview

ISO-8859-6

false

encoding.ms
Encoding for 'ms' locale

string

ISO-8859-6

false

encoding.el
Encoding for 'el' locale

string

ISO-8859-7

false

encoding.iw
Encoding for 'iw' locale

string

ISO-8859-8

false

encoding.he
Encoding for 'he' locale

string

ISO-8859-8

false

encoding.ji
Encoding for 'ji' locale

string

ISO-8859-8

false

encoding.yi
Encoding for 'yi' locale

string

ISO-8859-8

false

encoding.tr
Encoding for 'tr' locale

string

ISO-8859-9

false

encoding.th
Encoding for 'th' locale

string

Chapter 12. The Liberty profile 249

windows-874

false

encoding.vi
Encoding for 'vi' locale

string

windows-1258

false

encoding.ja
Encoding for 'ja' locale

string

Shift_JIS

false

encoding.ko
Encoding for 'ko' locale

string

EUC-KR

false

encoding.zh
Encoding for 'zh' locale

string

GB2312

false

encoding.zh_TW
Encoding for 'zh_TW' locale

string

Big5

false

encoding.hy
Encoding for 'hy' locale

string

UTF-8

false

encoding.ka
Encoding for 'ka' locale

string

UTF-8

false

encoding.hi
Encoding for 'hi' locale

string

250 Overview

UTF-8

false

encoding.mr
Encoding for 'mr' locale

string

UTF-8

false

encoding.sa
Encoding for 'sa' locale

string

UTF-8

false

encoding.ta
Encoding for 'ta' locale

string

UTF-8

false

encoding.bn
Encoding for 'bn' locale

string

UTF-8

false

httpEndpoint
Configuration properties for an HTTP endpoint. PID is com.ibm.ws.http.

httpOptionsRef
HTTP protocol options for the endpoint.

defaultHTTPVar

Configuration ID of type httpOptions (string).

false

sslOptionsRef
SSL protocol options for the endpoint.

defaultSSLVar

Configuration ID of type sslOptions (string).

false

tcpOptionsRef
TCP protocol options for the endpoint.

Configuration ID of type tcpOptions (string).

defaultTCPOptions

false

Chapter 12. The Liberty profile 251

enabled
Toggle the availability of an endpoint. When true, this endpoint will be activated by the dispatcher to
handle HTTP requests.

boolean

true

false

host
IP address, domain name server (DNS) host name with domain name suffix, or just the DNS host
name, used by a client to request a resource. Use '*' for all available network interfaces.

string

localhost

false

httpPort
The port used for client HTTP requests. Use -1 to disable this port.

int

false

httpsPort
The port used for client HTTP requests secured with SSL (https). Use -1 to disable this port.

int

false

virtualHost
ID of a configured virtual host. All endpoints are associated with the 'default_host' virtual host by
default.

string

default_host

false

httpOptions
HTTP protocol options for the endpoint.

defaultHTTPVar

Element of type httpOptions.

false

sslOptions
SSL protocol options for the endpoint.

defaultSSLVar

Element of type sslOptions.

false

tcpOptions
TCP protocol options for the endpoint.

Element of type tcpOptions.

defaultTCPOptions

false

252 Overview

httpOptions
HTTP protocol configuration. PID is com.ibm.ws.http.options.

keepAliveEnabled
Enables persistent connections (HTTP keepalive). If true, connections are kept alive for reuse by
multiple sequential requests and responses. If false, connections are closed after the response is sent.

boolean

true

false

maxKeepAliveRequests
Maximum number of persistent requests that are allowed on a single HTTP connection if persistent
connections are enabled. A value of -1 means unlimited.

int

100

false

persistTimeout
Amount of time that a socket will be allowed to remain idle between requests. This setting only applies
if persistent connections are enabled. Specify a positive integer followed by a unit of time, which can
be hours (h), minutes (m), or seconds (s). For example, specify 30 seconds as 30s. You can include
multiple values in a single entry. For example, 1m30s is equivalent to 90 seconds.

string

30s

false

readTimeout
Amount of time to wait for a read request to complete on a socket after the first read occurs. Specify a
positive integer followed by a unit of time, which can be hours (h), minutes (m), or seconds (s). For
example, specify 30 seconds as 30s. You can include multiple values in a single entry. For example,
1m30s is equivalent to 90 seconds.

string

60s

false

writeTimeout
Amount of time to wait on a socket for each portion of the response data to be transmitted. Specify a
positive integer followed by a unit of time, which can be hours (h), minutes (m), or seconds (s). For
example, specify 30 seconds as 30s. You can include multiple values in a single entry. For example,
1m30s is equivalent to 90 seconds.

string

60s

false

httpSession
Configuration for HTTP session management. PID is com.ibm.ws.session.

storageRef
The ID of the persistent storage location for session data. If no storage location is defined, session
data will be stored in the local application server's memory.

string

Chapter 12. The Liberty profile 253

false

sslTrackingEnabled
Specifies that session tracking uses Secure Sockets Layer (SSL) information as a session ID.

boolean

false

false

urlRewritingEnabled
Specifies that the session management facility uses rewritten URLs to carry the session IDs.

boolean

false

false

protocolSwitchRewritingEnabled
Adds the session ID to a URL when the URL requires a switch from HTTP to HTTPS or from HTTPS
to HTTP.

boolean

false

false

cookiesEnabled
Specifies that session tracking uses cookies to carry session IDs.

boolean

true

false

cookieName
A unique name for a session management cookie.

string

JSESSIONID

false

cookieDomain
Domain field of a session tracking cookie.

string

false

cookieMaxAge
Maximum amount of time that a cookie can reside on the client browser.

int

-1

false

cookiePath
A cookie is sent to the URL designated in the path.

string

/

254 Overview

false

cookieSecure
Specifies that the session cookies include the secure field.

boolean

false

false

cookieHttpOnly
Specifies that session cookies include the HttpOnly field. Browsers that support the HttpOnly field do
not enable cookies to be accessed by client-side scripts. Using the HttpOnly field will help prevent
cross-site scripting attacks.

boolean

true

false

maxInMemorySessionCount
Maximum number of sessions to maintain in memory for each web module.

int

1000

false

allowOverflow
Allows the number of sessions in memory to exceed the value of the Max in-memory session count
property.

boolean

true

false

invalidationTimeout
Amount of time a session can go unused before it is no longer valid.

long

1800

false

securityIntegrationEnabled
Enables security integration, which causes the session management facility to associate the identity of
users with their HTTP sessions.

boolean

true

false

idLength
Length of the session identifier.

int

23

false

Chapter 12. The Liberty profile 255

useContextRootAsCookiePath
Specifies that the cookie path equals the context root of the web module instead of /

boolean

false

false

alwaysEncodeUrl
The Servlet 2.5 specification specifies to not encode the URL on a response.encodeURL call if it is not
necessary. To support backward compatibility when URL encoding is enabled, set this property to true
to call the encodeURL method. The URL is always encoded, even if the browser supports cookies.

boolean

false

false

cloneId
The clone ID of the cluster member. Within a cluster, this ID must be unique to maintain session
affinity. When set, this name overwrites the default name generated by the server.

string

false

cloneSeparator
The single character used to separate the session ID from the clone ID in session cookies. The default
value should usually be used. On some Wireless Application Protocol (WAP) devices, a colon (:) is not
allowed, so a plus sign (+) should be used instead. Different values should rarely be used. You should
understand the clone character requirements of other products running on your system before using
this property to change the clone separator character. The fact that any character can be specified as
the value for this property does not imply that the character you specify will function correctly. This fact
also does not imply that IBM is responsible for fixing any problem that might arise from using an
alternative character.

string

:

false

debugCrossover
Enable this option to perform additional checks to verify that only the session associated with the
request is accessed or referenced, and log messages if any discrepancies are detected. Disable this
option to skip the additional checks.

boolean

false

false

forceInvalidationMultiple
If your requests normally are not bound by a response time limit, specify 0 to indicate that the session
manager should wait indefinitely until a request is complete before attempting to invalidate the session.
Otherwise, set this property to a positive integer to delay the invalidation of active sessions. Active
timed out sessions will not be invalidated by the first invalidation interval pass, but will be invalidated
by the interval pass based on this value. For example, a value of 2 would invalidate an active session
on the second invalidation interval pass after the session timeout has expired.

int

3

256 Overview

false

idReuse
In a multi-JVM environment that is not configured for session persistence, setting this property to "true"
enables the session manager to use the same session information for all of a user's requests even if
the web applications that are handling these requests are governed by different JVMs. The default
value for this property is false. Set this property to true if you want to enable the session manager to
use the session ID sent from a browser to preserve session data across web applications that are
running in an environment that is not configured for session persistence.

boolean

false

false

noAdditionalInfo
Forces removal of information that is not needed in session identifiers.

boolean

false

false

reaperPollInterval
The wake-up interval, in seconds, for the process that removes invalid sessions. The minimum value is
30 seconds. If a value less than the minimum is entered, an appropriate value is automatically
determined and used. This value overrides the default installation value, which is between 30 and 360
seconds, based off the session timeout value. Because the default session timeout is 30 minutes, the
reaper interval is usually between 2 and 3 minutes.

long

-1

false

rewriteId
Use this property to change the key used with URL rewriting.

string

jsessionid

false

securityUserIgnoreCase
Indicates that the session security identity and the client security identity should be considered a
match even if their cases are different. For example, when this property is set to true, the session
security identity USER1 matches the client security identities User1 and user1.

boolean

false

false

httpSessionDatabase
Controls how HTTP sessions are persisted to a database. PID is com.ibm.ws.session.db.

dataSourceRef
The ID of the data source the session manager should use to persist HTTP session data.

string

true

Chapter 12. The Liberty profile 257

useMultiRowSchema
When enabled, each session data attribute is placed in a separate row in the database, allowing larger
amounts of data to be stored for each session. This configuration can yield better performance when
session attributes are very large and few changes are required to the session attributes. When
disabled, all session data attributes are placed in the same row for each session.

boolean

false

false

db2RowSize
Table space page size configured for the sessions table, if using a DB2 database. Increasing this
value can improve database performance in some environments.

string

4KB

4KB Use the default table space page size of 4 KB. You do not need to create a DB2 buffer pool or
table space, and you do not need to specify a table space name.

8KB Use a table space page size of 8 KB. You must additionally create a DB2 buffer pool and table
space, and specify 8KB as the page size for both. You must also specify the name of the table
space you created.

16KB Use a table space page size of 16 KB. You must additionally create a DB2 buffer pool and
table space, and specify 16KB as the page size for both. You must also specify the name of
the table space you created.

32KB Use a table space page size of 32 KB. You must additionally create a DB2 buffer pool and
table space, and specify 32KB as the page size for both. You must also specify the name of
the table space you created.

false

tableSpaceName
Table space to be used for the sessions table. This value is only required when the DB2 Row Size is
greater than 4KB.

string

false

scheduleInvalidation
Enable this option to reduce the number of database updates required to keep the HTTP sessions
alive. Specify the two hours of a day when there is the least activity in the application server. When
this option is disabled, the invalidator process runs every few minutes to remove invalidated HTTP
sessions.

boolean

false

false

scheduleInvalidationFirstHour
Indicates the first hour during which the invalidated sessions are cleared from the persistent store.
Specify this value as an integer between 0 and 23. This value is valid only when schedule invalidation
is enabled.

int

0

false

258 Overview

scheduleInvalidationSecondHour
Indicates the second hour during which the invalidated sessions are cleared from the persistent store.
Specify this value as an integer between 0 and 23. This value is valid only when schedule invalidation
is enabled.

int

0

false

writeFrequency
Specifies when session data is written to the persistent store. By default, session data is written to the
persistent store after the servlet completes execution. Changing this value can improve performance in
some environments.

string

END_OF_SERVLET_SERVICE

END_OF_SERVLET_SERVICE
Session data is written to the persistent store after the servlet completes execution.

MANUAL_UPDATE
A programmatic sync on the IBMSession object is required to write the session data to the
persistent store.

TIME_BASED_WRITE
Session data is written to the persistent store based on the specified write interval value.

false

writeInterval
Number of seconds that should pass before writing session data to the persistent store. The default is
120 seconds. This value is only used when a time based write frequency is enabled.

int

120

false

writeContents
Specifies how much session data should be written to the persistent store. By default, only updated
attributes are written, but all attributes can be written instead (regardless of whether or not they
changed).

string

ONLY_UPDATED_ATTRIBUTES

ONLY_UPDATED_ATTRIBUTES
Only updated attributes are written to the persistent store.

ALL_SESSION_ATTRIBUTES
All attributes are written to the persistent store.

false

noAffinitySwitchBack
Set this property to "true" to maintain affinity to the new member even after original one comes back
up. When a cluster member fails, its requests routed to a different cluster member, and sessions are
activated in that other member. Thus, session affinity is maintained to the new member, and when
failed cluster member comes back up, the requests for sessions that were created in the original
cluster member are routed back to it. Allowed values are true or false, with the default being false. Set

Chapter 12. The Liberty profile 259

this property to true when you have distributed sessions configured with time-based write. Note that
this property has no affect on the behavior when distributed sessions is not enabled.

boolean

false

false

onlyCheckInCacheDuringPreInvoke
A value of true indicates that the last access time of a session should only be updated if a request
gets the session. A value of false indicates that the last access time of a session should be updated
upon every request. Changing this value can improve performance in some environments.

boolean

false

false

optimizeCacheIdIncrements
If the user's browser session is moving back and forth across multiple web applications, you might see
extra persistent store activity as the in-memory sessions for a web module are refreshed from the
persistent store. As a result, the cache IDs are continually increasing and the in-memory session
attributes are overwritten by those of the persistent copy. Set this property to true if you want to
prevent the cache IDs from continually increasing. A value of true indicates that the session manager
should assess whether the in-memory session for a web module is older than the copy in persistent
store. If the configuration is a cluster, ensure that the system times of each cluster member are as
identical as possible.

boolean

true

false

tableName
The database table name.

string

sessions

false

useInvalidatedId
Set this property to "true" to reuse the incoming ID if the session with that ID was recently invalidated.
This is a performance optimization because it prevents checking the persistent store.

boolean

true

false

useOracleBlob
Set this property to "true" to create the database table using the Binary Large Object (BLOB) data type
for the medium column. This value increases performance of persistent sessions when Oracle
databases are used. Due to an Oracle restriction, BLOB support requires use of the Oracle Call
Interface (OCI) database driver for more than 4000 bytes of data. You must also ensure that a new
sessions table is created before the server is restarted by dropping your old sessions table or by
changing the datasource definition to reference a database that does not contain a sessions table.

boolean

false

260 Overview

false

idsLdapFilterProperties
Specifies the list of default IBM Directory Server LDAP filters. PID is
com.ibm.ws.security.registry.ldap.internal.filters.ids.

userFilter
An LDAP filter clause for searching the user registry for users.

string

(&(uid=%v)(objectclass=ePerson))

true

groupFilter
An LDAP filter clause for search the user registry for groups.

string

(&(cn=
%v)(|(objectclass=groupOfNames)(objectclass=groupOfUniqueNames)(objectclass=groupOfURLs)))

true

userIdMap
An LDAP filter that maps the name of a user to an LDAP entry.

string

*:uid

true

groupIdMap
groupIdFilter.desc

string

*:cn

true

groupMemberIdMap
An LDAP filter that identifies user to group memberships.

string

ibm-allGroups:member;ibm-
allGroups:uniqueMember;groupOfNames:member;groupOfUniqueNames:uniqueMember

true

iplanetLdapFilterProperties
Specifies the list of default IPlanet LDAP filters. PID is
com.ibm.ws.security.registry.ldap.internal.filters.iPlanet.

userFilter
An LDAP filter clause for searching the user registry for users.

string

(&(uid=%v)(objectclass=inetOrgPerson))

true

groupFilter
An LDAP filter clause for search the user registry for groups.

Chapter 12. The Liberty profile 261

string

(&(cn=%v)(objectclass=ldapsubentry))

true

userIdMap
An LDAP filter that maps the name of a user to an LDAP entry.

string

inetOrgPerson:uid

true

groupIdMap
groupIdFilter.desc

string

*:cn

true

groupMemberIdMap
An LDAP filter that identifies user to group memberships.

string

nsRole:nsRole

true

jaasLoginContextEntry
The JAAS login context entry configuration. PID is
com.ibm.ws.security.authentication.internal.jaas.jaasLoginContextEntry.

name
Name of a JAAS configuration entry.

string

true

loginModuleRef
A reference to the ID of a JAAS login module.

string

true

jaasLoginModule
A login module in the JAAS configuration. PID is
com.ibm.ws.security.authentication.internal.jaas.jaasLoginModuleConfig.

className
Fully-qualified package name of the JAAS login module class.

string

true

controlFlag
The login module's control flag. Valid values are REQUIRED, REQUISITE, SUFFICIENT, and
OPTIONAL.

string

REQUIRED

262 Overview

REQUIRED
This LoginModule is REQUIRED as per the JAAS specification. The LoginModule is required
to succeed.

REQUISITE
controlFlag.REQUISITE

SUFFICIENT
This LoginModule is SUFFICIENT as per the JAAS specification. The LoginModule is not
required to succeed. If authentication is successful, no other LoginModules will be called and
control is returned to the caller.

OPTIONAL
This LoginModule is OPTIONAL as per the JAAS specification. The LoginModule is not
required to succeed.

true

libraryRef
A reference to the ID of the shared library configuration.

Configuration ID of type library (string).

false

library
A reference to the ID of the shared library configuration.

Element of type library.

false

options
optionsRef.desc

false

jdbcDriver
Identifies a JDBC driver. PID is com.ibm.ws.jdbc.jdbcDriver.

libraryRef
Identifies JDBC driver JARs and native files.

Configuration ID of type library (string).

false

javax.sql.XADataSource
JDBC driver implementation of javax.sql.XADataSource.

string

false

javax.sql.ConnectionPoolDataSource
JDBC driver implementation of javax.sql.ConnectionPoolDataSource.

string

false

javax.sql.DataSource
JDBC driver implementation of javax.sql.DataSource.

string

false

Chapter 12. The Liberty profile 263

library
Identifies JDBC driver JARs and native files.

Element of type library.

false

jndiEntry
jndi.entry.service.desc. PID is com.ibm.ws.jndi.internal.JNDIEntry.

jndiName
The JNDI name to use for this entry.

string

true

value
The JNDI value to associate with the name.

string

true

jpa
Configuration properties for the Java Persistence API container. PID is com.ibm.ws.jpacomponent.

defaultJtaDataSourceJndiName
Default Java™ Transaction API (JTA) data source JNDI name to be used by applications running in this
server. By default, data sources are JTA. Only data sources that are transactional are allowed in this
field.

string

false

defaultNonJtaDataSourceJndiName
Default non-transactional data source JNDI name to be used by applications running in this server.
Only data sources that have been marked as non-transactional are allowed in this field.

string

false

defaultPersistenceProvider
Default persistence provider.

string

com.ibm.websphere.persistence.PersistenceProviderImpl

false

entityManagerPoolCapacity
EntityManager pool capacity per PersistenceContext reference. The minimum is 0 and the maximum is
500.

int

-1

false

excludedApplication
An application to be excluded from JPA processing.

string

false

264 Overview

jspEngine
JSP 2.2 configuration. PID is com.ibm.ws.jsp.2.2.

disableJspRuntimeCompilation
Disable compilation of JSPs at runtime.

boolean

false

false

extendedDocumentRoot
Directory that the JSP engine will search for additional JSP files to serve.

string

false

jdkSourceLevel
Default Java source level for JSPs compiled by the JSP engine.

string

15

13

14

15

16

false

keepGenerated
Keep Java source files generated for JSPs.

boolean

false

false

useInMemory
Generate Java source and classes in memory (without writing to disk).

boolean

false

false

recompileJspOnRestart
Recompile JSPs after an application is restarted. JSPs are recompiled on first access.

boolean

false

false

useImplicitTagLibs
Allow JSPs to use jsx and tsx tag libs.

boolean

true

false

Chapter 12. The Liberty profile 265

disableResourceInjection
Disable injection of resources into JSPs.

boolean

false

false

keyStore
A repository of security certificates used for SSL encryption. PID is com.ibm.ws.ssl.keystore.

password
The password used to load the keystore file. The value can be stored in clear text or encoded form.
Use the securityUtility tool to encode the password.

password (string)

false

location
An absolute or relative path to the keystore file. If a relative path is provided, the server will attempt to
locate the file in the ${server.config.dir}/resources/security directory. Use the keystore file for a
file-based keystore, the keyring name for SAF keyrings, or the device configuration file for hardware
cryptography devices. In the SSL minimal configuration, the location of the file is assumed to be
${server.config.dir}/resources/security/key.jks.

string

${server.output.dir}/resources/security/key.jks

false

type
A keystore type supported by the target SDK.

string

jks

false

ldapRegistry
Configuration properties for an LDAP user registry. PID is com.ibm.ws.security.registry.ldap.config.

host
Address of the LDAP server in the form of a IP address or a domain name service (DNS) name.

string

true

port
Port number of the LDAP server.

int

true

baseDN
Base distinguished name (DN) of the directory service, which indicates the starting point for LDAP
searches in the directory service.

string

true

266 Overview

ldapType
Type of LDAP server to which a connection will be established.

string

Microsoft Active Directory
actived

Custom

IBM Lotus® Domino
domino50

Novell eDirectory
edirectory

IBM Tivoli Directory Server
ibm_dir_server

Sun Java System Directory Server
iplanet

Netscape Directory Server
netscape

IBM SecureWay Directory Server
secureway

true

realm
The realm name represents the user registry.

string

LdapRegistry

false

bindDN
Distinguished name (DN) for the application server, which is used to bind to the directory service.

string

false

bindPassword
Password for the bind DN. The value can be stored in clear text or encoded form. It is recommended
that you encode the password. To do so, use the securityUtility tool with the encode option.

password (string)

false

ignoreCase
Perform a case-insensitive authentication check.

boolean

true

false

recursiveSearch
Performs a nested group search. Select this option only if the LDAP server does not support recursive
server-side searches.

boolean

Chapter 12. The Liberty profile 267

false

false

reuseConnection
Requests the application server to reuse the LDAP server connection.

boolean

true

false

sslEnabled
Indicates whether an SSL connection should be made to the LDAP server.

boolean

false

false

sslRef
ID of the SSL configuration to be used to connect to the SSL-enabled LDAP server.

string

false

searchTimeout
Maximum time for an LDAP server to respond before a request is canceled. Specify a positive integer
followed by a unit of time, which can be hours (h), minutes (m), seconds (s), or milliseconds (ms). For
example, specify 500 milliseconds as 500ms. You can include multiple values in a single entry. For
example, 1s500ms is equivalent to 1.5 seconds.

string

2m

false

activedFiltersRef
Specifies the list of default Active Directory LDAP filters.

Configuration ID of type activedLdapFilterProperties (string).

false

customFiltersRef
Specifies the list of default Custom LDAP filters.

Configuration ID of type customLdapFilterProperties (string).

false

domino50FiltersRef
Specifies the list of default Domino LDAP filters.

Configuration ID of type domino50LdapFilterProperties (string).

false

edirectoryFiltersRef
Specifies the list of EDirectory LDAP filters.

Configuration ID of type edirectoryLdapFilterProperties (string).

false

268 Overview

idsFiltersRef
Specifies the list of default IBM Directory Server LDAP filters.

Configuration ID of type idsLdapFilterProperties (string).

false

iplanetFiltersRef
Specifies the list of default IPlanet LDAP filters.

Configuration ID of type iplanetLdapFilterProperties (string).

false

netscapeFiltersRef
Specifies the list of default Netscape LDAP filters.

Configuration ID of type netscapeLdapFilterProperties (string).

false

securewayFiltersRef
Specifies the list of default SecureWay LDAP filters.

Configuration ID of type securewayLdapFilterProperties (string).

false

failoverServers
List of LDAP failover servers.

List of LDAP failover servers.

name
failoverServers.name.desc

string

false

server
Configuration properties for LDAP failover server.

Configuration properties for LDAP failover server.

host
LDAP server host name, which can be either an IP address or a domain name service (DNS)
name.

string

true

port
LDAP failover server port.

int

true

false

false

activedFilters
Specifies the list of default Active Directory LDAP filters.

Element of type activedLdapFilterProperties.

false

Chapter 12. The Liberty profile 269

customFilters
Specifies the list of default Custom LDAP filters.

Element of type customLdapFilterProperties.

false

domino50Filters
Specifies the list of default Domino LDAP filters.

Element of type domino50LdapFilterProperties.

false

edirectoryFilters
Specifies the list of EDirectory LDAP filters.

Element of type edirectoryLdapFilterProperties.

false

idsFilters
Specifies the list of default IBM Directory Server LDAP filters.

Element of type idsLdapFilterProperties.

false

iplanetFilters
Specifies the list of default IPlanet LDAP filters.

Element of type iplanetLdapFilterProperties.

false

netscapeFilters
Specifies the list of default Netscape LDAP filters.

Element of type netscapeLdapFilterProperties.

false

securewayFilters
Specifies the list of default SecureWay LDAP filters.

Element of type securewayLdapFilterProperties.

false

library
Shared Library. PID is com.ibm.ws.classloading.sharedlibrary.

name
Name of shared library for administrators

string

false

description
Description of shared library for administrators

string

false

filesetRef
Id of referenced Fileset

List of configuration IDs of type fileset (comma-separated string).

270 Overview

false

apiTypeVisibility
The types of API package this library's class loader will be able to see, as a comma-separated list of
any combination of the following: spec, ibm-api, ibm-spi, third-party.

string

spec,ibm-api

false

fileset
Id of referenced Fileset

Element of type fileset.

false

logging
Controls the output of log and trace messages. PID is com.ibm.ws.logging.

maxFileSize
Maximum size of a log file, in megabytes, before being rolled over; a value of 0 means no limit.

com.ibm.ws.logging.max.file.size

int

20

false

maxFiles
Maximum number of log files that will be kept, before the oldest file is removed; a value of 0 means no
limit.

com.ibm.ws.logging.max.files

int

2

false

logDirectory
Location to which all log files will be written. The default value is ${server.output.dir}/logs.

com.ibm.ws.logging.log.directory

string

${server.output.dir}/logs

false

messageFileName
Name of the file to which message output will be written relative to the configured log directory. The
default value is messages.log.

com.ibm.ws.logging.message.file.name

string

messages.log

false

Chapter 12. The Liberty profile 271

traceFileName
Name of the file to which trace output will be written relative to the configured log directory. The default
value is trace.log.

com.ibm.ws.logging.trace.file.name

string

trace.log

false

traceSpecification
A trace specification that conforms to the trace specification grammar and specifies the initial state for
various trace components. An empty value is allowed and treated as 'disable all trace'. Any component
that is not specified is initialized to a default state of disabled.

com.ibm.ws.logging.trace.specification

string

*=info=enabled

false

traceFormat
This format is used for the trace log.

com.ibm.ws.logging.trace.format

string

ENHANCED

BASIC
Use the basic trace format.

ENHANCED
Use the enhanced basic trace format.

ADVANCED
Use the advanced trace format.

false

consoleLogLevel
The logging level used to filter messages written to system streams. The default value is audit.

com.ibm.ws.logging.console.log.level

string

AUDIT

INFO Info, audit, and warning messages will be written to the system output stream. Error messages
will be written to the system error stream.

AUDIT
Audit and warning messages will be written to the system output stream. Error messages will
be written to the system error stream.

WARNING
Warning messages will be written to the system output stream. Error messages will be written
to the system error stream.

ERROR
Error messages will be written to the system error stream.

OFF

272 Overview

false

ltpa
Lightweight Third Party Authentication (LTPA) token configuration. PID is
com.ibm.ws.security.token.ltpa.LTPAConfiguration.

keysFileName
Path of the file containing the token keys.

string

${server.config.dir}/resources/security/ltpa.keys

false

keysPassword
Password for the token keys. The value can be stored in clear text or encoded form. It is
recommended to encode the password, use the securityUtility tool with the encode option.

password (string)

{xor}CDo9Hgw=

false

expiration
Amount of time after which a token expires in minutes.

long

120

false

mimeTypes
Definition of mime types shared by all http virtual hosts. PID is com.ibm.ws.http.mimetype.

type
Definition of mime type as id=value. Use the extension as the id, and the associated type as the value.

string

false

monitor
Configuration for Monitoring. PID is com.ibm.ws.monitor.internal.MonitoringFrameworkExtender.

enableTraditionalPMI
Internal Property to enable or disable Traditional PMI

boolean

false

false

nativeTransactionManager
Configures the RRS Native Transaction Manager. PID is com.ibm.ws.zos.tx.

shutdownTimeout
The amount of time to wait before allowing the native context manager to stop if one or more native
contexts are in-use. A native context is considered in-use if it contains an RRS unit of recovery with
one or more interests. Specify a positive integer followed by a unit of time, which can be hours (h),
minutes (m), seconds (s), or milliseconds (ms). For example, specify 500 milliseconds as 500ms. You
can include multiple values in a single entry. For example, 1s500ms is equivalent to 1.5 seconds.

string

Chapter 12. The Liberty profile 273

15s

false

resourceManagerNamePrefix
The resource manager prefix to be used as part of the server generated resource manager name.

string

DEFAULT

false

netscapeLdapFilterProperties
Specifies the list of default Netscape LDAP filters. PID is
com.ibm.ws.security.registry.ldap.internal.filters.netscape.

userFilter
An LDAP filter clause for searching the user registry for users.

string

(&(uid=%v)(objectclass=inetOrgPerson))

true

groupFilter
An LDAP filter clause for search the user registry for groups.

string

(&(cn=%v)(|(objectclass=groupOfNames)(objectclass=groupOfUniqueNames)))

true

userIdMap
An LDAP filter that maps the name of a user to an LDAP entry.

string

inetOrgPerson:uid

true

groupIdMap
groupId.desc

string

*:cn

true

groupMemberIdMap
An LDAP filter that identifies user to group memberships.

string

groupOfNames:member;groupOfUniqueNames:uniqueMember

true

pluginConfiguration
Generate plugin configuration. PID is com.ibm.ws.generatePluginConfig.

pluginInstallRoot
Web container plugin installation position in file system

string

274 Overview

.

false

webserverPort
Web server HTTP port

string

80

false

webserverSecurePort
Web server HTTPS port

string

443

false

sslKeyringLocation
Location of SSL keyring

string

PATH/FILE

false

sslStashfileLocation
Location of SSL stashfile

string

PATH/FILE

false

sslCertlabel
SSL cert label

string

REPLACE

false

properties
List of JDBC vendor properties for the data source. For example, databaseName="dbname"
serverName="localhost" portNumber="50000". PID is com.ibm.ws.jdbc.dataSource.properties, and it is the
child of complex type “dataSource”.

databaseName
JDBC driver property: databaseName.

string

false

serverName
Server where the database is running.

string

false

portNumber
Port on which to obtain database connections.

Chapter 12. The Liberty profile 275

int

false

URL
URL for connecting to the database.

string

false

user
Database user name.

string

false

password
Password for database user.

password (string)

false

properties.datadirect.sqlserver
Data source properties for the DataDirect Connect for JDBC driver for Microsoft SQL Server. PID is
com.ibm.ws.jdbc.dataSource.properties.datadirect.sqlserver, and it is the child of complex type
“dataSource”.

databaseName
JDBC driver property: databaseName.

string

false

serverName
Server where the database is running.

string

localhost

false

portNumber
Port on which to obtain database connections.

int

1433

false

user
Database user name.

string

false

password
Password for database user.

password (string)

false

276 Overview

accountingInfo
JDBC driver property: accountingInfo.

string

false

alternateServers
JDBC driver property: alternateServers.

string

false

alwaysReportTriggerResults
JDBC driver property: alwaysReportTriggerResults.

boolean

false

applicationName
JDBC driver property: applicationName.

string

false

authenticationMethod
JDBC driver property: authenticationMethod.

string

auto

kerberos

ntlm

userIdPassword

false

bulkLoadBatchSize
JDBC driver property: bulkLoadBatchSize.

long

false

bulkLoadOptions
JDBC driver property: bulkLoadOptions.

long

false

clientHostName
JDBC driver property: clientHostName.

string

false

clientUser
JDBC driver property: clientUser.

string

false

Chapter 12. The Liberty profile 277

codePageOverride
JDBC driver property: codePageOverride.

string

false

connectionRetryCount
JDBC driver property: connectionRetryCount.

int

false

connectionRetryDelay
JDBC driver property: connectionRetryDelay. Specify a positive integer followed by a unit of time,
which can be hours (h), minutes (m), or seconds (s). For example, specify 30 seconds as 30s. You
can include multiple values in a single entry. For example, 1m30s is equivalent to 90 seconds.

string

false

convertNull
JDBC driver property: convertNull.

int

false

dateTimeInputParameterType
JDBC driver property: dateTimeInputParameterType.

string

auto

dateTime

dateTimeOffset

false

dateTimeOutputParameterType
JDBC driver property: dateTimeOutputParameterType.

string

auto

dateTime

dateTimeOffset

false

describeInputParameters
JDBC driver property: describeInputParameters.

string

describeAll

describeIfDateTime

describeIfString

noDescribe

false

278 Overview

describeOutputParameters
JDBC driver property: describeOutputParameters.

string

describeAll

describeIfDateTime

describeIfString

noDescribe

false

enableBulkLoad
JDBC driver property: enableBulkLoad.

boolean

false

enableCancelTimeout
JDBC driver property: enableCancelTimeout.

boolean

false

encryptionMethod
JDBC driver property: encryptionMethod.

string

noEncryption

loginSSL

requestSSL

SSL

false

failoverGranularity
JDBC driver property: failoverGranularity.

string

atomic

atomicWithRepositioning

disableIntegrityCheck

nonAtomic

false

failoverMode
JDBC driver property: failoverMode.

string

connect

extended

select

false

Chapter 12. The Liberty profile 279

failoverPreconnect
JDBC driver property: failoverPreconnect.

boolean

false

hostNameInCertificate
JDBC driver property: hostNameInCertificate.

string

false

initializationString
JDBC driver property: initializationString.

string

false

insensitiveResultSetBufferSize
JDBC driver property: insensitiveResultSetBufferSize.

int

false

javaDoubleToString
JDBC driver property: javaDoubleToString.

boolean

false

JDBCBehavior
JDBC driver property: JDBCBehavior. Values are: 0 (JDBC 4.0) or 1 (JDBC 3.0).

int

0

0 JDBC 4.0

1 JDBC 3.0

false

loadBalancing
JDBC driver property: loadBalancing.

boolean

false

loginTimeout
JDBC driver property: loginTimeout. Specify a positive integer followed by a unit of time, which can be
hours (h), minutes (m), or seconds (s). For example, specify 30 seconds as 30s. You can include
multiple values in a single entry. For example, 1m30s is equivalent to 90 seconds.

string

false

longDataCacheSize
JDBC driver property: longDataCacheSize.

int

false

280 Overview

netAddress
JDBC driver property: netAddress.

string

false

packetSize
JDBC driver property: packetSize.

int

false

queryTimeout
queryTimeout.datadirect.sqlserver.desc. Specify a positive integer followed by a unit of time, which can
be hours (h), minutes (m), or seconds (s). For example, specify 30 seconds as 30s. You can include
multiple values in a single entry. For example, 1m30s is equivalent to 90 seconds.

string

false

resultsetMetaDataOptions
JDBC driver property: resultsetMetaDataOptions.

int

false

selectMethod
JDBC driver property: selectMethod.

string

cursor

direct

false

snapshotSerializable
JDBC driver property: snapshotSerializable.

boolean

false

spyAttributes
JDBC driver property: spyAttributes.

string

false

stringInputParameterType
JDBC driver property: stringInputParameterType.

string

varchar

nvarchar

varchar

false

stringOutputParameterType
JDBC driver property: stringOutputParameterType.

Chapter 12. The Liberty profile 281

string

varchar

nvarchar

varchar

false

suppressConnectionWarnings
JDBC driver property: suppressConnectionWarnings.

boolean

false

transactionMode
JDBC driver property: transactionMode.

string

explicit

implicit

false

truncateFractionalSeconds
JDBC driver property: truncateFractionalSeconds.

boolean

false

trustStore
JDBC driver property: trustStore.

string

false

trustStorePassword
JDBC driver property: trustStorePassword.

password (string)

false

useServerSideUpdatableCursors
JDBC driver property: useServerSideUpdatableCursors.

boolean

false

validateServerCertificate
JDBC driver property: validateServerCertificate.

boolean

false

XATransactionGroup
JDBC driver property: XATransactionGroup.

string

false

282 Overview

XMLDescribeType
JDBC driver property: XMLDescribeType.

string

longvarbinary

longvarchar

false

properties.db2.i.native
Data source properties for the IBM DB2 for i Native JDBC driver. PID is
com.ibm.ws.jdbc.dataSource.properties.db2.i.native, and it is the child of complex type “dataSource”.

databaseName
JDBC driver property: databaseName.

string

*LOCAL

false

user
Database user name.

string

false

password
Password for database user.

password (string)

false

access
JDBC driver property: access.

string

all

all

read call

read only

false

autoCommit
JDBC driver property: autoCommit.

boolean

true

false

batchStyle
JDBC driver property: batchStyle.

string

2.0

2.0

Chapter 12. The Liberty profile 283

2.1

false

behaviorOverride
JDBC driver property: behaviorOverride.

int

false

blockSize
JDBC driver property: blockSize.

int

32

0

8

16

32

64

128

256

512

false

cursorHold
JDBC driver property: cursorHold.

boolean

false

false

cursorSensitivity
JDBC driver property: cursorSensitivity. Values are: 0 (TYPE_SCROLL_SENSITIVE_STATIC), 1
(TYPE_SCROLL_SENSITIVE_DYNAMIC), 2 (TYPE_SCROLL_ASENSITIVE).

string

asensitive

asensitive

sensitive

false

dataTruncation
JDBC driver property: dataTruncation.

string

true

false

dateFormat
JDBC driver property: dateFormat.

string

284 Overview

dmy

eur

mdy

iso

jis

julian

usa

ymd

false

dateSeparator
JDBC driver property: dateSeparator.

string

/ The forward slash character (/).

- The dash character (-).

. The period character (.).

, The comma character (,).

b The character b

false

decimalSeparator
JDBC driver property: decimalSeparator.

string

. The period character (.).

, The comma character (,).

false

directMap
JDBC driver property: directMap.

boolean

false

false

doEscapeProcessing
JDBC driver property: doEscapeProcessing.

boolean

true

false

fullErrors
JDBC driver property: fullErrors.

boolean

false

Chapter 12. The Liberty profile 285

libraries
JDBC driver property: libraries.

string

false

lobThreshold
JDBC driver property: lobThreshold.

int

0

false

lockTimeout
JDBC driver property: lockTimeout. Specify a positive integer followed by a unit of time, which can be
hours (h), minutes (m), or seconds (s). For example, specify 30 seconds as 30s. You can include
multiple values in a single entry. For example, 1m30s is equivalent to 90 seconds.

string

0

false

loginTimeout
JDBC driver property: loginTimeout. Specify a positive integer followed by a unit of time, which can be
hours (h), minutes (m), or seconds (s). For example, specify 30 seconds as 30s. You can include
multiple values in a single entry. For example, 1m30s is equivalent to 90 seconds.

string

false

maximumPrecision
JDBC driver property: maximumPrecision.

int

31

31

63

false

maximumScale
JDBC driver property: maximumScale.

int

31

false

minimumDivideScale
JDBC driver property: minimumDivideScale.

int

0

false

networkProtocol
JDBC driver property: networkProtocol.

286 Overview

int

false

portNumber
Port on which to obtain database connections.

int

false

prefetch
JDBC driver property: prefetch.

boolean

true

false

queryOptimizeGoal
JDBC driver property: queryOptimizeGoal. Values are: 1 (*FIRSTIO) or 2 (*ALLIO).

string

2

1 *FIRSTIO

2 *ALLIO

false

reuseObjects
JDBC driver property: reuseObjects.

boolean

true

false

serverName
Server where the database is running.

string

false

serverTraceCategories
JDBC driver property: serverTraceCategories.

int

0

false

systemNaming
JDBC driver property: systemNaming.

boolean

false

false

timeFormat
JDBC driver property: timeFormat.

string

Chapter 12. The Liberty profile 287

eur

hms

iso

jis

usa

false

timeSeparator
JDBC driver property: timeSeparator.

string

: The colon character (:).

. The period character (.).

, The comma character (,).

b The character b

false

trace
JDBC driver property: trace.

boolean

false

transactionTimeout
JDBC driver property: transactionTimeout. Specify a positive integer followed by a unit of time, which
can be hours (h), minutes (m), or seconds (s). For example, specify 30 seconds as 30s. You can
include multiple values in a single entry. For example, 1m30s is equivalent to 90 seconds.

string

0

false

translateBinary
JDBC driver property: translateBinary.

boolean

false

false

translateHex
JDBC driver property: translateHex.

string

character

binary

character

false

useBlockInsert
JDBC driver property: useBlockInsert.

boolean

288 Overview

false

false

properties.db2.i.toolbox
Data source properties for the IBM DB2 for i Toolbox JDBC driver. PID is
com.ibm.ws.jdbc.dataSource.properties.db2.i.toolbox, and it is the child of complex type “dataSource”.

serverName
Server where the database is running.

string

true

databaseName
JDBC driver property: databaseName.

string

false

user
Database user name.

string

false

password
Password for database user.

password (string)

false

access
JDBC driver property: access.

string

all

all

read call

read only

false

behaviorOverride
JDBC driver property: behaviorOverride.

int

false

bidiImplicitReordering
JDBC driver property: bidiImplicitReordering.

boolean

true

false

bidiNumericOrdering
JDBC driver property: bidiNumericOrdering.

boolean

Chapter 12. The Liberty profile 289

false

false

bidiStringType
JDBC driver property: bidiStringType.

int

false

bigDecimal
JDBC driver property: bigDecimal.

boolean

true

false

blockCriteria
JDBC driver property: blockCriteria. Values are: 0 (no record blocking), 1 (block if FOR FETCH ONLY
is specified), 2 (block if FOR UPDATE is specified).

int

2

0

1

2

false

blockSize
JDBC driver property: blockSize.

int

32

0

8

16

32

64

128

256

512

false

cursorHold
JDBC driver property: cursorHold.

boolean

false

false

290 Overview

cursorSensitivity
JDBC driver property: cursorSensitivity. Values are: 0 (TYPE_SCROLL_SENSITIVE_STATIC), 1
(TYPE_SCROLL_SENSITIVE_DYNAMIC), 2 (TYPE_SCROLL_ASENSITIVE).

string

asensitive

asensitive

insensitive

sensitive

false

dataCompression
JDBC driver property: dataCompression.

boolean

true

false

dataTruncation
JDBC driver property: dataTruncation.

boolean

true

false

dateFormat
JDBC driver property: dateFormat.

string

dmy

eur

mdy

iso

jis

julian

usa

ymd

false

dateSeparator
JDBC driver property: dateSeparator.

string

/ The forward slash character (/).

- The dash character (-).

. The period character (.).

, The comma character (,).

The space character ().

Chapter 12. The Liberty profile 291

false

decimalSeparator
JDBC driver property: decimalSeparator.

string

. The period character (.).

, The comma character (,).

false

driver
JDBC driver property: driver.

string

toolbox

native

toolbox

false

errors
JDBC driver property: errors.

string

basic

basic

full

false

extendedDynamic
JDBC driver property: extendedDynamic.

boolean

false

false

extendedMetaData
JDBC driver property: extendedMetaData.

boolean

false

false

fullOpen
JDBC driver property: fullOpen.

boolean

false

false

holdInputLocators
JDBC driver property: holdInputLocators.

boolean

true

292 Overview

false

holdStatements
JDBC driver property: holdStatements.

boolean

false

false

isolationLevelSwitchingSupport
JDBC driver property: isolationLevelSwitchingSupport.

boolean

false

false

keepAlive
JDBC driver property: keepAlive.

boolean

false

lazyClose
JDBC driver property: lazyClose.

boolean

false

false

libraries
JDBC driver property: libraries.

string

false

lobThreshold
JDBC driver property: lobThreshold.

int

0

false

loginTimeout
JDBC driver property: loginTimeout. Specify a positive integer followed by a unit of time, which can be
hours (h), minutes (m), or seconds (s). For example, specify 30 seconds as 30s. You can include
multiple values in a single entry. For example, 1m30s is equivalent to 90 seconds.

string

false

maximumPrecision
JDBC driver property: maximumPrecision.

int

31

31

63 64

Chapter 12. The Liberty profile 293

false

maximumScale
JDBC driver property: maximumScale.

int

31

false

metaDataSource
JDBC driver property: metaDataSource.

int

1

false

minimumDivideScale
JDBC driver property: minimumDivideScale.

int

0

false

naming
JDBC driver property: naming.

string

sql

sql

system

false

package
JDBC driver property: package.

string

false

packageAdd
JDBC driver property: packageAdd.

boolean

true

false

packageCCSID
JDBC driver property: packageCCSID. Values are: 1200 (UCS-2) or 13488 (UTF-16).

int

13488

1200 1200 (UCS-2)

13488 13488 (UTF-16)

false

294 Overview

packageCache
JDBC driver property: packageCache.

boolean

false

false

packageCriteria
JDBC driver property: packageCriteria.

string

default

default

select

false

packageError
JDBC driver property: packageError.

string

warning

exception

warning

none

false

packageLibrary
JDBC driver property: packageLibrary.

string

QGPL

false

prefetch
JDBC driver property: prefetch.

boolean

true

false

prompt
JDBC driver property: prompt.

boolean

false

false

proxyServer
JDBC driver property: proxyServer.

string

false

Chapter 12. The Liberty profile 295

qaqqiniLibrary
JDBC driver property: qaqqiniLibrary.

string

false

queryOptimizeGoal
JDBC driver property: queryOptimizeGoal. Values are: 1 (*FIRSTIO) or 2 (*ALLIO).

int

0

false

receiveBufferSize
JDBC driver property: receiveBufferSize.

int

false

remarks
JDBC driver property: remarks.

string

system

sql

system

false

rollbackCursorHold
JDBC driver property: rollbackCursorHold.

boolean

false

false

savePasswordWhenSerialized
JDBC driver property: savePasswordWhenSerialized.

boolean

false

false

secondaryUrl
JDBC driver property: secondaryUrl.

string

false

secure
JDBC driver property: secure.

boolean

false

false

296 Overview

sendBufferSize
JDBC driver property: sendBufferSize.

int

false

serverTraceCategories
JDBC driver property: serverTraceCategories.

int

0

false

soLinger
JDBC driver property: soLinger. Specify a positive integer followed by a unit of time, which can be
hours (h), minutes (m), or seconds (s). For example, specify 30 seconds as 30s. You can include
multiple values in a single entry. For example, 1m30s is equivalent to 90 seconds.

string

false

soTimeout
JDBC driver property: soTimeout. Specify a positive integer followed by a unit of time, which can be
hours (h), minutes (m), seconds (s), or milliseconds (ms). For example, specify 500 milliseconds as
500ms. You can include multiple values in a single entry. For example, 1s500ms is equivalent to 1.5
seconds.

string

false

sort
JDBC driver property: sort.

string

hex

hex

language

table

false

sortLanguage
JDBC driver property: sortLanguage.

string

false

sortTable
JDBC driver property: sortTable.

string

false

sortWeight
JDBC driver property: sortWeight.

string

shared

Chapter 12. The Liberty profile 297

unqiue
unique

false

tcpNoDelay
JDBC driver property: tcpNoDelay.

boolean

false

threadUsed
JDBC driver property: threadUsed.

boolean

true

false

timeFormat
JDBC driver property: timeFormat.

string

eur

hms

iso

jis

usa

false

timeSeparator
JDBC driver property: timeSeparator.

string

: The colon character (:).

. The period character (.).

, The comma character (,).

The space character ().

false

toolboxTrace
JDBC driver property: toolboxTrace.

string

none

datastream

diagnostic

error

information

warning

conversion

298 Overview

proxy

pcml

jdbc

all

thread

false

trace
JDBC driver property: trace.

boolean

false

translateBinary
JDBC driver property: translateBinary.

boolean

false

false

translateBoolean
JDBC driver property: translateBoolean.

boolean

true

false

translateHex
JDBC driver property: translateHex.

string

character

binary

character

false

trueAutoCommit
JDBC driver property: trueAutoCommit.

boolean

false

false

xaLooselyCoupledSupport
JDBC driver property: xaLooselyCoupledSupport.

int

0

false

properties.db2.jcc
Data source properties for the IBM Data Server Driver for JDBC and SQLJ for DB2. PID is
com.ibm.ws.jdbc.dataSource.properties.db2.jcc, and it is the child of complex type “dataSource”.

Chapter 12. The Liberty profile 299

driverType
JDBC driver property: driverType.

int

4

2 Type 2 JDBC driver.

4 Type 4 JDBC driver.

false

databaseName
JDBC driver property: databaseName.

string

false

serverName
Server where the database is running.

string

localhost

false

portNumber
Port on which to obtain database connections.

int

50000

false

user
Database user name.

string

false

password
Password for database user.

password (string)

false

blockingReadConnectionTimeout
JDBC driver property: blockingReadConnectionTimeout. Specify a positive integer followed by a unit of
time, which can be hours (h), minutes (m), or seconds (s). For example, specify 30 seconds as 30s.
You can include multiple values in a single entry. For example, 1m30s is equivalent to 90 seconds.

string

false

clientAccountingInformation
JDBC driver property: clientAccountingInformation.

string

false

clientApplicationInformation
JDBC driver property: clientApplicationInformation.

300 Overview

string

false

clientRerouteServerListJNDIName
JDBC driver property: clientRerouteServerListJNDIName.

string

false

clientUser
JDBC driver property: clientUser.

string

false

clientWorkstation
JDBC driver property: clientWorkstation.

string

false

currentFunctionPath
JDBC driver property: currentFunctionPath.

string

false

currentLockTimeout
JDBC driver property: currentLockTimeout. Specify a positive integer followed by a unit of time, which
can be hours (h), minutes (m), or seconds (s). For example, specify 30 seconds as 30s. You can
include multiple values in a single entry. For example, 1m30s is equivalent to 90 seconds.

string

false

currentPackagePath
JDBC driver property: currentPackagePath.

string

false

currentPackageSet
JDBC driver property: currentPackageSet.

string

false

currentSQLID
JDBC driver property: currentSQLID.

string

false

currentSchema
JDBC driver property: currentSchema.

string

false

Chapter 12. The Liberty profile 301

cursorSensitivity
JDBC driver property: cursorSensitivity. Values are: 0 (TYPE_SCROLL_SENSITIVE_STATIC), 1
(TYPE_SCROLL_SENSITIVE_DYNAMIC), 2 (TYPE_SCROLL_ASENSITIVE).

int

0 TYPE_SCROLL_SENSITIVE_STATIC

1 TYPE_SCROLL_SENSITIVE_DYNAMIC

2 TYPE_SCROLL_ASENSITIVE

false

deferPrepares
JDBC driver property: deferPrepares.

boolean

true

false

enableClientAffinitiesList
JDBC driver property: enableClientAffinitiesList. Values are: 1 (YES) or 2 (NO).

int

1 YES

2 NO

false

enableNamedParameterMarkers
JDBC driver property: enableNamedParameterMarkers. Values are: 1 (YES) or 2 (NO).

int

1 YES

2 NO

false

enableSeamlessFailover
JDBC driver property: enableSeamlessFailover. Values are: 1 (YES) or 2 (NO).

int

1 YES

2 NO

false

enableSysplexWLB
JDBC driver property: enableSysplexWLB.

boolean

false

fetchSize
JDBC driver property: fetchSize.

int

false

302 Overview

fullyMaterializeInputStreams
JDBC driver property: fullyMaterializeInputStreams.

boolean

false

fullyMaterializeLobData
JDBC driver property: fullyMaterializeLobData.

boolean

false

keepDynamic
JDBC driver property: keepDynamic.

int

false

kerberosServerPrincipal
JDBC driver property: kerberosServerPrincipal.

string

false

loginTimeout
JDBC driver property: loginTimeout. Specify a positive integer followed by a unit of time, which can be
hours (h), minutes (m), or seconds (s). For example, specify 30 seconds as 30s. You can include
multiple values in a single entry. For example, 1m30s is equivalent to 90 seconds.

string

false

maxRetriesForClientReroute
JDBC driver property: maxRetriesForClientReroute.

int

false

queryCloseImplicit
JDBC driver property: queryCloseImplicit. Values are: 1 (QUERY_CLOSE_IMPLICIT_YES) or 2
(QUERY_CLOSE_IMPLICIT_NO).

int

1 QUERY_CLOSE_IMPLICIT_YES

2 QUERY_CLOSE_IMPLICIT_NO

false

queryDataSize
JDBC driver property: queryDataSize.

int

false

readOnly
JDBC driver property: readOnly.

boolean

false

Chapter 12. The Liberty profile 303

resultSetHoldability
JDBC driver property: resultSetHoldability. Values are: 1 (HOLD_CURSORS_OVER_COMMIT) or 2
(CLOSE_CURSORS_AT_COMMIT).

int

1 HOLD_CURSORS_OVER_COMMIT

2 CLOSE_CURSORS_AT_COMMIT

false

resultSetHoldabilityForCatalogQueries
JDBC driver property: resultSetHoldabilityForCatalogQueries. Values are: 1
(HOLD_CURSORS_OVER_COMMIT) or 2 (CLOSE_CURSORS_AT_COMMIT).

int

1 HOLD_CURSORS_OVER_COMMIT

2 CLOSE_CURSORS_AT_COMMIT

false

retrieveMessagesFromServerOnGetMessage
JDBC driver property: retrieveMessagesFromServerOnGetMessage.

boolean

true

false

retryIntervalForClientReroute
JDBC driver property: retryIntervalForClientReroute. Specify a positive integer followed by a unit of
time, which can be hours (h), minutes (m), or seconds (s). For example, specify 30 seconds as 30s.
You can include multiple values in a single entry. For example, 1m30s is equivalent to 90 seconds.

string

false

securityMechanism
JDBC driver property: securityMechanism. Values are: 3 (CLEAR_TEXT_PASSWORD_SECURITY), 4
(USER_ONLY_SECURITY), 7 (ENCRYPTED_PASSWORD_SECURITY), 9
(ENCRYPTED_USER_AND_PASSWORD_SECURITY), 11 (KERBEROS_SECURITY), 12
(ENCRYPTED_USER_AND_DATA_SECURITY"),
(ENCRYPTED_USER_PASSWORD_AND_DATA_SECURITY"), 15 (PLUGIN_SECURITY), 16
(ENCRYPTED_USER_ONLY_SECURITY).

int

3 CLEAR_TEXT_PASSWORD_SECURITY

4 USER_ONLY_SECURITY

7 ENCRYPTED_PASSWORD_SECURITY

9 ENCRYPTED_USER_AND_PASSWORD_SECURITY

11 KERBEROS_SECURITY

12 ENCRYPTED_USER_AND_DATA_SECURITY

13 ENCRYPTED_USER_PASSWORD_AND_DATA_SECURITY

15 PLUGIN_SECURITY

16 ENCRYPTED_USER_ONLY_SECURITY

304 Overview

false

sendDataAsIs
JDBC driver property: sendDataAsIs.

boolean

false

sqljEnableClassLoaderSpecificProfiles
JDBC driver property: sqljEnableClassLoaderSpecificProfiles.

boolean

false

sslConnection
JDBC driver property: sslConnection.

boolean

false

streamBufferSize
JDBC driver property: streamBufferSize.

int

false

sysSchema
JDBC driver property: sysSchema.

string

false

traceDirectory
JDBC driver property: traceDirectory.

string

false

traceFile
JDBC driver property: traceFile.

string

false

traceFileAppend
JDBC driver property: traceFileAppend.

boolean

false

traceLevel
Bitwise combination of the following constant values: TRACE_NONE=0,
TRACE_CONNECTION_CALLS=1, TRACE_STATEMENT_CALLS=2,
TRACE_RESULT_SET_CALLS=4, TRACE_DRIVER_CONFIGURATION=16, TRACE_CONNECTS=32,
TRACE_DRDA_FLOWS=64, TRACE_RESULT_SET_META_DATA=128,
TRACE_PARAMETER_META_DATA=256, TRACE_DIAGNOSTICS=512, TRACE_SQLJ=1024,
TRACE_META_CALLS=8192, TRACE_DATASOURCE_CALLS=16384,
TRACE_LARGE_OBJECT_CALLS=32768, TRACE_SYSTEM_MONITOR=131072,
TRACE_TRACEPOINTS=262144, TRACE_ALL=-1.

int

Chapter 12. The Liberty profile 305

0

false

useCachedCursor
JDBC driver property: useCachedCursor.

boolean

false

useJDBC4ColumnNameAndLabelSemantics
JDBC driver property: useJDBC4ColumnNameAndLabelSemantics. Values are: 1 (YES) or 2 (NO).

int

1 YES

2 NO

false

useTransactionRedirect
JDBC driver property: useTransactionRedirect.

boolean

false

xaNetworkOptimization
JDBC driver property: xaNetworkOptimization.

boolean

false

properties.derby.client
Data source properties for Derby Network Client JDBC driver. PID is
com.ibm.ws.jdbc.dataSource.properties.derby.client, and it is the child of complex type “dataSource”.

createDatabase
JDBC driver property: createDatabase.

string

create When the first connection is established, automatically create the database if it doesn't exist.

false Do not automatically create the database.

false

databaseName
JDBC driver property: databaseName.

string

false

serverName
Server where the database is running.

string

localhost

false

portNumber
Port on which to obtain database connections.

int

306 Overview

1527

false

user
Database user name.

string

false

password
Password for database user.

password (string)

false

connectionAttributes
JDBC driver property: connectionAttributes.

string

false

loginTimeout
JDBC driver property: loginTimeout. Specify a positive integer followed by a unit of time, which can be
hours (h), minutes (m), or seconds (s). For example, specify 30 seconds as 30s. You can include
multiple values in a single entry. For example, 1m30s is equivalent to 90 seconds.

string

false

retrieveMessageText
JDBC driver property: retrieveMessageText.

boolean

true

false

securityMechanism
JDBC driver property: securityMechanism. Values are: 3 (CLEAR_TEXT_PASSWORD_SECURITY), 4
(USER_ONLY_SECURITY), 7 (ENCRYPTED_PASSWORD_SECURITY), 8
(STRONG_PASSWORD_SUBSTITUTE_SECURITY), 9
(ENCRYPTED_USER_AND_PASSWORD_SECURITY).

short

3

3 CLEAR_TEXT_PASSWORD_SECURITY

4 USER_ONLY_SECURITY

7 ENCRYPTED_PASSWORD_SECURITY

8 STRONG_PASSWORD_SUBSTITUTE_SECURITY

9 ENCRYPTED_USER_AND_PASSWORD_SECURITY

false

shutdownDatabase
JDBC driver property: shutdownDatabase.

string

Chapter 12. The Liberty profile 307

shutdown
Shut down the database when a connection is attempted.

false Do not shut down the database.

false

ssl
JDBC driver property: ssl.

string

basic

peerAuthentication

off

false

traceDirectory
JDBC driver property: traceDirectory.

string

false

traceFile
JDBC driver property: traceFile.

string

false

traceFileAppend
JDBC driver property: traceFileAppend.

boolean

false

traceLevel
Bitwise combination of the following constant values: TRACE_NONE=0,
TRACE_CONNECTION_CALLS=1, TRACE_STATEMENT_CALLS=2,
TRACE_RESULT_SET_CALLS=4, TRACE_DRIVER_CONFIGURATION=16, TRACE_CONNECTS=32,
TRACE_DRDA_FLOWS=64, TRACE_RESULT_SET_META_DATA=128,
TRACE_PARAMETER_META_DATA=256, TRACE_DIAGNOSTICS=512, TRACE_XA_CALLS=2048,
TRACE_ALL=-1.

int

false

properties.derby.embedded
Data source properties for Derby Embedded JDBC driver. PID is
com.ibm.ws.jdbc.dataSource.properties.derby.embedded, and it is the child of complex type “dataSource”.

createDatabase
JDBC driver property: createDatabase.

string

create When the first connection is established, automatically create the database if it doesn't exist.

false Do not automatically create the database.

false

308 Overview

databaseName
JDBC driver property: databaseName.

string

false

user
Database user name.

string

false

password
Password for database user.

password (string)

false

connectionAttributes
JDBC driver property: connectionAttributes.

string

false

loginTimeout
JDBC driver property: loginTimeout. Specify a positive integer followed by a unit of time, which can be
hours (h), minutes (m), or seconds (s). For example, specify 30 seconds as 30s. You can include
multiple values in a single entry. For example, 1m30s is equivalent to 90 seconds.

string

false

shutdownDatabase
JDBC driver property: shutdownDatabase.

string

shutdown
Shut down the database when a connection is attempted.

false Do not shut down the database.

false

properties.informix
Data source properties for the Informix JDBC driver. PID is
com.ibm.ws.jdbc.dataSource.properties.informix, and it is the child of complex type “dataSource”.

databaseName
JDBC driver property: databaseName.

string

false

ifxIFXHOST
JDBC driver property: ifxIFXHOST.

string

localhost

false

Chapter 12. The Liberty profile 309

serverName
Server where the database is running.

string

false

portNumber
Port on which to obtain database connections.

int

1526

false

user
Database user name.

string

false

password
Password for database user.

password (string)

false

ifxCLIENT_LOCALE
JDBC driver property: ifxCLIENT_LOCALE.

string

false

ifxCPMAgeLimit
JDBC driver property: ifxCPMAgeLimit. Specify a positive integer followed by a unit of time, which can
be hours (h), minutes (m), or seconds (s). For example, specify 30 seconds as 30s. You can include
multiple values in a single entry. For example, 1m30s is equivalent to 90 seconds.

string

false

ifxCPMInitPoolSize
JDBC driver property: ifxCPMInitPoolSize.

int

false

ifxCPMMaxConnections
JDBC driver property: ifxCPMMaxConnections.

int

false

ifxCPMMaxPoolSize
JDBC driver property: ifxCPMMaxPoolSize.

int

false

ifxCPMMinAgeLimit
JDBC driver property: ifxCPMMinAgeLimit. Specify a positive integer followed by a unit of time, which

310 Overview

can be hours (h), minutes (m), or seconds (s). For example, specify 30 seconds as 30s. You can
include multiple values in a single entry. For example, 1m30s is equivalent to 90 seconds.

string

false

ifxCPMMinPoolSize
JDBC driver property: ifxCPMMinPoolSize.

int

false

ifxCPMServiceInterval
JDBC driver property: ifxCPMServiceInterval. Specify a positive integer followed by a unit of time,
which can be hours (h), minutes (m), seconds (s), or milliseconds (ms). For example, specify 500
milliseconds as 500ms. You can include multiple values in a single entry. For example, 1s500ms is
equivalent to 1.5 seconds.

string

false

ifxDBANSIWARN
JDBC driver property: ifxDBANSIWARN.

boolean

false

ifxDBCENTURY
JDBC driver property: ifxDBCENTURY.

string

false

ifxDBDATE
JDBC driver property: ifxDBDATE.

string

false

ifxDBSPACETEMP
JDBC driver property: ifxDBSPACETEMP.

string

false

ifxDBTEMP
JDBC driver property: ifxDBTEMP.

string

false

ifxDBTIME
JDBC driver property: ifxDBTIME.

string

false

ifxDBUPSPACE
JDBC driver property: ifxDBUPSPACE.

string

Chapter 12. The Liberty profile 311

false

ifxDB_LOCALE
JDBC driver property: ifxDB_LOCALE.

string

false

ifxDELIMIDENT
JDBC driver property: ifxDELIMIDENT.

boolean

false

ifxENABLE_TYPE_CACHE
JDBC driver property: ifxENABLE_TYPE_CACHE.

boolean

false

ifxFET_BUF_SIZE
JDBC driver property: ifxFET_BUF_SIZE.

int

false

ifxGL_DATE
JDBC driver property: ifxGL_DATE.

string

false

ifxGL_DATETIME
JDBC driver property: ifxGL_DATETIME.

string

false

ifxIFX_AUTOFREE
JDBC driver property: ifxIFX_AUTOFREE.

boolean

false

ifxIFX_DIRECTIVES
JDBC driver property: ifxIFX_DIRECTIVES.

string

false

ifxIFX_LOCK_MODE_WAIT
ifxIFX_LOCK_MODE_WAIT.desc. Specify a positive integer followed by a unit of time, which can be
hours (h), minutes (m), or seconds (s). For example, specify 30 seconds as 30s. You can include
multiple values in a single entry. For example, 1m30s is equivalent to 90 seconds.

string

2s

false

312 Overview

ifxIFX_SOC_TIMEOUT
JDBC driver property: ifxIFX_SOC_TIMEOUT. Specify a positive integer followed by a unit of time,
which can be hours (h), minutes (m), seconds (s), or milliseconds (ms). For example, specify 500
milliseconds as 500ms. You can include multiple values in a single entry. For example, 1s500ms is
equivalent to 1.5 seconds.

string

false

ifxIFX_USEPUT
JDBC driver property: ifxIFX_USEPUT.

boolean

false

ifxIFX_USE_STRENC
JDBC driver property: ifxIFX_USE_STRENC.

boolean

false

ifxIFX_XASPEC
JDBC driver property: ifxIFX_XASPEC.

string

y

false

ifxINFORMIXCONRETRY
JDBC driver property: ifxINFORMIXCONRETRY.

int

false

ifxINFORMIXCONTIME
JDBC driver property: ifxINFORMIXCONTIME. Specify a positive integer followed by a unit of time,
which can be hours (h), minutes (m), or seconds (s). For example, specify 30 seconds as 30s. You
can include multiple values in a single entry. For example, 1m30s is equivalent to 90 seconds.

string

false

ifxINFORMIXOPCACHE
JDBC driver property: ifxINFORMIXOPCACHE.

string

false

ifxINFORMIXSTACKSIZE
JDBC driver property: ifxINFORMIXSTACKSIZE.

int

false

ifxJDBCTEMP
JDBC driver property: ifxJDBCTEMP.

string

false

Chapter 12. The Liberty profile 313

ifxLDAP_IFXBASE
JDBC driver property: ifxLDAP_IFXBASE.

string

false

ifxLDAP_PASSWD
JDBC driver property: ifxLDAP_PASSWD.

string

false

ifxLDAP_URL
JDBC driver property: ifxLDAP_URL.

string

false

ifxLDAP_USER
JDBC driver property: ifxLDAP_USER.

string

false

ifxLOBCACHE
JDBC driver property: ifxLOBCACHE.

int

false

ifxNEWCODESET
JDBC driver property: ifxNEWCODESET.

string

false

ifxNEWLOCALE
JDBC driver property: ifxNEWLOCALE.

string

false

ifxNODEFDAC
JDBC driver property: ifxNODEFDAC.

string

false

ifxOPTCOMPIND
JDBC driver property: ifxOPTCOMPIND.

string

false

ifxOPTOFC
JDBC driver property: ifxOPTOFC.

string

false

314 Overview

ifxOPT_GOAL
JDBC driver property: ifxOPT_GOAL.

string

false

ifxPATH
JDBC driver property: ifxPATH.

string

false

ifxPDQPRIORITY
JDBC driver property: ifxPDQPRIORITY.

string

false

ifxPLCONFIG
JDBC driver property: ifxPLCONFIG.

string

false

ifxPLOAD_LO_PATH
JDBC driver property: ifxPLOAD_LO_PATH.

string

false

ifxPROTOCOLTRACE
JDBC driver property: ifxPROTOCOLTRACE.

int

false

ifxPROTOCOLTRACEFILE
JDBC driver property: ifxPROTOCOLTRACEFILE.

string

false

ifxPROXY
JDBC driver property: ifxPROXY.

string

false

ifxPSORT_DBTEMP
JDBC driver property: ifxPSORT_DBTEMP.

string

false

ifxPSORT_NPROCS
JDBC driver property: ifxPSORT_NPROCS.

boolean

false

Chapter 12. The Liberty profile 315

ifxSECURITY
JDBC driver property: ifxSECURITY.

string

false

ifxSQLH_FILE
JDBC driver property: ifxSQLH_FILE.

string

false

ifxSQLH_LOC
JDBC driver property: ifxSQLH_LOC.

string

false

ifxSQLH_TYPE
JDBC driver property: ifxSQLH_TYPE.

string

false

ifxSSLCONNECTION
JDBC driver property: ifxSSLCONNECTION.

string

false

ifxSTMT_CACHE
JDBC driver property: ifxSTMT_CACHE.

string

false

ifxTRACE
JDBC driver property: ifxTRACE.

int

false

ifxTRACEFILE
JDBC driver property: ifxTRACEFILE.

string

false

ifxTRUSTED_CONTEXT
JDBC driver property: ifxTRUSTED_CONTEXT.

string

false

ifxUSEV5SERVER
JDBC driver property: ifxUSEV5SERVER.

boolean

false

316 Overview

ifxUSE_DTENV
JDBC driver property: ifxUSE_DTENV.

boolean

false

loginTimeout
JDBC driver property: loginTimeout. Specify a positive integer followed by a unit of time, which can be
hours (h), minutes (m), or seconds (s). For example, specify 30 seconds as 30s. You can include
multiple values in a single entry. For example, 1m30s is equivalent to 90 seconds.

string

false

roleName
JDBC driver property: roleName.

string

false

properties.informix.jcc
Data source properties for the IBM Data Server Driver for JDBC and SQLJ for Informix. PID is
com.ibm.ws.jdbc.dataSource.properties.informix.jcc, and it is the child of complex type “dataSource”.

databaseName
JDBC driver property: databaseName.

string

false

serverName
Server where the database is running.

string

localhost

false

portNumber
Port on which to obtain database connections.

int

1526

false

user
Database user name.

string

false

password
Password for database user.

password (string)

false

currentLockTimeout
JDBC driver property: currentLockTimeout. Specify a positive integer followed by a unit of time, which

Chapter 12. The Liberty profile 317

can be hours (h), minutes (m), or seconds (s). For example, specify 30 seconds as 30s. You can
include multiple values in a single entry. For example, 1m30s is equivalent to 90 seconds.

string

2s

false

DBANSIWARN
JDBC driver property: DBANSIWARN.

boolean

false

DBDATE
JDBC driver property: DBDATE.

string

false

DBPATH
JDBC driver property: DBPATH.

string

false

DBSPACETEMP
JDBC driver property: DBSPACETEMP.

string

false

DBTEMP
JDBC driver property: DBTEMP.

string

false

DBUPSPACE
JDBC driver property: DBUPSPACE.

string

false

DELIMIDENT
JDBC driver property: DELIMIDENT.

boolean

false

deferPrepares
JDBC driver property: deferPrepares.

boolean

false

driverType
JDBC driver property: driverType.

int

4

318 Overview

false

enableNamedParameterMarkers
JDBC driver property: enableNamedParameterMarkers. Values are: 1 (YES) or 2 (NO).

int

false

enableSeamlessFailover
JDBC driver property: enableSeamlessFailover. Values are: 1 (YES) or 2 (NO).

int

false

enableSysplexWLB
JDBC driver property: enableSysplexWLB.

boolean

false

fetchSize
JDBC driver property: fetchSize.

int

false

fullyMaterializeLobData
JDBC driver property: fullyMaterializeLobData.

boolean

false

IFX_DIRECTIVES
JDBC driver property: IFX_DIRECTIVES.

string

ON

OFF

false

IFX_EXTDIRECTIVES
JDBC driver property: IFX_EXTDIRECTIVES.

string

ON

OFF

false

IFX_UPDDESC
JDBC driver property: IFX_UPDDESC.

string

false

IFX_XASTDCOMPLIANCE_XAEND
JDBC driver property: IFX_XASTDCOMPLIANCE_XAEND.

string

Chapter 12. The Liberty profile 319

0

1

false

INFORMIXOPCACHE
JDBC driver property: INFORMIXOPCACHE.

string

false

INFORMIXSTACKSIZE
JDBC driver property: INFORMIXSTACKSIZE.

string

false

keepDynamic
JDBC driver property: keepDynamic.

int

false

loginTimeout
JDBC driver property: loginTimeout. Specify a positive integer followed by a unit of time, which can be
hours (h), minutes (m), or seconds (s). For example, specify 30 seconds as 30s. You can include
multiple values in a single entry. For example, 1m30s is equivalent to 90 seconds.

string

false

NODEFDAC
JDBC driver property: NODEFDAC.

string

yes

no

false

OPTCOMPIND
JDBC driver property: OPTCOMPIND.

string

0

1

2

false

OPTOFC
JDBC driver property: OPTOFC.

string

0

1

false

320 Overview

PDQPRIORITY
JDBC driver property: PDQPRIORITY.

string

HIGH

LOW

OFF

false

progressiveStreaming
JDBC driver property: progressiveStreaming. Values are: 1 (YES) or 2 (NO).

int

1 YES

2 NO

false

PSORT_DBTEMP
JDBC driver property: PSORT_DBTEMP.

string

false

PSORT_NPROCS
JDBC driver property: PSORT_NPROCS.

string

false

queryDataSize
JDBC driver property: queryDataSize.

int

false

resultSetHoldability
JDBC driver property: resultSetHoldability. Values are: 1 (HOLD_CURSORS_OVER_COMMIT) or 2
(CLOSE_CURSORS_AT_COMMIT).

int

1 HOLD_CURSORS_OVER_COMMIT

2 CLOSE_CURSORS_AT_COMMIT

false

resultSetHoldabilityForCatalogQueries
JDBC driver property: resultSetHoldabilityForCatalogQueries. Values are: 1
(HOLD_CURSORS_OVER_COMMIT) or 2 (CLOSE_CURSORS_AT_COMMIT).

int

1 HOLD_CURSORS_OVER_COMMIT

2 CLOSE_CURSORS_AT_COMMIT

false

retrieveMessagesFromServerOnGetMessage
JDBC driver property: retrieveMessagesFromServerOnGetMessage.

Chapter 12. The Liberty profile 321

boolean

true

false

securityMechanism
JDBC driver property: securityMechanism. Values are: 3 (CLEAR_TEXT_PASSWORD_SECURITY), 4
(USER_ONLY_SECURITY), 7 (ENCRYPTED_PASSWORD_SECURITY), 9
(ENCRYPTED_USER_AND_PASSWORD_SECURITY).

short

3 CLEAR_TEXT_PASSWORD_SECURITY

4 USER_ONLY_SECURITY

7 ENCRYPTED_PASSWORD_SECURITY

9 ENCRYPTED_USER_AND_PASSWORD_SECURITY

false

STMT_CACHE
JDBC driver property: STMT_CACHE.

string

0

1

false

traceDirectory
JDBC driver property: traceDirectory.

string

false

traceFile
JDBC driver property: traceFile.

string

false

traceFileAppend
JDBC driver property: traceFileAppend.

boolean

false

traceLevel
Bitwise combination of the following constant values: TRACE_NONE=0,
TRACE_CONNECTION_CALLS=1, TRACE_STATEMENT_CALLS=2,
TRACE_RESULT_SET_CALLS=4, TRACE_DRIVER_CONFIGURATION=16, TRACE_CONNECTS=32,
TRACE_DRDA_FLOWS=64, TRACE_RESULT_SET_META_DATA=128,
TRACE_PARAMETER_META_DATA=256, TRACE_DIAGNOSTICS=512, TRACE_SQLJ=1024,
TRACE_META_CALLS=8192, TRACE_DATASOURCE_CALLS=16384,
TRACE_LARGE_OBJECT_CALLS=32768, TRACE_SYSTEM_MONITOR=131072,
TRACE_TRACEPOINTS=262144, TRACE_ALL=-1.

int

false

322 Overview

useJDBC4ColumnNameAndLabelSemantics
JDBC driver property: useJDBC4ColumnNameAndLabelSemantics. Values are: 1 (YES) or 2 (NO).

int

false

properties.microsoft.sqlserver
Data source properties for Microsoft SQL Server JDBC Driver. PID is
com.ibm.ws.jdbc.dataSource.properties.microsoft.sqlserver, and it is the child of complex type
“dataSource”.

databaseName
JDBC driver property: databaseName.

string

false

instanceName
JDBC driver property: instanceName.

string

false

serverName
Server where the database is running.

string

localhost

false

portNumber
Port on which to obtain database connections.

int

1433

false

user
Database user name.

string

false

password
Password for database user.

password (string)

false

applicationIntent
JDBC driver property: applicationIntent.

string

ReadOnly

ReadWrite

false

Chapter 12. The Liberty profile 323

applicationName
JDBC driver property: applicationName.

string

false

authenticationScheme
JDBC driver property: authenticationScheme.

string

JavaKerberos

NativeAuthentication

false

encrypt
JDBC driver property: encrypt.

boolean

false

failoverPartner
JDBC driver property: failoverPartner.

string

false

hostNameInCertificate
JDBC driver property: hostNameInCertificate.

string

false

integratedSecurity
JDBC driver property: integratedSecurity.

boolean

false

lastUpdateCount
JDBC driver property: lastUpdateCount.

boolean

false

lockTimeout
JDBC driver property: lockTimeout. Specify a positive integer followed by a unit of time, which can be
hours (h), minutes (m), seconds (s), or milliseconds (ms). For example, specify 500 milliseconds as
500ms. You can include multiple values in a single entry. For example, 1s500ms is equivalent to 1.5
seconds.

string

false

loginTimeout
JDBC driver property: loginTimeout. Specify a positive integer followed by a unit of time, which can be
hours (h), minutes (m), or seconds (s). For example, specify 30 seconds as 30s. You can include
multiple values in a single entry. For example, 1m30s is equivalent to 90 seconds.

string

324 Overview

false

multiSubnetFailover
JDBC driver property: multiSubnetFailover.

boolean

false

packetSize
JDBC driver property: packetSize.

int

false

responseBuffering
JDBC driver property: responseBuffering.

string

adaptive

full

false

selectMethod
JDBC driver property: selectMethod.

string

cursor

direct

false

sendStringParametersAsUnicode
JDBC driver property: sendStringParametersAsUnicode.

boolean

false

false

sendTimeAsDatetime
JDBC driver property: sendTimeAsDatetime.

boolean

false

trustServerCertificate
JDBC driver property: trustServerCertificate.

boolean

false

trustStore
JDBC driver property: trustStore.

string

false

trustStorePassword
JDBC driver property: trustStorePassword.

Chapter 12. The Liberty profile 325

password (string)

false

URL
URL for connecting to the database. Example: jdbc:sqlserver://localhost:1433;databaseName=myDB.

string

false

workstationID
JDBC driver property: workstationID.

string

false

xopenStates
JDBC driver property: xopenStates.

boolean

false

properties.oracle
Data source properties for Oracle JDBC driver. PID is com.ibm.ws.jdbc.dataSource.properties.oracle, and it
is the child of complex type “dataSource”.

driverType
JDBC driver property: driverType.

string

thin

thin

oci

false

databaseName
JDBC driver property: databaseName.

string

false

serverName
Server where the database is running.

string

localhost

false

portNumber
Port on which to obtain database connections.

int

1521

false

URL
URL for connecting to the database. Examples: jdbc:oracle:thin:@//localhost:1521/sample or
jdbc:oracle:oci:@//localhost:1521/sample.

326 Overview

string

false

user
Database user name.

string

false

password
Password for database user.

password (string)

false

connectionProperties
JDBC driver property: connectionProperties.

string

false

loginTimeout
JDBC driver property: loginTimeout. Specify a positive integer followed by a unit of time, which can be
hours (h), minutes (m), or seconds (s). For example, specify 30 seconds as 30s. You can include
multiple values in a single entry. For example, 1m30s is equivalent to 90 seconds.

string

false

networkProtocol
JDBC driver property: networkProtocol.

string

false

ONSConfiguration
JDBC driver property: ONSConfiguration.

string

false

serviceName
JDBC driver property: serviceName.

string

false

TNSEntryName
JDBC driver property: TNSEntryName.

string

false

properties.sybase
Data source properties for Sybase JDBC driver. PID is com.ibm.ws.jdbc.dataSource.properties.sybase, and
it is the child of complex type “dataSource”.

databaseName
JDBC driver property: databaseName.

string

Chapter 12. The Liberty profile 327

true

serverName
Server where the database is running.

string

localhost

false

portNumber
Port on which to obtain database connections.

int

5000

false

user
Database user name.

string

false

password
Password for database user.

password (string)

false

connectionProperties
JDBC driver property: connectionProperties.

string

SELECT_OPENS_CURSOR=true

false

loginTimeout
JDBC driver property: loginTimeout. Specify a positive integer followed by a unit of time, which can be
hours (h), minutes (m), or seconds (s). For example, specify 30 seconds as 30s. You can include
multiple values in a single entry. For example, 1m30s is equivalent to 90 seconds.

string

false

networkProtocol
JDBC driver property: networkProtocol.

string

socket

SSL

false

resourceManagerName
JDBC driver property: resourceManagerName.

string

false

328 Overview

SERVER_INITIATED_TRANSACTIONS
JDBC driver property: SERVER_INITIATED_TRANSACTIONS.

string

true

false

false

version
JDBC driver property: version.

int

false

quickStartSecurity
Simple administrative security configuration. PID is com.ibm.ws.security.quickStartSecurity.

userName
Single user defined as part of the quick start security configuration. This user is granted the
Administrator role.

string

true

userPassword
Password for the single user defined as part of the quick start security configuration. It is
recommended that you encode this password. To do so, use the securityUtility tool with the encode
option.

password (string)

true

safAuthorization
Controls the operation of the SAF Authorization Service. PID is com.ibm.ws.security.authorization.saf.

roleMapper
OSGi component name of the SAF Role Mapper service provider.

string

com.ibm.ws.security.authorization.saf.internal.SAFRoleMapperImpl

false

safCredentials
Controls the operation of the SAF Credentials Service. PID is com.ibm.ws.security.credentials.saf.

unauthenticatedUser
SAF user ID of the unauthenticated user.

string

WSGUEST

false

profilePrefix
Profile prefix used to specify the SAF APPL-ID when creating SAF credentials and authorizing users
against SAF resource profiles.

string

Chapter 12. The Liberty profile 329

BBGZDFLT

false

safRegistry
Configuration properties for a SAF user registry. PID is com.ibm.ws.security.registry.saf.config.

realm
The realm name represents the user registry.

string

false

safRoleMapper
Defines how to generate SAF EJBROLE resource profile names from application role names. PID is
com.ibm.ws.security.authorization.saf.internal.SAFRoleMapperImpl.

profilePattern
Pattern to use for generating EJBROLE resource profile names from application role names.

string

%profilePrefix%.%resource%.%role%

false

toUpperCase
Convert the EJBROLE resource profile name to upper-case.

boolean

false

false

securewayLdapFilterProperties
Specifies the list of default SecureWay LDAP filters. PID is
com.ibm.ws.security.registry.ldap.internal.filters.secureway.

userFilter
An LDAP filter clause for searching the user registry for users.

string

(&(uid=%v)(objectclass=ePerson))

true

groupFilter
An LDAP filter clause for search the user registry for groups.

string

(&(cn=%v)(|(objectclass=groupOfNames)(objectclass=groupOfUniqueNames)))

true

userIdMap
An LDAP filter that maps the name of a user to an LDAP entry.

string

*:uid

true

groupIdMap
groupIdFilter.desc

330 Overview

string

*:cn

true

groupMemberIdMap
An LDAP filter that identifies user to group memberships.

string

groupOfNames:member;groupOfUniqueNames:uniqueMember

true

ssl
An SSL configuration repertoire with an ID, a defined keystore, and an optional truststore. PID is
com.ibm.ws.ssl.repertoire.

keyStoreRef
A keystore containing key entries for the SSL configuration repertoire. This attribute is required.

string

true

trustStoreRef
A keystore containing trusted certificate entries used by the SSL configuration repertoire for signing
verification. This attribute is optional. If unspecified, the same keystore is used for both key and trusted
certificate entries.

string

${keyStoreRef}

false

sslDefault
The default configuration repertoire for SSL services. PID is com.ibm.ws.ssl.default.

sslRef
The default SSL configuration repertoire. The default value is defaultSSLSettings.

string

defaultSSLConfig

false

sslOptions
The SSL protocol configuration for a transport. PID is com.ibm.ws.sslchannel.options.

sessionTimeout
Amount of time to wait for a read or write request to complete on a socket. This value is overridden by
protocol-specific timeouts. Specify a positive integer followed by a unit of time, which can be hours (h),
minutes (m), or seconds (s). For example, specify 30 seconds as 30s. You can include multiple values
in a single entry. For example, 1m30s is equivalent to 90 seconds.

string

1d

false

sslRef
default.sslRef.desc

string

Chapter 12. The Liberty profile 331

false

tcpOptions
Defines TCP protocol settings. PID is com.ibm.ws.tcpchannel.options.

inactivityTimeout
Amount of time to wait for a read or write request to complete on a socket. This value is overridden by
protocol-specific timeouts. Specify a positive integer followed by a unit of time, which can be hours (h),
minutes (m), seconds (s), or milliseconds (ms). For example, specify 500 milliseconds as 500ms. You
can include multiple values in a single entry. For example, 1s500ms is equivalent to 1.5 seconds.

string

60s

false

soReuseAddr
Enables immediate rebind to a port with no active listener.

boolean

false

false

transaction
Configuration properties for the Transaction Manager service. PID is com.ibm.ws.transaction.

recoverOnStartup
Specifies whether the server should begin transaction recovery at server startup.

boolean

false

false

waitForRecovery
Specifies whether the server should wait for transaction recovery to complete before accepting new
transactional work.

boolean

false

false

acceptHeuristicHazard
Specifies whether all applications on this server accept the possibility of a heuristic hazard occurring in
a two-phase transaction that contains a one-phase resource.

boolean

true

false

clientInactivityTimeout
Maximum duration between transactional requests from a remote client. Any period of client inactivity
that exceeds this timeout results in the transaction being rolled back in this application server. Specify
a positive integer followed by a unit of time, which can be hours (h), minutes (m), or seconds (s). For
example, specify 30 seconds as 30s. You can include multiple values in a single entry. For example,
1m30s is equivalent to 90 seconds.

string

60s

332 Overview

false

heuristicRetryInterval
Amount of time that the application server waits before retrying a completion signal, such as commit or
rollback, after a transient exception from a resource manager or remote partner. Specify a positive
integer followed by a unit of time, which can be hours (h), minutes (m), or seconds (s). For example,
specify 30 seconds as 30s. You can include multiple values in a single entry. For example, 1m30s is
equivalent to 90 seconds.

string

60s

false

heuristicRetryWait
The number of times that the application server retries a completion signal, such as commit or
rollback. Retries occur after a transient exception from a resource manager or remote partner.

int

5

false

propogatedOrBMTTranLifetimeTimeout
Upper limit of the transaction timeout for transactions that run in this server. This value should be
greater than or equal to the value specified for the total transaction timeout. Specify a positive integer
followed by a unit of time, which can be hours (h), minutes (m), or seconds (s). For example, specify
30 seconds as 30s. You can include multiple values in a single entry. For example, 1m30s is
equivalent to 90 seconds.

string

0

false

totalTranLifetimeTimeout
Default maximum time allowed for transactions started on this server to complete. Any such
transactions that do not complete before this timeout occurs are rolled back. Specify a positive integer
followed by a unit of time, which can be hours (h), minutes (m), or seconds (s). For example, specify
30 seconds as 30s. You can include multiple values in a single entry. For example, 1m30s is
equivalent to 90 seconds.

string

12000s

false

transactionLogDirectory
A directory for this server where the transaction service stores log files for recovery.

string

${server.config.dir}/tranlog/

false

transactionLogSize
Specifies the size of transaction log files in Kilobytes.

int

1024

false

Chapter 12. The Liberty profile 333

enableLoggingForHeuristicReporting
Specifies whether the application server logs about-to-commit-one-phase-resource events from
transactions that involve both a one-phase commit resource and two-phase commit resources.

boolean

false

false

timeoutGracePeriodEnabled
Specifies whether there is a delay between a transaction timeout and the abnormal ending of the
servant region that was running the transaction.

boolean

false

false

lpsHeuristicCompletion
Specifies the direction that is used to complete a transaction that has a heuristic outcome; either the
application server commits or rolls back the transaction, or depends on manual completion by the
administrator. Allowed values are: COMMIT, ROLLBACK and MANUAL

string

ROLLBACK

ROLLBACK

COMMIT

MANUAL

false

defaultMaxShutdownDelay
Default maximum shutdown delay. Specify a positive integer followed by a unit of time, which can be
hours (h), minutes (m), or seconds (s). For example, specify 30 seconds as 30s. You can include
multiple values in a single entry. For example, 1m30s is equivalent to 90 seconds.

string

2s

false

trustAssociation
Controls the operation of the trust association interceptor (TAI) service. PID is
com.ibm.ws.security.authentication.tai.

invokeForUnprotectedURI
Controls whether the TAI is invoked for an unprotected URI.

boolean

false

true

failOverToAppAuthType
Allow an interceptor to fall back to the application authentication mechanism.

boolean

false

true

334 Overview

interceptors
Defines a trust association interceptor.

enabled
Enables or disables the interceptor.

boolean

true

true

className
Fully-qualified package name of the interceptor class.

string

true

invokeBeforeSSO
Invoke an interceptor before single sign-on (SSO).

boolean

true

true

invokeAfterSSO
Invoke an interceptor after single sign-on (SSO).

boolean

false

true

libraryRef
A reference to the ID of the shared library configuration.

Configuration ID of type library (string).

false

library
A reference to the ID of the shared library configuration.

Element of type library.

false

properties
false

true

virtualHost
Virtual host configuration. PID is com.ibm.ws.http.virtualhost.

enabled
Enable this virtual host.

boolean

true

false

Chapter 12. The Liberty profile 335

webAppSecurity
Configures web container application security. PID is
com.ibm.ws.webcontainer.security.internal.WebAppSecurityCollaboratorImpl.

allowFailOverToBasicAuth
Specifies whether to fail over to basic authentication when certificate authentication fails. The
equivalent custom property in the full application server profile is
com.ibm.wsspi.security.web.failOverToBasicAuth.

boolean

false

false

allowLogoutPageRedirectToAnyHost
Warning, security risk: Setting this property to true may open your systems to potential URL redirect
attacks. If set to true, any host can be specified for the logout page redirect. If set to false, and the
logout page points to a different host, or one not listed in the logout page redirect domain list, then a
generic logout page is displayed. The equivalent custom property in the full application server profile is
com.ibm.websphere.security.allowAnyLogoutExitPageHost.

boolean

false

false

displayAuthenticationRealm
Warning, security risk: if this property is set to true, and the user registry's realm name contains
sensitive information, it is displayed to the user. For example, if an LDAP configuration is used, the
LDAP server hostname and port are displayed. This configuration controls what the HTTP basic
authentication login window displays when the realm name is not defined in the application web.xml. If
the realm name is defined in the application web.xml file, this property is ignored. If set to true, the
realm name displayed will be the user registry realm name for the LTPA authentication mechanism or
the Kerberos realm name for the Kerberos authentication mechanism. If set to false, the realm name
displayed will be "Default Realm". The equivalent custom property in the full application server profile
is com.ibm.websphere.security.displayRealm.

boolean

false

false

httpOnlyCookies
Specifies whether the HTTP only (HttpOnly) cookies option is enabled.

boolean

true

false

logoutOnHttpSessionExpire
Specifies whether users will be logged out after the HTTP session timer expires. If set to false, the
user credential will stay active until the Single Sign-On token timeout occurs. The equivalent custom
property in the full application server profile is com.ibm.ws.security.web.logoutOnHTTPSessionExpire.

boolean

false

false

336 Overview

logoutPageRedirectDomainNames
A pipe (|) separated list of domain names that are allowed for the logout page redirect (localhost is
implied). The equivalent custom property in the full application server profile is
com.ibm.websphere.security.logoutExitPageDomainList.

string

false

singleSignonEnabled
Specifies whether single sign-on is enabled.

boolean

true

false

ssoDomainNames
A pipe (|) separated list of domain names that SSO Cookies should be presented. The equivalent
custom property in the full application server profile is com.ibm.ws.security.config.SingleSignonConfig

string

false

ssoUseDomainFromURL
Specifies whether to use the domain name from the request URL for the cookie domain.

boolean

false

false

ssoRequiresSSL
Specifies whether a SSO cookie is sent over SSL. The equivalent custom property in the full
application server profile is com.ibm.websphere.security.customSSOCookieName

boolean

false

false

preserveFullyQualifiedReferrerUrl
Warning, security risk: Setting this to true may open your systems to potential URL redirect attacks.
This property specifies whether the fully qualified referrer URL for form login redirects is preserved. If
false, the host for the referrer URL is removed and the redirect is to localhost. The equivalent custom
property in the full application server profile is com.ibm.websphere.security.util.fullyQualifiedURL

boolean

false

false

postParamSaveMethod
Specifies where POST parameters are stored upon redirect. Valid values are cookie (POST
parameters are stored in a cookie), session (POST parameters are stored in the HTTP Session) and
none (POST parameters are not preserved). The equivalent custom property in the full application
server profile is com.ibm.websphere.security.util.postParamSaveMethod.

string

Cookie

Cookie

Chapter 12. The Liberty profile 337

Session

None

false

postParamCookieSize
Size of the POST parameter cookie. If the size of the cookie is larger than the browser limit,
unexpected behavior may occur. The value of this property must be a positive integer and represents
the maximum size of the cookie in bytes. The equivalent custom property in the full application server
profile is com.ibm.websphere.security.util.postParamMaxCookieSize.

int

16384

false

ssoCookieName
Customizes the SSO cookie name. A custom cookie name allows you to logically separate
authentication between SSO domains and to enable customized authentication to a particular
environment. Before setting this value, consider that setting a custom cookie name can cause an
authentication failure. For example, a connection to a server that has a custom cookie property set
sends this custom cookie to the browser. A subsequent connection to a server that uses either the
default cookie name or a different cookie name, is not able to authenticate the request via a validation
of the in-bound cookie. The equivalent custom property in the full application server profile is
com.ibm.websphere.security.customSSOCookieName.

string

LtpaToken2

false

webAlwaysLogin
Specifies whether the login() method will throw an exception when an identity has already been
authenticated.

boolean

false

false

useAuthenticationDataForUnprotectedResource
Specifies whether authentication data can be used when accessing an unprotected resource. The
unprotected resource can access validated authenticated data that it previously could not access. This
option enables the unprotected resource to call the getRemoteUser, isUserInRole, and
getUserPrincipal methods to retrieve an authenticated identity. The equivalent custom property in the
full application server profile is com.ibm.wsspi.security.web.webAuthReq=persisting.

boolean

true

false

webContainer
Configuration for the web container. PID is com.ibm.ws.webcontainer.

listeners
A comma separated list of listener classes.

string

false

338 Overview

decodeUrlAsUtf8
Decode URL using the an encoding setting of UTF-8.

boolean

true

false

fileServingEnabled
Enable file serving if this setting was not explicitly specified for the application.

boolean

true

false

disallowAllFileServing
Disables all file serving by applications. The equivalent custom property in the full application server
profile is com.ibm.ws.webcontainer.disallowAllFileServing.

boolean

false

false

directoryBrowsingEnabled
Enable directory browsing of an application.

boolean

false

false

serveServletsByClassnameEnabled
Enable servlets to be accessed in a web application using a class name if not explicitly specified.

boolean

false

false

disallowServeServletsByClassName
Disallows the use of serveServletsByClassnameEnabled on the application server level. The
equivalent custom property in the full application server profile is
com.ibm.ws.webcontainer.disallowserveservletsbyclassname.

boolean

false

false

doNotServeByClassName
A semi-colon delimited list of classes to be completely disallowed from being served by classname.
The equivalent custom property in the full application server profile is
com.ibm.ws.webcontainer.donotservebyclassname.

string

false

trustHostHeaderPort
Set this property to true and the com.ibm.ws.webcontainer.extractHostHeaderPort custom property to
true to return the port number from the request host header first.

Chapter 12. The Liberty profile 339

boolean

false

false

trusted
Enables the application server to use inbound private headers from the web server plug-in.

boolean

true

false

extractHostHeaderPort
The web container will return a port number from the host header, if any, or the URL port on which the
client connection was accepted. The equivalent custom property in the full application server profile is
com.ibm.ws.webcontainer.extracthostheaderport.

boolean

false

false

httpsIndicatorHeader
For SSL offloading, set to the name of the HTTP header variable inserted by the SSL
accelerator/proxy/load balancer.

string

false

exposeWebInfOnDispatch
If true, a servlet can access files in the WEB-INF directory. If false (default), a servlet cannot access
files the WEB-INF directory.

boolean

false

false

decodeUrlPlusSign
Decode the plus sign when it is part of the URL. The equivalent custom property in the full application
server profile is com.ibm.ws.webcontainer.decodeurlplussign.

boolean

false

false

channelWriteType
When set to 'sync', responses will be written synchronously; otherwise, responses will be written
asychronously. The equivalent custom property in the full application server profile is
com.ibm.ws.webcontainer.channelwritetype.

string

async

false

suppressHtmlRecursiveErrorOutput
Suppresses the HTML output of a recursive error that cannot be handled by an application's
configured error page. The equivalent custom property in the full application server profile is
com.ibm.ws.webcontainer.suppressHtmlRecursiveErrorOutput.

340 Overview

boolean

false

false

fileWrapperEvents
Web container will generate SMF and PMI data when serving the static files. The equivalent custom
property in the full application server profile is com.ibm.ws.webcontainer.fileWrapperEvents.

boolean

false

false

webGroupVhostNotFound
Replaces message SRVE0017W or SRVE0255E with a user-defined string. The equivalent custom
property in the full application server profile is com.ibm.ws.webcontainer.webgroupvhostnotfound.

string

false

defaultTraceRequestBehavior
Restore HTTP TRACE processing. The equivalent custom property in the full application server profile
is com.ibm.ws.webcontainer.DefaultTraceRequestBehavior.

boolean

false

false

defaultHeadRequestBehavior
Restore the behavior where the HEAD request is not subject to the security constraint defined for the
GET method. The equivalent custom property in the full application server profile is
com.ibm.ws.webcontainer.DefaultHeadRequestBehavior.

boolean

false

false

tolerateSymbolicLinks
Enables the web container to support the use of symbolic links. The equivalent custom property in the
full application server profile is com.ibm.ws.webcontainer.TolerateSymbolicLinks.

boolean

false

false

symbolicLinksCacheSize
Initial size of the symbolic link cache. The equivalent custom property in the full application server
profile is com.ibm.ws.webcontainer.SymbolicLinksCacheSize.

int

1000

false

enableErrorExceptionTypeFirst
Web container is updated to search and use the exception-type before the error-code. The equivalent
custom property in the full application server profile is
com.ibm.ws.webcontainer.enableErrorExceptionTypeFirst.

Chapter 12. The Liberty profile 341

boolean

false

false

enableMultiReadOfPostData
Retain post data for multiple read accesses. The equivalent custom property in the full application
server profile is com.ibm.ws.webcontainer.enablemultireadofpostdata.

boolean

false

false

copyAttributesKeySet
Web container will return an enumeration of a copy of the list attributes to the servlet to avoid a
concurrent access error by the servlet. The equivalent custom property in the full application server
profile is com.ibm.ws.webcontainer.copyattributeskeyset.

boolean

false

false

dispatcherRethrowsEr
Web container will re-throw errors allowing interested resources to process them. The equivalent
custom property in the full application server profile is com.ibm.ws.webcontainer.dispatcherRethrowser.

boolean

true

false

ignoreSessiononStaticFileRequest
Improves performance by preventing the web container from accessing a session for static file
requests involving filters. The equivalent custom property in the full application server profile is
com.ibm.ws.webcontainer.IgnoreSessiononStaticFileRequest.

boolean

false

false

invokeFilterInitAtStartup
Web container will call the filter's init() method at application startup. The equivalent custom property in
the full application server profile is com.ibm.ws.webcontainer.invokeFilterInitAtStartup.

boolean

true

false

enableJspMappingOverride
Allow the JSP mapping to be overridden so that the application can serve the JSP contents itself. The
equivalent custom property in the full application server profile is
com.ibm.ws.webcontainer.enablejspmappingoverride.

boolean

false

false

342 Overview

enableDefaultIsElIgnoredInTag
Correct the default behavior of the EL expression's evaluation in the tag files. The equivalent custom
property in the full application server profile is com.ibm.ws.jsp.enabledefaultiselignoredintag.

boolean

false

false

parseUtf8PostData
Web container will detect non URL encoded UTF-8 post data and include it in the parameter values.
The equivalent custom property in the full application server profile is
com.ibm.ws.webcontainer.parseutf8postdata.

boolean

false

false

logServletContainerInitializerClassLoadingErrors
Log servlet container class loading errors as warnings rather than logging them only when debug is
enabled. The equivalent custom property in the full application server profile is
com.ibm.ws.webcontainer.logservletcontainerinitializerclassloadingerrors.

boolean

false

false

allowIncludeSendError
Allow RequestDispatch to send errors on Include methods. The equivalent custom property in the full
application server profile is com.ibm.ws.webcontainer.allowincludesenderror.

boolean

false

false

skipMetaInfResourcesProcessing
Do not search the meta-inf directory for application resources. The equivalent custom property in the
full application server profile is com.ibm.ws.webcontainer.skipmetainfresourcesprocessing.

boolean

false

false

metaInfResourcesCacheSize
Initial size (number of entries) of the meta-inf resource cache. The equivalent custom property in the
full application server profile is com.ibm.ws.webcontainer.metainfresourcescachesize.name.

int

20

false

xPoweredBy
Alternative string for the X-Powered-By header setting. The equivalent custom property in the full
application server profile is com.ibm.ws.webcontainer.xpoweredby.

string

false

Chapter 12. The Liberty profile 343

disableXPoweredBy
Disable setting of the X-Powered-By header. The equivalent custom property in the full application
server profile is com.ibm.ws.webcontainer.disablexpoweredby.

boolean

false

false

deferServletLoad
Defer servlet loading and initialization until the first request.

boolean

true

false

asyncMaxSizeTaskPool
Maximum size of tasks in the Async task pool before automatically purging canceled tasks. The
equivalent custom property in the full application server profile is
com.ibm.ws.webcontainer.asyncmaxsizetaskpool.

int

5000

false

asyncPurgeInterval
Time interval to wait between each required purge of the cancelled task pool. The equivalent custom
property in the full application server profile is com.ibm.ws.webcontainer.asyncpurgeinterval.

int

30000

false

asyncTimeoutDefault
Async servlet timeout value used when a timeout value has not been explcitly specified. The
equivalent custom property in the full application server profile is
com.ibm.ws.webcontainer.asynctimeoutdefault.

int

30000

false

asyncTimerThreads
Maximum number of threads to use for async servlet timeout processing. The equivalent custom
property in the full application server profile is com.ibm.ws.webcontainer.asynctimerthreads.

int

2

false

wlmClassification
zos.wlm.classification.config.description. PID is com.ibm.ws.zos.wlm.classification.

classificationName
optional classification name

string

344 Overview

null

false

zosWorkloadManager
WLM Native Enclave Manager Configuration. PID is com.ibm.ws.zos.wlm.WLMConfigManager.

collectionName
A collection name to be used for classifying work requests. The name is supplied to native services
IWMCLSFY or __server_classify. Only the first 18 characters will be used.

string

${wlp.server.name}

false

Liberty profile: Feature management
Features are the units of capability by which you control the pieces of the runtime environment that are
loaded into a particular server.

The configuration file server.xml declares which features you want to load. The set of features is enclosed
within the <featureManager> element, and each feature within the <feature> sub-element. For example:

<server>
<featureManager>

<feature>servlet-3.0</feature>
<feature>localConnector-1.0</feature>

</featureManager>
</server>

You can specify any feature in the server configuration. Some features include other features within them.
The same feature can be included in one or more other features. At runtime the feature manager
computes the combined list of content that is required to support the requested set of features.

For information about the main available features, see “Liberty profile: Server features.” For information
about the restrictions that apply to each feature, see Liberty profile: Runtime environment known
restrictions.

Dynamic changes to feature configuration

When you change the feature configuration, the feature manager recalculates the list of required bundles,
stops and uninstalls those no longer needed, and installs and starts any additions. All features are
therefore designed to be able to cope with other features being dynamically added or removed.

Liberty profile: Server features
Features are the units of capability by which you control the pieces of the runtime environment that are
loaded into a particular server.

The following list contains information about the main available features. Including a feature in the
configuration might cause one or more additional features to be loaded automatically. For example, if you
include the wab-1.0 feature, the servlet-3.0 and blueprint-1.0 features are loaded automatically. For
each feature it includes a brief description, and an example of how the feature is declared within the
<featureManager> element inside the server.xml file. For example:

Chapter 12. The Liberty profile 345

<server>
<featureManager>

<feature>servlet-3.0</feature>
<feature>localConnector-1.0</feature>

</featureManager>
</server>

For a full list of available features, see the .mf files under the lib/features directory of the server root
installation location. The feature information is given in the Subsystem-Content element in the .mf file.
Each .mf file represents a feature in the Liberty profile. The file name matches the feature name. For
example, the servlet-3.0 feature is defined in a file called servlet-3.0.mf.

Bean validation
<feature>beanvalidation-1.0</feature>

The beanvalidation-1.0 feature provides validations for JavaBeans at each layer of an
application.

The validation can be applied to all layers of JavaBeans in an application using either annotations
or a Validation.xml deployment descriptor.

See also beanvalidation-1.0 feature restrictions

Blueprint
<feature>blueprint-1.0</feature>

The blueprint-1.0 feature enables support for deploying OSGi applications that make use of the
OSGi blueprint container specification.

The OSGi Applications support in WebSphere Application Server helps you develop and deploy
modular applications that use both Java EE and OSGi technologies. See OSGi Applications.

Java API for RESTful Web Services
<feature>jaxrs-1.1</feature>

The jaxrs-1.1 feature provides support for Java API for Restful Web Services of the Liberty
profile.

See also jaxrs-1.1 feature restriction.

Java Database Connectivity (JDBC)
<feature>jdbc-4.0</feature>

The jdbc-4.0 feature provides support for applications that access a database. You can take an
existing application that uses Java Database Connectivity (JDBC) and a data source, and deploy
the application to a server.

See also Deploying an existing JDBC application to the Liberty profile.

Java Naming and Directory Interface
<feature>jndi-1.0</feature>

The jndi-1.0 feature provides support for a single JNDI entry definition in the server configuration
of the Liberty profile.

Java Persistence API (JPA)
<feature>jpa-2.0</feature>

The jpa-2.0 feature provides support for applications that use application-managed and
container-managed JPA written to the JPA 2.0 specification.

Support is built on top of Apache OpenJPA with extensions to support the container-managed
programming model.

See also Deploying a JPA application to the Liberty profile and jpa-2.0 feature restrictions.

346 Overview

wlp/topics/rwlp_restrict.dita#rwlp_restrict/Beanvalidation-1.0FeatureRestrict

Java Server Faces (JSF)
<feature>jsf-2.0</feature>

The jsf-2.0 feature provides support for web applications that use the JSF framework. This
framework simplifies the construction of user interfaces.

If you include the jsf-2.0 feature you are also including the jsp-2.2 feature, because the JSF
framework is an extension of the JSP framework.

See also jsf-2.0 feature restrictions.

Java Server Pages (JSP)
<feature>jsp-2.2</feature>

The jsp-2.2 feature provides support for JSPs written to the JSP 2.2 specification.

If you include the jsp-2.2 feature you are also including the servlet-3.0 feature.

See also jsp-2.2 feature restrictions.

JavaScript Object Notation (JSON4) Library
<feature>json-1.0</feature>

The json-1.0 feature provides access to the JSON4J library, which provides a set of JSON
handling classes for use within Java environments. The JSON4J library provides a simple Java
model for constructing and manipulating data to be rendered as JSON data.

See also Using JSON content in JAX-RS application requests and responses and JSON4J
Libraries API.

Local JMX Connector
<feature>localConnector-1.0</feature>

The localConnector-1.0 feature provides a local JMX connector that is built into the JVM and can
only be used on the same host machine by someone running under the same user ID and the
same JDK. It enables local access by JMX clients such as jConsole, or other JMX client that use
the Attach API.

See Accessing JMX connectors on the Liberty profile.

Monitoring
<feature>monitor-1.0</feature>

The monitor-1.0 feature provides Performance Monitoring Infrastructure (PMI) support on the
Liberty profile.

See Monitoring the Liberty profile.

OSGi JPA
<feature>osgi.jpa-1.0</feature>

The osgi.jpa-1.0 feature provides JPA support for OSGi applications on the Liberty profile.

Remote JMX connector
<feature>restConnector-1.0</feature>

The restConnector-1.0 feature provides a secure JMX connector that can be used locally or
remotely using any JDK. It enables remote access by JMX clients via a REST based connector
and requires SSL and basic user security configuration.

See Accessing JMX connectors on the Liberty profile.

Secure Sockets Layer (SSL)
<feature>ssl-1.0</feature>

The ssl-1.0 feature provides support for Secure Sockets Layer (SSL) connections. To use the
secure HTTPS listener, you must enable this feature.

Chapter 12. The Liberty profile 347

http://www14.software.ibm.com/webapp/wsbroker/redirect?version=phil&product=was-nd-mp&topic=json4jjd
http://www14.software.ibm.com/webapp/wsbroker/redirect?version=phil&product=was-nd-mp&topic=json4jjd

The Liberty profile provides a dummy keystore and a dummy truststore, which are the same as
those provided by previous versions of WebSphere Application Server.

The secure HTTPS listener is not started unless the ssl-1.0 feature is enabled. If the feature is
unavailable, the HTTPS listener is stopped.

To specify the SSL certificates to use, you add a pointer into the server.xml file. See Securing
communications with the Liberty profile.

To change the HTTPS port, set the <httpsPort> attribute of the <httpEndpoint> element in the
server.xml file. See Specifying Liberty profile bootstrap properties.

Security
<feature>appSecurity-1.0</feature>

The appSecurity-1.0 feature provides support for securing the server runtime environment and
applications. The following aspects are supported:

v Basic user registry

v Lightweight Directory Access Protocol (LDAP) user registry

v Basic authorization

v Web application security

– Basic authentication login

– Form-login Form-logout

– Programmatic APIs: getRemoteUser; getUserPrincipal; isUserInRole; authenticate; logout;
login

When you add the appSecurity-1.0 feature to your server, you also need to configure either the
basic user registry or the LDAP user registry.

See Securing the Liberty profile and its applications.

Server status
<feature>serverStatus-1.0</feature>

The serverStatus-1.0 feature enables Liberty profile servers to automatically publish their status
to WebSphere Application Server Deployment Managers and Job Managers that are aware of the
server as a resource in their Job configuration. The known states are Started and Stopped.

See Submitting jobs to manage Liberty profile servers and Installing Liberty profile server
resources using the job manager.

Servlet
<feature>servlet-3.0</feature>

The servlet-3.0 feature provides support for HTTP Servlets written to the Java Servlet 3.0
specification. Support is achieved through use of the WebSphere web container.

See also Securing the Liberty profile and its applications.

Session Persistence
<feature>sessionDatabase-1.0</feature>

The sessionDatabase-1.0 feature provides session affinity and failover support on the Liberty
profile.

See Configuring session persistence for the Liberty profile.

Web application bundle (WAB)
<feature>wab-1.0</feature>

The wab-1.0 feature provides support for WABs that are inside enterprise bundles. This feature
supports the following resources packaged inside a WAB: static web content and JSPs; HTTP
servlets written to the Servlet 3.0 specification; blueprint applications.

348 Overview

If you include the wab-1.0 feature you are also including the servlet-3.0 and blueprint-1.0
features.

Liberty profile: Security
This topic provides an overview of security workflow in the Liberty profile.

Liberty profile security provides protection for both web resources as per the Servlet 3.0 specification as
well as protecting the JMX connections when using the REST connector.

The following diagram shows a typical security process involved when accessing a protected web
resource. In order for this to work, one must configure the appropriate security features and the
configuration required for the authentication and authorization to happen.

1. A HTTP client requests a web resource in the WebContainer.

2. The WebContainer delegates the security check to the WebSecurity Collaborator.

3. The WebSecurity Collaborator prompts the user to enter credentials (if absent), and uses the
Authentication service to authenticate the user.

4. The Authentication service authenticates, creates, and returns the subject if authenticated successfully.
Otherwise, the Authentication Service reports an exception for the authentication failure.

5. The WebSecurity Collaborator uses the Authorization service to perform a user authorization check.

6. The Authorization service returns the authorization result to the WebSecurity Collaborator.

7. The WebSecurity Collaborator returns the result of the security check (whether the user is in an
authorized role).

8. The WebContainer serves or rejects the requested resource.

The following sections describe all the primary security components in the Liberty profile:

v “Quick start” on page 350

v “Authentication” on page 350

2

1

7

8

36

45

WebContainer

WebSecurity
Collaborator

Authentication
service

Authorization
service

Browser/HTTP client

Figure 33. Typical security flow for web resources

Chapter 12. The Liberty profile 349

v “Authorization”

v “Secure Socket Layer (SSL)”

v “Single Sign-On (SSO)”

v “Web security related properties”

v “Security Public APIs” on page 351

v “Management security” on page 351

v

v “JCA Security” on page 351

v “Configuration examples and samples” on page 351

v “Security compatibility and differences” on page 351

v “Troubleshooting” on page 351

v “Tools” on page 351

Quick start

The quickStartSecurity element helps you configure a single user security environment in the Liberty
profile. See “Liberty profile: Quick overview of security” on page 351 for how the security workflow is when
using the quickStartSecurity element, and Getting started with security in the Liberty profile for a sample
task.

Authentication

The process of confirming the identity of a user is known as authentication. The most common form of
authentication is user name and password, such as through either basic authentication or form login for
web applications. Once a user is authenticated, the source of a request is represented as a Subject object
at the run time. This process involves performing access control checks when a user accesses a resource,
based on the authorization rules configured for the resource. See “Liberty profile: Authentication” on page
352 for more concepts and Authenticating users in the Liberty profile for detailed tasks.

Authorization

The process of determining whether or not to grant a user access to resources within the system is known
as authorization. The Java EE model uses subjects, resources and roles to determine what can and can
not be allowed. This process involves checking the user credentials (such as the user ID and password,
certificates and tokens), and creating a subject based on the authenticated user. See “Liberty profile:
Authorization” on page 361 for more concepts and Authorizing access to resources in the Liberty profile for
detailed tasks.

Secure Socket Layer (SSL)

SSL provides transport level security. See Enabling SSL communication for the Liberty profile for detailed
tasks.

Single Sign-On (SSO)

SSO enables access to applications without being prompted to login multiple times. See Concept of SSO
for more details and Customizing SSO configuration using LTPA cookies for the Liberty profile for the
detailed task.

Web security related properties

There are many configuration properties that you can configure as part of web security such as SSO and
client certificate authentication for your applications. See “Liberty profile: Configuration elements in the

350 Overview

server.xml file” on page 223 for available attributes and see Configuring web security related properties for
the Liberty profile for some examples.

Security Public APIs

The Liberty profile contains public APIs that you can use to implement security functions. The security
public APIs in the Liberty profile are a subset of the full profile security public APIs. The main classes are
WSSecurityHelper, WSSubject, and RegistryHelper. These classes contain a subset of the methods that
are available in the full profile versions. There is also a new class WebSecurityHelper. See “Liberty profile:
Security public APIs” on page 363.

The Java API document for each Liberty profile API is detailed in the Programming Interfaces (APIs)
section of the information center, and is also available as a JAR file under the /dev/ibm-api/javadoc
directory of the server image.

See Developing extensions to the Liberty profile security infrastructure for some of examples.

Management security

Management security means you can manage the Liberty profile using a remote JMX client. To secure
remote connections using the REST connector, see Accessing JMX connectors on the Liberty profile. Also
you can develop your own JMX client application as in Developing a JMX Java client for the Liberty profile.

JCA Security

The Java Connector Architecture (JCA) is to provide the security support for database connectivity. See
Configuring JCA security for the Liberty profile

Configuration examples and samples

There are several security configuration examples under the ${wlp.install.dir}/templates/config
directory to help you understand and develop common security configurations. You can refer to those
examples when configuring security for your application on the Liberty profile.

Security compatibility and differences

You can learn about the main differences in the security capability between the full profile and the Liberty
profile. See “Configuration differences between the full profile and Liberty profile: security” on page 367.

Troubleshooting

The troubleshooting information can be used to solve security-related problems when using the Liberty
profile. See Troubleshooting security and Troubleshooting LDAP.

Tools

You can configure security using the Eclipse-based developer tools for the Liberty profile. See Editing the
Liberty profile configuration using developer tools. Specific information about tools and security
configuration is available in Configuring TAI on the Liberty profile using developer tools and Configuring
JAAS on the Liberty profile using developer tools.

Liberty profile: Quick overview of security
This topic describes some of common security terms, along with an example which helps you understand
the basic workflow of security in the Liberty profile.

Chapter 12. The Liberty profile 351

Security key terms

Authorization
The process of determining whether or not to grant a user access to resources within the system
is known as authorization. The Java EE model uses subjects, resources and roles to determine
what should and should not be allowed.

Authentication
The process of confirming the identity of a user is known as authentication. The most common
form of authentication is user name and password, such as through either basic authentication or
form login for web applications. Once a user is authenticated, the source of a request is
represented as a Subject object at the run time.

Resource
Also known as an object, resources are things within the system. A resource can be any
non-active entity, such as a web application.

Role A role is a logical collection of privileges that can be assigned to a user or group. Some roles are
predefined by the system (such as the Administrator role). Others are defined by the application
developer. In Java EE, subjects are usually granted or denied access to resources based on the
roles they do (or do not) possess.

Subject
A subject is both a general term, as well as a Java object javax.security.auth.Subject.
Generally, the term subject means active entities within the system, such as users on the system,
and even the system process itself.

Security workflow

The following example demonstrates how the security works when a user requests access to a resource.
For example, a user Bob wants to access a servlet myWebApp. See the code samples in Getting started with
security in the Liberty profile.

In order to do this, the following conditions must be true:

1. Bob must be able to log into the system because the servlet is protected.

2. Bob must be in the testing role because the servlet is restricted using an auth-constraint element in
the deployment descriptor.

If Bob cannot log into the system, or Bob is not in the testing role, then the access to the servlet myWebApp
is denied.

Another user Alice can log into the system because Alice is a valid user. But Alice is not in the testing
role. An HTTP 403 error (Access Denied/Forbidden) shows up when Alice logs in.

Liberty profile: Authentication
This topic provides an overview of authentication in the Liberty profile.

When a protected web resource is accessed, the user must provide credential data, such as user ID and
password, to access the resource. The authentication process involves collecting this user credential
information (based on how the web application was configured to collect this data) and validating it against
the configured registry. When it is verified, a JAAS subject is created for that user. The subject contains
additional information about the user, such as the groups that the user belongs to, and the tokens created
for the user. The information in this subject is then used during the authorization process to determine
whether the user can access the resource.

The following diagram illustrates a typical authentication process flow for a web resource.

352 Overview

The authentication process involves gathering credential data from the user, checking the cache to see
whether the subject exists for that user and in its absence calling the JAAS service to perform the
authentication to create a subject. The JAAS service calls a set of login modules to handle the
authentication. One or more of the login modules handles the creation of the subject depending on the
credential data. The login module then calls the registry that is configured to validate the credential
information. If the validation is successful, the authentication process collects and creates relevant
information for that user, including the groups that the user belongs to and the Single Sign On (SSO)
token used for SSO capability, and stores them in the subject as relevant credentials. You can also
customize the information saved in the subject by plugging in custom login modules during this process.

When the authentication is successful, the SSO token that is created during the process is sent back to
the browser in a cookie. The default name of the cookie is ltpaToken2 and is configurable. On subsequent
calls, the token information is used to authenticate the user. If this authentication fails, the authentication
service tries to use other authentication data, such as the user ID and password, if they still exist in the
request.

The following sections describe each of these concepts in more details:

v “User registries” on page 354

v “Authentication Cache” on page 354

v “JAAS configuration” on page 354

v “JAAS login modules” on page 354

v “Callback handler” on page 355

v “Credentials/Tokens” on page 356

v “LTPA” on page 356

Authentication
service

AuthCache
service

JAAS
service

Subject

permit/deny

ID/password
SSOToken
certificate

Browser/HTTP client

UserRegistry
service

Credential
service

Token
service

Figure 34. Overview of authentication process

Chapter 12. The Liberty profile 353

v “Single Sign-On (SSO)” on page 357

v “Pluggable authentication” on page 357

v “Identity assertion” on page 357

v “RunAs() authentication” on page 358

v “Proxy login module” on page 359

v “Certificate login” on page 359

v “Hashtable login module” on page 359

User registries

When validating the authentication data of a user, the login modules call the user registry that is
configured to validate the user information. The Liberty profile supports both a simple configuration-based
user registry and a more robust LDAP-based repository. For more information, see Configuring a user
registry for the Liberty profile.

Authentication Cache

Because the creation of a subject is relatively expensive, the Liberty profile provides an authentication
cache to store a subject after an authentication of a user is successful. The default expiration time for the
cache is 10 minutes. If the user does not log back in within 10 minutes, the subject is removed and the
process of authentication repeats to create a subject for that user. You can configure the cache timeout
period, the cache size, and also disable or enable caching. For more information, see Configuring the
authentication cache on the Liberty profile.

JAAS configuration

A JAAS configuration defines a set of login modules that are used to create the subject. The Liberty profile
supports the following JAAS configurations:

system.WEB_INBOUND
This JAAS configuration is used when accessing web resources such as servlets and JSPs.

WSLogin
This JAAS configuration is used by applications when using the programmatic login.

system.DEFAULT
This JAAS configuration is used for login when no JAAS configuration is specified.

Note:

v The system.WEB_INBOUND and system.DEFAULT configurations have these default login
modules in this order: hashtable, userNameAndPassword, certificate, and token.

v The WSLogin configuration has the proxy login module as the default login module, and the
proxy delegates all the operations to the real login module in system.DEFAULT.

No explicit configuration is needed unless you want to customize with custom login modules. Depending
on the requirement, you can customize specific login configurations. For example, if you want all the web
resource logins to be customized, then custom login modules must be added only to the
system.WEB_INBOUND configuration. See Configuring a JAAS custom login module for the Liberty profile.

JAAS login modules

The JAAS configuration uses a set of login modules to create the subject. The Liberty profile provides a
set of login modules in each of the login configurations. Depending on the authentication data, a particular
login module handles the creation of the subject. The authentication data is passed to the login modules
using the callback handler as specified in the JAAS specification. For example, if the user ID and

354 Overview

password callback handler is being used for authentication, the userNameAndPassword login module
handles the authentication. If a SingleSignonToken is presented as the authentication data, only the token
login module handles the authentication.

The following default login modules are supported in the Liberty profile:

userNameAndPassword
Handles the authentication when user name and password are used as the authentication data.

certificate
Handles the authentication when an X509 certificate is used as the authentication data as in the
case of mutual SSL.

token Handles the authentication when an SSO token is presented as the authentication data. During the
authentication process, an SSO token is created and sent back to the http client (browser) in a
cookie. On subsequent requests, this cookie is sent back by the browser and the server extracts
the token from the cookie to authenticate the user when single sign-on is enabled.

hashtable
Is used when the authenticated data is sent through a predefined hashtable. For more information
about the hashtable login, see “Hashtable login module” on page 359. This login module is also
used by the security run time when authentication is performed using identity only. For example, in
the case of runAs.

proxy Is the default login module for WSLogin. See “Proxy login module” on page 359.

The login modules are called in the order that they are configured. The default order is hashtable,
userNameAndPassword, certificate, token. If you must customize the login process using custom login
modules you can provide them and configure them in the order you need. Typically, a custom login module
would be placed first in the list of login modules so that it is called first. When a custom login module is
used, you must specify all the login module information in the configuration along with the custom login
module in the order required.

When a login module determines that it can handle the authentication, it first makes sure that the
authentication data that is passed in is valid. For example, for user name and password authentication, the
configured user registry is called to verify the authentication information. For token authentication, the
token must be decrypted and valid for the verification to succeed.

When the authentication data is validated, the login modules create credentials with additional data for the
user including the groups and the SSO token. A custom login module can add additional data to the
subject by creating its own credentials. For the Liberty profile authorization to work, the subject must
contain the WSCredential, WSPrincipal, and SingleSignonToken credentials. The WSCredential credential
contains the groups information, along with additional information needed by the security runtime
environment.

Callback handler

The Liberty profile supports various callback handlers for providing data to the login modules during the
JAAS authentication process. A custom login module can use the callback handler information to perform
its own authentication. For example, if the callback handler needs to access some information in an
HttpServletRequest object, it can do so using that specific callback handler.

The following callback handlers and factories for programmatic JAAS login are supported in the Liberty
profile:

1. com.ibm.websphere.security.auth.callback.WSCallbackHandlerImpl

2. com.ibm.wsspi.security.auth.callback.WSCallbackHandlerFactory

Chapter 12. The Liberty profile 355

The Java API document for each Liberty profile API is detailed in the Programming Interfaces (APIs)
section of the information center, and is also available as a JAR file under the /dev/ibm-api/javadoc
directory of the server image.

See Developing JAAS custom login modules for a system login configuration.

Credentials/Tokens

As mentioned in the loginModule section, credentials are created as part of the subject creation process.
The Liberty profile creates the WSCredential, SingleSignonToken, and WSPrincipal credentials. The
SingleSignonToken credential contains the token that is sent back to the browser in a cookie for SSO to
work. This token contains both the user information and an expiration time. It is signed and encrypted
using the Lightweight Third Party Authentication (LTPA) keys that are generated during the first server
startup. The default expiration time is 2 hours and is an absolute time (not based on user activity). After
the 2 hours, the token expires and the user must log in again to access the resource.

LTPA

LTPA is intended for distributed, multiple application server environments. In the Liberty profile, LTPA
supports SSO and security in a distributed environment through cryptography. This support enables LTPA
to encrypt, digitally sign, and securely transmit authentication-related data, and later decrypt and verify the
signature.

Application servers can securely communicate using the LTPA protocol. It also provides the SSO feature,
whereby a user is required to authenticate only when connecting to a domain name system (DNS) domain,
and can then access resources in other Liberty profile servers in the same domain without getting
prompted. The realm names on each system in the DNS domain are case-sensitive and must match
identically.

The LTPA protocol uses cryptographic keys to encrypt and decrypt user data that passes between the
servers. These keys must be shared between the different servers for the resources in one server to
access resources in other servers, assuming that all the servers involved use the same user registry. LTPA
requires that the configured user registry must be a centrally shared repository so that users and groups
are the same, regardless of the server.

When using LTPA, a token is created that contains both the user information and an expiration time, and is
signed by the keys. The LTPA token is time sensitive. All participating servers must have their time and
date synchronized. If not, LTPA tokens are prematurely expired and cause authentication or validation
failures. Coordinated Universal Time (UTC) is used by default, and all other servers must have the same
UTC time. Consult your operating system documentation for information about how to ensure the same
UTC time among servers.

This token passes to other servers through cookies for web resources when SSO is enabled.

If the receiving servers use the same keys as the originating server, the token can be decrypted to obtain
the user information, which then is validated to make sure that it is not expired and that the user
information in the token is valid in its registry. On successful validation, the resources in the receiving
servers are accessible after the authorization check.

Each server must have valid credentials. When the credentials expire, the server is required to
communicate to the user registry to authenticate. Extending the time the LTPA token remains cached does
present a slightly increased security risk to be considered when defining your security policies.

If key sharing is required between different Liberty profile servers, copy the keys from one server to
another. For security purposes, the keys are encrypted with a randomly-generated key and a user-defined

356 Overview

password is used to protect the keys. This same password is needed when importing the keys into
another server. The password is only used to protect the keys and is not used to generate the keys.

When security is enabled, LTPA is configured by default during the Liberty profile server start time. For
more information about the LTPA support, see Configuring LTPA on the Liberty profile.

Single Sign-On (SSO)

SSO enables user to log in one place (one server for example) and access applications on other servers
without getting prompted again. To make SSO work, the LTPA keys must be exchanged across different
Liberty profile servers, the user registries must be the same and the token must not have expired. To
exchange the LTPA keys, you can copy the ltpa.keys file from one server to another and restart the
server to use the new LTPA keys. The registries used by all the servers participating in the SSO domain
must be the same.

When a user is authenticated in one Liberty profile server, the SSO token created for the user during the
authentication process is put in the cookie that is sent to the HTTP client, for example, a browser. If there
is another request from that client to another set of applications on a different server but in the same DNS
domain that was configured as part of the SSO configuration in the first server the cookie is sent along
with the request. The receiving server tries to authenticate the user using the token in the cookie and if
both conditions are met, it validates the token and create a subject based for the user in this server
without prompting the user to log in again. If for some reason the token cannot be validated (for example,
it cannot decrypt or verify the token because of LTPA key mismatch), the user is prompted to enter the
credential information again.

Any application that is configured to use Form-login requires SSO to be configured for that server. When
the user is authenticated for a form-login, the token is sent back to the browser which is then used for
authorizing the user when accessing the resource.

See Customizing SSO configuration using LTPA cookies for the Liberty profile.

Pluggable authentication

There are various ways to customize the authentication process.

1. Providing a custom login module. See Configuring a JAAS custom login module for the Liberty profile.

2. Implement Trust Association Interceptor to handle all web resource-based authentication. See
Developing a custom TAI for the Liberty profile.

Identity assertion

There are various ways to perform identity assertion in the Liberty profile

1. Using the hashtable login. See Developing JAAS custom login modules for a system login
configuration.

2. Using the IdentityAssertionLoginModule. You can allow an application or system provider to perform
an identity assertion with trust validation. To use the IdentityAssertionLoginModule, you can use the
JAAS login framework, where trust validation is accomplished in one custom login module and
credential creation is accomplished in the IdentityAssertionLoginModule. The two login modules allow
you to create a JAAS login configuration that can be used to perform an identity assertion.

Two custom login modules are required:

User implemented login module (trust validation)
The user implemented login module performs whatever trust verification the user requires.
When trust is verified, the trust verification status and the login identity must be put into a map
in the share state of the login module so that the credential creation login module can use the
information. This map must be stored in the property:

Chapter 12. The Liberty profile 357

com.ibm.wsspi.security.common.auth.module.IdentityAssertionLoginModule.state
(which consists of)

com.ibm.wsspi.security.common.auth.module.IdentityAssertionLoginModule.trusted
(which is set to true if trusted and false if not trusted)

com.ibm.wsspi.security.common.auth.module.IdenityAssertionLoginModule.principal
(which contains the principal of the identity)

com.ibm.wsspi.security.common.auth.module.IdentityAssertionLoginModule.certificates
(which contains the certificate of the identity)

Identity assertion login module (credential creation)
The com.ibm.wsspi.security.common.auth.module.IdentityAssertionLoginModule performs
the credential creation. This module relies on the trust state information being in the shared
state of thelogin context.

The identity assertion login module looks for the trust information in the shared state property,
com.ibm.wsspi.security.common.auth.module.IdentityAssertionLoginModule.state

, which contains the trust status and the identity to log in and must include:

com.ibm.wsspi.security.common.auth.module.IdentityAssertionLoginModule.trusted
(which when true indicates trusted and false when not trusted)

com.ibm.wsspi.security.common.auth.module.IdentityAssertionLoginModule.principal
(which contains the principal of the identity to log in, if using a principal)

com.ibm.wsspi.security.common.auth.module.IdentityAssertionLoginModule.certificates
(which contains a array of a certificate chain that contains the identity to log in,
if using a certificate)

A WSLoginFailedException is returned if the state, trust, or identity information is missing. The
login module then performs a login of the identity, and the subject contains the new identity

See Customizing an application login to perform an identity assertion using JAAS.

RunAs() authentication

After calling a servlet and when you have successfully authenticated, the servlet can then make
subsequent calls, for example to other servlet. These subsequent calls are normally made under the same
security identity that you used to originally log in to the servlet. This identity is known as the caller identity.
Alternatively, you can choose to delegate to a different identity by using the RunAs specification so that
any subsequent calls the servlet makes runs under this other identity. To summarize, you have two options
for propagating the security identity:

v Propagate the caller identity, which is the default behavior.

v Delegate to the runAs identity that you can specify using the runAs specification.

After the server authenticates the original user, the server then authenticates the runAs user. If this
authentication fails, then the server falls back to propagating the caller identity.

In order to use the RunAs specification, you must update the deployment descriptor of your application to
include the run-as element or @RunAs annotation. Set this element to the security role that you want to
delegate to.

See Configuring RunAs authentication in the Liberty profile.

358 Overview

Proxy login module

The proxy login module class loads the application server login module and delegates all the operations to
the real login module implementation. The real login module implementation is specified as the delegate
option in the option configuration. The proxy login module is needed because the application class loaders
do not have visibility of the application server product shared library class loaders. With an application
programmatic login using the Login() method of the LoginContext class with JAAS login context entry
WSLogin, the proxy login module delegates all the work to the JAAS login context entry system.DEFAULT.

Certificate login

The certificate login feature allows you to authenticate web requests such as servlets using client side
X509 certificates instead of supplying a user ID and password.

Certificate authentication works by associating a user in the user registry with the distinguished name in
the client certificate of a web request. Trust is established by having the client certificate be trusted by the
server, for example, the signer of the client certificate must be in the truststore of the server. This
mechanism eliminates the need for users to supply a password to establish trust.

See Securing communications with the Liberty profile.

Hashtable login module

Look up the required attributes from the user registry, put the attributes in a hashtable, then add the
hashtable to the shared state. If the identity is switched in this login module, you must add the hashtable
to the shared state. If the identity is not switched, but the value of the requiresLogin code is true, you can
create the hashtable of attributes. You do not have to create a hashtable in this situation, because the
Liberty profile handles the login for you. However, you might consider creating a hashtable to gather
attributes in special cases. For example, if you are using your own special user registry, then creating a
UserRegistry implementation, using a hashtable, and letting the server gather the user attributes for you
might be a simple solution.

The following rules define in more detail how a hashtable login is completed. You must use a
java.util.Hashtable object in either the Subject (public or private credential set) or the shared-state
HashMap. The com.ibm.wsspi.security.token.AttributeNameConstants class defines the keys that
contain the user information. If the Hashtable object is put into the shared state of the login context using
a custom login module that is listed before the hashtable login module, the value of the
java.util.Hashtable object is searched using the following key within the shared-state hashMap:

Property
com.ibm.wsspi.security.cred.propertiesObject

Reference to the property
AttributeNameConstants.WSCREDENTIAL_PROPERTIES_KEY

Explanation
This key searches for the Hashtable object that contains the required properties in the shared
state of the login context.

Expected result
A java.util.Hashtable object.

If a java.util.Hashtable object is found either inside the Subject or within the shared state area, verify
that the following properties are present in the hashtable:

v com.ibm.wsspi.security.cred.uniqueId

Reference to the property
AttributeNameConstants.WSCREDENTIAL_UNIQUEID

Chapter 12. The Liberty profile 359

Returns
java.util.String

Explanation
The value of the property must be a unique representation of the user. For the Liberty profile
default implementation, this property represents the information that is stored in the application
authorization table. The information is in the application deployment descriptor after it is
deployed and user-to-role mapping is performed. See the expected format examples if the user
to role mapping is performed using a lookup to a Liberty profile user registry implementation.

Expected format examples

Table 32. Format examples for uniqueId. This table gives expected format examples.

User Registry Format (UniqueUserId)

LDAP ldapRegistryRealm/cn=kevin,o=mycompany,c=use

Basic basicRegistryRealm/kelvin

The com.ibm.wsspi.security.cred.uniqueId property is required.

v com.ibm.wsspi.security.cred.securityName

Reference to the property
AttributeNameConstants. WSCREDENTIAL_ SECURITYNAME

Returns
java.util.String

Explanation
This property searches for the securityName of the authentication user. This name is commonly
called the display name or short name. The Liberty profile uses the securityName attribute for
the getRemoteUser, getUserPrincipal, and getCallerPrincipal application programming
interfaces (APIs). To ensure compatibility with the default implementation for the securityName
value, call the public String getUserSecurityName(String uniqueUserId) UserRegistry
method.

Expected format examples

Table 33. Format examples for securityName. This table gives expected format examples.

User Registry Format (securityName)

LDAP kevin

Basic kevin

The com.ibm.wsspi.security.cred.securityname property is required.

v com.ibm.wsspi.security.cred.group

Reference to the property
AttributeNameConstants. WSCREDENTIAL_GROUP

Returns
java.util.ArrayList

Explanation
This key searches for the array list of groups to which the user belongs. The groups are
specified in the realm_name/user_name format. The format of these groups is important as the
groups are used by the Liberty profile authorization engine for group-to-role mappings in the
deployment descriptor. The format that is provided must match the format expected by the
Liberty profile default implementation. When you use a third-party authorization provider, you
must use the format that is expected by the third-party provider. To ensure compatibility with the
default implementation for the unique group IDs value, call the public List
getUniqueGroupIds(String uniqueUserId) UserRegistry method.

360 Overview

Expected format examples

Table 34. Format examples for group. This table gives some format examples when configuring inbound identity
mapping.

User Registry Format (group)

LDAP ldapRegistryRealm/cn=group1,o=Groups,c=US

Basic basicRegistryRealm/group1

The com.ibm.wsspi.security.cred.group property is required. A user is not required to be
associated groups.

v com.ibm.wsspi.security.cred.cacheKey

Reference to the property
AttributeNameConstants. WSCREDENTIAL_CACHE_KEY

Returns
java.lang.Object

Explanation
This key property can specify an object that represents the unique properties of the login,
including the user-specific information and the user dynamic attributes that might affect
uniqueness. For example, when the user logs in from location A, which might affect their access
control, the cache key needs to include location A so that the Subject that is received is the
correct Subject for the current location.

This com.ibm.wsspi.security.cred.cacheKey property is not required. When this property is not
specified, the cache lookup is the value that is specified for WSCREDENTIAL_UNIQUEID.
When this information is found in the java.util.Hashtable object, the Liberty profile creates a
Subject similar to the Subject that goes through the normal login process at least for LTPA. The
new Subject contains a WSCredential object and a WSPrincipal object that is fully populated
with the information found in the Hashtable object.

Liberty profile: Authorization
This topic provides an overview of authorization in the Liberty profile

Authorization is the function of specifying access rights to resources. It usually follows authentication,
which is the function of confirming an identity. Whereas authentication answers the question "Are you who
you say you are", authorization answers the question "Do you have permission to do what you are trying
to do?"

The following sections describe each of these concepts in more detail:

v “Authorization for administrative functions”

v “Authorization for applications” on page 362

v “Special subjects” on page 363

v “Access Ids and authorization” on page 363

Authorization for administrative functions

When an entity attempts to access a resource, the authorization service determines whether that entity
does indeed have the required rights to access the resource. This concept holds true whether an entity is
accessing an application or performing administrative functions. The main difference between authorizing
access to an application and access to an administrative function lies in how the users are mapped to
roles. For authorization of applications, you can use the application-bnd element in the server.xml or the
ibm-application-bnd.xml/xmi file to map the users to roles. For authorization of administrative functions,
use the administratorRole element in the server.xml file to map the users to the administrator role. For
more information about administrative security, See Accessing JMX connectors on the Liberty profile

Chapter 12. The Liberty profile 361

Authorization for applications

The following diagram describes how authorization works for applications:

1. Authorization is performed when an entity attempts to access a resource in an application served by
the Liberty profile. The web container calls the authorization service to determine whether a user has
permission to access a certain resource, given a set of one or more required roles. The required roles
are determined by the auth-constraint elements in the deployment descriptor and @ServletSecurity
annotations.

2. The authorization service determines what objects the required role is mapped to. This step is
accomplished by processing the mappings defined in the ibm-application-bnd.xmi or
ibm-application-bnd.xml file and the application-bnd element of the server.xml file. The mappings
from these two sources are merged. If the same role is present in both sources, only the role mapping
in the server.xml file is used. The advantage of using the server.xml file for mapping roles to users is
that your application does not need to be packaged into an EAR file and it is easier to update.
Alternatively, using the ibm-application-bnd.xmi/xml file makes your application portable to other
servers and other full profile servers that do not support the server.xml file.

3. If the required role is mapped to the EVERYONE special subject, then the authorization service returns
immediately to allow anyone access. If the role is mapped to the ALL_AUHENTICATED special subject and
the user is authenticated, then the authorization service grants access to the user. If none of these
conditions are met, then the authorization service determines what users and groups are mapped to
the required role. The authorization service grants access to the resource if the user is mapped to the
required role or if the user is part of a group that is mapped to the role.

4. The authorization service returns a result back to the web container indicating whether the user is
granted or denied access.

1

4

2 3

22

web container

Roles

AllRole EVERYONE

Employee ALL_AUTHENTICATED_USERS

Developer Bob, Alice

Manager DevManagerGroup

Mapped objects

ibm-application-
bnd.xml/xmi

server.xml
<application-bnd>

</application-bnd>

Authorization
service

Figure 35. Overview of authorization process

362 Overview

Special subjects

When mapping entities to roles, you can map a special subject, instead of a specific user or group. A
special subject is an extension to the concept of a subject. A special subject can represent a group of
users that fall under a specific category.

There are two types of special subjects:

v EVERYONE: represents any entity on the system, which means that there is no security because everyone
is allowed access and you are not prompted to enter credentials.

v ALL_AUTHENTICATED_USERS: represents any entity that has successfully authenticated to the server.

In order to map a special subject to a user, you can update either the ibm-application-bnd.xmi/xml file of
the application or the server.xml file. In this example, the role named AllAuthenticated is mapped to the
special subject ALL_AUTHENTICATED_USERS:

<application-bnd>
<security-role name="AllAuthenticated">

<special-subject type="ALL_AUTHENTICATED_USERS" />
</security-role>

</application-bnd>

See Configuring authorization for applications on the Liberty profile.

Access Ids and authorization

When authorizing a user or group, the server needs a way to uniquely identify that user or group. The
unique ID of the user and group serve this purpose and are used to build the authorization table. These
IDs are determined by the user registry implementation: the unique user ID is the value of
getUniqueUserId(), and the unique group IDis the value of getUniqueGroupId(). You can also choose to
explicitly specify an access ID for the user or group in the authorization table. These explicit access IDs
are used instead of what is returned by the user registry implementation. In order to specify an access ID
in the ibm-application-bnd.xml/xmi or the server.xml file, use the access-id attribute for the user or
group element.

In this example, an access ID is specified for the user Bob and the group developers:

<application-bnd>
<security-role name="Employee">

<user name="Bob" access-id="user:MyRealm/Bob"/>
<group name="developers" access-id="group:myRealm/developers"/>

</security-role>
</application-bnd>

Avoid trouble: Specifying access IDs is not encouraged because you must code the unique IDs and
realm name within your code, which causes problems when you want to modify your user
registry.

Liberty profile: Security public APIs
This topic provides an overview of the security public APIs in the Liberty profile.

The Liberty profile contains public APIs that you can use to implement security functions. The security
public APIs in the Liberty profile are a subset of the full profile security public APIs. The main classes are
WSSecurityHelper, WSSubject, and RegistryHelper. These classes contain a subset of the methods that
are available in the full profile versions. There is also a new class WebSecurityHelper.

The following sections describes those main classes. There are also other classes such as UserRegistry,
WSCredential, and other exception classes.

Chapter 12. The Liberty profile 363

All the security public APIs supported by the Liberty profile are in the Java API documentation. The Java
API document for each Liberty profile API is detailed in the Programming Interfaces (APIs) section of the
information center, and is also available as a JAR file under the /dev/ibm-api/javadoc directory of the
server image.

WSSecurityHelper
This class contains only the methods isServerSecurityEnabled() and
isGlobalSecurityEnabled(). They both return true if any of the following features are enabled in
the server.xml file:

v appSecurity-1.0

v zosSecurity-1.0

Otherwise, they return false. These methods are carried over from the full profile
WSSecurityHelper class for compatibility.

Note:

v There are no cells in the Liberty profile, so there is no distinction in the Liberty profile
between global security and server security. Therefore both methods return the same
value.

v The method revokeSSOCookies(javax.servlet.http.HttpServletRequest
req,javax.servlet.http.HttpServletResponse res) is not supported in the Liberty
profile. Instead you can use the Servlet 3.0 logout function.

v The method getLTPACookieFromSSOToken() has been renamed to a new public API class
- WebSecurityHelper.

WSSubject
This class provides utility methods for querying and setting the security thread context. All methods
from the full profile WSSubject are supported in the Liberty profile.

Note: Java 2 security is not enabled in the Liberty profile, so the Java 2 security checks in
WSSubject are not performed.

RegistryHelper
This class provides access to the UserRegistry object and trusted realm information. In the Liberty
profile, it contains the following subset of the full profile methods:

public static UserRegistry getUserRegistry(String realmName) throws WSSecurityException

public static List<String> getInboundTrustedRealms(String realmName) throws
WSSecurityException

public static boolean isRealmInboundTrusted(String inboundRealm, String localRealm)

WebSecurityHelper
This class contains the renamed getLTPACookieFromSSOToken() method, which was moved from
WSSecurityHelper:

public static Cookie getLTPACookieFromSSOToken() throws Exception

Security public API code examples

The following examples demonstrate how to use security public APIs in the Liberty profile to do a
programmatic login and operate on the Subject.

v Example 1: create a Subject and use it for authorization

v Example 2: create a Subject and make it as the current Subject on the thread

v Example 3: get information of the current Subject on the thread

364 Overview

Example 1: create a Subject and use it for authorization
This example demonstrates how to use WSSecurityHelper, WSSubject, and UserRegistry to do a
programmatic login to create a Java Subject, then perform an action and use that Subject for any
authorization that is required.

Note: The following code uses WSSecurityHelper to check if security is enabled before doing
further security processing. This check is used extensively because of the modular nature
of the Liberty profile: If security is not enabled then the security runtime is not loaded.
WSSecurityHelper is always loaded, even if security is not enabled.

import java.rmi.RemoteException;
import java.security.PrivilegedAction;

import javax.security.auth.Subject;
import javax.security.auth.callback.CallbackHandler;
import javax.security.auth.login.LoginContext;
import javax.security.auth.login.LoginException;

import com.ibm.websphere.security.CustomRegistryException;
import com.ibm.websphere.security.UserRegistry;
import com.ibm.websphere.security.WSSecurityException;
import com.ibm.websphere.security.WSSecurityHelper;
import com.ibm.websphere.security.auth.WSSubject;
import com.ibm.websphere.security.auth.callback.WSCallbackHandlerImpl;
import com.ibm.wsspi.security.registry.RegistryHelper;
public class myServlet {

...
if (WSSecurityHelper.isServerSecurityEnabled()) {
UserRegistry ur = null;
try {
ur = RegistryHelper.getUserRegistry(null);
} catch (WSSecurityException e1) {
// record some diagnostic info
return;
}
String userid = "user1";
String password = "user1password";
try {
if (ur.isValidUser(userid)) {
// create a Subject, authenticating with
// a userid and password
CallbackHandler wscbh = new WSCallbackHandlerImpl(userid, password);
LoginContext ctx;
ctx = new LoginContext("WSLogin", wscbh);
ctx.login();
Subject subject = ctx.getSubject();
// Perform an action using the Subject for
// any required authorization
WSSubject.doAs(subject, action);
}
} catch (CustomRegistryException e) {
// record some diagnostic info
return;
} catch (RemoteException e) {
// record some diagnostic info
return;
} catch (LoginException e) {
// record some diagnostic info
return;
}
}
...
private final PrivilegedAction action = new PrivilegedAction() {
@Override
public Object run() {
// do something useful here

Chapter 12. The Liberty profile 365

return null;
}
};

}

Example 2: create a Subject and make it the current Subject on the thread
The following example demonstrates how to use WSSecurityHelper and WSSubject to do a
programmatic login to create a Java Subject, make that Subject the current Subject on the thread,
and finally restore the original security thread context.

Note: The following code uses WSSecurityHelper to check if security is enabled before doing
further security processing.

import javax.security.auth.Subject;
import javax.security.auth.callback.CallbackHandler;
import javax.security.auth.login.LoginContext;
import javax.security.auth.login.LoginException;

import com.ibm.websphere.security.WSSecurityException;
import com.ibm.websphere.security.WSSecurityHelper;
import com.ibm.websphere.security.auth.WSSubject;
import com.ibm.websphere.security.auth.callback.WSCallbackHandlerImpl;
...
if (WSSecurityHelper.isServerSecurityEnabled()) {
CallbackHandler wscbh = new WSCallbackHandlerImpl("user1", "user1password");
LoginContext ctx;
try {
// create a Subject, authenticating with
// a userid and password
ctx = new LoginContext("WSLogin", wscbh);
ctx.login();
Subject mySubject = ctx.getSubject();
Subject oldSubject = null;
try {
// Save a ref to the current Subject on the thread
oldSubject = WSSubject.getRunAsSubject();
// Make mySubject the current Subject on the thread
WSSubject.setRunAsSubject(mySubject);
// Do something useful here. Any authorization
// required will be performed using mySubject
} catch (WSSecurityException e) {
// record some diagnostic info
return;
} finally {
// Put the original Subject back on the thread context
if (oldSubject != null) {
try {
WSSubject.setRunAsSubject(oldSubject);
} catch (WSSecurityException e) {
// record some diagnostic info
}
}
}
} catch (LoginException e) {
// record some diagnostic info
return;
}
}

Example 3: get information of the current Subject on the thread
The following example demonstrates how to use WSSecurityHelper, WSSubject and WSCredential
to get information about the current Subject on the thread.

Note: The following code uses WSSecurityHelper to check if security is enabled before doing
further security processing.

366 Overview

import java.util.ArrayList;
import java.util.Iterator;
import java.util.Set;

import javax.security.auth.Subject;
import javax.security.auth.login.CredentialExpiredException;

import com.ibm.websphere.security.WSSecurityException;
import com.ibm.websphere.security.WSSecurityHelper;
import com.ibm.websphere.security.auth.CredentialDestroyedException;
import com.ibm.websphere.security.auth.WSSubject;
import com.ibm.websphere.security.cred.WSCredential;
...
if (WSSecurityHelper.isServerSecurityEnabled()) {
// Get the caller’s subject
Subject callerSubject;
try {
callerSubject = WSSubject.getCallerSubject();
} catch (WSSecurityException e) {
// record some diagnostic info
return;
}
WSCredential wsCred = null;
Set<WSCredential> wsCredentials =
callerSubject.getPublicCredentials(WSCredential.class);
Iterator<WSCredential> wsCredentialsIterator = wsCredentials.iterator();
if (wsCredentialsIterator.hasNext()) {
wsCred = wsCredentialsIterator.next();
try {
// Print out the groups
ArrayList<String> groups = wsCred.getGroupIds();
for (String group : groups) {
System.out.println("Group name: " + group);
}
} catch (CredentialExpiredException e) {
// record some diagnostic info
return;
} catch (CredentialDestroyedException e) {
// record some diagnostic info
return;
}
}
}
}

Configuration differences between the full profile and Liberty profile:
security
This topic describes the main differences in the security capability between the Liberty profile and full
profile.

The Liberty profile security supports only a subset of security features in the full profile. Unless the support
is explicitly mentioned in the Liberty profile documentation, you have to assume that the support is not
available yet.

Some of the main security features missing in the Liberty profile are:

v No Java EE security.

v Not all public APIs and SPIs are supported. The Java API document for each Liberty profile API is
detailed in the Programming Interfaces (APIs) section of the information center, and is also available as
a JAR file under the /dev/ibm-api/javadoc directory of the server image.

v No custom user registry.

v No horizontal propagation.

Chapter 12. The Liberty profile 367

v No SecurityAdmin MBean support, therefore methods like clearing the authentication cache are not
available.

v No Java Authorization Contract for Container (JACC) support.

v No Java 2 Connector (J2C) principal mapping modules support.

v No Java Authentication SPI (JASPI) support.

v No multiple security domain support.

v No security auditing subsystem that is part of the security infrastructure of the server.

In the Liberty profile, you can configure user-to-role mappings and runAs users in the application-bnd
element of the server.xml file. In the full profile, you can only configure this in the ibm-application-
bnd.xml/xmi file. See Configuring authorization for applications on the Liberty profile.

368 Overview

Chapter 13. Mail, URLs, and other Java EE resources

This page provides a starting point for finding information about resources that are used by applications
that are deployed on a Java Enterprise Edition (Java EE)-compliant application server. They include:

v JavaMail support for applications to send Internet mail

v URLs, for describing logical locations

v Resource environment entries, for mapping logical names to physical names

v Java DataBase Connectivity (JDBC) resources and other technology for data access (discussed
elsewhere)

v Java Message Service (JMS) resources and other messaging system support (discussed elsewhere)

Mail service providers and mail sessions
A mail service provider is a driver that supports mail interaction with mail servers that use a particular mail
protocol. The application server includes service providers, which are also known as protocol providers, for
mail protocols.

A mail provider encapsulates a collection of protocol providers. For example, the application server has a
built-in mail provider that encompasses the most common protocol providers. These protocol providers are
installed as the default and suffice for most applications. If you have a particular application that requires
custom protocol providers, follow the steps that are outlined in the chapter on mail sessions in the
JavaMail API Design Specification to install your own protocol providers.

Mail sessions are represented by the javax.mail.Session class. A mail session object authenticates users
and controls access to messaging systems.

To create mail applications that are platform independent, use a resource factory reference to create a
mail session. A resource factory is an object that provides access to resources in the deployed
environment of a program. Resource factories use the naming conventions that are defined by the Java
Naming and Directory Interface (JNDI).

Note: Ensure that every mail session is defined under a parent mail provider. Select a mail provider first
and then create your new mail session.

Mail: Resources for learning
Use the following links to find relevant supplemental information about the JavaMail API. The information
resides on IBM and non-IBM Internet sites, whose sponsors control the technical accuracy of the
information.

These links are provided for convenience. Often, the information is not specific to the IBM WebSphere
Application Server product, but is useful all or in part for understanding the product. When possible, links
are provided to technical papers and Redbooks that supplement the broad coverage of the release
documentation with in-depth examinations of particular product areas.

Programming model and decisions
v JavaMail documentation

Programming specifications
v JavaMail 1.3 API documentation (Sun Java specifications)

© IBM Corporation 2009 369

http://java.sun.com/products/javamail/index.html
http://java.sun.com/products/javamail/javadocs/index.html

JavaMail support for Internet Protocol 6.0
WebSphere Application Server and its JavaMail component support Internet Protocol Version 6.0 (IPv6).

Support for IPv6, includes the following:

v Both can run on a pure IPv4 network, a pure IPv6 network, or a mixed IPv4 and IPv6 network.

v On either the pure IPv6 network or the mixed network, the JavaMail component works with mail servers,
such as the SMTP mail transfer agent, and the IMAP and POP3 mail stores.

v IPv6 compatible. Additionally, a JavaMail component that is run on the mixed IPv4 and IPv6 network
can communicate with mail servers using IPv4.

When you configure a mail session, you can specify the mail server hosts (also known as mail transport
and mail store hosts) with domain-qualified host names or numerical IP addresses. Using host names is
generally the preferred method. If you use IP addresses, however, consider enclosing IPv6 addresses in
square brackets to prevent parsing inaccuracies. For example:
[fe80::202:57ff:fec4:2334]

The JavaMail API requires a combination of many host names or IP addresses with a port number, using
the host:port number syntax . This extra colon can cause the port number to be read as part of an IPv6
address. Using brackets prevents your JavaMail implementation from processing the extra characters
erroneously.

URLs
A Uniform Resource Locator (URL) is an identifier that points to an electronically accessible resource, such
as a directory file on a machine in a network, or a document stored in a database.

URLs appear in the format scheme:scheme_information.

You can represent a scheme as HTTP, FTP, file, or another term that identifies the type of resource and
the mechanism by which you can access the resource.

In a web browser location or address box, a URL for a file available using HyperText Transfer Protocol
(HTTP) starts with http:. An example is http://www.ibm.com. Files available using File Transfer Protocol
(FTP) start with ftp:. Files available locally start with file:.

The scheme_information commonly identifies the Internet machine making a resource available, the path
to that resource, and the resource name. The scheme_information for HTTP, FTP and file generally starts
with two slashes (//), then provides the Internet address separated from the resource path name with one
slash (/). For example,

http://www.ibm.com/software/webservers/appserv/library.html.

For HTTP and FTP, the path name ends in a slash when the URL points to a directory. In such cases, the
server generally returns the default index for the directory.

URLs: Resources for learning
Use the following links to find relevant supplemental information about URLs. The information resides on
IBM and non-IBM Internet sites, whose sponsors control the technical accuracy of the information.

These links are provided for convenience. Often, the information is not specific to the IBM WebSphere
Application Server product, but is useful all or in part for understanding the product. When possible, links
are provided to technical papers and Redbooks that supplement the broad coverage of the release
documentation with in-depth examinations of particular product areas.

370 Overview

Programming specifications
v W3C Architecture - Naming and Addressing: URIs, URLs
v URL API documentation

Chapter 13. Mail, URLs, and other Java EE resources 371

http://www.w3.org/addressing/
http://java.sun.com/j2se/1.4.2/docs/api/java/net/URL.html

372 Overview

Chapter 14. Managed beans

This page provides a starting point for finding information about Managed beans.

Managed beans are container-managed objects with minimal requirements, otherwise known as Plain Old
Java Objects (POJO). They support a small set of basic services, such as resource injection, life cycle
callbacks, and interceptors. Other, more advanced, aspects are introduced in companion specifications, to
keep the basic model as simple and as universally useful as possible.

Managed beans offer a lightweight component model aligned with the rest of the Java Platform Enterprise
Edition (Java EE). By supporting the common resource injection and life cycle services, Managed beans fit
into the Java EE programming model. At the same time, the lightweight nature of Managed beans makes
them a natural starting point to encapsulate application functionality, with the knowledge that they can be
formed into more powerful components. In this sense, Managed beans can be seen as a Java EE
platform-enhanced version of the JavaBeans component model found on the Java Platform Standard
Edition (Java SE).

Managed beans
The Managed Beans specification (JSR -316) is used to define managed beans for the Java Platform
Enterprise Edition (EE) and is a part of the Java EE 6 platform.

Managed beans are container-managed objects with minimal supported services, such as resource
injection, life cycle callbacks and interceptors, and have the following characteristics:

v A managed bean does not have its own component-scoped java:comp namespace. Therefore, its
resources can be defined in java:app and java:module only.

v Managed beans are local beans only and cannot be defined in java:global.

v Managed bean methods run in the same thread as the calling thread. For example, the method does
not start its own thread.

v Managed bean methods use the same context as the calling thread.

v Managed beans are defined with the javax.annotation.ManagedBean annotation.

v A managed bean can have an optional name and is bound into java:module and java:app only if a
name is present; for example:
@ManagedBean(“myCart“)
public class Cart { ... }

v A reference to a managed bean can be obtained through resource injection, or lookup in java:module or
java:app, when a name is specified.

v Managed beans support the PostConstruct and PreDestroy life cycle callbacks.

© Copyright IBM Corp. 2012 373

374 Overview

Chapter 15. Messaging resources

This page provides a starting point for finding information about the use of asynchronous messaging
resources for enterprise applications with WebSphere Application Server.

WebSphere Application Server supports asynchronous messaging based on the Java Message Service
(JMS) and the Java EE Connector Architecture (JCA) specifications, which provide a common way for
Java programs (clients and Java EE applications) to create, send, receive, and read asynchronous
requests, as messages.

JMS support enables applications to exchange messages asynchronously with other JMS clients by using
JMS destinations (queues or topics). Some messaging providers also allow WebSphere Application Server
applications to use JMS support to exchange messages asynchronously with non-JMS applications; for
example, WebSphere Application Server applications often need to exchange messages with traditional
WebSphere MQ applications. Applications can explicitly poll for messages from JMS destinations, or they
can use message-driven beans to automatically retrieve messages from JMS destinations without explicitly
polling for messages.

WebSphere Application Server supports the following messaging providers:

v The WebSphere Application Server default messaging provider (which uses service integration as the
provider).

v The WebSphere MQ messaging provider (which uses your WebSphere MQ system as the provider).

v Third-party messaging providers that implement either a JCA Version 1.5 or 1.6 resource adapter or the
ASF component of the JMS Version 1.0.2 specification.

Styles of messaging in applications
Applications can use point-to-point and publish/subscribe messaging. These styles of messaging can be
used in the following ways: one-way; request and response; one-way and forward.

Applications can use the following styles of asynchronous messaging:
Point-to-point

Point-to-point applications typically use queues to pass messages between each other. An
application sends a message to another application by identifying, implicitly or explicitly, a
destination queue. The underlying messaging and queuing system receives the message from the
sending application and routes the message to its destination queue. The receiving application can
then retrieve the message from the queue.

Publish/subscribe
In publish/subscribe messaging, there are two types of application: publisher and subscriber.

A publisher supplies information in the form of messages. When a publisher publishes a message,
it specifies a topic, which identifies the subject of the information inside the message.

A subscriber is a consumer of the information that is published. A subscriber specifies the topics it
is interested in by sending subscription requests to a publish/subscribe broker. The broker receives
published messages from publishers and subscription requests from subscribers, and it routes
published messages to subscribers. A subscriber receives messages on only those topics to which
it has subscribed.

Both styles of messaging can be used in the same application.

Applications can use asynchronous messaging in the following ways:
One-way

An application sends a message, and does not want a response. A message like this can be
referred to as a datagram.

© Copyright IBM Corp. 2012 375

One-way and forward
An application sends a request to another application, which sends a message to yet another
application.

Request and response
An application sends a request to another application and expects to receive a response in return.

A typical JMS messaging pattern involves a requesting application sending a message to a JMS
queue for processing by a messaging service (for example, a message-driven bean). When the
requesting application sends the request message, the message identifies another JMS queue to
which the service should send a reply message. After sending the request message, the
requesting application either waits for the reply message to arrive, or it reconnects later to retrieve
the reply message.

These messaging techniques can be combined to produce a variety of asynchronous messaging
scenarios.

For details of how WebSphere applications can use JMS and message-driven beans for asynchronous
messaging, see the following topics:
v “JMS interfaces - explicit polling for messages” on page 496
v “Message-driven beans - automatic message retrieval” on page 158

For more information about these messaging techniques and the Java Message Service (JMS), see Sun's
Java Message Service (JMS) specification documentation (http://developer.java.sun.com/developer/
technicalArticles/Networking/messaging/).

For more information about message-driven bean and inbound messaging support, see Sun's Enterprise
JavaBeans specification (http://java.sun.com/products/ejb/docs.html).

For information about JCA inbound messaging processing, see Sun's J2EE Connector Architecture
specification (http://java.sun.com/j2ee/connector/download.html).

Types of messaging providers
You can configure any of three main types of Java Message Service (JMS) providers in WebSphere
Application Server: The WebSphere Application Server default messaging provider (which uses service
integration as the provider), the WebSphere MQ messaging provider (which uses your WebSphere MQ
system as the provider) and third-party messaging providers (which use another company's product as the
provider).

Overview

WebSphere Application Server supports JMS messaging through the following providers:

v “Default messaging provider” on page 377

v “WebSphere MQ messaging provider” on page 377

v “Third-party messaging provider” on page 378

Your applications can use messaging resources from any of these JMS providers. The choice of provider
is most often dictated by requirements to use or integrate with an existing messaging system. For
example, you might already have a messaging infrastructure based on WebSphere MQ. In this case, you
can either connect directly by using the WebSphere MQ messaging provider, or configure a service
integration bus with links to a WebSphere MQ network and then access the bus through the default
messaging provider.

You can have more than one type of messaging provider configured in WebSphere Application Server:

v All types of provider can be configured within one cell.

376 Overview

http://developer.java.sun.com/developer/technicalArticles/Networking/messaging/
http://developer.java.sun.com/developer/technicalArticles/Networking/messaging/
http://developer.java.sun.com/developer/technicalArticles/Networking/messaging/
http://java.sun.com/products/ejb/docs.html
http://java.sun.com/products/ejb/docs.html
http://java.sun.com/j2ee/connector/download.html
http://java.sun.com/j2ee/connector/download.html

v Different applications can use the same, or different, providers.

v One application can access multiple providers.

Default messaging provider

If you mainly want to use messaging between applications in WebSphere Application Server, perhaps with
some interaction with a WebSphere MQ system, the default messaging provider is a logical choice. This
provider uses service integration functions and is part of the WebSphere Application Server runtime
environment.

To use the default messaging provider, your applications connect to a service integration bus. You can
assign JMS queues (for point-to-point messaging) or JMS topics (for publish/subscribe messaging) as
destinations on the service integration bus.

The default messaging provider is characterized as follows:

v A service integration bus comprises messaging engines that run in WebSphere Application Server
processes and dynamically connect to one another by using dynamic discovery. A messaging
application connects to the bus through a messaging engine.

v Messaging engines use WebSphere Application Server clustering to provide high availability and
scalability, and they use the same management framework as the rest of WebSphere Application
Server.

v Bus client applications can run from within WebSphere Application Server (JMS), or run as stand-alone
Java clients (using the J2SE Client for JMS) or run as non-Java clients (XMS).

There are two ways in which you can connect to a WebSphere MQ system through the default messaging
provider:

v Connect a bus to a WebSphere MQ network, by using a WebSphere MQ link. The WebSphere MQ
network appears to the service integration bus as a foreign bus, and the service integration bus appears
to WebSphere MQ as another queue manager.

v Connect directly to WebSphere MQ queues located on WebSphere MQ queue managers or (for
WebSphere MQ for z/OS) queue-sharing groups, by using a WebSphere MQ server bus member. Each
WebSphere MQ queue is made available at a queue-type destination on the bus.

For more information about these two approaches, see “Interoperation with WebSphere MQ: Comparison
of key features” on page 410.

To configure and manage messaging with the default messaging provider, see Managing messaging with
the default messaging provider.

WebSphere MQ messaging provider

Through the WebSphere MQ messaging provider in WebSphere Application Server, Java Message Service
(JMS) messaging applications can use your WebSphere MQ system as an external provider of JMS
messaging resources.

You can use WebSphere Application Server to configure WebSphere MQ resources for applications (for
example queue connection factories) and to manage messages and subscriptions associated with JMS
destinations. You administer security through WebSphere MQ.

WebSphere MQ is characterized as follows:

v Messaging is handled by a network of queue managers, each running in its own set of processes and
having its own administration.

v Features such as shared queues (on WebSphere MQ for z/OS) and WebSphere MQ clustering simplify
administration and provide dynamic discovery.

Chapter 15. Messaging resources 377

v Many IBM and partner products support WebSphere MQ with (for example) monitoring and control, high
availability and clustering.

v WebSphere MQ clients can run within WebSphere Application Server (JMS), or almost any other
messaging environment by using a variety of APIs.

For more information about the WebSphere MQ messaging provider, see “Interoperation using the
WebSphere MQ messaging provider” on page 416. To configure and manage messaging with this
provider, see Managing messaging with the WebSphere MQ messaging provider.

Third-party messaging provider

You can configure any third-party messaging provider that supports the JMS Version 1.1 specification. You
might want to do this, for example, if you have existing investments.

To administer a third-party messaging provider, you use either the resource adaptor (for a Java EE
Connector Architecture (JCA) 1.5-compliant or 1.6-compliant messaging provider) or the client (for a
non-JCA messaging provider) that is supplied by the third party. You use the WebSphere Application
Server administrative console to administer the activation specifications, connection factories and
destinations that are within WebSphere Application Server, but you cannot use the administrative console
to administer the JMS provider itself, or any of its resources that are outside of WebSphere Application
Server.

To use message-driven beans, third-party messaging providers must either provide an inbound JCA
1.5-compliant or 1.6-compliant-resource adapter, or (for non-JCA messaging providers) include Application
Server Facility (ASF), an optional feature that is part of the JMS Version 1.1 specification.

To work with a third-party provider, see Managing messaging with a third-party JCA 1.5 or 1.6-compliant
messaging provider or Managing messaging with a third-party non-JCA messaging provider.

Default messaging
Use these topics to learn about using the default messaging provider to support the use of the Java
Message Service (JMS) by enterprise applications deployed on WebSphere Application Server.

The default messaging provider is installed and runs as part of WebSphere Application Server.

The default messaging provider supports JMS 1.1 domain-independent interfaces (sometimes referred to
as “unified” or “common” interfaces). This enables applications to use the same common interfaces for
both point-to-point and publish/subscribe messaging. This also enables both point-to-point and
publish/subscribe messaging within the same transaction. With JMS 1.1, this approach is recommended
for new applications. The domain-specific interfaces are supported for backwards compatibility as
described in section 1.5 of the JMS 1.1 specification.

The default messaging provider is based on service integration technologies. You can use the WebSphere
Application Server administrative console to configure JMS resources:

v A JCA activation specification to enable a message-driven bean to communicate with the default
messaging provider.

v A JMS connection factory to connect to a service integration bus

v A JMS queue or topic assigned to a bus destination on the bus. Such JMS queues and topics are
available, over a long period of time, to all applications with access to the bus destination.

For more information about using the default messaging provider to support JMS messaging, see the
following topics:

v “JCA activation specifications and service integration” on page 379

378 Overview

v “JMS connection factories and service integration”

v “JMS queue resources and service integration” on page 380

v “JMS topic resources and service integration” on page 381

v “The createQueue or createTopic method and the default messaging provider” on page 383

v “How JMS applications connect to a messaging engine on a bus” on page 386

JCA activation specifications and service integration
A Java EE Connector Architecture (JCA) 1.5 activation specification enables a message-driven bean to
communicate with the default messaging provider.

You create a JMS activation specification if you want to use a message-driven bean to communicate with
the default messaging provider through Java EE Connector Architecture (JCA) 1.5. JCA provides Java
connectivity between application servers such as WebSphere Application Server, and enterprise
information systems. It provides a standardized way of integrating JMS providers with Java EE application
servers, and provides a framework for exchanging data with enterprise systems, where data is transferred
in the form of messages.

One or more message-driven beans can share a single JMS activation specification.

All the activation specification configuration properties apart from Name, JNDI name, Destination JNDI name,
and Authentication alias are overridden by appropriately named activation-configuration properties in the
deployment descriptor of an associated EJB 2.1 or later message-driven bean. For an EJB 2.0
message-driven bean, the Destination type, Subscription durability, Acknowledge mode and Message
selector properties are overridden by the corresponding elements in the deployment descriptor. For either
type of bean the Destination JNDI name property can be overridden by a value specified in the
message-driven bean bindings.

JMS connection factories and service integration
A JMS connection factory is used to create connections to JMS resources on a service integration bus.

A “domain-independent” JMS connection factory supports the JMS 1.1 domain-independent interfaces
(sometimes referred to as the “unified” or “common” interfaces). This enables applications to use the
same, common, interfaces for both point-to-point and publish/subscribe messaging. This also enables both
point-to-point and publish/subscribe messaging within the same transaction.

Due to the interface inheritance defined by the JMS specification, a JMS 1.1 application can use a JMS
1.0.2b, domain-specific, connection factory. However, a JMS 1.0.2b application cannot use a JMS 1.1
domain-independent connection factory.

You should use the connection factory type that matches the JMS level and domain pattern in which an
application is developed. For example, use a domain-independent JMS connection factory for a JMS
application developed to use JMS 1.1 domain-independent interfaces, and use a JMS queue connection
factory for a JMS application developed to use domain-specific queue interfaces.

Applications running in a server that is a member of a bus can locate a messaging engine in that bus.
Client applications running outside of an application server - for example, running in a client container or
outside the WebSphere Application Server environment - cannot locate directly a suitable messaging
engine to connect to in the target bus. Similarly, an application running on a server in one cell to connect
to a target bus in another cell cannot locate directly a suitable messaging engine to connect to in the
target bus.

In these scenarios, the clients (or servers in another bus) must complete a bootstrap process through a
bootstrap server that is a member of the target bus. A bootstrap server is an application server running the
SIB Service, but does not have to be running any messaging engines. The bootstrap server selects a

Chapter 15. Messaging resources 379

messaging engine that is running in an application server that supports the required target transport chain.
For the bootstrap process to be possible, you must configure one or more provider end points in the
connection factory used by the client.

JMS queue resources and service integration
JMS queue resources (queues and queue connection factories) are provided by the default messaging
provider for JMS point-to-point messaging and supported by a service integration bus.

The figure later in this section shows a bus with two members, a server and cluster. The two members
each have a JMS queue. An application sends messages to one JMS queue and retrieves messages from
the other JMS queue. There are queue destinations on a service integration bus and the JMS connection
factories. These objects are described in detail below.

JMS queue
The term “JMS queue” is used to refer to the JMS destination (an instance of javax.jms.Queue)
that applications interact with, and that an administrator configures as a JMS resource of the
default messaging provider.

An administrator can define a JMS queue, an administrative object that encapsulates the name of
a queue destination on a service integration bus. Applications can obtain the JMS queue by
looking its name up in the JNDI namespace.

Applications that uses JMS point-to-point messaging act as producers or consumers of messages
with JMS queues, and have no need to know about the service integration resources that support
JMS queues.

Queue
The term “queue” is used as an abbreviation for “queue destination”, and refers to a service
integration bus destination configured for point-to-point messaging.

Figure 36. JMS point-to-point messaging and the default messaging provider

380 Overview

The administrator assigns the queue to only one member (an application server or server cluster)
of the bus. The messaging engine in the bus member hosts the message point for the queue,
known as a queue point. The queue point is the location where messages for the queue are
stored and processed on the bus.

If the bus member has more than one messaging engine, the queue is partitioned across the
messaging engines. Each messaging engine hosts a separate queue point for the queue.

JMS connection factory
A “JMS connection factory” creates connections to a messaging engine through which it can
access messages on queue points anywhere on the bus.

With JMS 1.1, you are recommended to use domain-independent JMS connection factories for
new applications. Domain-specific queue connection factories are supported for backwards
compatibility for JMS applications developed to use domain-specific queue interfaces, as described
in section 1.5 of the JMS 1.1 specification.

Temporary JMS queues
In addition to using JMS queues that are created as administrative objects, an application can also
create its own temporary JMS queues, which exist at runtime only for the duration of a connection.
Only that connection can create MessageConsumers for the temporary JMS queue; for example,
for use as the JMSReplyTo queue for service requests.

For more information about creating temporary JMS destinations, see section 4.43 of the JMS 1.1
specification.

For a temporary JMS queue, the service integration bus creates a temporary destination, which
the administrator can list and browse but usually does not have to act on.

JMS topic resources and service integration
JMS topic resources (topics, topic spaces, connection factories, durable subscriptions) are provided by the
default messaging provider for JMS publish/subscribe messaging, and supported by a service integration
bus.

JMS publish/subscribe messaging and the default messaging provider is shown in the following figure:

Chapter 15. Messaging resources 381

JMS topic
The term “JMS topic” is used to refer to the JMS destination (an instance of javax.jms.Topic) that
applications interact with, and that an administrator configures as a JMS resource of the default
messaging provider.

An application that uses JMS publish/subscribe messaging acts as a producer or consumer of
messages with JMS topics, and has no need to know about other service integration resources
that support the JMS topic.

An administrator can define a JMS topic, an administrative object that encapsulates the name of a
topic and a topic space on a service integration bus. Applications can obtain the JMS topic by
looking its name up in the JNDI namespace.

JMS applications can publish messages to, and subscribe to messages from, JMS topics.
Subscribing applications can usually receive messages published to a topic only when the
subscriber is connected to the server.

The default messaging provider also supports the use of durable subscriptions to topics, which
enable the subscriber to receive messages that were published when the subscriber was
disconnected. For more information about durable subscriptions, see section 6.11.1 of the JMS 1.1
specification.

Topic space
A topic space (a hierarchical collection of topics) is a virtual location on a service integration bus
where messages are stored and processed for publish/subscribe messaging.

Unlike configuring queues, the administrator does not have to assign the topic space to a bus
member. A topic space has a publication point defined automatically for each messaging engine in
the bus. Messages for the topic space are stored and processed on all its publication points.

Topic The term “topic” refers to a discriminator within a topic space.

When subscribing to topics, applications can specify wildcard characters to select a range of
topics.

Figure 37. JMS publish/subscribe messaging and the default messaging provider

382 Overview

JMS connection factory
A “JMS connection factory” creates connections to a messaging engine that provides a publication
point for the topic space.

With JMS 1.1, you are recommended to use domain-independent JMS connection factories for
new applications. Domain-specific topic connection factories are supported for backwards
compatibility for JMS applications developed to use domain-specific topic interfaces, as described
in section 1.5 of the JMS 1.1 specification.

Temporary JMS topics
In addition to using JMS topics that are created as administrative objects, an application can also
create its own temporary JMS topics, which exist at runtime only for the duration of a connection.
Only that connection can create MessageConsumers for the temporary JMS topic.

For more information about creating temporary JMS destinations, see section 4.43 of the JMS 1.1
specification.

For a temporary JMS topic, the service integration bus creates a temporary topic space, which the
administrator can list and browse but usually does not have to act on. A temporary topic space is
deleted automatically when the connection is closed.

Durable subscriptions
A durable subscription on a JMS topic enables a subscriber to receive a copy of all messages
published to that topic, even messages published during periods of time when the subscriber is
not connected to the server. Therefore, subscriber applications can operate disconnected from the
server for long periods of time, and then reconnect to the server and process messages that were
published during their absence. If an application creates a durable subscription, it is added to the
list that administrators can display and act on by using the administrative console.

The createQueue or createTopic method and the default messaging
provider
You can use the Session.createQueue(String) method or Session.createTopic(String) method instead of
using JNDI lookup to create a JMS Queue or JMS Topic with the default messaging provider.

Applications can use the InitialContext.lookup() method to retrieve administered objects. An alternative, but
less manageable, approach to obtaining administratively defined JMS destination objects by JNDI lookup
is to use the Session.createQueue(String) method or Session.createTopic(String) method. For example,

Queue q = mySession.createQueue("Q1");

creates a JMS Queue instance that can be used to reference the existing destination Q1.

With the default messaging provider, the existing destination exists as a queue or topic space on the bus
to which the session is connected.

createQueue

The Session.createQueue(String) method is used to create a JMS Queue object representing an existing
destination. This provides an alternative, but less manageable, approach to obtaining
administratively-defined JMS Queue objects by JNDI lookup.

Simple form
In its simplest form, the parameter to the createQueue method is the name of an existing
destination on the bus to which the session is connected. For example, if there exists a queue
named Q1 then the following method creates a JMS Queue instance that can be used to
reference that destination:
Queue q = mySession.createQueue("Q1");

Chapter 15. Messaging resources 383

URI form
For more complex situations, applications can use a URI-based format. The URI format allows an
arbitrary number of name value pairs to be supplied to set various properties of the Queue object.
The queue URI is identified by the prefix queue://, followed by the name of the destination. The
simple form for Q1 previously, can be expressed with the following URI:
Queue q = mySession.createQueue("queue://Q1");

Name value pairs are introduced by a question mark ?. For example, an application might connect
a session to one bus then use the following format to create a JMS Queue instance for Q2 on a
different bus, called otherBus:
Queue q = mySession.createQueue("queue://Q2?busName=otherBus");

When sending messages to WebSphere MQ, the queue name must be followed by an at sign (@)
and the name of the queue manager on which the queue is located, for example :
Queue q = mySession.createQueue("queue://Q2@qmgr?busName=otherBus");

Multiple name value pairs are separated by an ampersand character &, for example:
Queue q = mySession.createQueue("queue://Q2?busName=otherBus&deliveryMode=
Application&readAhead=AsConnection&priority=6");

Properties
busName, deliveryMode, priority, readAhead, and timeToLive. See the generated API information
for a description of these properties.

createTopic

The Session.createTopic(String) method is used to create a JMS Topic object representing an existing
destination. (Note that for topics it is the topic space rather than the topic that exists.) This provides an
alternative, but less manageable, approach to obtaining administratively-defined JMS Topic objects by
JNDI lookup.

Simple form
In its simplest form, the parameter to the createTopic method is the name of a topic in the default
topic space on the bus to which the session is connected. For example, if the default topic space
exists, then a JMS Topic instance that can be used to reference the cats topic on the default topic
space:
Topic t = mySession.createTopic("cats");

To specify a non-default topic space, the special syntax of the form topicSpace:topic can be
used. For example:
Topic t = mySession.createTopic("kennelTopicSpace:dogs");

URI form
For more complex situations a URI based format can be used. The topic URI is identified by the
prefix topic:// followed by the name of the topic. The previous examples can be expressed as
the following URIs:
Topic t = mySession.createTopic("topic://cats");

Topic t = mySession.createTopic("topic://dogs?topicSpace=kennelTopicSpace");

As for queues, multiple name value pairs are separated by an ampersand &.

Properties
busName, deliveryMode, priority, readAhead, timeToLive, and topicSpace. See the generated API
information for a description of these properties.

384 Overview

Support for MA88 URIs

WebSphere Application Server Version 5.1 applications can use createQueue and createTopic methods to
create JMS Queue and Topic objects with the Version 5 embedded messaging provider (the Version 5.1
JMS messaging provider). To assist you in migrating these applications, the default messaging provider
(the service integration bus) supports a large subset of valid MA88-specific string parameters to the
createQueue and createTopic methods.

Default queue manager
An MA88 URI for a queue includes the name of the queue manager; for example:
queue://qm/queue

To specify the default queue manager, the queue manager name is omitted; for example:
queue:///queue (note the three forward slash characters, ///). Because the interpretation of the
default queue manager is logically consistent with the concept of a queue on the current bus, the
bus tolerates the presence of three forward slash characters following the queue: prefix. This
allows MA88 queue URIs with a default queue manager to be used by the bus without change.

Non-default queue manager
If an MA88 queue URI specifies a non-default queue manager, as in queue://qm/queue, then this
has an ambiguous interpretation in the bus. To highlight the potential problem and ensure that the
destination is given consideration during the porting process, such a URI generates a
JMSException if passed to the createQueue() method.

MA88 properties
As with the bus URIs, MA88 URIs can contain a number of name value pairs specifying
destination properties. Many of the MA88 specific properties have no direct equivalent in the bus
and are ignored silently. However, the following MA88 properties are mapped to bus equivalents:

MA88 name Service integration bus name Notes

expiry timeToLive

persistence deliveryMode 1 = NonPersistent
2 = Persistent
Anything else = Application

Topic wildcard translation

A topic used for consuming messages can include wild cards. The wild card syntax used in MA88 differs
from the XPath syntax used in the bus, so if an MA88 URI contains wild cards the bus attempts to convert
them to XPath equivalents. The conversion performed depends on the presence of the brokerVersion
property in the MA88 URI. The WebSphere Application Server Version 5.1 default messaging provider
required any URI specifying a topic wild card to include brokerVersion=1 in the name value pairs. The bus
therefore uses brokerVersion=1 as the trigger to undertake MQSI to XPath wild card conversion.

Case sensitivity

All parts of the string parameter for createQueue and createTopic are case sensitive.

Multiple instances of same property

If a URI contains multiple occurrences of a given property with conflicting values, it is not specified which
value is used.

Chapter 15. Messaging resources 385

Conflicting MA88 and bus properties

If a URI contains both a property and the MA88 equivalent of that property with conflicting values, it is not
specified which value is used.

Unknown properties

Any name value pairs for which the property name is not recognized are ignored without any error
reporting.

Escaping special characters

The following characters have special significance in the createQueue and createTopic string parameters:

: (colon)
This is used as a separator between the topic space and the topic in short form topic strings

? (question mark)
This is used to indicate the start of the name value pairs.

& (ampersand)
This is used to separate multiple name value pairs.

If you want to use any of these characters in a URI, you must prefix it with a backward slash \. The \
character can also be escaped by doubling it; \\. Note that the \ character is treated as a special
character by the Java language, and so must be doubled when placed in character string constants; for
example:

createTopic("myTop\\:ic") creates a topic with the name "myTop:ic"
createTopic("topic://my\\?Topi\\\\c") creates a topic with the name "my?Topi\c"
createQueue("queue://q1?busName=silly\\&bus") creates a queue with bus name "silly&bus"

How JMS applications connect to a messaging engine on a bus
There are several factors that affect how JMS applications connect to a service integration bus, so that
they can use resources provided by the bus.

To connect to a service integration bus, an application actually connects to a messaging engine on the
bus.

By default, the environment automatically connects applications to an available messaging engine on the
bus. However you can specify extra configuration details to influence the connection process; for example
to identify special bootstrap servers, or to limit connection to a subgroup of available messaging engines,
or to improve availability or performance, or to ensure sequential processing of messages received.

Applications running in an application server: Default configuration

Applications that are running in an application server are directed by the WebSphere Application Server
environment to an available messaging engine.

If the messaging engine is found in the same server, a connection is created that provides the application
with the fastest available connection to a messaging engine. Otherwise, if a messaging engine is found in
another process - on the same or a different host - a remote connection is made. If no suitable messaging
engine is found the application fails to connect to the bus.

386 Overview

The figure shows two applications running in application servers. Application X on server3 has connected
to the messaging engine running in the same server. Application Y on server1 has connected to a
messaging engine that is running in the same bus but on a different server and host, because server1
does not have a suitable messaging engine.

Applications running outside an application server

Client applications running outside an application server (for example, running in a client container or
outside the WebSphere Application Server environment) cannot locate a suitable messaging engine
themselves and must complete a bootstrap process through a bootstrap server. A bootstrap server is an
application server that is running the SIBService service, but is not necessarily running any messaging
engines. The bootstrap server selects a messaging engine that is running in an application server that
supports the required target transport chain.

server1

server3

bus1

Remote
connect

bus2
In-process connect

hostA hostB

server2

Application
Y

Application
X

ME2

ME1

Figure 38. Default connection to a messaging engine - Applications running in an application server

Chapter 15. Messaging resources 387

This figure shows a client application running outside an application server. To connect to a messaging
engine, the application connects first to a bootstrap server. The bootstrap server selects a messaging
engine then tells the client application to connect to that messaging engine.

A bootstrap server uses a specific port and bootstrap transport chain, which with the host name form the
endpoint address of the bootstrap server.

The properties of a JMS connection factory used by a client application control the selection of a suitable
messaging engine and how the client connects to the selected messaging engine. By default, a connection
factory expects to use a bootstrap server that has an endpoint address of
localhost:7276:BootstrapBasicMessaging. That is: the client application expects to use a bootstrap server
that is on the same host as the client, and that uses port 7276 and the predefined bootstrap transport
chain called BootstrapBasicMessaging.

When you create an application server, it is automatically assigned a unique non-secure bootstrap port,
SIB_ENDPOINT_ADDRESS, and a secure bootstrap port, SIB_ENDPOINT_SECURE_ADDRESS. If you
want to use an application server as a bootstrap server, and the server has been assigned a non-secure
port other than 7276, or you want to use the secure port, then you must specify the endpoint address of
the server on the Provider endpoints property of the connection factory.

The endpoint addresses for bootstrap servers must be specified in every connection factory that is used by
applications outside of an application server. To avoid having to specify a long list of bootstrap servers,
you can provide a few highly-available servers as dedicated bootstrap servers. Then you only have to
specify a short list of bootstrap servers on each connection factory.

The messaging engine selection process

The selection process is used to choose a messaging engine that an application should connect to so that
it can use the resources of a service integration bus. The information that controls the selection process is
configured in one of the following places:

server1

client container

bus1

1. Bootstrap 2. Connect

hostA hostB

server2

(bootstrap server)

Application
X

ME1

Figure 39. Connection to a messaging engine - Applications running outside an application server

388 Overview

v For JMS client applications, this information is configured on the connection factory.

v For message-driven bean (MDB) applications, this information is configured on the activation
specification.

v For other types of application, this information is configured programmatically by the application.

Although a connection can be made to any available messaging engine, the connection process applies a
few simple rules to find the most suitable messaging engine. For an application running in an application
server, the process is as follows:

1. If a messaging engine is running in the required bus within the same application server, then a
connection is made from the application to the messaging engine. If there is no suitable messaging
engine, the next rule is checked.

2. If a messaging engine is running on the same host as the application, then the application makes a
remote connection to the selected messaging engine. If there is no suitable messaging engine, the
next rule is checked.

3. If a messaging engine is running anywhere in the bus, then the application makes a remote connection
to the selected messaging engine. If there is no suitable messaging engine, the connection attempt
does not succeed.

For an application running outside an application server, connection requests are workload balanced
across all the available messaging engines in the bus.

In both cases (that is, an application running in an application server and an application running outside an
application server) you can restrict the range of messaging engines available for connection, to a subgroup
of those available in the service integration bus. You do this by configuring the following connection
properties of the connection factory or activation specification:

Target The name of a target that identifies a group of messaging engines. Specify the type of target using
the Target type property.

Before the connection proximity search is performed to select a suitable messaging engine, the set
of messaging engines that are members of the specified target group are selected. The connection
proximity search is then restricted to these messaging engines. If a target group is not specified
(the default), then all messaging engines in the bus are considered during the connection proximity
search.

For example, if the Target type property is set to Bus member name, the Target property specifies
the name of the bus member from which suitable messaging engines can be chosen.

Target type
The type of target named in the Target property.

Bus member name
The name of a bus member. This option retrieves the active messaging engines that are
hosted by the named bus member (an application server or server cluster).

Custom messaging engine group name
The name of a custom group of messaging engines (that form a self-declaring cluster).
This option retrieves the active messaging engines that have registered with the named
custom group.

Messaging engine name
The name of a messaging engine. This option retrieves the available endpoints that can
be used to reach the named messaging engine.

Target significance
This property defines whether the connection proximity search is restricted to only the messaging
engines in the target group.

Preferred
It is preferred that a messaging engine is selected from the target group. A messaging

Chapter 15. Messaging resources 389

engine in the target group is selected if one is available. If a messaging engine is not
available in the target group, a messaging engine outside the target group is selected if
available in the same service integration bus.

Required
It is required that a messaging engine is selected from the target group. A messaging
engine in the target group is selected if one is available. If a messaging engine is not
available in the target group, the connection process fails.

Target inbound transport chain

The name of the messaging engine inbound transport chain that the application should target
when connecting to a messaging engine in a separate process to the application.

These transport chains specify the communication protocols that can be used to communicate with
the application server to which the client application is connected. If a messaging engine in
another process is chosen, a connection can be made only if the messaging engine is in a server
that runs the specified inbound transport chain.

The following predefined messaging engine inbound transport chains are provided:

InboundBasicMessaging
JFAP over TCP/IP

InboundSecureMessaging
JFAP over SSL over TCP/IP

Connection proximity
For an application running in an application server, this property defines the proximity of
messaging engines relative to the application server. For an application running outside an
application server, this property defines the proximity of messaging engines relative to the
bootstrap server.

Bus Connections can be made to messaging engines in the same bus.

A suitable messaging engine in the same server is selected ahead of a suitable
messaging engine in the same host, and in turn ahead of a suitable messaging engine in
another host.

Cluster
Connections can be made to messaging engines in the same server cluster. If the
application is not running in a clustered server, or the bootstrap server is not in a cluster,
then there are no suitable messaging engines.

A suitable messaging engine in the same server is selected ahead of a suitable
messaging engine in the same host, and in turn ahead of a suitable messaging engine in
another host.

Host Connections can be made to messaging engines in the same host. A suitable messaging
engine in the same server is selected ahead of a suitable messaging engine in the same
host.

Server
Connections can be made to messaging engines in the same application server.

For MDB applications connecting to a cluster bus member, you can also enable either of the following
additional configurations:

v All servers in the cluster can receive messages from the MDB application, to make full use of the
processing power in the cluster.

v Just one server at a time can receive messages from the MDB application, to ensure sequential
processing of the messages.

390 Overview

For more information, see “How a message-driven bean connects in a cluster.”

To create or modify a JMS connection factory, see the following topics:

v Configuring the messaging engine selection process for JMS applications.

v Configuring a unified connection factory for the default messaging provider.

v createSIBJMSConnectionFactory command.

v modifySIBJMSConnectionFactory command.

To create or modify an activation specification, see the following topics:

v Configuring an activation specification for the default messaging provider.

v createSIBJMSActivationSpec command.

v modifySIBJMSActivationSpec command.

How a message-driven bean connects in a cluster
When an enterprise bean (EJB) application is deployed to an application server cluster, the application can
run on any of the servers in the cluster to provide high availability and scalability of the application. When
the EJB application is a message-driven bean (MDB), it can run on any of the servers in the cluster (for
high availability) and can be invoked concurrently in multiple application servers in the cluster (for
scalability). This behavior depends on the location of the MDB with respect to any service integration bus
members, and on the configuration of the MDB itself.

Note: For ease of management, connect the MDB directly to messaging engines in the bus member that
owns the bus queue or subscription that the MDB is servicing, rather than connecting through
intermediate messaging engines. For optimum messaging performance, deploy the MDB to the
same application server or cluster as the bus member.

By default, when an MDB application is deployed to an application server cluster that is also a service
integration bus cluster bus member, the MDB application connects to one or more messaging engines on
servers within the cluster. The default connection behavior, and the extra connection control that you can
apply to any JMS application including message-driven beans, are described in “How JMS applications
connect to a messaging engine on a bus” on page 386. However, if you use the configuration options
described in that topic, the message-driven bean is only driven on those servers in the cluster that host a
started messaging engine.

For MDB applications connecting to a cluster bus member, you can also enable either of the following
additional configurations:

v All servers in the cluster can receive messages from the MDB application, to make full use of the
processing power in the cluster.

v Just one server at a time can receive messages from the MDB application, to ensure sequential
processing of the messages.

These configurations are described in more detail in the following sections:

v MDB connection behavior: Within a single cluster bus member

– The message-driven bean is driven only on those servers in the cluster bus member that host a
started messaging engine

– All servers in a cluster bus member can receive messages from a message-driven bean

v MDB connection behavior: Between a cluster and a separate bus member

– All servers in a cluster can receive messages from messaging engines in a cluster bus member

– Just one server in a cluster can receive messages from a messaging engine in a cluster bus
member

Chapter 15. Messaging resources 391

The diagrams in these sections follow this key:

MDB connection behavior: Within a single cluster bus member

The message-driven bean is driven only on those servers in the cluster bus member that host a
started messaging engine

This is the default option. If the message-driven bean is deployed to a cluster bus member then
only the MDB endpoints in servers that have a messaging engine started locally are eligible to be
driven by available messages.

In figure 2, a cluster bus member contains three servers. server1 and server2 each contain an
active and failover messaging engine. The MDB endpoints running in each of these two servers
connect to their respective local messaging engines. server3 does not host a started messaging
engine, but it is hosting two failover messaging engines. It does not have an active MDB endpoint
and is not eligible to consume messages.

This configuration also provides high availability of the MDB application, and the messages on the
bus destination, if the messaging engines can fail over between servers in the cluster.

In figure 3, the cluster bus member is shown as in the previous figure. The messaging engine in
server1 has failed over to server2. Consequently, server2 now contains two active messaging

MDB1

ME1 Active messaging engine (started)

Shadow/failover messaging engine (joined)

Active MDB instance in server1 (eligible to consume messages)

Inactive MDB instance (not eligible to consume messages)

ME2

Figure 40. Topic diagram key

Cluster bus member

MDB1 MDB1

ME1 ME1 ME1

ME2 ME2 ME2

server1 server2 server3

Figure 41. MDB is driven by servers in the cluster bus member that hosts a started messaging engine (setup 1)

392 Overview

engines and the MDB endpoint running in server2 now connects to both of the local messaging
engines. The third server is not hosting a started messaging engine, does not have an active MDB
endpoint and is not eligible to consume messages.

This configuration is enabled unless you select the Always activate MDBs in all servers option on
the activation specification.

All servers in a cluster bus member can receive messages from a message-driven bean

You can set the MDB endpoints in all the cluster servers as eligible to be driven by messages,
regardless of whether there is a local started messaging engine. Any MDB endpoint in a server
that does not have a started messaging engine connects directly to one of the messaging engines
in one of the other servers in the cluster. This approach ensures that all the available resources of
the cluster can be used to process the messages that are sent to the destinations.

In figure 4, a cluster bus member contains three servers. Two servers contain active messaging
engines. The MDB endpoints in each of these two servers connect to their respective local
messaging engines. The third server, that is not hosting a started messaging engine, is workload
balanced across the available messaging engines in the cluster. The MDB endpoint in the third
server is connected to a messaging engine running in one of the other two servers.

Cluster bus member

MDB1

ME1 ME1 ME1

ME2 ME2 ME2

server1 server2 server3

Figure 42. MDB is driven by servers in the cluster bus member that hosts a started messaging engine (setup 2)

Chapter 15. Messaging resources 393

To choose this configuration you select the Always activate MDBs in all servers option on the
activation specification.

Note: This configuration achieves the same effect, in terms of which MDB endpoints are driven,
as the following configuration (also described in this topic): All servers in a cluster can
receive messages from messaging engines in a cluster bus member.

MDB connection behavior: Between a cluster and a separate bus member

All servers in a cluster can receive messages from messaging engines in a cluster bus member

If you deploy the MDB application to a cluster that is not a bus member, the MDB attempts to
connect to the bus from every application server in the cluster, following the connection rules
described in “How JMS applications connect to a messaging engine on a bus” on page 386. This
usually results in all of the MDB endpoints in the cluster being driven concurrently by messages
from an active messaging engine in the bus member. This approach ensures that all the available
resources of the cluster can be used to process messages sent to destinations in the cluster bus
member.

In figure 5, a cluster contains three servers, each with a MDB endpoint. A cluster bus member
contains two servers, and one hosts an active messaging engine. Each of the cluster's three MDB
endpoints connect to the active messaging engine in the cluster bus member.

Note: Under this configuration connections might not be made to all messaging engines, so there
could be a messaging engine that has no connection, and this could result in marooned
messages. This situation is less likely to occur if the activation specification used by the
MDB is set to server scope.

Cluster bus member

server1 server2 server3

MDB1 MDB1 MDB1

ME1 ME1 ME1

ME2 ME2 ME2

Figure 43. Servers in a cluster bus member receive messages from a message-driven bean

394 Overview

Note: This configuration achieves the same effect, in terms of which MDB endpoints are driven,
as the following configuration (also described in this topic): All servers in a cluster bus
member can receive messages from a message-driven bean.

Just one server in a cluster can receive messages from a messaging engine in a cluster bus
member

To achieve sequential processing of the messages on the destination by a single server at a time,
configure the system so that only a single MDB endpoint is driven by messages at any one time.
In this pattern the other MDB endpoints and messaging engine are effectively in standby ready to
take over processing of messages if server1 stops.

In figure 6, a cluster contains three servers, each with a MDB endpoint. A cluster bus member also
contains two servers, one of which has an active messaging engine. Only one of the three MDB
endpoints in the cluster is connected to the active messaging engine running in the cluster bus

Cluster

Cluster bus member

MDB1 MDB1MDB1

ME1 ME1

server1

server1

server2

server2

server3

Figure 44. All servers in cluster receive messages from messaging engines in a cluster bus member

Chapter 15. Messaging resources 395

member.

To choose this configuration you configure the activation specification so that the MDB endpoints
in all the non-bus cluster servers are eligible to be driven by messages from a messaging engine
in the cluster bus member, and set the receive exclusive option on the destination in the cluster
bus member. When one of the MDB endpoints connects to the messaging engine, the engine
stops all other available MDB endpoints from connecting and continues to process messages
through the same MDB endpoint.

To achieve sequential processing of messages by an MDB further configuration might be required.
For more information about ensuring sequential processing of the messages on a destination, see
“Message ordering” on page 637.

Cluster

Cluster bus member

MDB1

ME1 ME1

server1

server1

server2

server2

server3

Figure 45. One server receiving messages from messaging engine in a cluster bus member

396 Overview

Why and when to pass the JMS message payload by reference
When large object messages or bytes messages are sent, the cost in memory and processor use of
serializing, deserializing, and copying the message payload can be significant. If you enable the pass
message payload by reference properties on a connection factory or activation specification, you tell the
default messaging provider to override the JMS 1.1 specification and potentially reduce or bypass this data
copying.

Background

The JMS 1.1 specification states that object messages are passed by value. This means that a JMS
provider such as the default messaging provider in WebSphere Application Server has to take a copy of
the object in ObjectMessage at the time the object is set into the message payload, in case the client
application modifies the object after setting it. In practice this means serializing it, as there is no other
entirely safe way to take a copy. The specification also states that when a consumer application gets the
data from the message, the JMS provider must create and return a copy of that data.

If you enable the “pass message payload by reference” properties, you might get memory and
performance improvements for JMS messaging.

CAUTION:

v The parts of the JMS specification that are bypassed by these properties are defined to ensure
message data integrity.

v Any of your JMS applications that use these properties must strictly follow the rules that are
described in detail later in this section, or you risk losing data integrity.

v You should read and understand this entire topic before enabling these properties.

To pass the message payload by reference, you set the following properties on connection factories and
activation specifications:

producerDoesNotModifyPayloadAfterSet (for connection factories) or
forwarderDoesNotModifyPayloadAfterSet (for activation specifications)

When this property is enabled, object or bytes messages produced by the connection factory or
forwarded through the activation specification are not copied when set into the message and are
only serialized when absolutely necessary. Applications sending such messages must not modify
the data after it has been set into the message.

consumerDoesNotModifyPayloadAfterGet
When this property is enabled, object messages received through the connection factory or
activation specification are only serialized when absolutely necessary. The data obtained from
those messages must not be modified by applications.

Potential benefits of passing the message payload by reference

The following table shows the conditions under which you might get performance benefits by enabling the
“pass message payload by reference” properties. This table makes the following assumptions:

v Your JMS applications conform to the rules described in the next section of this topic.

v Your message producer and consumer applications run in the same JVM (server), along with the
messaging engine that hosts the destination used by these applications.

Note:

v If your applications run in different servers, or on the z/OS platform (where WebSphere
Application Server runs in multiple JVMs), then object messages are serialized and no
performance benefits are gained for these messages. Bytes message benefits might still be
gained.

Chapter 15. Messaging resources 397

v There are many internal runtime conditions that can cause your messages to be serialized, so
even if your configuration meets all the conditions described in this topic you might gain little or
no performance benefit from enabling the “pass message payload by reference” properties.

Table 35. How configuration and runtime factors determine what data is copied, when it is copied, and the potential
performance benefit.. The first column lists the degree of potential performance benefits. The second column
includes the configuration and runtime events of the potential benefits. The third column provides information such as
what data is copied and when the data is copied based on the configuration and runtime events of the potential
benefits.

Degree of potential performance benefit Configuration and runtime events When the data is copied

No potential benefit The “pass message payload by reference”
properties are not enabled (default
behavior).

Object message data is copied as soon as
it is set into the message and when it is
retrieved from the message.

Bytes message data is copied as soon as
it is set into the message and when it is
retrieved from the message.

Some potential benefit The “pass message payload by reference”
properties are enabled, and either or both
of the following conditions are true:

v The send or receive message is
transacted.

v The consumer is not available when the
message is produced.

Object message data is only copied when
necessary.

Bytes message data is only copied when
necessary.

Maximum potential benefit The “pass message payload by reference”
properties are enabled, and both of the
following conditions are true:

v Neither the send nor the receive
message is transacted.

v The consumer is waiting for the
message when it is produced (for
example if the consumer is a
message-driven bean).

Object message data might never be
copied.

Bytes message data is only copied when
necessary.

Rules that your JMS applications must obey

The parts of the JMS specification that are bypassed by the “pass message payload by reference”
properties are defined to ensure message data integrity. If your JMS applications obey the rules given in
the following table, then you can safely enable the “pass message payload by reference” properties on the
connection factories and activation specifications that the applications use.

If you enable the “pass message payload by reference” properties for JMS applications that do not follow
these rules, then the applications might receive exceptions or, more importantly, the integrity of the
message data might be compromised.

Table 36. Rules that your JMS applications must obey, by application type. The first column lists the JMS application
types. The second column provides the rules that the JMS application must follow.

Application type Rules

JMS producer application A JMS producer application that sends object messages must
not alter the object after it is set into the payload of the
message.

A JMS producer application that sends bytes messages:

v must write data into the message with a single call to
writeBytes(byte[]).

v must not alter the byte array after it is written into the
message.

398 Overview

Table 36. Rules that your JMS applications must obey, by application type (continued). The first column lists the
JMS application types. The second column provides the rules that the JMS application must follow.

Application type Rules

JMS consumer application A JMS consumer application that receives object messages must
not alter the payload it gets from the message.

JMS forwarder application
Note: A JMS forwarder application receives a message (through
a connection factory, or if it is a message-driven bean through an
activation specification), then sends the message object on to
another destination.

A JMS forwarder application that replaces the payload of the
received message with a new payload:

v (for object messages) must not alter the object after it is set
into the payload of the message.

v (for bytes messages):

– must write data into the message with a single call to
writeBytes(byte[]).

– must not alter the byte array after it is written into the
message.

Ensuring that your object messages can be serialized

Under normal JMS messaging conditions (that is, when the “pass message payload by reference”
properties are not enabled), the data in an object message is serialized as soon as the object is passed to
the messaging system, for example on set or send. If the message payload cannot be serialized, then an
exception message is immediately returned to the client application.

When the “pass message payload by reference” properties are enabled, the message payload is accepted
from the client application without attempting to serialize it. If the system later discovers that the data
cannot be serialized, the system can no longer inform the client application that sent the message - and
because the data is not serializable, the system cannot persist or transmit the complete message. The
message and its properties are stored, but the user data inside the message (the payload) cannot be
stored and is discarded. If there are serialization problems when the system tries to convert an object
message into a data graph for a mediation, the message payload is discarded and the mediation receives
a message with the data value set to null.

If your data cannot be serialized, then it is lost. Therefore you should first test your configuration without
enabling the “pass message payload by reference” properties, to check that all data sent into the system is
serializable.

When the system discovers that an object message cannot be serialized, it writes the following error
message (JMS_IBM_ExceptionMessage) to the SystemOut.log file, where “{0}” is replaced by the class
name of the failing object:

Note: This topic references one or more of the application server log files. As a recommended alternative,
you can configure the server to use the High Performance Extensible Logging (HPEL) log and trace
infrastructure instead of using SystemOut.log , SystemErr.log, trace.log, and activity.log files on
distributed and IBM i systems. You can also use HPEL in conjunction with your native z/OS logging
facilities. If you are using HPEL, you can access all of your log and trace information using the
LogViewer command-line tool from your server profile bin directory. See the information about using
HPEL to troubleshoot applications for more information on using HPEL.

CWSIK0200E: An object of class “{0}” has been set into the message payload but it cannot be
serialized.

Explanation: An object message sent with the producerDoesNotModifyPayloadAfterSet flag
enabled on its connection factory was sent with a payload that was not serializable by the system.
This message data has been lost.

Action: Disable the producerDoesNotModifyPayloadAfterSet on the connection factory. Without the
flag enabled, the JMS application that sets the object into the message will receive any
serialization exception immediately.

Chapter 15. Messaging resources 399

The following exception properties are used to indicate that a data object cannot be serialized and has
been discarded. JMS applications can find out what has happened from the JMS_IBM_Exception properties.
Mediations can find out what has happened from the JMS_IBM_Exception and SI_Exception properties.

JMS_IBM_ExceptionReason
SIRCConstants.SIRC0200_OBJECT_FAILED_TO_SERIALIZE

JMS_IBM_ExceptionTimestamp
The time at which the object failed to serialize, in System.currentTimeMillis() form.

JMS_IBM_ExceptionMessage
Message CWSIK0200E, as previously described.

SI_ExceptionReason
SIRC0200_OBJECT_FAILED_TO_SERIALIZE

SI_ExceptionTimestamp
The time at which the object failed to serialize, in System.currentTimeMillis() form.

SI_ExceptionInserts
A string array containing one entry. The entry contains the class name of the object.

Note: The most likely explanation as to why your data objects cannot be serialized is that you have
written your own writeObject() or writeExternal() methods and have not fully tested every option
(for example NullPointer exceptions, or ArrayIndexOutOfBounds exceptions).

Pass message payload by reference: Potential benefits for each processing step:

For each processing step taken by your JMS messaging application, check this table to see when and why
there is a potential performance benefit in enabling the “pass message payload by reference” properties
on the associated connection factory or activation specification.

When large object messages or bytes messages are sent, the cost in memory and processor use of
serializing, deserializing, and copying the message payload can be significant. If you enable the pass
message payload by reference properties on a connection factory or activation specification, you tell the
default messaging provider to override the JMS 1.1 specification and potentially reduce or bypass this data
copying.

CAUTION:
The parts of the JMS Specification that are bypassed by these properties are defined to ensure
message data integrity. Any of your JMS applications that use these properties must strictly follow
the rules that are described in the topic Why and when to pass the JMS message payload by
reference, or you risk losing data integrity.

To pass the message payload by reference, you set the following properties on connection factories and
activation specifications:

producerDoesNotModifyPayloadAfterSet (for connection factories) or
forwarderDoesNotModifyPayloadAfterSet (for activation specifications)

When this property is enabled, object or bytes messages produced by the connection factory or
forwarded through the activation specification are not copied when set into the message and are
only serialized when absolutely necessary. Applications sending such messages must not modify
the data after it has been set into the message.

consumerDoesNotModifyPayloadAfterGet
When this property is enabled, object messages received through the connection factory or
activation specification are only serialized when absolutely necessary. The data obtained from
those messages must not be modified by applications.

400 Overview

Table 37. Potential performance benefits for each processing step taken by your producer, consumer or forwarder
application. The first column of the table lists the processing steps for the objects and bytes messages. The second
column indicates if there is a possibility for performance improvement. The third column provides a brief explanation
about the processes and the properties.

Processing step

Is there potential for
performance
improvement? Explanation

Object messages with producer and consumer
applications

An object message is sent to a consumer
application in the same JVM. The
producerDoesNotModifyPayloadAfterSet and
consumerDoesNotModifyPayloadAfterGet
properties are both enabled.

Yes Under certain conditions, the payload object is
passed by reference to the consumer application.

If the message is not persistent or transacted, and
the consumer application is immediately available,
the payload object might never be serialized.

An object message is produced with the
producerDoesNotModifyPayloadAfterSet property
enabled, then received by a consumer application
for which the
consumerDoesNotModifyPayloadAfterGet property
is not enabled.

No No benefit is gained because the consumer
application does not have the
consumerDoesNotModifyPayloadAfterGet property
enabled.

An object message is sent to a single consumer
application in a different JVM. The
producerDoesNotModifyPayloadAfterSet and
consumerDoesNotModifyPayloadAfterGet
properties are both enabled.

No No benefit is gained because the single consumer
application is in another JVM.

An object message is received by multiple
consumer applications (a topic) that all have the
consumerDoesNotModifyPayloadAfterGet property
enabled and are all running in the same JVM.

Yes All consumer applications with the
consumerDoesNotModifyPayloadAfterGet property
enabled might receive a reference to the same
object, though this is not guaranteed.

Object messages with forwarder applications

An object message is forwarded and the forwarder
application accesses the payload of the message.
The consumerDoesNotModifyPayloadAfterGet and
producer/forwarderDoesNotModifyPayloadAfterSet
properties are enabled.

Yes There is a potential performance benefit in the
following cases:

v The producer of the forwarded message has the
producerDoesNotModifyPayloadAfterSet
property enabled and is in the same JVM as the
forwarder application.

v The consumer of the forwarded message has
the consumerDoesNotModifyPayloadAfterGet
property enabled and is in the same JVM as the
forwarder application.

An object message is forwarded and the forwarder
application accesses the payload of the message.
Only the producer/
forwarderDoesNotModifyPayloadAfterSet property
is enabled.

Yes There is a potential performance benefit if the
consumer of the forwarded message has the
consumerDoesNotModifyPayloadAfterGet property
enabled and is in the same JVM as the forwarder
application.

An object message is forwarded and the forwarder
application does not access the payload of the
message.

No If the payload of the object message is not
accessed by the forwarder application then the
producer/forwarderDoesNotModifyPayloadAfterSet
and consumerDoesNotModifyPayloadAfterGet
properties have no effect for the forwarder
application. Benefits gained from the original
producer application and ultimate consumer
application are maintained.

Object messages with mediations

An object message is sent to a mediated service
integration bus destination.

No If the object message is sent to a mediated
destination then no performance benefit is gained
by enabling the
producerDoesNotModifyPayloadAfterSet property.

Bytes messages with consumer applications

Chapter 15. Messaging resources 401

Table 37. Potential performance benefits for each processing step taken by your producer, consumer or forwarder
application (continued). The first column of the table lists the processing steps for the objects and bytes messages.
The second column indicates if there is a possibility for performance improvement. The third column provides a brief
explanation about the processes and the properties.

Processing step

Is there potential for
performance
improvement? Explanation

A bytes message is sent to any consumer
application. The
producerDoesNotModifyPayloadAfterSet property is
enabled.

Yes The part of the JMS specification that mandates
copying the data on setting into the message is
bypassed, saving a copy of the bytes data.

A bytes message is received with the
consumerDoesNotModifyPayloadAfterGet property
enabled.

No The JMS API does not allow bytes data to be
passed by reference back to consumer code
(BytesMessage.readBytes methods).

A bytes message is received by multiple
consumers (a topic) that all have the
consumerDoesNotModifyPayloadAfterGet property
enabled.

No The JMS API does not allow bytes data to be
passed by reference back to consumer code
(BytesMessage.readBytes methods).

Bytes messages with forwarder applications

A bytes message is forwarded. No There is no benefit gained from enabling any of the
“pass message payload by reference” properties.

Pass message payload by reference: Example code for producer and consumer applications:

Code your JMS applications so that you can safely pass message payloads by reference for asynchronous
messaging between producer and consumer applications within a single server.

When large object messages or bytes messages are sent, the cost in memory and processor use of
serializing, deserializing, and copying the message payload can be significant. If the producer and
consumer applications are in the same JVM and you enable the pass message payload by reference
properties on the associated connection factories and activation specifications, message payloads can be
passed by reference from producer application to consumer application. This can reduce or bypass the
data copying and improve performance and memory use.

In the following figure, messages pass from a JMS producer application, through a producer connection
factory, to a queue on a messaging engine. They are then taken off the queue and passed through a
consumer connection factory or activation specification, to a JMS consumer application.

CAUTION:
The parts of the JMS Specification that are bypassed by these properties are defined to ensure
message data integrity. Any of your JMS applications that use these properties must strictly follow
the rules that are described below, or you risk losing data integrity.

402 Overview

If you enable the producerDoesNotModifyPayloadAfterSet property for the producer connection factory,
your producer application must guarantee not to modify the payload object after it has been set into object
or bytes messages. To help you achieve this, here is some example code that you can adapt for use in
your application:

DataObject data = new DataObject();
data.setXXX("xxx");
data.setYYY(yyy);
ObjectMessage message = session.createObjectMessage();
message.setObject(data);
data = null;
producer.send(message);

For bytes messages, your producer application must also guarantee to write only a single full byte array
into the message. To help you achieve this, here is some example code that you can adapt for use in your
application:

byte [] data = myByteData;
BytesMessage message = session.createBytesMessage();
message.writeBytes(data);
data = null;
producer.send(message);

If you enable the consumerDoesNotModifyPayloadAfterGet property for the consumer connection factory or
activation specification, your consumer application must guarantee not to modify the payload it gets from
the object message (consumption of bytes messages is not affected by the
consumerDoesNotModifyPayloadAfterGet property). To help you achieve this, here is some example code
that you can adapt for use in your application:

public void onMessage (Message message)
{

ObjectMessage oMessage = (ObjectMessage) message;
DataObject data = oMessage.getObject();
System.out.print(data.getXXX());
System.out.print(data.getYYY());

}

Pass message payload by reference: Usage scenarios and example code for forwarding
applications:

A JMS forwarder application receives a message (through a connection factory, or if it is a message-driven
bean through an activation specification), then sends the message object on to another destination.

JMS producer
application

Producer
CF

CF = Connection factory
AS = Activation specification

ME = Messaging engine

JMS consumer
application

Consumer
CF or AS

ME1

q1

Figure 46. Producing and consuming messages

Chapter 15. Messaging resources 403

Explore the different usage scenarios, then code your JMS forwarding applications so that you can safely
pass message payloads by reference when forwarding messages from one queue to another within a
single server.

When large object messages or bytes messages are sent, the cost in memory and processor use of
serializing, deserializing, and copying the message payload can be significant. If you enable the pass
message payload by reference properties on a connection factory or activation specification, you tell the
default messaging provider to override the JMS 1.1 specification and potentially reduce or bypass this data
copying.

In the following figure, messages pass from queue1 on a messaging engine, through a consumer
activation specification or connection factory, to a JMS forwarding application. They are then forwarded
through a producer connection factory to queue2 on the same messaging engine.

CAUTION:
The parts of the JMS Specification that are bypassed by these properties are defined to ensure
message data integrity. Any of your JMS applications that use these properties must strictly follow
the rules that are described below, or you risk losing data integrity.

To understand the usage scenarios and associated example code given in this topic, you must note these
important characteristics of a JMS forwarding application:

v A forwarding application does not replace the message object. This is useful if your application is just
logging or otherwise recording (for example, printing out) the message before forwarding it, and also
means that the forwarded message retains some useful message properties such as the
JMSCorrelationID, JMSReplyTo and JMSType properties.

v A forwarding application can modify or replace the message payload. If it replaces the payload, it sets
the new payload in the message object and changes the payload reference to point to the new
message payload.

v For a forwarding application, the forwarded message is “created” and configured by the consumer
connection factory or activation specification. The producer connection factory is used solely to route the
forwarded message and has no effect upon the contents of the forwarded message.

The following table describes the four forwarding application usage scenarios that affect how you set the
“pass message payload by reference” properties. Note that, because the producer connection factory has
no effect upon the contents of the forwarded message, you set both the consumer properties and the
producer/forwarder properties on the consumer connection factory or activation specification.

CF = Connection factory
AS = Activation specification

ME = Messaging engine

JMS forwarding
application

ME
q1 q2

Producer
CF

Consumer
CF or AS

Figure 47. Forwarding messages

404 Overview

Table 38. Effect of the “pass message payload by reference” property settings on the forwarding application usage
scenarios. The first column of the table lists the four forwarding application usage scenarios. The second column
indicates the consumer property setting for the scenarios. The third column indicates the connection or the activation
specification property setting for the scenarios.

Forwarding application usage scenario
consumerDoesNotModify
PayloadAfterGet

property setting

producerDoesNotModify
PayloadAfterSet

(for connection factories) or

forwarderDoesNotModify
PayloadAfterSet

(for activation specifications)
property setting

Scenario 1: The application receives a message, looks
at the payload but does not modify it, and forwards the
message on without modifying or replacing the
payload.

Enabled Not required, but can be enabled

Scenario 2: The application receives a message, looks
at the payload but does not modify it, replaces the
payload in the message with a new payload and
forwards the message on without modifying the
payload after the call to set it into the message.

Enabled Enabled

Scenario 3: The application receives a message, looks
at and modifies the payload, then sets the modified
payload or some other data back into the message
and forwards the message on without further modifying
the payload after the call to set it into the message.

NOT enabled Enabled

Scenario 4: The application receives a message, looks
at and modifies the payload, then sets the modified
payload or some other data back into the message,
then further modifies the payload after the call to set it
into the message.

NOT enabled NOT enabled

For scenarios 1, 2 and 3 you can enable one or more of the “pass message payload by reference”
properties, provided that your forwarding application can guarantee to behave as described in the
scenario. To help you achieve this, here is some example code that you can adapt for use in your
applications.

Forwarding application: scenario 1

The application receives a message, looks at the payload but does not modify it, and forwards the
message on without modifying or replacing the payload.

public void onMessage (Message message)
{

ObjectMessage oMessage = (ObjectMessage) message;
DataObject data = oMessage.getObject();
System.out.print(data.getXXX());
System.out.print(data.getYYY());

// get a session to forward on the received message

producer.send(message);
session.close();

}

Chapter 15. Messaging resources 405

Forwarding application: scenario 2

The application receives a message, looks at the payload but does not modify it, replaces the payload in
the message with a new payload and forwards the message on without modifying the payload after the
call to set it into the message.

public void onMessage (Message message)
{

ObjectMessage oMessage = (ObjectMessage) message;
DataObject data = oMessage.getObject();
System.out.print(data.getXXX());
System.out.print(data.getYYY());

// get a session to forward on the received message

message.setObject(newData);

producer.send(message);
session.close();

}

For bytes messages, your application must also guarantee to write only a single full byte array into the
message.

byte [] data = myByteData;
BytesMessage message = session.createBytesMessage();
message.writeBytes(data);
data = null;
producer.send(message);

Forwarding application: scenario 3

The application receives a message, looks at and modifies the payload, then sets the modified payload or
some other data back into the message and forwards the message on without further modifying the
payload after the call to set it into the message.

public void onMessage (Message message)
{

ObjectMessage oMessage = (ObjectMessage) message;
DataObject data = oMessage.getObject();
System.out.print(data.getXXX());
System.out.print(data.getYYY());

// get a session to forward on the received message

data.setXXX(xxx);
data.setYYY(yyy);
message.setObject(data);

producer.send(message);
session.close();

}

For bytes messages, your application must also guarantee to write only a single full byte array into the
message.

byte [] data = myByteData;
BytesMessage message = session.createBytesMessage();
message.writeBytes(data);
data = null;
producer.send(message);

406 Overview

Interoperation with WebSphere MQ
You can enable JMS interaction with a WebSphere MQ network by using the WebSphere MQ messaging
provider. Service integration can also provide interoperation through a WebSphere MQ link or a
WebSphere MQ server. Each type of connectivity is designed for different situations, and provides different
advantages.

v For a comparison of the different ways of interoperating, see “Interoperation with WebSphere MQ:
Comparison of architectures” on page 408 and “Interoperation with WebSphere MQ: Comparison of key
features” on page 410.

v If you are not familiar with WebSphere MQ concepts, see “Interoperation with WebSphere MQ: Key
WebSphere MQ concepts” on page 414.

v To understand about using WebSphere MQ as an external JMS messaging provider, see “Interoperation
using the WebSphere MQ messaging provider” on page 416.

v To understand how best to develop your applications for interoperating with a WebSphere MQ network,
see “How messages are passed between service integration and a WebSphere MQ network” on page
442.

v To understand the WebSphere MQ link solution, see “Interoperation using a WebSphere MQ link” on
page 447.

v To understand the WebSphere MQ server solution, see “Interoperation using a WebSphere MQ server”
on page 470.

For more information about WebSphere MQ, see the WebSphere MQ library.

When a WebSphere Application Server process or an application client process starts, and while this
process is running, an amount of processing is performed to allow it to support WebSphere MQ-related
functionality such as the WebSphere MQ messaging provider. By default this processing is performed
regardless of whether any WebSphere MQ-related functionality is ever used. If you do not need to take
advantage of any WebSphere MQ functionality, it is possible to disable all WebSphere MQ functionality in
an application server or client process to give increased performance. For more information, see Disabling
WebSphere MQ functionality in WebSphere Application Server.

Comparison of WebSphere Application Server and WebSphere MQ
messaging
If you are not already an established user of either WebSphere Application Server or WebSphere MQ, and
you are considering whether the service integration platform or WebSphere MQ better meets your
messaging needs, use this table to compare the main features of the two platforms.

Table 39. Comparison of service integration and WebSphere MQ main features. The first column of this table lists
the main features of service integration (the default messaging provider for WebSphere Application Server), and the
second column lists the features of WebSphere MQ).

Service integration (the default messaging provider for
WebSphere Application Server) WebSphere MQ

Closely integrated with WebSphere Application Server, and
combines well with the Java Platform, Enterprise Edition (Java
EE)

Can connect to almost any platform, and supports a
heterogeneous environment

Supports multiple languages through XMS clients, and multiple
platforms

Supports multiple languages and multiple platforms

Limited tooling support, other than what is provided in
WebSphere Application Server

Has many Independent Software Vendor (ISV) tools

Provides strong performance for both persistent and
non-persistent messages for JMS

Supports JMS and non-JMS messaging interfaces, and provides
strong performance for non-JMS applications

Designed for a maximum message size of about 40 megabytes
on a 32-bit operating system (subject to heap usage)

Supports large message sizes up to about 100 megabytes

Chapter 15. Messaging resources 407

http://www.ibm.com/software/integration/wmq/library/index.html

Table 39. Comparison of service integration and WebSphere MQ main features (continued). The first column of this
table lists the main features of service integration (the default messaging provider for WebSphere Application Server),
and the second column lists the features of WebSphere MQ).

Service integration (the default messaging provider for
WebSphere Application Server) WebSphere MQ

Underpins WebSphere Enterprise Service Bus and WebSphere
Process Server

Underpins WebSphere MQ and WebSphere MQ File Transfer
Edition

Included in a single administrative model for WebSphere
Application Server, WebSphere Enterprise Service Bus, and
WebSphere Process Server

Can integrate existing infrastructure and applications (for
example, CICS)

Clustering is integrated with WebSphere Application Server
clustering for high availability and scalability

WebSphere MQ clustering provides selective parallelism of
clustered queues

Note: If your existing or planned messaging environment involves both WebSphere MQ and WebSphere
Application Server systems, the messaging platform that you choose for a given task does not
necessarily determine which JMS messaging provider you should use. For more information, see
Choosing messaging providers for a mixed environment.

Interoperation with WebSphere MQ: Comparison of architectures
The three different ways that you can send messages between WebSphere Application Server and a
WebSphere MQ network are compared at a high level, showing the relative advantages and
disadvantages of each approach.

WebSphere MQ as an external messaging provider

The WebSphere MQ messaging provider does not use service integration. It provides JMS messaging
access to WebSphere MQ from WebSphere Application Server.The WebSphere MQ messaging provider
makes point-to-point messaging and publish/subscribe messaging available to WebSphere Application
Server applications using the existing capabilities in the WebSphere MQ environment. WebSphere
Application Server applications can interact with WebSphere MQ queues and topics to send, receive,
publish, and subscribe to messages in the same way as any JMS application in the WebSphere MQ
environment.

Using WebSphere MQ as an external messaging provider requires more WebSphere MQ administration,
less WebSphere Application Server administration.

Table 40. Advantages and disadvantages of WebSphere MQ as an external messaging provider. The first column of
this table shows the advantages of using WebSphere MQ as an external messaging provider, and the second column
shows the disadvantages of using WebSphere MQ as an external messaging provider.

Advantages Disadvantages

v You do not have to configure a service integration bus or
messaging engines.

v You can connect directly to WebSphere MQ queue managers.

v You manage a single JMS messaging provider rather than
two.

v You can connect to queue managers in client mode or
bindings mode.

v You can use point-to-point messaging and publish/subscribe
messaging.

v Interaction between WebSphere Application Server and
WebSphere MQ is not seamless.

v You cannot use service integration mediations for modifying
messages, for routing, or for logging.

A WebSphere MQ network as a foreign bus (using WebSphere MQ links)

A WebSphere MQ link provides a server to server channel connection between a service integration bus
and a WebSphere MQ queue manager or queue-sharing group, which acts as the gateway to the

408 Overview

WebSphere MQ network.When you use a WebSphere MQ link, the messaging bus is seen by the
WebSphere MQ network as a virtual queue manager, and the WebSphere MQ network is seen by service
integration as a foreign bus. A WebSphere MQ link enables WebSphere Application Server applications to
send point-to-point messages to WebSphere MQ queues (defined as destinations in the service integration
bus), and allows WebSphere MQ applications to send point-to-point messages to destinations in the
service integration bus (defined as remote queues in WebSphere MQ). You can also set up a
publish/subscribe bridge so that WebSphere Application Server applications can subscribe to messages
published by WebSphere MQ applications, and WebSphere MQ applications can subscribe to messages
published by WebSphere Application Server applications. The link ensures that messages are converted
between the formats used by WebSphere Application Server and those used by WebSphere MQ.

Using a WebSphere MQ network as a foreign bus (using WebSphere MQ links) requires more WebSphere
Application Server administration, less WebSphere MQ administration.

Table 41. Advantages and disadvantages of a WebSphere MQ network as a foreign bus (using WebSphere MQ
links). The first column of this table shows the advantages of using a WebSphere MQ network as a foreign bus
(using WebSphere MQ links), and the second column shows the disadvantages of using a WebSphere MQ network
as a foreign bus (using WebSphere MQ links).

Advantages Disadvantages

v A WebSphere MQ client facility is not required on the gateway
WebSphere MQ queue manager.

v Each end of the link appears in natural form to the other;
WebSphere MQ appears to service integration to be a
(foreign) bus, service integration appears to WebSphere MQ
to be a (virtual) queue manager.

v Better performance over the link is possible when compared
with WebSphere MQ servers or direct connection to
WebSphere MQ as an external JMS messaging provider.

v A managed connection from one node to another is created,
but not from every application server in the cell.

v You do not have to define individual WebSphere MQ queues
to the service integration bus.

v Good security support is provided. For example, you can
control which users are allowed to put messages onto queues.

v WebSphere Application Server and WebSphere MQ can exist
on separate hosts.

v Interaction between WebSphere Application Server and
WebSphere MQ is seamless.

v You can configure a publish/subscribe bridge, through which
WebSphere Application Server applications can subscribe to
messages published by WebSphere MQ applications, and
WebSphere MQ applications can subscribe to messages
published by WebSphere Application Server applications.

v You must configure a service integration bus and messaging
engines.

v You cannot connect to queue managers in bindings mode.

v Optimum load balancing is less easy to achieve because
messages have to be “pushed” from either end of the link.

v You cannot use service integration mediations for modifying
messages, routing, or logging.

A WebSphere MQ server (a queue manager or queue-sharing group) as a bus
member

A WebSphere MQ server provides a direct client connection between a service integration bus and queues
on a WebSphere MQ queue manager or (for WebSphere MQ for z/OS) queue-sharing group. For
interoperation with WebSphere Application Server Version 7 or later, the version of WebSphere MQ must
be WebSphere MQ for z/OS Version 6 or later, or WebSphere MQ (distributed platforms) Version 7 or
later. A WebSphere MQ server supports the high availability and optimum load-balancing characteristics
provided by a WebSphere MQ for z/OS network. A WebSphere MQ server defines the connection and
quality of service properties used for the connection, and also ensures that messages are converted
between the formats used by WebSphere Application Server and those used by WebSphere MQ. A
WebSphere MQ server only represents queues for point-to-point messaging; it does not represent topics
for publish/subscribe messaging.

Chapter 15. Messaging resources 409

Using a WebSphere MQ server (a queue manager or queue-sharing group) as a bus member requires
more WebSphere Application Server administration, less WebSphere MQ administration.

Table 42. Advantages and disadvantages of a WebSphere MQ server (a queue manager or queue-sharing group) as
a bus member. The first column of this table shows the advantages of using a WebSphere MQ server (a queue
manager or queue-sharing group) as a bus member, and the second column shows the disadvantages of using a
WebSphere MQ server (a queue manager or queue-sharing group) as a bus member.

Advantages Disadvantages

v WebSphere Application Server and WebSphere MQ can exist
on separate hosts.

v Each end of the connection appears in natural form to the
other; WebSphere MQ queue manager appears to service
integration to be a foreign bus, service integration appears to
WebSphere MQ to be a client.

v Close integration of applications is possible; service
integration applications are able to consume messages
directly from the WebSphere MQ network.

v You can connect to queue managers in client mode or
bindings mode.

v You can use mediations for modifying messages, routing, or
logging.

v Good security support is provided. For example, you can
control which users are allowed to put messages onto queues.

v You can get messages from WebSphere MQ queues (GET).

v Interaction between WebSphere Application Server and
WebSphere MQ is seamless.

v Queues on the WebSphere MQ network are automatically
discovered.

v You must configure a service integration bus and messaging
engines.

v The queue managers and queue-sharing groups must be
accessible from all the messaging engines in the bus.

v You cannot use the WebSphere MQ server for
publish/subscribe messaging with WebSphere MQ.

v WebSphere MQ for z/OS Version 6 or later, or WebSphere
MQ (distributed platforms) Version 7 or later, is a prerequisite.

v If you are using different nodes with WebSphere MQ for z/OS,
depending on the number of nodes and your version of
WebSphere MQ for z/OS, you might require the Client
Attachment feature (CAF) on z/OS.

v You must explicitly define all destinations.

Interoperation with WebSphere MQ: Comparison of key features
There are three different ways that you can send messages between WebSphere Application Server and a
WebSphere MQ network. This topic compares the key features of each of the three ways.

410 Overview

Table 43. Key features comparison between the three ways of interoperating with WebSphere MQ. The first column
of this table shows the key features of interoperating using the WebSphere MQ messaging provider with no bus, the
second column shows the key features of interoperating using the WebSphere MQ network as a foreign bus (using
WebSphere MQ links), and the third column shows the key features of interoperating using a WebSphere MQ server
(a queue manager or queue-sharing group) as a bus member.

WebSphere MQ messaging provider (no
bus)

A WebSphere MQ network as a foreign
bus (using WebSphere MQ links)

A WebSphere MQ server (a queue
manager or queue-sharing group) as a
bus member

JMS application

WMQ queue WMQ topic

WebSphere MQ
provider

WebSphere MQ

JMS application

service integration

WMQ queue WMQ topic

MQ link (server to server
channel connection)

default messaging
provider

service integration
bus

WebSphere MQ
(a foreign bus)

JMS application

service integration

WMQ topic
not supported

WMQ queue

(client
connection)

default messaging
provider

service integration
bus

WebSphere MQ
(a bus member)

Connectivity

With the WebSphere MQ messaging
provider, you can interoperate with
WebSphere MQ Version 6 or later. See
the following link, for details on which fix
pack levels you will need for your
configuration: http://www-01.ibm.com/
support/docview.wss?uid=swg21498708

With a WebSphere MQ link, you can
interoperate with any supported version or
release of WebSphere MQ, on any
platform.

With a WebSphere MQ server, you can
only interoperate with WebSphere MQ for
z/OS Version 6 or later, or WebSphere MQ
Version 7 or later.

Uses the WebSphere MQ messaging
provider.

Uses the default messaging provider. Uses the default messaging provider.

No use of service integration buses. Uses a service integration bus. Uses a service integration bus.

Chapter 15. Messaging resources 411

http://www-01.ibm.com/support/docview.wss?uid=swg21498708
http://www-01.ibm.com/support/docview.wss?uid=swg21498708

Table 43. Key features comparison between the three ways of interoperating with WebSphere MQ (continued). The
first column of this table shows the key features of interoperating using the WebSphere MQ messaging provider with
no bus, the second column shows the key features of interoperating using the WebSphere MQ network as a foreign
bus (using WebSphere MQ links), and the third column shows the key features of interoperating using a WebSphere
MQ server (a queue manager or queue-sharing group) as a bus member.

WebSphere MQ messaging provider (no
bus)

A WebSphere MQ network as a foreign
bus (using WebSphere MQ links)

A WebSphere MQ server (a queue
manager or queue-sharing group) as a
bus member

WebSphere Application Server regards the
WebSphere MQ messaging provider as a
JMS messaging provider.

The WebSphere MQ messaging provider
is regarded by the WebSphere MQ
network as a WebSphere MQ client
attaching to the queue manager or
queue-sharing group.

Each end of the WebSphere MQ link
appears in a natural form to the other end,
so the WebSphere MQ network appears
to service integration as a foreign bus and
the service integration bus appears as a
virtual queue manager to the WebSphere
MQ network.

The WebSphere MQ server regards the
WebSphere MQ queue manager or
queue-sharing group as a bus member, or
a mechanism for queuing messages for
the service integration bus. A queue is
viewed as a bus destination.

The WebSphere MQ server is regarded by
the WebSphere MQ network as a
WebSphere MQ client attaching to the
queue manager or queue-sharing group.

Provides multiple connections between
WebSphere Application Server application
servers and WebSphere MQ queue
managers or queue-sharing groups.
Connections are established as and when
required to allow WebSphere Application
Server applications to access WebSphere
MQ queues.

Provides a single connection between a
service integration bus and a WebSphere
MQ network (comprising one or more
interconnected WebSphere MQ queue
managers or queue-sharing groups). This
single connection is used to transfer all
the messages that are exchanged
between the service integration network
and the WebSphere MQ network. The link
acts as a funnel, routing messages
through the gateway messaging engine or
queue manager. If you want to establish
multiple links from a service integration
network, you can define multiple foreign
buses to represent different queue
managers or queue-sharing groups on the
WebSphere MQ network.

Provides multiple connections between
messaging engines in a service integration
bus and WebSphere MQ queue managers
or queue-sharing groups. Connections are
established as and when required, to allow
WebSphere Application Server applications
to access WebSphere MQ queues. A
connection can be configured to use
properties of the message bus to which it
belongs, giving the potential for each
WebSphere MQ server to be bus-specific.

Connection between the WebSphere
Application Server and the WebSphere
MQ network can use a TCP/IP
communication link or, if the WebSphere
Application Server is running on the same
image as the WebSphere MQ queue
manager, it can use a direct call interface
(this is called bindings mode). The
channel for the connection is a
bidirectional MQI channel.

Connection between the service
integration bus network and the
WebSphere MQ network uses a TCP/IP
communication link. The sender and
receiver channels for the connection are
message channels.

Connection between the service integration
bus network and the WebSphere MQ
network can use a TCP/IP communication
link or, if the WebSphere Application
Server application server is running on the
same image as the WebSphere MQ queue
manager, it can use a direct call interface
(this is called bindings mode). The channel
for the connection is a bidirectional MQI
channel.

For WebSphere MQ for z/OS, messages
can be stored on shared queues. If a
queue manager fails, messages can still
be retrieved from a different queue
manager (so no single point of failure
exists).

If the communication link fails temporarily,
messages are stored by WebSphere MQ
or the service integration bus and are
delivered when the communication link
recovers.

For WebSphere MQ for z/OS, messages
can be stored on shared queues. If a
queue manager fails, messages can still
be retrieved from a different queue
manager (so no single point of failure
exists).

Applications

Does not integrate the service integration
bus with the WebSphere MQ network.
Service integration bus mediations running
in WebSphere Application Server cannot
process messages from a WebSphere MQ
queue, and WebSphere MQ applications
cannot use WebSphere MQ servers to put
messages to, or get messages from,
service integration bus queue-type
destinations.

Integrates the service integration bus with
the WebSphere MQ network through a
gateway queue manager. Traffic can be
indirect, routed to a mapped queue.

Allows closer integration; messaging
applications can directly produce
messages to, and consume messages
from WebSphere MQ queues.

412 Overview

Table 43. Key features comparison between the three ways of interoperating with WebSphere MQ (continued). The
first column of this table shows the key features of interoperating using the WebSphere MQ messaging provider with
no bus, the second column shows the key features of interoperating using the WebSphere MQ network as a foreign
bus (using WebSphere MQ links), and the third column shows the key features of interoperating using a WebSphere
MQ server (a queue manager or queue-sharing group) as a bus member.

WebSphere MQ messaging provider (no
bus)

A WebSphere MQ network as a foreign
bus (using WebSphere MQ links)

A WebSphere MQ server (a queue
manager or queue-sharing group) as a
bus member

WebSphere Application Server
applications can send messages to
WebSphere MQ queues. Sent messages
are immediately added to the queue. If the
WebSphere MQ queue is unavailable,
applications cannot send messages.

WebSphere Application Server
applications can send messages to
WebSphere MQ queues. Sent messages
are stored by the service integration bus
for transmission to WebSphere MQ (this is
called store and forward messaging).
Applications can continue to send
messages if the WebSphere MQ queue is
unavailable.

WebSphere Application Server applications
can send messages to WebSphere MQ
queues. Sent messages are immediately
added to the queue. If the WebSphere
MQqueue is unavailable, applications
cannot send messages.

WebSphere Application Server
applications can receive messages from
WebSphere MQ queues. The applications
can use message consumers to receive
messages, and message-driven beans
can be configured to process messages
as soon as they arrive at the WebSphere
MQ queue.

WebSphere Application Server
applications cannot receive messages
from WebSphere MQ queues, because
the queues are destinations in a foreign
bus. For messages to pass from
WebSphere MQ to WebSphere Application
Server applications, WebSphere MQ
applications must send the messages to a
suitable destination in the service
integration bus used by the WebSphere
Application Server applications.

WebSphere Application Server applications
can receive messages from WebSphere
MQ queues. The applications can use
message consumers to receive messages,
and message-driven beans can be
configured to process messages as soon
as they arrive at the WebSphere MQ
queue. Also, service integration bus
mediations running in WebSphere
Application Server can process messages
as they arrive at a WebSphere MQ queue.

WebSphere Application Server
applications can publish messages to
WebSphere MQ topics and subscribe to
messages on WebSphere MQ topics in
the same way as applications in the
WebSphere MQ environment.

You can set up a publish/subscribe bridge
on the WebSphere MQ link, so that
WebSphere Application Server
applications and WebSphere MQ
applications can publish or subscribe to
selected topics that exist in both the
WebSphere MQ environment and the
WebSphere Application Server
environment.

A WebSphere MQ server provides
connections with queues for point-to-point
messaging. A topic for publish/subscribe
messaging cannot be associated with a
WebSphere MQ server.

Messages are stored on queues, not
messaging engines; one or many
WebSphere Application Server
applications can access the messages,
even when the applications are running on
different servers.

Messages are stored on messaging
engines.

Messages are stored on queues, not
messaging engines; one or many
WebSphere Application Server applications
can access the messages, even when the
applications are running on different
servers.

Messages are pulled from the queue by a
consuming application, and pushed by a
producing application.

Messages are pushed across the link,
regardless of whether a consumer is
ready.

Messages are pulled from the queue by a
WebSphere Application Server consumer,
and pushed by a WebSphere Application
Server producer.

Does not support mediations. Does not support mediations. Supports different mediation scenarios for
modifying message content, or routing,
and for logging.

Optimum load balancing is easier to
achieve because applications can pull
messages from the WebSphere MQ
network.

Messages are pushed to applications from
the WebSphere MQ network, but workload
balancing options are available in
WebSphere Application Server.

Optimum load balancing is easier to
achieve because applications can pull
messages from the WebSphere MQ
network.

Administration and security

Configured and managed by using the
administrative console.

Configured and managed by using the
administrative console.

Configured and managed by using the
administrative console. Automatically
discovers queues on the WebSphere MQ
network during configuration and
administration.

Chapter 15. Messaging resources 413

Table 43. Key features comparison between the three ways of interoperating with WebSphere MQ (continued). The
first column of this table shows the key features of interoperating using the WebSphere MQ messaging provider with
no bus, the second column shows the key features of interoperating using the WebSphere MQ network as a foreign
bus (using WebSphere MQ links), and the third column shows the key features of interoperating using a WebSphere
MQ server (a queue manager or queue-sharing group) as a bus member.

WebSphere MQ messaging provider (no
bus)

A WebSphere MQ network as a foreign
bus (using WebSphere MQ links)

A WebSphere MQ server (a queue
manager or queue-sharing group) as a
bus member

Administration is carried out in WebSphere
MQ. In WebSphere Application Server you
need to define JMS artefacts such as
destinations, connection factories, listener
ports, and activation specifications.

Cooperative administrative domains for
WebSphere MQ and WebSphere
Application Server:

v Mutually agree definitions of channels,
foreign destinations and buses, to
reflect WebSphere MQ connectivity

v Both ends of the link must be started

v Administrators can stop or start a link

Independent administrative domains for
WebSphere MQ and WebSphere
Application Server:

v Separate authority

v Temporal decoupling of administrative
changes

You might have to define server
connection channels in WebSphere MQ.

You must define partner channel
definitions in WebSphere MQ.

You might have to define server
connection channels in WebSphere MQ.

Permission for WebSphere Application
Server applications and mediations to
send messages to, and receive messages
from, a particular WebSphere MQ is
controlled by WebSphere MQ
administration.

Permission for WebSphere Application
Server applications to send messages to a
particular WebSphere MQ queue is
controlled by service integration bus
administration.

Permission for WebSphere MQ
applications to send messages to service
integration destinations is controlled by
WebSphere MQ administration.

Permission for WebSphere Application
Server applications and mediations to send
messages to, and receive messages from,
a particular WebSphere MQ queue is
controlled by service integration bus
administration.

Permission for WebSphere Application
Server (which includes permission for its
applications and mediations) to access
WebSphere MQ queues is controlled by
WebSphere MQ administration.

For WebSphere Application Server Version 7 and later, listener ports are stabilized. For more information,
read the article on stabilized features. You should plan to migrate your WebSphere MQ message-driven
bean deployment configurations from using listener ports to using activation specifications. However, you
should not begin this migration until you are sure the application does not have to work on application
servers earlier than WebSphere Application Server Version 7. For example, if you have an application
server cluster with some members at Version 6.1 and some at a later version, you should not migrate
applications on that cluster to use activation specifications until after you migrate all the application servers
in the cluster to the later version.

Interoperation with WebSphere MQ: Key WebSphere MQ concepts
If you are not familiar with basic WebSphere MQ concepts, read about the objects in WebSphere MQ that
are important for interoperation with WebSphere Application Server.

Queues and topics

A queue is a data structure used to store messages. Application programs can use JMS or WebSphere
MQ API calls to put messages on WebSphere MQ queues. Other applications can get the messages from
the queues.

A topic is the subject of the information that is published in a publish/subscribe message. Instead of putting
a message on a specific queue, application programs can publish a message to a topic. Other applications
obtain the messages by subscribing to the topic to receive all the messages published to that topic.

When an application puts a message on a queue, only one copy of the message exists. Even if more than
one application can get messages from the queue, only one consumer can receive each message.

414 Overview

However, when an application publishes a message to a topic, any number of subscribers can receive a
copy of the message.

Queue managers and queue-sharing groups

Each WebSphere MQ queue is owned by a queue manager. The queue manager is responsible for
maintaining the queues it owns, and for placing all the messages it receives onto the appropriate queues.
Application programs connect to a queue manager when they want to put messages on queues. Queue
managers can also put messages on queues as part of their normal operation.

From WebSphere MQ Version 7, each topic in WebSphere MQ is also owned by a queue manager. The
queue manager receives messages from publishers, and subscriptions from subscribers. The queue
manager is responsible for routing the published messages to the subscribers that have registered an
interest in the topic of the messages. In earlier versions of WebSphere MQ, publish/subscribe messaging
is handled by a publish/subscribe broker, not by queue managers.

In WebSphere MQ for z/OS, you can set up shared queues that can be accessed by several queue
managers in a sysplex. Messages that are put onto shared queues are stored in list structures in a
zSeries® Coupling Facility, and large messages have their message data held in a shared DB2 table.

The queue managers that can access the same set of shared queues form a group called a queue-sharing
group. Each member of the queue-sharing group connects to a DB2 system to access shared definitions
for WebSphere MQ objects, including queues and channels. Any queue manager in the group can retrieve
the messages held on a shared queue. An application that wants to access one of the shared queues can
therefore connect to any of the queue managers within the queue-sharing group, so the application does
not depend on the availability of a specific queue manager.

Local queues, remote queues, and clusters

In a WebSphere MQ network, intercommunication is achieved by sending messages from one queue
manager or (for WebSphere MQ for z/OS) queue-sharing group to another.

WebSphere MQ application programs can put messages onto a local queue, which is a queue on the
queue manager to which the application is connected. A queue manager has a definition for each queue
that it owns. A queue manager can also have definitions for the queues that other queue managers own.
From the perspective of the local queue manager to which the application is connected, these other
queues are remote queues, and the queue managers that own them are remote queue managers.

As well as putting messages onto a local queue, WebSphere MQ application programs connected to a
local queue manager can put messages targeted at remote queues. WebSphere MQ must then transmit
the messages to the remote queue managers that own the remote queues. When messages are destined
for a WebSphere MQ queue on a remote queue manager, the local queue manager holds them in a
transmission queue until it is ready to forward them to the remote queue manager. A transmission queue is
a special type of local queue on which messages are stored until they can be successfully transmitted and
stored at the remote queue manager.

WebSphere MQ queue managers can be connected to form a cluster, using any of the communications
protocols that are available on your WebSphere MQ platform. When you group queue managers in a
cluster, the queues are still hosted by the queue managers (so they are not shared queues). However, by
connecting into the cluster, queue managers can send a message to any other queue manager in the
cluster, and make some or all of the queues that they host available to every other queue manager in the
cluster as cluster queues. You do not have to set up explicit definitions on each queue manager for each
remote queue and for the connection to each remote queue manager. Each queue manager in the cluster
also uses a single cluster transmission queue to hold messages for any of the other queue managers, so
you do not have to set up a transmission queue for each remote queue manager.

Chapter 15. Messaging resources 415

From WebSphere MQ Version 7, you can also connect together WebSphere MQ queue managers that
own topics for publish/subscribe messaging. You can group queue managers that own topics into a
publish/subscribe cluster, with links between all members, or into a publish/subscribe hierarchy, with parent
and child relationships between the connected queue managers. Publications and subscriptions to topics
can be shared between all the queue managers in the cluster or hierarchy.

Message channels

WebSphere MQ messages, whether they are put onto queues or published to topics, are transmitted
between queue managers through message channels. A message channel is a one-way communication
link between two queue managers. It can carry messages destined for any number of queues or topics
that the remote queue manager hosts, or for any number of target queue managers.

You can define the following types of message channel in WebSphere MQ:

v Sender-receiver channel

v Requester-server channel

v Requester-sender channel

v Server-receiver channel

v Cluster-sender channels

v Cluster-receiver channels

For example, to define the type of message channel called a sender-receiver channel, you define a sender
channel at the sending end, which could be the local queue manager. Then you use the same name to
define a receiver channel at the receiver end, which could be the remote queue manager. A message
channel is unidirectional, so if you want messages to flow in both directions, you must define a second
message channel in the opposite direction between the queue managers.

For queue managers in a cluster, you do not have to define message channels between each pair of
queue managers. Instead, you define two message channels to connect each queue manager into the
cluster: one cluster-receiver channel for receiving messages, and one cluster-sender channel by which the
queue manager introduces itself and learns about the cluster. The queue manager can then send a
message to any other queue manager in the cluster.

Do not confuse message channels with MQI channels. The MQI is the Message Queue Interface in
WebSphere MQ, which applications use to interact with queue managers. An MQI channel is a type of
connection that is used by a WebSphere MQ client application to connect to a queue manager that is
running on another system, and to issue MQI calls to the queue manager.

Interoperation using the WebSphere MQ messaging provider
Through the WebSphere MQ messaging provider in WebSphere Application Server, Java Message Service
(JMS) messaging applications can use your WebSphere MQ system as an external provider of JMS
messaging resources.

WebSphere MQ is characterized as follows:

v Messaging is handled by a network of queue managers, each running in its own set of processes and
having its own administration.

v Features such as shared queues (on WebSphere MQ for z/OS) and WebSphere MQ clustering simplify
administration and provide dynamic discovery.

v Many IBM and partner products support WebSphere MQ with (for example) monitoring and control, high
availability and clustering.

v WebSphere MQ clients can run within WebSphere Application Server (JMS), or almost any other
messaging environment by using a variety of APIs.

416 Overview

If your business uses WebSphere MQ, and you want to integrate WebSphere Application Server
messaging applications into a predominantly WebSphere MQ network, the WebSphere MQ messaging
provider is a logical choice. However, there can be benefits in using another provider. If you are not sure
which provider combination is best suited to your requirements, see Choosing messaging providers for a
mixed environment.

The WebSphere MQ messaging provider supports JMS 1.1 domain-independent interfaces (sometimes
referred to as “unified” or “common” interfaces). This enables applications to use the same interfaces for
both point-to-point and publish/subscribe messaging, and also enables both point-to-point and
publish/subscribe messaging within the same transaction. With JMS 1.1, this approach is considered good
practice for new applications. The domain-specific interfaces are supported for backwards compatibility for
applications developed to use domain-specific queue interfaces, as described in section 1.5 of the JMS 1.1
specification.

The WebSphere MQ messaging provider also supports the Java EE Connector Architecture (JCA) 1.5
activation specification mechanism for message-driven beans (MDBs) across all platforms supported by
WebSphere Application Server.

You can use WebSphere Application Server to configure WebSphere MQ resources for applications (for
example queue connection factories) and to manage messages and subscriptions associated with JMS
destinations. You administer security through WebSphere MQ.

In a mixed-version WebSphere Application Server cell, you can administer WebSphere MQ resources on
nodes of all versions. However, some properties are not available on all versions. In this situation, only the
properties of that particular node are displayed in the administrative console.

WebSphere Application Server Version 6.x contained a WebSphere MQ JMS client to facilitate interaction
with WebSphere MQ. For WebSphere Application Server Version 7.0 and later this has been replaced with
the WebSphere MQ resource adapter. The resource adapter is included with WebSphere Application
Server and does not need to be installed separately. Service updates to the resource adapter are usually
applied automatically through WebSphere Application Server fix packs. For more information about
maintaining the resource adapter, see Maintaining the WebSphere MQ resource adapter.

You can use the following four WebSphere MQ connection properties to configure the WebSphere MQ
resource adapter used by the WebSphere MQ messaging provider. These properties affect the connection
pool that is used by activation specifications:

v maxConnections

v connectionConcurrency (Setting this property only affects WebSphere Application Server 7 nodes. The
property has no effect for WebSphere Application Server Version 8 or later nodes.)

v reconnectionRetryCount

v reconnectionRetryInterval

To connect to multi-instance WebSphere MQ queue managers, you can provide host and port information
in the form of a connection name list, which a connection factory or activation specification uses to
connect to a multi-instance queue manager.

WebSphere MQ queue or topic destination properties allow you to specify:

v Whether an application processes the RFH version 2 header of a WebSphere MQ message as part of
the JMS message body.

v The format of the JMSReplyTo field.

v Whether an application can read or write the values of MQMD fields from JMS messages that have
been sent or received using the WebSphere MQ messaging provider.

v Which message context options are specified when sending messages to a destination.

Chapter 15. Messaging resources 417

For more information about using WebSphere MQ with WebSphere Application Server, see the white
papers and IBM Redbooks publications provided by WebSphere MQ; for example, through the WebSphere
MQ library web page.

Network topologies: Interoperating by using the WebSphere MQ messaging
provider
There are several network topologies, clustered and not clustered, that allow WebSphere Application
Server to interoperate with WebSphere MQ by using WebSphere MQ as an external JMS messaging
provider. For providing high availability, some topologies are more suitable than others.

For completeness, this topic describes a wide range of topologies, including clustered and highly available
topologies. Note that, for clustering and high availability, you need to use the network deployment or z/OS
version of the product.

Note: In this topic “application server” refers to an application server that is running on WebSphere
Application Server and "queue manager" refers to a queue manager that is running on WebSphere
MQ.

The WebSphere Application Server high availability framework eliminates single points of failure and
provides peer to peer failover for applications and processes running within WebSphere Application Server.
This framework also allows integration of WebSphere Application Server into an environment that uses
other high availability frameworks, such as High Availability Cluster Multi-Processing (HACMP™), in order
to manage non-WebSphere Application Server resources.

The subsequent examples show the main network topologies for interoperating withWebSphere MQ using
the WebSphere MQ messaging provider. Each of the four examples describes two network topologies,
with varying locations for the application servers and queue managers.

v “Interoperation when WebSphere Application Server application server is not clustered and WebSphere
MQ queue manager is not clustered”

– The application server and the queue manager run on different hosts

– The application server and the queue manager run on the same host

v “Interoperation when WebSphere Application Server application servers are clustered but WebSphere
MQ queue manager is not clustered” on page 420

– The queue manager runs on a different host from any of the application servers

– The application servers run on several hosts, one of which hosts a queue manager

v “Interoperation when WebSphere Application Server application servers are clustered and WebSphere
MQ queue managers are clustered” on page 422

– The queue managers run on different hosts from the application servers

– The queue manager runs on the same hosts as the application servers

v “Connecting WebSphere Application Server application servers to WebSphere MQ for z/OS with
queue-sharing groups” on page 426

– The application servers and the queue managers run in the same LPAR

– The application servers and the queue managers run in different LPARs

Interoperation when WebSphere Application Server application server is not clustered and
WebSphere MQ queue manager is not clustered:

Application servers running on WebSphere Application Server and queue managers running on
WebSphere MQ can connect to each other when neither of them are clustered. However, this setup can
be vulnerable to failure.

418 Overview

Note: In this topic “application server” refers to an application server that is running on WebSphere
Application Server and “queue manager” refers to a queue manager that is running on WebSphere
MQ.

There are two topology options:

v The application server and the queue manager run on different hosts

v The application server and the queue manager run on the same host

The application server and the queue manager run on different hosts

The WebSphere MQ transport type for the connection is specified as “client”. A client connection is used
when the application server and queue manager are running on different hosts. This is a TCP/IP network
connection that is used to communicate with the queue manager. A client connection is also known as
“socket attach”.

The following figure shows an application server and a queue manager running on different hosts.

This topology is vulnerable because inter-operation ceases if any of the following conditions occurs:

v The application server fails.

v The host on which the application server is running fails.

v The queue manager fails.

v The host on which the queue manager is running fails.

You can improve availability for this topology by using, for example, High Availability Cluster
Multi-Processing (HACMP) to restart the failed component automatically.

The application server and the queue manager run on the same host

The transport type for the connection is specified as “bindings”. A bindings connection is used when the
application server and the queue manager are running on the same host. This is a cross-memory
connection that is used to communicate with a queue manager. A bindings connection is also known as
“call attach”.

The following figure shows a application server and a queue manager running on the same host.

Host 1 Host 2

Application
Server 1

Queue
Managerclient mode

TCP/IP

Figure 48. No clustering: client mode attachment to queue manager

Chapter 15. Messaging resources 419

The availability constraints for this topology are similar to the previous one. However, in some
configurations bindings mode is faster and more processor efficient than client mode because the amount
of processing is reduced.

Interoperation when WebSphere Application Server application servers are clustered but
WebSphere MQ queue manager is not clustered:

Application servers running on WebSphere Application Server can be clustered together and connected to
queue managers running onWebSphere MQ that are not clustered. This setup provides enhanced failover
protection over non-clustered topologies.

Note: In this topic “application server” refers to an application server that is running on WebSphere
Application Server and “queue manager” refers to a queue manager that is running on WebSphere
MQ.

There are two topology options:

v The application servers run on several hosts, one of which hosts a queue manager

v The queue manager runs on a different host from any of the application servers

The queue manager runs on a different host from any of the application servers

In the subsequent figure:

v Application server 1, 2 and 3 are clustered in a WebSphere Application Server cluster.

v Application servers 1 and 3 are running on Host 1

v Application server 2 is running on Host 2

v Queue manager is running on Host 3

v A “client” connection is used when the application server and queue manager are running on different
hosts. This is a TCP/IP network connection that is used to communicate with the queue manager. A
client connection is also known as “socket attach”.

– Application servers 1, 2 and 3 are connected to queue manager in client mode.

Host 1

Application
Server 1

Queue
Managerbindings mode

Figure 49. No clustering: bindings mode attachment to queue manager

420 Overview

v If any clustered application server fails, or the host on which it is running fails, the remaining application
servers in the cluster can take over its workload.

v If the queue manager fails, or the host on which it is running fails, interoperation ceases.

You can improve availability for this topology by using, for example, High Availability Cluster
Multi-Processing (HACMP) to restart the failed queue manager automatically.

The application servers run on several hosts, one of which hosts a queue manager

The following figure shows some application servers that are running on the same host as the queue
manager. Other application servers in the same WebSphere Application Server cluster run on a different
host.

In the subsequent figure:

v Application server 1, 2 and 3 are clustered in a WebSphere Application Server cluster.

v Application servers 1 and 3 are running on Host 1.

v Application server 2 is running on Host 2.

v Queue manager is running on Host 1.

v The transport type for the connection is specified as “bindings”. A “bindings” connection is used when
the application server and the queue manager are running on the same host. This is a cross-memory
connection that is used to communicate with a queue manager. A bindings connection is also known as
“call attach”.

– Application servers 1, and 3 are connected to queue manager in bindings mode.

v A “client” connection is used when the application server and queue manager are running on different
hosts. This is a TCP/IP network connection that is used to communicate with the queue manager. A
client connection is also known as “socket attach”.

– Application server 2 is connected to queue manager in client mode.

Host 1

Host 2

Host 3

Application
Server 1

Application
Server 3

Application
Server 2

Queue
Manager

WebSphere Application
Server cluster

Figure 50. WebSphere Application Server clustering: client mode attachment to queue manager

Chapter 15. Messaging resources 421

Note: For application servers that are running on the same host as a queue manager, the WebSphere
MQ transport type for the connection is specified as “bindings then client” mode, that is, if an
attempt at a bindings mode connection to the queue manager fails, a client mode connection is
made. For application servers that are not running on the same host as the queue manager, the
application server automatically uses client mode.

v If one of the application servers fails, the remaining application servers in the cluster can take over its
workload.

v If host 2 fails, application server 2 will stop. Application servers 1 and 3 can take over its workload.

v If the queue manager fails inter-operation ceases.

v If host 1 fails the queue manager, application server 1 and application server 3 will stop. Inter-operation
will cease.

Interoperation when WebSphere Application Server application servers are clustered and
WebSphere MQ queue managers are clustered:

WebSphere MQ queue managers are usually clustered in order to distribute the message workload and
because, if one queue manager fails, the others can continue running.

Note: In this topic “application server” refers to an application server that is running on WebSphere
Application Server and “queue manager” refers to a queue manager that is running on WebSphere
MQ.

There are two topology options:

v The queue managers run on different hosts from the application servers

v The queue managers run on the same hosts as the application servers

Host 1

Host 2

Application
Server 1

Application
Server 3

Application
Server 2

Queue
Manager

client
mode

bindings
mode

WebSphere Application
Server cluster

Figure 51. WebSphere Application Server clustering: bindings then client mode attachment to queue manager

422 Overview

The queue managers run on different hosts from the application servers

In the subsequent figure:

v Application server 1, 2 and 3 are clustered in a WebSphere Application Server cluster.

v Application servers 1 and 3 are running on Host 1.

v Application server 2 is running on Host 2.

v Queue managers 1, 2 and 3 are part of the same WebSphere MQ cluster.

v Queue manager 1 is running on Host 3.

v Queue manager 2 is running on Host 4.

v Queue manager 3 is running on Host 5.

v Queue manager 3 is responsible for distributing messages between the cluster queues in a way that
achieves workload balancing.

v A "client" connection is used when the application server and queue manager are running on different
hosts. This is a TCP/IP network connection that is used to communicate with the queue manager. A
client connection is also known as “socket attach”.

– Application servers 1 and 2 attach in client mode to queue manager 1.

– Application server 3 attaches in client mode to queue manager 2.

If application server 1 fails:
Application server 2 can take over its workload because they are both attached to queue manager
1.

If application server 2 fails:
Application server 1 can take over its workload because they are both attached to queue manager
1.

Host 1

Host 2 Host 4

Host 3

Host 5Application
Server 1

Application
Server 3

Application
Server 2

Queue
Manager 2

Queue
Manager 1

Queue
Manager 3

Q1

Q1

WebSphere Application
Server cluster

WebSphere MQ
cluster

Figure 52. WebSphere Application Server clustering: client mode attachment to queue managers

Chapter 15. Messaging resources 423

If application server 3 fails:
You must restart it as soon as possible for the following reasons:

v Other application servers in the cluster can take over its external workload, but no other
application server can take over its WebSphere MQ workload, because no other application
server is attached to queue manager 2. The workload that was generated by application server
3 ceases.

v Queue manager 3 continues to distribute work between queue manager 1 and queue manager
2, even though the workload arriving at queue manager 2 cannot be processed by application
server 1 or 2.

Note: If you choose not to restart, you can alleviate this situation by manually configuring Q1 on
queue manager 2 so that the ability to put messages to it is inhibited. This results in all
messages being sent to queue manager 1 where they are processed by the other
application servers.

If queue manager 1 fails:
You should restart it as soon as possible for the following reasons:

v Messages that are on queue manager 1 when it fails are not processed until you restart queue
manager 1.

v No new messages from WebSphere MQ applications are sent to queue manager 1, instead
new messages are sent to queue manager 2 and consumed by application server 3.

v Because application servers 1 and 2 are not attached to queue manager 2, they cannot take on
any of its workload.

v Because application servers 1, 2 and 3 are in the same WebSphere Application Server cluster,
their non-WebSphere MQ workload continues to be distributed between them all, even though
application servers 1 and 2 cannot use WebSphere MQ because queue manager 1 has failed.

Although this networking topology can provide availability and scalability, the relationship between
the workload on different queue managers and the application servers to which they are
connected is complex. You can contact your IBM representative to obtain expert advice.

The queue managers run on the same hosts as the application servers

In the subsequent figure:

v Application severs 1, 2 and 3 are part of the same WebSphere Application Server cluster.

v Application servers 1 and 3 are running on Host 1.

v Application server 2 is running on Host 2.

v Queue managers 1, 2 and 3 are part of the same WebSphere MQ cluster.

v Queue manager 1 is running on Host 1.

v Queue manager 2 is running on Host 2.

v Queue manager 3 is running on Host 3.

v Queue manager 3 is responsible for distributing messages between the cluster queues in a way that
achieves workload balancing.

v The transport type for the connection is specified as “bindings”. A "bindings" connection is used when
the application server and the queue manager are running on the same host. This is a cross-memory
connection that is used to communicate with a queue manager. A bindings connection is also known as
“call attach”.

– Application servers 1 and 3 attach to queue manager 1 in bindings mode.

– Application server 2 attaches to queue manager 2 in bindings mode.

424 Overview

If application server 1 fails:
Application server 3 can take over its workload because they are both attached to queue manager
1.

If application server 3 fails:
Application server 1 can take over its workload because they are both attached to queue manager
1.

If application server 2 fails:
You must restart it as soon as possible for the following reasons:

v Because no other application server is attached to queue manager 2 no other application server
can take over its WebSphere MQ workload. The workload that was generated by application
server 2 ceases. Other application servers in the cluster can, however, take over its external
workload

v Queue manager 3 continues to distribute work between queue manager 1 and queue manager
2, even though the workload arriving at queue manager 2 cannot be taken on by application
server 2.

Note: If you choose not to restart, you can alleviate this situation by manually configuring Q1
on queue manager 2 so that the ability to put messages to it is inhibited. This results in
all messages being sent to queue manager 1 where they are processed by the other
application servers.

If queue manager 1 fails:
You must restart it as soon as possible for the following reasons:

v Messages that are on queue manager 1 when it fails are not processed until you restart queue
manager 1.

v Because application servers 1 and 3 are not attached to queue manager 2, they cannot take on
any of its workload.

Host 1

Host 2

Host 3Application
Server 1

Application
Server 3

Application
Server 2

Queue
Manager 1

Queue
Manager 2

Queue
Manager 3

Q1

Q1

WebSphere Application
Server cluster

WebSphere MQ
cluster

Figure 53. WebSphere Application Server clustering: bindings mode attachment to queue managers

Chapter 15. Messaging resources 425

v No new messages from WebSphere MQ applications are sent to queue manager 1, instead
new messages are sent to queue manager 2 and consumed by application server 2.

v Because application servers 1, 2 and 3 are in the same WebSphere Application Server cluster,
their non-WebSphere MQ workload continues to be distributed between them all, even though
application servers 1 and 3 cannot use WebSphere MQ because queue manager 1 has failed.

Although this networking topology can provide availability and scalability, the relationship between the
workload on different queue managers and the application servers with which they are connected is
complex. You can contact your IBM representative to obtain expert advice.

Connecting WebSphere Application Server application servers to WebSphere MQ for z/OS with
queue-sharing groups:

On z/OS systems, an application server can connect to a queue manager that is a member of a
WebSphere MQ for z/OS queue-sharing group. You can configure the connection so that it selects a
specific named queue manager, or you can configure it to accept any queue manager in the
queue-sharing group.

Note: In this topic “application server” refers to an application server that is running on WebSphere
Application Server and “queue manager” refers to a queue manager that is running on WebSphere
MQ.

If you configure a connection to select a specific named queue manager, your options for providing high
availability are like those for connecting to WebSphere MQ on other platforms. However, you can improve
availability if you configure the connection to accept any queue manager in the queue-sharing group. In
this situation, when the application server reconnects following a WebSphere MQ queue manager failure,
the application server can accept connection to a different queue manager that has not failed.

A connection that you configure to accept any queue manager must only be used to access shared
queues. A shared queue is a single queue that all queue managers in the queue-sharing group can
access. It does not matter which queue manager an application uses to access a shared queue. Even if
the same application instance uses different queue managers to access the same shared queue, this
always produces consistent results.

These examples show two topology options for connecting to WebSphere MQ for z/OS to benefit from
queue-sharing groups:

v The application servers and the queue managers run in the same logical partition (LPAR)

v The application servers and the queue managers run in different logical partitions (LPARs)

The application servers and the queue managers run in the same logical partition (LPAR)

The following figure shows a bindings mode connection from WebSphere Application Server to
WebSphere MQ for z/OS. The figure shows the following configuration:

v Application servers 1 and 2 are part of a WebSphere Application Server cluster.

v Application server 1 is running in LPAR 1.

v Application sever 2 is running in LPAR 2.

v Queue managers 1 and 2 are members of a WebSphere MQ queue-sharing group that hosts a shared
queue, Q1. The shared queue is located in a coupling facility.

v Queue manager 1 is running in LPAR 1.

v Queue manager 2 is running in LPAR 2.

v A "bindings" connection is used when the application server and the queue manager are running on the
same host. This is a cross-memory connection is established to a queue manager running on the same
host. A bindings connection is also known as “call attach”.

426 Overview

– Application server 1 and queue manager 1 are attached to each other in bindings mode.

– Application server 2 and queue manager 2 are attached to each other in bindings mode.

This networking topology can benefit from “pull” workload balancing if several application instances,
including instances running in different LPARs, are processing messages from the same shared queue.

You can improve availability for this topology by using the z/OS Automatic Restart Manager (ARM) to
restart failed application servers or queue managers. If a queue manager in an LPAR fails, ARM can
restart an application server in a different LPAR, where the application server can connect to a running
queue manager, instead of waiting for a restart of the queue manager that it was using previously. In the
example used here, ARM can restart WebSphere Application Server application server 1 in LPAR 2, where
it can connect to WebSphere MQ queue manager 2, instead of waiting for queue manager 1 to restart.

The application servers and the queue managers run in different logical partitions (LPARs)

The following figure shows a client mode connection from WebSphere Application Server to WebSphere
MQ for z/OS. The figure shows the following configuration:

v Queue managers 1 and 2 are members of a WebSphere MQ queue-sharing group that hosts a shared
queue, Q1. The shared queue is located in a coupling facility. The two queue managers run in different
LPARs.

v A "client" connection is used when the application server and queue manager are running on different
hosts. This is a TCP/IP network connection that is used to communicate with the queue manager. A
client connection is also known as “socket attach”.

– Multiple application servers have a client mode (TCP/IP) connection to the queue managers. All the
client mode connections are managed by the z/OS sysplex distributor, which selects either queue
manager 1 or queue manager 2 for each connection request.

LPAR 2

LPAR 1

Application
Server 2

Application
Server 1

Queue
Manager 2

Coupling
facility

Queue
Manager 1

WebSphere Application
Server cluster

WebSphere MQ
queue-sharing

group

Q1

Figure 54. WebSphere Application Server with bindings mode connection to WebSphere MQ for z/OS

Chapter 15. Messaging resources 427

As with the bindings mode connection example, this networking topology can benefit from “pull” workload
balancing if several application instances running in the same or different application servers are
processing messages from the same shared queue.

The use of the z/OS sysplex distributor improves availability for this networking topology. If one of the
queue managers fails, the z/OS sysplex distributor can connect applications running in the application
servers to the other queue manager, without waiting for the failed queue manager to restart. In the
example used here, if queue manager 1 fails, the z/OS sysplex distributor can select queue manager 2 for
every connection request, until queue manager 1 restarts.

Note: In this networking topology, WebSphere MQ for z/OS GROUP units of recovery must be enabled on
all the queue managers in the queue-sharing group. TCP/IP (client mode) connections that accept
any queue manager use GROUP units of recovery. GROUP units of recovery are not supported by
versions of WebSphere MQ for z/OS earlier than Version 7.0.1. Bindings mode connections do not
require GROUP units of recovery.

WebSphere MQ messaging provider activation specifications
Activation specifications are used to configure inbound message delivery to message-driven beans (MDBs)
running inside WebSphere Application Server. They supersede message listener ports, which are now a
stabilized function.

Activation specifications and message-driven beans

Activation specifications are the standardized way to manage and configure the relationship between an
MDB running in WebSphere Application Server and a destination withinWebSphere MQ. They combine the
configuration of connectivity, the Java Message Service (JMS) destination and the runtime characteristics
of the MDB, within a single object.

Message-driven beans are a special class of Enterprise Java Bean (EJB). They enable Java Platform,
Enterprise Edition (JEE) applications to process messages asynchronously, with WebSphere Application
Server managing the transactionality and concurrency of the application.

The following figure shows how an activation specification can be used to link a WebSphere MQ queue
manager destination to an MDB running within WebSphere Application Server. The process of delivering a

LPAR 2

LPAR 1

Application
Server

Sysplex
distributor

Queue
Manager 2

Coupling
facility

Queue
Manager 1 WebSphere MQ

queue-sharing
group

Q1

Figure 55. WebSphere Application Server with client mode connection to WebSphere MQ for z/OS

428 Overview

message from a client to an MDB via an WebSphere MQ messaging provider activation specification
occurs in this way:

v A messaging client, either running in a stand-alone process or within an application server environment,
sends a message using JMS (or any other messaging API, such as MQI) to a WebSphere MQ queue or
topic defined in a WebSphere MQ queue manager.

v A WebSphere MQ activation specification is configured to listen on that destination for messages. When
the new message is detected, it is removed from the destination (potentially under an XA transaction).

v The message is then passed to an MDB that has been configured to use the activation specification
through its onMessage method.

v The MDB uses the information in the message to perform the relevant business logic.

Activation specifications compared with listener ports

Versions of WebSphere Application Server earlier than Version 7.0, use listener ports to define the
association between a connection factory, a destination, and an MDB.

Activation specifications supersede the use of listener ports, which became a stabilized feature in
WebSphere Application Server Version 7.0 (for more information, see “Stabilized features” on page 1312).
There are several advantages to using activation specifications over listener ports:

v Activation specifications are simple to configure, because they only require two objects: the activation
specification and a message destination. Listener ports require three objects: a connection factory, a
message destination, and the message listener port itself.

v Activation specifications are not limited to the server scope. They can be defined at any administrative
scope in WebSphere Application Server. Message listener ports must be configured at the server scope.
This means that each server in a node requires its own listener port. For example, if a node is made up
of three servers, three separate listener ports must be configured. Activation specifications can be
configured at the node scope, so in the example only one activation specification would be needed.

v Activation specifications are part of the Java Platform, Enterprise Edition Connector Architecture 1.5 and
1.6 standards specification (JCA 1.5 and 1.6). Listener port support in WebSphere Application Server
makes use of the application server facilities interfaces defined in the JMS specification, but is not part
of any specification itself.

It is still possible to use message listener ports to deliver messages to an MDB using the WebSphere MQ
messaging provider. There are certain scenarios in which the use of listener ports is still preferable to
using activation specifications. This usually is the case with configurations in which some of the servers
are running on versions of WebSphere Application Server earlier than WebSphere Application Server
Version 7.0. It is possible to configure both message listener ports (which make use of WebSphere MQ

Message
producer

onMessage
(message)

WebSphere MQ
destination

Send message

businessMethod ()

WebSphere MQ
messaging

provider activation
specification

EJB container

Session bean

Message
driven bean

Messaging client WebSphere
MQ queue
manager

WebSphere application server

Figure 56. WebSphere MQ messaging provider activation specification in action

Chapter 15. Messaging resources 429

messaging provider resources) and WebSphere MQ messaging provider activation specifications at the
same time. For more information, see “Message-driven beans, activation specifications, and listener ports”
on page 159.

To assist in migrating listener ports to activation specifications, the WebSphere Application Server
administrative console provides a Convert listener port to activation specification wizard on the
Message listener port collection panel. This allows you to convert existing listener ports into activation
specifications. However, this function only creates a new activation specification with the same
configuration used by the listener port. It does not modify application deployments to use the newly
created activation specification.

Enhanced features of the WebSphere MQ messaging provider
The WebSphere MQ messaging provider enables WebSphere Application Server applications and clients
to connect to and use WebSphere MQ resources in a JMS-compliant manner. This provider includes the
enhanced features described in this topic.

Overview

The WebSphere MQ messaging provider has enhanced administrative options supporting the following
functions:

v “WebSphere MQ channel compression”

v “WebSphere MQ client channel definition table”

v “Client channel exits” on page 431

v “Transport-level encryption by using SSL” on page 431

v “Automatic selection of the WebSphere MQ transport type” on page 431

WebSphere MQ channel compression

Data sent over the network between WebSphere Application Server and WebSphere MQ can be
compressed, reducing the amount of data that is transferred. Channel compression can be beneficial in
the following situations:

v If a cost is incurred that is proportional to the amount of data transferred over a network. For example,
nodes in a network might span a leased line for which a utilization charge is applied.

v If the rate at which messaging data can be transferred across a network is the limiting factor in the
performance of an application.

v If compressing the data might reduce the cost of its encryption and decryption.

To use WebSphere MQ channel compression, configure the message compression properties of an
existing connection factory or activation specification. For more information, see the appropriate step within
Configuring JMS resources for the WebSphere MQ messaging provider.

For more information, see the WebSphere MQ topic Channel compression in the WebSphere MQ
information center that is part of the WebSphere MQ library.

WebSphere MQ client channel definition table

The client channel definition table reduces the effort required to configure a connection to a queue
manager. Your WebSphere MQ administrator can create a single table of all the WebSphere MQ channels
supported by queue managers in the enterprise, then in WebSphere Application Server you configure a
connection to a queue manager by identifying the client channel definition table and providing any
additional information not already contained within the table.

430 Overview

http://www.ibm.com/software/integration/wmq/library/

You can also use the client channel definition table to provide a basic failover capability, by specifying that
a connection is attempted against several queue managers listed in the table. Each suitable channel
definition is tried in turn until a queue manager connection is successfully established.

You can use the client channel definition table, with WebSphere MQ messaging provider activation
specifications and connection factories, to select the client channel definition to use when establishing a
connection to WebSphere MQ. The table can be configured to select from a number of queue managers,
depending on their availability.

When you use a client channel definition table, note the following restrictions:

v If your client channel definition table can select from more than one queue manager, you might not be
able to recover global transactions. Activation specifications and connection factories that specify a
client channel definition table must either do so without ambiguity as to the target queue manager, or
must avoid using the resources with applications that enlist in global transactions.

v If your client channel definition table contains channel definitions that reference native WebSphere MQ
channel exits, the use of these channel definitions is not supported in the WebSphere Application
Server environment.

For more information about client channel definition tables, see the developerWorks article WebSphere
MQ V6 Java and JMS clients and the client channel definition table, and the WebSphere MQ topic Client
channel definition table.

To use a client channel definition table, specify it when you create a new activation specification or
connection factory.

Client channel exits

Client channel exits are pieces of Java code that you develop, and that run in the application server at key
points during the life cycle of a WebSphere MQ channel. Your code can change the runtime characteristics
of the communications link between the WebSphere MQ messaging provider and the WebSphere MQ
queue manager.

Note: Only client channel exits written in Java are supported for use within the WebSphere Application
Server environment.

For more information about client channel exits, see the WebSphere MQ topic Channel exit programs. For
a list of the channel exits that work with the WebSphere MQ messaging provider, see the client connection
channel row of the table in the WebSphere MQ topic What are channel exit programs?.

To use client channel exits, configure the client transport properties of an existing connection factory or
activation specification.

Transport-level encryption by using SSL

Transport-level encryption by using SSL is the supported way to configure SSL for JMS resources
associated with the WebSphere MQ messaging provider. The SSL configuration is associated with the
communication link for the connection factory or activation specification. You either define the SSL
information in the connection factory, or your WebSphere MQ administrator defines the SSL information in
an associated client channel definition table.

Automatic selection of the WebSphere MQ transport type

The WebSphere MQ messaging provider supports the following ways to connect to a WebSphere MQ
queue manager:

Chapter 15. Messaging resources 431

http://www.ibm.com/developerworks/websphere/library/techarticles/0506_barrago/0506_barrago.html
http://www.ibm.com/developerworks/websphere/library/techarticles/0506_barrago/0506_barrago.html
http://publib.boulder.ibm.com/infocenter/wmqv6/v6r0/index.jsp?topic=/com.ibm.mq.csqzaf.doc/cs12100_.htm
http://publib.boulder.ibm.com/infocenter/wmqv6/v6r0/index.jsp?topic=/com.ibm.mq.csqzaf.doc/cs12100_.htm
http://publib.boulder.ibm.com/infocenter/wmqv6/v6r0/index.jsp?topic=/com.ibm.mq.csqzae.doc/ic17440_.htm
http://publib.boulder.ibm.com/infocenter/wmqv6/v6r0/index.jsp?topic=/com.ibm.mq.csqzae.doc/ic17450_.htm

Bindings mode (or call attach)
Bindings mode attachment is only possible if the queue manager is located on the same physical
machine as the WebSphere Application Server. Bindings mode attachment, where available,
typically offers better performance.

Client mode (or socket attach)
Client mode attachment can be used wherever the WebSphere MQ queue manager and
WebSphere Application Server can establish a network connection to one another.

Bindings mode, then client mode (automatic selection)
This method tries a bindings mode connection first and, if that fails, a client mode connection is
tried.

Every node in a WebSphere Application Server cluster shares identical configuration information. With
automatic selection of the WebSphere MQ transport type, all the servers in a cluster can be configured to
automatically select their transport. This has the effect that any clustered server that is co-located with a
queue manager establishes a bindings mode connection to the queue manager, whereas other servers in
the cluster establish client mode connection to the queue manager.

Strict message ordering with the WebSphere MQ messaging provider and
message-driven bean (MDB) applications
Message ordering is important to some asynchronous messaging applications; that is, it is important to
process messages in the same order that the producer sends them. If this type of message ordering is
important to your application, your design must take it into account.

For example, a messaging application that processes seat reservations might have producer components
and a consumer component. A producer component sends a message to the consumer component when
a customer reserves a seat. If the customer cancels the reservation then the producer (or possibly a
different producer) sends a second message. Typically, the consumer component must process the first
message (which reserves the seat) before it processes the second message (which cancels the
reservation).

Some applications use a synchronous (request-response) pattern where the producer waits for a response
to each message before it sends the next message. In this type of application, the consumer controls the
order in which it receives the messages and can ensure that this is the same order as the producer or
producers send them. Other applications use an asynchronous (fire and forget) pattern where the producer
sends messages without waiting for responses. Even for this type of application, order is usually
preserved; that is, a consumer can expect to receive messages in the same order as the producer or
producers send them, especially when there is a significant time between sending consecutive messages.
However your design must consider factors that can disrupt this order.

The order of messages is disrupted if your application sends messages with different priorities (higher
priority messages can overtake lower priority messages) or if your application explicitly receives a
message other than the first by specifying message selectors. Parallel processing and error or exception
processing can also affect message ordering.

Strict message ordering using non-ASF listener ports:

Strict message ordering can be achieved when deploying message driven bean applications to the
WebSphere MQ messaging provider when no special facilities have been coded into the application to
handle messages arriving out of order.

For WebSphere Application Server Version 7 and later, listener ports are stabilized. For more information,
read the article on stabilized features. You should plan to migrate your WebSphere MQ message-driven
bean deployment configurations from using listener ports to using activation specifications. However, you
should not begin this migration until you are sure the application does not have to work on application
servers earlier than WebSphere Application Server Version 7. For example, if you have an application

432 Overview

server cluster with some members at Version 6.1 and some at a later version, you should not migrate
applications on that cluster to use activation specifications until after you migrate all the application servers
in the cluster to the later version.

The following assumptions have been made in this scenario:

v The message-driven bean (MDB) application is transactional.

v The back-out threshold (BOTHRESH) on the WebSphere MQ queue has been set to 0.

WebSphere Application Server configuration for ordered delivery

v Non-ASF mode must be activated by specifying a non-zero timeout value for the
NON.ASF.RECEIVE.TIMEOUT WebSphere MQ message listener service custom property.

v The Maximum sessions setting for the listener port must be set to 1.

v A non-ASF listener port with Maximum sessions set to 1 has a single thread running inside the
application server retrieving messages. When a message arrives the thread immediately delivers it to
the MDB.

v The queue manager regards this thread as a single application retrieving messages, therefore
messages are processed in sequence.

Messages can be delivered out of order with this deployment during a transaction recovery

A specific set of events must occur in a specific order for this scenario to be encountered, and as such it is
uncommon. However, if ordered message delivery is critical to the operation of your application, the you
must consider it.

v Out of order message delivery can occur with this deployment option during recovery from a failure of
one of the following components:

– The application server hosting the MDB

– The WebSphere MQ queue manager

– A network connecting the application server and queue manager

v If one of these components fails in the middle of a two-phase commit of an MDB transaction, the
application server transaction manager reestablishes its connection to the queue manager to resolve the
transaction when the component is available again.

v This recovery process is asynchronous, and it is possible for delivery of new messages to the MDB to
begin before the transaction recovery process is complete. If the outcome of the transaction recovery is
to roll back the transaction, then the message will be returned to the WebSphere MQ queue and
re-delivered to the application, possibly after new messages have already been delivered.

Considerations for clustered deployment

When you are using non-ASF listener ports you can set the default share (DEFSOPT) option on the queue
to exclusive. If you choose this option when you are performing a clustered deployment of an application,
all but one of the cluster members fail to start their listener ports. The cluster members generate a
2042MORC_OBJECT_IN_USE exception, in a WMSG0057E message.

When this exception occurs you can then establish automatic failover for the application by configuring the
following message listener service custom property in WebSphere Application Server:

MAX.RECOVERY.RETRIES
Configure a high value MAX.RECOVERY.RETRIES on the message listener services of all the servers
in the cluster. The maximum value for MAX.RECOVERY.RETRIES is 2147483647.

The MAX.RECOVERY.RETRIES message listener service custom property must be accompanied by a
suitable MAX.RECOVERY.INTERVAL message listener service custom property. The maximum amount
of time a listener port can retry without being manually stopped and restarted is 2147483647 times
the value specified for MAX.RECOVERY.INTERVAL. In this configuration each cluster member

Chapter 15. Messaging resources 433

continuously attempts to start its listener port, until the active cluster member stops and the queue
manager allows it to connect as a single exclusive consumer.

Strict message ordering using activation specifications or ASF listener ports connected to
WebSphere MQ Version 7.x:

Strict message ordering can be achieved when deploying message driven bean applications to the
WebSphere MQ messaging provider when no special facilities have been coded into the application to
handle messages arriving out of order.

For WebSphere Application Server Version 7 and later, listener ports are stabilized. For more information,
read the article on stabilized features. You should plan to migrate your WebSphere MQ message-driven
bean deployment configurations from using listener ports to using activation specifications. However, you
should not begin this migration until you are sure the application does not have to work on application
servers earlier than WebSphere Application Server Version 7. For example, if you have an application
server cluster with some members at Version 6.1 and some at a later version, you should not migrate
applications on that cluster to use activation specifications until after you migrate all the application servers
in the cluster to the later version.

The following assumptions have been made in this scenario:

v The message-driven bean (MDB) application is transactional.

v The back-out threshold (BOTHRESH) on the WebSphere MQ queue has been set to 0.

v You are using WebSphere MQ Version 7.0 or later.

WebSphere Application Server configuration for ordered delivery

v The WebSphere MQ queue manager must be running on WebSphere MQ Version 7.0 or later.

v The connection to the queue manager must use the WebSphere MQ messaging provider normal mode.
See the Rules for selecting the WebSphere MQ messaging provider mode topic of the WebSphere MQ
information center.

v If you are using listener ports Maximum sessions on the listener ports in WebSphere Application
Server must be set to 1.

v If you are using activation specifications Maximum server sessions on the activation specifications in
WebSphere Application Server must be set to 1.

Important information about this configuration

v ASF listener ports and WebSphere MQ activation specifications contain two separate parts, which
together perform message delivery. These two parts are seen as separate applications by the queue
manager:

– Part one detects messages as they arrive, but does not consume them. Instead it dispatches them to
the second part.

– Part two is a server session pool which allocates a thread to process the message within the
application's transaction, and deliver it to the onMessage() method of the MDB.

v From Version 7.0, WebSphere MQ provides a push model for detection of the messages, which is more
efficient than the polling model used in previous versions of WebSphere MQ, and provides better
ordering of message under normal operation.

Circumstances in which messages can be delivered out of order

Messages can be delivered out of order with this configuration in the following circumstances:

v After a transaction rollback, the next message available on the queue might be delivered before the
rolled back message is re-delivered:

434 Overview

– For an ASF listener port, setting Maximum retries to zero prevents out of order delivery after a
rollback by stopping the listener port when a rollback occurs. However, the listener port must then be
restarted manually.

– For an activation specification, selecting Stop endpoint if message delivery fails and setting
Number of sequential delivery failures before suspending endpoint to 0 prevents out of order
delivery after a rollback by pausing the message endpoint when a rollback occurs. However, the
message endpoint for the MDB must then be resumed manually. For more information, see the
WebSphere MQ information center.

v Messages can be delivered out of order during a transaction recovery:

Note: A specific set of events must occur in a specific order for this scenario to be encountered, and as
such it is uncommon. However, if ordered message delivery is critical to the operation of your
application, the you must consider it.

– Out of order message delivery can occur with this deployment option during recovery from a failure
of one of the following components:

- The application server hosting the MDB

- The WebSphere MQ queue manager

- A network connecting the application server and queue manager

– If one of these components fails in the middle of a two-phase commit of an MDB transaction, the
application server transaction manager reestablishes its connection to the queue manager to resolve
the transaction when the component is available again.

– This recovery process is asynchronous, and it is possible for delivery of new messages to the MDB
to begin before the transaction recovery process is complete. If the outcome of the transaction
recovery is to roll back the transaction, then the message will be returned to the WebSphere MQ
queue and re-delivered to the application, possibly after new messages have already been delivered.

Considerations for a clustered deployment

v You must activate the MDB on one cluster member only, as the application server does not have a
facility which can manage this activation automatically.

v You can set the startup state of listener ports to stopped, separately to setting the startup state of an
application.

v You can manually start and stop applications, ASF listener ports, and message endpoints with MBean
interfaces by using wsadmin scripting, or by using the com.ibm.websphere.management.AdminClient
interfaces from Java code.

Strict message ordering using activation specifications or ASF listener ports connected to
WebSphere MQ Version 6.0:

Strict message ordering can be achieved when deploying message driven bean applications to the
WebSphere MQ messaging provider for when no special facilities have been coded into the application to
handle messages arriving out of order.

For WebSphere Application Server Version 7 and later, listener ports are stabilized. For more information,
read the article on stabilized features. You should plan to migrate your WebSphere MQ message-driven
bean deployment configurations from using listener ports to using activation specifications. However, you
should not begin this migration until you are sure the application does not have to work on application
servers earlier than WebSphere Application Server Version 7. For example, if you have an application
server cluster with some members at Version 6.1 and some at a later version, you should not migrate
applications on that cluster to use activation specifications until after you migrate all the application servers
in the cluster to the later version.

The following assumptions have been made in this scenario:

v The message-driven bean (MDB) application is transactional.

Chapter 15. Messaging resources 435

v The back-out threshold (BOTHRESH) on theWebSphere MQ queue has been set to 0.

v You are using WebSphere MQ Version 6.0.

WebSphere Application Server configuration for ordered delivery

v If you are using listener ports Maximum sessions on the listener ports in WebSphere Application
Server must be set to 1.

v If you are using activation specifications Maximum server sessions on the activation specifications in
WebSphere Application Server must be set to 1.

Important information about this configuration

v ASF listener ports and WebSphere MQ activation specifications contain two separate parts, which
together perform message delivery. These two parts are seen as separate applications by the queue
manager:

– One part detects messages as they arrive, but does not consume them. Instead it dispatches them
to the second part.

– Part two is a server session pool which allocates a thread to process the message within the
application's transaction, and deliver it to the onMessage() method of the MDB.

Note: When an ASF listener port or activation specification is connected to a WebSphere MQ Version
6.0 or earlier queue manager, a less efficient polling mechanism (based on a browse cursor) is
used to detect messages on the queue.

Circumstances in which messages can arrive out of order

Messages can arrive out of order with this deployment in the following circumstances:

v Messages can be delivered out of order during a transaction recovery:

Note: A specific set of events must occur in a specific order for this scenario to be encountered, and as
such it is uncommon. However, if ordered message delivery is critical to the operation of your
application, the you must consider it.

– Out of order message delivery can occur with this deployment option during recovery from a failure
of one of the following components:

- The application server hosting the MDB

- The WebSphere MQ queue manager

- A network connecting the application server and queue manager

– If one of these components fails in the middle of a two-phase commit of an MDB transaction, the
application server transaction manager reestablishes its connection to the queue manager to resolve
the transaction when the component is available again.

– This recovery process is asynchronous, and it is possible for delivery of new messages to the MDB
to begin before the transaction recovery process is complete. If the outcome of the transaction
recovery is to roll back the transaction, then the message will be returned to the WebSphere MQ
queue and re-delivered to the application, possibly after new messages have already been delivered.

v After a transaction rollback, the next message available on the queue might be delivered before the
rolled back message is re-delivered:

– For an ASF listener port, setting Maximum retries to zero prevents out of order delivery after a
rollback by stopping the listener port when a rollback occurs. However, the listener port must then be
restarted manually.

– For an activation specification, selecting Stop endpoint if message delivery fails and setting
Number of sequential delivery failures before suspending endpoint to 0 prevents out of order
delivery after a rollback by pausing the message endpoint when a rollback occurs. However, the
message endpoint for the MDB must then be resumed manually. For more information, see the
WebSphere MQ information center.

436 Overview

v During normal operation, when multiple threads are sending messages to the destination (for different
sequences) using transactions:

– This behavior is due to the operation of the WebSphere MQ browse cursor.

– When a message is committed to a WebSphere MQ queue, while another message sent to the
destination is uncommitted (within a transaction that has not yet completed), the browse cursor
moves onto the newer message on the queue and does not automatically return to the earlier
message when it is eventually committed. This can cause messages to appear in the queue
following the browse cursor.

– If this scenario occurs, newer messages within a sequence might be delivered to the MDB before the
WebSphere MQ messaging provider re-scans the queue and detects the message that has
appeared behind the browse cursor.

v If the WebSphere MQ queue being monitored by an activation specification or ASF listener port has the
Message delivery sequence attribute (MSGDLYSEQ) set to priority, message ordering can fail due to
the following reasons:

– Messages of a lower priority might be delivered ahead of messages of a higher priority, when
messages of multiple priorities are sent to a queue, this behavior is due to the operation of the
WebSphere MQ browse cursor. The browse cursor moves through all available messages at the
highest priority, and then moves to lower priority messages. If higher priority messages arrive when
the browse cursor is currently browsing lower priority messages, those higher priority messages
might not be delivered until after all lower priority messages on the queue have been delivered.

– ASF listener ports or activation specifications that browse queues that have Message delivery
sequence set to FIFO do not see this issue, as WebSphere MQ orders the messages on the queue
in the order in which they arrive, rather than ordering them by priority.

Considerations for a clustered deployment

v You can activate the MDB on one cluster member only, as the application server does not have a facility
which can manage this activation automatically.

v You can set the startup state of listener ports to stopped, separately to setting the startup state of an
application.

v You can manually start and stop applications, ASF listener ports, and message endpoints with MBean
interfaces by using wsadmin scripting, or by using the com.ibm.websphere.management.AdminClient
interfaces from Java code.

WebSphere MQ custom properties
WebSphere Application Server supports the use of custom properties to define WebSphere MQ properties.
This is useful because it enables WebSphere Application Server to work with later versions of WebSphere
MQ that might have properties that are not available in the WebSphere Application Server administrative
console.

For WebSphere Application Server Version 7.0 or later, the custom properties that you define are validated
by the WebSphere MQ resource adapter contained in WebSphere Application Server. In earlier releases,
this was done within WebSphere Application Server itself, and then by the WebSphere MQ client jar files.
If you have defined a property that is not valid for WebSphere MQ, the WebSphere MQ resource adapter
creates an exception, which is caught by WebSphere Application Server, and logged in the Systemout.log
and SystemErr.log files. Examples of error messages are given at the end of this topic.

When a later version of WebSphere MQ is available that is supported by the WebSphere Application
Server installation, new WebSphere MQ properties might be created that are not known to WebSphere
Application Server. You can configure these as custom properties through WebSphere Application Server
so that they are recognized by the WebSphere MQ resource adapter. You can also configure WebSphere
Application Server to point to the WebSphere MQ resource adapter in the external JMS provider, as
described in Configuring the WebSphere MQ messaging provider with native libraries information.

Chapter 15. Messaging resources 437

For information on valid values for WebSphere MQ properties, refer to the Using Java and System
Administration sections of the WebSphere MQ information center.

Note: This topic references one or more of the application server log files. As a recommended alternative,
you can configure the server to use the High Performance Extensible Logging (HPEL) log and trace
infrastructure instead of using SystemOut.log , SystemErr.log, trace.log, and activity.log files on
distributed and IBM i systems. You can also use HPEL in conjunction with your native z/OS logging
facilities. If you are using HPEL, you can access all of your log and trace information using the
LogViewer command-line tool from your server profile bin directory. See the information about using
HPEL to troubleshoot applications for more information on using HPEL.

The following scenarios illustrate how different cell configurations might be affected.

Mixed node scenario

In this mixed node scenario, a cell consists of a WebSphere Application Server, Version 8.5 deployment
manager, two WebSphere Application Server, Version 6 nodes, and two WebSphere Application Server,
Version 8.5 nodes. If a WebSphere MQ connection factory is defined at cell level and has custom
properties defined that exploit the new fields available in WebSphere MQ, then the connection factory is
only bound into the WebSphere Application Server cells that are at Version 8.5 level. The WebSphere
Application Server, Version 6 nodes do not know about the new WebSphere MQ properties and do not
bind into the Java Naming and Directory Interface (JNDI). The enhancements made to WebSphere
Application Server, Version 8.5 allow validation of the properties to be deferred to the WebSphere MQ
resource adapter.

438 Overview

WebSphere MQ Version 7 or later scenario

In this scenario a cell consists of WebSphere Application Server, Version 8.5 deployment manager and
nodes. The WebSphere MQ messaging provider is running at a level later than Version 6. WebSphere
Application Server is using the default WebSphere MQ resource adapter shipped with WebSphere
Application Server Version 8.5. In this scenario the WebSphere MQ resource adapter is not aware of the
new WebSphere MQ properties so the validation fails and the connection factory does not bind into the
JNDI.

WebSphere
Application Server

cell6.0

WebSphere
Application Server

cell6.0

WebSphere
Application Server

cell8.0

WebSphere
Application Server

cell8.0

WebSphere
Application
Server 8.0

deployment
manager

WebSphere MQ
connection factory
defined at cell level
using WebSphere

MQ custom
properties

WebSphere MQ
JMS provider

JNDI Lookup fails as
connection factory is
not bound into JNDI

Application code
performing a JNDI

lookup of the
WebSphere MQ

connection factory

Application code
performing a JNDI

lookup of the
WebSphere MQ

connection factory

JNDI Lookup works as
connection factory is

bound into JNDI

Will not bind
WebSphere MQ

connection factory
into JNDI

Will not bind
WebSphere MQ

connection factory
into JNDI

Will bind
into JNDI

Will bind
into JNDI

WebSphere MQ
client jars

WebSphere MQ
client jars

WebSphere MQ
resource adapter

WebSphere MQ
resource adapter

Figure 57. Mixed node scenario

Chapter 15. Messaging resources 439

Correctly configured scenario

In this scenario, which is similar to the previous one, a cell consists of WebSphere Application Server,
Version 8.5 deployment manager and nodes. The WebSphere MQ messaging provider is running at a
level later than Version 6. To successfully use the new WebSphere MQ properties it is necessary to
configure the WebSphere Application Server to point to the WebSphere MQ resource adapter associated
with the later version of WebSphere MQ.

WebSphere
Application Server

cell8.0

WebSphere
Application Server

cell8.0

WebSphere
Application Server

cell8.0

WebSphere
Application Server

cell8.0

WebSphere
Application
Server 8.0

deployment
manager

WebSphere MQ
connection factory
defined at cell level

using custom properties
for a future version of

WebSphere MQ

WebSphere MQ
JMS provider

JNDI Lookup fails as
connection factory is
not bound into JNDI

Application code
performing a JNDI

lookup of the
WebSphere MQ

connection factory

Application code
performing a JNDI

lookup of the
WebSphere MQ

connection factory

JNDI Lookup fails as
connection factory is
not bound into JNDI

Will not bind
WebSphere MQ

connection factory
into JNDI

Will not bind
WebSphere MQ

connection factory
into JNDI

Will not bind
WebSphere MQ

connection factory
into JNDI

Will not bind
WebSphere MQ

connection factory
into JNDI

WebSphere MQ
resource adapter

WebSphere MQ
resource adapter

WebSphere MQ
resource adapter

WebSphere MQ
resource adapter

Figure 58. Future version of WebSphere MQ scenario

440 Overview

Error message example

The exception created by the resource adapter contains error messages similar to the following example:
[09/02/06 15:40:06:377 GMT] 0000000a ContainerImpl E WSVR0501E: Error creating
component null [class com.ibm.ws.runtime.component.ApplicationServerImpl]
com.ibm.ws.exception.RuntimeWarning: com.ibm.ws.runtime.component.binder.
ResourceBindingException: invalid configuration passed to resource binding logic.
REASON: Failed to create connection factory: Error raised constructing AdminObject,
error code: XAQCF PropertyName : XAQCF PropertyName

where PropertyName is the name of the invalid property.

WebSphere
Application Server

cell8.0

WebSphere
Application Server

cell8.0

WebSphere
Application Server

cell8.0

WebSphere
Application Server

cell8.0

WebSphere
Application
Server 8.0

deployment
manager

WebSphere MQ
JMS provider

JNDI Lookup works as
connection factory is

bound into JNDI

Application code
performing a JNDI

lookup of the
WebSphere MQ

connection factory

Application code
performing a JNDI

lookup of the
WebSphere MQ

connection factory

JNDI Lookup works as
connection factory is

bound into JNDI

Will bind
into JNDI

Will bind
into JNDI

Will bind
into JNDI

Will bind
into JNDI

WebSphere MQ
resource adapter

WebSphere MQ
connection factory
defined at cell level

using custom properties
for a future version of

WebSphere MQ

Figure 59. Correctly configured scenario

Chapter 15. Messaging resources 441

WebSphere MQ messages
A WebSphere MQ message usually contains a message descriptor, one or more message headers, and a
message payload. WebSphere MQ provides programming interfaces that can help your applications to
process WebSphere MQ messages.

Components of a WebSphere MQ message

A WebSphere MQ message contains one or more of the following components:

Message descriptor
The message descriptor contains standard message properties, applicable to all WebSphere MQ
messages. For example, the message descriptor contains the message identifier and the
correlation identifier (similar to the JMSMessageID and the JMSCorrelationID). Every WebSphere
MQ message contains a message descriptor (MQMD).

Message headers
A message header usually contains additional message properties applicable to particular types of
message. For example, WebSphere MQ messages sent to the CICS bridge include a CICS bridge
header (MQCIH). One exception is the “WebSphere MQ rules and formatting header 2”
(MQRFH2), which can be used to contain message properties for various message types,
including JMS message properties. Which headers (if any) a WebSphere MQ message contains
depends on the intended recipient.

Message Properties
WebSphere MQ message properties were introduced with the WebSphere MQ Version 7.0 JMS
client. A WebSphere MQ message property is data associated with a message, consisting of a
textual name and a value of a particular type. WebSphere MQ message properties are used by
message selectors to filter publications to topics or to selectively get messages from queues.
WebSphere MQ message properties can be used to include business data or state information
without having to store it in the application data. Applications do not have to access data in the
MQMD or MQRFH2 headers because the fields in these data structures can be accessed as
WebSphere MQ message properties.

Message payload
The message payload is the data (if any) that follows the last message header, or that follows the
MQMD if there are no message headers.

For more information about WebSphere MQ messages, see the Application Programming Guide and
Application Programming Reference sections of the WebSphere MQ information center.

WebSphere MQ implementation of a JMS message

WebSphere MQ provides a programming interface called the Message Queue Interface (MQI). This
interface allows applications to process the components of a WebSphere MQ message using a variety of
programming languages. WebSphere MQ also provides a JMS programming interface which allows
applications to process a WebSphere MQ message as a JMS message. In this case the JMS message
body is usually the WebSphere MQ message payload. However the JMS message body can include
WebSphere MQ message headers or, if you are using WebSphere MQ Version 7.x, WebSphere MQ
message properties, or both. For details of WebSphere MQ support for JMS, see the Using Java section
of the WebSphere MQ information center.

How messages are passed between service integration and a
WebSphere MQ network
When you program a WebSphere Application Server application that interoperates with WebSphere MQ
through the default messaging provider and a service integration bus, service integration automatically

442 Overview

handles most aspects of the conversion and mapping for messages. Understanding how this process
works and the differences between the two environments helps you to program and troubleshoot your
applications more effectively.

The basic message conversion process is the same whether the service integration bus is interoperating
with WebSphere MQ through a WebSphere MQ link or with a WebSphere MQ server. For further
information about different types of messaging with WebSphere MQ links and WebSphere MQ servers,
read whichever of the following sections applies to your system's architecture:

v Interoperation using a WebSphere MQ link

v Interoperation using a WebSphere MQ server

Differences between service integration and a WebSphere MQ network
Applications can use both service integration and WebSphere MQ to convey messages. Service
integration messaging uses messaging engines, whereas WebSphere MQ uses queue managers.

WebSphere MQ is a stand-alone messaging and queuing system, and is not a part of an application
server. In WebSphere MQ, messaging and queuing services are provided by queue managers. An
application attaches to a queue manager and uses an application programming interface to get messages
on and from queues. One of these application interfaces is the Java Messaging Service (JMS) API.
Applications can attach directly to a queue manager using a call interface or indirectly using a TCP/IP
socket connection. The TCP/IP socket connection which an application uses to attach to a queue manager
is called an MQI channel. The application uses the same programming interface for both direct (bindings
mode) and indirect (client mode) attachments.

Service integration is part of WebSphere Application Server. In service integration, messaging and queuing
services are provided by messaging engines (ME). A service integration messaging engine runs in a
WebSphere Application Server server. A service integration messaging engine is similar to a WebSphere
MQ queue manager plus its associated message channel agent (MCA), which is used to move messages
from one queue manager to another. However, unlike a queue manager, a messaging engine also includes
transformation and routing capabilities.

A WebSphere Application Server application connects to a messaging engine using JMS services, and
uses the JMS application programming interface to send and receive messages from destinations. A JMS
destination is similar to a WebSphere MQ queue or topic. A service integration messaging engine uses
WebSphere Application Server communication capabilities for connecting clients outside the WAS server
where it runs, and for communicating with other messaging engines. Service integration messaging
engines provide services for transformation and routing, and support publish/subscribe messaging. A
separate message broker is not required.

WebSphere MQ applications consume messages from queues that are locally defined on a queue
manager or (for WebSphere MQ for z/OS) queue-sharing group. In service integration, the equivalent
component to a WebSphere MQ locally-defined queue is a queue point on the local messaging engine. In
service integration there is no similar restriction imposed on the queue point and the location in the bus
where the consuming application is connected.

The JMS API is available to messaging applications in both WebSphere Application Server and
WebSphere MQ. WebSphere MQ also has a native API called the Message Queue Interface (MQI). The
JMS send and receive interfaces are similar to the MQI put and get interfaces.

Each WebSphere MQ queue manager usually has a dead-letter queue (also known as the undelivered
message queue) defined for it. Messages are put on this queue if they cannot be delivered to their
intended destination. In WebSphere Application Server service integration, the equivalents to dead-letter
queues are exception destinations. A default exception destination is automatically created for each
messaging engine. If messages cannot be delivered, messages are put on the specific exception
destination for the queue, if it exists, or on the default exception destination.

Chapter 15. Messaging resources 443

How service integration converts messages to and from WebSphere MQ format
Messages are converted between WebSphere MQ format and service integration format as they flow
between the two systems.

Exchanging messages between JMS programs through service integration and
WebSphere MQ

Usually, you do not have to be aware of conversion between message formats to exchange JMS
messages between service integration and WebSphere MQ, because service integration performs the
appropriate conversion automatically, including character and numeric encoding. However, you might have
to learn about message conversion if your JMS applications do not behave as expected, or if your service
integration configuration includes JMS programs or mediations that process messages to or from non-JMS
WebSphere MQ programs.

If your service integration applications exchange MapMessage objects with WebSphere MQ applications,
you might have to specify a non-default map message encoding format.

When service integration converts messages to and from WebSphere MQ format

Service integration converts a service integration message into a WebSphere MQ message in the
following circumstances:

v When service integration sends a message to WebSphere MQ by using a WebSphere MQ link.

v When a service integration mediation places the message on a queue point that is a WebSphere MQ
queue.

v When a service integration application sends the message to a destination where the mediation point (if
any) or the queue point (if there is no mediation) is a WebSphere MQ queue.

Service integration converts a WebSphere MQ message into a service integration message in the
following circumstances:

v When WebSphere MQ sends the message to a service integration bus by using a WebSphere MQ link.

v When a service integration mediation receives the message from a mediation point that is a WebSphere
MQ queue.

v When a service integration application receives the message from a destination where the queue point
is a WebSphere MQ queue.

When you use the WebSphere MQ messaging provider, there is no conversion between WebSphere MQ
format and service integration format.

Overview of message conversion

When service integration converts a message to WebSphere MQ format, it usually constructs a
WebSphere MQ message descriptor (MQMD), a rules and formatting header 2 (MQRFH2), and a
message payload:

v Message descriptor (MQMD): Service integration sets fields in the MQMD based on the service
integration message header fields and properties; these include JMS message header fields and
properties applicable to the message. Service integration always constructs an MQMD.

v Rules and formatting header 2 (MQRFH2): Service integration sets fields in the MQRFH2 based on
the service integration message header fields and properties. Some WebSphere MQ applications
cannot process messages that contain an MQRFH2. To simplify interoperation, you can configure
service integration to omit the MQRFH2 from messages for applications that cannot process the
MQRFH2. However, be aware that when service integration omits the MQRFH2, it discards the
corresponding service integration header fields and properties.

v Message payload: Service integration uses the body of the service integration message (if any) as the
payload of the WebSphere MQ message.

444 Overview

When service integration converts a message from WebSphere MQ format:

v It sets the service integration message header fields and properties from the MQMD and (if present) the
MQRFH2 in the WebSphere MQ message.

v It sets the service integration message body to the contents (if any) of the WebSphere MQ message
that immediately follow the MQRFH2.

v If the message contains other headers, instead of, or as well as, the MQRFH2 header, those headers
are treated as part of the JMS message body and the JMS message becomes a bytes message.

For reference information about the mappings for specific message header fields and properties between a
service integration bus and WebSphere MQ, see the topics listed in the related reference. To help you
program applications that interoperate with WebSphere MQ, these topics describe how the message
formats are mapped between service integration messages and WebSphere MQ messages.

How to address bus destinations and WebSphere MQ queues
To understand how to access a service integration bus destination from WebSphere MQ, and a
WebSphere MQ queue from a service integration bus, it is important to understand the different
conventions that govern how these two resources are addressed.

For queue-type destinations, WebSphere MQ has a two-level addressing structure:

v queue manager name

v queue name

The equivalents for the service integration bus are:

v bus name

v destination name (identifier)

In WebSphere MQ, the queue manager name and queue name are each limited to 48 characters, and use
of certain characters is restricted. For more information, see WebSphere MQ naming restrictions. The
service integration bus equivalents do not have these restrictions, so (for example) messages from a
WebSphere MQ application sent to a bus destination with a name longer than 48 characters must have
some means of using the shorter name (used in WebSphere MQ) to address the longer name (used in the
service integration bus). The service integration bus uses an alias destination to map between the shorter
name and the long name. Similarly, an alias can also be used to send a message from a WebSphere

Service integration message

Header fields MQMD

Properties MQRFH2

Body
Payload

JMS message implementation WebSphere MQ message

Figure 60. Message conversion to and from WebSphere MQ format

Chapter 15. Messaging resources 445

Application Server application by using a long name (greater than 48 characters) and route it to a
WebSphere MQ queue. For more information about alias destinations, see “Foreign destinations and alias
destinations” on page 622.

Service integration queue@queueManager notation for WebSphere MQ queues

When service integration sends a message across a WebSphere MQ link, it must know the foreign bus
that corresponds to the gateway queue manager or queue-sharing group; and when the send-to queue is
defined in a different queue manager or queue-sharing group (not the gateway), service integration must
know the location of the send-to queue so that it can save the correct name in the MQXQH
RemoteQMgrName field. One way to achieve this is to define two foreign buses, an indirectly-connected bus
(where the queue is defined) and a directly-connected bus (the gateway).

The following figure shows an example of this. In the figure, the target queue for a message is Q2 in queue
manager QM2. The service integration configuration in the local bus defines QM2 as an indirectly-connected
foreign bus and QM1 as the directly-connected intermediate bus. It defines Q2 as a foreign destination with
bus name QM2 and destination name (identifier) Q2. The service integration configuration for the local bus
does not include any information about the connection between QM1 and QM2.

Accessing a foreign WebSphere MQ queue in this way works perfectly well. However, when there are a
large number of queue managers or queue-sharing groups that connect to the service integration bus
through one gateway, you might find it inconvenient to define every one of them as an indirectly-connected
foreign bus. Therefore service integration supports the following special destination name format for
WebSphere MQ queues that includes both the queue name and the queue manager name joined by the
at-sign (@): queue@queueManager. Using this special format, you do not have to define a separate
indirectly-connected foreign bus for service integration because the name is part of the service integration
destination name.

The following figure shows an example of this. In the figure, the target queue for a message is Q2 in queue
manager QM2. The service integration configuration in the local bus does not define QM2 as a foreign bus. It
defines Q2 as a foreign destination with bus name QM1 and destination name (identifier) Q2@QM2. The
service integration configuration for the local bus does not include any information about the connection
between QM1 and QM2.

Gateway queue
manager: QM1

Queue
manager: QM2

Gateway
messaging engine

Queue: Q1 Queue: Q2

Foreign
bus: QM1

Foreign
bus: QM2Local Bus

Figure 61. Addressing a WebSphere MQ queue in an indirectly connected foreign bus

446 Overview

Automatic mapping of the JMSReplyTo field of a JMS message

There are two fields in the JMS API that are used for sharing information about the destination to which a
message is sent (JMSDestination) and the destination to which replies should be sent (JMSReplyTo). The
JMSReplyTo field of a JMS message passing from a service integration bus to WebSphere MQ (or from
WebSphere MQ to a service integration bus) is automatically mapped so that a consuming application in
WebSphere MQ can reply to the original WebSphere Application Server application.

JNDI namespaces and connecting to different JMS provider environments
Interoperation with other JMS systems and clients is more straightforward if your messaging application
connections are built using a connection factory and stored in a JNDI namespace. The JNDI namespace
insulates your application from provider-specific information, and there are no differences that are
significant for programming messaging applications.

The Java Naming and Directory Interface (JNDI) API enables JMS clients to look up configured JMS
objects. By delegating all the provider-specific work to administrative tasks for creating and configuring
these objects, the clients can be completely portable between environments. In addition, the applications
are easier to administer because they have no specific administrative values embedded in their code.

There are two types of JMS administered objects:

v ConnectionFactory - the object a client uses to create a connection with a provider.

v Destination - the object a client uses to specify the destination for messages it is sending, and the
source of messages it receives

The messaging environment to which the application connects depend on the implementation type of the
ConnectionFactory object that is obtained from JNDI. For example, if the object is a WebSphere
Application Server default messaging ConnectionFactory object, then a connection is made to the same
service integration bus.

Interoperation using a WebSphere MQ link
A WebSphere MQ link provides a server to server channel connection between a service integration bus
and a WebSphere MQ queue manager or queue-sharing group, which acts as the gateway to the
WebSphere MQ network.

A WebSphere MQ link enables WebSphere Application Server applications to send point-to-point
messages to WebSphere MQ queues, which are defined as destinations in the service integration bus.
The link also enables WebSphere MQ applications to send point-to-point messages to destinations in the
service integration bus, which are defined as remote queues in WebSphere MQ. With a publish/subscribe
bridge, the link also enables WebSphere Application Server applications to subscribe to messages

Gateway queue
manager: QM1

Queue
manager: QM2

Gateway
messaging engine

Queue: Q1 Queue: Q2

Foreign
bus: QM1Local Bus

Figure 62. Addressing a WebSphere MQ queue by using queue@queueManager notation

Chapter 15. Messaging resources 447

published by WebSphere MQ applications, and WebSphere MQ applications to subscribe to messages
published by WebSphere Application Server applications.

The WebSphere MQ queue manager or (for WebSphere MQ for z/OS) queue-sharing group that provides
the gateway for a WebSphere MQ link to connect to a WebSphere MQ network is known as the gateway
queue manager. When you define a WebSphere MQ link, you nominate one WebSphere MQ queue
manager or queue-sharing group to act as a gateway queue manager. This queue manager or
queue-sharing group must exist and be active in the WebSphere MQ network

To the gateway queue manager, the messaging engine with the WebSphere MQ link (and hence the bus
that the messaging engine is a member of) appears to be a WebSphere MQ queue manager. To the
messaging engine with the WebSphere MQ link, the gateway queue manager (and any other queue
managers connected to it) appears to be a foreign bus.

The WebSphere MQ link has sender and receiver channels defined on it. These channels communicate
with, respectively, partner receiver and sender channels on the gateway queue manager. The WebSphere
MQ link communicates with WebSphere MQ using the WebSphere MQ message formats and
communication protocol. The WebSphere MQ link converts the service integration message formats to and
from the WebSphere MQ message formats.

When WebSphere Application Server applications send messages over the WebSphere MQ link, the
messages are transmitted through the WebSphere MQ link sender channel to the partner receiver channel
on the gateway queue manager. The receiver puts the messages to the target destinations in the
WebSphere MQ network.

Messages from the WebSphere MQ network, that are destined for WebSphere Application Server
applications, are sent to the gateway queue manager. The sender channel on the gateway queue manager
transmits the messages to the WebSphere MQ link receiver channel, from where they are distributed to
the target destinations on WebSphere Application Server.

Network topologies for interoperation using a WebSphere MQ link
These examples show a range of network topologies, from simple to complex, that enable WebSphere
Application Server to interoperate with WebSphere MQ using a WebSphere MQ link.

v “Single WebSphere Application Server application server connected to a single WebSphere MQ queue
manager”

v “WebSphere Application Server cell connected to a WebSphere MQ network” on page 449

v “High availability for a WebSphere Application Server cell connected to a WebSphere MQ network” on
page 450

v “Multiple WebSphere Application Server cells connected to a WebSphere MQ network” on page 452

For completeness, this topic describes a wide range of topologies, including clustered and highly available
topologies. Note that, for clustering and high availability, you need to use the network deployment or z/OS
version of the product.

Single WebSphere Application Server application server connected to a single WebSphere
MQ queue manager

In this basic scenario, a WebSphere MQ link connects a single WebSphere Application Server application
server to a WebSphere MQ queue manager. The WebSphere Application Server messaging engine that
connects to WebSphere MQ by using the WebSphere MQ link is called the gateway messaging engine.
The WebSphere MQ queue manager or queue-sharing group to which the WebSphere MQ link connects
is called the gateway queue manager.

448 Overview

WebSphere MQ links always use TCP/IP connections, even if the WebSphere MQ queue manager is
running on the same host as the application server. You do not need to specify a client or bindings
transport type for the connection, as you do when WebSphere MQ is the messaging provider.

The WebSphere MQ link consists of one or two message channels to send messages to WebSphere MQ,
receive messages from WebSphere MQ, or both. Each message channel uses one TCP/IP connection.

The message channels support point-to-point messaging between WebSphere Application Server
applications and WebSphere MQ applications. You can also configure a publish/subscribe bridge on the
WebSphere MQ link for publish/subscribe messaging between WebSphere Application Server applications
and WebSphere MQ applications. For more details about the WebSphere MQ link and its message
channels, see “Message exchange through a WebSphere MQ link” on page 453.

WebSphere Application Server cell connected to a WebSphere MQ network

A single WebSphere MQ link can connect an entire WebSphere Application Server service integration bus,
representing multiple application servers, to multiple WebSphere MQ queue managers. The messages that
are exchanged between the two networks all pass through the WebSphere MQ link, which connects a
single gateway messaging engine in WebSphere Application Server, and a single gateway queue manager
in WebSphere MQ. The gateway messaging engine and gateway queue manager distribute the messages,
which can be point-to-point or publish/subscribe messages, to the appropriate application servers and
queue managers in their respective networks.

With this topology, interoperation ceases if any of the following conditions occurs:

v The WebSphere Application Server application server that contains the gateway messaging engine fails.

v The host on which that WebSphere Application Server application server is running fails.

v The WebSphere MQ gateway queue manager fails.

v The host on which the WebSphere MQ gateway queue manager is running fails.

Gateway
Queue

Manager

WebSphere
Application

Server

Gateway
messaging

engine

Figure 63. Single application server connected to a gateway queue manager

WebSphere Application Server cell

WebSphere MQ networkWebSphere
Application

Server

Gateway
Queue

Manager

WebSphere
Application

Server

Queue
Manager

Gateway
messaging

engine

Figure 64. Multiple application servers connected to multiple queue managers

Chapter 15. Messaging resources 449

In these situations, none of the application servers in the WebSphere Application Server cell can
communicate with any of the queue managers in WebSphere MQ. In the event of a failure, messages are
queued as follows:

v If the gateway messaging engine in WebSphere Application Server fails or can no longer communicate
with WebSphere MQ, messages that were already queued in the gateway messaging engine, which has
store and forward capability, are stored there and are sent when interoperation is restored.

v If the gateway messaging engine in WebSphere Application Server fails, messages that were queued in
the messaging engines of other application servers are stored in those messaging engines and are sent
when the gateway messaging engine is in operation.

v If the gateway queue manager in WebSphere MQ fails or can no longer communicate with WebSphere
Application Server, messages that were already queued in the gateway queue manager are sent when
interoperation is restored.

v If the gateway queue manager in WebSphere MQ fails, messages that were queued in other queue
managers are sent when the gateway queue manager is in operation.

You can improve the robustness of this topology and introduce greater availability by setting up high
availability frameworks in WebSphere Application Server and WebSphere MQ.

High availability for a WebSphere Application Server cell connected to a WebSphere MQ
network

The WebSphere Application Server high availability framework eliminates single points of failure and
provides peer to peer failover for applications and processes running within WebSphere Application Server.
This framework also allows integration of WebSphere Application Server into an environment that uses
other high availability frameworks, such as High Availability Cluster Multi-Processing (HACMP), in order to
manage non-WebSphere Application Server resources.

Both WebSphere Application Server application servers and WebSphere MQ queue managers can be
arranged in clusters, so that if one fails, the others can continue running. In the network topology shown
here, the WebSphere Application Server cell that contains the service integration bus now includes a
WebSphere Application Server cluster which provides backup for the gateway messaging engine. If the
gateway messaging engine fails, it can restart in another application server in the cluster, and it can then
restart the WebSphere MQ link to the gateway queue manager. Similarly, the gateway queue manager is
part of a WebSphere MQ high-availability cluster.

450 Overview

For WebSphere Application Server and WebSphere MQ to interoperate in this network topology, you must
add support for changes of IP address. The WebSphere MQ gateway queue manager uses one IP
address to reach the WebSphere Application Server gateway messaging engine, and the WebSphere
Application Server gateway messaging engine uses one IP address to reach the WebSphere MQ gateway
queue manager. In a high availability configuration, if the gateway messaging engine fails over to a
different application server, or the gateway queue manager fails and is replaced by a failover gateway
queue manager, the connection to the original IP address for the failed component is lost. You must
ensure that both products are able to reinstate their connection to the component in its new location.

To ensure that the connection to a failover WebSphere Application Server gateway messaging engine is
reinstated, choose one of the following options:

1. If you are using a version of WebSphere MQ that is earlier than Version 7.0.1, install the SupportPac
MR01 for WebSphere MQ. This SupportPac provides the WebSphere MQ queue manager with a list of
alternative IP addresses and ports, so that the queue manager can connect with the WebSphere
Application Server gateway messaging engine after the messaging engine fails over to a different IP
address and port. In WebSphere Application Server you must set a high availability policy of “One of
N” for the gateway messaging engine. For more information about the WebSphere MQ MR01
SupportPac, see MR01: Creating a HA Link between WebSphere MQ and a Service Integration Bus.

2. If you are using WebSphere MQ Version 7.0.1, use the connection name (CONNAME) to specify a
connection list. Although typically only one machine name is required, you can provide multiple
machine names to configure multiple connections with the same properties. The connections are tried
in the order in which they are specified in the connection list until a connection is successfully
established. If no connection is successful, the channel starts retry processing. When using this option,
specify the CONNAME as a comma-separated list of names of machines for the stated TransportType,
making sure that all the WebSphere Application Server cluster member IPs are listed directly in the
CONNAME. For further information about using the CONNAME, see the WebSphere MQ information
center.

WebSphere Application Server cell

WebSphere Application
Server cluster

HA cluster

WebSphere MQ network

WebSphere
Application

Server
Gateway
Queue

Manager

WebSphere
Application

Server

WebSphere
Application

Server

Queue
Manager

Gateway
messaging

engine

Failover
Gateway

messaging
engine

Figure 65. High availability for multiple application servers connected to multiple queue managers

Chapter 15. Messaging resources 451

http://www.ibm.com/support/docview.wss?rs=171&uid=swg24013895&loc=en_US&cs=utf-8&lang=en

Note: WebSphere MQ Version 7.0.1 does not require SupportPac MR01 because this release
includes the equivalent function to that provided by SupportPac MR01 for earlier releases. The
ability to use the CONNAME to specify a connection list was added as part of the support for
multi-instance queue managers in WebSphere MQ Version 7.0.1, however, it can also be used
as another option to ensure that the connection to a failover WebSphere Application Server
gateway messaging engine is reinstated.

3. Use an external high availability framework, such as HACMP, to manage a resource group that
contains the gateway messaging engine. When you use an external high availability framework, the IP
address can be failed over to the machine that runs the application server to which the gateway
messaging engine has moved. Follow this procedure to handle the IP address correctly:

v Set a high availability policy of “No operation” for the messaging engine, so that the external high
availability framework controls when and where the messaging engine runs.

v Create resources for the messaging engine and its IP address in the resource group that is
managed by the external high availability framework.

v Consider locating the messaging engine data store in the same resource group as the resource that
represents the messaging engine.

To ensure that the connection to a failover WebSphere MQ gateway queue manager is reinstated, choose
one of the following options:

1. Set up multi-instance queue managers in WebSphere MQ, as described in the WebSphere MQ
information center. In your definition for the WebSphere MQ link sender channel, select Multiple
Connection Names List, and specify the host names (or IP addresses) and ports for the servers
where the active and standby queue managers are located. If the active gateway queue manager fails,
the service integration bus uses this information to reconnect to the standby gateway queue manager.

2. Create the WebSphere MQ high-availability cluster using an external high availability framework, such
as HACMP, that supports IP address takeover. IP address takeover ensures that the gateway queue
manager in its new location appears as the same queue manager to the service integration bus.

The gateway queue manager and the gateway messaging engine store status information that they use to
prevent loss or duplication of messages when they restart communication following a failure. This means
that the gateway messaging engine must always reconnect to the same gateway queue manager.

If you use WebSphere MQ for z/OS queue sharing groups, you can configure the WebSphere MQ link to
use shared channels for the connection. Shared channels provide superior availability compared to the
high-availability clustering options available on other WebSphere MQ platforms, because shared channels
can reconnect to a different queue manager in the same queue sharing group. Reconnecting in the same
queue sharing group is typically faster than waiting to restart the same queue manager in the same or a
different location.

Although the network topology described in this section can provide availability and scalability, the
relationship between the workload on different queue managers and the WebSphere Application Server
application servers to which they are connected is complex. You can contact your IBM representative to
obtain expert advice.

Multiple WebSphere Application Server cells connected to a WebSphere MQ network

In this example scenario, a business has two geographically separatedWebSphere Application Server
cells, and wants to connect them to the same enterprise-wide WebSphere MQ network. Each service
integration bus has its own gateway messaging engine, which connects using a WebSphere MQ link to a
nearby WebSphere MQ gateway queue manager.

452 Overview

With this network topology, WebSphere Application Server applications running in either WebSphere
Application Server cell can exchange point-to-point or (with a publish/subscribe bridge) publish/subscribe
messages with WebSphere MQ applications. They can also use the facilities of the enterprise-wide
WebSphere MQ network to exchange messages with WebSphere Application Server applications running
in the other WebSphere Application Server cell. As in the previous scenario, the business can use high
availability frameworks in WebSphere Application Server and WebSphere MQ to provide increased
availability and scalability.

Message exchange through a WebSphere MQ link
A WebSphere MQ link connects to a specific foreign bus that represents a WebSphere MQ network, and
enables messaging engines on a service integration bus to exchange messages with queue managers on
the WebSphere MQ network.

The figure later in this section shows a high level view of the function of a WebSphere MQ link.
Subsequent figures add more detail to this simple representation.

Gateway
Queue

Manager

WebSphere Application Server cell WebSphere Application Server cell

WebSphere MQ network

WebSphere
Application

Server

WebSphere
Application

Server

Gateway
Queue

Manager

WebSphere
Application

Server

WebSphere
Application

Server

Queue
Manager

Gateway
messaging

engine

Gateway
messaging

engine

Figure 66. Geographically separated application servers connected to the same WebSphere MQ network

Chapter 15. Messaging resources 453

A WebSphere MQ link is a service integration technologies administrative object that describes the
attributes required for a messaging engine to establish channel links to a WebSphere MQ queue manager
or (for WebSphere MQ for z/OS) queue-sharing group.

The messaging engine that connects to WebSphere MQ by using a WebSphere MQ link is known as the
gateway messaging engine. The WebSphere MQ queue manager or queue-sharing group to which a
WebSphere MQ link connects is known as the gateway queue manager. To service integration, the
gateway queue manager and any other queue managers connected to it appear to be a foreign bus, which
is another bus that has a link to the local bus. To the gateway queue manager, the service integration bus
appears to be a remote queue manager.

The figure later in this section shows an application server that is a member of a bus and therefore
contains a messaging engine. The messaging engine is a gateway messaging engine, which means it
connects to a gateway queue manager within WebSphere MQ by using a WebSphere MQ link. The link
appears to the gateway queue manager as a message channel - that is, a sender channel, a receiver
channel, or a sender-receiver pair of channels.

Other messaging engines on the same service integration bus can use the gateway messaging engine to
send messages to, and receive messages from, the gateway queue manager on WebSphere MQ. In a
similar way, the gateway queue manager receives messages from the WebSphere MQ link and routes
them to other queue managers in the WebSphere MQ network. The gateway queue manager and the
other queue managers to which it connects are together represented as a foreign bus when you configure
the WebSphere MQ link.

WebSphere MQWebSphere Application Server
service integration

Figure 67. Exchanging messages between WebSphere Application Server and a WebSphere MQ network.

WebSphere MQWebSphere Application Server

Application Server

WebSphere
MQ channels

Gateway
queue manager

Gateway
messaging engine

WebSphere
MQ Link

Foreign busBus

Figure 68. Exchanging messages between a service integration bus, and a foreign bus in a WebSphere MQ network.

454 Overview

A WebSphere MQ link cannot use cluster-sender and cluster-receiver channels to connect to multiple
queue managers in a WebSphere MQ cluster. Even if the gateway queue manager is a member of a
cluster, the WebSphere MQ link must still connect directly to the gateway queue manager. The gateway
queue manager manages routing of messages to other queue managers in the cluster.

The figure later in this section shows how messages exchanged between the gateway messaging engine
and the gateway queue manager, can be sent and received by other messaging engines on the same bus
and other queue managers connected to the gateway queue manager.

A WebSphere MQ link can have definitions for a WebSphere MQ link sender or a WebSphere MQ link
receiver or both. The link sender and receiver emulate the behavior of WebSphere MQ sender and
receiver channels. The MQ link sender therefore sends messages to the receiver channel of the gateway
queue manager, and the MQ link receiver receives messages from the sender channel of the gateway
queue manager.

The figure later in this section shows the sender and receiver channels that enable the gateway
messaging engine and the gateway queue manager to exchange messages.

The figure later in this section shows how an individual message passes from the gateway messaging
engine with a WebSphere MQ link, to the target queue in the WebSphere MQ network, and how a
response message is returned over the WebSphere MQ link to a reply-to destination in WebSphere
Application Server.

Foreign busBus

WebSphere
MQ channels

Gateway
queue manager

WebSphere
MQ link

Messaging engine 2

Messaging engine 3 Queue manager 2

Queue manager 3

WebSphere MQWebSphere Application Server

Gateway
messaging engine

Figure 69. Exchanging messages between messaging engines on a bus and queue managers connected to the
gateway queue manager on a foreign bus.

Foreign bus

WebSphere MQ

Bus

WebSphere Application Server

Receiver
Sender

Gateway
queue manager

Gateway
messaging engine

MQLinkSender
MQLinkReceiver

WebSphere MQ
link

WebSphere MQ
channels

Channel

Channel

Figure 70. Exchanging messages between WebSphere MQ link sender and receiver channels, and a gateway queue
manager with receiver and sender channels.

Chapter 15. Messaging resources 455

1. A service integration JMS application sends a request message to a target destination, which is a JMS
destination that points to a WebSphere MQ queue. The sending application includes the reply-to
destination in a header field in the request message. The reply-to destination is a JMS destination that
points to a service integration destination in the same service integration bus to which the sending
application is attached.

2. The messaging engine in the service integration bus uses the WebSphere MQ link to send the
message to WebSphere MQ. WebSphere MQ puts the message on the target queue.

3. The WebSphere MQ application receives the message from the queue, processes it, and sends a
response to the reply-to destination. This application might be, but is not always, a JMS application.

You can configure a publish/subscribe bridge on a WebSphere MQ link. The bridge allows subscribing
applications connected to the service integration bus to receive messages from publishing applications
connected to the WebSphere MQ network. The same publish/subscribe bridge allows subscribing
applications connected to the WebSphere MQ network to receive messages from publishing applications
connected to the service integration bus.

If you want to specify service integration bus destination attributes for a WebSphere MQ queue, or if you
want to control access to a WebSphere MQ queue from service integration bus applications, then you can
define a foreign destination to represent the WebSphere MQ queue. If you want your service integration
bus applications to use a different name for the WebSphere MQ queue then you can define an alias
destination.

The WebSphere MQ link communicates with WebSphere MQ by using WebSphere MQ format and
protocols. To identify a supported version of WebSphere MQ, see the supported hardware and software
web page at WebSphere Application Server detailed system requirements.

WebSphere MQ link sender:

The WebSphere MQ link sender converts messages to WebSphere MQ format messages, and then sends
them to a receiver channel on the WebSphere MQ gateway queue manager or (for WebSphere MQ for
z/OS) queue-sharing group.

The WebSphere MQ link sender, which is part of the WebSphere MQ link, emulates the behavior of the
sender channel in WebSphere MQ.

v You can define the attributes of the MQ link sender when you define the WebSphere MQ link. The
foreign bus connection wizard helps you to do this.

Foreign busBus

messaging
engine

reply-to
destination

request
message

WebSphere MQWebSphere Application Server

target queue

transmission queue

WebSphere
MQ Link

WebSphere MQ
queue manager

Figure 71. Paths taken by a message and response exchanged between a messaging engine on a bus and a queue
manager in WebSphere MQ

456 Overview

http://www.ibm.com/support/docview.wss?rs=180&uid=swg27006921

v A number of MQ link sender and MQ link receiver attributes, which are grouped together on the same
administrative console panel, are common. That is, the value you enter is used for both the sending and
receiving ends of the link.

v If the initial state of the MQ link sender is set to Started, the MQ link sender starts when the
WebSphere MQ link starts. When the WebSphere MQ link is set to Stopped, the MQ link sender stops.

v If an MQ link sender is stopped, the WebSphere MQ link becomes unavailable and messages are held
in the service integration bus until the MQ link sender is started again.

v If the MQ link sender encounters a long reply-to destination name (that is, too long a name for
WebSphere MQ to handle), it sends the message to an exception destination.

v Define an MQ link sender only if you want to send messages to a WebSphere MQ network. You do not
need an MQ link sender if you want only to receive incoming messages.

On the WebSphere MQ link sender channel, there is a field called Transport chain. This field can take a
value of OutboundBasicMQLink, which communicates with an unsecured channel, or OutboundSecureMQLink,
which communicates with a secure SSL channel. The unsecured listener listens for inbound requests on
port 5558 and the secure listener listens for inbound requests on port 5578.

WebSphere MQ link receiver:

The WebSphere MQ link receiver receives messages sent to a messaging engine over a WebSphere MQ
link. The messages are sent from a sender channel on a WebSphere MQ gateway queue manager or (for
WebSphere MQ for z/OS) queue-sharing group in a WebSphere MQ network to a WebSphere MQ link on
a messaging engine.

The WebSphere MQ link receiver, which is part of the WebSphere MQ link, emulates the behavior of the
receiver channel in WebSphere MQ.

v You can define the attributes of the MQ link receiver when you define the WebSphere MQ link. The
foreign bus connection wizard helps you to do this.

v A number of MQ link sender and MQ link receiver attributes, which are grouped together on the same
administrative console panel, are common. That is, the value you enter is used for both the sending and
receiving ends of the link.

v The MQ link receiver communicates with a WebSphere MQ sender channel on the gateway queue
manager or queue-sharing group, and converts messages in WebSphere MQ format to messages in
service integration format.

v If the initial state of the MQ link receiver is set to Started, the MQ link receiver starts when the
WebSphere MQ link starts, which means it is available when senders connect to it. When the
WebSphere MQ link is set to Stopped, the MQ link receiver stops.

v An MQ link receiver can choose to balance inbound messages across partitioned destinations. To read
about workload balancing, see “Workload sharing with queue destinations” on page 671

v If an MQ link receiver is stopped, the WebSphere MQ link becomes unavailable and messages are held
on the transmission queue on the WebSphere MQ gateway queue manager or queue-sharing group in
the WebSphere MQ network.

v Define an MQ link receiver only if you want to receive messages from a WebSphere MQ network. You
do not need an MQ link receiver if you want only to send outgoing messages.

Point-to-point messaging with a WebSphere MQ network
The WebSphere MQ link, defined on a messaging engine in the service integration bus, describes the
attributes required to connect to, and send or receive messages to or from, a WebSphere MQ queue
manager or (for WebSphere MQ for z/OS) queue sharing group that acts as a gateway to the WebSphere
MQ network.

Point-to-point messaging might be:

Chapter 15. Messaging resources 457

v A request from WebSphere Application Server to WebSphere MQ, optionally followed by a WebSphere
MQ reply.

v A request from a WebSphere MQ network, optionally followed by a WebSphere Application Server reply.

The following figure shows the flow of point-to-point messages across the WebSphere MQ link.

See “Request-reply messaging through a WebSphere MQ link” on page 464 for more information about
the reply messages transmitted across the WebSphere MQ link.

Point-to-point messaging might also include:

v A request from WebSphere Application Server through a WebSphere MQ network to another
WebSphere Application Server, and a reply from that WebSphere Application Server, again through
WebSphere MQ. For details of this two-stage messaging flow model, see “Messaging between two
application servers through WebSphere MQ” on page 468.

v A request from a WebSphere MQ network through a WebSphere Application Server to another
WebSphere MQ network, and a reply from that WebSphere MQ network, again through a WebSphere
Application Server. For details of this two-stage messaging flow model, see “Messaging between two
WebSphere MQ networks through an application server” on page 469.

The following figure shows how messages can be exchanged between applications and messaging
engines that are on the same bus, as well as between the WebSphere MQ link and queue managers
connected to the gateway queue manager in the WebSphere MQ network.

Foreign busBus

Gateway
queue manager

Gateway messaging
engine

MQLinkSender
MQLinkReceiver

WebSphere MQWebSphere Application Server

Receiver
Sender

WebSphere MQ
link

WebSphere MQ
channels

Channel

Channel

Figure 72. Exchanging messages between WebSphere MQ link sender and receiver channels, and a gateway queue
manager with receiver and sender channels.

458 Overview

Notes:

v If your WebSphere Application Server application sends point-to-point messages to a
WebSphere MQ application that is not JMS, such as a WebSphere MQ message-driven
application in CICS (using the CICS MQ bridge) or IMS (using the IMS MQ bridge), then your
WebSphere Application Server application has to use special techniques to ensure that the
service integration messages (most likely JMS messages) are presented to the non-JMS
application in a way that the application can understand. For more information, see
Programming for interoperation with WebSphere MQ , “How service integration converts
messages to and from WebSphere MQ format” on page 444, and How to process WebSphere
MQ message headers, which describes WebSphere Application Server helper classes that
assist in the creation of suitable headers and body content.

v Some WebSphere MQ applications can process messages that include an MQRFH2 header
(generally these are JMS or XMS or WebSphere MQ Version 7 applications) and some
applications cannot do so (generally these are WebSphere MQ applications that predate the
MQRFH2 header). You must set the destination context to inhibit adding an MQRFH2 header
when messages are destined for a WebSphere MQ application that cannot handle this header.
For information about setting the destination context, see Specifying whether messages are
forwarded to WebSphere MQ as JMS messages. The MQRFH2 header contains fields unique
to the service integration bus. For details of these fields, see Mapping additional MQRFH2
header fields in service integration.

v Any WebSphere MQ queue name is also valid as a bus destination name and, as a general
rule, you should configure a bus destination that is a WebSphere MQ queue to use the
WebSphere MQ queue name. If your bus applications have to use a different name, you can
achieve this by using an alias destination.

v WebSphere MQ channel or conversion exits (for example, for data conversion) are not
supported by the WebSphere MQ link.

Publish/subscribe messaging through a WebSphere MQ link
On a WebSphere MQ link, you can set up publish/subscribe messaging between WebSphere Application
Server and the WebSphere MQ publish/subscribe function, or WebSphere Message Broker, or WebSphere
Event Broker.

The following product versions provide publish/subscribe capability that you can use with WebSphere
Application Server over a WebSphere MQ link:

WebSphere MQ Version 7
Provides publish/subscribe function that is integrated into WebSphere MQ queue managers. This

Foreign busBus

WebSphere
MQ channels

Gateway
queue manager

Gateway messaging
engine

WebSphere
MQ link

Messaging engine 2

JMS application

Messaging engine 3

JMS application

Queue manager 2

Queue manager 3

Figure 73. Exchanging messages between messaging engines on a bus that has a WebSphere MQ link that is
connected to a gateway queue manager on a foreign bus.

Chapter 15. Messaging resources 459

capability is called integrated publish/subscribe. The publish/subscribe capability for earlier
versions of WebSphere MQ is called queued publish/subscribe, because you communicate with a
separate publish/subscribe broker by means of messages placed on queues.

WebSphere Message Broker Version 6
Provides a separate publish/subscribe broker for queued publish/subscribe. This version of queued
publish/subscribe uses MQRFH2 message headers. If you are using WebSphere MQ Version 6,
you can use WebSphere Message Broker Version 6 to provide publish/subscribe function that
interoperates over a WebSphere MQ link with WebSphere Application Server. From WebSphere
Message Broker Version 7, this product no longer provides a separate publish/subscribe broker,
and all topic-based publish/subscribe operations made through the product use WebSphere MQ
facilities.

WebSphere Event Broker
Provides a separate publish/subscribe broker for queued publish/subscribe. This version of queued
publish/subscribe is the same as that in WebSphere Message Broker Version 6.

WebSphere MQ Version 6 (except Version 6 of WebSphere MQ for z/OS) provides queued
publish/subscribe that is implemented by a publish/subscribe broker within WebSphere MQ. However, the
publish/subscribe function provided by WebSphere MQ Version 6 uses MQRFH message headers, also
known as MQRFH1 message headers, and it does not support the MQRFH2 message headers that the
WebSphere Application Server publish/subscribe bridge uses on the WebSphere MQ link. For WebSphere
MQ Version 6 publish/subscribe to interoperate with WebSphere Application Server publish/subscribe over
a WebSphere MQ link, you must use a separate message broker product that supports MQRFH2
message headers. Alternatively, instead of using a WebSphere MQ link, you can interoperate using the
WebSphere MQ messaging provider, so that your applications use WebSphere MQ publish/subscribe
function and do not use the service integration bus. This requirement also applies to earlier versions of
WebSphere MQ where publish/subscribe function is provided by SupportPac MA0C.

Message headers and contents are mapped in the same way for both point-to-point messages and
publish/subscribe messages. For more information about the mapping of messages see “How service
integration converts messages to and from WebSphere MQ format” on page 444.

Publish/subscribe bridge on a WebSphere MQ link:

A publish/subscribe bridge enables publish/subscribe messaging between WebSphere Application Server
and WebSphere MQ through a WebSphere MQ link. The publish/subscribe bridge provides a connection
between the publish/subscribe function of a service integration bus and the publish/subscribe function of a
WebSphere MQ network.

When you use WebSphere MQ integrated publish/subscribe, the publish/subscribe bridge can connect as
a subscriber or publisher to queue managers in the WebSphere MQ network:

v To act as a subscriber, the publish/subscribe bridge connects to a WebSphere MQ queue manager with
a durable subscription to the relevant topic, and so receives messages when they are published on that
topic. The publish/subscribe bridge then passes the messages to subscribers connected to a service
integration bus in WebSphere Application Server. These subscribers might be applications running in
WebSphere Application Server, or they might be bus clients running in Java Platform, Standard Edition
(Java SE) or third party application servers.

v To act as a publisher, the publish/subscribe bridge subscribes to messages that applications have
published to a service integration JMS topic destination in WebSphere Application Server. The
publish/subscribe bridge then publishes the messages on the relevant topic in WebSphere MQ, and the
WebSphere MQ queue manager distributes the messages to the subscribers in the WebSphere MQ
network. Service integration can also send the messages to other subscribers that are connected to the
service integration bus in WebSphere Application Server.

The publish/subscribe bridge acts in the same way if you use a queued publish/subscribe capability
provided by a compatibility interface within WebSphere MQ Version 7, or by a separate message broker

460 Overview

product. The publish/subscribe bridge attaches to the publish/subscribe broker as either a subscriber or a
publisher, and receives messages from the message broker or publishes them to the message broker. The
message broker distributes published messages to its subscribers in the WebSphere MQ network.

If communication between the two ends of the publish/subscribe bridge stops, messages are held until
communication is reestablished by the system or by the administrator. If you are using a separate
message broker product, the messages might be held on the input queues for the broker, if the broker is
not available, or on the transmission queue for WebSphere MQ, if WebSphere MQ is not available.

The publish/subscribe bridge consists of the broker profiles and topic mappings that you have defined on
the WebSphere MQ link:

v A broker profile defines a connection to a single WebSphere MQ queue manager or separate
publish/subscribe broker. For more information about broker profiles, see “Broker profile on a
WebSphere MQ link.”

v A topic mapping defines how messages on a particular topic flow between the two ends of the
publish/subscribe bridge. For more information about topic mappings, see “Topic mapping on a
WebSphere MQ link.”

Broker profile on a WebSphere MQ link:

A broker profile on a WebSphere MQ link defines a connection through a WebSphere MQ link to a
WebSphere MQ queue manager, for the purpose of publish/subscribe messaging with a WebSphere MQ
network.

A broker profile applies to the connection between WebSphere Application Server and a single WebSphere
MQ queue manager or separate publish/subscribe broker. It contains the following information:

v The name of the WebSphere MQ link.

v The name of the service integration bus in WebSphere Application Server.

v The name of the messaging engine in WebSphere Application Server.

v The name of the queue manager in WebSphere MQ. This queue manager does not have to be the
same as the WebSphere MQ gateway queue manager, provided that it can be reached from the
WebSphere MQ gateway queue manager. If you are using a separate publish/subscribe broker, this
queue manager is the WebSphere MQ queue manager to which the message broker is connected. You
must ensure that the service integration bus has sufficient authority to send subscription requests to the
queue manager or separate publish/subscribe broker.

You can define multiple broker profiles on a single WebSphere MQ link, to connect to multiple queue
managers in the WebSphere MQ network.

You define one or more topic mappings for a broker profile. A topic mapping links a specific topic in the
WebSphere Application Server service integration bus with its equivalent in the WebSphere MQ network.
For more information about topic mappings, see “Topic mapping on a WebSphere MQ link.”

The broker profiles, along with their topic mappings, form a publish/subscribe bridge with the WebSphere
MQ network. The publish/subscribe bridge connects as a subscriber to receive messages from the
WebSphere MQ network and pass them to applications in WebSphere Application Server, and it connects
as a publisher to publish messages on topics in the WebSphere MQ network. For a description of how the
publish/subscribe bridge operates, see “Publish/subscribe bridge on a WebSphere MQ link” on page 460.

Topic mapping on a WebSphere MQ link:

A topic mapping is an association that defines which messages published in WebSphere Application
Server or the WebSphere MQ network, should be forwarded to the other publish/subscribe system.

Chapter 15. Messaging resources 461

You define one or more topic mappings for a broker profile. The broker profile defines the connection
between WebSphere Application Server and a WebSphere MQ queue manager or separate
publish/subscribe broker. The topic mapping links a specific topic in the WebSphere Application Server
service integration bus with its equivalent in the WebSphere MQ network.

When you define a topic mapping, you choose if messages are to flow from WebSphere MQ to
WebSphere Application Server, or from WebSphere Application Server to WebSphere MQ, or if the flow is
two-way, or bidirectional. If a topic mapping is bidirectional, a message is safeguarded from being
continually republished on alternating sides of the publish/subscribe bridge.

In your topic mapping, the topic name and its position in the hierarchy (or tree) of topics must be the same
in WebSphere Application Server and in the WebSphere MQ network. You can use wild cards, as
described in “Wild cards in topic mapping.” For example, if you set up a topic mapping for "stock/IBM" with
a direction from the WebSphere Application Server service integration bus to WebSphere MQ, the
publish/subscribe bridge subscribes to the topic "stock/IBM" in WebSphere Application Server, and
receives the messages published to the topic. The publish/subscribe bridge then publishes the messages
to the topic "stock/IBM" in the WebSphere MQ network.

Messages published by a service integration JMS client are transferred to a WebSphere MQ network if an
appropriate topic mapping has been created. This is presented to the WebSphere MQ network as only the
topic name, for example, "sports/football". A suitably configured WebSphere MQ JMS application can use
this information to publish further information to the same topic, but the original WebSphere Application
Server JMS application receives these messages only if appropriate topic mapping has been configured.

If you delete a WebSphere MQ link, you must first unsubscribe and delete your topic mappings, to ensure
there are no outstanding subscriptions in WebSphere Application Server or the WebSphere MQ network.
For the process to unsubscribe, see Preparing to remove a foreign bus connection between a service
integration bus and a WebSphere MQ network.

Wild cards in topic mapping:

Wild cards can be used in topic mapping on a WebSphere MQ link for publish/subscribe messaging, but
there are differences between wild cards in WebSphere Application Server service integration, and wild
cards in a WebSphere MQ network.

Publish/subscribe messaging in the WebSphere MQ network uses wild cards # and +. These wild cards
are represented as /. and * respectively in the service integration bus. However, the publish/subscribe
bridge on the WebSphere MQ link supports only the /. wild card, and only at the end of the topic. For
example, stock//. in the service integration bus is equivalent to stock/# in the WebSphere MQ network,
meaning all messages with "stock" at the beginning of the topic.

When you use wild cards in the topic mappings that you enter on the WebSphere MQ link administrative
console panels, you must use the publish/subscribe bridge symbols, not the equivalent WebSphere MQ
network symbols. The publish/subscribe bridge handles conversion automatically.

Publish/subscribe messaging through a WebSphere MQ link: example:

A publish/subscribe bridge over a WebSphere MQ link enables subscribers on the service integration bus
in WebSphere Application Server to receive the same published messages as subscribers in a WebSphere
MQ network. The broker profile in WebSphere Application Server allows these two separate
publish/subscribe domains to appear as a single entity.

Imagine that there are two businesses “GolfStats Inc.” and “FootballFansData Inc.” that each provide a
results and news service for different types of sporting event. Both pay third parties to collect sports
information (for golf and football respectively) and publish this data to their IT systems. GolfStats and

462 Overview

FootballFansData then charge members of the public a monthly fee in exchange for an application that
runs on a desktop computer, which pops up the results as they become available.

GolfStats also use their IT system to host a website and run other business applications, so their IT
systems are based on WebSphere Application Server and the service integration bus. However,
FootballFansData do not have any other business applications, and they use WebSphere MQ messaging
for their publish/subscribe requirements.

Figure 1 shows two separate businesses. GolfStats Inc has a third party that connects to their IT systems
when a result becomes available and publishes information to a topic space on the topic “sports/golf”,
which is received by the subscribers subscribing to “sports//.”. (//. in the syntax used by the
publish/subscribe bridge indicates all sports information). Publish/subscribe messaging in GolfStats Inc is
handled by a service integration bus.

Similarly a third party supplier for FootballFansData Inc publishes information to the WebSphere MQ
network on the topic “sports/football”, which is received by a subscriber application subscribing to
“sports/#” (WebSphere MQ syntax for all sports information). Publish/subscribe messaging in
FootballFansData Inc is handled by a WebSphere MQ queue manager, which would be viewed by
WebSphere Application Server as a foreign bus, although the two systems are not currently connected.

Recently GolfStats and FootballFansData have merged, and the new management want to join the
existing IT systems together in order to provide information about golf and football to both sets of
customers. One option is to migrate all FootballFansData's IT systems to use the service integration bus.
However, this approach requires significant capital investment, as well as upgrading the third party and
customer application code to be able to connect to the system. A simpler alternative is to bridge between
the two systems by using the WebSphere MQ link and a broker profile.

The businesses take the following actions to bridge between the two systems:

1. Identify a WebSphere MQ queue manager or (for WebSphere MQ for z/OS) queue-sharing group,
named (for example) QM_GATEWAY on the FootballFansData system, that will act as the gateway to
connect to the WebSphere MQ network.

2. Configure a Foreign bus connection for the GolfStats service integration bus to enable messages to be
exchanged between the bus and the WebSphere MQ network.

3. Define a broker profile on the WebSphere MQ link that states the name of the queue manager in the
WebSphere MQ network where the messages are published, named QM_TWO in this example.

Queue manager

Foreign busBus

Topic space

Publisher Publisher

sports/golf sports/football

Subscriber Subscriber

WebSphere MQWebSphere Application Server

sports// sports/#

FootballFansData IncGolfStats Inc

Figure 74. Two separate businesses that publish information to their respective audiences.

Chapter 15. Messaging resources 463

4. Define a topic mapping associated with the broker profile to allow publications to flow between the
service integration bus and the WebSphere MQ network. The mapping will be bidirectional on a topic
of “sports//.”, which allows all publications in the sports branch of the topic hierarchy to be transferred.

When these tasks have been completed, and the application server that hosts the GolfStats service
integration bus has been restarted, messages begin to flow between the two systems. This enables the
FootballFansData customers to receive information about golf, and the GolfStats customers to receive
information about football. The diagram later in this section shows the logical path of a “golf” message
published into the GolfStats IT system being received by a subscriber on the FootballFansData system.

If GolfStats used the same topic space to publish information on the topic “business/financials” for internal
consumption by staff, then these messages would not be routed to the WebSphere MQ network of
FootballFansData because a topic mapping has not been created for this topic. This ensures that the
GolfStats team can limit the people who are able to receive these messages to people authorized to do so
on the GolfStats system, and avoid unnecessary message traffic between the two systems.

Request-reply messaging through a WebSphere MQ link
When a JMS producer sends a message, it can provide a reply-to destination. The reply-to destination is a
JMS destination defined using the producer's messaging provider. This style of messaging is known as
request-reply, or request and response. Request-reply messages can be exchanged across the
WebSphere MQ link as either point-to-point or publish/subscribe messages.

The following combinations are possible for request-reply exchanges:

1. Publication messages (for publish/subscribe messaging).

a. Queue type reply-to destination.

b. Topic type reply-to destination. This can be a permanent reply-to topic, which is defined to the
publish/subscribe bridge on the WebSphere MQ link, or a temporary topic reply, where the topic
name is assigned at runtime.

2. Point-to-point messages.

a. Queue type reply-to destination.

b. Topic type reply-to destination. The reply-to destination must be a permanent reply-to topic; you
cannot have a temporary topic reply for a point-to-point request message.

Foreign busBus

WebSphere
MQ channels

Gateway
queue manager

Broker
profile

WebSphere
MQ link

LINK_ME

Topic space

Publisher

sports/golf
Subscriber

Queue manager 2

WebSphere MQWebSphere Application Server

sports/#

FootballFansData IncGolfStats Inc

Figure 75. Two linked businesses with one of them publishing to the other.

464 Overview

When the producer is a WebSphere Application Server application that uses the default messaging
provider, the reply-to destination is a service integration JMS destination that typically either points to a
service integration queue, or comprises a topic string and a service integration topic space.

v If the reply-to destination is a service integration queue, it is normally a queue in the same bus as the
WebSphere Application Server application, so that the WebSphere Application Server application can
consume the reply message from that reply-to queue.

v If the reply-to destination is a topic and the consumer is a WebSphere MQ program, you must configure
the publish/subscribe bridge to ensure that the reply message can be routed back to the service
integration bus so that the WebSphere Application Server application can receive it. Note that although
WebSphere MQ JMS applications can reply to a topic, most other WebSphere MQ applications cannot.

When the producer is a WebSphere MQ JMS application, the reply-to destination is a WebSphere MQ
JMS destination that typically either points to a WebSphere MQ queue or is a topic string.

v If the reply-to destination is a WebSphere MQ queue, it is normally a queue in the queue manager, or
shared queue in the queue-sharing group, that the WebSphere MQ application is using, so that the
WebSphere MQ application can consume the reply message from that reply-to queue.

v If the reply-to destination is a topic and the consumer is a WebSphere Application Server application,
you must configure the publish/subscribe bridge to ensure that the reply message can be routed back to
WebSphere MQ so that the WebSphere MQ application can receive it.

Reply-to queues for request-reply messaging through a WebSphere MQ link:

Reply-to queues indicate to a receiving application where a reply should be sent. You can use reply-to
queues for point-to-point request messages (queues) and for publish/subscribe request messages.

The reply-to queue might be a predefined queue or a dynamically created temporary or permanent queue.
If it is a dynamic queue, then it might have a unique name that is generated by WebSphere MQ.
WebSphere Application Server messaging technology has the same concept of a temporary queue for
replies, and generates a queue name of up to 48 characters to comply with the queue-name length
limitation for WebSphere MQ.

Deciding to use reply-to queues is part of application design (see Designing an application for
interoperation with WebSphere MQ). Your sending application must contain a definition of where replies
are to be sent and attach this information to its messages. The replying application uses this data in the
received message to discover the name of the queue to which to reply.

There are two fields in the JMS API that are used for sharing information about the destination to which a
message is sent (JMSDestination) and the destination to which replies should be sent (JMSReplyTo). The
JMSReplyTo field allows a response message to be returned if required. It contains enough detail for the
receiving application to send a response message to the intended queue or topic so that it can be read by
an application associated with the sender of the request. The JMSReplyTo field of a JMS message passing
from a service integration bus to WebSphere MQ (or from WebSphere MQ to a service integration bus) is
automatically mapped so that a consuming application in WebSphere MQ can reply to the original
WebSphere Application Server application.

Reply-to topics for request-reply messaging through a WebSphere MQ link:

WebSphere Application Server and WebSphere MQ JMS applications can publish messages to a topic
space with a reply-to topic. Applications in the other network can receive the message, obtain the reply
destination, and publish a message on the reply topic. Topic type replies cross the WebSphere MQ link
through the publish/subscribe bridge.

Topic type replies are of two varieties:

1. Permanent reply-to topics.

2. Temporary topic replies.

Chapter 15. Messaging resources 465

Topic type reply-to destinations cannot be used with most WebSphere MQ applications. WebSphere MQ
JMS applications handle them correctly, but MQI applications do not.

Permanent reply-to topics

For a reply message published to a permanent topic to cross between WebSphere Application Server and
a WebSphere MQ network, the administrator must define an appropriate topic mapping for the reply topic
on the publish/subscribe bridge for the WebSphere MQ link. The topic mapping defines the topic name
and specifies whether messages are to flow from WebSphere MQ to WebSphere Application Server, or
from WebSphere Application Server to WebSphere MQ, or if the flow is two-way, or bidirectional.

For example, a WebSphere MQ JMS application is publishing messages on the topic "myTopic" in the
WebSphere MQ network. The messages have a reply topic of "myReplyTopic". A WebSphere Application
Server JMS application needs to receive the messages and publish replies to the reply topic. For this
exchange of messages, you must specify two topic mappings on the publish/subscribe bridge:

v A topic mapping to make the publish/subscribe bridge subscribe to "myTopic" in the WebSphere MQ
network. With this topic mapping, when the WebSphere MQ JMS application publishes messages to
"myTopic", the messages are sent over the WebSphere MQ link, translated into the correct format, and
delivered to the publish/subscribe bridge subscriber queue. There, they are processed and then sent on
to the topic space as specified in the publish/subscribe topic mapping. The WebSphere Application
Server JMS application receives the messages from the topic space.

v A topic mapping to make the publish/subscribe bridge forward messages published to "myReplyTopic" in
WebSphere Application Server to the WebSphere MQ network. With this topic mapping, when the
WebSphere Application Server JMS application publishes reply messages to "myReplyTopic" in
WebSphere Application Server, the publish/subscribe bridge sends them to the WebSphere MQ
network, where they are also published to "myReplyTopic".

Temporary topic replies

For a temporary topic reply message to cross between WebSphere Application Server and a WebSphere
MQ network, you do not define a separate topic mapping. A temporary topic name is assigned at runtime,
and the reply message is automatically routed between WebSphere Application Server and a WebSphere
MQ network by the publish/subscribe bridge.

However, for temporary topic reply messages to be routed from the service integration bus back to
WebSphere MQ through the publish/subscribe bridge, you must configure the broker stream queue of the
topic mapping on which the request message is sent. The broker stream queue is the queue where the
messages are published. This field will already be specified for bi-directional topic mappings. Although this
field is not mandatory for "From MQ" topic mappings, it must be completed if you want temporary topic
reply messages to be routed.

Temporary topic replies are only supported to publication messages. Point-to-point request messages with
temporary topic reply destinations are not supported.

Strict message ordering using the strict message ordering facility of the
WebSphere Application Server default messaging provider
Strict message ordering can be achieved when deploying message driven bean applications to the
WebSphere MQ messaging provider for WebSphere Application Server when no special facilities have
been coded into the application to handle messages arriving out of order by using the strict message
ordering facility of the WebSphere Application Server default messaging provider.

The following assumptions have been made in this scenario:

v The message-driven bean (MDB) application is transactional.

v The back-out threshold (BOTHRESH) on theWebSphere MQ queue has been set to 0.

466 Overview

Configuration for ordered delivery
v A service integration bus, with a WebSphere MQ link between the WebSphere MQ queue manager

hosting the queue and the bus.

v If a mixture of persistent and nonpersistent messages might be sent within an ordered sequence, you
must set the non-persistent message speed (NPMSPEED) on the WebSphere MQ sender channel to
NORMAL.

v You must configure a destination in the bus with the Strict message ordering option selected, which
the MDB application consumes from through a default messaging provider activation specification.

v You must replace the local queue definition with a remote queue definition within WebSphere MQ, so
that messages that are sent to the destination queue are forwarded over the WebSphere MQ link to the
bus.

Note: This configuration is just one possible option for configuring queue name resolution within the
queue manager to forward messages over the link.

Important information about this configuration
v This deployment option combines the message ordering capabilities of WebSphere MQ (which include

when sending over a channel) with the additional messages ordering facilities provided by the default
messaging provider for WebSphere Application Server (which prevent out of order delivery in
transaction recovery scenarios).

v This deployment option is complex as it requires planning, and runtime administration, of a bus topology
in addition to a WebSphere MQ topology.

v It also adds internal complexity as messages are converted automatically between the low level
WebSphere MQ and default messaging provider formats as they travel over the WebSphere MQ link.

Circumstances in which messages can arrive out of order

There are no circumstances in which this deployment is expected to cause messages to be delivered out
of order.

Considerations for clustered deployment
v Ordered delivery from the bus destination to the MDB is enforced automatically in a clustered

environment when the Strict message ordering option is selected for the destination.

v The main consideration for a clustered environment is establishing high availability of the WebSphere
MQ link between the queue manager and the bus. For more information about the options available for
ensuring that the connection to a failover WebSphere Application Server gateway messaging engine is
reinstated, see “High availability of messaging engines that are connected to WebSphere MQ” on page
692.

Securing connections to a WebSphere MQ network
Connections between a WebSphere Application Server and a WebSphere MQ network can use the Secure
Sockets Layer (SSL) protocol to increase the confidentiality and integrity of messages transferred between
a messaging engine on a service integration bus and WebSphere MQ.

By default, new application servers are configured to accept inbound WebSphere MQ connections through
two inbound transport chains. To read about inbound transport chains, see “Inbound transport options” on
page 607. One of these chains is configured to accept SSL-based connections, making it possible to
configure a sender channel in the WebSphere MQ network to connect through this channel chain and
establish an SSL-based connection. For more information about securing WebSphere MQ sender
channels, see the Security section of the WebSphere MQ information center. All WebSphere MQ
interoperation resources hosted by an application server can be contacted by all inbound WebSphere MQ
transports defined to that server, so you should restrict the inbound transports that are enabled. This is

Chapter 15. Messaging resources 467

important because the default application server configuration has definitions for inbound WebSphere MQ
transports that are not secured using SSL. For more information, see “Secure transport configuration
requirements” on page 611).

When connecting a WebSphere Application Server to a WebSphere MQ queue manager or (for
WebSphere MQ for z/OS) queue sharing group through a WebSphere MQ link sender channel definition,
you might choose to secure the link through SSL. This is achieved by specifying a suitable transport chain
for the Transport chain property of the WebSphere MQ link sender channel definition. The name of the
default SSL-based outbound transport chain suitable for securing a WebSphere MQ link sender channel is
OutboundSecureMQLink. For more information, see “Outbound transport options” on page 609.

Messaging between two application servers through WebSphere MQ
You can use WebSphere MQ links to send a WebSphere Application Server message from one application
server to another through a WebSphere MQ network.

You can exchange messages between two application servers through an intermediate WebSphere MQ
network, as shown in the following figure:

In this case, the WebSphere MQ network includes two gateway queue managers. One connects to the
local bus by using a WebSphere MQ sender-receiver pair of message channels, known to the local bus as
a WebSphere MQ link. The other connects to the indirect foreign bus by using another WebSphere MQ
sender-receiver pair of message channels, known to the indirect foreign bus as a WebSphere MQ link. In
the simplest case, the same gateway queue manager connects to both the local bus and the indirect
foreign bus.

The WebSphere MQ network must be configured to route messages as required between the local bus
and the indirect foreign bus. Details of this configuration are not normally important to WebSphere
Application Server administrators, but can be found in WebSphere MQ Intercommunication.

Configuration and operation of messaging between two service integration buses through an intermediate
WebSphere MQ network is much more straightforward if you choose bus names that comply with
WebSphere MQ queue manager naming restrictions, and if you choose bus destination names that comply
with WebSphere MQ queue naming restrictions:

v Queue managers in the WebSphere MQ network “see” the local bus and the indirect foreign bus as
queue managers, and refer to them by their virtual queue manager names. If the service integration bus
names comply with WebSphere MQ restrictions for queue manager names, the virtual queue manager
name that WebSphere MQ uses can (and should) be the same as the bus name used by service
integration.

If the virtual queue manager name that WebSphere MQ uses for a foreign bus is not the same as the
service integration bus name used by that foreign bus, the local bus must define the foreign bus by the
virtual queue manager name of that foreign bus, not the actual service integration bus name (because
the intermediate WebSphere MQ network does not know the actual service integration bus name and
cannot route messages directed to that name). Reply-to destinations can always use the local bus

WebSphere Application Server
service integration bus

local bus

MQ link MQ link

Foreign bus,
indirect

Foreign bus,
direct

WebSphere Application Server
service integration bus

WebSphere MQ
Network

Figure 76. Exchanging messages between two application servers through an intermediate WebSphere MQ network.

468 Overview

http://www.elink.ibmlink.ibm.com/publications/servlet/pbi.wss?CTY=US&FNC=SRX&PBL=SC34-6059-03

name, because the WebSphere MQ link automatically substitutes the virtual queue manager name
when passing the message to the WebSphere MQ network.

v While messages are being transported through the WebSphere MQ network, WebSphere MQ treats the
names of service integration queue type destinations as WebSphere MQ queue names. This means
that WebSphere MQ cannot transport service integration destination names that do not comply with
WebSphere MQ queue name restrictions correctly.

If the target destination name does not comply with WebSphere MQ queue name restrictions, the local
bus must define an alias destination that maps the actual bus destination name to a name that does
comply with WebSphere MQ queue name restrictions. Alternatively, applications on the local bus can
use the WebSphere MQ-compliant name instead of the actual bus destination name.

In either case, the remote bus must define an alias destination that maps the WebSphere MQ-compliant
name to the actual bus destination name. If the reply-to destination name does not comply with
WebSphere MQ queue name restrictions, applications on the local bus must use a WebSphere
MQ-compliant name instead of the actual bus destination name. The local bus must define an alias
destination that maps the WebSphere MQ-compliant name to the actual bus destination name.

While messages are being transported through the WebSphere MQ network, important context information
is transported in the MQRFH2 header. You must configure the application so that the MQRFH2 header is
included.

Messages with topic style reply-to destinations must have the appropriate publish/subscribe bridge topic
mappings defined in the relevant direction so that reply messages can be transferred between a
WebSphere MQ network and WebSphere Application Server. This is not automatic, as it is for messages
with queue reply destinations.

Messaging between two WebSphere MQ networks through an application server
You can use WebSphere MQ links to send a message from one WebSphere MQ network to another
through a WebSphere Application Server application server.

You can exchange messages between two WebSphere MQ networks through an intermediate service
integration bus, as shown in the following figure.

Configuration and operation of messaging between two WebSphere MQ networks (buses) through an
intermediate service integration bus is much simpler if you choose a service integration bus name that
complies with WebSphere MQ queue manager naming restrictions:

v The queue managers in the WebSphere MQ networks “see” the intermediate service integration bus as
a queue manager, and refer to it by the virtual queue manager name. Provided that the service
integration bus name complies with WebSphere MQ restrictions for queue manager names, it is
possible (and highly desirable) for the virtual queue manager name used by both WebSphere MQ
networks to be the same as the bus name used by service integration.

v The service integration bus includes two gateway messaging engines, one connecting to each of the
WebSphere MQ networks by using WebSphere MQ links (known to the WebSphere MQ gateway queue

WebSphere MQ
Network

local bus

MQ link MQ link

Foreign bus,
direct

Foreign bus,
direct

WebSphere Application Server
service integration bus

WebSphere MQ
Network

Figure 77. Exchanging messages between two WebSphere MQ networks through an intermediate application server.

Chapter 15. Messaging resources 469

managers as a WebSphere MQ sender-receiver pair of message channels). The service integration bus
must define the two WebSphere MQ networks as foreign buses with names the same as the
WebSphere MQ names for the gateway queue managers.

Messages received by the service integration bus from one WebSphere MQ network and destined for
another WebSphere MQ network specify both the target queue name and the target queue manager
name. Service integration interprets the target queue manager name as a bus name. When the target
queue manager is the gateway queue manager for the target WebSphere MQ network, service integration
routes the message correctly. When the target queue manager is not the gateway queue manager for the
target WebSphere MQ network, there are two options:

v In service integration, define the target queue manager as an indirect foreign bus, connected by the
WebSphere MQ foreign bus defined with the name of the gateway queue manager.

v In service integration, define the target queue (destination name or identifier in service integration
terminology) and queue manager (bus name in service integration terminology) combination with an
alias destination that maps the combination to the target WebSphere MQ network (foreign bus in
service integration terminology) with the destination name (identifier) in the form target-queue-
name@target-queue-manager-name.

Messages received by the service integration bus from one WebSphere MQ network and destined for
another WebSphere MQ network can include a reply-to queue. This is specified as the reply-to queue
name and the reply-to queue manager name. When the service integration bus receives the message, the
WebSphere MQ link replaces this reply-to information with a service integration bus destination comprising
a bus name (which is the WebSphere MQ queue manager name of the gateway queue manager) and a
destination name (identifier) of the form reply-to-queue-name@reply-to-queue-manager-name. This new
reply-to information travels with the message to the receiving WebSphere MQ application. The combined
length of the reply-to queue name, the "@" character, and the reply-to queue manager name must be less
than or equal to the WebSphere MQ maximum queue name length of 48 characters.

Interoperation using a WebSphere MQ server
A WebSphere MQ server represents a WebSphere MQ queue manager or (for WebSphere MQ for z/OS)
queue-sharing group. Service integration can communicate directly with a WebSphere MQ queue manager
or queue sharing group where a WebSphere MQ queue is located. You can configure a service integration
queue-type destination to add messages directly onto the WebSphere MQ queue, and retrieve messages
directly from the queue.

For interoperation with WebSphere Application Server Version 7.0 or later, the version of WebSphere MQ
must be WebSphere MQ for z/OS Version 6 or later, or WebSphere MQ (distributed platforms) Version 7
or later.

To configure WebSphere Application Server for this style of interoperation with WebSphere MQ, you define
a WebSphere MQ server. This definition represents the WebSphere MQ queue manager or queue sharing
group that hosts the queue which you want to access. The definition has cell scope. The same
WebSphere MQ server definition works for all queues in the queue manager or queue sharing group.

Next, you add the WebSphere MQ server as a member of the service integration bus (or buses) that
require access to the queues that the WebSphere MQ server hosts. If you have several service integration
buses in your cell, you can add the same WebSphere MQ server as a bus member into more than one of
these buses.

After you have done this, you can define queue-type destinations in the service integration bus so that
service integration adds messages directly onto a WebSphere MQ queue located on the WebSphere MQ
server, or retrieves messages directly from that queue, or both. To help you define your service integration
destinations, you can (optionally) select the WebSphere MQ queue you want to use from a list which the
administrative console gets directly from the WebSphere MQ queue manager or queue sharing group. This
facility is called "queue discovery".

470 Overview

If you want to mediate a service integration queue-type destination, then you must define two queues
within the destination. One is used to queue messages arriving at the destination ready for mediation; this
is called the mediation point. The other is used to queue messages after mediation is complete and the
messages are ready to be consumed; this is called the queue point. Either the mediation point, or the
queue point, or both, can be defined as WebSphere MQ queues (as previously described).

You can create and configure a WebSphere MQ server by using the administrative console or by using the
wsadmin tool. If you use the administrative console, the server creation wizard can automatically discover
resources in the WebSphere MQ network.

Network topologies for interoperation using a WebSphere MQ server connection
and WebSphere MQ for z/OS shared queues
These examples show simple and complex topologies that enable WebSphere Application Server to
interoperate with WebSphere MQ using a WebSphere MQ server connection, and a topology for using
WebSphere MQ server connections with WebSphere MQ for z/OS shared queues to create a highly
available messaging system.

v “Single WebSphere Application Server application server connected to a single WebSphere MQ queue
manager or queue sharing group” on page 472

v “Multiple applications running in separate application servers connected to a WebSphere MQ queue
manager” on page 472

v “Using WebSphere MQ for z/OS shared queues with a WebSphere MQ server connection” on page 473

For completeness, the topologies that this topic describes include clustered and highly available
topologies. Note that, for clustering and high availability, you need to use the network deployment or z/OS
version of the product.

Queue-type destinations with WebSphere MQ server connections

With a regular queue-type destination in the service integration bus, the queue itself is located in a bus
member within WebSphere Application Server. The bus member can be an application server or possibly a
cluster of application servers. One or more messaging engines in the bus member manage the queue.
The messaging engines can put messages onto the queue, get messages from the queue and, if
necessary, maintain disk copies of the messages. When an application connects to the service integration
bus, it might connect to a messaging engine that is not where the queue is located. In that case, the
messaging engine where the application connects communicates with and uses the messaging engine
where the queue is located.

With a WebSphere MQ server connection you can configure a service integration bus queue-type
destination, so that the queue itself is located in a WebSphere MQ queue manager or queue-sharing
group. In this case, the queue manager or queue-sharing group is included in the service integration bus
as a bus member. Service integration messaging engines in the bus communicate with and use a
WebSphere MQ queue manager to access the queue.

A WebSphere MQ server connection allows applications to perform both get and put operations, unlike a
WebSphere MQ link connection which only allows applications to perform put operations.

A WebSphere MQ server connection can use either a “bindings” connection (call attach) or a “client”
connection (a TCP/IP connection). A “bindings” connection can only be used when the application server
and the queue manager or queue sharing group are running on the same host or in the same logical
partition (LPAR). If the application server and the queue manager or queue sharing group are running on
different hosts, then a “client” connection must be used.

Chapter 15. Messaging resources 471

Single WebSphere Application Server application server connected to a single WebSphere
MQ queue manager or queue sharing group

This basic scenario uses a service integration bus with a single messaging engine. The bus includes a
queue-type destination configured to use a WebSphere MQ shared queue. A single application connects to
the service integration bus and accesses the queue-type destination.

When the application sends a message to the destination, the messaging engine communicates with the
WebSphere MQ queue manager and uses it to add the message to the shared queue. When the
application receives a message from the destination, the messaging engine communicates with the
WebSphere MQ queue manager and uses it to get the message from the shared queue.

When an application is communicating with WebSphere MQ over a WebSphere MQ server connection, it
is only aware that it is communicating with a local service integration messaging engine. The messaging
engine communicates with WebSphere MQ on behalf of the application. The WebSphere MQ queue
manager regards the service integration messaging engine as a WebSphere MQ client.

In the following figure, the connecting line labeled A shows the queue manager appearing to the service
integration messaging engine as a member of its local bus. The connecting line labeled B shows the
service integration messaging engine appearing to the queue manager as another queue manager.

Multiple applications running in separate application servers connected to a WebSphere
MQ queue manager

With a WebSphere MQ server connection, service integration messaging engines dynamically make
individual connections to WebSphere MQ queue managers as and when they are required. There are no
gateway messaging engines or gateway queue managers as there are when a WebSphere MQ link is
used.

The following figure shows two applications running within separate application servers connecting to a
WebSphere MQ queue manager over a WebSphere MQ server connection. The service integration bus

Application

Service Integration Bus
Messaging Engine

Destination definition
of shared queue

Service Integration Bus

WebSphere Application Server

Application Server

Queue
Manager

A
B

shared
queue

WebSphere MQ

Figure 78. Single application running within WebSphere Application Server and connecting to WebSphere MQ using a
WebSphere MQ server connection.

472 Overview

includes two messaging engines and one queue manager.

Using WebSphere MQ for z/OS shared queues with a WebSphere MQ server connection

WebSphere MQ server connections enable WebSphere Application Server applications to perform get
operations (to receive messages from WebSphere MQ queues). You can, therefore, gain benefits by using
a WebSphere MQ server to connect to a WebSphere MQ for z/OS queue sharing group. A WebSphere
MQ link can connect WebSphere Application Server applications to a queue sharing group, but the
applications cannot realize the full benefits of shared queues because they cannot consume messages
from them, as aWebSphere MQ link only enables applications to perform put operations.

WebSphere MQ for z/OS queue sharing groups provide significant benefits through the use of shared
queues. Multiple applications can send messages to and receive messages from the same shared queue
by using different queue managers in the same queue sharing group. This gives the following advantages:

v The different applications (or different instances of the same application) compete to process messages
on the same queue. An instance which is able to process messages more quickly, perhaps because the
instance is running on a more powerful or less heavily loaded processor, automatically processes a
higher proportion of the messages on the queue, giving better utilization of the available resources and
better overall response times. This is called “pull workload balancing”.

Service Integration Bus
Messaging Engine

Service Integration Bus
Messaging Engine

Destination definition
of shared queue

Destination definition
of shared queue

Service Integration
Bus

WebSphere MQ

WebSphere Application Server

Application Server

Application Server
Queue

Manager
shared
queue

Application

Application

Figure 79. Two applications running within separate application servers connecting to a WebSphere MQ queue
manager over a WebSphere MQ server connection

Chapter 15. Messaging resources 473

v If one queue manager in a queue sharing group fails, applications can connect to a different queue
manager and continue using the same shared queue. This provides superior availability for your
applications. A special feature of queue sharing groups, called “peer level recovery”, handles the cases
where an application receives a message from a shared queue but the queue manager fails before
processing of the message is complete. Provided that the application is transactional, another queue
manager in the same queue sharing group can return the message to the shared queue so that it can
be processed without waiting for the failed queue manager to recover. Peer level recovery further
enhances the availability of your applications.

v Queue sharing groups also enable service integration to connect to the queue sharing group by using a
single network address for the collection of queue managers in the queue sharing group. The
connection is automatically redirected to a suitable queue manager in the queue sharing group, based
on which queue managers are available, and which is able to provide the best response time. This
feature enhances both the availability and the performance of your application.

You can provide these benefits to your service integration applications by defining service integration
destinations on shared queues owned by a WebSphere MQ server that is in a queue sharing group. The
following figure shows a service integration messaging engine connecting to one queue manager (QM1) in
a queue sharing group. The connection enables a service integration application to consume messages
from a shared queue. Other service integration applications on the same or a different application server
can use different connections (to the same or different queue managers, QM2 or QM3, in the same queue
sharing group) to consume messages from the same shared queue.

The following figure shows that when a queue manager (QM1) in the queue sharing group is temporarily
unavailable, service integration can connect to a different queue manager (QM2), enabling applications to
continue processing messages from the queue.

Application

Service Integration Bus
Messaging Engine

Destination definition
of shared queue

WebSphere Application Server

QM 1

QM 3QM 2

shared
queues

WebSphere MQ

Service Integration Bus

Figure 80. A messaging engine connecting to a queue manager to access a queue sharing group, using a WebSphere
MQ server connection

474 Overview

WebSphere MQ queue points and mediation points
A WebSphere MQ queue point is used, by a bus destination on a WebSphere MQ server, to hold
messages that are ready to be put onto a WebSphere MQ queue. If messages for the WebSphere MQ
queue (or queue-sharing group) are processed by a mediation before being made available to WebSphere
MQ, then the service integration destination uses a WebSphere MQ mediation point.

WebSphere MQ queue point

A service integration queue-type destination includes one or more queue points. The destination can use
these queue points to hold messages that are ready for a consumer to consume them. When you
configure the destination on a bus member that is a WebSphere Application Server single server or
cluster, these queue points are service integration message points. When you configure the destination on
a bus member that is a WebSphere MQ server, the destination has a single queue point that is a
WebSphere MQ queue and is called a WebSphere MQ queue point.

Message consumers, including message-driven beans, receive messages from a queue point. When the
queue point is a WebSphere MQ queue point, message consumers receive the messages from the
WebSphere MQ queue.

If there is no mediation associated with the destination, and the messages are not redirected to another
destination or consumed by a message consumer, then message producers place messages on a queue
point. If the queue point is a WebSphere MQ queue point, message producers place messages on the
WebSphere MQ queue.

WebSphere MQ mediation point

You can mediate a service integration queue-type destination. When you mediate a destination it is split
into two parts called pre-mediated and post-mediated. The pre-mediated part comprises mediation points,
the post-mediated part comprises queue points.

Application

Service Integration Bus
Messaging Engine

Destination definition
of shared queue

WebSphere Application Server

QM 1

QM 3QM 2

shared
queues

WebSphere MQ

X

Service Integration Bus

Figure 81. A messaging engine connecting to a second queue manager to access a queue sharing group, after the
original queue manger it was using failed

Chapter 15. Messaging resources 475

The mediation receives messages from the pre-mediated part. If the messages are not redirected to
another destination or consumed by a message consumer, the mediation places messages on the
post-mediated part. Messages on the post-mediated part are delivered to a message consumer.

When you mediate a destination on a bus member that is a WebSphere MQ server, the destination has a
single mediation point that is a WebSphere MQ mediation point, and the post-mediated part is a single
queue point that is a WebSphere MQ queue.

WebSphere MQ server and mediated exchange scenarios
When you mediate a service integration bus destination, your mediation runs in a bus member and you
specify a combination of mediation points and queue points to handle the messages that are mediated.
When you interoperate with WebSphere MQ by using WebSphere MQ server, you can use one of several
mediated exchange scenarios.

Queue-type destinations assigned to a WebSphere MQ server bus member can be mediated in the same
way as destinations assigned to other bus members. In addition to the mediation task described in
Mediating a destination by using a WebSphere MQ queue as the mediation point, WebSphere MQ server
supports other mediation scenarios that you also set up by using the administrative console Mediation
wizard.

Note: Although WebSphere MQ server extends the way in which queue-type destinations can be
mediated, the way in which topic spaces are mediated does not change.

To mediate a service integration bus destination, you must specify a mediation point, a queue point and a
mediation execution point:

Mediation point
The location where messages are placed before they are mediated. It can be either a service
integration bus member (an application server or a cluster) or a WebSphere MQ queue.

Queue point
The location where messages are placed after they have been mediated. It can be either a service
integration bus member (an application server or a cluster) or a WebSphere MQ queue. If there is
a default forward routing path and the destination is a queue type destination, the queue point is
unused. If the destination is a service type destination, the queue point is absent.

Mediation execution point
The server where the mediation process runs. If the mediation point is a service integration bus
member then the mediation execution point is the same bus member as the mediation point.

For more information, see “WebSphere MQ queue points and mediation points” on page 475.

WebSphere MQ server supports the following mediated exchange scenarios:

v Scenario 1: A WebSphere MQ mediation point and a service integration queue point. In this case, you
must specify the mediation execution point.

v Scenario 2: A WebSphere MQ mediation point and a WebSphere MQ queue point. In this case, you can
use a service integration mediation; you must specify the mediation execution point when you configure
the mediation, as for scenario 1.

v Scenario 3: A service integration mediation point and a WebSphere MQ queue point. In this case, you
do not have to specify the mediation execution point; WebSphere Application Server automatically
allocates the bus member in which the mediation runs.

v Scenario 4: Alternatively, you can use a WebSphere MQ application or a WebSphere Message Broker
flow to mediate the destination. In this case, the application or broker flow retrieves messages from the
mediation point (which is a WebSphere MQ queue), mediates the messages, then places the mediated
messages on the queue point (which is also a WebSphere MQ queue). You do not specify a mediation
execution point when you configure the mediation; instead, you specify that there is an external
mediation process.

476 Overview

For a queue point, message producers place messages on the queue point and consumers receive
messages from the queue point. For a mediation point, message producers place messages on the
mediation point. The messages are mediated then put on a post-mediation queue point. Consumers
receive messages from the post-mediation queue point.

For a queue point, message producers place messages on the queue point and consumers receive
messages from the queue point. If the queue point is a WebSphere MQ queue point, message producers
place messages on the WebSphere MQ queue and consumers receive the messages from the
WebSphere MQ queue. For a mediation point, message producers place messages on the mediation point
(a WebSphere MQ queue). The messages are mediated, perhaps by an external WebSphere Message
Broker flow, then put on a post-mediation queue point (another WebSphere MQ queue). Consumers
receive messages from the post-mediation queue point.

Scenario 1

In this scenario, you want to mediate a conventional queue-type destination where the queue point is a
service integration queue point, and assign a WebSphere MQ queue as the mediation point (the input side
of the destination). As the mediation point is a WebSphere MQ queue, a queue point must also be
specified.

Simple Mediated

Mediation

Queue
point

Queue
point

Mediation
point

Producer ProducerConsumer Consumer

Figure 82. Queue-type destinations assigned to a service integration bus member. Queue points and mediation points
are queues of service integration messages held in service integration

Simple Mediated

Mediation

message broker
flow

MQ PUT MQ PUTMQ GET MQ GET

Producer ProducerConsumer Consumer

Figure 83. Queue-type destinations assigned to a WebSphere MQ server bus member. Queue points and mediation
points can be queues of WebSphere MQ messages held in WebSphere MQ. A WebSphere Message Broker, or other
WebSphere MQ application, can run mediations externally.

Chapter 15. Messaging resources 477

Messages arriving at the WebSphere MQ queue are processed by the mediation running in an application
server. When the messages have been processed by the mediation, they are placed onto the service
integration queue point. The mediation itself runs in the service integration bus member that is assigned as
the mediation point.

For this scenario, you must complete the following steps using the Mediate destination wizard. These
example steps assume that the destination is assigned to a service integration bus member:

1. Navigate to the destinations collection panel for the bus that hosts the destination you want to mediate.

2. Select the queue-type destination that you want to mediate, then click Mediate. This starts the Mediate
destination wizard.

3. Step 1: Select the mediation that you want to use to mediate the service integration destination.

4. Step 2: Select a WebSphere MQ server bus member to host the mediation point.

5. Step 3: Enter details of the WebSphere MQ queue that will be the mediation point.

6. Step 4: Select a bus member where you want the mediation code to run.

7. Step 5: Review the summary of changes you are about to make, then click Finish.

Scenario 2

In this scenario, you want to mediate a WebSphere MQ queue type, with a WebSphere MQ queue point,
and assign a WebSphere MQ queue as the mediation point (the input side of the destination). As the
mediation point is a WebSphere MQ queue, a mediation execution point must also be specified.

Messages arriving at the destination are processed by the mediation, then placed on the WebSphere MQ
queue. The mediation itself runs in the service integration bus member that is assigned as the mediation
point.

For this scenario, you must complete the following steps using the Mediate destination wizard. These
example steps assume that the destination is assigned to a WebSphere MQ server bus member:

1. Navigate to the destinations collection panel for the bus that hosts the destination you want to mediate.

2. Select the queue-type destination that you want to mediate, then click Mediate. This starts the Mediate
destination wizard.

3. Step 1: Select the mediation that you want to use to mediate the service integration destination.

4. Step 2: Select a WebSphere MQ server bus member to host the mediation point.

5. Step 3: Enter details of the WebSphere MQ queue that will act as the mediation point.

6. Step 4: Select the service integration bus member where you want the mediation to run.

7. Step 5: Review the summary of changes you are about to make, then click Finish.

Scenario 3

In this scenario, you want to mediate a WebSphere MQ queue type and assign a service integration
mediation point.

Messages arriving at the destination are processed by the mediation, then placed on the WebSphere MQ
queue. The mediation itself runs in the service integration bus member that is assigned as the mediation
point.

For this scenario, you must complete the following steps using the Mediate destination wizard. These
example steps assume that the destination is assigned to a WebSphere MQ server bus member:

1. Navigate to the destinations collection panel for the bus that hosts the destination you want to mediate.

2. Select the queue-type destination that you want to mediate, then click Mediate. This starts the Mediate
destination wizard.

3. Step 1: Select the mediation that you want to use to mediate the service integration destination.

478 Overview

4. Step 2: Select the service integration bus member to host the mediation point. The mediation code
also runs in this bus member.

5. Step 3: Review the summary of changes you are about to make, then click Finish.

Scenario 4

In this scenario, you want to mediate a WebSphere MQ queue type destination and assign a WebSphere
MQ queue as the mediation point (the input side of the destination).

The mediation of messages is performed by an external process. Messages arriving at the WebSphere
MQ queue are processed by the external process, then placed by the external process on the WebSphere
MQ queue-type destination.

For this scenario, you must complete the following steps using the Mediate destination wizard. These
example steps assume that the destination is assigned to a WebSphere MQ server bus member:

1. Navigate to the destinations collection panel for the bus that hosts the destination you want to mediate.

2. Select the queue-type destination that you want to mediate, then click Mediate. This starts the Mediate
destination wizard.

3. Step 1: Select an external process to use for mediating the destination.

4. Step 2: Enter details of the WebSphere MQ queue that you want to act as the mediation point.

5. Step 3: Review the summary of changes you are about to make, then click Finish.

WebSphere MQ server: Connection and authentication
Each WebSphere MQ server definition includes the connection properties and authentication settings that
service integration uses to connect to the associated WebSphere MQ queue manager or queue-sharing
group, either for resource discovery or for messaging.

Connection

Service integration connects to the WebSphere MQ network in the following situations:

v When, as part of the process of creating a WebSphere MQ server by using the administrative console,
the automatic resource discovery process runs to capture resource information direct from WebSphere
MQ. The wsadmin commands do not support automatic discovery of resources.

v When the WebSphere MQ server is used to pass messages between service integration and
WebSphere MQ.

The connection access path is determined by the host, port, transport chain and WebSphere MQ
connection channel that you specify when you create the WebSphere MQ server definition. You get this
information from the WebSphere MQ system administrator. The connection access path is also affected by
the connection mode that you specify:

v You can use client transport mode to establish a TCP/IP network connection between service integration
and WebSphere MQ.

v If WebSphere Application Server and WebSphere MQ are co-located on the same system (or, for z/OS
systems, on the same partition of the same system) it is more efficient to use bindings transport mode
to connect between service integration and WebSphere MQ.

For more information about the mechanisms used to connect to WebSphere MQ for z/OS, see the z/OS
System Setup Guide in the WebSphere MQ information center.

Authentication

The WebSphere MQ system administrator will probably want service integration to authenticate with
WebSphere MQ whenever it connects. This happens whenever message data needs to be exchanged

Chapter 15. Messaging resources 479

with a queue point or a mediation point that is assigned to a WebSphere MQ server bus member, and
when the automated resource discovery process runs while you are configuring a WebSphere MQ server
by using the administrative console.

The WebSphere MQ system administrator might also want to set up two different user accounts on the
WebSphere MQ system: one with only the privileges needed for resource discovery, and one with only the
privileges needed for messaging. The WebSphere MQ server definition supports this requirement by
allowing you to configure the MQ server with two authentication aliases, corresponding to these two
accounts.

Authentication aliases are restricted to a maximum 12 characters in length, because the user ID that
WebSphere MQ uses for checking the identity of new connections also has this restriction. If
authentication aliases exceed 12 characters in length, they are truncated.

If you are using Resource Access Control Facility (RACF®) as the security manager on your WebSphere
MQ for z/OS system, and using bindings transport mode, you must specify in uppercase characters the
user names and passwords for authentication aliases. If you are using RACF and client transport mode,
you can specify the user names and passwords in either upper or lowercase characters.

Where an authentication alias exists, the user name and password it contains are examined by
WebSphere MQ by using a WebSphere MQ channel security exit. WebSphere MQ for z/OS provides a
sample security exit CSQ4BCX3, which demonstrates how you can authenticate based on this information.

When messages are sent to WebSphere MQ for resource discovery, the
MQPMO_SET_IDENTITY_CONTEXT option is used. The credentials used to establish a messaging
connection must have authority to assert this.

The connection mode you use for connecting to WebSphere MQ affects which credentials are used:

v For a client transport mode connection, the user ID and password from the authentication alias are used
by WebSphere MQ. If an authentication alias is not specified in the WebSphere MQ server definition,
WebSphere MQ is presented with an empty string for both the user ID and password.

v For a bindings transport mode connection, the credentials associated with the application server
processes are used for authentication by WebSphere MQ. Therefore service integration instructs the
application server processes to switch credentials and use the user ID and password that exist in the
relevant WebSphere MQ server authentication alias. This in turn requires that the application server
processes start with sufficient privileges to connect and perform the switch. If an authentication alias is
not specified in the WebSphere MQ server definition, a switch of credentials is not attempted and the
original credentials of the application server process are used.

Overriding the connection and authentication settings

When you add the WebSphere MQ server definition to a service integration bus to make it a bus member,
you can override the server settings and authentication alias used for messaging, with the connection
settings and authentication alias used by the bus. You can use this option to create a bus-specific instance
of that server and is useful in a multiple bus configuration. Typically you would do this to differentiate
connections from different buses and, potentially, to apply different security settings.

User identification
Service integration messages contain two user IDs - a system user ID and an application user ID.
WebSphere MQ can set the user identifier field of the WebSphere MQ message descriptor (MQMD)
from the system user ID used in the service integration message. Additional processing is required to
preserve the service integration application user ID when interoperating with WebSphere MQ by using a
WebSphere MQ server.

Service integration messages contain two user IDs:

480 Overview

v a system user ID: In general, the system user ID is set to the identity of the user that produced the
message, which is specified when the user connects to the bus. The system user ID stored in the
message cannot be modified by application code.

v an application user ID: This corresponds to the JMSXUserID message property and can be set by
application code.

WebSphere MQ can be configured to set the user identifier field of the WebSphere MQ message
descriptor (MQMD) from the system user ID used in the service integration message. However, there is
only one field for user IDs in the MQMD. If the destination permits the use of MQRFH2 headers, the
application user ID present in the message is placed into the <sib> folder of the RFH2 header using a key
of jsApiUserId.

When a message is received from queue points or mediations points localized on a WebSphere MQ
server bus member then, depending on whether the associated WebSphere MQ server definition permits
the user IDs to be trusted, the following actions are completed:

v If the WebSphere MQ server is configured to trust user IDs, the system user ID in the service
integration message is copied from the user ID in the MQMD.

v If the WebSphere MQ server is not configured to trust user IDs, the system user ID in the service
integration message is set to the name of the WebSphere MQ server from which the message has
been received.

Consider an example where the following objects have been configured:

v A WebSphere MQ server, QM1

v A WebSphere MQ server bus member with the trustUserIds attribute set to FALSE.

v A queue-type destination, Q1 assigned to the WebSphere MQ server bus member.

If you configured these objects, when a message is received from Q1, the user ID is always set to QM1
(ignoring the user ID that exists in the message). This happens because the WebSphere MQ server bus
member does not trust the user IDs received in inbound messages, instead it always uses the name of the
WebSphere MQ server that the message is received from.

Regardless of how the system user ID of the service integration message is set, the application user ID is
always set from the jsApiUserId RFH2 value. If this is not present, either because the value pair is not
present in the <sib> folder of the RFH2 header, or because the message does not have a RFH2 header,
then this field will not be set.

As security user IDs are transported in the MQMD message descriptor, they are limited to 12 characters in
length. Longer user IDs are truncated.

Request-reply messaging using a WebSphere MQ server
You can provide a reply-to destination in a message sent to a destination that is assigned to a WebSphere
MQ server bus member. If the reply comes from a WebSphere MQ application, for example a WebSphere
MQ JMS application, some restrictions apply to the reply-to destination. You must also configure a
WebSphere MQ link over which the reply can flow.

When a message with a reply-to destination is sent to a destination that is assigned to a WebSphere MQ
server bus member, the reply-to destination is represented by the following WebSphere MQ message
descriptor fields:

v Queue name: this is set to the name of the service integration destination that has been specified as a
reply-to queue.

v Queue manager name: this is set either to the name of the service integration bus from which the
message was sent or to the virtual queue manager name specified in the bus member configuration for
the MQ server.

Chapter 15. Messaging resources 481

Queue names and queue manager names that are not recognized by WebSphere MQ are truncated at the
first character that is not a valid WebSphere MQ character, or at the WebSphere MQ limit on the field
length.

When you send a message from service integration using a WebSphere MQ server, a WebSphere MQ
JMS application can only reply to the reply-to destination in the message when you meet these conditions:

v The reply-to destination name must be a valid WebSphere MQ queue name.

v The reply-to destination must be on a service integration bus that has a name that is a valid
WebSphere MQ queue manager name, or the virtual queue manager name specified in the bus
member configuration for the MQ server must be a valid WebSphere MQ queue manager name.

v The reply-to destination must be on the same service integration bus as the bus where the message
originated.

v You must configure a WebSphere MQ link over which the reply can flow between the service integration
bus and the WebSphere MQ network.

v The “Virtual queue manager name” that you allocate to the WebSphere MQ link must match the queue
manager name specified for the reply-to destination, which can be either the name of the service
integration bus to which the WebSphere MQ link points, or the virtual queue manager name specified in
the bus member configuration for the MQ server.

WebSphere MQ server: Transport chain security
System security for a connection between service integration and a WebSphere MQ network is provided
by the Transport Level Security (TLS) and Secure Sockets Layer (SSL) protocols.

When WebSphere Application Server uses SSL, the administrator must create an SSL repertoire, a
channel and a transport chain. The transport chain must be referenced by the WebSphere MQ server
through the server transport chain attribute, and must also be a trusted transport for the service integration
bus to which the WebSphere MQ server belongs. The default setting is for service integration buses to
trust only the SSL transport.

Two default transport chains are created on each WebSphere MQ server: OutboundBasicWMQClient and
OutboundSecureWMQClient. The OutboundSecureWMQClient transport chain uses SSL and is configured
to use the server default SSL repertoire. If you want to create your own transport chain, you must define it
to every WebSphere MQ server that is a service integration bus member. Here is an example of how you
might define your own transport chain by using JACL:

wsadmin>tcs = AdminConfig.list("TransportChannelService").splitlines()[0]

AdminConfig.create("TCPOutboundChannel" , tcs, [["name" , "MyWMQChain.TCP"]])

wsadmin>ssl=...

wsadmin>AdminConfig.create("SSLOutboundChannel" , tcs , [["name" , "MyWMQChain.SLL"] ,
["sslConfigAlias" , "MyRepertoire"]])

wsadmin>rmq=...

wsadmin>AdminConfig.create("RMQOutboundChannel" , tcs , [["name" , "MyWMQChain.RMQ"]])

wsadmin>tcp=...

wsadmin>AdminConfig.create("Chain" , tcs , ["name" , "MyWMQChain"] , ["enable" , "true"] ,
["transportChannels", [rmg , ssl , tcp]])

This example creates a transport chain suitable for connecting a WebSphere MQ server to WebSphere
MQ by using SSL. The chain is called MyWMQChain, and uses an SSL repertoire called MyRepertoire.

482 Overview

WebSphere MQ uses a single cipher suite only for securing connections to a queue manager, although
WebSphere Application Server SSL repertoires allow you to specify multiple cipher suites. Each cipher
suite is tried sequentially until a successful connection is established, or until all the cipher suites have
been tried. The most recent cipher suite that allowed a successful connection is cached on a WebSphere
MQ server bus member basis, and is tried first on subsequent connection attempts.

When transport security is enabled, the transport chain used for connections to WebSphere MQ must be a
permitted chain otherwise it is not possible to establish a connection to WebSphere MQ.

WebSphere MQ server: Restrictions with mixed level cells and clusters
If you are using a WebSphere MQ server with cells or clusters that include more than one version of
WebSphere Application Server, you might need to be aware of the application server versions when you
deploy applications that communicate with WebSphere MQ queues.

With a WebSphere MQ server, applications reference service integration destinations that have queue
points or mediation points set as WebSphere MQ queues. These service integration destinations are
available to Version 6.1 and later versions of WebSphere Application Server, but are not available to
Version 6.0 and earlier versions of WebSphere Application Server, which do not support them. There are
some restrictions on the deployment of an application that references a service integration destination that
is not available to earlier versions of WebSphere Application Server.

Take the following example situation:

v You define a service integration destination destination_x that has a queue point set as a WebSphere
MQ queue.

v Destination_x is in bus bus_y.

v Destination_x is visible in all application servers at Version 6.1 or later, but it is not visible in application
servers at Version 6.0 or earlier.

v You want to deploy an application appl_z that references destination_x.

In this example situation, the following restrictions apply:

v You must not deploy appl_z on any application server that is a member of bus_y unless that application
server is at Version 6.1 or later.

v You must not deploy appl_z on any WebSphere Application Server cluster that is a member of bus_y
unless every application server in that cluster is at Version 6.1 or later.

v You can deploy appl_z on any application server or cluster that is not a member of bus_y. However, if
any of the application servers in that cell are at Version 6.0 or earlier, the following additional rules
apply:

– You must define a target group containing messaging engines in bus_y that always run in application
servers at Version 6.1 or later.

– You must configure the JMS connection factory (if any) used by appl_z to select that target group
with Target significance Required. You must configure the JMS activation specification (if any) for
appl_z to select that target group with Target significance Required

Message-driven beans - automatic message retrieval
WebSphere Application Server supports the use of message-driven beans as asynchronous message
consumers.

The following figure shows an incoming message being passed automatically to the onMessage() method
of a message-driven bean that is deployed as a listener for the destination. The message-driven bean
processes the message, in this case passing the message on to a business logic bean for business
processing.

Chapter 15. Messaging resources 483

A client sends messages to the destination (or endpoint) for which the message-driven bean is deployed
as the message listener. When a message arrives at the destination, the EJB container invokes the
message-driven bean automatically without an application having to explicitly poll the destination. The
message-driven bean implements some business logic to process incoming messages on the destination.

It can be helpful to separate the business logic of your application from the communication interfaces,
such as the JMS request and response handling. To achieve this separation, you can design your
message-driven bean to delegate the business processing of incoming messages to another enterprise
bean. Separating message handling and business processing enables different users to access the same
business logic in different ways, either through incoming messages or, for example, from a WebSphere
J2EE client.

Message-driven beans can be configured as listeners on a Java EE Connector Architecture (JCA) 1.5 or
1.6 resource adapter or against a listener port. With a JCA 1.5 resource adapter, message-driven beans
can handle generic message types, not just JMS messages. This makes message-driven beans suitable
for handling generic requests inbound to WebSphere Application Server from enterprise information
systems through the resource adapter. In the JCA 1.5 specification, such message-driven beans are
commonly called message endpoints or just endpoints.

All message-driven beans must implement the MessageDrivenBean interface. For JMS messaging, a
message-driven bean must also implement the message listener interface, javax.jms.MessageListener.

Messages arriving at a destination being processed by a message-driven bean have no client credentials
associated with them; the messages are anonymous. Security depends on the role specified by the RunAs
Identity for the message-driven bean as an EJB component. For more information about EJB security, see
Securing enterprise bean applications.

For JMS messaging, message-driven beans can use a JMS provider that has a JCA 1.5 resource adapter,
for example the default messaging provider that is part of WebSphere Application Server or the
WebSphere MQ messaging provider. With a JCA 1.5 resource adapter, you deploy EJB 2.1
message-driven beans as JCA 1.5-compliant resources, to use a J2C activation specification. If the JMS
provider does not have a JCA 1.5 resource adapter, for example the V5 default messaging provider, you
must configure JMS message-driven beans against a listener port.

Figure 84. Messaging with message-driven beans

484 Overview

Message-driven beans, activation specifications, and listener ports
Guidelines, related to versions of WebSphere Application Server, to help you choose when to configure
your message-driven beans to work with listener ports rather than activation specifications.

You can configure the following resources for message-driven beans:

v Activation specifications for message-driven beans that comply with Java EE Connector Architecture
(JCA) Version 1.5.

v The message listener service, listener ports, and listeners for any message-driven beans that you want
to deploy against listener ports.

Activation specifications are the standardized way to manage and configure the relationship between an
MDB running in WebSphere Application Server and a destination in WebSphere MQ. They combine the
configuration of connectivity, the Java Message Service (JMS) destination and the runtime characteristics
of the MDB, within a single object.

Activation specifications supersede the use of listener ports, which became a stabilized feature in
WebSphere Application Server Version 7.0 (for more information, see “Stabilized features” on page 1312).
There are several advantages to using activation specifications over listener ports:

v Activation specifications are simple to configure, because they only require two objects: the activation
specification and a message destination. Listener ports require three objects: a connection factory, a
message destination, and the message listener port itself.

v Activation specifications are not limited to the server scope. They can be defined at any administrative
scope in WebSphere Application Server. Message listener ports must be configured at the server scope.
This means that each server in a node requires its own listener port. For example, if a node is made up
of three servers, three separate listener ports must be configured. Activation specifications can be
configured at the node scope, so in the example only one activation specification would be needed.

v Activation specifications are part of the Java Platform, Enterprise Edition Connector Architecture 1.5 and
1.6 standards specification (JCA 1.5 and 1.6). Listener port support in WebSphere Application Server
makes use of the application server facilities interfaces defined in the JMS specification, but is not part
of any specification itself.

For WebSphere Application Server Version 7 and later, listener ports are stabilized. For more information,
read the article on stabilized features. You should plan to migrate your WebSphere MQ message-driven
bean deployment configurations from using listener ports to using activation specifications. However, you
should not begin this migration until you are sure the application does not have to work on application
servers earlier than WebSphere Application Server Version 7. For example, if you have an application
server cluster with some members at Version 6.1 and some at a later version, you should not migrate
applications on that cluster to use activation specifications until after you migrate all the application servers
in the cluster to the later version.

If you want to use message-driven beans with a messaging provider that does not have a JCA Version 1.5
or 1.6 resource adapter, you cannot use activation specifications and therefore you must configure your
beans against a listener port. There are also a few scenarios in which, although you could use activation
specifications, you might still choose to use listener ports. For example, for compatability with existing
message-driven bean applications. Here are some guidelines, related to versions of WebSphere
Application Server, to help you choose when to use listener ports rather than activation specifications:

v WebSphere Application Server Version 4 does not support message-driven beans, so listener ports and
activation specifications are not applicable. WebSphere Application Server Version 4 does support
message beans, but these are not message-driven beans.

v WebSphere Application Server Version 5 supports EJB 2.0 (JMS only) message-driven beans that are
deployed using listener ports. This deployment technology is sometimes called application server facility
(ASF).

Chapter 15. Messaging resources 485

v WebSphere Application Server Version 6 continues to support message-driven beans that are deployed
to use listener ports, and also supports JCA, which you can use to deploy message-driven beans that
use activation specifications. This gives you the following options for deploying message-driven beans
on WebSphere Application Server Version 6:

– You must deploy default messaging (service integration bus) message-driven beans to use activation
specifications.

– You must deploy WebSphere MQ message-driven beans to use listener ports.

– You can deploy third-party messaging message-driven beans to use either listener ports or activation
specifications, depending on the facilities available from your third-party messaging provider.

v WebSphere Application Server Version 7.0 or later continues to support the same options for
message-driven bean deployment that WebSphere Application Server Version 6 supports, and adds a
new option for WebSphere MQ message-driven beans. This gives you the following options for
deploying message-driven beans on Version 7.0 or later:

– You must deploy default messaging (service integration bus) message-driven beans to use activation
specifications.

– You can deploy new and existing WebSphere MQ message-driven beans to use listener ports (as on
WebSphere Application Server Version 6) or to use activation specifications.

– You can deploy third-party messaging message-driven beans to use either listener ports or activation
specifications, depending on the facilities available from your third-party messaging provider.

To assist in migrating listener ports to activation specifications, the WebSphere Application Server
administrative console provides a Convert listener port to activation specification wizard on the
Message listener port collection panel. This allows you to convert existing listener ports into activation
specifications. However, this function only creates a new activation specification with the same
configuration used by the listener port. It does not modify application deployments to use the newly
created activation specification.

Message processing in ASF mode and non-ASF mode
Application Server Facilities (ASF) mode is the default method by which the message listener service in
WebSphere Application Server processes messages. This topic explains how WebSphere Application
Server processes messages in ASF mode and how it processes messages when ASF mode is turned off.

For WebSphere Application Server Version 7 and later, listener ports are stabilized. For more information,
read the article on stabilized features. You should plan to migrate your WebSphere MQ message-driven
bean deployment configurations from using listener ports to using activation specifications. However, you
should not begin this migration until you are sure the application does not have to work on application
servers earlier than WebSphere Application Server Version 7. For example, if you have an application
server cluster with some members at Version 6.1 and some at a later version, you should not migrate
applications on that cluster to use activation specifications until after you migrate all the application servers
in the cluster to the later version.

Main features of ASF mode

By default, message-driven beans (MDBs) that are deployed on WebSphere Application Server for use
with listener ports, use ASF mode to monitor JMS destinations and to process messages.

In ASF mode, a thread is allocated for work when a message is detected at the destination for it to
process. The number of threads that can be active concurrently is dictated by the value specified for the
Maximum Sessions property for the listener port.

In client connection (socket attach) mode, each active thread is an individual physical network connection.
You should keep this in mind when you are deciding whether to use ASF or non-ASF mode in your
configuration. If you are using WebSphere MQ Version 7.x as your messaging provider, it is possible to
have up to ten threads sharing a single physical network connection.

486 Overview

If WebSphere MQ is your messaging provider, there are several configurations you can use in ASF mode.
With the following configurations each thread uses a separate physical network connection:

v A WebSphere MQ Version 6.0 queue manager.

v A WebSphere MQ Version 7.x queue manager, using a connection factory that has the Provider
version property set to 6.

v A WebSphere MQ Version 7.x queue manager, using a connection factory that has the Provider
version property set to 7 or unspecified, connecting over a WebSphere MQ channel that has the
SHARECNV (sharing conversations) parameter set to 0.

With the following configuration, threads share a user-defined number of physical network connections:

v A WebSphere MQ Version 7.x queue manager, using a connection factory that has the Provider
version property set to 7 or unspecified, connecting over a WebSphere MQ channel that has the
SHARECNV (sharing conversations) parameter set to 1 or higher. In this case each thread represents an
individual connection to a queue manager. However, each thread does not have its own physical
network connection, Instead, the threads share the number of network connections specified in the
SHARECNV (sharing conversations) parameter.

Main features of non-ASF mode

In non-ASF mode threads are active from the moment that the listener port is turned on. The number of
active threads is dictated by the value specified for the Maximum Sessions property on the listener port. The
number of threads specified in Maximum Sessions are active, regardless of the number of messages that
are available to be processed.

In non-ASF mode, when a listener port browses for messages at the destination, it will take the message
that is first in the queue at the destination for processing. This means that messages are processed close
to the order in which they arrive at the destination.

In client connection (socket attach) mode, each active thread is an individual physical network connection.
You should keep this in mind when you are deciding whether to use ASF or non-ASF mode in your
configuration. If you are using WebSphere MQ Version 7.x as your messaging provider, it is possible to
have up to ten threads sharing a single physical network connection.

If WebSphere MQ is your messaging provider, there are several configurations you can use in non-ASF
mode. With the following configurations each thread uses a separate physical network connection:

v A WebSphere MQ Version 6.0 queue manager.

v A WebSphere MQ Version 7.x queue manager, using a connection factory that has the Provider
version property set to 6.

v A WebSphere MQ Version 7.x queue manager, using a connection factory that has the Provider
version property set to 7 or unspecified, connecting over a WebSphere MQ channel that has the
SHARECNV (sharing conversations) parameter set to 0.

With the following configuration, threads share a user-defined number of physical network connections:

v A WebSphere MQ Version 7.x queue manager, using a connection factory that has the Provider
version property set to 7 or unspecified, connecting over a WebSphere MQ channel that has the
SHARECNV (sharing conversations) parameter set to 1 or higher. In this case each thread represents an
individual connection to a queue manager. However, each thread does not have its own physical
network connection. Instead, the threads share the number of network connections specified in the
SHARECNV (sharing conversations) parameter.

Note: Non-ASF mode cannot be selected on z/OS systems.

Chapter 15. Messaging resources 487

How messages are processed in ASF mode
In ASF mode, server sessions and threads are only allocated for work when a message that is suitable for
the message-driven bean (MDB) is detected. The number of threads that an MDB can process
concurrently is determined by the value of the Maximum Sessions property for the listener port.

For WebSphere Application Server Version 7 and later, listener ports are stabilized. For more information,
read the article on stabilized features. You should plan to migrate your WebSphere MQ message-driven
bean deployment configurations from using listener ports to using activation specifications. However, you
should not begin this migration until you are sure the application does not have to work on application
servers earlier than WebSphere Application Server Version 7. For example, if you have an application
server cluster with some members at Version 6.1 and some at a later version, you should not migrate
applications on that cluster to use activation specifications until after you migrate all the application servers
in the cluster to the later version.

The following diagram shows how messaging takes place between WebSphere Application Server and
WebSphere MQ when the message listener service is operating in ASF mode.

As shown in the diagram, when the message listener service is operating in ASF mode, messages are
processed in the following way:

1. When the listener port is started, it opens a connection to the WebSphere MQ queue manager and
creates an internal queue agent.

2. The queue agent listens to the JMS destination for messages.

3. The queue agent detects a message.

4. The queue agent checks whether the message is suitable for the MDB that is using the listener port.

5. If the message is suitable for the MDB, the listener port allocates a thread from the message listener
service thread pool, and allocates a server session from the application server's server session pool.
If this is the first time the server session has been used since the listener port has been started, it
opens a connection to the JMS provider. The allocated server session runs on the allocated thread.

6. The queue agent passes the ID of the message to the server session. It then starts listening for
messages again.

7. The server session uses the message ID to retrieve the message from the destination.

8. The server session processes the message by calling the onMessage() method of the MDB.

9. When the message has been processed, the server session exits and returns to the application
server session pool. The connection that the server session opened to the JMS provider remains
open so that the server session does not need to re-establish the connection the next time it is used.

10. The thread exits and returns to the message listener service thread pool.

The number of threads that an MDB can process concurrently is determined by the value of the Maximum
Sessions property for the listener port. If you set Maximum Sessions to the default value of 1, this means
that the MDB can only process one message at a time. Therefore, if the queue agent finds a second
message before the first message has finished being processed, the queue agent blocks the second
message until processing of the first message is complete and the server session has become available.

If you want to process more than one message concurrently, you can do this in ASF mode by setting
Maximum Sessions to a value higher than 1. For example, if you set Maximum Sessions to 2, messages are
processed in the following way:

1. The queue agent detects the first message and allocates a thread and a server session as in the first
example. The message is processed using the onMessage() method of the MDB.

2. Whilst the first message is processing, the queue agent starts listening for messages again.

Figure 85. Message processing in ASF mode on distributed and IBM i systems

488 Overview

3. The queue agent detects the second message and allocates a second thread and a second server
session. The message is processed using the onMessage() method of the MDB.

4. When the first message is processed, the first server session exits and returns to the server session
pool. The first thread exits and returns to the thread pool.

5. When the second message is processed, the second server session exits and returns to the server
session pool. The second thread exits and returns to the thread pool.

How messages are processed in non-ASF mode
In non-ASF mode threads are active from the moment that the listener port is started. The number of
active threads is dictated by the value specified for Maximum Sessions. The number of threads specified in
Maximum Sessions are active, regardless of the number of messages that are available to be processed.
Each active thread is an individual physical network connection.

If you are using WebSphere MQ Version 7.0 or later as your messaging provider, it is possible to have up
to ten threads sharing a single physical network connection.

For WebSphere Application Server Version 7 and later, listener ports are stabilized. For more information,
read the article on stabilized features. You should plan to migrate your WebSphere MQ message-driven
bean deployment configurations from using listener ports to using activation specifications. However, you
should not begin this migration until you are sure the application does not have to work on application
servers earlier than WebSphere Application Server Version 7. For example, if you have an application
server cluster with some members at Version 6.1 and some at a later version, you should not migrate
applications on that cluster to use activation specifications until after you migrate all the application servers
in the cluster to the later version.

Message processing in non-ASF mode

You activate non-ASF mode by specifying a non-zero value for the NON.ASF.RECEIVE.TIMEOUT message
listener service custom property. NON.ASF.RECEIVE.TIMEOUT acts as a switch that turns off ASF mode, and
also as a timeout value for the receive() method.

Note: The following message listener service custom properties do not work in non-ASF mode:

v SERVER.SESSION.POOL.REAP

v SERVER.SESSION.POOL.UNUSED.TIMEOUT

v SERVER.SESSION.POOL.UNUSED.TIMEOUT.Ipaname

The following diagram shows how message processing takes place between WebSphere Application
Server and WebSphere MQ in non-ASF mode:

As shown in the diagram, when the message listener service is operating in non-ASF mode, messages
are processed in the following way:

1. When the listener port is started, it gets one thread from the message listener service thread pool.

2. The listener port opens a connection to the WebSphere MQ queue manager on the thread and creates
a JMS message consumer. The message consumer listens to the JMS destination which the listener
port is configured to listen to.

3. The listener port creates a transaction to manage the message processing.

4. The thread calls the receive() method on the message consumer to listen for messages at the
destination. If the receive() method does not detect a message in the time specified for
NON.ASF.RECEIVE.TIMEOUT, the application server rolls back the active transaction and starts a new one.
The thread then starts calling the receive() method again.

Figure 86. Message processing in non-ASF mode

Chapter 15. Messaging resources 489

5. When the message consumer detects a message it checks whether the message is suitable for the
MDB that is using the listener port.

6. If the message is suitable, the receive() method takes it off the destination and sends it to the thread.

7. The thread invokes the onMessage() method of the MDB on the message consumer, and the message
is processed.

8. If the message finishes processing successfully, the transaction commits. If the message does not
process successfully, the transaction rolls back.

9. A new transaction is started and the message consumer calls the receive() method to listen for new
messages.

The number of threads that an MDB can process concurrently is determined by the value of the Maximum
Sessions property for the listener port. If you set Maximum Sessions to the default value of 1, this means
that the MDB can only process one message at a time. If you want to process more than one message
concurrently, you can do this in ASF mode by setting Maximum Sessions to a value higher than 1. For
example, if you set Maximum Sessions to 2, messages are processed in the following way:

1. When the listener port is started, it gets two threads from the message listener service thread pool.

2. The listener port creates a message consumer and a transaction on each thread. The message
consumers listen to the destination which the listener port is configured to listen to.

3. Both message consumers call the receive() method to listen for messages on the destination. The
consumers compete to get messages from the destination.

4. When one of the consumers successfully retrieves the message, it processes it by calling the
onMessage() method of the MDB. The other message consumer keeps on calling the receive()
method to listen for messages on the destination.

How to avoid unwanted transaction timeouts

If your messaging system is running in non-ASF mode, to avoid unwanted transaction timeouts, you must
allow a sufficient amount of time for processing to be completed before the total transaction lifetime
timeout is reached. Therefore, you must make sure that the value that you specify for the
NON.ASF.RECEIVE.TIMEOUT message listener service custom property is smaller than the value that you
specify for the Total transaction lifetime timeout transaction service property, and also that the
difference between the values of the two properties is greater than the amount of time that the
onMessage() method of the message-driven bean (MDB) takes to process the message.

As the following example shows, if these properties are not correctly configured, transactions can time out
before they are completed. This is because the thread begins calling the receive() method as soon as the
transaction is created. In the following example, NON.ASF.RECEIVE.TIMEOUT is set to 110000 milliseconds
(110 seconds), Total transaction lifetime timeout is set to 120 seconds and the onMessage () method
of the MDB takes 15 seconds to process a message. The example supposes that a message does not
appear at the destination until the receive() method has almost timed out:

1. The listener port starts. It allocates a thread from the thread pool and creates a transaction and a
message consumer on the thread.

2. The thread calls the receive() method to listen for messages.

3. After 110 seconds a message appears at the destination.

4. The thread removes the message from the destination and calls the onMessage() method of the MDB
to begin processing the message.

5. 10 seconds later, the transaction timeout is reached. The application server marks the transaction for
rollback.

6. 5 seconds later, the onMessage() method finishes processing the message and tries to commit the
transaction.

490 Overview

7. The total amount of time that has elapsed since the transaction was started is 125 seconds (110
seconds waiting for a message, plus 15 seconds to process the message). As this is longer than the
transaction timeout, the application server prevents the transaction from being committed, and it is
rolled back.

For further information about how to configure the NON.ASF.RECEIVE.TIMEOUT and Total transaction
lifetime timeout properties to avoid unwanted transaction time outs, see the related tasks.

Message-driven beans - JCA components
There are several administrative components that you configure for message-driven beans as listeners on
a Java EE Connector Architecture (JCA) 1.5 resource adapter.

Components for a JCA resource adapter

When a resource adapter is installed, it provides definitions and classes for administered objects such as
activation specifications. The administrator creates and configures activation specifications with Java
Naming and Directory Interface (JNDI) names that are then available for applications to use.

The JCA resource adapter uses an activation specification to configure a particular endpoint. Each
application that configures one or more endpoints must specify the resource adapter that sends messages
to the endpoint. The application uses the activation specification to provide configuration properties for the
processing of inbound messages.

JMS components used with a JCA messaging provider

Message-driven beans that implement the javax.jms.MessageListener interface can be used with JMS
messaging.

An application that uses JMS messaging needs access at runtime to configured objects such as
connection factories and destinations:

v When the JMS provider is the default JMS provider or the WebSphere MQ messaging provider, the
administrator configures these objects for the JMS provider. For example, to configure a JMS activation
specification for the WebSphere MQ messaging provider, in the WebSphere Application Server
administrative console navigate to Resources > JMS->Activation specifications.

v Otherwise the administrator configures these objects for the JMS resource adapter, which connects the
application to a JMS provider, by navigating to Resources > Resource Adapters.

If the application contains one or more message-driven beans, the administrator must configure either a
JMS activation specification or a message listener port. For JCA-compliant messaging providers, the
administrator usually configures an activation specification. But for the WebSphere MQ messaging provider
there is a choice; the administrator can configure an activation specification or, for compatibility with
previous versions of WebSphere Application Server, the administrator can configure a message listener
port.

The JMS activation specification provides the deployer with information about the configuration properties
of a message-driven bean related to the processing of the inbound messages. For example, a JMS
activation specification specifies the name of the service integration bus to connect to, information about
the message acknowledgement modes, message selectors, destination types, and whether durable
subscriptions are shared across connections with members of a server cluster.

The activation specification identifies a JMS destination by specifying its JNDI name. The message-driven
bean acts as a listener on a specific JMS destination.

Chapter 15. Messaging resources 491

The JMS destination refers to a service integration bus destination (or WebSphere MQ destination) that
the administrator must also configure. For more information about JMS resources and service integration,
see “Default messaging” on page 378.

J2C activation specification configuration and use
Configure J2C activation specifications, and use them in the deployment of message-driven beans for JCA
1.5 resources.

J2C activation specifications are part of the configuration of inbound messaging support that can be part of
a JCA 1.5 resource adapter. Each JCA 1.5 resource adapter that supports inbound messaging defines one
or more types of message listener in its deployment descriptor (messagelistener in the ra.xml). The
message listener is the interface that the resource adapter uses to communicate inbound messages to the
message endpoint. A message-driven bean (MDB) is a message endpoint and implements one of the
message listener interfaces provided by the resource adapter. By allowing multiple types of message
listener, a resource adapter can support a variety of different protocols. For example, the interface
javax.jms.MessageListener, is a type of message listener that supports JMS messaging. For each type of
message listener that a resource adapter implements, the resource adapter defines an associated
activation specification (activationspec in the ra.xml). The activation specification is used to set
configuration properties for a particular use of the inbound support for the receiving endpoint.

When an application containing a message-driven bean is deployed, the deployer must select a resource
adapter that supports the same type of message listener that the message-driven bean implements. As
part of the message-driven bean deployment, the deployer needs to specify the properties to set on the
J2C activation specification. Later, during application startup, a J2C activation specification instance is
created, and these properties are set and used to activate the endpoint (that is, to configure the resource
adapter inbound support for the specific message-driven bean).

Applications with message-driven beans can also specify all, some, or none of the configuration properties
needed by the ActivationSpec class, to override those defined by the resource adapter-scoped definition.
These properties, specified as activation-config properties in the deployment descriptor for the application,
are configured when the application is assembled. To change any of these properties requires redeploying
the application. These properties are unique to this applications use and are not shared with other
message-driven beans. Any properties defined in the application deployment descriptor take precedence
over those defined by the resource adapter-scoped definition. This allows application developers to choose
the best defaults for their applications.

Message-driven beans - transaction support
Message-driven beans can handle messages on destinations (or endpoints) within the scope of a
transaction.

Transaction handling when using the Message Listener Service with WebSphere
MQ JMS

There are three possible cases, based on the message-driven bean deployment descriptor setting you
choose: container-managed transaction (required), container-managed transaction (not supported), and
bean-managed transaction.

In the message-driven bean deployment descriptor settings, you can choose whether the message-driven
bean manages its own transactions (bean-managed transaction), or whether a container manages
transactions on behalf of the message-driven bean (container-managed transaction). If you choose
container-managed transactions, in the deployment descriptor notebook, you can select a container
transaction type for each method of the bean to determine whether container transactions are required or
not supported. The default container transaction type is required.

Container-managed transaction (required)

492 Overview

In this case, the application server starts a global transaction before it reads any incoming
message from the destination, and before the onMessage() method of the message-driven bean is
invoked by the application server. This means that other EJBs that are invoked in turn by the
message, and interactions with resources such as databases can all be scoped inside this single
global transaction, within which the incoming message was obtained.

If this application flow completes successfully, the global transaction is committed. If the flow does
not complete successfully, (if the transaction is marked for rollback or if a runtime exception
occurs), the transaction is rolled back, and the incoming message is rolled back onto the
message-driven bean destination.

Container-managed transaction (not supported)

In this case there is no global transaction, but the JMS provider can still deliver a message from a
message-driven bean destination to the application server in a unit of work. You can consider this
as a local transaction, because it does not involve other resources in its transactional scope.

The application server acknowledges message delivery on successful completion of the
onMessage() dispatch of the message-driven bean (using the acknowledgement mode specified by
the assembler of the message-driven bean).

However, the application server does not perform an acknowledge, if an unchecked runtime
exception is thrown from the onMessage() method. So, does the message roll back onto the
message-driven bean destination (or is it acknowledged and deleted)?

The answer depends on whether a syncpoint is used by your JMS provider and can vary
depending on the operating platform (in particular the z/OS operating platform can impart different
behavior here).

If your JMS provider establishes a syncpoint around the message-driven bean message
consumption in this container-managed transaction (not supported) case, the message is rolled
back onto the destination after an unchecked exception.

If a syncpoint is not used, then the message is deleted from the destination after an unchecked
exception.

For related information, see the technote “MDB behavior is different on z/OS than on distributed
when getting nonpersistent messages within syncpoint” at http://www.ibm.com/support/
docview.wss?uid=swg21231549.

Bean-managed transaction

In this case, the action is similar to the container-managed transaction (not supported) case. Even
though there might be a user transaction in this case, any user transaction started within the
onMessage dispatch of the message-driven bean does not include consumption of the message
from the message-driven bean destination within the transaction scope. To do this, use the
container-managed transaction (required) scenario.

Message redelivery

In each of the previous three cases, a message that is rolled back onto the message-driven bean
destination is eventually re-dispatched. If the original rollback was due to a temporary system problem, you
would expect the re-dispatch of the message-driven bean with this message to succeed on re-dispatch. If,
however, the rollback was due to a specific message-related problem, the message would repeatedly be
rolled back and re-dispatched. This is known as a poison message scenario.

If your messaging system uses listener ports, the application server handles this scenario, by tracking the
frequency with which a specific message is dispatched, and by stopping the associated listener port after a
specified number of attempted re-deliveries of that message have occurred.

Chapter 15. Messaging resources 493

http://www.ibm.com/support/docview.wss?uid=swg21231549
http://www.ibm.com/support/docview.wss?uid=swg21231549

If your messaging system uses listener ports, you can avoid a poison message scenario by configuring the
following property:

Maximum Retries
The Maximum Retries parameter specifies the number of times that the listener tries to deliver a
specific message to a message-driven bean instance before the listener is stopped.

If this parameter is set to 0 the listener port will stop after a single failure of a message to be
delivered successfully.

For more information about this property, see Listener port settings.

If your messaging system uses activation specifications, the poison message scenario is handled in a
slightly different way. Whereas listener ports track the number of times a specific message has failed and
been re-delivered, activation specifications count the number of sequential message delivery failures.

If your messaging system uses the default messaging provider (service integration), you must configure
the following properties on your activation specification to avoid a poison message scenario:

Automatically stop endpoints on repeated message failure
You must make sure that this option is selected.

This property suspends message delivery to the endpoint when the Sequential failed message
threshold is reached.

Sequential failed message threshold
This parameter determines how many message deliveries can fail before message delivery is
suspended.

To enable this parameter you must have the Automatically stop endpoints on repeated message
failure option selected.

Delay between failing message retries
This parameter specifies how much time must elapse before a message which has failed to be
delivered successfully, is re-delivered.

If you specify 0 for this parameter there will be no delay before a message is re-delivered.

To enable this parameter you must have the Automatically stop endpoints on repeated message
failure option selected.

For more information on these properties, see JMS activation specification [Settings].

If your messaging system uses the WebSphere MQ messaging provider, you must configure the following
properties on your activation specification to avoid a poison message scenario:

Stop endpoint if message delivery fails
You must make sure that this option is selected.

This property suspends message delivery to the endpoint when the Number of sequential
delivery failures before suspending endpoint is reached.

Number of sequential delivery failures before suspending endpoint
This parameter determines how many message deliveries can fail before message delivery is
suspended.

To enable this parameter you must have the Stop endpoint if message delivery fails option
selected.

For more information on these properties, see WebSphere MQ messaging provider activation specification
advanced properties

494 Overview

As an alternative to relying on your application server to stop the listener port or activation specification if a
poison message scenario occurs, you can configure WebSphere MQ to resolve the problem. In
WebSphere MQ specify a backout queue (BOQUEUE), and a backout threshold value (BOTHRESH). If you do
this, WebSphere MQ handles the poison message. For more information about handling poison messages,
see the WebSphere MQ Using Java section of the WebSphere MQ library.

Message-driven beans - listener port components
The WebSphere Application Server support for message-driven beans deployed against listener ports is
based on JMS message listeners and the message listener service, and builds on the application server
facility (ASF) support in the JMS provider.

Note: From WebSphere Application Server Version 7, listener ports are stabilized. For more information,
read the article on stabilized features. For information about the facilities available to aid migration
of configuration information from a listener port to an activation specification for use with the
WebSphere MQ messaging provider, refer to related tasks.

The main components of WebSphere Application Server support for message-driven beans are shown in
the following figure and described after the figure:

The message listener service is an extension to the JMS functions of the JMS provider and provides a
listener manager, which controls and monitors one or more JMS listeners. Each listener monitors either a
JMS queue destination (for point-to-point messaging) or a JMS topic destination (for publish/subscribe
messaging).

A connection factory is used to create connections with the JMS provider for a specific JMS queue or topic
destination. Each connection factory encapsulates the configuration parameters needed to create a
connection to a JMS destination.

MDB1

Message

Listeners

JMS provider
destinations

MDB2Message-driven beans MDB3 MDB4

LP3

LP2

LP1

D1 D2 D3

CF1

CF2

JMS Provider

Connection
factoriesListener

ports

Connections

JMS
Destinations

WebSphere Application Server

Message
listener service

Figure 87. The main components for message-driven beans

Chapter 15. Messaging resources 495

http://www.ibm.com/software/integration/wmq/library/

A listener port defines the association between a connection factory, a destination, and a deployed
message-driven bean. Listener ports are used to simplify the administration of the associations between
these resources.

When you deploy a message-driven bean, you associate the bean with a listener port. When a message
arrives on the destination, the listener passes the message to a new instance of a message-driven bean
for processing.

When an application server is started, it initializes the message listener service based on the configuration
data. The message listener service creates a dynamic session thread pool for use by listeners, creates
and starts listeners, and during server termination controls the cleanup of message listener service
resources. Each listener completes several steps for the JMS destination that it is to monitor, including:
v Creating a JMS server session pool, and allocating JMS server sessions and session threads for

incoming messages.
v Interfacing with JMS ASF to create JMS connection consumers to listen for incoming messages.
v If specified, starting a transaction and requesting that it is committed (or rolled back) when the EJB

method has completed.
v Processing incoming messages by invoking the onMessage() method of the specified enterprise bean.

JMS interfaces - explicit polling for messages
Applications can use JMS to explicitly poll for messages on a destination, then retrieve messages for
processing by business logic beans (enterprise beans).

WebSphere Application Server supports asynchronous messaging based on the Java Message Service
(JMS) and Java EE Connector Architecture (JCA) specifications, which provide a common way for Java
programs (clients and Java EE applications) to create, send, receive, and read asynchronous requests, as
messages.

The base support for asynchronous messaging that uses JMS, shown in the following figure, provides the
common set of JMS interfaces and associated semantics that define how a JMS client can access the
facilities of a JMS provider. This enables WebSphere J2EE applications, as JMS clients, to exchange
messages asynchronously with other JMS clients by using JMS destinations (queues or topics).

Applications can use both point-to-point and publish/subscribe messaging (referred to as “messaging
domains” in the JMS specification), and support the different semantics of each domain.

WebSphere Application Server supports applications that use JMS 1.1 domain-independent interfaces
(referred to as the “common interfaces” in the JMS specification). With JMS 1.1, the preferred approach for
implementing applications is to use the common interfaces. The JMS 1.1 common interfaces provide a
simpler programming model than domain-specific interfaces. Also, applications can create both queues
and topics in the same session and coordinate their use in the same transaction.

The common interfaces are also parents of domain-specific interfaces. These domain-specific interfaces
(provided for JMS 1.0.2 in WebSphere Application Server Version 5) are supported only to provide
inter-operation and compatibility with applications that have already been implemented to use those
interfaces.

A WebSphere application can use the JMS interfaces to explicitly poll a JMS destination to retrieve an
incoming message, then pass the message to a business logic bean. The business logic bean uses
standard JMS calls to process the message; for example, to extract data or to send the message on to
another JMS destination.

496 Overview

WebSphere applications can use standard JMS calls to process messages, including any responses or
outbound messaging. Responses can be handled by an enterprise bean acting as a sender bean, or
handled in the enterprise bean that receives the incoming messages. Optionally, this process can use
two-phase commit within the scope of a transaction.

WebSphere applications can also use message-driven beans, as described in the related topics about
message-driven beans.

For more details about JMS, see Sun's Java Message Service (JMS) specification documentation.

Figure 88. Asynchronous messaging by using JMS

Chapter 15. Messaging resources 497

http://developer.java.sun.com/developer/technicalArticles/Networking/messaging/

498 Overview

Chapter 16. Naming and directory

This page provides a starting point for finding information about naming support. Naming includes both
server-side and client-side components. The server-side component is a Common Object Request Broker
Architecture (CORBA) naming service (CosNaming). The client-side component is a Java™ Naming and
Directory Interface (JNDI) service provider. JNDI is a core component in the Java Platform, Enterprise
Edition (Java EE) programming model.

The WebSphere® JNDI service provider can be used to interoperate with any CosNaming name server
implementation. Yet WebSphere name servers implement an extension to CosNaming, and the JNDI
service provider uses those WebSphere extensions to provide greater capability than CosNaming alone.
Some added capabilities are binding and looking up of non-CORBA objects.

Java EE applications use the JNDI service provider supported by WebSphere Application Server to obtain
references to objects related to server applications, such as enterprise bean (EJB) homes, which have
been bound into a CosNaming name space.

Naming
Naming is used by clients of WebSphere Application Server applications to obtain references to objects
related to those applications, such as enterprise bean (EJB) homes.

These objects are bound into a mostly hierarchical structure, referred to as a namespace. In this structure,
all non-leaf objects are called contexts. Leaf objects can be contexts and other types of objects. Naming
operations, such as lookups and binds, are performed on contexts. All naming operations begin with
obtaining an initial context. You can view the initial context as a starting point in the namespace.

The namespace structure consists of a set of name bindings, each consisting of a name relative to a
specific context and the object bound with that name. For example, the name myApp/myEJB consists of one
non-leaf binding with the name myApp, which is a context. The name also includes one leaf binding with the
name myEJB, relative to myApp. The object bound with the name myEJB in this example happens to be an
EJB home reference. The whole name myApp/myEJB is relative to the initial context, which you can view as
a starting place when performing naming operations.

You can access and manipulate the namespace through a name server. Users of a name server are
referred to as naming clients. Naming clients typically use the Java Naming and Directory Interface (JNDI)
to perform naming operations. Naming clients can also use the Common Object Request Broker
Architecture (CORBA) CosNaming interface.

You can use security to control access to the namespace. For more information, see Naming roles.

Typically, objects bound to the namespace are resources and objects associated with installed
applications. These objects are bound by the system, and client applications perform lookup operations to
obtain references to them. Occasionally, server and client applications bind objects to the namespace. An
application can bind objects to transient or persistent partitions, depending on requirements.

In Java Platform, Enterprise Edition (Java EE) or Java Platform, Standard Edition (Java SE) environments,
some JNDI operations are performed with java: URL names. Names bound under these names are
bound to a completely different namespace which is local to the calling process. However, some lookups
on the java: namespace may trigger indirect lookups to the name server.

Namespace logical view
The namespace for the entire cell is federated among all servers in the cell. Every server process contains
a name server. All name servers provide the same logical view of the cell namespace.

© IBM Corporation 2009 499

The various server roots and persistent partitions of the namespace are interconnected by a system
namespace. You can use the system namespace structure to traverse to any context in a cell's
namespace.

A logical view of the namespace in a multiple-server installation is shown in the following diagram.

The bindings in the preceding diagram appear with solid arrows, labeled in bold, and dashed arrows,
labeled in gray. Solid arrows represent primary bindings. A primary binding is formed when the associated
subcontext is created. Dashed arrows show linked bindings. A linked binding is formed when an existing
context is bound under an additional name. Linked bindings are added for convenience or interoperability
with previous WebSphere Application Server versions.

A cell namespace is composed of contexts which reside in servers throughout the cell. All name servers in
the cell provide the same logical view of the cell namespace. A name server constructs this view at startup
by reading configuration information. Each name server has its own local in-memory copy of the
namespace and does not require another running server to function. There are, however, a few
exceptions. Server roots for other servers are not replicated among all the servers. The respective server
for a server root must be running to access that server root context.

In WebSphere Application Server Network Deployment cells, the cell and node persistent areas can be
read even if the deployment manager and respective node agent are not running. However, the
deployment manager must be running to update the cell persistent segment, and a node agent must be
running to update its respective node persistent segment.

System Namespace

(Read Only)

Cell Persistent

(Read/Write)

Server Roots

(Read/Write Transient)

Node Persistent

(Read/Write)

X

Y

Z

X

Y

Z

L

M
N

A

B

C

A
B

C

nodes

Cell root
of foreign cell

Foreign cells

Cell clusters

BS

User persistent
sub-ctxs & objs

User persistent
sub-ctxs & objs

Node persistent
root

User transient
sub-ctxs & objs

A

B

C

System artifact
sub-ctxs & objs

BS
Server root

<user-created-bindings>

<physical-server-name>
<cluster-name>

<user-created-bindings>

<user-created-bindings>

<system-artifacts>

<foreign-cell-names>

<node-name>

cell

domain nodeAgent

clusters

deploymentManager

legacyRoot

cells

domain

cell

nodes

Logical View of a Cell's Namespace

cell

Y
Z

persistent

servers

cell

X
Y

Z

Node root
BS

Cell persistent
root

BS

Cell root
BS

Applications

(Read/Write Transient)

System artifact
sub-ctxs & objs

BS

Applications root

<system-artifacts>

cell

persistent

X
Node physical

servers

applications

500 Overview

Namespace partitions

There are five major partitions in a cell namespace:
v System namespace partition
v Server roots partition
v Cell persistent partition
v Node persistent partition
v Applications partition

System namespace partition
The system namespace contains a structure of contexts based on the cell topology. The system
structure supports traversal to all parts of a cell namespace and to the cell root of other cells,
which are configured as foreign cells. The root of this structure is the cell root. In addition to the
cell root, the system structure contains a node root for each node in the cell. You can access other
contexts of interest specific to a node from the node root, such as the node persistent root and
server roots for servers configured in that node.

All contexts in the system namespace are read-only. You cannot add, update, or remove any
bindings.

Server roots partition
Each server in a cell has a server root context. A server root is specific to a particular server. You
can view the server roots for all servers in a cell as being in a transient read/write partition of the
cell namespace. System artifacts, such as enterprise bean (EJB) homes for server applications
and resources, are bound under the server root context of the associated server. A server
application can also add bindings under its server root. These bindings are transient. Therefore,
the server application creates all required bindings at application startup, so they exist anytime the
application is running.

A server cluster is composed of many servers that are logically equivalent. Each member of the
cluster has its own server root. These server roots are not replicated across the cluster. In other
words, adding a binding to the server root of one member does not propagate it to the server roots
of the other cluster members. To maintain the same view across the cluster, you should create all
user bindings under the server root by the server application at application startup so that the
bindings are present under the server root of each cluster member. Because of Workload
Management (WLM) behavior, a JNDI client outside a cluster has no control over which cluster
member's server root context becomes the target of the JNDI operation. Therefore, you should
execute bind operations to the server root of a cluster member from within that cluster member
process only.

Server-scoped configured name bindings are relative to a server's server root.

The name of a cluster member must be unique within a cell and must be different from the cell
name.

Cell persistent partition
The root context of the cell persistent partition is the cell persistent root. A binding created under
the cell persistent root is saved as part of the cell configuration and continues to exist until it is
explicitly removed. Applications that need to create additional persistent bindings of objects
generally associated with the cell can bind these objects under the cell persistent root.

It is important to note that the cell persistent area is not designed for transient, rapidly changing
bindings. The bindings are more static in nature, such as part of an application setup or
configuration, and are not created at run time.

The cell persistent area can be read even if the deployment manager is not running. However, the
deployment manager must be running to update the cell persistent segment. Because every server
contains its own copy of the cell persistent partition, any server can look up locally objects bound
in the cell persistent partition.

Cell-scoped configured name bindings are relative to a cell's cell persistent root.

Chapter 16. Naming and directory 501

Node persistent partition
The node persistent partition is similar to the cell partition except that each node has its own node
persistent root. A binding created under a node persistent root is saved as part of that node
configuration and continues to exist until it is explicitly removed.

Applications that need to create additional persistent bindings of objects associated with a specific
node can bind those objects under that particular node's node persistent root. As with the cell
persistent area, it is important to note that the node persistent area is not designed for transient,
rapidly changing bindings. These bindings are more static in nature, such as part of an application
setup or configuration, and are not created at run time.

The node persistent area for a node can be read from any server in the node even if the
respective node agent is not running. However, the node agent must be running to update the
node persistent area, or for any server outside the node to read from that node persistent partition.
Because every server in a node contains its own copy of the node persistent partition for its node,
any server in the node can look up locally objects bound in that node persistent partition.

Node-scoped configured name bindings are relative to a node's node persistent root.

Applications partition
The Java EE 6 specification introduces module, application, and global namespaces. Java URL
JNDI names that have the prefixes java:module, java:app, and java:global can access the
respective namespaces. In some situations, the namespaces are only locally accessible, and in
other situations the namespaces are remotely accessible.

The applications partition contains namespaces that are remotely accessible. The root of the
java:global namespace is the applications root context. The roots of other namespaces are under
the com.ibm.ws.AppNameSpaces subcontext. For example, the java:app root context for the
application, MyApp, is bound with the name, MyApp/root relative to com.ibm.ws.AppNameSpaces.
Module and component namespaces are only accessible remotely when the module is a client
module in a server-deployed mode or in a federated mode. For example, the java:module root
context for the server-deployed client module MyClientModule in the application MyApp is bound
with the name MyApp/MyClientModule/root relative to com.ibm.ws.AppNameSpaces. The
component namespace, which contains comp/env bindings, for that same module is bound under
MyApp/MyClientModule/ClientComponent/root relative to com.ibm.ws.AppNameSpaces.

Application resources–such as EJB references, resource references, and environment entries–with
java:global names are bound into the java:global namespace when the defining application is
installed. The application does not need to be running for those name bindings to be available to
other applications.

Resources defined in applications with java:global names are bound in the application partition
for all servers in the cell when the data is distributed to their respective nodes. Applications can
look up those objects from any server in the cell. EJB homes are also bound in the java:global
namespace with names of the form java:global/appName/moduleName/beanName, but only in
servers in which the enterprise beans run. However, java:global lookups on any EJB can be
resolved from any server in the cell.

Initial context support
All naming operations begin with obtaining an initial context. You can view the initial context as a starting
point in the namespace. Use the initial context to perform naming operations, such as looking up and
binding objects in the namespace.

Initial contexts registered with the ORB as initial references

The root contexts listed in the following table are registered with the name server's ORB and can be used
as an initial context. An initial context is used by CORBA and enterprise bean applications as a starting
point for namespace lookups. The keys for these roots as recognized by the ORB are shown in the
following table:

502 Overview

Server Root NameServiceServerRoot

Cell Persistent Root NameServiceCellPersistentRoot

Cell Root NameServiceCellRoot, NameService

Node Root NameServiceNodeRoot

Applications Root NameServiceApplicationsRoot

A server root initial context is the server root context for the specific server you are accessing. Similarly, a
node root initial context is the node root for the server being accessed.

You can use the previously mentioned keys in CORBA INS object URLs (corbaloc and corbaname) and as
an argument to an ORB resolve_initial_references call. For examples, see CORBA and JNDI
programming examples, which show how to get an initial context.

Default initial contexts

The default initial context depends on the type of client. Different categories of clients and the
corresponding default initial context follow.

WebSphere Application Server JNDI interface implementation
The JNDI interface is used by EJB applications to perform namespace lookups. WebSphere
Application Server clients by default use the WebSphere Application Server CosNaming JNDI
plug-in implementation. The default initial context for clients of this type is the server root of the
server specified by the provider URL. For more details, refer to the JNDI programming examples
on getting initial contexts.

Other JNDI implementation
Some applications can perform namespace lookups with a non-product CosNaming JNDI plug-in
implementation. Assuming the key NameService is used to obtain the initial context, the default
initial context for clients of this type is the cell root.

CORBA
The standard CORBA client obtains an initial org.omg.CosNaming.NamingContext reference with
the key NameService. The initial context in this case is the cell root.

Lookup names support in deployment descriptors and thin clients
Server application objects, such as enterprise bean (EJB) homes, are bound relative to the server root
context for the server in which the application is installed. Other objects, such as resources, can also be
bound to a specific server root. The names used to look up these objects must be qualified so as to select
the correct server root. This topic discusses what relative and qualified names are, when they can be
used, and how you can construct them.

Beginning in Version 8.0, EJB homes are bound under the name, java:global/appName/moduleName/
beanName. Names of that form are not topology-based and are fully-qualified already. Similarly, all
application resources that are bound with java:global, java:app, or java:module names need no
additional qualification when the java:global, java:app, or java:module lookup name is specified.
Application resources include, for example, EJB references, resource references, and environment entries.

Relative names

All names are relative to a context. Therefore, a name that can be resolved from one context in the
namespace cannot necessarily be resolved from another context in the namespace. This point is
significant because the system binds objects with names relative to the server root context of the server in
which the application is installed. Each server has its own server root context. The initial Java Naming and
Directory Interface (JNDI) context is by default the server root context for the server identified by the

Chapter 16. Naming and directory 503

provider URL used to obtain the initial context. (Typically, the URL consists of a host and port.) For
applications running in a server process, the default initial JNDI context is the server root for that server. A
relative name will resolve successfully when the initial context is obtained from the server which contains
the target object, but it will not resolve successfully from an initial context obtained from another server.

If all clients of a server application run in the same server process as the application, all objects
associated with that application are bound to the same initial context as the clients' initial context. In this
case, only names relative to the server's server root context are required to access these server objects.
Frequently, however, a server application has clients that run outside the application's server process. The
initial context for these clients can be different from the server application's initial context, and lookups on
the relative names for server objects may fail. These clients need to use the qualified name for the server
objects. This point must be considered when setting up the jndiName values in a Java Platform, Enterprise
Edition (Java EE) client application deployment descriptors and when constructing lookup names in thin
clients. Qualified names resolve successfully from any initial context in the cell.

Qualified names

All names are relative to a context. Here, the term qualified name refers to names that can be resolved
from any initial context in a cell. This action is accomplished by using names that navigate to the same
context, the cell root. The rest of the qualified name is then relative to the cell root and uniquely identifies
an object throughout the cell. All initial contexts in a server (that is, all naming contexts in a server
registered with the ORB as an initial reference) contain a binding with the name cell, which links back to
the cell root context. All qualified names begin with the string cell/ to navigate from the current initial
context back to the cell root context.

A qualified name for an object is the same throughout the cell. The name can be topology-based, or some
fixed name bound under the cell persistent root. Topology-based names, described in more detail later in
this section, navigate through the system namespace to reach the target object. A fixed name bound under
the cell persistent root has the same qualified name throughout the cell and is independent of the
topology. Creating a fixed name under the cell persistent root for a server application object requires an
extra step when the server application is installed, but this step eliminates impacts to clients when the
application is moved to a different location in the cell topology. The process for creating a fixed name is
also described later.

Generally, you must use qualified names for EJB jndiName values in a Java EE client application
deployment descriptors and for EJB lookup names in thin clients. The only exception is when the initial
context is obtained from the server in which the target object resides. For example, a session bean which
is a client to an entity bean can use a relative name if the two beans run in the same server. If the session
bean and entity beans run in different servers, the jndiName for the entity bean must be qualified in the
session bean's deployment descriptors. The same requirement may be true for resources as well,
depending on the scope of the resource.

v Topology-based names

The system namespace partition in a cell's namespace reflects the cell's topology. This structure can be
navigated to reach any object bound into the cell's namespace. Topology-based qualified names include
elements from the topology which reflect the object's location within the cell.

For a system-bound object, such as an EJB home, the form for a topology-based qualified name
depends on whether the object is bound to a single server or cluster. Both forms are described as
follows:
Single server

An object bound in a single server has a topology-based qualified name of the following form:
cell/nodes/nodeName/servers/serverName/relativeJndiName

where nodeName and serverName are the node name and server name for the server where
the object is bound, and relativeJndiName is the unqualified name of the object; that is, the
object's name relative to its server's server root context.

504 Overview

Server cluster
An object bound in a server cluster has a topology-based qualified name of the following form:
cell/clusters/clusterName/relativeJndiName

where clusterName is the name of the server cluster where the object is bound, and
relativeJndiName is the unqualified name of the object; that is, the object's name relative to a
cluster member's server root context.

v Fixed names

It is possible to create a fixed name for a server object so that the qualified name is independent of the
cell topology. This quality is desirable when clients of the application run in other server processes or as
pure clients. Fixed names have the advantage of not changing if the object is moved to another server.
The jndiName values in deployment descriptors for a Java EE client application can reference the
qualified fixed name for a server object regardless of the cell topology on which the client or server
application is being installed.

Defining a cell-wide fixed name for a server application object requires an extra step after the server
application is installed. That is, a binding for the object must be created under the cell persistent root. A
fixed name bound under the cell persistent root can be any name, but all names under the cell
persistent root must be unique within the cell because the cell persistent root is global to the entire cell.

A qualified fixed name has the form:
cell/persistent/fixedName

where fixedName is an arbitrary fixed name.

The binding can be created programmatically (for example, using JNDI). However, it is probably more
convenient to configure a cell-scoped binding for the server object.

You must keep the programmatic or configured binding up-to-date. Configured EJB bindings are based
on the location of the enterprise bean within the cell topology, and moving the EJB application to
another server, for example, requires the configured binding to be updated. Similar changes affect an
EJB home reference programmatically bound so that the fixed name would need to be rebound with a
current reference. However, for Java EE clients, the jndiName value for the object, and for thin clients,
the lookup name for the object, remains the same. In other words, clients that access objects by fixed
names are not affected by changes to the configuration of server applications they access.

Using lookup names in deployment descriptor bindings

Java EE applications can contain deployment descriptors, such as ejb-ref, resource-ref, and
resource-env-ref, that are used to declare various types of references. These reference declarations define
java:comp/env lookup names that are available to corresponding Java EE components. Each
java:comp/env lookup name must be mapped to a lookup name in the global name space, relative to the
server root context, which is the default initial JNDI context.

If a reference maps to an object that is bound under the server root context for the same server as the
component that is executing the lookup, you can use a relative lookup name. If a reference maps to an
object that is bound under the server root context of another server, you must qualify the lookup name. For
example, you must qualify a lookup name if a servlet, that is running on one server, declares an ejb-ref for
an EJB that is running on another server. Similarly, if the reference maps to an object that is bound into a
persistent partition of the name space, or to an object that is bound through a cell-scoped or node-scoped
configured name space binding, you must use a qualified name.

You can specify deployment descriptor reference binding values when you install the application, and edit
them after the application is installed. If you need to change the JNDI lookup name a reference maps to,
in the administrative console, click Applications > Application Types > WebSphere enterprise
applications > application_name. In the References section, there are links that correspond to the
various reference types, such as EJB references and Resource environment entry references, that are
declared by this application. Click on the link for the reference type that you need to change, and then

Chapter 16. Naming and directory 505

specify a new value in the Target Resource JNDI Name field.

JNDI support in WebSphere Application Server
The product includes a name server to provide shared access to Java components, and an
implementation of the javax.naming JNDI package which supports user access to the name server through
the Java Naming and Directory Interface (JNDI) naming interface.

The product does not provide implementations for:
v javax.naming.directory or
v javax.naming.ldap packages

Also, the product does not support interfaces defined in the javax.naming.event package.

However, to provide access to LDAP servers, the development kit shipped with the product supports the
implementation of:
v javax.naming.ldap and
v com.sun.jndi.ldap.LdapCtxFactory

The WebSphere Application Server JNDI implementation is based on the JNDI interface, and was tested
with the JNDI Service Provider Interface (SPI).

The default behavior of this JNDI implementation is adequate for most users. However, users with specific
requirements can control certain aspects of JNDI behavior.

Configured name bindings
Administrators can configure bindings into the namespace. A configured binding is different from a
programmatic binding in that the system creates the binding every time a server is started, even if the
target context is in a transient partition.

Administrators can add name bindings to the namespace through the configuration. Name servers add
these configured bindings to the namespace view, by reading the configuration data for the bindings.
Configuring bindings is an alternative to creating the bindings from a program. Configured bindings have
the advantage of being created each time a server starts, even when the binding is created in a transient
partition of the namespace. Cell-scoped configured bindings provide a fixed qualified name for server
application objects.

Scope

You can configure a binding at one of the following four scopes: cell, node, server, or cluster. Cell-scoped
bindings are created under the cell persistent root context. Node-scoped bindings are created under the
node persistent root context for the specified node. Server-scoped bindings are created under the server
root context for the selected server. Cluster-scoped bindings are created under the server root context in
each member of the selected cluster.

The scope you select for new bindings depends on how the binding is to be used. For example, if the
binding is not specific to any particular node, cluster, or server, or if you do not want the binding to be
associated with any specific node, cluster, or server, a cell-scoped binding is a suitable scope. Defining
fixed names for enterprise beans to create fixed qualified names is just such an application. If a binding is
to be used only by clients of an application running on a particular server (or cluster), or if you want to
configure a binding with the same name on different servers (or clusters) which resolve to different objects,
a server-scoped (or cluster-scoped) binding would be appropriate. Note that two servers or clusters can
have configured bindings with the same name but resolve to different objects. At the cell scope, only one
binding with a given name can exist.

506 Overview

Intermediate contexts

Intermediate contexts created with configured bindings are read-only. For example, if an EJB home binding
is configured with the name some/compound/name/ejbHome, the intermediate contexts some, some/compound,
and some/compound/name will be created as read-only contexts. You cannot add, update, or remove any
read-only bindings.

The configured binding name cannot conflict with existing bindings. However, configured bindings can use
the same intermediate context names. Therefore, a configured binding with the name
some/compound/name2/ejbHome2 does not conflict with the previous example name.

Configured binding types

Types of objects that you can bind follow:

EJB: EJB home installed in some server in the cell
The following data is required to configure an EJB home binding:
v JNDI name of the EJB server or server cluster where the enterprise bean is deployed
v Target root for the configured binding (scope)
v The name of the configured binding, relative to the target root.

A cell-scoped EJB binding is useful for creating a fixed lookup name for an enterprise bean so that
the qualified name is not dependent on the topology.

Note: In stand-alone servers, an EJB binding resolving to another server cannot be configured
because the name server does not read configuration data for other servers. That data is
required to construct the binding.

CORBA: CORBA object available from some CosNaming name server
You can identify any CORBA object bound into some INS compliant CosNaming server with a
corbaname URL. The referenced object does not have to be available until the binding is actually
referenced by some application.

The following data is required in order to configure a CORBA object binding:
v The corbaname URL of the CORBA object
v An indicator if the bound object is a context or leaf node object (to set the correct CORBA

binding type of context or object)
v Target root for the configured binding
v The name of the configured binding, relative to the target root

Indirect: Any object bound in WebSphere Application Server namespace accessible with JNDI
Besides CORBA objects, this includes javax.naming.Referenceable, javax.naming.Reference, and
java.io.Serializable objects. The target object itself is not bound to the namespace. Only the
information required to look up the object is bound. Therefore, the referenced name server does
not have to be running until the binding is actually referenced by some application. The following
data is required in order to configure an indirect JNDI lookup binding:
v JNDI provider URL of name server where object resides
v JNDI lookup name of object
v Target root for the configured binding (scope)
v The name of the configured binding, relative to the target root.

A cell-scoped indirect binding is useful when creating a fixed lookup name for a resource so that
the qualified name is not dependent on the topology. You can also achieve this topology by
widening the scope of the resource definition.

String: String constant
You can configure a binding of a string constant. The following data is required to configure a
string constant binding:
v String constant value

Chapter 16. Naming and directory 507

v Target root for the configured binding (scope)
v The name of the configured binding, relative to the target root

Namespace federation
Federating namespaces involves binding contexts from one namespace into another namespace.

For example, assume that a namespace, Namespace 1, contains a context under the name a/b. Also
assume that a second namespace, Namespace 2, contains a context under the name x/y. (See the
following illustration.) If context x/y in Namespace 2 is bound into context a/b in Namespace 1 under the
name f2, the two namespaces are federated. Binding f2 is a federated binding because the context
associated with that binding comes from another namespace. From Namespace 1, a lookup of the name
a/b/f2 returns the context bound under the name x/y in Namespace 2. Furthermore, if context x/y
contains an enterprise bean (EJB) home bound under the name ejb1, the EJB home can be looked up
from Namespace 1 with the lookup name a/b/f2/ejb1. Notice that the name crosses namespaces. This
fact is transparent to the naming client.

In a product namespace, you can create federated bindings with the following restrictions:

v Federation is limited to CosNaming name servers. A product name server is a Common Object Request
Broker Architecture (CORBA) CosNaming implementation. You can create federated bindings to other
CosNaming contexts. You cannot, for example, bind contexts from an LDAP name server
implementation.

v If you use JNDI to federate the namespace, you must use a WebSphere Application Server initial
context factory to obtain the reference to the federated context. If you use some other initial context
factory implementation, you might not be able to create the binding or the level of transparency might
be reduced.

v A federated binding to a non-product naming context has the following functional limitations:
– JNDI operations are restricted to the use of CORBA objects. For example, you can look up EJB

homes, but you cannot look up non-CORBA objects such as data sources.

Initial Context

a

Local Context

Local Context

Federated

Context

(remote reference)

b

f2

Name Space 1

Initial Context

x

Local Context

Local Context

y

ejb1

Name Space 2

EJB

Federated Name Spaces

508 Overview

– JNDI caching is not supported for non-product namespaces. This restriction affects the performance
of lookup operations only.

– If security is enabled, the producr does not support federated bindings to non-product namespaces.

v Do not federate two product stand-alone server namespaces. Incorrect behavior might result. If you
want to federate product namespaces, use servers running under the WebSphere Application Server,
Network Deployment package of WebSphere Application Server.

v When federating the namespaces of two cells running a WebSphere Application Server, Network
Deployment package of WebSphere Application Server, the names of the cells must be different.
Otherwise, incorrect behavior can result.

Naming roles
The Java 2 Platform, Enterprise Edition (J2EE) role-based authorization concept is extended to protect the
CosNaming service.

CosNaming security offers increased granularity of security control over CosNaming functions. CosNaming
functions are available on CosNaming servers such as the WebSphere Application Server. They affect the
content of the name space. Generally two ways are acceptable in which client programs result in
CosNaming calls. The first is through the Java Naming and Directory Interface (JNDI) methods. The
second is CORBA clients invoking CosNaming methods directly.

The following security roles exist. However, the roles have an authority level from low to high as shown in
the following list. The list also provides the security-related interface methods for each role. The interface
methods that are not listed are either not supported or not relevant to security.
v CosNamingRead. Users who are assigned the CosNamingRead role can do queries of the name space,

such as through the JNDI lookup method. The Everyone special-subject is the default policy for this
role.

Table 44. CosNamingRead role packages and interface methods. The following table lists the CosNamingRead role
packages and interface methods:
Package Interface methods

javax.naming v Context.list
v Context.listBindings
v Context.lookup
v NamingEnumeration.hasMore
v NamingEnumeration.next

org.omg.CosNaming v NamingContext.list
v NamingContext.resolve
v BindingIterator.next_one
v BindingIterator.next_n
v BindingIterator.destroy

v CosNamingWrite. Users who are assigned the CosNamingWrite role can do write operations (such as
JNDI bind, rebind, or unbind) plus CosNamingRead operations. As a default policy, Subjects are not
assigned this role.

Table 45. CosNamingWrite role packages and interface methods. The following table lists the CosNamingWrite role
packages and interface methods:
Package Interface methods

javax.naming v Context.bind
v Context.rebind
v Context.rename
v Context.unbind

org.omg.CosNaming v NamingContext.bind
v NamingContext.bind_context
v NamingContext.rebind
v NamingContext.rebind_context
v NamingContext.unbind

Chapter 16. Naming and directory 509

v CosNamingCreate. Users who are assigned the CosNamingCreate role are allowed to create new
objects in the name space through JNDI createSubcontext operations plus CosNamingWrite operations.
As a default policy, Subjects are not assigned this role.

Table 46. CosNamingCreate role packages, interface methods. The following table lists the CosNamingCreate role
packages, interface methods:
Package Interface methods

javax.naming Context.createSubcontext

org.omg.CosNaming NamingContext.bind_new_context

v CosNamingDelete. Users who are assigned the CosNamingDelete role can destroy objects in the name
space, for example byusing the JNDI destroySubcontext method and CosNamingCreate operations. As
a default policy, Subjects are not assigned this role.

Table 47. CosNamingDelete role packages and interface methods. The following table lists the CosNamingDelete
role packages and interface methods:
Package Interface methods

javax.naming Context.destroySubcontext

org.omg.CosNaming NamingContext.destroy

Important: The javax.naming package applies to the CosNaming JNDI service provider only. All of the
variants of a JNDI interface method have the same role mapping.

If the caller is not authorized, the packages listed in the previous tables exhibit the following behavior:

javax.naming
This package creates the javax.naming.NoPermissionException exception, which maps
NO_PERMISSION from the CosNaming method invocation to NoPermissionException.

org.omg.CosNaming
This package creates the org.omg.CORBA.NO_PERMISSION exception.

Users, groups, or the AllAuthenticated and Everyone special subjects can be added or removed to or from
the naming roles from the WebSphere Application Server administrative console at any time. However, you
must restart the server for the changes to take effect. A best practice is to map groups or one of the
special-subjects, rather than specific users, to Naming roles because it is more flexible and easier to
administer in the long run. By mapping a group to a naming role, adding or removing users to or from the
group occurs outside of WebSphere Application Server and does not require a server restart for the
change to take effect.

If a user is assigned a particular naming role and that user is a member of a group that is assigned a
different naming role, the user is granted the most permissive access between the role that is assigned
and the role the group is assigned. For example, assume that the MyUser user is assigned the
CosNamingRead role. Also, assume that the MyGroup group is assigned the CosNamingCreate role. If the
MyUser user is a member of the MyGroup group, the MyUser user is assigned the CosNamingCreate role
because the user is a member of the MyGroup group. If the MyUser user is not a member of the MyGroup
group, is assigned the CosNamingRead role.

The CosNaming authorization policy is only enforced when administrative security is enabled. When
administrative security is enabled, attempts to do CosNaming operations without the proper role
assignment result in a org.omg.CORBA.NO_PERMISSION exception from the CosNaming server.

In WebSphere Application Server, each CosNaming function is assigned to one role only. Therefore, users
who are assigned the CosNamingCreate role cannot query the name space unless they also are assigned
the CosNamingRead role. In most cases, a creator needs three roles assigned: CosNamingRead,
CosNamingWrite, and CosNamingCreate. The CosNamingRead and CosNamingWrite roles assignment for
the creator in the previous example have been included in CosNamingCreate role. In most cases,

510 Overview

WebSphere Application Server administrators do not have to change the roles assignment for every user
or group when they move to this release from a previous one.

Although the ability exists to greatly restrict access to the name space by changing the default policy,
doing so might result in unexpected org.omg.CORBA.NO_PERMISSION exceptions at runtime. Typically,
J2EE applications access the name space and the identity is that of the user that authenticated to
WebSphere Application Server when he J2EE application is accessed. Unless the J2EE application
provider clearly communicates the expected naming roles, fully consider changing the default naming
authorization policy.

Foreign cell bindings
If you have applications in a cell that access other applications in another cell, you can configure a foreign
cell name binding for the other cell. A foreign cell name binding is a context binding that resolves to the
Cell Root context of the other cell. All applications in the local cell can look up objects in the foreign cell
through the foreign cell binding.

Foreign cell bindings limit bootstrap address information for a foreign cell to a single location, instead of
placing in the local cell's application deployment data the bootstrap address information contained in every
foreign cell reference. If the bootstrap address for the foreign cell changes, you only need to update the
foreign cell binding. You do not need to update the deployment data for any application in the local cell
that looks up application objects in the foreign cell through the foreign cell binding.

For example, assume the foreign cell CellB has a cell-scoped EJB namespace binding configured with a
name in the namespace of ejb/AccountHome. Applications running in CellB would look up the home with a
JNDI name of cell/persistent/ejb/AccountHome. (J2EE applications would actually use a java:comp/env
name that maps to that JNDI name through deployment descriptor data.) If you configure a foreign cell
binding to CellB in the local cell, applications running in the local cell can look up AccountHome with a
JNDI name of cell/cells/CellB/persistent/ejb/AccountHome. In both lookup names, the suffix
persistent/ejb/AccountHome is relative to the Cell Root context in CellB.

The foreign cell and the local cell must have different names.

Naming and directories: Resources for learning
Additional information and guidance on naming and directories is available on various Internet sites.

Use the following links to find relevant supplemental information about naming and directories. The
information resides on IBM and non-IBM Internet sites, whose sponsors control the technical accuracy of
the information.

The naming service provided with WebSphere Application Server Versions 6.x, 7.x, and 8.0 is the same as
that provided for Version 5, thus information on the Version 5.0 naming and directories applies to Version
6.0 and later.

The following links are provided for convenience. Often, the information is not specific to the IBM
WebSphere Application Server product, but is useful all or in part for understanding the product. When
possible, links are provided to technical papers and Redbooks publications that supplement the broad
coverage of the release documentation with in-depth examinations of particular product areas.

Programming instructions and examples
v Naming in WebSphere Application Server V5: Impact on Migration and Interoperability,

http://www.ibm.com/developerworks/websphere/library/techarticles/0305_weiner/weiner.html

v WebSphere Application Server V6.1: System Management Configuration Handbook, SG24-7304-00,
http://www.redbooks.ibm.com/abstracts/SG247304.html?Open

Chapter 16. Naming and directory 511

v IBM WebSphere Developer Technical Journal: Co-hosting multiple versions of J2EE applications,
http://www.ibm.com/developerworks/websphere/techjournal/0405_poddar/0405_poddar.html

Programming specifications
v Specifications and API documentation

512 Overview

Chapter 17. Object Request Broker (ORB)

This page provides a starting point for finding information about the Object Request Broker (ORB). The
product uses an ORB to manage communication between client applications and server applications as
well as among product components. These Java Platform, Enterprise Edition (Java EE) standard services
are relevant to the ORB: Remote Method Invocation/Internet Inter-ORB Protocol (RMI/IIOP) and Java
Interface Definition Language (Java IDL).

The ORB provides a framework for clients to locate objects in the network and call operations on those
objects as though the remote objects were located in the same running process as the client, providing
location transparency.

Object Request Brokers
An Object Request Broker (ORB) manages the interaction between clients and servers, using the Internet
InterORB Protocol (IIOP). It enables clients to make requests and receive responses from servers in a
network-distributed environment.

The ORB provides a framework for clients to locate objects in the network and to call operations on those
objects as if the remote objects are located in the same running process as the client, providing location
transparency. The client calls an operation on a local object, known as a stub. The stub forwards the
request to the remote object, where the operation runs and the results are returned to the client.

The client-side ORB is responsible for creating an IIOP request that contains the operation and required
parameters, and for sending the request on the network. The server-side ORB receives the IIOP request,
locates the target object, invokes the requested operation, and returns the results to the client. The
client-side ORB demarshals the returned results and passes the result to the stub, which, in turn, returns
to the client application, as if the operation had been run locally.

This product uses an ORB to manage communication between client applications and server applications
as well as communication among product components. During product installation, default property values
are set when the ORB is initialized. These properties control the run-time behavior of the ORB and can
also affect the behavior of product components that are tightly integrated with the ORB, such as security.
This product does not support the use of multiple ORB instances.

Logical pool distribution
The Logical pool distribution (LPD) thread pool mechanism implements a strategy for improving the
performance of requests that have shorter run times. Do not configure LPD unless you have already
configured it in a previous release of the product.

depfeat: LPD is a deprecated function and will be removed in a future version of the product.

The need for LPD is indicated by a mixture of Enterprise JavaBeans (EJB) requests where the run times
vary across the request types, and the ORB thread pool must be constrained for performance reasons. In
this case, longer run time requests might tend to prolong the response times for shorter requests by
denying them adequate access to threads in the thread pool. LPD provides a mechanism that allows
shorter requests greater access to the threads.

LPD divides the Object Request Broker (ORB) thread pool into logical pools, as configured by the
administrator using ORB custom properties starting that start with the following:
com.ibm.websphere.threadpool.strategy.*

The size of each pool is a percentage of the maximum number of ORB threads. The sum of the logical
pool percentages must equal 100.

© Copyright IBM Corp. 2012 513

When LPD is active, incoming ORB requests are vectored, or pointed, to a pool based on historical run
time history for the request type. The request type is determined by the method, which is qualified
internally as unique across components. The LPD mechanism adjusts pool targets at runtime to optimize
the distribution of requests across logical pools.

The LPD mechanism can be tuned after it is enabled. Response time, throughput measurements, and
statistics produced by the LPD mechanism drive the tuning process.

Object Request Brokers: Resources for learning
Use the following links to find relevant supplemental information about Object Request Brokers (ORBs).
The information resides on IBM and non-IBM Internet sites, whose sponsors control the technical accuracy
of the information.

These links are provided for convenience. Often, the information is not specific to this product but is useful
all or in part for understanding the product. When possible, links are provided to technical papers and
Redbooks that supplement the broad coverage of the release documentation with in-depth examinations of
particular product areas.

View links to additional information about:
v “Planning, business scenarios, and IT architecture”
v “Administration”
v “Programming specifications”

Planning, business scenarios, and IT architecture
v CORBA FAQ

Getting started with Object Request Brokers and CORBA.
v WebSphere Application Server CORBA Interoperability

This document describes WebSphere CORBA interoperability for WebSphere Application Server
products.

v CORBA Interoperability Samples

These samples demonstrate the general principles by which WebSphere Application Server applications
can interoperate with CORBA applications.

Administration
v IANA Character Set Registry

This document contains a list of all valid character encoding schemes.
v developerWorks WebSphere

Programming specifications
v Catalog Of OMG CORBA/IIOP Specifications

This document provides a catalog of OMG CORBA/IIOP specifications.

514 Overview

http://www.omg.org/gettingstarted/corbafaq.htm
http://www-1.ibm.com/support/docview.wss?rs=180&uid=swg27005708
http://www-106.ibm.com/developerworks/websphere/library/samples/WASV501/corba.html
http://www.iana.org/assignments/character-sets
http://www.ibm.com/developer/websphere
http://www.omg.org/technology/documents/corba_spec_catalog.htm

Chapter 18. OSGi applications

The OSGi applications support in WebSphere Application Server helps you develop and deploy modular
applications that use both Java EE and OSGi technologies. You can design and build applications and
suites of applications from coherent, versioned, reusable OSGi modules that are accessed only through
well-defined interfaces. This enables the same, or different, applications to use different versions of the
same third party libraries without interference.

Apache Aries is an open community project that brings the modularity, dynamism, and versioning of the
OSGi service platform to enterprise application developers by implementing key EEG specifications.
Apache Aries delivers a simple to use and lightweight programming model for web applications that
combines the standard Blueprint component model with familiar Java enterprise technologies. Apache
Aries includes an implementation of the OSGi service platform Version 4.2 Blueprint component model for
fine-grained assembly, and provides an assembly model for applications that consist of multiple modules.

The OSGi applications support in WebSphere Application Server includes the following major features:

v Use the OSGi Service Platform Release 4 Version 4.2 Enterprise Specification Blueprint Container for
declarative assembly of components. This simplifies unit test outside of the application server.

v Use extensions to the Blueprint component model for declarative transactions and container-managed
Java Persistence API (JPA).

v Develop OSGi application projects using IBM Rational Application Developer, which enforces OSGi
visibility rules so that projects can only access packages from other projects that explicitly declare them
as part of the project externals. This provides environmental support to development best practices.

v Compose isolated enterprise applications using multiple, versioned bundles with dynamic life cycle.

v Deploy applications in archive files that contain only application-specific content and metadata that
points to shared bundles. This means that application archive files can be smaller. It also means that,
when a library is shared by several OSGi applications, only one copy of the library is loaded into
memory.

v Use an integrated bundle repository, and configure the locations of external repositories, to support the
provisioning of bundles to applications.

v Deploy existing web application archive (WAR) files as web application bundles (WABs). This allows
web applications to use the OSGi module system.

v Deploy existing EJB JAR files as EJB bundles.

v Deploy web applications that use Version 3.0 of the Java Servlet Specification.

v Deploy enterprise applications that contain EJB 3.x style enterprise beans.

v Simultaneously load multiple versions of classes in the same application, using standard OSGi
mechanisms.

v Administratively update deployed applications in a modular fashion, at the bundle-level.

v Deploy applications that use their own versions of common utility classes, distinct from the versions that
are used by the server runtime environment. Do this without needing to configure application Java EE
class loader policies, such as PARENT_LAST mode.

v Use federated lookup mechanisms between the local Java Naming and Directory Interface (JNDI) and
the OSGi service registry.

v Extend and scale running applications, as business needs change, without changing the underlying
application.

v Update a running application, only impacting those bundles affected by the update.

© Copyright IBM Corp. 2012 515

An introduction to OSGi Applications
The OSGi Applications feature of WebSphere Application Server integrates Apache Aries technologies,
including the Blueprint Container and OSGi application assembly model, into WebSphere Application
Server. The integration of Apache Aries into WebSphere Application Server addresses many of the
challenges of developing and maintaining extensible web applications.

Using OSGi Applications, you can deploy and manage your web applications as a set of versioned OSGi
bundles. You can also configure one or more bundle repositories, as part of the provisioning infrastructure,
to host common bundles used by multiple applications, and to simplify the deployment of applications that
use those common bundles.

Presentations:

v Modular and dynamic OSGi applications: Part 1: Motivations and specifications (22 min)

v Modular and dynamic OSGi applications: Part 2: OSGi applications support in WebSphere Application

Server (26 min)

Business goals and OSGi Applications
The OSGi Applications support in WebSphere Application Server brings the modularity, dynamism, and
versioning of the OSGi service platform to enterprise web application developers. This reduces complexity,
and provides the greatest flexibility to maintain and evolve an application after its first release. You can use
OSGi Applications to combine the standard Blueprint component model with familiar Java enterprise
technologies.

OSGi Applications support is focused on the web-based technologies that many applications use. This
includes the Spring Dynamic Modules project, which many web applications use for fine-grained
component assembly and management, and which inspired the OSGi Blueprint component model.
WebSphere Application Server provides an implementation of the OSGi Blueprint Container that was
developed in the Apache Aries project. Applications that are composed from Blueprint components can rely
on the Blueprint Container that the application server runtime environment provides, in contrast to
Spring-based applications, which include the Spring container as part of the application itself.

OSGi modularity provides standard mechanisms to address common challenges with enterprise Java
applications. The OSGi Applications support in WebSphere Application Server provides the following major
benefits:

v It helps your applications to be more portable, easier to re-engineer, and more adaptable to changing
requirements.

v It provides the declarative assembly and simplified unit test of dependency injection frameworks such as
the Spring Framework, but in a standardized and IBM-supported form that is provided as part of the
application server run time rather than being a third-party library deployed as part of the application.

v It integrates fully with the Java EE programming model, giving you the option of deploying web modules
and EJB modules as versioned OSGi bundles with dynamic life cycles.

v It supports administration of application bundle dependencies and versions, which simplifies and
standardizes third-party library integration.

v It provides isolation for enterprise applications that are composed of multiple, versioned bundles with
dynamic life cycles.

v It has a built-in bundle repository that can host common and versioned bundles shared between multiple
applications, so that each application does not deploy its own copy of each common library.

v It can access external bundle repositories.

v It reinforces service-oriented design at the module level.

v It composes into coarser-grained Service Component Architecture (SCA) assemblies.

516 Overview

http://publib.boulder.ibm.com/infocenter/ieduasst/v1r1m0/topic/com.ibm.iea.was_v8/was/8.0/ProgramingModel/WASV8_OSGi_part1/player.html?dmuid=20110614175837699955
http://publib.boulder.ibm.com/infocenter/ieduasst/v1r1m0/topic/com.ibm.iea.was_v8/was/8.0/ProgramingModel/WASV8_OSGi_part2/player.html?dmuid=20110615145618404598
http://publib.boulder.ibm.com/infocenter/ieduasst/v1r1m0/topic/com.ibm.iea.was_v8/was/8.0/ProgramingModel/WASV8_OSGi_part2/player.html?dmuid=20110615145618404598

When you use the OSGi Applications support in WebSphere Application Server, you are using a
standards-based programming model, and also gaining the well-understood benefits of WebSphere
Application Server administration, performance and enterprise-level qualities of service.

The modularization challenge
OSGi is a dynamic module system for Java. So how does it help?

Effective software modules have the following characteristics:

v Self-contained: Although a module is comprised of smaller parts, it is the whole module that can be
moved around, installed, or uninstalled as a single unit, not the parts within it.

v Highly cohesive: Each module has a coherent logical function.

v Loosely-coupled: Modules have well-defined boundaries between them.

Modularized systems that have these characteristics are easier to maintain and extend.

Object-oriented languages such as Java support modularization. However, they focus on encapsulation of
instance variables. This helps at the object and class level, but does not support higher forms of
modularity. Java EE helps a little more by providing application-level isolation of application modules within
an enterprise application.

Patterns such as SOA and Dependency Injection encourage modular design of large-scale enterprise
applications. However, this modularity requires architectural governance rather than being encouraged or
enforced by the runtime environment.

In the Java platform, data is encapsulated within a class, classes are scoped within a package, and
packages are collected together in a Java archive (JAR) file. Java class visibility options are private,
package, protected, and public. There is no access modifier that allows for a unit of deployment that is a
JAR file rather than a package. Most JAR files consist of multiple packages, and if the JAR file represents
a cohesive function, there is typically a need for classes in one package to access classes in another
package in the same JAR file. This need requires public accessibility of that class, which also makes the
class visible to classes in other JAR files. JAR files provide no visibility control. Even well-behaved
applications that use only the classes a JAR file provider expects to be used externally are governed by
the Java class path, because a required class might be available from multiple JAR files and the class that
is loaded is the first available instance on the global class path.

JAR files cannot scope the visibility of what they contain, and also cannot declare their own dependencies.
Many JAR files have implicit dependencies on other JAR files, which means these JAR files cannot be
installed or moved around independently. If a JAR file is installed and its dependencies are missing, the
problem is often not visible until run time.

Java class loading scans the class path to look inside each JAR file on the class path to locate the
required class. This process has three main limitations:

v Class path ordering determines which instance of a class is loaded, and therefore which JAR file it is
loaded from.

v Only one version of a class is available on the class path, again determined by the first instance that is
found.

v If the dependencies of a class are not resolved, the first indication of the problem is often a runtime
ClassNotFoundException exception.

These class path and JAR file shortcomings are often referred to as “JAR hell”. Java EE partly mitigates
these problems. Java EE introduces the enterprise archive (EAR) file, both as the method by which an
enterprise application is delivered, and as a runtime isolation scope for the modules that are part of that
application. Java EE applications have a class loader hierarchy that is partly shared between the
enterprise applications, and partly isolated between the applications. For example, in an enterprise

Chapter 18. OSGi applications 517

application that contains a web application archive (WAR) module, by default, the individual WAR modules
are isolated from each other in the application, and isolated from anything in a different application.

While the “JAR hell” problems are reduced by managing different class paths with different enterprise
applications, there are still limitations when you want to share libraries such as open source frameworks or
utility libraries between applications. WebSphere Application Server offers some advanced options for
configuring enterprise applications to access libraries that are not delivered as part of the EAR file:

v You can install an isolated library and administratively associate its classloader with one or more
installed modules or applications, or associate the classloader with the server to make it visible to all
application modules.

v You can configure the classloader delegation pattern to help resolve versioning compatibility problems.
For example, you can specify the class loader delegation mode as parent-last so that an
application-supplied class is loaded in preference to a server-supplied class.

However, these approaches only partially address the modularity requirements of applications. “The OSGi
Framework” offers a better solution.

The OSGi Framework
OSGi defines a dynamic module system for Java. The OSGi service platform has a layered architecture,
and is designed to run on various standard Java profiles.

OSGi Applications deployed to WebSphere Application Server run on an Enterprise Java profile that is
provided as part of the server runtime environment. This environment also provides the OSGi framework in
which OSGi Applications run. Eclipse Equinox is the reference implementation of the OSGi Service
Platform Release 4 Version 4.2 Enterprise Specification, and WebSphere Application Server uses Equinox
as the framework for OSGi Applications. The precise version of Equinox depends on the service level of
WebSphere Application Server.

The integrated OSGi framework in WebSphere Application Server provides support for each of the layers
of the OSGi Architecture:
v “Modules layer”
v “Lifecycle layer” on page 519
v “Services layer” on page 519

Modules layer

The unit of deployment in OSGi is a bundle. The modules layer is where the OSGi Framework processes
the modular aspects of a bundle. The metadata that enables the OSGi Framework to do this processing is
provided in a bundle manifest file. For more information about this file, see “Example: OSGi bundle
manifest file” on page 548.

One key advantage of OSGi is its class loader model, which uses the metadata in the manifest file. There
is no global class path in OSGi. When bundles are installed into the OSGi Framework, their metadata is
processed by the module layer and their declared external dependencies are reconciled against the
versioned exports declared by other installed modules. The OSGi Framework works out all the
dependencies, and calculates the independent required class path for each bundle. This approach
resolves the shortcomings of plain Java class loading by ensuring that the following requirements are met:

v Each bundle provides visibility only to Java packages that it explicitly exports.

v Each bundle declares its package dependencies explicitly.

v Packages can be exported at specific versions, and imported at specific versions or from a specific
range of versions.

v Multiple versions of a package can be available concurrently to different clients.

518 Overview

Lifecycle layer

The bundle lifecycle management layer in OSGi enables bundles to be dynamically installed, started,
stopped, and uninstalled, independent from the lifecycle of the application server. The lifecycle layer
ensures that bundles are started only if all their dependencies are resolved, reducing the occurrence of
ClassNotFoundException exceptions at run time. If there are unresolved dependencies, the OSGi
Framework reports them and does not start the bundle.

Each bundle can provide a bundle activator class, which is identified in the bundle manifest, that the
framework calls on start and stop events. In this way, a bundle can provide special initialization and
cleanup code if required, although most OSGi applications that are deployed to WebSphere Application
Server should not need to do so. If a bundle needs a template bundle activator, you can use IBM Rational
Application Developer Version 8.5 to generate one.

Services layer

The services layer in OSGi intrinsically supports a service-oriented architecture through its non-durable
service registry component. Bundles publish services to the service registry, and other bundles can
discover these services from the service registry.

These services are the primary means of collaboration between bundles. An OSGi service is implemented
by using one of the following supported component models:

v A Blueprint-managed bean.

v An enterprise bean.

v A proxy, provided by Service Component Architecture (SCA), to a remote service

An OSGi service is published to the service registry under one or more Java interface names, with
optional metadata stored as custom properties (name/value pairs). A discovering bundle can look up a
service in the service registry by an interface name, and can potentially filter the services that are being
looked up based on the custom properties.

Services are fully dynamic, and typically have the same lifecycle as the bundle that provides them. OSGi
Applications in WebSphere Application Server usually interact with the OSGi service registry through a
Blueprint module definition. POJO bean components that are described in the Blueprint module definition
can be registered as services through a <service> element, or can have service references injected into
them through a <reference> element.

Enterprise OSGi standards
OSGi for Java enterprise applications is one focus of Version 4.2 of the OSGi service platform
specification, which introduces the OSGi Service Platform Enterprise Specification.

This specification includes the definition of the Blueprint component model, which is derived from the
Spring Dynamic Modules project. The Blueprint component model forms an important part of the OSGi
Applications programming model in WebSphere products. It describes how components can be wired
together within a bundle, how components can be published as services to the service registry, and how
components can have configuration and dependencies injected into them by a Blueprint component
container that is part of the runtime environment.

Components and the references that they consume are declared in an XML module Blueprint file, which is
a standardization of the Spring application context. This is extended for the OSGi environment so that
components can be automatically published as services for the service registry, and references can be
automatically resolved to services discovered from the service registry.

Chapter 18. OSGi applications 519

http://www.ibm.com/software/awdtools/developer/application/
http://www.ibm.com/software/awdtools/developer/application/

The Blueprint component model provides the simplicity of dependency injection frameworks such as the
Spring Framework, including the ability to form a unit test that is separate from the server environment.
Blueprint standardizes the configuration metadata, and brings governance to the specification of the
component model.

The specification also describes how to use Java Naming and Directory Interface (JNDI) and Java
Persistence API (JPA) in an OSGi framework, and web application bundles (WABs).

The WebSphere programming model and OSGi
The OSGi Applications programming model in WebSphere Application Server enables you to develop,
assemble, and deploy modular applications that use Java EE and OSGi technologies. You can use tooling
to deploy an enterprise application as an OSGi application that consists of one or more OSGi bundles.

The benefits of deploying an application as a set of bundles are described in “Business goals and OSGi
Applications” on page 516.

The OSGi Applications programming model in WebSphere Application Server enables both new and
existing applications to be deployed as OSGi applications. An existing enterprise application can be
deployed as an OSGi application in which each component is converted to an OSGi bundle, as described
in Converting an enterprise application to an OSGi application. You can develop new applications as OSGi
Application projects as described in Developing an OSGi application. A new application might consist of
two bundles, where each one contains business logic in plain old Java objects (POJOs), wired together
through a Blueprint module definition, or by invoking an enterprise bean. The granularity of the bundle is
such that each bundle has a coherent function in the context of an enterprise application. One bundle
provides a service that the other bundle requires. The Blueprint Container in WebSphere Application
Server wires the components in a bundle by creating component (bean) instances and injecting its
dependencies. When a component in Bundle B, an EJB bundle, offers a service that Bundle A requires,
the Blueprint Container takes care of registering the service in the service registry and injecting a service
reference into the consuming component in Bundle A.

For example, consider an application that represents a weblog service. A weblog business logic bundle
exports a service that can be consumed by a web application bundle that handles HTTP clients for this
service. The weblog bundle depends on two other bundles; one to provide persistence to a database, and
one to provide a service so that readers of the weblog can post comments to the weblog. The weblog
business logic bundle consists internally of three components whose configuration and references are
injected into them at run time.

service

Bundle A

Blueprint components

Module Blueprint

Bundle B

Figure 89. OSGi application with two bundles

520 Overview

If you have used a dependency injection framework such as the Spring Framework, the Extensible Markup
Language (XML) module Blueprint configuration for the components in the weblog business bundle will be
familiar. Each component is defined, along with the references and configurations that need to be injected.
Specifically:

v Each service that needs to be automatically published to the service registry is defined.

v Each reference that needs to be resolved automatically from the service registry for injection into a
component is declared.

OSGi services provide a convenient way to represent dependencies between bundles. Services have the
same life cycle as the bundle that provides them. The underlying server run time wires services
dynamically when bundles are started and stopped.

Unit test

Unit test for Blueprint components is simplified by the dependency injection pattern, which allows one bean
to access another bean without having to implement any code to create the bean instance. The Blueprint
Container creates the required bean instance, using information contained in the Blueprint configuration
file. This eliminates compiled dependencies on either the OSGi Framework or the application server
runtime environment. In the weblog application example, you can write a Java unit test for the weblog
component that can run in a simple Java SE environment, or an integrated development environment
(IDE), with no need to install the component to its target runtime environment. The unit test can include
the following actions:

v Creation of a new weblog comment bean, rather than creation by the Blueprint Container.

v Injection of the configuration that is relevant to the test.

v Testing the function of the weblog comment bean.

Presentation Layer Business Layer Data Layer

weblog.comment

Web log
persistence

service

database

Web log
commment

service

Web log
service

weblog (business logic) weblog.persistence

Web application bundle

Web log user interface
(web application)

Figure 90. Example application for a weblog service

Chapter 18. OSGi applications 521

OSGi Applications support

An OSGi application is a collection of one or more OSGi modules that together provide a coherent
business function. An OSGi application can consist of modules of many different types. For example, the
weblog example described earlier might consist of bundles with web content (web application bundles),
bundles with Blueprint contexts, EJB bundles, and bundles with JPA entities and persistence configuration
(persistence bundles).

The modules that are contained in an OSGi application can offer OSGi services. The OSGi Applications
support isolates those OSGi services so that they are not visible outside the application, unless they are
explicitly configured to be exported from the application. OSGi applications have several ways to accept
workloads:

v An OSGi application can include web bundles to process HTTP workloads.

v When the modules that are contained in an application offer OSGi services, an OSGi application can
export one or more of those services to other OSGi applications, by using Service Component
Architecture (SCA); for further information, see “SCA and OSGi Applications” on page 562.

An OSGi application isolates the OSGi services that are offered to modules that are contained in the
application. The modules cannot consume services outside the application unless they are explicitly
configured to import them. These imported services might be proxies to other OSGi application services or
proxies to remote services (for example, web services); these proxies are provided by SCA.

In the following example, an OSGi application consists of three bundles. The application exposes one
service, the web log service, and imports one service, the User authoring service. Within the application,
the web log persistence service is exported by the weblog.persistence bundle and imported by the weblog
bundle, but must not be exposed outside the application. The application isolation hides the web log
persistence service from outside the application.

OSGi Applications support provides a modularity construct at application level to describe an isolated
application, including metadata that describes the constituent bundles of an application. A deployment
system can use this to determine the constituent bundles that must be provisioned and deployed when the
application is installed to a target server.

Web log
persistence

service

Web log
comment
service

OSGi application

weblog (business logic) weblog.persistence

weblog.comment

Web log
service

User
authoring

service

Figure 91. Bundles and services in an example application for a weblog service

522 Overview

An OSGi application consists of a set of bundles, in an isolation scope that is defined by application
metadata. An OSGi application is deployed as an enterprise bundle archive (EBA) file. This file contains
the constituent bundles for the application, or the metadata required to get the constituent bundles from an
OSGi bundle repository, or both.

If an OSGi application provides or requires any external services and references, these are explicitly made
available by declaring them in an application manifest. An external component must use SCA to access an
OSGi service; for further information, see “SCA and OSGi Applications” on page 562.

Any external services and references that the OSGi application must satisfy are also declared in the
application manifest. The application manifest describes modularity at the application level in a similar way
to OSGi headers in a bundle manifest file that define modularity at the bundle level.

The following examples illustrate the flexible ways in which an OSGi application can be deployed as an
EBA file, with and without application-level isolation, and optionally exploiting a shared OSGi bundle
repository. Each example extends the previous one.

v The OSGi application has an application-specific copy of each bundle on disk and in memory. Each
bundle is at version 1.0.0.

v The OSGi application references one bundle from a bundle repository, requiring version 1.0.0 or later to
be present in the bundle repository. There is one less bundle on disk. However, the same number of
bundles are loaded into memory, because each bundle is isolated for each application in memory so
there is still one copy of each bundle for the application in memory.

v The OSGi application contains all the application bundles, but a later version of one bundle is in the
configured bundle repository and is within the version range in the application manifest. The installed
application is provisioned to use the bundle from the bundle repository, rather than the bundle that is
included in the application. An example of typical use is using a governed bundle repository to deliver
critical fixes to shared bundles.

v A content bundle in the OSGi application uses a service provided by a bundle that is not part of the
application content. Dependencies that are not inside the application are satisfied by bundles that are
shared by all applications on the same server. This reduces the memory footprint for applications that
do not require component instances from the dependency bundle to be isolated in the OSGi application.
Equivalent sharing for Java EE and SCA is achieved by using an isolated shared library class loader
with a JAR file, but this mechanism requires greater administrative overhead

The Blueprint Container
The Blueprint Container specification defines a dependency injection framework for OSGi and is an OSGi
Alliance standard. It provides a simple programming model to create dynamic applications in the OSGi
environment.

The Blueprint Container specification deals with the dynamic nature of OSGi, where services can become
available and unavailable at any time. The specification also works with plain old Java objects (POJOs), so
that the same objects can be used inside and outside the OSGi framework. For example, you can write
and unit test simple components in a Java Platform, Standard Edition (JSE) environment without needing
to know how they are assembled.

Key factors in the Blueprint programming model are the Blueprint XML files that define and describe the
assembly of various components. The specification describes how the components are instantiated and
wired together to form a module that runs.

This information describes frequently-used aspects of the Blueprint Container. For more detail, see the
OSGi Service Platform Release 4 Version 4.2 Enterprise Specification.

Chapter 18. OSGi applications 523

Blueprint bundles
A Blueprint bundle is a bundle that contains one or more Blueprint XML files. The Blueprint Container
specification uses an extender pattern. An extender bundle monitors the state of bundles in the framework
and acts on behalf of those bundles, based on the state of those bundles.

The Blueprint extender bundle waits for the bundles to be activated and checks whether each one is a
Blueprint bundle. The Blueprint XML files are at a fixed location in the OSGI-INF/blueprint/ directory, or
are specified explicitly in the Bundle-Blueprint manifest header. When a bundle is a Blueprint bundle, the
extender bundle creates a Blueprint Container for that bundle.

The Blueprint Container parses the Blueprint XML files, instantiates the components, wires components
together, and registers services. During initialization, the Blueprint Container ensures that mandatory
service references are satisfied, registers all the services into the service registry, and creates initial
component instances.

When a Blueprint bundle is stopped, the Blueprint extender bundle destroys the Blueprint Container for
that bundle.

Blueprint XML
A Blueprint XML file is identified by a top-level blueprint element and contains definitions of component
managers such as a bean manager, a service manager, and service reference managers.

A Blueprint XML file is identified by a top-level Blueprint element, as shown in the following blueprint.xml
example code.

<?xml version="1.0" encoding="UTF-8"?>
<blueprint xmlns="http://www.osgi.org/xmlns/blueprint/v1.0.0">

...
</blueprint>

The XML namespace identifies that the document conforms to the Blueprint version 1.0.0. The top-level
Blueprint element identifies the document as a Blueprint module definition.

The Blueprint XML file contains definitions of various component managers. The Blueprint Container
specification defines four main component managers:

v A bean manager creates an instance of a Java object with the given arguments and properties. A bean
manager can create single or multiple object instances, depending on the scope settings. It can also
manage the life cycle of an object and notify it when all properties have been injected or when it is
being destroyed.

v A service manager registers and unregisters a service in the OSGi service registry.

v Two service reference managers provide access to the services registered in the OSGi service registry:

– A reference manager provides an object that is a proxy to the service that is registered in the service
registry.

– A reference-list manager provides a dynamic list of either service proxy objects or service reference
objects that are currently in the service registry.

Each component manager creates components and manages the life cycle of those components. When
requested, the managers provide a component instance. Each manager has a corresponding XML element
that describes the manager properties. The managers can be top-level managers or they can be defined
by using inline declarations in other manager definitions. All component managers can have the following
attributes:

id This optional attribute defines the ID of a top-level manager. The ID must be unique for all
top-level managers in the Blueprint Container. If you do not specify this attribute, a unique ID is

524 Overview

generated automatically. Managers use the ID to refer to each other. For example, during injection,
the manager asks the referenced managers to provide an object that is injected into the
component that the manager is creating.

You do not set the id attribute for managers that are defined by using inline declarations in other
manager definitions, because these managers are considered to be anonymous.

activation
This optional attribute defines the activation mode of the manager. The following activation modes
are supported:

v eager. The manager is activated during initialization of the Blueprint Container. This is the
default.

A service manager is published into the service registry and activates the bean manager that
underlies the service.

v lazy. The manager is activated on demand. A manager is activated when it is requested to
provide its first component instance.

For a bean manager, the bean is instantiated only when another bean manager first accesses it.
For a service manager, the service manager is published into the service registry, but it does
not activate the bean manager that underlies the service.

To change the default activation mode for all managers in the Blueprint XML file, set the
default-activation attribute on the Blueprint element.

Each manager has its own activation and deactivation steps. A manager is deactivated when the
Blueprint Container is destroyed.

dependsOn
This optional attribute defines the explicit dependencies of a manager. It specifies a list of
manager IDs, where those managers must be activated before this manager is activated. A
manager can also have implicit dependencies, which are defined by the references to other
managers in a manager definition.

Beans and the Blueprint Container
In the Blueprint programming model, you declare beans by using the bean element. You specify argument
elements to provide the arguments that are used for object construction, and you specify property
elements to provide the injected properties.

You can specify the value of argument and property elements by using a value or ref attribute, or you can
use an inline declaration in an element. The ref attribute specifies the ID of a top-level manager, and is
used to obtain an object from the referenced manager as the argument or property value. The inline value
can be any XML value that is described in “Object values and the Blueprint Container” on page 532.

The following bean.xml example code defines a single bean called accountOne that is implemented by the
org.apache.aries.simple.Account plain old Java object (POJO).

<?xml version="1.0" encoding="UTF-8"?>
<blueprint xmlns="http://www.osgi.org/xmlns/blueprint/v1.0.0">

<bean id="accountOne" class="org.apache.aries.simple.Account" />
</blueprint>

Bean Construction
To construct an object, first the Blueprint Container finds the correct constructor or factory method
with a compatible set of parameters that match the arguments that are specified in the XML. By
default, the Blueprint Container uses the number and order of the argument elements in XML to
find the correct constructor or method. If the argument elements in their current order do not map
to the parameters, the Blueprint Container reorders the argument elements and attempts to find
the best-fitting arrangement.

Chapter 18. OSGi applications 525

You can specify additional attributes, such as index or type, on the argument element so that it is
easier for the Blueprint Container to find the correct constructor, method, or parameter
arrangement. For example, the type attribute specifies a class name used to match the argument
element to a parameter by the exact type.

You can construct a bean in either of the following ways:

v Use a class constructor.

v Use a static factory method .

v Use an instance factory method.

The following partial Java class and Blueprint XML example code shows how to construct a bean
by using a class constructor. The class attribute specifies the name of the Java class to
instantiate. The Blueprint Container creates the Account object by passing the value 1 as the
argument to the constructor.
public class Account {

public Account(long number) {
...

}
...

}

<bean id="accountOne" class="org.apache.aries.simple.Account">
<argument value="1"/>

</bean>

The following partial Java class and Blueprint XML example code shows how to construct a bean
by using a static factory method. The class attribute specifies the name of the class that contains
a static factory method. The factory-method attribute specifies the name of the static factory
method. The Blueprint Container calls the createAccount() static method on the
StaticAccountFactory class and passes the value 2 as the argument to create the Account object.
public class StaticAccountFactory {

public static Account createAccount(long number) {
return new Account(number);

}
}

<bean id="accountTwo" class="org.apache.aries.simple.StaticAccountFactory"
factory-method="createAccount">
<argument value="2"/>

</bean>

The following partial Java class and Blueprint XML example code shows how to construct a bean
by using an instance factory method. You use two managers; one manager is a factory, and the
other uses the factory to create an object. The factory-ref attribute specifies the ID of a top-level
bean or a reference manager that acts like a factory. The provided factory object must have a
factory method, as specified by the factory-method attribute.

The accountFactory bean is the factory. The Blueprint Container first creates the AccountFactory
instance with its own arguments and properties. In this example, a single argument, the factory
name, is specified. The Blueprint Container then calls the createAccount() method on the
AccountFactory instance and passes the value 3 as the argument to create the Account object.
public class AccountFactory {

public AccountFactory(String factoryName) {
...

}
public Account createAccount(long number) {

return new Account(number);
}

}

<bean id="accountFactory" class="org.apache.aries.simple.AccountFactory">
<argument value="account factory"/>

</bean>

526 Overview

<bean id="accountThree"
factory-ref="accountFactory"
factory-method="createAccount">

<argument value="3"/>
</bean>

Bean properties

You can use the property element to inject property values into beans. Properties are injected
immediately after the bean is constructed. The following partial Java class and Blueprint XML
example code creates the Account bean, then sets the description property by using the Java
Beans naming convention.
public class Account {

public Account(long number) {
...

}
public void setDescription(String desc) {

...
}

}

<bean id="accountOne" class="org.apache.aries.simple.Account">
<argument value="1"/>
<property name="description" value="#1 account"/>

</bean>

You can use property injection to wire beans together. In the following Blueprint XML example
code, the accountOne bean is injected with a Currency bean.
public class Account {

public Account() {
...

}
public void setCurrency(Currency c) {

...
}

}

public class Currency {
public Currency() {

...
}

}

<bean id="accountOne" class="org.apache.aries.simple.Account">
<property name="currency" ref="currency" />

</bean>

<bean id="currency" class="org.apache.aries.simple.Currency" />

Configuring bean security

Optionally, you can configure bean security so that the methods of the bean can be accessed only
by users that are in a specified role.

You configure security by specifying an <access-constraint> element. The <access-constraint>
element has a role attribute that defines the name of the role.

To define access controls for a particular role, use the Security role to user or group mapping
panel in the WebSphere Application Server administrative console.

In the following example, the methods of the secureBean1 bean are accessible only by users in
the role called "ROLE1":
<bean
id="secureBean1"
class="com.ibm.ws.eba.wab.componenttest.blueprint.secure.BlueprintSecureServiceImpl">
<access-constraint role="ROLE1" />

</bean>

Chapter 18. OSGi applications 527

For the bean security configuration to be effective, application security must be enabled in
WebSphere Application Server.

If you do not specify an <access-constraint> element, the bean is not secured; this means that all
the methods of the bean can be accessed by any user.

Services and the Blueprint Container
In the Blueprint programming model, you use a service element to define the registration of a service in
the OSGi service registry. You use the ref attribute to reference the bean that provides the service object.
You use the interface attribute to specify the interfaces under which the service is registered.

Note: The service registration mechanism described in this topic is not required if you want to define an
EJB as a service. Instead, specify the EJB class name in the Export-EJB header in the bundle
manifest file.

See the following partial Java class and Blueprint XML example code.

public class AccountImpl implements Account {
public AccountImpl() {

...
}

}

<service id="serviceOne" ref="account"
interface="org.apache.aries.simple.Account" />

<bean id="account" class="org.apache.aries.simple.AccountImpl" />

You can specify the bean that provides the service object by using an inline declaration in the service
element, as shown in the following Blueprint XML example code.

<service id="serviceTwo" interface="org.apache.aries.simple.Account">
<bean class="org.apache.aries.simple.AccountImpl" />

</service>

You can use the auto-export attribute to set the interfaces under which a service is registered. The
following Blueprint XML example code registers the service under all the interfaces of the bean.

<service id="serviceOne" ref="account" auto-export="interfaces" />

<bean id="account" class="org.apache.aries.simple.AccountImpl" />

The default value for the auto-export attribute is disabled. Other values are class-hierarchy and all-classes.

Service properties
You can register a service with a set of properties by using the service-properties element. The
service-properties element contains multiple entry elements that represent the individual
properties. You specify the property key by using a key attribute. You specify the property value as
a value attribute, or in inline declaration in the element. Service property values can be different
types, but must be only OSGi service property types, that is, one of the following types:

v primitive

v primitive wrapper class

v collection

v array of primitive types

The following Blueprint XML example code shows a service registration with two service
properties. The active service property has type of java.lang.Boolean. The mode property is of the
default type, String.

528 Overview

<service id="serviceFour" ref="account" autoExport="all-classes">
<service-properties>

<entry key="active">
<value type="java.lang.Boolean">true</value>

</entry>
<entry key="mode" value="shared"/>

</service-properties>
</service>

Service ranking
You can use service ranking to control the choice of service when there are multiple matches. If
there are two services, the higher ranked service is returned before the lower ranked one. The
default ranking value is 0. The following Blueprint XML example code shows how to specify
service ranking by using the ranking attribute.
<service id="serviceFive" ref="account" auto-export="all-classes" ranking="3" />

References and the Blueprint Container
In the Blueprint programming model, you use the reference element to find services in the service registry,
and the reference-list element to find multiple matching services.

The reference element is used to refer to a service in the OSGi service registry, and is independent of how
that service was registered. For example, it can refer to the following services:

v A Java bean that is declared in a service element in the Blueprint XML file of the bundle that provides
the service; for more information, see “Services and the Blueprint Container” on page 528.

v An enterprise bean that is specified in the Export-EJB header in the manifest file of the bundle that
provides the service.

v A service that is registered by making direct calls to the OSGi API.

The following Blueprint XML example code shows the accountRef reference that refers to an Account
service. If a service that matches this reference is found in the service registry, the service is set on the
accountClient bean through the account property.

<bean id="accountClient" class="...">
<property name="account" ref="accountRef" />

</bean>

<reference id="accountRef" interface="org.apache.aries.simple.Account" />

Reference dynamism

The object that is injected for a reference is a proxy to the service that is registered in the service registry.
By using a proxy, the injected object remains the same when the availability of the backing service varies,
or the backing service is replaced. If there are calls on a proxy that does not have a backing service,
those calls block until a service becomes available or a timeout occurs. The default timeout in the
Blueprint component is 300000 milliseconds (5 minutes). If a timeout occurs, a
ServiceUnavailableException exception is created and the Blueprint Container is destroyed. See the
following example code.

try {
balance = account.getBalance();

} catch (ServiceUnavailableException e) {
...

}

You can change the timeout for each bundle by using directives in the Bundle-SymbolicName header in
the bundle manifest, META-INF/MANIFEST.MF. The following example switches the timeout for a bundle off
(the default is true).

Bundle-SymbolicName: org.apache.aries.simple.account;
blueprint.graceperiod:=false

Chapter 18. OSGi applications 529

The following example sets the timeout for a bundle to 10000 milliseconds (10 seconds).

Bundle-SymbolicName: org.apache.aries.simple.account; blueprint.timeout=10000;

You can set the timeout for an individual reference by using the timeout attribute. The following example
XML code sets the timeout for the accountRef reference to 20000 milliseconds (20 seconds).

<reference id="accountRef" timeout="20000"
interface="org.apache.aries.simple.Account" />

For both a bundle and a reference, a timeout value of 0 means wait indefinitely for the reference to be
satisfied.

Reference lists

You can use the reference-list element to find multiple matching services. The reference-list element
provides a List object that contains the service proxy objects or ServiceReference objects, depending on
the value of the member-type attribute (the default value is service-object). The List object that is provided
is dynamic and expands or contracts when matching services are added or removed from the service
registry. The List object is read-only and supports only a subset of the List API.

The proxies in a reference-list element target a specific service and do not have a timeout. If the backing
service for a proxy becomes unavailable, a ServiceUnavailableException exception is created immediately.

The following Blueprint XML example code shows a reference-list that returns a list of service objects
(proxies).

<reference-list id="accountRefs" member-type="service-object"
interface="org.apache.aries.simple.Account" />

The following Blueprint XML example code shows a reference-list that returns a list of ServiceReference
objects.

<reference-list id="accountRefs" member-type="service-reference"
interface="org.apache.aries.simple.Account" />

Availability

By default, a service reference manager requires that at least one suitable service exists before
initialization of the Blueprint Container can continue. That is, a service that matches the selection criteria of
the reference or reference list must exist. To control this behavior, you use the availability attribute of the
reference or reference-list element. The availability attribute can have the following values:

optional
The existence of a service that matches the selection criteria of the element during initialization of
the Blueprint Container is optional. A service reference manager with optional availability is always
considered satisfied, even if it does not have any matching services.

mandatory
At least one service that matches the selection criteria of the element during initialization of the
Blueprint Container must exist. For a service reference manager with mandatory availability, if it
has a matching service, it is considered satisfied. This is the default.

Initialization of the Blueprint Container is delayed until all service reference managers with mandatory
availability are satisfied.

The availability attribute applies only during initialization of the Blueprint Container. After initialization, a
service reference manager that has mandatory availability can become unsatisfied at any time, when
services become unavailable or available again.

530 Overview

To change the default availability setting for all service reference managers in the Blueprint XML, you use
the default-availability attribute on the Blueprint element.

The following Blueprint XML example code shows a reference manager that has mandatory availability.

<reference id="accountRef" timeout="20000"
interface="org.apache.aries.simple.Account"
availability="mandatory"/>

Service selection and proxies

The reference and reference-list managers share the following attributes that you can use to select
services:

interface
Use the interface attribute to specify an interface class. The interface attribute is optional, but if
set, it must specify an interface class. The interface class is used to select services or return
service proxies.

For service selection, the interface class is used to select services from the service registry
registered with that interface name. For service proxies, the proxies that the service reference
managers return must implement all the methods that the interface class defines. If the interface
attribute is not specified, the proxy behaves as though it implements an interface without any
methods.

component-name
Use the component-name attribute to select services by adding an
osgi.service.blueprint.compname=component_name expression to the selection filter.

filter Use the filter attribute to select services by specifying the raw OSGi filter expression to add to the
selection filter.

The three attributes combine to create one OSGi filter expression to use to select services.

For example, the selection filter for the reference in the following Blueprint XML example code is
(&(objectClass=org.apache.aries.simple.Account)
(osgi.service.blueprint.compname=myAccount)(mode=shared)).

<reference id="accountRef"
interface="org.apache.aries.simple.Account"
component-name="myAccount"
filter="(mode=shared)"/>

Scopes and the Blueprint Container
In the Blueprint programming model, you use the scope setting to determine whether a bean manager
creates single or multiple object instances.

The Blueprint Container specification defines two scopes:

singleton
The bean manager creates a single instance of the bean and returns that instance every time that
the manager is requested to provide an object. This is the default for top-level bean managers.

prototype
The bean manager creates a new instance of the bean every time that the manager is requested
to provide an object. This is the default for bean managers that are specified in an inline
declaration.

The following Blueprint XML example code shows how to set a singleton scope for a bean manager.

Chapter 18. OSGi applications 531

<bean id=”singletonAccount” class=“org.apache.aries.simple.Account”
scope=”singleton”>
<argument value=”5”/>

</bean>

The following Blueprint XML example code shows how to set a prototype scope for a bean manager.

<bean id=”prototypeAccount” class=“org.apache.aries.simple.Account”
scope=”prototype”>
<argument value=”4”/>

</bean>

Object values and the Blueprint Container
The Blueprint Container specification defines XML elements that describe different types of object values
and that you can use in manager definitions.

For example, you can use XML value elements in a bean manager to specify argument or property values,
or in a service manager to specify the values of service properties. The XML value elements are converted
into value objects and injected into the manager components. You can use the following XML value
elements:

ref The ref element defines a reference to a top-level manager. The component-id attribute specifies
an ID of a top-level manager. The injected value will be the object that the referenced manager
returns.

The following partial Java class and Blueprint XML example code shows an example of the ref
value element. The accountOne bean instance is injected into the managedAccount property of
the accountManagerTwo bean.
public class AccountManager {

...
public void setManagedAccount(Account account) {

...
}

}

<bean id=”accountOne” class=“org.apache.aries.simple.Account”>
<argument value=”1”/>
<property name="description" value="#1 account"/>

</bean>

<bean id=”accountManagerTwo” class=“org.apache.aries.AccountManager”>
<property name=”managedAccount”>

<ref component-id=”accountOne”/>
</property>

</bean>

idref The idref element defines an ID of a top-level manager. The injected value is the component-id, as
specified by the component-id attribute. The idref element is used to ensure that a manager with
the specified ID actually exists before the manager is activated.

value The value element represents an object to create from the string content of the element.
Optionally, use the type attribute to specify a type to convert the string content to. If you do not
specify the type attribute, the string content is converted to the type that it is injected into.

null The null element represents Java null.

list The list element is a collection and represents a java.util.List object. Any XML value element that
is described in this section can be a sub-element of this collection. Optionally, you can set the
value-type attribute to specify a default type for the collection sub-elements.

set The set element is a collection and represents a java.util.Set object. Any XML value element that
is described in this section can be a sub-element of this collection. Optionally, you can set the
value-type attribute to specify a default type for the collection sub-elements.

532 Overview

array The array element is a collection and represents an Object[] array. Any XML value element that is
described in this section can be a sub-element of this collection. Optionally, you can set the
value-type attribute to specify a default type for the collection sub-elements.

The following Blueprint XML example code shows how you can combine XML value elements to
create a list. The created list will contain the following items:

v The string 123

v A java.math.BigInteger object with a value of 456

v A null

v A java.util.Set object with two values that are of type java.lang.Integer
<list>

<value>123</value>
<value type=”java.math.BigInteger”>456</value>
<null/>
<set value-type=”java.lang.Integer”>

<value>1</value>
<value>2</value>

</set>
</list>

props The props element represents a java.util.Properties object where the keys and values are of String
type. The prop sub-elements represent the individual properties. To specify the property key, you
use a key attribute, and to specify the property value, you use a value attribute or specify the
content of the element.

The following Blueprint XML example code shows an example of the props value element.
<props>

<prop key=”yes”>good</prop>
<prop key=”no” value=”bad”/>

</props>

map The map element represents a java.util.Map object where the keys and the values can be arbitrary
objects. The entry sub-elements represent the individual properties.

To specify the key, you use a key or key-ref attribute, or an inline declaration in a key sub-element.
You can specify an inline key by using any XML value element that is described in this section,
except the null element. In the Blueprint Container specification, map elements cannot have null
keys.

To specify the value, you use a value or value-ref attribute, or an inline declaration. You can
specify an inline value using any XML value element that is described in this section. However, the
inline key can be specified as any of the XML value elements except the null element.

The key-ref and value-ref attributes specify an ID of a top-level manager and are used to obtain an
object from the specified manager as the property key or value. The map element can specify
key-type and value-type attributes to define a default type for keys and values.

The following Blueprint XML example code shows an example of the map value element and how
the entries of a map object can be constructed in several ways. The created map object will
contain the following entries:

v A myKey1 String key that is mapped to myValue String.

v A key that is an object that the account bean manager returns and that is mapped to myValue
String.

v A key that is a java.lang.Integer object with a value of 123 and that is mapped to myValue
String.

v A myKey2 String key is mapped to a value that is an object that the account bean manager
returns.

v A myKey3 String key is mapped to a value that is a java.lang.Long object with a value of 345.

Chapter 18. OSGi applications 533

v A key that is a java.net.URI object with a value of urn:ibm and that is mapped to a value that is
a java.net.URL object with a value of http://ibm.com value.

<map>
<entry key=”myKey1” value=”myValue”/>

<entry key-ref=”account” value=”myValue”/>
<entry value=”myValue”>

<key>
<value type=”java.lang.Integer”>123</value>

<key/>
</entry>

<entry key=”myKey2” value-ref=”account”>
<entry key=”myKey3”>

<value type=”java.lang.Long”>345</value>
</entry>

<entry>
<key>

<value type=”java.net.URI”>urn:ibm</value>
<key/>
<value type=”java.net.URL”>http://ibm.com</value>

</entry>
</map>

Each manager can also be specified as a value by using an inline declaration. The following Blueprint
XML example code shows an inline bean manager.

<bean id=”accountManagerThree” class=“org.apache.aries.AccountManager”>
<property name=”managedAccount”>

<bean class=“org.apache.aries.simple.Account”>
<argument value=”10”/>
<property name="description" value="Inline Account"/>

</bean>
</property>

</bean>

Object life cycles and the Blueprint Container
In the Blueprint programming model, a bean manager can manage the life cycle of the object that it
creates. The bean manager can notify an object after all properties are injected, or when an object
instance is destroyed.

The Blueprint Container specification defines the following callback methods:

init-method
Specifies a method to be call after all properties are injected into an object. The method must be
public, does not take any arguments, and does not return any value.

destroy-method
Specifies a method to call when the Blueprint Container destroys the object instance. The method
must be public, does not take any arguments, and does not return any value.

The destroy-method callback is not supported for beans with a scope of prototype. In this situation,
the application is responsible for destroying those instances.

The following code examples show an example of a Java class with lifecycle methods and a Blueprint
XML bean entry that specifies the init-method and destroy-method attributes.

public class Account {
public Account(long number) {

...
}
public void init() {

534 Overview

...
}
public void destroy() {

...
}

}

<bean id=”accountFour” class=“org.apache.aries.simple.Account”
init-method=”init” destroy-method=”destroy”>
<argument value=”6”/>
<property name=”description” value=”#6 account”/>

</bean>

Resource references and the Blueprint Container
Blueprint components can access WebSphere Application Server resource references by using resource
reference declarations.

You declare each resource reference in a Blueprint XML file. Each bundle in an OSGi application can
contain any number of resource reference declarations in its various Blueprint XML files. You can secure
each resource reference by using a Java Platform, Enterprise Edition (Java EE) Connector Architecture
(JCA) authentication alias.

Blueprint resource reference bindings are configured when you add the enterprise bundle archive (EBA)
asset to a business-level application.

To use resource references, you use the following Blueprint namespace, which contains the
resource-reference, res-auth, and res-sharing-scope elements:

http://www.ibm.com/appserver/schemas/8.0/blueprint/resourcereference

The following example defines a Blueprint component with a component ID of resourceRef. The
component is like a service reference. This component will be bound to a Java Naming and Directory
Interface (JNDI) resource that has the JNDI name jdbc/Account and type
javax.resource.cci.ConnectionFactory.

<blueprint xmlns="http://www.osgi.org/xmlns/blueprint/v1.0.0" xmlns:rr=
"http://www.ibm.com/appserver/schemas/8.0/blueprint/resourcereference">
<rr:resource-reference id="resourceRef"

interface="javax.resource.cci.ConnectionFactory"
filter="(osgi.jndi.service.name=jdbc/Account)">
<rr:res-auth>Application</rr:res-auth>
<rr:res-sharing-scope>Shareable</rr:res-sharing-scope>

</rr:resource-reference>
</blueprint>

To declare a resource reference, you must specify both the interface and filter attributes. The filter must
contain a JNDI resource in the form osgi.jndi.service.name=name, where name is the JNDI name of the
resource.

Use the res-auth element to set whether authorization is application-managed or container-managed. The
res-auth element takes the following values:

Application
Authorization is application-managed.

Container
Authorization is container-managed. This is the default value.

Use the res-sharing-scope element to set whether a resource reference can be shared. The
res-sharing-scope element takes the following values:

Chapter 18. OSGi applications 535

Shareable
A resource reference can be shared

Unshareable
A resource reference cannot be shared. This is the default value.

You can also use a resource reference to configure a data source for a persistence bundle by using a
blueprint:comp/resource_ref_id JNDI name. For more information, see “JPA and OSGi Applications” on
page 560.

When you secure resource references, those resource references can be bound only to JCA
authentication aliases that exist on every server or cluster that the OSGi application is deployed to. An
OSGi application can be deployed to multiple servers and clusters that are in the same security domain.
Therefore, each JCA authentication alias must exist in either the security domain of the target servers and
clusters, or the global security domain.

Dynamism and the Blueprint Container
In the Blueprint programming model, you can use registration listeners or reference listeners so that a
bundle can have control when services become available.

For example, a bundle might have an optional service that it wants to start using when the service
becomes available, and stop using when the service becomes unavailable. You can use a reference
listener so that the bundle is notified when this optional service becomes available or unavailable.

The service reference managers, that is, a reference manager or a reference-list manager, can have zero
or more registration listeners, and zero or more reference listeners.

v Registration listeners are objects that have callback methods invoked immediately after a service is
registered, or immediately before a service is unregistered.

v Reference listeners are objects that have callback methods invoked when a service is selected by the
service reference manager, or a service is no longer used by the service reference manager.

Registration listener

To specify a registration listener, use the registration-listener element, and use the registration-method and
unregistration-method attributes specify the callback methods. You can specify the object that provides the
callback methods as a reference to a top-level manager or you can use an inline declaration in the
registration-listener element.

If the service implements the ServiceFactory interface, the registration and unregistration callback methods
must have the following signature, where anyMethod represents an arbitrary method name.

void anyMethod(ServiceFactory, Map)

If the service does not implement the ServiceFactory interface, the registration and unregistration callback
methods must match the following signature.

void anyMethod(? super T, Map)

The first argument is an instance of the service object. The type T must be able to be assigned from the
type of the service object. The second argument provides the registration properties that are associated
with the service.

If a registration listener has multiple overloaded methods for a callback, every method with a matching
signature is invoked.

The following partial Java class and Blueprint XML example code shows a simple registration listener.

536 Overview

public class RegistrationListener {
public void register(Account account, Map properties) {

...
}
public void unregister(Account account, Map properties) {

...
}

}

<service id=”serviceSix” ref=”myAccount” auto-export=”all-classes”>
<registration-listener

registration-method=”register” unregistration-method=”unregister”>
<bean class=“org.apache.aries.RegistrationListener”/>

</registration-listener>
</service>

Reference listener

To specify a reference listener, you use the reference-listener element, and use the bind-method and
unbind-method attributes to specify the callback methods. You can specify the object that provides the
callback methods as a reference to a top-level manager or you can use an inline declaration in the
reference-listener element.

The bind and unbind callback methods can have any of the following signatures, where anyMethod
represents an arbitrary method name:
v

void anyMethod(ServiceReference)

The argument is a ServiceReference object of the service that is bound or unbound.
v

void anyMethod(? super T)

The argument is the service object proxy that is bound or unbound. The type T must be able to be
assigned from the service object.

v

void anyMethod(? super T, Map)

The first argument is the service object proxy that is bound or unbound. The type T must be able to be
assigned from the service object. The second argument provides the service properties that are
associated with the service.

If a reference listener has multiple overloaded methods for a callback, every method with a matching
signature is invoked.

For a reference-list manager, the listener callbacks are invoked each time a matching service is added or
removed from the service registry. However, for a reference manager, the bind callback is not invoked
when the manager is already bound to a service and a matching service with lower ranking is added to the
service registry. Similarly, the unbind callback is not called if the service that the manager is bound to goes
away and it is replaced immediately with another matching service.

If you use a reference manager and interact with stateful services, it is important to use reference listeners
to track the backing services of the proxy so that you can manage the state of the service appropriately.

The following partial Java class and Blueprint XML example code shows a simple registration listener. The
ReferenceListener class has two bind and one unbind callback methods, which are called when the
services are bound and unbound from the service reference-list manager.

public class ReferenceListener {
public void bind(ServiceReference reference) {

...
}
public void bind(Serializable service) {

Chapter 18. OSGi applications 537

...
}
public void unbind(ServiceReference reference) {

...
}

}

<reference-list id=”serviceReferenceListTwo”
interface=”org.apache.aries.simple.Account” availability=”optional”>
<reference-listener bind-method=”bind” unbind-method=”unbind”>

<bean class=“org.apache.aries.ReferenceListener”/>
</reference-listener>

</reference-list>

Type converters and the Blueprint Container
During injection, the Blueprint Container converts the XML value elements into value objects that are
injected into the manager components. The elements are converted based on the type of the injected
property.

The Blueprint Container provides the following built-in conversions:

v

– String values can be converted to all primitive types, wrapper types, or any types that have a public
constructor that takes a String value.

– Array elements can be converted to collection objects with compatible member types.

– List or set elements can be converted to array objects with compatible member types.

The Blueprint Container also supports generics. If the generics information is available, the Blueprint
Container uses that information for the conversions. For example, in the following Blueprint XML example
code, the list element is converted into a list of java.util.Long objects.

public class AccountManager {
...

public void setAccountNumbers(List<Long> accounts) {
...

}
}

<bean id=”accountManagerFour” class=“org.apache.aries.AccountManager”>
<property name=”accountNumbers”>

<list>
<value>123</value>
<value>456</value>
<value>789</value>

</list>
</property>

</bean>

A Blueprint bundle can also provide its own converters. The custom converters are bean managers that
provide an object that implements the Blueprint Converter interface. Specify the custom converters in the
type-converters element under the Blueprint element. When the Blueprint Container is initialized, the type
converters are initialized first, so that other managers can use the custom converters. For further details,
see the Blueprint Container specification.

JNDI lookup for blueprint components
If a bundle contains blueprint XML that declares a number of components each with a given ID, those
components can be looked up using the Java Naming and Directory Interface (JNDI).

The code that you use has the following form:

Object component = new InitialContext().lookup("blueprint:comp/componentId");

538 Overview

This mechanism is useful in two different contexts:

v You can declare and configure any number of components of a web application bundle (WAB), which
can then be looked up from servlets that are not themselves blueprint-managed.

v You can declare and configure data sources in blueprint XML, then reference them in a
persistence.xml file.

Declaring and configuring components of a WAB

A WAB can contain blueprint XML. This can be used to declare and configure any number of components,
which can then be looked up from servlets that are not themselves blueprint-managed. One particular use
of this is shown in the OSGi blog sample application, in which the web bundle contains the following
blueprint code:

<blueprint xmlns="http://www.osgi.org/xmlns/blueprint/v1.0.0"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">

<reference id="blogService"
interface="com.ibm.samples.websphere.osgi.blog.api.BloggingService"/>

</blueprint>

The JNDIHelper.getBloggingService() method call includes this code fragment:

try {
InitialContext ic = new InitialContext();
return (BloggingService) ic.lookup("blueprint:comp/blogService");

} catch (NamingException e) {

This code looks up a blueprint-managed reference to an OSGi service. This is useful because
blueprint-managed services are damped as described in section 121.10.1 of the OSGi Service Platform
Release 4 Version 4.2 Enterprise Specification. If the BloggingService object is not available when the
application code tries to use the reference, the application code waits until the service becomes available
again.

Previous versions of the getBloggingService method used a lookup of the following form:
ic.lookup("osgi:service/com.ibm.samples.websphere.osgi.blog.api.BloggingService");

This is not so useful, because the application code can receive a ServiceUnavailableException exception
if the service is not available when the application code tries to use the BloggingService object. For
example: If the BloggingService object is temporarily unavailable because an in-place update is in
progress, the user of the Blog web application can get an HTTP 500 (Internal Error) message in their
web browser. With the new form of lookup, web requests wait for a short time (a second or two) until the
update completes. Therefore it is easier to write a web application that remains continuously available,
from a user perspective, even while the application is being updated in place.

Declaring and configuring data sources

Data sources can be declared and configured in blueprint XML, then referenced in a persistence.xml file.
For example, in Apache Aries the org.apache.aries.jpa.container.itest.bundle/src/main/resources/
OSGI-INF/blueprint/config.xml file includes the following code:

<blueprint xmlns="http://www.osgi.org/xmlns/blueprint/v1.0.0">

<bean id="nonjta" class="org.apache.derby.jdbc.EmbeddedDataSource">
<property name="databaseName" value="memory:testDB"/>
<property name="createDatabase" value="create"/>

</bean>

<service interface="javax.sql.XADataSource">
<service-properties>
<entry key="transactional" value="true"/>

</service-properties>

Chapter 18. OSGi applications 539

<bean class="org.apache.derby.jdbc.EmbeddedXADataSource">
<property name="databaseName" value="memory:testDB"/>
<property name="createDatabase" value="create"/>

</bean>
</service>

<reference id="jta" availability="optional" interface="javax.sql.DataSource"
filter="(transactional=true)"/>

</blueprint>

The org.apache.aries.jpa.container.itest.bundle/src/main/resources/META-INF/persistence.xml file
includes the following corresponding code:

...
<persistence-unit name="bp-test-unit" transaction-type="JTA">
<description>Test persistence unit for the JPA Container and Context iTests</description>
<jta-data-source>blueprint:comp/jta</jta-data-source>
<non-jta-data-source>blueprint:comp/nonjta</non-jta-data-source>
<class>org.apache.aries.jpa.container.itest.entities.Car</class>
<exclude-unlisted-classes>true</exclude-unlisted-classes>
<properties>
<!-- These properties are creating the database on the fly. -->
<!-- We are using them to avoid the tests having to create a database -->
<property name="openjpa.jdbc.SynchronizeMappings" value="buildSchema(ForeignKeys=true)"/>
<property name="openjpa.jdbc.DBDictionary" value="derby"/>

</properties>
</persistence-unit>

</persistence>

In this code fragment, the jta-data-source and non-jta-datasource elements are configured through
blueprint:comp/ namespace references.

OSGi bundles and bundle archives
Applications can be deployed as versioned OSGi bundles, with each bundle typically having the granularity
of an enterprise application module (for example, a webapplication). A bundle is a Java archive (JAR) or
web application archive (WAR) file with standard OSGi metadata that describes aspects of the bundle,
including the Java packages that the bundle exports, the Java packages that the bundle requires, and the
bundle version.

Enterprise bundle archives
An enterprise bundle archive (EBA) file contains a set of OSGi bundles that are deployed as a single
OSGi application, and that are isolated from other OSGi applications.

Each OSGi application runs in its own isolated OSGi framework instance with its own OSGi service
registry. Bundles in one OSGi application cannot see bundles, services, or packages that are defined in
another OSGi application, unless the bundles, services, or packages are explicitly shared by both
applications.

The bundles that are used by the OSGi application are either directly contained in the EBA file, or pulled in
by reference from an OSGi bundle repository when the application is provisioned. Application metadata
stored in the EBA file defines the isolation scope of the bundles that the OSGi application uses.

An EBA file is packaged as a single compressed archive file with a .eba file extension. It can contain an
application manifest, and a set of application modules. An application module can be one of the following
types of resource:

v An OSGi bundle, packaged as a Java archive (JAR) file.

540 Overview

v A composite bundle, packaged as a composite bundle archive (CBA) file.

v A web application, packaged as a web application archive (WAR) file.

Application modules are contained in the root of the EBA file. These modules are directly contained in the
OSGi application, whereas all other bundles are provided by reference.

An OSGi application can also use metadata to permit some of its constituent bundles to be shared.
Sharing in this way can reduce the memory and resource requirements of a system. Shared bundles must
be provided by reference rather than contained directly in an application.

An OSGi application can also load packages and consume OSGi services from a shared bundle space,
that is, from the OSGi framework instance that is the parent of all the isolated framework instances of the
OSGi applications.

Application manifest

The OSGi bundles in an EBA file share services with other OSGi applications by declaring them in an
application manifest file, META-INF/APPLICATION.MF. Any external services and references that the OSGi
application produces are exposed by declaring them in the manifest, and any external services and
references that the application consumes are also declared in the manifest.

The application manifest specifies the bundles that form the primary content of the application. A bundle
that is listed in the primary content might use a package that is not included in the application, and
therefore require other bundles to be pulled in. The application manifest might also specify an allowed
version range for some bundles; this range defines the initial version of the application, and the latest
version to which it can be upgraded.

Optionally, you can explicitly declare shared bundles on which the primary application content depends so
that you can restrict the level at which sharing is possible; for example, you can ensure that the application
uses a shared bundle only between a specified version range. For more information, see the description of
the "Use-Bundle" header in “Example: OSGi application manifest file” on page 552.

An EBA file does not have to contain an application manifest file. The contents of the EBA file is used in
two different ways, depending on whether you have included an application manifest, and on whether an
Application-Content header is defined in the application manifest:

v If an Application-Content header is not defined, or there is no application manifest, the EBA file content
defines the OSGi application content.

v If an Application-Content header is defined, the EBA file content defines an initial bundle repository from
which bundles can be provisioned.

See “Example: OSGi application manifest file” on page 552.

Deployment manifest

A deployment manifest file, META-INF/DEPLOYMENT.MF, is created automatically when you import an EBA
asset. The deployment manifest file lists, at specific versions, all the bundles and composite bundles that
make up the application, including bundles that are determined following dependency analysis. The
manifest file is used to ensure that each time an application server starts, the bundles that make up the
application are the same.

You can export the current deployment manifest from an EBA asset, then import the deployment manifest
into another asset that contains the same application. The target asset then uses the imported manifest
instead of the generated manifest. This is useful during application development, when an application is
fully tested and moves to a production environment. By importing the deployment manifest from the test
environment, you ensure that the bundles and their versions that make up the application in the production
environment are exactly the same as the bundles that make up the application in the test environment.

Chapter 18. OSGi applications 541

See “OSGi deployment manifest file” on page 555 and Exporting and importing a deployment manifest file.

Enterprise bundle archive installation
OSGi applications in enterprise bundle archive (EBA) files are installed using the business-level application
framework.

Installation is a three step process:

1. Import the EBA file as an asset.

2. Create a new business-level application.

The first two steps can be in either order.

3. Add the asset to the business-level application. The application is configured and associated with the
server that it will run on.

During installation, if the EBA file does not contain a deployment manifest, a deployment manifest is
generated. If the EBA file contains a deployment manifest, it is checked against the application manifest,
and installation continues if the information in the manifests match.

Enterprise bundle archive update
After you import an enterprise bundle archive (EBA) file as an asset, newer versions of the OSGi bundles
that it uses might become available. If you want an OSGi application to use a later version of a bundle,
you must specify this explicitly by configuring the asset.

The application manifest in an EBA file can define a list of application modules, together with a range of
versions for each module. In this way, updates from the minimum to the maximum version of a module are
allowed.

The deployment manifest, which is created automatically when you import the EBA file as an asset,
specifies the exact version of each module, and ensures that each time an application server starts, the
bundles that make up the application are the same. When newer versions of the bundles become
available, they are not updated automatically, even if they are within the version range specified in the
application manifest.

If an OSGi application requires a newer version of a bundle that has been installed into a configured
bundle repository, the EBA asset must be explicitly updated to pull in that newer version. Otherwise, the
application continues to use the original deployed bundle version.

You can use the administrative console to list the bundles that make up the application and see the
current versions in use. All the bundles except those that are provisioned by the runtime environment are
listed. If later versions of any bundles are available in the configured bundle repositories, these versions
are also listed, so you can choose to update to one of the later versions.

You can change the version of one or more bundles, then preview whether the changes resolve
successfully. You can update a single bundle, or update the whole application. After you preview the
update, you can commit or cancel the changes. If you commit the changes, the deployment manifest of
the asset is updated. The changes take effect the next time that the business-level application that
contains the asset is started.

In a production environment, when you want to ensure that the same versions of bundles that are used for
acceptance test are used in production, you can export the appropriate deployment manifest from the test
environment to the production environment. When you do this, the application manifest and the
deployment manifest are checked to make sure that they contain matching information.

542 Overview

Composite bundles
A composite bundle groups shared bundles together into aggregates. It provides one or more packages at
specific versions to an OSGi application. You can also extend a deployed application by adding one or
more composite bundles to the composition unit for the application.

A composite bundle is packaged as a composite bundle archive (CBA) file. This file is a compressed
archive file with a .cba file extension. If the composite bundle is part of an enterprise OSGi application, the
CBA file can be directly contained within the enterprise bundle archive (EBA) file for the application, or
pulled in by reference from the internal bundle repository or from an external repository that can process
composite bundles. A composite bundle can directly contain bundles in its CBA file. It can also include by
reference bundles that are hosted alongside the CBA file within the same EBA file, or bundles that are
installed in the same bundle repository.

A composite bundle has the following differences from an enterprise OSGi application:

v The bundles that a composite bundle contains or references are defined with exact versions. The
bundles in an enterprise OSGi application can be defined with version ranges.

v A composite bundle has a composite bundle manifest, which is a modularity statement that asserts that
bundles can be deployed, not that they will resolve. An enterprise OSGi application has an application
manifest, which is a provisioning statement.

v A composite bundle can import or export packages. An enterprise OSGi application cannot do this.

v An enterprise OSGi application does not need to fully define its content. When the application is
deployed, dependencies are analyzed and additional bundles are provisioned.

There are two main uses for a composite bundle:

v When you want to ensure consistent behavior from a set of shared bundles in an OSGi application, you
use a composite bundle to provide that set of bundles to the application. If a required package or
service is available at the same version from both a bundle and a composite bundle, the provisioning
process selects the package or service from the composite bundle.

v When you want to extend a deployed business-level application that contains an OSGi application, and
you do not want to stop the application or modify the underlying EBA asset, you add one or more
composite bundles to the composition unit.

After you import the enterprise bundle archive (EBA) file for your OSGi application as an asset, you can
update versions of existing bundles but you cannot add extra bundles to the asset. By adding one or
more composite bundles to the composition unit, you can extend a business-level application without
having to redevelop and redeploy the underlying OSGi application. When you save the changes to the
composition unit, the associated business-level application is updated to use the new configuration. If
the business-level application is running, the bundle and configuration updates are applied immediately.

An OSGi application can include a composite bundle just like any other bundle, either directly or by
reference. If you want to include the composite bundle by reference, or use the composite bundle to
extend a deployed application, the composite bundle must be available in the internal bundle repository or
in an external repository that can process composite bundles. If you install a composite bundle in a bundle
repository, and the composite bundle includes bundles by reference, you must ensure that the referenced
bundles are also available in the same repository. If you use the internal bundle repository, and the
composite bundle directly contains bundles, the contained bundles are not listed separately and are only
available as part of the composite bundle.

For users who are moving from a previous version:

v In the WebSphere Application Server Version 7
Feature Pack for OSGi Applications and Java
Persistence API 2.0, when you add a
composite bundle to the internal bundle
repository, and that composite bundle directly

Chapter 18. OSGi applications 543

contains bundles (in compressed files in the
root directory of the composite bundle archive
file), those bundles are added to the internal
bundle repository both as part of the composite
bundle and as individually-available bundles. If
you later delete the composite bundle from the
repository, the individually-available copies of
the bundles are not deleted. You might have
used this mechanism as a convenient way to
upload sets of bundles to the repository.

v In the current version, when you add to the
repository a composite bundle that directly
contains bundles, those bundles are not also
added individually. If you want to add sets of
bundles to the internal bundle repository, you
package each set as a compressed archive file
with a .zip file extension, then add the archive
file to the repository. The system expands the
file, and all the bundles in its root directory are
added individually to the repository.

Application bundles, use bundles and provision bundles
Application bundles are instance-specific, and each instance of an application includes its own instance of
the bundle. Shared bundles are not instance-specific, and a single instance of a package or service from a
shared bundle can be used by many applications. Shared bundles are further sub-divided into use bundles
and provision bundles.

Application bundles

Application bundles are bundles that you create specifically for your application. They are instance-specific
or isolated; that is, they are not intended to be shared. They are referenced in the application manifest in
the Application-Content header.

Shared bundles

Shared bundles are not application-specific. A single instance of a package from a shared bundle can be
used by many applications. Shared bundles cannot import packages or services from application bundles.
Shared bundles must be provided by reference rather than contained directly in an application.

Shared bundles are further subdivided into use bundles and provision bundles:

Use bundles
A use bundle provides at least one package to an application bundle. Use bundles are shared
bundles that are referenced in the application manifest in the Use-Bundle header.

By specifying a particular shared bundle as a use bundle, you can control which bundle is
provisioned to provide a shared package. For example, if there are two possible providers of a
package, bundle A and bundle B, and there is a use bundle statement for bundle A, then bundle A
is always provisioned and used.

Provision bundles
A provision bundle provides at least one package or service to an application bundle, a use bundle
or another provision bundle. Provision bundles are not referenced in the application manifest, and
your application does not know how the requirement for each provision bundle is satisfied.

If you have two separate OSGi applications, and you want them to share the same API classes, you can
package those classes as a shared bundle then reference that bundle in the Use-Bundle header of both

544 Overview

application manifests. For administrators, another benefit of use bundles is that you can monitor and
update them using the administrative console or wsadmin commands.

Bundle usage and bundle provisioning terminology

OSGi bundles can be stored in any of the following locations:

v The enterprise bundle archive (EBA) file for the application.

v The internal bundle repository.

v External OSGi bundle repositories.

Application bundles can be stored either in the EBA file or in a repository. Shared bundles are stored in a
repository (otherwise they cannot be shared).

The process of getting bundles from the repositories is known as provisioning. For provisioning purposes,
the following terminology is used for bundles:

Referenced bundles
A referenced bundle is a bundle that is referenced in the application manifest, and stored in a
repository.

Dependency bundles
A dependency bundle is a bundle that is not referenced in the application manifest, but that is
used by bundles that are referenced in the application manifest, or by other dependency bundles.

This is how the terminology for bundle usage (that is, application, use and provision bundles) maps to the
terminology for bundle provisioning (that is, referenced and dependency bundles):

v Application bundles that are not directly contained in the EBA file are instance-specific referenced
bundles.

v Use bundles are shared referenced bundles.

v Provision bundles are shared dependency bundles.

Web application bundles
A web application bundle (WAB) is a bundle that contains a web application and that can be deployed in
an OSGi container. A WAB is an OSGi bundle version of a web application archive (WAR) file.

WABs are defined in the OSGi Service Platform Release 4 Version 4.2 Enterprise Specification.

You use a WAB in an OSGi application in much the same way that you use a WAR file in a Java
enterprise application. For example, you use a WAB to host servlets, static content, or JavaServer Pages
(JSPs) that are part of your application.

A WAB contains a manifest file, META-INF/MANIFEST.MF. This file contains the same minimum set of
manifest headers that any OSGi bundle manifest contains (for example Bundle-SymbolicName and
Bundle-ManifestVersion), and also extra headers that are specific to WABs. You use these headers to
describe your web application in OSGi terms, and to specify the support that you want from the OSGi
Applications runtime environment. For example, you do not need to package dependencies inside a WAB;
you can instead specify these dependencies in a manifest header and let the runtime environment
provision them for you. The only required extra header is Web-ContextPath. You use this header to specify
the default context from which the web content is hosted.

An OSGi WAB that uses Servlet 3.0 metadata can contain EJBs. If your WAB contains EJBs, and you use
a deployment descriptor XML file to define your EJB metadata, then the file must be located at
WEB-INF/ejb-jar.xml. Any IBM binding files must be located in the WEB-INF folder; for example,
WEB-INF/ibm-ejb-jar-bnd.xml.

Chapter 18. OSGi applications 545

You can convert an enterprise application that contains only WAR files to an OSGi application packaged
as an enterprise bundle archive (EBA) file. When you import the EBA file as an asset, the WAR files are
automatically converted to WABs.

Considerations for using web applications and bundle fragments in web
application bundles
There are a few specifics to consider when you develop a web-enabled OSGi application, especially if
your application uses the Servlet 3.0 or Contexts and Dependency Injection (CDI) capabilities of the
Java Platform, Enterprise Edition 6 (Java EE 6) specification.
v “Files in the root directory”
v “Fragment attach order”
v “Class path ordering in web fragments”
v “Web application bundles and CDI”

Files in the root directory

Any files that are in the root directory of a web application can be viewed or downloaded using a browser.
To prevent your bundles and bundle fragments from being accessed in this way, you should keep your
.class files in a subdirectory such as WEB-INF/classes, and your .jar files in a subdirectory such as
WEB-INF/lib, rather than in the root of the bundle.

Fragment attach order

You can extend bundles by adding bundle fragments. However you cannot control the order in which
bundle fragments are attached.

To support the Java Servlet 3.0 specification, this implementation lets you define a web application through
annotations in bundles and bundle fragments, as well as (or instead of) through a web.xml file for the
application. The configuration for a web application is built by scanning its class path for annotations, and
the order of components on the class path depends upon the fragment attach order.

Because you cannot control the order in which bundle fragments are attached, you cannot predict the
order of items on the class path. This means that the design for your web application must not rely on
bundle fragments being attached in a particular order.

Class path ordering in web fragments

The Java Servlet 3.0 specification lets you use web fragments to define the class path order. For OSGi
applications, the bundle class path is the primary mechanism for specifying the ordering of components. If
you use the Java Servlet 3.0 ordering capabilities for web fragments, you must ensure that the resulting
class path order matches the bundle class path.

Web application bundles and CDI

For Contexts and Dependency Injection (CDI) to work for a directory or Java archive (JAR) file on a
bundle class path, you must add the file META-INF/beans.xml within that directory or JAR file. For example,
consider the following bundle class path:
BundleClassPath:WEB-INF/myclasses,WEB-INF/yourclasses.jar,
WEB-INF/hisclasses,WEB-INF/herclasses.jar

For CDI to work with a class WEB-INF/myclasses/a.class, you need to add the file WEB-INF/myclasses/
META-INF/beans.xml. Similarly, for CDI to work with a class WEB-INF/herclasses.jar/b.class, you need to
add the file WEB-INF/herclasses.jar/META-INF/beans.xml.

Note: If you convert a web application as described in Converting a web application archive file to an
OSGi web application bundle, and the web archive (WAR) file has classes in the WEB-INF/classes

546 Overview

directory and has a WEB-INF/beans.xml file, then the conversion process automatically adds the file
WEB-INF/classes/META-INF/beans.xml to the web application bundle (WAB) file that is hosted.

EJB bundles
An EJB bundle is a bundle that contains EJBs and that can be deployed in an OSGi container. An EJB
bundle is an OSGi bundle version of an EJB JAR file.

You use an EJB bundle in an OSGi application in much the same way that you use an EJB JAR file in a
Java enterprise application. For example, you use EJBs to implement the business logic of your
application.

An EJB bundle contains a manifest file, META-INF/MANIFEST.MF. This file contains the same minimum set of
manifest headers that any OSGi bundle manifest contains (for example Bundle-SymbolicName and
Bundle-ManifestVersion), plus the Export-EJB header; it is the presence of the Export-EJB header that
identifies the bundle as an EJB bundle.

You use the manifest headers to describe your EJB bundle in OSGi terms, and to specify the support that
you want from the OSGi Applications runtime environment. For example, you do not need to package
dependencies inside an EJB bundle; you can instead specify these dependencies in a manifest header
and have the runtime environment provision them for you.

If you use a deployment descriptor XML file to define your EJB metadata, then the file must be located at
META-INF/ejb-jar.xml. Any IBM binding files must be located in the META-INF folder; for example,
META-INF/ibm-ejb-jar-bnd.xml.

You can convert an existing EJB JAR file to an EJB bundle by adding OSGi metadata to the file; Rational
Application Developer provides tooling to help simplify this task.

Bundle and package versioning
Every bundle or export package has a version number in a specific format, and every import package
statement has a version range. When you specify a version range, you need to consider current policy and
best practices, and requirements for compatibility with both earlier and future versions.

Version numbers

Every bundle or export package has a version number. This version number consists of up to three
numbers, in the following format:
9.9.9

The first number specifies the major component of the version number. The second number (if present)
specifies the minor component of the version number, and the third number (if present) specifies the micro
component of the version number. If you omit a component level, you also omit the period character “.”
that comes before that component level. For example, the following three numbers all specify the same
version:
9
9.0
9.0.0

According to the OSGi versioning policy, when a new version of a bundle or export package is not
compatible with earlier versions you increment the major version number of the bundle or package.

Version ranges

Every import package statement specifies a version range. The OSGi Alliance recommends the following
best practice for specifying a version range:

Chapter 18. OSGi applications 547

v For the lower boundary of the range, specify the minimum version of the package that the consuming
bundle requires.

v For the upper boundary of the range, include any minor version but exclude any increment in the major
version of the package.

Version ranges are specified using the following notation:

v A square bracket “[” or “]” means “include the end of the specified range”.

v A round bracket “(” or “)” means “exclude the end of the specified range”.

For example, the following import statement can resolve against any version of a package from version 1.0
up to, but not including, version 2.0.

Import-Package: com.myco.a.pkge;version="[1.0,2.0)"

A package at version 1.3 is expected to be compatible with a package at version 1.0, and so a bundle that
requires at least version 1.0 of a package should work if it is resolved against version 1.3 of that package.
However, the bundle might not work if it is resolved against version 2.0 of the package, so version 2.0 and
later versions are excluded.

Notes:

v When new methods are added to an interface, the minor version number is incremented for the
export package header. A class that implements the previous version of the interface can also
work with the new version, but the new version is only made available if explicitly specified. In
this case, the bundle importing the package that contains the interface should specify (for
example) "[1.0,1.1)".

v The Java Community Process (JCP) does not define OSGi metadata such as package versions
when it defines APIs. Currently, the OSGi versions are defined in the OSGi specifications that
reference the Java technologies. Future versions of JCP specifications are expected to be
compatible with earlier versions, so the OSGi package versioning policy for such future
specifications could simply reflect the JCP specification version. This might result in a change of
major version of a javax package even when the new version is compatible with the old. For
example, the Java Persistence API (JPA) 2.0 is compatible with the earlier version JPA 1.0. You
might expect the javax.persistence package version to follow the JCP specification name and
use version 2.0. However, it actually follows OSGi versioning policy and uses version 1.1.

Because JCP specifications always try to maintain compatibility with earlier versions, you should
specify only the minimum package version for a javax.* package and leave the upper boundary
open. For example, suppose that a future version of WebSphere Application Server has a
default JPA provider that implements a version of JPA later than Version 2.0. In this case, the
application server can export the javax.persistence package at that later version and still be
resolved by applications that are written to work with JPA 1.0 or 2.0. Similarly, the following
example import statement can resolve against any version of the javax.persistence package at
1.0 or higher:
Import-Package: javax.persistence;version="1.0"

Manifest files
The metadata for an OSGi application is defined in manifest files. An OSGi bundle contains a bundle
manifest; a composite bundle archive (CBA) contains a composite bundle manifest; an enterprise bundle
archive (EBA) contains an application manifest; an EBA asset contains a deployment manifest. The
deployment manifest is generated automatically when the EBA file is imported as an asset. You create the
other manifest files when you create the bundles or application.

Example: OSGi bundle manifest file
An OSGi bundle, which can be a JAR or web application archive (WAR) file, contains a bundle manifest
file META-INF/MANIFEST.MF. In addition to the headers that can be defined for a non-OSGi JAR or WAR file,

548 Overview

the bundle manifest file for an OSGi bundle contains OSGi-specific headers. The metadata that is
specified in these headers enables the OSGi Framework to process the modular aspects of the bundle.

Eclipse tools provides convenient editors for the manifest file.

Here is an example bundle manifest file, META-INF/MANIFEST.MF; the headers highlighted in bold are
mandatory:

Manifest-Version: 1.0
Bundle-ManifestVersion: 2
Bundle-Name: MyService bundle
Bundle-SymbolicName: com.sample.myservice
Bundle-Version: 1.0.0
Bundle-Activator: com.sample.myservice.Activator
Import-Package: org.apache.commons.logging;version="1.0.4"
Export-Package: com.sample.myservice.api;version="1.0.0"
Meta-Persistence: entities/persistence.xml,
lib/thirdPartyEntities.jar!/META-INF/persistence.xml

Web-ContextPath: /contextRoot
Export-EJB:
Bundle-Blueprint: /blueprint/*.xml

The metadata in a bundle manifest file includes the following headers:

Bundle-SymbolicName
A name that identifies the bundle uniquely.

Bundle-Version
This header describes the version of the bundle, and enables multiple versions of a bundle to be
active concurrently in the same framework instance.

Bundle-Activator
This header notifies the bundle of lifecycle changes.

Import-Package
This header declares the external dependencies of the bundle that the OSGi Framework uses to
resolve the bundle. Specific versions or version ranges for each package can be declared. In this
example manifest file, the org.apache.commons.logging package is required at Version 1.0.4 or
later.

Export-Package
This header declares the packages that are visible outside the bundle. If a package is not declared
in this header, it is visible only within the bundle.

Export-EJB
The presence of this header identifies this bundle as an EJB bundle, and causes any enterprise
beans in the bundle to be loaded and run by the EJB container. The value of this header declares
the enterprise beans that you want to export as OSGi services.

The Export-EJB header can have any of the following values:

v A single space character: export all enterprise beans in the bundle.

v A comma-separated list of the class names of the enterprise beans that you want to export. If
an enterprise bean is not included in this list, it is still loaded and run, but it is not exposed in
the OSGi service registry.

v NONE: do not export any enterprise beans.

Note:

v Only session enterprise beans that are not stateful are exported.

v The most straightforward way for a client to use an enterprise bean that is exposed as a
service is to import the package that contains the EJB business interface. For a client to

Chapter 18. OSGi applications 549

be able to import the required package, that package must be declared in the
Export-Package header of this bundle, or any other bundle.

If this bundle is a web application bundle, and you are using Version 3.0 of the Java Servlet
Specification, the bundle can contain enterprise beans. In this case, if you specify a
Web-ContextPath header then any enterprise beans in the bundle are loaded and run by the EJB
container, but none are exposed in the OSGi service registry. This configuration is equivalent to
specifying "Export-EJB: NONE". To export one or more enterprise beans from a web application
bundle into the OSGi service registry, specify an Export-EJB header in addition to the
Web-ContextPath header. The value of the Export-EJB header determines which enterprise beans
are exposed.

An exported enterprise bean is registered in the OSGi service registry with the following service
properties:

v ejb.name: the name of the enterprise bean.

v ejb.type: the EJB type; the value of this property is either "Stateless" or "Singleton". For more
information about EJB types, see Enterprise beans and Developing session beans.

v service.exported.interfaces: the enterprise bean is registered with this property only if it has
a remote interface; the value is the EJB interface name. This property configures the enterprise
bean as being suitable for remote access from outside the application, through Service
Component Architecture (SCA) for example. For more information, see the description of the
Application-ExportService header in the application manifest file.

Meta-Persistence
If your application uses the Java Persistence API (JPA), and this bundle is a persistence bundle,
then the bundle manifest also contains a Meta-Persistence header. For more information, see “JPA
and OSGi Applications” on page 560.

This header lists all the locations of persistence.xml files in the persistence bundle. When this
header is present, the default location, META-INF/persistence.xml, is added by default. Therefore,
when the persistence.xml files are in the default location, the Meta-Persistence header must be
present, but its content can be empty (a single space).

Web-ContextPath
The presence of this header identifies this bundle as a web application bundle.

This header specifies the default context from which the web content is hosted.

Bundle-Blueprint
This header specifies the location of the blueprint descriptor files in the bundle; for more
information, see Section 121.3.4 of the OSGi Service Platform Release 4 Version 4.2 Enterprise
Specification.

Example: OSGi composite bundle manifest file
A composite bundle groups shared bundles together into aggregates. A composite bundle is described in a
composite bundle manifest file, META-INF/COMPOSITEBUNDLE.MF. This manifest file lists the OSGi bundles
that are directly contained in the composite bundle, and the reference bundles that are hosted alongside
the composite bundle in the same EBA file, or in the same bundle repository.

A composite bundle provides one or more packages at specific versions to an application. Therefore all the
versions in a composite bundle manifest are exact.

Eclipse tools provides convenient editors for the manifest file.

Here is an example composite bundle manifest file, META-INF/COMPOSITEBUNDLE.MF:

Manifest-Version: 1.0
CompositeBundle-ManifestVersion: 1
Bundle-Name: Blog Application

550 Overview

http://www.osgi.org/Download/Release4V42
http://www.osgi.org/Download/Release4V42

Bundle-SymbolicName: com.ibm.ws.osgi.example.Blog
Bundle-Version: 1.0
CompositeBundle-Content:
com.ibm.ws.osgi.example.blog;version="[1.0,1.0]",
com.ibm.ws.osgi.example.blog.persistence;version="[1.0,1.0]"
Import-Package: com.ibm.ws.other.pkge;version=1.0.0
Export-Package: com.ibm.ws.osgi.example.blog;version=1.0.0
CompositeBundle-ExportService:
com.ibm.ws.osgi.example.blog.BloggingService;filter="(blog.type=community)"
CompositeBundle-ImportService:
com.ibm.ws.osgi.example.auth.UserAuthService

The metadata in a composite bundle manifest file includes the following headers:

Manifest-Version
A version number for the manifest format.

CompositeBundle-ManifestVersion
The composite bundle manifest version to which this manifest conforms.

Bundle-Name
A human-readable name of the composite bundle.

If you do not specify a value, the default value is the composite bundle symbolic name.

Bundle-SymbolicName
A name that identifies the composite bundle uniquely. The name follows the same scheme as the
Bundle-SymbolicName header in an OSGi bundle. The value must not be the same as the value
of the Bundle-SymbolicName of any of the bundles in the composite bundle, as listed in the
CompositeBundle-Content header.

Bundle-Version
A version number that identifies the version of the composite bundle uniquely.

CompositeBundle-Content
A list of bundles in the composite bundle. All bundles must be available for deployment and must
be contained in the .cba file, or exist in an available bundle repository. Bundles must have exact
version numbers. If you require the same composite bundle with different versions of its content,
you require different versions of the composite bundle, one version for each usage.

Import-Package
A list of packages that the composite bundle wants to import. This list is developed from the import
package lists in the individual bundle manifests within the composite bundle:

v If an individual bundle manifest specifies an import package, and the same package is
contained in another bundle in the composite bundle, then the composite bundle need not
import the package.

v If a bundle in the composite bundle specifies an import package that is not otherwise available
within the composite bundle, then the package must be listed as an import package in the
composite bundle manifest.

Export-Package
A list of packages that the contents of the composite bundle provides to the shared bundle space.

Note: A composite bundle can export a package from a bundle JAR file that is contained in the
composite bundle, provided that package is also listed in the Export-Package header in the
bundle manifest file of the contained bundle. However, the attributes and directives that are
specified for that package in the Export-Package header of the composite bundle manifest
file must exactly match those specified in the manifest file of the contained bundle,
otherwise the package is not exported.

CompositeBundle-ExportService
A list of service interface names and optional filters that identify services that are present in the

Chapter 18. OSGi applications 551

composite bundle and that can be exported for use outside the composite bundle. The interfaces
that an exported service implements are usable outside the composite bundle if those interfaces
are visible outside the composite bundle.

The format is a comma-separated list of services, in the form of a service interface name, followed
by attributes or directives. The CompositeBundle-ExportService header has the following attribute:

filter An OSGi service filter.

CompositeBundle-ImportService
A list of service interface names and optional filters that identify services that the contents of the
composite bundle want to use from outside the composite bundle. At least one such service must
exist at run time.

The format is a comma-separated list of services, in the form of a service interface name, followed
by attributes or directives. The CompositeBundle-ImportService header has the following attribute:

filter An OSGi service filter.

Example: OSGi application manifest file
The OSGi bundles in an enterprise bundle archive (EBA) file share services with other OSGi applications
by declaring them in an application manifest file, META-INF/APPLICATION.MF. Any external services and
references that the OSGi application produces are exposed by declaring them in the manifest, and any
external services and references that the application consumes are also declared in the manifest.

The application manifest describes modularity at the application level. It uses configuration by exception,
that is, you supply values only when you want to override the default. An EBA file does not have to contain
an application manifest file. The default, when no application manifest is declared, is that the application
content is the set of OSGi bundles contained in the OSGi application, and no external services or
references are produced or consumed.

The application manifest specifies the bundles that form the primary content of the application. A bundle
that is listed in the primary content might use a package that is not included in the application, and
therefore require other bundles to be pulled in. The application manifest might also specify an allowed
version range for some bundles; this range defines the initial version of the application, and the latest
version to which it can be upgraded.

Eclipse tools provides convenient editors for the manifest file.

Here is an example application manifest file, META-INF/APPLICATION.MF:

Manifest-Version: 1.0
Application-ManifestVersion: 1.0
Application-Name: My Club
Application-SymbolicName: com.myclub.app
Application-Version: 1.0
Application-Content:
com.myclub.api; version=1.0.0,
com.myclub.persistence; version=1.0.0,
com.myclub.web; version="[1.2.0,1.2.5)",
com.myclub.common; version="(1.2.0,2.0.0)"

Application-ImportService: com.myclub.security.authenticationService; filter="(security=strong)"
Application-ExportService: com.myclub.memberService
Use-Bundle: com.clubs.utils; version="[1.0.0,1.1.0)"

The metadata in an application manifest file includes the following headers:

Manifest-Version
A version number for the manifest format.

552 Overview

Application-ManifestVersion
The application manifest version to which this manifest conforms.

Application-Name
A human-readable name of the application.

If you do not specify a value, the default value is the application symbolic name.

Application-SymbolicName
A name that identifies the application uniquely. The name follows the same scheme as the
Bundle-SymbolicName header in an OSGi bundle. The value must not be the same as the value
of the Bundle-SymbolicName header for any bundle or composite bundle in the application, as
listed in the Application-Content header.

If you do not specify a value, the default value is the name of the EBA file.

Application-Version
A version number that uniquely identifies the version of the application. The combination of the
application symbolic name and version must be unique in an OSGi application runtime
environment.

If you do not specify a value but the application name contains an underscore character “_”
followed by a valid version value, this value is used. For example, for the application name
com.ibm.ws.eba.example_1.2.3.eba, the default value is 1.2.3.

Otherwise, if you do not specify a value, the default value is 0.0.0.

Application-Content
A list of application modules that comprise the primary content of the application. These can be
modules that are contained directly in the EBA file, or bundles that are provided by reference, that
is, the core bundles to provision for the application.

If you do not specify a value, the default is the modules that are contained directly in the root of
the EBA file.

The format is a comma-separated list of module declarations, where each module declaration uses
the following format:
bundle_symbolic_name;version

The version format is the same as that used for OSGi import (for example, in the Import-Package
syntax).

The Application-Content header has the following attribute:

version
The version of the module, specified using OSGi syntax for a version range. Typically, you
specify the version of the module when the application is written, and the latest version to
which the application can be upgraded.

In OSGi syntax for a version range, brackets [] mean include the corresponding lower or
upper limit, and parentheses () mean exclude the corresponding lower or upper limit. For
example, [1.0.0,2.0.0) means version 1.0.0 and all later versions, up to, but not
including, version 2.0.0.

The Application-Content header defines the important applications that compose the business
services, but it does not define the full list of bundles in the application. If a bundle that is listed in
the content uses a package that is not included in the application, dependencies are analyzed
when the application is deployed and other bundles are provisioned. Any bundles that are
provisioned cannot provide services external to the application and cannot have security applied to
them. Such bundles are provisioned to the shared bundle space, rather than being provisioned for
each isolated application.

Chapter 18. OSGi applications 553

Important: If your application contains web application bundles, EJB bundles, or persistence
bundles, you must list these bundles in the Application-Content header. If you do not
list these bundles in the Application-Content header, they are provisioned to the
shared bundle space, and they can continue to provide packages, but their contents
are not be processed by web, EJB or JPA containers, and they will therefore not
function correctly.

Application-ImportService
A remotable service can be accessed outside the application. This header contains a list of service
interface names, and an optional filter, that identify remotable services that the application wants to
consume from outside the application.

If you do not specify this header, no services are imported. If you do not specify a value, the
default is no values.

The format is a comma-separated list of services, in the form of a service interface name, followed
by the filter attribute; this attribute specifies an OSGi service filter.

For example:
Application-ImportService: com.myclub.security.authenticationService; filter="(security=strong)"

Any services that match the Application-ImportService header are made available for integration,
but to actually do the integration you must use Service Component Architecture (SCA). See Using
OSGi applications as SCA component implementations.

Your remotable service must support pass-by-value semantics. To match against services that are
imported by the Application-ImportService header, your service references must look for the
service.imported property.This prevents accidental exposure or use of services that only support
only local calls and expect pass-by-reference semantics.

Application-ExportService
A remotable service can be accessed outside the application. This header contains a list of service
interface names, and an optional filter, that identify remotable services that the application
provides.

If you do not specify this header, no services are exported. If you do not specify a value, the
default is no values.

The format is a comma-separated list of services, in the form of a service interface name, followed
by the filter attribute; this attribute specifies an OSGi service filter.

For example:
Application-ExportService: com.myclub.memberService; filter="(level=silver)"

Any services that match the Application-ExportService header are made available for integration,
but to actually do the integration you must use Service Component Architecture (SCA). See Using
OSGi applications as SCA component implementations.

Your remotable service must support pass-by-value semantics. To match against services that are
exported by the Application-ExportService header, your service must be configured as remotable
(that is, registered with the service.exported.interfaces property).This prevents accidental
exposure or use of services that only support only local calls and expect pass-by-reference
semantics.

Use-Bundle
A list of bundles or composite bundles to use to satisfy the package dependencies of bundles in
the Application-Content list. Each bundle or composite bundle in the Use-Bundle list must provide
at least one package to at least one bundle in the Application-Content list. These bundles will be
provisioned into the shared bundle space at run time.

Often, you do not require a Use-Bundle header, but there are some situations where it is useful.
You can use it to restrict the level at which sharing is possible. For example, you can ensure that
an application uses the same bundle for package imports that it was tested with. Alternatively, you

554 Overview

can ensure that two applications use the same bundle for package imports. By setting the
restriction at application level, the bundle can remain flexible.

OSGi deployment manifest file
A deployment manifest file, META-INF/DEPLOYMENT.MF, is created automatically when you import an EBA
asset. The deployment manifest file lists, at specific versions, all the bundles and composite bundles that
make up the application, including bundles that are determined following dependency analysis. The
manifest file is used to ensure that each time an application server starts, the bundles that make up the
application are the same.

You can export the current deployment manifest file from an enterprise bundle archive (EBA) asset. You
might want to do this to save the information, or to import it into another identical application.

Note: Do not edit an exported manifest file. Use the export and import options only in situations where
you can treat the exported file as a “black box”.

Provisioning for OSGi applications
When you import an enterprise bundle archive (EBA) file as an asset, or update an asset to use new
bundle versions, or add a composite bundle as an extension to a composition unit, provisioning ensures
that all the required OSGi bundles are available. An OSGi application can use bundles from external
repositories, bundles from the internal repository, and bundles that are included in an EBA file or a
composite bundle archive (CBA) file.

As an OSGi application becomes formalized, the developer creates an application manifest that lists all the
bundles that the application uses directly. Of this set of bundles, the developer might choose to package
up only newly-created bundles in the EBA file, expecting other bundles to be provisioned from the
configured local and remote bundle repositories. Similarly, the developer of a composite bundle creates a
composite bundle manifest that lists all the bundles that the composite bundle uses. Of this set of bundles,
the developer might choose to package up some bundles to be directly available to the composite bundle,
and expect other bundles to be provisioned from the configured bundle repositories.

OSGi bundles can be stored in the following locations:

v The EBA file.

v The CBA file.

v The internal bundle repository.

A WebSphere Application Server installation has one internal bundle repository. You can add an OSGi
bundle or a composite bundle to the internal repository. If a bundle is used by many OSGi applications,
consider adding that bundle to the internal repository.

v External bundle repositories.

You can specify the location of one or more external bundle repositories that contain the bundles that
the application requires. Depending on how the external bundle repository is implemented, you might
not be able to use it to provision services, or to store composite bundles or bundles referenced by
composite bundles.

Provisioning gets the following types of bundle from a repository:

v Referenced bundle. This is a bundle that is referenced in the application or composite bundle manifest,
and not directly contained in the EBA file or composite bundle.

v Dependency bundle. This is a bundle that is not referenced in the application or composite bundle
manifest, but is needed by a bundle that is referenced in the application or composite bundle manifest.
There might be more than one level of dependency for such a bundle. That is, a dependency bundle
might itself be dependent on another dependency bundle.

Chapter 18. OSGi applications 555

Provisioning occurs for an EBA asset when the OSGi application is initially imported, and when the asset
is subsequently updated. The asset is resolved; that is, the locations of the constituent application bundles,
at appropriate versions, are determined by using the contents of the EBA file, the internal bundle
repository, and the specified set of external bundle repositories. Similarly, provisioning occurs when you
add a composite bundle as an extension to a composition unit. The locations of the constituent bundles, at
appropriate versions, are determined by using the contents of the composite bundle and the available
bundle repositories.

Provisioning also checks for dependencies and locates them from the relevant bundle repositories.
Dependencies include imported packages, required bundles, services, and persistence providers. The
provisioning process detects service dependencies by checking the <service>, <reference>, and
<reference-list> elements in the Blueprint XML files for a bundle. Bundles are scanned for Blueprint XML
files when the bundles are added to the internal bundle repository, or when they are provided in an EBA or
CBA file. If your application code makes direct programmatic use of OSGi services, provisioning does not
detect those service dependencies unless they are also specified in the Blueprint XML files.

If a bundle is referenced in the application manifest with a range of possible versions, provisioning locates
a bundle at a version in that range. If more than one version of a specified bundle is available, the latest
version in the specified range is selected, unless selecting a later version prevents the application from
resolving.

If a required package or service is available at the same version from both a bundle and a composite
bundle, the provisioning process selects the package or service from the composite bundle.

If the constituent application bundles of an OSGi application resolve successfully, a deployment manifest is
generated. This manifest lists all the bundles that the application requires, with the actual version of each
bundle that the OSGi application will use. The deployment manifest includes all the bundles that are
declared in the application manifest, and also any dependency bundles.

Note: If the provisioning process establishes that a bundle that is listed in the Use-Bundle header in the
application manifest does not provide any packages to bundles listed in the Deployed-Content
header, that use bundle is not listed in the Deployed-UseBundle header in the deployment manifest.
Also, unless that use bundle is required for another purpose, it is not listed in the Provision-Bundle
header in the deployment manifest.

When the constituent application bundles resolve successfully and the configuration is saved, all the
referenced bundles and dependency bundles are downloaded from either the internal bundle repository or
external bundle repositories and stored locally in the bundle cache. This cache is cell-wide for network
deployment configurations, and server-wide for single server configurations. If any constituent bundles
cannot be located, the EBA asset does not resolve. Messages show which bundles cannot be located.
Before you can continue with the import or update, you must make the relevant bundle available in one of
the following ways:

v Add the bundle to the EBA or CBA file.

v Upload the bundle to the internal bundle repository.

v Find the bundle in an external bundle repository, and specify the location of that repository.

When all bundle downloads are complete, you can add the asset to a business-level application, or update
the OSGi composition unit, so that the business-level application uses the newer configuration.

556 Overview

OSGi application isolation and sharing
At run time, OSGi applications are isolated from each other, but their dependencies are shared.

In the runtime environment, OSGi applications are isolated from each other:

v OSGi applications cannot share packages.

v Each OSGi application runs in its own isolated OSGi framework with its own service registry.

v OSGi services can be imported and exported between frameworks by setting the appropriate headers in
the application manifest.

For each application server that is running one or more OSGi applications, there is also one shared bundle
space.

The primary content of an OSGi application runs in the framework of the application. The dependency
bundles and the shared bundles in the application run in the shared bundle space.

When an application is started, the bundles that are listed in the deployment manifest of the application
are loaded into the runtime environment. The bundles that are listed in the Deployed-Content header in
the deployment manifest are loaded into the isolated framework. The bundles that are listed in the
Deployed-Use-Bundle and the Provision-Bundle headers in the deployment manifest are loaded into the
shared bundle space.

The dependency bundles in the shared bundle space can originate from the internal bundle repository, the
external bundle repository, or the content of the application.

However, shared bundles in an application must be provided by reference rather than contained directly in
an application. This is because if shared bundles are contained directly in an application, they are not
available to other applications when the applications resolve, but are in the shared bundle space at run
time, which might cause problems.

The following shows an example application manifest:

Manifest-Version: 1.0
Application-ManifestVersion: 1.0
Application-Name: Example Blog
Application-SymbolicName: example.blog.app
Application-Version: 1.0
Application-Content:
example.blog.api;version=”[1.0.0,2.0.0)”,
example.blog;version=”[1.0.0,2.0.0)”

When dependencies are resolved, the deployed application needs to pull in an additional dependency
bundle blog.required.bundle at version 1.2.0. This bundle is available in package
blog.required.package. This package is connected from the dependency bundle in the shared bundle
space to bundles in both isolated application frameworks, as shown in the following diagram.

Chapter 18. OSGi applications 557

Java 2 security and OSGi Applications
You can use Java 2 security in OSGi applications in a similar way to Java 2 security in Java EE
applications. This topic describes the aspects that are specific to using Java 2 security in an OSGi
application.

The OSGi specifications allow you to have permissions.perm files in the OSGI-INF directory of each
bundle, so that you can apply fine-grained control to the permissions for each bundle. The OSGi
Applications implementation in WebSphere Application Server supports this specification, and also allows
you to have a permissions.perm file in the META-INF directory of the OSGi application, which gives you
coarser-grained control of the permissions for the application as a whole.

A permissions.perm file is a plain text file that contains comments or single-line permissions in the
following form:

Permissions file
(org.osgi.framework.AdminPermission "*" "*")
(org.osgi.framework.PackagePermission "*" "exportonly,import")
(org.osgi.framework.ServicePermission "*" "get,register")
(org.osgi.framework.BundlePermission "*" "host,provide,fragment")

Relation to Java EE applications and was.policy files

These application-level permissions.perm files have a similar function to was.policy files in enterprise
applications. When you convert an application from Java EE to OSGi, any existing was.policy file is
converted into a permissions.perm file to be used with the OSGi permissions framework.

OSGi application
isolated framework

OSGi application
isolated framework

blog.required.package
is wired to bundles in both

application frameworks

example.blog.api
1.0.0

example.blog
1.1.0

blog.required.bundle
1.2.0

Shared bundle space

Figure 92. Application frameworks and the shared bundle space

558 Overview

In the conversion, any codebases specified within the was.policy file are ignored, and all permissions
specified are added to the permissions.perm file. This means that all permissions are promoted to the
application level. If you need finer granularity, you can modify the file after conversion. In this case, you
would remove the required permissions from the resulting permissions.perm file, and move them into
permission files within the OSGI-INF directory for each affected bundle.

Default restrictions and permissions

Every OSGi application has the following default restrictions and permissions, whether or not it has a
permissions.perm file. You can use a permissions.perm file to add extra restrictions and permissions, or to
override default restrictions and permissions.

Default restrictions:
("org.osgi.framework.ServicePermission", "org.osgi.service.condpermadmin.ConditionalPermissionAdmin", "*")
("org.osgi.framework.ServicePermission", "org.osgi.service.permissionadmin.PermissionAdmin", "*")
("org.osgi.framework.ServicePermission", "org.osgi.service.framework.CompositeBundleFactory", "*")
("org.osgi.framework.ServicePermission", "org.osgi.framework.hooks.service.*", "*")
("org.osgi.framework.ServicePermission", "org.osgi.service.packageadmin.PackageAdmin", "*")

Default permissions:

("org.osgi.framework.PackagePermission", "*", "import")
("org.osgi.framework.BundlePermission", "*", "host,provide,fragment")

Any OSGi application that has no permissions.perm file also has the following extra permissions:

("java.io.FilePermission", "<application_path>/-", "read,write")
("java.io.FilePermission", "<application_configpath>/-", "read")
("java.lang.RuntimePermission", "loadLibrary.*", "*")
("java.lang.RuntimePermission", "queuePrintJob", "*")
("java.net.SocketPermission", "*", "connect")
("java.util.PropertyPermission", "*", "read")
("org.osgi.framework.PackagePermission", "*", "exportonly,import")
("org.osgi.framework.ServicePermission", "*", "get,register")

JMS and OSGi Applications
An OSGi application can send and receive Java Message Service (JMS) messages. OSGi applications
can use JMS resources that are configured within WebSphere Application Server, in a similar way to using
JMS resources with Java EE applications. For OSGi applications, each reference to a JMS resource is
declared in a Blueprint XML file.

Each bundle in an OSGi application can contain any number of resource reference declarations in its
various Blueprint XML files.

Your OSGi application can bind to any of the following JMS resource types:

v Default messaging JMS queues destinations

v Default messaging JMS topic destinations

v Generic JMS connection factory

v JMS queue connection factory for the JMS provider of WebSphere MQ

v JMS queue destination for WebSphere MQ

v JMS topic connection factory for WebSphere MQ

v JMS topic destination for WebSphere MQ

v Unified JMS connection factory for WebSphere MQ

You bind JMS resource references to your OSGi application when you add the EBA asset to a
business-level application.

Chapter 18. OSGi applications 559

OSGi applications can access and invoke Enterprise JavaBeans (EJBs) directly. However, you can also
configure your OSGi application to send JMS messages to destinations, and configure your enterprise
beans or message driven beans (MDBs) to retrieve the messages from those destinations and respond to
them.

JPA and OSGi Applications
You can use Java Persistence API (JPA) in OSGi Applications in a similar way to JPA in Java EE
applications. This topic describes the differences when you use JPA with persistence bundles in an OSGi
application.

OSGi applications use persistence bundles to define the entities and services that other bundles, or the
persistence bundle itself, can use.

A persistence bundle is an OSGi bundle that contains one or more persistence descriptors
(persistence.xml files) and has a Meta-Persistence header in the bundle manifest, META-INF/MANIFEST.MF.
This header lists all the locations of persistence.xml files in the persistence bundle. When this header is
present, the default location, META-INF/persistence.xml, is added by default. Therefore, when the
persistence.xml files are in the default location, the Meta-Persistence header must be present, but its
content can be empty (a single space).

The following example of a Meta-Persistence header defines a persistence bundle with two persistence
descriptors, one in entities and one in the nested jar lib/thirdPartyEntities.jar. Any persistence.xml
files that are in the default location can also be used.

Meta-Persistence: entities/persistence.xml,
lib/thirdPartyEntities.jar!/META-INF/persistence.xml

JPA support for OSGi applications can be container-managed or application-managed. Unmanaged JPA is
not supported for OSGi applications.

You can use JPA in web application bundles (WABs) in the same way that you use JPA in web application
archives (WAR files), provided that all the persistence logic is contained in the web application.

For more information see the following sections, and the related topic about developing applications that
use JPA.

Persistence descriptors

In persistence.xml files for an OSGi application, the jta-data-source and non-jta-data-source elements
access the data sources through a Java Naming and Directory Interface (JNDI) lookup, a JNDI lookup to
the service registry, or through Blueprint. This behavior is instead of the Java Naming and Directory
Interface (JNDI) lookups that are used in Java EE applications. The following examples show the syntax
for a jta-data-source element:

<jta-data-source>
jndi_name_of_the_data_source

</jta-data-source>

<jta-data-source>
osgi:service/javax.sql.DataSource/(osgi.jndi.serviceName=

jndi_name_of_the_data_source)
</jta-data-source>

The following example shows how to configure the JNDI name of a data source when the data source
configuration uses a Blueprint resource reference.

<jta-data-source>
blueprint:comp/blueprint_component_name

</jta-data-source>

560 Overview

The following example shows how the data source that uses a Blueprint resource reference is configured:

<blueprint xmlns="..." ...
xmlns:rr="http://www.ibm.com/appserver/schemas/8.0/blueprint/
resourcereference">
<rr:resource-reference id="blueprint_component_name"

interface="javax.sql.DataSource"
filter="(osgi.jndi.service.name=jndi_name_of_the_data_source)">

<rr:res-auth>Container</rr:res-auth>
<rr:res-sharing-scope>Shareable</rr:res-sharing-scope>
</rr:resource-reference>

</blueprint>

To specify which version of a persistence provider is accepted, you can use a custom property in the
persistence.xml file, as shown in the following example:

<persistence-unit name="myPU">
<provider>org.apache.openjpa.persistence.PersistenceProviderImpl</provider>
<properties>

<property name="org.apache.aries.jpa.provider.version"
value="[1.1.0,1.3.0]" />

</properties>
</persistence-unit>

Container-managed JPA

For Blueprint bundles, you can inject persistence contexts and units by using annotations or a blueprint
extension.

You can inject persistence contexts and units by using @PersistenceUnit and @PersistenceContext
annotations on a blueprint bean. Injection through annotation is supported only for blueprint-managed
components.

The Apache Aries JPA container context bundle provides the following Blueprint namespace for
dependency injection of managed JPA resources:

http://aries.apache.org/xmlns/jpa/v1.0.0.

You can inject persistence contexts and units by using Blueprint tags from this namespace. For example:

<blueprint xmlns:jpa="http://aries.apache.org/xmlns/jpa/v1.0.0" ...>
...
<bean name="myPersistenceBean" class="...">

<jpa:unit property="emf" unitname="myPU" />
</bean>
...

</blueprint>

Application-managed JPA

The OSGi JPA specification requires that an EntityManagerFactory instance is made available in the
service registry for each persistence unit that is defined in the persistence descriptors.

The EntityManagerFactory service has three notable service properties:

osgi.unit.name
The name of the persistence unit for the EntityManagerFactory service.

osgi.unit.version
The version of the persistence bundle.

osgi.unit.provider
The name of the persistence provider implementation class for the EntityManagerFactory service.

Chapter 18. OSGi applications 561

SCA and OSGi Applications
You can use OSGi applications as component implementations in Service Component Architecture (SCA)
composite applications. You can use SCA to link between OSGi applications, and between an OSGi
application and another component type such as a Java EE application, a Java Message Service (JMS)
resource, or a web service.

Defining OSGi applications as SCA components

The SCA programming model supports the use of OSGi applications as SCA component implementations.
You can expose an OSGi application as an SCA service by writing code that defines the application as an
SCA component and enables the application to participate in an SCA composite. For more information,
see Using OSGi applications as SCA component implementations.

OSGi Applications and the SCA interaction intent model for transactions

You can declare transaction policy at the services level to describe the transactional contract that the
service provider offers to the consumer, following the SCA interaction intents model for transactions. For
an OSGi application, you declare the interaction intents for services in a module Blueprint file. The
interaction intent is associated with a service entry in the standard OSGi manner: by recording the intent
as a service property in the service registry. For more information, see “Transactions and OSGi
Applications.”

SCA and the configuration domain for an OSGi application

When a service is exported by an application, it is registered in the WebSphere Application Server global
service registry. This registry is available throughout the configuration domain for the application, which
means that it is available throughout the OSGi framework instance in which the exporting application is
hosted, and throughout the OSGi framework instances of all other OSGi application containers in the same
OSGi application configuration domain.

The scope of the configuration domain for an OSGi application depends upon the runtime provider:

v For WebSphere Application Server Version 7.0, the configuration domain is scoped to cell scope.

v For an SCA runtime provider, the configuration domain is scoped to the SCA domain.

If an OSGi application imports a service reference, that service must be resolved from the global service
registry. To resolve references to services that are outside the configuration domain for the application, you
can install proxy services into the global service registry.

Enabling OSGi applications to invoke Enterprise JavaBeans (EJBs) through SCA

An OSGi bundle or a web application bundle (WAB) can look up and invoke an EJB directly. However, you
can also include your OSGi application in an SCA environment, and the SCA modules can be configured
to bind to EJB modules.

Transactions and OSGi Applications
You can use transactions in OSGi Applications in a similar way to transactions in Java EE applications.
This topic describes the differences when you use transactions with an OSGi application.

You configure transactions by specifying one or more <transaction> elements. The <transaction> element
is defined in a Blueprint namespace extension, http://aries.apache.org/xmlns/transactions/v1.0.0.
Therefore, you must specify a namespace prefix for this extension in the <blueprint> element. In the
examples that follow, the prefix "tx" is used; this prefix is specified as follows:

562 Overview

<blueprint
xmlns="http://www.osgi.org/xmlns/blueprint/v1.0.0"
xmlns:tx="http://aries.apache.org/xmlns/transactions/v1.0.0">

You configure transactions at the component level, for example for a bean. You must specify both method
and value attributes in the transaction element. Valid values are those that are defined by Java EE, that is,
Required, RequiresNew, NotSupported, Mandatory, Supports or Never. For example:

<bean ...>
<tx:transaction method="updateOrder" value="Required" />

</bean>

You can specify a list of methods where each method is separated by a space or a comma. For example:

<bean ...>
<tx:transaction method="updateOrder remove" value="Required" />

</bean>

You can use an asterisk character (*) as a wildcard in method names. You can use the wildcard character
anywhere in a method name and you can use it multiple times. For example:

<bean ...>
<tx:transaction method="update*Ord* remove" value="Required" />

</bean>

You can specify multiple method configurations in the same component. For example:

<bean ...>
<tx:transaction method="update*Ord* remove" value="Required" />
<tx:transaction method="recordStatus" value="RequiresNew" />

</bean>

Wildcard matching and selection behavior is determined by the following rules:

1. If more than one transaction element matches a method name, the elements with the least wildcard
characters are selected. For example, to match the method updateOrder, the transaction element with
the method attribute update* is selected in preference to one with the method attribute update*Ord*.

2. If more than one transaction element still matches, the elements with the longest method attribute are
selected. For example, to match the method updateOrder, the transaction element with the method
attribute updateOrd* is selected in preference to one with the method attribute update*.

3. If more than one transaction element still matches, an IllegalStateException exception is generated.

Transactions and Service Component Architecture (SCA)

You can declare transaction policy at the services level to describe the transactional contract that the
service provider offers to the consumer, following the SCA interaction intents model for transactions.

SCA defines two mutually exclusive interaction intents for transactions:

v sca:propagatesTransaction

A service with a policy sca:propagatesTransaction indicates that the service will join any transaction that
its requester propagates. A service with the following policy indicates that an SCA service will use a
transaction if it is supplied. This configuration is also valid for a transaction with a value of Required on
a component implementation.

<sca:service name="Service1" requires="sca:propagatesTransaction">
</sca:service>

v sca:suspendsTransaction

A service with a policy sca:suspendsTransaction indicates that the service will not join any transaction
that its requester propagates. The component that provides the service might or might not run under its

Chapter 18. OSGi applications 563

own transaction. A service with the following policy indicates that the service will not use a transaction if
it is supplied. This configuration is also valid for a transaction with a value of RequiresNew or
NotSupported on a component implementation.

<sca:service name="Service1" requires="sca:suspendsTransaction">
</sca:service>

For an OSGi application, you declare the interaction intents for services in a module Blueprint file. When
you write the Blueprint XML, you must consider whether any remote services should allow the caller to
provide a transaction, and whether any service you call remotely should be part of your transaction. If you
want your application to be able to participate in a transaction from another application, set the interaction
intent to propagatesTransaction. However, if your application should run in its own transaction or no
transaction, set the property to suspendsTransaction. The default value is suspendsTransaction, so this
value is used if no other value is specified.

The interaction intents for services that are declared in a module Blueprint must be consistent with the
transaction definitions in a component. The following table shows the mapping between these two
properties:

Transaction definition Interaction intent

Required propagatesTransaction

Mandatory propagatesTransaction

RequiresNew suspendsTransaction

Supports propagatesTransaction

NotSupported suspendsTransaction

Never suspendsTransaction

The interaction intent is associated with a service entry in the standard OSGi manner: by recording the
intent as a service property in the service registry. The OSGi intent property service.exported.intents is
used. This property is defined in the “Remote Services” chapter of the OSGi Service Platform Release 4
Version 4.2 Enterprise Specification.

Services that are implemented by transactional components declare their interaction intent value in the
service.exported.intents property. For example, a service in an OSGi application that is backed by a
component with a transaction value of Required is registered with the property
service.exported.intents=propagatesTransaction. This is equivalent to the following module Blueprint
service definition:

<service ref="componentImplementation"
interface="com.xyz.MyTransactionalServiceInterface">
<service-properties>

<entry key="service.exported.intents" value="propagatesTransaction"/>
</service-properties>

</service>

SCA references specify their transactional requirements on a service by using the same intents:

<sca:reference name="Reference1" requires="sca:propagatesTransaction">
</sca:reference>

OSGi references specify their transactional requirements on a service by filtering on the OSGi service
intents property. The following example code searches for an OSGi service that will participate in a global
transaction:

<reference id="transactionalService"
interface="com.xyz.MyTransactionalServiceInterface"
filter ="(service.exported.intents=propagatesTransaction)"/>

The default transaction policy is Required.

564 Overview

For more information about the SCA interaction intents model for transactions, see the “Using intents in an
OSGi application” section of SCA programming model support in OSGi Applications, and SCA transaction
intents.

Handling exceptions

The following table shows how exceptions are handled for transactions in OSGi Applications.

Table 48. Exception handling for transactions in OSGi Applications

Transaction scope Transaction
strategies

Exception generated Container action Client view

Client-initiated
transaction. The client
starts a transaction
and propagates it to
the bean.

Required
Mandatory
Supports

Declared exception Regenerate the
declared exception.

The client receives an
exception. The client
transaction is not
affected.

All other exceptions
and errors

Log the exception or
error. Mark the
transaction for
rollback. Regenerate
the exception or error.

The client receives an
exception. The client
transaction is marked
for rollback.

Container-managed
transaction. A
transaction is started
before the bean is
invoked and ends
when the method
completes.

Required
RequiresNew

Declared exception Attempt to either
commit or roll back
the transaction, and
regenerate the
declared exception.

The client receives an
exception. The client
transaction is not
affected.

All other exceptions
and errors

Log the exception or
error. Mark the
transaction for
rollback. Regenerate
the exception or error.

The client receives an
exception. The client
transaction is not
affected.

The bean is not part
of a transaction. Any
client transaction is
not propagated to the
bean, and no new
transaction is started.

Never
NotSupported
Supports

Declared exception Regenerate the
declared exception.

The client receives an
exception. Any client
transaction is not
affected.

All other exceptions
and errors

Regenerate the
exception.

The client receives an
exception. Any client
transaction is not
affected.

Local transactions

In WebSphere Application Server, Blueprint components always run in a transaction. If you do not
configure a global transaction, by using the transaction Blueprint namespace, all methods run in their own
local transaction. For more information, see Local transaction containment (LTC).

This local transaction is application-managed with default behaviour. That is, the Resolver attribute of the
transaction is set to Application and the Unresolved action attribute is set to Rollback. The transaction is
set to roll back any uncommitted changes. Therefore, any transactional work, such as a database update,
that runs in a method of a Blueprint bean, and that is not committed when the method returns, is rolled
back, and therefore discarded.

Bean security and OSGi applications
You can configure bean security so that the methods of the bean can be accessed only by users that are
assigned a specified role.

Chapter 18. OSGi applications 565

You configure security by defining one or more <access-constraint> elements, inside the <bean> element
for the bean whose security you want to configure, in the Blueprint XML file of your OSGi application. If
you do not define an <access-constraint> element, the bean is not secured; this means that all the
methods of the bean can be accessed by any user.

For the bean security configuration to be effective, application security must be enabled in WebSphere
Application Server.

You can configure bean security at the bean level and at the method level. If you configure security at both
bean level and at method level, the method-level configuration takes precedence.

The <access-constraint> element is defined in a Blueprint namespace extension, http://www.ibm.com/
appserver/schemas/blueprint/security/v1.0.0. Therefore, you must specify a namespace prefix for this
extension in the <blueprint> element. In the examples that follow, the prefix "sec" is used; this prefix is
specified as follows:

<blueprint
xmlns="http://www.osgi.org/xmlns/blueprint/v1.0.0"
xmlns:sec="http://www.ibm.com/appserver/schemas/blueprint/security/v1.0.0">

Configuring bean-level security

To configure security at the bean level, include a role attribute in the <access-constraint> element
definition. The methods of the bean can be accessed only by users that are assigned the specified role.

In the following example, the methods of the secureBean1 bean are accessible only by users that are
assigned the role called "ROLE1":

<bean
id="secureBean1"
class="com.ibm.ws.eba.wab.componenttest.blueprint.secure.BlueprintSecureServiceImpl">
<sec:access-constraint role="ROLE1" />

</bean>

Configuring method-level security

To configure security at the method level, include, in addition to the role attribute, a method attribute. The
specified method can be accessed only by users that are assigned the specified role.

In the following example, the getPrice method of the secureBean1 bean is accessible only by users that
are assigned ROLE1. All the other methods of the bean can be accessed by any user.

<bean
id="secureBean1"
class="com.ibm.ws.eba.wab.componenttest.blueprint.secure.BlueprintSecureServiceImpl">
<sec:access-constraint method="getPrice" role="ROLE1" />

</bean>

In the following example, the getPrice method is accessible only by users that are assigned ROLE1, and
the printReport method is accessible only by users that are assigned ROLE2. All the other methods can be
accessed by users that are assigned ROLE3.

<bean
id="secureBean1"
class="com.ibm.ws.eba.wab.componenttest.blueprint.secure.BlueprintSecureServiceImpl">
<sec:access-constraint method="getPrice" role="ROLE1" />
<sec:access-constraint method="printReport" role="ROLE2" />
<sec:access-constraint role="ROLE3" />

</bean>

566 Overview

Assigning roles

To assign a role to users or to groups, use the Security role to user or group mapping panel in the
WebSphere Application Server administrative console.

Enterprise JavaBeans and OSGi Applications
An OSGi application can contain Enterprise JavaBeans (EJBs). OSGi applications can access and invoke
an enterprise bean directly.

Support is provided for EJB 3.x style enterprise beans, and all EJB functionality works the same in an
OSGi application as in a J2EE enterprise application. EJB 2.1 enterprise beans are not supported.

The enterprise beans in your OSGi bundles can be developed from scratch, or you can include existing
EJB assets and migrate them to use OSGi modularity with minimal code changes. Stateful, stateless, and
singleton enterprise beans are supported. Your OSGi application can also contain message-driven beans
(MDBs). You deploy and configure an OSGi application that contains enterprise beans in a similar way to
deploying and configuring a J2EE enterprise application, by using wsadmin or the administrative console.

You convert an enterprise application to an OSGi application by completing manual tasks that convert the
enterprise archive (EAR) file to an enterprise bundle archive (EBA) file.

The presence of an Export-EJB header in the OSGi bundle manifest file identifies a bundle as an EJB
bundle, and causes any enterprise beans in the bundle to be loaded and run by the EJB container. The
value of this header declares the enterprise beans that you want to export as OSGi services; for more
information, see the description of the Export-EJB header.

You can use the WebSphere Application Server administrative console, or wsadmin scripting commands,
to complete the following JNDI binding operations for the enterprise beans in your OSGi applications:

v Provide EJB JNDI names.

v Map EJB references.

v Map EJB resource references to resources.

v Bind EJB message destination references to administered objects..

v Bind listeners for message-driven beans.

Chapter 18. OSGi applications 567

568 Overview

Chapter 19. Portlet applications

This page provides a starting point for finding information about portlet applications, which are special
reusable Java servlets that appear as defined regions on portal pages. Portlets provide access to many
different applications, services, and web content.

Portlet container

Portlets
Portlets are reusable web modules that provide access to Web-based content, applications, and other
resources. Portlets can run on the application server because it has an embedded JSR 286 Portlet
container. The JSR 286 API provides backwards compatibility. You can assemble portlets into a larger
portal page, with multiple instances of the same portlet displaying different data for each user.

From a user's perspective, a portlet is a window on a portal site that provides a specific service or
information, for example, a calendar or news feed. From an application development perspective, portlets
are pluggable web modules that are designed to run inside a portlet container of any portal framework.
You can either create your own portlets or select portlets from a catalog of third-party portlets.

Each portlet on the page is responsible for providing its output in the form of markup fragments to be
integrated into the portal page. The portal is responsible for providing the markup surrounding each portlet.
In HTML, for example, the portal can provide markup that gives each portlet a title bar with minimize,
maximize, help, and edit icons.

You can also include portlets as fragments into servlets or JavaServer Pages files. This provides better
communication between portlets and the Java Platform, Enterprise Edition (Java EE) web technologies
provided by the application server.

If you use Rational Application Developer version 6 to create your portlets, you must remove the following
reference to the std-portlet.tld from the web.xml file to run the portlets outside of Rational Application
Developer:
<taglib id="PortletTLD">
<taglib-uri>http://java.sun.com/portlet</taglib-uri>
<taglib-location>/WEB-INF/tld/std-portlet.tld</taglib-location>
</taglib>

Also if you use Rational Application Developer version 6 to create portlets, note that portlets created by
using the Struts Portlet Framework are not supported on WebSphere Application Server.

Portlet applications

If the portlet application is a valid web application written to the Java Portlet API, the portlet application can
operate on both the Portal Server and the WebSphere Application Server without requiring any changes.
JSR 168 and JSR 286 compliant portlet applications must not use extended services provided by
WebSphere Portal to operate on the WebSphere Application Server.

Portlet filters
Since the release of JSR 286: Portlet Specification 2.0, it is possible to intercept and manipulate the
request and response before they are delivered to a portlet in a given phase. Using Portlet filters you can
block the rendering of a portlet if a specific condition occurs. Also, you can use portlet filters to decorate a
request and a response within a wrapper to modify the behavior of the portlet.

© IBM Corporation 2009 569

Portlet filter usage

To use the portlet filter feature, you must first complete the following actions:

v Implement one or more of the following interfaces of the javax.portlet.filter package:

– RenderFilter

– ActionFilter

– ResourceFilter

– EventFilter

You must implement the appropriate filter based on the method or phase of the portlet that you want to
filter.

v Register the filter within the portlet.xml file for the portlets in your web application.

The following sample code illustrates a portlet filter to screen the processAction method of a portlet:
package my.pkg;

import java.io.IOException;

import javax.portlet.ActionRequest;
import javax.portlet.ActionResponse;
import javax.portlet.PortletException;
import javax.portlet.filter.ActionFilter;
import javax.portlet.filter.FilterChain;
import javax.portlet.filter.FilterConfig;

public class MyPortletFilter implements ActionFilter {
public void init(FilterConfig config) throws PortletException {

String myInitParameter = config.getInitParameter("myInitParameter");
// ...

}

public void doFilter(ActionRequest request, ActionResponse response,
FilterChain chain) throws IOException, PortletException {

preProcess(request, response);
chain.doFilter(request, response);
postProcess (request, response);

}

private void preProcess(ActionRequest request, ActionResponse response) {
//For example, create a javax.portlet.filter.PortletRequestWrapper here

}

public void destroy() {
// free resources

}
}

The following sample code illustrates how you can declare the previous portlet filter in the portlet.xml file:
<?xml version="1.0" encoding="UTF-8"?>
<portlet-app xmlns="http://java.sun.com/xml/ns/portlet/portlet-app_2_0.xsd"
version="2.0" id="demo_app_id">

<portlet >
<portlet-name>MyPortlet1</portlet-name>
<!-- [...] -->

</portlet>

<portlet >
<portlet-name>MyPortlet2</portlet-name>
<!-- [...] -->

</portlet>

<filter>
<filter-name>PortletFilter</filter-name>
<filter-class>my.pkg .MyPortletFilter</filter-class>
<lifecycle>ACTION_PHASE</lifecycle>
<init-param>

<name>myInitParameter</name>
<value>myValue</value>

</init-param>
</filter>

<filter-mapping>
<filter-name>PortletFilter</filter-name>
<portlet-name>MyPortlet1</portlet-name>
<portlet-name>MyPortlet2</portlet-name>

</filter-mapping>

</portlet-app>

570 Overview

If you implement the RenderFilter interface, for example, add the <lifecycle>RENDER_PHASE</lifecycle>
code to the filter section. This addition is analogous to the other filter interfaces. The following values are
valid for the <lifecycle> parameter:

v RESOURCE_PHASE

v RENDER_PHASE

v EVENT_PHASE

v ACTION_PHASE

Global portlet filters

The portlet container for WebSphere Application Server extends the portlet filter feature, which is provided
by JSR 286, to allow you to register filters on a global level. These global filters apply to all portlets that
are running within the portlet container, including both plain portlets and console modules.

To use global portlet filters, add the following code to the root folder of your Java archive (JAR) file or in
the WEB-INF directory of your web application and name it plugin.xml file:
<?xml version="1.0" encoding="UTF-8"?>
<?eclipse version="3.0"?>
<plugin id="portlet-filter-config" name="WS_Server" provider-name="IBM"
version="1.0.0">

<extension point="com.ibm.ws.portletcontainer.portlet-filter-config">

<portlet-filter-config class-name="my.pkg.PortletFilter" order="22000">
<description>Description of global PortletFilterImpl</description>

<lifecycle>ACTION_PHASE</lifecycle>
<lifecycle>EVENT_PHASE</lifecycle>
<lifecycle>RENDER_PHASE</lifecycle>
<lifecycle>RESOURCE_PHASE</lifecycle>
<init-param>

<name>MyInitParam1</name>
<value>MyInitValue1</value>

</init-param>
<init-param>

<name>MyInitParam2</name>
<value>MyInitValue2</value>

</init-param>
</portlet-filter-config>

</extension>
</plugin>

The order attribute of the portlet-filter-config element defines when in the filter chain to run the filter.
The higher the value, the later the filter runs in the filter chain. Global filters are triggered before local
portlet filters.

Note:

v Because global portlet filters are applied to all portlets within the container, when you call the
FilterConfig#getPortletContext method within the init method the return value is null for
global portlet filters.

v Do not confuse this feature with the portlet document filters for WebSphere Application Server.
Those portlet document filters are, technically speaking, servlet filters that you can apply to
rendered output only. For more information about the portlet document filters, see the
documentation about converting portlet fragments to an HTML document.

v Because global portlet filters affect all portlets running in the given portlet container, the console
modules that are contained in the Integrated Solutions Console are also filtered. It is important to
test your filter implementation for undesired side effects on console modules or portlets. One
approach is to test by checking the context path of the request in your filter logic.

Portlet container
The portlet container is the runtime environment for portlets using the JSR 286 Portlet specification, in
which portlets are instantiated, used, and finally destroyed. The JSR 286 Portlet application programming

Chapter 19. Portlet applications 571

interface (API) provides standard interfaces for portlets and backwards compatibility for JSR 168 portlets.
Portlets that are based on this JSR 286 Portlet Specification are referred to as standard portlets.

The PortletServingServlet servlet provides a simple portal framework, which builds on top of the portlet
container. This servlet registers itself with each web application that contains portlets. You can use the
PortletServingServlet servlet to directly render a portlet into a full browser page by a URL request and
invoke each portlet by its context root and name. For more information, see Portlet Uniform Resource
Locator (URL) addressability. Also, you can use the URL addressability feature to include remote portlet
content using the remote request dispatcher (RRD).

If you want to aggregate multiple portlets on a page, you can use the dedicated aggregation tag library,
which is based on the PortletServingServlet servlet. For more information, see Portlet aggregation using
JavaServer Pages for additional information. For coordination between portlets on a given page, the
aggregation tag library supports the use of the Public Render Parameters, as specified by the JSR 286
Portlet Specification.

The portal framework, which is provided with the PortletServingServlet servlet, enables you to render only
one portlet at a time. Thus, only a subset of the optional features in the JSR 286 Portal Specification are
supported. To determine which optional features are supported, see Supported optional features of the
JSR 286 Portlet Specification.

Attention: The brokering of events between portlets is out of the scope of the specification and is not
handled by the PortletServingServlet servlet. For full portlet coordination support, you can deploy the
portlets on comprehensive portal products, such as the WebSphere Portal Server.

You can disable the PortletServingServlet servlet in an extended portlet deployment descriptor called the
ibm-portlet-ext.xmi file. For more information, see Example: Configuring the extended portlet
deployment descriptor to disable PortletServingServlet.

572 Overview

Chapter 20. SCA composites

This page provides a starting point for finding information about Service Component Architecture (SCA)
composites, which consist of components that implement business functions in the form of services.

You typically do not deploy SCA composites directly onto a product server. To deploy SCA composites, you
import SCA composites as assets to the product repository and add the assets to business-level
applications.

SCA in WebSphere Application Server: Overview
Support for Service Component Architecture (SCA) offers a way to construct applications based on
Service-Oriented Architecture (SOA). The support uses the Apache Tuscany open-source technology to
provide an implementation of the published SCA specifications.

SCA is defined in a set of open specifications produced by IBM and other industry leaders through the
Open SOA Collaboration (OSOA) and OASIS.

You can use SCA to assemble and compose existing services in your enterprise. The key principle of SOA
demonstrated by SCA support is the ability to use your existing services to create new ones.

Another key objective of SCA is to highlight the ease-of-use characteristics of SCA service development in
Java. This is accomplished by demonstrating annotated Plain-Old Java-Object (POJO) components
deployed using simple JAR packaging schemes, an easy to use assembly model, and wiring abstractions
that enable service definition over different transports and protocols.

This topic provides general information about SCA in WebSphere Application Server products:
v “Benefits of SCA”
v “OSOA support” on page 574
v “OASIS support” on page 574
v “Differences between OSOA and OASIS specifications” on page 574
v “Differences between OSOA and OASIS in SCA applications” on page 575
v “WebSphere support for SCA” on page 575

Benefits of SCA

SCA enables your organization to move quickly into the world of SOA, as follows:

Improve flexibility in application deployment

v Adapt applications quickly to reflect changes in the business environment

v Reuse the components you create in other business processes and composite applications

v Easily compose services into more complex composite applications

v Adjust solutions to accommodate varying technology offerings (that is, protocols or deployment
targets) without the need to rebuild business applications

Increase programmer productivity

v Stay focused on solving business problems, rather than getting bogged down in the individual
complexities of the technologies that connect service consumers and service providers

v Use the same fundamental principles to uniformly represent existing assets and newly
engineered components

v Organize service components into logical modules to hasten composite application development

v Leverage the loosely coupled service model with clear service definitions to enable developers
to work independently and in parallel, for fast delivery of solutions

© IBM Corporation 2009 573

OSOA support

SCA in WebSphere Application Server follows the definition of the technology as documented by OSOA.
Defining a set of compliance test suites was not part of the OSOA charter, so the implementation provided
in this product uses the following specifications as guiding principles. However, IBM provides an
implementation that adheres strictly to our interpretation of the specifications.

v SCA Assembly Model

v SCA EJB Session Bean Binding

v SCA Java Component Implementation

v SCA Java Common Annotations and APIs

v SCA Java EE Integration

v SCA JMS Binding

v SCA Policy Framework

v SCA Spring Implementation

v SCA Transaction Policy

v SCA Web Service Binding

See the “Unsupported SCA specifications sections” topic for restrictions and limitations that are
unsupported at this time.

OASIS support

Note: Version 8.5 adds support for the Service Component Architecture (SCA) OASIS programming
model implementation.

The product provides partial support for the following SCA OASIS specifications:

v OASIS Service Component Architecture / Assembly (SCA-Assembly) 1.1

v OASIS Service Component Architecture / Policy Framework (SCA-Policy) 1.1

The product supports OASIS policy attachment, but does not support OASIS policy set definitions.

v OASIS Service Component Architecture / Bindings (SCA-Bindings) 1.1

The product supports OASIS SCA JMS Binding 1.1 and OASIS SCA Web Service Binding 1.1, but does
not support OASIS SCA JCA Binding 1.1.

v OASIS Service Component Architecture / J (SCA-J) 1.1

The product supports EJB binding, POJO, JAXB, and SDO as data types.

See the “Unsupported SCA specifications sections” topic for restrictions and limitations that are
unsupported at this time.

Differences between OSOA and OASIS specifications

The OASIS SCA specifications were developed from the OSOA SCA specifications but there are some
subtle differences. The following tables list differences between OSOA and OASIS specifications:

Table 49. SCA Assembly Model. Differences between OSOA and OASIS specifications.
Type OSOA OASIS

Namespace http://www.osoa.org/xmlns/sca/1.0 http://docs.oasis-open.org/ns/opencsa/sca/200912

XSD Extensibility removes the occasional UPA issue.

The sca:extensions element appears in various places.

574 Overview

http://www.osoa.org/xmlns/sca/1.0
http://docs.oasis-open.org/ns/opencsa/sca/200912

Table 49. SCA Assembly Model (continued). Differences between OSOA and OASIS specifications.
Type OSOA OASIS

composite.xml Reference targets component/service

Put unconfigured bindings on the reference.

Reference targets component/service/binding

Do not put unconfigured bindings on the reference. The
target string identifies them and the configuration is
pulled from the service.

Asynchronous invocation Not supported Asynchronous invocation is supported. Activate it by
including the asyncInvocation intent on an interface (or
service or reference).

Conversations Supported Not supported

Operation configuration Supported in services or references Not supported in services or references

Interface Cannot be marked remotable from within the composite Can be marked as remotable from within the composite

Wire format Bindings can have a wireFormat child element

Operation selector Bindings can have an operationSelector child element

Wires New replace semantics

Domain level References and services are ignored

definitions.xml Has binding element Does not have binding element

Table 50. SCA Java API and Annotations. Differences between OSOA and OASIS specifications.
Type OSOA OASIS

API SCA Client API

API Has CallableReferences Does not have CallableReferences. Has
ServiceReference.

API New exceptions: InvalidServiceException,
NoSuchDomainException, NoSuchServiceException

API Has conversion APIs Does not have conversion APIs

Annotations Has AsyncInvocation. Does not have conversations.

Differences between OSOA and OASIS in SCA applications
v You can distinguish between OSOA and OASIS composites by looking at the SCA artifact XML

namespaces.

In an OSOA composite description, the namespace resembles:
<composite xmlns=“http://docs.oasis-open.org/ns/opencsa/sca/200912” ...>
...
</composite>

In an OASIS composite description, the namespace resembles:
<composite xmlns=“http://www.osoa.org/xmlns/sca/1.0” ...>
...
</composite>

v You cannot mix OSOA and OASIS SCA artifacts, such as .composite files or sca-contribution.xml
files, within the same asset. However you can wire OSOA and OASIS SCA components together when
both SCA composites are running in a single cell.

For OSOA, an sca-contribution.xml file is not required if there is only one default.composite file in
the Java archive (JAR). An sca-contribution.xml file can reside in the META-INF/ directory or in a
subdirectory.

For OASIS, an sca-contribution.xml file is required and must reside in the META-INF/ directory, and
not in a subdirectory.

WebSphere support for SCA

As already noted, multiple specifications are defined at OSOA and OASIS, as well as Tuscany extensions
provided in open source that go beyond the basic mission of WebSphere Application Server. Each vendor

Chapter 20. SCA composites 575

can decide which aspects of SCA apply to their product. For WebSphere Application Server, the focus is
on enabling compositions as services, Java components, and integration of key qualities of service-like
transactions and security.

SCA can enable mediations, business rules, and business process execution language to be treated as
any other service, and while WebSphere Application Server provides the mechanisms to wire services that
are implemented in those languages and environments, the product does not provide native support to
host those kinds of service implementations.

SCA support includes the following:

v POJO (Plain Old Java Object) service-component implementations, including support for annotations

v Asynchronous capability

v Recursive composition model support

v Support for SCA specifications

v Support for SCA services developed from existing WSDL files or Java code

v Deployment of SCA composites in business-level applications

v SCA authorization and security identity policies

v PassByReference optimization for SCA applications

v Several binding types, including web services binding, SCA default binding, Enterprise JavaBeans
(EJB), Java Message Service (JMS), Atom, and HTTP bindings

v Support for Java Architecture for XML Binding (JAXB) data bindings in SCA applications

v SCA annotations for Java Platform, Enterprise Edition (Java EE) web modules, session beans, and
message-driven beans

v Preview of native SCA deployment

v Spring 2.5.5 containers in SCA applications

v OSGi applications as SCA implementations

v Service Data Objects 2.1.1

v Sample SCA composites compiled specifically for use with the product

Learn about SCA composites
Find links to Service Component Architecture (SCA) resources for learning, including conceptual
overviews, tutorials, samples, and “How do I?...” topics.

How do I?...

Develop SCA composites
Select the implementation type for an SCA composite
(Updated for Version 8.5)
Develop SCA services from existing WSDL files
Develop SCA services with existing Java code
Develop SCA service clients
Develop asynchronous SCA OASIS services and clients
(New in Version 8.5)
Specify bindings for SCA components
v SCA default binding
v Web service binding (Version 8.5 adds OASIS support)
v EJB binding in SCA OSOA applications
v EJB binding in SCA OASIS applications (New in

Version 8.5)
v JMS binding (Version 8.5 adds OASIS support)
v Atom binding
v HTTP binding

576 Overview

Create wire format handlers (Version 8.5 adds OASIS
support)
Wire OSOA and OASIS components together to enable
SCA applications to interoperate (New in Version 8.5)
Use existing Java EE modules and components as SCA
implementations
Use OSGi applications as SCA component
implementations
Use Spring 2.5.5 containers in SCA applications
Configure work managers for SCA applications:
v Configure work managers for one-way operations

(Version 8.5 adds OASIS support)
v Configure the default SCA work manager for the SCA

layer
Use SDO 2.1.1 in SCA applications (Version 8.5 adds
OASIS support)

Deploy SCA composites in business-level applications
Create SCA business-level applications using the
administrative console
Create SCA business-level applications using wsadmin
scripts

Administer deployed SCA composites
Update deployment settings for SCA composites
Start business-level applications
Stop business-level applications
Update SCA composite artifacts
View composite definitions
View SCA domain information
View JMS bindings on references and services of SCA
composites
Export WSDL and XSD documents
Delete business-level applications
Update business-level applications

Configure security for SCA applications
Authorize access to resources:
v Use SCA authorization and security identity policies

(Version 8.5 adds OASIS support)
v Use the SCA RequestContext.getSecuritySubject() API
Secure policy sets in web service bindings:
v Configure a web service binding for SCA transport layer

authentication (Version 8.5 adds OASIS support)
v Configure a web service binding to use SSL (Version

8.5 adds OASIS support)
v Configure a web service binding for LTPA authentication
v Map abstract intents and manage policy sets (Version

8.5 adds OASIS support)

Conceptual overviews

SCA overview (Version 8.5 adds OASIS support)
SCA components
SCA composites
SCA application package deployment

Chapter 20. SCA composites 577

Security configurations for SCA applications (Version 8.5
adds OASIS support)
SCA transaction intents

Samples

The product offers sample files that support SCA
specifications. You can use these sample SCA files in
business-level applications. The sample files are
downloadable from the Samples information center. SCA
services are packaged in Java archive (JAR) files that you
import as assets to the product repository and then add as
composition units to business-level applications. Samples
include detailed deployment instructions in a readme.html
file.

SCA components
A Service Component Architecture (SCA) component is a configured instance of an implementation, which
is program code that implements one or more business functions such as Java classes. Components
provide and consume services. The business functions provide services. Components consume services
by referring to services provided by other components. The component configuration sets values for
properties that are declared by the implementation and specifies references that point to services provided
by other components.

The following graphic shows the parts of a component:
v The chevron pointing towards the component represents a service, or business function, that the

component provides to its client.
v The chevron pointing away from the component represents a reference to a service provided by another

component.
v The box on the component represents a property value for a property that is declared by the

implementation. The component reads the property value from the configuration file when the
component is instantiated.

Implementation

Component

- Java
SCA Composite

- Spring
-

Property

Service Reference

The implementation defines the service in code that is appropriate for the chosen language. For example,
a Java component might describe its service using Java interfaces. Supported implementations include
Java Pojo, Java Platform, Enterprise Edition (Java EE) integration, SCA composites, and Spring 2.5.5
containers.

More than one component can use the same implementation.

578 Overview

SCA composites
A Service Component Architecture (SCA) composite is a composition unit within an SCA domain. An SCA
composite can consist of components, services, references, and wires that connect them. A composite is
the unit of deployment for SCA.

The following graphic shows the parts of a composite and its components:

v The blue boxes on the composite represent components. A composite can have one or multiple
components.

v A green chevron pointing towards a component represents a service, or business function, that a
component provides to its client.

v A purple chevron pointing away from a component represents a reference to a service provided by
another component.

v The yellow box on a component represents a property value for a property that is declared by a
component implementation.

v The white solid line from the reference of one component to the service of another component
represents a wire. A wire between a Component1 reference and a Component2 service indicates that
Component1 requires the service provided by Component2.

v An implementation defines a component service in code that is appropriate for the chosen language.
Supported implementations include Java Pojo and SCA composites.

Component

Composite

Component

Wire Promote

ReferenceService

Promote

Composite

ImplementationImplementation

Property

• Java
S• CA Composite

An application can contain one composite or several different composites. The components of a composite
can run in a single process on a single computer or be distributed across multiple processes on multiple
computers. The components might all use the same implementation language, or use different languages.

An SCA composite is typically described in a configuration file, the name of which ends in .composite. The
following graphic shows the composite definition of the helloworldws composition unit in the SCA sample
application HelloWorldAsync. You can find the composite definition for the helloworldws composition unit in
the /META-INF/sca-deployables/default.composite file.

Chapter 20. SCA composites 579

Implementation

Component

- Java
SCA Composite-

Composite
<composite
targetNamespace="http://helloworld"
name="helloworldws" >

<component name="AsynchTranslatorComponent" >
<implementation.java class="helloworld.impl.AsynchTranslatorComponent" />
<service name="AsynchTranslatorService">

<interface.java interface="helloworld.AsynchTranslatorService"
callbackInterface="helloworld.HelloWorldCallback" />

<binding.ws/>
<callback>

<binding.ws/>
</callback>

</service>
</component>

</composite>

Property

Service Reference

A composite file in a WAR file must be named default.composite. A composite file that is not in a WAR
file can have any name.

The product supports composite as an implementation, as described in Section 1.6 of SCA Assembly
Specification 1.0. See “Unsupported SCA specification sections” for information on parts of Section 1.6 that
the product does not support.

SCA domain
A Service Component Architecture (SCA) domain consists of the definitions of composites, components,
their implementations, and the nodes on which they run. Components deployed into a domain can directly
wire to other components within the same domain. On a single server, the domain is essentially the scope
of the server. For a multiple-server configuration, the domain is essentially the cell.

The following graphic shows one composite in an SCA domain.

Component Component

Composite

Po moter PromoteWire

Component

Composite
@service {Impl.class)
public class Impl {

. . .
}

Java Composite

Implementation Implementation

SCA domain

Service Reference

Binding Binding

WSDL

Java

WSDL

Java

Web Service

SCA

EJB

- - -

Web Service

SCA

EJB

- - -

SCA contributions
A Service Component Architecture (SCA) contribution contains artifacts that are needed for an SCA
domain. Contributions are sometimes self-contained, in that all of the artifacts necessary to run the

580 Overview

contents of the contribution are found within the contribution itself. However, the contents of the
contribution can make one or many references to artifacts that are not contained within the contribution.
These references might be to SCA artifacts, or to other artifacts, such as Web Services Description
Language (WSDL) files, XSD files, or to code artifacts such as Java class files.

The following graphic shows composites in an sca-contribution.xml file in an SCA domain.

Composite

Composite

Composite

sca-contribution.xml

Composite

Composite

Composite

SCA domain

C
o

n
tr

ib
u

ti
o

n

An SCA contribution is typically described in a contribution file, named sca-contribution.xml in the
META-INF directory. The contribution file for a helloworldws composition unit follows:
<?xml version=“1.0” encoding=“ASCII”?>
<contribution xmlns=“http://www.osoa.org/xmlns/sca/1.0” xmlns:ns=“http://helloworld”>

<deployable composite=“ns:helloworldws”/>
</contribution>

The product supports contributions, as described in Chapter 1.10 of SCA Assembly Specification 1.0. The
assembly specification defines the contribution metadata model to describe the runnable components for a
given contribution, as well as the exported definitions and imported definitions to help resolve artifact
dependencies across multiple contributions. See “Unsupported SCA specification sections” for information
on parts of Chapter 1.10 that the product does not support.

Information about support for SCA contributions follows:
v Preconditions or inputs
v Postconditions or outputs for JAR packaged applications
v Postconditions or outputs for WAR packaged applications
v Contribution scenarios
v Scenarios for mapping multiple deployable composites to a composition unit
v Notes and limitations

Preconditions or inputs

One SCA contribution, including multiple deployable composites, and with import or export definitions.

Postconditions or outputs for JAR packaged applications
v After successful creation of an SCA contribution as an asset, you can do the following:

Chapter 20. SCA composites 581

– Create a business-level application, add the asset as a composition unit, and start and stop the
application.

– Target each deployable composite to a different server or cluster.

– Delete the deployable composites individually.

v Support import or export namespace:

– WSDL can be defined in another contribution. Use <import name = “name_ space”/> to declare
dependencies.

– Schema XSD can be defined in another contribution. Use <import name = “name_space”/> to declare
dependencies

– Use <export name=“name_space”/> to make WSDL or XSD available to other contributions.

– Composite for recursive model can be defined in another contribution.

v Support import.java and export.java package name:

– The Java package can be in another contribution. Use <import.java name=“java_ package_ name”>
to declare dependencies.

– Use <export.java name=“java_ packages”> to make Java packages available to other contributions.

Postconditions or outputs for WAR packaged applications

Successful installation of a WAR module with a single deployable composite in the contribution.

Contribution scenarios
v There are multiple runnable deployable composites in a contribution. One extreme case is that there is

no runnable for the contribution, so the contribution is used as a shared library for resources and
classes.

v Declare an import or export namespace for resource resolution, such as WSDL, XSD, and composite
definition.

v Declare import.java and export.java for classLoader dependencies.

v Support artifact resolution for contributions targeted on the same server.

v Support artifact resolution for contributions targeted to a different server or cluster in a multiple-server
environment.

v Support partial updating of an installed contribution (asset). This support includes any updating other
than a change to the sca-contribution.xml file. You should be able to restart the composition unit that
has the assets as a dependent. Updating the archive attribute of an implementation.jee element in the
component section of a composite is not supported.

Scenarios for mapping multiple deployable composites to a composition unit
v Scenario 1:

– When a contribution does not contain the sca-contribution.xml file, it can contain a deployable
composite under the META-INF/sca-deployables directory. The composite file must be named
default.composite. The default.composite file is automatically the deployable composite.

– When creating a composition unit, because this composite is automatically the deployable composite,
you do not see the console page to select the deployable composite.

– After composition unit creation, each composition unit is mapped to one composite.

v Scenario 2:

An asset can contain an sca-contribution.xml file that has zero-to-many (0...n) deployable composites:

– Use sca-contribution.xml deployable composites to create 0...n deployable units with the
deployable composite's QName as the deployable unit name.

– The asset is tagged as an SCA asset.

– During asset creation, each deployable composite is identified as a deployable unit.

582 Overview

– When creating a composition unit, you can select only one deployable unit. For SCA composition
units, you cannot select multiple deployable composites. This is different from non-SCA
business-level applications, for which you can select multiple deployable units.
- Start or stop targets the deployable unit's composite.

– If the composition unit is created as a shared library, or no deployable unit is selected, the default
deployable unit is used:
- View or edit is not available for the composition unit.
- Start or stop is not available for the composition unit.

Notes and limitations

Currently this topic focuses on JAR-packaged SCA applications. For WAR-packaged applications support
is provided for only a single deployable composite in the contribution.

Security configurations for SCA applications
Security for SCA components and bindings can be configured using intents, SCA policy sets, web services
policy sets, and WebSphere Application Server security configuration.

The following sections describe how security can be configured for each of the different bindings and
implementation types that SCA supports in a WebSphere Application Server environment. Refer to the
topic Using SCA authorization and security identity policies for more information about authorization and
security identity policies. Refer to the topic Security: Resources for learning for more general information
about WebSphere Application Server security features.

Security configurations for SCA bindings

The following list summarizes the security that can be configured for the bindings supported for SCA
applications.

binding.sca
No security-related intents or policy set attachments are supported. Your server configuration and
CSIv2 settings control authentication and encryption. Refer to the topics Setting up, enabling and
migrating security, and Configuring Common Secure Interoperability Version 2 (CSIV2) inbound
and outbound communication settings for more information.

binding.ejb
No security-related intents or policy set attachments are supported. Your server configuration and
CSIv2 settings control authentication and encryption. Refer to the topics Setting up, enabling and
migrating security, and Configuring Common Secure Interoperability Version 2 (CSIV2) inbound
and outbound communication settings for more information.

binding.ws
A service binding can be configured to require transport layer authentication using the
authentication.transport intent for OSOA composites or the clientAuthentication.transport intent for
OASIS composites. A service binding can be configured to require transport layer encryption using
the confidentiality.transport intent. All other security is configured by attaching web services policy
sets. Refer to the topics Mapping abstract intents and managing policy sets and Securing web
services using policy sets for more information.

binding.jms
An authentication alias can be specified on the reference binding or service binding in the
composite file to authenticate with a secure bus. binding.jms does not propagate the identity of the
client. Refer to the topic Securing buses for more information.

binding.atom (OSOA composites only)
On the service side, authentication.transport and confidentiality.transport intents in the composite
file are used to configure transport layer authentication and encryption. On the reference side, an
authentication alias can be configured to send a username and password with the request. If a

Chapter 20. SCA composites 583

LTPA token already exists in the security context, the LTPA token is propagated with the request.
Refer to the topics Securing data exposed by Atom bindings, and Configuring LTPA and working
with keys for more information.

binding.http (OSOA composites only)
On the service side, authentication.transport and confidentiality.transport intents in the composite
file are used to configure transport layer authentication and encryption. On the reference side, if a
LTPA token already exists in the security context the LTPA token is propagated with the request.
Refer to the topics Securing services exposed by HTTP bindings, and Configuring LTPA and
working with keys for more information.

Security configuration for SCA implementation types

The following list summarizes the security that can be configured for the implementation types supported
for SCA applications.

implementation.java
Authorization and security identity policies are specified by attaching an SCA policy set in the
composite file or by using annotations in the composite implementation. Refer to the topic Using
SCA authorization and security identity policies for more information.

implementation.spring (OSOA composites only)
Authorization and security identity policies are specified by attaching an SCA policy set in the
composite file or by using annotations in the composite implementation. Refer to the topic Using
SCA authorization and security identity policies for more information.

implementation.osgiapp (OSOA composites only)
You can attach an SCA policy set containing authorization policy statements to an
implementation.osgiapp component. The policy set applies to all services of the component that
are started through SCA service bindings, but not internally when the OSGi application uses its
own services.

SCA does not support the use of the org.osoa.sca.annotations.PolicySet annotation or the
annotations in the javax.annotation.security package in Blueprint implementation classes. The
configuration of role-based security for SCA components is independent of the configuration of
role-based security for a web application bundle (WAB). The roles and role mappings used for
SCA components and for WABs are separate.

implementation.osgiapp (OSOA composites only)
Authorization and security identity policies are specified by the deployment descriptors in the JEE
application. See the topic Securing enterprise bean applications for more information.

implementation.ejb (OSOA composites only)
Authorization and security identity policies are specified by the deployment descriptors in the JEE
application. See the topic Securing enterprise bean applications for more information.

implementation.jee (OSOA composites only)
Authorization and security identity policies are specified by the deployment descriptors in the JEE
application.

implementation.web (OSOA composites only)
HTTP authorization and security identity policy are not supported for implementation.web. You
must use JEE security constraints in the web.xml. file to configure authorization for the resources
in the WAR package.

584 Overview

Unsupported SCA specification sections
This topic lists the sections of Service Component Architecture (SCA) specifications not supported in the
product.
v SCA Assembly Model
v SCA Policy Framework
v SCA Transaction Policy
v SCA Java Common Annotations and APIs
v SCA Java Component Implementation
v SCA Web Service Binding
v SCA EJB Session Bean Binding
v SCA JMS Binding
v SCA Java EE Integration
v SCA Spring Component Implementation

The product supports several OSOA and OASIS implementation and binding types. However, the product
does not support the OASIS implementation types OSGi, Java EE (JEE), Spring, or Widget. Also, the
product does not support the OASIS binding types HTTP, Atom, or JSON.

The following tables list the unsupported sections of the indicated SCA specifications.

SCA Assembly Model

The following tables list unsupported sections of the SCA OSOA and SCA OASIS specifications.

Table 51. Unsupported sections of SCA OSOA specifications. The product does not support these sections of the
SCA Assembly Model specification.

Section Not supported in SCA OSOA implementation

1.3 Component
v Component attribute: constrainingType

v A component element has zero implementation elements

v Reference attribute wiredByImpl

1.4.1 Component Type constrainingType

1.5 Interface WSDL 2.0 interfaces are not supported.

1.5.2 Bidirectional Interfaces Callback is not supported for EJB binding.

1.5.3 Conversational Interfaces Conversation is not supported.

1.5.4 SCA-Specific Aspects for
WSDL Interfaces

Conversation is not supported.

1.6 Composite
v Composite Attribute: local (optional) – whether all the components within the composite

must all run in the same operating system process. local=“true” means that all the
components must run in the same process. local=“false”, which is the default, means that
different components within the composite might run in different operating system
processes. The product behavior is that, local or not, all components within the composite
are deployed on the same Java virtual machine (JVM).

v constrainingType

1.6.2 Reference
v Composite reference attribute: wiredByImpl

v Autowire only supported for the components within the same composite

v The bindings defined on the component reference are still in effect for local wires within the
composite that have the component reference as their source. The product limits the
function wiring reference to outside service using binding specific endpoint URI (or using
reference target). Wiring to local componentService is only supported for default binding.

1.6.3 Service The bindings defined on the component service are still in effect for local wires within the
composite that target the component service. The product limits this function. Local
component service can only be wired through default binding from a local component
reference.

1.6.4 Wire Wire is not supported.

Chapter 20. SCA composites 585

Table 51. Unsupported sections of SCA OSOA specifications (continued). The product does not support these
sections of the SCA Assembly Model specification.

Section Not supported in SCA OSOA implementation

1.6.5 Composite Implementations Services defined in an implementing composite must use the <binding.sca> binding type.
Non-SCA service bindings are not supported on inner composites. Reference bindings do not
have this restriction.

Component implementations defined in an implementing composite must only be either
implementation.java or implementation.composite. All other implementation types are not
supported.

1.6.8 ConstrainingType ConstrainingType

1.7.2.1 Constructing Hierarchical
URIs

For the default binding, the product does not support the @uri attribute on the service-side
binding. In other words, using a non-default URI on a service exposed over the default binding
is not supported. Specifically, the @uri attribute should not be used on a <binding.sca>
element that is a child of a component <service> element.

1.10.2 Contributions OSGi bundle as contribution

1.10.2.2 SCA Contribution
Metadata Document

sca-contribution-generated.xml

1.10.4.2 add Deployment
Composite & update Deployment
Composite

Update Deployment Composite supported through the business-level application updateAssets
command.

Table 52. Unsupported sections of SCA OASIS specifications. The product does not support these sections of the
SCA Assembly Model specification.

Section Not supported in SCA OASIS implementation

4 Component A component element has zero implementation elements.

4.3 Reference Setting wiredByImpl to true has no effect because no implementation types currently support
it.

5 Composite Setting local to false has no effect. Components within a composite always run inside the
same JVM.

5.5 Using Composites as
Component Implementations

Services defined in an implementing composite must use the <binding.sca> binding type.
Non-SCA service bindings are not supported on inner composites. Reference bindings do not
have this restriction.

6 Interface C++ classes and collections of C function cannot be used to describe an interface.

7.5 SCA Binding The product supports two <binding.sca> wire formats: wireFormat.default and
wireFormat.javaObject.

8 SCA Definitions The elements in a definitions.xml file are visible only within the contribution containing the
file. The elements are not visible to other contributions.

The product does not support the definition of binding types or implementation types.

10.2 Contributions Only contributions packaged as Java archive (JAR) and compressed zip files are accepted.

10.2.2. Contribution Metadata
Document

META-INF/sca-contributiongenerated.xml is not supported.

10.5 Operations on contributions These operations are mapped to the product administrative console.

10.7 Domain level composite These operations are mapped to the product administrative console.

586 Overview

SCA Policy Framework

The following tables list unsupported sections of the SCA OSOA and SCA OASIS specifications.

Table 53. Unsupported sections of SCA OSOA specifications. The product does not support these sections of the
SCA Policy Framework specification.

Section Not supported in SCA OSOA implementation

1 Policy Framework
v @policySets (except for authorization policy)

v definitions.xml (except for authorization policy)

v callbacks

v <operation> element

v componentType file

1.9 Miscellaneous Intents The following miscellaneous intents are not supported:

v SOAP

v JMS

v NoListener

v BP.1_1

Table 54. Unsupported sections of SCA OASIS specifications. The product does not support these sections of the
SCA Policy Framework specification.

Section Not supported in SCA OASIS implementation

3.4 PolicySets The product supports SCA policySet elements that contain authorization policy only. SCA
policySet elements containing WS-Policy elements or other policy languages are not
supported.

7 Security policy The web service binding (binding.ws) supports the following intents purely as informational
hints to the deployer when installing a contribution. The deployer must attach a WebSphere
policy set that provides the functionality of the intent. The deployer may ignore the intents and
install the contribution without attaching a WebSphere policy set.
v clientAuthentication
v clientAuthentication.message
v confidentiality
v confidentiality.message
v integrity
v integrity.message
v serverAuthentication
v serverAuthentication.message

The web service binding natively supports clientAuthentication.transport,
confidentiality.transport, integrity.transport, and serverAuthentication.transport. A policy set
does not need to be attached for these intents.

7.3 Implementation Security Policy
Intent

The authorization intent requires an SCA policy set to be attached that provides the
authorization intent. This attachment must be done within the contribution itself. It cannot be
done using the administrative console or commands.

9.6.5 Web Services WebSphere does not support SCA policy sets containing WS-Policy.

Binding for propagatesTransaction
policy

A WebSphere policy set that contains the WS-Transaction policy type can be attached to
binding.ws to propagate a client transaction.

10 Miscellaneous intents WebSphere does not support the noListener intent.

SCA Transaction Policy

Table 55. Unsupported sections of SCA OSOA specifications. The product does not support this element of the SCA
Transaction Policy specification.

Section Not supported in SCA OSOA implementation

<operation> element

For OASIS, the transaction policy information is in the Policy Framework specification.

Chapter 20. SCA composites 587

SCA Java Common Annotations and APIs

The following tables list unsupported sections of the SCA OSOA and SCA OASIS specifications.

Table 56. Unsupported sections of SCA OSOA specifications. The product does not support these sections of the
SCA Java Common Annotations and APIs specification.

Section Not supported in SCA OSOA implementation

1 Common Annotations, APIs,
Client and Implementation Model

Conversation is not supported

1.2.4.2 - 1.2.4.3 Implementation
Metadata

@SCOPE(“COMPOSITE”) is not supported in the clustered environment, which means that “All
service requests are dispatched to the same implementation instance for the lifetime of the
containing composite” is not supported in the clustered environment.

Table 57. Unsupported sections of SCA OASIS specifications. The product does not support these sections of the
SCA Java Common Annotations and APIs specification.

Section Not supported in SCA OASIS implementation

5 Client API When creating an SCAClient using SCAClientFactory, only the domain name default can be
used.

7.3 Asynchronous handling of Long
Running Service Operations

The asyncInvocation intent is only supported when using binding.sca.

8 Policy annotations for Java The following intents, which are supported only by binding.ws, are ignored when attached to a
method:
v clientAuthentication
v confidentiality integrity
v serverAuthentication

These intents act as hints to guide the deployer to attach a WebSphere policy set to a service
or reference. SCA does not support WebSphere policy set attachment at the operation level.

SCA Java Component Implementation

For OSOA, the SCA Java Component Implementation specification is fully supported, so does not have a
list of unsupported sections.

Table 58. Unsupported sections of SCA OASIS specifications. The product does not support these sections of the
SCA Java Component Implementation specification.

Section Not supported in SCA OASIS implementation

10.1 For /import.java/@package, the version and uses directives are not supported.

SCA Web Services Binding

The following tables list unsupported sections of the SCA OSOA and SCA OASIS specifications.

Table 59. Unsupported sections of SCA OSOA specifications. The product does not support these sections of the
SCA Web Services Binding specification.

Section Not supported in SCA OSOA implementation

2.1 Web Service Binding Schema
v Line 47: wsdl.endpoint is not supported in /binding.ws/@wsdlElement

v Line 55: wsdlLocation is not supported in /binding.ws/@wsdli:wsdlLocation

588 Overview

Table 59. Unsupported sections of SCA OSOA specifications (continued). The product does not support these
sections of the SCA Web Services Binding specification.

Section Not supported in SCA OSOA implementation

2.1.1 Endpoint URI resolution
v Lines 71-79: Ordering of implementation in the product follows:

ordering for reference side: reference target-> location in wsdl ->
EndPointReference -> binding.ws uri

ordering for service side: binding.ws name -> binding.ws uri ->
implicit (component/service)

v Line 73: URI in referenced WSDL (support limited to reference side)

v Line 76: Explicit URI in binding.ws (support limited to reference side as absolute URI, on
service side as relative URI (contextRoot))

v Line 78: Implicit URI in binding.ws (support limited to service only)

Table 60. Unsupported sections of SCA OASIS specifications. The product does not support these sections of the
SCA Web Services Binding specification.

Section Not supported in SCA OASIS implementation

5.3 Policy Assertion for SCA Web
Service Callback Protocol

Not supported

SCA EJB Session Bean Binding

The following tables list unsupported sections of the SCA OSOA and SCA OASIS specifications.

Table 61. Unsupported sections of SCA OSOA specifications. The product does not support these sections of the
SCA EJB Session Bean Binding specification.

Section Not supported in SCA OSOA implementation

2.1 Session Bean Binding Schema /binding.ejb/@session-type

v Because the product does not support conversations, although session-type is set to
"stateful", the service still behaves as stateless.

/binding.ejb/@uri

v Line 91: The product only supports the following formats:

– For EJB2

corbaname:iiop:<hostName>:<port>/NameServiceServerRoot#ejb/sca/ejbbinding
/<componentName>/<serviceName>

– For EJB3

corbaname:iiop:<hostName>:<port>/NameServiceServerRoot#ejb/sca/ejbbinding/
<componentName>/<serviceName>#<serviceInterfaceName>
Remote or corbaname:iiop:<hostName>:<port>
/NameServiceServerRoot#<serviceInterfaceName>Remote

v Line 97: corbaname:rir:#ejb/MyHome

2.3.1 Conversational Nature of
Stateful Session Beans

Lines 197-229

Chapter 20. SCA composites 589

Table 62. Unsupported sections of SCA OASIS specifications. The product does not support these sections of the
SCA EJB Session Bean Binding specification.

Section Not supported in SCA OASIS implementation

2 Session Bean Binding Schema binding.ejb/@uri for SCA service binding

v The SCA stateless EJB implementation automatically generates a unique URI based on the
component name, service name, and service interface. The URI is used as the EJB service
endpoint.

See step 1 in the “Configure EJB service bindings and invoke them in caller applications”
procedure.

corbaname:rir:#ejb/MyHome

v The product supports the cobra url format:

corbaname:iiop:host:port/NameServiceServerRoot#jndi_name

ejb-link-name

v The product does not support ejb-link-name in the SCA OASIS implementation.

SCA JMS Binding

The product supports the SCA JMS Binding specification, with the exception of specification sections
mentioned in the table. The OASIS Java Message Service (JMS) Binding specification was consulted for
clarification of the OSOA SCA JMS Binding specification.

The following tables list unsupported sections of the SCA OSOA and SCA OASIS specifications.

Table 63. Unsupported sections of SCA OSOA specifications. The product does not support these sections of the
SCA JMS Binding specification.

Section Not supported in SCA OSOA implementation

1.4 JMS Binding Schema
v Line 103: /binding.jms/@uri is not supported.

v Line 123: /binding.jms/@responseConnection is not supported.

v Line 141: /binding.jms/destination/property is not supported.

v Line 143: /binding.jms/connectionFactory is supported for reference bindings only.
Request connection factories are not supported for service bindings. Response connection
factories are supported for service bindings.

v Lines 144 and 156: plain connection factory name is not supported. You must provide a
JNDI name, and not a plain name.

v Lines 149 and 161: plain activation spec name is not supported. You must provide a JNDI
name, and not a plain name.

v Line 159: /binding.jms/response/activationSpec is not supported. However, line 155,
/binding.jms/response/connectionFactory, is supported.

v Line 171: /binding.jms/resourceAdapter is not necessary to support JMS adapters. Thus,
line 171 is not supported.

1.7 Callback and Conversation
Protocol

Lines 250, 252, and 254: conversation is not supported.

1.7.3 Conversations Line 267: conversation is not supported.

590 Overview

Table 64. Unsupported sections of SCA OASIS specifications. The product does not support these sections of the
SCA JMS Binding specification.

Section Not supported in SCA OASIS implementation

3 JMS Binding Schema
v Line 148: /binding.jms/@uri is not supported.

v Line 234: /binding.jms/destination/property is not supported.

v Line 236: /binding.jms/connectionFactory is supported for reference bindings only.
Request connection factories are not supported for service bindings. Response connection
factories are supported for service bindings.

v Line 264: /binding.jms/response/activationSpec is not supported. However, line 259,
/binding.jms/response/connectionFactory, is supported.

v Line 291: /binding.jms/resourceAdapter is not necessary to support JMS adapters. Thus,
line 291 is not supported.

SCA Java EE Integration

The product supports all Java EE components consuming SCA services over default bindings within the
context of annotations. The product supports the following specification sections:
v 5.2.1 Dependency Injection
v 5.4.1 Dependency Injection
v 5.2.4 Creating SCA Components that use Message Driven Beans as Implementation Types
v 5.4.4 Using SCA References from JSPs supported within the context of Section 5.2.1
v 5.4.5 Creating SCA Components that Use Web Modules as Implementation Types supported within the

context of Section 5.4.1

Table 65. Unsupported sections of SCA OSOA specifications. The product does not support these sections of the
SCA Java EE Integration specification.

Section Not supported in SCA OSOA implementation

5.1.3 Dependency Injection Lines 241-242: callback and conversation are not supported

5.1.5 Using a ComponentType
Side-File

Not supported

5.1.6 Creating SCA components
that use Session Beans as
Implementation Types

Supported for components in application.composite within the EAR.

Otherwise, not supported.

5.1.8 Use of Implementation
Scopes with Session Beans

Conversational is not supported

5.1.9 SCA Conversational
Behavior with Session Beans

Conversational is not supported

5.1.10 Non-Blocking Service
Operations

Not supported

5.1.11 Accessing a Callback
Service

Not supported

5.3 Mapping of EJB Transaction
Demarcation to SCA Transaction
Policies

Not supported

5.4.3 Providing additional
Component Type Data for a Web
Application

Files with .componentType extension are not supported

6.1.1 Java EE Archives as SCA
Contributions

Not supported because contributions are not supported.

6.1.2 Local Assembly of
SCA-enhanced Java EE
Applications

Not supported

6.1.3 The Application Composite Supported, except for the following:
v application.composite file as a deployable composite
v Enterprise archive (EAR) as an SCA contribution

Chapter 20. SCA composites 591

Table 65. Unsupported sections of SCA OSOA specifications (continued). The product does not support these
sections of the SCA Java EE Integration specification.

Section Not supported in SCA OSOA implementation

6.1.4 Domain Level Assembly of
SCA-enhanced Java EE
Applications

Not supported

6.1.5 Import and Export of SCA
Artifacts

Not supported

6.1.6 Resolution of WSDL and
XSD artifacts

Not supported

7 Java EE Archives as Service
Component Implementations

The product supports Java EE archives as service component implementations, except the SCA
JAR and the EAR must be in separate packages or assets. The EAR can contain an optional
application.composite file under its META-INF directory that defines the componentType of the
EAR. The product supports dependency injection.

The product does not support the following:
v application.composite file as a deployable composite
v web.composite and ejb-jar.composite files within the EAR
v EAR as an SCA contribution
v SCA JAR within the EAR

The OASIS SCA Java EE specification is not supported by the product.

SCA Spring Component Implementation

The product supports the SCA Spring Component Implementation specification except for the specification
sections, or parts of sections, listed in the table.

The product also supports Spring Component Implementation beyond what is described in the
specification:

v Constructor injection

v <import> elements in application context files

For more information, see the topic on additional Spring component implementation features.

Table 66. Unsupported sections of SCA OSOA specifications. The product does not support these sections of the
SCA Spring Component Implementation specification.

Section Not supported in SCA OSOA implementation

1.2. Spring Application Context as
Composite Implementation

v As to section 1.2, only the SCA (default) binding, web service binding, EJB binding, and
JMS binding are supported.

v Exposing a Spring bean as a service is not supported when the bean implements multiple
interfaces. A Specs JIRA is open for this issue; see http://www.osoa.org/jira/browse/JAVA-59.

To resolve this problem, explicitly define a <sca:service> element in the Spring application
context file. If no explicit definition of <sca:service> is available, the problems remains by
default when you expose all the beans as defined in the Spring context as services.

v Callbacks are not supported.

v Pass by reference is not supported.

592 Overview

http://www.osoa.org/jira/browse/JAVA-59

Table 66. Unsupported sections of SCA OSOA specifications (continued). The product does not support these
sections of the SCA Spring Component Implementation specification.

Section Not supported in SCA OSOA implementation

1.2.1. Direct use of SCA
references within a Spring
configuration

Under the specification, the <implementation.spring> location attribute can specify the target
uniform resource indicator (URI) of a directory that contains the Spring application context files.
The META-INF/MANIFEST.MF file is used to locate the Spring application context file. If there is
no MANIFEST.MF file or no Spring-Context header within that file, then the default behavior is to
build an application context using all the *.xml files in the META-INF/spring directory.

Currently, if there is no MANIFEST.MF file or no Spring-Context header within that file, then the
default behavior is to build an application context using the application-context.xml file in the
META-INF/spring directory. If the META-INF/spring/application-context.xml file does not
exist, then the application does not deploy.

The product cannot support loading of *.xml files because the specification does not describe
how to handle multiple spring context files.

The product does not support use of an archive file for the location attribute.

The OASIS SCA Spring Component Implementation specification is not supported by the product.

Chapter 20. SCA composites 593

594 Overview

Chapter 21. Service integration

This page provides a starting point for finding information about service integration.

Service integration provides asynchronous messaging services. In asynchronous messaging, producing
applications do not send messages directly to consuming applications. Instead, they send messages to
destinations. Consuming applications receive messages from these destinations. A producing application
can send a message and then continue processing without waiting until a consuming application receives
the message. If necessary, the destination stores the message until the consuming application is ready to
receive it.

Service integration technologies
Service integration is a set of technologies that provides asynchronous messaging services. Use this topic
to learn about the technologies on which WebSphere Application Server service integration applications
are developed and implemented.

Service integration buses and bus members
Application servers or clusters of application servers in a WebSphere Application Server cell can
cooperate to provide asynchronous messaging services. Service integration provides
asynchronous messaging services, and a group of servers or clusters that cooperate in this way is
called a service integration bus. The application servers or server clusters in a bus are known as
bus members. You can also add bus members that are WebSphere MQ servers; service
integration uses these bus members to write messages to, and read messages from, WebSphere
MQ queues.

Different service integration buses can, if required, be connected. This allows applications that use
one bus (the local bus) to send messages to destinations in another bus (a foreign bus). Note,
though, that applications cannot receive messages from destinations in a foreign bus.

Messaging engines
Each service integration server or cluster bus member contains a component called a messaging
engine that processes messaging send and receive requests and that can host destinations. To
host queue-type destinations, the messaging engine includes a message store where, if
necessary, it can hold messages until consuming applications are ready to receive them, or
preserve messages in case the messaging engine fails.

If the bus member is a server cluster, it can have additional messaging engines to provide high
availability or workload sharing characteristics. If the bus member is a WebSphere MQ server, it
does not have a messaging engine, but it lets you access WebSphere MQ queues directly from
WebSphere MQ queue managers and (for WebSphere MQ for z/OS) queue-sharing groups.

Messaging providers
WebSphere Application Server applications invoke asynchronous messaging services by using the
Java Messaging Service (JMS) application programming interface (API) to interface to a
messaging provider. WebSphere Application Server supports a variety of JMS messaging
providers, including service integration (which is the default messaging provider) and WebSphere
MQ as an external JMS messaging provider.

Service integration buses
A service integration bus is a group of one or more application servers or server clusters in a WebSphere
Application Server cell that cooperate to provide asynchronous messaging services. The application
servers or server clusters in a bus are known as bus members. In the simplest case, a service integration
bus consists of a single bus member, which is one application server.

© IBM Corporation 2009 595

Usually, a cell requires only one bus, but a cell can contain any number of buses. The server component
that enables a bus to send and receive messages is a messaging engine.

A service integration bus provides the following capabilities:

v Any application can exchange messages with any other application by using a destination to which one
application sends, and from which the other application receives.

v A message-producing application, that is, a producer, can produce messages for a destination
regardless of which messaging engine the producer uses to connect to the bus.

v A message-consuming application, that is, a consumer, can consume messages from a destination
(whenever that destination is available) regardless of which messaging engine the consumer uses to
connect to the bus.

Different service integration buses can, if required, be connected. This allows applications that use one
bus (the local bus) to send messages to destinations in another bus (a foreign bus). Note, though, that
applications cannot receive messages from destinations in a foreign bus.

An application can connect to more than one bus. For example, although an application cannot receive
messages from destinations in a foreign bus, if the application connects to that bus, the bus becomes a
local bus and then the application can receive messages.

For example, in the following diagram, the application can send messages to destination A and destination
B, but it cannot receive messages from destination B.

In the following diagram, the application can send messages to, and receive messages from, destination A
and destination B.

Bus A

Bus B

application
server

application
server

messaging
engine

messaging
engine

destination A

destination B

application
service integration

bus link

Figure 93. An application that is connected to bus A

596 Overview

A service integration bus comprises a SIB Service, which is available on each application server in the
WebSphere Application Server environment. By default, the SIB Service is disabled. This means that when
a server starts it cannot undertake any messaging. The SIB Service is enabled automatically when you
add a server to a service integration bus. You can choose to disable the service again by configuring the
server.

A service integration bus supports asynchronous messaging, that is, a program places a message on a
message queue, then proceeds with its own processing without waiting for a reply to the message.
Asynchronous messaging is possible regardless of whether the consuming application is running, or
whether the destination is available. Also, point-to-point and publish/subscribe messaging are supported.

After an application connects to the bus, the bus behaves as a single logical entity and the connected
application does not have to be aware of the bus topology. In many cases, connecting to the bus and
defining bus resources is handled by an application programming interface (API) abstraction, for example
the administered JMS connection factory and JMS destination objects.

The service integration bus is sometimes referred to as the messaging bus if it provides the messaging
system for JMS applications that use the default messaging provider.

Many scenarios require a simple bus topology, for example, a single server. If you add multiple servers to
a single bus, you increase the number of connection points for applications to use. If you add server
clusters as members of a bus, you can increase scalability and achieve high availability. Servers, however,
do not have to be bus members to connect to a bus. In more complex bus topologies, multiple buses are
configured, and can be interconnected to form complex networks. An enterprise might deploy multiple
interconnected buses for organizational reasons. For example, an enterprise with several independent
departments might want separately administered buses in each location.

Bus A

Bus B

application
server

application
server

messaging
engine

messaging
engine

destination A

destination B

application
service integration

bus link

Figure 94. An application that is connected to bus A and bus B

Chapter 21. Service integration 597

Bus members
The members of a service integration bus can be application servers, server clusters, or WebSphere MQ
servers. Bus members that are application servers or server clusters contain messaging engines, which
are the application server components that provide asynchronous messaging services. Bus members that
are WebSphere MQ servers provide a direct client connection between a service integration bus and
queues on a WebSphere MQ queue manager.

To use a service integration bus, you must add at least one application server or server cluster as a bus
member. You can also add bus members that are WebSphere MQ servers; service integration uses these
bus members to write messages to, and read messages from, WebSphere MQ queues.

When you add an application server or a server cluster as a bus member, a messaging engine for that bus
member is created automatically. If the bus member is an application server, it can have only one
messaging engine. To host queue-type destinations, the messaging engine includes a message store
where, if necessary, it can hold messages until consuming applications are ready to receive them, or
preserve messages in case the messaging engine fails. If the bus member is a server cluster, it can have
additional messaging engines to provide high availability or workload sharing characteristics. If the bus
member is a WebSphere MQ server, it does not have a messaging engine, but it lets you access
WebSphere MQ queues directly from WebSphere MQ queue managers and (for WebSphere MQ for z/OS)
queue-sharing groups.

A WebSphere Application Server application does not have to be running on a service integration bus
member to use its messaging services. If necessary, WebSphere Application Server automatically provides
a connection to a suitable bus member.

598 Overview

If required, you can remove members from a bus. However, this action deletes any messaging engines
that are associated with a bus member, including knowledge of any messages held by the message store
for those messaging engines. Therefore, you must plan this action carefully.

When a bus member is deleted, the data source associated with this bus member is not automatically
deleted, in case you are also using the data source for some other purpose. This also applies to bus
members created using the default data source: the data source is not automatically deleted and you must
remove it manually. You need not remove the default data sources because they use a universal unique
identifier (UUID) in the name of the Apache Derby database. However, you might choose to delete the
data source to avoid wasting disk space.

Messaging engines
Each service integration server or cluster bus member contains a component called a messaging engine
that processes messaging send and receive requests and that can host destinations.

When you add an application server or a server cluster as a bus member, a messaging engine is
automatically created for this new member. If you add the same server as a member of multiple buses, the
server is associated with multiple messaging engines (one messaging engine for each bus). If the bus
member is a server cluster, it can have additional messaging engines to provide high availability or
workload sharing characteristics. If the bus member is a WebSphere MQ server, it does not have a
messaging engine, but it lets you access WebSphere MQ queues directly from WebSphere MQ queue
managers and (for WebSphere MQ for z/OS) queue-sharing groups.

Bus

application
server

application
server

application
server

cluster bus member

server bus member

WebSphere MQ
server bus member

server bus member

application
server

application
server

WebSphere MQ
queue manager
or queue sharing

group

messaging
engine

messaging
engine

messaging
engine

application
JMS connection

message
store

message
store

message
store

Figure 95. Bus members

Chapter 21. Service integration 599

To host queue-type destinations, the messaging engine includes a message store where, if necessary, it
can hold messages until consuming applications are ready to receive them, or preserve messages in case
the messaging engine fails. There are two types of message store, file store and data store. For further
information, see Administering message stores.

Messaging engines are given a name which is based on the name of the bus member. Each messaging
engine also has a universal unique identifier (UUID) that provides a unique identity for the messaging
engine.

Note: If you delete and recreate a messaging engine, it will have a different UUID and will not be
recognized by the bus as the same engine, even though it might have the same name. For
example, the recreated messaging engine will not be able to access the message store that the
earlier instance used. If you accidentally delete a messaging engine configuration, and save the
updated incorrect configuration, you must restore the configuration from a previous configuration
backup.

Mechanisms for stopping messaging engines
There are several different mechanisms that you can use to stop messaging engines. You can also specify
two different degrees of urgency: immediate and force. Stopping a messaging engine prevents it from
sending messages.

You can stop messaging engines by:

v Using the administrative console to stop the messaging engine

v Using The JMX stop command

v Using the stopServer command to stop the application server that hosts the messaging engine

You can stop a messaging engine in two modes: immediate and force.

Immediate
In immediate mode, the messaging engine is stopped on completion of all the messaging
operations that are current at the time of the stop request. No notification is sent to the application
to indicate that the messaging engine is stopping. After a stop command has been issued, the
messaging engine does not allow new operations to be started.

For each existing connection, the messaging engine waits for the current operation to complete,
unless the operation blocks processing in the messaging engine, such as a receive operation. In
this case, the operation is interrupted. Asynchronous consumers are allowed to complete even
though they might take an arbitrary amount of time to process the current message. The
messaging engine then backs out of active transactions and disallows further operations on that
connection. When all connections are in this invalidated state, the messaging engine stops.

Force In force mode, the messaging engine is stopped so that any current transactions are pre-empted
and applications are forcefully disconnected.

Force mode is like immediate mode, except that stopping the messaging engine interrupts
messaging operations on application threads that are taking place at the time that the stop
command is issued. Rather than allowing existing messaging operations to complete, the
messaging engine interrupts them and then disallows further operations. When all connections are
in this state, the messaging engine stops.

Force mode completes the shutdown of the messaging engine as fast as possible. A subsequent
restart of the messaging engine might take longer than if it had been stopped using immediate
mode, because more recovery actions are needed. For example, force mode stop can leave
messages with indoubt transactions and you must deal with these messages as described in
Resolving indoubt transactions.

You can escalate an immediate stop that is taking too long to force a stop.

600 Overview

The following stop modes are possible for the different stop mechanisms:

Table 67. Comparison of stop mechanisms. The first column lists the mechanisms for stopping the messages. The
second column states whether the immediate mode is used as the stopping mechanism. The third column states
whether the force mode is used as the stopping mechanism.

Stop mechanism Immediate Force

Administrative console Yes Yes

JMX stop command Yes Yes

stopServer command Yes No

Note: If the messaging engine reports isAlive=false to the HA Manager, the whole application server
process is stopped without completions of current transactions or cleanup. This result is equivalent
to a forced stop.

Message points
A message point is associated with a messaging engine and holds messages for a bus destination.

A message point is the general term for the location on a messaging engine where messages are held for
a bus destination. A message point can be:

v A queue point

v An alias destination

v A publication point

v A mediation point (which is a specialized message point)

For point-to-point messaging, the administrator selects one bus member, which can be an application
server or server cluster, to hold the messages of the queue destination. This action automatically defines a
queue point for each messaging engine in the assigned bus member.

v For a queue destination assigned to an application server, all messages sent to that destination are
handled by the messaging engine of that server, and message order is preserved.

v For a queue destination assigned to a server cluster, there is a separate message point for each
messaging engine in the cluster. The message points partition the destination in the same way that a
WebSphere MQ cluster partitions a clustered queue. Multiple messages addressed to a such a
partitioned destination are handled by any messaging engine in the cluster, but an individual message is
handled by only one messaging engine.

Chapter 21. Service integration 601

The messages of the destination are split between the separate message stores for the messaging
engines. This configuration has the disadvantage that message order cannot be preserved, but has
advantages:

– Multiple producers or consumers can be deployed across the same server cluster and messaging
operations are handled locally by the messaging engine of a cluster member.

– Cluster monitoring can detect the failure of a messaging engine, and the surviving engines within the
cluster can take over the message stores containing the permanent state for the failed engine.

If message ordering must be preserved, follow the rules described in “Message ordering” on page 637.

Applications can use an alias destination to route messages to a target destination in the same bus or to
another (foreign) bus (including across a WebSphere MQ link to a queue provided by WebSphere MQ). By
assigning an alias destination to a subset of the queue points of a partitioned queue destination, alias
destinations can be used to restrict the queue points used by producing and consuming applications.

For publish/subscribe messaging, the administrator configures a topic space destination, but does not have
to assign a bus member for the topic space. A topic space has a publication point defined automatically for
each messaging engine in the bus.

Message points can be remote from the application which is producing to or consuming from the bus
destination. In other words, message points can be on a messaging engine other than the messaging
engine to which the application is connected. In this situation the message point is represented at runtime
by a remote message point on the remote messaging engine.

By monitoring message points and remote message points, you can fully analyze and resolve problems
arising from distributed application messaging. For example, you can:

v Determine the state of a specific message request.

v Determine the location of a specific message.

v Examine message queues to determine if messages have been sent or received.

v Free or delete message requests that have become locked.

v Delete or move messages from remote message points.

Remote message points
A remote message point is a messaging engine runtime view of any message point that is associated with
a remote messaging engine. Remote message points are dynamically created and destroyed when they
are required by the bus; you do not have to configure them explicitly.

Message points provide a physical location to reliably store messages. In a bus that contains many
messaging engines, message points can be defined on a subset of the messaging engines in that bus.

602 Overview

However, an application can attach to any messaging engine in the bus, and can therefore produce or
consume messages to or from destinations that do not have a suitable message point on the messaging
engine to which the application is attached.

When an application produces messages, the messages must be moved from the messaging engine for
the application to a messaging engine with a suitable message point, and vice versa when an application
consumes messages. Remote message points provide a reliable mechanism to move these messages
from one messaging engine to another; the remote message points maintain information required to
ensure messages are delivered correctly according to the messages' reliability.

Where necessary, messages are queued on a remote message point while awaiting delivery to the
intended message point. This runtime information can be monitored and, where appropriate, managed by
an administrator.

Each remote message point that exists on a messaging engine has a corresponding representation on the
messaging engine that owns the message point.

Message production and consumption by using remote message points:

When an application produces or consumes messages to or from a messaging engine that is not the same
as the messaging engine to which the application is connected, remote message points are used to
manage the flow of messages between the messaging engines.

Message production

When an application produces messages to a queue-type destination at a messaging engine that is
remote from the messaging engine that owns the queue point, a remote queue point is required to
manage the delivery of messages destined for the queue point. When an application produces messages
to a publish/subscribe type destination, the messaging engine for the producing application will have a
local publication point. If subscribing applications to the same destination are attached to different
messaging engines in the bus, remote publication points are required to manage the delivery of messages
to those remote messaging engines.

If the destination is mediated, messages must first be processed at a mediation point. If the mediation
point is on a different messaging engine than the application, a remote mediation point is required to
manage the delivery of the messages to the mediation point.

These outbound messages must be delivered to the message point in a reliable manner in accordance
with the reliability of the message. To provide these levels of reliability, any message with a reliability
greater than “best effort non-persistent” is temporarily queued at the remote message point for the
producer messaging engine. The message is queued until the messaging engine that owns the message
point confirms the successful arrival of the message, then the producer messaging engine removes its
copy of the message from the remote message point. This prevents loss or re-ordering of messages in the
event of failures.

Under normal conditions messages will be queued at a remote message point only briefly, but if a failure
occurs or the system is overloaded, messages might remain at the remote message point for longer. You
can assess the health of the system by monitoring the outbound messages on a remote message point.

Message consumption

A consuming application can be attached to a messaging engine that does not own the store of messages
that the application consumes from. When an application consumes from a queue-type destination, the
application might be remote from the queue point; when an application consumes from a publish/subscribe
type destination, the application might be remote from the subscription. When either of these cases
occurs, a remote message point is required to manage message requests made by the application.

Chapter 21. Service integration 603

Each time an application requests a message from a remote store of messages, a message request is
made from the messaging engine for the application to the messaging engine that owns the messages.
These message requests are maintained by the remote message point until they are satisfied, either with
a message or when the request comes to an end (the requesting application terminates the request).

Point-to-point messaging example by using remote queue points:

When a producing or consuming application is remote from its destination, remote queue points are used
to manage the flow of messages between the messaging engine where the destination is located, and the
messaging engine to which the application is attached.

The following figure illustrates the use of remote queue points in point-to-point messaging. The producing
application attaches to messaging engine ME1, but the bus destination targeted by the application has a
queue point on ME2. The queue point on ME2 is represented at runtime by a remote queue point on ME1.
The remote queue point receives messages from the application and then reliably transmits them to the
queue point on ME2. Likewise, the consuming application attaches to ME3 and consumes messages from
the queue point on ME2 through a remote queue point on ME3.

The sequence of steps involved in remote message production is as follows:

1. The producing application, attached to ME1, sends a message to the queue destination, which has a
queue point defined on ME2.

2. Messages are queued up on the remote queue point on ME1 before transmission to the queue point
on ME2.

3. The message is sent to the queue point on ME2 as soon as possible. ME1 remembers the existence
of the message until ME2 confirms that it has received the message.

The sequence of steps involved in remote message consumption is as follows:

Producing
Application

Consuming
Application

Queue
Point

Remote

Point
Queue

Remote
Queue
Point

ME1 ME2

ME3

Bus

Figure 96. Point-to-point message production and consumption by using remote queue points.

604 Overview

1. The consuming application, attached to ME3, attempts to consume a message from the queue
destination.

2. ME3 sends a message request to the queue point on ME2.

3. When a message that satisfies the criteria of the message request is available at the queue point on
ME2, the message is sent to the remote queue point on ME3.

4. The message is delivered from the remote queue point to the consuming application. If the application
consumes the message, the message is deleted from the queue point on ME2. If the application does
not consume the message, the message is made available again on the queue point on ME2 for other
applications to consume. In either case, the message request is completed and removed from the
remote queue point on ME3.

Publish/subscribe messaging example by using remote publication points:

When a publishing or subscribing application is remote from its destination, remote publication points are
used to manage the flow of messages between the messaging engine where the destination is located,
and the messaging engine the application is attached.

The following diagram illustrates the use of remote publication points in publish/subscribe messaging.
Messages are published to a publication point on ME1, and are routed to publication points on ME2 and
ME3 through remote publication points on ME1. The messages are consumed from subscriptions on ME2
and ME3.

The sequence of steps involved in remote publish/subscribe messaging is as follows:

1. The administrator creates a topic space destination on the bus; this creates a publication point on each
messaging engine in the bus.

2. The subscribing applications register subscriptions for a topic on the topic space on their local
messaging engines. ME1 is informed that ME2 and ME3 are interested in the topic.

Publication
Point

Publishing
Application

Subscribing
Application A

Subscribing
Application B

Publication
Point

Publication
Point

Remote
Publication

Points
Subscription

Subscription

ME1 ME2

ME3

Bus

Figure 97. Publish/subscribe messaging by using remote publication points

Chapter 21. Service integration 605

3. The publishing application, on ME1, publishes a message for that topic and topic space to the bus, for
distribution to the publication points on each messaging engine.

4. The remote publication points on ME1 queue the message for transmission to their respective
publication points on ME2 and ME3.

5. The message is sent to the publication points on ME2 and ME3 as soon as possible. ME1 remembers
the existence of the message until both ME2 and ME3 confirm that they have received the message.

6. The subscribing applications consume the message through their subscriptions on ME2 and ME3.

In figure one, the subscribing applications are attached to the same messaging engines that their
subscriptions were created on. If a subscribing application has a durable subscription, it is possible for the
application to be attached to a different messaging engine than the messaging engine that the subscription
was created on. In this case the subscribing application accesses its subscription through a remote
subscription on the messaging engine the application is attached. In figure two, messages are published to
ME1, and are routed to the durable subscripton that is on ME2. The messages are consumed from ME2
through a remote subscription on ME3.

In this situation, Subscribing Application B consumes messages from its subscription in the same way as
an application consumes remotely from a queue point, as detailed in “Point-to-point messaging example by
using remote queue points” on page 604.

Messaging engine communication
You can configure different transport options for communication between messaging engines and with
WebSphere MQ networks.

The transport channel service provides common networking services, protocols, and I/O operations for the
WebSphere Application Server. A channel is a basic functional unit that can be linked with other channels

Publication
Point

Publishing
Application

Subscribing
Application A

Subscribing
Application B

Publication
Point

Publication
Point

Remote
Publication

Points

Subscription

Durable
Subscription

Remote
Subscription

ME1 ME2

ME3

Bus

Figure 98. Publish/subscribe messaging using a remote subscription

606 Overview

into transport chains. A number of transport chains are defined as part of the application server
configuration, and it is also possible to create new transport chains. In this way, the requirements of
particular environments are supported.

The transport channel service provides functions for configuring, administering, and initializing chains and
their constituent channels. For the purposes of administration, chains are divided into outbound chains and
inbound chains. The former are chains used for actively establishing connections, whereas the latter are
chains that passively wait for connections to be established.

The inter-operation between service integration and the transport channel service is achieved by
implementing two channels:

1. The JFAP channel, which supports intercommunication within service integration

2. The MQFAP channel, which supports WebSphere MQ communication

By using the administrative facilities of the transport channel service, you can assemble these channels
into transport chains that support the following protocols:

JFAP over TCP
This is the basic bus protocol; a connection-oriented protocol that uses a standard TCP/IP
connection. It includes support for two-phase transactional (remote XA) flows, so that a messaging
producer or consumer, running on a client system, can participate in a global transaction managed
on that client system.

JFAP over SSL
This is a secure sockets layer (SSL) version of the basic protocol. The protocol starts with the SSL
handshake, and if successful continues with the normal data packets, carried using the SSL record
format (and encrypted if the SSL handshake established that encryption was required).

JFAP tunneled through HTTP
An HTTP tunnelled version of the basic protocol to enable passing through firewalls.

JFAP tunneled through HTTPS
An HTTPS version of the basic protocol. The protocol starts with an HTTP request, which allows it
to be routed by HTTP proxies, and then switches into the SSL variant when the route has been
established.

MQFAP over TCP
The basic protocol used for communication with WebSphere MQ.

MQFAP over SSL
A secure sockets layer (SSL) version of the basic protocol used for communication with
WebSphere MQ.

You select transports that include SSL or HTTPS, to ensure the security of messages in transit between
their producers and consumers. Remember though, that the encryption and decryption of messages by
SSL has a high performance and resource cost.

Inbound transport options
There are number of options, such as network and security settings, that apply when configuring
messaging engines that receive messages.

The configuration of network transport for service integration is managed through the transport channel
service. You can use this service to add, remove, or modify protocols that can be used to establish
connections to an application server over a network.

You can configure an application server to allow a combination of several different protocols, that is, a
transport chain, to be used when communicating with messaging engines hosted by the server. The
transport channel service includes support for:

v TCP

Chapter 21. Service integration 607

v Secure Sockets Layer (SSL) over a TCP network.

v Tunneling through Hyper Text Transfer Protocol (HTTP) connections.

v Tunneling through HTTPS (secure HTTP) connections.

Messaging engine clients such as JMS applications running in a client container and other messaging
engines can communicate with a messaging engine using these transport chains.

You can also configure one of two different types of transport chain to be used by WebSphere MQ links
and WebSphere MQ client links. These transport chains support:

v TCP

v Secure Sockets Layer (SSL) over a TCP network.

WebSphere MQ queue manager sender channels and WebSphere Application Server applications that use
the WebSphere MQ messaging provider can communicate with a messaging engine by using either of
these transport chain types.

When a server is created by using the default template, the following transport chains are automatically
created to facilitate communication with messaging engines that are hosted by the application server:

InboundBasicMessaging
Allows communication by using the TCP protocol. The default port used by this chain for the first
server on the node is 7276. Check the selected port is not already used, for example if you are
creating a second server on a particular node. Messaging engines hosted in other application
servers and JMS applications running in a client container can communicate with the messaging
engines of the server by using this transport chain.

InboundSecureMessaging
Provides secure communication by using the secure sockets layer (SSL) based encryption
protocol over a TCP network. The default port used by this chain for the first server on the node is
7286. Check the selected port is not already used, for example if you are creating a second server
on a particular node. The SSL configuration information for this chain is based on the default SSL
repertoire for the application server. Messaging engines hosted in other application servers and
JMS applications running in the client container can communicate using this transport chain.

InboundBasicMQLink
Supports WebSphere MQ queue manager sender channels and applications by using the
WebSphere MQ messaging provider connecting over a TCP network. The default port used by this
chain is 5558, this can be automatically adjusted to avoid conflicts.

InboundSecureMQLink
Enables WebSphere MQ queue manager sender channels and applications by using the
WebSphere MQ messaging provider to establish SSL based encrypted connections over a TCP
network. The default port used by this chain is 5578, this is automatically adjusted to avoid
conflicts.

soReuseAddr
Allows the WebSphere Application Server administrator to control bind behavior. When the
WebSphere Application Server is restarted, if the inbound TCP channels have problems trying to
bind the listening socket, errors are printed into the SystemOut file until either the bind is
successful or the number of allowed bind attempts has been passed. This custom property helps
to avoid repeated error messages during the bind process.

By default all of these transport chains are configured to use the SIBFAPInboundThreadPool thread pool
to handle the data they receive. No reason has been identified for it being necessary to change the
minimum or maximum size of this thread pool.

You can manage these chains in the administrative console by selecting one of the following:

608 Overview

v Servers -> Server Types -> WebSphere application servers -> server_name -> [Server messaging]
Messaging engine inbound transports

v Servers -> Server Types -> WebSphere application servers -> server_name -> [Server messaging]
WebSphere MQ link inbound transports

You can also use these administrative console panels to define new transport chains from a set of
templates.

Inbound channel chains that are used for communicating with messaging engines are usually started when
the application server that hosts them is started. This can occur even if the application server does not
host any active messaging engines. When an inbound chain starts, it binds to the TCP port that it has
been assigned and accepts network connections. The following table describes the circumstances under
which the inbound chains relating to messaging function are started:

Table 68. Scenarios when inbound chains are started. The first column lists the service integration bus scenarios in
which the inbound chains are started. The second column states whether the messaging chains are started for the
scenarios. The third column states whether the WebSphere MQ interoperation chains are started for the scenarios.

Messaging chains WebSphere MQ interoperation chains

SIB service disabled for server Not started Not started

SIB service enabled for server and no
WebSphere MQ links or WebSphere MQ
client links resources defined

Started Not started

SIB service enabled and WebSphere MQ
links or WebSphere MQ client links
resources defined

Started Started

For more information about enabling or disabling the SIB service, see SIB Service Detail Form.

For more information about defining WebSphere MQ related resources, see, for example, WebSphere MQ
link sender channel [Settings].

Note that there is no affinity between a particular inbound channel chain and a messaging engine. Any
messaging engine active on a server can be contacted by any inbound channel chain that is running. This
has important implications when attempting to secure network communications: communication with the
messaging engines that are active in an application server is only as secure as the least secure
messaging chain active on the server within the same category, that is, a messaging chain or MQ interop
chain.

You can specify inbound transport chains by name in the following places:

v The Inter-engine transport chain field in the Buses [Settings]. This specifies the chain used when
establishing connections between nodes in the same cell.

v The Target inbound transport chain field in the Default messaging provider unified connection factory
[Settings]. This specifies the transport chain name to use when establishing a network connection for
use by a JMS application when connecting to a remote messaging engine.

Outbound transport options
When configuring messaging engines to send messages, configurable options include how they establish
connections with other messaging engines or with a WebSphere MQ queue manager that collects and
then delivers messages that are received.

The transport channel service manages the configuration of network transports for service integration.
However, because manipulation of outbound transport options is an advanced administrative operation,
you can carry out some configuration through the wsadmin tool.

Chapter 21. Service integration 609

A number of outbound transport chains are already configured when an application server is created from
the default server template, or when a client container is started.

Outbound transport chains are used for either:

v Establishing network connections for the purpose of bootstrapping, which involves establishing a
connection with an application server in another cell, for example, because the connection is required
for service integration bus links.

v Establishing connections from WebSphere MQ links to WebSphere MQ queue manager receiver
channels.

When establishing a network connection, the type of channels and their order in the outbound transport
chain used must match those in the inbound transport chain for the server to which connection is made.
For example, an outbound HTTP tunneling chain is suitable only for establishing connections with an
inbound HTTP tunneling chain.

The following chains are for use during the bootstrap process:

BootstrapBasicMessaging
Used to establish bootstrap connections to inbound chains configured for TCP-only connections to
an application server, such as the InboundBasicMessaging chain.

BootstrapSecureMessaging
Used to establish secure connections by using Secure Sockets Layer (SSL) based encryption. The
SSL configuration used is taken from the default SSL repertoire when used in an application
server environment or from a configuration file when used by the client container. See “Secure
transport configuration requirements” on page 611 for more information. This chain can be used
for establishing bootstrap connections to inbound chains that are configured to use SSL, for
example, the InboundSecureMessaging chain. Success in establishing such a connection depends
on a compatible set of SSL credentials being associated with both this bootstrap outbound chain
and also with the inbound chain to which the connection is being made.

BootstrapTunneledMessaging
Used to connect when tunneling through HTTP.

BootstrapTunneledSecureMessaging
Used to establish bootstrapping connections that are tunneled through secure HTTP (HTTPS).
Like the BootstrapSecureMessaging outbound chain, this chain also derives its SSL configuration
from the default SSL repertoire when used in an application server or from a configuration file
when used in the client container. See “Secure transport configuration requirements” on page 611.

The outbound chains that an application server uses for bootstrap operations are defined when the server
is defined. They can be altered, or new bootstrap chains can be defined, by using the wsadmin tool. See
Defining outbound chains for bootstrapping and Defining outbound chains for WebSphere MQ
interoperation.

You cannot configure bootstrap outbound chains used by a client container. However you can configure
some attributes of outbound chains that use SSL encryption protocols. For more information, see “Secure
transport configuration requirements” on page 611.

You need the names of outbound bootstrap chains when configuring:

v The Provider endpoints of a JMS connection factory; see Default messaging provider unified connection
factory [Settings].

v The Bootstrap endpoints of a service integration bus link; see Service integration bus links [Settings].

The following chains can be used when establishing a network connection to a WebSphere MQ queue
manager receiver channel:

610 Overview

OutboundBasicMQLink
Used to establish connections with WebSphere MQ queue manager receiver channels.

OutboundSecureMQLink
Used to establish connections with WebSphere MQ queue manager receiver channels that have
been secured using SSL. The SSL configuration used is taken from the default SSL repertoire for
the application server being used to contact the queue manager.

The names of outbound chains used for WebSphere MQ interoperation are needed when configuring the
transport chain of a WebSphere MQ link.

By default all of these transport chains are configured to use the SIBFAPThreadPool thread pool to send
data. No reason has been identified for it being necessary to change the minimum or maximum size of this
thread pool.

Secure transport configuration requirements
There are additional configuration requirements when configuring secure transport, such as inbound
chains, to establish SSL-based or HTTPS-based connections between messaging engines, or between
messaging engines and JMS applications running in a client container.

For an SSL connection to be established successfully, the party that is initiating the connection and the
party that is waiting for the connection to be made must both supply a compatible set of credentials.

When you are configuring the client container to bootstrap using an SSL-based transport chain, you
specify additional SSL properties in the sib.client.ssl.properties properties file. This file is located in the
profile_root/properties directory of the application server installation, where profile_root is the directory in
which profile-specific information is stored. The properties in this file are used for all client container
bootstrapping activities over both SSL and HTTPS-based bootstrap chains.

You can override or augment properties specified in the sib.client.ssl.properties file by specifying system
properties of the same name to the application client. Do this by specifying a -CCD command line option
naming the property and its new value. For more information about command line syntax, see launchClient
tool.

Note: Some of the properties in the sib.client.ssl.properties file duplicate those in the sas.client.props file.
Overriding these properties by using wsadmin command options affects both sets of properties.

When you are configuring SSL-based connections between two messaging engines, both the messaging
engines must have inbound chains with matching names. These inbound chains must be configured with
compatible sets of SSL credentials. The compatibility must be true for both intra-bus messaging engine
connections and for connections between messaging engines that are in different buses.

A particular inbound transport chain must have no affinity with a messaging engine. Any enabled inbound
transport chain can contact any messaging engine that is active on a server because by default, an
application server is created with unsecured inbound transport chains. Disable or delete these chains to
restrict access to secure chains only.

Security for messaging engines
When bus security is enabled, you need to be aware of the additional requirements to secure
communication between messaging engines.

To ensure that messaging engines operate securely when bus security is enabled, you should understand
the following points:

Chapter 21. Service integration 611

v Use secure transport connections (SSL or HTTPS) to ensure confidentiality and integrity of messages in
transit between messaging engines. Define an appropriate secure transport chain, and then reference
the transport chain name from the bus propertyInter-engine transport chain. For more information, see
“Secure transport configuration requirements” on page 611.

v If the bus has a bus member at WebSphere Application Server Version 6, set the Inter-engine
authentication alias property. This prevents unauthorized clients or messaging engines from establishing
a connection. For more information, see Adding a secured bus.

v Secure access to the data store for a messaging engine by using a user ID and password. Apply higher
levels of security by using the underlying features of message stores. For example, for a data store,
Apache Derby Version 10.3 allows the whole database to be encrypted, DB2 allows specific tables to be
encrypted. These features must be managed directly by the appropriate database administrator. Refer
to Securing database access for more details.

v If fine-grained administrative security is in use, messaging engines are administered as resources at the
server or cluster level.

Applications with a dependency on messaging engine availability
If an application depends on a messaging engine being available, then the messaging engine must be
started before the application can be run.

If you want the application server to start an application automatically, you must develop your application
to test that any required messaging engine has been started and, if needed, wait for the messaging engine
to start. If this is technique used in a startup bean, then the startup bean method should perform the work
(to test and wait) in a separate thread, and use the standard WorkManager methods, so that the
application server startup is not delayed.

For an example of code to test and wait for a messaging engine, see the following code extract:
import java.util.Iterator;
import javax.management.ObjectName;
import com.ibm.websphere.management.AdminService;
import com.ibm.websphere.management.AdminServiceFactory;

String messagingEngineName = "messagingEngineName";
// Messaging engine to check if started? for example "node01.server1-bus1"
boolean meStarted = false;

AdminService adminService = AdminServiceFactory.getAdminService();
while (!meStarted) {

String filterString = "WebSphere:type=SIBMessagingEngine,name=" +
messagingEngineName + ",*";

boolean foundBean = false;
ObjectName objectName = null;
try {

ObjectName objectNameFilter = new ObjectName(filterString);
Iterator iter = adminService.queryNames(objectNameFilter,null).iterator();
while (iter.hasNext()) {

objectName = (ObjectName) iter.next();
foundBean = true;
break;

}
} catch (Exception e) {

e.printStackTrace();
}
if (foundBean) {

// You have found messaging engine MBean, which means it is initialized,
// now check if it is in Started state?
meStarted =

((Boolean) adminService.invoke(objectName, "isStarted", null, null)).booleanValue();
}

if (!meStarted) {

612 Overview

// messaging engine is not started yet so sleep (wait) for a bit...
Thread.sleep(5000);

}
}

Bus destinations
Service integration has the following types of bus destinations each with a different purpose: queue, topic
space, foreign, and alias.

You can create and administer the following types of service integration bus destination:

Queue destination
A queue destination represents a message queue and is used for point-to-point messaging. A
service integration queue destination is localized in a particular bus member (application server or
cluster of application servers). When a producer sends a message to the queue destination, the
service integration bus delivers the message to a messaging engine in that bus member. The
messaging engine then delivers the message to a consumer. If necessary, the messaging engine
queues the message until a consumer is ready to receive it.

Topic space destination
A topic space destination represents a set of “publish and subscribe” topics and is used for
publish/subscribe messaging. The topic for a specific message (publication) is a property of the
message.

A service integration topic space destination is not localized in a particular bus member. Service
integration maintains a list of subscriptions in the topic space and matches each publication
against that list. When a new publication matches one or more subscriptions in the topic space,
service integration delivers a copy of the publication to each subscriber. If necessary, service
integration can queue the publication message until the subscriber is ready to receive it. If the new
publication does not match any subscription, service integration discards the publication.

Foreign destination
A foreign destination represents a destination that is defined in another bus (a foreign bus). You
can use a foreign destination for point-to-point messaging. You use a foreign destination if you
need to override security settings, or messaging defaults, for an individual destination on a foreign
bus.

The foreign bus can be another service integration bus or a WebSphere MQ network (that is, one
or more interconnected WebSphere MQ queue managers or queue-sharing groups). When a
producer sends a message to a foreign destination, service integration delivers the message to the
foreign bus. The foreign bus is then responsible for queueing the message, as appropriate, based
on its definition of the destination.

To override messaging defaults of a destination on a foreign bus, you configure the properties (for
example, the default priority) of the foreign destination. To override security settings and control
which users and groups in the local bus have access to a destination in a foreign bus, you
configure the destination roles of the foreign destination. These properties apply when an
application that is connected to the local bus sends messages to the destination in the foreign bus.

You do not use foreign destinations for publish-subscribe messaging. Instead, applications publish
messages locally by using a topic space destination in the local bus, and you configure a service
integration bus link or a WebSphere MQ link. These links propagate the published messages into
the foreign bus, or buses, where subscribers receive the messages. For a link to a service
integration bus, configure topic space mappings, as described in Configuring topic space
mappings between service integration buses. For a link to a WebSphere MQ network, configure a
publish/subscribe bridge, as described in “Publish/subscribe messaging through a WebSphere MQ
link” on page 459.

Chapter 21. Service integration 613

Alias destination
An alias destination maps an alternative name for a bus destination. You can use an alias
destination for point-to-point messaging or publish/subscribe messaging. An alias destination maps
a bus name and destination name (identifier) to a target where the bus name, or the destination
name, or both, are different. An alias destination can map to a queue destination or a topic space
destination. If required, alias destinations can be chained so that the target destination is itself an
alias destination.

You use an alias destination when you need to make a destination available under an alternative
name. For example:

v Service integration destinations might have names that do not comply with WebSphere MQ
naming restrictions (for example, the names are too long). For such destinations, you can define
an alias destination that maps a WebSphere MQ-compliant name to the service integration
name. A WebSphere MQ application can use the WebSphere MQ-compliant name to send
messages to the destination.

v You can assign an alias destination to a subset of the queue points of a partitioned queue
destination, and therefore use the alias destination to restrict the queue points that the
producing and consuming applications use.

When you use an alias destination, you can also set properties (for example, the default quality of
service) for the alias destination. When an application uses the alias destination, these properties
override the properties of the target destination. If you do not want to override a property,
configure the alias destination to inherit the corresponding property from the target destination.

When you use an alias destination, you can also configure destination roles for the alias
destination. When the application uses the alias destination, service integration in the local bus
uses these roles to control which users and groups in the local bus have access to the target
destination. If you do not want to override the security for the target destination, configure the alias
destination to delegate the authorization check to the target destination.

Bus destinations can be either permanent or temporary. When an administrator configures a service
integration destination, that destination is a permanent destination that exists until an administrator
explicitly deletes it. In contrast, a temporary destination exists only while an application is using it.
Typically, this situation occurs when the application uses a JMS temporary destination. Service integration
creates a corresponding temporary service integration bus destination.

You can configure queue, topic space, and alias destinations with one or more mediations. Mediations are
programs that process each message after the producing application sends the message to the
destination, and before any consuming applications receive the message from the destination. For
example, a mediation can modify the actual message, or redirect the message to another destination or
sequence of destinations, or both.

You can configure queue, topic space, and alias destinations with routing paths:

v The default forward routing path defines a sequential list of intermediary destinations that messages
must pass through to reach the target destination, before consumers can retrieve the messages from
that destination. Each intermediary destination applies its mediations to the messages.

v The reply destination is the next destination to which reply messages are sent.

v “How JMS destinations relate to service integration destinations” on page 615

v “Queue destinations” on page 616

v “Publish/subscribe messaging and topic spaces” on page 617

v “Foreign destinations and alias destinations” on page 622

v “Permanent bus destinations” on page 626

v “Temporary bus destinations” on page 627

v “Exception destinations” on page 628

614 Overview

v “Destination mediation” on page 629

v “Destination routing paths” on page 630

v “Message points” on page 601

v “Message ordering” on page 637

v “Strict message ordering for bus destinations” on page 639

v “Message selection and filtering” on page 641

How JMS destinations relate to service integration destinations
Most WebSphere Application Server applications use the JMS APIs to access the services provided by the
service integration bus. JMS defines JMS destinations, which are the Java objects to which JMS
applications send messages and from which JMS applications receive messages. The attributes of a JMS
destination include the address of the destination that the messaging provider uses. For the service
integration messaging provider, this address is a service integration destination name (a queue name or
topic space name) and a bus name. In this way, a JMS destination can identify a service integration bus
destination.

Typically, a JMS application obtains a JMS destination from JNDI lookup of the destination JNDI name.
However, a JMS application can also obtain a JMS destination in other ways, for example, from the
JMSReplyTo property of a JMS message.

JMS destinations - queues and topics

A JMS destination can be one of the following destination types:

JMS queue destination
Used for point-to-point messaging, in which producing applications (producers) send messages to
a queue. The messaging provider stores just one copy of each message until a consuming
application (consumer) receives the message. If there are several consumers, only one consumer
receives a copy of the message; if there are no consumers, the message is queued.

In service integration, a JMS queue destination object has a queue name property and a bus
name property (it also has other properties).

JMS topic destination
Used for publish/subscribe messaging, in which producing applications (publishers) send
messages (publications) to a topic. The messaging provider delivers a copy of each publication to
each consuming application (subscriber). If there are no subscribers, service integration discards
the publication.

Another difference from point-to-point messaging is that subscribers can consume messages from
multiple similar topics by including wildcards in a topic name (publishers cannot include wildcards
in a topic name).

In service integration, a JMS topic destination object has a topic name, a topic space name, and a
bus name property (it also has other properties).

JMS destinations - relationship with service integration destinations

In service integration, a JMS destination identifies a service integration destination. Its queue name or
topic space name property is the name of the service integration destination. Its bus name property is the
name of the service integration bus that contains the destination.

You can omit the bus name property when you define the JMS destination. If you do then the JMS
destination identifies the service integration destination in the local bus; that is, whichever bus the JMS
application connects to. This can be convenient where there is only one service integration bus or where
all buses contain a destination with the same name.

Chapter 21. Service integration 615

Service integration includes the following destination types:

Service integration queue destination
A queue destination represents a message queue and is used for point-to-point messaging. A
service integration queue destination is localized in a particular bus member (application server or
cluster of application servers). When a producer sends a message to the queue destination, the
service integration bus delivers the message to a messaging engine in that bus member. The
messaging engine then delivers the message to a consumer. If necessary, the messaging engine
queues the message until a consumer is ready to receive it.

Typically, a JMS queue destination identifies a service integration queue destination; that is, its bus
name property matches the local bus name and its queue name property matches the name of a
service integration queue destination in the local bus.

Service integration topic space destination
A topic space destination represents a set of “publish and subscribe” topics and is used for
publish/subscribe messaging. The topic for a specific message (publication) is a property of the
message. A service integration topic space destination is not localized in a particular bus member.
Service integration maintains a list of subscriptions in the topic space and matches each
publication against that list. When a new publication matches one or more subscriptions in the
topic space, service integration delivers a copy of the publication to each subscriber. If necessary,
service integration can queue the publication message until the subscriber is ready to receive it. If
the new publication does not match any subscription, service integration discards the publication.

Typically, a JMS topic destination identifies a service integration topic space destination; that is, its
bus name property matches the local bus name and its topic space name property matches the
name of a service integration topic space destination in the local bus. When a JMS application
sends a message to the JMS topic destination, service integration sets the destination topic
property of the message to the topic name property of the JMS topic destination and then sends
the message to the service integration topic space destination.

Service integration foreign destination
A foreign destination represents a destination that is defined in another bus (a foreign bus). You
can use a foreign destination for point-to-point messaging. You use a foreign destination if you
need to override security settings, or messaging defaults, for an individual destination on a foreign
bus. The foreign bus can be another service integration bus or a WebSphere MQ network (that is,
one or more interconnected WebSphere MQ queue managers or queue-sharing groups). When a
producer sends a message to a foreign destination, service integration delivers the message to the
foreign bus. The foreign bus is then responsible for queueing the message, as appropriate, based
on its definition of the destination.

A JMS destination can identify a service integration foreign destination; that is, its bus name and
queue or topic space name properties can match the foreign bus name and queue or topic space
name of the foreign destination. However, this is not always necessary. If there is no service
integration foreign destination with a matching foreign bus name and a matching destination
(queue or topic space) name, service integration sends the message to the specified foreign bus
anyway.

Queue destinations
A queue destination represents a message queue and is used for point-to-point messaging. A service
integration queue destination is localized in a particular bus member (application server or cluster of
application servers). When a producer sends a message to the queue destination, the service integration
bus delivers the message to a messaging engine in that bus member. The messaging engine then delivers
the message to a consumer. If necessary, the messaging engine queues the message until a consumer is
ready to receive it..

The term “queue” is used, as an abbreviation for “queue destination”, to refer to a bus destination
configured for point-to-point messaging.

616 Overview

Note: Applications use API-specific artifacts such as a JMS queue, which encapsulates the name of a
queue destination, but are unaware of the existence of the service integration destination or of the
bus it is configured on. For more information, see “How JMS destinations relate to service
integration destinations” on page 615.

The administrator assigns a queue destination to only one member (an application server or server cluster)
of the service integration bus, or a WebSphere MQ server. The messaging engine in the bus member
hosts the message point for the queue, known as a queue point. The queue point is the location where
messages for the queue are stored and processed.

If the bus member has more than one messaging engine, the queue destination is partitioned across the
messaging engines. Each messaging engine has a separate queue point. Each message that is sent to a
queue destination is held on only one of the destination queue points: the message is not duplicated
across queue points. Each messaging engine handles a share of the messages arriving at the destination
so that the messaging workload is balanced across all messaging engines in the cluster bus member.

Attention: When a queue is partitioned across messaging engines, to avoid orphaning messages, each
queue point must have an associated consumer. By default a consumer is associated with one queue
point per session but a consumer can be configured to consume from more than one queue point.

An application can also create its own temporary queues, which appear temporarily in the list of queue
points for the messaging engine, but usually need no administrative intervention.

When a destination is configured on a bus member that is a WebSphere MQ server, the destination has a
single queue point called a WebSphere MQ queue point. This WebSphere MQ queue point is a
WebSphere MQ queue on the WebSphere MQ queue manager or queue-sharing group that the
WebSphere MQ Server represents. For more information about WebSphere MQ queue points, see related
concepts.

Publish/subscribe messaging and topic spaces
You can use publish/subscribe messaging to publish one message to many subscribers. A producing
application publishes a message on a given subject area or topic. The topic for a specific message
(publication) is a property of the message. Consumer applications that have subscribed to the topic each
receive a copy of the message. A topic space is a hierarchy of publish/subscribe topics. These topics have
publication points automatically defined on each messaging engine in their associated service integration
bus.

A service integration topic space destination is not localized in a particular bus member. Service integration
maintains a list of subscriptions in the topic space and matches each publication against that list. When a
new publication matches one or more subscriptions in the topic space, service integration delivers a copy
of the publication to each subscriber. If necessary, service integration can queue the publication message
until the subscriber is ready to receive it. If the new publication does not match any subscription, service
integration discards the publication.

A topic space has a set of default publish/subscribe permissions for all topics in the hierarchy. An
administrator can configure individual publish/subscribe topics with specific permissions and mediations.
Publish/subscribe topics inherit such configurations from higher publish/subscribe topics in the topic space
hierarchy and the topic space itself.

Publish/subscribe topics with the same name can exist in multiple topic spaces, but there can be only one
topic space with a given name in the bus. For example, consider a publish/subscribe topic hierarchy split
into the following topic spaces:

library
Topics for document management.

Chapter 21. Service integration 617

sales Topics for marketing and sales tracking.

The publish/subscribe topic “volumes” can appear in the topic hierarchy in both topic spaces, and can have
different meanings in each.

A producing application can attach to any messaging engine on the bus. Messages are stored in the
message store for the messaging engine to which the producer is attached. As a result, a topic space can
have messages stored in a number of message stores at various (producing) messaging engines in the
bus. Messages for a publish/subscribe topic are published to a publication point and automatically
forwarded to all other publication points for which there are subscribers on that topic.

The default messaging provider supports durable subscriptions to publish/subscribe topics. These enable a
subscriber to receive a copy of all messages published to a topic, even messages published during
periods of time when the subscriber is not connected to the server. For a given JMS connection factory or
activation specification, all publish/subscribe messages to be delivered to durable subscriptions are stored
on the publication point of the messaging engine named by the durable subscription home property.
Therefore if that messaging engine is unavailable, subscribers cannot retrieve messages. These
undelivered messages are preserved and sent to the durable subscriptions after the messaging engine
restarts.

Workload sharing with publish/subscribe messaging
In publish/subscribe messaging, the messaging system sends one copy of every published message to
each matching subscription. Subscribers, that is, applications that consume publish/subscribe messages,
consume those messages from an individual subscription. To balance workload across multiple instances
of an application, for example when an application runs in a server cluster, all instances of the application
must use the same subscription.

Figure 100 on page 619 shows that, in this configuration, only one instance of the application processes
each message that is sent to the subscription. However, Figure 101 on page 620 shows that if different
instances of the same application are configured to receive messages from different subscriptions, each
instance processes a copy of every matching message, so that each message is spread (fanned) out.

Figure 99. Publish/subscribe messaging

618 Overview

Publisher

Application
instance X

Application
instance Y

Application
instance Z

BUS

Subscription
A

Mess ge 1 2, 3a ,

Mess ge 1 2, 3a ,

Message 2 Message 3Message 1

Figure 100. Application instances that share a single subscription (workload sharing)

Chapter 21. Service integration 619

For point-to-point messages, you can use queue destinations and partition a queue so that messages are
workload balanced. However, you cannot partition subscriptions in this way.

For publish/subscribe messaging, to configure multiple application instances to use the same subscription,
and therefore balance the message workload, you must use a durable subscription. The multiple instances
of the application must be able to consume simultaneously from the same subscription. This type of
subscription is called a shared durable subscription. To configure a shared durable subscription, you set
the Share durable subscriptions property for the relevant connection factory or activation specification.

A durable subscription has a home messaging engine and a unique identity, which is formed from the
client identity and the subscription name. The messaging system can accumulate new matching
publications for the subscription even while there is no active subscriber. The home messaging engine
accumulates messages for a subscription by using a publication point. When a subscriber starts or
restarts, the messaging system uses the unique identity and the home messaging engine to identify the
publication point, locate the durable subscription, and deliver any accumulated messages.

A nondurable subscription does not have a unique identity. It lasts for the lifetime of its subscriber. Multiple
application instances cannot receive messages from the same nondurable subscription.

You can set the Shared durable subscription property to one of the following:

In cluster
The bus distributes work between clients that connect to a bus member in the same cluster when
the clients use the same client identifier and durable subscription name.

Publisher

Application
instance X

Application
instance Y

Application
instance Z

BUS

Subscription
B

Subscription
C

Subscription
A

Mess ge 1 2, 3a ,

Mess ge 1 2, 3a ,

Mess ge 1 2, 3a , Mess ge 1 2, 3a ,

Mess ge 1 2, 3a ,Mess ge 1 2, 3a ,

Mess ge 1 2, 3a ,

Figure 101. Application instances that use individual subscriptions (messages fanned out)

620 Overview

Always shared
The bus distributes work between clients, regardless of where they connect to the bus, when the
clients use the same client identifier and durable subscription name.

Never shared
Clients cannot use the same client identifier and durable subscription name as an existing session.

The consequences of changing durable subscriptions
When an application connects to an existing durable subscription, but specifies parameters that differ from
those that were used to create the existing subscription, the subscription is deleted then recreated with the
new parameters. A durable subscription can be changed in this way only when it has no active consumers.

In the basic case, there is only one active consumer at any time, so the application can change the
durable subscription without affecting other subscribers. However, the situation is more complicated for
cloned subscriptions.

A cloned durable subscription has multiple active subscribers, which are usually clones of a particular
application.

v For cloned message-driven bean (MDB) applications, the subscribers are always active on the
subscription, and so the administrator must stop all instances of the MDB application before the
subscription can be altered. (If the MDB application instances are recycled one at a time then each
individual instance is thrown out when it tries to connect using the changed properties, because there
are existing consumers.)

v For cloned EJB applications, administrators should ensure that all instances of the EJB application are
stopped before the subscription can be changed, to avoid the following problem. Enterprise beans have
active subscribers for a durable subscription for relatively short spaces of time. If the EJB application
instances are recycled individually then there is a period in which different instances of the application
have different views of the subscription configuration. This causes the subscription to be deleted and
recreated which can lead to the loss of messages. Subscriptions can be deleted and recreated multiple
times until the new definition is constant across all instances.

Note: The server_name-durableSubscriptions.ser file in the WAS_HOME/temp directory is used by the
messaging service to keep track of durable subscriptions for message-driven beans. If you uninstall
an application that contains a message-driven bean, this file is used to unsubscribe the durable
subscription. If you have to delete the WAS_HOME/temp directory or other files in it, ensure that you
preserve this file.

Topic names and use of wildcard characters in topic expressions
Wildcard characters can be used in topic expressions to retrieve topics provided by the default messaging
provider and service integration technologies.

Each subscribe request includes a topic expression that identifies one or more topics that the subscription
is to be associated with, and that the request uses to match against incoming messages.

Subscription topic expressions for the default messaging provider and service integration technologies are
based on a subset of the XPath location path syntax.

Identifying individual topics

Every topic in a topic space has a topic name consisting of one or more name parts, separated by /
(forward slash) characters:

Topic name = name_part | (name_part ’/’ topic_name)

Chapter 21. Service integration 621

Using wildcards to identify multiple topics

To select one or more topics in a topic space, you can use a topic path, a location path that contains
wildcard characters. Topic spaces are evaluated by using a subset of the XPath location path syntax with
the <topicspace> element as the initial context node, so that non-wildcarded topic paths look exactly like
topic names.

The syntax for topic paths can be summarized as follows:

v A topic path that contains no * (asterisk), // (double forward slash), or . (dot) symbols is asking for an
exact match with the topic name specified.

v A * (asterisk) can be used as a wild card and matches one level (regardless of the value of the name
part at that level)

A * can be used anywhere in a topic path expression, but if it isn't at the start it must be preceded by a
/, and if it is isn't at the end it must be followed by a /

v // can be used as a wild card and matches 0 or more levels

A // can be used anywhere in the expression except at the end. To match 0 or more levels at the end of
the expression you end the expression with the syntax //. (double-slash dot). To match one or more
levels at the end use //* (double-slash asterisk)

A topic path must not contain more than two consecutive / symbols.

The following table lists some example topic paths showing the XPath syntax and the equivalent WBI
Message Broker selectors:

Table 69. XPath syntax and WBI Message Broker selectors. The first column of the table lists some topic path
examples. The second column displays the topics selected in the path. The third column provides the equivalent WBI
Message Broker selectors.

Topic path Topics selected
WBI Message Broker
equivalent

A/B Selects the B child of A A/B

A/* Selects all children of A A/+

A//* Selects all descendents of A A/#/+

A//. Selects A and all descendents of A A/#

//* Selects everything # (or #/+)

A/./B Equivalent to A/B A/B

A/*/B Selects all B grandchildren of A A/+/B

A//B Selects all B descendents of A A/#/B

//A Selects all A elements at any level #/A

* Selects all first level elements +

Foreign destinations and alias destinations
Foreign destinations and alias destinations are types of bus destination. A foreign destination represents a
destination that is defined in another bus (a foreign bus). An alias destination maps to an alternative name
for a bus destination that is defined either in the local bus or in a foreign bus.

Usually, you do not need to configure a foreign destination or an alias destination:

v For an application to send messages to a destination that is defined in the local bus, you specify the
bus name and the destination name in the JMS destination object (queue or topic).

It is possible to omit the bus name, because the default is the local bus name, but for a system with
more than one bus, it is advisable to specify the bus name.

622 Overview

v For an application to send messages to a destination that is defined in a foreign bus, you specify the
bus name (that is, the foreign bus) and the destination name in the JMS destination object (queue or
topic). You do not need to configure any destination objects in the local bus.

Service integration uses the definition of the foreign bus that is configured on the local bus. This
definition includes default values for the destination attributes, such as the default quality of service.
These default values apply to all destinations in that foreign bus. For more information, see the topic
about point-to-point messaging across multiple buses.

You use a foreign destination when you need to override messaging defaults, security settings, or both for
an individual destination on a foreign bus. You define a foreign destination on the local bus. When an
application that is connected to the local bus sends messages to the destination in the foreign bus, the
attributes of the foreign destination override the destination default values. You can set properties and
destination roles, but you cannot map to an alternative name for the destination.

You use an alias destination when you need to use an alternative name for a bus destination. The bus
destination can be on the local bus or on a foreign bus. You configure an alias destination on the local
bus. When an application in the local bus uses the alias destination, the specified bus name and
destination name are mapped to a new name. If you use an alias destination, you can also set properties,
destination roles, or both.

When an application that is connected to a bus specifies a destination name and bus name in its JMS
destination object (queue or topic) that match the identifier and bus of an alias destination that is defined
in that bus, the destination that the application accesses is the same as if the application specified the
target identifier and target bus from the alias destination. You can also use a alias destination that is
defined in a foreign bus if you need to redirect messages that arrive over a foreign bus connection to
differently named destinations or buses, and you cannot modify the configuration of the source bus.

Foreign destinations

A foreign destination represents a destination that is defined in another bus (a foreign bus). You can use a
foreign destination for point-to-point messaging. You use a foreign destination if you need to override
security settings, or messaging defaults, for an individual destination on a foreign bus. The foreign bus can
be another service integration bus or a WebSphere MQ network (that is, one or more interconnected
WebSphere MQ queue managers or queue-sharing groups).

To override messaging defaults of a destination on a foreign bus, you configure the properties (for
example, the default priority) of the foreign destination. To override security settings and control which
users and groups in the local bus have access to a destination in a foreign bus, you configure the
destination roles of the foreign destination. These properties apply when an application that is connected
to the local bus sends messages to the destination in the foreign bus.

When you define a foreign destination, use the actual names of the foreign bus and the destination on the
foreign bus, so that the JMS destination object does not change.

When an application that is connected to the local bus sends messages to the destination in the foreign
bus, service integration in the local bus uses the properties and destination roles of the foreign destination,
rather than the default values from the definition of the foreign bus (on the local bus). Typically, you
configure the properties of a foreign destination to match the properties that are configured for that
destination in the foreign bus (where that destination is a local destination), but this is not essential.

You can also configure destination roles for the foreign destination. Service integration in the local bus
uses these roles to control which users and groups in the local bus have access to the destination. It also
complements any access controls that the foreign bus applies.

You do not use foreign destinations for publish-subscribe messaging. Instead, applications publish
messages locally using a topic space destination in the local bus, and you configure a service integration

Chapter 21. Service integration 623

bus link or a WebSphere MQ link. These links propagate the published messages into the foreign bus, or
buses, where subscribers receive the messages. For a link to a service integration bus, configure topic
space mappings, as described in Configuring topic space mappings between service integration buses.
For a link to a WebSphere MQ network, configure a publish/subscribe bridge, as described in
“Publish/subscribe messaging through a WebSphere MQ link” on page 459.

Service integration cannot use configuration information that is scoped to a foreign bus. Therefore, if an
appropriate foreign destination is not defined on the local bus, service integration uses default values for
the destination attributes.

Figure 1 shows a JMS application that sends messages from the local bus, Bus 1, to a destination in a
foreign bus, Bus 2. Bus 1 has a foreign bus connection defined, which it uses to forward the message to
the foreign bus. The foreign destination is not defined in the local bus. Bus 1 gets the destination defaults
from the foreign bus connection.

Figure 2 shows a JMS application that sends messages from the local bus, Bus 1, to a destination in a
foreign bus, Bus 2. Bus 1 has a foreign bus connection defined, which it uses to forward the message to
the foreign bus. Bus 1 includes a foreign destination definition. Bus 1 gets the destination defaults from the
foreign destination.

Bus 1 Bus 2

foreign bus
connection
Bus 2

service integration
destination
Queue 2

Bus 2
Queue 2JMS application

JMS destination

Bus 1 gets destination defaults
from the foreign bus connection

physical message flow
pointer

messaging engine messaging engine

logical message flow

Figure 102. Point-to-point messaging between two buses with no foreign destination configured

624 Overview

Alias destinations

An alias destination maps an alternative name for a bus destination. You can use an alias destination for
point-to-point messaging or publish/subscribe messaging. An alias destination maps a bus name and
destination name (identifier) to a target where the bus name, or the destination name, or both, are
different. An alias destination can map to a queue destination or a topic space destination. If required,
alias destinations can be chained so that the target destination is itself an alias destination.

You use an alias destination when you need to make a destination available under an alternative name.
For example:

v You need to interoperate with WebSphere MQ, but some service integration bus names or destination
names do not comply with WebSphere MQ naming restrictions (for example, the names are too long).
You can define an alias destination that maps a WebSphere MQ-compliant name to the service
integration name.

For example, an application sends a message to a WebSphere MQ application and the reply-to
destination name does not comply with the WebSphere MQ naming restrictions. You can define an alias
that maps a compliant name to the actual reply-to destination name. The application then specifies the
alias destination as the reply-to.

Another example is an application that sends a message through a WebSphere MQ foreign bus to a
remote service integration foreign bus when the send-to destination name does not comply with the
WebSphere MQ naming restrictions. You can define an alias in the remote bus that maps a compliant
name to the actual send-to destination name. The application then specifies the alias destination as the
send-to. If you want the sending application to use the actual destination name, you can define an alias
in the local bus that maps the actual destination name to the compliant name.

v If you move a destination from one bus to another (by deleting it, then creating it on another bus), you
can create an alias destination that redirects messages from the old destination to the new one. You
must create the alias destination in every bus where applications reference the destination, for example,
the bus that the destination is moved from, and the bus that the destination is moved to.

However, it might be simpler to change the JMS destinations that are registered with JNDI to point to
the new destination.

{

Bus 1 Bus 2

foreign bus
connection
Bus 2

service integration
destination
Queue 2Bus 2

Queue 2

foreign destination

Bus 2
Queue 2JMS application

JMS destination

logical message flow
physical message flow
pointer

messaging engine messaging engine

Bus 1 gets destination defaults
from the foreign destination

Figure 103. Point-to-point messaging between two buses with a foreign destination configured on the local bus

Chapter 21. Service integration 625

v You can assign an alias destination to a subset of the queue points of a partitioned queue destination,
and therefore use the alias destination to restrict the queue points that the producing and consuming
applications use.

When you use an alias destination, you can also set properties (for example, the default quality of service)
for the alias destination. When an application uses the alias destination, these properties override the
properties of the target destination. If you do not want to override a property, configure the alias
destination to inherit the corresponding property from the target destination.

When you use an alias destination, you can also configure destination roles for the alias destination. When
the application uses the alias destination, service integration in the local bus uses these roles to control
which users and groups in the local bus have access to the target destination. If you do not want to
override the security for the target destination, configure the alias destination to delegate the authorization
check to the target destination.

Figure 3 shows a JMS application that sends messages from the local bus, Bus 1, to a destination in a
foreign bus, Bus 2. Bus 1 has a foreign bus connection defined, which it uses to forward the message to
the foreign bus. The JMS destination does not point to the target queue, but points to Bus X, Queue Y.
Bus 1 includes an alias destination that maps Bus X, Queue Y to the target destination Bus 2, Queue 2.
Bus 1 gets the destination defaults from the alias destination.

Using an alias destination for a destination in a foreign bus

If an application uses an alias destination to access a destination that is defined in a foreign bus, you can
configure the alias destination with the specific properties, destination roles, or both that the application
requires. This means that you probably do not need to define a foreign destination as well.

Permanent bus destinations
A permanent destination is configured by an administrator and has its runtime instances created
automatically by the messaging provider. Permanent destinations remain until the administrator explicitly
deletes them.

Bus 1 Bus 2

foreign bus
connection
Bus 2

service integration
destination
Queue 2

Bus X

Bus X
Queue Y

Bus 2

Queue Y Queue 2

JMS application

JMS destination

logical message flow
physical message flow
pointer

messaging engine messaging engine

Bus 1 gets destination defaults
from the alias destination

alias destination

{

Figure 104. Point-to-point messaging between two buses with an alias destination configured on the local bus

626 Overview

When you configure a destination on a bus member that is a WebSphere MQ server, the destination has a
single queue point called a WebSphere MQ queue point. This WebSphere MQ queue point is a
WebSphere MQ queue on the WebSphere MQ queue manager or queue-sharing group that the
WebSphere MQ Server represents. For more information about WebSphere MQ queue points, see related
concepts.

The configuration and runtime components of a permanent destination are shown in the following figure.

The administrator configures a bus destination, to define properties such as the type of destination, and
mediations and quality of service for the destination. A bus destination is defined on a service integration
bus, and is hosted by one or more bus members, depending on whether it is a queue destination or a
topic space destination. This results in the system generating one or more message points, where
messages are held on that bus. A message point can be configured to override some properties inherited
from the bus destination.

For point-to-point messaging, the administrator configures the destination as a queue and selects one bus
member, an application server or server cluster, as the assigned bus member that is to hold messages for
the queue. This action automatically defines a queue point (a type of message point) for each messaging
engine in the assigned member. When an assigned messaging engine starts up, a runtime instance of
each of its message points is automatically created. You can use the runtime view of a message point to
administer the messages on that location.

For publish/subscribe messaging, the administrator configures the destination as a topic space (a
hierarchy of topics), but does not have to select any assigned bus member for the topic space. A topic
space has a publication point (a type of message point) defined automatically for each messaging engine
in the bus.

Temporary bus destinations
A temporary destination only exists while an application is using it. Typically, this situation occurs when the
application uses a JMS temporary destination. Service integration creates a corresponding temporary
service integration bus destination.

For example, if an application creates a temporary JMS queue for use with the default messaging provider,
the SIB service automatically creates a temporary queue destination on the bus.

A temporary destination is assigned a unique name specific to the SIB service. The name starts with the
prefix _Q for temporary queues or _T for temporary topics.

Temporary destinations appear on the list of runtime queue and publication points for a messaging engine
on the service integration bus. Temporary destinations do not usually need administration.

Temporary topics cannot be explicitly created on the service integration bus. API-specific temporary
destinations (for example, JMS temporary topics) are implemented by creating a temporary topic space

Chapter 21. Service integration 627

and using a single topic within the temporary topic space. This is not apparent to the application code. For
this reason, applications cannot use a wildcard for temporary topics. This means, for example, a
subscriber cannot use a wildcard to receive a copy of messages published to all temporary topics.

See also “How JMS destinations relate to service integration destinations” on page 615.

Exception destinations
An exception destination is a location for messages that cannot be delivered to, or remain on, a specified
target destination, but that also cannot be discarded. Exception destinations prevent the loss of messages
when this is required by the quality of service specified for a message.

An exception destination can be used in the following situations:

v Service integration cannot deliver a message to the specified target destination, and cannot discard the
message because of the quality of service of the message. Service integration delivers the message to
an exception destination.

v A message exceeds the maximum number of delivery attempts to a transactional consumer. This
situation might occur if the transactional consumer fails and the message backs out and is consumed
again repeatedly. When the delivery limit (the Maximum failed deliveries per message) is reached, the
message goes to the exception destination.

v A destination that has messages on it is deleted. Those messages are moved to an exception
destination.

For each of these situations, you can configure which exception destination processing to use:

v Use the default exception destination of the relevant messaging engine.

Each messaging engine has a default exception destination called
_SYSTEM.Exception.Destination.messaging_engine_name that is created automatically when a
messaging engine is created. This default exception destination stores messages that cannot be
delivered for bus destinations that are localized to the messaging engine. When you use the default
exception destination, an administrator can access all messages that cannot be delivered for a
messaging engine in a single location.

Note: You cannot modify the default exception destination and you must not delete it.

v Use a specific exception destination that is associated with the relevant resource, for example, a queue
destination, a topic space destination, a service integration bus link or a WebSphere MQ link.

The exception destination that is associated with a destination is used if a message cannot be delivered
because the number of delivery attempts to a transactional consumer is exceeded. When you use a
specific exception destination for a queue or topic space destination, an administrator can access those
undeliverable messages for that destination in one location.

The exception destination that is associated with a link is used if a message cannot be delivered
because the target destination is full or does not exist.

An exception destination must be a queue destination, and can be local or remote. The exception
destination must already exist before you configure another resource to use that exception destination.
If the exception destination is not a queue, or if it does not exist when the message arrives, messages
are rerouted to the default exception destination of the relevant messaging engine.

Note that you cannot configure an exception destination for a bus; you must configure an exception
destination for each destination on the bus.

v Do not reroute undeliverable messages to any exception destination, that is, specify None.

Attempts to deliver the message continue. For a service integration bus link, an undeliverable message
might block the processing of other messages waiting for delivery to the same destination. For a
WebSphere MQ link, an undeliverable message might block the processing of other messages waiting
for delivery through that link to the same bus.

628 Overview

The report options that are set in the properties of individual messages can affect exception destination
processing. Depending on the report option that is set, when the conditions apply for service integration to
send a message to an exception destination, service integration also sends a report message to the
reply-to destination of the message, or discards the message instead of sending it to the exception
destination, or both.

Note:

v Best-effort messages are always discarded if they cannot be delivered to their target destination,
that is, they never use an exception destination.

v A message cannot be available to consumers until it is successfully delivered to a destination.

Service integration cannot guarantee the ordering of messages sent to an exception destination. Because
of this, if message order is important, you can configure a bus destination so that it does not use an
exception destination. In this situation, the Maximum failed deliveries per message limit specified for the
destination is ignored, and the message remains available to consumers. Synchronous consumers
repeatedly attempt to get the message; message-driven beans and other asynchronous consumers
repeatedly attempt consume the message. This situation continues until either the message is removed
from the destination (for example, by an administrator using the administrative console) or the consumer
can subsequently process the message without rolling back.

Destination mediation
A destination can be configured with one or more mediations that refine how messages are handled by the
destination. For example, a mediation can modify the actual message, or redirect the message to another
destination or sequence of destinations, or both.

A mediation can process messages through message transformation, subsetting, aggregation,
disaggregation, and using a selection of destinations (but not consumers) to which the message can be
forwarded.

When a message arrives at the mediation point, the mediation consumes the message and can transform,
subset, aggregate or disaggregate the message. The message is then either forwarded to another
destination or returned to the same destination. If the message is returned to the same destination, it goes
to the queue point, where it can be consumed by the messaging application. This process is shown in the

following figure:

Mediation
point

Queue
point

Queue
point

ProducerProducer

MediatedSimple

ConsumerConsumer Mediation

You can configure a destination so the mediation point or the queue point, or both are WebSphere MQ
queues. If both are WebSphere MQ queues then a WebSphere MQ application can act as an external

Chapter 21. Service integration 629

mediation as shown in the following figure:

Producer

MQ PUT

Producer

MQ PUT

MediatedSimple

Consumer

MQ GET

Consumer

MQ GET

Mediation

WMB flow

Destination routing paths
A routing path defines a sequential list of intermediary bus destinations that messages must pass through
to reach a target bus destination. A routing path is used to apply the mediations configured on several
destinations to messages sent along the path.

A forward routing path identifies a list of bus destinations that a message should be sent to, from the
producer to the last destination from which consumers retrieve messages. The reverse routing path is
constructed automatically for request/reply messages, and identifies the list of destinations that any reply
message should be sent to, from the consumer back to the producer. Use of reverse routing path enables
a reply message to take a different route back to the producer, and therefore have more mediations
applied.

When a message arrives at a destination in the path, mediations can manipulate the entries in the forward
routing path, to change the sequence of destinations through which messages pass. If a mediation
manipulates the forward routing path, and the reverse routing path is set for a request message that
expects a reply, the mediation is responsible for making any corresponding changes to the reverse routing
path.

A destination without mediations can be included in a routing path to provide a future option to apply a
mediation assigned to that destination.

Do not include a topic space in a forward routing path.

Figure 105. Routing paths

630 Overview

If the first element of the routing path does not represent a destination known to the bus, the message is
sent to the exception destination defined for the current destination.

Forward routing paths

A producer can attach to one destination and pass messages along a forward routing path to the target
destination that consumers use.

v The producer can set the forward routing path in the original message.

v An administrator can configure a default forward routing path on destinations for use by messages that
do not contain a forward routing path.

When a message is sent to a destination (either directly, or by following its forward routing path), and prior
to invoking any mediation at the destination, the Default forward routing path property of the destination
is applied to the forward routing path of the message, as follows:

v If the incoming message contains an empty forward routing path, the forward routing path in the
message is set to the value of the Default forward routing path property of the destination (which
also can be empty or null).

v If the incoming message has a non-empty forward routing path, it is left unchanged. Once you have
applied any mediations, the message is forwarded to the next destination in the path. When the last
destination in the path is reached, the message is handled by that destination.

Reverse routing paths

A producer can ask for reply messages by specifying a reply destination in messages it sends. The
reverse routing path is constructed dynamically as the message passes from one destination to another
along the forward routing path.

When a message is sent to a destination (either directly, or by following its forward routing path), and prior
to invoking any mediation at the destination, the Reply destination property of the destination is applied
to any non-empty reverse routing path of the message, as follows:

v If the incoming message has a non-empty reverse routing path (indicating that a reply is expected), the
value of the Reply destination property of the destination is added to front of the reverse routing path
in the message (indicating that the reply message must visit this new reply destination before any
destinations that are already in the reverse routing path).

v If the incoming message has an empty reverse routing path (indicating that a reply is not expected), the
reverse routing path is left unchanged.

Message points
A message point is associated with a messaging engine and holds messages for a bus destination.

A message point is the general term for the location on a messaging engine where messages are held for
a bus destination. A message point can be:

v A queue point

v An alias destination

v A publication point

v A mediation point (which is a specialized message point)

For point-to-point messaging, the administrator selects one bus member, which can be an application
server or server cluster, to hold the messages of the queue destination. This action automatically defines a
queue point for each messaging engine in the assigned bus member.

v For a queue destination assigned to an application server, all messages sent to that destination are
handled by the messaging engine of that server, and message order is preserved.

Chapter 21. Service integration 631

v For a queue destination assigned to a server cluster, there is a separate message point for each
messaging engine in the cluster. The message points partition the destination in the same way that a
WebSphere MQ cluster partitions a clustered queue. Multiple messages addressed to a such a
partitioned destination are handled by any messaging engine in the cluster, but an individual message is
handled by only one messaging engine.

The messages of the destination are split between the separate message stores for the messaging
engines. This configuration has the disadvantage that message order cannot be preserved, but has
advantages:

– Multiple producers or consumers can be deployed across the same server cluster and messaging
operations are handled locally by the messaging engine of a cluster member.

– Cluster monitoring can detect the failure of a messaging engine, and the surviving engines within the
cluster can take over the message stores containing the permanent state for the failed engine.

If message ordering must be preserved, follow the rules described in “Message ordering” on page 637.

Applications can use an alias destination to route messages to a target destination in the same bus or to
another (foreign) bus (including across a WebSphere MQ link to a queue provided by WebSphere MQ). By
assigning an alias destination to a subset of the queue points of a partitioned queue destination, alias
destinations can be used to restrict the queue points used by producing and consuming applications.

For publish/subscribe messaging, the administrator configures a topic space destination, but does not have
to assign a bus member for the topic space. A topic space has a publication point defined automatically for
each messaging engine in the bus.

Message points can be remote from the application which is producing to or consuming from the bus
destination. In other words, message points can be on a messaging engine other than the messaging
engine to which the application is connected. In this situation the message point is represented at runtime
by a remote message point on the remote messaging engine.

By monitoring message points and remote message points, you can fully analyze and resolve problems
arising from distributed application messaging. For example, you can:

632 Overview

v Determine the state of a specific message request.

v Determine the location of a specific message.

v Examine message queues to determine if messages have been sent or received.

v Free or delete message requests that have become locked.

v Delete or move messages from remote message points.

Remote message points
A remote message point is a messaging engine runtime view of any message point that is associated with
a remote messaging engine. Remote message points are dynamically created and destroyed when they
are required by the bus; you do not have to configure them explicitly.

Message points provide a physical location to reliably store messages. In a bus that contains many
messaging engines, message points can be defined on a subset of the messaging engines in that bus.
However, an application can attach to any messaging engine in the bus, and can therefore produce or
consume messages to or from destinations that do not have a suitable message point on the messaging
engine to which the application is attached.

When an application produces messages, the messages must be moved from the messaging engine for
the application to a messaging engine with a suitable message point, and vice versa when an application
consumes messages. Remote message points provide a reliable mechanism to move these messages
from one messaging engine to another; the remote message points maintain information required to
ensure messages are delivered correctly according to the messages' reliability.

Where necessary, messages are queued on a remote message point while awaiting delivery to the
intended message point. This runtime information can be monitored and, where appropriate, managed by
an administrator.

Each remote message point that exists on a messaging engine has a corresponding representation on the
messaging engine that owns the message point.

Message production and consumption by using remote message points:

When an application produces or consumes messages to or from a messaging engine that is not the same
as the messaging engine to which the application is connected, remote message points are used to
manage the flow of messages between the messaging engines.

Message production

When an application produces messages to a queue-type destination at a messaging engine that is
remote from the messaging engine that owns the queue point, a remote queue point is required to
manage the delivery of messages destined for the queue point. When an application produces messages
to a publish/subscribe type destination, the messaging engine for the producing application will have a
local publication point. If subscribing applications to the same destination are attached to different
messaging engines in the bus, remote publication points are required to manage the delivery of messages
to those remote messaging engines.

If the destination is mediated, messages must first be processed at a mediation point. If the mediation
point is on a different messaging engine than the application, a remote mediation point is required to
manage the delivery of the messages to the mediation point.

These outbound messages must be delivered to the message point in a reliable manner in accordance
with the reliability of the message. To provide these levels of reliability, any message with a reliability
greater than “best effort non-persistent” is temporarily queued at the remote message point for the
producer messaging engine. The message is queued until the messaging engine that owns the message

Chapter 21. Service integration 633

point confirms the successful arrival of the message, then the producer messaging engine removes its
copy of the message from the remote message point. This prevents loss or re-ordering of messages in the
event of failures.

Under normal conditions messages will be queued at a remote message point only briefly, but if a failure
occurs or the system is overloaded, messages might remain at the remote message point for longer. You
can assess the health of the system by monitoring the outbound messages on a remote message point.

Message consumption

A consuming application can be attached to a messaging engine that does not own the store of messages
that the application consumes from. When an application consumes from a queue-type destination, the
application might be remote from the queue point; when an application consumes from a publish/subscribe
type destination, the application might be remote from the subscription. When either of these cases
occurs, a remote message point is required to manage message requests made by the application.

Each time an application requests a message from a remote store of messages, a message request is
made from the messaging engine for the application to the messaging engine that owns the messages.
These message requests are maintained by the remote message point until they are satisfied, either with
a message or when the request comes to an end (the requesting application terminates the request).

Point-to-point messaging example by using remote queue points:

When a producing or consuming application is remote from its destination, remote queue points are used
to manage the flow of messages between the messaging engine where the destination is located, and the
messaging engine to which the application is attached.

The following figure illustrates the use of remote queue points in point-to-point messaging. The producing
application attaches to messaging engine ME1, but the bus destination targeted by the application has a
queue point on ME2. The queue point on ME2 is represented at runtime by a remote queue point on ME1.
The remote queue point receives messages from the application and then reliably transmits them to the
queue point on ME2. Likewise, the consuming application attaches to ME3 and consumes messages from
the queue point on ME2 through a remote queue point on ME3.

634 Overview

The sequence of steps involved in remote message production is as follows:

1. The producing application, attached to ME1, sends a message to the queue destination, which has a
queue point defined on ME2.

2. Messages are queued up on the remote queue point on ME1 before transmission to the queue point
on ME2.

3. The message is sent to the queue point on ME2 as soon as possible. ME1 remembers the existence
of the message until ME2 confirms that it has received the message.

The sequence of steps involved in remote message consumption is as follows:

1. The consuming application, attached to ME3, attempts to consume a message from the queue
destination.

2. ME3 sends a message request to the queue point on ME2.

3. When a message that satisfies the criteria of the message request is available at the queue point on
ME2, the message is sent to the remote queue point on ME3.

4. The message is delivered from the remote queue point to the consuming application. If the application
consumes the message, the message is deleted from the queue point on ME2. If the application does
not consume the message, the message is made available again on the queue point on ME2 for other
applications to consume. In either case, the message request is completed and removed from the
remote queue point on ME3.

Publish/subscribe messaging example by using remote publication points:

When a publishing or subscribing application is remote from its destination, remote publication points are
used to manage the flow of messages between the messaging engine where the destination is located,
and the messaging engine the application is attached.

The following diagram illustrates the use of remote publication points in publish/subscribe messaging.
Messages are published to a publication point on ME1, and are routed to publication points on ME2 and

Producing
Application

Consuming
Application

Queue
Point

Remote

Point
Queue

Remote
Queue
Point

ME1 ME2

ME3

Bus

Figure 106. Point-to-point message production and consumption by using remote queue points.

Chapter 21. Service integration 635

ME3 through remote publication points on ME1. The messages are consumed from subscriptions on ME2
and ME3.

The sequence of steps involved in remote publish/subscribe messaging is as follows:

1. The administrator creates a topic space destination on the bus; this creates a publication point on each
messaging engine in the bus.

2. The subscribing applications register subscriptions for a topic on the topic space on their local
messaging engines. ME1 is informed that ME2 and ME3 are interested in the topic.

3. The publishing application, on ME1, publishes a message for that topic and topic space to the bus, for
distribution to the publication points on each messaging engine.

4. The remote publication points on ME1 queue the message for transmission to their respective
publication points on ME2 and ME3.

5. The message is sent to the publication points on ME2 and ME3 as soon as possible. ME1 remembers
the existence of the message until both ME2 and ME3 confirm that they have received the message.

6. The subscribing applications consume the message through their subscriptions on ME2 and ME3.

In figure one, the subscribing applications are attached to the same messaging engines that their
subscriptions were created on. If a subscribing application has a durable subscription, it is possible for the
application to be attached to a different messaging engine than the messaging engine that the subscription
was created on. In this case the subscribing application accesses its subscription through a remote
subscription on the messaging engine the application is attached. In figure two, messages are published to
ME1, and are routed to the durable subscripton that is on ME2. The messages are consumed from ME2
through a remote subscription on ME3.

Publication
Point

Publishing
Application

Subscribing
Application A

Subscribing
Application B

Publication
Point

Publication
Point

Remote
Publication

Points
Subscription

Subscription

ME1 ME2

ME3

Bus

Figure 107. Publish/subscribe messaging by using remote publication points

636 Overview

In this situation, Subscribing Application B consumes messages from its subscription in the same way as
an application consumes remotely from a queue point, as detailed in “Point-to-point messaging example by
using remote queue points” on page 604.

Message ordering
Message ordering is important to some asynchronous messaging applications; that is, it is important to
consume messages in the same order that the producer sends them. If this type of message ordering is
important to your application, your design must take it into account.

For example, a messaging application that processes seat reservations might have producer components
and a consumer component. A producer component sends a message to the consumer component when
a customer reserves a seat. If the customer cancels the reservation then the producer (or possibly a
different producer) sends a second message. Typically, the consumer component must process the first
message (which reserves the seat) before it processes the second message (which cancels the
reservation).

Some applications use a synchronous (request-response) pattern where the producer waits for a response
to each message before it sends the next message. In this type of application, the consumer controls the
order in which it receives the messages and can ensure that this is the same order as the producer or
producers send them. Other applications use an asynchronous (fire and forget) pattern where the producer
sends messages without waiting for responses. Even for this type of application, order is usually
preserved; that is, a consumer can expect to receive messages in the same order as the producer or
producers send them, especially when there is a significant time between sending consecutive messages.
However your design must consider factors that can disrupt this order.

Publication
Point

Publishing
Application

Subscribing
Application A

Subscribing
Application B

Publication
Point

Publication
Point

Remote
Publication

Points

Subscription

Durable
Subscription

Remote
Subscription

ME1 ME2

ME3

Bus

Figure 108. Publish/subscribe messaging using a remote subscription

Chapter 21. Service integration 637

The order of messages is disrupted if your application sends messages with different priorities (higher
priority messages can overtake lower priority messages) or if your application explicitly receives a
message other than the first by specifying message selectors. Parallel processing and error or exception
processing can also affect message ordering.

Parallel processing

Multiple destinations
When a producer sends a message to one destination and then sends a second message to a
different destination, it is possible that the second message arrives at its destination before the
first message arrives at its destination. This can happen even if the producer sends both
messages within the same transaction (the transaction ensures that either both sends fail or both
complete; it does not ensure the delivery order). If this is a problem for your application then avoid
using more than one destination for that application.

Multiple producers
When one producer sends a message to a destination and then a second producer sends a
second message to the same destination, it is possible that the second message arrives at the
destination before the first message. This can happen even if the second producer synchronizes
with the first producer, for example by waiting for a signal from the first producer before sending its
message (the second message). It can also happen even if the producers are transactional (the
fact that a transaction is complete does not mean that the message or messages are at the
destination - service integration can complete a transaction first and deliver the message or
messages later). If this is a problem for your application then avoid using more than one producer
for that application. Similarly, avoid using a single producer which runs multiple parallel threads.

Multiple consumers
When two messages arrive at a queue-type destination where there are multiple consumers, it is
possible that one consumer receives the first message and another receives the second. If the
consumers can run in parallel then the consumer which receives the second message might
process it before the consumer which receives the first message. Also, if one consumer receives a
message transactionally and then rolls-back the transaction, the message returns to the
destination where another consumer can receive it; meanwhile, that other consumer might already
have received and processed other (later) messages. If either of these are a problem for your
application then avoid using more than one consumer for that application. Similarly, do not allow
multiple concurrent message-driven bean (MDB) invocations per endpoint (see Configuring MDB
or SCA throttling for the default messaging provider). Alternatively, consider using strict message
ordering, see “Strict message ordering for bus destinations” on page 639.

Clustering and partitioned destinations
When a queue-type destination is assigned to a cluster bus member with more than one
messaging engine then each messaging engine contains a partition of the destination (that is, one
of the destination queue points); service integration can deliver different messages for that
destination to different partitions. This queue-type destination configuration can provide advanced
availability, scalability, and load balancing but it is not usually suitable for applications where
message ordering is important. Service integration does not guarantee the ordering of messages
sent to different partitions of the same destination. Also, a messaging engine can fail while there
are messages on the destination partition that it contains; these messages are not available to
consumers until the messaging engine restarts. However, service integration can continue
delivering newer messages to other partitions (in other messaging engines) and consumers can
receive and process these newer messages before the older messages on the failed messaging
engine partition. “Workload sharing with queue destinations” on page 671 gives more detail on this
type of configuration, and also explains how you can use the Message affinity option which can
help maintain message ordering between a single producer and a single consumer in a cluster
(though not if the cluster is in a different service integration bus).

Publish and subscribe
For publish-subscribe messaging, service integration does not guarantee the ordering of messages

638 Overview

received by different instances of a subscription, including separate instances of a durable
subscription created with the Share Durable Subscriptions property set to permit sharing.

Errors and exception conditions

Quality of service
The quality of service for a message determines how error and exception conditions can affect the
delivery of the message (see “Message reliability levels - JMS delivery mode and service
integration quality of service” on page 763. Depending on the quality of service, an error or
exception condition can cause service integration to deliver the message reliably (exactly once) or
less reliably (more than once, or not at all). For example, with the express nonpersistent quality of
service, it is possible for sequences of messages to be re-delivered after a failure; however, their
underlying order is always maintained so that messages might arrive in the sequence: 1, 2, 3, 2,
3, 4. More generally, service integration does not guarantee the ordering of different messages
sent with different qualities of service. If this is a problem for your application then be sure to
select an appropriate quality of service and avoid mixing different qualities of service for messages
to the same destination.

Exception destinations
Under certain failure scenarios, service integration can deliver a message to an exception
destination or deliver a message to a destination and subsequently transfer the message to an
exception destination. Service integration does not guarantee the ordering of messages it sends to
or transfers to an exception destination. If this is a problem for your application then you can
configure the destination so that it does not use an exception destination (see “Exception
destinations” on page 628). If the producer and the destination are in different buses then you can
configure the link or links between those buses to have no exception destination (see “Foreign
buses” on page 746 and Configuring exception destination processing for a link to a foreign bus.

Transaction roll-back
The activation specification for a message-driven bean (MDB) can specify a delay between failing
message retries. This delay allows time for the condition which causes the roll-back to recover
before the same message drives the MDB again. However, while a message is delayed in this
way, another (later) message can drive the MDB (see Protecting an MDB or SCA application from
system resource problems). If this is a problem for your application then consider limiting the
maximum sequential failures to one (see JMS activation specification [Settings] or consider using
strict message ordering, see “Strict message ordering for bus destinations.”

Resolving indoubt transactions
During two-phase commit processing, an application can fail while a JMS send or receive
operation is in an indoubt state. When this happens, it is possible for the application to restart
before the indoubt state is resolved so that one or more messages are "invisible" when the
application restarts but become "visible" later. Other messages on the destination are not affected.
A consuming application can receive a message (say message 2) which is logically after an
"invisible" message (say message 1); later, after the indoubt transaction is resolved, the
application receives the previously "invisible" message (message 1). In this way, the application
might receive and process messages in the wrong order. If this is a problem for your application
then consider using strict message ordering, see “Strict message ordering for bus destinations.”

Strict message ordering for bus destinations
If message order must be maintained in all circumstances, a destination can be configured so that the
order of messages is preserved much more rigorously than for a normal destination.

In general, messages produced by a single producer to a single destination are seen by a consumer to
that destination in the same order as they are produced. However, there are certain topologies and events,
such as system failures, that can change the order of messages (see “Message ordering” on page 637 for
details). If strict message order is essential then you can configure a destination to preserve the order of

Chapter 21. Service integration 639

the messages in a much more rigorous manner. Using strict message ordering, in conjunction with
restricted topologies (as described later in this section), maintains message order in all circumstances.

Restrictions that are enforced automatically

When you include a strictly ordered destination in your system, certain restrictions are automatically
enforced at run time. These restrictions affect the way that applications can interact with the destination to
ensure strict message order, ensure that you fully understand each of the following restrictions prior to
configuring a destination to be totally ordered.

1. Concurrent consumers are prevented from attaching to an ordered destination. Having more than one
consumer consuming from a destination can result in messages being consumed out of order. So, for
an ordered queue destination, and any subscription on an ordered topic space, one consumer at most
can attach at any one time. This is equivalent to setting “receive exclusive” to true on a queue
destination and “Share durable subscriptions” to “never shared” on a JMS topic connection factory, and
warnings are generated in the system log to indicate if these options have been overridden. The
attached consumer is also restricted to a single transaction at any one time (this is the normal behavior
for many messaging interfaces so should not affect many users, for example, JMS).

2. Partially consumed messages prevent subsequent messages from being consumed. For standard
destinations (that is, destinations without the strict message ordering option enabled), messages that
have been partially consumed from the destination (for example, received within a transaction that is
yet to be committed) might be skipped over by a consumer to allow processing of messages to
continue past previously consumed messages that are yet to be committed. This can disrupt message
order. For an ordered destination, such messages are not skipped by a consumer, instead the
consumer is blocked until the message has either been totally removed (for example, the uncommitted
transaction is committed) or replaced (for example, the uncommitted transaction is rolled back). This
situation would occur if a previously attached consumer fails to commit a transaction that was used to
consume messages from the destination, or if a transactional resource becomes temporarily
unavailable during the commit of a transaction. If the resource is permanently unavailable, see
Resolving indoubt transactions for information on resolving these transactions.

3. Concurrent message driven beans (MDBs) are restricted for an ordered destination. The maximum
concurrent endpoints and maximum batch size settings of any MDB deployed on an ordered
destination are overridden to be one. For more information, see JMS activation specification [Settings].
This ensures the ordered processing of messages by the MDB. When the system overrides this
property at run time, a warning is generated in the system log.

4. Concurrent mediations are restricted for an ordered destination. The allow concurrent mediation setting
of any mediation on an ordered destination is overridden to be false. For more information, see
“Concurrent mediations” on page 726. This ensures the ordered processing of messages by the
mediation. When the system overrides this property at run time, a warning is generated in the system
log.

5. If Automatically stop endpoints on repeated message failure is enabled then the Sequential
failed message threshold is overridden to 1.

Additional restrictions that might affect message ordering

Even with strict message order enabled on a destination the following restrictions are not automatically
enforced, but they could affect message ordering and therefore should be understood:

v If a destination has an exception destination configured, it is possible for messages intended for that
destination to be delivered to the exception destination under error conditions such as a message
reaching its maximum failed delivery limit. This redirecting of messages could be regarded as changing
the order of messages, and if that is so, then the destination should set the exception destination to
“none”. Note that setting the exception destination to none results in messages that would otherwise be
moved to the exception destination remaining on the destination.

640 Overview

v Changing the topology of a service integration bus can affect message order. For example, deleting and
recreating an ordered destination must be seen as two distinct destinations and therefore order cannot
be guaranteed across both destinations.

v Introducing or removing a mediation can affect message order. If a mediation is introduced to a
destination or is removed from a destination while messages are flowing to and through the destination,
message order is not necessarily preserved.

v Mediations can be designed to deliberately affect message order, and therefore changing a mediation
can directly affect message order. For example, you could introduce a mediation that reorders
messages or routes messages to different destinations.

v Alias destinations and foreign destinations do not have an option to maintain strict message order. In
each case, only the underlying destination can be ordered.

v If a queue destination is deployed to a cluster bus member that has more than one messaging engine,
which means that the destination has more than one queue point or mediation point, message order
cannot be maintained across the destination. Therefore, enabling strict message order on such a
destination does not assure message order. Configuring message affinity allows sets of messages to be
sent to the same queue point for processing in order by a single consumer. Message affinity has
performance implications because the messages are no longer workload balanced across multiple
queue points.

Important: The system does not prevent you from using partitioned destinations. It is your
responsibility to ensure that partitioned destinations are not used in the system.

v Messages with a reliability of anything other than assured persistent may be lost or duplicated under
certain conditions. For more information, see “Message reliability levels - JMS delivery mode and
service integration quality of service” on page 763. If this is regarded as disrupting the order of
messages, then only assured persistent messages should be used with a strictly ordered destination.

v Ordering of messages is assured within message priority, it should be understood that messages of a
different priority can overtake messages of a lower priority.

v Ordering of messages is assured within message reliability, it should be understood that messages of
one reliability can overtake messages of a different reliability.

v Although multiple consumers are not allowed to attach to an ordered destination, multiple producers can
be used to send messages to ordered destinations. Ordering across multiple producers is not assured
as messages appear at the destination in the order that the sending transactions are committed.

v Application code might contain logic that can disrupt message ordering.

Message selection and filtering
Message selection and filtering can occur when a consumer attaches to a destination.

When attaching to a destination, a consumer can provide a “selector”, a filter expression indicating the
messages it is prepared to accept. The filter expression is a predicate referencing named fields in the
message header or body. A particular instance of this occurs in the field of publish/subscribe, where
subscribing applications typically express an interest in one or more topics and the selector is then a filter
on the topic field carried in a message header. In JMS 1.1, selector expressions are restricted to
referencing fields in the JMS header and the JMS properties of the JMS message; there is no access to
the message body.

Using the default messaging provider, a topic is an identifier that a producer puts in the header of a
message to enable message selection by consumers. The topics are grouped into topic namespaces,
which have a tree-like hierarchical structure with a single root. This allows a subscriber (consumer) to
connect with a wildcard selector that matches on an entire topic namespace, or a subtree of that
namespace.

Chapter 21. Service integration 641

Message stores
Message stores are important in the operation of messaging engines. To host queue-type destinations, a
messaging engine includes a message store where, if necessary, it can hold messages until consuming
applications are ready to receive them, or preserve messages in case the messaging engine fails. Each
messaging engine has one and only one message store. This can either be a file store or a data store.

A message store enables a messaging engine to preserve operating information and to retain those
objects that messaging engines need for recovery in the event of a failure.

A messaging engine preserves both volatile and durable data in its message store. Volatile data is lost
when a messaging engine stops, in either a controlled or an uncontrolled manner. Durable data is
available after the server restarts. For more information, see “Message reliability levels - JMS delivery
mode and service integration quality of service” on page 763. A messaging engine stores various types of
data, including messages, transaction states, and communication channel states.

When started, a messaging engine obtains configuration information from the WCCM (WebSphere
Application Server Common Configuration Model) repository. A messaging engine retrieves all other data
from its own file store or data store.

Important: There are currently no facilities available for migrating from a data store to a file store.
v “Relative advantages of a file store and a data store”
v “File stores” on page 643
v “Data stores” on page 648
v “Message store high availability” on page 652

Relative advantages of a file store and a data store
You must decide whether to use a file store or a data store for your messaging engine, by considering the
advantages of each type.

Using a file store rather than a data store for your messaging engine can have several advantages:

Better performance
To achieve best performance using a data store, you often have to use a separate remote
database server. With file store you can achieve even better performance without having to use a
separate remote database server.

Low administration requirements
The file store combines high throughput with little or no administration. This makes it suitable for
those who do not want to worry about where the messaging engine is storing its recoverable data.
File store improves on the throughput, and scalability of Apache Derby.

Lower deployment costs
Use of data store might require database administration to configure and manage your messaging
engines. File store can be used in environments without a database server.

Some organizations prefer to use data store because it uses their existing resources more effectively. For
example, this might be the case for a company with a strong team of database specialists, or a stable
database infrastructure.

If there is a transient connectivity loss to the file system, the application server must be restarted once the
connectivity to the file system is restored. Whereas, in the case of the data store, the messaging engine
can recover from the database itself. In such situations, the data store will be a preferred high availability
option than the file store system.

642 Overview

Data store has the following technical advantage over file store: with data store, some Java EE
applications can share JDBC connections and benefit from one-phase commit optimization. For more
information see Sharing connections to benefit from one-phase commit optimization. File store does not
support this optimization.

Data stored in both data store and file store benefit from security features provided by WebSphere
Application Server when accessed using the WebSphere Application Server APIs, that is when using JMS
messaging. Further security features are available depending on the type of message store you use. For
more details see “File stores” and “Data stores” on page 648.

v Data store: you access your chosen database by using a userid and password that is administered
using the supplied tools for your specified DBMS. Logical and physical separation of your database
server can also be used to improve the overall security of your data.

v File store: additional security can be provided when using a file store by careful consideration of your
file store files. For example, using a secure network-attached drive to store your file store files improves
the physical security of your data. Another example is storing your files on an operating system
encrypted file system.

Both file store and data store offer high availability capabilities. For more details see “Message store high
availability” on page 652.

File stores
File stores use a file system to preserve operating information and to persist the objects that messaging
engines need for recovery in the event of a failure.

A file store is a type of message store that directly uses files in a file system through the operating system.
The data storage in a file store is split into three levels: the log file, permanent store file, and temporary
store file.

Log file
This file contains information about currently active transactions and data that is not yet written to
a store file. It is a circular log and its file size is static while a messaging engine is running, but
can be changed if required. A restart of the messaging engine is required for the changes to take
effect. The size of the log file limits the maximum size of a message that can be sent.

Figure 109. The relationship between a messaging engine and its file store

Chapter 21. Service integration 643

Permanent store file
This file contains permanent data that is retained after the restart of the messaging engine, such
as persistent messages, queue data, and information about the storage and transmission of
persistent messages.

The permanent store file can be configured to have a maximum and minimum size, or to be
unlimited in size. The file can grow from the minimum size (or as required in the unlimited case)
but will never shrink (even if the maximum size is set lower than its current size). The file sizes
can be changed in the administration console, but a restart of the messaging engine is required for
the changes to take effect.

Similar to a file system, when data is deleted from the store, the data in the file is not deleted, only
the directory information is updated. This means that if a message is consumed, the message
data may still be present in the store file, but the directory information that includes this data in the
store is updated to reflect the fact that it is deleted.

Temporary store file
This file contains temporary data that is not retained after the restart of the messaging engine,
such as nonpersistent messages that were spilled to the file store to release memory from the
JVM heap. The temporary store file contents are truncated when the messaging engine starts.

The permanent store file can be configured to have a maximum and minimum size, or to be
unlimited in size. The file can grow from the minimum size (or as required in the unlimited case)
but will never reduce (even if the maximum size is set less than its current size). The file sizes can
be changed in the administration console, but a restart of the messaging engine is required for the
changes to take effect.

Similar to a file system, when data is deleted from the store, the data in the file is not deleted, only
the directory information is updated. This means that if a message is consumed, the message
data may still be present in the store file, but the directory information that includes this data in the
store is updated to reflect the fact that it is deleted.

You can configure where the file store files must be placed. By default, the file store uses a subdirectory in
the following path: ${USER_INSTALL_ROOT}/filestores/com.ibm.ws.sib/${ME_NAME}. The file store directory
contains two other directories; the log directory that contains the log file and the store directory that
contains both the PermanentStore and TemporaryStore files.

Hints and tips for configuring file store size
Preserving the appropriate amount of space within the log file, permanent store file, and temporary store
file of a file store helps to ensure that operations and transactions behave as expected.

The default settings for the minimum and maximum sizes are most suitable if you are not using a
dedicated disk for your file store because they protect the file store from other disk users, and also protect
other disk users from the file store. The default settings are less appropriate if you have a disk that is
dedicated to file store use, and in this case you might want to consider setting the maximum size set to
unlimited.

Input/Output performance typically poses a significant challenge for file stores. Performance improvements
can be achieved using dedicated disks for the file store to avoid contention.

If your file store is not on a dedicated disk, consider making the minimum and maximum sizes the same.
Initially, the message store reserves the amount of space defined by the minimum setting. Therefore, if
you use the same value for the maximum and minimum settings, it reduces the likelihood of other
applications using the disk space that you intended for the file store usage. Setting the maximum size to a
value other than unlimited reduces the likelihood of the file store using disk space that you intended for
other applications usage. Other applications can include, for example, the application server itself.

The most significant performance gains can be derived by using disk hardware configured to ignore the
flags set by the operating system to indicate that a synchronous write is required when a reliable battery

644 Overview

backed storage device is used. Such a device can effectively maintain the logs in memory and store files
so that the writes do not have to wait for physical disk movements. Rather the data written is stored in a
cache, and the assurance that the data is not lost in the event of a failure comes from the disk vendor on
the basis that the cache is reliable either due to the battery or some other reason.

Log file size
Data is first written to the log file sequentially, that is, new records are added to the end of the file.
When the end of the log file is reached, old records at the beginning of the log file are overwritten
by new records and this process repeats. Later, the data is written to the permanent store file and
temporary store file. The exception is a short-lived data, which is only written to the log file.

The log file size lays the limitation on the maximum size of messages that can be sent. A
LogFileFullException is thrown if the log file is too small to handle large messages. The exception
occurs because a single large message or multiple large messages are sent before the file store
moves them to the store files. The size of the log file needs to be increased if this exception is
encountered; otherwise, the default size is sufficient. Only testing using the maximum message
size and load expected can accurately determine whether the default size is too small. It is not
always beneficial to simply allocate a larger log file size because the size of the log file is used by
algorithms that control the internal workings of the file store. An overly large log file results in
increased memory usage.

Store File size
The permanent store file and temporary store file each have a minimum reserved size and a
maximum size. When they are created, the permanent and temporary store files consume their
minimum reserved sizes, plus the size of the log. If the maximum size is set to a larger value than
the minimum reserved size, the files grow up to the maximum size as required.

The default store file sizes are sufficient. However, testing only with specific configurations can
reveal what size store file might be required. This testing involves filling each queue point with
messages of the largest expected size (until the message high limit threshold is reached) when
the store file is set to unlimited. The store file size reached during this test, plus the log file size is
usually a safe size to use as the maximum store file size.

The store file maximum size is not intended to be the limit that prevents further messages being
sent. This is because it is not only message data that is stored in the store file. Queue data and
protocol state data is also stored in the store file. Instead, the high threshold of the queues must
be used to prevent any more messages being sent.

Once a store file is full, there is a remote chance that the store might not be able to receive more
data even if all the messages in the store are consumed. This can happen if the log file size is
over half the size of the maximum store file size. A rule of thumb to minimize the occurrence of
this is to ensure that the minimum store file size is double the log file size and that the maximum
is twice the minimum plus the size of the log file.
For example, if the log file size is 100 MB then the minimum store file size can be 200 MB (double
the size of the log file), and the maximum size can be 500 MB (double the size of the minimum
store file plus the log file).

The default configuration for file store attributes is intended to be sufficient to be used in typical messaging
workloads without further administration. To improve the performance or availability of the log file or the
two store files, you can configure the file store attributes to control where these files are placed. Similarly,
you can configure the attributes that control the sizes of the log file and two store files, for example to
handle workloads with many active transactions, large messages, or a large volume of message data
resident in the messaging engine.

Note: This method of improving performance cannot be guaranteed on a compressing file system, for
example, on an NT file system with the Compress this directory option selected. You must avoid
configuring a file store to use a compressing file system for production use.

The following table shows the minimum and default values for file store attributes.

Chapter 21. Service integration 645

Table 70. File store attributes and values. The first column lists the file store attributes. The second column provides
the description of the attributes. The third column provides the minimum and default values of the attributes.

Attribute Description Minimum and default values

Log size Size of the log file, in megabytes
v Minimum: 10 MB

v Default: 100 MB

Minimum permanent store size The minimum number of megabytes reserved by
the permanent store file.
Note: The minimum store file size must always be
at least as big as the log file.

v Minimum: 0

v Default: 200 MB

Maximum permanent store size The maximum size in megabytes of the permanent
store file.
Note: Consider making the maximum store file size
double the size of the log file. The maximum size of
the store file must always be larger than the log file.
If the log file size is the same as the maximum
store file size then the messaging engine will not
start.

v Minimum: 50 MB

v Default: 500 MB

Minimum temporary store size The minimum number of megabytes reserved by
the temporary store file.
Note: The minimum store file size must always be
at least as big as the log file.

v Minimum: 0

v Default: 200 MB

Maximum temporary store size The maximum size in megabytes of the temporary
store file.
Note: Consider making the maximum store file size
double the size of the log file. The maximum size of
the store file must always be larger than the log file.
If the log file size is the same as the maximum
store file size then the messaging engine will not
start.

v Minimum: 50 MB

v Default: 500 MB

Unlimited permanent store size Indicates whether the permanent store file is
unlimited in size

v Default: false

Unlimited temporary store size Indicates whether the temporary store file is
unlimited in size

v Default: false

Log directory Name of the directory that contains the log file
v Default: ${USER_INSTALL_ROOT}/

filestores/com.ibm.ws.sib/
<me_name>-<me_uuid>/log

Permanent store directory Name of the directory that contains the permanent
store file

v Default: ${USER_INSTALL_ROOT}/
filestores/com.ibm.ws.sib/
<me_name>-<me_uuid>/
permanentStore

Temporary store directory Name of the directory that contains the temporary
store file

v Default: ${USER_INSTALL_ROOT}/
filestores/com.ibm.ws.sib/
<me_name>-<me_uuid>/
temporaryStore

File store exclusive access
Each file store contains information that uniquely identifies the messaging engine that created it. A file
store can only be used by the messaging engine that created it.

The messaging engine opens the files in the file store in exclusive mode to prevent multiple instances of
the same messaging engine from simultaneously using the file store, for example, by accidental activation
on the messaging engine of multiple servers in a cluster. When a messaging engine stops, either in a
controlled fashion or as a result of server failure, the file store files are closed. Subsequently another
instance of the same messaging engine is able to open the file store.

646 Overview

File store disk requirements
The reliability of your storage infrastructure affects the ability of WebSphere Application Server to maintain
the integrity of your data.

Consult the documentation for your storage infrastructure for information on the level of reliability that it
can be configured to provide. Examples of components which might be included in your storage
infrastructure are: hard disk drives, RAID controllers, file systems, and network file system protocols.

Input/Output Reliability
The log and store files are written using Java APIs in such a way that requires the JVM to either
set flags to indicate that all writes are synchronous or all previous writes must be forced to the
disk after certain API calls. This requires that the occurrence of any failure will not result in data
written in a synchronous write or before a force being lost, corrupted, or written out of order.

A number of layers are involved in honoring these write requests. Only the operating system, file
system, and hard disk vendors can indicate whether the various configurations available will
provide the level of reliability required. This is also true of other logging systems, such as
databases.

In particular, if the storage device is not on the local machine where the messaging engine is
running, and the files are residing on a network file system such as NFS, then NFS must be
configured to ensure that these requirements are met. There is no test to ensure that write caching
is not taking place.

File Location
If a messaging engine is in a cluster bus member, then it can run on different servers. This
requires the file store files to be located on shared storage. The path to the file store files, as
configured in the administration console, must be a path to the same files on each machine where
the messaging engine can run. This can be achieved using NFS or some other advanced storage
mechanism.

If the files in the specified path are not the same files, then when the messaging engine fails over
from one server to another, it is effectively a different messaging engine with the same name.
None of the persistent data is available to the new instance of the messaging engine.

File Locking
The log file is locked using java.nio.channels.FileLock.tryLock(). It is mandatory for the operating
system and file system to honor this lock in all cases, and that the lock is released when
requested explicitly or the Java process in which the messaging engine is running terminates
unexpectedly.

Specifically, the lock if held, must prevent any other process from locking the file, even if that file is
being accessed by a different machine. In addition, if the Java process running the messaging
engine terminates unexpectedly, the lock must be released so that the other machine can access
the file.

This requirement facilitates the case where a messaging engine is in a cluster bus member, and
so can run on multiple different servers. If the HAManager directs a messaging engine to start
because the first instance of the messaging engine failed, then it must be able to lock the log file if
the other process has ended. Equally, if the other process has not ended (the so called split brain
scenario), then the new instance of the messaging engine must not be able to acquire the lock,
thus preventing the messaging engine from starting.

A file locking test tool can be used to ensure that a file system does provide the basic locking
requirements. The IBM Support document contains more details about the file system locking
protocol test tool.

Chapter 21. Service integration 647

Data stores
A data store is a message store that uses a relational database. A messaging engine uses a data store to
store operating information in the database, as well as to preserve essential objects that the messaging
engine needs for recovery in the event of a failure.

A data store consists of the set of tables that a messaging engine uses to store persistent data in a
database. See Data store tables for a list of the tables that comprise a data store. All the tables in a data
store are held in the same database schema. You can create multiple data stores in the same database,
provided that you use a different schema name for each data store.

The one-to-one relationship between a messaging engine and a data store means that every messaging
engine must have its own data store. A messaging engine uses an instance of a JDBC data source to
interact with the database that contains the data store for that messaging engine. Figure 110 illustrates
these relationships.

All the tables in the data store must be stored in the same schema. You can create more than one data
store in a database, provided that you use a different schema name for each data store. Although every
messaging engine uses the same table names, its relationship with the schema gives each messaging
engine exclusive use of its own tables.

Data store topologies

You have several options for the relative location of a data store and its messaging engine. The topology
also defines the relationship of a data store with other data stores.

The following options affect your choice of data store topology:

v The data store can either run on the same node as its messaging engine or on a remote node.

v The data store can either have a dedicated database or it can share a database with other data stores.

Tip: If you are using the Informix RDBMS, configure a separate database instance for each messaging
engine.

WebSphere Application Server

Messaging
engine

JDBC
data source

database

Schema

data store

Schema

data store

Figure 110. The relationship between a messaging engine and its data store.

648 Overview

Data store life cycle
Starting or deleting a messaging engine affects the life cycle of its data store. Appropriate actions must be
carried out on the data store.

Starting the messaging engine

When you start a messaging engine, it performs checks on the tables that comprise the data store to
determine whether they are suitable. If the tables do not exist, and you have selected the Create tables
option when configuring the messaging engine, the messaging engine attempts to create the tables. If you
have not selected this option, your database administrator must create the tables beforehand, by using the
data definition language (DDL) statements generated by the sibDDLGenerator command.

Make sure that the database that contains the data store is available before starting the messaging
engine, or the server that is hosting the messaging engine. If the database is unavailable for more than 15
minutes, the messaging engine cannot connect to the data store, and fails to start:

v If the messaging engine is hosted by a stand-alone application server, the messaging engine might
enter the stopped state. You must restart the application server to start the messaging engine.

v If the messaging engine is hosted by a cluster member, the cluster member is disabled for high
availability. The high availability manager attempts to start the messaging engine on another eligible
server. If the database continues to be unavailable, the messaging engine fails to start again, that
server is disabled for high availability, and the high availability manager attempts to start the messaging
engine on another eligible server. In this manner, every member of the cluster can become disabled for
high availability. You must manually re-enable the servers for high availability, either by restarting the
servers, or through the administrative console. Refer to Managing high availability when messaging
engines fail to start for details.

Stopping the database

If you want to stop the database that contains the data store, ensure that the messaging engine is stopped
first. If the messaging engine is running and has exclusive locks on the data store, stopping the database
can cause the messaging engine to be in an inconsistent state, because the messaging engine might
continue to run and accept work. The same behavior occurs if the database fails while the messaging
engine is running.

You can configure the messaging engine and its hosting server to shut down and restart when the
database connection is lost, to prevent such inconsistencies. To configure this behavior, set the
sib.msgstore.jdbcFailoverOnDBConnectionLoss custom property on the messaging engine. You can also
tune your system to decrease the probability of the messaging engine failing to start before the database
becomes available.

Removing a messaging engine

When you remove a messaging engine, WebSphere Application Server (base) does not delete the data
store tables automatically. If you want to re-create the same messaging engine, you must first delete the
previous set of tables. If you create a messaging engine with existing tables, these tables must be empty,
so that the messaging engine can function correctly. Refer to the documentation for your chosen relational
database management system (RDBMS) for information about how to delete tables. However, if you have
created a data store with default settings, you do not have to delete previous tables.

Data store exclusive access
A messaging engine establishes a lock on its data store so that it has exclusive access to the data stored
within. This process ensures the integrity of the data within the data store. Note that several factors can
affect exclusive access locking in practice.

Chapter 21. Service integration 649

Each messaging engine establishes an exclusive lock on its data store. While the messaging engine is
running, it maintains that lock to ensure the integrity of the data within the data store.

The data store lock uses database locks and so is an intrinsic part of the data store itself. The relational
database management system (RDBMS) relies on the JDBC infrastructure or underlying TCP/IP protocol
to indicate the failure of a messaging engine or application server. The RDBMS can then automatically
release the data store locks in the database.

The frequency of the liveness checking of the network connection between a messaging engine and the
database server for its data store is an important factor in enabling prompt failover of a messaging engine
that is running in a cluster. When messaging engines running in a cluster are configured to fail over
between servers, you might have to reduce the TCP/IP keep-alive parameters on the database server to
minimize the amount of time before the failure of a messaging engine can be detected.

The SIBOWNER table in the data store holds the lock as a pair of unique identifiers in a single row. When
it starts, a messaging engine uses these two identifiers to acquire and maintain its exclusive lock:

MEUUID
The unique identifier for a messaging engine, which remains the same whenever the messaging
engine stops and restarts.

INCUUID
The incarnation identifier for a messaging engine, which changes every time the messaging
engine starts.

These identifiers determine which messaging engine is using a data store. These identifiers also determine
whether a running instance of a messaging engine has maintained its exclusive lock for the time period
during which it was running.

The other table used in the data store locking process is the SIBOWNERO table. This table is used for
locking only and stores no data in its one EMPTY_COLUMN column.

As a messaging engine starts, it first obtains an exclusive table lock on the SIBOWNERO table. The
messaging engine then obtains an exclusive table lock on the SIBOWNER table and proceeds to check
the contents. The messaging engine expects to find a single row of data in the table, or no data. If there is
an existing row, the messaging engine starts only if the MEUUID that it finds matches its own unique
identifier. If the MEUUID does not match, the messaging engine writes error message CWSIS1535 to the
server error log and the messaging engine fails to start.

If there are no rows in the SIBOWNER table, the messaging engine inserts one row containing its own
MEUUID and INCUUID. If there is a single row in the table and the MEUUID matches the unique identifier
for the messaging engine, the messaging engine updates the INCUUID with its own incarnation identifier
and attempts to obtain a new shared table lock on the SIBOWNER table. The messaging engine checks
again that the INCUUID still matches its own incarnation identifier, in case another instance of the same
messaging engine on another server is starting at the same time. If the INCUUID in the table does not
match, the messaging engine fails to start.

The shared table lock on the SIBOWNER table remains until the messaging engine stops, with periodic
refreshes to ensure that the lock is still in force. The exclusive table lock on the SIBOWNERO table is then
released. If the messaging engine cannot refresh the lock on the SIBOWNER table, or discovers from the
data in the SIBOWNER table that another messaging engine incarnation is using the data store, the
messaging engine writes messages CWSIS1594 and CWSIS1519 to the server error log and the
messaging engine stops immediately.

In some cases, when the messaging engine is configured to run in a cluster, if the messaging engine
cannot obtain the lock, it stops and is prevented from failing over to another server in the cluster. In these
cases you must check the error logs, because the stopping of the messaging engine has signalled that it

650 Overview

is unsafe or impossible to start using the current data store configuration. For descriptions of the situations
in which failures might occur and the possible solutions that you can examine, see Diagnosing problems
with data store exclusive access locks.

Data store performance
The performance of a data store, chosen as the message store for a messaging engine, can be affected
by several factors such as providing the Java data base connectivity (JDBC) data source with sufficient
connections. Use this information to help configure an optimal environment for a data store.

The workload that the messaging engine imposes on the relational database management system
(RDBMS) is slightly different from usual database workloads, because the messaging engine performs
mainly SQL INSERT and DELETE operations. Take this workload into consideration when using the tuning
guidelines supplied by your RDBMS provider. The following information might also assist your database
administrator.

Each messaging engine can request a large number of concurrent connections to the database. By
design, a messaging engine uses many threads to perform database updates concurrently. Consider
configuring the connection pool for the JDBC data source used by the data store with sufficient
connections to cope with peak workloads. Your database administrator might have to change the database
configuration to support this number of concurrent connections from the application server.

The performance of the data store influences messaging throughput to a significant extent. Throughput is
usually limited by the write latency of the database log. Consider placing the database log on a fast,
dedicated device that is configured for optimal write performance. Ideally, use a storage controller with a
battery-backed memory cache so that the effects of disk rotation speed and seek latencies are not evident.
For all except entry-level systems, use a RAID controller.

DB2 tip: To get the best performance from messages in the 3 KB to 20 KB range, you should consider
putting the SIBnnn tables into a tablespace with 32 KB pages and adjusting the column width of
the VARCHAR column to 32032 bytes.

Configuration planning for a messaging engine to use a data store
You must consider a number of choices before you configure a messaging engine to use a data store.

Relational database management system (RDBMS) for the data store

You might want to choose the RDBMS that you use for other applications, particularly if you are already
familiar with the tools you use for managing that RDBMS. You might also want to consider the following
criteria:

v Performance

v Scalability

v Availability, especially if you are running messaging engines in a high availability environment

When a new messaging engine that uses a data store is created on a single server, it is configured to use
an Apache Derby data source by default. This enables the messaging engine to run without needing any
additional configuration. The default embedded Derby data source is sufficient for many purposes. Other
relational database management systems offer more comprehensive tooling and improved performance,
particularly scalability on larger machines with more than two processors.

Note: WebSphere Application Server supports direct customer use of the Apache Derby database in test
environments only. The product does not support direct customer use of Apache Derby database in
production environments.

Chapter 21. Service integration 651

Database topology

You must consider several options when selecting the relative location of a data store and its messaging
engine:

v Decide whether the data store will run on the same node as its messaging engine, or on a remote
node. In some cases, running the data store on a remote node can improve performance. In other
cases, a local database provides performance equivalent to a remote database. You might want to
conduct your own performance analysis, because the performance characteristics can be very sensitive
to the hardware specification.

v Decide whether the data store will have a dedicated database, or share a database with other data
stores.

v Consider the implications for high availability of your choice of topology.

Automatic creation of database tables

Consider whether you want WebSphere Application Server to create the data store tables automatically or
whether you want your database administrator to create the tables beforehand:

v WebSphere Application Server can create the data store tables automatically if you select the Create
tables option when you configure the data store to use a data source. If you want to choose this option,
you must first ensure that WebSphere Application Server has sufficient authority to create tables and
indexes by setting up the required privileges for your chosen database.

DB2 for z/OS restriction: The option for WebSphere Application Server to create the tables is not
available with DB2 for z/OS. If you use DB2 for z/OS, your database
administrator must create the data store tables manually.

v To enable the database administrator to create the tables manually, you must provide data definition
language (DDL) statements created by using the sibDDLGenerator command.

Amount of BLOB space required to hold message data

Message data is stored in a database table column of datatype BLOB. Before you create a data store, you
must consider the size of your expected workload to ensure that your database administrator creates a
sufficiently large BLOB space to hold your message data.

Message store high availability
High availability is achieved by failing over messaging engines between servers. Both file stores and data
stores can be deployed in a highly available environment.

In this figure, two servers access a message store that is either a file store accessed through a network
file system or a data store that is accessed through a remote database server. This means a messaging
engine running on one of the servers can be failed over to the other server, and will retain access to the
message store.

652 Overview

File store high availability
A messaging engine in a cluster bus member can fail over between servers in the cluster, but the
messaging engine must be able to access the saved state in its file store from any of the cluster servers.

File stores can be used in highly available environments. In order to make a file store highly available, use
hardware or software facilities that can maximize the availability of the file store data, for example, a
storage area network (SAN).

Note: You must ensure that the directories containing the log file and store files can be accessed from all
members of the cluster, by using the same directory name.

You can test whether a shared file system can support the failover of messaging engines by running the
File System Locking Protocol Test for WebSphere Application Server. To run the test see, IBM File System
Locking Protocol Test for WebSphere Application Server.

WebSphere Application Server supports two styles of file system access to enable high availability:

Cluster-managed file system
This style of file system access uses high availability clustering and failover of shared disks to
ensure that the directories for the file store are accessible from the server that is currently running
the messaging engine. The directories are located on file systems in the shared disks, and high
availability cluster scripts are used to mount the file systems on the node that contains the server
that is running the messaging engine.

Server 1 Server 2

Message store

Messaging
engine

Messaging
engine

file store accessed via
network file system
OR
data store accessed via
remote database server

Figure 111. Failover of a messaging engine between servers

Chapter 21. Service integration 653

http://www-01.ibm.com/support/docview.wss?uid=swg24010222
http://www-01.ibm.com/support/docview.wss?uid=swg24010222

Networked file system
This style of file system access allows remote files to be accessed over a network. The most
popular protocols for accessing remote files are Common Internet File System (CIFS) and Network
File System (NFS). Version 4 of NFS supports automated failover to ensure access locking.
Access locking ensures the integrity of the log files; that is, only a single client process can access
the log at a time.

Note: It is important to check that the file system configuration is correct, because it cannot be checked
by the WebSphere Application Server configuration system or messaging engine. Errors only
surface at run time, so thorough failover testing is recommended.

Further information:
The requirements for enabling access to the directories for the file store are similar to those for enabling
access to the recovery log in a cluster. For more information see the following article: Transactional high
availability and deployment considerations in WebSphere Application Server V6 .

Data store high availability
A messaging engine in a cluster bus member can fail over between servers in the cluster, but the
messaging engine must be able to access the saved state in its data store from any of the cluster servers.

Each messaging engine on a service integration bus belongs to one high availability group (HAGroup).
The members of each HAGroup are controlled by a policy assigned to the group at run time. This core
group policy determines the availability characteristics of the messaging engine in the HAGroup, including
which servers the messaging engine can run on, including the choice of server to which the messaging
engine can fail over. If the cluster bus member in which a messaging engine is running fails, the data store
that the messaging engine uses must be accessible from the server to which the messaging engine
moves.

Data store topologies:

The topology defines the relative location of a data store and its messaging engine, as well as the
relationship with other data stores.

You have several options for the relative location of a data store and its messaging engine. The following
principles apply:

v The default embedded Apache Derby data store always runs in the same server process as the
messaging engine.

v For a messaging engine that can fail over within a WebSphere Application Server cluster, you must
ensure that, for any server that the policy might choose to run, the messaging engine can gain access
to the data store. The embedded Apache Derby data store is not supported for a messaging engine
running in a cluster. Use either Apache Derby in Network Attach mode, or an alternative relational
database management system.

To support high availability (HA), you can configure the data store as follows:

v Configure the data store to use a shared, network-mounted, file system. Ensure that you protect against
the file system being a single point of failure.

v Configure the data store to use a remote database server. Ensure that you protect against a failure of
the database server.

v Configure the data store to use a shared disk in an HA cluster. The HA cluster performs failover of the
data store and, optionally, can coordinate failover of the messaging engine.

Highly available databases:

654 Overview

http://www.ibm.com/developerworks/websphere/techjournal/0504_beaven/0504_beaven.html
http://www.ibm.com/developerworks/websphere/techjournal/0504_beaven/0504_beaven.html

Highly available databases are highly scalable and depend on a relational database management system
(RDBMS) that is always running. Restrictions apply when you choose a highly available database as your
data store for the messaging engine.

Databases that have a high availability framework or feature might have redundant primary and standby
servers. If you are using such a database as your data store, certain specific actions are required:

v Ensure that the primary and standby databases are identical when the standby database takes over
from the primary database, unless you stop and restart your messaging engine before connections are
routed to the standby database. If database clients, such as the messaging engine, are routed by the
system from the primary database to the standby database, the messaging engine relies on the data in
both databases being identical.

v Do not use the one-phase commit optimization that enables applications to share the JDBC connections
used by a messaging engine.

If you use the High Availability Data Recovery (HADR) feature of DB2, note the following restrictions:

v The messaging engine default messaging provider supports only the synchronous and
near-synchronoous synchronization modes of HADR. The default messaging provider does not support
asynchronous HADR configurations.

v The TAKEOVER BY FORCE command is permitted only when the standby database is in peer state, or
when the standby database had last changed from peer state to its current state (such as disconnected
state).

If you configure a WebSphere Application Server to use a highly available database as your data store
and a database failover occurs, the application server on which the messaging engine is running might
stop. The cause of this problem is that the messaging engine cannot always treat the failover as a
transient communications error.

When you configure a messaging engine to use a highly available database for its data store, ensure that
the messaging engine can restart automatically following an application server failure. Choose the option
that is appropriate for your configuration:

v If you are running a single server, WebSphere Application Server provides no failover support. Consider
other high availability provisions.

v If you are running WebSphere Application Server Network Deployment without clustering, the default
configuration for the node agent ensures automatic restart.

v If you are running WebSphere Application Server Network Deployment with clustering, peer recovery
restarts the messaging engine. Ensure that you have configured the high availability policy to enable
peer recovery.

Service integration security
Messaging security ensures that service integration bus users are authenticated, resources are protected
by security checks, and messages are secured when they are in transit. Use these topics to learn how to
secure the service integration bus and protect messages that are sent and received.

Security covers all of the following areas:

v Authenticating and authorizing users that attempt to connect to a bus, and use its resources.

v Securing communication transports between clients and messaging engines, and between messaging
engines themselves.

v Authenticating peer messaging engines in a bus.

v Protecting the message store with a user identity.

When a bus is created with bus security enabled, the following conditions apply:

v The bus requires client authentication.

Chapter 21. Service integration 655

v The bus enforces authorization policy.

v The bus requires use of SSL transport chains.

You can use secure transport connections to ensure the confidentiality and integrity of messages that are
in transit between application clients, the bus, and between messaging engines. This is achieved by
defining transport chains and then referencing the transport chain name as follows:

v For application client connections: from the connection factory administered objects.

v For connections to foreign buses: from the Target inbound transport chain property of the service
integration bus link.

v For connections to WebSphere MQ: from the Transport chain property of the WebSphere MQ link.

v For connections between messaging engines: from the Inter-engine transport chain property of the
bus.

For more information, see “Secure transport configuration requirements” on page 611.

Note: When a secure bus is created, only SSL protected messaging chains are permitted. For example,
you can use the InboundSecureMessaging transport chain.

In the routing properties for the service integration bus link for a foreign bus connection, the user ID
applied to messages entering or leaving the foreign bus can be replaced by values specified by the
Inbound user ID and Outbound user ID properties.

The ability to authenticate access to a foreign bus is provided by the Authentication alias property of the
service integration bus link. You can specify an authentication alias at each end of the service integration
bus link between two secure buses when you create each foreign bus connection. The user ID you specify
in the authentication alias on each side of the link must be the same for authorization purposes. For
example, consider a scenario where two messaging engines are connected by a service integration bus
link. Messaging engine A presents the user ID and password to messaging engine B so that messaging
engine B can authenticate messaging engine A. For details about creating a foreign bus connection, and
therefore a service integration bus link, see Configuring foreign bus connections.

v “Service integration security planning”

v “Messaging security and multiple security domains” on page 658

v “Messaging security” on page 659

v “Security event logging” on page 660

v “Messaging security audit events” on page 660

v “Client authentication on a service integration bus” on page 663

v “Role-based authorization” on page 664

v “Destination security” on page 665

v “Mediations security” on page 666

v “Topic security” on page 667

v “Access control for multiple buses” on page 669

v “Message security in a service integration bus” on page 670

Service integration security planning
When you are planning the security of your messaging system, the range of options available to you can
be described through a set of frequently asked questions.

These are some of the questions you might have when you start planning for messaging security:

v How do I secure the bus?

v Who has authority to access the bus?

v Who has authority to access bus destinations?

656 Overview

v Which connections must I secure?

v Which user IDs are stored in messages that flow between the bus and any foreign buses?

v What level of data store security do I need?

If you are using service integration with web services, refer to Securing bus-enabled web services.

How do I secure the bus?
Providing WebSphere Application Server global security is enabled, and a user registry is
configured, a newly created service integration bus is secured by default. The Enable bus
security flag in the bus definition is checked by default. This means that the messaging engine
authenticates all connecting client applications, and performs authorization checks on every client
application that attempts to access bus resources. For more information about enabling bus
security, see “Messaging security” on page 659.

When you create a new bus, or you want to secure an existing bus, the Bus Security wizard
prompts you to specify a security domain. The security domain contains the security settings for
the bus. You can specify the default global domain, or an alternative domain, depending on the
versions of the bus members:

Global domain
This is the default security domain. You must specify the global domain for mixed-version
buses.

Cell level and custom domains
If the bus contains WebSphere Application Server Version 7.0 or later bus members only,
you can configure the bus to use either the cell default security domain, or a custom
security domain. A custom security domain typically contain security settings specific to a
particular bus. You can configure additional, separate security domains for user
applications such as the UserRepository. For more information about using multiple
security domains for the bus, see “Messaging security and multiple security domains” on
page 658.

For more information about how to add a new secure bus, see Adding a secured bus. If you want
to secure an existing bus, see , and Securing an existing bus by using multiple security domains.
If you want to migrate an existing secure bus from a global security domain to a cell level or
custom security domain, see Migrating an existing secure bus to multiple domain security.

Who has authority to access the bus?
When a client application attempts to connect to the bus, the messaging engine authenticates the
credentials (an identity and password) for the client application against the user registry. If the
client authenticates successfully, the messaging engine checks that the client has authority to
connect to the bus. Every client applications that has a valid user identity and password in the
user registry can authenticate successfully, but you might not want every client application to have
authority to connect to the bus. To control access to the bus, you must grant authority to specific
client applications in the bus connector role for the bus. You create a group in the user registry,
add the identities of the client applications to the group, and then add the group to the bus
connector role for the bus. For more information, refer to Administering the bus connector role.

Who has authority to access bus destinations?
For each destination, you must decide which clients require authority to undertake operations at a
bus destination, and which operations (or roles) they have to undertake. Authority is granted by
adding groups and group members to roles. For example, if you want a group of client applications
called MyGroup to send messages to a queue destination called MyQueue, you add MyGroup to
the sender role for MyQueue. For more information, refer to Administering destination roles.

You can define a set of default permissions that apply to every destination in a bus. For example,
if you want to authorize all the members of a group called MyMediations to send messages to
every destination on a selected bus, you can add MyMediations to the default sender role. By
default, all local destinations inherit roles from the default resource. You can choose to override

Chapter 21. Service integration 657

default inheritance for selected destinations. For more information about default roles, see
Administering default roles. For more information about overriding default role inheritance, see
Disabling inheritance from the default resource.

If a group of client applications publish and subscribe to topics, the topics exist in a topic space.
The identities of all the clients that publish to a topic to must belong to a group that has the sender
role for the topic space. All the client applications that subscribe to a topic must belong to a group
that has the receiver role on the topic space. For more information, see Administering topic space
root roles. By default, there are also checks on authorization permissions at the topic level. You
can disable the topic level check, or decide which groups of client applications you want to
authorize to access selected topics.

Which connections must I secure?
Decide which of the following connections to secure with SSL:

v Connections between the clients and the servers (messaging engines).

v Connections between messaging engines within a bus.

v Connections between buses.

For more information, refer to Securing messages between messaging buses.

Which user IDs are stored in messages that flow between the bus and any foreign buses?
When a message is sent, the user ID of the sender is stored in the message and is used for any
subsequent access control checks on the message. Where a link exists between buses, you can
configure the Inbound ID and the Outbound ID on the link to control which user ID is stored in
messages that flow between local and foreign buses.

The Inbound ID replaces the user ID in every message that flows across the link into the bus. The
Inbound ID is used to control access to messages within the bus. You might want to configure an
Inbound ID for the following reasons:

v The local bus and the foreign bus exist in separate security domains.

v The foreign bus is not secure.

v You can manage access control more easily when every message has the same user ID.

The Outbound ID replaces the user ID in every message that flows across the link out of the bus.
You might want to configure an Outbound ID when you to prevent the original user ID from being
carried in the messages on the foreign bus.

For more information, refer to Securing links between messaging engines.

What level of data store security do I need?
The messaging system can use a data store (database) to store messages on a disk. The
messages in the data store might be protected by a username and password. You should consider
whether this is sufficient security for your data store. Your data base might provide additional
security options, for example data encryption. For more information, refer to Securing database
access.

Messaging security and multiple security domains
When you secure a service integration bus, you assign it to a security domain that contains a set of
security attributes. There are three types of security domain: global, cell level and custom. The type of
security domain you use for a particular bus depends on your security requirements, the bus topology, and
the versions of the bus members.

Global domain

This is the default security domain, and contains the administrative security settings.

You must assign the bus to use the global domain if the following conditions apply:

658 Overview

v The bus contains a WebSphere Application Server Version 6 bus member, or might contain a Version 6
bus member in the future.

v The bus is used for administrative purposes, and must share the administrative security settings.

You might also choose to use the global security domain if you have a simple bus topology, and have no
need to use multiple security domains.

Cell level domain

Assigning the bus to the cell level domain enables the bus to use multiple security domains.

You might want to assign the bus to use the cell level domain if one of the following scenarios apply:

v Your company security policy requires that the administrative user repository is separate from the
customer user repository. Using the cell level domain enables you to configure multiple sets of security
attributes for administrative and user applications within a cell environment.

v For ease of configuration and maintenance, you want the bus, its user applications, and servers to
share a common security configuration that is separate from the administrative security settings.

Custom domain

You must assign the bus to a custom domain if the following scenarios apply:

v You want to guarantee that the bus and its user application can access the same user realm. In this
case, the bus and the user applications use the same custom domain.

v You want the bus to use a user realm that is dedicated to messaging, and have a separate user
repository each for administrative and customer accounts.

v You want the bus, and each of its user applications in separate domains. The application users can
interact with the users of the bus domain, which acts as a bridge between the application domains. In
this case, only the bus requires information about the users in each domain .

Messaging security
Messaging security protects the service integration bus from access by unauthorized users.

Client authentication

When a client application attempts to connect to a messaging engine, the client provides credentials to the
server, and they are authenticated against the user registry. If the credentials are found in the user
registry, the client application authenticates successfully, and proceeds to the authorization checks. If a
Secure Socket Layers (SSL) connection is configured, JMS client applications can authenticate by using
client SSL. This removes the need for the client to specify a user ID and a password.

Authorization

When a connecting client application authenticates successfully, the messaging engine checks for authority
to connect to the bus. Bus authorization is role-based. Specific roles are defined for each bus resource,
and groups of users are added to roles. For example, if a client application belongs to a group that has
been added to the bus connector role, the messaging engine grants the client application permission to
connect to the bus. The messaging engine checks the set of roles defined for each bus destination to
determine what action the client application can perform on the bus destination. By default, all local bus
destinations can inherit a default set of roles. Inheritance of default roles can be overridden for a particular
destination.

For publish subscribe, the messaging engine checks that the client has permission to access the topic
space. If the Topic access check required attribute in the properties for a bus destination is set, the
messaging engine additionally checks that client applications have permission to access the topic.

Chapter 21. Service integration 659

Transport encryption

Finally, the security administrator must ensure the confidentiality and integrity of messages in transit, by,
for example, configuring an SSL secure transport for every bus connection.

Security event logging
Security events on a service integration bus are logged as audit or error records in the SystemOut.log file
for the bus.

Note: This topic references one or more of the application server log files. As a recommended alternative,
you can configure the server to use the High Performance Extensible Logging (HPEL) log and trace
infrastructure instead of using SystemOut.log , SystemErr.log, trace.log, and activity.log files on
distributed and IBM i systems. You can also use HPEL in conjunction with your native z/OS logging
facilities. If you are using HPEL, you can access all of your log and trace information using the
LogViewer command-line tool from your server profile bin directory. See the information about using
HPEL to troubleshoot applications for more information on using HPEL.

A security event is the outcome of an attempt by a connecting client application to authenticate to a bus.
There are two possible outcomes: authentication success, and authentication failure. Success is logged as
an audit record, and failure as an error record. You can control the type and number of audit and error
records logged for a bus by configuring a custom property for the bus, in the administrative console. The
property is a name-value pair called audit.bus.authentication that can have one of the following three
string values:

all Audit every attempt to authenticate to the bus.

failure Audit only failure to authenticate to the bus.

none Do not audit any attempt to authenticate to the bus.

Messaging security audit events
Messaging security audit events are produced when a messaging client sends or receives a message, or
updates a service data object repository, and when a publisher submits a message to a topic.

To audit messaging security, you create security event type filters for the audit events produced during
messaging operations. Details of the audit events produced are included in the following descriptions of
auditable messaging operations:

v “A messaging client sending a message to a message destination”

v “A messaging client receiving a message from a message destination” on page 661

v “Messaging engines connecting to one another on the same bus” on page 661

v “Messaging engines connecting to one another on different buses” on page 661

v “A publisher sending a message to a topic” on page 662

v “A messaging client receiving a message from a subscription” on page 662

v “A cell administrator updates a service data object (SDO) repository” on page 663

A messaging client sending a message to a message destination
The messaging security audit events SECURITY_AUTHN, SECURITY_AUTHZ and
SECURITY_AUTHN_TERMINATE are produced when a messaging client sends a message to a message
destination.

Audit events produced when a messaging client sends a message to a message destination are as
follows:

1. The messaging client connects to a messaging bus:

660 Overview

a. A SECURITY_AUTHN event is produced when the identity of the messaging client connecting to
the messaging bus is authenticated.

b. A SECURITY_AUTHZ event is produced when the identity of the messaging client is checked for
access authority to the bus.

2. A SECURITY_AUTHZ event is produced when the identity of the messaging client is checked for
access authority to the destination queue.

3. One or more messages are sent from the client to the destination queue. No audit events are
produced.

4. When the connection between a messaging client and a messaging bus is terminated, a
SECURITY_AUTHN_TERMINATE event is produced.

To record these audit events, you create security event type filters for them.

A messaging client receiving a message from a message destination
Messaging security audit events SECURITY_AUTHN, SECURITY_AUTHZ and
SECURITY_AUTHN_TERMINATE are produced when a messaging client receives a message from a
message destination.

Audit events produced when a messaging client receives a message from a message destination are as
follows:

1. The messaging client connects to a messaging bus:

a. A SECURITY_AUTHN event is produced when the identity of the messaging client connecting to
the messaging bus is authenticated.

b. A SECURITY_AUTHZ event is produced when the identity of the messaging client is checked for
access authority to the bus.

2. A SECURITY_AUTHZ event is produced when the identity of the messaging client is checked for
access authority to the destination queue.

3. One or more messages are sent from the message queue to the client. No audit events are produced.

4. When the connection between a messaging client and a messaging bus is terminated, a
SECURITY_AUTHN_TERMINATE event is produced.

To record these audit events, you create security event type filters for them.

Messaging engines connecting to one another on the same bus
The messaging security audit events SECURITY_AUTHN and SECURITY_AUTHZ are produced when a
messaging engine connects to another messaging engine on the same bus.

Audit events produced when a messaging engine connects to another messaging engine on the same bus
are as follows:

1. A SECURITY_AUTHN event is produced when the identity of the messaging engine connecting to the
bus is authenticated by the destination messaging engine.

2. A SECURITY_AUTHZ event is produced when the identity of the messaging engine is checked for
access authority to the destination messaging engine.

To record these audit events, you create security event type filters for them.

Messaging engines connecting to one another on different buses
The messaging security audit events SECURITY_AUTHN and SECURITY_AUTHZ are produced when a
messaging engine connects to another messaging engine on a foreign bus.

Audit events are produced when a messaging engine connects to another messaging engine on a foreign
bus as follows:

Chapter 21. Service integration 661

1. A SECURITY_AUTHN event is produced when the identity of the messaging engine connecting to the
bus is authenticated by the destination messaging engine.

2. A SECURITY_AUTHZ event is produced when the identity of the messaging engine is checked for
access authority to the destination messaging engine.

To record these audit events, you create security event type filters for them.

A publisher sending a message to a topic
The messaging security audit events SECURITY_AUTHN, SECURITY_AUTHZ and
SECURITY_AUTHN_TERMINATE are produced when a messaging client sends a message to a
subscription topic.

The audit events produced when a messaging client sends a message to a subscription topic are as
follows:

1. The messaging client connects to a messaging bus:

a. A SECURITY_AUTHN event is produced when the identity of the messaging client connecting to
the bus is authenticated.

b. A SECURITY_AUTHZ event is produced when the identity of the messaging client is checked for
access authority to the bus.

2. A SECURITY_AUTHZ event is produced when the identity of the messaging client is checked for
access authority to the subscription.

3. One or more messages are sent from the client and submitted to the subscription. No audit events are
produced.

4. When the connection between a messaging client and a messaging bus is terminated, a
SECURITY_AUTHN_TERMINATE event is produced.

To record these audit events, you create security event type filters for them.

A messaging client receiving a message from a subscription
The messaging security audit events SECURITY_AUTHN, A SECURITY_AUTHZ, and
SECURITY_AUTHN_TERMINATE are produced when a messaging client receives a message from a
subscription.

Audit events are produced when a messaging client receives a message from a subscription as follows:

1. The messaging client connects to a messaging bus:

a. A SECURITY_AUTHN event is produced when the identity of the messaging client connecting to
the bus is authenticated.

b. A SECURITY_AUTHZ event is produced when the identity of the messaging client is checked for
access authority to the bus.

2. A SECURITY_AUTHZ event is produced when the identity of the messaging client is checked for
authority to receive the message. This check is only performed once per connection session, and the
result is cached.

If changes are made to the access rights for the topic, or a new subscription is created that matches
an existing topic (either exactly or as a result of a 'wildcard' match), the cache entry for the topic
becomes invalid. Another check is made for authority to receive the message, and another
SECURITY_AUTHZ event is produced.

3. One or more messages are received by the client from a subscription. No audit events are produced.

4. When the connection between a messaging client and a messaging bus is terminated, a
SECURITY_AUTHN_TERMINATE event is produced.

To record these audit events, you create security event type filters for them.

662 Overview

A cell administrator updates a service data object (SDO) repository
The messaging security audit events SECURITY_AUTHN, SECURITY_AUTHZ,
SECURITY_MGMT_CONFIG, and SECURITY_AUTHN_TERMINATE are produced when a cell
administrator changes the contents of a service data object (SDO) repository in an import or remove
operation.

Audit events produced when a cell administrator changes the contents of a service data object (SDO)
repository in an import or remove operation are as follows:

1. The cell administrator connects to a messaging bus:

a. A SECURITY_AUTHN event is produced when the identity of the messaging client connecting to
the Enterprise Java Bean container that includes the SDO repository is authenticated by the
application server.

b. A SECURITY_AUTHZ event is produced when the identity of the messaging client is checked for
access authority to the foreign bus.

2. A SECURITY_MGMT_CONFIG event is produced when messaging client issues a remove or import
request that results in a change to the contents of the SDO repository.

3. When the connection between a messaging client and the foreign bus is terminated, a
SECURITY_AUTHN_TERMINATE event is produced.

To record these audit events, you create security event type filters for them.

Client authentication on a service integration bus
When a client application attempts to connect to a messaging engine on a secure service integration bus,
the client application provides credentials to the server that are checked against the user registry.

Client authentication is one security mechanism for protecting the bus from unauthorized access,
alongside authorization, and transport encryption. Client authentication is effective only when
administrative security is enabled on WebSphere Application Server, and messaging security is enabled on
the bus.

A connecting client application provides credentials that the server verifies against the user registry. The
following types of credential are permitted:

v User ID and password

v X509 certificate

The security administrator specifies the type of user registry when configuring administrative security.

WebSphere Application Server Version 6 supports different types of user registry, including federated
repositories.

WebSphere Application Server Version 7.0 or later can use the user registry from the administrative
domain, or the bus or cell domains.

The bus security administrator checks that the credentials for the connecting client are valid in the user
registry for the cell hosting the bus. If the server is enabled to allow a JMS client application to use Secure
Sockets Layer (SSL) client authentication, a stand-alone Lightweight Directory Access Protocol (LDAP)
user registry is required.

When application code in an EJB or web container invokes the JMS client, and accesses it as a J2EE
Connector Architecture (JCA) resource, authentication is determined by whether the application code has
been configured to allow container-managed or application-managed sign-on to resources. For further
details, see Java EE connector security.

If an application fails to authenticate, a JMSSecurityException is thrown.

Chapter 21. Service integration 663

Role-based authorization
Service integration messaging security uses role-based authorization. By adding and removing users and
groups in access roles you can control who has access to a secured bus and its resources.

When bus security is enabled, you must add users and groups to access roles to grant them authority to
connect to the bus, and to work with its messaging resources, for example a destination or a topic space.
You can administer users and groups in access roles either by using the administrative console, or by
using wsadmin reference commands.

Access roles

When you add a user to an access role, you grant that user all the security permissions contained within
the role type. You can add users to the following access roles:

Connector role
Grants the user the permission to connect to the local bus.

Sender role
Grants he user the permission to send a message to a destination.

Receiver role
Grants the user the permission to receive a message from a destination.

Browser role
Grants the user the permission to browse messages on a destination.

Creator role
Grants the user the permission to create a temporary destination prefix.

Users and groups

Any user or group that you want to add to an access role must have a definition in the user registry. A
user that belongs to a group that has been added to an access role is authorized to carry out the
operations permitted for that role.

There are three special types of groups:

All Authenticated
Contains all authenticated users. If the All Authenticated group is authorized to undertake an
operation, then all authenticated users are authorized to undertake it. When a bus is created, an
initial set of authorization permissions is created that allows all users in the All Authenticated group
access all local destinations. You can change these permissions to restrict access to the specific
users and groups that you want to connect to the bus.

Everyone
Contains all users whether or not they are authenticated.

Server
Contains every WebSphere Application Server within a cell.

Messaging operations

When messaging security is enabled, all operations on the following resources require authorization:

Buses When a user connects to a local bus, the system checks that the user has authorization to
connect to the bus. For a user who has already connected successfully to a local bus to send a
message to a destination on a foreign bus, the user requires authorization to access the foreign
bus.

664 Overview

Destinations
Users require authorization to undertake messaging operations (typically send, receive, and
browse) on a destination.

Temporary destinations
A user must have the creator role to create a temporary destination. By default, the All
Authenticated group have the creator role. When an authorized user (a client application) creates
a temporary destination, a temporary destination prefix is specified. The messaging engine uses
the temporary destination prefix at runtime to determine which operations the client application can
perform. A client application that has the sender role for a temporary destination prefix is
authorized to send messages to the temporary destination.

Topic spaces and topics
To access a topic within a topic space, a user must be authorized to access both the topic space,
and the specific topics within this topic space. To make topic authorizations easier to manage, a
topic inherits authorization permissions from its parent in the topic namespace by default. You can
change inherited permissions for any given topic, or you can disable inheritance at the topic space
level for a given topic space. In this case, the system checks that the user is authorized to access
the topic space, but no further checks are made at the topic level.

Default authorization permissions

The default authorization permissions enable you to quickly grant access to all local destinations. Although
the All Authenticated group has full access to all destinations, only the Server group has the bus connector
role. If you want a particular user to access the bus, you must add that user to the bus connector role for
the bus. When users have the bus connector role, they have full access to the bus.

The default permissions apply to all destinations in a local bus namespace, with the following exceptions:

v A destination for which inheritance is disabled

v Foreign destinations

v Alias destinations that have an alias bus name that is not the local bus name

Destination security
When messaging security is enabled, the authorization policy for resources on the service integration bus
is enforced, and client applications must have authority to access bus destinations.

Destination authorization

Access to a destination is role-based. By assigning a group of users to a specific role for a specific bus
destination, you authorize the group to undertake a specific operation on that bus destination. The roles for
a destination depend on the type of destination:

Sender
This role applies to alias, foreignDestination, port, queue, and topicSpace destinations.

Receiver
This role type applies to alias, port, queue, and topicSpace destinations.

Browser
This role type applies to alias, port, and queue destinations.

Creator
This role applies to temporary destinations only.

You define destination role assignments on the bus that owns the destination. If a message is routed
between two or more destinations, the members of a group require authority to access each of the
destinations.

Chapter 21. Service integration 665

Temporary destination authorization

A temporary destination prefix, which is specified when a temporary destination is created, is used at
runtime by the messaging engine to determine access authority for the temporary destination. When a
temporary destination is created, the identity of its creator is assigned to the creator role for the temporary
destination prefix. By default, all authenticated users can create temporary destinations. To grant the
members of a group access to a temporary destination, you must assign the group to the sender role for
the corresponding temporary destination prefix.

Multiple destinations authorization

When a message arrives at a destination, it might be routed onwards to one or more destinations before it
is received by an application. This might happen, for example, if there is a mediation on the first
destination. When the message arrives at the first destination, the messaging engine checks that the
identity of the sending application has authority in the sender role to send messages to the destination,
and adds the identity of the sender to the message. If the message is routed on to another destination, the
messaging engine checks that the sender identity in the message has authority in the sender role for the
destination to which it is being routed. The messaging engine continues to check the authority of the
sending application along the forward routing path of the message until it arrives at a mediated destination.
The mediation might (but does not always) replace the sender identity in the message with the mediation
identity. If this happens, the messaging engine uses the mediation identity to check the authority of the
sender to send to the next destination in the forward routing path, not the identity of the original sender.

Inheritance of security authorization

A destination can inherit role assignments from the default resource. Only role types that are permitted for
a particular destination type can be inherited. For example, a queue destination can inherit the browser
role from the default resource. Inherited role assignments are added to any existing role assignments for a
destination. For example, a queue destination that has members of a group called Group 1 in the sender
role, can inherit Group 2 in the sender role for the default resource.

Mediations security
When bus security is enabled, authorization permissions are required to ensure that mediations can run,
and undertake messaging operations securely on a service integration bus. There are mechanisms for
mediations security, and implications for running mediations on a bus that spans multiple security domains.

When bus security is enabled, the messaging engine must be authorized to access the mediation.
Authorization is granted by using a mediations authentication alias or an LTPA token, depending on the
version of the bus member:

v A WebSphere Application Server Version 7.0 or later bus member uses an LTPA token for messaging
engine authentication. If an authentication alias is specified, it is used but a password is not required.

v A WebSphere Application Server Version 6 bus member requires an authentication alias to ensure that
the mediation can be called. For more information, see Configuring the bus to access secured
mediations.

When an application sends a message to the bus, the identity of the sender application is associated with
the message. The message is sent to the next destination in the forward routing path providing the
message originator has Sender authority for that destination. If a mediation processes the message in
some way at the target destination, the identity associated with the message is preserved by default. You
can program the mediation to reset the message identity to the identity under which the mediation code
runs. For example, if the mediated destination represents the boundary between two security domains, the
sender application is not authorized to access the mediated destination. By translating different identities
into a single user identity, you can control access between security domains. For more information about
programming mediations, see “Mediation programming” on page 729. For more information about using
the resetIdentity() method, see SIMediationSession .

666 Overview

When you install a mediation for use when bus security is enabled, you must ensure that the identity that
is used by the bus to call the mediation can access the mediation. By default, a mediation is
unauthenticated. You can configure it to use the mediations authentication alias by specifying a RunAs role
by using the assembly tools. For more information, see Configuring an alternative mediation identity for a
mediation handler.

If bus security is enabled, and a mediation is sending messages to a destination, the mediation identity
requires authority to access the destination. For more information, see Administering authorization
permissions. Any new messages sent by the mediation are sent using the mediation identity.

If administrative security is disabled, an identity is not configured for the mediation. If bus security is
enabled, and administrative security is disabled, the mediation is not authenticated to access bus
destinations.

Using mediations in multiple security domains

You can run mediations successfully in a bus topology where the members of a bus span multiple security
domains. The bus security configuration provides an option, called addUserServerIdForMediations, to
allow mediations to run under a server identity. In this case, a mediation authentication alias is not
required.

Mediations are deployed as applications, and run in the domain used by the application server, not the bus
domain. Because the mediation authentication alias applies to the whole bus, if you run a mediation on
multiple servers in different domains, you must ensure that the user identity in the mediation authentication
alias exists in the configuration for each domain. Alternatively, you can choose to use the server identity
option. You can use this option even if multiple domains are not in use.

Topic security
Client applications publish and subscribe to a topic. When messaging security is enabled, client
applications require authority to access a topic.

Topics are contained within a topic space, which is a type of destination. Within the topic space, topics are
organized into one or more topic hierarchies, based on the topic names. The topic hierarchies are joined
to a virtual root that is created when the topic space is created. A topic is created within the topic space
when a client application publishes to the topic.

When a connection accesses a topic, an access check is performed to ensure that the user associated
with the connection has permission to access the topic space destination that contains the topic. A second
check is performed to ensure that the user also has access to the topic itself, within the topic hierarchy
owned by the topic space destination. This allows for finer-grained control of access to topics, as shown in
the diagram later in this section. The diagram shows a topic space called tspace1 that contains two topic
hierarchies, called sports, and cars.

Chapter 21. Service integration 667

Note: A connection must have authority to access the topic space destination, regardless of any access it
has been granted within the topic hierarchy owned by that topic space destination.

Each bus can contain more than one topic space. Each topic space is independent of other topic spaces
on the bus. Topics in separate topic spaces are not related, even if they have the same name. Consider,
for example, a bus that contains two topic spaces called tspace1 and tspace2, and each topic space
contains a topic called cars. If a client application subscribes to cars in tspace1, it can only receive
messages published to the cars topic in tspace1.

Role-based authorization and topic inheritance

Topic security is based on role-based authorization. For further information, see “Role-based authorization”
on page 664. To make it easier to administer security authorization for a large number of topics, the
access role defined for a topic contains the access authority for the topic itself and, by default, for any
topic beneath it within the topic hierarchy. A topic therefore inherits roles from the parent topic. An access
role defined on the virtual root therefore contains, by default, access authority for every topic in the topic
space. In the example given above, the sender and receiver roles have been defined on the virtual root of
topic space tspace1.

You can define new roles for a topic, and you can disable topic role inheritance for any topic in the topic
hierarchy. New roles are added to any roles that the topic inherits from its parent topic. The figure above
contains the following examples of how topic role inheritance works:

v The topics sports, cricket and cars topics inherit the sender role defined on the virtual root, but
inheritance of the sender role for the topic tennis is disabled. This means that the topic tennis and its
children cannot inherit the sender role from the virtual root. The sender role is defined for the topic
tennis itself. The messaging engine checks that a connecting client application has authority in the
sender role for the topic tennis and its children.

v Every topic in the hierarchy inherits the receiver role from the virtual root. The sports topic also has its
own receiver role. The messaging engine performs additional checks where additional access roles
exist. The children of the topic sports inherit the receiver role from the parent topic, and from the virtual
root. The lawn topic also has its has its own receiver role.

virtual root

sports

lawn clay

cricket tennis

cars

topic space: tspace1
VirtualRoot: Sender
VirtualRoot: Receiver

/sports: Receiver

/sports/tennis: InheritSender=false
/sports/tennis: Sender

/sports/tennis/lawn: Receiver

Figure 112. Example of a topic space with topic-level authorization

668 Overview

You can define access roles for a topic before the topic is created at runtime. Note that the topic can
inherit roles from its parent unless you explicitly disable topic inheritance.

Subscription authorization

When a client application creates a subscription for a selected topic, the messaging engine checks that the
client has authority in the receiver role to receive messages published to the selected topic. A subscription
can be for a single topic, or by using wild cards in the topic specification, for multiple topics. In either case,
when a message arrives for the subscription, the messaging engine checks that the client application has
authority in the receiver role for the selected topic. When a client application creates a subscription for a
single topic, the messaging engine checks that the client has authority in the creator role to create a
subscription.

A non-durable subscription exists for the duration of the subscriber session. This means that the
subscription ceases to exist when the subscriber session ends. A durable subscription continues to exist
after the subscriber session ends. This means that the subscription continues to collect messages on the
topic or topics when the subscriber is not connected to the bus. The subscriber can restart the
subscription, and collect the messages. Only the client application that created the durable subscription
can restart it. This allows the messaging engine to check for access authority for messages that are
collected on the topic when the subscription is inactive.

Access control for multiple buses
The messaging engine on a service integration bus uses role-based authorizations to ensure that local
buses can exchange messages securely with foreign service integration buses, and with WebSphere MQ.

Service integration authority is role-based. By assigning a group of user identities in the user repository to
one or more access roles for a destination on a local bus, you can control who has authority to access,
and undertake operations, on that bus destination. The messaging engine uses the role assignments at
runtime to determine which operations group members can undertake on the destination. If a client
application needs to exchange messages with another bus, you need to assign the identity of the client
application to the sender and receiver roles for the remote (foreign) bus. When the client application sends
a message from the local bus destination to the foreign bus destination, the messaging engine performs a
two-stage check on the authority of the identity of the client application:

First stage authorization check
When the client application sends a message from the local destination, the messaging engine
checks that the identity of the client application has authority in the sender role for the foreign bus
destination.

Second stage authorization check
When the foreign bus destination receives the message, the messaging engine checks that the
message identity (which is initially set to the identity of the sending client application) has authority
in the sender role for the foreign bus destination.

Messages are sent to a foreign bus destination by using either a foreign bus destination proxy definition,
or a foreign bus definition. The definition contains the authority that determines whether the sender is
authorized to send messages to the foreign bus. Foreign destination definitions enable you to grant
authority on a destination by destination basis. If a foreign destination definition does not exist for a
specific destination, the messaging engine uses the default foreign bus definition.

It is important to understand that it is the role assignments for the foreign bus, or foreign bus destination,
that control whether a client application can send messages to the foreign bus. When the foreign bus
receives a message, the messaging engine on the foreign bus uses the foreign bus role assignments to
check whether the message can proceed to the foreign bus destination.

Chapter 21. Service integration 669

For the second stage authorization check, the messaging engine uses the identity that is stored in the
message. This is initially set to the identity of the sending client application, but it might be superseded on
the foreign bus destination by values specified by the Inbound user ID or Outbound user ID properties. In
this case, the messaging engine uses the Inbound or Outbound user ID to undertake its authorization
checks on the foreign bus, not the identity of the original sending client application.

Important: If users or groups have the bus connector role for a foreign bus, you must take special care
when assigning access roles. In particular, you must check for the following to ensure
message delivery between an MQ Link and foreign buses:

v The sending client application must have authority in the sender role for the appropriate
foreign bus destinations.

v The foreign bus destinations must exist.

If message delivery is interrupted, it is difficult to diagnose and resolve the problem.

The checks on Inbound and Outbound user IDs also apply when messages are routed through multiple
buses, and when messages are sent to a WebSphere MQ network.

Tip: You specify Inbound and Outbound user IDs when you create a foreign bus connection or maintain
the routing properties for the link to a foreign bus.

If secure buses are linked, the link between them should be secure. To protect data transmitted along the
virtual link between buses by using SSL, you must define the required transport chains and then reference
the transport chain name.

Message security in a service integration bus
The transport policy for a service integration bus controls which transport mechanisms a remote client
application can use to connect to the bus.

You can configure one of the following transport policies for a bus, providing the bus members are at
WebSphere Application Server Version 6.1 or later:

All defined transport channel chains
Connecting client applications can use any transport channel chain, including unsecured ports.
This is the default policy when you create a new bus with security disabled.

Transport channel chains that are protected by SSL
Connecting client applications can only use transport chains that use the Secure Sockets Layer
channel. This is the default policy when you create a new bus with security enabled.

Transport channel chains in the list of permitted transports
Connecting client applications can only use the transport channel chains in a list of specific
transports. This provides the highest level of control because the bus allows access only to the
permitted transports.

You can configure the transport policy for the bus by using wsadmin commands, or the administrative
console. The transport policy is independent of the bus security configuration, so you can configure a
transport policy for a bus when security is disabled. Note that by default, if a newly created bus is not
secured, a remote client application can use any transport channel chain to access the bus. If a newly
created bus is secured, by default a remote client application can only use SSL protected channel chains
to access the bus. If you want to control exactly which transport channel chains are available for use,
configure the permitted transports policy.

The permitted transport policy provides the following benefits:

v You do not have to disable transport channel chains to prevent remote client applications from using
them to connect to the bus.

670 Overview

v You do not have to disable transport channel chains before adding a new server as a bus member.

v Buses that have different transport channel chain requirements can share the same server.

If the permitted transports policy is in use but an inter-bus communications protocol has not been
specified, the InboundSecureMessaging port is used instead of the InboundBasicMessaging port. You must
ensure that you add the InboundSecureMessaging port to the list of permitted transports. You can override
the default by configuring an inter-bus communication protocol for the bus.

High availability and workload sharing
Use these topics to learn about high availability and workload sharing.
v “WebSphere Application Server high availability”
v “Workload sharing”
v “High availability” on page 691
v “Service integration high availability and workload sharing configurations” on page 694

WebSphere Application Server high availability
The WebSphere Application Server high availability framework eliminates single points of failure and
provides peer to peer failover for applications and processes running within WebSphere Application Server.
The WebSphere Application Server high availability framework also allows integration of WebSphere
Application Server into an environment that might be using other high availability frameworks, such as
HACMP, in order to manage non-WebSphere Application Server resources.

A WebSphere Application Server cell (the main administrative domain) consists of one or more server
processes, which host resources such as applications or messaging engines. The cell is partitioned into
groups of servers known as core groups, which are defined by the user. Each core group has its own high
availability manager and operates independently of other core groups. Core group boundaries do not
overlap. Within each core group are dynamic logical groupings of servers known as high availability
groups. The HAManager determines the membership of the HAGroups at run time. Each core group can
have a number of policies, which apply to particular HAGroups and determine the high availability behavior
of resources running within the HAGroup.

See Setting up a high availability environment for more information about WebSphere Application Server
high availability in general.

Workload sharing
You can configure multiple service integration messaging engines to distribute workload across multiple
application servers. This allows you to scale out your system to handle larger workloads.

Workload sharing with queue destinations
If you add a server cluster to a service integration bus and deploy one or more messaging engines to the
cluster, you can configure the cluster bus member for scalability. The messaging engines in the cluster bus
member share the messaging workload associated with queue destinations deployed to the cluster.

See “Service integration high availability and workload sharing configurations” on page 694 for more
information about configuring messaging engines to share workload.

When you deploy a queue destination to a cluster, the queue is automatically partitioned across the set of
messaging engines that is associated with the cluster.

v If there is only one messaging engine in the cluster, the destination is localized by that messaging
engine. The destination is not partitioned.

v If there is more than one messaging engine in the cluster, the destination is partitioned across all
messaging engines in the cluster. Each messaging engine deals with a subset of the messages that the
destination handles.

Chapter 21. Service integration 671

The availability characteristics of a partition are the same as those of the messaging engine it is localized
by.

Note: If a producing or consuming application uses an alias destination that is configured to a subset of
queue points, the following behavior applies to the subset of queue points, not the entire set of
queue points of the target queue destination.

Sending messages to a partitioned queue destination

Typically, you create scalable cluster bus member and partition a queue destination if a single server
cannot support the message processing load for the queue. To be used effectively, a partitioned queue
requires multiple consumers with at least one consumer consuming from each partition. A typical use is a
cluster of message-driven beans (MDBs). For details about how an MDB consumes from a clustered
destination, see “How a message-driven bean connects in a cluster” on page 391.

The default behavior of the messaging system if the producing application is connected to a
messaging engine of a cluster bus member that hosts the queue destination

By default, the producing application prefers to send all its messages to the local queue point. This
behavior maximizes performance of message delivery by minimizing the distance the message
has to travel to the queue point.

If the local queue point is not available, the messages are processed as though no local queue
point exists. A queue point is not available to new messages if:

v The messaging engine that owns the queue point is not available (for example, the messaging
engine is stopped).

v The queue point reaches its high message threshold.

v The queue point has had the ability to send messages to it disabled.

The default behavior of the messaging system if the producing application is connected to a
messaging engine of a bus member that does not host the queue destination

By default, the messaging system workload balances the messages across the available queue
points.

Cluster bus member

Application Server

Application Server

Connected to ME

ME

ME

ME: Messaging Engine

QP: Queue Point

QP

QP

Producing
application

Figure 113. Default behavior: messages are sent to the local queue point

672 Overview

In this figure, a producing application is connected to a messaging engine of a bus member that
does not host the queue destination, with its messages workload balanced across the available
queue points.

Configurable behavior when the producing application is connected to a messaging engine of a
bus member that hosts the queue destination

If you want all the messages from the producing application to be workload balanced across all
queue points of a queue destination, even when connected to a messaging engine with a queue
point, consider disabling the default Prefer local queue point configuration option on the
message producer. This option is available to JMS message producers and messages inbound
from foreign bus connections that use WebSphere Application Server Version 7.0 or later.

In this figure, a producing application is connected to a messaging engine of a bus member that
hosts the queue destination. The producing application has the “prefer local queue point” option
disabled. Its messages are workload balanced across all queue points.

Cluster bus member

Application Server

Application Server
Connected to ME

ME

ME

ME: Messaging Engine

QP: Queue Point

QP

QP

Producing
application

Application Server

ME

Figure 114. Default behavior: messages are workload balanced across all queue points

Chapter 21. Service integration 673

However, if a number of producing applications' connections are also workload balanced across all
messaging engines in the bus member, consider retaining the default Prefer local queue point
behavior, for performance reasons. This is because the default behavior:

v Workload balances messages from all producing applications across all queue points

v Minimizes the need to send messages from the connected messaging engine to another
messaging engine in the same cluster bus member

Configurable behavior when the producing application is connected to a messaging engine of a
cluster bus member that does not host the queue destination

If you want to send all messages produced during a single session of an application producer to
the same queue point, you can configure Message affinity. The messages are not then workload
balanced across multiple queue points.

Consider configuring Message affinity for an application if you want to send sets of messages to
the same queue point to be processed in order, by a single instance of a consumer. The system
selects the single queue point to which all the messages are sent, based on the Prefer local
queue point configuration option for that application producer. This option is available to JMS
message producers and messages inbound from foreign bus connections that use WebSphere
Application Server Version 7.0 or later.

In this figure, a producing application connects to a messaging engine of a bus member that does
not host the queue destination. The producing application has message affinity configured. All
messages are sent to one queue point.

Cluster bus member

Application Server

Application Server

Connected to ME

ME

ME

ME: Messaging Engine

QP: Queue Point

QP

QP

Producing
application

Figure 115. Disable Prefer local queue point: messages are workload balanced across all queue points

674 Overview

If the selected queue point becomes unavailable, any further messages sent from this application
are queued in transit to the selected queue point or the send operation is rejected. This behavior
corresponds to sending messages to a queue destination with a single queue point.

Consuming messages from a partitioned queue destination

When a consumer session is created, the consumer is bound to one partition of the destination. If the
consumer is connected to a messaging engine that has a local partition of the destination, the consumer is
bound to that partition. If the consumer is connected to a messaging engine that does not have a partition
of the destination, the consumer is bound to a partition in another messaging engine selected dynamically
by the workload manager. Once bound, a consumer receives messages from the bound partition only. By
default, if the partition to which a consumer is bound does not have any messages, the consumer does
not receive messages from alternative partitions, even if such partitions contain messages.

If you configure a partitioned destination in a cluster that does not have local consumers, it is important to
have at least one consumer for each partition of the destination, to ensure that all messages are
consumed. You can achieve this by targeting individual consumers to connect to specific messaging
engines that have a queue point. MDBs are a specific type of message consumer. For details of their
behavior when consuming from a partitioned destination, see “How a message-driven bean connects in a
cluster” on page 391.

If you want a consumer to receive messages from all available queue points of a destination, you can
configure the message consumer.

If there is a high number of small messages and the MDBs do only a small amount of processing, you can
use workload balanced messaging engines with partitioned queues, as described in this topic. If, however,
the MDBs do a greater amount of processing of a lower number of messages, you might need only one
messaging engine, but you need to deploy the MDBs to as many servers as possible, whether or not
those servers have messaging engines, and even if those servers are not members of the same cell. A
typical situation is when MDBs update a user database. For details about configuring MDB deployment
across multiple servers, see Configuring MDB or SCA throttling for the default messaging provider.

The default behavior of the messaging system when a consumer consumes from a partitioned
destination

Cluster bus member

Application Server

Application Server

Connected to ME

ME

ME

ME: Messaging Engine

QP: Queue Point

QP

QP

Producing
application

Application Server

ME

Figure 116. Message affinity: All messages produced are sent to the same queue point

Chapter 21. Service integration 675

When a consuming application's session is created, the session is associated with one of the
queue points of the queue destination. If the queue destination has multiple queue points, the
system chooses one. By default, the messaging system prefers to associate the consumer with
the local queue point on the connected messaging engine. If there is no available local queue
point on the connected messaging engine, the system chooses another queue by using the
WebSphere Application Server workload manager.

The default behavior tries to maximize performance of message consumption from queue points
by limiting the messages available to the consumer to those on the associated queue point of the
consumer. The consumer cannot consume messages from other queue points, even if its
associated queue point has no messages, but other queue points have messages.

In this figure, a consuming application is connected to a messaging engine with no local queue
point. Only messages from the one associated queue point are consumed.

Configurable behavior of the messaging system when a consumer consumes from a partitioned
destination

You can configure a message consumer so that its associated queue point gathers messages
from all available queue points of a destination and makes them visible to the consumer.

Consider configuring Message gathering if you want a consumer to treat a partitioned queue as a
queue that is not partitioned. However, gathering messages from multiple queue points is
significantly slower than consuming from a single queue point. So, if possible, reconfigure the
destination to have a single queue point, or use an alias destination to restrict message producers
and consumers to a single queue point. If you require scalability of multiple queue points and
performance is important, consider alternative solutions to gathering messages.

In Message gathering mode of operation, the consumer might not see messages in the order in
which they are held on the queue points. Therefore, message order is not maintained.

This option is available to JMS message producers and messages inbound from foreign bus
connections using WebSphere Application Server Version 7.0 or later.

In this figure, a consuming application connects to a messaging engine with no local queue point.
The consuming application has message gathering enabled. The associated queue point gathers
messages from all available queue points of a destination and makes them available to the

Cluster bus member

Application Server

Application Server

Connected to ME

Associated with
this queue pointME

ME

ME: Messaging Engine

QP: Queue Point

QP

QP

Consuming
application

Application Server

ME

Figure 117. Default behavior: only messages from the associated queue point are consumed

676 Overview

consumer.

JMS request and reply messaging with cluster bus members:

A typical JMS messaging pattern involves a requesting application that sends a message to a JMS queue
for processing by a messaging service, for example, a message-driven bean.

When the requesting application sends the request message, the message identifies another JMS queue
to which the service should send a reply message. After sending the request message, the requesting
application either waits for the reply message to arrive, or it reconnects later to retrieve the reply message.

The request and reply pattern requires the following conditions:

v The requesting application can identify, in the requesting message, where the service must send the
reply message.

v The requesting application can consume the reply message from the reply location.

A JMS queue can refer to a service integration bus destination that is defined on a server bus member or
cluster bus member.

v If the bus member is a server (which can have only one messaging engine), or a cluster with a single
messaging engine, a JMS queue identifies a single service integration bus queue point.

Cluster bus member

Application Server

Application Server

Connected to ME

Associated with
this queue pointME

ME

ME: Messaging Engine

QP: Queue Point

QP

QP

Consuming
application

Application Server

ME

Figure 118. Message gathering: messages are consumed from all queue points

request

reply

Reply queue

Service queue
request/reply
application Service

Figure 119. Typical JMS messaging pattern

Chapter 21. Service integration 677

v If the bus member is a cluster with multiple messaging engines (typically, to provide workload sharing or
scalability), a JMS queue identifies multiple queue points; one on each messaging engine in the bus
member.

The following behavior occurs by default:

v The queue point that an application sends messages to, or receives messages from, is determined by
the messaging system.

v During its lifetime, a consumer, in this case a JMS message consumer, consumes from only one queue
point.

This request and reply behavior allows a reply message to be sent to a different queue point from the one
on which the requestor is waiting for it. This can result in the reply message not being received.

Application Server
bus member

Application Server

ME

ME: Messaging Engine

QP: Queue Point

Service QP

Reply QP

request/reply
application Service

Figure 120. A service integration bus queue destination defined to an application server bus member

678 Overview

To overcome this situation, there are various options when you configure the service integration bus
system or the JMS applications:

v Use a temporary queue as the reply queue.

v Use a scoped service integration bus alias destination to restrict messages to a single queue point.

v Restrict reply messages to the queue point that is local to the requesting application.

v Configure the requestor to consume messages from all queue points simultaneously.

Consider the advantages and disadvantages of each option and the requirements of your application,
before you choose an approach.

Summary

Use the simplest solution that satisfies the requirements of the request/reply scenario. For example:

v If reply messages are required only while the requesting application is initially connected, use
non-persistent messages and temporary queues. Also consider setting a timeToLive of the initial
request message, if the requesting application will wait for a reply for only a finite time.

v If a single queue point (and its messaging engine) can handle all the reply message traffic for the
requesting applications, but a cluster bus member with multiple messaging engines is required for other
messaging traffic (for example, the request messages), use a service integration bus alias destination to
scope the messages to that single queue point.

Cluster bus member

Application Server

Application Server

ME

ME

ME: Messaging Engine

QP: Queue Point

Service QP

Service QP

Reply QP

Reply QP

request/reply
application Service

Figure 121. A service integration bus queue destination that is defined to a cluster bus member with two messaging
engines

Chapter 21. Service integration 679

If necessary, you can combine these options to achieve the solution that best satisfies the requirements of
your application and has the best performance and scalability.

For example, if requesting applications typically receive their reply messages during the initial connection
but under certain rare conditions (for example, a failure) they have to reconnect to receive the reply, the
following approach might be suitable:

v Enable the scopeToLocalQP option of the JMS queue, and allow the requesting application to connect to
any of the messaging engines in the cluster bus member (that is, target the JMS connection factory at
the bus member). This allows the connections to be workload balanced but restricts reply messages to
the local queue point. The result is that reply messages can be found while using the same connection
to receive the reply that was used to send the request.

v When re-connecting after a failure, enable the Message gathering option on the JMS queue so that the
reply message can be received from wherever it is held.

This approach enables dynamic workload balancing of the requesting applications and minimizes the
performance implications of message gathering by reducing its use to failure scenarios.

Using a temporary queue as a reply queue:

JMS can create a temporary queue dynamically for use as a reply queue. You can use this to ensure that
a reply message is sent to the appropriate queue point for a cluster bus member.

This temporary JMS queue uses a temporary service integration bus queue. Temporary service integration
bus queues have only one queue point, irrespective of the number of messaging engines in the bus
member. This queue point is created on the messaging engine to which the creating JMS application is
connected.

680 Overview

Therefore, for a cluster bus member with multiple messaging engines (typically, to provide workload
management or scalability), you can use a temporary queue to avoid situations where reply messages are
sent to the wrong queue point.

This approach has the following advantages:

v It is simple to use.

v No further configuration of the service integration bus or JMS system is required.

v If the JMS connections of a number of requesting applications are workload balanced across the
messaging engines in a cluster bus member, the temporary queues are workload balanced across these
messaging engines.

This approach has the following disadvantages:

v The reply queue is temporary. When the creating application closes the JMS connection, or the
messaging engine is stopped, the reply queue, any messages on it, and any messages on their way to
it, are deleted. Therefore, when the JMS application disconnects, it cannot reconnect later to receive the
reply message.

Therefore, it is appropriate to use a temporary queue for a cluster bus member with multiple messaging
engines only if it is acceptable to lose the reply messages if the application or system stops. If this
approach is not acceptable, the following options allow applications to reconnect and process reply
messages:

v Use a scoped service integration bus alias destination to restrict messages to a single queue point .

v Restrict reply messages to the queue point that is local to the requesting application.

Cluster bus member

Application Server

Application Server

ME

ME

ME: Messaging Engine

QP: Queue Point

Service QP

Service QP

Temporary
queue

request/reply
application Service

Figure 122. Temporary queue point on the local messaging engine for the requesting application

Chapter 21. Service integration 681

v Configure the requestor to consume messages from all queue points simultaneously.

Using a scoped service integration bus alias destination to restrict messages to a single queue point:

You can use a service integration bus alias destination to target a service integration bus queue that has
multiple queue points. You can do this to ensure that a reply message is sent to the appropriate queue
point for a cluster bus member.

A service integration bus queue has multiple queue points if it is owned by a cluster bus member with
multiple messaging engines (typically, to provide workload sharing or scalability).

To restrict messages to a single queue point in this way, you must configure the alias destination to scope
the targeted queue down to a single queue point (see Alias destination [Settings]).

If you configure a JMS queue to use such an alias destination, all messages that are sent to the JMS
queue are sent to, or received from, the single queue point. Using such a JMS queue as a reply queue to
avoid situations where reply messages are sent to the wrong queue point.

It is good practice to make the messaging engine that owns the queue point to which the alias destination
is scoped, highly available.

This approach has the following advantages:

v It is simple to configure.

Cluster bus member

Application Server

Application Server

ME

ME

ME: Messaging Engine

QP: Queue Point

Service QP

Service QP

Reply QP

Alias

Reply QP

request/reply
application Service

Figure 123. Using a scoped service integration bus alias destination to restrict messages to a single queue point

682 Overview

v A requesting application can reconnect to any messaging engine (even a messaging engine that is not
on the bus member that owns the reply queue) and locate its reply messages.

v All messages are sent to the same queue point, simplifying monitoring of the system.

This approach has the following disadvantages:

v Sending all reply messages to the same queue point removes any workload balancing advantages of
the cluster bus member for this message traffic (see Refinement).

v Reply messages received by applications that are not connected to the messaging engine that owns the
scoped queue point must be transferred between messaging engines. This increases the message
route.

Refinement

You can improve the workload balancing of the system by configuring a scoped alias destination (and
accompanying JMS queue) for each queue point of the reply queue, and then sharing requesting
applications across these alias destinations. If the requesting application intends to disconnect and
reconnect before receiving the reply message, it must use the JMS queue/alias destination that it set as
the JMSReplyTo destination in the request message.

Restricting reply messages to the queue point that is local to the requesting application:

When a JMS queue identifies a service integration bus queue as the reply queue, and that service
integration bus queue has multiple queue points, you can configure a JMS queue to restrict the messages
to the queue point that is local to the application that referenced the JMS queue. You do this to ensure
that a reply message is sent to the appropriate queue point for a cluster bus member.

A service integration bus queue has multiple queue points if it is owned by a cluster bus member with
multiple messaging engines (typically, to provide workload sharing or scalability). The local queue point is
the queue point on the messaging engine to which the application is connected.

Example: A JMS queue called Reply is configured to identify the service integration bus queue that is to be
used as the reply queue. The JMS queue is configured to restrict the messages to the local queue point
(see the related tasks for more details).

Chapter 21. Service integration 683

The bus member also owns the service integration bus queue that is used as the reply queue, so each
messaging engine has a queue point of the reply queue configured.

The requesting application creates a JMS message and sets the JMSReplyTo destination to the JMS
queue named Reply. The requesting application sends the request message to the queue for the service
by using another JMS queue, called Service. (Service requires no special configuration.) By default, this
message might be delivered to any of the queue points that belong to Service, although it would usually
go to the local queue point. However, to fully illustrate this example, the system sends the message to the
other queue point.

When the application that sent the request message is connected to a messaging engine that also has a
queue point for the underlying service integration bus reply queue configured to it, and the option is
enabled, the identity of that single queue point of the reply queue is added to the information in the
JMSReplyTo queue in the message.

Cluster bus member

Application Server

Application Server

ME

ME

ME: Messaging Engine

QP: Queue Point

Reply QP

Reply QP

request/reply
application

Figure 124. A requesting JMS application connects to one of the messaging engines in the cluster bus member

684 Overview

The request message is delivered to the queue for the service, Service, and processed by the service. On
completion, the service sends a JMS message to the reply queue identified in the request message
(obtained using the JMS Message.getJMSReplyTo method). At this point, the messaging system would by
default send the reply message to any one of the queue points of Reply but, as the requestor scoped the
reply queue to its local queue point, the reply is sent to the single queue point on the messaging engine to
which the requestor was connected.

Cluster bus member

Application Server

Application Server

ME

ME

ME: Messaging Engine

QP: Queue Point

Service QP

Service QP

Reply QP

Reply QP

request/reply
application

Figure 125. The requesting application sends the request message to the queue for the service by using another JMS
queue

Chapter 21. Service integration 685

The system behaves as if the service integration bus queue has only one queue point. If the queue point
that the reply is scoped to is not available, the message is not sent to any other queue point.

This approach has the following advantages:

v Reply messages are always sent back to the queue point that is local to the requesting application. This
reduces the message route.

v Requesting applications connected to different messaging engines in the bus member can use the
same JMS queue definition. This allows dynamic workload balancing across the cluster.

This approach has the following disadvantages:

v If the requesting application intends to disconnect and reconnect before receiving the reply message,
the application must know which messaging engine it is connecting to, and must connect to the same
one when it reconnects. This is achieved in the JMS connection factory by targeting a messaging
engine and using the JMS connection factory to reconnect. This configuration excludes workload
balancing.

v The requesting application must be connected to a messaging engine in the bus member that owns the
service integration bus reply queue. Otherwise, there is no local queue point to scope reply messages
to and the system follows default message routing behavior.

Refinement

Cluster bus member

Application Server

Application Server

ME

ME

ME: Messaging Engine

QP: Queue Point

Service QP

Service QP

Reply QP

Reply QP

request/reply
application

Service

Figure 126. The message is sent to the requesting application local queue point even when the replying application
has a local queue point for the reply queue

686 Overview

To achieve workload balancing of multiple requesting applications across all messaging engines in the bus
member, while allowing applications to disconnect and reconnect, requires the following configuration:

v Multiple connection factories, each targeting a different messaging engine.

v The requesting applications to be spread across connection factories.

Configuring the requestor to consume messages from all queue points simultaneously:

By default, a JMS message consumer consumes from only one queue point for the lifetime of the
message consumer. Therefore, if the reply queue has more than one queue point, unless the reply
message is restricted to one particular queue point, the consumer might not be consuming from the queue
point to which the reply is sent, and might not receive the reply message.

However, you can configure the JMS queue used by the message consumer to allow the message
consumer to simultaneously consume from all queue points of the identified service integration bus queue,
irrespective of which messaging engine the requesting application is connected to.

The JMS queue option for this is Message visibility. If you enable Message visibility (Message
gathering), you do not have to restrict the location of the reply message, as the reply message is visible
whichever messaging engine the requesting application is connected to (see Related tasks for more
details).

In the following figure, a consuming application connects to a messaging engine that has message
visibility enabled but no local queue point. The associated queue point consumes messages from all
available queue points of a destination and makes them available to the consumer.

Chapter 21. Service integration 687

Advantages:

v It is simple to configure.

v Requesting applications can be dynamically workload balanced across the messaging engines in the
bus member.

v The requesting application can disconnect and re-connect to different messaging engines (even
messaging engines outside the bus member that owns the reply queue) without the risk of failing to find
the reply message.

Disadvantages:

v Gathering messages from multiple queue points is a very performance-intensive operation, even when
messages are available on the local queue point. Enabling Message visibility might reduce the overall
performance of the messaging system, if sufficient message gathering is being performed.

v Monitoring gathering consuming applications is complex when Message visibility is enabled because
messages can be assigned to gathering consumers for extended periods of time.

Workload sharing with publish/subscribe messaging
In publish/subscribe messaging, the messaging system sends one copy of every published message to
each matching subscription. Subscribers, that is, applications that consume publish/subscribe messages,
consume those messages from an individual subscription. To balance workload across multiple instances
of an application, for example when an application runs in a server cluster, all instances of the application
must use the same subscription.

Cluster bus member

Application Server

Application Server

ME

ME

ME: Messaging Engine

QP: Queue Point

Service QP

Service QP

Reply QP

Reply QP

request/reply
application

Service

Figure 127. Message visibility: messages are consumed from all queue points

688 Overview

Figure 100 on page 619 shows that, in this configuration, only one instance of the application processes
each message that is sent to the subscription. However, Figure 101 on page 620 shows that if different
instances of the same application are configured to receive messages from different subscriptions, each
instance processes a copy of every matching message, so that each message is spread (fanned) out.

Publisher

Application
instance X

Application
instance Y

Application
instance Z

BUS

Subscription
A

Mess ge 1 2, 3a ,

Mess ge 1 2, 3a ,

Message 2 Message 3Message 1

Figure 128. Application instances that share a single subscription (workload sharing)

Chapter 21. Service integration 689

For point-to-point messages, you can use queue destinations and partition a queue so that messages are
workload balanced. However, you cannot partition subscriptions in this way.

For publish/subscribe messaging, to configure multiple application instances to use the same subscription,
and therefore balance the message workload, you must use a durable subscription. The multiple instances
of the application must be able to consume simultaneously from the same subscription. This type of
subscription is called a shared durable subscription. To configure a shared durable subscription, you set
the Share durable subscriptions property for the relevant connection factory or activation specification.

A durable subscription has a home messaging engine and a unique identity, which is formed from the
client identity and the subscription name. The messaging system can accumulate new matching
publications for the subscription even while there is no active subscriber. The home messaging engine
accumulates messages for a subscription by using a publication point. When a subscriber starts or
restarts, the messaging system uses the unique identity and the home messaging engine to identify the
publication point, locate the durable subscription, and deliver any accumulated messages.

A nondurable subscription does not have a unique identity. It lasts for the lifetime of its subscriber. Multiple
application instances cannot receive messages from the same nondurable subscription.

You can set the Shared durable subscription property to one of the following:

In cluster
The bus distributes work between clients that connect to a bus member in the same cluster when
the clients use the same client identifier and durable subscription name.

Publisher

Application
instance X

Application
instance Y

Application
instance Z

BUS

Subscription
B

Subscription
C

Subscription
A

Mess ge 1 2, 3a ,

Mess ge 1 2, 3a ,

Mess ge 1 2, 3a , Mess ge 1 2, 3a ,

Mess ge 1 2, 3a ,Mess ge 1 2, 3a ,

Mess ge 1 2, 3a ,

Figure 129. Application instances that use individual subscriptions (messages fanned out)

690 Overview

Always shared
The bus distributes work between clients, regardless of where they connect to the bus, when the
clients use the same client identifier and durable subscription name.

Never shared
Clients cannot use the same client identifier and durable subscription name as an existing session.

High availability
You can make messaging engines highly available in the service integration environment.

Messaging engine recovery from exception conditions
In service integration, there can be exception conditions that do not require a messaging engine to restart,
exception conditions that require an automatic restart of the messaging engine, exception conditions that
are detected by explicit health monitoring and handled by the HAManager, and exception conditions that
require user intervention.

Recovery with the messaging engine running

A messaging engine can handle certain exception conditions without requiring the messaging engine to
restart or fail over. The exception condition is corrected automatically and an entry is added to the system
error log that explains the exception and suggests any user actions. The messaging engine continues to
run and to honor the quality of service specified for the messages it is processing.

Recovery with automatic restart of the messaging engine (local exceptions)

A messaging engine can recover from local exceptions by an automatic restart of the messaging engine,
either on its current server or on an alternative server. For example, if a messaging engine cannot connect
to its data store, possibly the server in which the messaging engine runs cannot create a connection to the
data store, but another server in the same cluster can. In a high availability configuration, that is, failover is
enabled, the HAManager will stop and disable the messaging engine in the current server and fail over the
messaging engine to a new server. The disabled messaging engine is automatically enabled after 30
seconds.

Recovery from exceptions detected by explicit health monitoring

A messaging engine cannot detect exceptions such as a thread spinning (when the thread becomes
trapped in a loop and no longer performs useful work), or a deadlock (when two threads are blocking each
other), but explicit health monitoring can. The HAManager provides such monitoring, and periodically tests
the health of the messaging engine. If the HAManager detects that a messaging engine that uses the data
store cannot run properly, the HAManager stops and disables the messaging engine. If the messaging
engine uses a file store, then the HAManager shuts down the server that is hosting the messaging engine.
If the server is in a cluster, the HAManager restarts the messaging engine on an alternative server, if the
policy of the messaging engine allows failover. The disabled messaging engine is automatically enabled
after 30 seconds, if the messaging engine uses a data store.

Recovery that requires user intervention (global exceptions)

A messaging engine cannot recover from global exceptions by restarting or failing over the messaging
engine. For example, if the data store for a messaging engine becomes corrupted, the problem is not
resolved by running the messaging engine on a different server because it encounters the same problem.
If a messaging engine in this situation was to be failed over, the messaging engine would be continually
failed over because it could not run in any server. There would be unwanted disruption to the cluster as
servers attempted to run the messaging engine and were shut down. To avoid such a situation, if a global
exception occurs, the messaging engine logs an error, stops processing messages, and is not failed over.
The messaging engine cannot be restarted until you correct the global exception condition and restart the
server.

Chapter 21. Service integration 691

External high availability frameworks and service integration
You can configure an external high availability framework, such as IBM HACMP, to manage a messaging
engine as if it is a resource in the external high availability framework resource group.

To allow a messaging engine to be managed by an external high availability framework, you configure a
“No operation” policy for the messaging engine. When you do this, HAManager activates or deactivates a
messaging engine only when the external high availability framework instructs it to.

The following situation requires the use of an external high availability framework:

v Using an external database for the data store of the messaging engine. In this situation, the database
must be accessible by the server that is running the messaging engine. To achieve this configuration,
include the database and the messaging engine in the same external cluster resource group, so that the
database is collocated with the messaging engine.

The following situation might require the use of an external high availability framework:

v Connecting a messaging engine to WebSphere MQ by using a WebSphere MQ link.

If you require high availability, you must add support for changes of IP address. The WebSphere MQ
gateway queue manager uses one IP address to reach the WebSphere Application Server gateway
messaging engine, and the WebSphere Application Server gateway messaging engine uses one IP
address to reach the WebSphere MQ gateway queue manager. In a high availability configuration, if the
gateway messaging engine fails over to a different application server, or the gateway queue manager
fails and is replaced by a failover gateway queue manager, the connection to the original IP address for
the failed component is lost. You must ensure that both products are able to reinstate their connection
to the component in its new location.

For more information about the options that are available for ensuring that the connection to a failover
WebSphere Application Server gateway messaging engine is reinstated, see “High availability of
messaging engines that are connected to WebSphere MQ.”

Note: To provide high availability for a WebSphere MQ queue manager connected to WebSphere
Application Server, you can specify multiple connection names in your WebSphere Application
Server definition for the WebSphere MQ link sender channel. If the active gateway queue
manager fails, the service integration bus can use this information to reconnect to a standby
gateway queue manager.

High availability of messaging engines that are connected to WebSphere MQ
For a WebSphere Application Server messaging engine to connect with a WebSphere MQ queue manager
in a highly available manner, you must add support for changes of IP address.

A WebSphere MQ link connects a service integration messaging engine to a WebSphere MQ queue
manager. To WebSphere MQ, the messaging engine appears to be another queue manager. To service
integration, the WebSphere MQ network appears to be a foreign bus.

The WebSphere MQ gateway queue manager uses one IP address to reach the WebSphere Application
Server gateway messaging engine, and the WebSphere Application Server gateway messaging engine
uses one IP address to reach the WebSphere MQ gateway queue manager. In a high availability
configuration, if the gateway messaging engine fails over to a different application server, or the gateway
queue manager fails and is replaced by a failover gateway queue manager, the connection to the original
IP address for the failed component is lost. You must ensure that both products are able to reinstate their
connection to the component in its new location.

To ensure that the connection to a failover WebSphere Application Server gateway messaging engine is
reinstated, choose one of the following options:

1. If you are using a version of WebSphere MQ that is earlier than Version 7.0.1, install the SupportPac
MR01 for WebSphere MQ. This SupportPac provides the WebSphere MQ queue manager with a list of
alternative IP addresses and ports, so that the queue manager can connect with the WebSphere

692 Overview

Application Server gateway messaging engine after the messaging engine fails over to a different IP
address and port. In WebSphere Application Server you must set a high availability policy of “One of
N” for the gateway messaging engine. For more information about the WebSphere MQ MR01
SupportPac, see MR01: Creating a HA Link between WebSphere MQ and a Service Integration Bus.

2. If you are using WebSphere MQ Version 7.0.1, use the connection name (CONNAME) to specify a
connection list. Although typically only one machine name is required, you can provide multiple
machine names to configure multiple connections with the same properties. The connections are tried
in the order in which they are specified in the connection list until a connection is successfully
established. If no connection is successful, the channel starts retry processing. When using this option,
specify the CONNAME as a comma-separated list of names of machines for the stated TransportType,
making sure that all the WebSphere Application Server cluster member IPs are listed directly in the
CONNAME. For further information about using the CONNAME, see the WebSphere MQ information
center.

Note: WebSphere MQ Version 7.0.1 does not require SupportPac MR01 because this release
includes the equivalent function to that provided by SupportPac MR01 for earlier releases. The
ability to use the CONNAME to specify a connection list was added as part of the support for
multi-instance queue managers in WebSphere MQ Version 7.0.1, however, it can also be used
as another option to ensure that the connection to a failover WebSphere Application Server
gateway messaging engine is reinstated.

3. Use an external high availability framework, such as HACMP, to manage a resource group that
contains the gateway messaging engine. When you use an external high availability framework, the IP
address can be failed over to the machine that runs the application server to which the gateway
messaging engine has moved. Follow this procedure to handle the IP address correctly:

v Set a high availability policy of “No operation” for the messaging engine, so that the external high
availability framework controls when and where the messaging engine runs.

v Create resources for the messaging engine and its IP address in the resource group that is
managed by the external high availability framework.

v Consider locating the messaging engine data store in the same resource group as the resource that
represents the messaging engine.

To ensure that the connection to a failover WebSphere MQ gateway queue manager is reinstated, choose
one of the following options:

1. Set up multi-instance queue managers in WebSphere MQ, as described in the WebSphere MQ
information center. In your definition for the WebSphere MQ link sender channel, select Multiple
Connection Names List, and specify the host names (or IP addresses) and ports for the servers
where the active and standby queue managers are located. If the active gateway queue manager fails,
the service integration bus uses this information to reconnect to the standby gateway queue manager.

2. Create the WebSphere MQ high-availability cluster using an external high availability framework, such
as HACMP, that supports IP address takeover. IP address takeover ensures that the gateway queue
manager in its new location appears as the same queue manager to the service integration bus.

The gateway queue manager and the gateway messaging engine store status information that they use to
prevent loss or duplication of messages when they restart communication following a failure. This means
that the gateway messaging engine must always reconnect to the same gateway queue manager.

If you use WebSphere MQ for z/OS queue sharing groups, you can configure the WebSphere MQ link to
use shared channels for the connection. Shared channels provide superior availability compared to the
high-availability clustering options available on other WebSphere MQ platforms, because shared channels
can reconnect to a different queue manager in the same queue sharing group. Reconnecting in the same
queue sharing group is typically faster than waiting to restart the same queue manager in the same or a
different location.

Chapter 21. Service integration 693

http://www.ibm.com/support/docview.wss?rs=171&uid=swg24013895&loc=en_US&cs=utf-8&lang=en

Service integration high availability and workload sharing
configurations
The configuration of messaging engines in service integration is very flexible. You can have a single
messaging engine that does not provide high availability or workload sharing. With a cluster bus member,
you can have a single highly available messaging engine. Alternatively, with a cluster bus member, you
can have multiple messaging engines that share workload, or that share workload and also provide high
availability.

v A simple configuration has one messaging engine that runs on a single server. This configuration is
suitable for many purposes. However, one messaging engine is a single point of failure and the
configuration does not provide high availability or workload sharing.

v A configuration for high availability has a single messaging engine that runs on a server in a cluster,
where that messaging engine can fail over to one or more alternative servers in the cluster. By using
failover, you avoid a single point of failure and ensure that there is always a messaging engine running
in the cluster.

v A configuration for workload sharing or scalability has multiple messaging engines running in a cluster,
where each messaging engine runs on one specific server in the cluster. The messaging load is spread
across multiple servers, and you can add new servers to the cluster without affecting the existing
messaging engines.

v A configuration for workload sharing with high availability has multiple messaging engines running in a
cluster, where each messaging engine runs on a specific server in the cluster and can also can fail over
to one or more alternative servers in the cluster.

The configurations that are possible depend on the type of bus member you create. If you create a server
bus member, you can create only a simple configuration. If you create a cluster bus member, you can
create any of the configurations in the previous list, depending on the number of messaging engines in the
cluster and the behavior of those messaging engines. For more details, see the topic about bus member
types and their effect on high availability and workload sharing.

For details and examples of the configurations you can create, see the subtopics.

Configuring messaging engine behavior

To configure messaging engine behavior, add a cluster to a bus and use a predefined messaging engine
policy. The predefined messaging engine policies support frequently-used cluster configurations, such as
workload sharing and scalability, high availability, or a combination. You use messaging engine policy
assistance, which creates one or more messaging engines and configures them to provide the required
behavior. You can also use messaging engine policy assistance to set up a custom configuration.
Messaging engine policy assistance guides you through the configuration and many of the settings are
created automatically. For more information, see the topic about messaging engine policy assistance.

It is possible to add a cluster to a bus and configure the messaging engine behavior without using
messaging engine policy assistance. Use this procedure if you are already familiar with it. Otherwise, use
messaging engine policy assistance.

If you add a cluster to a bus without using messaging engine policy assistance, you configure a policy to
control the availability behavior of the messaging engine on that bus member.

v If you want high availability, you can use a cluster bus member with one messaging engine and the
default service integration policy, “Default SIBus Policy”, which allows the messaging engine to fail over
to any other application server in the cluster. Alternatively, you can create a new policy and configure it
to specify other availability behavior, such as a preference for particular servers or the ability to fail
back.

694 Overview

v If you want workload sharing but not high availability, you can use a cluster bus member with multiple
messaging engines and create a Static policy for each messaging engine. This might be useful for
scalable express messaging, in which there is no persistent state associated with any one messaging
engine, so no failover is required.

v If you want an external high availability framework to manage the messaging engines, create a “No
operation” policy for them.

For more information about policies and configuration, see the topic about policies for service integration.

The following table shows how you can achieve different configurations without using messaging engine
policy assistance.

Table 71. Service integration configurations. The first column of the table lists the different configurations available.
The second column lists the types of bus members used in configuring the messaging engines. The third column
displays the number of messaging engines used in the configuration. The fourth column lists the policy types.

Configuration Type of bus member
Number of messaging
engines Policy type

Simple Server 1 Default (“One of N”)

Simple Cluster 1 Static

High availability Cluster 1 “One of N” or “No operation”

Workload sharing without high
availability

Cluster more than 1 (typically, one
messaging engine for each
server)

Static

High availability and workload
sharing

Cluster more than 1 (typically, one
messaging engine for each
server)

“One of N” or “No operation”

Bus member types and their effect on high availability and workload sharing
You can add a server to a service integration bus, to create a server bus member. You can also add a
cluster to a service integration bus, to create a cluster bus member. A cluster bus member can provide
scalability and workload sharing, or high availability, but a server bus member cannot.

Adding a server to a bus

When you add a server to a service integration bus, a messaging engine is created automatically. This
single messaging engine cannot participate in workload sharing with other messaging engines; it can only
do that in a cluster. The messaging engine also cannot be highly available, because there are no other
servers in which it can run.

Adding a cluster to a bus

A cluster deployment can provide scalability and workload sharing, or high availability, or a combination of
these aspects. This depends on the number of messaging engines in the cluster and the behavior of those
messaging engines, such as whether the messaging engines can fail over to another server, or fail back
when a server becomes available again.

You can use messaging engine policy assistance to create and configure messaging engines in a cluster.
The following predefined messaging engine policy types are available, which support frequently-used
cluster configurations:

v High availability. One messaging engine is created in the cluster. It can fail over to any other server in
the cluster, so it is highly available.

v Scalability. One messaging engine is created for each application server in the cluster. The messaging
engines cannot fail over.

Chapter 21. Service integration 695

v Scalability with high availability. One messaging engine is created for each application server in the
cluster. Each messaging engine can fail over to one specific server in the cluster, creating a circular
pattern of availability.

You can also use messaging engine policy assistance to create a custom messaging engine policy. You
can create any number of messaging engines for the cluster, and configure the messaging engines as you
require. The associated core group policies and settings for the messaging engines are created
automatically.

If you do not use messaging engine policy assistance, when you add a server cluster to a service
integration bus, a single messaging engine is created automatically. This messaging engine uses the
default SIBus core group policy that already exists in WebSphere Application Server. The policy allows the
messaging engine to fail over to any server in the cluster. You can then add further messaging engines if
required. The cluster deployment depends on the number of messaging engines in the cluster and the
policy bound to the high availability group (HAGroup) of each messaging engine.

If there is only one messaging engine in the cluster and you deploy a destination to that cluster, the
destination is localized by that messaging engine. All messaging workload for that destination is handled
by that messaging engine; the messaging workload cannot be shared. The availability characteristics of
the destination are the same as the availability characteristics of the messaging engine.

You can benefit from increased scalability by introducing additional messaging engines to the cluster.
When you deploy a destination to the cluster, it is localized by all the messaging engines in the cluster and
the destination becomes partitioned across the messaging engines. The messaging engines can share all
traffic passing through the destination, reducing the impact of one messaging engine failing. The
availability characteristics of each destination partition are the same as the availability characteristics of the
messaging engine the partition is localized by.

If you do not use messaging engine policy assistance, you control the availability behavior of each
messaging engine by modifying the core group policy that the HAManager applies to the HAGroup of the
messaging engine.

The simplest way to create and configure messaging engines in a cluster is to add a cluster to a bus and
use messaging engine policy assistance with one of the predefined messaging engine policy types. If you
are familiar with creating messaging engines and configuring messaging engine behavior, you can use
messaging engine policy assistance and the custom messaging engine policy type. To add a cluster to a
bus without using messaging engine policy assistance, you should be familiar with all the creation and
configuration steps involved, for example, creating a messaging engine, configuring core group policies
and using match criteria.

Simple configuration without workload sharing or high availability
A simple configuration consists of a single messaging engine running on only one server. This
configuration does not provide workload sharing or high availability.

If the server on which the messaging engine is running fails, the messaging engine cannot be failed over
to an alternative server. A simple way to create this configuration is to add a server to a bus. The
messaging engine is created automatically and the default service integration policy, “Default SIBus
Policy”, provides suitable behavior. Alternatively, you can add a cluster to a bus, then configure a Static
policy for the messaging engine so that the messaging engine runs on only one server.

The following diagram shows a simple configuration that is created by adding a server to a bus. There is a
single messaging engine, ME, with a data store, running on one server. If the server fails, the messaging
engine becomes unavailable until the server is restarted.

696 Overview

In this configuration, you do not need to enable access to the data store from other servers because the
messaging engine cannot run on any other server.

Configuration for high availability
This configuration consists of a single messaging engine, running in a cluster, that can fail over to one or
more alternative servers. A high availability configuration ensures that there is always a messaging engine
running in the cluster, so that messages are always transmitted.

There are two ways to achieve this configuration:

v You can add a cluster to the service integration bus by using messaging engine policy assistance, and
use the high availability messaging engine policy. This procedure creates a single messaging engine for

server

node1

Running

ME

data
store

HAManager

Figure 130. Simple configuration with a single server

server

node1

Stopped

ME

data
store

HAManager

Figure 131. Simple configuration after the server fails

Chapter 21. Service integration 697

the cluster, which is configured to fail over to any of the other servers in the cluster. A new core group
policy is automatically created, configured, and associated with the messaging engine.

v You can add a cluster to the service integration bus without using messaging engine policy assistance.
One messaging engine is created automatically and the default service integration policy, “Default SIBus
Policy”, provides suitable behavior for high availability. The default service integration policy is a “One of
N” policy where the messaging engine starts on the first available server in the cluster and can fail over
to any other server in the cluster.

You can optionally change the configuration, for example, you want to use a primary server and a
backup server, or you want the messaging engine to run on only a subset of the servers in a cluster. To
change the configuration, create a new “One of N” core group policy and configure the policy for the
messaging engine further. For example:

– You can set an ordered list of preferred servers that the messaging engine can run on and fail over
to.

– You can specify whether the messaging engine can run on any server in the cluster, or only on those
in the preferred servers list.

– You can specify whether the messaging engine can fail back to a more preferred server when one
becomes available.

After you create the new policy, use the match criteria to associate the policy with the required
messaging engine.

It is not advisable to change the default service integration policy, “Default SIBus Policy”, because those
changes will affect all messaging engines that the policy manages.

There is no workload sharing in the high availability messaging engine configuration, because there is only
one messaging engine to handle the traffic through the destination.

The following diagram shows a high availability messaging engine configuration in which the single
messaging engine ME, with a data store, is running in a cluster of three servers. Each server is on a
separate node, so that if one node fails, the servers on the remaining nodes are still available.

Each server in the cluster contains the messaging engine configuration, and creates an instance of the
messaging engine so that the instance is ready to be activated if another server fails.

The message store for the messaging engine must be accessible by all the servers in the cluster. For a
data store, the way to achieve this depends on the data store topology you use. If you use a networked
database server, you must ensure that the database server is accessible from all servers in the cluster that
might run the messaging engine. Alternatively, you can use an external high availability framework to
manage the database by using a shared disk.

Initially, the messaging engine runs in its preferred location of server1.

698 Overview

The following diagram shows what happens if server1 fails. The messaging engine is activated on the next
server in the preferred servers list, which is server2.

Cluster

server1

node1

Failover locations

Running in prefered location

server2

node2

server3

node3

ME ME ME

data
store

Figure 132. Highly available messaging engine configuration

Chapter 21. Service integration 699

The following diagram shows what happens if server1 and server2 fail. The messaging engine is activated
on server3, because this is the only available server.

Cluster

server1

node1

Stopped

Second failover location

Running in failover location

server2

node2

server3

node3

ME ME ME

data
store

Messaging engine running on server 1 fails over to server 2

Figure 133. Highly available messaging engine configuration after server1 fails

700 Overview

If you use messaging engine policy assistance and the high availability messaging engine policy, the list of
preferred servers is set up automatically.

If you do not use messaging engine policy assistance and you want the messaging engine to use
preferred servers, you must specify one or more preferred servers for the messaging engine. Whenever a
preferred server is available, the high availability manager (HAManager) runs the messaging engine in it.
When no preferred server is available, the messaging engine runs in any other available server. You can
also set the Fail back option on the policy so that when a preferred server becomes available again, the
HAManager moves the messaging engine back to it.

If you use messaging engine policy assistance and the high availability messaging engine policy, the
messaging engine is not set to fail back.

Configuration for workload sharing or scalability
This configuration consists of multiple messaging engines running in a cluster, with each messaging
engine restricted to running on one particular server. A workload sharing configuration achieves greater
throughput of messages by spreading the messaging load across multiple servers.

There are two ways to achieve this configuration:

v You can add a cluster to the service integration bus using messaging engine policy assistance, and use
the scalability messaging engine policy. This procedure creates a messaging engine for each server in
the cluster. Each messaging engine has just one preferred server and cannot fail over or fail back, that
is, it is configured to run only on that server. New core group policies are automatically created,
configured, and associated with each messaging engine.

Cluster

server1

node1

Stopped

Running in second failover location

server2

node2

server3

node3

ME ME ME

data
store

If servers 1 and 2 fail, messaging engine runs on server 3

Figure 134. High availability messaging engine policy configuration after both server1 and server2 fail

Chapter 21. Service integration 701

v You can add a cluster to the service integration bus without using messaging engine policy assistance.
One messaging engine is created automatically, then you add the further messaging engines that you
require to the cluster, for example, one messaging engine for each server in the cluster.

You create a core group policy for each messaging engine. Because no failover is required, you
configure those policies so that each messaging engine is restricted to a particular server. To restrict a
messaging engine to a particular server, you can configure a Static policy for each messaging engine.

After you create the new policies, use the match criteria to associate each policy with the required
messaging engine.

This type of deployment provides workload sharing through the partitioning of destinations across multiple
messaging engines. This configuration does not enable failover, because each messaging engine can run
on only one server. The impact of a failure is lower than in a simple deployment, because if one of the
servers or messaging engines in the cluster fails, the remaining messaging engines still have operational
destination partitions. However, messages being handled by a messaging engine in a failed server are
unavailable until the server can be restarted.

The workload sharing configuration also provides scalability, because it is possible to add new servers to
the cluster without affecting existing messaging engines in the cluster.

The following diagram shows a workload sharing or scalability configuration in which there are three
messaging engines, ME1, ME2, and ME3, with data stores A, B, and C, respectively. The messaging
engines run in a cluster of three servers and share the traffic passing through the destination. Each server
is on a separate node, so that if one node fails, the servers on the remaining nodes are still available.

The following diagram shows what happens if server1 fails. ME1 cannot run, and data store A is not
accessible. ME1 cannot process messages until server1 recovers. ME2 and ME3 are unaffected and
continue to process messages. They will now handle all new traffic through the destination.

Cluster

server1

node1

Running

server2

node2

server3

node3

ME1 ME2 ME3

data
store A

data
Bstore

data
Cstore

Figure 135. Workload sharing or scalability configuration

702 Overview

The following diagram shows what happens if server1 recovers and server2 fails. ME2 cannot run, and
data store B is not accessible. ME2 cannot process messages until server2 recovers. ME1 and ME3 can
process messages and will now handle all new traffic through the destination.

Cluster

server1

node1

Stopped

Running

server2

node2

server3

node3

ME1 ME2 ME3

data
store A

data
store B

data
store C

Figure 136. Workload sharing or scalability configuration after server1 fails

Chapter 21. Service integration 703

Configuration for workload sharing with high availability
This configuration consists of multiple messaging engines running in a cluster, where each messaging
engine can fail over to one or more alternative servers.

There are three ways to achieve this configuration:

v You can add a cluster to the service integration bus by using messaging engine policy assistance, and
use the scalability with high availability messaging engine policy. This procedure creates a single
messaging engine for each server in the cluster. Each messaging engine can fail over to one other
specified server in the cluster. Each server can host up to two messaging engines, such that there is an
ordered circular relationship between the servers. Each messaging engine can fail back, that is, if a
messaging engine fails over to another server, and the original server becomes available again, the
messaging engine automatically moves back to that server.

v You can add a cluster to the service integration bus by using messaging engine policy assistance, and
use the custom messaging engine policy. You can create as many messaging engines as you require
for the cluster. For each messaging engine you create, you must configure the messaging engine policy
to provide the messaging engine behavior that you require.

v You can add a cluster to the service integration bus without using messaging engine policy assistance.
One messaging engine is created automatically, then you add the further messaging engines that you
require to the cluster. A typical configuration has one messaging engine for each server in the cluster.
Create a new “One of N” core group policy for each messaging engine in the cluster. Configure the
policies so that one messaging engine runs on each server and so that there is high availability
behavior, for example, each messaging engine can fail over to one designated server.

– You can set an ordered list of preferred servers that the messaging engine can run on and fail over
to.

– You can specify whether the messaging engine can run on any server in the cluster, or only on those
in the preferred servers list.

Cluster

server1

node1

Stopped

Running

server2

node2

server3

node3

ME1 ME2 ME3

data
Astore

data
Bstore

data
Cstore

Figure 137. Workload sharing or scalability configuration after server1 recovers and server2 fails

704 Overview

– You can specify whether the messaging engine can fail back to a more preferred server when one
becomes available.

After you create the new policies, use the match criteria to associate each policy with the required
messaging engine.

The default service integration policy, “Default SIBus Policy”, does not provide this behavior, so you
must create new core group policies.

This type of configuration provides availability, because each messaging engine can fail over if a server
becomes unavailable. The configuration provides workload sharing because there are multiple messaging
engines to share the traffic through the destination, and scalability, because it is possible to add new
servers to the cluster without affecting existing messaging engines in the cluster.

The following diagram shows an example configuration of this type. There are three messaging engines,
ME1, ME2, and ME3, with data stores A, B, and C, respectively. The messaging engines run in a cluster
of three servers and share the traffic passing through the destination. Each server is on a separate node,
so that if one node fails, the servers on the remaining nodes are still available.

Each messaging engine has one preferred location and one secondary location. Each server in the cluster
contains the definition of two messaging engines that can run on it, and creates an instance of each
messaging engine so that one messaging engine can run on it as its preferred location, and the other
instance is ready to be activated if another server fails. ME1 runs on server1 and can fail over to server2;
ME2 runs on server2 and can fail over to server3; ME3 runs on server3 and can fail over to server1.

The message store for each messaging engine must be accessible by the preferred server and the
secondary server. The way to achieve this is depends on the data store topology you use. If you use a
networked database server, you must ensure that the database server is accessible from all servers in the
cluster that might run the messaging engine. Alternatively, you can use an external high availability
framework to manage the database by using a shared disk.

This example configuration is the configuration created when you use messaging engine policy assistance
and the scalability with high availability messaging engine policy for a cluster of three servers.

Chapter 21. Service integration 705

The following diagram shows what happens if server1 fails. The messaging engine ME1 is activated on
the next server in the preferred servers list for that messaging engine, which is server2. ME2 continues to
run on server2, and ME3 continues to run on server3.

Cluster

server1

node1

Running in preferred location

Failover location

server2

node2

server3

node3

ME1 ME1 ME2

ME3

data
store A

data
store B

data
store C

ME2 ME3

Figure 138. High availability with workload sharing or scalability configuration

706 Overview

The following diagram shows what happens if server1 becomes available again and server2 fails. The
messaging engine ME1 is activated on server1, the first server in the preferred servers list for that
messaging engine, because failback is set for ME1. ME2 is activated on the next server in the preferred
servers list for that messaging engine, which is server3. ME3 continues to run on server3.

Cluster

server1

node1

Running in failover location

Running in preferred location

Stopped

Failover location

server2

node2

server3

node3

ME1 ME1 ME2

ME3

data
store A

data
store B

data
store C

ME2 ME3

Messaging engine 1 fails over to server 2

Figure 139. High availability with workload sharing or scalability configuration after server1 fails

Chapter 21. Service integration 707

The predefined scalability with high availability messaging engine policy creates a configuration with
aspects of scalability and high availability. The following diagram shows another example of a configuration
that provides high availability and workload sharing, where message transmission is a priority. There are
two messaging engines, ME1 and ME2, with data stores A and B, respectively, running in a cluster of
three servers and sharing the traffic through a destination. In normal operation, ME1 runs on server1 and
ME2 runs on server2. Server3 provides a failover location for both messaging engines. This is known as
an “N+1” configuration, because there is one spare server.

Cluster

server1

node1

Running in failover location

Running in preferred location

Stopped

Failover location

server2

node2

server3

node3

ME1 ME1 ME2

ME3

data
store B

data
store A

data
store C

ME2 ME3

Messaging engine 2 fails over to server 3

Figure 140. High availability with workload sharing or scalability configuration after server2 fails

708 Overview

The preferred server list for ME1 is server1, server3, and the preferred server list for ME2 is server2,
server3. The advantage of this configuration is that if one server fails, each remaining server hosts only
one messaging engine. The disadvantage of this configuration is the expense of the spare server. To
achieve this type of configuration, you can use the custom messaging engine policy.

If you do not use messaging engine policy assistance and you want the messaging engine to use
preferred servers, you must specify one or more preferred servers for the messaging engine. Whenever a
preferred server is available, the high availability manager (HAManager) runs the messaging engine in it.
When no preferred server is available, the messaging engine runs in any other available server. You can
also set the Fail back option on the policy so that when a preferred server becomes available again, the
HAManager moves the messaging engine back to it.

Policies for service integration
Each messaging engine on a service integration bus belongs to one high availability group (HAGroup).
The members of each HAGroup are controlled by a policy assigned to the group at run time. This core
group policy determines the availability characteristics of the messaging engine in the HAGroup.

If you add a server to a service integration bus, a messaging engine that uses the default service
integration policy, a “One of N” policy, is created automatically. The behavior of the messaging engine is to
run only on that server, because there is only one server available to it. It is possible to configure a
non-default policy for the messaging engine, but it would not affect the behavior of the messaging engine.

If you add a server cluster to a bus, you can control which servers the messaging engine can run on, and
the behavior of the messaging engine if a server is unavailable. You can also deploy additional messaging
engines to the cluster. For example, you can configure the cluster to provide high availability, scalability or
workload sharing (increasing performance by increasing the resources that provide the service), or a
combination of these factors.

When you add a cluster to a bus, you can configure the messaging engine behavior by using messaging
engine policy assistance. There are predefined messaging engine policies that support frequently-used

ME1 ME2 ME1

ME2

Cluster

server1

node1

Running in preferred location

Failover location

server2

node2

server3

node3

data
store A

data
store B

Figure 141. Highly available messaging engines with workload sharing in an “N+1” configuration

Chapter 21. Service integration 709

cluster configurations, and an option to set up a custom configuration while still using messaging engine
policy assistance. The advantage of messaging engine policy assistance is that you are guided through
the configuration and many of the settings are created automatically. For more information, see the related
topics.

The remainder of this topic describes the configuration of messaging engine behavior without using
messaging engine policy assistance. Use these settings if you are already familiar with this procedure.
Otherwise, use messaging engine policy assistance.

To configure the messaging engine behavior, you configure the core group policy for the HAGroup of the
messaging engine. You can configure the policy to control whether the messaging engine has a preference
for a particular server, or set of servers, and whether the messaging engine is restricted to the set of
preferred servers. You can control whether a messaging engine can fail back to a more preferred server
after failover. You can also modify the policy to change the monitoring interval for the messaging engine.

The following table shows the types of core group policy you can use for messaging engines, and how
each type affects the behavior of a messaging engine that belongs to a cluster bus member.

Table 72. Effects of core group policies. The first column lists the types of the core group policies used for
messaging engines. The second column explains how the policy type affects the messaging engine.

Policy type Behavior

Static - with one server in the static group servers
list

The messaging engine is restricted to a particular server. The messaging
engine can run only on the server to which it is restricted, and cannot fail
over to any other server in the cluster. For multiple messaging engines, this
can be a useful configuration for workload sharing, where failover is not
wanted.

One of N - with no preferred servers The messaging engine runs on the first available server and can fail over to
any of the other servers in the cluster. It has no preference for any particular
server.

The “Default SIBus Policy” provides this behavior.

One of N - with preferred servers The messaging engine runs on the first server in the preferred servers list
that is available when the messaging engine starts. It can fail over to the first
server in the preferred servers list that is available at the time of failover. The
earlier a server is in the preferred servers list, the stronger the preference for
that server. If no preferred servers are available, it can fail over to any other
server in the cluster. After the messaging engine fails over, it does not move,
even if a more preferred server becomes available again.

One of N - with preferred servers and the Fail back
setting

The messaging engine always runs on the most preferred server that is
available. It runs on the first server in the preferred servers list that is
available when the messaging engine starts. It can fail over to the first server
in the preferred servers list that is available at the time of failover. The earlier
a server is in the preferred servers list, the stronger the preference for that
server. If no preferred servers are available, it can fail over to any other
server in the cluster. After the messaging engine fails over, if a more
preferred server becomes available again, the messaging engine moves
automatically to that server.

One of N - with preferred servers and the Preferred
servers only setting

The messaging engine runs on only servers in the list of preferred servers. It
runs on the first server in the preferred servers list that is available when the
messaging engine starts. It can fail over to the first server in the preferred
servers list that is available at the time of failover. The earlier a server is in
the preferred servers list, the stronger the preference for that server. If no
preferred servers are available, it cannot fail over to any other server in the
cluster. If the Fail back setting is selected, after the messaging engine fails
over, if a more preferred server becomes available again, the messaging
engine moves automatically to that server.

710 Overview

Table 72. Effects of core group policies (continued). The first column lists the types of the core group policies used
for messaging engines. The second column explains how the policy type affects the messaging engine.

Policy type Behavior

No operation The messaging engine is managed by an external high availability framework
and can fail over to any of the other servers in the external high availability
cluster. If a you require server affinity, configure this as a preference in the
high availability cluster configuration. The configuration details depend on the
choice of high availability framework.

This policy is useful where a high availability clustered database is being
used for the data store for the messaging engine; you can put the
messaging engine under the control of the same high availability cluster that
is managing the database. This policy is also useful where a messaging
engine is connected to a WebSphere MQ queue manager; the messaging
engine can fail over if it is using a high availability clustered IP address for its
inbound channel chains. For more information, see “External high availability
frameworks and service integration” on page 692.

The policy is assigned to the appropriate HAGroup at run time by using the match criteria that are
configured for the policy.

Default service integration policy

The most general policy for service integration is the default included with the product, the “Default SIBus
Policy”. This is a “One of N” policy with no preferred servers, that is, the messaging engine starts on the
first available server in the cluster and can fail over to any other application server in the cluster. There is
no automatic fail back and there is a monitoring interval of 120 seconds. The policy has a single match
criterion that matches any service integration messaging engine, so the policy applies to any messaging
engine, unless the messaging engine is in an HAGroup with a stronger match to a different policy.

Messaging engine policy assistance:

Messaging engine policy assistance provides guidance about creating and configuring messaging engines
in a cluster to provide the behavior you require. Messaging engine policy assistance also automatically
creates the associated core group policies and other settings. Messaging engine policy assistance is
available when you add a cluster as a bus member, or when you administer a messaging engine in a
cluster.

For example, you can create and configure messaging engine policies to provide high availability,
scalability, or a combination of the two.

You can select from one of three predefined messaging engine policy types, which support frequently-used
cluster configurations. The administrative console displays a diagram of the selected cluster and the effect
of the selected messaging engine policy type. If further changes are needed to use the policy successfully,
warning triangles are displayed for the components that might cause a problem, and messages that
suggest solutions are displayed. The predefined messaging engine policy types are:

v High availability. The cluster has a single messaging engine that is configured to fail over to any other
server in the cluster.

v Scalability. There is one messaging engine for each server in the cluster. Each messaging engine is
restricted to a particular server and is not configured to fail over.

v High availability and scalability. There is one messaging engine for each server in the cluster. Each
messaging engine can fail over to one other server in the cluster. Each server can host up to two
messaging engines.

You can also use messaging engine policy assistance to create a custom configuration, where you can
control how many messaging engines to create and the messaging engine behavior. The associated core
group policies are still automatically created, even though you complete some configuration yourself.

Chapter 21. Service integration 711

If you do not use messaging engine policy assistance, you must do the following:

v Create the messaging engine

v Configure a message store for the messaging engine

v Create a core group policy for the messaging engine

v Configure the core group policy to provide the required messaging engine behavior

v Use match criteria to associate the policy with the messaging engine

Unless you are familiar with this procedure and have used it before, it is preferable to use messaging
engine policy assistance.

High availability messaging engine policy:

The high availability messaging engine policy is a predefined messaging engine policy type that is
provided when you use messaging engine policy assistance. It helps you to create and configure a
messaging engine in a cluster that is a member of a bus when you want the messaging engine to be
highly available.

A high availability configuration ensures there is always a messaging engine running in the cluster. When a
server that is hosting a messaging engine fails, the messaging engine is activated and run on another
server. All messages that are set for high reliability, that were being processed or queued, will continue to
be processed when the messaging engine starts on the next server. Use the high availability messaging
engine policy for a system where it is a priority to process messages that are set for high reliability with
minimum interruption.

The high availability messaging engine policy creates a single messaging engine for the cluster. The
messaging engine is configured to fail over to any of the application servers in the cluster. All the
application servers in the cluster are added to the preferred servers list, and this list determines the order
in which the servers are used for failover. The earlier the server in the preferred servers list, the stronger
the preference for that server. The messaging engine does not fail back, that is, if a more preferred server
becomes available again, the messaging engine does not move back to that server.

The messaging engine is configured to use a single, highly available, message store (either a database or
a file system) that all the servers in the cluster can access.

When you select the high availability messaging engine policy type on the administrative console, a
diagram shows the selected cluster and the eventual outcome of the policy.

If there are no warning triangles in the diagram, and the “Is further configuration required” column shows
No in the High availability row, the topology of the cluster and the configuration of the messaging engine is
suitable, and you can continue.

If there are warning triangles in the diagram, examine the messages in the High availability row for
guidance on how to achieve a suitable messaging engine configuration.

If you require high availability in a cluster, that cluster should contain at least two nodes, each with a
server on it (that is, there should be at least two separate physical machines in the cluster). If the
messages advise you to add another server on another node, you must redefine the topology of the
cluster before you add the cluster as a member of a bus.

For example, the following figure shows three servers configured on one node. If that node fails, there will
be no servers available for the messaging engine to fail over to. There must be at least one other server
on a separate node to ensure that there is always a server on which a messaging engine can run.

712 Overview

The following figure is an example of a diagram displayed when the cluster topology and messaging
engine configuration is suitable for the high availability policy. There are three nodes and each node
contains a server. If a messaging engine is running on a server in a node and that node fails, the
messaging engine can run on one of the other servers in the other two nodes. There are no warning
triangles and no suggested components with dotted lines around them because the policy can be used
successfully.

existing messaging
engine

arrow indicates
failover

cluster, including
suggested components

existing node

first preference to host
the messaging engine

second preference to host
the messaging engine

third preference to host
the messaging engine

a suggested node to
conform to the policy

warning triangle for
suggested component

a suggested server to
conform to the policy

Figure 142. High availability policy selected without a suitable cluster topology

Chapter 21. Service integration 713

The following table shows the messaging engine policy settings for a cluster of three servers that use the
high availability messaging engine policy:

Table 73. Messaging engine policy settings for an example configuration. The first column of the table displays the
messaging engine name. The second and third columns of the table indicate the failover and failback status of the
messaging engine. The fourth column lists the three servers in the cluster. The fifth column indicates whether the
messaging engine runs only on the preferred servers.

Messaging engine name Failover Failback Preferred servers list Only run on preferred servers

clustername.000-busname true false server1

server2

server3

true

For more information about messaging engine configuration for high availability, see the related
information.

Scalability messaging engine policy:

The scalability messaging engine policy is a predefined messaging engine policy type that is provided
when you use messaging engine policy assistance. It helps you to create and configure messaging
engines in a cluster that is a member of a bus when you require a configuration that is easy to expand for
performance or workload sharing.

The scalability policy ensures that there is a messaging engine for each server in a cluster. If you add
more servers to the cluster to support a larger client load or higher messaging throughput, each new
server will run a messaging engine. Use the scalability policy for a system where you want to add more
servers to a cluster to achieve better performance. If you also require high availability, see “Scalability with
high availability messaging engine policy” on page 716.

existing
messaging engine

arrow
indicates
failover

cluster

third preference to host
the messaging engine

first preference to host
the messaging engine

second preference to host
the messaging engine

existing
node

existing
node

existing
node

Figure 143. High availability policy selected with a suitable cluster configuration

714 Overview

The scalability messaging engine policy creates a single messaging engine for each server in the cluster.
Each messaging engine can run only on the server that it is assigned to, and it cannot fail over to another
server. If a server fails, the messaging engine that is running on it also fails, and is not available until the
server recovers.

Each messaging engine is assigned to a specific server by configuring it to run only on servers in its list of
preferred servers, then specifying only one server in that preferred servers list.

When you select the scalability messaging engine policy type on the administrative console, a diagram
shows the selected cluster and the eventual outcome of the policy.

If there are no warning triangles in the diagram, and the “Is further configuration required” column shows
No in the Scalability row, the topology of the cluster and the configuration of the messaging engine is
suitable, and you can continue.

If there are warning triangles in the diagram, examine the messages in the Scalability row for guidance on
how to achieve a suitable messaging engine configuration.

For example, the following figure shows three servers configured on one node and one messaging engine
that can run on server1. A green circle on the server shows the location where the messaging engine can
run. Two additional messaging engines are suggested by the grayed out components and the yellow
warning triangles. There must be two more messaging engines to conform to the selected messaging
engine policy.

existing messaging engine

a suggested messaging engine
to conform to the policy

a suggested messaging engine
to conform to the policy

suggested host server for the
messaging engine in this row

suggested host server for the
messaging engine in this row

warning triangle for
suggested component

cluster

existing node

server that can host
the messaging engine
in this row

servers that cannot
host the messaging
engine in this row

Figure 144. Scalability policy selected without a suitable messaging engine configuration

Chapter 21. Service integration 715

The following figure is an example of a diagram displayed when the messaging engine configuration is
suitable for the scalability policy. There are three messaging engines and each one can run on only one
server. There are no warning triangles and no faded out components because the policy can be used
successfully.

The following table shows the messaging engine policy settings for a cluster of three servers that use the
scalability messaging engine policy.

Table 74. Messaging engine policy settings for an example configuration. The first column of the table displays the
messaging engine names. The second and third columns of the table indicate the failover and failback status of the
messaging engine. The fourth column lists the three servers in the cluster. The fifth column indicates whether the
messaging engine runs only on the preferred servers.

Messaging engine name Failover Failback Preferred servers list Only run on preferred servers

clustername.000-busname false false server1 true

clustername.001-busname false false server2 true

clustername.002-busname false false server3 true

For more information about messaging engine configuration for scalability or workload sharing, see the
related information.

Scalability with high availability messaging engine policy:

existing messaging
engines with no
failover

server that can host the
messaging engine in this row

server that can host the
messaging engine in this row

cluster

existing node

server that can host
the messaging engine
in this row

servers that cannot
host the messaging
engine in this row

Figure 145. Scalability policy selected with a suitable messaging engine configuration

716 Overview

The scalability with high availability messaging engine policy is a predefined messaging engine policy type
that is provided when you use messaging engine policy assistance. It helps you to configure a cluster that
is a member of a bus when you require both high availability and scalability in the cluster.

The scalability with high availability configuration ensures that there is a messaging engine for each server
in a cluster, and that each messaging engine has a failover location.

The scalability with high availability messaging engine policy creates a single messaging engine for each
server in the cluster. Each messaging engine can fail over to one other specified server in the cluster.
Each server can host up to two messaging engines, such that there is an ordered circular relationship
between the servers. Each messaging engine can fail back, that is, if a messaging engine fails over to
another server, and then the original server becomes available again, the messaging engine automatically
moves back to that server.

Each messaging engine is assigned to a specific server by configuring it to run only on servers in its list of
preferred servers, then specifying only two servers in that preferred servers list. Each server is the first
preferred server for one messaging engine and the second preferred server for another one, which creates
the circular relationship between the servers. Failback is enabled so that each messaging engine is always
hosted by its preferred server if that server is running.

Both servers that can host a specific messaging engine must be able to access the message store (either
a database or a file system) that is configured for that messaging engine.

Use the scalability with high availability policy for a system where you want to add more servers to a
cluster without affecting the existing messaging engines, but you also want to ensure that messaging is
always available.

When you select the scalability with high availability messaging engine policy type on the administrative
console, a diagram shows the selected cluster and the eventual outcome of the policy.

If there are no warning triangles in the diagram, and the Is further configuration required? column
shows No in the Scalability with high availability row, the topology of the cluster and the configuration of
the messaging engine is suitable, and you can continue.

If there are warning triangles in the diagram, examine the messages in the Scalability with high availability
row for guidance on how to achieve a suitable messaging engine configuration.

If you require high availability in a cluster, that cluster should contain at least two nodes, each with a
server on it, that is, there should be at least two separate physical machines in the cluster. If the
messages advise you to add another server on another node, you must go back and redefine the topology
of the cluster before you add the cluster as a member of a bus.

For example, the following figure shows three servers configured on one node. If that node fails, there will
be no servers available for any of the messaging engines to fail over to. To provide some high availability,
there must be at least one other server on a separate node to ensure that there is a server on which at
least one messaging engine can run. Also, there is only one messaging engine configured. To provide
some scalability, there must be one messaging engine for each server.

Chapter 21. Service integration 717

The figure two is an example of when the messaging engine configuration is suitable for the scalability
with high availability policy. There are three servers, each on a separate node, and three messaging
engines. Each messaging engine has a preferred server and one other server it can use for failover. Each
server is the preferred host for one messaging engine, and the failover host for one other messaging
engine. There are no warning triangles and no faded out components because the policy can be used
successfully.

suggested failover server for the
messaging engine in this row

suggested host server for the
messaging engine in this row

a suggested server to
conform to the policy

a suggested node to
conform to the policy

a suggested messaging engine
to confirm to the policy

warning triangle for
suggested component

warning triangle for
suggested component

a suggested messaging engine
to confirm to the policy

existing messaging engine
forward arrow indicates failover
backward arrow indicates failback

cluster

existing node

host server for the
messaging engine
in this row

server that cannot
host the messaging
engine in this row

failover server for
the messaging

engine in this row

Figure 146. Scalability with high availability policy selected without a suitable system configuration

718 Overview

The following table shows the messaging engine policy settings for a cluster of three servers that use the
scalability with high availability messaging engine policy.

Table 75. Messaging engine policy settings for an example configuration. The first column of the table displays the
messaging engine name. The second and third columns of the table indicate the failover and failback status of the
messaging engine. The fourth column lists the three servers in the cluster. The fifth column indicates whether the
messaging engine runs only on the preferred servers.

Messaging engine name Failover Failback Preferred servers list Only run on preferred servers

clustername.000-busname true true server1

server2

true

clustername.001-busname true true server2

server3

true

clustername.002-busname true true server3

server1

true

The predefined scalability with high availability messaging engine policy creates a configuration with
aspects of scalability and high availability. It is not the only way to configure a cluster to provide scalability
and high availability, but it is a frequently-used configuration. If you have other requirements, for example,
message transmission is a priority and you want to increase the number of possible locations for each
messaging engine, you can use the custom messaging engine policy.

For more information about configuration for high availability with scalability and workload sharing, see the
related information.

Custom messaging engine policy:

The custom messaging engine policy is a messaging engine policy type that is provided when you use
messaging engine policy assistance. It helps you to create and configure messaging engines in a cluster

host server for the messaging
engine in this row

host server for the messaging
engine in this row

failover server for the
messaging engine in this row

failover server for the
messaging engine in this row

existing messaging
engines with failover
and failback

cluster

existing node

host server for the
messaging engine

in this row

server that cannot
host the messaging
engine in this row

failover server for
the messaging

engine in this row

Figure 147. Scalability with high availability policy selected with a suitable system configuration

Chapter 21. Service integration 719

that is a member of a bus when the predefined messaging engine policy types do not meet your needs.
You can configure the messaging engine behavior, then the appropriate messaging engine policies are
created automatically.

You can create any number of messaging engines for the cluster. For each messaging engine, you must
specify the behavior that you require, such as whether it can fail over and whether it uses preferred
servers. The core group policies and match criteria for each messaging engine are automatically created.

Use this policy when the other options of High availability, Scalability, or Scalability with high availability do
not provide the messaging engine behavior you require, and you are familiar with creating messaging
engines and configuring messaging engine policy settings.

When you select the custom messaging engine policy type, a diagram is displayed that shows the
selected cluster and the associated messaging engines, but there are no warnings or advice about the
suitability of the configuration.

You can configure the messaging engine policy to set the following:

v Whether the messaging engine can fail over to another server

v Whether the messaging engine can fail back to a server in the preferred servers list

v Whether a messaging engine can run only on a server in the preferred servers list, or can run on any
server in the cluster

v The list of preferred servers, where the earlier the server is in the list, the higher the preference for it

When you set the configuration, remember the following points:

v If you select failover and do not create a preferred servers list, the messaging engine can fail over to
any other server in the cluster.

v If you select failover and create a preferred servers list, the messaging engine can fail over to the
servers in the preferred server list, in the order that they are listed, and then to any other server in the
cluster.

v If you select failover, select that the messaging engine can run only on servers in the preferred servers
list, and create a preferred servers list, the messaging engine can fail over only to the servers in the
preferred server list. You can use this combination of settings to associate a messaging engine with a
specific server, by listing only one preferred server. Alternatively, you can use this combination of
settings to control how many messaging engines a server can host, by listing a limited number of
preferred servers for each messaging engine in the cluster.

It is possible to create a messaging engine for a cluster without using messaging engine policy assistance.
However, you must either use the default core group policy for messaging engines and the default
settings, or create the core group policies and settings yourself. Use this procedure if you need a specific
configuration and you are familiar with the procedure. Otherwise, use messaging engine policy assistance.

Match criteria for service integration:

Match criteria are a set of one or more name-value pairs in a policy definition. You use the match criteria
to make a policy bind to a particular messaging engine, or a set of messaging engines. To do this, you
configure the match criteria of the policy to match the properties of the high availability group HAGroupthat
you want the policy to manage, that is, the HAGroup that contains the messaging engine.

Note: If you use messaging engine policy assistance to configure the messaging engine behavior for
messaging engines in a cluster, suitable match criteria are created automatically and you do not
have to specify any.

The following table lists the names and values of the HAGroup properties for a messaging engine, and the
set of matching messaging engines if a property is used in the policy match criteria:

720 Overview

Name Value
The messaging engines that the
policy matches

type WSAF_SIB Any messaging engine

WSAF_SIB_MESSAGING_ENGINE The name of the messaging engine.
This is in the form node.server-bus for
a messaging engine in a server, or
cluster.number-bus for a messaging
engine in a cluster, where number
relates to the order that messaging
engines were added to the bus (the
first messaging engine that is created
when you add the cluster to a bus
has the number 000).

A particular messaging engine

WSAF_SIB_BUS The name of the bus All messaging engines in a particular
bus

IBM_hc The name of the cluster All messaging engines in a particular
cluster

Using the match criteria, you can associate the policy with all messaging engines, all messaging engines
on a named bus, all messaging engines in a particular cluster, or a single messaging engine with a
specific name.

The most general policy is the default included with the product, the “Default SIBus Policy”. This policy has
a single match criterion: type=WSAF_SIB. This policy matches any messaging engine that does not have
a stronger match to another policy.

For a policy to be assigned to an HAGroup, all the policy criteria must match. You can specify multiple
match criteria; the more criteria that match, the stronger the match becomes. The criteria are logically
conjoined and are effectively filtering conditions on the set of policies that can match the messaging
engine HAGroup. If a policy has any match criteria that do not match one of the HAGroup properties, the
policy cannot match that HAGroup.

For example, if you add a match criterion that requires that the HAGroup has the WSAF_SIB_BUS=MyBus
property, it restricts the policy to match only messaging engines on the bus that is named MyBus.

Alternatively, if you add a match criterion that requires that the HAGroup has the
WSAF_SIB_MESSAGING_ENGINE=MyCluster.002-MyBus property, it restricts the policy to match only
the messaging engine that is named MyCluster.002-MyBus.

You can use the IBM_hc match criterion to use the same policy for resources (not necessarily of the same
type) that are in the same server cluster.

Be careful that you do not configure a logically impossible combination of criteria. For example, if you
specify a bus that does not exist, or name a messaging engine that does not exist, the policy cannot
match any HAGroup.

You must also ensure that you do not define policies that create conflicting matches for any messaging
engines. If a messaging engine matches with equal strength to more than one policy, there is a conflict
that cannot be resolved, and an error occurs.

Every messaging engine matches once with the “Default SIBus Policy”. Therefore, when you define
another policy and specify match criteria, specify multiple match criteria to ensure that these match criteria
create a stronger match than the match that the “Default SIBus Policy” creates.

Chapter 21. Service integration 721

For example, to associate a policy with all the messaging engines on a bus, specify the match criteria
type=WSAF_SIB and WSAF_SIB_BUS=bus_name for the policy. All messaging engines on the bus match
twice with the criteria that are specified in the policy. Therefore, the policy has the strongest match and is
associated with those messaging engines, and there is no conflict with the “Default SIBus Policy”.

One approach to ensure that the matches you require are strong, and to minimize the possibility of
conflicting matches, is to specify more match criteria as the level at which you want to associate the policy
becomes finer. For example:

v The “Default SIBus Policy” specifies a match criteria of type=WSAF_SIB.

v To associate a policy with all the messaging engines on a bus, specify the match criteria
type=WSAF_SIB and WSAF_SIB_BUS=bus_name for the policy.

v To associate a policy with all the messaging engines in a cluster, specify the match criteria
type=WSAF_SIB, WSAF_SIB_BUS=bus_name, and IBM_hc=cluster_name for the policy.

v To associate a policy with a specific messaging engine, specify the match criteria type=WSAF_SIB,
WSAF_SIB_BUS=bus_name, IBM_hc=cluster_name, and
WSAF_SIB_MESSAGING_ENGINE=messaging_engine_name for the policy.

Mediations
A mediation is a Java program that extends the messaging capabilities of WebSphere Application Server.
Mediations can be used to simplify connecting systems, services, applications, or components that use
messaging.

Mediations are used to process in flight messages. The type of processing a mediation can undertake
includes:

v Transforming a message from one format into another.

v Routing messages to one or more additional target destinations.

v Adding data to a message from a data source.

v Controlling message delivery based on some conditional logic in the mediation.

You can use a mediation to process messages as an alternative to using a message-driven bean (MDB).
A mediation has two advantages:

v It preserves the message identity. If an MDB re-sends a message after processing its body, it sends a
new message with a new message ID and message properties. By preserving the message identity,
using a mediation makes it easier to track messages.

v It is independent of the messaging technology. The mediation programming model provides a Service
Data Objects (SDO) Version 1 interface to all messages and a common API for accessing properties
and metadata.

When a message arrives at the mediation point, the mediation consumes the message and either
transforms, subsets, aggregates or disaggregates the message. The message is then either forwarded to
another destination or returned to the same destination, in which case, the message goes to the queue

722 Overview

point where it can be consumed by the messaging application. This is shown in the following figure:

Mediation
point

Queue
point

Queue
point

ProducerProducer

MediatedSimple

ConsumerConsumer Mediation

You can configure a destination so the mediation point or the queue point, or both are WebSphere MQ
queues. If both are Websphere MQ queues then a WebSphereMQ application can act as an external
mediation as shown in the following figure:

Producer

MQ PUT

Producer

MQ PUT

MediatedSimple

Consumer

MQ GET

Consumer

MQ GET

Mediation

WMB flow

WebSphere Application Server provides a mediation framework runtime that enables you to mediate
messages. IBM Rational Application Developer and the assembly tools provide the tools needed to
develop, assemble, test and deploy mediations.

You can mediate any type of destination in the service integration bus: inbound or outbound services,
queues, and topic spaces. When you mediate a destination it is split into two parts called pre-mediated
and post-mediated. The mediation receives messages from the pre-mediated part. Providing the messages
are not redirected to another destination or discarded by the mediation, the mediation places messages on
the post-mediated part. Messages on the post-mediated part are delivered to a message consumer.
Splitting a destination into two parts allows asynchronous mediation of messages.

At deployment, the administrator can choose to have your mediation operate within a global unit of work to
ensure transactional integrity, or to support concurrency if throughput of messages at a destination is
important.

After deployment, the administrator configures your mediation for use at runtime using the WebSphere
Application Server administrative console. The mediation is configured for use at a specific destination.
The physical location is called a mediation point. The message processing provided by your mediation is
started when the mediation point receives a message from the messaging runtime environment. The
mediation operates on the message, for example transforming it, or forwarding it to other destinations.

Mediation handlers and mediation handler lists
Mediations are specified as a simple sequential list of mediation handlers. You must assemble and deploy
the mediation handler list into an Enterprise Applications Archive and install it in WebSphere Application

Chapter 21. Service integration 723

Server. Once the mediation is associated with a destination, it processes messages arriving at that
destination. A mediation handler is the Java class that processes the messages.

Examples of message processing performed by a mediation handler include the following:

v Transforming a message into a different format.

v Routing messages to other destinations.

v Adding data to a message from a data source.

v Modifying properties of the message.

The mediation handler class implements the Java interface
com.ibm.websphere.sib.mediation.handler.MediationHandler. You assemble the mediation handler class
into an Enterprise Applications Archive (EAR) file then deploy the mediation handler application in a
mediation handler list by using an assembly tool, for example IBM Rational Application Developer.

You can assign one or more mediation handlers to a mediation handler list to define a set of operations to
apply to each message. When you assign a mediation handler to a mediation handler list, you assign a
sequence number to the mediation handler. The sequence number is used to determine the specific
sequence in which the mediations in the mediation handler lists are invoked.

You configure and create a mediation in the administrative console, attaching it to a destination. By default
the mediation handler list has the same name as the mediation handler, but you can specify a different
name if required.

In most cases, you will assign only one mediation handler to a mediation handler list. The tooling used to
deploy the mediation handler into an EAR provides a basic configuration option for automatically adding
the mediation handler to its own mediation handler list.

Figure 1 shows how a mediation is composed of a simple sequential list of mediation handlers. The result
of the operation of each mediation handler in the list determines whether the next mediation handler in the
list is called, or if the message is routed to the next destination.
Figure 148. Mediation handler lists

724 Overview

The behavior of a mediation handler can be controlled by setting properties at various stages of mediation
development. You can set these properties when you write the Java class, assemble and deploy the
mediation handler, or at runtime when the mediation is created and installed.

Transactionality in mediations
You can configure a mediation handler to run within a global transaction.

A global transaction is required when:

v Mediating and routing messages must be coordinated into a single transaction.

v Several mediation handlers in a mediation handler list must be coordinated into a single transaction.

Setting the Global transaction property ensures transactional integrity between a mediation that accesses
the resources owned by other resource managers, and the messaging engine.

A global transaction encompasses all the mediation operations that are run within the bus for the duration
of the mediation. The global transaction ends when the mediation completes its processing.

Whether the Global transaction property is set to True or False, a mediation either performs all its
operations on a message, or none of them.

If a mediation transaction rolls back, all transactional changes also roll back. When the transaction rolls
back, the mediated message remains on the pre-mediated part of the bus destination and becomes
eligible to be mediated again. The re-delivery count assigned to a message increments each time a
mediation transaction rolls back. If the re-delivery count exceeds the limit configured for the bus
destination, the message is sent to the exception destination.

You specify the transactional context of a mediation handler by setting the Global transaction property to
True by using the administrative console. The default value is False, and a global transaction is not
started. You can also configure individual messaging operations to run outside the global unit of work.

Performance tuning for mediations
You can set the property sib:SkipWellFormedCheck in the administrative console to improve the
performance of a mediation. Before you set a property to tune a mediation, you should consider the
behavior of the mediation, to prevent the modification or loss of messages.

The mediation must either not modify the message, or it must ensure that the message is well formed
post-mediation. A well formed message has message property values that can be serialized, and a
message datagraph that conforms to the message format.

If you set a tuning property for a mediation that does not conform to these rules, the following events
might occur:

v Messages disappear either when moving between messaging engines or when they are saved in the
message store.

v Modified messages, instead of the original messages, arrive at the exception destination.

v Messages are modified while a mediation or a consumer application is reading the message content.

Tip: When you use an enterprise bean as a message producer, the topic or queue connection factory
pool size acts as a throttle that controls the rate at which an enterprise bean can produce messages.
There is no one specific value that is suitable for all circumstances, therefore you must tune this
parameter for your given application and hardware combination.

Chapter 21. Service integration 725

Performance monitoring for mediations
Mediation performance monitoring is provided by the WebSphere Application Server Performance
Monitoring Infrastructure (PMI).

When PMI is enabled, two pieces of statistical information are updated continuously for each mediated
destination, as described in the following table:

Performance statistic Description

Mediation Time The time taken to perform the mediation.

Messages Mediated A count of the number of messages mediated at this
destination.

Mediated destination level statistics can be aggregated by mediation. An additional statistic is updated on
request for each mediation, as described in the following table:

Performance statistic Description

Thread Allocated The number of threads in the mediation thread pool
performing work for the mediation.

Mediation level statistics can be aggregated by messaging engine, and messaging engine level statistics
can be aggregated to provide statistics for the application server.

Concurrent mediations
Several messages might be mediated concurrently, to achieve maximum throughput for a selected
mediated destination.

The maximum number of messages that can be mediated concurrently at a selected destination is capped
for each messaging engine by the maximum size of the mediation thread pool.

You can specify that a mediation operates concurrently by setting the Allow Concurrent mediation
property to True, by using the administrative console. If message ordering is important, do not allow
concurrent mediations. By default (Allow Concurrent mediation is set to False), a single message is
mediated at a time.

Mediation points
A mediation point is a location in a messaging engine at which messages are stored and mediated.

A mediation point is a specialized message point. When an administrator associates a mediation with a
bus destination, one or more mediation points are created on the bus member, depending on the type of
destination. For a mediated queue (used in point-to-point messaging), a mediation point is created for
each queue point on the bus member. For a mediated topic space (used in publish/subscribe messaging),
a mediation point is created for each publication point on the bus member.

A mediation point has a property called Initial State that determines the state of the mediation point
when the messaging engine starts. The default value is Started.

A mediation point also has a runtime property called Send Allowed that controls how messages are routed.
This property overrides the properties set for the mediated destination.

The mediation point properties are described in the following table:

726 Overview

Table 76. Mediation point properties. The first column contains the mediation point property names. The second
column provides the property values. The third column includes the comments of the properties.

Property name Value Comment

Send Allowed Boolean: True or False True routes messages to the mediation
point. False re-routes messages to a
mediation point that has Send Allowed set
to True. Messages are not routed to the
exception destination. Note that if all
mediation points are set to False,
applications cannot send messages to that
destination.

Initial State Started or Stopped The default value is Started. Initial
State specifies the state of the mediation
point when the host messaging engine is
started for the first time. It is not a runtime
control.

At run time, the administrator can control message delivery by starting and stopping mediations at
mediation points by using the administrative console. For example, if the administrator starts a mediation
at a mediation point, any messages sent to the destination are processed immediately by the mediation. If
the administrator subsequently stops the mediation, any further messages that arrive at the destination are
stored at the mediation point until the mediation restarts. The runtime state of a mediation point represents
a runtime instance of the mediation.

Mediation context information
Mediation context information is used to ensure that messages are processed correctly by parameterizing
the mediation handlers, providing configuration information at runtime. For example, the name of a file to
write to.

The mediation context information comprises property values that are passed to each mediation at run
time. The property values, in conjunction with the information in the message header, contribute to the way
in which a message is mediated.

The context properties (name, value and type) are specified for both mediations and bus destinations by
using the administrative console. The mediation uses both sets of context properties, but those for a bus
destination takes precedence over the context properties for a mediation. For example, if a property with
the same name is configured for a destination and a mediation, the property on the destination takes
precedence.

When a message is mediated and a mediation handler is invoked, the information specified in the context
information is accessed by the getProperty() method and becomes an entry in the MessageContext
information for the mediation handler. The documentation for each mediation handler describes the
information it expects to find in the MessageContext property.

When a mediation handler is invoked in the context of a mediation handler list, the message context might
be passed from one handler to the next in sequence.

Mediations security
When bus security is enabled, authorization permissions are required to ensure that mediations can run,
and undertake messaging operations securely on a service integration bus. There are mechanisms for
mediations security, and implications for running mediations on a bus that spans multiple security domains.

When bus security is enabled, the messaging engine must be authorized to access the mediation.
Authorization is granted by using a mediations authentication alias or an LTPA token, depending on the
version of the bus member:

v A WebSphere Application Server Version 7.0 or later bus member uses an LTPA token for messaging
engine authentication. If an authentication alias is specified, it is used but a password is not required.

Chapter 21. Service integration 727

v A WebSphere Application Server Version 6 bus member requires an authentication alias to ensure that
the mediation can be called. For more information, see Configuring the bus to access secured
mediations.

When an application sends a message to the bus, the identity of the sender application is associated with
the message. The message is sent to the next destination in the forward routing path providing the
message originator has Sender authority for that destination. If a mediation processes the message in
some way at the target destination, the identity associated with the message is preserved by default. You
can program the mediation to reset the message identity to the identity under which the mediation code
runs. For example, if the mediated destination represents the boundary between two security domains, the
sender application is not authorized to access the mediated destination. By translating different identities
into a single user identity, you can control access between security domains. For more information about
programming mediations, see “Mediation programming” on page 729. For more information about using
the resetIdentity() method, see SIMediationSession .

When you install a mediation for use when bus security is enabled, you must ensure that the identity that
is used by the bus to call the mediation can access the mediation. By default, a mediation is
unauthenticated. You can configure it to use the mediations authentication alias by specifying a RunAs role
by using the assembly tools. For more information, see Configuring an alternative mediation identity for a
mediation handler.

If bus security is enabled, and a mediation is sending messages to a destination, the mediation identity
requires authority to access the destination. For more information, see Administering authorization
permissions. Any new messages sent by the mediation are sent using the mediation identity.

If administrative security is disabled, an identity is not configured for the mediation. If bus security is
enabled, and administrative security is disabled, the mediation is not authenticated to access bus
destinations.

Using mediations in multiple security domains

You can run mediations successfully in a bus topology where the members of a bus span multiple security
domains. The bus security configuration provides an option, called addUserServerIdForMediations, to
allow mediations to run under a server identity. In this case, a mediation authentication alias is not
required.

Mediations are deployed as applications, and run in the domain used by the application server, not the bus
domain. Because the mediation authentication alias applies to the whole bus, if you run a mediation on
multiple servers in different domains, you must ensure that the user identity in the mediation authentication
alias exists in the configuration for each domain. Alternatively, you can choose to use the server identity
option. You can use this option even if multiple domains are not in use.

Mediation application installation
A mediation application is an enterprise application (EAR file) that contains a mediation handler enterprise
bean project. Installing the EAR file into WebSphere Application Server (base) makes the mediation
handler available for use at a destination.

You must install the EAR file on every server on which you intend the mediation to run, taking into account
the following:

v If you intend the mediation to mediate a topic, you must install the mediation on every server that has a
messaging engine.

v If you add a new member to the bus after you have mediated a topic, you must install the mediation on
the new bus member.

v If you are installing on a queue, you must install the EAR file on the queue point. For a partitioned
queue, you must install the EAR file on the cluster.

728 Overview

Installing a mediation application on a secure server

If you are installing a mediation application for use when WebSphere Application Server security is
enabled, you must ensure that the messaging engine can access the mediation. For more information, see
Ensuring the message engine can access mediations.

Mediation programming
Using the capabilities of the mediation infrastructure, you can program mediations to customize the way
that a service integration bus handles messages. You develop the mediation code within a component
called a mediation handler, and add the mediation handler to a handler list, which is an application that is
ready to deploy and install. You can connect a number of mediation handlers together in a mediation
handler list to create a set of operations to run on a message.

A mediation handler is a Java program framework to which you add the code that operates on a message
to perform the mediation function. For example, you can program mediations to process messages in any
of the following ways:

v Reformat messages from the format produced by one application to the format required by another

v Route messages based on message content

v Distribute messages to more than one destination

v Augment messages by adding information to a message from another data source

v Transcode messages from one concrete representation to another

The following programming APIs are available for working with messages when you program a mediation:

MediationHandler API
A mediation handler must implement the MediationHandler interface. This interface defines the
method that is invoked by the mediation runtime environment.

SIMessage and SIMessageContext APIs
These APIs allow your mediation to operate on the contents of the message.

SIMediationSession API
This API gives your mediation access to a service integration bus so that the mediation can send
and receive messages.

You create a handler list by using an assembly tool, for example IBM Rational Application Developer,
before deploying the mediation handler application as an Enterprise Archive (EAR file).

A handler list can contain one or many mediation handlers. At run time, each mediation handler in the list
is invoked in sequence. Each time a handler returns a value of True, the same message context is passed
to the next handler. If a handler returns the value False, then the context is not passed to the next handler.
The message is discarded, and is not delivered to its target destination.

SDO data graphs
Service Data Objects (SDO) is an open standard for enabling applications to handle data from different
data sources in a uniform way, as data graphs. SDO data graphs are an important concept for mediation
programmers because you can use them to represent different types of message information in a standard
way, giving a simple and powerful model for programming mediations.

Using SDO, your applications can uniformly access and manipulate data from diverse data sources
including relational databases, XML data sources, Web services, and enterprise information systems.

SDO data graphs are structured collections of data objects. In general, data graphs generated from
messages have a tree structure. A mediation retrieves a data graph from a message, transforms the data
graph, and reflects the updates to the data graph in the message.

Chapter 21. Service integration 729

In WebSphere Application Server, data access services connect mediations to data sources, allowing
mediations to manipulate an abstract representation of the message, the SIMessage. The SIMessage API
provides a method, getDataGraph(), that returns the SDO data graph containing the SIMessage content in
a tree representation, or graph of data objects. Each data object represents one or more fields in the
message, or it points to other objects.

When a data graph is requested from a message, the appropriate data access service is identified by a
format property in the SIMessage. The format string controls which data access service is used to process
the message, and can contain additional control information for that data access service. The data access
service controls the structure of the message. For more information about the data access services
available in WebSphere Application Server, see Mapping of SDO data graphs for web services messages.

The SIMessageContext API provides access to:

v The SIMessage, and its rich set of message manipulation methods

v The SIMediationSession, for Service Integration technologies functions

Data objects hold their data as a set of named properties. Each property has a type that is either an
attribute type (for example, int) or a commonly used data type (for example, Date). If the property is a
reference, it has the type of another data object. The Data Object API provides a dynamic data API for
manipulating these properties, with the following interfaces that relate to instance data:

v The DataObject interface provides a set of methods to retrieve and update the contents of a data
object. It also provides methods to perform the following actions:

– Access the container of the data object and the data graph to which the data object belongs

– Create a new instance of a contained data object

– Delete a data object from its container

The DataObject interface also provides the ability to get the type of the data object.

v The DataGraph interface is a graph of data objects. The graph consists of a single root data object and
all the data objects that can be reached by recursively traversing the containment references of the root
data object.

SDO also contains a metadata API for examining the model of a data graph, consisting of Types and
Properties:

v A Type has a set of Property objects. SDO Types can be compared with type definitions in other type
systems. For example, the SDO view of a Java Class is a Type, with each field in the Class
represented by a Property. For XML Schema, a ComplexType is represented by a Type, with a Property
for each element or attribute.

v A data object is composed of properties. To access a property, specify the Property object, the name of
the property, or the index of the property.

The version of SDO data graphs used by mediations is Version 1. Data graphs provided by the SIMessage
and SIDataGraphFactory interfaces can only be provided to other SIMessage objects. Data graphs
provided to SIMessage objects can only come from other SIMessage objects or have been constructed
using the SIDataGraphFactory.

Coding tips for mediations programming
Programming hints to help you when you are writing mediation code.

v Take care to avoid looping in the Forward Routing Path. For example, if you set a destination in the
path that is the same as the current destination, the message will endlessly circle, with the routing path
being reset to the current destination each time. The mediation framework does not check for loops in
routing paths.

v Avoid the use of static fields where possible. A single mediation may be deployed to process multiple
messages concurrently.

730 Overview

v Do not cache values computed from the message context or message contents. Such values might
change from message to message. The exception is caching values derived solely from the mediation
handler properties for performance purposes.

v Mediation programming is subject to the same restrictions as programming an EJB. For more
information about restrictions, see Section 18.1.2 of the EJB 1.1 specification.

v Choose the appropriate level of transactional control for your mediation: for example, a mediation that
operates on fields within a message is unlikely to have implications for transactional control. At the other
extreme, if your mediation updates database fields, it requires transactional control, and you should alert
your administrator to set the UseGlobalTransaction flag in the mediation definition. This flag defaults to
a value of False.

v Hints that apply specifically to message format:

– It is good practice to check that your message conforms to the expected format after your mediation
function has operated on it. You should use the isWellFormed method in the SIMessage interface to
check that all the values of the message properties can be serialized, and that the data graph of the
message conforms to the format of the message.

– Depending on how you want to process the message, you can specify a format that meets your
needs rather than accept the natural format. For example, if you want to handle a SOAP message
as a byte string, use the getNewDataGraph method in the SIMessage interface and specify a format
of JMS/bytes. getNewDataGraph returns a new SDO data graph containing a copy of the SIMessage
payload content in the tree representation specified by the format field, in this example as a byte
string.

– It is good practice to check the message format in the mediation code because a mediation is
unlikely to successfully process a message with an unexpected format. Use getFormat method on
the SIMessage interface.

v The version of SDO supported by mediations is Version 1 only.

v Due to a restriction in the SDO user interface to the message, message access methods do not have a
‘throws' clause. As a result, an exception thrown by an access method because of a parsing error is an
unchecked exception. Your mediation can catch a parsing exception by checking for the exception class
SIMessageParseException in the com.ibm.websphere.sib.exception package. Use code similar to the
following example:

try {
// Function involving SDO message access

} catch (SIMessageParseException e) {
// Look at the real cause of the runtime exception, and act on it.
// It is likely to indicate a parse failure...
Throwable cause = e.getCause();

}

Note: If a mediation does not catch the SIMessageParseException, the original version of the message
is sent to the exception destination.

v When deploying your mediation, give the handler and the handler list memorable and descriptive
names.

v Where you deploy a single mediation against a single destination, use exactly the same name for your
mediation handler, the mediation handler list and the mediation object in the administrative console.

v For performance reasons, specify selector rules so that the mediation mediates required subsets only
of the messages passing through a destination.

Service integration configurations
A service integration configuration can range from a single host running two connected applications to a
globally-dispersed set of hundreds or thousands of communicating applications running over the bus.

A service integration configuration is based on one or more service integration buses that provide a
managed communication fabric that supports service integration through asynchronous messaging.

Chapter 21. Service integration 731

A bus is a group of one or more interconnected bus members, each of which is an application server or an
application server cluster. Applications connect to a bus at one of the messaging engines associated with
its bus members.

A service integration bus provides the following capabilities:

v Any application can exchange messages with any other application by using a destination to which
applications send and receive messages.

v An application can produce messages for a destination regardless of which messaging engine the
producer uses to connect to the bus.

v An application can consume messages from a destination (whenever that destination is available)
regardless of which messaging engine the consumer uses to connect to the bus.

v The service integration bus is the default messaging provider for JMS applications.

Many scenarios only require a simple bus configurations, for example, a single server. If you add multiple
servers to a single bus, you increase the number of connection points for applications to use. If you add
server clusters as members of a bus, you can increase scalability and achieve high availability. Servers
however, do not have to be bus members to connect to a bus. In more complex bus configurations,
multiple buses are configured, and can be interconnected to form complex networks.

An enterprise might deploy multiple interconnected buses for organizational reasons. For example, an
enterprise with several independent departments might want a separately administered bus in each
location.

With bus-enabled Web services you can achieve the following goals:

v Create an inbound service: Take an internally-hosted service that is available at a bus destination, and
make it available as a Web service.

v Create an outbound service: Take an externally-hosted Web service, and make it available internally at
a bus destination.

v Create a gateway service: Use the Web services gateway to map an existing service, either an inbound
or an outbound service, to a new Web service that appears to be provided by the gateway.

You can change the service integration configuration to suit your needs, for example:

v You can add application servers or server clusters as new bus members. Each new bus member is
automatically assigned a messaging engine, with default data source, and a default exception
destination. The messaging engines can communicate with, and use resources provided by, all other
messaging engines on the bus.

v You can change the configuration of the data source for a messaging engine, for example to use a
different JDBC provider.

v You can create new buses and add application servers or server clusters as members of those buses.
Each bus operates as a separate environment, unless connected by a gateway messaging engine.

v You can connect a message-driven bean to consume messages from a destination on a remote cell.

Bus configurations
You can connect buses in different ways depending on your requirements. For example, you can link
messaging engines to distribute message workload, and to provide availability if there is a system failure.

A configuration that only has a single messaging engine might be adequate for some applications
however, deploying more than one messaging engine and linking them together provides the following
advantages:

v Messaging workload is distributed across multiple servers.

732 Overview

v Message processing is positioned close to the application that is using it, and reduces network traffic.
For example, if both sending and receiving applications are running in the same server process, it is
inefficient to route all the messages that flow between the two applications through a messaging engine
running in a remote server.

v Availability is improved in the event of system or link failure. For example, your bus topology can
remove a single point of failure, and allow store and forward between two servers.

v Options for scalability improve.

v Firewalls, or other network restrictions that limit the ability of network hosts to connect to a single
messaging engine, can be accommodated.

v A bus configuration can contain links toWebSphere MQ networks. This allows messages to flow
between applications connected to a WebSphere MQ queue manager and applications attached to a
service integration bus.

The application servers or clusters that host a messaging engine in the service integration bus are called
bus members. A WebSphere MQ server is the WebSphere MQ equivalent of a messaging engine. You can
make a WebSphere MQ server a member of a bus, which becomes a messaging engine which is not
hosted by an application server.

A bus configuration can include one or more bootstrap members. When an application needs a connection
to the bus, it connects to the bootstrap member, which authenticates the request, and then directs the
connection request to a suitable bus member. A bootstrap member responds only to bootstrap requests
and does not always host a messaging engine.

If a bus configuration uses multiple security domains, you can isolate buses and the applications that use
them by configuring the bootstrap members so that only a subset of servers or clusters can access a bus.

Single-server bus
The simplest configuration is a bus consisting of a single server. Use this configuration if there is a low
volume of message throughput and scalability is not essential.

In a single-server bus, there is one messaging engine. All destinations, such as queues and topic spaces,
are assigned to this single messaging engine.

The single server set up has the advantage of simplicity. It aids performance as all messages and
application connections are on the same messaging engine which minimizes path length. It also easy to
manage as all messages and application connections are on the same messaging engine which minimizes
the number of configuration and runtime objects to monitor.

However, having only a single-server configuration has the drawback of limiting scalability and high
availability of applications and messaging.

Chapter 21. Service integration 733

An application can connect to the messaging engine, and therefore can connect to and use the bus, in any
of the following situations:

v The application runs in another server in the same cell or in the same server, or in a server in a
different cell , or in a client container.

v The application uses a client connection to the bus, or a in-process call

The following figure shows possible connections between a messaging engine and an application:

Bus

application
server

messaging
engine bus destination

message
store

Figure 149. Service integration bus with a single member

734 Overview

Multiple-server bus without clustering
A bus that consists of multiple servers provides advantages of scalability, the ability to handle more client
connections, and greater message throughput. A multiple-server bus includes multiple messaging engines
that can share the work of storing and distributing the messages.

Another advantage of a multiple-server bus is that you can locate the queue that an application consumes
from in the same application server as that application, which might be more efficient if there are multiple
application servers running applications.

You can configure a bus to have multiple server bus members, each of which runs one messaging engine.
All the servers in the bus must belong to the same cell.

All the messaging engines in the bus are implicitly connected, and applications can connect to any
messaging engine in the bus. All the messaging engines in the bus know about the resources that are
assigned to each messaging engine in that bus.

The messaging engines do not need to all run at the same time; if one messaging engine stops, the other
messaging engines in the bus continue to operate. However, if a messaging engine stops, the resources
that the messaging engine owns are unavailable. Specifically, the destinations that are assigned to that
messaging engine are unavailable.

application server application server

application server application server

application application

application

application

client
connection

client
connection

messaging
engine

bus

cell1 cell2

Figure 150. Applications connecting to a messaging engine

Chapter 21. Service integration 735

Multiple-server bus with clustering
You can have a bus consisting of multiple servers, some or all of which are members of a cluster. When a
server is a member of a cluster, it allows servers to run common applications on different machines.
Installing an application on a cluster that has multiple servers on different machines provides high
availability. If one machine fails, the other servers in the cluster do not fail.

When you configure a server bus member, that server runs a messaging engine. For many purposes, this
is sufficient, but such a messaging engine can run only in the server it was created for. The server is
therefore a single point of failure; if the server cannot run, the messaging engine is unavailable. By
configuring a cluster bus member instead, the messaging engine can run in one server in the cluster, and
if that server fails, the messaging engine can run in an alternative server. This is illustrated in Figure 152
on page 737. For more information, see “Bus member types and their effect on high availability and
workload sharing” on page 695.

Another advantage of configuring a cluster bus member is the ability to share the workload associated with
a destination across multiple servers. You can deploy additional messaging engines to the cluster. A
destination deployed to a cluster bus member is partitioned across the set of messaging engines that the
cluster servers run. The messaging engines in the cluster each handle a share of the messages arriving at
the destination. This is illustrated in Figure 153 on page 737. This is a familiar concept to those with
knowledge of cluster queues in WebSphere MQ. For more information, see “Workload sharing” on page
671.

To summarize, with a cluster bus member you can achieve high availability (through failover). You can also
configure a cluster to achieve workload sharing or workload sharing with high availability, depending on the
policies that you configure for the messaging engines. For more information about policies for messaging
engines, see “Policies for service integration” on page 709.

Bus

application
server

application
server

application
server

messaging
engine

messaging
engine

messaging
engine bus destination

bus destination

Figure 151. Service integration bus with multiple servers

736 Overview

Bus

cluster

application
server

application
server

messaging
engine

messaging
engine

message
store

bus destination

messaging engine running

messaging engine failover location

Figure 152. Service integration bus with clustered server

Bus

cluster

application
server 1

application
server 2

application
server 3

messaging
engine

messaging
engine

messaging
engine

application application application

partitioned destination

JMS
connection

Figure 153. Service integration bus with partitioned destinations

Chapter 21. Service integration 737

Common issues with all bus configurations
There are planning issues and design decisions that apply to all types of service integration bus
configuration.

When planning a service integration bus configuration, consider the following points:

v The volume of messages that a bus has to handle. Depending on the volume of messages anticipated,
you might have to adjust the high message threshold setting for a bus or messaging engine.

v The transport chain to be used for communication between messaging engines. For more information,
see Transport chains.

v Whether bus security is required. When bus security is enabled, access to the bus itself and to all
destinations on the bus must be authorized. If you enable bus security, you might also want to define
aliases for authenticating messaging engines and mediations accessing the bus. A single version bus
does not require an authentication alias. However, if you create a mixed-version bus you must define an
inter-engine authentication alias for a WebSphere Application Server Version 6 or Version 6.1 bus
member, to enable it to establish trust with the other bus members of later versions.

v You must choose bus names that are compatible with the WebSphere MQ queue manager naming
restrictions. You cannot change a bus name after the bus is created, which means that you can only
interoperate with WebSphere MQ in the future if you use compatible names. See the topic about
WebSphere MQ naming restrictions in the related links.

v When you name your buses, you must ensure that the names are unique because you cannot connect
two buses with the same name. For example, you cannot connect two buses with the same name in
any of the following ways:

– By creating an inter-bus link between two buses with the same name.

– By attempting to connect to a remote bus from an application running in a remote cell where a bus
with the same name is defined.

– By creating a core group bridge between two cells containing buses with the same name.

Destinations
You must decide on the number and type of destinations, mediations, destination routing paths,
and qualities of service for the destination for your configuration. For point-to-point messaging you
define bus destinations as queues, whereas for publish/subscribe messaging you define bus
destinations as topic spaces.

For point-to-point messaging only, you select one bus member as the assigned bus member that
is to hold messages for the queue. This action automatically defines a queue point for each
messaging engine in the assigned bus member.

You can also define alias destinations to provide a level of indirection between applications and
the underlying target bus destinations. Applications interact with the alias destination, so you can
change the target bus destination without changing the application.

You should decide how you want to use the bus destinations as you can configure a bus
destination to prevent producers sending messages to the destination, or consumers receiving
messages from the destination.

Message persistence
The reliability quality of service for messages on a destination has implications for performance
and the amount of space required for a message store. Higher levels of reliability impact
performance and increase the space a message store requires, because fewer messages are
discarded.

When planning a message store configuration, remember that each messaging engine has a
single message store, which can be either a file store or a data store. See “Relative advantages of
a file store and a data store” on page 642. Remember that larger messages increase the space
that a message store requires.

738 Overview

If you use a data store, the default database system for the data store is Apache Derby Version
10.3. However, you might want to use a different system, such as DB2. You can select different
data store configurations depending on your requirements; for more information see “Configuration
planning for a messaging engine to use a data store” on page 651.

Application environment
An application attaches as a client to a messaging engine on the bus, either by an in-process call
or across a network by using a remote client. A remote client can run in either the Java EE
application client environment or the Java EE application server environment. Various transport
chains can be used.

Application connections
The way that a messaging engine is selected, and the mechanism that an application uses to
reach it, is configured on a JMS connection factory. You need to decide which messaging engines
the applications should connect to and on the transport chain to be used. For more information
about connection factories, see Configuring resources for the default messaging provider and on
transport options, see Transport chains.

WebSphere MQ client links
WebSphere MQ client links allow JMS clients developed for WebSphere Application Server
Version 5.1 to use messaging resources on the bus. WebSphere Application Server Version 5.1
uses a WebSphere MQ queue manager as its JMS provider so that WebSphere Application Server
Version 5.1 clients connect using the MQ link protocols. A WebSphere MQ client link, in service
integration, provides an attachment capability that these clients can use.

Transaction logs
Plan where transaction logs will be placed. See the topic about transactional high availability in the
related links.

Configurations that include WebSphere MQ
There are additional points to consider when planning a bus configuration that includes WebSphere MQ.

You might want to define alias destinations to map bus and destination names to targets where the bus
name, or the destination name (identifier), or both, are different. You can also use alias destinations to
manage situations where the difference in the name length that is allowed for a bus destination in
WebSphere Application Server and the name length that is allowed for a WebSphere MQ queue, might
cause a problem.

You might want to define foreign destinations so that you can override the messaging defaults or security
settings for specific destinations on a foreign bus. If you do not define either a foreign destination or an
alias destination, the destination defaults for the foreign bus will be used.

Remember you can have more than one messaging engine with a WebSphere MQ link in a service
integration bus. You can also have more than one WebSphere MQ link on a single messaging engine.
There are many possible configurations, for example:

v One WebSphere MQ link engine with only a sender channel and another WebSphere MQ link engine
with only a receiver channel.

v One WebSphere MQ link to communicate with a WebSphere MQ queue manager or queue-sharing
group (known as a “gateway queue manager”) in the WebSphere MQ network.

Although you can have more than one WebSphere MQ link on a single messaging engine, each
WebSphere MQ link must connect to a different gateway queue manager.

Application server cluster with single ME bus
This configuration features a single messaging engine hosted in one application server of a cluster.

Chapter 21. Service integration 739

This set up has the advantage of having all messaging in one place. It provides scope for scalability and
performance of applications, and high availability for applications and messaging. However, there can be
difficulty in configuring the cluster bus member, and this configuration does not offer scalability and
performance of messaging and MDBs.

The following figure shows a messaging engine running in an application server of a cluster. In the event
of a failure in this configuration, the messaging engine can failover to another server in the cluster.

Multiple application server cluster with single messaging engine bus
This configuration features multiple application server clusters with only a single messaging engine bus
member. This allows further scaling of applications where necessary, but keeps a simple messaging
configuration.

A single messaging engine is much easier to manage than a more complex configuration however, if
messaging traffic becomes too high, the single messaging engine will become a bottle neck and limit
scalability.

Application Server Application Server

Bus Member

Bus

App AppMDB MDB

Messenging
Engine

Queue

In the event of a failure, the
ME and all its persistent state
can failover to another server

in the cluster

Figure 154. Application server cluster with single messaging engine bus configuration

740 Overview

If messaging traffic is expected to be too great for a single messaging engine, multiple bus members
should be considered.

Multiple bus member bus
Multiple bus members should be considered for your bus configuration where messaging traffic is high and
can be suitably divided, for example, per application or queue.

Application
Server

Application
Server

Application
Server

Application
Server

Application
Server

Application
Server

Application Server

Bus Member

Bus Member

Bus Member

Bus Member

Bus

App

App

App

App

MDB

MDB

MDB

MDB

Messenging
Engine

Queue

Queue

Figure 155. Multiple application server cluster with single messaging engine bus configuration

Chapter 21. Service integration 741

The following figure shows a configuration which is very similar at runtime to any single messaging engine
configuration when application messaging is self contained.

Application
Server

Application
Server

Application
Server

Application
Server

Application Server

Application Server

Bus Member

Bus Member

Bus Member

Bus Member

Bus

App

App

App

App

MDB

MDB

MDB

MDB

Messenging
Engine

Messenging
Engine

Queue

Queue

Figure 156. Multiple bus member bus configuration

742 Overview

However once applications on different servers start to communicate with each other using messages, the
runtime starts to change.

Careful planning is important for a multiple bus member bus configuration because messaging applications
will randomly connect to any available messaging engine in the bus. The only default behavior that
overrides this is when an application connects to a bus that has an messaging engine running in the same
server. This can result in messages taking inefficient paths to and from the applications to queues or
subscriptions. This affects manageability and serviceability of the system due to the unpredictable nature
of connections and variable message routing.

The general rule is to connect directly to the bus member that owns the queue. Always target connections
and activation specifications. If you have to choose between a producing application or a consuming
application, connect the consumers directly to the queue point's messaging engine and allow the producer
to store and forward.

Interconnected bus configurations
There are specific issues that you must take into account when you are planning an interconnected
service integration bus configuration.

When you are naming service integration buses, bear in mind that bus names must be unique.

You must decide what your buses are to be linked to. You can link the buses either through a direct
service integration bus link, or through an indirect link. An indirect link can include one or more
intermediate buses. For more information, see “Direct and indirect routing between service integration
buses” on page 757.

You must decide which messaging engines to use as gateways. Remember that a gateway messaging
engine connects to the gateway messaging engine of another bus through a service integration link.

Carefully plan how you distribute destinations on different messaging engines in each bus. You might want
to define alias destinations that make a destination available by a different name, either on the same bus,
or on a foreign bus. You could define foreign destinations which allow applications on one bus to directly
access a destination on a foreign bus. If you do not define foreign destinations, you can configure
destination defaults to be used. You can combine alias and foreign destinations for further flexibility in your
topology.

Use destination defaults in the following scenarios:

v You have a development environment and want things to work quickly.

v You have an application in which destination names are received at run time in message body or
headers.

Use foreign destinations in the following scenarios:

v You want an environment in which everything is statically defined.

v You want to override destination defaults for a particular (foreign) destination, for example quality of
service settings.

Use an alias destination in the following scenarios:

v You want to refer to a destination by a different name. You might want to use a different name if you
want to be able to control which users have different access to the same destination in a foreign bus. In
this case you might need to use foreign bus destinations definitions or alias bus destination definitions,
or both.

v You want multiple names for the same destination.

There is a security consideration that arises from having a mixed-version bus. In a mixed-version bus, you
must define an inter-engine authentication alias for aWebSphere Application Server Version 6 or Version

Chapter 21. Service integration 743

6.1 bus member, to allow it to establish trust with the other bus members of later versions. In the case of a
single version bus, you do not need to define an inter-engine authentication alias to ensure the secure
operation of the bus.

If buses in different organizations are connected, you must decide whether to secure connections to a
foreign bus with a user ID and password, and optionally with SSL authentication.

Interconnected buses
A service integration bus topology can contain many interconnected service integration buses to form a
large messaging network. The bus that an application connects to is called its local bus. There can be
connections from that local bus to other service integration buses, which are called foreign buses. Buses
can also be linked to WebSphere MQ resources, for example WebSphere MQ queue managers.
WebSphere MQ resources are also regarded as foreign buses.

A bus must be contained in a single cell; that is, a bus cannot span multiple cells. However, a cell can
contain more than one bus. In this situation, each bus in the cell is foreign to each other bus in the cell.
You can connect buses together in a cell, or between different cells.

The following scenarios are examples of situations when you might connect service integration buses in an
organization:

v You can deliberately separate the messaging infrastructure to aid management.

v You can restrict access to certain messaging resources within a single WebSphere Application Server
cell, because a cell can contain multiple service integration buses.

v You can span multiple administrative cells, by connecting a service integration bus in one cell to a
service integration bus in another cell.

When buses are connected, applications can send messages to applications on other buses, and use
resources provided on other buses. Published messages can span multiple buses where the connections
between the buses are configured to allow it.

To create a connection between two buses, the administrator of the local bus configures a foreign bus
connection that represents the second bus, and that is associated with the local bus. The foreign bus
connection contains a routing definition, or virtual link. A physical link, called a service integration bus link,
is created automatically. The link is from a messaging engine in the local bus to a messaging engine in the
foreign bus, and these two messaging engines are known as gateway messaging engines. The
administrator of the second bus also configures a foreign bus connection to represent the first bus, as a
property of the second bus.

To create a link between a bus and a WebSphere MQ queue manager, the administrator of the local bus
configures a foreign bus connection that represents the WebSphere MQ queue manager, as a property of
the local bus. The foreign bus connection contains a routing definition, or virtual link. A physical link, called
a WebSphere MQ link, is created automatically. The link is from a messaging engine in the local bus to a
queue manager or queue sharing group in the foreign bus. The messaging engine is known as a gateway
messaging engine, and the queue manager or queue sharing group is known as the gateway queue
manager.

744 Overview

Routing between buses

The route between two buses can be indirect, passing through one or more intermediate foreign buses. In
Figure 1, Bus 1 is connected to Bus 5 indirectly. For more information about direct and indirect routing
between service integration buses, refer to the subtopics.

For more information about foreign buses, see “Foreign buses” on page 746. For conceptual overviews of
point-to-point and publish/subscribe messaging, see “Point-to-point messaging across multiple buses” on
page 750 and “Publish/subscribe messaging across multiple buses” on page 752.

Security when connecting buses

A multiple bus topology has the following security requirements:

v You must protect the integrity and confidentiality of the data that is transported between the buses. You
can protect the communications links by using a Secure Sockets Layer (SSL). For more information,
see Protecting messages transmitted between buses.

v You must establish trust between two buses. Trust between messaging engines at WebSphere
Application Server Version 7.0 or later is established by using a Lightweight Third Party Authentication
(LTPA) token, and no further configuration is required.

If the bus has a WebSphere Application Server Version 6 bus member (that is, a mixed-version bus),
trust is established using an inter-engine authentication alias. The inter-engine authentication alias is
configured when you add a member to a bus or with the bus security settings. The identity is passed to
the remote bus where the identity is authenticated, then checked to see if it matches the configured
inter-engine authentication alias on the other bus.

v You need the definition of relevant authorizations to allow messages to travel between the buses. There
are two phases to authorization when communicating with a foreign bus:

1. The user that is connected to the local bus has to be explicitly granted access to send messages to
the foreign destination. Failure at this level is reported back to the client.

2. The foreign bus must be configured to accept the incoming message onto the target destination.

For more information about security, see “Service integration security” on page 655 and Securing access
to a foreign bus.

Connecting buses in different cells

To connect a local bus to a foreign bus in a different cell from the local bus, you need to provide a value
for one or more bootstrap endpoints, that is, the host, port location, and transport chain for the messaging
engine on the foreign bus that the local service integration bus connects to.

Bus 1

Bus 3

Bus 4 Bus 5

Bus 2

Service integration bus link

Figure 157. Service integration buses are connected through service integration bus links

Chapter 21. Service integration 745

Connecting buses with cluster bus members

To connect a local bus to a foreign bus in a different cell from the local bus when the remote messaging
engine is in a cluster, you must change the value for the bootstrap endpoints. This value must list all the
bootstrap endpoints that the cluster uses to allow access to the gateway messaging engine in the cluster.

For more information, see the steps relating to setting bootstrap endpoints in Configuring a connection to a
non-default bootstrap server.

Foreign buses:

You can configure a service integration bus to connect to, and exchange messages with, other messaging
networks. To do this, you configure a foreign bus connection, which represents either another service
integration bus, or a WebSphere MQ queue manager or (for WebSphere MQ for z/OS) queue-sharing
group, that the existing service integration bus can exchange messages with. In this way, you can extend
the network of buses that can exchange messages.

When an application connects to a service integration bus, that bus is its local bus. A foreign bus is any
other bus that has a link to the local bus. When the foreign bus is a service integration bus, it can be in
the same cell as the local bus, or in a different cell.

To exchange messages between two buses, you configure a foreign bus connection from the local bus to
the second bus. The foreign bus connection is associated with the local bus, and identifies the second bus
as a foreign bus.

If the second bus is another service integration bus, you then configure a foreign bus connection from the
second bus to the first bus. The foreign bus connection is associated with the second bus, and identifies
the first bus as a foreign bus relative to the second bus. If the second bus is in a different cell from the
first bus, you use the administrative console for the second cell to configure this foreign bus connection.

A foreign bus connection can be direct or indirect. For a direct foreign bus connection, messages route
directly through a link between the local bus and the foreign bus. For an indirect foreign bus connection,
messages route indirectly through one or more intermediate buses.

A foreign bus connection contains a routing definition, also known as a virtual link, which indicates the type
of physical link:

v A service integration bus link specifies a link from a messaging engine in the local bus to a messaging
engine in a foreign bus.

v A WebSphere MQ link specifies a link from a messaging engine in the local bus to a WebSphere MQ
gateway queue manager. To the local bus, the linked WebSphere MQ network appears as a foreign
bus.

In the following figure, for an application that is connected to Bus 1, messages that are routed to Bus 2
use a direct foreign bus connection. Messages that are routed to Bus 3 use an indirect foreign bus
connection and use Bus 2 as an intermediate bus.

746 Overview

When you configure a foreign bus connection, the service integration bus link or WebSphere MQ link, as
appropriate, is created automatically. If required, you can view or amend this link.

The following restrictions apply when you configure a foreign bus connection:

v The name of the foreign bus in the foreign bus connection must match the name of the existing service
integration bus that it represents.

v For a direct foreign bus connection, the name of each bus must be unique.

v You must specify the same user ID for both foreign bus connections on each side of a service
integration bus link, for the following reasons. Consider two messaging engines, A and B, connected by
a service integration bus link:

– Messaging engine A presents the user ID and its password to messaging engine B, so that
messaging engine B can authenticate messaging engine A.

– Messaging engine A uses the user ID to authorize messaging engine B.

v After you configure a foreign bus connection, you must not change the name of the service integration
bus that the foreign bus connection represents.

When you configure a bus, you can select the Configuration reload enabled option so that if the
configuration properties of any foreign bus connections are changed later, the changes are updated
automatically. The time when these changes take effect varies, depending on the properties that are
changed:

v Foreign bus connection properties change immediately.

v WebSphere MQ link properties change on channel restart, except Description (immediately), and Initial
State (on messaging engine restart).

v MQ sender channel properties change on channel restart, except Initial State (on messaging engine
restart or sender channel creation).

application
server

application
server

application
server

application
server

application
server

application
server

application
server

messaging
engine

messaging
engine

messaging
engine

messaging
engine

messaging
engine

messaging
engine

messaging
engine

bus
destination

bus
destination

Bus 1

Bus 3

Bus 2

link

link

Figure 158. Linking service integration buses.

Chapter 21. Service integration 747

v MQ receiver channel properties on channel restart, except Initial State (on messaging engine restart or
receiver channel creation).

v Publish/subscribe broker profile (0 to n) properties change immediately.

v Service integration bus link properties change on link restart, except Description (immediately), and
Initial State (on messaging engine restart or link creation).

You can define an explicit destination on a foreign bus that an application can send messages to. You can
also configure default properties for use by messages that are sent to destinations on a foreign bus when
there is no explicit foreign destination definition, and the application does not explicitly provide values for
the properties. An application cannot receive messages from a foreign destination; it can only consume
messages from a destination on the bus to which it is connected.

Messages flowing to or from a foreign bus that cannot be processed successfully are rerouted to the
system exception destination of the messaging engine that owns the link to the foreign bus, possibly
disrupting message order. Common reasons for rerouting messages to the exception destination are that
the target destination is unknown by the foreign bus, or that the foreign bus has not granted the sending
bus access to the target destination.

An application subscribing to a local topic space can receive messages published to a topic on a foreign
bus. To allow publish/subscribe messaging between buses, you must map topic space names on a local
bus to topic space names on a foreign bus.

A topic space mapping allows subscribers on the local topic space to receive messages published in the
foreign topic space. For publications to flow from the local topic space to the foreign bus, an equivalent
topic space mapping is required by the foreign bus.

You administer topic space mappings when you create a foreign bus connection, or through the routing
properties for a foreign bus connection. Topic space names for the local bus are mapped to topic space
names that are defined on the foreign bus. It is common for these two names to match. Note that mapping
two topic spaces implies that the topics in them are the same.

Message flow between service integration buses:

An application connects to a bus, which is its local bus, and can exchange messages with other
applications that connect to the same bus. To exchange messages with applications that connect to a
different bus, that is, a foreign bus, you need a service integration bus link that connects the local bus to
the foreign bus.

Applications that are connected to the local bus send messages to a destination on a foreign bus. The
messaging engine on the local bus queues the messages on its link transmitter queue. For applications
that use point-to-point messaging, there is one link transmitter queue and one link transmitter for each
messaging engine in the sending bus. For applications that use publish/subscribe messaging, there is one
link transmitter queue and one link transmitter for each topic space destination that is mapped to a topic
space destination in the foreign bus.

Each link transmitter queue has a corresponding link receiver queue on the gateway messaging engine on
the foreign bus. Each link receiver queue is served by a link receiver.

The link transmitter sends the messages over the service integration bus link to link receiver queues. Link
receivers remove the messages from the link receiver queues and place them on the target remote queue
points, which are on the gateway messaging engine on the foreign bus. Both point-to-point and
publish/subscribe messaging in service integration use link transmitter queues.

The following figure shows an example of the message flow from Service integration bus 1 to a foreign
destination on Service integration bus 2 over a service integration bus link. One application is connected to
the messaging engine ME1, and another application is connected to messaging engine ME2. The

748 Overview

applications produce messages to send to Q1 on the foreign bus. Messages are queued on the link
transmitter queue on each messaging engine, then transmitted through the gateway messaging engine
and the service integration bus link to the link receiver queues on the gateway messaging engine in the
foreign bus. From here, the messages are placed on to the target destination Q1. The target queue Q1 is
on the messaging engine ME5. The link receiver in the gateway messaging engine ME4Gateway routes
the messages to ME5 by using a remote queue point.

Message flow between a service integration bus and a WebSphere MQ network:

An application connects to a bus, which is its local bus, and can exchange messages with other
applications that connect to the same bus. To exchange messages with applications that connect to a
WebSphere MQ network, you need a WebSphere MQ link that connects the local bus to a foreign bus that
represents a WebSphere MQ network.

Applications that send a message to a queue in a WebSphere MQ queue manager or queue-sharing
group can do so directly by configuring a WebSphere MQ server definition, or indirectly by using a
WebSphere MQ link. This topic describes the message flow for a WebSphere MQ link.

With a WebSphere MQ link, there is a gateway messaging engine on the service integration bus and a
gateway queue manager on the WebSphere MQ network.

Applications that are connected to the local bus send messages to a destination on a foreign bus. The
messaging engine that the sending application is connected to on the local bus queues the messages on
its link transmitter queue. Service integration flows the messages from the link transmitter queue to the
corresponding known link transmitter queue in the gateway messaging engine. Messages then flow to a
single sender channel transmitter queue, ready for transmission across the WebSphere MQ link.

The sender channel transmitter transmits messages over the WebSphere MQ link to a gateway queue
manager or (for WebSphere MQ for z/OS only) a queue-sharing group on the remote WebSphere MQ
network.

The WebSphere MQ network appears as a foreign bus to the service integration bus and the service
integration bus appears as a queue manager to the WebSphere MQ network.

Service integration bus 1 Service integration bus 2

Bus1-2Link

service integration bus link

ME3Gateway
ME4Gateway

Q1

Remote
queue point

ME1

ME2

ME5

Bus1-2Link link
transmitter queues

Applications send
messages to
Q1 on BUS2

messaging
application

messaging
application

Bus1-2Link link
receiver queues

Figure 159. Message flow between two service integration buses

Chapter 21. Service integration 749

The following figure illustrates an example of the message flow from a service integration bus to a
WebSphere MQ network over a WebSphere MQ link.

Point-to-point messaging across multiple buses:

Point-to-point messaging uses queue destinations, where each queue destination represents a message
queue.

A service integration queue destination is localized in a particular bus member (application server or server
cluster). When a producer sends a message to the queue destination, the service integration bus delivers
the message to a messaging engine in that bus member. The messaging engine then delivers the
message to a consumer; if necessary, the messaging engine queues the message until a consumer is
ready to receive it.

Applications can send messages to a queue destination in a remote bus, as long as a connection between
the buses is configured. You can configure a bus to connect to, and exchange messages with, other
messaging networks. To do this, you must configure a foreign bus connection. A foreign bus connection
encapsulates information related to the remote messaging network, such as the type of the foreign bus
and whether messaging applications are allowed to send messages to the foreign bus. The local bus
knows of the destination bus through a foreign bus connection. If the bus that is directly connected to the
local bus does not hold the specified destination, more service integration bus links are used to flow the
message to the next bus on the route to the destination bus. When the message enters the destination
bus, that bus attempts to deliver the message to the intended destination.

To send messages to a destination that is defined in a foreign bus, an application specifies the bus name
(that is, the foreign bus) and the destination name in the JMS destination object (queue or topic). You do
not need to configure any destination objects in the local bus. Service integration uses the definition of the
foreign bus that is configured on the local bus, that is, the foreign bus connection. This definition includes
default values for the destination attributes, such as the default quality of service. These default values
apply to all destinations in that foreign bus.

You can configure a queue destination as a foreign destination or an alias destination, as described in the
information about bus destinations.

Service integration bus 1 MQ Network

Bus1-MQLink

MQ link

ME3Gateway
Gateway QM

Q1

ME1

ME2

QM2

Bus1-MQLink link
transmitter queues

Bus1-MQLink sender
channel transmitter queue

Bus1-MQLink known
link transmitter queues

Channel
Applications sending

messages to Q1
on the MQ network

messaging
application

messaging
application

Figure 160. Message flow between a service integration bus and a WebSphere MQ network

750 Overview

When an application sends messages to a destination and a foreign destination or alias destination is not
configured, the destination defaults are derived from the destination defaults that are specified for the
foreign bus connection.

For example, an application is connected to Bus 1 (its local bus). The application sends a message to a
JMS destination that specifies the bus name Bus 2 and the destination name targetQueue. The message
is processed as follows:

v Service integration routes the message to Bus 2 by using the definition in Bus 1 of the foreign bus Bus
2.

v Bus 2 delivers the message to targetQueue by using the definition in Bus 2 of its local queue
targetQueue.

In this example, service integration in Bus 1 uses attributes of its definition of the foreign bus, Bus 2, as
defaults for its destination targetQueue in the foreign bus. Service integration cannot use configuration
information that is scoped to a foreign bus. For example, service integration in Bus 1 is not aware of the
Bus 2 definition of targetQueue.

In the following figure, a JMS application connected to Bus 1 creates a producer for a queue in Bus 2. The
application uses JNDI to obtain a JMS destination object, which identifies the service integration bus
queue in Bus 2. An application can obtain a JMS destination in other ways, for example, from the
JMSReplyTo property of a JMS message.

Chapter 21. Service integration 751

Knowledge that a destination exists is held only by the bus that hosts that destination. For an application
to send messages to a destination in a foreign bus successfully, you must ensure that the destination
exists; the local bus cannot verify that the destination exists. If a message arrives through the service
integration bus link for a destination that does not exist in the foreign bus, the message is routed using the
exception handling configuration of the receiving service integration bus link.

Note: An application cannot consume messages from a destination that is located in a different bus to the
one that the application is connected to. Any attempt to create a consumer to a destination on a
foreign bus is rejected.

Publish/subscribe messaging across multiple buses:

In service integration, publish/subscribe messaging uses topic space destinations, where each topic space
destination represents a set of “publish and subscribe” topics. When multiple buses are connected using a
service integration bus link, messages published in a topic space in one bus are accessible to subscribers
on a topic space in another bus.

The topic for a specific message (publication) is a property of the message. A service integration topic
space destination is not localized in a particular bus member. Service integration maintains a list of
subscriptions in the topic space and matches each publication against that list. When a new publication
matches one or more subscriptions in the topic space, service integration delivers a copy of the publication

Bus 1 Bus 2

JNDI

messaging
engine

messaging
engine

Foreign bus
connection

(Bus 2)

Foreign bus
connection points

to service integration
bus link

JMS destination points to service
integration destination (bus and

queue)

Service integration
queue type
destination

JMS destination
(bus name and
queue name)

JMS
application

JMS
destination

1

2

3

3

1

4

Key:

1. The JMS application uses JNDI lookup to obtain the JMS destination.

2. The JMS application sends the message to the JMS destination; this is a logical message flow.

3. The local bus, Bus 1, transfers the message from the sending application to the foreign bus, Bus 2,
which contains the target destination. Bus 1 applies default properties and destination roles form the
foreign bus connection.

4. The foreign bus places the message on the target destination.

Figure 161. Establishing point-to-point messaging between two buses

752 Overview

to each subscriber; if necessary, service integration can queue the publication message until the
subscriber is ready to receive it. When the new publication does not match any subscription, service
integration discards the publication.

Subscribers can receive topics that are published in a remote bus, as long as a connection between the
buses is configured. You can configure a bus to connect to, and exchange messages with, other
messaging networks. To do this, you must configure a foreign bus connection. A foreign bus connection
encapsulates information related to the remote messaging network, such as the type of the foreign bus
and whether messaging applications are allowed to send messages to the foreign bus.

To connect topic space destinations in neighboring buses, you configure topic space mappings when you
create a foreign bus connection. Each entry in the mapping maps a local topic space destination to a topic
space in the foreign bus. Then, any subscribers to topics on the topic space in the local bus can receive
messages that are published on those topics in the topic space in the foreign bus. Publish/subscribe
applications create producers and subscriptions to topic spaces in their local bus rather than the foreign
bus (unlike point-to-point applications and queue destinations). You must configure the topic space
mappings so that the messages that the applications publish are routed correctly.

In the following figure, a subscriber in Bus 1 can receive messages that are published in Bus 2. A topic
space mapping in Bus 1 enables publications from publishers attached to Topic space 2 in Bus 2 to flow to
subscriptions attached to Topic space 1 in Bus 1.

If subscriptions exist in both buses and publishers can publish from either bus, a topic space mapping is
required in both buses to enable publications to flow between all publishers and subscribers in the two
buses.

When connecting topic spaces in more than two buses, there is no restriction on how multiple buses can
be connected. However, there is a restriction on how their topic spaces are connected using topic space
mappings. For guidance on how to create topic space mappings, see Configuring topic space mappings
between service integration buses.

Note: The names of the local and foreign topic spaces do not have to match, but the names of the topics
in the local and foreign buses do have to match.

A network of buses can contain loops in its topology, as shown in Figure 163 on page 754. Interconnected
topic spaces must follow a hierarchical tree formation. This tree can then be overlaid on the underlying bus

Bus 1 Bus 2

messaging
engine

messaging
engine

bus destination
Topic Space 2

bus destination
Topic Space 1

JMS topic
destination

Service integration
bus link

Topic space mapping

JMS
application
Publisher
Topic X

JMS
application
Subscriber

Topic X

JMS
application
Subscriber

Topic X

JMS topic
destination

Figure 162. Publish/subscribe messaging across Bus 1 and Bus 2

Chapter 21. Service integration 753

topology by using topic space mappings, as shown in Figure 163. It is not permitted for a set of
interconnected topic spaces to form a loop across multiple buses, as shown in Figure 164.

The correct example in Figure 163 shows that messages published in Bus 2 are automatically flowed
through Bus 1 to Bus 3, if Bus 3 has a suitable subscription for those messages. You create a mapping
from the topic space in Bus 1 to the topic space in Bus 2, and another mapping from the topic space in
Bus 3 to the topic space in Bus 1.

If you also created a mapping from the topic space in Bus 2 to the topic space in Bus 3, as shown in
Figure 164, you would create a loop and published messages might enter an indefinite loop and be
transmitted continually around the three buses.

Bus 2

Bus 1

Topic
Space

Topic
Space

Service integration bus link

Topic space mapping

Bus 3

Topic
Space

Figure 163. Network of buses with topic spaces connected correctly

Bus 2

Bus 1

Topic
Space

Topic
Space

Service integration bus link

Topic space mapping

Bus 3

Topic
Space

Figure 164. Network of buses with topic spaces connected incorrectly

754 Overview

If an additional subscription for the messages exists in Bus 2 and a publisher is also connected to Bus 3,
topic space mappings are required in the reverse direction to allow messages to flow to all subscriptions in
the system, as shown in Figure 165.

Bus topology that links to WebSphere MQ networks:

Service integration buses can link to WebSphere MQ networks. Applications that are connected to a
WebSphere MQ queue manager or queue-sharing group can send messages to an application that is
attached to a service integration bus, and vice versa.

One way to connect a service integration bus to a WebSphere MQ network is to use a WebSphere MQ
link. Another way is to use the WebSphere MQ server facility. This topic describes the WebSphere MQ
link.

A WebSphere MQ link connects a messaging engine to a WebSphere MQ queue manager or
queue-sharing group (known as the gateway queue manager) by using sender and receiver channels,
thereby connecting the bus and the WebSphere MQ network.

The WebSphere MQ link provides connectivity not just with the messaging engine that hosts the link, but
also with the other messaging engines in the bus. All the messaging engines in the bus appear to the
WebSphere MQ network as if they were a single queue manager (they inherit the queue manager name
from the WebSphere MQ link).

WebSphere MQ links can be used in a number of different configurations as shown in Figure 166 on page
756 and Figure 167 on page 757. A messaging engine can contain multiple WebSphere MQ links.

Bus 2

Bus 1

Topic
Space

Topic
Space

Service integration bus link

Topic space mapping

Bus 3

Topic
Space

Figure 165. Network of buses with topic space mappings in both directions

Chapter 21. Service integration 755

WebSphere
MQ link

Bus 1 Bus 2

Bus 3

cluster

Application
server

Gateway
queue

manager

Application
server

Messaging
engine

Messaging
engine

Application
server

Messaging
engine

Messaging
engine

Application
server

Messaging
engine

bus destination

bus destination

Application
server

WebSphere
MQ link

Figure 166. Service integration buses with links to a WebSphere MQ network

756 Overview

You can also use a WebSphere MQ link to form a publish/subscribe bridge that allows publication and
subscription between WebSphere Application Server and the WebSphere MQ native publish/subscribe
capability.

Direct and indirect routing between service integration buses:

You can use direct or indirect connections to interconnect service integration buses so that all the buses
can exchange messages.

Service integration buses can be connected directly or indirectly. For a direct connection, two buses are
either connected directly by a single service integration bus link to another service integration bus or by a
WebSphere MQ link to a WebSphere MQ queue manager or queue-sharing group (known as the “gateway
queue manager”). For an indirect connection, two buses are connected through one or more intermediate
buses that are connected in a chain of links.

Each bus must be able to get to every other bus to which it is connected. In this context, the bus you start
with is referred to as the local bus, and each bus that it is connected to is referred to as a foreign bus.
Information about how messages are routed from the local bus to each foreign bus is stored in the local
bus in the routing properties of the foreign bus connection. The routing properties indicate the following
information:

v Whether the connection is direct or indirect.

v If the connection is direct, the type of physical link can be either a service integration bus link from a
messaging engine in the local bus to a messaging engine in the foreign bus, or a WebSphere MQ link
from a messaging engine in the local bus to the gateway queue manager in the WebSphere MQ
network.

v If the connection is indirect, the next foreign bus in the chain that leads to the target bus.

Bus 1

Gateway
queue

manager

Bus 3

Gateway
queue

manager

Bus 2

cluster

Application
server

Messaging
engine

Messaging
engine

Application
server

Messaging
engine

bus destination

Application
server

WebSphere
MQ link

WebSphere
MQ link

Figure 167. Service integration bus with links to WebSphere MQ networks

Chapter 21. Service integration 757

In Figure 1, Bus 1 and Bus 2 are connected directly using a single direct service integration bus link. The
messaging engine in Bus 1 is connected to a messaging engine in Bus 2 by using a direct service
integration bus link.

To connect one bus to another bus through an intermediate bus, or a chain of buses, if the connection
between the intermediate bus or the chain of buses and the target bus already exists, you do not require
any new physical links. Instead, each foreign bus connection identifies a neighboring bus on the route to
the final target bus as the “next hop” in the chain. Each bus in the chain must know about the next hop in
the chain to reach the target bus. The local bus uses a foreign bus connection to identify the next bus in
the chain to the target bus, and uses its direct physical link to flow messages to that bus. Then, each
intermediate bus uses its locally defined foreign bus connection to identify the next bus in the chain until
the target bus is reached.

The physical link in the chain can be a service integration bus link or a WebSphere MQ link.

In Figure 2, to route a message from Bus 1 to Bus 3, the message is routed through a link from Bus 1 to
Bus 2, then is routed through another link from Bus 2 to Bus 3. Bus 1 has a foreign bus connection that
identifies Bus 2 as a direct connection, and a foreign bus connection that identifies Bus 2 as the next
foreign bus on the route to Bus 3. Bus 2 has a foreign bus connection that identifies the next hop to the
final bus, which in this example, is a direct connection to Bus 3.

Bus 1 Bus 2
(Foreign bus : Bus2) (Foreign bus : Bus1)

Messaging
engine

Messaging
engineMessaging engine

(Service integration
bus link : Link X)

Messaging engine
(Service integration

bus link : Link X)

Direct Service
integration bus link

Figure 168. Direct connection between two service integration buses by using a service integration bus link

758 Overview

The following diagram shows an existing network of three buses, Bus 1, Bus 2 and Bus 3, where a new
bus, Bus n, is to be added. Bus n will be connected directly to Bus 1 and indirectly to Buses 2 and 3.

Bus 1 Bus 3

Bus 2
(next bus in route)

Messaging
engine

Messaging
engine

Messaging
engine

Messaging engine
(Service integration

bus link : Link A)

Messaging engine
(Service integration

bus link : Link B)

Messaging engine
(Service integration

bus link : Link A)

Messaging engine
(Service integration

bus link : Link B)

Indirect connection
via Bus 2

Direct
connection

Direct
connection

Service integration
bus link

Service integration
bus link

Figure 169. Indirect connection between two service integration buses, by using two direct service integration bus links

Chapter 21. Service integration 759

The following list shows the resources that must be defined to add Bus n to the network, and to allow
messages to flow between any of the buses:

v For Bus n, the following resources must be defined:

– A direct foreign bus connection that represents Bus 1. A service integration bus link between the
messaging engine on Bus n and the messaging engine on Bus 1 is created automatically.

– An indirect foreign bus connection that specifies Bus 1 as the next bus in the chain and Bus 2 as the
target bus.

– An indirect foreign bus connection that specifies Bus 1 as the next bus in the chain and Bus 3 as the
target bus.

v For Bus 1, a direct foreign bus connection that represents Bus n. A service integration bus link between
the messaging engine on Bus 1 and the messaging engine on Bus n is created automatically. The
name of the service integration bus link must exactly match the name of the service integration bus link
created in Bus n.

v For Bus 2, an indirect foreign bus connection that specifies Bus 1 as the next bus in the chain and Bus
n as the target bus.

v For Bus 3, an indirect foreign bus connection that specifies Bus 2 as the next bus in the chain and Bus
n as the target bus.

The following diagram shows the network after Bus n is added. Bus n is connected directly to Bus 1. The
messaging engine in Bus n is connected to the messaging engine in Bus 1 by using a direct service
integration bus link. There is an indirect connection between Bus n and Bus 2, and between Bus n and
Bus 3.

Bus 3Bus 2Bus 1

Bus n

Application
server

Application
server

Application
server

Application
server

Messaging
engine

Messaging
engine

Messaging
engine

Messaging
engine

indirect connection

Service integration
bus link

Service integration
bus link

Figure 170. A network before Bus n is added

760 Overview

Bootstrap members
An application inside a client container or application server outside the cell, cannot connect directly a bus
inside the cell. This is because the client container or application server outside the cell, does not have
access to cell configuration information. Therefore, to connect to a bus, the application must bootstrap to
an application server inside the cell. That application server identifies a server inside the cell that is a bus
member. Then, the client or application server outside the cell, will be able to connect to the bus inside the
cell. A bootstrap member is an application server or cluster that is configured to accept requests to
bootstrap into the service integration bus. The bootstrap member authenticates a connection request, and
directs the request to a suitable bus member. The administrator configures the bootstrap member policy
for the bus to determine which types of server can service requests to bootstrap.

The following bootstrap member policies are available:

All members of the cell with the SIB Service enabled
This the default policy. Any server in the cell that has the SIB service enabled can service
bootstrap requests.

Bus members and nominated bootstrap members
Only bus members or nominated bootstrap members can service bootstrap requests.

Bus members only
Only bus members can service bootstrap requests.

Bus 3Bus 2Bus 1

Bus n

Application
server

Application
server

Application
server

Application
server

Messaging
engine

Messaging
engine

Messaging
engine

Messaging
engine

indirect connection

indirect connections

Service integration
bus link

Service integration
bus link

Service integration
bus link

Figure 171. A network after Bus n is added

Chapter 21. Service integration 761

Unlike a bus member, a bootstrap member does not host a messaging engine and therefore does not
provide messaging services. However, an application server or cluster can be both a bootstrap member
and a bus member.

The administrator can use the administrative console to list bootstrap members. This information is helpful
in managing bus topologies, developing applications, and diagnosing problems.

If a server or cluster is a member of one bus only, the administrator can choose the bootstrap member
policy Bus members and nominated bootstrap members to prevent the members of one bus from
bootstrapping into another bus.

If a bus topology uses multiple security domains, you can isolate buses and the applications that use them
by configuring the bootstrap members so that only a subset of servers or clusters can access a bus.

Service integration notification events
You can monitor your service integration environment by using notification events.

Each service integration entity, such as a messaging engine or a WebSphere MQ link, is represented by
an MBean. MBeans are Java objects that represent Java Management Extensions (JMX) resources. As
part of the JMX architecture, the MBeans can have notification events, which you can incorporate into your
own system management application to monitor activities, such as the starting up of a messaging engine,
across your service integration configuration. Events also enable applications acting as agents for other
administration networks to monitor reports and create the appropriate alerts.

For more information about the WebSphere Application Server implementation of the JMX framework, see
Using wsadmin scripting with Java Management Extensions (JMX).

Each WebSphere Application Server MBean is documented in the Mbean interfaces section of the
Information Center. You can navigate to this section by expanding Reference > Programming interfaces
in the Information Center navigation, and then clicking Mbean interfaces, or by doing a search for "Mbean
interfaces".

The following service integration MBeans have notification events:

v SIBGatewayLink

v SIBMediationPoint

v SIBMessagingEngine

v SIBMQLink

v SIBMQLinkReceiverChannel

v SIBMQLinkSenderChannel

v SIBPublicationPoint

v SIBQueuePoint

v SIBRemotePublicationPoint

v SIBRemoteQueuePoint

Format of event notifications

Event notifications contain information about the event and its origin. Typically, these notifications are
processed by a system management application program tailored to meet the requirements of the
enterprise at which it runs. The service integration events have the following attributes:

762 Overview

Table 77. Attributes of service integration events. The first column of the table lists the event attribute names, and
the second column provides the description of the attributes.

Attribute name Attribute description

Message The message that describes the event.

SequenceNumber An identifier for the event instance, unique within a run of the application server.

TimeStamp Timestamp in milliseconds.

Type Identifies the type of event, for example a messaging engine stop event. The type is defined by constants in
the app_server_root/web/apidocs/SIBNotificationConstants.html file.

Properties Specific for each event generated. These are key value pairs of strings that describe aspects of the event,
such messaging engine name or number of messages on a destination. The key and value strings are defined
by constants in the app_server_root/web/apidocs/SIBNotificationConstants.html file.

All service integration events will have properties for the bus name and UUID, and the messaging engine name
and UUID.

Message reliability levels - JMS delivery mode and service integration
quality of service
Messages have a quality of service attribute that you can use to specify how reliable message delivery will
be. JMS applications send messages with a JMS delivery mode (persistent or nonpersistent), then
service integration uses JMS connection factory settings to map the JMS delivery mode to a service
integration message reliability setting. Additional settings on bus destinations (including foreign destinations
and alias destinations) can override this message reliability.

Note: The term message reliability level corresponds to all of the following terms:

v Quality of service (QoS) (service integration messaging)

v Delivery mode (JMS)

v Persistence (WebSphere MQ)

You can specify the following service integration message reliability levels for messages. The options are
listed in order of increasing reliability.

Best effort nonpersistent
Messages are discarded when a messaging engine stops or fails. Messages might also be
discarded if a connection used to send them becomes unavailable or as a result of constrained
system resources.

Express nonpersistent
Messages are discarded when a messaging engine stops or fails. Messages might also be
discarded if a connection used to send them becomes unavailable.

Reliable nonpersistent
Messages are discarded when a messaging engine stops or fails.

Reliable persistent
Messages might be discarded when a messaging engine fails.

Assured persistent
Messages are not discarded.

Note: Higher levels of reliability have higher impacts on performance.

JMS applications send messages with a JMS delivery mode (persistent or nonpersistent). Applications
specify this delivery mode as a parameter of the JMS send() method, but you can optionally specify a
delivery mode that overrides the send() method as an attribute of the JMS destination.

Chapter 21. Service integration 763

Service integration uses the JMS connection factory settings to map the JMS delivery modes (persistent
and nonpersistent) to service integration message reliability levels. You can use this mapping to choose
between high performance, high reliability, or something in between. You specify the mapping you require
in the JMS connection factory settings. For example, see Default messaging provider unified connection
factory [Settings].

Important: If you map the persistent JMS delivery mode to one of the service integration nonpersistent
levels (best effort nonpersistent, express nonpersistent or reliable nonpersistent), you
risk losing messages in certain circumstances. For example, you risk losing messages at
server restart, or when there is heavy workload.

You specify default and maximum service integration reliability levels as attributes of bus destinations
(including foreign destinations and alias destinations). You also specify whether the producer-specified
reliability overrides the default reliability for the destination: if not, service integration resets the reliability
level of the messages to the default reliability for the destination. For alias destinations, you can specify
that the reliability setting is inherited from the target destination.

For interoperation with WebSphere MQ, you map the reliability settings for service integration messages to
the persistence settings for WebSphere MQ messages. For more information, see Mapping the JMS
delivery option and message reliability to and from the WebSphere MQ persistence value.

To help you choose the required reliability level, the following table illustrates the behavior associated with
the five levels of reliability.

Note: In addition to setting the selected reliability level, for messages to remain available after the various
failures shown in the table with certain reliability, the application must be transactional.

Table 78. Behavior of the five levels of reliability. The five columns in the table lists the five message reliability levels
and the corresponding behavior associated with each of the five levels of reliability.

Best effort
nonpersistent

Express
nonpersistent

Reliable
nonpersistent Reliable persistent Assured persistent

JMS delivery mode: Nonpersistent Nonpersistent Nonpersistent Persistent Persistent

Transactionally
atomic:

No, individual
messages can be
discarded

Yes: messages are
not discarded and
never retained
beyond server
restart

Yes: messages are
not discarded and
never retained
beyond server
restart

Yes Yes

Messages
hardened:

No Possibly: when
messages build up
on a destination

Possibly: when
messages build up
on a destination

Yes: asynchronously Yes: synchronously

Messages
discarded in
normal operation:

Yes No No No No

Messages
duplicated:

No Possibly: state data
can be lost on
server failure
resulting in
duplication

Possibly: state data
can be lost on
server failure
resulting in
duplication

Possibly: as deletion
from the database is
asynchronous with
respect to user
requests

No

Messages are
retained beyond
planned shutdown:

No No No Yes: hardened
messages are
recovered, planned
shutdown hardens
cached messages

Yes

Messages are
retained beyond
client comms
failure:

No No Yes Yes Yes

764 Overview

Table 78. Behavior of the five levels of reliability (continued). The five columns in the table lists the five message
reliability levels and the corresponding behavior associated with each of the five levels of reliability.

Best effort
nonpersistent

Express
nonpersistent

Reliable
nonpersistent Reliable persistent Assured persistent

Messages are
retained beyond
engine comms
failure:

No Yes Yes Yes Yes

Messages are
retained beyond
engine crash:

No No No Possibly: hardened
messages are
recovered

Yes

Messages are
retained beyond
backup and
restore:

No No No Possibly: hardened
messages can be
backed up and
recovered

Yes

The following provides an explanation of the row headings in the table:

JMS delivery mode
For JMS objects such as connection factories and destinations, the mapping between JMS
delivery mode and the reliability settings. The default mapping for the JMS nonpersistent delivery
mode is express nonpersistent. The default mapping for the JMS persistent delivery mode is
reliable persistent.

Transactionally atomic
Whether the message is atomic with respect to other messages produced or consumed within the
same transaction. Best effort messages are not transactionally atomic at the time that they are
produced with respect to other messages, so if one such message is lost (see the description of
best effort nonpersistent earlier in this topic for details of how messages might be lost), other
messages being processed in the same transaction might still be delivered successfully when the
transaction commits (if the transaction is rolled back all operations on messages, irrespective of
their reliability, are rolled back). For messages of higher reliability, if a failure occurs that would
cause the loss of one of the messages in the transaction, the transaction, and all work being
performed under that transaction, will be rolled back, making the operation transactionally atomic.

Messages hardened
Whether messages are written to disk in the data store or the file store. System performance is
affected by the frequency with which messages are written to disk, and in general using a file
store for your messaging engine can improve performance. Messages of best effort
nonpersistent reliability are never written to disk, express nonpersistent and reliable
nonpersistent messages are written if messages build up on a destination, whereas reliable
persistent and assured persistent messages are always written to disk.

Messages of reliable persistent reliability are written to disk, but this is done asynchronously
with respect to the producing application. This allows increased flexibility in scheduling and
batching of database updates, which can be used to increase throughput. Messages are not be
lost under normal operating conditions, but messages might be lost if a messaging engine fails
before this asynchronous write is complete.

Messages of assured persistent reliability are written to disk synchronously with respect to the
producing application.

If messages are allowed to build up on a destination due to them not being consumed as quickly
as they are produced, a messaging engine might choose to write messages to disk in order to
manage memory usage.

When a message whose quality of service attribute is better than best effort nonpersistent is
written to disk, it might also be cached in a memory buffer.

Messages discarded in normal operation
Whether messages are discarded during normal operation.

Chapter 21. Service integration 765

Note:

If you have a non-transactional message-driven bean, the system either deletes the
message when the bean starts, or when the bean completes. If the bean generates an
exception, and therefore does not complete, the system takes one of the following actions:

v If the system is configured to delete the message when the bean completes, then the
message is despatched to a new instance of the bean, so the message has another
opportunity to be processed.

v If the system is configured to delete the message when the bean starts, then the
message is lost.

The message is deleted when the bean starts if the quality of service is set to Best effort
nonpersistent. For all other qualities of service, the message is deleted when the bean
completes.

Messages duplicated
Whether messages are duplicated following a server failure.

Messages are retained beyond planned shutdown
Whether messages are retained beyond a planned shutdown or startup.

Messages are retained beyond client comms failure
Whether messages are retained beyond the failure of client-messaging engine communication.

Messages are retained beyond engine comms failure
Whether messages are retained beyond the failure of inter-engine communication.

Messages are retained beyond engine crash
Whether messages are retained beyond the failure of a messaging engine or a server.

Messages are retained beyond backup and restore
Whether messages are retained beyond an online backup and restore process.

Dynamic reloading of configuration files
Updates to configuration information are dynamically passed to the server if you use dynamic reloading of
configuration files. These updates are available to a messaging engine even if it is not started.

The information that defines the configuration of service integration buses (including any linked foreign bus
connections) and their resources is saved in a set of configuration files. When a server starts up, it reads
the current information about service integration from those configuration files. When a messaging engine
is started, it uses the information in the server that it is running in.

If the information in the configuration files is changed while the server is running, the server must either be
dynamically updated or restarted to use the updated information.

You can enable dynamic reloading of configuration files for servers and for service integration buses,
including the configuration information for any linked foreign bus connections. There are different results
depending on whether you enable dynamic reloading for either the bus or the server or both:

v If you enable dynamic reloading on the bus, but not on the application server, you will need to restart
the server for updates to take effect.

v If you enable dynamic reloading on the server, but not on the bus, then you will need to restart only the
messaging engine for the updates to take effect.

v If you enable dynamic reloading on both the bus and the server, then all updates occur automatically
without the need for restarts.

To enable dynamic reloading of configuration files on an application server, click Application servers ->
server_name -> SIB service to display the Application Servers window, and select Configuration reload

766 Overview

enabled. To ensure that dynamic configuration updates are made to each node, click System
administration -> Console Preferences to display the Console Preferences window and select
Synchronize changes with nodes.

To enable dynamic reloading of configuration files for a service integration bus, click Service integration
-> Buses -> bus_name to display the bus details, and select Configuration reload enabled.

If you choose not to enable dynamic reloading of configuration files, you must restart the server to pick up
changes to the configuration files.

In a cluster deployment with failover, it is likely that the configuration information is updated between the
initialization and start up of a messaging engine. (When a server starts a messaging engine is initialized,
however the messaging engine might not start for a long time after that). Therefore you should enable
dynamic reloading of configuration files in a cluster deployment with failover, because restarting a server to
pick up configuration changes causes a failover. To get predictable behavior on failover, you must ensure
that the standby (inactive) servers have been updated and recycled before the active server.

Service integration backup
You should back up your service integration setup on a regular basis so that it can be restored in the
event of an unrecoverable failure.

For service integration, these are the main components that you can back up:

Configuration files
The configuration of a service integration setup is stored as XML files. To back up or restore these
configuration files, use the relevant command as detailed in Backing up and restoring
administrative configuration files. Any backup or restore of a service integration setup must include
a backup or restore of the configuration files.

Data stores that are accessed by the messaging engines
Backing up and restoring your data stores is optional. As messages are transient in nature, you
might not want to back up or restore the data stores.

v If you do not back up the data stores, and you modified your current configuration since it was
last backed up, when you restore the configuration backup be aware that you might lose
messages. For example, if you back up the configuration and then create a bus destination,
when you restore the configuration backup the bus destination will no longer exist. Any
messages for this destination will be deleted when the server that hosted that messaging
engine is restarted.

v If you do back up your data stores, you must also back up the configuration files. You must
back up or restore the configuration files at the same time as the data store is backed up or
restored. Backing up and restoring at the same time maintains the consistency of the system
and reduces the possibility of losing or duplicating messages from the time of the backup.

To back up a data store, see Backing up a data store.

File stores that are accessed by the messaging engines
Backing up and restoring your file stores is optional. As messages are transient in nature, you
might not want to back up or restore the files. To back up a file store, see Backing up a file store.

If you have multiple servers, you should ideally back up all the servers at the same time, otherwise
messages from the time of the backup might be lost or duplicated. You should also minimize message
traffic to reduce the possibility of losing or duplicating messages.

When you restart a messaging engine after restoring a backup, you should take steps to minimize loss of
messages. See Restoring a data store and recovering its messaging engine .

Chapter 21. Service integration 767

768 Overview

Chapter 22. Session Initiation Protocol (SIP) applications

This page provides a starting point for finding information about SIP applications, which are Java programs
that use at least one Session Initiation Protocol (SIP) servlet written to the JSR 116 specification.

SIP is used to establish, modify, and terminate multimedia IP sessions including IP telephony, presence,
and instant messaging.

SIP in WebSphere Application Server
WebSphere Application Server delivers rich SIP functionality throughout its infrastructure.

Session Initiation Protocol (SIP) has grown considerably since it first became an IETF standard in 1999.
SIP was originally intended purely for video and audio but has now grown to become the control protocol
for many interactive services, particularly in the peer-to-peer realm. SIP, and the standards surrounding
SIP, provide the mechanisms to look up, negotiate, and manage connections to peers on any network over
any other protocol.

This product includes support for SIP Servlet Specification 1.1, also referred to as Java Specification
Request (JSR) 289. The SIP Servlet Specification provides the Java API standards for Session Initiation
Protocol (SIP). JSR 289 is an update to the existing SIP Servlet specification that addresses new
requirements determined by industry users. This product continues to support the SIP Servlet 1.0
specification.

WebSphere Application Server also provides tooling for the development environment and high performing
Edge Components to handle distributed application environments.

In the application server, the web container and SIP container are converged and are able to share
session management, security and other attributes. In this model, an application that includes SIP servlets,
HTTP servlets, and portlets can seamlessly interact, regardless of the protocol.

High availability of these converged applications is made possible because of the tight integration of HTTP
and SIP in the base application server.

In front of a clustered application sits the proxy server, managing the traffic and workload of the SIP and
HTTP traffic to the container. This proxy server is a stateless SIP proxy and a HTTP reverse proxy
together, which uses the unified clustering framework and high availability manager services to seamlessly
monitor the health of the servers. The proxy server also can act as a stand-alone stateless SIP proxy in
front of the SIP container in the application server when no HTTP traffic is present.

The proxy server uses the unified clustering framework, and high availability manager services to perform
failover work, when necessary. With the converged proxy and converged container, session failover is
done with affinity to the application, allowing the HTTP and SIP sessions to be tied together automatically.
Having the SIP and HTTP sessions automatically tied together from the container to the proxy is another
way the application server solution excels in converged environments.

It's important to note that the SIP function in the proxy server is stateless. The SIP RFC defines two types
of proxy servers, one stateful and one stateless. Normally, a SIP proxy is a stateful instance and stateless
proxies are specified as such. A stateful proxy participates in the call flows and is implemented using SIP
servlets.

The stateless SIP proxy functionality in the proxy server allows the proxy to handle the workload, routing,
and session affinity needs of the SIP container with less complexity. Being stateless, the proxy server can
be fronted by a simple IP sprayer, such as the load balancer component. If a proxy server fails, the affinity
is to the container and not to the proxy itself so there is one less potential failure along the message flow.

© IBM Corporation 2009 769

SIP Infrastructure

The SIP infrastructure is a multi-tiered architecture made up of SIP containers, SIP proxies and an
IP sprayer. The SIP container is a general purpose SIP application server. The SIP infrastructure
consists of:

v SIP container – web container extension that implements JSR 289.

v SIP proxy – Stateless edge device that handles I/O concentration, load balancing, and other
functions, in a similar manner to the reverse HTTP proxy. This is not the same as the SIP proxy
defined by RFC 3261.

v Load balancer – SIP enabled to interoperate with SIP proxies and SIP containers. The
extendable SIP proxy handles session affinity, load balancing, and failover. The load balancer
functions as a highly available IP sprayer to dispatch messages to the proxies.

SIP is a key element for many new applications, especially when converged with HTTP, including:

v Click-To-Call

v Voice over IP

v Third Party Call Control and Call Monitoring

v Presence and Instance Messaging

SIP applications
A SIP application is a Java program that uses at least one Session Initiation Protocol (SIP) servlet.

A SIP servlet is a Java-based application component that is managed by a SIP servlet container and that
performs SIP signaling. Like other Java-based components, servlets are platform-independent Java
classes that are compiled to platform-neutral bytecode that can be loaded dynamically into and run by a
Java-enabled SIP application server. Containers, sometimes called servlet engines, are server extensions
that handle servlet interactions. SIP servlets interact with clients by exchanging request and response
messages through the servlet container.

SIP is used to establish, modify, and terminate multimedia IP sessions including IP telephony, presence,
and instant messaging. “Presence” in this context refers to user status such as “Active,” “Away,” or “Do not
disturb.” The standard that defines a programming model for writing SIP-based servlet applications is JSR
116.

SIP container

This product complies with the following SIP standards:

IETF

JCP

For a complete list of the supported Internet Engineering Task Force (IETF) and Java Community Process
(JCP) industry standards, see the “Compliance with industry SIP standards” topic linked later in this
section.

SIP industry standards compliance
The product implementation of Session Initiation Protocol (SIP) complies with industry standards for both a
SIP container and SIP applications.

SIP container

This product complies with the following SIP standards:

IETF

JCP

770 Overview

http://www.jcp.org/aboutJava/communityprocess/final/jsr116
http://www.jcp.org/aboutJava/communityprocess/final/jsr116
http://www.ietf.org
http://www.jcp.org
http://www.ietf.org
http://www.jcp.org

This product also complies with the Internet Engineering Task Force (IETF) and Java Community Process
(JCP) industry standards for SIP. The following table contains a list of the IETF and JCP standards.

Table 79. WebSphere Application Server complies with these SIP standards.

This product complies with SIP standards as noted in the following table.

Standard Description

JR116 SIP: SIP Servlet API

JR289 SIP: SIP Servlet API v1.1

RFC 2543 SIP: Session Initiation Protocol

RFC 3261 SIP: Session Initiation Protocol

RFC 3262 Reliability of provisional responses in SIP

RFC 3263 Locating SIP servers

RFC 3265 SIP-specific event notification

RFC 3311 The SIP UPDATE Method

RFC 3325 Private Extensions to the SIP for asserted identity within trusted networks

RFC 3326 The Reason Header field for the SIP

RFC 3515 The SIP Refer method

RFC 3581 The SIP Extension for Symmetric Response Routing

RFC 3824 Using E.164 numbers with the SIP

RFC 3891 The SIP Replace header

RFC 3903 SIP Extension for event state publication

RFC 3911 The SIP Join header

RFC 4475 SIP torture test messages

RFC 5057 Multiple dialog usages in SIP

RFC 5626 Managing Client-Initiated Connections in SIP
Note: The SIP server can act as a proxy or registrar as specified in sections, 5, 6, and 7 of
RFC 5626. RFC 5626 is an extension to RFC 3261. The SIP server has full support for
RFC 3261. However, support for RFC 5626 comes with the following limitations:

v The SIP server can act as a User Agent, as defined in RFC 3261; however, it cannot act
as a User Agent as defined in section 4 of RFC 5626.

v The SIP server does not support STUN keepalives, as specified in RFC 5626.

RFC 5658 Addressing Record-Route issues in SIP

SIP applications

This product complies with standards for SIP applications.

Table 80. Compliance with standards for SIP applications.

This product complies with standards for SIP applications as noted in the following table.

Standard Description

RFC 2848 The PINT Service Protocol: Extensions to SIP and Session Description Protocol (SDP) for
internet protocol (IP) access to telephone call services

RFC 2976 The SIP INFO method

RFC 3050 Common gateway interface for SIP

RFC 3087 Control of service context using SIP request-URI

Chapter 22. Session Initiation Protocol (SIP) applications 771

http://jcp.org/en/jsr/detail?id=116
http://jcp.org/en/jsr/detail?id=289
http://www.ietf.org/rfc/rfc2543.txt
http://www.ietf.org/rfc/rfc3261.txt
http://www.ietf.org/rfc/rfc3262.txt
http://www.ietf.org/rfc/rfc3263.txt
http://www.ietf.org/rfc/rfc3265.txt
http://www.ietf.org/rfc/rfc3311.txt
http://www.ietf.org/rfc/rfc3325.txt
http://www.ietf.org/rfc/rfc3326.txt
http://www.ietf.org/rfc/rfc3515.txt
http://www.ietf.org/rfc/rfc3581.txt
http://www.ietf.org/rfc/rfc3824.txt
http://www.ietf.org/rfc/rfc3891.txt
http://www.ietf.org/rfc/rfc3903.txt
http://www.ietf.org/rfc/rfc3911.txt
http://www.ietf.org/rfc/rfc4475.txt
http://www.ietf.org/rfc/rfc5057.txt
http://www.ietf.org/rfc/rfc5626.txt
http://tools.ietf.org/html/rfc5658
http://www.ietf.org/rfc/rfc2848.txt
http://www.ietf.org/rfc/rfc2976.txt
http://www.ietf.org/rfc/rfc3050.txt
http://www.ietf.org/rfc/rfc3087.txt

Table 80. Compliance with standards for SIP applications (continued).

This product complies with standards for SIP applications as noted in the following table.

Standard Description

RFC 3264 An offer and answer model with SDP

RFC 3266 Support for IPv6 in SDP

RFC 3312 Integration of resource management and SIP

RFC 3313 Private SIP extensions for media authorization

RFC 3319 Dynamic Host Configuration Protocol (DHCPv6) options for SIP servers

RFC 3327 SIP Extension Header field for registering non-adjacent contacts

RFC 3372 SIP for telephones (SIP-T): context and architectures

RFC 3398 Integrated Services Digital Network (ISDN) User Part (ISUP) to SIP mapping

RFC 3428 SIP extension for instant messaging

RFC 3455 Private Header (P-Header) extensions to the SIP for the 3rd-Generation Partnership Project
(3GPP)

RFC 3578 Mapping of Integrated Services Digital Network (ISDN) User Part (ISUP) overlap signaling
to the SIP

RFC 3603 Private SIP proxy-to-proxy extensions for supporting the PacketCable distributed call
signaling architecture

RFC 3608 SIP Extension Header field for service route discovery during registration

RFC 3665 SIP basic call flow examples

RFC 3666 SIP Public Switched Telephone Network (PSTN) call flows

RFC 3680 A SIP event package for registrations

RFC 3725 Best current practices for third-party call control (3pcc) in the SIP

RFC 3840 Indicating user agent capabilities in the SIP

RFC 3842 A message summary and message waiting indication event package for the SIP

RFC 3856 A presence event package for the SIP

RFC 3857 A watcher information event template package for the SIP

RFC 3959 The early session disposition type for the SIP

RFC 3960 Early media and ringing tone generation in the SIP

RFC 3976 Interworking SIP and intelligent network (IN) applications

RFC 4032 Update to the SIP preconditions framework

RFC 4092 Usage of the SDP Alternative Network Address Types (ANAT) semantics in the SIP

RFC 4117 Transcoding services invocation in the SIP using third-party call control (3pcc)

RFC 4235 An invite-initiated dialog event package for the SIP

RFC 4240 Basic network media services with SIP

RFC 4353 A framework for conferencing with the SIP

RFC 4354 A SIP event package and data format for various settings in support for the push-to-talk
over cellular (PoC) service

RFC 4411 Extending the SIP Reason Header for preemption events

RFC 4457 The SIP P-user-database Private-Header (P-Header)

RFC 4458 SIP URIs for applications such as voicemail and interactive voice response (IVR)

RFC 4483 A mechanism for content indirection in SIP messages

RFC 4497 Interworking between the SIP and QSIG

772 Overview

http://www.ietf.org/rfc/rfc3264.txt
http://www.ietf.org/rfc/rfc3266.txt
http://www.ietf.org/rfc/rfc3312.txt
http://www.ietf.org/rfc/rfc3313.txt
http://www.ietf.org/rfc/rfc3319.txt
http://www.ietf.org/rfc/rfc3327.txt
http://www.ietf.org/rfc/rfc3372.txt
http://www.ietf.org/rfc/rfc3398.txt
http://www.ietf.org/rfc/rfc3428.txt
http://www.ietf.org/rfc/rfc3455.txt
http://www.ietf.org/rfc/rfc3578.txt
http://www.ietf.org/rfc/rfc3603.txt
http://www.ietf.org/rfc/rfc3608.txt
http://www.ietf.org/rfc/rfc3665.txt
http://www.ietf.org/rfc/rfc3666.txt
http://www.ietf.org/rfc/rfc3680.txt
http://www.ietf.org/rfc/rfc3725.txt
http://www.ietf.org/rfc/rfc3840.txt
http://www.ietf.org/rfc/rfc3842.txt
http://www.ietf.org/rfc/rfc3856.txt
http://www.ietf.org/rfc/rfc3857.txt
http://www.ietf.org/rfc/rfc3959.txt
http://www.ietf.org/rfc/rfc3960.txt
http://www.ietf.org/rfc/rfc3976.txt
http://www.ietf.org/rfc/rfc4032.txt
http://www.ietf.org/rfc/rfc4092.txt
http://www.ietf.org/rfc/rfc4117.txt
http://www.ietf.org/rfc/rfc4235.txt
http://www.ietf.org/rfc/rfc4240.txt
http://www.ietf.org/rfc/rfc4353.txt
http://www.ietf.org/rfc/rfc4354.txt
http://www.ietf.org/rfc/rfc4411.txt
http://www.ietf.org/rfc/rfc4457.txt
http://www.ietf.org/rfc/rfc4458.txt
http://www.ietf.org/rfc/rfc4483.txt
http://www.ietf.org/rfc/rfc4497.txt

Table 80. Compliance with standards for SIP applications (continued).

This product complies with standards for SIP applications as noted in the following table.

Standard Description

RFC 4508 Conveying feature tags with the SIP REFER method

Runtime considerations for SIP application developers
You should consider certain product runtime behaviors when you are writing Session Initiation Protocol
(SIP) applications.

Container may accept non-SIP URI schemes

The SIP container will not reject a message if it doesn't recognize the scheme in the request Uniform
Resource Indicator (URI) because the container cannot know which URI schemes are supported by the
applications. SIP elements may support a request URI with a scheme other than sip or sips, for example,
the pres: scheme has a particular meaning for presence servers, but the container does not recognize it.
It is up to the application to determine whether to accept or to reject a specific scheme. SIP elements may
translate non-SIP URIs using any mechanism available, resulting in SIP URIs, SIPS URIs, or other
schemes, like the tel URI scheme of RFC 2806 [9].

trns: When a SIP application sends a request to a SIP URI over Transport Layer Security (TLS) in
version 6.1, the request URI scheme changes from "sip" to "sips." In the current version, the
scheme does not change. You can reverse the new behavior by changing the application code. With
a "sips" URI, the behavior remains the same after upgrading from version 6.1 to 7.0 or above. See
the information center topic Premigration considerations for more information.

Directing requests in a multiple-container environment

In a multiple-container environment (SIP proxy plus SIP containers), when your application sends a
request intended initially to be sent externally but later received, it should use the host and ports of the
front-most load balancing element (either an IP sprayer for multiple SIP proxies, or the SIP proxy if only
one exists). If the application uses the host name of a container instead of the front-most element, the
request may be lost in the event of a failure.

For example, an application sends an INVITE request to itself, but the request must pass through an
external accounting system through a pushed Route header. The application should set the INVITE
request's URI to the host and port of the foremost element to ensure that failover occurs. The request will
be routed to the accounting system via the pushed Route, and then sent back to the front load balancing
element for processing.

Invoking session listener events

SipSessionListener and SipApplicationSessionListener events are invoked only if an application requests
the corresponding session object. You do this by using in your application the method shown in Table 81.

Table 81. Methods that invoke session listener events.

This table lists the methods that invoke session listener events.

Event Method

SipSessionListener getSession()

SipApplicationSessionListener getApplicationSession()

Chapter 22. Session Initiation Protocol (SIP) applications 773

http://www.ietf.org/rfc/rfc4508.txt

Session activation and passivation

During normal operation, this product never migrates a session from one server to another. Session
migration occurs only as a result of a server failure. Therefore the SipSessionActivationListener method's
passivation callback is never invoked. However, the activation callback is invoked when a failure forces
session failover to a different server.

External resources

If a SIP application performs intensive I/O or accesses an external database, it may be blocked for several
milliseconds. If possible, use asynchronous APIs for these resources . Under stress, a blocked SIP
application may trigger a Request Timeout or re-transmission.

SIP application attributes

Avoid hanging large objects or BLOBs as SIP Session attributes (via SIPSession.setAttribute API). This
may damage the overall performance when combined with high availability (HA). The same
recommendation applies for SIPApplicationSession.setAttribute. In most cases, the large object can be
replaced by several simple or composed strings.

SIP IBM Rational Application Developer for WebSphere framework
This page provides information about the SIP IBM Rational Application Developer for WebSphere
framework.

WebSphere Application Server includes IBM Rational Application Developer for WebSphere to meet all the
basic development needs for Java EE applications. Included in IBM Rational Application Developer for
WebSphere is support for developing SIP servlet applications. IBM Rational Application Developer for
WebSphere provides graphical deployment descriptor editors and basic wizards to get you started writing
SIP servlets.

IBM Rational Application Developer for WebSphere also includes many other pieces that integrate well in
WebSphere Application Server deployments, such as the Unit Test Environment, which provides the
WebSphere Application Server servlet container to run SIP servlets in the development phase of the
product, as well as tools for server automation and application packaging.

IBM Rational Application Developer for WebSphere supports:

v SIP servlet development (JSR 116)

v Converged SIP/HTTP applications

v Import/Export SAR packages

v SIP samples (call forward, call block, third party call)

SIP servlets
This topic describes SIP servlets.

The SIP Servlet 1.0 specification (JSR 116) is standardized through Java Specification Request (JSR) 116.
The idea behind the specification is to provide a Java application programming interface (API) similar to
HTTP servlets, which provides an easy-to-use SIP programming model. Like the popular HTTP servlet
programming model, some flexibility is limited to optimize ease-of-use and time-to-value.

However, the SIP Servlet API is different in many ways from HTTP servlets because the protocol is so
different. While SIP is a request-response protocol, there is not necessarily only one response to every
one request. This complexity and a need for a high performing solution meant that it was easier to make
the SIP servlets natively asynchronous. Also, unlike HTTP servlets, the programming model for SIP
servlets sought to make client requests easy to create alongside the other logic being written because
many applications act as a client or proxy to other servers or proxies.

774 Overview

http://www.jcp.org/aboutJava/communityprocess/final/jsr116
http://www.jcp.org/aboutJava/communityprocess/final/jsr116

SipServlet requests

Like HTTP servlets, each SIP servlet extends a base javax.servlet.sip.SipServlet class. All messages come
in through the service method, which you can extend. However, because there is not a one-to-one
mapping of requests to responses in SIP, the suggested practice is to extend the doRequest or
doResponse methods instead. When extending the doRequest or doResponse methods, it is important to
call the extended method for the processing to complete.

Each request method, which the specification must support, has a doxxx method just like HTTP. In HTTP,
methods such as doGet and doPost exist for GET and POST requests. In SIP, doInvite, doAck, doOptions,
doBye, doCancel, doRegister, doSubscribe, doNotify, doMessage, doInfo, and doPrack methods exist for
each SIP request method.

Unlike an HTTP servlet, SIP servlets have methods for each of the response types that are supported. So,
SIP servlets include the doProvisionalResponse, doSuccessResponse, doRedirectResponse, and
doErrorResponse responses. Specifically, the provisional responses (1xx responses) are used to indicate
status, the success responses (2xx responses) are used to indicate a successful completion of the
transaction, the redirect responses (3xx responses) are used to redirect the client to a moved resource or
entity, and the error responses (4xx, 5xx, and 6xx responses) are used to indicate a failure or a specific
error condition. These types of response messages are similar to HTTP, but because the SIP Servlet
programming model includes a client programming model, it is necessary to have responses handled
programmatically as well.

Clarifications of JSR 116

JSR 289 has made some clarifications to JSR 116, as follows:

v JSR 289 Section 4.1.3: Contact Header Field

v JSR 289 Section 5.2: Implicit Transaction State

v JSR 289 Section 5.8: Accessibility of SIP Servlet Messages

SIP SipServletRequest and SipServletResponse classes:

The SipServletRequest and SipServletResponse classes are similar to the HttpServletRequest and
HttpServletResponse classes.

SipServletRequest and SipServletResponse classes

Each class gives you the capability to access the headers in the SIP message and manipulate them.
Because of the asynchronous nature of the requests and responses, this class is also the place to create
new responses for the requests. When you extend the doInvite method, only the SipServletRequest class
is passed to the method. To send a response to the client, you must call the createResponse method on
the Request object to create a response. For example:
protected void doInvite(SipServletRequest req) throws
javax.servlet.ServletException, java.io.IOException {

//send back a provisional Trying response
SipServletResponse resp = req.createResponse(100);
resp.send();

Because of their asynchronous nature, SIP servlets can seem complicated. However, something as simple
as the previous code sample sends a response to a client.

Here is a more complex example of a SIP servlet. With the following method included in a SIP servlet, the
servlet blocks all of the calls that do not come from the example.com domain.

Chapter 22. Session Initiation Protocol (SIP) applications 775

protected void doInvite(SipServletRequest req) throws
javax.servlet.ServletException, java.io.IOException {

//check to make sure that the URI is a SIP URI
if (req.getFrom().getURI().isSipURI()){

SipURI uri = (SipURI)req.getFrom.getURI();
if (!uri.getHost().equals("example.com")) {

//send forbidden response for calls outside domain
req.createResponse(SipServletResponse.SC_FORBIDDEN).send();
return;

}
}
//proxy all other requests on to their original destination
req.getProxy().proxyTo(req.getRequestURI);

}

SIP SipSession and SipApplicationSession classes:

Possibly the most complex portions of the SIP Servlet 1.0 specification are the SipSession and
SipApplicationSession classes.

SIP SipSession and SipApplicationSession classes

Both of these classes have some useful purposes and can act as the primary place to store data in
applications that are designed for distributed or highly available environments.

The SipSession class is the best representative of a specific point-to-point communication between two
entities and is the closest to the HttpSession object. Because historically no proxying or forking existed for
the HTTP request in HTTP servlets, the need for something higher than a single point-to-point session did
not exist. However, even HTTP users can see the growing need for this type of function since portlets
began essentially forking HTTP requests. The SIP users expect the proxying and forking activities that
require multiple layers of SIP session management. The SipSession class is the lowest point-to-point layer.

The SipApplicationSession class represents the higher layer of SIP session management. One
SipApplicationSession class can own one or more SipSession objects. However, each SipSession class
can be related to one SipSession object only. The SipApplicationSession class also supports the
attachment of any number of other protocol sessions. Currently, only HTTP sessions are supported by any
implementations. The SipApplicationSession class has a getSessions method, which takes the requested
protocol type as an argument.

You might find it useful for many applications to combine HTTP and SIP. For example, you might use this
approach to tie together HTTP and SIP sessions to monitor a phone call or to start a phone call through a
rich HTTP graphical user interface.

Example: SIP servlet simple proxy:

This is a servlet example of a simple proxy.

Simple proxy
import java.io.IOException;

import javax.servlet.Servlet;
import javax.servlet.ServletException;
import javax.servlet.sip.Proxy;
import javax.servlet.sip.SipFactory;
import javax.servlet.sip.SipServlet;
import javax.servlet.sip.SipServletRequest;
import javax.servlet.sip.SipServletResponse;
import javax.servlet.sip.SipSession;
import javax.servlet.sip.SipURI;

776 Overview

import javax.servlet.sip.URI;

public class SimpleProxy extends SipServlet implements Servlet {

final static private String SHUTDOWN_KEY = new String("shutdown");
final static private String STATE_KEY = new String("state");
final static private int INVITE_RECEIVED = 1;

/* (non-Java-doc)
* @see javax.servlet.sip.SipServlet#SipServlet()
*/
public SimpleProxy() {
super();
}

/* (non-Javadoc)
* @see javax.servlet.sip.SipServlet#doInvite(javax.servlet.sip.SipServletRequest)
*/
protected void doInvite(SipServletRequest request) throws ServletException,

IOException {

//log("SimpleProxy: doInvite: TOP");

try {
if (request.isInitial() == true)
{
// This should cause the sip session to be created. This sample only uses the session on receiving
// a BYE but the Tivoli performance viewer can be used to track the creation of calls by viewing the
// active session count.
Integer state = new Integer(INVITE_RECEIVED);
SipSession session = request.getSession();
session.setAttribute(STATE_KEY, state);

log("SimpleProxy: doInvite: setting attribute");

Proxy proxy = request.getProxy();

SipFactory sipFactory = (SipFactory) getServletContext().getAttribute(SIP_FACTORY);
if (sipFactory == null) {

throw new ServletException("No SipFactory in context");
}

String callingNumber = request.getTo().toString();
if (callingNumber != null)
{

String destStr = format_lookup(callingNumber);
URI dest = sipFactory.createURI(destStr);

//log("SimpleProxy: doInvite: Proxying to dest URI =" + dest.toString());

if (((SipURI)request.getRequestURI()).getTransportParam() != null)
((SipURI)dest).setTransportParam(((SipURI)request.getRequestURI()).getTransportParam());

proxy.setRecordRoute(true);
proxy.proxyTo(dest);

}
else
{

//log("SimpleProxy: doInvite: Request is invalid. Did not contain a To: field.");
SipServletResponse sipresponse = request.createResponse(400);
sipresponse.send();
}
}
else
{

//log("SimpleProxy: doInvite: target refresh, let container handle invite");

Chapter 22. Session Initiation Protocol (SIP) applications 777

super.doInvite(request);
}
}
catch (Exception e){
e.printStackTrace();
}
}

/* (non-Javadoc)
* @see javax.servlet.sip.SipServlet#doResponse(javax.servlet.sip.SipServletResponse)
*/
protected void doResponse(SipServletResponse response) throws ServletException,

IOException {
super.doResponse(response);

// Example of using the session object to store session state.
SipSession session = response.getSession();
if (session.getAttribute(SHUTDOWN_KEY) != null)
{
//log("SimpleProxy: doResponse: invalidating session");
session.invalidate();
}
}

/* (non-Javadoc)
* @see javax.servlet.sip.SipServlet#doBye(javax.servlet.sip.SipServletRequest)
*/
protected void doBye(SipServletRequest request) throws ServletException,

IOException {

SipSession session = request.getSession();
session.setAttribute(SHUTDOWN_KEY, new Boolean(true));

//log("SimpleProxy: doBye: invalidate session when responses is received.");
super.doBye(request);
}

protected String format_lookup(String toFormat){
int start_index = toFormat.indexOf(’<’) + 1;
int end_index = toFormat.indexOf(’>’);

if(start_index == 0){
//don’t worry about it
}
if(end_index == -1){
end_index = toFormat.length();
}

return toFormat.substring(start_index, end_index);
}

}

Example: SIP servlet SendOnServlet class:

The SendOnServlet class is a simple SIP servlet that would perform the basic function of being called on
each INVITE and sending the request on from there.

SendOnServlet class

Function could easily be inserted to log this invite request or reject the INVITE based on some specific
criteria.
package com.example;
import java.io.IOException;
import javax.servlet.sip.*;
import java.servlet.ServletException;

778 Overview

public class SendOnServlet extends SipServlet {
public void doInvite(SipServletRequest req)

throws ServletException, java.io.IOException {
//send on the request
req.getProxy().proxyTo(req.getRequestURI);

}
}

The doInvite method could be altered to do something such as reject the invite for some specific criteria
simply. In the following example, all requests from domains outside of example.com will be rejected with a
Forbidden response.

public void doInvite(SipServletRequest req)
throws ServletException, java.io.IOException {
if (req.getFrom().getURI().isSipURI()){

SipURI uri = (SipURI)req.getFrom.getURI();
if (!uri.getHost().equals(“example.com”)) {

//send forbidden response for calls outside domain
req.createResponse(SipServletResponse.SC_FORBIDDEN, “Calls outside example.com not accepted”).send();
return;

}
}
//proxy all other requests on to their original destination
req.getProxy().proxyTo(req.getRequestURI());

}

SendOnServlet deployment descriptor:
<sip-app>

<display-name>Send-on Servlet</display-name>
<servlet>

<servlet-name>SendOnServlet</servlet-name>
<servlet-class>com.example.SendOnServlet</servlet-class>

</servlet>

<servlet-mapping>
<servlet-name>SendOnServlet</servlet-name>
<pattern>

<equal>
<var>request.method</var>
<value>INVITE</value>

</equal>
</pattern>

</servlet-mapping>
</sip-app>

Example: SIP servlet Proxy servlet class:

Proxy servlet class

After the initial INVITE, this application will be called on every subsequent SIP message. For each
Request and Response, this class will simply print out the action and who it is to or from.
package com.example;
import java.io.IOException;
import javax.servlet.sip.*;
import java.servlet.ServletException;
public class ProxyServlet extends SipServlet {

public void doInvite(SipServletRequest req)
throws ServletException, java.io.IOException {

//get the Proxy
Proxy p=req.getProxy();
//turn on supervised mode so that all events come through us
//The default on this is true but it is set to emphasize the function.
p.setSupervised(true);
//set record route so we see the ACK, BYE, and OK

Chapter 22. Session Initiation Protocol (SIP) applications 779

p.setRecordRoute(true);
//proxy on the request
p.proxyTo(req.getRequestURI());

}
public void doRequest(SipServletRequest req)

throws ServletException, java.io.IOException {
System.out.println(req.getMethod()+” Request from “+req.getFrom().getDisplayName());
super.doRequest(req);

}
public void doResponse(SipServletResponse resp)

throws ServletException, java.io.IOException {
System.out.println(resp.getReasonPhrase()+” Response from “+resp.getTo().getDisplayName());
super.doResponse(resp);

}
}

Proxy deployment descriptor
<sip-app>

<display-name>ProxyServlet</display-name>
<servlet>

<servlet-name>ProxyServlet</servlet-name>
<servlet-class>com.example.ProxyServlet</servlet-class>

</servlet>

<servlet-mapping>
<servlet-name>ProxyServlet</servlet-name>
<pattern>

<equal>
<var>request.method</var>
<value>INVITE</value>

</equal>
</pattern>

</servlet-mapping>
</sip-app>

JSR 289 overview:

Version 8.5 includes support for SIP Servlet Specification 1.1, also referred to as Java Specification
Request (JSR) 289.

The SIP Servlet Specification provides the Java API standards for Session Initiation Protocol (SIP). JSR
289 is an update to the existing SIP Servlet specification that addresses new requirements determined by
industry users.

SIP is a signaling protocol used for creating, modifying, and terminating IP communication sessions such
as telephony and presence applications. SIP is not limited to voice communication and can mediate any
type of communication session, such as multimedia.

The following is a brief description of new features available in the JSR 289 specification.

v Application router for application selection

Application routing enables developers to build complex services out of smaller applications. On initial
requests the container calls the application router to determine which application to invoke based on the
type of request. The application router is the central hub for selecting application order. See the topic on
configuring a SIP application router for more information.

v Annotation-based programming

Annotations provide a fast way to develop applications by embedding metadata directly in applications.
For example, you can use the @SipServlet annotation to indicate that a class is a SIP servlet. The
@SipApplication is a package level annotation. All servlets in the package belong to the same
application unless the servlet uses @SipServlet(applicationName). For more information on
annotations, see section 18 of the JSR 289.

780 Overview

v Converged applications

JSR 289 provides a new, standardized mechanism for building converged applications. A converged
application contains SIP servlet components and other Java EE components, like HTTP servlets and
enterprise beans. The specification includes two new classes to support convergence.

– ConvergedHttpSession is an extension to HttpSession for converged applications.

– SipSessionUtil handles session management for converged applications.

For more information on converged applications, see section 13 of the JSR 289.

v Back-to-back user agent (B2BUA) APIs

JSR 289 simplifies the B2BUA pattern in applications with the use of the B2BUA helper class. The
B2BUA is a frequently used application pattern. The B2BUA acts as an endpoint for two or more dialogs
and forwards requests and responses between those dialogs. The B2BUA helper has the ability to
create a copy of an incoming request. It also automatically maintains links between sessions on both
sides of the B2BUA. For more information on B2BUAs, see section 12 of the JSR 289.

Note: Support for the Session Initiation Protocol (SIP) session key-based targeting mechanism that is
described in JSR 289 section 15.11.2 is only supported in stand-alone environments. The session
key-based targeting mechanism is not supported in clustered environments. Alternatively, you can
use one of the other targeting mechanisms that are described in JSR 289 within a clustered
environment:

v Encode the URI mechanism that is described in section 15.11.3.

v Join and replace the targeting mechanism that is described in section 15.11.4.

SIP application router:

The SIP application router is used by the SIP container to select the order in which applications are run
within the container.

The SIP container can invoke multiple applications in order to deploy a complete service or function. This
modular and compositional approach makes it easier for application developers to develop new
applications. The modular applications can be more easily combined and managed, while individual
application implementations remain independent.

The application router is responsible for selecting the correct applications in the correct order to service an
incoming message. An application router is required for a container to function, but it is a separate logical
entity from the container. The application router is based on the JSR 289 specification. See the
specification for more details about the application router function.

The default application router (DAR) can be configured with a standard configuration file, which is supplied
to the container through a SIP container custom property, as defined in JSR 289. The DAR configuration
file can also be uploaded in the administrative console for each target of the DAR.

Application routing, also referred to as application composition, can be handled in a number of ways:

v Specify the order in which the applications should run using the administrative console.

v Upload a custom application router implementation class either by specifying the path of the Java
archive (JAR) file containing the application router implementation and provider through the console or
adding it to the class path. A specific provider can be defined with a SIP container custom property.

v Configure the DAR by uploading its properties file and providing its location through a system property.

v Use an interactive wizard to generate a DAR configuration file.

Restriction: WebSphere Application Server has a default way of sorting the order of SIP applications
invocation using the Startup behavior settings. The sorting order is based on the application
weight. This weighting policy only applies if you do not specify a DAR property file and no
custom application router has been associated with the server or cluster.

Chapter 22. Session Initiation Protocol (SIP) applications 781

Note: If CEA features are used, the CEA system application requires special consideration when enabled
on the same server or cluster as a custom application router. To deploy an application router and
still maintain the capabilities of the CEA system application, use one of the following two options:

v Only enable CEA on an isolated server or cluster that includes no custom application router.

v Make sure the custom application router routes all CEA specific messages to the CEA system
application. To do this, the developer of the application router must check the mappings that are
defined in the sip.xml file associated with the CEA system application. The sip.xml file associated
with the CEA system application can be found in the directory path at app_server_root/
systemApps.

The following information explains how to configure a custom application router to route to the
commsvc system application. The examples show a custom application router configuration with
and without the commsvc application.

First, here is an example configuration without commsvc:
INVITE: ("TestB2bua", "DAR:To", "NEUTRAL", "", "NO_ROUTE", "0")

The first element after the INVITE is the display name of the test application, and this one-line
application router routes b2bua calls to the application successfully. With the preceding
application router configured on the SIP container, however, CEA Web collaboration attempts fail.

To enable routing to the CEA system application, just clone the routing element and change the
application name in the second element instance:

INVITE: ("TestB2bua", "DAR:To", "NEUTRAL", "", "NO_ROUTE", "0"),("commsvc", "DAR:To", "NEUTRAL", "", "NO_ROUTE", "0")

This action ensures that CEA messages are routed correctly.

Tuning considerations using the JSR 289 Application Router with multiple applications:

This topic describes performance adjustments and considerations using the JSR 289 Application Router™

with multiple applications.

Note: This topic references one or more of the application server log files. As a recommended alternative,
you can configure the server to use the High Performance Extensible Logging (HPEL) log and trace
infrastructure instead of using SystemOut.log , SystemErr.log, trace.log, and activity.log files on
distributed and IBM i systems. You can also use HPEL in conjunction with your native z/OS logging
facilities. If you are using HPEL, you can access all of your log and trace information using the
LogViewer command-line tool from your server profile bin directory. See the information about using
HPEL to troubleshoot applications for more information on using HPEL.

When you deploy more than one application, you might see the following errors in the log files when heavy
SIP protocol traffic exists for a single application server or cluster of servers:

v Unexpected and excessive SIP application 503 Server Unavailable error messages

v Proxy and Server overload errors

Note: These error messages do not occur when you deploy one application.
The proxy server and Session Initiation Protocol (SIP) containers are not synchronized when they are
tracking the amount of messages that are flowing through the system. Using the application router,
multiple messages might be routed between applications. These messages cause container message
counters to increment even though the messages do not flow through the proxy server.

You can diagnose this problem when you have the following conditions:

v Heavy SIP protocol traffic exists.

v Multiple applications are deployed on a single node or cluster.

782 Overview

Check the proxy server, the application server SystemOut.log log files, or both for an unexpected overload
condition that is detected at the proxy server, the application server, or both. Also, look for 503 Server
unavailable messages that are logged from the SIP application.

Resolving the problem

Messages are shared between applications at the SIP container before they are sent to the proxy server.
To avoid these error messages and a decrease in SIP performance, tune the SIP containers to consider
the additional SIP messages that are generated when using the application router with multiple
applications. Complete the following steps in the administrative console to tune the SIP containers:

1. Expand Servers > Server Types and click WebSphere application servers > server_name

2. Under Container Settings, expand SIP Container Settings and click SIP container.

3. Increase the Maximum messages per averaging period value to compensate for the anticipated
increase in messages that are generated by the SIP application router.

4. Increase the Maximum application sessions value to compensate for the increased Maximum
messages per averaging period value.

The proxy server cannot detect the amount of messages that are generated at the server. However,
modifications to the following settings might increase the messaging capacity at the containers for the
number of applications that are deployed per container.

Table 82. DAR and CAR SIP container tuning values.

This table lists the DAR and CAR SIP container tuning values for the number of applications that are deployed per
container.
SIP Container Single Deployed SIP Application Three Deployed SIP Applications

Maximum messages per averaging period value = 26640 value = 79920

Maximum application sessions value = 36000 value = 96000

Note: The values for the Maximum messages per averaging period and Maximum application
sessions fields depend on the processing power, memory, and the deployed application. Use the
values for these fields as listed in the SIP container settings topic and adjust them to meet the
needs of your environment.

SIP container
A SIP container is a web application server component that invokes the Session Initiation Protocol (SIP)
action servlet and that interacts with the action servlet to process SIP requests.

The servlet container provides the network services over which requests and responses are received and
sent. It decides which applications to invoke and in what order. The container also contains and manages
servlets through their life cycle.

A SIP servlet container manages the network listener points on which it listens for incoming SIP traffic. A
listener point is a combination of transport protocol, IP address, and port number. The SIP servlet
container supports the transport protocols UDP, TCP, and TLS over TCP.

The SIP servlet container can employ a SIP proxy server to route, load balance, and improve response
times between SIP requests and back-end SIP container resources. For more information about the SIP
proxy server, read about installing a Session Initiation Protocol proxy server.

SIP converged proxy
SIP in WebSphere Application Server offers a converged proxy.

The SIP converged proxy:

Chapter 22. Session Initiation Protocol (SIP) applications 783

v Handles SIP and HTTP.

v Provides application level session failover, regardless of protocol.

v Fronts clusters of containers, SIP or HTTP.

v Provides a highly scalable I/O concentration.

v Handles session affinity.

v Provides a framework for extending the base functions of proxy using an API consistent with proxy flows
(Proxy Filter Layer).

v Contains support for failover and load balancing.

v Provides first pass protocol validation.

v Provides a framework for secure proxy server functions, such as SSL termination, Outbound SSL, and
Client Side Certificates.

v Allows for augmentation by our other products, such as WebSphere Extended Deployment.

v Provides DMZ Secure Proxy Server for IBM WebSphere Application Server support.

SIP proxy setup considerations
v A single SIP proxy server can front multiple SIP clusters.

v An IP sprayer is required for load balancing when deploying multiple SIP proxies into a single cell.

v Each SIP proxy server must be configured with a default cluster. This default cluster is used to route
inbound messages that do not match a cluster routing rule.

v When deploying converged applications, both HTTP and SIP should be enabled on the proxy server .

v SIP proxy servers can be clustered.

SIP port relationships

When multiple application servers, or proxy servers are on the same host, each server must be configured
with its own port.

SIP cluster routing and the default cluster
v A single SIP proxy server can front multiple SIP clusters.

v Each SIP proxy server must be configured with a default cluster which is used to route all messages
that do not have an associated cluster routing rule.

v You can define cluster routing rules for each proxy server. These rules dictate how messages are routed
to the various backend clusters being fronted.

v By changing the default cluster, you can have a SIP proxy server reroute messages to a new cluster
that contains upgraded versions of your deployed applications.

SIP high availability
SIP uses the high availability features that are included in the product to offer a comprehensive high
availability solution.

The following topics describe how high availability is implemented for this product.

v High availability manager

v Replicating SIP sessions

v “SIP session affinity and failover” on page 785

v “SIP cluster routing” on page 789

v Upgrading SIP applications

v “SIP IP sprayer” on page 790

v Setting up a high availability environment

784 Overview

SIP high availability architectural considerations
v Each container is able to handle state replication and SIP traffic.

v UDP (User Datagram Protocol), Transmission Control Protocol (TCP), and TLS (Transport Layer
Security) are used for state replication and SIP protocol.

v Complete session state is replicated between all servers in the replication domain.

v Each replication domain is optimal at two servers. Three servers per replication domain does not
perform as well because each server must maintain a copy of all session data in the replication domain,
but on a failure only half the server's replicated data is activated on any of the remaining servers.

v The number of SIP proxy servers per blade is dependent on the number of cluster addresses
configured at the IP sprayer.

SIP proxy configuration considerations
v No call state information is stored at the SIP proxy server.

v If the IP sprayer is configured for MAC forwarding:

– The SIP proxy must listen on the loopback address that corresponds to a cluster address configured
at the IP sprayer.

– The IP sprayer configuration dictates the number of SIP proxy servers per node (or blade).

– Each configured cluster address can have at most one corresponding SIP proxy instance per node.

Core groups and Distribution and Consistency Services (DCS)

A core group is a set of processes that handles high availability activities. Each core group has a
coordinator function that manages all the singleton services running in the core group. Typical SIP
deployments require only a single core group. For extremely large-scale deployments, such as 50 or more
cell members, multiple core groups may be required.

The core group coordinator does the following:

v Maintains all group information – group name, group members, the policy of the group, and the state of
each group member

v Assigns singleton service to group members and handles failover of singleton services.

For more information on core groups, read about high availability domain core groups.

DCS failure detection

For details on the core group failure detection mechanisms and algorithms, see the information on core
group discovery and failure detection protocols.

DCS failure detection includes:

v Active failure detection using a tunable heartbeat mechanism that monitors:

– Time interval between heartbeats

– Number of heartbeats lost before declaring failure

v TCP KEEP_ALIVE / Sockets closing

SIP session affinity and failover
SIP in WebSphere provides session affinity and failover.

SIP session affinity

A single SIP container in a cluster will handle all the messages associated with a single dialog. If a
container fails in the middle of a dialog, a single server in the cluster will take over responsibility
for the dialog. It is the SIP proxy's responsibility to maintain session affinity based on the session

Chapter 22. Session Initiation Protocol (SIP) applications 785

identifier (which includes the logical server name). Logical server information is published by the
SIP container and consumed by the SIP proxy via Workload Management System (WLM).

Routing SIP messages based on the session ID

The ibmsid is embedded in various SIP messages and is used to route to specific sessions
running on the SIP application server. Generally speaking, VIA headers are always used to route
responses. The container will always embed an ibmsid in the VIA associated with the SIP app
server. Here is an example of such a VIA header:
Via: SIP/2.0/UDP 9.51.252.69:5063;ibmsid=sipcontainer1.1153242645968.4_2_2;branch=z9hG4bK920196437955379

For proxy applications, the ibmsid (or session ID) is inserted in the initial request received from the
UAC in the Record-Route. The UAS returns the same Record-Route with the session ID in the
response. The UAC returns the Route header with the session ID in subsequent request within the
dialog. For example:
Record-Route: <sip:protocol2.databeam.com:5060;transport=udp;ibmsid=sipcontainer1a.1138119214953.4_2_2;lr>

In this example the UAS returns the same Record-Route with the session ID in the response, and
the UAC returns the Route header with the session ID in subsequent request within the dialog.

For UAC and UAS applications, the container acting as UAC or UAS will insert the Session ID into
To tag (UAS) or From tag (UAC) (i.e. To tag local.1132518053302_2_2). The same To or From tag
is included in subsequent request.

Encoded URIs will also contain an ibmappid (very similar to an ibmsid), which can then be sent in
subsequent HTTP request. An important point here is that the IBM SIP infrastructure does not
support transaction level failover. It only supports dialog failover for stable calls.

Here are the general rules for how the IBM SIP infrastructure decides which address to use for
contact headers it embeds in outbound SIP messages:

v A stand-alone SIP application server will use its own address in contact headers that it needs to
insert into SIP messages.

v A SIP application server fronted by a stateless SIP proxy will use the address of the SIP proxy
in contact headers it needs to insert into SIP messages. The SIP application server discovers
this address via WLM.

v A SIP application server fronted by a stateless SIP proxy which is then fronted by an IP Sprayer
will use the address of the IP Sprayer in contact headers it needs to insert into SIP messages.
The address of the IP sprayer must be configured at the SIP proxy through the administrative
console and this address is published to the SIP application server through UCF.

Failover in the middle of a call

When a server fails, the sessions associated with the failed server are activated on the remaining
containers in the replication domain. Once active, the containers handling the failed sessions
publish the session location to the proxy servers fronting the cluster via WLM. When a message
associated with one of the failed dialogs arrives at the proxy, the proxy pulls the session ID from
the SIP message and uses that to look up the new container. When the failed server is restarted,
it is added back to the cluster. It will then handle only newly created dialogs.

786 Overview

SIP Container 1
(session a)

SIP Container 2
(session b)

SIP Proxy

Initial SIP Dialog

Workload
Management

System

Session a

Session b

SIP Container 1

SIP Container 2

Figure 172. SIP Container Failover within a Cluster (Before)

Chapter 22. Session Initiation Protocol (SIP) applications 787

Converged applications and failover

All messages associated with a converged HTTP/SIP Session are routed by the proxy to the same
backend container using encoded URIs and SIP session affinity. HTTP and SIP utilize the same
replication topology (they share the same replication settings). If a failure occurs, both HTTP and
SIP requests associated with a failed dialog are routed to the same new backend server. Jsession
cookies take precedence over Encoded URIs within the proxy when affinity targets are being
determined.

SIP Container 1
(session a) (session b)

SIP Container 2

SIP Proxy

Additional SIP Messages in Dialog

Workload
Management

System

Session a

Session b

SIP Container 1

SIP Container 1

Redirected SIP
Messages

Figure 173. SIP Container Failover within a Cluster (After)

788 Overview

SIP cluster routing
Cluster routing rules is the method used to define how the SIP proxy routes messages to specific clusters
in the cell.

A single SIP proxy can front multiple SIP clusters. If you are running more than one cluster of applications
on the backend and want to use a single set of proxy servers, the proxy tier will need certain information
in order to distinguish which cluster an initial request (one not in a pre-existing dialog with no affinity or
route built-in) should be routed to.

In order to do this, SIP uses a set of cluster routing rules which allows the proxy to properly distinguish
each request. Unlike HTTP, which can usually do this using the URI, there may be numerous other factors
applicable in SIP.

Each SIP proxy is configured with a default cluster which is used to route all messages that do not have
an associated cluster routing rule. Cluster routing rules, which dictate how messages get routed to the
various backend clusters being fronted, can be defined at each proxy.

Cluster routing rules

Routing rules can be based on:

v Message type

v To: field

v From: field

v Destination address

v Source address

v Arbitrary header name with a unique value to distinguish the cluster

Cluster routing rules are used to route only messages associated with new dialogs. Once a dialog is
established, a method to route to the specific cluster is embedded in SIP messages.

Converged Container 2

HTTP Servlet SIP Servlet

Converged Container 1

HTTP Servlet SIP Servlet

HTTP Proxy SIP Proxy

Caller Callee

RTP Traffic

Figure 174. Converged Application Example

Chapter 22. Session Initiation Protocol (SIP) applications 789

SIP IP sprayer
SIP in WebSphere provides an IP sprayer.

Scaling a deployment to include multiple SIP proxies requires a front end load balancer. The WebSphere
Application Server Edge Components Load Balancer provides this capability. It provides a feature called
the SIP advisor that detects outages so that messages only flow to healthy SIP proxies. The health
detection is done by sending a SIP OPTIONS message over TCP to the SIP proxies and looking for a
response. The SIP proxy is configured with the host information from the load balancer, so it can detect
that an OPTIONS message was sent for health checking. If an error response occurs, or if there is no
response, or if the TCP connection fails, the SIP proxy is removed from the load balancer's active list. The
SIP advisor continues to look for the SIP proxy after a failure.

The IP sprayer
v MAC forwarding is used to load balance the SIP proxies.

v The SIP advisor must be started.

v The interval between health check requests is configurable (default = 7 seconds).

Configuring the SIP proxy
v The configuration for the IP sprayer will set the load balancer's host name and port, which will be used

in outgoing SIP messages. This information will be gathered directly from the configured channel
chains, and you do not need to configure any additional settings.

v The loopback device on the SIP proxy should be configured with the address the load balancer is
listening on (cluster address, virtual IP address).

v The SIP proxy transport chains must be configured to listen on the loopback address.

SIP proxies publish client facing host interface information to the containers they are fronting via WLM.
When fronted by an IP sprayer, the proxy will publish the IP sprayer information instead of its own host
information. This information is inserted into Record-Route headers by the container for proxy applications
running on the container. The SIP proxy also inserts this information into its via headers for outbound
requests.

790 Overview

Chapter 23. Spring applications

This page provides a starting point for finding information about how to develop Spring applications that
can run successfully in a WebSphere Application Server environment.

The Spring Framework is an open source project that provides a framework for simple Java objects that
enables them to use the Java EE container through wrapper classes and XML configuration.

More introduction...

Spring Framework
There are some best practices to develop Spring Framework applications that can run successfully in a
WebSphere Application Server environment.

The Spring Framework is an open source project that provides a framework for simple Java objects that
enables them to use the Java EE container through wrapper classes and XML configuration.

You can use the Spring Framework with WebSphere Application Server Version 6.0.2 and later, but some
supported features require a specific release of the product. When this situation applies, it is stated in the
relevant topic.

For WebSphere Application Server Version 7.0 or later, you must use Spring Framework Version 2.5.5 or
later.

In general, if both WebSphere Application Server and the Spring Framework provide a service, it is
preferable to design your application to use the service in the application server directly. In this way, you
ensure that the application is based on the open standards that the application server supports and has
flexibility for future deployment. Also, you ensure that the application can use the qualities of service that
the application server provides, such as security, workload management, and high availability.

Presentation layer and the Spring Framework
You can use the Spring Web model view controller (MVC) framework and the Spring Framework Portlet
MVC framework with WebSphere Application Server.

Web MVC framework

WebSphere Application Server supports the use of the Spring Web MVC framework.

There are also Web MVC frameworks that are provided with WebSphere Application Server, such as
JavaServer Faces (JSF) and Apache Struts, which have IBM product support. For information about how
to integrate Spring with these Web MVC frameworks, see the Spring documentation.

Portlet MVC framework

The Spring Framework Portlet MVC framework can run in the portlet container in WebSphere Application
Server Version 6.1 and later. To run portlets in the portlet container, you must create an additional web
application to define the layout and aggregation of the portlets. For details about how to use the portlet
aggregator tag library, see the related topics.

Data access and the Spring Framework
For Spring beans to access a data source, you must configure those beans so that the Spring Framework
delegates to, and integrates with, the WebSphere Application Server runtime correctly.

© IBM Corporation 2009 791

The Spring Framework wraps Spring beans with a container-management layer that, in an enterprise
application environment, delegates to the underlying enterprise application runtime. The following sections
describe what to consider when you configure Spring beans that access a data source.

Access to data sources configured in the application server

For a Spring application to access a resource such as a Java Database Connectivity (JDBC) data source,
the application must use a resource provider that is managed by the application server.

To do this, see the Configuring access to a Spring application data source topic.

JDBC native connections

WebSphere Application Server does not support the use of the NativeJdbcExtractor class that the Spring
Framework provides, so avoid scenarios that use this class. Implementations of this class access native
JDBC connections and bypass quality of service functions in the application server such as tracking and
reassociating connection handles, sharing connections, managing connection pools and involvement in
transactions.

As an alternative, you can use the application server WSCallHelper class to access non-standard vendor
extensions for data sources.

Java Persistence API

WebSphere Application Server includes a default JPA provider based on the Apache OpenJPA
implementation of JPA. For more information, see the related links.

To use the Spring Framework with a JPA implementation, it is advisable to use JPA directly rather than
using the JPA helper classes that are provided with the Spring Framework in the
org.springframework.orm.jpa package.

To use managed JPA from the Spring Framework, you define a persistence context reference in the web
descriptor (web.xml):
<persistence-context-ref>
<persistence-context-ref-name>some/name</persistence-context-ref-name>
<persistence-unit-name>pu_name</persistence-unit-name>

</persistence-context-ref>

where pu_name is the name of the persistence unit as defined in the persistence.xml file.

The persistence context is then available from JNDI through java:comp/env/some/name inside the web
application. For the Spring Framework, the persistence context can then be retrieved using a
<jee:jndi-lookup/> as shown in the following example code. The resulting EntityManager object is available
under the “entityManager” ID.
<jee:jndi-lookup id="entityManager" jndi-name="some/name" />

Similarly, a persistence unit (for direct use, or use with Spring wrapper classes) can be made available
through a persistence unit reference:
<persistence-unit-ref>
<persistence-unit-ref-name>some/ref_name</persistence-unit-ref-name>
<persistence-unit-name>pu_name</persistence-unit-name>

</persistence-unit-ref>

The resulting EntityManagerFactory object is available under the “entityManagerFactory” ID:
<jee:jndi-lookup id="entityManagerFactory" jndi-name="some/ref_name" />

792 Overview

Transaction support and the Spring Framework
For Spring Framework Version 2.5 or later, you can use the declarative transaction model, use the Spring
Framework support for the AspectJ programming extension, or use annotation-based transaction support.
For versions of the Spring Framework earlier than Version 2.5, and for versions of the application server
that do not provide the UOWManager interface, you can use a Spring Framework configuration that
supports a restricted set of transaction attributes.

Declarative transaction model

WebSphere Application Server Version 6.0.2.19 or later and Version 6.1.0.9 or later support the Spring
Framework declarative transaction model to drive resource updates under transactional control. The
WebSphereUowTransactionManager class in Spring Framework 2.5 uses the UOWManager interface in
the application server to manage the transaction context. Because transaction demarcation is managed
through the UOWManager interface, an appropriate global transaction or local transaction containment
(LTC) context is always available when a resource provider is accessed. For more information about the
UOWManager interface and Java Transaction API (JTA) support, see the related topic.

The WebSphereUowTransactionManager class supports the following Spring Framework transaction
attributes:

v PROPAGATION_REQUIRED

v PROPAGATION_SUPPORTS

v PROPAGATION_MANDATORY

v PROPAGATION_REQUIRES_NEW

v PROPAGATION_NOT_SUPPORTED

v PROPAGATION_NEVER

Use the following declaration for the WebSphere Application Server transaction support:
<bean id="transactionManager"

class="org.springframework.transaction.jta.WebSphereUowTransactionManager"/>

A Spring bean that references the previous declaration can then use Spring Framework dependency
injection to use the transaction support. For example:
<bean id="someBean" class="some.class">

<property name="transactionManager" >
<ref bean="transactionManager"/>

</property>
...
</bean>
<property name="transactionAttributes">

<props>
<prop key="*">PROPAGATION_REQUIRED</prop>

</props>
</property>

The AspectJ programming extension

You can use the Spring Framework support for the AspectJ programming extension. The following
example code declares a <tx:advice/> element with the following transactional behavior:

v All methods that start with the string get have the transaction attribute PROPAGATION_REQUIRED.

v All methods that start with the string set have the transaction attribute
PROPAGATION_REQUIRES_NEW.

v All other methods use the default transaction settings.

For example:
<tx:advice id="txAdvice" transaction-manager="transactionManager">
<tx:attributes>
<tx:method name="get*" propagation="REQUIRED" read-only="true" />

Chapter 23. Spring applications 793

<tx:method name="set*" propagation="REQUIRES_NEW" />
<tx:method name="*" />

</tx:attributes>
</tx:advice>

Then you can apply the settings to the required operation by declaring a pointcut. You can apply the
settings to various parts of the application. The following example code applies the settings to any
operation that is defined in the class MyService.
<aop:config>
<aop:pointcut id="myServiceOperation"

expression="execution(* sample.service.MyService.*(..))"/>
<aop:advisor advice-ref="txAdvice" pointcut-ref="myServiceOperation"/>

</aop:config>

Annotation-based transaction support

To use the annotation-based transaction support, you need Java Platform, Standard Edition 5 (Java SE 5)
or later. Therefore, you can use this method with WebSphere Application Server Version 6.1 or later.

Add the following line to the Spring.xml configuration:
<tx:annotation-driven/>

Mark any methods that require transactional attributes with the @Transactional annotation, for example:
@Transactional(readOnly = true)
public String getUserName()
{ ...
}

You can use the @Transactional annotation to annotate only public methods.

Transaction support with Spring Framework before Version 2.5

You can use a Spring Framework configuration that supports a restricted set of transaction attributes.

You can use this method of transaction support with versions of the Spring Framework before Version 2.5
that do not provide the WebSphereUowTransactionManager class. You can also use this method of
transaction support with versions of WebSphere Application Server earlier than Version 6.0.2.19 and
Version 6.1.0.9 that do not provide the UOWManager interface.

The configuration supports the following Spring Framework transaction attributes:

v PROPAGATION_REQUIRED

v PROPAGATION_SUPPORTS

v PROPAGATION_MANDATORY

v PROPAGATION_NEVER

Use the following Spring Framework configuration:
<bean id="transactionManager"

class="org.springframework.transaction.jta.JtaTransactionManager">
<property name="autodetectTransactionManager"value="false" />

</bean>

The configuration does not support the following Spring Framework transaction attributes:

v PROPAGATION_REQUIRES_NEW

v PROPAGATION_NOT_SUPPORTED

WebSphere Application Server does not support the use of the Spring Framework class
org.springframework.transaction.jta.WebSphereTransactionManagerFactoryBean.

794 Overview

JMX and MBeans with the Spring Framework
WebSphere Application Server Version 6.1 and later supports Spring Java Management Extensions (JMX)
MBeans.

JMX and MBeans

To use the support for Spring JMX MBeans, you must register the JMX MBeans with the MBeanServer
instance of the container manager in the application server. If you do not specify a server property for the
MBean, the MBeanExporter object attempts to detect an MBeanServer instance that is running. Therefore,
for an application that runs in the application server, the Spring Framework would locate the MBeanServer
instance of the container.

Do not use the MBeanServerFactory class to instantiate an MBeanServer instance and then inject that
instance into the MBeanExporter object. Also, do not use the Spring Framework
ConnectorServerFactoryBean or JMXConnectorServer classes to expose the local MBeanServer instance
to clients by opening inbound JMX ports.

Registering Spring MBeans in the application server

When an MBean is registered in the application server, it is identified by a fully qualified object name,
javax.management.ObjectName. For example:
WebSphere:cell=99T73GDNode01Cell,name=JmxTestBean,node=99T73GDNode01,process=server1,
type=JmxTestBeanImpl

When an MBean is deregistered, it must looked up using the same fully qualified name, rather than just
the name property of the MBean. The best way to manage this to implement the
org.springframework.jmx.export.naming.ObjectNamingStrategy interface. The ObjectNamingStrategy
interface encapsulates the creation of ObjectName objects, and is used by the MBeanExporter class to
obtain ObjectNames when beans are registered. You can add the ObjectNamingStrategy instance to the
bean that you register so that the MBean is deregistered properly when the application is uninstalled. For
example:
<bean id="exporter" class="org.springframework.jmx.export.MBeanExporter"
lazy-init="false">
<property name="beans">
<map> <entry key="JmxTestBean" value-ref="testBean" /> </map>

</property>
<property name="namingStrategy" ref="websphereNamingStrategy" />

...
</bean>

MBeans and notifications

To use notifications, it is advisable to define the object name for an MBean in full, because the MBean is
identified by a fully qualified object name when it is registered in WebSphere Application Server. For
example:
<bean id="exporter" class="org.springframework.jmx.export.MBeanExporter"
lazy-init="false">
<property name="beans">
<map>
<entry key="JmxTestBean" value-ref="testBean" />

</map>
</property>
<property name="namingStrategy" ref="websphereNamingStrategy" />
<property name="notificationListenerMappings">
<map>
<entry key="WebSphere:cell=99T73GDNode01Cell, name=JmxTestBean,

node=99T73GDNode01, process=server1, type=JmxTestBeanImpl">
<bean class="client.MBeanListener" />

</entry>
</map>

</property>
</bean>

Chapter 23. Spring applications 795

JMS and the Spring Framework
A Spring Framework application can use the JMSTemplate class to send JMS messages or receive
synchronous JMS messages.

The JMSTemplate can locate JMS destinations from their Java Naming and Directory Interface (JNDI)
name that you configure in an application resource reference.

Alternatively, for Spring Framework Version 2.5 and later, the JMSTemplate can locate JMS destinations
through dynamic resolution, which looks up the administrative name of the destination that is configured in
WebSphere Application Server

You use a Spring JndiObjectFactoryBean as a proxy for a ConnectionFactory to ensure that JMS
resources are managed correctly. For example:
<bean id="jmsConnectionFactory"

class="org.springframework.jndi.JndiObjectFactoryBean">
<property name="jndiName" value="java:comp/env/jms/myCF"/>
<property name="lookupOnStartup" value="false"/>
<property name="cache" value="true"/>
<property name="proxyInterface" value="javax.jms.ConnectionFactory"/>

</bean>

The following example shows the configuration of a resource reference for a ConnectionFactory. During
application deployment, this resource reference is mapped to a configured, managed Connection Factory
that is stored in the JNDI namespace of the application server. The ConnectionFactory is required to
undertake messaging and should be injected into the Spring JMSTemplate object.
<resource-ref>
<res-ref-name>jms/myCF</res-ref-name>
<res-type>javax.jms.ConnectionFactory</res-type>
<res-auth>Container</res-auth>
<res-sharing-scope>Shareable</res-sharing-scope>

</resource-ref>

After there is a defined JNDI name for the ConnectionFactory in the application, that JNDI name can be
looked up and injected into the JMSTemplate. For example:
<jee:jndi-lookup id="jmsConnectionFactory" jndi-name=" jms/myCF "/>

<bean id="jmsQueueTemplate" class="org.springframework.jms.core.JmsTemplate">
<property name="connectionFactory">
<ref bean="jmsConnectionFactory"/>

</property>
<property name="destinationResolver">
<ref bean="jmsDestResolver"/>

</property>

...
</bean>

<!-- A dynamic resolver -->
<bean id="jmsDestResolver"
class=" org.springframework.jms.support.destination.DynamicDestinationResolver"/>

<!-- A JNDI resolver -->
<bean id="jmsDestResolver"
class=" org.springframework.jms.support.destination.JndiDestinationResolver"/>

At run time, the JMSTemplate object can locate a destination based on its JNDI name that was configured
in an application resource reference. Alternatively, the JMSTemplate object can locate a destination by
using dynamic resolution, based on the administrative name of the destination configured in WebSphere
Application Server.

The following example shows how to use JNDI resolution to locate the JMS queue myQueue that is bound
to a JNDI reference of jms/myQueue:
jmsTemplate.send("java:comp/env/jms/myQueue", messageCreator);

796 Overview

The following example shows how to use dynamic resolution to locate the JMS queue myQueue that is
bound to a JNDI reference of jms/myQueue:
jmsTemplate.send("myQueue", messageCreator);

Class loaders and the Spring Framework
You can avoid potential problems with the class loading of Java archive (JAR) files and resources.

If there are problems with the class loading of JAR files and resources, there can be exceptions in the log
about version mismatches of classes, ClassCastException exceptions, or java.lang.VerifyError exceptions.
To avoid class loading problems, ensure that Spring Framework dependencies are packaged as part of the
application, and configure the class loader policy of the server so that the application server run time uses
the version that you intend. For example, consider changing the search order in the class loader
configuration to “parent last”.

It is possible for resources that use a common name to be found in an unintended location. Resources
can include message bundles. You can use the class loader viewer in the application server to help
resolve this problem. You might want the application to rename resources so that they have a unique
name. For more information about the class loader viewer, see the topic about troubleshooting class
loaders.

Thread management and the Spring Framework
Use the information in the following sections to avoid potential problems with unmanaged threads.

Unmanaged threads

Do not use a scenario that can create unmanaged threads, for the following reasons:

v The application server does not recognize unmanaged threads.

v Unmanaged threads do not have access to Java EE contextual information.

v Unmanaged threads can use resources without being monitored by the application server.

v Unmanaged threads can adversely affect application server functions such as shutting down gracefully
or recovering resources from failure.

v An administrator cannot control the number of unmanaged threads or their use of resources.

The following scenarios are examples of Spring Framework scenarios to avoid:

v registerShutdownHook

Avoid using the Spring Framework AbstractApplicationContext class and its subclasses. These classes
include the public method registerShutdownHook, which creates a thread and registers it with the Java
virtual machine (JVM) to run at shutdown to close the application context. As an alternative, an
application can use the lifecycle notices that it receives from the application server container to call the
close method explicitly on the application context.

v WeakReferenceMonitor

The Spring Framework provides convenience classes for simplified development of EJB components.
However, these convenience classes spawn off an unmanaged thread that WeakReferenceMonitor
object uses for cleanup.

Thread pooling

WebSphere Application Server supports the use of the Spring Framework WorkManagerTaskExecutor
class to run work asynchronously.

The WorkManagerTaskExecutor class uses thread pools that are managed by the application server, and
delegates to a configured WorkManager instance. For information about configuring a work manager, see
the related topics.

Chapter 23. Spring applications 797

Do not use other TaskExecutor classes that are provided with the Spring Framework, because they might
start unmanaged threads.

You can use the Java Naming and Directory Interface (JNDI) name of the configured work manager as a
workManagerName property to define a WorkManagerTaskExecutor instance in the Spring configuration
file. The following example uses the JNDI name of the DefaultWorkManager in the application server, that
is, wm/default:
<bean id="myTaskExecutor"
class="org.springframework.scheduling.commonj.WorkManagerTaskExecutor">
<property name="workManagerName" value="wm/default" />

</bean>

Scheduling

You can use the CommonJ WorkManager scheduling package in the Spring Framework to work with
threads that are managed by the application server. Avoid using other packages, such as the Quartz
scheduler, or the Timer in the Java SE Development Kit (JDK), because they can start unmanaged
threads.

798 Overview

Chapter 24. Transactions

This page provides a starting point for finding information about Java Transaction API (JTA) support.
Applications running on the server can use transactions to coordinate multiple updates to resources as
one unit of work, such that all or none of the updates are made permanent.

The product provides advanced transactional capabilities to help application developers avoid custom
coding. It provides support for the many challenges related to integrating existing software assets with a
Java EE environment.

More introduction...

Transaction support in WebSphere Application Server
Support for transactions is provided by the transaction service within WebSphere Application Server. The
way that applications use transactions depends on the type of application component.

A transaction is unit of activity, within which multiple updates to resources can be made atomic (as an
indivisible unit of work) such that all or none of the updates are made permanent. For example, during the
processing of an SQL COMMIT statement, the database manager atomically commits multiple SQL
statements to a relational database. In this case, the transaction is contained entirely within the database
manager and can be thought of as a resource manager local transaction (RMLT). In some contexts, a
transaction is referred to as a logical unit of work (LUW). If a transaction involves multiple resource
managers, for example multiple database managers, an external transaction manager is required to
coordinate the individual resource managers. A transaction that spans multiple resource managers is
referred to as a global transaction. WebSphere Application Server is a transaction manager that can
coordinate global transactions, can be a participant in a received global transaction, and can also provide
an environment in which resource manager local transactions can run.

The way that applications use transactions depends on the type of application component, as follows:
v A session bean can use either container-managed transactions (where the bean delegates management

of transactions to the container) or bean-managed transactions (component-managed transactions
where the bean manages transactions itself).

v Entity beans use container-managed transactions.
v Web components (servlets) and application client components use component-managed transactions.

WebSphere Application Server is a transaction manager that supports the coordination of resource
managers through their XAResource interface, and participates in distributed global transactions with
transaction managers that support the CORBA Object Transaction Service (OTS) protocol or Web Service
Atomic Transaction (WS-AtomicTransaction) protocol. WebSphere Application Server also participates in
transactions imported through Java EE Connector 1.5 resource adapters. You can also configure
WebSphere applications to interact with databases, JMS queues, and JCA connectors through their local
transaction support, when you do not require distributed transaction coordination.

Resource managers that offer transaction support can be categorized into those that support two-phase
coordination (by offering an XAResource interface) and those that support only one-phase coordination (for
example through a LocalTransaction interface). The WebSphere Application Server transaction support
provides coordination, within a transaction, for any number of two-phase capable resource managers. It
also enables a single one-phase capable resource manager to be used within a transaction in the absence
of any other resource managers, although a WebSphere transaction is not necessary in this case.

Under normal circumstances, you cannot mix one-phase commit capable resources and two-phase commit
capable resources in the same global transaction, because one-phase commit resources cannot support
the prepare phase of two-phase commit. There are some special circumstances where it is possible to
include mixed-capability resources in the same global transaction:

© IBM Corporation 2009 799

http://www.omg.org/cgi-bin/doc?formal/2003-09-02
http://www.ibm.com/developerworks/library/specification/ws-tx/
http://www.ibm.com/developerworks/library/specification/ws-tx/
http://java.sun.com/j2ee/connector/

v In scenarios where there is only a single one-phase commit resource provider that participates in the
transaction and where all the two-phase commit resource-providers that participate in the transaction
are used in a read-only fashion. In this case, the two-phase commit resources all vote read-only during
the prepare phase of two-phase commit. Because the one-phase commit resource provider is the only
provider to complete any updates, the one-phase commit resource does not have to be prepared.

v In scenarios where there is only a single one-phase commit resource provider that participates in the
transaction with one or more two-phase commit resource providers and where last participant support is
enabled. Last participant support enables the use of a single one-phase commit capable resource with
any number of two-phase commit capable resources in the same global transaction. For more
information about last participant support, see Using one-phase and two-phase commit resources in the
same transaction.

The ActivitySession service provides an alternative unit-of-work (UOW) scope to that provided by global
transaction contexts. It is a distributed context that can be used to coordinate multiple one-phase resource
managers. The WebSphere EJB container and deployment tooling support ActivitySessions as an
extension to the Java EE programming model. Enterprise beans can be deployed with lifecycles that are
influenced by ActivitySession context, as an alternative to transaction context. An application can then
interact with a resource manager for the period of a client-scoped ActivitySession, rather than only the
duration of an EJB method, and have the resource manager local transaction outcome directed by the
ActivitySession. For more information about ActivitySessions, see Using the ActivitySession service.

Resource manager local transaction (RMLT)
A resource manager local transaction (RMLT) is a resource manager view of a local transaction; that is, it
represents a unit of recovery on a single connection that is managed by the resource manager.

Resource managers include:
v Enterprise Information Systems that are accessed through a resource adapter, as described in the Java

EE Connector Architecture.
v Relational databases that are accessed through a JDBC datasource.
v JMS queue and topic destinations.

Resource managers offer specific interfaces to enable control of their RMLTs. Resource adapter
components of the Java EE connector architecture that include support for local transactions provide a
LocalTransaction interface. The LocalTransaction interface enables applications to request that the
resource adapter commits or rolls back RMLTs. JDBC datasources provide a Connection interface for the
same purpose.

The boundary at which all RMLTs must be complete is defined in WebSphere Application Server by a local
transaction containment (LTC).

Global transactions
If an application uses two or more resources, an external transaction manager is needed to coordinate the
updates to all the resource managers in a global transaction.

Global transaction support is available to web and enterprise bean components and, with some limitations,
to application client components. Enterprise bean components can be subdivided into two categories:
beans that use container-managed transactions (CMT) and beans that use bean-managed transactions
(BMT).

Only BMT enterprise beans, application client components, and web components can use the Java
Transaction API (JTA) UserTransaction interface to define the demarcation of a global transaction. To
obtain the UserTransaction interface, use a Java Naming and Directory Interface (JNDI) lookup of
java:comp/UserTransaction, or use the getUserTransaction method from the SessionContext object.

800 Overview

http://java.sun.com/j2ee/connector/index.html
http://java.sun.com/j2ee/connector/index.html

The UserTransaction interface is not available to CMT enterprise beans. If CMT enterprise beans attempt
to obtain this interface, an exception is thrown, in accordance with the Enterprise JavaBeans (EJB)
specification.

Ensure that programs that perform a JNDI lookup of the UserTransaction interface use an InitialContext
that resolves to a local implementation of the interface. Also ensure that such programs use a JNDI
location that is appropriate for the EJB version.

WebSphere Application Server Version 4 and later releases bind the UserTransaction interface at the JNDI
location that is specified in the EJB Version 1.1 specification. This location is java:comp/UserTransaction.

A web component or enterprise bean (CMT or BMT) can use additional interfaces that provide JTA
support. These interfaces provide the transaction identity and a mechanism to receive notification of
transaction completion. The interfaces include the TransactionSynchronizationRegistry interface, the
ExtendedJTATransaction interface, and the UOWSynchronizationRegistry interface.

Local transaction containment
A local transaction containment (LTC) is used to define the application server behavior in an unspecified
transaction context.

Unspecified transaction context is defined in the Enterprise JavaBeans specification, Version 2.0 and later.
For example, see the specification for this technology.

An LTC is a bounded unit-of-work scope, within which zero or more resource manager local transactions
(RMLT) can be accessed. The LTC defines the boundary at which all RMLTs must be complete; any
incomplete RMLTs are resolved, according to policy, by the container. By default, an LTC is local to a bean
instance; it is not shared across beans, even if those beans are managed by the same container. LTCs
are started by the container before dispatching a method on an enterprise application component, such as
an enterprise bean or servlet, whenever the dispatch occurs in the absence of a global transaction context.
LTCs are completed by the container depending on the application-configured LTC boundary; for example,
at the end of the method dispatch. There is no programmatic interface to the LTC support; LTCs are
managed exclusively by the container. The application deployer configures LTCs on individual application
components, either web application or EJB, by using transaction attributes in the application deployment
descriptor.

A local transaction containment (LTC) might be configured as part of an application component's
deployment descriptor to be shareable across multiple application components, including web application
components and enterprise beans that use container-managed transactions, so that those components
can share connections without using a global transaction. Sharing a single resource manager between
application components improves performance, increases scalability, and reduces lock contention for
resources.

LTCs can be shared across multiple components, including web application components and enterprise
beans that use container-managed transactions. This sharing is useful in situations such as frequent use
of web component include() calls, where a thread can have several connections blocked by LTCs in
different web modules. In this situation, the application might encounter code deadlocks under load, when
threads start to wait for themselves to free connections. To overcome this issue without using a global
transaction, specify that application components can share LTCs by setting the Shareable attribute in the
deployment descriptor of each component. You must use a deployment descriptor; you cannot specify this
attribute if annotation has been used.

When you set the Shareable attribute, the extended deployment descriptor XML file includes the following
line of code:
<local-transaction boundary="BEAN_METHOD" resolver="CONTAINER_AT_BOUNDARY"
unresolved-action="COMMIT" shareable="true"/>

Chapter 24. Transactions 801

To obtain the full benefits of a shared LTC, also ensure that the resource reference for each component
defaults to shareable connections.

In the following diagram, components 1, 2 and 3 are deployed with the Shareable attribute and component
4 is not. If components 2 and 3 both obtain connections to data source B, and their resource references
for data source B default to shareable connections, they share the connection, but component 4 does not.

Applications that use shareable LTCs cannot explicitly commit or roll back resource manager connections
that are used in a shareable LTC. Although, they can use connections that have an autoCommit capability.
This ensures correct encapsulation of connection usage by each component and protects one component
from having to make any assumptions about the behavior of other components that share the connection.

If an application starts any non-autocommit work in an LTC for which the Resolver attribute is set to
Application and the Shareable attribute is set to true, an exception occurs at run time. For example, on a
JDBC connection, non-autocommit work is work that the application performs after using the
setAutoCommit(false) method to disable the autocommit option on the connection. Enterprise beans that
use bean managed transactions (BMT) cannot be assembled with the Shareable attribute set on the LTC
configuration.

A local transaction containment cannot exist concurrently with a global transaction. If application
component dispatch occurs in the absence of a global transaction, the container always establishes an
LTC for enterprise application components at J2EE 1.3 or later. The only exceptions to this are the
following items:
v Application component dispatch occurs without container interposition, for example, for a stateless

session bean create method or a servlet-initiated thread.
v J2EE 1.2 web components.
v J2EE 1.2 bean-managed transaction (BMT) enterprise beans.

802 Overview

A local transaction containment can be scoped to an ActivitySession context that exists longer than the
enterprise bean method in which it is started, as described in the topic about ActivitySessions and
transaction contexts.

Local transaction containment
IBM WebSphere Application Server supports local transaction containment (LTC), which you can configure
using local transaction extended deployment descriptors. LTC support provides certain advantages to
application programmers. Use the scenarios provided, and the list of points to consider, to help you decide
the best way to configure transaction support for local transactions.

The following sections describe the advantages that LTC support provides, and how to set the local
transaction extended deployment descriptors in each situation.
You can develop an enterprise bean or servlet that accesses one or more databases that are
independent and require no coordination.

If an enterprise bean does not have to use global transactions, it is often more efficient to deploy
the bean with the deployment descriptor for the container transaction type set to NotSupported
instead of Required.

With the extended local transaction support of the application server, applications can perform the
same business logic in an unspecific transaction context as they can in a global transaction. An
enterprise bean, for example, runs in an unspecified transaction context if it is deployed with a
container transaction type of NotSupported or Never.

The extended local transaction support provides a container-managed, implicit local transaction
boundary, within which the container commits application updates and cleans up their connections.
You can design applications with more independence from deployment concerns. This makes
using a container transaction type of Supports much simpler, for example, when the business logic
might be called either with or without a global transaction context.

An application can follow a get-use-close pattern of connection usage, regardless of whether the
application runs in a transaction. The application can depend on the close action behaving in the
same way in all situations, that is, the close action does not cause a rollback to occur on the
connection if there is no global transaction.

There are many scenarios where ACID coordination of multiple resource managers is not needed.
In such scenarios, running business logic in a Transaction policy of NotSupported performs better
than in a policy of Required. This benefit is applied through setting the deployment descriptor, in
the Local Transactions section, of the Resolver attribute to ContainerAtBoundary. With this setting,
application interactions with resource providers, such as databases, are managed within implicit
resource manager local transactions (RMLT) that the container both starts and ends. The
container commits RMLTs at the containment boundary that is specified by the Boundary attribute
in the Local Transactions section; for example, at the end of a method. If the application returns
control to the container by an exception, the container rolls back any RMLTs that it has started.

This usage applies to both servlets and enterprise beans.
You can use local transactions in a managed environment that guarantees cleanup.

Applications that want to control RMLTs, by starting and ending them explicitly, can use the default
setting of Application for the Resolver extended deployment descriptor in the Local Transactions
section. In this situation, the container ensures connection cleanup at the boundary of the local
transaction context.

Java platform for enterprise applications specifications that describe application use of local
transactions do so in the manner provided by the default settings of Application for the Resolver
extended deployment descriptor, and Rollback for the Unresolved action extended deployment
descriptor, in the Local Transactions section. When the Unresolved action extended deployment
descriptor in the Local Transactions section is set to Commit, the container commits any RMLTs
that the application starts but that do not complete when the local transaction containment ends
(for example, when the method ends). This usage applies to both servlets and enterprise beans.

Chapter 24. Transactions 803

You can extend the duration of a local transaction beyond the duration of an EJB component
method.

The Enterprise JavaBeans (EJB) specifications restrict the use of RMLTs to single EJB methods.
This restriction is because the specifications have no scoping device, beyond a container-imposed
method boundary, to which an RMLT can be extended. You can use the Boundary extended
deployment setting in the Local Transactions section to give the following advantages:
v Significantly extend the use cases of RMLTs.
v Make conversational interactions with one-phase resource managers possible through

ActivitySession support.

You can use an ActivitySession to provide a distributed context with a boundary that is longer than
a single method. You can extend the use of RMLTs over the longer ActivitySession boundary,
which a client can control. The ActivitySession boundary reduces the need to use distributed
transactions where ACID operations on multiple resources are not needed. This benefit is applied
through the Boundary extended deployment setting, in the Local transactions section, of
ActivitySession. Such extended RMLTs can remain under the control of the application, or be
managed by the container, depending on the setting of the Resolver deployment descriptor in the
Local Transactions section.

You can coordinate multiple one-phase resource managers.
For resource managers that do not support XA transaction coordination, a client can use
ActivitySession-bounded local transaction contexts. Such contexts give a client the same ability to
control the completion direction of the resource updates by the resource managers as the client
has for transactional resource managers. A client can start an ActivitySession and call its entity
beans in that context. Those beans can perform their RMLTs within the scope of that
ActivitySession and return without completing the RMLTs. The client can later complete the
ActivitySession in a commit or rollback direction and cause the container to drive the
ActivitySession-bounded RMLTs in that coordinated direction.

You can use shareable LTCs to reduce the number of connections you require.
Application components can share LTCs. If components obtain connections to the same resource
manager, they can share that connection if they run under the same global transaction or
shareable LTC. To configure two components to run under the same shareable LTC, set the
Shareable attribute of the Local Transactions section in the deployment descriptor of each
component. Make sure that the resource reference in the deployment descriptor for each
component uses the default value of Shareable for the res-sharing-scope element, if this element
is specified. A shareable LTC can reduce the numbers of RMLTs an application uses. For example,
an application that makes frequent use of web module include calls can share resource manager
connections between those web modules, exploiting either shareable LTCs, or a global
transaction, reducing lock contention for resources.

Examples of local transaction support configurations

The following list gives scenarios that use local transactions, and points to consider when deciding the
best way to configure the transaction support for an application.
v You want to start and end global transactions explicitly in the application (bean-managed transaction

session beans and servlets only).

For a session bean, set the Transaction type to Bean (to use bean-managed transactions) in the
deployment descriptor of the component. You do not have to do this for servlets.

v You want to access only one XA or non-XA resource in a method.

In the deployment descriptor of the component, in the Local Transactions section, set the Resolver
attribute to ContainerAtBoundary. In the Container Transactions section, set the container transaction
type to Supports.

v You want to access several XA resources atomically across one or more bean methods.

In the deployment descriptor of the component, in the Container Transactions section, set the container
transaction type to Required, RequiresNew, or Mandatory.

v You want to access several non-XA resources in a method without needing to manage your own local
transactions.

804 Overview

In the deployment descriptor of the component, in the Local Transactions section, set the Resolver
attribute to ContainerAtBoundary. In the Container Transactions section, set the container transaction
type to NotSupported.

v You want to access several non-XA resources in a method and want to manage them independently.

In the deployment descriptor of the component, in the Local Transactions section, set the Resolver
attribute to Application and set the Unresolved action attribute to Rollback. In the Container Transactions
section, set the container transaction type to NotSupported.

v You want to access one or more non-XA resources across multiple EJB method calls without needing to
manage your own local transactions.

In the deployment descriptor of the component, in the Local Transactions section, set the Resolver
attribute to ContainerAtBoundary and set the Boundary attribute to ActivitySession. In the Bean Cache
section, set the Activate at attribute to ActivitySession. In the Container Transactions section, set the
container transaction type to NotSupported and set the ActivitySession kind attribute to Required,
RequiresNew, or Mandatory.

v You want to access several non-XA resources across multiple EJB method calls and want to manage
them independently.

In the deployment descriptor of the component, in the Local Transactions section, set the Resolver
attribute to Application and set the Boundary attribute to ActivitySession. In the Bean Cache section, set
the Activate at attribute to ActivitySession. In the Container Transactions section, set the container
transaction type to NotSupported and set the ActivitySession kind attribute to Required, RequiresNew,
or Mandatory.

Local and global transactions
Applications use resources, such as Java Database Connectivity (JDBC) data sources or connection
factories, that are configured through the Resources view of the administrative console. How these
resources participate in a global transaction depends on the underlying transaction support of the resource
provider.

For example, most JDBC providers can provide either XA or non-XA versions of a data source. A non-XA
data source can support only resource manager local transactions (RMLT), but an XA data source can
support two-phase commit coordination, as well as local transactions.

If an application uses two or more resource providers that support only RMLTs, atomicity cannot be
assured because of the one-phase nature of these resources. To ensure atomic behavior, the application
must use resources that support XA coordination and must access those resources in a global transaction.

If an application uses only one RMLT, atomic behavior can be guaranteed by the resource manager, which
can be accessed in a local transaction containment (LTC) context.

An application can also access a single resource manager in a global transaction context, even if that
resource manager does not support the XA coordination. An application can do this because the
application server performs an “only resource optimization” and interacts with the resource manager in a
RMLT. In a global transaction context, any attempt to use more than one resource provider that supports
only RMLTs causes the global transaction to be rolled back.

At any moment, an instance of an enterprise bean can have work outstanding in either a global transaction
context or a local transaction containment context, but not both. An instance of an enterprise bean can
change from running in one type of context to the other (in either direction), if all outstanding work in the
original context is complete. Any violation of this principle causes an exception to be thrown when the
enterprise bean tries to start the new context.

Client support for transactions
Application clients can, within certain limits, support the use of transactions.

Chapter 24. Transactions 805

Application clients running in an enterprise application client container can explicitly demarcate transaction
boundaries, as described in the topic about using component-managed transactions. Application clients
cannot perform, directly in the client container, transactional work in the context of any global transaction
that they start, because the client container is not a recoverable process.

Application clients can make requests to remote objects, such as enterprise beans, in the context of a
client-initiated transaction. Any transactional work performed in a remote, recoverable, server process is
coordinated as part of the client-initiated transaction. The transaction coordinator is created on the first
server process to which the client-initiated transaction is propagated.

A client can begin a transaction, then, for example, access a JDBC data source directly in the client
process. In such cases, any work performed through the JDBC provider is not coordinated as part of the
global transaction. Instead, the work runs under a resource manager local transaction. The client container
process is non-recoverable and contains no transaction coordinator with which a resource manager can be
enlisted.

A client can begin a transaction, then call a remote application component such as an enterprise bean. In
such cases, the client-initiated transaction context is implicitly propagated to the remote application server,
where a transaction coordinator is created. Any resource managers accessed on the recoverable
application server (or any other application server hosting application components invoked by the client)
are enlisted in the global transaction.

Client application components must be aware that locally-accessed resource managers are not
coordinated by client-initiated transactions. Client applications acknowledge this through a deployment
option that enables access to the UserTransaction interface in the client container. By default, access to
the UserTransaction interface in the client container is not enabled. To enable UserTransaction
demarcation for an application client component, set the “Allow JTA Demarcation” extension property in the
client deployment descriptor. For information about editing the client deployment descriptor, refer to the
Rational Application Developer information.

Commit priority for transactional resources
You can specify the order in which transactional resources are processed during two-phase commit
processing.

If you control the order in which transactional resources are processed during two-phase commit
processing, there are two main benefits:

v One-phase commit optimization occurs more often.

v Potential problems caused by transaction isolation are resolved.

To control the order in which transactional resources are processed during two-phase commit processing,
you specify the commit priority of a resource by setting the commit priority attribute on a resource
reference. The larger the commit priority, the earlier the resource is processed. For example, if a resource
has a commit priority of 10, it is processed before a resource with a commit priority of 1. The commit
priority value is of type int and can be between -2147483648 and 2147483647.

If you do not specify a commit priority value, a default value of zero is assigned to the resource and is
used when ordering resources at run time. If two or more resources are configured with the same priority,
including the default priority, they are processed in an unspecified order with respect to each other.

You can specify the commit priority attribute on a resource reference by using Rational Application
Developer tools. For detailed information, see the Rational Application Developer information center. The
application component must have a deployment descriptor; you cannot specify this attribute if annotation
has been used.

806 Overview

One-phase commit optimization

In a transaction with a two-phase commit, if every resource except the last one enlisted in the transaction
votes read-only, indicating that those resources are not interested in the outcome of the transaction, a
one-phase commit can occur. This means that the transaction service does not have to store resource and
transaction information that it would need to roll back a two-phase commit, and therefore performance is
improved.

You can control the order in which transactional resources are processed during two-phase commit, so
you can process the resources that are most likely to vote read-only first. Therefore, you increase the
chance that a one-phase commit might occur.

Typically, for a given transactional resource, you know the work that is performed at run time, so if you can
control the order in which the resources in a transaction are processed, you can increase the likelihood of
a one-phase commit optimization occurring.

Transaction isolation

When resources are involved in a global transaction, updates that are made as part of a transaction are
not visible outside the transaction until the transaction commits, that is, those resources are isolated. This
isolation can cause problems with other application components that act on the updates after they are
committed. For example, further processing can fail, or can fail intermittently, because updates are order
and time dependent. This problem does not occur with service integration bus messaging work in
WebSphere Application Server, but can be a problem for other messaging providers, for example
WebSphere MQ.

If you specify the order in which transactional resources are committed, problems caused by isolation are
resolved for all transactional systems, not just messaging providers and service integration bus in
particular.

The following example describes how problems might occur when you cannot specify the order in which
transactional resources are committed. An application updates a row in a database table, then sends a
JMS message that triggers additional processing of the row. Both of these actions are performed in the
same global transaction, so they are isolated until their respective resources are committed. If the update
to the row is committed before the message is sent, the processing that is triggered by the message can
access the updated row and process it. If the action to send the message is committed first, this action
might trigger the additional processing of the row before the database has committed the update to the
row. In this situation, the updated row is still isolated and is not visible, so the additional processing of the
row fails.

This problem can be more complicated because it is ordering and timing dependent. If the database is
committed first, the problem does not occur. If the action to send the message is committed first, the
problem might occur, but it depends whether the database work is committed before the message triggers
the further processing of the row. Therefore, the problem can be intermittent, so it is harder to identify its
cause.

Restrictions with earlier versions of WebSphere Application Server

If you specify the commit priority of a resource, that is, specify any value other than the default value 0,
the commit priority is added to the partner log in a recoverable unit section. This section in the log file is
recognized in WebSphere Application Server Version 7.0 or later, but not in earlier versions of the
application server.

Therefore, if an application uses the commit priority attribute, you cannot install that application into a
mixed-version cluster where one or more servers in the cluster are at versions of WebSphere Application
Server that are earlier than Version 7.0.

Chapter 24. Transactions 807

Also, if an application that uses the commit priority attribute is installed in a cluster, you cannot
subsequently add a server to that cluster if the server is at a version of WebSphere Application Server that
is earlier than Version 7.0.

For general information about different versions of the product, see the topic “Overview of migration,
coexistence, and interoperability”.

Sharing locks between transaction branches
You can specify that multiple application components on different application servers can share access to
data in a single DB2 database under the same global transaction. You specify that the different transaction
branches share locks under the global transaction.

To do this, you set the branch coupling attribute on the resource references for the shared DB2
connections in the application.

Note: Lock sharing in WebSphere Application Server Version 8 is only supported on DB2; setting lock
sharing on a resource reference for a non-DB2 database will result in an exception.

Usually, application components can share locks only when those application components are collocated
on the same server.

Sharing locks between transaction branches means that multiple DB2 Java Database Connectivity (JDBC)
connections to the same database that are in the same transaction, from the same or different servers,
can share locks when accessing data. In this way, multiple components can access the data without
causing timeouts or other unwanted situations.

Sharing locks between transaction branches provides the benefit that two Enterprise JavaBeans (EJBs) on
two servers can share the visibility of data, and the locks to that data, within a distributed transaction.
Therefore, shared access to data does not depend on the location of the application component.

To specify that transaction branches share locks, you set the branch coupling attribute on the DB2
resource reference of the application to a value of tight. For example:
<resource-ref name="jdbc/DataSource_LockSharing" branch-coupling="TIGHT"/>

If you do not specify a branch coupling value, the default value of loose is used, that is, transaction
branches do not share locks.

You can set the branch coupling attribute on the DB2 resource reference of the application by using
Rational Application Developer tools. For detailed information, see the Rational Application Developer
information center. The application component must have a deployment descriptor; you cannot specify this
attribute if annotation has been used.

To share locks between transaction branches in this way, the following conditions apply:

v The database must be DB2 on a distributed or z/OS operating system.

v The JDBC provider must be DB2 Using IBM JCC Driver Version 3.51 and later, Version 3.6 and later, or
Version 4.1 and later.

v Connections must use JDBC type 4 connectivity to one of the following:

– DB2 Universal Database (DB2 UDB) Version 8 and later

– DB2 UDB for z/OS Version 8 with program temporary fix (PTF) UK27815 and later

– DB2 UDB for z/OS Version 9.1 with Fix Pack 4 and later

– DB2 UDB for z/OS Version 9.5 and later

Note: An IBM Support Technote is available that provides a complete list of which DB2 versions support
lock sharing. Search the IBM Support Portal for relevant information.

808 Overview

http://www-947.ibm.com/support/entry/portal/All_troubleshooting_links/Software/Information_Management/DB2_for_Linux,_UNIX_and_Windows

Transactional high availability
The high availability of the transaction service enables any server in a cluster to recover the transactional
work for any other server in the same cluster. This facility forms part of the overall WebSphere Application
Server high availability (HA) strategy.

As a vital part of providing recovery for transactions, the transaction service logs information about active
transactional work in the transaction recovery log. The transaction recovery log stores the information in a
persistent form, which means that any transactional work in progress at the time of a server failure can be
resolved when the server is restarted. This activity is known as transaction recovery processing. In
addition to completing outstanding transactions, this processing also ensures that any locks held in the
associated resource managers are released.

Peer recovery processing

The standard recovery process that is performed when an application server restarts is for the server to
retrieve and process the logged transaction information, recover transactional work and complete indoubt
transactions. Completion of the transactional work (and hence the release of any database locks held by
the transactions) takes place after the server successfully restarts and processes its transaction logs. If the
server is slow to recover or requires manual intervention, the transactional work cannot be completed and
access to associated databases is disrupted.

To minimize such disruption to transactional work and the associated databases, WebSphere Application
Server provides a high availability strategy known as transaction peer recovery.

Peer recovery is provided within a server cluster. A peer server (another cluster member) can process the
recovery logs of a failed server while the peer continues to manage its own transactional workload. You do
not have to wait for the failed server to restart, or start a new application server specifically to recover the
failed server.

The peer recovery process is the logical equivalent to restarting the failed server, but does not constitute a
complete restart of the failed server within the peer server. The peer recovery process provides an
opportunity to complete outstanding work; it cannot start new work beyond recovery processing. No
forward processing is possible for the failed server.

Peer recovery moves the high availability requirements away from individual servers and onto the server
cluster. After such failures, the management system of the cluster dispatches new work onto the remaining

Figure 175. Peer recovery

Chapter 24. Transactions 809

servers; the only difference is the potential drop in overall system throughput. If a server fails, all that is
required is to complete work that was active on the failed server and redirect requests to an alternate
server.

By default, peer recovery is disabled until you enable failover of transaction log recovery in the cluster
configuration, and restart the cluster members. After you enable transaction log recovery, WebSphere
Application Server supports two styles for the initiation of transaction peer recovery: automated and
manual. You determine which style is more appropriate, based on your deployment, and specify that style
by configuring the appropriate high availability policy. This high availability policy is referred to elsewhere in
these topics as the policy for the transaction service.

Automated peer recovery
This style is the default for peer recovery initiation. If an application server fails, WebSphere
Application Server automatically selects a server to undertake peer recovery processing on its
behalf, and passes recovery back to the failed server when it restarts. To use this model, enable
transaction log recovery and configure the recovery log location for each cluster member.

Manual peer recovery
You must explicitly configure this style of peer recovery. If an application server fails, you use the
administrative console to select a server to perform recovery processing on its behalf.

In a HA environment, you must configure the compensation logs as well as the transaction logs. For each
server in the cluster, use the compensation service settings to configure a unique compensation log
location, and ensure that all cluster members can access those compensation logs.

Peer recovery example

The following diagrams illustrate the peer recovery process that takes place if a single server fails. Figure
2 shows three stable servers running in a WebSphere Application Server cluster. The workload is balanced
between these servers, which results in locks held by the back-end database on behalf of each server.

Figure 3 shows the state of the system after server 1 fails without clearing locks from the database.
Servers 2 and 3 can run their existing transactions to completion and release existing locks in the
back-end database, but further access might be impaired because of the locks still held on behalf of server
1. In practice, some level of access by servers 2 and 3 is still possible, assuming appropriately configured
lock granularity, but for this example assume that servers 2 and 3 attempt to access locked records and
become blocked.

Figure 176. Server cluster up and running, just before server failure

810 Overview

Figure 4 shows a peer recovery process for server 1 running inside server 3. The transaction service
portion of the recovery process retrieves the information that is stored by server 1, and uses that
information to complete any indoubt transactions. In this figure, the peer recovery process is partially
complete as some locks are still held by the database on behalf of server 1.

Figure 5 shows the state of the server cluster when the peer recovery process is complete. The system is
in a stable state with just two servers, between which the workload is balanced. Server 1 can be restarted,
and will have no recovery processing of its own to perform.

Figure 177. Server 1 fails. Servers 2 and 3 become blocked as a result

Figure 178. Peer recovery process started in server 3

Chapter 24. Transactions 811

Deployment for transactional high availability
Before you use the high availability (HA) function, you must consider deployment issues such as your file
system type, or where you plan to store the transaction recovery logs. In particular, your file system type
can have important consequences for your recovery configuration.

Common configuration

Transaction peer recovery requires a common configuration of the resource providers between the
participating server members to undertake peer recovery between servers. Therefore, peer recovery
processing can only take place between members of the same server cluster. Although a cluster can
contain servers that are at different versions of WebSphere Application Server, peer recovery can only be
performed between servers in the cluster that are at Version 6 or later.

Physical storage

For application servers to perform transaction peer recovery for each other, they must be able to access
the transaction recovery logs of all the other members in the cluster. Ensure that the log files are stored on
a medium that is accessible by all members of the cluster, and that each cluster member has a unique log
file location on this medium. This medium, and access to it, for example through a local area network
(LAN), must support the file-based force operation that is used by the recovery log service to force data to
disk. After the force operation is complete, information must be persistently stored on physical disk media.

In a HA environment, application servers must also be able to access the compensation logs. Ensure that
the compensation log files are stored on a medium that is accessible by all members of the cluster, and
that each cluster member has a unique log file location on this medium.

For example, you can use IBM Network attached storage (NAS) (http://www.ibm.com/servers/storage/nas/
index.html) mounted on each node, and shared SCSI drives, but not simple network share. All nodes must
have read and write access to the recovery logs.

Figure 179. Server cluster stable again with just two servers: server 2 and server 3

812 Overview

http://www.ibm.com/servers/storage/nas/index.html
http://www.ibm.com/servers/storage/nas/index.html

In addition, configure the mechanism by which the remote log files are accessed, to exploit any fault
tolerance in the underlying file system. For example, by using the Network File System (NFS) and hard
mounting the remote directory containing the log files by using the -o hard option of the NFS mount
command, the NFS client will try a failed operation repeatedly until the NFS server becomes available
again.

Two types of potential server failure exist: software failure and hardware failure. Software failures generally
do not affect other application servers directly. Even servers on the same physical hardware can undertake
peer recovery processing. If a hardware failure occurs, all the servers that are deployed on the failed
hardware become unavailable. Servers on other hardware are required to handle peer recovery
processing. Any HA configuration requires that servers are deployed across multiple and discrete hardware
systems.

File system

The file system type is an important deployment consideration as it is the main factor in deciding whether
to use automated or manual peer recovery. For more information, see “How to choose between automated
and manual transaction peer recovery” on page 131.

How to choose between automated and manual transaction peer recovery:

Your type of file system is the dominant factor in deciding which kind of transaction peer recovery to use.
Different file systems have different behaviors, and the file locking behavior in particular is important when
choosing between automated and manual peer recovery.

WebSphere Application Server high availability (HA) support uses a heartbeat mechanism to determine
whether servers are still running. Servers are considered failed if they stop responding to heartbeat
requests. Some scenarios, such as system overloading and network partitioning (explained elsewhere in
this topic), can cause servers to stop responding to heartbeats, even though the servers are still running.
WebSphere Application Server uses file locking technology to prevent such events from causing
concurrent access to transaction recovery logs, because access to a recovery log by more than one server
can lead to loss of data integrity.

Figure 180. Recovery logs on NAS storage are available to all servers

Chapter 24. Transactions 813

However, not all file systems provide the necessary file locking semantics, specifically that file locks are
released when a server fails. For example, Network File System Version 4 (NFSv4) provides this release
behavior, whereas Network File System Version 3 (NFSv3) does not.

You can test whether a shared file system can support the failover of transaction logs by running the File
System Locking Protocol Test for WebSphere Application Server. To run the test see, http://www-
01.ibm.com/support/docview.wss?uid=swg24010222.

NFSv4 releases locks held on behalf of a host in case that host fails. Peer recovery can occur
automatically without restarting the failed hardware. Therefore, this version of NFS is better suited for use
with automated peer recovery.

NFSv3 holds file locks on behalf of a failed host until that host can restart. In this context, the host is the
physical machine running the application server that requested the lock and it is the restart of the host, not
the application server, that eventually triggers the locks to release.

To illustrate file locking on NFSv3, consider the behavior when a cluster member fails:

1. Server H is running on host H and holds an exclusive file lock for its own recovery log files.

2. Server P is running on host P and holds an exclusive file lock for its own recovery log files.

3. Host H fails, taking server H with it. The NFS lock manager on the file server holds the locks that are
granted to server H on its behalf.

4. A peer recovery event is triggered in server P for server H by WebSphere Application Server.

5. Server P attempts to gain an exclusive file lock for this peer recovery log, but is unable to do so as it
is held on behalf of server H. The peer recovery process is blocked.

6. At an unspecified time, host H is restarted. The locks held on its behalf are released.

7. The peer recovery process in server P is unblocked and granted the exclusive file locks that are
needed to undertake peer recovery.

8. Peer recovery takes place in server P for server H.

9. Server H is restarted.

10. If peer recovery is still in progress in server P, the recovery is halted.

11. Server P releases the exclusive lock on the recovery logs and returns ownership of the recovery logs
back to server H.

12. Server H obtains the exclusive lock and can now undertake standard transaction logging.

Because of this behavior, on NFSv3 you must disable file locking to use automated peer recovery.
Disabling file locking can lead to concurrent access to recovery logs so it is vital that you protect your
system from system overloading and network partitioning first. Alternatively, you can configure manual peer
recovery, where you prevent concurrent access by manually triggering peer recovery processing only for
servers that have failed.

System overloading
System overloading occurs when a machine becomes very heavily loaded such that response
times are extremely poor and requests begin to time out. Several potential causes exist for such
overloading, including:

v The server is underpowered and cannot handle the workload.

v The server received a temporary surge of requests.

v Insufficient physical memory is available. As a result, the operating system is too busy paging to
give the application server the required CPU time.

Network partitioning
Network partitioning occurs when a communications failure in a network results in two smaller
networks that are independent and cannot contact each other.

814 Overview

http://www-01.ibm.com/support/docview.wss?uid=swg24010222
http://www-01.ibm.com/support/docview.wss?uid=swg24010222

During normal running, two servers on the network exchange heartbeats. During system overloading,
heartbeat operations time out, giving the appearance of a server failure. After network partitioning, each
server is in a separate network and heartbeats cannot pass between them, also giving the appearance of
a server failure.

High availability policies for the transaction service
WebSphere Application Server provides integrated high availability (HA) support in which system
subcomponents, such as the transaction service, are made highly available. An HA policy provides the
logic that governs the manner in which each WebSphere Application Server HA component behaves within
the overall HA framework. For the transaction service, the transaction HA policy provides the logic to
determine which servers own a recovery log at any time.

Typically, transaction policies assign ownership of a recovery log to the server that originally created it (the
home server) and that server can then use the recovery log for both recovery and normal transactional
activity. In the event that the home server is unavailable or fails, ownership can pass to a peer server to
undertake recovery processing.

Conceptually, a policy can be thought of as consisting of two key components, a policy type and a policy
configuration.

Figure 181. Heartbeats in a system running normally, compared to heartbeats after the apparent server failures of
system overloading and network partitioning

Chapter 24. Transactions 815

Policy type

The policy type determines whether peer recovery initiation is manual or automated. The policy essentially
provides the logic for determining updated recovery log ownership in the event of a server failure. The
following WebSphere Application Server policy types are used for transaction peer recovery (other HA
policy types exist, but are not used by the transaction service):

Static Ownership of the recovery log is defined in the WebSphere Application Server configuration. At run
time, the static policy assigns ownership accordingly. Any changes to ownership require a change
to the static configuration and therefore this policy type is used for manually initiated peer
recovery.

One-of-N
Ownership of the recovery log is determined dynamically by the WebSphere Application Server HA
framework and assigned to exactly one of the N cluster members. This policy type is used for
automated peer recovery.

Transaction compensation and business activity support
A business activity is a collection of tasks that are linked together so that they have an agreed outcome.
Unlike atomic transactions, activities such as sending an email can be difficult or impossible to roll back
atomically, and therefore require a compensation process in the event of an error. The WebSphere
Application Server business activity support provides this compensation ability through business activity
scopes.

When to use business activity support

Use the business activity support when you have an application that requires compensation. An application
requires compensation if its operations cannot be atomically rolled back. Typically, this scenario is because
of one of the following reasons:

v The application uses multiple non-extended-architecture (XA) resources.

v The application uses more than one atomic transaction, for example, enterprise beans that have
Requires new as the setting for the Transaction field in the container transaction deployment
descriptor.

v The application does not run under a global transaction.

The following diagram shows a simple web service application that uses the business activity support. The
Retailer, Warehouse and Manufacturing services are running in non-WebSphere Application
Serverenvironments. The Retailer service calls the Supplier service, running on WebSphere Application
Server, which delegates tasks to the Warehouse and Manufacturing services. The implementation of the
Supplier service contains a stateless session bean, which calls other stateless session beans that are
associated with the Warehouse and Manufacturing services, and that undertake work that can be
compensated. These other session beans each have a compensation handler; a piece of logic that is
associated with an application component at run time, and performs compensation activity such as
resending an email.

816 Overview

Application design

Business activity contexts are propagated with application messages, and can therefore be distributed
between application components that are not co-located in the same server. Unlike atomic transaction
contexts, business activity contexts are propagated on both synchronous (blocking) call-response
messages and asynchronous one-way messages. An application component that runs under a business
activity scope is responsible for ensuring that any asynchronous work it initiates is complete before the
component's own processing is complete. An application that initiates asynchronous work by using a
fire-and-forget message pattern must not use business activity scopes, because such applications have no
means of detecting whether this asynchronous processing has completed.

Only enterprise beans that have container-managed transactions can use the business activity functions.
Enterprise beans that exploit business activity scopes can offer web service interfaces, but can also offer
standard enterprise bean local or remote Java interfaces. Business activity context is propagated in web
service messages by using a standard, interoperable Web Services Business Activity (WS-BA)
CoordinationContext element. WebSphere Application Server can also propagate business activity context
on RMI calls to enterprise beans when Web services are not being used, but this form of the context is not
interoperable with non-WebSphere Application Server environments. You might want to use this
homogeneous scenario if you require compensation for an application that is internal to your business. If
you want to use business activity compensation in a heterogeneous environment, expose your application
components as web services.

Chapter 24. Transactions 817

Business activity contexts can be propagated across firewalls and outside the WebSphere Application
Server domain. The topology that you use to achieve this propagation can affect the high availability and
affinity behavior of the business activity transaction.

Application development and deployment

WebSphere Application Server provides a programming model for creating business activity scopes, and
for associating compensation handlers with those business activity scopes. WebSphere Application Server
also provides an application programming interface to specify compensation data, and check or alter the
status of a business activity. To use the business activity support you must set certain application
deployment descriptors appropriately, provide a compensation handler class if required, and enable
business activity support on any servers that run the application.

Note: Applications can exploit the business activity support only if you deploy them to a WebSphere
Application Server at Version 6.1 or later. Applications cannot use the business activity support if
you deploy them to a cluster that includes WebSphere Application ServerVersion 6.0.x servers.

Business activity scopes

The scope of a business activity is that of a main WebSphere Application Server unit of work: a global
transaction, an activity session, or local transaction containment (LTC). A business activity scope is not a
new unit of work (UOW); it is an attribute of an existing main UOW. Therefore, a one-to-one relationship
exists between a business activity scope and a UOW.

In a WS-BA deployment, the UOW must be container-managed:

v The UOW can be a container-managed transaction (CMT) enterprise bean that creates a global
transaction.

v The UOW can be a local transaction containment (LTC) where the container is responsible for initiating
and ending resource manager local transactions (RMLTs). That is, in the transactional deployment
descriptor attributes, the Local Transaction attribute Resolver must be set to ContainerAtBoundary. To
use WS-BA, you must not set the Resolver attribute to Application.

Any main UOW can have a business activity scope associated with it. If a component running under a
UOW that is associated with a business activity scope calls another component, that request propagates
the business activity scope; any work done by the new component is associated with the same business
activity scope as the calling component. The called component can create a new UOW, for example if an
enterprise bean has a Transaction setting of Requires new, or runs under the same UOW as the calling
component. If a new UOW is started then a new business activity scope is created and associated with
the new UOW. The newly created business activity scope is a child of the business activity scope
associated with the calling UOW. In the following diagram, EJB1a running under UOW1 calls two
components: EJB1b that also runs under UOW1, and EJB2 that creates a new UOW, UOW2. The
enterprise bean EJB1b, calls another enterprise bean, EJB3, which creates another new UOW, UOW3.
Because each new UOW is created by a calling component whose UOW already has an association with
business activity scope BAScope1, the newly created UOWs are associated with new inner business
activity scopes, BAScope2 and BAScope3.

818 Overview

Inner business activity scopes must complete before the outer business activity scope completes. Inner
business activity scopes, for example BAScope2, have an association with the outer business activity
scope, in this case BAScope1. Each business activity scope is directed to close if its associated UOW
completes successfully, or to compensate if its associated UOW fails. If BAScope2 completes successfully,
any active compensation handlers that are owned by BAScope2 are moved to BAScope1, and are
directed in the same way as the completion direction of BAScope1: either compensate or close. If
BAScope2 fails, the active compensation handlers are compensated automatically, and nothing is moved
to the outer BAScope1. When an inner business activity scope fails, as a result of its associated UOW
failing, an application server exception is thrown to the to calling application component, running in the
outer UOW.

For example, if the inner UOW fails it might throw a TransactionRolledBackException exception. If the
calling application can handle the exception, for example by trying the called component again or by
calling another component, then the calling UOW, and its associated business activity scope, can complete
successfully even though the inner business activity scope failed. If the application design requires the
calling UOW to fail, and for its associated business activity scope to be compensated, then the calling
application component must cause its UOW to fail, for example by allowing any system exception from the
UOW that failed to be handled by its container.

When the outer business activity scope completes, its success or failure determines the completion
direction (close or compensate) of any active compensation handlers that are owned by the outer business
activity scope, including those promoted by the successful completion of inner business activity scopes. If
the outer business activity scope completes successfully, it drives all active compensation handlers to
close. If the outer business activity scope fails, it drives all active compensation handlers to compensate.

This compensation behavior is summarized in the following table.

Chapter 24. Transactions 819

Table 83. Compensation behavior for a single business activity scope. The table lists the possible combinations of
success and failure for the inner and outer business activity scopes, and the compensation behavior associated with
each combination.

Inner
business
activity scope

Outer
business
activity scope Compensation behavior

Succeeds Succeeds Any compensation handlers that are owned by the inner business activity scope wait for the
outer UOW to complete. When the outer UOW succeeds, the outer business activity scope
drives all compensation handlers to close.

Fails Succeeds Any active compensation handlers that are owned by the inner business activity scope are
compensated. An exception is thrown to the outer UOW; if this exception is caught, when the
outer UOW succeeds, the outer business activity scope drives all remaining active compensation
handlers to close.

Fails Fails Any active compensation handlers that are owned by the inner business activity scope are
compensated. An exception is thrown to the outer UOW; if this exception is not caught, the outer
business activity scope fails. When the outer business activity scope fails, either because of the
unhandled exception or for some other reason, all remaining active compensation handlers are
compensated.

Succeeds Fails Any compensation handlers that are owned by the inner business activity scope wait for the
outer UOW to complete. When the outer UOW fails, the outer business activity scope drives all
compensation handlers to compensate.

When a UOW with an associated business activity scope completes, the business activity scope always
completes in the same direction as the UOW that it is associated with. The only way that you can
influence the direction of the business activity scope is to influence the UOW that it is associated with,
which you can do by using the setCompensateOnly method of the business activity API.

A compensation handler that is registered within a transactional UOW might initially be inactive, depending
on the method invoked from the business activity API. Inactive handlers in this situation become active
when the UOW in which that handler is declared completes successfully. A compensation handler that is
registered outside a transactional UOW always becomes active immediately. For more information, see the
topic about the business activity API.

Each business activity scope in the diagram represents a business activity. For example, the outer
business activity running under BAScope1 can be a holiday booking scenario, with BAScope2 being a
flight booking activity and BAScope3 a hotel booking. If either the flight or hotel bookings fail, the overall
holiday booking by default also fails. Alternatively if, for example, the flight booking fails, you might want
your application to try booking a flight by using another component that represents a different airline. If the
overall holiday booking fails, the application can use compensation handlers to cancel any flights or hotels
that are already successfully booked.

Use of business activity scopes by application components

Application components do not use business activity scopes by default. You use the WebSphere
Application Server assembly tools to specify the use of a business activity scope and to identify any
compensation handler class for the component:

Default configuration
If a business activity context is present on a request received by a component with no business
activity scope configuration, the context is stored by the container but never used during the
method scope of the target component. A new business activity scope is not created. If the target
component invokes another component, the stored business activity context is propagated and can
be used by other compensating components.

Run enterprise bean methods under a business activity scope
Any business activity context present on the incoming request is received by the container and
made available to the target component. If a new UOW is created for the target method, for
example because the enterprise bean method has a Transaction setting of Requires new, the

820 Overview

received business activity scope becomes an outer business activity scope to a newly created
business activity. If the UOW is propagated from the calling component and used by the method,
then the received business activity scope is used by the method. If a business activity scope does
not exist on the invocation, a new business activity scope is created and used by the method.

To create a business activity scope when an enterprise bean is invoked, you must configure the enterprise
bean to run enterprise bean methods under a business activity scope. You must also configure the
deployment descriptors for the method being invoked, to specify the creation of a new UOW upon
invocation. For details, see the topic about creating an application that uses the WS-BA support.

JTA support
Java Transaction API (JTA) support provides application programming interfaces (APIs) in addition to the
UserTransaction interface that is defined in the JTA 1.1 specification.

These interfaces include the TransactionSynchronizationRegistry interface, which is defined in the JTA 1.1
specification, and the following API extensions:
v SynchronizationCallback interface
v ExtendedJTATransaction interface
v UOWSynchronizationRegistry interface
v UOWManager interface

The APIs provide the following functions:

v Access to global and local transaction identifiers associated with the thread.

The global identifier is based on the transaction identifier in the CosTransactions::PropagationContext:
object and the local identifier identifies the transaction uniquely in the local Java virtual machine (JVM).

v A transaction synchronization callback that any enterprise application component can use to register an
interest in transaction completion.

Advanced applications can use this callback to flush updates before transaction completion and clear up
state after transaction completion. Java EE (and related) specifications position this function typically as
the domain of the enterprise application containers.

Components such as persistence managers, resource adapters, enterprise beans, and web application
components can register with a JTA transaction.

The following information is an overview of the interfaces that the JTA support provides. For more detailed
information, see the generated API documentation.

SynchronizationCallback interface

An object implementing this interface is enlisted once through the ExtendedJTATransaction interface, and
receives notification of transaction completion.

Although an object implementing this interface can run on a Java platform for enterprise applications
server, there is no specific enterprise application component active when this object is called. So, the
object has limited direct access to any enterprise application resources. Specifically, the object has no
access to the java: namespace or to any container-mediated resource. Such an object can cache a
reference to an enterprise application component (for example, a stateless session bean) that it delegates
to. The object would then have all the usual access to enterprise application resources. For example, you
might use the object to acquire a Java Database Connectivity (JDBC) connection and flush updates to a
database during the beforeCompletion method.

ExtendedJTATransaction interface

This interface is a WebSphere programming model extension to the Java EE JTA support. An object
implementing this interface is bound, by enterprise application containers in WebSphere Application Server

Chapter 24. Transactions 821

that support this interface, at java:comp/websphere/ExtendedJTATransaction. Access to this object, when
called from an Enterprise JavaBeans (EJB) container, is not restricted to component-managed
transactions.

An application uses a Java Naming and Directory Interface (JNDI) lookup of java:comp/websphere/
ExtendedJTATransaction to get an ExtendedJTATransaction object, which the application uses as shown in
the following example:
ExtendedJTATransaction exJTA = (ExtendedJTATransaction)ctx.lookup("
java:comp/websphere/ExtendedJTATransaction");
SynchronizationCallback sync = new SynchronizationCallback();
exJTA.registerSynchronizationCallback(sync);

The ExtendedJTATransaction object supports the registration of one or more application-provided
SynchronizationCallback objects. Depending on how the callback is registered, each registered callback is
called at one of the following points:

v At the end of every transaction that runs on the application server, whether the transaction is started
locally or imported

v At the end of the transaction for which the callback was registered

Note: In this release, the registerSynchronizationCallbackForCurrentTran method is deprecated. Use the
registerInterposedSynchronization method of the TransactionSynchronizationRegistry interface
instead.

TransactionSynchronizationRegistry interface

This interface is defined in the JTA 1.1 specification. System-level application components, such as
persistence managers, resource adapters, enterprise beans, and web application components, can use
this interface to register with a JTA transaction. Then, for example, the component can flush a cache when
a transaction completes.

To obtain the TransactionSynchronizationRegistry interface, use a JNDI lookup of java:comp/
TransactionSynchronizationRegistry.

Note: Use the registerInterposedSynchronization method to register a synchronization instance, rather
than the registerSynchronizationCallbackForCurrentTran method of the ExtendedJTATransaction
interface, which is deprecated in this release.

UOWSynchronizationRegistry interface

This interface provides the same functions as the TransactionSynchronizationRegistry interface, but
applies to all types of units of work (UOWs) that WebSphere Application Server supports:
v JTA transactions
v local transaction containments (LTCs)
v ActivitySession contexts

System-level application server components such as persistence managers, resource adapters, enterprise
beans, and web application components can use this interface to register with a JTA transaction. The
component can do the following:

v Register synchronization objects with special ordering semantics.

v Associate resource objects with the UOW.

v Get the context of the current UOW.

v Get the current UOW status.

v Mark the current UOW for rollback.

822 Overview

To obtain the UOWSynchronizationRegistry interface, use a JNDI lookup of java:comp/websphere/
UOWSynchronizationRegistry. This interface is available only in a server environment.

The following example registers an interposed synchronization with the current UOW:
// Retrieve an instance of the UOWSynchronizationRegistry interface from JNDI.
final InitialContext initialContext = new InitialContext();
final UOWSynchronizationRegistry uowSyncRegistry =
(UOWSynchronizationRegistry)initialContext.lookup("java:comp/websphere/UOWSynchronizationRegistry");

// Instantiate a class that implements the javax.transaction.Synchronization interface
final Synchronization sync = new SynchronizationImpl();

// Register the Synchronization object with the current UOW.
uowSynchronizationRegistry.registerInterposedSynchronization(sync);

UOWManager interface

The UOWManager interface is equivalent to the JTA TransactionManager interface, which defines the
methods that allow an application server to manage transaction boundaries. Applications can use the
UOWManager interface to manipulate UOW contexts in the product. The UOWManager interface applies
to all types of UOWs that WebSphere Application Server supports; that is, JTA transactions, local
transaction containments (LTCs), and ActivitySession contexts. Application code can run in a particular
type of UOW without needing to use an appropriately configured enterprise bean. Typically, the logic that
is performed in the scope of the UOW is encapsulated in an anonymous inner class. System-level
application server components such as persistence managers, resource adapters, enterprise beans, and
web application components can use this interface.

WebSphere Application Server does not provide a TransactionManager interface in the API or the system
programming interface (SPI). The UOWManager interface provides equivalent functions, but WebSphere
Application Server maintains control and integrity of the UOW contexts.

To obtain the UOWManager interface in a container-managed environment, use a JNDI lookup of
java:comp/websphere/UOWManager. To obtain the UOWManager interface outside a container-managed
environment, use the UOWManagerFactory class. This interface is available only in a server environment.

You can use the UOWManager interface to migrate a web application to use web components rather than
enterprise beans, but maintain control over the UOWs. For example, a web application currently uses the
UserTransaction interface to begin a global transaction, makes a call to a method on a session enterprise
bean that is configured as not supported to undertake some non-transactional work, and then completes
the global transaction. You can move the logic that is encapsulated in the session EJB method to the run
method of a UOWAction implementation. Then, you replace the code in the web component that calls the
session enterprise bean with a call to the runUnderUOW method of a UOWManager interface to request
that this logic is run in a local transaction. In this way, you maintain the same level of control over the
UOWs as you had with the original application.

The following example performs some transactional work in the scope of a new global transaction. The
transactional work is performed in an anonymous inner-class that implements the run method of the
UOWAction interface. Any checked exceptions that the run method creates do not affect the outcome of
the transaction.
// Retrieve an instance of the UOWManager interface from JNDI.
final InitialContext initialContext = new InitialContext();
final UOWManager uowManager = (UOWManager)initialContext.lookup("java:comp/websphere/UOWManager");

try
{
// Invoke the runUnderUOW method, indicating that the logic should be run in a global
// transaction, and that any existing global transaction should not be joined, that is,
// the work must be performed in the scope of a new global transaction.
uowManager.runUnderUOW(UOWSynchronizationRegistry.UOW_TYPE_GLOBAL_TRANSACTION, false, new UOWAction()
{
public void run() throws Exception
{

Chapter 24. Transactions 823

// Perform transactional work here.
}

});
}

catch (UOWActionException uowae)
{
// Transactional work resulted in a checked exception being thrown.
}

catch (UOWException uowe)
{
// The completion of the UOW failed unexpectedly. Use the getCause method of the
// UOWException to retrieve the cause of the failure.
}

SCA transaction intents
Service Component Architecture (SCA) provides declarative mechanisms in the form of intents for
describing the transactional environment required by components.

This topic covers:

v “Using a global transaction” on page 142

v “Using local transaction containment” on page 144

v “Transaction intent default behavior” on page 145

v “Mapping of SCA intents on services to EJB or Spring transaction attributes” on page 145

v “Obtaining the transaction manager in Spring applications” on page 145

Using a global transaction

Components that use a synchronous interaction style can be part of a single, distributed ACID transaction
within which all transaction resources are coordinated to either atomically commit or roll back. This is
specified by using the managedTransaction.global intent in the requires attribute of the
<implementation.java> element as shown later in this section.
<component name="DataAccessComponent">

<implementation.java class="example.DataAccessImpl"
requires="managedTransaction.global"/>

</component>

For implementation.spring components, specify the transaction attribute in the Spring application context
file. For implementation.jee components, specify the transaction attribute in the Enterprise JavaBeans
(EJB) deployment descriptor.

It is possible to control whether a component's service runs under its client's global transaction by
specifying either the propagatesTransaction or suspendsTransaction intent on the component's <service>
element.

propagatesTransaction
The service runs under its client's global transaction. If the client is not running in a global
transaction or chose not to propagate its global transaction, the service runs in its own global
transaction.

suspendsTransaction
The service runs in its own global transaction separate from the client transaction.

Specify the propagatesTransaction or suspendsTransaction intent on the component's <service> element
only for services in implementation.java components. For implementation.spring components, specify
the transaction attribute in the Spring application context file. For implementation.jee components, specify
the transaction attribute in the EJB deployment descriptor.

824 Overview

It is also possible to control whether a component global transaction is propagated to a referenced service
by specifying either the propagatesTransaction or suspendsTransaction intent on the component
<reference> element.

propagatesTransaction
The component's global transaction is made available to the referenced service. The referenced
service might or may not use this transaction depending on how it is configured.

suspendsTransaction
The component's global transaction is not made available to the referenced service.

You can specify the propagatesTransaction or suspendsTransaction intent on the component's
<reference> element for references in all implementation types.

Transaction context is never propagated on @OneWay methods. The SCA run time ignores
propagatesTransaction for OneWay methods.

Further, the product does not support propagatesTransaction intent on the binding.atom or
binding.jsonrpc elements.

The following example shows the use of the managedTransaction.global, propagatesTransaction, and
suspendsTransaction intents. The DataUpdateComponent runs in its own global transaction, not in its client's
transaction, because suspendsTransaction is specified on its <service> element. Its global transaction is
propagated to the referenced service DataAccessComponent because propagatesTransaction is specified
on its <reference> element.
<component name="DataUpdateComponent">

<implementation.java class="example.DataUpdateImpl"
requires="managedTransaction.global"/>

<service name="DataUpdateService"
requires="suspendsTransaction"/>

<reference name="myDataAccess" target="DataAccessComponent"
requires="propagatesTransaction"/>

</component>

Propagating transactions over the web service binding requires the use of a WebSphere policy set that
contains the WS-Transaction policy type. You can set up this policy set in one of the following ways:

v You can import the WSTransaction policy set that is provided with the product.

v You can create your own policy set and include the WS-Transaction policy type.

The following example assumes the use of the WSTransaction policy set.
<composite name="WSDataUpdateComposite"
xmlns="http://www.osoa.org/xmlns/sca/1.0"
xmlns:ws="http://www.ibm.com/xmlns/prod/websphere/sca/1.0/2007/06">

<component name="WSDataUpdateComponent">
<implementation.java class="example.DataUpdateImpl"

requires="managedTransaction.global"/>
<service name="DataUpdateService"

requires="propagatesTransaction">
<binding.ws ws:wsPolicySet="WSTransaction"/>

</service>
<reference name="myDataBuddy" target="DataBuddyComponent"

requires="propagatesTransaction">
<binding.ws ws:wsPolicySet="WSTransaction"/>

</reference>
</component>

</composite>

Tip: Transaction propagating might not result in a managed connection. Use a qualifying Java EE module
for a managed connection and connection sharing.

Chapter 24. Transactions 825

Using local transaction containment

Business logic might have to access transactional resource managers without the presence of a global
transaction. A component can be configured to run under local transaction containment (LTC). The SCA
runtime starts an LTC before dispatching a method on the component and completes the LTC at the end
of the method dispatch. The component's interactions with resource providers (such as databases) are
managed within resource manager local transactions (RMLTs). A resource manager local transaction
(RMLT) represents a unit of recovery on a single connection that is managed by the resource manager.

The local transaction containment policy is configured by using an intent. There are two choices:

managedTransaction.local
Use this intent when each interaction with a resource manager should be part of an extended local
transaction that is committed at the end of the method. The SCA runtime wraps interactions with
each resource manager in a resource manager local transaction (RMLT). The SCA runtime
commits each RMLT at the end of method dispatch, unless an unchecked exception occurs, in
which case the SCA runtime stops each RMLT. The component might not use resource manager
commit/rollback interfaces or set AutoCommit to true. If multiple resource managers are used, the
RMLTs are committed independently so it is possible for some to fail and some to succeed. If this
behavior is not what you want, use a global transaction.

noManagedTransaction
The SCA runtime does not wrap interactions with resource managers in a RMLT. The component
implementation manages the start and end of its own RMLTs or gets AutoCommit behavior (which
commits following each use of a resource) by default. The component must complete any RMLTs
prior to the end of the method dispatch otherwise the SCA runtime stops them.

The intent is specified by using the requires attribute on the <implementation.java> element. An example
is shown below.
<component name="DataAccessLocalComponent">

<implementation.java class="example.DataAccessImpl"
requires="managedTransaction.local"/>

</component>

A local transaction cannot be propagated from one component to another. It is an error to specify
propagatesTransaction on a component's <service> if the component uses the managedTransaction.local
or noManagedTransaction intent.

The SCA run time performs a rollback under the following circumstances:

v When managedTransaction.global is used, the SCA run time performs a rollback if the component
method that started the global transaction throws an unchecked exception. An unchecked exception is a
subclass of java.lang.RuntimeException or java.lang.Error. A checked exception does not force a
rollback.

v When managedTransaction.local is used, the SCA run time performs a rollback if the component
method throws an unchecked exception. An unchecked exception is a subclass of
java.lang.RuntimeException or java.lang.Error. A checked exception does not force a rollback.

v When noManagedTransaction is used, the SCA run time performs a rollback of any RMLT that has not
been committed by the component method, regardless of whether the method throws an exception or
not.

When managedTransaction.global or managedTransaction.local is used, the business logic can force a
rollback by using the UOWSynchronization interface.
com.ibm.websphere.uow.UOWSynchronizationRegistry uowSyncRegistry =

com.ibm.wsspi.uow.UOWManagerFactory.getUOWManager();
uowSyncRegistry.setRollbackOnly();

826 Overview

Transaction intent default behavior

If transactional intents are not specified, the default behavior is vendor-specific. If a transactional intent in
not specified for the implementation, the default is managedTransaction.global. If a transactional intent is
not specified for a service or reference, the default is suspendsTransaction. It is recommended to specify
the required intents rather than to rely on default behavior so that the application is portable.

Using @Requires annotation to specify transaction intents

You can also specify transaction intents in the implementation class by using the @Requires annotation.
The general form of the annotation is:
@Requires("{http://www.osoa.org/xmlns/sca/1.0}intent")

For example, you can use the following in the implementation class:
@Requires("{http://www.osoa.org/xmlns/sca/1.0}managedTransaction.global")

You can specify required intents on various elements, including the composite, component,
implementation, service and reference elements. An element inherits the required intents of its parent
element except when they conflict. For example, if a composite element requires
managedTranaction.global and a component element requires managedTransaction.local, then the
component uses managedTransaction.local.

You cannot use the @Requires annotation for implementation.spring components.

Mapping of SCA intents on services to EJB or Spring transaction attributes

The following table contains information from Section 5.3 of the SCA Java EE Integration specification and
lists the mapping of SCA intents on services to EJB or Spring transaction attributes.

Table 84. Mapping of EJB transaction attributes to SCA transaction implementation policies. See Section 5.3 of the
SCA Java EE Integration specification.

EJB transaction attribute
SCA Transaction Policy required
intents on services

SCA Transaction Policy required intents on
implementations

NOT_SUPPORTED suspendsTransaction

REQUIRED propagatesTransaction managedTransaction.global

SUPPORTS propagatesTransaction managedTransaction.global

REQUIRES_NEW suspendsTransaction managedTransaction.global

MANDATORY propagatesTransaction managedTransaction.global

NEVER suspendsTransaction

For MANDATORY and NEVER attributes, policy mapping might not be accurate. These attributes express
responsibilities of the EJB container as well as the EJB implementer rather then express a requirement on
the service consumer.

Obtaining the transaction manager in Spring applications

The product does not support local JNDI lookups in Spring applications that are referenced from SCA
components. Thus, you cannot use <tx:jta-transaction-manager/> in the Spring application context file
to obtain the WebSphere transaction manager.

To obtain the WebSphere transaction manager, add the following definition explicitly to the Spring
application-context.xml file:

Chapter 24. Transactions 827

<bean id="WASTranMgr" class="com.ibm.wsspi.uow.UOWManagerFactory" factory-method="getUOWManager"/>
<bean id="transactionManager"

class="org.springframework.transaction.jta.WebSphereUowTransactionManager">
<property name="uowManager" ref="WASTranMgr"/>
<property name="autodetectUserTransaction" value="false"/>

</bean>

828 Overview

Chapter 25. Work area

This page provides a starting point for finding information about work areas, a WebSphere extension for
improving developer productivity.

Work areas provide a capability much like that of global variables. They enable efficient sharing of
information across a distributed application.

For example, you might want to add profile information as each customer enters your application. By
placing this information in a work area, it is available throughout your application, eliminating the need to
hand-code a solution or to read and write information to a database.

Overview of work area service
The work area service passes information explicitly as an argument or implicitly to remote methods.

One of the foundations of distributed computing is the ability to pass information, typically in the form of
arguments to remote methods, from one process to another. When application-level software is written
over middleware services, many of the services rely on information beyond that passed in the application's
remote calls. Such services often make use of the implicit propagation of private information in addition to
the arguments passed in remote requests; two typical users of such a feature are security and transaction
services. Security certificates or transaction contexts are passed without the knowledge or intervention of
the user or application developer. The implicit propagation of such information means that application
developers do not have to manually pass the information in method invocations, which makes
development less error-prone, and the services requiring the information do not have to expose it to
application developers. Information such as security credentials can remain secret.

The work area service gives application developers a similar facility. Applications can create a work area,
insert information into it, and make remote invocations. The work area is propagated with each remote
method invocation, eliminating the need to explicitly include an appropriate argument in the definition of
every method. The methods on the server side can use or ignore the information in the work area as
appropriate. If methods in a server receive a work area from a client and subsequently invoke other
remote methods, the work area is transparently propagated with the remote requests. When the creating
application is done with the work area, it terminates it.

There are two prime considerations in deciding whether to pass information explicitly as an argument or
implicitly by using a work area. These considerations are:
v Pervasiveness: Is the information used in a majority of the methods in an application?
v Size: Is it reasonable to send the information even when it is not used?

When information is sufficiently pervasive that it is easiest and most efficient to make it available
everywhere, application programmers can use the work area service to simplify programming and
maintenance of code. The argument does not need to go onto every argument list. It is much easier to put
the value into a work area and propagate it automatically. This is especially true for methods that simply
pass the value on but do nothing with it. Methods that make no use of the propagated information simply
ignore it.

Work areas can hold any kind of information, and they can hold an arbitrary number of individual pieces of
data, each stored as a property.

Use the work area service in the administrative console to configure the UserWorkArea partition. The
UserWorkArea partition is the partition that is available in JNDI naming under the name
"java:comp/websphere/UserWorkArea", as demonstrated in the Accessing the UserWorkArea partition
article. The UserWorkArea partition is the default work area partition created automatically, if it has not
been disabled, and is available through JNDI naming to all users. Any configuration option made to the

© Copyright IBM Corp. 2012 829

UserWorkArea partition under the work area service panel in the administrative console does not affect the
work area partition service or any partitions defined in it, and conversely. For example, if you select the
enable or disable option in the work area service panel, this does not affect the work area partition service
or any partition within it.

Work area property modes
The information in a work area consists of a set of properties; a property consists of a key-value-mode
triple. The key-value pair represents the information contained in the property; the key is a name by which
the associated value is retrieved. The mode determines whether you can modify or remove the property.

Property modes

There are four possible mode values for properties, as shown in the following code example:

Code example: The PropertyModeType definition
public final class PropertyModeType {

public static final PropertyModeType normal;
public static final PropertyModeType read_only;
public static final PropertyModeType fixed_normal;
public static final PropertyModeType fixed_readonly;

};

A property's mode determines three things:
v Whether the value associated with the key can be modified
v Whether the property can be deleted
v Whether the mode associated with the key-value pair can be modified

The two read-only modes forbid changes to the information in the property; the two fixed modes forbid
deletion of the property.

The work area service does not provide methods specifically for the purpose of modifying the value of a
key or the mode associated with a property. To change information in a property, applications simply
rewrite the information in the property; this has the same effect as updating the information in the property.
The mode of a property governs the changes that can be made. Modifying key-value pairs describes the
restrictions each mode places on modifying the value and deleting the property. Changing modes
describes the restrictions on changing the mode.

Changing modes

The mode associated with a property can be changed only according to the restrictions of the original
mode. The read-only and fixed read-only properties do not permit modification of the value or the mode.
The fixed normal and fixed read-only modes do not allow the property to be deleted. This set of
restrictions leads to the following permissible ways to change the mode of a property within the lifetime of
a work area:
v If the current mode is normal, it can be changed to any of the other three modes: fixed normal,

read-only, fixed read-only.
v If the current mode is fixed normal, it can be changed only to fixed read-only.
v If the current mode is read-only, it can be changed only by deleting the property and re-creating it with

the desired mode.
v If the current mode is fixed read-only, it cannot be changed.
v If the current mode is not normal, it cannot be changed to normal. If a property is set as fixed normal

and then reset as normal, the value is updated but the mode remains fixed normal. If a property is set
as fixed normal and then reset as either read-only or fixed read-only, the value is updated and the mode
is changed to fixed read-only.

830 Overview

Note: The key, value, and mode of any property can be effectively changed by terminating (completing)
the work area in which the property was created and creating a new work area. Applications can
then insert new properties into the work area. This is not precisely the same as changing the value
in the original work area, but some applications can use it as an equivalent mechanism.

Nested work areas
Applications can nest work areas to define and scope properties for specific tasks without having to make
the work areas available to all parts of the application.

When an application creates a work area, a work area context is associated with the creating thread. If the
application thread creates another work area, the new work area is nested within the existing work area
and becomes the current work area. All properties defined in the original, enclosing work area are visible
to the nested work area. The application can set additional properties within the nested work area that are
not part of the enclosing work area.

An application working with a nested work area does not actually see the nesting of enclosing work areas.
The current work area appears as a flat set of properties that includes those from enclosing work areas. In
the figure below, the enclosing work area holds several properties and the nested work area holds
additional properties. From the outermost work area, the properties set in the nested work area are not
visible. From the nested work area, the properties in both work areas are visible.

Nesting can also affect the apparent settings of the properties. Properties can be deleted from or directly
modified only within the work areas in which they were set, but nested work areas can also be used to
temporarily override information in the property without having to modify the property. Depending on the
modes associated with the properties in the enclosing work area, the modes and the values of keys in the
enclosing work area can be overridden within the nested work area.

The mode associated with a property when it is created determines whether nested work areas can
override the property. From the perspective of a nested work area, the property modes used in enclosing
work areas can be grouped as follows:
v Modes that permit a nested work area to override the mode or the value of a key locally. The modes

that permit overriding are:
– Normal
– Fixed normal

Figure 182. Defining new properties in nested work areas

Chapter 25. Work area 831

v Modes that do not permit a nested work area to override the mode or the value of a key locally. The
modes that do not permit overriding are:
– Read-only
– Fixed read-only

If an enclosing work area defines a property with one of the modes that can be overridden, a nested work
area can specify a new value for the key or a new mode for the property. The new value or mode
becomes the value or mode seen by subsequently nested work areas. Changes to the mode are governed
by the restrictions described in Changing modes. If an enclosing work area defines a property with one of
the modes that cannot be overridden, no nested work area can specify a new value for the key.

A nested work area can delete properties from enclosing work areas, but the changes persist only for the
duration of the nested work area. When the nested work area is completed, any properties that were
added in the nested area vanish and any properties that were deleted from the nested area are restored.

The following figure illustrates the overriding of properties from an enclosing work area. The nested work
area redefines two of the properties set in the enclosing work area. The other two cannot be overridden.
The nested work area also defines two new properties. From the outermost work area, the properties set
or redefined in the nested work are not visible. From the nested work area, the properties in both work
areas are visible, but the values seen for the redefined properties are those set in the nested work area.

Distributed work areas
Work area context propagates to a target object on a remote invocation on both bidirectional and
non-bidirectional defined work area partitions. The propagation of work area context operates differently
depending on whether a work area partition is defined as bidirectional. If the partition is defined as
bidirectional, the context propagates from a target object back to the originator.

Non-bidirectional work area partitions (UserWorkArea partition)

If a remote invocation is issued from a thread associated with a work area, a copy of the work area is
automatically propagated to the target object, which can use or ignore the information in the work area as
necessary. If the calling application has a nested work area associated with it, a copy of the nested work
area and all its ancestors is propagated to the target. The target application can locally modify the
information, as allowed by the property modes, by creating additional nested work areas; this information
is propagated to any remote objects it invokes. However, no changes made to a nested work area on a

Figure 183. Redefining existing properties in nested work areas

832 Overview

target object are propagated back to the calling object. The caller's work area is unaffected by changes
made in the remote method.

Bidirectional work area partitions

If a remote invocation is issued from a thread associated with a work area, a copy of the work area is
automatically propagated to the target object, which can use or ignore the information in the work area as
necessary. If the calling application has a nested work area associated with it, a copy of the nested work
area and all its ancestors is propagated to the target. The target application can locally modify the
information, as allowed by the property modes, this information is propagated to any remote objects it
invokes. In a partition that is not defined as bidirectional, a target application must begin a nested work
area before making changes to the imported work area. However, if a partition is defined as bidirectional, a
target application need not begin a nested work area before operating on an imported work area. By not
beginning a nested work area, any new context set into the work area, or any context changes made by
the target application, is not only propagated on future remote invocations but is also propagated back to
the originating application (that is, the one who initiated the remote invocation) thus allowing bidirectional
propagation of work area context. If the target application does not want new or changed context to
propagate back to the originating application, then the target application must begin a nested work area to
scope the context to its process. However, the new or changed context in the nested work area
propagates on any future remote invocation the target application may make.

WorkArea service: Special considerations
Developers who use work areas should consider the following issues that could potentially cause
problems: interoperability between the EJB and CORBA programming models; and the use of work areas
with Java's Abstract Windowing Toolkit.

EJB and CORBA interoperability

Although the work area service can be used across the EJB and CORBA programming models, many
composed data types cannot be successfully used across those boundaries. For example, if a
SimpleSampleCompany instance is passed from the WebSphere environment into a CORBA environment,
the CORBA application can retrieve the SimpleSampleCompany object encapsulated within a CORBA Any
object from the work area, but it cannot extract the value from it. Likewise, an IDL-defined struct defined
within a CORBA application and set into a work area is not readable by an application using the
UserWorkArea class.

best-practices: Applications can avoid this incompatibility by directly setting only primitive types, like
integers and strings, as values in work areas, or by implementing complex values with
structures designed to be compatible, like CORBA valuetypes.

Also, CORBA Anys that contains either the tk_null or tk_void typecode can be set into the work area by
using the CORBA interface. However, the work area specification cannot allow the Java 2 Platform,
Enterprise Edition (J2EE) implementation to return null on a lookup that retrieves these CORBA-set
properties without incorrectly implying that there is no value set for the corresponding key. For example,
when a user attempts to retrieve a nonexistent key from a work area, the work area service returns null to
indicate that the specified key does not contain a value, implying that the key itself is not in use or does
not exist. In the case where CORBA Anys contains either tk_null or tk_void, when a user requests the key
associated with one of these values, the work area service returns null as expected. In this case, the key
may actually exist and the work area service was simply returning the key's value of null. Therefore, when
working with CORBA Anys, a user must not make any implications when a null is returned from a work
area because it could mean that either there isn't a property associated with the given key, or that there is
a property associated with the given key and it contains a tk_null or tk_void, for example, a null in the
J2EE environment. If a J2EE application tries to retrieve CORBA-set properties that are non-serializable,
or contain CORBA nulls or void references, the com.ibm.websphere.workarea.IncompatibleValue exception
is raised.

Chapter 25. Work area 833

Using work areas with Java's Abstract Windowing Toolkit (AWT)

Work areas must be used cautiously in applications that use Java's Abstract Windowing Toolkit (AWT). The
AWT implementation is multithreaded, and work areas begun on one thread are not available on another.
For example, if a program begins a work area in response to an AWT event, such as pressing a button,
the work area might not be available to any other part of the application after the execution of the event
completes.

834 Overview

Chapter 26. Web applications

This page provides a starting point for finding information about web applications, which are comprised of
one or more related files that you can manage as a unit, including:

v HTML files

v Servlets can support dynamic web page content, provide database access, serve multiple clients at one
time, and filter data.

v Java ServerPages (JSP) files enable the separation of the HTML code from the business logic in web
pages.

IBM extensions to the JSP specification make it easy for HTML authors to add the power of Java
technology to web pages, without being experts in Java programming. Learn about web applications by
visiting the following topics:

Learn about web applications
Learn how you can use servlets, JavaServer Pages technology (JSP files), and Hyper Text Markup
Language (HTML) files to create more dynamic and portable web applications.

Web applications
A web application is comprised of one or more related servlets, JavaServer Pages technology (JSP files),
and Hyper Text Markup Language (HTML) files that you can manage as a unit.

The files in a web application are related in that they work together to perform a business logic function.
The web application is a concept supported by the Java Servlet Specification. Web applications are
typically packaged as .war files.

Web modules
A web module represents a web application. A web module is created by assembling servlets, JavaServer
Pages (JSP) files, and static content such as Hypertext Markup Language (HTML) pages into a single
deployable unit. Web modules are stored in web application archive (WAR) files, which are standard Java
archive files.

A web module contains:
v One or more servlets, JSP files, and HTML files.
v A deployment descriptor, stored in an Extensible Markup Language (XML) file.

The file, named web.xml, declares the contents of the module. It contains information about the structure
and external dependencies of web components in the module and describes how the components are
used at run time.

You can create web modules as stand-alone applications, or you can combine web modules with other
modules to create Java Platform, Enterprise Edition (Java EE) applications. You can also install and run a
web module in the web container of an application server.

Web container request attributes
A web container provides three custom HttpServletRequest attributes that can be used to provide a servlet
or a trust association interceptor (TAI) with the certificate information for a request.

These HttpServletRequest attributes provide information about a client, such as a web server plug-in, that
is directly connected to the web container:

v The com.ibm.websphere.ssl.direct_connection_peer_certificates attribute contains a X509Certificate[]
object of the certificate for a direct peer.

© IBM Corporation 2009 835

v The com.ibm.websphere.ssl.direct_connection_cipher_suite attribute contains a string object of a direct
cipher suite.

v The com.ibm.websphere.webcontainer.is_direct_connection attribute contains a boolean object that
indicates whether the connection was made through a Web server, or was made directly to WebSphere
Application Server.

These attributes are different from the usual JEE defined certificate properties which provide information
about the end user who is typically connected to the web server. These attributes are available to all
applications and can be used when appropriate.

web.xml file
The web.xml file provides configuration and deployment information for the web components that comprise
a web application.

The Java Servlet specification defines the web.xml deployment descriptor file in terms of an XML schema
document. For backwards compatibility, any web.xml file that is written to Servlet 2.2 or above that worked
in previous versions of WebSphere Application Server are supported by the web container.

If you use Rational Application Developer Version 6 to create your portlets, you must remove the following
reference to the std-portlet.tld from the web.xml file:
<taglib id="PortletTLD">
<taglib-uri>http://java.sun.com/portlet</taglib-uri>
<taglib-location>/WEB-INF/tld/std-portlet.tld</taglib-location>

</taglib>

Location

The web.xml file must reside in the WEB-INF directory under the context of the hierarchy of directories that
exist for a web application.

For example, if the application is client.war, then the web.xml file is placed in the install_root/client
war/WEB-INF directory.

Usage notes
v Is this file read-only?

No
v Is this file updated by a product component?

This file is updated by the assembly tool.
v If so, what triggers its update?

The assembly tool updates the web.xml file when you assemble web components into a web module, or
when you modify the properties of the web components or the web module.

v How and when are the contents of this file used?

WebSphere Application Server functions use information in this file during the configuration and
deployment phases of web application development.

Sample file entry

Note: The web.xml file does not represent the entire configuration that is available for the web application.
There are other servlets filters, and listeners that can be defined using programmatic configurations,
annotations, and web fragments.

Note: Marking the web application metadata complete will prevent annotations and web fragments from
being able to configure components.

<?xml version="1.0" encoding="UTF-8"?>
<web-app id="WebApp_9" version="3.0" xmlns="http://java.sun.com/xml/ns/javaee"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

836 Overview

xsi:schemaLocation="http://java.sun.com/xml/ns/javaee
http://java.sun.com/xml/ns/javaee/web-app_3_0.xsd">
<display-name>Servlet 3.0 application</display-name>
<filter>

<filter-name>ServletMappedDoFilter_Filter</filter-name>
<filter-class>tests.Filter.DoFilter_Filter</filter-class>
<init-param>
<param-name>attribute</param-name>
<param-value>tests.Filter.DoFilter_Filter.SERVLET_MAPPED</param-value>

</init-param>
</filter>
<filter-mapping>
<filter-name>ServletMappedDoFilter_Filter</filter-name>
<url-pattern>/DoFilterTest</url-pattern>
<dispatcher>REQUEST</dispatcher>
</filter-mapping>
<filter-mapping>
<filter-name>ServletMappedDoFilter_Filter</filter-name>
<url-pattern>/IncludedServlet</url-pattern>
<dispatcher>INCLUDE</dispatcher>
</filter-mapping>
<filter-mapping>
<filter-name>ServletMappedDoFilter_Filter</filter-name>
<url-pattern>ForwardedServlet</url-pattern>
<dispatcher>FORWARD</dispatcher>
</filter-mapping>
<listener>
<listener-class>tests.ContextListener</listener-class>
</listener>
<listener>
<listener-class>tests.ServletRequestListener.RequestListener</listener-class>
</listener>
<servlet>
<servlet-name>welcome</servlet-name>
<servlet-class>WelcomeServlet</servlet-class>
</servlet>
<servlet>
<servlet-name>ServletErrorPage</servlet-name>
<servlet-class>tests.Error.ServletErrorPage</servlet-class>
</servlet>
<servlet>
<servlet-name>IncludedServlet</servlet-name>
<servlet-class>tests.Filter.IncludedServlet</servlet-class>
</servlet>
<servlet>
<servlet-name>ForwardedServlet</servlet-name>
<servlet-class>tests.Filter.ForwardedServlet</servlet-class>
</servlet>
<servlet-mapping>
<servlet-name>welcome</servlet-name>
<url-pattern>/hello.welcome</url-pattern>
</servlet-mapping>
<servlet-mapping>
<servlet-name>ServletErrorPage</servlet-name>
<url-pattern>/ServletErrorPage</url-pattern>
</servlet-mapping>
<servlet-mapping>
<servlet-name>IncludedServlet</servlet-name>
<url-pattern>/IncludedServlet</url-pattern>
</servlet-mapping>
<servlet-mapping>
<servlet-name>ForwardedServlet</servlet-name>
<url-pattern>/ForwardedServlet</url-pattern>
</servlet-mapping>
<welcome-file-list>
<welcome-file>hello.welcome</welcome-file>
</welcome-file-list>
<error-page>
<exception-type>java.lang.ArrayIndexOutOfBoundsException</exception-type>
<location>/ServletErrorPage</location>
</error-page>
<error-page>

Chapter 26. Web applications 837

<error-code>404</error-code>
<location>/error404.html</location>
</error-page>

</web-app>

Note: For each <error-page> declaration, select either <exception-type> or <error-code>, but not both.
The <location> tag is required.

Default Application
WebSphere Application Server provides a default configuration that administrators can use to easily verify
that the Application Server is running. When the product is installed, it includes an application server called
server1 and an enterprise application called Default Application.

Default Application contains a web module called DefaultWebApplication and an enterprise bean Java
archive (JAR) file called Increment. The Default Application provides a number of servlets, described
below. These servlets are available in the product.

Snoop servlet

Use the Snoop servlet to retrieve information about a servlet request. This servlet returns the following
information:
v Servlet initialization parameters
v Servlet context initialization parameters
v URL invocation request parameters
v Preferred client locale
v Context path
v User principal
v Request headers and their values
v Request parameter names and their values
v HTTPS protocol information
v Servlet request attributes and their values
v HTTP session information
v Session attributes and their values

The Snoop servlet includes security configuration so that when WebSphere Security is enabled, clients
must supply a user ID and password to initiate the servlet.

The URL for the Snoop servlet is: http://localhost:9080/snoop/.

HelloHTML servlet

Use the HelloHTML pervasive servlet to exercise the PageList support provided by the WebSphere web
container. This servlet extends the PageListServlet, which provides APIs that allow servlets to call other
web resources by name or, when using the Client Type detection support, by type.

You can invoke the Hello servlet from an HTML browser, speech client, or most Wireless Application
Protocol (WAP) enabled browsers using the URL: http://localhost:9080/HelloHTML.jsp.

transition: The PageList Servlet custom extension is deprecated in WebSphere Application Server
Version 8.5 and will be removed in a future release. Re-architect your legacy applications to
use javax.servlet.filter classes instead of com.ibm.servlet classes. Starting from the Servlet 2.3
specification, javax.servlet.filter classes you can intercept requests and examine responses.
You can also use javax.servlet.filter classes to achieve chaining functionality, as well as
embellishing or truncating responses.

838 Overview

HitCount application

Use the HitCount demonstration application to demonstrate how to increment a counter using a variety of
methods, including:
v A servlet instance variable
v An HTTP session
v An enterprise bean

You can instruct the servlet to execute any of these methods within a transaction that you can commit or
roll back. If the transaction is committed, the counter is incremented. If the transaction is rolled back, the
counter is not incremented.

The enterprise bean method uses a container-managed persistence enterprise bean that persists the
counter value to an Apache Derby database. This enterprise bean is configured to use the Default
Datasource, which is set to the DefaultDB database.

When using the enterprise bean method, you can instruct the servlet to look up the enterprise bean, either
in the WebSphere global namespace, or in the namespace local to the application.

The URL for the HitCount application is: http://localhost:9080/HitCount.jsp.

JavaServer Pages
JavaServer Pages (JSP) are application components coded to the JavaServer Pages Specification.
JavaServer Pages enable the separation of the Hypertext Markup Language (HTML) code from the
business logic in web pages so that HTML programmers and Java programmers can more easily
collaborate in creating and maintaining pages.

JSP files support a division of roles:
HTML authors

Develop JSP files that access databases and reusable Java components, such as servlets and
beans.

Java programmers
Create the reusable Java components and provide the HTML authors with the component names
and attributes.

Database administrators
Provide the HTML authors with the name of the database access and table information.

WebSphere Application Server Version 8.5 supports the JSP 2.1 specification.

Servlets
Servlets are Java programs that use the Java Servlet Application Programming Interface (API). You must
package servlets in a web application archive (WAR) file or web module for deployment to the application
server. Servlets run on a Java-enabled web server and extend the capabilities of a web server, similar to
the way applets run on a browser and extend the capabilities of a browser.

Servlets can support dynamic web page content, provide database access, serve multiple clients at one
time, and filter data.

In the application server, discussions of servlets focus on HTTP servlets, which serve Web-based clients.

You can define servlets as welcome files. Non-servlet resources are served only when the
fileServingEnabled attribute is set to true in the IBM extensions XMI file, ibm-web-ext.xmi, located in each
Web module WEB-INF directory or by using an assembly tool to set the property in the source .war file.
Serving welcome files is connected to serving static content. Therefore the fileServingEnabled attribute is
set in the web module.

Chapter 26. Web applications 839

Note: For IBM extension and binding files, the .xmi or .xml file name extension is different depending on
whether you are using a pre-Java EE 5 application or module or a Java EE 5 or later application or
module. An IBM extension or binding file is named ibm-*-ext.xmi or ibm-*-bnd.xmi where * is the
type of extension or binding file such as app, application, ejb-jar, or web. The following conditions
apply:

v For an application or module that uses a Java EE version prior to version 5, the file extension
must be .xmi.

v For an application or module that uses Java EE 5 or later, the file extension must be .xml. If .xmi
files are included with the application or module, the product ignores the .xmi files.

However, a Java EE 5 or later module can exist within an application that includes pre-Java EE 5
files and uses the .xmi file name extension.

The ibm-webservices-ext.xmi, ibm-webservices-bnd.xmi, ibm-webservicesclient-bnd.xmi,
ibm-webservicesclient-ext.xmi, and ibm-portlet-ext.xmi files continue to use the .xmi file
extensions.

Context parameters

A servlet context defines the server view of the web application within which the servlet is running. The
context also supports a servlet to access its available resourcest. Using the servlet context, a servlet can
log events, obtain URL references to resources, and set and store attributes for other servlets in the
context to use. These properties declare the parameters for the context of a web application. The
properties convey setup information, such as the email address for the webmaster or the name of a
system with critical data.

Servlet mappings

A servlet mapping is a correspondence between a client request and a servlet. Web containers use URL
paths to map client requests to servlets, and follow the URL path-mapping rules as specified in the Java
Servlet specification. The container uses the Uniform Resource Identifier (URI) from the request, minus the
context path, as the path to map to a servlet. The container chooses the longest matching available
context path from the list of web applications that it hosts.

Web fragments
When developing web applications, if multiple web modules use the same components, consider including
the components in a Web fragment Java archive (JAR) file. The web fragment JAR file contains both the
configuration metadata and component class files. This practice enables easier copying from application to
application.

Web module deployment descriptor fragments (web fragments) provide the same configuration metadata
that a web.xml file provides, but they exist as a web-fragment.xml file that is packaged inside a JAR file in
the WEB-INF/lib directory.

Framework developers provide JAR files that are included in a web application which uses that specific
framework. If that framework uses servlets, filters, or other web module configuration, web fragments
provide the ability to simply drag the JAR file into an application without requiring changes to the existing
web module configuration. Previously, web application developers were required to augment their
configuration with additional metadata required by the framework. Another use case is the aforementioned
need to use the same components across web modules. Also, the use of mock objects or stubs might be
made easier with Web fragments.

Scanning for web fragments decreases performance for each JAR file that it checks for a
web-fragment.xml file. The higher the number of JAR files in a web application, the higher the performance
impact. If performance concerns demand, disable scanning for web fragments by setting
metadata-complete to true and include any necessary configuration in the web.xml file.

840 Overview

Note: Disabling the scanning of web fragments also disables annotation scanning. Therefore, if you need
either of these, both are scanned.

Important: Set the metadata-complete element in the web.xml file to true to disable fragment scanning.
Use the absolute-ordering tag in the web.xml file to force an order for scanning web fragments
or scan a subset of the web fragments. Use the relative-ordering tag in web-fragment.xml files
to specify order relative to another fragment.

Including fragments in a web application might inadvertently expose endpoints to security risks if you are
unaware of servlets, filters, or security constraints that are included in a web fragment. Verify that all
configured servlets, filters, and security constraints are functioning as expected.

Note: If there is a conflict in the web fragments, applications will not deploy. If there is conflict when
installing the application, view the SystemOut.log file to understand which items are conflicting.

Note: This topic references one or more of the application server log files. As a recommended alternative,
you can configure the server to use the High Performance Extensible Logging (HPEL) log and trace
infrastructure instead of using SystemOut.log , SystemErr.log, trace.log, and activity.log files on
distributed and IBM i systems. You can also use HPEL in conjunction with your native z/OS logging
facilities. If you are using HPEL, you can access all of your log and trace information using the
LogViewer command-line tool from your server profile bin directory. See the information about using
HPEL to troubleshoot applications for more information on using HPEL.

General rules for merging web fragments and annotations in the Servlet 3.0 specification:

v JAR files are only scanned for annotations or web fragment metadata if they are in the WEB-INF/lib
directory. Shared libraries are not scanned for annotations or web fragment metadata.

v Annotations that are in classes in the WEB-INF/classes directory are merged first and take precedence
over any metadata in the WEB-INF/lib directory.

v All JAR files in the WEB-INF/lib directory are considered Web fragments, regardless of whether they
contain a web-fragment.xml file. If a web-fragment.xml file does not exist in a JAR file, it is considered
to have an implicit, empty web-fragment.xml file.

v Annotations for each JAR file in the WEB-INF/lib directory are merged into the corresponding
web-fragment.xml file before checking for conflicting web fragments. Therefore, annotations conflicts in
different fragments prevents the application from deploying.

v If you define web fragment ordering, both the annotation and Web fragment metadata for one web
fragment is merged before another fragment that is later in the order.

v Because all JAR files in the WEB-INF/lib directory are considered fragments, the <others> element in
an <absolute-ordering> element applies to all JAR files that are not mentioned elsewhere in the
ordering.

Asynchronous servlet best practices
The asynchronous servlet feature enables you to process incoming requests and responses without being
bound to the original thread that initiated the request.

Consider the following best practices when using asynchronous servlets:

v Applications should not spawn a new thread for each asynchronous operation needed. At a minimum,
applications should use a thread pool or use the AsyncContext start(Runnable) method.

v On the client/browser side, you can use AJAX to enable certain portions of the page to be updated
asynchronously.

v The servlet container ensures that calls to complete or dispatch do not start until the web container
thread that initiated the startAsync command exists. However, the servlet container does not handle
multiple threads using the same request and response simultaneously. The application can handle its

Chapter 26. Web applications 841

own concurrency or synchronization issues in this case, but it is not recommended because it can be
prone to deadlock or race conditions. If the dispatch or complete method is called from a
customer-created thread or runnable started with start(Runnable), then dispatch or complete can start
immediately on a new thread and any further modifications to the request or response from the thread
that initiated these calls is dangerous. Two threads will have access to the request and response, which
can have indeterminate results if both threads are modifying those objects. Therefore, do not call any
methods on the request or response after a dispatch from the same thread that called the dispatch. Do
not call any methods on the request or response after a complete operation is called.

v Asynchronous listeners have an onTimeout method that starts when a time limit is reached for the
asynchronous operation. However, the asynchronous operation might still be running on one thread
while the onTimeout runs on a different thread. This scenario is the most common way that multiple
threads inadvertently use the same request and response simultaneously. A simple approach to this
scenario is to use a shared AtomicBoolean method from both the AsyncListener and the asynchronous
operation, as follows:
AtomicBoolean isOkayToRun = (AtomicBoolean) request.getAttribute("isOkayToRun");
if (isOkayToExecute.setAndGet(false)){

//do a dispatch
}

With this approach, only one thread can obtain access to write to the response.

v The web container attempts to cancel any runnables that are queued by calls to the start(Runnable)
method when the timeout is reached. However, runnables that have already started cannot be
interrupted because the interruption leads to leaking memory.

v The number of threads doing the timeout notifications is very small. Attempting any intensive operation
or any write operation from a timeout is not recommended because even a small write operation might
take awhile if the client has a slow connection. When you disable the asynchronous timeout, it is easier
to run into OutOfMemory errors or to exhaust the number of TCP channel connections. The default
timeout is 30 seconds.

v You can configure some asynchronous servlet options, such as timeout settings and the AsyncContext
start(Runnable) method, in the administrative console by clicking Servers > Server Types >
WebSphere application servers > server_name > Web Container Settings > Web container. Refer
to the Web container settings topic to learn about configuring the Web container.

Important: Asynchronous request dispatcher (ARD) and remote request dispatcher (RRD) are not
supported when using asynchronous servlets.

Tip: View the Web application counters topic to learn about metrics for asynchronous servlets.

Web container properties
Learn about system properties, custom properties, and application properties for the web container.

Web container system property

You can change the value of the javax.servlet.context.tempdir servlet context attribute to be relative to a
different directory by setting the com.ibm.websphere.servlet.temp.dir system property. This system property
affects all applications on a server-wide basis. For example, if you set
com.ibm.websphere.servlet.temp.dir to /foo, the application temp directory is /foo/node1/server1/
fragmentTest/fragmentTest24.war. If you want to change the value at an application level, use the
scratchdir JavaServer Pages (JSP) attribute. View the JSP engine configuration parameters topic for more
information about the scratchdir attribute.

Web container custom property

Custom properties are specific to a server. Set a web container custom property in the administrative
console. See the Web container custom properties topic for instructions on setting custom properties for

842 Overview

web container and to see a list of available web container custom properties.

Web container application property

Application properties are specific to an application. You define application properties in the application
deployment descriptor. Enable a Java Enterprise Edition (Java EE) application to configure asynchronous
servlet by using a servlet or filter initial parameter. An example of a web.xml definition of a servlet or filter
follows:
<init-param>
<param-name>com.ibm.ws.webcontainer.async-supported</param-name>
<param-value>true</param-value>
</init-param>

Web container behavior notes:

Learn about behavior notes for the web container.

Access multipart/form-data

Define a servlet to process multipart/form data by including a @MultipartConfig annotation in the servlet,
or by specifying a multipart-config element for the servlet in the application web.xml file. An annotation
might look like the following example:
@MultipartConfig(fileSizeThreshold=1000000, location="temp", maxFileSize=5000000, maxRequestSize=5000000)

If a servlet is not defined to process multipart/form data, or the include file is not within the limits that are
set by the configuration data, the following behavior is observed in response to a request containing
multipart/form data:
ServletRequest.getParameter() will return null for a request to obtain a form field.
HttpServletRequest.getPart() or HttpServletRequest.getParts() will throw an
appropriate exception. The exception message is an indication of the cause of the exception.

Java EE application resource declarations
You can configure your Java Enterprise Edition (Java EE) applications to declare dependencies on
external resources and configuration parameters. These resources might be injected into the application
code, or might be accessed by the application through the Java Naming and Directory Interface (JNDI).

Resource references allow an application to define and use logical names that you can bind to resources
when the application is deployed.

The following resource types can be declared by Java EE applications: simple environment entries,
Enterprise JavaBeans (EJB) references, web service references, resource manager connection factory
references, resource environment references, message destination references, persistence unit references,
and persistence context references.

Simple Environment Entries

You can define configuration parameters in your Java EE applications to customize business logic using
simple environment entries. As described in the Java EE 6 application, simple environment entry values
might be one of the following Java types: String, Character, Bye, Short, Integer, Long, Boolean, Double,
Float, Class, and any subclass of Enum.

Note: The Java type, Class, and any subclass of Enum are new in Java EE 6.

The application provider must declare all of the simple environment entries accessed from the application
code. The simple environment entries are declared using either annotations (javax.annotation.Resource) in
the application code, or using env-entry elements in the XML deployment descriptor.

Chapter 26. Web applications 843

In the following example from an application, annotations declare environment entries:
// Retry interval in milliseconds
@Resource long retryInterval = 3000;

In the previous example, the field default value is 3000. You can use an env-entry-value, which you define
in the XML deployment descriptor to change this value.

In the following example, an application declares a simple environment entry of type Class, and defines
the Class to be injected using an env-entry-value element in the XML deployment descriptor.
@Resource(name=TraceFormatter) Class<?> traceFormatter;

<env-entry>
<env-entry-name>TraceFormatter</env-entry-name>
<env-entry-value>com.sample.trace.StdOutTraceFormatter</env-entry-value>

</env-entry>

In the previous example, the field value is set to the com.sample.trace.StdOutTraceFormatter Class object.

In the following example, an application which declares a simple environment entry called validationMode
as a subclass of Enum in the com.sample.Order class, and configures the Enum value of CALLBACK to
inject using elements in the XML deployment descriptor.
<env-entry>

<env-entry-name>JPAValidation</env-entry-name>
<env-entry-type>javax.persistence.ValidationMode</env-entry-type>
<env-entry-value>CALLBACK</env-entry-value>
<injection-target>

<injection-target-class>com.sample.Order</injection-target-class>
<injection-target-name>validationMode</injection-target-name>

</injection-target>
</env-entry>

In the previous example, the validationMode field is set to the CALLBACK Enum value. Use the same
approach when you use annotations and XML code to declare simple environment entries; for example:
@Resource (name=JPAValidation)
javax.persistence.ValidationMode validationMode;

<env-entry>
<env-entry-name>JPAValidation</env-entry-name>
<env-entry-value>CALLBACK</env-entry-value>

</env-entry>

Note: The simple environment entry support of the Java type, Class, and any subclass of Enum is new
for Java EE 6. Previously, you might have developed your applications to declare these types as
application resources using the resource-env-ref element in the XML deployment descriptor or using
the javax.annotation.Resource annotation. For applications that were using these Java types with
the javax.annotation.Resource annotation, the com.ibm.websphere.ejbcontainer.EE5Compatibility
system property must be enabled. Without the EE5Compatibility system property, the binding-name
element of the resource-env-ref element in the ibm-ejb-jar-bnd.xml file is ignored, since the data
type is now treated as a simple environment entry and not a resource environment reference.

Note: The <lookup-name> deployment descriptor element and the lookup annotation attribute are new in
Java EE 6. They specify the JNDI name of a referenced EJB or resource, relative to the
java:comp/env naming context. If either is used in a simple environment entry, you cannot use an
<env-entry-value> in the same <env-entry>.

844 Overview

Enterprise JavaBeans (EJB) References

As described in the Java EE 6 specification, you can develop your Java EE applications to declare
references to enterprise bean homes or enterprise bean instances using logical names called EJB
references.

When an application declares a reference to an EJB, the EJB that you reference will be resolved with one
of the following techniques.

v Specify an EJB binding in the ibm-ejb-jar-bnd.xml file or ibm-web-bnd.xml file

v Specify an <ejb-link> element in ejb-jar.xml file or web.xml file

v Specify a beanName attribute on the javax.ejb.EJB annotation

v Specify a <lookup-name> element in ejb-jar.xml file or web.xml file

v Specify a lookup attribute on the javax.ejb.EJB annotation

v Locate an enterprise bean that implements the interface declared as the type of the EJB reference
(referred to as AutoLink).

The EJB container attempts to resolve the EJB reference using the previous techniques in the order they
are listed.

Note: If <lookup-name> or lookup is used in an EJB reference, you cannot use <ejb-link> or beanName in
the same EJB reference.

Note: All of the following EJB reference examples assume the SampleCart bean has only a single
interface. If the SampleCart bean had multiple interfaces, then add the following suffix to the end of
the binding, <ejb-link> element, or beanName attribute : !com.sample.Cart.

In the following example, an application declares an EJB reference using an annotation, and provides a
binding for resolution.
@EJB(name="Cart")
Cart shoppingCart;

<ejb-ref name="Cart" binding-name="java:app/SampleEJB/SampleCart"/>

In the following example, an application declares an EJB reference using an annotation, and provides an
ejb-link element for resolution.
@EJB(name="Cart")
Cart shoppingCart;

<ejb-local-ref>
<ejb-ref-name>Cart</ejb-ref-name>
<ejb-link>SampleEJB/SampleCart</ejb-link>

</ejb-local-ref>

In the following example, an application declares an EJB reference using an annotation, and provides a
lookup attribute for resolution, from the source bean com.sample.SourceBean.
@EJB(name="Cart" lookup="java:app/SampleEJB/SampleCart")
Cart shoppingCart;

The application could alternatively declare the EJB reference using the <lookup-name> element in the
XML deployment descriptor, as in the following example.
<ejb-local-ref>

<ejb-ref-name>Cart</ejb-ref-name>
<lookup-name>java:app/SampleEJB/SampleCart</lookup-name>
<injection-target>

Chapter 26. Web applications 845

<injection-target-class>com.sample.SourceBean</injection-target-class>
<injection-target-name>ShoppingCart</injection-target-name>
</injection-target>

</ejb-local-ref>

In the following example, an application declares an EJB reference using an annotation, and provides a
beanName attribute for resolution.
@EJB(name="Cart" beanName="SampleEJB/SampleCart")
Cart shoppingCart;

Resource Environment References

As described in the Java EE 6 specification, you can develop applications to declare references to
administered objects that are associated with a resource, such as a Connecter CCI InteractionSpec
instance, or other object types managed by the EJB container, including javax.transaction.UserTransaction,
javax.ejb.EJBContext, javax.ejb.TimerServcie, org.omg.CORBA.ORB, javax.validation.Validator,
javax.validation.ValidatorFactory, or javax.enterprise.inject.spi.BeanManager.

When an application declares a reference to an administered object, you must provide a binding to the
administered object when the application is deployed. You can provide the binding using the administrative
console when you deploy the application, or you can add the binding to the WebSphere binding XML file,
ibm-ejb-jar-bnd.xml or ibm-web-bnd.xml.

In the following example, an application declares a resource environment reference, and provides a
binding to the resource:
@Resource(name="jms/ResponseQueue")
Queue responseQueue;

<session name="StatelessSampleBean">
<resource-env-ref name="jms/ResponseQueue" binding-name="Jetstream/jms/ResponseQueue"/>

</session>

The application could alternatively declare the resource environment reference using the lookup attribute,
and not require a binding, as in the following example:
@Resource(name="jms/ResponseQueue", lookup="Jetstream/jms/ResponseQueue")
Queue responseQueue;

<resource-env-ref>
<resource-env-ref-name>jms/ResponseBean</resource-env-ref-name>
<resource-env-ref-type>javax.jms.Queue</resource-env-ref-type>

</resource-env-ref>

When an application declares a reference to a container managed object type, a binding is not used. The
container provides the correct instance of the referenced object. In the following example, an application
declares a resource environment reference to a container-managed object:
@Resource
javax.validation.Validator validator;

Resource References to Resource References

A new lookup field on the @Resource annotation is added with Java EE 6. You can now declare a
resource reference to a resource reference as shown in the following example:
@Resource(name="java:global/env/jdbc/ds1ref",

lookup="java:global/env/jdbc/ds1",
authenticationType=Resource.AuthenticationType.APPLICATION,
shareable=false)

DataSource ds1ref;

846 Overview

@Resource(name="java:global/env/jdbc/ds1refref",
lookup="java:global/env/jdbc/ds1ref",
authenticationType=Resource.AuthenticationType.APPLICATION,
shareable=true)

DataSource ds1refref;

The lookup uses the innermost nesting of references, which in this case is "java:global/env/jdbc/ds1ref".

Web applications: Resources for learning
Use the following links to find relevant supplemental information about web applications. The information
resides on IBM and non-IBM Internet sites, whose sponsors control the technical accuracy of the
information.

These links are provided for convenience. Often, the information is not specific to the IBM WebSphere
Application Server product, but is useful all or in part for understanding the product. When possible, links
are provided to technical papers and Redbooks that supplement the broad coverage of the release
documentation with in-depth examinations of particular product areas.

Programming model and decisions
v J2EE BluePrints for web applications
v Redbook on the design and implementation of Servlets, JSP files, and enterprise beans

Programming instructions and examples
v WebSphere Studio Application Developer Programming Guide
v Sun's JavaTM Tutorial on Servlets and JavaServer Pages
v Web delivered samples in the Samples Gallery

Programming specifications
v Java 2 Software Development Kit (SDK)
v Servlet 2.4 Specification
v JavaServer Pages 2.0 Specification
v Differences between JavaScript and ECMAScript
v ISO 8859 Specifications
v Java 2 Platform, Standard Edition (J2SE)

Asynchronous request dispatcher

Asynchronous request dispatcher
Asynchronous request dispatcher (ARD) can improve Servlet response time when slow operations can be
logically separated and performed concurrently with other operations required to complete the response.
ARD enables Java™ servlet programmers to perform standard javax.servlet.RequestDispatcher include
calls for the same request concurrently on separate threads. These javax.servlet.RequestDispatcher
include calls are completed sequentially on the same thread. ARD is also useful in low CPU, long wait
situations like waiting for a database connection.

If there are large CPU or memory requirements, ARD alone does not alleviate those issues. However, in
combination with the remote request dispatcher, operations driven by one servlet request that can be
performed concurrently on multiple application servers, alleviating resource demand on a single server and
decreasing the risk of a system down situation.

Servlets, portlets, and JavaServer Pages (JSP) files can all utilize ARD. This functionality is an extension
beyond the requirements of the Java Servlet Specification , which only describes synchronous request
dispatching. ARD requires a new channel, called the ARD channel, between the HTTP and web container
channels to form a new channel chain. These new chains correspond only to the existing default host
chains and reuse the same ports.

Chapter 26. Web applications 847

http://java.sun.com/blueprints/guidelines/designing_enterprise_applications/web_tier/index.html
http://publib-b.boulder.ibm.com/Redbooks.nsf/RedbookAbstracts/sg245754.html?OpenDocument
http://www.redbooks.ibm.com/abstracts/SG246585.html?Open
http://java.sun.com/j2ee/1.4/docs/tutorial/doc/index.html
http://www7b.software.ibm.com/wsdd/library/samples/AppServer.html
http://java.sun.com/j2se/1.3/
http://www.jcp.org/en/jsr/detail?id=154
http://jcp.org/aboutJava/communityprocess/final/jsr152/index.html
http://www.webstandards.org/learn/resources/javascript/index.html
http://www.iso.org/iso/en/CatalogueListPage.CatalogueList
http://java.sun.com/j2se/index.jsp

Each include can write output to the client and because ordering is important for valid results, there must
be some aggregation of the data written. Typically, a servlet writes data to a buffer and once full, it is
flushed to client. For server-side aggregation, the ARD channel cannot flush until any includes that had
placeholders written to the current buffer are finished.

Client-side aggregation of the asynchronous include is also supported. Web 2.0 programmers often use
Asynchronous JavaScript and XML (Ajax) in the Web browser of the client to dynamically retrieve and
aggregate remote resources. Unfortunately, this puts the burden on the programmer to aggregate the
contents and learn new technologies. Client-side aggregation automatically adds the necessary JavaScript
to dynamically update the page. For non-JavaScript clients, you can switch ARD to server-side
aggregation, which gives equivalent results. You can deny non-JavaScript clients when using client-side
aggregation.

ARD uses the web container APIs to plug in unique request dispatching logic. It interacts with WCCM to
read in configuration information for enablement status per enterprise application as well as a global
appserver setting. You can use the administrative console and wsAdmin to enable or disable ARD.
Servlets, portlets, and JSP files can all utilize ARD.

Asynchronous request dispatcher application design considerations:

Asynchronous request dispatcher (ARD) is not a one-size-fits-all solution to servlet programming. You must
evaluate the needs of your application and the caveats of using ARD. Switching all includes to start
asynchronously is not the solution for every scenario, but when used wisely, ARD can increase response
time. This article contains important details about the ARD implementation and issues to consider when
you design an application that leverages ARD.

Asynchronous request dispatcher client-side implementation

v JavaScript is dynamically written to the response output.

v This JavaScript results in Ajax requests back to a server-side results provider.

v Because of the Asynchronous Input/Output (AIO) features of the channel, the Ajax request does not tie
up a thread and instead is notified for completion through an include callback.

v The client only makes one request at a time for the asynchronous includes because of browser
limitations in the number of connections.

v Original connection has to be valid for the lifetime of the includes. It cannot be reused for the Ajax
requests.

v Comment nodes, such as following,
<!--uniquePlaceholderID--><!--1-->

are placed in the browser object model since comment nodes have no effect on the page layout.

v Whenever a complete fragment exists, a response can be sent to the client and the comment node with
the same ID is replaced. Requests are made until all the fragments are retrieved.

v Verify applications on all supported browsers when using client-side aggregation. Object oriented
JavaScript principles are used so that applications only need avoid using the method name
getDynamicDataIBMARD. Any previously specified window.onload is started before the ARD onload
method.

Asynchronous request dispatcher channel results service

Requests for include data from the asynchronous JavaScript code are sent to known Uniform Resource
Identifiers, URIs also known as URLs, that the ARD channel can intercept to prevent traveling through web
container request handling. These URIs are unique for the each server restart.

848 Overview

For example, /IBMARD01234567/asyncInclude.js is the URI for the JavaScript that forces the retrieval of
the results, and /IBMARD01234567/IBMARDQueryStringEntries?=12000 is used to retrieve the results for the
entry with ID 12000.

To prevent unauthorized results access, unique IDs are generated for the service URI and for the ARD
entries. A common ID generator is shared among the session and ARD, so uniqueness is configurable
through session configuration. Session IDs are considered secure, but they are not as secure as using a
Lightweight Third-Party Authentication (LTPA) token.

Custom client-side aggregation

If you want to perform your own client-side aggregation, the isUseDefaultJavascript method must return as
false. The isUseDefaultJavascript method is part of the AsyncRequestDispatcherConfig method, which is
set on the AsyncRequestDispatcher or for the AsyncRequestDispatcherConfigImpl.getRef method. The
AsyncRequestDispatcherConfigImpl.getRef method is the global configuration object. You might want to
perform your own client-side aggregation if the back button functionality is problematic. You must remove
the results from the generic results service to prevent memory leaks, so that multiple requests with the
same response results through an XMLHttpRequest fail. To facilitate proper location of position,
placeholders are still written in the code as
<!--uniquePlaceholderID--><!--x-->

where x is the order of the includes. The endpoint to retrieve results are retrieved from the request
attribute com.ibm.websphere.webcontainer.ard.endpointURI.

When making a request to the endpoint, ARD sends as many response fragments as possible when the
request is made. Therefore, the client needs to re-request if all fragments are not initially returned. Trying
to display the results directly in a browser without using an XMLHttpRequest can result in errors related to
non well-formed XML. The response data is returned in the following format with a content type of text/xml:
<div id="2">
Servlet 3--dispatcher3 requesting Servlet3 to sleep for 0 seconds at: 1187967704265

 Servlet 3--Okay, all done! This should print pop up: third at: 1187967704281 </div>

For additional information about the AsyncRequestDispatcherConfig and the AsyncRequestDispatcher
interfaces, review the com.ibm.websphere.webcontainer.async package in the application programming
interfaces (API) documentation. The generated API documentation is available in the information center
table of contents from the path Reference > APIs - Application Programming Interfaces.

Server-side aggregation

Like client-side aggregation, server-side aggregation uses the ARD channel as a results service. The ARD
channel knows which asynchronous includes have occurred for certain set of buffers. Those buffers can
then be searched for an include placeholder. Because of the issues of JSP buffering, the placeholder for
the include might not be in the searched buffers. If this occurs, the next set of buffers must also look for
any include placeholders missed in the previous set. ARD attempts to iteratively aggregate as includes
return so that response content can be sent to the client as soon as possible.

Asynchronous beans

An AsynchBeans work manager is used to start the includes. If the number of currently requested includes
is greater than the work manager maximum thread pool size and this size is not growable, it starts the
work on the current thread and skips the placeholder write. Utilizing AsynchBeans suppports propagation
of the J2EE context of the original thread including work area, internationalization, application profile, z/OS
operation system work load management, security, transaction, and connection context.

Chapter 26. Web applications 849

Timer

A single timer is used for ARD and timer tasks are created for all the timeout types of ARD requests. Tasks
registered with the timer are not guaranteed to run at the exact time specified because the timer runs on a
single thread, therefore one timeout might have to wait for the other timeout actions to complete. The timer
is used as a last resort.

Remote request dispatcher

Optionally, ARD can be used in concert with the remote request dispatcher. The remote request dispatcher
was introduced in WebSphere Application Server, Network Deployment 6.1. The remote request dispatcher
runs the include on a different application server in a core group by serializing the request context into a
SOAP message and using web services to call the remote server. This is useful when the expense of
creating and sending a SOAP message through web services is outweighed by issuing the request locally.
For more information, see the IBM WebSphere Developer Technical Journal: Include remote files in your
web application seamlessly with the new Remote Request Dispatcher developerWorks article.

Exceptions

In the case of an exception in an included servlet, the web container goes through the error page
definitions mapped to exception types. So an error page defined in the deployment descriptor shows up as
a portion of the aggregated page. Insert logic into the error page itself if behavior is different for an
include. Because the include runs asynchronously, there is no guarantee that the top level servlet is still in
service, therefore the exception is not propagated back from an asynchronous include like a normal
include. Other includes finish so that partial pages can be displayed.

If the ARD work manager runs out of worker threads, the include is processed like a synchronous include.
This is the default setting, but the work manager can also grow such that it does not result in this
condition. This change in processing is invisible to the user during processing but is noted once in the
system logs as a warning message and the rest of the time in the trace logs when enabled. Other states
that can trigger the include to occur synchronously are reaching the maximum percentage of expired
requests over a time interval and reaching the maximum size of the results store.

There are cases where exceptions happen outside of the scope of normal error page handling. For
example, work can be rejected by the work manager. A timer can expire waiting for an include response to
return. The ARD channel, acting as a generic service to retrieve the results, might receive an ID that is not
valid. In these cases, there is no path to the error page handling because the context is missing, such as
ServletRequest, ServletResponse, and ServletContext, for the request to work. To mitigate these issues,
you can use the AsyncRequestDispatcherConfig interface to provide custom error messages. Defaults are
provided and internationalized as needed.

Exceptions can also occur outside the scope of the request the custom configuration was set on, such as
on the subsequent client-side XMLHttpRequests. In this case, the global configuration must be altered.
This can be retrieved through com.ibm.wsspi.ard.AsyncRequestDispatcherConfigImpl.getRef().

Include start
The work manager provides a timeout for how long to wait for an include to start. Since this
typically happens immediately, there is not a programmatic way to enable this. However, this is
configurable in the work manager settings. By default, you will not encounter this because of the
maximum thread check before scheduling the work. Work can be retried if setRetriable(true) is
called on the in use AsyncRequestDispatcherConfig.

Include finish
The initiated timeout starts after the work is accepted. It can be configured through the console or
programmatically through the AsyncRequestDispatcherConfig.setExecutionTimeoutOverride
method; The default value is 60000 ms, or one minute. In place of the include results, the
message from the AsyncRequestDispatcherConfig.setExecutionTimeoutMessage is sent. If this

850 Overview

intiated timeout is reached, but the actual include results are ready when the data can be flushed,
preference is given to the actual results. Also, this does not apply to insertFragmentBlocking calls
which always wait until the include is completed.

Expiration of results
Since the client-side has to hold the results in a service to send for the Ajax request, we want a
way to expire the results if the client goes down and never retrieves the entry. The default of a
minute is sufficient for a typical request because the Ajax request would come in immediately after
sending the response. The timer can be configured programmatically via the
setExpirationTimeoutOverride method the of AsyncRequestDispatcherConfig. The message from
the getOutputRetrievalFailureMessage method of AsyncRequestDispatcherConfig is displayed
when someone tries to access an entry that has expired and been removed from cache. This
message is the same message that is sent to someone requesting a result with an ID that never
existed.

Includes versus fragments

Consider which operations can be done asynchronously and when they can start. Ideally, all the includes
are completed when the getFragment calls are made at the beginning of the request so that the includes
can have more time to complete, and upon inserting the fragments, there would be less extra buffering
and aggregating if they have completed. However, simply calling an asynchronous include is easier
because it follows the same pattern as a normal request dispatcher include.

Web container

ServletContext
When doing cross-context includes, the context that is a target of the include must also have ARD
enabled because the web application must have been initialized for ARD for its servlet context to
have valid methods to retrieve an AsyncRequestDispatcher. The aggregation type is determined by
the original context’s configuration because you cannot mix aggregation types.

ServletRequest
You must clone the request for each include. Otherwise, conflicts between threads might occur.
Because applications can wrap the default request objects, your wrappers must implement the
com.ibm.wsspi.webcontainer.servlet.IServletRequest interface, which has one method, the public
Object clone method, which creates the CloneNotSupportedException.

Unwrapping occurs until a request wrapper that implements this interface is found.
Non-implementing wrappers are lost; however, a servlet filter configured for the include can rewrap
the response.

Changes made to the ServletRequest are not propagated back to the top level servlet unless
transferState on the AsyncRequestDispatcherConfig is enabled and insertFragmentBlocking is
called.

ServletResponse
A wrapped response extending com.ibm.websphere.servlet.response.StoredResponse is created
by ARD and sent to the includes because the response output must be retrievable beyond the
lifecycle of the original response.

Internal headers set in asynchronous includes are not supported due to lifecycle restrictions unless
transferState on the AsyncRequestDispatcher config is enabled and insertFragmentBlocking is
called. Normal headers are not supported in a synchronous include as specified by the servlet
specification.

Include filters can rewrap the new response and must flush upon completion.

ServletInputStream
An application reading parameters using getParameter is not problematic.Parsing of parameters is
forced before the first asynchronous include to prevent concurrent access to the input stream.

Chapter 26. Web applications 851

HttpSession
Initial getSession calls that result in a Set-Cookie header must be called from the top level servlet
because it is unpredictable when the includes are started and if the headers have already been
flushed. The exception is when transferState on the AsyncRequestDispatcherConfig is enabled
and an insertFragmentBlocking is called. This normally creates an exception when you add the
header.

Filters If there is a filter for an include, the filter is issued on the asynchronous thread.

Nested asynchronous includes
Nested asynchronous includes are not supported because they complicate aggregation. However,
an asynchronous include can have nested synchronous includes. Any attempt to perform a nested
asynchronous include reverts back to a synchronous include.

Transactions

Every asynchronous bean method is called using its own transaction, much like container-managed
transactions in typical enterprise beans. The runtime starts a local transaction before invoking the method.
The asynchronous bean method can start its own global transaction if this transaction is possible for the
calling J2EE component.

If the asynchronous bean method creates an exception, any local transactions are rolled back. If the
method returns normally, any incomplete local transactions are completed according to the unresolved
action policy configured for the bean. If the asynchronous bean method starts its own global transaction
and does not commit this global transaction, the transaction is rolled back when the method returns.

Connection management

An asynchronous bean method can use the connections that its creating servlet obtained using java:comp
resource references. However, the bean method must access those connections using a get, use or close
pattern. There is no connection caching between method calls on an asynchronous bean. The connection
factories or data sources can be cached, but the connections must be retrieved on every method call,
used, and then closed. While the asynchronous bean method can look up connection factories using a
global Java Naming and Directory Interface (JNDI) name, this is not recommended for the following
reasons:

v The JNDI name is hard coded in the application, for example, as a property or string literal.

v The connection factories are not shared because there is no way to specify a sharing scope.

Evaluate high load scenarios because asynchronous includes might increase the number of threads
waiting on the connection.

Performance

Because includes are completed asynchronously, the total performance data for a request must take into
consideration the performance of the asynchronous includes. The total time of the request could previously
be understood by the time for the top level servlet to complete, but now that servlet is exiting before the
includes are completed. The top level servlet still accounts for much of the additional setup time required
for each include.

Therefore, a new ARD performance metric was added to the Performance Monitoring Infrastructure to
measure the time for a complete request through the ARD channel. The granularity of these metrics is at
the request URI level.

Since ARD is an optional feature that has to be enabled, no performance decline is seen when not utilizing
ARD. However, non-ARD applications that reside on an ARD-enabled application server would suffer from
the extra layer of the ARDChannel. The channel layer does not know to which application it is going so it
is either on or off for all applications in a channel chain. These are defined per virtual host.

852 Overview

Security

Security is not invoked on synchronous include dispatches according to the servlet specification. However,
security context is passed along through AsynchBeans to support programmatic usage of the isUserInRole
and getUserPrincipal methods on the ServletRequest. This security context can also be propagated across
to a remote request dispatch utilizing Web Services Security.

Sessions
A session is a series of requests to a servlet, originating from the same user at the same browser.

Sessions allow applications running in a web container to keep track of individual users.

For example, a servlet might use sessions to provide "shopping carts" to online shoppers. Suppose the
servlet is designed to record the items each shopper indicates he or she wants to purchase from the
website. It is important that the servlet be able to associate incoming requests with particular shoppers.
Otherwise, the servlet might mistakenly add Shopper_1's choices to the cart of Shopper_2.

A servlet distinguishes users by their unique session IDs. The session ID arrives with each request. If the
user's browser is cookie-enabled, the session ID is stored as a cookie. As an alternative, the session ID
can be conveyed to the servlet by URL rewriting, in which the session ID is appended to the URL of the
servlet or JavaServer Pages (JSP) file from which the user is making requests. For requests over HTTPS
or Secure Sockets Layer (SSL), another alternative is to use SSL information to identify the session.
Session tracking using the SSL ID is deprecated in WebSphere Application Server version 7.0. You can
configure session tracking to use cookies or modify the application to use URL rewriting.

Session management support
WebSphere Application Server provides facilities, grouped under the heading Session Management, that
support the javax.servlet.http.HttpSession interface described in the Servlet API specification.

In accordance with the Servlet 2.3 API specification, the session management facility supports session
scoping by web modules. Only servlets in the same web module can access the data associated with a
particular session. Multiple requests from the same browser, each specifying a unique web application,
result in multiple sessions with a shared session ID. You can invalidate any of the sessions that share a
session ID without affecting the other sessions.

You can configure a session timeout for each web application. A web application timeout value of 0 (the
default value) means that the invalidation timeout value from the session management facility is used.

When an HTTP client interacts with a servlet, the state information associated with a series of client
requests is represented as an HTTP session and identified by a session ID. Session management is
responsible for managing HTTP sessions, providing storage for session data, allocating session IDs, and
tracking the session ID associated with each client request through the use of cookies or URL rewriting
techniques. Session management can store session-related information in several ways:
v In application server memory (the default). This information cannot be shared with other application

servers.
v In a database. This storage option is known as database persistent sessions.
v In another WebSphere Application Server instance. This storage option is known as

memory-to-memory sessions.

The last two options are referred to as distributed sessions. Distributed sessions are essential for using
HTTP sessions for the failover facility. When an application server receives a request associated with a
session ID that it currently does not have in memory, it can obtain the required session state by accessing
the external store (database or memory-to-memory). If distributed session support is not enabled, an
application server cannot access session information for HTTP requests that are sent to servers other than

Chapter 26. Web applications 853

the one where the session was originally created. Session management implements caching optimizations
to minimize the overhead of accessing the external store, especially when consecutive requests are routed
to the same application server.

Storing session states in an external store also provides a degree of fault tolerance. If an application
server goes offline, the state of its current sessions is still available in the external store. This availability
enables other application servers to continue processing subsequent client requests associated with that
session.

Saving session states to an external location does not completely guarantee their preservation in case of a
server failure. For example, if a server fails while it is modifying the state of a session, some information is
lost and subsequent processing using that session can be affected. However, this situation represents a
very small period of time when there is a risk of losing session information.

The drawback to saving session states in an external store is that accessing the session state in an
external location can use valuable system resources. session management can improve system
performance by caching the session data at the server level. Multiple consecutive requests that are
directed to the same server can find the required state data in the cache, reducing the number of times
that the actual session state is accessed in external store and consequently reducing the overhead
associated with external location access.

Note: Session management configuration is a post-deployment configuration and is tied to existing
targets. If you change the target mapping after you configure session management, you must return
to the session management configuration page in the administrative console or use wsadmin
scripting and apply the changes. Apply the changes to module targets if session management is
configured for a web module. Apply the changes to all targets if session management is configured
for an application level.

Distributed sessions
In a distributed environment, you can save sessions in a database using database session persistence or
you can store sessions in multiple WebSphere Application Server instances using memory-to-memory
session replication.

WebSphere Application Server provides the following session mechanisms in a distributed environment:
v Database session persistence, where sessions are stored in the database specified.
v Memory-to-memory session replication, where sessions are stored in one or more specified

WebSphere Application Server instances or profiles.

When a session contains attributes that implement HttpSessionActivationListener, notification occurs
anytime the session is activated (that is, session is read to the memory cache) or passivated (that is,
session leaves the memory cache). Passivation can occur because of a server shutdown or when the
session memory cache is full and an older session is removed from the memory cache to make room for a
newer session. It is not guaranteed that a session is passivated in one application server prior to activation
in another application.

Memory-to-memory replication
Memory-to-memory session replication is the session replication to another WebSphere Application Server.
In this mode, sessions can replicate to one or more Application Servers to address HTTP Session single
point of failure (SPOF).

The WebSphere Application Server instance in which the session is currently processed is referred to as
the owner of the session. In a clustered environment, session affinity in the WebSphere Application Server
plug-in routes the requests for a given session to the same server. If the current owner server instance of
the session fails, then the WebSphere Application Server plug-in routes the requests to another
appropriate server in the cluster. In a peer-to-peer cluster, the hot failover feature causes the plug-in to

854 Overview

failover to a server that already contains the backup copy of the session, avoiding the overhead of session
retrieval from another server containing the backup. In a client/server cluster, the server retrieves the
session from a server that has the backup copy of the session. The server now becomes the owner of the
session and affinity is now maintained to this server.

There are three possible modes to run in:
v Server mode: Only store backup copies of other WebSphere Application Server sessions and not to

send out copies of any session created in that particular server
v Client mode: Only broadcast or send out copies of the sessions it owns and not to receive backup

copies of sessions from other servers
v Both mode: Simultaneously broadcast or send out copies of the sessions it owns and act as a backup

table for sessions owned by other WebSphere Application Server instances.

You can select the replication mode of server, client, or both when configuring the session management
facility for memory-to-memory replication. The default is both. This storage option is controlled by the
mode parameter.

The memory-to-memory replication function is accomplished by the creation of a data replication service
instance in an application server that talks to other data replication service instances in remote application
servers. You must configure this data replication service instance as a part of a replication domain. Data
replication service instances on disparate application servers that replicate to one another must be
configured as a part of the same domain. You must configure all session managers connected to a
replication domain to have the same topology. If one session manager instance in a domain is configured
to use the client/server topology, then the rest of the session manager instances in that domain must be a
combination of servers configured as Client only and Server only. If one session manager instance is
configured to use the peer-to-peer topology, then all session manager instances must be configured as
Both client and server. For example, a server only data replication service instance and a both client and
server data replication service instance cannot exist in the same replication domain. Multiple data
replication service instances that exist on the same application server due to session manager
memory-to-memory configuration at various levels that are configured to be part of the same domain must
have the same mode.

With respect to mode, the following are the primary examples of memory-to-memory replication
configuration:

v Peer-to-peer replication

v Client/server replication

Although the administrative console allows flexibility and additional possibilities for memory-to-memory
replication configuration, only the configurations provided above are officially supported.

There is a single replica in a cluster by default. You can modify the number of replicas through the
replication domain.

Memory-to-memory topology: Peer-to-peer function
The basic peer-to-peer (both client and server function, or both mode) topology is the default configuration
and has a single replica. However, you can also add additional replicas by configuring the replication
domain.

Chapter 26. Web applications 855

In this basic peer-to-peer topology, each server Java Virtual Machine (JVM) can:

v Host the web application leveraging the HTTP session

v Send out changes to the HTTP session that it owns

v Receive backup copies of the HTTP session from all of the other servers in the cluster

This configuration represents the most consolidated topology, where the various system parts are
collocated and requires the fewest server processes. When using this configuration, the most stable
implementation is achieved when each node has equal capabilities (CPU, memory, and so on), and each
handles the same amount of work.

It is also important to note that when using the peer-to-peer topology, replication must be possible within
the replication domain for session data access and invalidation to occur properly. There must be 2 or more
cluster members up at all times for a given replication domain. For example, if you have a cluster of 2
application servers, server1 and server2, that are both configured in the peer-to-peer mode and server2
fails. All of backup information for server1 is lost and replication is no longer possible.

Session hot failover

A new feature called session hot failover has been added to this release. This feature is only applicable to
the peer-to-peer mode. In a clustered environment, session affinity in the WebSphere Application Server
plug-in routes the requests for a given session to the same server. If the current owner server instance of
the session fails, then the WebSphere Application Server plug-in routes the requests to another
appropriate server in the cluster. For a cluster configured to run in the peer-to-peer mode this feature
causes the plug-in to failover to a server that already contains the backup copy of the session, therefore

856 Overview

avoiding the overhead of session retrieval from another server containing the backup. However, hot
failover is specifically for servant region failures. When an entire server, meaning both controller and
server fail, sessions may have to be retrieved over the network.

You must upgrade all WebSphere Application Server plug-in instances that front the Application Server
cluster to version 6.0 to ensure session affinity when using the peer-to-peer mode.

Memory-to-memory topology: Client/server function
The client/server configuration, used to attain session affinity, consists of a cluster of servers that are
configured as client only and server only. Using the client/server configuration has benefits such as
isolating the handling of backup data from local data, recycling backup servers without affecting the
servers running the application, and removing the need for a one-to-one correspondence between servers
to attain session affinity.

The following figure depicts the client/server mode. There is a tier of applications servers that host web
applications using HTTP sessions, and these sessions are replicated out as they are created and updated.
There is a second tier of servers without a web application installed, where the session manager receives
updates from the replication clients.

Benefits of the client/server configuration include:

Chapter 26. Web applications 857

Isolation for failure recovery
In this case we are isolating the handling of backup data from local data; aside from isolating the
moving parts in case of a catastrophic failure in one of them, you again free up memory and
processing in the servers processing the web application.

Isolation for stopping and starting
You can recycle a backup server without affecting the servers running the application (when there
are two or more backups, failure recovery is possible), and conversely recycle an application JVM
without potentially losing that backup data for someone.

Consolidation
There is most likely no need to have a one-to-one correspondence between servers handling
backups and those processing the applications; hence, you are again reducing the number of
places to which you transfer the data.

Disparate hardware:
While you run your web applications on cheaper hardware, you may have one or two more
powerful computers in the back end of your enterprise that have the capacity to run a couple of
session managers in replication server mode; allowing you to free up your cheaper web
application hardware to process the web application.

Timing consideration: Start the backup application servers first to avoid unexpected timing windows. The
clients attempt to replicate information and HTTP sessions to the backup servers as soon as they come
up. As a result, HTTP sessions that are created prior to the time at which the servers come up might not
replicate successfully.

Memory-to-memory session partitioning
Session partitioning gives the administrator the ability to filter or reduce the number of destinations that the
session object gets sent to by the replication service. You can also configure session partitioning by
specifying the number of replicas on the replication domain. The single replica option is chosen by default.
Since the number of replicas is global for the entire replication domain, all the session managers
connected to the replication domain use the same setting.

Single replica
You can replicate a session to only one other server, creating a single replica. When this option is
chosen, a session manager picks another session manager that is connected to the same
replication domain to replicate the HTTP session to during session creation. All updates to the
session are only replicated to that single server. This option is set at the replication domain level.
When this option is set, every session manager connected to this replication domain creates a
single backup copy of HTTP session state information on a backup server.

Entire domain
Each object is replicated to every application server that is configured as a consumer of the
replication domain. However, in the peer-to-peer mode, this topology is the most redundant
because all servers replicate to each other, and as you add servers, more processors and memory
are needed to manage replication. Entire domain is most useful for dynamic caching replication.
Redundancy does not affect the client/server mode because clients replicate only to servers that
are set to server mode.

Attention: Do not use entire domain in a large topology, as the infrastructure cannot handle the
large number of connections that are necessary to support this configuration.

Specific number of replicas
You can specify a specific number of replicas for any entry that is created in the replication
domain. The number of replicas is the number of application servers that you want to replicate in
the domain. This option eliminates redundancy that occurs in a full group replica, and also
provides additional backup over a single replica. In peer-to-peer mode, the number of replicas

858 Overview

cannot exceed the total number of application servers in the cluster. In the client/server mode, the
number of replicas cannot exceed the total number of application servers in the cluster that are set
to server mode.

On multiple application server nodes, the number of replicas must match the number of application
servers on a node to ensure that a backup exists on a different node. For example, if you have
two nodes with three application servers on each node, you would want to set the number of
replicas to three. Location of backups is randomly selected and in a worse case scenario, the
application server backups might be selected on the same node. Setting number of replicas to
three ensures that at least one backup exists on a different node.

Node A has application servers A1, A2, and A3. Node B has application servers B1, B2, and B3. If A1
selects its backups to be on A2 and A3, then it is forced to select an application server on node B because
number of replicas is set to three.

Clustered session support
A clustered environment supports load balancing, where the workload is distributed among the application
servers that compose the cluster.

If one of the servers in the cluster fails, it is possible for the request to reroute to another server in the
cluster. If you enable distributed sessions support, the new server can access session data from the
database or another instance of the application server. You can retrieve the session data only if a new
server has access to an external location from which it can retrieve the session.

In a clustered environment:

v The same web application must exist on each of the servers that can access the session. You can
accomplish this setup by installing an application onto a cluster definition, so each of the servers in the
group can then access the web application.

v The session management facility requires an affinity mechanism so that all requests for a particular
session are directed to the same application server instance in the cluster. This requirement conforms to
the Servlet 2.3 specification in that multiple requests for a session cannot coexist in multiple application
servers.

The solution that is provided by IBM WebSphere Application Server is establishing session affinity in a
cluster; this solution is available as part of the application server's plug-ins for web servers. It also
provides for better performance because the sessions are cached in memory. In clustered environments
other than WebSphere Application Server clusters, you must use an affinity mechanism, such as IBM
WebSphere Edge Server affinity.

v One cluster member in a cluster will be randomly chosen to act as the invalidator for the entire cluster.
This means that the cluster member that is selected as the invalidator will be the one to invalidate the
session, regardless of the session in which that cluster member is created.

Scheduled invalidation
Instead of relying on the periodic invalidation timer that runs on an interval based on the session timeout
parameter, you can set specific times for the session management facility to scan for invalidated sessions
in a distributed environment.

When used with distributed sessions, this feature has the following benefits:
v You can schedule the scan for invalidated sessions for times of low application server activity, avoiding

contention between invalidation scans of database or another WebSphere Application Server instance
and read and write operations to service HTTP session requests.

v Significantly fewer external write operations can occur when running with the End of Service Method
Write mode because the last access time of the session does not need to be written out on each HTTP
request. (Manual Update options and Time Based Write options already minimize the writing of the last
access time.)

Chapter 26. Web applications 859

v The session manager invalidates sessions only at the scheduled time, therefore sessions are available
to an application if they are requested prior to the session is invalidated. The following are usage
considerations:

v With scheduled invalidation configured, HttpSession timeouts are not strictly enforced. Instead, all
invalidation processing is handled at the configured invalidation times.

v HttpSessionBindingListener processing is handled at the configured invalidation times unless the
HttpSession.invalidate method is explicitly called.

v The HttpSession.invalidate method immediately invalidates the session from both the session cache and
the external store.

v The periodic invalidation thread still runs with scheduled invalidation. If the current hour of the day does
not match one of the configured hours, sessions that have exceeded the invalidation interval are
removed from cache, but not from the external store. Another request for that session results in
returning that session back into the cache.

v When the periodic invalidation thread runs during one of the configured hours, all sessions that have
exceeded the invalidation interval are invalidated by removal from both the cache and the external
store.

v The periodic invalidation thread can run more than once during an hour and does not necessarily run
exactly at the top of the hour.

v If you specify the interval for the periodic invalidation thread using the HttpSessionReaperPollInterval
custom property, do not specify a value of more than 3600 seconds (1 hour) to ensure that invalidation
processing happens at least once during each hour.

Base in-memory session pool size
The base in-memory session pool size number depends on the session support configuration.
v With in-memory sessions, session access is optimized for up to this number of sessions.
v With distributed sessions, when sessions are stored in a database or in another WebSphere Application

Server instance,; the pool size also specifies the cache size and the number of last access time
updates saved in manual update mode.

For distributed sessions, when the session cache has reached its maximum size and a new session is
requested, the Session Management facility removes the least recently used session from the cache to
make room for the new one.

General memory requirements for the hardware system, and the usage characteristics of the e-business
site, determines the optimum value.

Note that increasing the base in-memory session pool size can necessitate increasing the heap sizes of
the Java processes for the corresponding WebSphere Application Servers.

Overflow in non-distributed sessions

By default, the number of sessions maintained in memory is specified by base in-memory session pool
size. If you do not wish to place a limit on the number of sessions maintained in memory and allow
overflow, set overflow to true.

Allowing an unlimited amount of sessions can potentially exhaust system memory and even allow for
system sabotage. Someone could write a malicious program that continually hits your site and creates
sessions, but ignores any cookies or encoded URLs and never utilizes the same session from one HTTP
request to the next.

When overflow is disallowed, the Session Management facility still returns a session with the
HttpServletRequest getSession(true) method when the memory limit is reached, and this is an invalid
session that is not saved.

860 Overview

With the WebSphere Application Server extension to HttpSession,
com.ibm.websphere.servlet.session.IBMSession, an isOverflow method returns true if the session is such
an invalid session. An application can check this status and react accordingly.

HTTP session invalidation
HTTP sessions are invalidated by calling the invalidate method on the session object or by specifying a
specific time interval using the MaxInactiveInterval property.

Sessions that are invalidated explicitly by application code are invalidated immediately. Sessions that are
not invalidated by application code are invalidated by the session manager. Session invalidation occurs
regardless of session persistence configuration.

A session is a candidate for invalidation if it has not been accessed for a period that is longer than the
specified session timeout, specified by the MaxInactiveInterval value. The session manager has an
invalidation process thread that runs every X seconds to invalidate sessions that are eligible for
invalidation.

The session manager uses a formula to determine the value of X, specified by the ReaperInterval
property. The value of X is calculated based on the MaxInactiveInterval value that is specified in the
session manager.

For example, for a maximum inactive interval less than 15 minutes, the ReaperInterval value is
approximately 60 to 90 seconds. For a maximum inactive interval greater than 15 minutes, the
ReaperInterval value is approximately 300 to 360 seconds.

A session is invalidated when the MaxInactiveInterval is exceeded and the ReaperInterval passes. After a
session is eligible for invalidation, the invalidation thread must run for the session to be invalidated.
Therefore, a session might not be invalidated for the sum of the MaxInactiveInterval and ReaperInterval
value in seconds.

A session that has exceeded the MaxInactiveInterval but is not yet removed by the invalidation thread is
still available for use. If that session is requested then it is returned to the client.

You can specify whether the session is invalidated immediately or after a specified time interval. For
immediate invalidation the application should call the invalidate method. To invalidate a session at a
specific time, you can set the ReaperInterval web container custom property in seconds to specify the
frequency of the invalidation thread.

Write operations
You can manually control when modified session data is written out to the database or to another
WebSphere Application Server instance by using the sync method in the
com.ibm.websphere.servlet.session.IBMSession interface. The manual update, end of service servlet and
the time based write frequency modes are available to tune write frequency of session data.

This interface extends the javax.servlet.http.HttpSession interface. By calling the sync method from the
service method of a servlet, you send any changes in the session to the external location. When manual
update is selected as the write frequency mode, session data changes are written to an external location
only if the application calls the sync method. If the sync method is not called, session data changes are
lost when a session object leaves the server cache. When end of service servlet or time based is the write
frequency mode, the session data changes are written out whenever the sync method is called. If the sync
method is not called, changes are written out at the end of service method or on a time interval basis
based on the write frequency mode that is selected.

Chapter 26. Web applications 861

IBMSession iSession = (IBMSession) request.getSession();
iSession.setAttribute("name", "Bob");

//force write to external store
iSession.sync()

If the database is down or is having difficulty connecting during an update to session values, the sync
method always makes three attempts before it finally creates a BackedHashtable.getConnectionError error.
For each connection attempt that fails, the BackedHashtable.StaleConnectionException is created and can
be found in the sync method. If the database opens during any of these three attempts, the session data
in the memory is then persisted and committed to the database.

However, if the database is still not up after the three attempts, then the session data in the memory is
persisted only after the next check for session invalidation. Session invalidation is checked by a separate
thread that is triggered every five minutes. The data in memory is consistent unless a request for session
data is issued to the server between these events. For example, if the request for session data is issued
within five minutes, then the previous persisted session data is sent.

Sessions are not transactional resources. Because the sync method is associated with a separate thread
than the client, the exception that is created does not propagate to the client, which is running on the
primary thread. Transactional integrity of data can be maintained through resources such as enterprise
beans.

HTTP sessions: Resources for learning
Use the following links to find relevant supplemental information about HTTP sessions. The information
resides on IBM and non-IBM Internet sites, whose sponsors control the technical accuracy of the
information.

These links are provided for convenience. Often, the information is not specific to the WebSphere
Application Server product, but is useful all or in part for understanding the product. When possible, links
are provided to technical papers and Redbooks that supplement the broad coverage of the release
documentation with in-depth examinations of particular product areas.

View links to additional information about:

Programming model and decisions
v Improving session persistence performance with DB2

Programming instructions and examples
v Java Servlet documentation, tutorials, and examples site

Programming specifications
v Java Servlet 2.4 API specification download site
v J2EE 1.4 specification download site

Asynchronous request dispatcher

Asynchronous request dispatcher
Asynchronous request dispatcher (ARD) can improve Servlet response time when slow operations can be
logically separated and performed concurrently with other operations required to complete the response.
ARD enables Java™ servlet programmers to perform standard javax.servlet.RequestDispatcher include
calls for the same request concurrently on separate threads. These javax.servlet.RequestDispatcher
include calls are completed sequentially on the same thread. ARD is also useful in low CPU, long wait
situations like waiting for a database connection.

862 Overview

http://www7b.software.ibm.com/dmdd/library/techarticle/0203kitchlu/0203kitchlu.html
http://java.sun.com/products/servlet/docs.html
http://java.sun.com/products/servlet/download.html
http://java.sun.com/j2ee/download.html

If there are large CPU or memory requirements, ARD alone does not alleviate those issues. However, in
combination with the remote request dispatcher, operations driven by one servlet request that can be
performed concurrently on multiple application servers, alleviating resource demand on a single server and
decreasing the risk of a system down situation.

Servlets, portlets, and JavaServer Pages (JSP) files can all utilize ARD. This functionality is an extension
beyond the requirements of the Java Servlet Specification , which only describes synchronous request
dispatching. ARD requires a new channel, called the ARD channel, between the HTTP and web container
channels to form a new channel chain. These new chains correspond only to the existing default host
chains and reuse the same ports.

Each include can write output to the client and because ordering is important for valid results, there must
be some aggregation of the data written. Typically, a servlet writes data to a buffer and once full, it is
flushed to client. For server-side aggregation, the ARD channel cannot flush until any includes that had
placeholders written to the current buffer are finished.

Client-side aggregation of the asynchronous include is also supported. Web 2.0 programmers often use
Asynchronous JavaScript and XML (Ajax) in the Web browser of the client to dynamically retrieve and
aggregate remote resources. Unfortunately, this puts the burden on the programmer to aggregate the
contents and learn new technologies. Client-side aggregation automatically adds the necessary JavaScript
to dynamically update the page. For non-JavaScript clients, you can switch ARD to server-side
aggregation, which gives equivalent results. You can deny non-JavaScript clients when using client-side
aggregation.

ARD uses the web container APIs to plug in unique request dispatching logic. It interacts with WCCM to
read in configuration information for enablement status per enterprise application as well as a global
appserver setting. You can use the administrative console and wsAdmin to enable or disable ARD.
Servlets, portlets, and JSP files can all utilize ARD.

Asynchronous request dispatcher application design considerations
Asynchronous request dispatcher (ARD) is not a one-size-fits-all solution to servlet programming. You must
evaluate the needs of your application and the caveats of using ARD. Switching all includes to start
asynchronously is not the solution for every scenario, but when used wisely, ARD can increase response
time. This article contains important details about the ARD implementation and issues to consider when
you design an application that leverages ARD.

Asynchronous request dispatcher client-side implementation
v JavaScript is dynamically written to the response output.

v This JavaScript results in Ajax requests back to a server-side results provider.

v Because of the Asynchronous Input/Output (AIO) features of the channel, the Ajax request does not tie
up a thread and instead is notified for completion through an include callback.

v The client only makes one request at a time for the asynchronous includes because of browser
limitations in the number of connections.

v Original connection has to be valid for the lifetime of the includes. It cannot be reused for the Ajax
requests.

v Comment nodes, such as following,
<!--uniquePlaceholderID--><!--1-->

are placed in the browser object model since comment nodes have no effect on the page layout.

v Whenever a complete fragment exists, a response can be sent to the client and the comment node with
the same ID is replaced. Requests are made until all the fragments are retrieved.

Chapter 26. Web applications 863

v Verify applications on all supported browsers when using client-side aggregation. Object oriented
JavaScript principles are used so that applications only need avoid using the method name
getDynamicDataIBMARD. Any previously specified window.onload is started before the ARD onload
method.

Asynchronous request dispatcher channel results service

Requests for include data from the asynchronous JavaScript code are sent to known Uniform Resource
Identifiers, URIs also known as URLs, that the ARD channel can intercept to prevent traveling through web
container request handling. These URIs are unique for the each server restart.

For example, /IBMARD01234567/asyncInclude.js is the URI for the JavaScript that forces the retrieval of
the results, and /IBMARD01234567/IBMARDQueryStringEntries?=12000 is used to retrieve the results for the
entry with ID 12000.

To prevent unauthorized results access, unique IDs are generated for the service URI and for the ARD
entries. A common ID generator is shared among the session and ARD, so uniqueness is configurable
through session configuration. Session IDs are considered secure, but they are not as secure as using a
Lightweight Third-Party Authentication (LTPA) token.

Custom client-side aggregation

If you want to perform your own client-side aggregation, the isUseDefaultJavascript method must return as
false. The isUseDefaultJavascript method is part of the AsyncRequestDispatcherConfig method, which is
set on the AsyncRequestDispatcher or for the AsyncRequestDispatcherConfigImpl.getRef method. The
AsyncRequestDispatcherConfigImpl.getRef method is the global configuration object. You might want to
perform your own client-side aggregation if the back button functionality is problematic. You must remove
the results from the generic results service to prevent memory leaks, so that multiple requests with the
same response results through an XMLHttpRequest fail. To facilitate proper location of position,
placeholders are still written in the code as
<!--uniquePlaceholderID--><!--x-->

where x is the order of the includes. The endpoint to retrieve results are retrieved from the request
attribute com.ibm.websphere.webcontainer.ard.endpointURI.

When making a request to the endpoint, ARD sends as many response fragments as possible when the
request is made. Therefore, the client needs to re-request if all fragments are not initially returned. Trying
to display the results directly in a browser without using an XMLHttpRequest can result in errors related to
non well-formed XML. The response data is returned in the following format with a content type of text/xml:
<div id="2">
Servlet 3--dispatcher3 requesting Servlet3 to sleep for 0 seconds at: 1187967704265

 Servlet 3--Okay, all done! This should print pop up: third at: 1187967704281 </div>

For additional information about the AsyncRequestDispatcherConfig and the AsyncRequestDispatcher
interfaces, review the com.ibm.websphere.webcontainer.async package in the application programming
interfaces (API) documentation. The generated API documentation is available in the information center
table of contents from the path Reference > APIs - Application Programming Interfaces.

Server-side aggregation

Like client-side aggregation, server-side aggregation uses the ARD channel as a results service. The ARD
channel knows which asynchronous includes have occurred for certain set of buffers. Those buffers can
then be searched for an include placeholder. Because of the issues of JSP buffering, the placeholder for
the include might not be in the searched buffers. If this occurs, the next set of buffers must also look for
any include placeholders missed in the previous set. ARD attempts to iteratively aggregate as includes
return so that response content can be sent to the client as soon as possible.

864 Overview

Asynchronous beans

An AsynchBeans work manager is used to start the includes. If the number of currently requested includes
is greater than the work manager maximum thread pool size and this size is not growable, it starts the
work on the current thread and skips the placeholder write. Utilizing AsynchBeans suppports propagation
of the J2EE context of the original thread including work area, internationalization, application profile, z/OS
operation system work load management, security, transaction, and connection context.

Timer

A single timer is used for ARD and timer tasks are created for all the timeout types of ARD requests. Tasks
registered with the timer are not guaranteed to run at the exact time specified because the timer runs on a
single thread, therefore one timeout might have to wait for the other timeout actions to complete. The timer
is used as a last resort.

Remote request dispatcher

Optionally, ARD can be used in concert with the remote request dispatcher. The remote request dispatcher
was introduced in WebSphere Application Server, Network Deployment 6.1. The remote request dispatcher
runs the include on a different application server in a core group by serializing the request context into a
SOAP message and using web services to call the remote server. This is useful when the expense of
creating and sending a SOAP message through web services is outweighed by issuing the request locally.
For more information, see the IBM WebSphere Developer Technical Journal: Include remote files in your
web application seamlessly with the new Remote Request Dispatcher developerWorks article.

Exceptions

In the case of an exception in an included servlet, the web container goes through the error page
definitions mapped to exception types. So an error page defined in the deployment descriptor shows up as
a portion of the aggregated page. Insert logic into the error page itself if behavior is different for an
include. Because the include runs asynchronously, there is no guarantee that the top level servlet is still in
service, therefore the exception is not propagated back from an asynchronous include like a normal
include. Other includes finish so that partial pages can be displayed.

If the ARD work manager runs out of worker threads, the include is processed like a synchronous include.
This is the default setting, but the work manager can also grow such that it does not result in this
condition. This change in processing is invisible to the user during processing but is noted once in the
system logs as a warning message and the rest of the time in the trace logs when enabled. Other states
that can trigger the include to occur synchronously are reaching the maximum percentage of expired
requests over a time interval and reaching the maximum size of the results store.

There are cases where exceptions happen outside of the scope of normal error page handling. For
example, work can be rejected by the work manager. A timer can expire waiting for an include response to
return. The ARD channel, acting as a generic service to retrieve the results, might receive an ID that is not
valid. In these cases, there is no path to the error page handling because the context is missing, such as
ServletRequest, ServletResponse, and ServletContext, for the request to work. To mitigate these issues,
you can use the AsyncRequestDispatcherConfig interface to provide custom error messages. Defaults are
provided and internationalized as needed.

Exceptions can also occur outside the scope of the request the custom configuration was set on, such as
on the subsequent client-side XMLHttpRequests. In this case, the global configuration must be altered.
This can be retrieved through com.ibm.wsspi.ard.AsyncRequestDispatcherConfigImpl.getRef().

Include start
The work manager provides a timeout for how long to wait for an include to start. Since this
typically happens immediately, there is not a programmatic way to enable this. However, this is

Chapter 26. Web applications 865

configurable in the work manager settings. By default, you will not encounter this because of the
maximum thread check before scheduling the work. Work can be retried if setRetriable(true) is
called on the in use AsyncRequestDispatcherConfig.

Include finish
The initiated timeout starts after the work is accepted. It can be configured through the console or
programmatically through the AsyncRequestDispatcherConfig.setExecutionTimeoutOverride
method; The default value is 60000 ms, or one minute. In place of the include results, the
message from the AsyncRequestDispatcherConfig.setExecutionTimeoutMessage is sent. If this
intiated timeout is reached, but the actual include results are ready when the data can be flushed,
preference is given to the actual results. Also, this does not apply to insertFragmentBlocking calls
which always wait until the include is completed.

Expiration of results
Since the client-side has to hold the results in a service to send for the Ajax request, we want a
way to expire the results if the client goes down and never retrieves the entry. The default of a
minute is sufficient for a typical request because the Ajax request would come in immediately after
sending the response. The timer can be configured programmatically via the
setExpirationTimeoutOverride method the of AsyncRequestDispatcherConfig. The message from
the getOutputRetrievalFailureMessage method of AsyncRequestDispatcherConfig is displayed
when someone tries to access an entry that has expired and been removed from cache. This
message is the same message that is sent to someone requesting a result with an ID that never
existed.

Includes versus fragments

Consider which operations can be done asynchronously and when they can start. Ideally, all the includes
are completed when the getFragment calls are made at the beginning of the request so that the includes
can have more time to complete, and upon inserting the fragments, there would be less extra buffering
and aggregating if they have completed. However, simply calling an asynchronous include is easier
because it follows the same pattern as a normal request dispatcher include.

Web container

ServletContext
When doing cross-context includes, the context that is a target of the include must also have ARD
enabled because the web application must have been initialized for ARD for its servlet context to
have valid methods to retrieve an AsyncRequestDispatcher. The aggregation type is determined by
the original context’s configuration because you cannot mix aggregation types.

ServletRequest
You must clone the request for each include. Otherwise, conflicts between threads might occur.
Because applications can wrap the default request objects, your wrappers must implement the
com.ibm.wsspi.webcontainer.servlet.IServletRequest interface, which has one method, the public
Object clone method, which creates the CloneNotSupportedException.

Unwrapping occurs until a request wrapper that implements this interface is found.
Non-implementing wrappers are lost; however, a servlet filter configured for the include can rewrap
the response.

Changes made to the ServletRequest are not propagated back to the top level servlet unless
transferState on the AsyncRequestDispatcherConfig is enabled and insertFragmentBlocking is
called.

ServletResponse
A wrapped response extending com.ibm.websphere.servlet.response.StoredResponse is created
by ARD and sent to the includes because the response output must be retrievable beyond the
lifecycle of the original response.

866 Overview

Internal headers set in asynchronous includes are not supported due to lifecycle restrictions unless
transferState on the AsyncRequestDispatcher config is enabled and insertFragmentBlocking is
called. Normal headers are not supported in a synchronous include as specified by the servlet
specification.

Include filters can rewrap the new response and must flush upon completion.

ServletInputStream
An application reading parameters using getParameter is not problematic.Parsing of parameters is
forced before the first asynchronous include to prevent concurrent access to the input stream.

HttpSession
Initial getSession calls that result in a Set-Cookie header must be called from the top level servlet
because it is unpredictable when the includes are started and if the headers have already been
flushed. The exception is when transferState on the AsyncRequestDispatcherConfig is enabled
and an insertFragmentBlocking is called. This normally creates an exception when you add the
header.

Filters If there is a filter for an include, the filter is issued on the asynchronous thread.

Nested asynchronous includes
Nested asynchronous includes are not supported because they complicate aggregation. However,
an asynchronous include can have nested synchronous includes. Any attempt to perform a nested
asynchronous include reverts back to a synchronous include.

Transactions

Every asynchronous bean method is called using its own transaction, much like container-managed
transactions in typical enterprise beans. The runtime starts a local transaction before invoking the method.
The asynchronous bean method can start its own global transaction if this transaction is possible for the
calling J2EE component.

If the asynchronous bean method creates an exception, any local transactions are rolled back. If the
method returns normally, any incomplete local transactions are completed according to the unresolved
action policy configured for the bean. If the asynchronous bean method starts its own global transaction
and does not commit this global transaction, the transaction is rolled back when the method returns.

Connection management

An asynchronous bean method can use the connections that its creating servlet obtained using java:comp
resource references. However, the bean method must access those connections using a get, use or close
pattern. There is no connection caching between method calls on an asynchronous bean. The connection
factories or data sources can be cached, but the connections must be retrieved on every method call,
used, and then closed. While the asynchronous bean method can look up connection factories using a
global Java Naming and Directory Interface (JNDI) name, this is not recommended for the following
reasons:

v The JNDI name is hard coded in the application, for example, as a property or string literal.

v The connection factories are not shared because there is no way to specify a sharing scope.

Evaluate high load scenarios because asynchronous includes might increase the number of threads
waiting on the connection.

Performance

Because includes are completed asynchronously, the total performance data for a request must take into
consideration the performance of the asynchronous includes. The total time of the request could previously

Chapter 26. Web applications 867

be understood by the time for the top level servlet to complete, but now that servlet is exiting before the
includes are completed. The top level servlet still accounts for much of the additional setup time required
for each include.

Therefore, a new ARD performance metric was added to the Performance Monitoring Infrastructure to
measure the time for a complete request through the ARD channel. The granularity of these metrics is at
the request URI level.

Since ARD is an optional feature that has to be enabled, no performance decline is seen when not utilizing
ARD. However, non-ARD applications that reside on an ARD-enabled application server would suffer from
the extra layer of the ARDChannel. The channel layer does not know to which application it is going so it
is either on or off for all applications in a channel chain. These are defined per virtual host.

Security

Security is not invoked on synchronous include dispatches according to the servlet specification. However,
security context is passed along through AsynchBeans to support programmatic usage of the isUserInRole
and getUserPrincipal methods on the ServletRequest. This security context can also be propagated across
to a remote request dispatch utilizing Web Services Security.

868 Overview

Chapter 27. Web services

This page provides a starting point for finding information about web services.

Web services are self-contained, modular applications that can be described, published, located, and
invoked over a network. They implement a services oriented architecture (SOA), which supports the
connecting or sharing of resources and data in a very flexible and standardized manner. Services are
described and organized to support their dynamic, automated discovery and reuse.

Overview: Online garden retailer web services scenarios
This set of scenarios is inspired by an online retailer called Plants by WebSphere. Plants by WebSphere
uses web services support in WebSphere Application Server to improve communications with its suppliers.
The more advanced scenarios describe web services support available only in particular editions of the
application server. Consult the product documentation to confirm what is supported by your edition.

You might recognize Plants by WebSphere as a sample application available in the Samples section of the
Information Center. These scenarios are loosely related. They describe how the fictional online retailer
could use a variety of web services technologies, some of which are beyond those currently demonstrated
by the sample.

Web services are middleware. Using web services you can connect applications together, no matter how
each application is implemented or where it is located. For example, web services can connect retailers to
wholesale suppliers. Middleware is not new. What is new in Web services is that this connectivity is based
upon open standards and web technologies. Web services operate at a level of abstraction that is similar
to the Internet, and they can work with any operating system, hardware platform, or programming
language that can be Web-enabled.

The Plants by WebSphere storefront sells plants and gardening supplies. As customers order
merchandise, the site checks the merchandise availability in its inventory database. The scenarios show
how the inventory system can grow in stages, using various web services technologies to improve its
capabilities.

v Before web services

The Plants by WebSphere application already has web services capabilities. See the following for a
description of how the online garden retailer might have operated prior to adopting web services
technology. Key web services components are introduced. To determine which components are
available your particular editions of WebSphere Application Server, consult the documentation for each
edition.

v Static inquiry on supplier

In this scenario, the garden retailer turns the existing web application into a web service for checking
the inventory of its main wholesale garden supplier.

v Dynamic inquiry on supplier

In this scenario, the garden retailer uses web services to perform an inventory search of several
wholesale suppliers.

v Cross supplier inquiry

In this scenario, the garden retailer makes its web service available for use by others who need the
service.

At present, these scenarios provide descriptions rather than step by step instructions. To gain experience
with web services coding, see the sample application. It provides detailed instructions for building,
configuring, and running the Plants by WebSphere sample application and others.

© IBM Corporation 2009 869

Before web services

Suppose that the Plants by WebSphere storefront does not use web services. The garden retailer has
established an impressive Internet storefront enabling customers to shop and order merchandise. To
determine whether a customer order can be filled, web applications rely on enterprise beans to query the
Plants by WebSphere inventory database. If the item is in stock, the site confirms the order to the
customer.

If a customer orders an item that is out of stock, the site notifies the customer that the item is out of stock,
and encourages the customer to place the item on backorder. Later, long after the customer has left the
Plants by WebSphere site, the site administrator or inventory manager might call or fax the supplier to
obtain more inventory.

Introducing web services

Using web services provides Plants by WebSphere an automated way to have out of stock items shipped
to its warehouse or directly to customers. If suppliers can be contacted quickly enough, Plants by
WebSphere does not have to inform its customers that the item was out of stock. Plants by WebSphere
can begin to reduce its own inventory if doing so is a desirable business move.

Web services is built on the following core technologies:

v XML

Extensible Markup Language (XML) solves the problem of data independence. You use XML to
describe data and to map that data into and out of any application or programming language.

To have their applications exchange information such as merchandise price and availability, Plants by
WebSphere and its supplier place the data in a set of XML tags to which both parties agree.

v WSDL (Web Services Description Language)

You use this XML-based language to create a description of an underlying application. This Web
Services Description Language (WSDL) document contains the description of your application and it is
this description that turns an application into a web service, by acting as the interface between the
underlying application and other Web-enabled applications.

Plants by WebSphere has an application capable of querying the supplier inventory. To enable
communication with the supplier over the Internet, the company turns the application into a web service.

v SOAP

870 Overview

SOAP is the core communications protocol for the Web, and most web services use this protocol to talk
to each other.

SOAP is an XML format for web services requests. According to the SOAP specification, SOAP is a
lightweight protocol for exchange of information in a decentralized, distributed environment. It is an
XML-based protocol that consists of three parts: an envelope that defines a framework for describing
what is in a message and how to process it, a set of encoding rules for expressing instances of
application-defined data types, and a convention for representing remote procedure calls and
responses. SOAP can potentially be used in combination with a variety of other protocols; however, the
only bindings defined in this document describe how to use SOAP in combination with HTTP and HTTP
Extension Framework.

Because they are external to the Plants by WebSphere intranet, communications with its suppliers
utilize SOAP over HTTP. Web services operating within the company intranet can use other transports,
such as local Java bindings. The Web Services Invocation Framework (WSIF) component described
later in this section can help Plants by WebSphere applications dynamically choose the optimal
transport mechanism for a given situation.

v Web Services for Java Platform, Enterprise Edition (Java EE)

The Web Services for Java Platform, Enterprise Edition (Java EE) specification, also known as
JSR-109, defines how Java EE applications create and access web services.

Read about implementing web services applications to learn how to implement a web service interface
to an existing application, and deploy your web service within the application server.

v Java API for XML Web Services (JAX-WS)

The JAX-WS programming model simplifies application development through support of a standard,
annotation-based model to develop web services applications and clients. The JAX-WS programming
model is the successor to the JAX-RPC 1.1 programming model.

The application server supports both the JAX-WS and JAX-RPC programming models.

v Java Architecture for XML Binding (JAXB)

JAXB is a Java technology that provides and easy way to map Java classes and XML schema in the
development of web services applications. JAXB leverages platform-neutral XML data to bind XML
schema to Java applications without requiring extensive knowledge of XML programming.

v Java API for XML-based remote procedure call (JAX-RPC)

JAX-RPC, also known as JSR-101, defines how Java applications access web services.

The application server supports web services based on the JAX-WS and JAX-RPC programming models.
JAX-WS is a new programming model that simplifies application development through support of a
standard, annotation-based model to develop web services applications and clients. A JAX-RPC client and
JAX-WS client can be used in the same module; therefore, the online retailer is still able to use its
JAX-RPC applications. The application server makes it easy to configure and reuse configurations, so you
can seamlessly incorporate new Web services profiles. The JAX-WS standards support interoperable and
reliable web services applications. The online retailer can send messages asynchronously, which means
that the messages can communicate reliably even if one of the parties is temporarily offline, busy, or not
available. By using these new technologies, the online retailer can be confident that its communication is
reliable and reaches its destination while interoperating with other vendors.

Refer to the Samples section of the Information Center for additional Samples that demonstrate JAX-WS
and JAX-RPC web services.

WebSphere software provides additional specifications and standards to help you get the most out of your
web services.

For a complete list of the supported standards and specifications, see the web services specifications and
API documentation.

Chapter 27. Web services 871

Web services online garden retailer scenario: Static inquiry on
supplier
In this scenario, an online supply retailer turns an application into a web service for checking the inventory
of its main supplier.

Plants by WebSphere is an Internet storefront that sells plants and gardening supplies. The company
realizes that its existing web application can be "wrapped" with web services programming interfaces. For
example, the BackOrderStock session bean can be turned into a SOAP web services client that interacts
with a Supplier Web services application located at the supplier. Specifically, the BackOrderStock session
bean functionality is turned into a Web Services for Java Platform, Enterprise Edition (Java EE) client and
a Java API for XML-based remote procedure call (JAX-RPC) client.

The application server supports web services based on the JAX-WS and JAX-RPC programming models.
JAX-WS is a new programming model that simplifies application development through support of a
standard, annotation-based model to develop web services applications and clients. A JAX-RPC client and
JAX-WS client can be used in the same module, therefore the online retailer is still able to use its
JAX-RPC applications. The application server makes it easy to configure and reuse configurations, so you
can seamlessly incorporate new web services profiles. The JAX-WS standards support interoperable and
reliable web services applications. The online retailer can send messages asynchronously, which means

872 Overview

that the messages can communicate reliably even if one of the parties is temporarily offline, busy, or not
available. By using these new technologies, the online retailer can be confident that its communication is
reliable and reaches its destination while interoperating with other vendors.

How out of stock items are handled

The following events happen when a customer on the Plants by WebSphere site orders an item that is not
available according to the Plants by WebSphere inventory:

1. Plants by WebSphere checks its own inventory.

The application powering the website checks the Plants by WebSphere inventory database. It
discovers that the item is not in stock.

2. Plants by WebSphere uses a web service to check the supplier inventory.

The application invokes a SOAP client that communicates with a SOAP server at the supplier site to
ascertain whether the supplier has the item in stock. The supplier data is sent to Plants by
WebSphere.

3. Plants by WebSphere either obtains the out of stock item, or does not.

If the supplier indicates that the item is in stock, the application powering Plants by WebSphere
determines whether to order the item on behalf of the customer. The exchange of data can include
checking a price threshold beyond which Plants by WebSphere will not order the wholesale item. It
could also include decision-making information such as how long the supplier requires to deliver the
item, or a date that the manufacturer plans to discontinue the item.

4. Plants by WebSphere notifies its customer of the outcome, as soon as possible.

If the supplier can be consulted quickly enough, Plants by WebSphere does not have to bother its
customer with concerns about availability. It simply confirms that the item is available, as though the
item is in stock at Plants by WebSphere. If the supplier inventory temporary lacks the item, or Plants
by WebSphere opted not to order the item from the supplier, Plants by WebSphere can issue an
appropriate response to the customer.

Web services technologies used in this scenario

This scenario uses the following web services technologies.

XML (Extensible Markup Language)
XML is used to standardize the exchange of data between Plants by WebSphere and its supplier.

Web Services for Java Platform, Enterprise Edition (Java EE)
Web Services for Java EE, also known as JSR-109, defines how Java EE applications create and
access web services.

JAX-RPC
JAX-RPC, also known as JSR-101, defines how Java applications access web services.

JAX-WS
The JAX-WS programming model simplifies application development through support of a
standard, annotation-based model to develop Web services applications and clients. The JAX-WS
programming model is the successor to the JAX-RPC 1.1 programming model. The application
server supports both the JAX-WS and JAX-RPC programming models.

WSDL (Web Services Description Language)
WSDL is used to turn the existing application into a web service, by acting as the interface
between the underlying application and other Web-enabled applications.

SOAP
SOAP is the protocol by which the web service communicates with the supplier over the Internet.

Chapter 27. Web services 873

Web services online garden retailer scenario: Dynamic inquiry on
supplier
This document describes a scenario in which an online garden supply retailer uses web services to
perform an inventory search of several wholesale suppliers.

In the Plants by WebSphere web services static inquiry on suppliers scenario, the Plants by WebSphere IT
staff establishes connections with each supplier separately, and makes changes as suppliers come and
go. It would be convenient to query multiple suppliers at the same time, without providing a list of
particular suppliers to query. Furthermore, Plants by WebSphere managers would like to be able to shop
around quickly according to criteria, such as the lowest wholesale price or fastest availability.

In this scenario, several plant and garden suppliers have published web services to a Universal
Description, Discovery, and Integration. (UDDI) registry. Suppliers create inventory web services that use a
standard interface. They publish their web services to the centralized registry. Perhaps the registry has
been established by the Plant Wholesalers Association. Or maybe a small Internet company established
the buyer-seller site after finding that suppliers and retailers each would pay a small monthly rate for the
convenience of the service.

874 Overview

Plants by WebSphere also supports JavaBeans endpoints within the web container and enterprise beans
endpoints by taking advantage of the Java API for XML Web Services (JAX-WS) programming model
support. Using the JAX-WS programming model makes it easy to configure and reuse configurations, so
you can seamlessly incorporate new web services profiles. The JAX-WS standards support interoperable
and reliable web services applications. The online retailer can send messages asynchronously, which
means that the messages can communicate reliably even if one of the parties is temporarily offline, busy,
or not available. By using these new technologies, the online retailer can be confident that its
communication is reliable and reaches its destination while interoperating with other vendors.

How out of stock items are handled

The following events happen when a customer on the Plants by WebSphere site orders an item that is not
available according to the Plants by WebSphere inventory.

1. In advance, the suppliers publish their web services to a UDDI registry for such an occasion.

In this way, they notify inquiring retailers, such as Plants by WebSphere, that their inventories are
available to check.

2. Plants by WebSphere checks its own inventory.

The application powering the website checks the Plants by WebSphere inventory database. It
discovers that the item is not in stock.

3. Plants by WebSphere uses a UDDI4J client to consult the UDDI registry for suppliers whose
inventories it can check.

Plants by WebSphere can invoke a web service that queries the UDDI registry for suppliers and the
web service at the site of each supplier is invoked. The administrator is presented with a list of
suppliers from which the requested item is available, including the price and availability data.

4. Plants by WebSphere uses the web services to check the supplier inventories.

The application invokes a Web Services for Java Platform, Enterprise Edition (Java EE) client or a
JAX-RPC client that communicates with a SOAP server at the supplier site to ascertain whether the
supplier has the item in stock. The supplier data is sent to Plants by WebSphere.

The application invokes a JAX-RPC client, or a JAX-WS application client can be invoked, that
communicates with a SOAP server at the supplier site to ascertain whether the supplier has the item in
stock. The supplier data is sent to Plants by WebSphere.

5. Plants by WebSphere either obtains the out of stock item, or does not.

If the supplier indicates that the item is in stock, the application powering Plants by WebSphere
determines whether to order the item on behalf of the customer. The exchange of data can include
checking a price threshold beyond which Plants by WebSphere does not order the wholesale item. It
could also include decision-making information such as how long the supplier requires to deliver the
item, or a date that the manufacturer plans to discontinue the item.

6. Plants by WebSphere notifies its customer of the outcome, as soon as possible.

If the supplier can be consulted quickly enough, Plants by WebSphere does not have to bother its
customer with concerns about availability. It confirms that the item is available, as though the item is in
stock at Plants by WebSphere. If the supplier inventory temporary lacks the item, or Plants by
WebSphere opted not to order the item from the supplier, Plants by WebSphere issues an appropriate
response to the customer.

Web services technologies used in this scenario

This scenario uses the following web services technologies.

XML (Extensible Markup Language)
XML is used to standardize the exchange of data between Plants by WebSphere and its supplier.

Web Services for Java Platform, Enterprise Edition (Java EE)
Web Services for Java Platform, Enterprise Edition (Java EE), also known as JSR-109, defines
how Java EE applications create and access web services.

Chapter 27. Web services 875

Java API for XML-based remote procedure call (JAX-RPC)
JAX-RPC, also known as JSR-101, defines how Java applications access web services.

JAX-WS
The JAX-WS programming model simplifies application development through support of a
standard, annotation-based model to develop Web services applications and clients. The JAX-WS
programming model is the successor to the JAX-RPC 1.1 programming model. The application
server supports both the JAX-WS and JAX-RPC programming models.

WSDL (Web Services Description Language)
WSDL is used to turn the existing application into a web service, by acting as the interface
between the underlying application and other Web-enabled applications.

SOAP SOAP is the protocol by which the web service communicates with the supplier over the Internet.

UDDI registry

By publishing their web services to UDDI, suppliers make them available for Plants by WebSphere
and other retailers to discover and reuse. This saves development time, effort and cost, and helps
minimize the need to maintain several different implementations of the same application at Plants
by WebSphere and various other retailers who need to contact the suppliers for inventory data.

Particular editions of WebSphere Application Server provide a private UDDI registry that can be
used in an intranet environment.

Web services online garden retailer scenario: Cross supplier inquiry
This document describes a scenario in which an online garden supply retailer uses web services to
integrate its inventory system with the inventory systems of other retailers. Also using web services, the
main Internet storefront can check supplier inventories on behalf of itself or other retailers.

The marketers at Plants by WebSphere confirm with market data that people are likely to purchase plants
and gardening supplies in tandem with purchases of other goods, such as gardening books. To increase
the visibility of Plants by WebSphere, the company arranges with various other merchant sites to include
Plants by WebSphere inventory as part of their own.

At one site, web services and other technologies are used to insert data about Plants by WebSphere items
into web pages that match the look and feel of the rest of the site. When a customer orders a Plants by
WebSphere item at a site other than Plants by WebSphere, the second site relies on the Plants by
WebSphere inventory web service to make sure that the item is in stock, and to query suppliers as
needed.

The second site does not have to implement its own web services to perform the same function as those
developed by Plants by WebSphere. The second site might want to implement sophisticated function by

876 Overview

creating its own web service.

Plants by WebSphere also supports JavaBeans endpoints within the web container and enterprise beans
endpoints by taking advantage of the Java API for XML Web Services (JAX-WS) programming model
support. Using the JAX-WS programming model makes it easy to configure and reuse configurations, so
you can seamlessly incorporate new web services profiles. And, the new standards support interoperable
and reliable web services applications. The online retailer can send messages asynchronously, which
means that the messages can communicate reliably even if one of the parties is temporarily offline, busy,
or not available. By using these new technologies, the online retailer can be confident that its
communication is reliable and reaches its destination while interoperating with other vendors.

How out of stock items are handled

The following events happen when a customer orders an item from one of the sites that re-sells items from
Plants by WebSphere.

1. In advance, Plants by WebSphere publishes its Web service to a public Universal Description,
Discovery and Integration (UDDI) registry.

Chapter 27. Web services 877

By publishing the web service, other retailers are made aware of the inventory web service available
from Plants by WebSphere. In this scenario, Plants by WebSphere enables the web service to check
its own inventory, as well as that of suppliers.

2. The re-seller checks the Plants by WebSphere inventory.

The application powering the website checks the Plants by WebSphere inventory database. It
discovers that the item is not in stock.

3. The re-seller consults the UDDI registry for suppliers whose inventories it can check.

4. The re-seller uses the web services to check the supplier inventories.

The application invokes a Java API for XML-based remote procedure call (JAX-RPC) SOAP client, or a
JAX-WS SOAP client that communicates with a SOAP server at the supplier site to ascertain whether
the supplier has the item in stock. The supplier data is sent to the reseller.

5. The re-seller either obtains the out of stock item, or does not.

6. The re-seller notifies its customer of the outcome, as soon as possible.

Web services technologies used in this scenario

This scenario uses the following web services technologies.

XML (Extensible Markup Language)
XML is used to standardize the exchange of data between Plants by WebSphere and its supplier.

WSDL (Web Services Description Language)
WSDL is used to turn the existing application into a web service, by acting as the interface
between the underlying application and other Web-enabled applications.

SOAP SOAP is the protocol by which the web service communicates with the supplier over the Internet.

UDDI registry

By publishing their web services to UDDI, suppliers make them available for Plants by WebSphere
and other retailers to discover and reuse. This saves development time, effort and cost, and helps
minimize the need to maintain several different implementations of the same application at Plants
by WebSphere and various other retailers who need to contact the suppliers for inventory data.

Public UDDI registries are run by a consortium named UDDI Operators Council, which includes
IBM, NTT, SAP, and Microsoft.

Particular editions of WebSphere Application Server provide a private UDDI registry that can be
used in an intranet environment.

Web Services Invocation Framework (WSIF)

In addition to publishing SOAP/HTTP bindings to the public UDDI registry for use by other
vendors, Plants by WebSphere might also have published to an internal private UDDI registry with
additional optimized bindings. A web service provider such as Plants by WebSphere might offer a
SOAP binding for the service and a local Java binding that enables you to treat the local service
implementation or Java class as a web service. If the client is deployed in the same environment
as the service, the local Java binding for the service can be used. This provides more efficient
communication with the service by making direct Java calls rather than using the SOAP binding.

Web services gateway

Plants by WebSphere could use a gateway to handle web service invocations between Internet
and Intranet environments. A web services gateway makes the internal web service available
externally. It takes care of these considerations:

v The transport mechanisms or channels on which messages can be carried to and from the
service

v The filters, if any, that act upon these incoming and outgoing messages

v The UDDI registries, if any, to which to publish the service

878 Overview

v The levels of security that you want to apply to the service

Service-oriented architecture
A service-oriented architecture (SOA) is a collection of services that communicate with each other, for
example, passing data from one service to another or coordinating an activity between one or more
services.

Companies want to integrate existing systems to implement Information Technology (IT) support for
business processes that cover the entire business value chain. A variety of designs are used, ranging from
rigid point-to-point electronic data interchange (EDI) to web auctions. By using the Internet, companies can
make their IT systems available to internal departments or external customers, but the interactions are not
flexible and are without standardized architecture.

Because of this increasing demand for technologies that support connecting and sharing resources and
data, a need exists for a flexible, standardized architecture. SOA is a flexible architecture that unifies
business processes by structuring large applications into building blocks, or small modular functional units
or services, for different groups of people to use inside and outside the company. The building blocks can
be one of three roles: service provider, service broker, or service requestor. See Web services approach to
a service-oriented architecture to learn more about these roles.

Requirements for an SOA:

To efficiently use an SOA, follow these requirements:

v Interoperability between different systems and programming languages.

The most important basis for a simple integration between applications on different platforms is to
provide a communication protocol. This protocol is available for most systems and programming
languages.

v Clear and unambiguous description language.

To use a service offered by a provider, it is not only necessary to be able to access the provider system,
but the syntax of the service interface must also be clearly defined in a platform-independent fashion.

v Retrieval of the service.

To support a convenient integration at design time or even system run time, a search mechanism is
required to retrieve suitable services. Classify these services as computer-accessible, hierarchical or
taxonomies based on what the services in each category do and how they can be invoked.

Web services approach to a service-oriented architecture
You can use web services in a service-oriented architecture (SOA) environment.

You can use web services to implement a SOA. A major focus of web services is to make functional
building blocks accessible over standard Internet protocols that are independent from platforms and
programming languages. These services can be new applications or just wrapped around existing legacy
systems to make them network-enabled. A service can rely on another service to achieve its goals.

Each SOA building block can assume one or more of three roles:

v Service provider

The service provider creates a web service and possibly publishes its interface and access information
to the service registry. Each provider must decide which services to expose, how to make trade-offs
between security and easy availability, how to price the services, or how to exploit free services for
other value. The provider also has to decide which category to list the service in for a given broker
service and what sort of trading partner agreements are required to use the service.

v Service broker

Chapter 27. Web services 879

The service broker, also known as service registry, is responsible for making the web service interface
and implementation access information available to any potential service requestor. The implementer of
the broker decides the scope of the broker. Public brokers are available through the Internet, while
private brokers are only accessible to a limited audience, for example, users of a company intranet.
Furthermore, some decisions need to be made about the amount of the offered information. Some
brokers specialize in many listings. Others offer high levels of trust in the listed services. Some cover a
broad landscape of services and others focus within an industry. Some brokers catalog other brokers.
Depending on the business model, brokers can attempt to maximize look-up requests, the number of
listings or the accuracy of the listings. The Universal Description, Discovery and Integration (UDDI)
specification defines a way to publish and discover information about web services.

v Service requester

The service requestor or web service client locates entries in the broker registry using various find
operations and then binds to the service provider to invoke one of its web services.

.

Characteristics of the SOA:

The presented SOA illustrates a loose coupling between the participants, which provides greater flexibility
in the following ways:

v A client is coupled to a service. Therefore, the integration of the server takes place outside the scope of
the client application programs.

v Old and new functional blocks or applications and systems, are encapsulated into components that work
as services.

v Functional components and their interfaces are separate so that new interfaces can be plugged in more
easily.

v Within complex applications, the control of business processes can be isolated. A business rule engine
can be incorporated to control the workflow of a defined business process. Depending on the state of
the workflow, the engine calls the respective services.

v Services can be incorporated dynamically during run time.

v Bindings are specified using configuration files and can be easily adapted to new needs.

Properties of a service-oriented architecture:

The service-oriented architecture offers the following properties:

880 Overview

v Web services are self-contained

On the client side, no additional software is required. A programming language with Extensible Markup
Language (XML) and HTTP client support is enough to get you started. On the server side, a web
server and a SOAP server are required. It is possible to enable an existing application for web services
without writing a single line of code.

v Web services are self-describing

Neither the client nor the server knows or cares about anything besides the format and content of the
request and response messages (loosely coupled application integration). The definition of the message
format travels with the message; no external metadata repositories or code generation tool are required.

v Web services can be published, located, and invoked across the Internet

This technology uses established lightweight Internet standards such as HTTP and it leverages the
existing infrastructure. Some other standards that are required include, SOAP, Web Services Description
Language (WSDL), and UDDI.

v Web services are language-independent and interoperable

The client and server can be implemented in different environments. Existing code does not have to
change in order to be web services-enabled.

v Web services are inherently open and standard-based

XML and HTTP are the major technical foundation for web services. A large part of the Web service
technology has been built using open-source projects.

v Web services are dynamic

Dynamic e-business can become reality using web services because with UDDI and WSDL you can
automate the web service description and discovery.

v Web services are composable

Simple web services can be aggregated to more complex ones, either using workflow techniques or by
calling lower-layer web services from a web service implementation. Web services can be chained
together to perform higher-level business functions. This chaining shortens development time and
enables best-of-breed implementations.

v Web services are loosely coupled

Traditionally, application design has depended on tight interconnections at both ends. Web services
require a simpler level of coordination that supports a more flexible reconfiguration for an integration of
the services.

v Web services provide programmatic access

The approach provides no graphical user interface; it operates at the code level. Service consumers
need to know the interfaces to web services, but do not need to know the implementation details of
services.

v Web services provide the ability to wrap existing applications

Already existing stand-alone applications can easily integrate into the SOA by implementing a web
service as an interface.

Web services business models supported in SOA
This article explains the concept and business models that can be implemented by using web services in a
service-oriented architecture (SOA).

The properties and benefits of using a SOA such as web services is well suited for binding small modules
that perform independent tasks within a highly heterogeneous e-business model. Web services can be
easily wrapped around existing applications in your business model and plugged into different business
processes.

For connecting to a large monolithic system that does not support the implementation of different flexible
business processes, other approaches might be better suited, for example, to satisfy specialized features,
such as performance or security.

Chapter 27. Web services 881

The following business models are easily implemented by using an architecture including web services:

v Business information

Sharing of information with consumers or other businesses. Web services can be used to expand the
reach through such services as news streams, local weather reports, integrated travel planning, and
intelligent agents.

v Business integration

Providing transactional, fee-based services for customers. A global network of suppliers can be easily
created. Web services can be implemented in auctions, e-marketplaces, and reservation systems.

v Business process externalization

Web services can be used to model value chains by dynamically integrating processes to a new
solution within an organizational unit or even with those of other e-businesses. This modeling can be
achieved by dynamically linking internal applications to new partners and suppliers, to offer their
services to complement internal services.

To see how these models are implemented using all aspects of Web services, see the web services
scenario overview information to learn more about the story of a fictional online garden supply retailer
named Plants by WebSphere and how this retailer incorporates the web services concept.

Web services
Web services are self-contained, modular applications that you can describe, publish, locate, and invoke
over a network.

The application server supports web services that are developed and implemented based on the Web
Services for Java Platform, Enterprise Edition (Java EE) specification. The application server supports the
Java API for XML Web Services (JAX-WS) programming model and the Java API for XML-based RPC
(JAX-RPC) programming model. The JAX-WS is a strategic programming model that simplifies application
development through support of a standard, annotation-based model to develop web services applications
and clients.

A typical web services scenario is a business application requesting a service from another existing
application. The request is processed through a given web address using SOAP messages over a HTTP,
Java Message Service (JMS) transport or invoked directly as Enterprise JavaBeans (EJB). The service
receives the request, processes it, and returns a response. Examples of a simple web service include
weather reports or getting stock quotes. The method call is synchronous, that is, the method waits until the
result is available. Transaction web services, supporting quotes, business-to-business (B2B) or
business-to-client (B2C) operations include airline reservations and purchase orders.

Web services can include the actual service or the client that accesses the service.

Web services are web applications that help improve the flexibility of your business processes by
integrating with applications that otherwise do not communicate. The inner-library loan program at your
local library is a good example of the web services concept and its evolution. The web service concept
existed even before the term; the concept became widely accepted with the creation of the Internet. Before
the Internet was created, you visited your library, searched the collections and checked out your books. If
you did not find the book that you wanted, the librarian ran a search for you by computer or phone and
located the book at a nearby library. The librarian ordered the book for you and you picked it up after it
was delivered to your local library. By incorporating web services applications, you can streamline your
library visit.

Now, you can search the local library collection and other local libraries at the same time. When other
libraries provide your library with a web service to search their collection (the service might have been
provided through Universal Description Discovery and Integration (UDDI), your results yield their

882 Overview

resources. You might use another web service application to check out and send the book to your home.
Using web services applications saves time and provides a convenience for you, as well as freeing the
librarian to do other business tasks.

Web services reflect the service-oriented architecture (SOA) approach to programming. This approach is
based on the idea of building applications by discovering and implementing network-available services, or
by invoking the available applications to accomplish a task. Web services deliver interoperability, for
example, web services applications provide components created in different programming languages to
work together as if they were created using the same language. Web services rely on existing transport
technologies, such as HTTP, and standard data encoding techniques, such as Extensible Markup
Language (XML), for invoking the implementation.

The key components of web services include:
v Web Services Description Language (WSDL)

WSDL is the XML-based file that describes the web service. The web service request uses this file to
bind to the service.

v SOAP

SOAP is the XML-based protocol that the web service request uses to invoke the service.
v Universal Description, Discovery and Integration Protocol (UDDI)

UDDI is the registry that hosts the service broker. UDDI is similar to the Yellow Pages in a phone book.

For a more detailed scenario, see the web services scenario overview information to learn more about the
story of a fictional online garden supply retailer named Plants by WebSphere, and how this retailer
incorporated the web services concept.

For a complete list of the supported standards and specifications, see the web services specifications and
API documentation.

Web Services for Java EE specification
The Web Services for Java Platform, Enterprise Edition (Java EE) specification defines the programming
model and runtime architecture for implementing web services based on the Java language. Another name
for the Web Services for Java EE specification is the Java Specification Requirements (JSR) 109. The
specification includes open standards for developing and implementing web services.

The Web Services for Java EE specification is based on the Java EE technology and supports the Java
API for XML Web Services (JAX-WS) and Java API for XML-based RPC (JAX-RPC) programming model
for web services and clients in a manner that is interoperable and portable across application servers
within environments that are scalable and secure. This specification is based on industry standards for
web services, including Web Services Description Language (WSDL) and SOAP, and it describes the
development and deployment of web services.

The application server supports the Web Services for Java EE specification, Version 1.3. This specification
supports WSDL Version 1.1, SOAP Version 1.1 and SOAP Version 1.2.

You can integrate the Java EE technology with web services in a variety of ways. You can expose Java
EE components as web services, for example, JavaBeans and enterprise beans. When you expose Java
EE components as web services, clients that are written in Java code or existing web service clients that
are not written in Java code can access these services. Java EE components can also act as web service
clients.

The Web Services for Java EE specification is the preferred platform for Web-based programming
because it provides open standards permitting different types of languages, operating systems and
software to communicate seamlessly through the Internet.

Chapter 27. Web services 883

For a Java application to act as web service client, a mapping between the WSDL file and the Java
application must exist. For JAX-WS applications, the mapping is defined using annotations. You can
optionally use the webservices.xml deployment descriptor to specify the location of the WSDL file and
override the value defined in the @WebServices annotation. For JAX-RPC applications, you must define
the JAX-RPC mapping file. To learn more about the mapping that is defined between the WSDL file and
your web service application, see the JAX-WS specification or the JAX-RPC specification in the web
services specifications and API documentation depending on the programming model used.

You can use a Java component to implement a Web service by specifying the component interface and
binding information in the WSDL file and designing the application server infrastructure to accept the
service request.

This entire process encompassed is based on the Web Services for Java EE specification.

The specification defines the webservices.xml deployment descriptor specifically for web services. The
webservices.xml deployment descriptor file defines the set of web services that you can deploy in a Web
Services for Java EE enabled container.

For JAX-WS web services, the use of the webservices.xml deployment descriptor is optional because you
can use annotations to specify all of the information that is contained within the deployment descriptor file.
You can use the deployment descriptor file to augment or override existing JAX-WS annotations. Any
information that you define in the webservices.xml deployment descriptor overrides any corresponding
information that is specified by annotations.

For example, if your service implementation class for your JAX-WS web service includes the
@WebService annotation as follows:
@WebService(wsdlLocation=”http://myhost.com/location/of/the/wsdl/ExampleService.wsdl”)

and the webservices.xml specifies a different filename for the WSDL document as follows:
<webservices>
<webservice-description>
<webservice-description-name>ExampleService</webservice-description-name>
<wsdl-file>META-INF/wsdl/ExampleService.wsdl</wsdl-file>
...
</webservice-description>
</webservices>

then the value that is specified in the deployment descriptor, META-INF/wsdl/ExampleService.wsdl
overrides the annotation value.

See section 5 of the Web Services for Java EE specification for details regarding the correlation between
values specified in the web services deployment descriptor file and the attributes of the @WebService and
the @WebServiceProvider annotations.

For JAX-RPC web services, you must define the deployment characteristics in the webservices.xml
deployment descriptor file.

You are responsible for providing various elements to the deployment descriptor, including:

v Port name

v Port service implementation

v Port service endpoint interface

v Port WSDL definition

v Port QName

v MTOM/XOP support for JAX-WS web services

v Protocol binding for JAX-WS web services

v JAX-RPC mapping

884 Overview

v Handlers (optional)

v Servlet mapping (optional)

The Enterprise JavaBeans (EJB) 2.1 specification also states that for a web service developed from a
session bean, the EJB deployment descriptor, ejb-jar.xml, must contain the service-endpoint element.
The service-endpoint value must be the same as that stated in the webservices.xml deployment
descriptor.

For a complete list of the supported standards and specifications, see the web services specifications and
API documentation.

Artifacts used to develop web services
With development artifacts, you can develop an enterprise bean or a JavaBeans module into web services
that are based on the Web Services for Java Platform, Enterprise Edition (Java EE) specification.

To create a web service from an enterprise bean or from a JavaBeans module, the following files are
added to the respective Java archive (JAR) file or web application archive (WAR) modules at assembly
time:
v Web Services Description Language (WSDL) Extensible Markup Language (XML) file

The WSDL XML file describes the web service that is implemented.
v Service Endpoint Interface

A Service Endpoint Interface is the Java interface corresponding to the web service port type
implemented. The Service Endpoint Interface is defined by the Java API for XML Web Services
(JAX-WS) or Java API for XML-based RPC (JAX-RPC) web services run time that you are using.

v webservices.xml

The webservices.xml file contains the Java EE deployment descriptor of the web service specifying
how the web service is implemented. The webservices.xml file is defined in the Web Services for Java
EE specification.

For JAX-WS web services, the use of the webservices.xml deployment descriptor is optional because
you can use annotations to specify all of the information that is contained within the deployment
descriptor file. You can use the deployment descriptor file to augment or override existing JAX-WS
annotations. Any information that you define in the webservices.xml deployment descriptor overrides
any corresponding information that is specified by annotations.

For JAX-RPC applications, deployment descriptors are required to specify how the web service is
implemented.

v ibm-webservices-bnd.xmi (JAX-RPC applications only)

This file contains WebSphere product-specific deployment information and is defined in the
ibm-webservices-bnd.xmi deployment descriptor. assembly properties. See the JAX-RPC web services
deployment descriptor settings information to learn more about this deployment descriptor.

v Java API for XML-based remote procedure call (JAX-RPC) mapping file

The JAX-RPC mapping deployment descriptor specifies how Java elements are mapped to and from
WSDL file elements.

The following files are added to an application client, enterprise beans or web module to permit a Web
Services for Java Platform, Enterprise Edition (Java EE) client access to web services:
v WSDL file

The WSDL file is provided by the web service implementer.
v Java interfaces for the web service

The Java interfaces are generated from the WSDL file as specified by the JAX-WS or JAX-RPC
specification. These bindings are the Service Endpoint Interface based on the WSDL port type, or the
service interface, which is based on the WSDL service.

v ibm-webservicesclient-bnd.xmi (JAX-RPC applications only)

Chapter 27. Web services 885

This file contains WebSphere product-specific deployment information, such as security information for
JAX-RPC applications. For JAX-WS applications, deployment descriptors are not supported and have
been replaced by the use of annotations.

v Other JAX-RPC binding files

Additional JAX-RPC binding files that support the client application in mapping SOAP to the Java
language are generated from WSDL by the WSDL2Java command tool.

WSDL
Web Services Description Language (WSDL) is an Extensible Markup Language (XML)-based description
language. This language was submitted to the World Wide Web Consortium (W3C) as the industry
standard for describing web services. The power of WSDL is derived from two main architectural
principles: the ability to describe a set of business operations and the ability to separate the description
into two basic units. These units are a description of the operations and the details of how the operation
and the information associated with it are packaged.

A WSDL document defines services as collections of network endpoints, or ports. In WSDL, the abstract
definitions of endpoints and messages are separated from their concrete network deployment or data
format bindings. This separation supports the reuse of abstract definitions: messages, which are abstract
descriptions of exchanged data, and port types, which are abstract collections of operations. The concrete
protocol and data format specifications for a particular port type constitutes a reusable binding. A port is
defined by associating a network address with a reusable binding, and a collection of ports defines a
service. Therefore, a WSDL document is composed of several elements.

The following is the structure of the information in a WSDL file:

A WSDL file contains the following parts:

v Web service interface definition

This part contains the elements and the namespaces.

v Web service implementation

This part contains the definition of the service and ports.

A WSDL file describes a web service with the following elements:

886 Overview

portType

The description of the operations and associated messages. The portType element defines abstract
operations.
<portType name="EightBall">
<operation name="getAnswer">
<input message="ebs:IngetAnswerRequest"/>
<output message="ebs:OutgetAnswerResponse"/>

</operation>
</portType>

message

The description of input and output parameters and return values.
<message name="IngetAnswerRequest">
<part name="meth1_inType" type="ebs:questionType"/>

</message>
<message name="OutgetAnswerResponse">
<part name="meth1_outType" type="ebs:answerType"/>

</message>

types

The schema for describing XML types used in the messages.
<types>
<xsd:schema targetNamespace="...">
<xsd:complexType name="questionType">
<xsd:element name="question" type="string"/>

</xsd:complexType>
<xsd:complexType name="answerType">
...

</types>

binding

The bindings describe the protocol that is used to access a portType, as well as the data formats for the
messages that are defined by a particular portType element.
<binding name="EightBallBinding" type="ebs:EightBall">
<soap:binding style="rpc" transport="schemas.xmlsoap.org/soap/http">
<operation name="ebs:getAnswer">
<soap:operation soapAction="urn:EightBall"/>
<input>
<soap:body namespace="urn:EightBall" ... />
...

Service

The services and ports define the location of the Web service.

The service contains the web service name and a list of ports.

Ports

The ports contain the location of the web service and the binding used for service access.
<service name="EightBall">
<port binding="ebs:EightBallBinding" name="EightBallPort">
<soap:address location="localhost:8080/axis/EightBall"/>

</port>
</service>

When creating Java API for XML Web Services (JAX-WS) or Java API for XML-based RPC (JAX-RPC)
web services, you can use a bottom-up development approach when you start from JavaBeans or an
enterprise bean, or you can use a top-down development approach when you start with an existing Web
Services Description Language (WSDL) file.

Chapter 27. Web services 887

When creating JAX-WS web services for this product, you can start with either a WSDL or an
implementation bean class. If you start with an implementation bean class, then use the wsgen command
line tool to generate all the web services server artifacts, including a WSDL if requested. If you start with a
WSDL, then use the wsimport command line tool to generate all the web services artifacts for either the
server or client side.

When creating JAX-RPC web services for this product, you must first have an implementation bean that
includes a service endpoint interface. Then, you use the Java2WSDL command-line tool to create a WSDL
file that defines the web services. If you are starting with the WSDL to generate the implementation bean
class, run the WSDL2Java command line tool against the WSDL file to create Java APIs and deployment
descriptor templates.

Multipart WSDL and WSDL publication

The product supports deployment of web services using a multipart Web Services Description Language
(WSDL) file. In multipart WSDL files, an implementation WSDL file contains the wsdl:service. This
implementation WSDL file imports an interface WSDL file, which contains the other WSDL constructs. This
supports multiple web services using the same WSDL interface definition.

The <wsdl:import> element indicates a reference to another WSDL file. If the <wsdl:import> element
location attribute does not contain a URL, that is, it contains only a file name, and does not begin with
http://, https:// or file://, the imported file must be located in the same directory and must not
contain a relative path component. For example, if META-INF/wsdl/A_Impl.wsdl is in your module and
contains the <wsdl:import="A.wsdl" namespace="..."/> import statement, the A.wsdl file must also be
located in the module META-INF/wsdl directory.

It is recommended that you place all WSDL files in either the META-INF/wsdl directory, if you are using
Enterprise JavaBeans (EJB), or the WEB-INF/wsdl directory, if you are using JavaBeans components, even
if relative imports are located within the WSDL files. Otherwise, implications exist with the WSDL
publication when you use a path like <location="../interfaces/A_Interface.wsdl"namespace="..."/>.
Using a path like this example fails because the presence of the relative path, regardless of whether the
file is located at that path or not. If the location is a web address, it must be readable at both deployment
and server startup.

You can publish the files located in the META-INF/wsdl or the WEB-INF/wsdl directory through either a URL
address or file, including WSDL or XML Schema Definition (XSD) files. For example, if the file referenced
in the <wsdl-file> element of the webservices.xml deployment descriptor is located in the META-INF/wsdl
or the WEB-INF/wsdl directory, it is publishable. If the files imported by the <wsdl-file> are located in the
wsdl/ directory or its subdirectory, they are publishable.

If the WSDL file referenced by the <wsdl-file> element is located in a directory other than wsdl, or its
subdirectories, the file and its imported files, either WSDL or XSD files, which are in the same directory,
are copied to the wsdl directory without modification when the application is installed. These types of files
can also be published.

If the <wsdl-file> imports a file located in a different directory (a directory that is not -INF/wsdl or a
subdirectory), the file is not copied to the wsdl directory and not available for publishing.

For JAX-WS web services, you can use an annotation to specify the location of the WSDL. Use the
@WebService annotation with the WSDLLocation attribute. The WSDLLocation attribute is optional. If this
attribute is not specified, then WSDL is generated and published from the information that is found in the
web service classes. You can optionally specify the location of the WSDL file in the webservices.xml
deployment descriptor. However, any information that you define in the webservices.xml deployment
descriptor overrides any corresponding information that is specified by annotations.

888 Overview

SOAP
SOAP is a specification for the exchange of structured information in a decentralized, distributed
environment. As such, it represents the main way of communication between the three key actors in a
service oriented architecture (SOA): service provider, service requestor and service broker. The main goal
of its design is to be simple and extensible. A SOAP message is used to request a web service.

SOAP 1.1

WebSphere Application Server follows the standards outlined in SOAP 1.1.

SOAP was submitted to the World Wide Web Consortium (W3C) as the basis of the Extensible Markup
Language (XML) Protocol Working Group by several companies, including IBM and Lotus. This protocol
consists of three parts:

v An envelope that defines a framework for describing message content and processing instructions.

v A set of encoding rules for expressing instances of application-defined data types.

v A convention for representing remote procedure calls and responses.

SOAP 1.1 is a protocol-independent transport and can be used in combination with a variety of protocols.
In web services that are developed and implemented with WebSphere Application Server, SOAP is used in
combination with HTTP, HTTP extension framework, and Java Message Service (JMS). SOAP is also
operating-system independent and not tied to any programming language or component technology.

As long as the client can issue XML messages, it does not matter what technology is used to implement
the client. Similarly, the service can be implemented in any language, as long as the service can process
SOAP messages. Also, both server and client sides can reside on any suitable platform.

SOAP 1.2

The SOAP 1.2 specification is also a W3C recommendation, and WebSphere Application Server follows
the standards that are outlined in SOAP 1.2. The SOAP 1.2 specification comes in three parts plus some
assertions and a test collection:

v Part 0: Primer

v Part 1: Messaging Framework

v Part 2: Adjuncts

v Specification Assertions and Test Collection

SOAP 1.2 provides a more specific definition of the SOAP processing model, which removes many of the
ambiguities that sometimes led to interoperability problems in the absence of the Web
Services-Interoperability (WS-I) profiles. SOAP 1.2 should reduce the chances of interoperability issues
with SOAP 1.2 implementations between different vendors.

Some of the more significant changes in the SOAP 1.2 specification include:

v The ability to now officially define other transport protocols other than the HTTP protocol as long as
vendors conform to the binding framework that is defined in SOAP 1.2. While HTTP is ubiquitous, it is
not as reliable of a transport as other things such as TCP/IP, MQ, and so forth.

v The fact that SOAP 1.2 is based on the XML Information Set (XML Infoset). The information set
provides a way to describe the XML document using the XSD schema but does not necessarily serialize
the document by using XML 1.0 serialization. SOAP 1.1 is based upon XML 1.0 serialization. The
information set will make it easier to use other serialization formats such as a binary protocol format.
You can use a binary protocol format shrink the message into a much more compact format where
some of the verbose tagging information might not be required.

Chapter 27. Web services 889

The Java API for XML Web Services (JAX-WS) standard introduces the ability to support both SOAP 1.1
as well as SOAP 1.2.

See the differences is SOAP versions information for additional differences between SOAP 1.1 and SOAP
1.2.

For a complete list of the supported standards and specifications, see the web services specifications and
API documentation.

SOAP with Attachments API for Java interface
The SOAP with Attachments API for Java (SAAJ) interface is used for SOAP messaging that provides a
standard way to send XML documents over the Internet from a Java programming model. SAAJ is used to
manipulate the SOAP message to the appropriate context as it traverses through the runtime environment.

best-practices: IBM WebSphere Application Server supports the Java API for XML-Based Web Services
(JAX-WS) programming model and the Java API for XML-based RPC (JAX-RPC)
programming model. JAX-WS is the next generation web services programming model
extending the foundation provided by the JAX-RPC programming model. Using the
strategic JAX-WS programming model, development of web services and clients is
simplified through support of a standards-based annotations model. Although the
JAX-RPC programming model and applications are still supported, take advantage of the
easy-to-implement JAX-WS programming model to develop new web services
applications and clients.

The Java API for XML-Based RPC (JAX-RPC) programming model supports SAAJ 1.2 to manipulate the
XML.

The JAX-WS programming model supports SAAJ 1.2 and 1.3. SAAJ 1.3 includes support for SOAP 1.2
messages.

The differences in the SAAJ 1.2 and SAAJ 1.3 specification can be reviewed in the topic “Differences in
SAAJ versions.”

How are messages used in web services?

Web services use XML technology to exchange messages. These messages conform to XML schema.
When developing web services applications, there are limited XML APIs to work with, for example,
Document Object Model (DOM). It is more efficient to manipulate the Java objects and have the
serialization and deserialization completed during run time.

Web services uses SOAP messages to represent remote procedure calls between the client and the
server. Typically, the SOAP message is deserialized into a series of Java value-type business objects that
represent the parameters and return values. In addition, the Java programming model provides APIs that
support applications and handlers to manipulate the SOAP message directly. Because there are a limited
number of XML schema types that are supported by the programming models, the specification provides
the SAAJ data model as an extension to manipulate the message.

To manipulate the XML schema types, you need to map the XML schema types to Java types with a
custom data binder.

The SAAJ interface

The SAAJ-related classes are located in the javax.xml.soap package. SAAJ builds on the interfaces and
abstract classes and many of the classes begin by invoking factory methods to create a factory such as
SOAPConnectionFactory and SOAPFactory.

890 Overview

gotcha: If Java security is enabled, and permissions to read the jaxm.properties file is not granted, when
a SOAPFactory instance is created through a call to javax.xml.soap.SOAPFactory.newInstance(),
or a MessageFactory instance is created through a call to MessageFactory.newInstance(), a
SecurityException exception occurs, and the following exception is written to the system log:

Permission:

/opt/IBM/WebSphere/AppServer/java/jre/lib/jaxm.properties : access denied
(java.io.FilePermission /opt/IBM/WebSphere/AppServer/java/jre/lib/jaxm.properties
read)

Code:

com.ibm.ws.wsfvt.test.binding.addr1.binder.AddressBinder
in {file:/opt/IBM/WebSphere/AppServer/profiles/AppSrv01/installedApps/
ahp6405Node01Cell/DataBinding.ear/address1.war/WEB-INF/lib
/addressbinder1.jar}

Stack Trace:

java.security.AccessControlException: access denied (java.io.FilePermission
/opt/IBM/WebSphere/AppServer/java/jre/lib/jaxm.properties read)
.

The SOAPFactory ignores the exception, and continues on to the next means of determining
which implementation to load. Therefore, you can ignore the log entry for this security exception.

Because this product uses the SOAPFactory to support other web services technologies, such as
WS-Addressing (WS-A), WS-Atomic Transaction (WS-AT), and WS-Notification, you can ignore
this SecurityException in any web services application where Java security is enabled.

The most commonly used classes are:

v SOAPMessage: Contains the message, both the XML and non-XML parts

v SOAPHeader: Represents the SOAP header XML element

v SOAPBody: Represents the SOAP body XML element

v SOAPElement: Represents the other elements in the SOAP message

Other parts of the SAAJ interface include:

v MessageContext: Contains a SOAP message and related properties

v AttachmentPart: Represents a binary attachment

v SOAPPart: Represents the XML part of the message

v SOAPEnvelope: Represents the SOAP envelope XML element

v SOAPFault: Represents the SOAP fault XML element

The primary interface in the SAAJ model is javax.xml.soap.SOAPElement, also referred to as
SOAPElement. Using this model, applications can process an SAAJ model that uses pre-existing DOM
code. It is also easier to convert pre-existing DOM objects to SAAJ objects.

Messages created using the SAAJ interface follow SOAP standards. A SOAP message is represented in
the SAAJ model as a javax.xml.soap.SOAPMessage object. The XML content of the message is
represented by a javax.xml.soap.SOAPPart object. Each SOAP part has a SOAP envelope. This envelope
is represented by the SAAJ javax.xml.SOAPEnvelope object. The SOAP specification defines various
elements that reside in the SOAP envelope; SAAJ defines objects for the various elements in the SOAP
envelope.

The SOAP message can also contain non-XML data that is called attachments. These attachments are
represented by SAAJ AttachmentPart objects that are accessible from the SOAPMessage object.

A number of reasons exist as to why handlers and applications use the generic SOAPElement API instead
of a tightly bound mapping:

Chapter 27. Web services 891

v The web service might be a conduit to another web service. In this case, the SOAP message is only
forwarded.

v The web service might manipulate the message using a different data model, for example a Service
Data Object (SDO). It is easier to convert the message from a SAAJ DOM to a different data model.

v A handler, for example, a digital signature validation handler, might want to manipulate the message
generically.

You might need to go a step further to map your XML schema types, because the SOAPElement interface
is not always the best alternative for legacy systems. In this case you might want to use a generic
programming model, such as SDO, which is more appropriate for data-centric applications.

The XML schema can be configured to include a custom data binding that pairs the SDO or data object
with the Java object. For example, the run time renders an incoming SOAP message into a SOAPElement
interface and passes it to the customer data binder for more processing. If the incoming message contains
an SDO, the run time recognizes the data object code, queries its type mapping to locate a custom binder,
and builds the SOAPElement interface that represents the SDO code. The SOAPElement is passed to the
SDOCustomBinder.

See information on custom data binders to learn more about the process of developing applications with
SOAPElement, SDO and custom binders.

Starting in WebSphere Application Server Version 8, the SOAPMessage.getSOAPHeader and getSOAPBody
methods now throw a SOAPException if there is no corresponding element in the message. A System
property is provided to revert the behavior to return null rather than throw an exception. The property is
defined in com.ibm.websphere.webservices.soap.IBMSOAPMessage.ENABLE_LEGACY_GETSOAP_BEHAVIOR as a
String value of com.ibm.websphere.webservices.soap.enable.legacy.get.behavior. The default value of
the property is null which is interpreted as false. To revert the behavior to return a null, set the property to
the String value true. The previous behavior of returning null is not compliant with the specification.

For a complete list of the supported standards and specifications, see the web services specifications and
API documentation.

Differences in SAAJ versions
The SOAP with Attachments API for Java (SAAJ) interface Version 1.3 expands the support of SOAP 1.2
messages in a web services environment. There are several differences between SAAJ 1.2 and SAAJ 1.3
that are presented in this topic.

In a typical web services environment, you rely on the underlying code that is based on Java standards to
translate a set of Java objects. The SAAJ interface provides APIs to read, write, send and receive SOAP
messages, and advocates binary content sent as an attachment to a SOAP message.

SAAJ 1.3 aligns with SOAP 1.1 and SOAP 1.2 messages and is supported by the Java API for XML Web
Services (JAX-WS) programming model and the Java API for XML-Based RPC (JAX-RPC) programming
model. SAAJ 1.2 works with SOAP 1.1 messages only.

If you migrate your code from SOAP 1.1 to SOAP 1.2, you can continue to use your existing SOAP 1.1
code, if the message is a SOAP 1.2 message. If you upgrade your base code to use SAAJ 1.3, then you
can continue to use the existing code that operates on a SOAP 1.1 message. An example of these
differences is in SOAP 1.1, where the human readable text of a fault is stored in the faultString element. In
SOAP 1.2, the human readable text is stored in the Reason element. Your code might look like the
following example:
String text = soapFault.getFaultString();

The getFaultString () returns the faultString value if the message is based on SOAP 1.1. If you are using
SOAP 1.2, the getFaultString () returns the Reason value. In addition, the SAAJ 1.3 interface provides a
new method, getReasonText (Locale), that gets a specific Reason value. The getReasonText (Locale)

892 Overview

method returns a documented exception if the message is based on SOAP 1.1. The SAAJ 1.3 interface
supports existing code to process both SOAP 1.1 and SOAP 1.2 messages.

Other differences between SAAJ 1.2 and SAAJ 1.3 are in the following list:

v SAAJMetaFactory interface

The SAAJMetaFactory SPI is introduced to support creating SOAP factory classes in a single place.

v SAAJResult class

The SAAJResult object acts as a holder for the results of a Java API for XML Processing (JAX-P)
transformation or a Java Architecture for XML Binding (JAXB) marshalling, in the SAAJ tree. The
SAAJResult class is introduced for improved usability when transformation results are expected to be a
valid SAAJ tree.

v Overloaded methods that accept a QName instead of a Name

It is preferred that a QName represents an XML-qualified name. Therefore, overloaded methods are
introduced in all of the SAAJ APIs, where a corresponding method accepts a javax.xml.soap.Name
name as an argument.

v New methods in AttachmentPart, SOAPBody and SOAPElement interfaces and classes

Use these new methods to assist you when you are working with the new SOAP features.

v SOAPPart is now a javax.xml.soap.Node method.

The SOAPPart object is now also considered to be a SOAP node method.

For a complete list of the supported standards and specifications, see the web services specifications and
API documentation.

Message Transmission Optimization Mechanism
SOAP Message Transmission Optimization Mechanism (MTOM) is a standard that is developed by the
World Wide Web Consortium (W3C). MTOM describes a mechanism for optimizing the transmission or
wire format of a SOAP message by selectively re-encoding portions of the message while still presenting
an XML Information Set (Infoset) to the SOAP application.

There are many reasons why you might want to send binary attachments, such as images or files, along
with a web services request. There are ways to accomplish this, such as:

v Encoding with base64 inline in the SOAP payload. However, encoding inline tends to enlarge the size of
the SOAP message. Note that base64 encoding might double the size of the binary data.

v Encoding the messages by using SOAP with Attachments (SwA) and to follow the Web Services
Interoperability Organization (WS-I) Attachments Profile. WebSphere Application Server currently
supports this method.

v Providing optimization of binary message transportation by using XML-binary Optimized Packaging
(XOP). Optimization is available only for binary data or content. MTOM uses XOP in the context of
SOAP and MIME over HTTP.

XOP defines a serialization mechanism for the XML Infoset with binary content that is not only applicable
to SOAP and MIME packaging, but to any XML Infoset and any packaging mechanism. It is an alternate
serialization of XML that just happens to look like a MIME multipart/related package, with an XML
documents as the root part. That root part is very similar to the XML serialization of the document, except
that base64-encoded data is replaced by a reference to one of the MIME parts, which is not base64
encoded. This reference enables you to avoid the bulk and overhead in processing that is associated with
encoding. Encoding is the only way a binary data can fit directly into an XML world.

If MTOM mapping generation is disabled, then XOP is disabled. If XOP is disabled, the binary data are not
sent by using MIME attachments. Instead, the binary data is base64 encoded as usual.

The MTOM specification is defined in three different parts:

Chapter 27. Web services 893

v An abstract feature for optimized transmission or wire format for SOAP messages. This feature is
abstract in the sense that the description of the optimization technique as well as the behavior of the
SOAP processors at sender, receiver and intermediaries is generic and does not include any references
to technologies such as MIME, HTTP, and so forth. The optimization technique centers around ensuring
a SOAP envelope Infoset view for the SOAP processors while encoding selectively certain contents of
the SOAP Envelope Infoset that are accessible as canonical lexical representation of the
xs:base64Binary data type.

Implementing these abstract features requires concrete specification of two aspects: the optimized wire
format and how the optimized wire format flows on a particular transport

v The second part of the MTOM specification addresses the serialization aspect and depends normatively
upon MIME Multipart/Related XOP packaging. The serialization aspect is where MTOM relates to XOP.

v As a concrete SOAP HTTP binding level feature, MTOM expands upon the serialization. This part
describes how HTTP binding can be used to transport the XOP packages that are holding the SOAP
MTOM messages. This part also puts some restrictions on the possible serializations of the SOAP
MTOM messages as XOP packages, such as use of XML 1.0 only.

The Java API for XML Web Services (JAX-WS) adds support for sending binary data attachments using
MTOM. JAX-WS is the centerpiece of a newly re-architected API stack for web service that includes
JAX-WS 2.0, JAXB 2.0, and SAAJ 1.3. The API stack is sometimes referred to as the integrated stack.
JAX-WS is designed to take the place of JAX-RPC in web services and web applications.

Attachment approach

Attachment by value or by reference has been the widely accepted technique for handling opaque data in
XML-formatted messages.

v By value is when the opaque data content is embedded as an element or as an attribute by using
either base64 or hexadecimal text encoding approach, which is codified in the XML schema as data
types xs:base64Binary and xs:hexBinary, respectively.

v By reference is when the opaque data content is referenced externally as element or as attribute by
using a URI, which is codified in the XML schema as data type xs:anyURI.

The use of either of these two techniques has its advantages and disadvantages. MTOM is the
specification that is focused on resolving these inherent attachments problems.

A different standard is defined by World Wide Web Consortium (W3C) and is called SOAP with
Attachments (SwA). SwA was developed as a way to package SOAP messages with attachments.
Because some vendors do not support SwA, SwA can be replaced by the more powerful MTOM and XOP
mechanisms. SwA and MTOM are conceptually similar, and both encode binary data as a MIME
attachment in a MIME document. Using MIME attachments improves the performance of large binary
payloads transport.

Additional differences between SwA and MTOM include:

v MTOM uses a standard called XOP, which defines a XOP reference that exists within the SOAP
payload. This reference points to the MIME attachment that contains the binary data.

v With MTOM, the XOP reference logically includes the binary data into the XML Information Set (Infoset).
With SwA, the href points to data that is not only physically outside the XML document but is not
logically included within its Infoset.

v With MTOM, binary attachments can be logically signed as if they were part of the SOAP XML
document.

v In additional to IBM, Microsoft .NET supports MTOM, which eliminates some of the interoperability
problems found with SwA. Interoperability was treated as the main goal when the co-submitters
discussed the suggested modifications.

The MTOM attachment approach takes advantage of the SOAP infrastructure while also gaining transport
efficiencies that are provided by SOAP with Attachment (SwA) solution.

894 Overview

SOAP 1.2 and SOAP 1.1

SOAP 1.1 is based on the XML specification. Likely, the SOAP 1.1 implementation will continue to exist for
a few years. For those who are still running SOAP 1.1, there is now an interoperable way to use MTOM
for attachments support. SAP, Oracle, Microsoft, and IBM have submitted a SOAP 1.1 Binding for MTOM
1.0 specification to W3C, which defines how MTOM can be used with SOAP 1.1 payloads. The
specification details the necessary modifications to the SOAP MTOM and XOP specifications that are
necessary to successfully use these technologies with SOAP 1.1. See the specification to learn more
details.

MTOM is a SOAP Version 1.2 feature, which is based on the Infoset. See the XML information set
documentation to learn more.

Without MTOM, the data is encoded in whatever format is described in the schema (base64 or hex) and
then is contained in the XML document. The following example shows a SOAP message with an
<xsd:base64Binary> element:
... other transport headers ...
Content-Type: text/xml; charset=UTF-8

<?xml version="1.0" encoding="UTF-8"?>
<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/">
<soapenv:Header/>
<soapenv:Body>
<sendImage xmlns="http://org/apache/axis2/jaxws/sample/mtom">
<input>
<imageData>R0lGODl ... more base64 encoded data ... KTJk8giAAA7</imageData>

</input>
</sendImage>

</soapenv:Body>
</soapenv:Envelope>

When MTOM is enabled, the binary data that represents the attachment is included as a MIME attachment
to the SOAP message. The following example shows an MTOM-enabled SOAP message with attachment
data:
... other transport headers ...
Content-Type: multipart/related; boundary=MIMEBoundaryurn_uuid_0FE43E4D025F0BF3DC11582467646812;
type="application/xop+xml"; start="<0.urn:uuid:0FE43E4D025F0BF3DC11582467646813@apache.org>";
start-info="text/xml"; charset=UTF-8

--MIMEBoundaryurn_uuid_0FE43E4D025F0BF3DC11582467646812
content-type: application/xop+xml; charset=UTF-8; type="text/xml";
content-transfer-encoding: binary
content-id:

<0.urn:uuid:0FE43E4D025F0BF3DC11582467646813@apache.org>

<?xml version="1.0" encoding="UTF-8"?>
<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/">
<soapenv:Header/>
<soapenv:Body>
<sendImage xmlns="http://org/apache/axis2/jaxws/sample/mtom">
<input>
<imageData>
<xop:Include xmlns:xop="http://www.w3.org/2004/08/xop/include"

href="cid:1.urn:uuid:0FE43E4D025F0BF3DC11582467646811@apache.org"/>
</imageData>

</input>
</sendImage>
</soapenv:Body>

</soapenv:Envelope>
--MIMEBoundaryurn_uuid_0FE43E4D025F0BF3DC11582467646812
content-type: text/plain
content-transfer-encoding: binary
content-id:

<1.urn:uuid:0FE43E4D025F0BF3DC11582467646811@apache.org>

... binary data goes here ...
--MIMEBoundaryurn_uuid_0FE43E4D025F0BF3DC11582467646812--

XML-binary Optimized Packaging:

XML-binary Optimized Packaging (XOP) specification was standardized by the World Wide Web (W3C) on
January 25, 2005. SOAP Message Transmission Optimization Mechanism (MTOM) uses XOP in the
context of SOAP and MIME over HTTP.

Chapter 27. Web services 895

XML is widely used for data transfer. XML is a popular format for exchanging well-formed documents
because it is plain text, human-readable, and structured. For example, SOAP messaging in web services
is based on XML (or is based on XML Infoset with SOAP 1.2). People want to leverage legacy formats like
PDF, GIF, JPEG and similar things, while still using an XML model. The desire to integrate XML with
pre-existing data formats has been a long-standing and persistent issue for the XML community. Users
often want to leverage the structured, extensible markup conventions of XML without abandoning existing
data formats that do not readily adhere to XML 1.0 syntax.

As SOAP messaging in web services becomes more widespread, the next step is how to send non-text
based data, such as images and workflow data, along with your message. For example, you might want to
send a scanned document in .jpeg format between two applications. The question becomes whether this
data can be understood between the various applications.

Much of the value of XML and web services resides in the ability to use generic XML tools to work with
content. Many XML tools and standards for describing and manipulating XML (such as parsers, XPath,
XQuery, XSLT, XML encryption and digital signature and XML schema) are not designed to work with
non-text data, such as images. These XML tools do not work with non-XML content; these tools require
text. The challenge is how non-text data (also called binary data) can be embedded or attached with XML.
In other words, a way to attach a binary file to a SOAP message is needed.

Encoding is the only way binary data can fit directly into an XML world. Normally, you can embed binary
data in an XML document by encoding it as text using Base 64. Base 64 is a serialization that has existed
for some time, can be easily implemented out of the box, and has interoperability across platforms. The
xsi:base64binary datatype supports this serialization in the XML Schema. Base 64 encodes your binary
data into a textual representation that can squeeze into an XML document. Base 64 takes your binary data
and translates it into a series of ASCII characters by encoding three octets at a time. Because each octet
consists of eight bits, representing them as four printable characters in the ASCII standard, it uses 64
ASCII characters to represent the binary. All platforms can decode and encode using this convention. 6-bit
ASCII is widely supported, and no special characters need to be dealt with. However, there is a
performance impact for larger messages.

For applications that require speedy operation, Base 64 might not be the solution. If you want to index into
such content, query it, transform it, encrypt it, sign it, or describe it, you need to use a different
mechanism.

The first attachment specification known as SOAP with Attachments (SwA) was developed. The basic idea
of SwA is that the binary message part (the attachment) is thought of as a Multipurpose Internet Mail
Extensions (MIME) attachment. MIME is a widely implemented specification for formatting non-ASCII mail
message attachments. SwA specifies that the SOAP body can contain a reference to the MIME message
part (the attachment) simply by using a URI. The binary part is attached by a reference.

A few disadvantages of SwA include:

v SwA fails in its usability or interoperability. The SOAP infrastructure was created around the SOAP
envelope, which didn't work well for attachments. An attachment using SwA means that two data
models are used in one message. These two data models do not operate with existing XML technology.

v SwA does not work with the composable character of SOAP. Basically standards, such as WS-Security,
were not written to work with attachments. WS-Security needs to work on all the data that needs to be
digitally signed or encrypted, and that means all the data in the attachment also. But if it cannot access
it, then it will not work and the signature is effectively invalid.

Often, users want to leave their existing non-XML formats as is, to be treated as opaque sequences of
octets by XML tools and infrastructure. Such an approach permits widely used formats such as .jpeg and
.wav to peacefully coexist with XML. XOP makes it a bit more realistic to use base64-encoded data. At the
current time, XOP only permits base64-encoded data to be optimized.

896 Overview

Using XOP means that instances of XML-type base64Binary, if enabled, are transported by using MIME
attachments. If XOP is in use, the implementation can automatically encode it. XOP maintains the data
model of the XML message because the attachment is treated as base64-encoded data. If an XML stack
understands XOP encoding, your application does not need to be changed at all. For example, when it
wants to access a .jpeg picture, it can get the character value of the content as a base64-encoded string.

XOP gives people a way to think about MIME messages in a data exchange that they are comfortable with
and already use for a lot of other data. The XOP format uses multipart MIME to enable raw binary data to
be included into an XML 1.0 document without resorting to base64 encoding.

A companion specification, SOAP Message Transmission Optimization Method (MTOM) then specifies how
to bind this format to SOAP. The XOP and MTOM standards should enhance SOAP 1.2 performance.
XOP and MTOM together provide the preferred approach for mixing binary data with text-based XML.
Coupled together, MTOM and XOP enables us to select what parts of the message need to be sent over
the wire as binary while still maintaining the Infoset. These standards enable the attachment of binary data
outside of the SOAP envelope as a message part. However, unlike SwA, the binary data is treated very
much as it was within the SOAP envelope, meaning one Infoset.

XOP defines a serialization mechanism for XML Infoset with binary content that is not only applicable to
SOAP and MIME packaging, but applicable to any XML Infoset and any packaging mechanism. On the
other hand, XML is not a good general-purpose packaging mechanism.

An XOP package is created by placing a serialization of the XML Infoset inside of an extensible packaging
format (such a MIME). Note that XOP does reuse MIME for the actual packaging on the wire. Then,
selected portions of its content that are base64-encoded binary data are extracted and re-encoded,
meaning the data is decoded from base64 and placed into the package. The locations of those selected
portions are marked in the XML with a special element that links to the packaged data by using URIs.

The SOAP processing engines performs a temporary Base 64 encoding of the binary data just before the
message hits the wire. This temporary encoding enables the SOAP processor to work on the Base 64
data; for example, enabling a WS-Signature of the data to be taken and placed into the header. There is
no need for expensive decoding at the other end, and the process works in reverse.

Implementations of MTOM and XOP are available in Java (JAX-WS).

This example shows an XML Infoset prior to XOP processing (SOAP):
<soap:Envelope

xmlns:soap=’http://www.w3.org/2003/05/soap-envelope’
xmlns:xmlmime=’http://www.w3.org/2004/11/xmlmime’>

<soap:Body>
<m:data xmlns:m=’http://example.org/stuff’>
<m:photo xmlmime:contentType=’image/png’>/aWKKapGGyQ=</m:photo>
<m:sig xmlmime:contentType=’application/pkcs7-signature’>Faa7vROi2VQ=</m:sig>

</m:data>
</soap:Body>

</soap:Envelope>

This example shows an XML Infoset that is serialized as a XOP package (SOAP)
MIME-Version: 1.0
Content-Type: Multipart/Related;boundary=MIME_boundary;

type="application/xop+xml";
start="<mymessage.xml@example.org>";
startinfo="application/soap+xml; action=\"ProcessData\""

Content-Description: A SOAP message with my pic and sig in it

--MIME_boundary
Content-Type: application/xop+xml;

charset=UTF-8;
type="application/soap+xml; action=\"ProcessData\""

Content-Transfer-Encoding: 8bit
Content-ID: <mymessage.xml@example.org>

<soap:Envelope
xmlns:soap=’http://www.w3.org/2003/05/soap-envelope’
xmlns:xmlmime=’http://www.w3.org/2004/11/xmlmime’>

<soap:Body>

Chapter 27. Web services 897

<m:data xmlns:m=’http://example.org/stuff’>
<m:photo

xmlmime:contentType=’image/png’><xop:Include
xmlns:xop=’http://www.w3.org/2004/08/xop/include’
href=’cid:http://example.org/me.png’/></m:photo>
<m:sig

xmlmime:contentType=’application/pkcs7-signature’><xop:Include
xmlns:xop=’http://www.w3.org/2004/08/xop/include’
href=’cid:http://example.org/my.hsh’/></m:sig>
</m:data>

</soap:Body>
</soap:Envelope>

--MIME_boundary
Content-Type: image/png
Content-Transfer-Encoding: binary
Content-ID: <http://example.org/me.png>

// binary octets for png

--MIME_boundary
Content-Type: application/pkcs7-signature
Content-Transfer-Encoding: binary
Content-ID: <http://example.org/my.hsh>

// binary octets for signature

--MIME_boundary--

XML information set:

XML Information Set (Infoset) is a World Wide Web Consortium (W3C) specification, dated February 4,
2004. An XML information set is an abstract model of the information that is stored in an XML document.
The information set establishes a separation between data and information in a way that suits most
common uses of XML. Several of the concrete XML data models are defined by referring to XML
information set items and their properties.

Whereas an XML information set is an abstract model of the information that is stored in an XML
document, an information item is an abstract representation of some component of an XML document.
SOAP Version 1.2 makes use of this abstraction to define the information in a SOAP message without
ever referring to XML Version 1.x. The SOAP HTTP binding specifically permits alternative media types
that provide for, as a minimum, the transfer of the SOAP XML Infoset.

SOAP Message Transmission Optimization Mechanism (MTOM) describes SOAP 1.2 constructs in terms
of information items whereas SOAP 1.1 is defined in terms of XML elements. MTOM enables SOAP
bindings to optimize the transmission or wire format (or both) of a SOAP message by selectively encoding
portions of the message while still presenting an XML information set to the SOAP application. The SOAP
1.2 attribute is now in the SOAP namespace. The XML information sets require the support of XML
namespaces. The core XML recommendation does not require the support of XML namespaces; however
namespaces are required to support the XML schema.

The XML information set does not require or favor a specific interface or class of interfaces. The XML
information set specification presents the information set as a tree for the sake of clarity and simplicity, but
there is no requirement that the XML information set be made available through a tree structure. Other
types of interfaces, including but not limited to event-based and query-based interfaces, are also capable
of providing information conforming to the information set. As long as the information in the information set
is made available to XML applications in one way or another, the requirements of the XML information set
are satisfied.

The XML information set provides a set of definitions to be used in other specifications that refer to the
information in a well-formed XML document. For any given XML document, there are a number of
corresponding information sets.

v A unique minimal information set consisting of the core properties of the core items and nothing else.

898 Overview

v A unique maximal information set consisting of all the core and all the peripheral items with all the
peripheral properties, and one for every combination of present and absent peripheral items and
properties in between. The in-between information sets must be fully consistent with the maximal
information set.

Information set items

The XML information set is a description of the information that is available in a well-formed XML
document, and it describes an abstract data model of an XML document in terms of a set of information
set items. An information item is an abstract description of some part of an XML document, and each
information item has a set of associated named properties. All other information items are accessible from
the properties of the document information item, either directly or indirectly through the properties of other
information items.

Guidelines for using information set items include:

v There is no requirement for an XML document to be valid in order to have an information set.

v An XML document has an information set if it satisfies the namespace constraints.

v An XML document has an information set if it is well-formed

v Only one document information item is permitted in the information set.

v An information set for an XML document consists of two or more information items.

v The information set for any well-formed XML document will contain at least the minimum information
items: one document information item and one element information item.

v Each information item has a set of associated properties, some of which are core and some of which
are peripheral.

An information set can contain up to eleven different types of information items:
v Document information item
v Element information items
v Attribute information items
v Processing instruction information items
v Unexpanded entity reference information items
v Character information items
v Comment information items
v The Document Type Declaration (DTD) information item
v Unparsed entity information items
v Notation information items
v Namespace information items

Note that the information set of the XML document might not be a complete list of all information items.

Certain kinds of invalidity affect the values assigned to some properties. Entities, notations, elements and
attributes can be undeclared. You can have multiple declarations for notations and elements. Multiple
declarations are valid for entities and attributes. An ID can be undefined or multiply defined. Such cases
are noted where relevant in the information item definitions in the XML Information Set specification.

Syntax

The XML information set uses a square-bracket syntax, meaning the property names are shown in square
brackets. For example, the document information item has the following properties:

Table 85. XML information syntax. Specifies the syntax for property names for an XML document information item.
Property Description

[children] An ordered list of child information items, in document order.

[document element] The element information item corresponding to the document element.

Chapter 27. Web services 899

Table 85. XML information syntax (continued). Specifies the syntax for property names for an XML document
information item.
Property Description

[notations] An unordered set of notation information items, one for each notation declared in the DTD. If any notation is
multiply declared, this property has no value.

[unparsed entities] An unordered set of unparsed entity information items, one for each unparsed entity declared in the DTD.

[base URI] The base URI of the document entity.

[character encoding scheme] The name of the character encoding scheme in which the document entity is expressed.

[standalone] An indication of the stand-alone status of the document, either yes or no. This property is derived from the
optional standalone document declaration in the XML declaration at the beginning of the document entity, and
has no value if there is no standalone document declaration.

[version] A string representing the XML version of the document. This property is derived from the XML declaration
optionally present at the beginning of the document entity, and has no value if there is no XML declaration.

[all declarations processed] This property is not strictly speaking part of the information set of the document. Rather it is an indication of
whether the processor has read the complete DTD. Its value is a boolean. If it is false, then certain properties
(indicated in their descriptions later in this section) might be unknown. If it is true, those properties are never
unknown.

All information sets are understood to describe the XML document with all entity references already
expanded; that is, represented by the information items corresponding to their replacement text. In the
case that an entity reference cannot be expanded, because an XML processor has not read its declaration
or its value, explicit provision is made for representing such a reference in the information set.

Differences in SOAP versions
Both SOAP Version 1.1 and SOAP Version 1.2 are World Wide Web Consortium (W3C) standards. Web
services can be deployed that support not only SOAP 1.1 but also support SOAP 1.2. Some changes from
SOAP 1.1 that were made to the SOAP 1.2 specification are significant, while other changes are minor.

The SOAP 1.2 specification introduces several changes to SOAP 1.1. This information is not intended to
be an in-depth description of all the new or changed features for SOAP 1.1 and SOAP 1.2. Instead, this
information highlights some of the more important differences between the current versions of SOAP.

The changes to the SOAP 1.2 specification that are significant include the following updates:

v SOAP 1.1 is based on XML 1.0. SOAP 1.2 is based on XML Information Set (XML Infoset).

The XML information set (infoset) provides a way to describe the XML document with XSD schema.
However, the infoset does not necessarily serialize the document with XML 1.0 serialization on which
SOAP 1.1 is based.. This new way to describe the XML document helps reveal other serialization
formats, such as a binary protocol format. You can use the binary protocol format to compact the
message into a compact format, where some of the verbose tagging information might not be required.

In SOAP 1.2 , you can use the specification of a binding to an underlying protocol to determine which
XML serialization is used in the underlying protocol data units. The HTTP binding that is specified in
SOAP 1.2 - Part 2 uses XML 1.0 as the serialization of the SOAP message infoset.

v SOAP 1.2 provides the ability to officially define transport protocols, other than using HTTP, as long as
the vendor conforms to the binding framework that is defined in SOAP 1.2. While HTTP is ubiquitous, it
is not as reliable as other transports including TCP/IP and MQ.

v SOAP 1.2 provides a more specific definition of the SOAP processing model that removes many of the
ambiguities that might lead to interoperability errors in the absence of the Web Services-Interoperability
(WS-I) profiles. The goal is to significantly reduce the chances of interoperability issues between
different vendors that use SOAP 1.2 implementations.

v SOAP with Attachments API for Java (SAAJ) can also stand alone as a simple mechanism to issue
SOAP requests. A major change to the SAAJ specification is the ability to represent SOAP 1.1
messages and the additional SOAP 1.2 formatted messages. For example, SAAJ Version 1.3 introduces
a new set of constants and methods that are more conducive to SOAP 1.2 (such as getRole(),
getRelay()) on SOAP header elements. There are also additional methods on the factories for SAAJ to
create appropriate SOAP 1.1 or SOAP 1.2 messages.

900 Overview

v The XML namespaces for the envelope and encoding schemas have changed for SOAP 1.2. These
changes distinguish SOAP processors from SOAP 1.1 and SOAP 1.2 messages and supports changes
in the SOAP schema, without affecting existing implementations.

v Java Architecture for XML Web Services (JAX-WS) introduces the ability to support both SOAP 1.1 and
SOAP 1.2. Because JAX-RPC introduced a requirement to manipulate a SOAP message as it traversed
through the run time, there became a need to represent this message in its appropriate SOAP context.
In JAX-WS, a number of additional enhancements result from the support for SAAJ 1.3.

v The Web Services Description Language (WSDL) Version 1.1 specification does not discuss SOAP 1.2.
SOAP 1.2 is discussed in the draft versions of WSDL 2.0. WSDL Version 1.1 only defines how to render
a SOAP 1.1 payload in a WSDL 1.1 document. To resolve how to represent SOAP 1.2-based services,
there is another W3C document that defines how to define a SOAP 1.2 payload within a WSDL 1.1
document. Read about WSDL 1.1 binding extensions for SOAP 1.2.

v SOAP 1.1 is a single document. The SOAP 1.2 specification is organized in the following parts:

– Part 0 is a non-normative introduction to SOAP.

– Part 1 describes the structure of SOAP messages, the SOAP processing model and a framework for
binding SOAP to underlying protocols. Conformant SOAP implementations must implement
everything in Part 1.

– Part 2 describes optional add-ins to the core of SOAP including a data model and encoding, an RPC
convention and a binding to HTTP. Conformant SOAP implementations might implement any of the
add-ins in Part 2. However, if add-ins are implemented, they must conform to the relevant parts of
the specification.

A fourth document is the Specification Assertions and Test Collection

SOAP 1.2 has a number of changes in syntax and provides additional, clarified semantics from those that
are described in SOAP 1.1. The SOAP 1.2 Primer document lists and describes these syntax changes.

JAX-WS
Java API for XML-Based Web Services (JAX-WS) is the next generation web services programming model
complimenting the foundation provided by the Java API for XML-based RPC (JAX-RPC) programming
model. Using JAX-WS, development of web services and clients is simplified with more platform
independence for Java applications by the use of dynamic proxies and Java annotations.

JAX-WS is a programming model that simplifies application development through support of a standard,
annotation-based model to develop web service applications and clients. The JAX-WS technology
strategically aligns itself with the current industry trend towards a more document-centric messaging model
and replaces the remote procedure call programming model as defined by JAX-RPC. While the JAX-RPC
programming model and applications are still supported by this product, JAX-RPC has limitations and does
not support various complex document-centric services. JAX-WS is the strategic programming model for
developing web services and is a required part of the Java Platform, Enterprise Edition 6 (Java EE 6).
JAX-WS is also known as JSR 224.

Version 8.0 supports the JAX-WS Version 2.2 and Web Services for Java EE (JSR 109) Version 1.3
specifications.

The JAX-WS 2.2 specification supersedes and includes functions within the JAX-WS 2.1 specification.
JAX-WS 2.2 adds client-side support for using WebServiceFeature-related annotations such as @MTOM,
@Addressing, and the @RespectBinding annotations. JAX-WS 2.1 had previously added support for these
annotations on the server. There is also now the ability to enable and configure WS-Addressing support on
a client or service by adding WS-Policy assertions into the WSDL document. In addition, the Web Services
for Java EE 1.3 specification introduces support for these WebServiceFeature-related annotations, as well
as support for using deployment descriptor elements to configure these features on both the client and
server. JAX-WS 2.2 requires Java Architecture for XML Binding (JAXB) Version 2.2 for data binding.

Chapter 27. Web services 901

The implementation of the JAX-WS programming standard provides the following enhancements for
developing web services and clients:

v Enhanced platform independence for Java applications.

Using JAX-WS APIs, development of web services and clients is simplified with enhanced platform
independence for Java applications. JAX-WS takes advantage of the dynamic proxy mechanism to
provide a formal delegation model with a pluggable provider. This is an enhancement over JAX-RPC,
which relies on the generation of vendor-specific stubs for invocation.

v Annotations

JAX-WS provides support for annotating Java classes with metadata to indicate that the Java class is a
Web service. JAX-WS supports the use of annotations based on the Metadata Facility for the Java
Programming Language (JSR 175) specification, the Web Services Metadata for the Java Platform (JSR
181) specification and annotations defined by the JAX-WS 2.2 specification. Using annotations within
the Java source and within the Java class simplifies development of web services. Use annotations to
define information that is typically specified in deployment descriptor files, WSDL files, or mapping
metadata from XML and WSDL files into the source artifacts.

For example, you can embed a simple @WebService tag in the Java source to expose the bean as a
web service.

@WebService

public class QuoteBean implements StockQuote {

public float getQuote(String sym) { ... }

}

The @WebService annotation tells the server runtime environment to expose all public methods on that
bean as a web service. Additional levels of granularity can be controlled by adding additional
annotations on individual methods or parameters. Using annotations makes it much easier to expose
Java artifacts as web services. In addition, as artifacts are created from using some of the top-down
mapping tools starting from a WSDL file, annotations are included within the source and Java classes
as a way of capturing the metadata along with the source files.

Using annotations also improves the development of web services within a team structure because you
do not need to define every web service in a single or common deployment descriptor as required with
JAX-RPC web services. Taking advantage of annotations with JAX-WS web services enables parallel
development of the service and the required metadata.

For JAX-WS web services, the use of the webservices.xml deployment descriptor is optional because
you can use annotations to specify all of the information that is contained within the deployment
descriptor file. You can use the deployment descriptor file to augment or override existing JAX-WS
annotations. Any information that you define in the webservices.xml deployment descriptor overrides
any corresponding information that is specified by annotations.

For example, if your service implementation class for your JAX-WS web service includes the following:

– the @WebService annotation:
@WebService(wsdlLocation=”http://myhost.com/location/of/the/wsdl/ExampleService.wsdl”)

– the webservices.xml file specifies a different file name for the WSDL document as follows:
<webservices>
<webservice-description>
<webservice-description-name>ExampleService</webservice-description-name>
<wsdl-file>META-INF/wsdl/ExampleService.wsdl</wsdl-file>
...
</webservice-description>
</webservices>

In this case, the value that is specified in the deployment descriptor, META-INF/wsdl/
ExampleService.wsdl overrides the annotation value.

v Invoking web services asynchronously

With JAX-WS, Web services are called both synchronously and asynchronously. JAX-WS adds support
for both a polling and callback mechanism when calling web services asynchronously. Using a polling

902 Overview

model, a client can issue a request, get a response object back, which is polled to determine if the
server has responded. When the server responds, the actual response is retrieved. Using the callback
model, the client provides a callback handler to accept and process the inbound response object. Both
the polling and callback models enable the client to focus on continuing to process work without waiting
for a response to return, while providing for a more dynamic and efficient model to invoke Web services.

For example, a web service interface might have methods for both synchronous and asynchronous
requests. Asynchronous requests are identified in bold in the following example:

@WebService
public interface CreditRatingService {

// sync operation
Score getCreditScore(Customer customer);
// async operation with polling
Response<Score> getCreditScoreAsync(Customer customer);
// async operation with callback
Future<?> getCreditScoreAsync(Customer customer,

AsyncHandler<Score> handler);
}

The asynchronous invocation that uses the callback mechanism requires an additional input by the
client programmer. The callback is an object that contains the application code that is run when an
asynchronous response is received. Use the following code example to invoke an asynchronous
callback handler:

CreditRatingService svc = ...;

Future<?> invocation = svc.getCreditScoreAsync(customerFred,
new AsyncHandler<Score>() {

public void handleResponse (
Response<Score> response)

{
Score score = response.get();
// do work here...

}
}

);

Use the following code example to invoke an asynchronous polling client:
CreditRatingService svc = ...;
Response<Score> response = svc.getCreditScoreAsync(customerFred);

while (!response.isDone()) {
// Complete an action while we wait.

}

// No cast needed, because of generics.
Score score = response.get();

v Using resource injection

JAX-WS supports resource injection to further simplify development of web services. JAX-WS uses this
key feature of Java EE 5 to shift the burden of creating and initializing common resources in a Java
runtime environment from your web service application to the application container environment, itself.
JAX-WS provides support for a subset of annotations that are defined in JSR-250 for resource injection
and application life cycle in its runtime environment.

The application server also supports the usage of the @Resource or @WebServiceRef annotation to
declare JAX-WS managed clients and to request injection of JAX-WS services and ports. When either
of these annotations are used on a field or method, they result in injection of a JAX-WS service or port
instance. The usage of these annotations also results in the type specified by the annotation being
bound into the JNDI namespace.

The @Resource annotation is defined by the JSR-250, Common Annotations specification that is
included in Java Platform, Enterprise Edition 5 (Java EE 5). By placing the @Resource annotation on a
variable of type javax.xml.ws.WebServiceContext within a service endpoint implementation class, you
can request a resource injection and collect the javax.xml.ws.WebServiceContext interface related to
that particular endpoint invocation. From the WebServiceContext interface, you can collect the
MessageContext for the request associated with the particular method call using the
getMessageContext() method.

The @WebServiceRef annotation is defined by the JAX-WS specification.

Chapter 27. Web services 903

The following example illustrates using the @Resource and @WebServiceRef annotations for resource
injection:

@WebService
public class MyService {

@Resource
private WebServiceContext ctx;

@Resource
private SampleService svc;

@WebServiceRef
private SamplePort port;

public String echo (String input) {
...

}

}

Refer to sections 5.2.1 and 5.3 of the JAX-WS specification for more information on resource injection.

v Data binding with JAXB 2.2

JAX-WS leverages the Java Architecture for XML Binding (JAXB) 2.2 API and tools as the binding
technology for mappings between Java objects and XML documents. JAX-WS tooling relies on JAXB
tooling for default data binding for two-way mappings between Java objects and XML documents. JAXB
data binding replaces the data binding described by the JAX-RPC specification.

JAX-WS 2.2 requires JAXB 2.2 for data binding. JAXB 2.2 provides minor enhancements to its
annotations for improved schema generation and better integration with JAX-WS.

v Dynamic and static clients

The dynamic client API for JAX-WS is called the dispatch client (javax.xml.ws.Dispatch). The dispatch
client is an XML messaging oriented client. The data is sent in either PAYLOAD or MESSAGE mode. When
using the PAYLOAD mode, the dispatch client is only responsible for providing the contents of the
<soap:Body> and JAX-WS adds the <soap:Envelope> and <soap:Header> elements. When using the
MESSAGE mode, the dispatch client is responsible for providing the entire SOAP envelope including the
<soap:Envelope>, <soap:Header>, and <soap:Body> elements. JAX-WS does not add anything additional
to the message. The dispatch client supports asynchronous invocations using a callback or polling
mechanism.

The static client programming model for JAX-WS is the called the proxy client. The proxy client invokes
a web service based on a Service Endpoint interface (SEI), which must be provided.

v Support for MTOM

Using JAX-WS, you can send binary attachments such as images or files along with web services
requests. JAX-WS adds support for optimized transmission of binary data as specified by Message
Transmission Optimization Mechanism (MTOM).

v Multiple data binding technologies

JAX-WS exposes the following binding technologies to the end user: XML Source, SOAP Attachments
API for Java (SAAJ) 1.3, and Java Architecture for XML Binding (JAXB) 2.2. XML Source enables a
user to pass a javax.xml.transform.Source into the runtime environment which represents the data in
a Source object to be processed. SAAJ 1.3 now has the ability to pass an entire SOAP document
across the interface rather than just the payload itself. This action is done by the client passing the
SAAJ SOAPMessage object across the interface. JAX-WS leverages the JAXB 2.2 support as the data
binding technology of choice between Java and XML.

v Support for SOAP 1.2

Support for SOAP 1.2 has been added to JAX-WS 2.0. JAX-WS supports both SOAP 1.1 and SOAP
1.2 so that you can send binary attachments such as images or files along with web services requests.
JAX-WS adds support for optimized transmission of binary data as specified by MTOM.

v Development tools

JAX-WS provides the wsgen and wsimport command-line tools for generating portable artifacts for
JAX-WS web services. When creating JAX-WS web services, you can start with either a WSDL file or

904 Overview

an implementation bean class. If you start with an implementation bean class, use the wsgen
command-line tool to generate all the web services server artifacts, including a WSDL file if requested.
If you start with a WSDL file, use the wsimport command-line tool to generate all the web services
artifacts for either the server or the client. The wsimport command-line tool processes the WSDL file
with schema definitions to generate the portable artifacts, which include the service class, the service
endpoint interface class, and the JAXB 2.2 classes for the corresponding XML schema.

v Support for Web Services for Java EE, version 1.3

The Web Services for Java EE version 1.3 specification adds support for configuring the MTOM,
Addressing, and RespectBinding features on JAX-WS services and clients through the use of both
annotations and deployment descriptor entries.

v Support for empty targetNamespace for the WRAPPED parameter style and return types

JAX-WS 2.2 supports method parameters and return types. In a JAX-WS web services operation, you
can define a web services operation with an operation parameter and an optional return type. If the
operation parameter and return type define an empty targetNamespace property by specifying a ""
value for the targetNamespace property with either the @WebParam or @WebResult annotation, the
JAX-WS runtime environment behaves in the following way:

– If the operation is document style, the parameter style is WRAPPED, and the parameter does not
map to a header, then an empty namespace is mapped with the operation parameters and return
types.

– If the parameter style is not WRAPPED, then the value of the targetNamespace parameter specified
using the @WebParam or @WebResult annotation is used.

JAX-WS client programming model
The Java API for XML-Based Web Services (JAX-WS) web service client programming model supports
both the Dispatch client API and the Dynamic Proxy client API. The Dispatch client API is a dynamic client
programming model, whereas the static client programming model for JAX-WS is the Dynamic Proxy
client. The Dispatch and Dynamic Proxy clients enable both synchronous and asynchronous invocation of
JAX-WS web services.

v Dispatch client: Use this client when you want to work at the XML message level or when you want to
work without any generated artifacts at the JAX-WS level.

v Dynamic Proxy client: Use this client when you want to invoke a web service based on a service
endpoint interface.

Dispatch client

XML-based web services use XML messages for communications between web services and web services
clients. The JAX-WS APIs provide high-level methods to simplify and hide the details of converting
between Java method invocations and their associated XML messages. However, in some cases, you
might desire to work at the XML message level. Support for invoking services at the XML message level is
provided by the Dispatch client API. The Dispatch client API, javax.xml.ws.Dispatch, is a dynamic
JAX-WS client programming interface. To write a Dispatch client, you must have expertise with the
Dispatch client APIs, the supported object types, and knowledge of the message representations for the
associated Web Services Description Language (WSDL) file. The Dispatch client can send data in either
MESSAGE or PAYLOAD mode. When using the javax.xml.ws.Service.Mode.MESSAGE mode, the Dispatch client
is responsible for providing the entire SOAP envelope including the <soap:Envelope>, <soap:Header>, and
<soap:Body> elements. When using the javax.xml.ws.Service.Mode.PAYLOAD mode, the Dispatch client is
only responsible for providing the contents of the <soap:Body> and JAX-WS includes the payload in a
<soap:Envelope> element.

The Dispatch client API requires application clients to construct messages or payloads as XML which
requires a detailed knowledge of the message or message payload. The Dispatch client supports the
following types of objects:

v javax.xml.transform.Source: Use Source objects to enable clients to use XML APIs directly. You can
use Source objects with SOAP or HTTP bindings.

Chapter 27. Web services 905

v JAXB objects: Use JAXB objects so that clients can use JAXB objects that are generated from an XML
schema to create and manipulate XML with JAX-WS applications. JAXB objects can only be used with
SOAP or HTTP bindings.

v javax.xml.soap.SOAPMessage: Use SOAPMessage objects so that clients can work with SOAP messages.
You can only use SOAPMessage objects with SOAP bindings.

v javax.activation.DataSource: Use DataSource objects so that clients can work with Multipurpose
Internet Mail Extension (MIME) messages. Use DataSource only with HTTP bindings.

For example, if the input parameter type is javax.xml.transform.Source, the call to the Dispatch client API
is similar to the following code example:
Dispatch<Source> dispatch = ... create a Dispatch<Source>
Source request = ... create a Source object
Source response = dispatch.invoke(request);

The Dispatch parameter value determines the return type of the invoke() method.

The Dispatch client is invoked in one of three ways:

v Synchronous invocation for requests and responses using the invoke method

v Asynchronous invocation for requests and responses using the invokeAsync method with a callback or
polling object

v One-way invocation using the invokeOneWay methods

Refer to Chapter 4, section 3 of the JAX-WS specification for more information on using a Dispatch client.

Dynamic Proxy client

The static client programming model for JAX-WS is the called the Dynamic Proxy client. The Dynamic
Proxy client invokes a web service based on a Service Endpoint Interface (SEI) which must be provided.
The Dynamic Proxy client is similar to the stub client in the Java API for XML-based RPC (JAX-RPC)
programming model. Although the JAX-WS Dynamic Proxy client and the JAX-RPC stub client are both
based on the Service Endpoint Interface (SEI) that is generated from a WSDL file , there is a major
difference. The Dynamic Proxy client is dynamically generated at run time using the Java 5 Dynamic Proxy
functionality, while the JAX-RPC-based stub client is a non-portable Java file that is generated by tooling.
Unlike the JAX-RPC stub clients, the Dynamic Proxy client does not require you to regenerate a stub prior
to running the client on an application server for a different vendor because the generated interface does
not require the specific vendor information.

The Dynamic Proxy instances extend the java.lang.reflect.Proxy class and leverage the Dynamic Proxy
function in the base Java SE Runtime Environment (JRE) 6. The client application can then provide an
interface that is used to create the proxy instance while the runtime is responsible for dynamically creating
a Java object that represents the SEI.

The Dynamic Proxy client is invoked in one of three ways:

v Synchronous invocation for requests and responses using the invoke method

v Asynchronous invocation for requests and responses using the invokeAsync method with a callback or
polling object

v One-way invocation using the invokeOneWay methods

Refer to Chapter 4 of the JAX-WS specification for more information on using Dynamic Proxy clients.

JAX-WS annotations
Java API for XML-Based Web Services (JAX-WS) relies on the use of annotations to specify metadata
associated with web services implementations and to simplify the development of web services.
Annotations describe how a server-side service implementation is accessed as a web service or how a
client-side Java class accesses web services.

906 Overview

The JAX-WS programming standard introduces support for annotating Java classes with metadata that is
used to define a service endpoint application as a web service and how a client can access the web
service. JAX-WS supports the use of annotations based on the Metadata Facility for the Java
Programming Language (Java Specification Request (JSR) 175) specification, the Web Services Metadata
for the Java Platform (JSR 181) specification and annotations defined by the JAX-WS 2.0 and later (JSR
224) specification which includes JAXB annotations. Using annotations from the JSR 181 standard, you
can simply annotate the service implementation class or the service interface and now the application is
enabled as a web service. Using annotations within the Java source simplifies development and
deployment of web services by defining some of the additional information that is typically obtained from
deployment descriptor files, WSDL files, or mapping metadata from XML and WSDL into the source
artifacts.

Use annotations to configure bindings, handler chains, set names of portType, service and other WSDL
parameters. Annotations are used in mapping Java to WSDL and schema, and at runtime to control how
the JAX-WS runtime processes and responds to web service invocations.

For JAX-WS web services, the use of the webservices.xml deployment descriptor is optional because you
can use annotations to specify all of the information that is contained within the deployment descriptor file.
You can use the deployment descriptor file to augment or override existing JAX-WS annotations. Any
information that you define in the webservices.xml deployment descriptor overrides any corresponding
information that is specified by annotations.

Starting with WebSphere Application Server Version 7.0 and later, Java EE 5 application modules (Web
application modules version 2.5 or above, or EJB modules version 3.0 or above) are scanned for
annotations to identify JAX-WS services and clients. However, pre-Java EE 5 application modules (web
application modules version 2.4 or before, or EJB modules version 2.1 or before) are not scanned for
JAX-WS annotations, by default, for performance considerations.

In the Version 6.1 Feature Pack for Web Services, the default behavior is to scan pre- Java Platform,
Enterprise Edition (Java EE) 5 web application modules to identify JAX-WS services and to scan pre-Java
EE 5 web application modules and EJB modules for service clients during application installation. Because
the default behavior for WebSphere Application Server Version 7.0 and later is to not scan pre-Java EE 5
modules for annotations during application installation or server startup, to preserve backward
compatability with the feature pack from previous releases, you must configure one of the following
properties:

v You can set the UseWSFEP61ScanPolicy property in the META-INF/MANIFEST.MF of a WAR file or EJB
module to true. For example:

Manifest-Version: 1.0
UseWSFEP61ScanPolicy: true

When this property is set to true in the META-INF/MANIFEST.MF file of the module, the module is
scanned for JAX-WS annotations regardless of the Java EE version of the module. The default value is
false and when the default value is in effect, JAX-WS annotations are only supported in modules
whose version is Java EE 5 or later.

v You can set the com.ibm.websphere.webservices.UseWSFEP61ScanPolicy custom Java virtual machine
(JVM) property using the administrative console. See the JVM custom properties documentation for the
correct navigation path to use. To request annotation scanning in all modules regardless of their Java
EE version, set the custom property com.ibm.websphere.webservices.UseWSFEP61ScanPolicy to true.
You must change the setting on each server that requires a change in the default behavior.

If the property is set within the META-INF/MANIFEST.MF file of the module, this setting takes precedence
over the server's custom JVM property. When using either property, you must establish the desired
annotation scanning behavior before the application is installed. You cannot dynamically change the
scanning behavior once an application is installed. If changes to the behavior are required after your
application is installed, you must first uninstall the application, specify the desired scanning behavior using
the appropriate property and then install the application again. When federating nodes that have the

Chapter 27. Web services 907

com.ibm.websphere.webservices.UseWSFEP61ScanPolicy set to true in the configuration of the servers
contained within the node, this property does not affect the deployment manager. You must set the
property to true on the deployment manager before the node is federated to preserve the behavior as it
was on the node before federation.

Note: When federating nodes that have the com.ibm.websphere.webservices.UseWSFEP61ScanPolicy set to
true in the configuration of the servers contained within the node, this does not affect the
deployment manager. You must set the property to true on the deployment manager before the
node is federated if you wish to preserve the behavior as it was on the node before federation.

Annotations supported by JAX-WS are listed in the table below. The target for annotations is applicable for
these Java objects:

v types such as a Java class, enum or interface

v methods

v fields representing local instance variables within a Java class

v parameters within a Java method

908 Overview

Ta
bl

e
86

.
W

eb
se

rv
ic

es
M

et
ad

at
a

A
nn

ot
at

io
ns

(J
S

R
18

1)
.

D
es

cr
ib

es
th

e
su

pp
or

te
d

w
eb

se
rv

ic
es

m
et

ad
at

a
an

no
ta

tio
ns

an
d

th
ei

r
as

so
ci

at
ed

pr
op

er
tie

s.
A

n
n

o
ta

ti
o

n
cl

as
s

A
n

n
o

ta
ti

o
n

P
ro

p
er

ti
es

ja
va
x.
jw
s.

We
bS
er
vi
ce

T
he

@
W

eb
S

er
vi

ce
an

no
ta

tio
n

m
ar

ks
a

Ja
va

cl
as

s
as

im
pl

em
en

tin
g

a
W

eb
se

rv
ic

e
or

m
ar

ks
a

se
rv

ic
e

en
dp

oi
nt

in
te

rf
ac

e
(S

E
I)

as
im

pl
em

en
tin

g
a

w
eb

se
rv

ic
e

in
te

rf
ac

e.
Im

p
o

rt
an

t:

v
A

Ja
va

cl
as

s
th

at
im

pl
em

en
ts

a
w

eb
se

rv
ic

e
m

us
t

sp
ec

ify
ei

th
er

th
e

@
W

eb
S

er
vi

ce
or

@
W

eb
S

er
vi

ce
P

ro
vi

de
r

an
no

ta
tio

n.
B

ot
h

an
no

ta
tio

ns
ca

nn
ot

be
pr

es
en

t.
T

hi
s

an
no

ta
tio

n
is

ap
pl

ic
ab

le
on

a
cl

ie
nt

or
se

rv
er

S
E

I
or

a
se

rv
er

en
dp

oi
nt

im
pl

em
en

ta
tio

n
cl

as
s.

v
If

th
e

an
no

ta
tio

n
re

fe
re

nc
es

an
S

E
I

th
ro

ug
h

th
e
en
dp
oi
nt
In
te
rf
ac
e

at
tr

ib
ut

e,
th

e
S

E
I

m
us

t
al

so
be

an
no

ta
te

d
w

ith
th

e
@

W
eb

S
er

vi
ce

an
no

ta
tio

n.

v
S

ee
th

e
ex

po
si

ng
m

et
ho

ds
in

S
E

I-
ba

se
d

JA
X

-W
S

w
eb

se
rv

ic
es

in
fo

rm
at

io
n

to
le

ar
n

ab
ou

t
be

st
pr

ac
tic

es
fo

r
us

in
g

th
e

@
W

eb
S

er
vi

ce
an

d
@

W
eb

M
et

ho
d

an
no

ta
tio

ns
on

a
se

rv
ic

e
en

dp
oi

nt
im

pl
em

en
ta

tio
n

to
sp

ec
ify

Ja
va

m
et

ho
ds

th
at

yo
u

w
an

t
to

ex
po

se
as

JA
X

-W
S

w
eb

se
rv

ic
es

.

v
A

nn
ot

at
io

n
ta

rg
et

:
Ty

pe

v
P

ro
pe

rt
ie

s:

-
na
me

T
he

na
m

e
of

th
e
ws
dl
:p
or
tT
yp
e.

T
he

de
fa

ul
t

va
lu

e
is

th
e

un
qu

al
ifi

ed
na

m
e

of
th

e
Ja

va
cl

as
s

or
in

te
rf

ac
e.

(S
tr

in
g)

-
ta
rg
et
Na
me
sp
ac
e

S
pe

ci
fie

s
th

e
X

M
L

na
m

es
pa

ce
of

th
e

W
S

D
L

an
d

X
M

L
el

em
en

ts
ge

ne
ra

te
d

fr
om

th
e

w
eb

se
rv

ic
e.

T
he

de
fa

ul
t

va
lu

e
is

th
e

na
m

es
pa

ce
m

ap
pe

d
fr

om
th

e
pa

ck
ag

e
na

m
e

co
nt

ai
ni

ng
th

e
w

eb
se

rv
ic

e.
(S

tr
in

g)

-
se
rv
ic
eN
am
e

S
pe

ci
fie

s
th

e
se

rv
ic

e
na

m
e

of
th

e
w

eb
se

rv
ic

e:
ws
dl
:s
er
vi
ce

.
T

he
de

fa
ul

t
va

lu
e

is
th

e
si

m
pl

e
na

m
e

of
th

e
Ja

va
cl

as
s

+
S

er
vi

ce
.

(S
tr

in
g)

-
en
dp
oi
nt
In
te
rf
ac
e

S
pe

ci
fie

s
th

e
qu

al
ifi

ed
na

m
e

of
th

e
se

rv
ic

e
en

dp
oi

nt
in

te
rf

ac
e

th
at

de
fin

es
th

e
se

rv
ic

es
'a

bs
tr

ac
t

w
eb

se
rv

ic
e

co
nt

ra
ct

.
If

sp
ec

ifi
ed

,
th

e
se

rv
ic

e
en

dp
oi

nt
in

te
rf

ac
e

is
us

ed
to

de
te

rm
in

e
th

e
ab

st
ra

ct
W

S
D

L
co

nt
ra

ct
.

(S
tr

in
g)

-
po
rt
Na
me

T
he

ws
dl
:p
or
tN
am
e.

T
he

de
fa

ul
t

va
lu

e
is

W
eb

S
er

vi
ce

.n
am

e
+

P
or

t
.

(S
tr

in
g)

-
ws
dl
Lo
ca
ti
on

S
pe

ci
fie

s
th

e
w

eb
ad

dr
es

s
of

th
e

W
S

D
L

do
cu

m
en

t
de

fin
in

g
th

e
w

eb
se

rv
ic

e.
T

he
w

eb
ad

dr
es

s
is

ei
th

er
re

la
tiv

e
or

ab
so

lu
te

.
(S

tr
in

g)

ja
va
x.
jw
s.

We
bM
et
ho
d

T
he

@
W

eb
M

et
h

o
d

an
no

ta
tio

n
de

no
te

s
a

m
et

ho
d

th
at

is
a

w
eb

se
rv

ic
e

op
er

at
io

n.

A
pp

ly
th

is
an

no
ta

tio
n

to
m

et
ho

ds
on

a
cl

ie
nt

or
se

rv
er

S
er

vi
ce

E
nd

po
in

t
In

te
rf

ac
e

(S
E

I)
or

a
se

rv
er

en
dp

oi
nt

im
pl

em
en

ta
tio

n
cl

as
s.

N
o

te
:

B
eg

in
ni

ng
w

ith
S

un
an

d
H

P
JD

K
V

er
si

on
1.

6
co

nt
ai

ni
ng

JA
X

-W
S

to
ol

in
g

V
er

si
on

2.
1.

6,
th

e
be

ha
vi

or
of

th
e

JA
X

-W
S

ru
nt

im
e

en
vi

ro
nm

en
ts

an
d

to
ol

in
g

ha
s

ch
an

ge
d

in
ho

w
it

de
te

rm
in

es
w

hi
ch

m
et

ho
ds

ar
e

ex
po

se
d

as
w

eb
se

rv
ic

es
op

er
at

io
ns

in
an

ef
fo

rt
to

be
tte

r
ad

he
re

to
th

e
JA

X
-W

S
sp

ec
ifi

ca
tio

ns
.A

pp
lic

at
io

ns
th

at
m

ig
ht

be
af

fe
ct

ed
by

th
is

ch
an

ge
in

cl
ud

e
w

eb
se

rv
ic

es
ap

pl
ic

at
io

ns
th

at
do

no
t

sp
ec

ify
a

W
S

D
L

fil
e

or
an

ex
pl

ic
it

se
rv

ic
e

en
dp

oi
nt

in
te

rf
ac

e
(S

E
I)

.
To

le
ar

n
m

or
e,

se
e

th
e

ex
po

si
ng

m
et

ho
ds

in
S

E
I-

ba
se

d
JA

X
-W

S
w

eb
se

rv
ic

es
in

fo
rm

at
io

n.

v
A

nn
ot

at
io

n
ta

rg
et

:
M

et
ho

d

v
P

ro
pe

rt
ie

s:

-
op
er
at
io
nN
am
e

S
pe

ci
fie

s
th

e
na

m
e

of
th

e
ws
dl
:o
pe
ra
ti
on

m
at

ch
in

g
th

is
m

et
ho

d.
T

he
de

fa
ul

t
va

lu
e

is
th

e
na

m
e

of
Ja

va
m

et
ho

d.
(S

tr
in

g)

-
ac
ti
on D
ef

in
es

th
e

ac
tio

n
fo

r
th

is
op

er
at

io
n.

F
or

S
O

A
P

bi
nd

in
gs

,
th

is
va

lu
e

de
te

rm
in

es
th

e
va

lu
e

of
th

e
S

O
A

P
A

ct
io

n
he

ad
er

.
T

he
de

fa
ul

t
va

lu
e

is
th

e
na

m
e

of
Ja

va
m

et
ho

d.
(S

tr
in

g)

-
ex
cl
ud
e

S
pe

ci
fie

s
w

he
th

er
to

ex
cl

ud
e

a
m

et
ho

d
fr

om
th

e
w

eb
se

rv
ic

e.
T

he
de

fa
ul

t
va

lu
e

is
fa
ls
e.

(B
oo

le
an

)

Chapter 27. Web services 909

Ta
bl

e
86

.
W

eb
se

rv
ic

es
M

et
ad

at
a

A
nn

ot
at

io
ns

(J
S

R
18

1)
(c

on
tin

ue
d)

.
D

es
cr

ib
es

th
e

su
pp

or
te

d
w

eb
se

rv
ic

es
m

et
ad

at
a

an
no

ta
tio

ns
an

d
th

ei
r

as
so

ci
at

ed
pr

op
er

tie
s.

A
n

n
o

ta
ti

o
n

cl
as

s
A

n
n

o
ta

ti
o

n
P

ro
p

er
ti

es

ja
va
x.
jw
s.

On
ew
ay

T
he

@
O

n
ew

ay
an

no
ta

tio
n

de
no

te
s

a
m

et
ho

d
as

a
w

eb
se

rv
ic

e
on

e-
w

ay
op

er
at

io
n

th
at

on
ly

ha
s

an
in

pu
t

m
es

sa
ge

an
d

no
ou

tp
ut

m
es

sa
ge

.

A
pp

ly
th

is
an

no
ta

tio
n

to
m

et
ho

ds
on

a
cl

ie
nt

or
se

rv
er

S
er

vi
ce

E
nd

po
in

t
In

te
rf

ac
e

(S
E

I)
or

a
se

rv
er

en
dp

oi
nt

im
pl

em
en

ta
tio

n
cl

as
s.

v
A

nn
ot

at
io

n
ta

rg
et

:
M

et
ho

d

v
T

he
re

ar
e

no
pr

op
er

tie
s

on
th

e
O

ne
w

ay
an

no
ta

tio
n.

ja
va
x.
jw
s.

We
bP
ar
am

T
he

@
W

eb
P

ar
am

an
no

ta
tio

n
cu

st
om

iz
es

th
e

m
ap

pi
ng

of
an

in
di

vi
du

al
pa

ra
m

et
er

to
a

w
eb

se
rv

ic
e

m
es

sa
ge

pa
rt

an
d

X
M

L
el

em
en

t.

A
pp

ly
th

is
an

no
ta

tio
n

to
m

et
ho

ds
on

a
cl

ie
nt

or
se

rv
er

S
er

vi
ce

E
nd

po
in

t
In

te
rf

ac
e

(S
E

I)
or

a
se

rv
er

en
dp

oi
nt

im
pl

em
en

ta
tio

n
cl

as
s.

v
A

nn
ot

at
io

n
ta

rg
et

:
P

ar
am

et
er

v
P

ro
pe

rt
ie

s:

-
na
me

T
he

na
m

e
of

th
e

pa
ra

m
et

er
.

If
th

e
op

er
at

io
n

is
re

m
ot

e
pr

oc
ed

ur
e

ca
ll

(R
P

C
)

st
yl

e
an

d
th

e
pa
rt
Na
me

at
tr

ib
ut

e
is

no
t

sp
ec

ifi
ed

,
th

en
th

is
is

th
e

na
m

e
of

th
e
ws
dl
:p
ar
t

at
tr

ib
ut

e
re

pr
es

en
tin

g
th

e
pa

ra
m

et
er

.
If

th
e

op
er

at
io

n
is

do
cu

m
en

t
st

yl
e

or
th

e
pa

ra
m

et
er

m
ap

s
to

a
he

ad
er

,
th

en
-n
am
e

is
th

e
lo

ca
ln

am
e

of
th

e
X

M
L

el
em

en
t

re
pr

es
en

tin
g

th
e

pa
ra

m
et

er
.

T
hi

s
at

tr
ib

ut
e

is
re

qu
ire

d
if

th
e

op
er

at
io

n
is

do
cu

m
en

t
st

yl
e,

th
e

pa
ra

m
et

er
st

yl
e

is
BA
RE

,
an

d
th

e
m

od
e

is
OU
T

or
IN
OU
T.

(S
tr

in
g)

-
pa
rt
Na
me

D
ef

in
es

th
e

na
m

e
of

ws
dl
:p
ar
t

at
tr

ib
ut

e
re

pr
es

en
tin

g
th

is
pa

ra
m

et
er

.
T

hi
s

is
on

ly
us

ed
if

th
e

op
er

at
io

n
is

R
P

C
st

yl
e,

or
th

e
op

er
at

io
n

is
do

cu
m

en
t

st
yl

e
an

d
th

e
pa

ra
m

et
er

st
yl

e
is

BA
RE

.
(S

tr
in

g)

-
ta
rg
et
Na
me
sp
ac
e

S
pe

ci
fie

s
th

e
X

M
L

na
m

es
pa

ce
of

th
e

X
M

L
el

em
en

t
fo

r
th

e
pa

ra
m

et
er

.
A

pp
lie

s
on

ly
fo

r
do

cu
m

en
t

bi
nd

in
gs

w
he

n
th

e
at

tr
ib

ut
e

m
ap

s
to

an
X

M
L

el
em

en
t.

T
he

de
fa

ul
t

va
lu

e
is

th
e
ta
rg
et
Na
me
sp
ac
e

fo
r

th
e

w
eb

se
rv

ic
e.

(S
tr

in
g)

-
mo
de

T
he

va
lu

e
re

pr
es

en
ts

th
e

di
re

ct
io

n
th

e
pa

ra
m

et
er

flo
w

s
fo

r
th

is
m

et
ho

d.
V

al
id

va
lu

es
ar

e
IN

,
IN
OU
T,

an
d
OU
T.

(S
tr

in
g)

-
he
ad
er S
pe

ci
fie

s
w

he
th

er
th

e
pa

ra
m

et
er

is
in

a
m

es
sa

ge
he

ad
er

ra
th

er
th

an
a

m
es

sa
ge

bo
dy

.
T

he
de

fa
ul

t
va

lu
e

is
fa
ls
e.

(B
oo

le
an

)

910 Overview

Ta
bl

e
86

.
W

eb
se

rv
ic

es
M

et
ad

at
a

A
nn

ot
at

io
ns

(J
S

R
18

1)
(c

on
tin

ue
d)

.
D

es
cr

ib
es

th
e

su
pp

or
te

d
w

eb
se

rv
ic

es
m

et
ad

at
a

an
no

ta
tio

ns
an

d
th

ei
r

as
so

ci
at

ed
pr

op
er

tie
s.

A
n

n
o

ta
ti

o
n

cl
as

s
A

n
n

o
ta

ti
o

n
P

ro
p

er
ti

es

ja
va
x.
jw
s.

We
bR
es
ul
t

T
he

@
W

eb
R

es
u

lt
an

no
ta

tio
n

cu
st

om
iz

es
th

e
m

ap
pi

ng
of

a
re

tu
rn

va
lu

e
to

a
W

S
D

L
pa

rt
or

X
M

L
el

em
en

t.

A
pp

ly
th

is
an

no
ta

tio
n

to
m

et
ho

ds
on

a
cl

ie
nt

or
se

rv
er

S
er

vi
ce

E
nd

po
in

t
In

te
rf

ac
e

(S
E

I)
or

a
se

rv
er

en
dp

oi
nt

im
pl

em
en

ta
tio

n
cl

as
s.

v
A

nn
ot

at
io

n
ta

rg
et

:
M

et
ho

d

v
P

ro
pe

rt
ie

s:

-
na
me

S
pe

ci
fie

s
th

e
na

m
e

of
th

e
re

tu
rn

va
lu

e
as

it
is

lis
te

d
in

th
e

W
S

D
L

fil
e

an
d

fo
un

d
in

m
es

sa
ge

s
on

th
e

w
ire

.
F

or
R

P
C

bi
nd

in
gs

,
th

is
is

th
e

na
m

e
of

th
e
ws
dl
:p
ar
t

at
tr

ib
ut

e
re

pr
es

en
tin

g
th

e
re

tu
rn

va
lu

e.
F

or
do

cu
m

en
t

bi
nd

in
gs

,
th

e
-n
am
e

pa
ra

m
et

er
is

th
e

lo
ca

ln
am

e
of

th
e

X
M

L
el

em
en

t
re

pr
es

en
tin

g
th

e
re

tu
rn

va
lu

e.
T

he
de

fa
ul

t
va

lu
e

is
re
tu
rn

fo
r

R
P

C
an

d
D

O
C

U
M

E
N

T
/W

R
A

P
P

E
D

bi
nd

in
gs

.
T

he
de

fa
ul

t
va

lu
e

is
th

e
m

et
ho

d
na

m
e

+
Re
sp
on
se

fo
r

D
O

C
U

M
E

N
T

/B
A

R
E

bi
nd

in
gs

.
(S

tr
in

g)

-
ta
rg
et
Na
me
sp
ac
e

S
pe

ci
fie

s
th

e
X

M
L

na
m

es
pa

ce
fo

r
th

e
re

tu
rn

va
lu

e.
T

hi
s

pa
ra

m
et

er
is

on
ly

us
ed

if
th

e
op

er
at

io
n

is
R

P
C

st
yl

e
or

if
th

e
op

er
at

io
n

is
D

O
C

U
M

E
N

T
st

yl
e

an
d

th
e

pa
ra

m
et

er
st

yl
e

is
B

A
R

E
.

(S
tr

in
g)

-
he
ad
er S
pe

ci
fie

s
w

he
th

er
th

e
re

su
lt

is
ca

rr
ie

d
in

a
he

ad
er

.
T

he
de

fa
ul

t
va

lu
e

is
fa
ls
e.

(B
oo

le
an

)

-
pa
rt
Na
me

S
pe

ci
fie

s
th

e
pa

rt
na

m
e

fo
r

th
e

re
su

lt
w

ith
R

P
C

or
D

O
C

U
M

E
N

T
/B

A
R

E
op

er
at

io
ns

.
T

he
de

fa
ul

t
va

lu
e

is
@W
eb
Re
su
lt
.n
am
e.

(S
tr

in
g)

ja
va
x.
jw
s.

Ha
nd
le
rC
ha
in

T
he

@
H

an
d

le
rC

h
ai

n
an

no
ta

tio
n

as
so

ci
at

es
th

e
w

eb
se

rv
ic

e
w

ith
an

ex
te

rn
al

ly
de

fin
ed

ha
nd

le
r

ch
ai

n.

Yo
u

ca
n

on
ly

co
nf

ig
ur

e
th

e
se

rv
er

si
de

ha
nd

le
r

by
us

in
g

th
e

@
H

an
dl

er
C

ha
in

an
no

ta
tio

n
on

th
e

S
er

vi
ce

E
nd

po
in

t
In

te
rf

ac
e

(S
E

I)
or

th
e

se
rv

er
en

dp
oi

nt
im

pl
em

en
ta

tio
n

cl
as

s.

U
se

on
e

of
se

ve
ra

lw
ay

s
to

co
nf

ig
ur

e
a

cl
ie

nt
si

de
ha

nd
le

r.
Yo

u
ca

n
co

nf
ig

ur
e

a
cl

ie
nt

si
de

ha
nd

le
r

by
us

in
g

th
e

@
H

an
dl

er
C

ha
in

an
no

ta
tio

n
on

th
e

ge
ne

ra
te

d
se

rv
ic

e
cl

as
s

or
S

E
I.

A
dd

iti
on

al
ly

,
yo

u
ca

n
pr

og
ra

m
m

at
ic

al
ly

re
gi

st
er

yo
ur

ow
n

im
pl

em
en

ta
tio

n
of

th
e

H
an

dl
er

R
es

ol
ve

r
in

te
rf

ac
e

on
th

e
S

er
vi

ce
,

or
pr

og
ra

m
m

at
ic

al
ly

se
t

th
e

ha
nd

le
r

ch
ai

n
on

th
e

B
in

di
ng

ob
je

ct
.

v
A

nn
ot

at
io

n
ta

rg
et

:
Ty

pe

v
P

ro
pe

rt
ie

s:

-
fi
le

S
pe

ci
fie

s
th

e
lo

ca
tio

n
of

th
e

ha
nd

le
r

ch
ai

n
fil

e.
T

he
fil

e
lo

ca
tio

n
is

ei
th

er
an

ab
so

lu
te

ja
va

.n
et

.U
R

L
in

ex
te

rn
al

fo
rm

or
a

re
la

tiv
e

pa
th

fr
om

th
e

cl
as

s
fil

e.
(S

tr
in

g)

-
na
me

S
pe

ci
fie

s
th

e
na

m
e

of
th

e
ha

nd
le

r
ch

ai
n

in
th

e
co

nf
ig

ur
at

io
n

fil
e.

(S
tr

in
g)

Chapter 27. Web services 911

Ta
bl

e
86

.
W

eb
se

rv
ic

es
M

et
ad

at
a

A
nn

ot
at

io
ns

(J
S

R
18

1)
(c

on
tin

ue
d)

.
D

es
cr

ib
es

th
e

su
pp

or
te

d
w

eb
se

rv
ic

es
m

et
ad

at
a

an
no

ta
tio

ns
an

d
th

ei
r

as
so

ci
at

ed
pr

op
er

tie
s.

A
n

n
o

ta
ti

o
n

cl
as

s
A

n
n

o
ta

ti
o

n
P

ro
p

er
ti

es

ja
va
x.
jw
s.

SO
AP
Bi
nd
in
g

T
he

@
S

O
A

P
B

in
d

in
g

an
no

ta
tio

n
sp

ec
ifi

es
th

e
m

ap
pi

ng
of

th
e

w
eb

se
rv

ic
e

on
to

th
e

S
O

A
P

m
es

sa
ge

pr
ot

oc
ol

.

A
pp

ly
th

is
an

no
ta

tio
n

to
a

ty
pe

or
m

et
ho

ds
on

a
cl

ie
nt

or
se

rv
er

S
er

vi
ce

E
nd

po
in

t
In

te
rf

ac
e

(S
E

I)
or

a
se

rv
er

en
dp

oi
nt

im
pl

em
en

ta
tio

n
cl

as
s.

T
he

m
et

ho
d

le
ve

la
nn

ot
at

io
n

is
lim

ite
d

in
w

ha
t

it
ca

n
sp

ec
ify

an
d

is
on

ly
us

ed
if

th
e
st
yl
e

pr
op

er
ty

is
DO
CU
ME
NT

.
If

th
e

m
et

ho
d

le
ve

la
nn

ot
at

io
n

is
no

t
sp

ec
ifi

ed
,

th
e

@
S

O
A

P
B

in
d

in
g

be
ha

vi
or

fr
om

th
e

ty
pe

is
us

ed
.

v
A

nn
ot

at
io

n
ta

rg
et

:
Ty

pe
or

M
et

ho
d

v
P

ro
pe

rt
ie

s:

-
st
yl
e D
ef

in
es

en
co

di
ng

st
yl

e
fo

r
m

es
sa

ge
s

se
nt

to
an

d
fr

om
th

e
w

eb
se

rv
ic

e.
T

he
va

lid
va

lu
es

ar
e
DO
CU
ME
NT

an
d
RP
C.

T
he

de
fa

ul
t

va
lu

e
is

DO
CU
ME
NT

.
(S

tr
in

g)

-
us
e

D
ef

in
es

th
e

fo
rm

at
tin

g
us

ed
fo

r
m

es
sa

ge
s

se
nt

to
an

d
fr

om
th

e
w

eb
se

rv
ic

e.
T

he
de

fa
ul

t
va

lu
e

is
LI
TE
RA
L.

EN
CO
DE
D

is
no

t
su

pp
or

te
d.

(S
tr

in
g)

-
pa
ra
me
te
rS
ty
le

D
et

er
m

in
es

w
he

th
er

th
e

m
et

ho
d'

s
pa

ra
m

et
er

s
re

pr
es

en
t

th
e

en
tir

e
m

es
sa

ge
bo

dy
or

w
he

th
er

pa
ra

m
et

er
s

ar
e

el
em

en
ts

w
ra

pp
ed

in
si

de
a

to
p-

le
ve

le
le

m
en

t
na

m
ed

af
te

r
th

e
op

er
at

io
n.

V
al

id
va

lu
es

ar
e
WR
AP
PE
D

or
BA
RE

.
Yo

u
ca

n
on

ly
us

e
th

e
BA
RE

va
lu

e
w

ith
DO
CU
ME
NT

st
yl

e
bi

nd
in

gs
.

T
he

de
fa

ul
t

va
lu

e
is

WR
AP
PE
D.

(S
tr

in
g)

912 Overview

Ta
bl

e
87

.
JA

X
-W

S
A

nn
ot

at
io

ns
(J

S
R

22
4)

.
D

es
cr

ib
es

th
e

su
pp

or
te

d
JA

X
-W

S
an

no
ta

tio
ns

an
d

th
ei

r
as

so
ci

at
ed

pr
op

er
tie

s.
A

n
n

o
ta

ti
o

n
cl

as
s

A
n

n
o

ta
ti

o
n

P
ro

p
er

ti
es

ja
va
x.
xm
l.
ws
.
Ac
ti
on

T
he

@
A

ct
io

n
an

no
ta

tio
n

sp
ec

ifi
es

th
e

W
S

-A
dd

re
ss

in
g

ac
tio

n
th

at
is

as
so

ci
at

ed
w

ith
a

w
eb

se
rv

ic
e

op
er

at
io

n.

W
he

n
yo

u
us

e
th

is
an

no
ta

tio
n

w
ith

a
pa

rt
ic

ul
ar

m
et

ho
d,

an
d

ge
ne

ra
te

th
e

co
rr

es
po

nd
in

g
W

S
D

L
do

cu
m

en
t,

th
e

W
S

-A
dd

re
ss

in
g

A
ct

io
n

ex
te

ns
io

n
at

tr
ib

ut
e

is
ad

de
d

to
th

e
in

pu
t

an
d

ou
tp

ut
el

em
en

ts
of

th
e

W
S

D
L

op
er

at
io

n
th

at
co

rr
es

po
nd

s
to

th
at

m
et

ho
d.

To
ad

d
th

is
at

tr
ib

ut
e

to
th

e
W

S
D

L
op

er
at

io
n,

yo
u

m
us

t
al

so
sp

ec
ify

th
e

@
A

dd
re

ss
in

g
an

no
ta

tio
n

on
th

e
se

rv
er

en
dp

oi
nt

im
pl

em
en

ta
tio

n
cl

as
s.

If
yo

u
do

no
t

w
an

t
to

us
e

th
e

@
A

dd
re

ss
in

g
an

no
ta

tio
n

yo
u

ca
n

su
pp

ly
yo

ur
ow

n
W

S
D

L
do

cu
m

en
t

w
ith

th
e

A
ct

io
n

at
tr

ib
ut

e
al

re
ad

y
de

fin
ed

.

v
A

nn
ot

at
io

n
ta

rg
et

:
M

et
ho

d

v
P

ro
pe

rt
ie

s:

-
fa
ul
t S
pe

ci
fie

s
th

e
ar

ra
y

of
Fa
ul
tA
ct
io
n

fo
r

th
e
ws
dl
:f
au
lt

of
th

e
op

er
at

io
n.

(S
tr

in
g)

-
in
pu
t S
pe

ci
fie

s
th

e
ac

tio
n

fo
r

th
ew

sd
l:
in
pu
t

of
th

e
op

er
at

io
n.

(S
tr

in
g)

-
ou
tp
ut S
pe

ci
fie

s
th

e
ac

tio
n

fo
r

th
ew

sd
l:
ou
tp
ut

of
th

e
op

er
at

io
n.

(S
tr

in
g)

ja
va
x.
xm
l.
ws
.
Bi
nd
in
gT
yp
e

T
he

@
B

in
d

in
g

Ty
p

e
an

no
ta

tio
n

sp
ec

ifi
es

th
e

bi
nd

in
g

to
us

e
w

he
n

pu
bl

is
hi

ng
an

en
dp

oi
nt

of
th

is
ty

pe
.

A
pp

ly
th

is
an

no
ta

tio
n

to
a

se
rv

er
en

dp
oi

nt
im

pl
em

en
ta

tio
n

cl
as

s.
Im

p
o

rt
an

t:
Yo

u
ca

n
us

e
th

e
@

B
in

di
ng

Ty
pe

an
no

ta
tio

n
on

th
e

Ja
va

B
ea

ns
en

dp
oi

nt
im

pl
em

en
ta

tio
n

cl
as

s
to

en
ab

le
M

T
O

M
by

sp
ec

ify
in

g
ei

th
er

ja
va
x.
xm
l.
ws
.s
oa
p.
SO
AP
Bi
nd
in
g.
SO
AP
11
HT
TP
_M
TO
M_
BI
ND
IN
G

or
ja
va
x.
xm
l.
ws
.s
oa
p.
SO
AP
Bi
nd
in
g.
SO
AP
12
HT
TP
_M
TO
M_
BI
ND
IN
G

as
th

e
va

lu
e

fo
r

th
e

an
no

ta
tio

n.

v
A

nn
ot

at
io

n
ta

rg
et

:
Ty

pe

v
P

ro
pe

rt
ie

s:

-
va
lu
e In
di

ca
te

s
th

e
bi

nd
in

g
id

en
tif

ie
r

w
eb

ad
dr

es
s.

V
al

id
va

lu
es

ar
e

ja
va
x.
xm
l.
ws
.s
oa
p.
SO
AP
Bi
nd
in
g.
SO
AP
11
HT
TP
_B
IN
DI
NG

,
ja
va
x.
xm
l.
ws
.s
oa
p.
SO
AP
Bi
nd
in
g.
SO
AP
12
HT
TP
_B
IN
DI
NG

,
an

d
ja
va
x.
xm
l.
ws
.h
tt
p.
HT
TP
Bi
nd
in
g.
HT
TP
2H
TT
P_
BI
ND
IN
G.

T
he

de
fa

ul
t

va
lu

e
is

ja
va
x.
xm
l.
ws
.s
oa
p.
SO
AP
Bi
nd
in
g.
SO
AP
11
HT
TP
_B
IN
DI
NG

.
(S

tr
in

g)

ja
va
x.
xm
l.
ws
.
Fa
ul
tA
ct
io
n

T
he

@
F

au
lt

A
ct

io
n

an
no

ta
tio

n
sp

ec
ifi

es
th

e
W

S
-A

dd
re

ss
in

g
ac

tio
n

th
at

is
ad

de
d

to
a

fa
ul

t
re

sp
on

se
.

T
hi

s
an

no
ta

tio
n

m
us

t
be

co
nt

ai
ne

d
w

ith
in

an
@

A
ct

io
n

an
no

ta
tio

n.

W
he

n
yo

u
us

e
th

is
an

no
ta

tio
n

w
ith

a
pa

rt
ic

ul
ar

m
et

ho
d,

th
e

W
S

-A
dd

re
ss

in
g

F
au

ltA
ct

io
n

ex
te

ns
io

n
at

tr
ib

ut
e

is
ad

de
d

to
th

e
fa

ul
t

el
em

en
t

of
th

e
W

S
D

L
op

er
at

io
n

th
at

co
rr

es
po

nd
s

to
th

at
m

et
ho

d.

To
ad

d
th

is
at

tr
ib

ut
e

to
th

e
W

S
D

L
op

er
at

io
n,

yo
u

m
us

t
al

so
sp

ec
ify

th
e

@
A

dd
re

ss
in

g
an

no
ta

tio
n

on
th

e
se

rv
er

en
dp

oi
nt

im
pl

em
en

ta
tio

n
cl

as
s.

If
yo

u
do

no
t

w
an

t
to

us
e

th
e

@
A

dd
re

ss
in

g
an

no
ta

tio
n

yo
u

ca
n

su
pp

ly
yo

ur
ow

n
W

S
D

L
do

cu
m

en
t

w
ith

th
e

A
ct

io
n

at
tr

ib
ut

e
al

re
ad

y
de

fin
ed

.

v
A

nn
ot

at
io

n
ta

rg
et

:
M

et
ho

d

v
P

ro
pe

rt
ie

s:

-
va
lu
e S
pe

ci
fie

s
th

e
ac

tio
n

of
th

e
ws
dl
:f
au
lt

of
th

e
op

er
at

io
n.

(S
tr

in
g)

-
ou
tp
ut S
pe

ci
fie

s
th

e
na

m
e

of
th

e
ex

ce
pt

io
n

cl
as

s.
(S

tr
in

g)

-
cl
as
sN
am
e

S
pe

ci
fie

s
th

e
na

m
e

of
th

e
cl

as
s

re
pr

es
en

tin
g

th
e

re
qu

es
t

w
ra

pp
er

.
(S

tr
in

g)

Chapter 27. Web services 913

Ta
bl

e
87

.
JA

X
-W

S
A

nn
ot

at
io

ns
(J

S
R

22
4)

(c
on

tin
ue

d)
.

D
es

cr
ib

es
th

e
su

pp
or

te
d

JA
X

-W
S

an
no

ta
tio

ns
an

d
th

ei
r

as
so

ci
at

ed
pr

op
er

tie
s.

A
n

n
o

ta
ti

o
n

cl
as

s
A

n
n

o
ta

ti
o

n
P

ro
p

er
ti

es

ja
va
x.
xm
l.
ws
.
Re
qu
es
tW
ra
pp
er

T
he

@
R

eq
u

es
tW

ra
p

p
er

an
no

ta
tio

n
su

pp
lie

s
th

e
JA

X
B

ge
ne

ra
te

d
re

qu
es

t
w

ra
pp

er
be

an
,

th
e

el
em

en
t

na
m

e,
an

d
th

e
na

m
es

pa
ce

fo
r

se
ria

liz
at

io
n

an
d

de
se

ria
liz

at
io

n
w

ith
th

e
re

qu
es

t
w

ra
pp

er
be

an
th

at
is

us
ed

at
ru

nt
im

e.

W
he

n
st

ar
tin

g
w

ith
a

Ja
va

ob
je

ct
,

th
is

el
em

en
t

is
us

ed
to

re
so

lv
e

ov
er

lo
ad

in
g

co
nf

lic
ts

in
do

cu
m

en
t

lit
er

al
m

od
e.

O
nl

y
th

e
cl
as
sN
am
e

at
tr

ib
ut

e
is

re
qu

ire
d

in
th

is
ca

se
.

A
pp

ly
th

is
an

no
ta

tio
n

to
m

et
ho

ds
on

a
cl

ie
nt

or
se

rv
er

S
er

vi
ce

E
nd

po
in

t
In

te
rf

ac
e

(S
E

I)
or

a
se

rv
er

en
dp

oi
nt

im
pl

em
en

ta
tio

n
cl

as
s.

v
A

nn
ot

at
io

n
ta

rg
et

:
M

et
ho

d

v
P

ro
pe

rt
ie

s:

-
lo
ca
lN
am
e

S
pe

ci
fie

s
th

e
lo

ca
ln

am
e

of
th

e
X

M
L

sc
he

m
a

el
em

en
t

re
pr

es
en

tin
g

th
e

re
qu

es
t

w
ra

pp
er

.
T

he
de

fa
ul

t
va

lu
e

is
th

e
op
er
at
io
nN
am
e

as
de

fin
ed

in
ja

va
x.

jw
s.

W
eb

M
et

ho
d

an
no

ta
tio

n.
(S

tr
in

g)

-
ta
rg
et
Na
me
sp
ac
e

S
pe

ci
fie

s
th

e
X

M
L

na
m

es
pa

ce
of

th
e

re
qu

es
t

w
ra

pp
er

m
et

ho
d.

T
he

de
fa

ul
t

va
lu

e
is

th
e

ta
rg

et
na

m
es

pa
ce

of
th

e
S

E
I.

(S
tr

in
g)

-
cl
as
sN
am
e

S
pe

ci
fie

s
th

e
na

m
e

of
th

e
cl

as
s

re
pr

es
en

tin
g

th
e

re
qu

es
t

w
ra

pp
er

.
(S

tr
in

g)

-
pa
rt
Na
me

S
pe

ci
fie

s
th

e
na

m
e

of
th

e
w

sd
l:p

ar
t

at
tr

ib
ut

e
th

at
re

pr
es

en
ts

th
e

X
M

L
sc

he
m

a
el

em
en

t
fo

r
th

e
R

eq
ue

st
W

ra
pp

er
cl

as
s.

T
hi

s
pr

op
er

ty
is

ap
pl

ic
ab

le
fo

r
JA

X
-W

S
2.

2
an

d
la

te
r.

(S
tr

in
g)

ja
va
x.
xm
l.
ws
.
Re
sp
on
se
Wr
ap
pe
r

T
he

@
R

es
p

o
n

se
W

ra
p

p
er

an
no

ta
tio

n
su

pp
lie

s
th

e
JA

X
B

ge
ne

ra
te

d
re

sp
on

se
w

ra
pp

er
be

an
,

th
e

el
em

en
t

na
m

e,
an

d
th

e
na

m
es

pa
ce

fo
r

se
ria

liz
at

io
n

an
d

de
se

ria
liz

at
io

n
w

ith
th

e
re

sp
on

se
w

ra
pp

er
be

an
th

at
is

us
ed

at
ru

nt
im

e.

W
he

n
st

ar
tin

g
w

ith
a

Ja
va

ob
je

ct
,

th
is

el
em

en
t

is
us

ed
to

re
so

lv
e

ov
er

lo
ad

in
g

co
nf

lic
ts

in
do

cu
m

en
t

lit
er

al
m

od
e.

O
nl

y
th

e
cl
as
sN
am
e

at
tr

ib
ut

e
is

re
qu

ire
d

in
th

is
ca

se
.

A
pp

ly
th

is
an

no
ta

tio
n

to
m

et
ho

ds
on

a
cl

ie
nt

or
se

rv
er

S
er

vi
ce

E
nd

po
in

t
In

te
rf

ac
e

(S
E

I)
or

a
se

rv
er

en
dp

oi
nt

im
pl

em
en

ta
tio

n
cl

as
s.

v
A

nn
ot

at
io

n
ta

rg
et

:
M

et
ho

d

v
P

ro
pe

rt
ie

s:

-
lo
ca
lN
am
e

S
pe

ci
fie

s
th

e
lo

ca
ln

am
e

of
th

e
X

M
L

sc
he

m
a

el
em

en
t

re
pr

es
en

tin
g

th
e

re
qu

es
t

w
ra

pp
er

.
T

he
de

fa
ul

t
va

lu
e

is
th

e
op
er
at
io
nN
am
e

+
R

es
po

ns
e.

op
er
at
io
nN
am
e

is
de

fin
ed

in
ja

va
x.

jw
s.

W
eb

M
et

ho
d

an
no

ta
tio

n.
(S

tr
in

g)

-
ta
rg
et
Na
me
sp
ac
e

S
pe

ci
fie

s
th

e
X

M
L

na
m

es
pa

ce
of

th
e

re
qu

es
t

w
ra

pp
er

m
et

ho
d.

T
he

de
fa

ul
t

va
lu

e
is

th
e

ta
rg

et
na

m
es

pa
ce

of
th

e
S

E
I.

(S
tr

in
g)

-
cl
as
sN
am
e

S
pe

ci
fie

s
th

e
na

m
e

of
th

e
cl

as
s

re
pr

es
en

tin
g

th
e

re
sp

on
se

w
ra

pp
er

.
(S

tr
in

g)

-
pa
rt
Na
me

S
pe

ci
fie

s
th

e
na

m
e

of
th

e
w

sd
l:p

ar
t

at
tr

ib
ut

e
th

at
re

pr
es

en
ts

th
e

X
M

L
sc

he
m

a
el

em
en

t
fo

r
th

e
R

es
po

ns
eW

ra
pp

er
cl

as
s.

T
hi

s
pr

op
er

ty
is

ap
pl

ic
ab

le
fo

r
JA

X
-W

S
2.

2
an

d
la

te
r.

(S
tr

in
g)

914 Overview

Ta
bl

e
87

.
JA

X
-W

S
A

nn
ot

at
io

ns
(J

S
R

22
4)

(c
on

tin
ue

d)
.

D
es

cr
ib

es
th

e
su

pp
or

te
d

JA
X

-W
S

an
no

ta
tio

ns
an

d
th

ei
r

as
so

ci
at

ed
pr

op
er

tie
s.

A
n

n
o

ta
ti

o
n

cl
as

s
A

n
n

o
ta

ti
o

n
P

ro
p

er
ti

es

ja
va
x.
xm
l.
ws
.
Re
sp
ec
tB
in
di
ng

T
he

@
R

es
p

ec
tB

in
d

in
g

an
no

ta
tio

n
sp

ec
ifi

es
w

he
th

er
th

e
JA

X
-W

S
im

pl
em

en
ta

tio
n

m
us

t
us

e
th

e
co

nt
en

ts
of

th
e
ws
dl
:b
in
di
ng

fo
r

an
en

dp
oi

nt
.

W
he

n
th

is
an

no
ta

tio
n

is
sp

ec
ifi

ed
,

a
ch

ec
k

is
pe

rf
or

m
ed

to
en

su
re

al
lr

eq
ui

re
d

W
S

D
L

ex
te

ns
ib

ili
ty

el
em

en
ts

w
ith

th
e

en
ab

le
d

at
tr

ib
ut

e
se

t
to

tr
ue

ar
e

su
pp

or
te

d.

A
pp

ly
th

is
an

no
ta

tio
n

to
m

et
ho

ds
on

a
se

rv
er

en
dp

oi
nt

im
pl

em
en

ta
tio

n
cl

as
s.

v
A

nn
ot

at
io

n
ta

rg
et

:
M

et
ho

d

v
P

ro
pe

rt
ie

s:

-
en
ab
le
d

S
pe

ci
fie

s
w

he
th

er
th

e
ws
dl
:b
in
di
ng

m
us

t
be

us
ed

or
no

t.
T

he
de

fa
ul

t
va

lu
e

is
tr
ue

.
(B

oo
le

an
)

ja
va
x.
xm
l.
ws
.
Se
rv
ic
eM
od
e

T
he

@
S

er
vi

ce
M

o
d

e
an

no
ta

tio
n

sp
ec

ifi
es

w
he

th
er

a
se

rv
ic

e
pr

ov
id

er
ne

ed
s

to
ha

ve
ac

ce
ss

to
an

en
tir

e
pr

ot
oc

ol
m

es
sa

ge
or

ju
st

th
e

m
es

sa
ge

pa
yl

oa
d.

Im
p

o
rt

an
t:

T
he

@
S

er
vi

ce
M

od
e

an
no

ta
tio

n
is

on
ly

su
pp

or
te

d
on

cl
as

se
s

th
at

ar
e

an
no

ta
te

d
w

ith
th

e
@

W
eb

S
er

vi
ce

P
ro

vi
de

r
an

no
ta

tio
n.

v
A

nn
ot

at
io

n
ta

rg
et

:
Ty

pe

v
P

ro
pe

rt
ie

s:

-
va
lu
e In
di

ca
te

s
w

he
th

er
th

e
pr

ov
id

er
cl

as
s

ac
ce

pt
s

th
e

pa
yl

oa
d

of
th

e
m

es
sa

ge
,
PA
YL
OA
D

or
th

e
en

tir
e

m
es

sa
ge

ME
SS
AG
E.

T
he

de
fa

ul
t

va
lu

e
is

PA
YL
OA
D.

(S
tr

in
g)

ja
va
x.
xm
l.
ws
.
so
ap
.A
dd
re
ss
in
g

T
he

@
A

d
d

re
ss

in
g

an
no

ta
tio

n
sp

ec
ifi

es
th

at
th

is
se

rv
ic

e
w

an
ts

to
en

ab
le

W
S

-A
dd

re
ss

in
g

su
pp

or
t.

A
pp

ly
th

is
an

no
ta

tio
n

to
m

et
ho

ds
on

a
se

rv
er

en
dp

oi
nt

im
pl

em
en

ta
tio

n
cl

as
s.

v
A

nn
ot

at
io

n
ta

rg
et

:
Ty

pe

v
P

ro
pe

rt
ie

s:

-
en
ab
le
d

S
pe

ci
fie

s
if

W
S

-A
dd

re
ss

in
g

is
en

ab
le

d
or

no
t.

T
he

de
fa

ul
t

va
lu

e
is

tr
ue

.
(B

oo
le

an
)

-
re
qu
ir
ed

S
pe

ci
fie

s
th

at
W

S
-A

dd
re

ss
in

g
he

ad
er

s
m

us
t

be
pr

es
en

t
on

in
co

m
in

g
m

es
sa

ge
s.

T
he

de
fa

ul
t

va
lu

e
is

fa
ls
e.

(B
oo

le
an

)

-
re
sp
on
se
s

S
pe

ci
fie

s
th

e
m

es
sa

ge
ex

ch
an

ge
pa

tte
rn

to
us

e.
T

he
de

fa
ul

t
va

lu
e

is
Re
sp
on
se
s.
AL
L.

T
hi

s
pr

op
er

ty
is

ap
pl

ic
ab

le
fo

r
JA

X
-W

S
2.

2
an

d
la

te
r.

(S
tr

in
g)

Chapter 27. Web services 915

Ta
bl

e
87

.
JA

X
-W

S
A

nn
ot

at
io

ns
(J

S
R

22
4)

(c
on

tin
ue

d)
.

D
es

cr
ib

es
th

e
su

pp
or

te
d

JA
X

-W
S

an
no

ta
tio

ns
an

d
th

ei
r

as
so

ci
at

ed
pr

op
er

tie
s.

A
n

n
o

ta
ti

o
n

cl
as

s
A

n
n

o
ta

ti
o

n
P

ro
p

er
ti

es

ja
va
x.
xm
l.
ws
.
so
ap
.M
TO
M

T
he

@
M

TO
M

an
no

ta
tio

n
sp

ec
ifi

es
w

he
th

er
bi

na
ry

co
nt

en
t

in
th

e
bo

dy
of

a
S

O
A

P
m

es
sa

ge
is

se
nt

us
in

g
M

T
O

M
.

A
pp

ly
th

is
an

no
ta

tio
n

to
a

se
rv

ic
e

en
dp

oi
nt

im
pl

em
en

ta
tio

n
cl

as
s.

v
A

nn
ot

at
io

n
ta

rg
et

:
C

la
ss

v
P

ro
pe

rt
ie

s:

-
en
ab
le
d

S
pe

ci
fie

s
if

M
T

O
M

is
en

ab
le

d
fo

r
th

e
JA

X
-W

S
en

dp
oi

nt
.

T
he

de
fa

ul
t

va
lu

e
is

tr
ue

.
(B

oo
le

an
)

-
th
re
sh
ol
d

S
pe

ci
fie

s
th

e
m

in
im

um
si

ze
fo

r
m

es
sa

ge
s

th
at

ar
e

se
nt

us
in

g
M

T
O

M
.

W
he

n
th

e
m

es
sa

ge
si

ze
is

le
ss

th
an

th
is

sp
ec

ifi
ed

in
te

ge
r,

th
e

m
es

sa
ge

is
in

lin
ed

in
th

e
X

M
L

do
cu

m
en

t
as

ba
se

64
or

he
xB

in
ar

y
da

ta
.

(in
te

ge
r)

ja
va
x.
xm
l.
ws
.
We
bF
au
lt

T
he

@
W

eb
F

au
lt

an
no

ta
tio

n
m

ap
s

W
S

D
L

fa
ul

ts
to

Ja
va

ex
ce

pt
io

ns
.

It
is

us
ed

to
ca

pt
ur

e
th

e
na

m
e

of
th

e
fa

ul
t

du
rin

g
th

e
se

ria
liz

at
io

n
of

th
e

JA
X

B
ty

pe
th

at
is

ge
ne

ra
te

d
fr

om
a

gl
ob

al
el

em
en

t
re

fe
re

nc
ed

by
a

W
S

D
L

fa
ul

t
m

es
sa

ge
.

It
ca

n
al

so
be

us
ed

to
cu

st
om

iz
e

th
e

m
ap

pi
ng

of
se

rv
ic

e
sp

ec
ifi

c
ex

ce
pt

io
ns

to
W

S
D

L
fa

ul
ts

.

T
hi

s
an

no
ta

tio
n

ca
n

on
ly

be
ap

pl
ie

d
to

a
fa

ul
t

im
pl

em
en

ta
tio

n
cl

as
s

on
th

e
cl

ie
nt

or
se

rv
er

.

v
A

nn
ot

at
io

n
ta

rg
et

:
Ty

pe

v
P

ro
pe

rt
ie

s:

-
na
me

S
pe

ci
fie

s
th

e
lo

ca
ln

am
e

of
th

e
X

M
L

el
em

en
t

th
at

re
pr

es
en

ts
th

e
co

rr
es

po
nd

in
g

fa
ul

t
in

th
e

W
S

D
L

fil
e.

T
he

ac
tu

al
va

lu
e

m
us

t
be

sp
ec

ifi
ed

.
(S

tr
in

g)

-
ta
rg
et
Na
me
sp
ac
e

S
pe

ci
fie

s
th

e
na

m
es

pa
ce

of
th

e
X

M
L

el
em

en
t

th
at

re
pr

es
en

ts
th

e
co

rr
es

po
nd

in
g

fa
ul

t
in

th
e

W
S

D
L

fil
e.

(S
tr

in
g)

-
fa
ul
tB
ea
n

S
pe

ci
fie

s
th

e
na

m
e

of
th

e
fa

ul
t

be
an

cl
as

s.
(S

tr
in

g)

-
me
ss
ag
eN
am
e

S
pe

ci
fie

s
th

e
na

m
e

of
th

e
w

sd
l:m

es
sa

ge
at

tr
ib

ut
e

th
at

re
pr

es
en

ts
th

e
co

rr
es

po
nd

in
g

fa
ul

t
in

th
e

W
S

D
L

fil
e.

T
hi

s
pr

op
er

ty
is

ap
pl

ic
ab

le
fo

r
JA

X
-W

S
2.

2
an

d
la

te
r.

(S
tr

in
g)

916 Overview

Ta
bl

e
87

.
JA

X
-W

S
A

nn
ot

at
io

ns
(J

S
R

22
4)

(c
on

tin
ue

d)
.

D
es

cr
ib

es
th

e
su

pp
or

te
d

JA
X

-W
S

an
no

ta
tio

ns
an

d
th

ei
r

as
so

ci
at

ed
pr

op
er

tie
s.

A
n

n
o

ta
ti

o
n

cl
as

s
A

n
n

o
ta

ti
o

n
P

ro
p

er
ti

es

ja
va
x.
xm
l.
ws
.
We
bS
er
vi
ce
Pr
ov
id
er

T
he

@
W

eb
S

er
vi

ce
P

ro
vi

d
er

an
no

ta
tio

n
de

no
te

s
th

at
a

cl
as

s
sa

tis
fie

s
re

qu
ire

m
en

ts
fo

r
a

JA
X

-W
S

P
ro

vi
de

r
im

pl
em

en
ta

tio
n

cl
as

s.
Im

p
o

rt
an

t:

v
A

Ja
va

cl
as

s
th

at
im

pl
em

en
ts

a
w

eb
se

rv
ic

e
m

us
t

sp
ec

ify
ei

th
er

th
e

@
W

eb
S

er
vi

ce
or

@
W

eb
S

er
vi

ce
P

ro
vi

de
r

an
no

ta
tio

n.
B

ot
h

an
no

ta
tio

ns
ca

nn
ot

be
pr

es
en

t.

v
T

he
@

W
eb

S
er

vi
ce

P
ro

vi
de

r
an

no
ta

tio
n

is
on

ly
su

pp
or

te
d

on
th

e
se

rv
ic

e
im

pl
em

en
ta

tio
n

cl
as

s.

A
ny

cl
as

s
w

ith
th

e
@

W
eb

S
er

vi
ce

P
ro

vi
de

r
an

no
ta

tio
n

m
us

t
im

pl
em

en
t

th
e

ja
va

x.
xm

l.w
s.

P
ro

vi
de

r
in

te
rf

ac
e.

v
A

nn
ot

at
io

n
ta

rg
et

:
Ty

pe

v
P

ro
pe

rt
ie

s:

-
ta
rg
et
Na
me
sp
ac
e

S
pe

ci
fie

s
th

e
X

M
L

na
m

es
pa

ce
of

th
e

W
S

D
L

an
d

X
M

L
el

em
en

ts
ge

ne
ra

te
d

fr
om

th
e

w
eb

se
rv

ic
e.

T
he

de
fa

ul
t

va
lu

e
is

th
e

na
m

es
pa

ce
m

ap
pe

d
fr

om
th

e
pa

ck
ag

e
na

m
e

co
nt

ai
ni

ng
th

e
w

eb
se

rv
ic

e.
(S

tr
in

g)

-
se
rv
ic
eN
am
e

S
pe

ci
fie

s
th

e
se

rv
ic

e
na

m
e

of
th

e
w

eb
se

rv
ic

e:
ws
dl
:s
er
vi
ce

.
T

he
de

fa
ul

t
va

lu
e

is
th

e
si

m
pl

e
na

m
e

of
th

e
Ja

va
cl

as
s

+
S

er
vi

ce
.

(S
tr

in
g)

-
po
rt
Na
me

T
he

ws
dl
:p
or
tN
am
e.

T
he

de
fa

ul
t

va
lu

e
is

th
e

na
m

e
of

th
e

cl
as

s
+

P
or

t.
(S

tr
in

g)

-
ws
dl
Lo
ca
ti
on

T
he

w
eb

ad
dr

es
s

of
th

e
W

S
D

L
do

cu
m

en
t

de
fin

in
g

th
e

w
eb

se
rv

ic
e.

T
hi

s
at

tr
ib

ut
e

is
re

qu
ire

d.
(S

tr
in

g)

Chapter 27. Web services 917

Ta
bl

e
87

.
JA

X
-W

S
A

nn
ot

at
io

ns
(J

S
R

22
4)

(c
on

tin
ue

d)
.

D
es

cr
ib

es
th

e
su

pp
or

te
d

JA
X

-W
S

an
no

ta
tio

ns
an

d
th

ei
r

as
so

ci
at

ed
pr

op
er

tie
s.

A
n

n
o

ta
ti

o
n

cl
as

s
A

n
n

o
ta

ti
o

n
P

ro
p

er
ti

es

ja
va
x.
xm
l.
ws
.
We
bS
er
vi
ce
Re
f

T
he

@
W

eb
S

er
vi

ce
R

ef
an

no
ta

tio
n

de
fin

es
a

re
fe

re
nc

e
to

a
w

eb
se

rv
ic

e
in

vo
ke

d
by

th
e

cl
ie

nt
.

N
o

te
:

v
T

he
@

W
eb

S
er

vi
ce

R
ef

an
no

ta
tio

n
ca

n
be

us
ed

to
in

je
ct

in
st

an
ce

s
of

JA
X

-W
S

se
rv

ic
es

an
d

po
rt

s.

v
T

he
@

W
eb

S
er

vi
ce

R
ef

an
no

ta
tio

n
is

on
ly

su
pp

or
te

d
in

ce
rt

ai
n

cl
as

s
ty

pe
s.

E
xa

m
pl

es
ar

e
JA

X
-W

S
en

dp
oi

nt
im

pl
em

en
ta

tio
n

cl
as

se
s,

JA
X

-W
S

ha
nd

le
r

cl
as

se
s,

E
nt

er
pr

is
e

Ja
va

B
ea

ns
cl

as
se

s,
an

d
se

rv
le

t
cl

as
se

s.
T

hi
s

an
no

ta
tio

n
is

su
pp

or
te

d
in

th
e

sa
m

e
cl

as
s

ty
pe

s
as

th
e

@
R

es
ou

rc
e

an
no

ta
tio

n.
S

ee
th

e
Ja

va
P

la
tfo

rm
,

E
nt

er
pr

is
e

E
di

tio
n

(J
av

a
E

E
)

5
sp

ec
ifi

ca
tio

n
fo

r
a

co
m

pl
et

e
lis

t
of

su
pp

or
te

d
cl

as
s

ty
pe

s.

v
A

nn
ot

at
io

n
ta

rg
et

:
Ty

pe
,

F
ie

ld
or

M
et

ho
d

v
P

ro
pe

rt
ie

s:

-
na
me

S
pe

ci
fie

s
th

e
JN

D
I

na
m

e
of

th
e

re
so

ur
ce

.
T

he
fie

ld
na

m
e

is
th

e
de

fa
ul

t
fo

r
fie

ld
an

no
ta

tio
ns

.
T

he
Ja

va
B

ea
ns

pr
op

er
ty

na
m

e
th

at
co

rr
es

po
nd

s
to

th
e

m
et

ho
d

is
th

e
de

fa
ul

t
fo

r
m

et
ho

d
an

no
ta

tio
ns

.
Yo

u
m

us
t

sp
ec

ify
a

va
lu

e
fo

r
cl

as
s

an
no

ta
tio

ns
as

th
er

e
is

no
de

fa
ul

t.
(S

tr
in

g)

-
ty
pe

In
di

ca
te

s
th

e
Ja

va
ty

pe
of

th
e

re
so

ur
ce

.
T

he
fie

ld
ty

pe
is

th
e

de
fa

ul
t

fo
r

fie
ld

an
no

ta
tio

ns
.

T
he

ty
pe

of
th

e
Ja

va
B

ea
ns

pr
op

er
ty

is
th

e
de

fa
ul

t
fo

r
m

et
ho

d
an

no
ta

tio
ns

.
Yo

u
m

us
t

sp
ec

ify
a

va
lu

e
fo

r
cl

as
s

an
no

ta
tio

ns
as

th
er

e
is

no
de

fa
ul

t.
(C

la
ss

)

-
ma
pp
ed
Na
me

S
pe

ci
fie

s
th

e
na

m
e

to
m

ap
th

is
re

so
ur

ce
to

.
(S

tr
in

g)

-
va
lu
e In
di

ca
te

s
th

e
va

lu
e

of
th

e
se

rv
ic

e
cl

as
s

an
d

it
is

a
ty

pe
th

at
ex

te
nd

s
ja
va
x.
xm
l.
ws
.S
er
vi
ce

.
T

hi
s

at
tr

ib
ut

e
is

re
qu

ire
d

w
he

n
th

e
ty

pe
of

th
e

re
fe

re
nc

e
is

a
se

rv
ic

e
en

dp
oi

nt
in

te
rf

ac
e.

(C
la

ss
)

-
ws
dl
Lo
ca
ti
on

T
he

w
eb

ad
dr

es
s

of
th

e
W

S
D

L
do

cu
m

en
t

de
fin

in
g

th
e

w
eb

se
rv

ic
e.

T
hi

s
at

tr
ib

ut
e

is
re

qu
ire

d.
(S

tr
in

g)

-
lo
ok
up S
pe

ci
fie

s
th

e
JN

D
I

lo
ok

up
na

m
e

fo
r

th
e

ta
rg

et
w

eb
se

rv
ic

e.
T

hi
s

pr
op

er
ty

is
ap

pl
ic

ab
le

fo
r

JA
X

-W
S

2.
2

an
d

la
te

r.
(S

tr
in

g)

ja
va
x.
xm
l.
ws
.
We
bS
er
vi
ce
Re
fs

T
he

@
W

eb
S

er
vi

ce
R

ef
s

an
no

ta
tio

n
as

so
ci

at
es

m
ul

tip
le

@
W

eb
S

er
vi

ce
R

ef
an

no
ta

tio
ns

w
ith

a
sp

ec
ifi

c
cl

as
s.

N
o

te
:

T
he

@
W

eb
S

er
vi

ce
R

ef
an

no
ta

tio
n

is
on

ly
su

pp
or

te
d

in
ce

rt
ai

n
cl

as
s

ty
pe

s.
E

xa
m

pl
es

ar
e

JA
X

-W
S

en
dp

oi
nt

im
pl

em
en

ta
tio

n
cl

as
se

s,
JA

X
-W

S
ha

nd
le

r
cl

as
se

s,
E

nt
er

pr
is

e
Ja

va
B

ea
ns

cl
as

se
s,

an
d

se
rv

le
t

cl
as

se
s.

T
hi

s
an

no
ta

tio
n

is
su

pp
or

te
d

in
th

e
sa

m
e

cl
as

s
ty

pe
s

as
th

e
@

R
es

ou
rc

e
an

no
ta

tio
n.

S
ee

th
e

Ja
va

P
la

tfo
rm

,
E

nt
er

pr
is

e
E

di
tio

n
(J

av
a

E
E

)
5

sp
ec

ifi
ca

tio
n

fo
r

a
co

m
pl

et
e

lis
t

of
su

pp
or

te
d

cl
as

s
ty

pe
s.

v
A

nn
ot

at
io

n
ta

rg
et

:
Ty

pe

v
P

ro
pe

rt
ie

s:

-
va
lu
e S
pe

ci
fie

s
an

ar
ra

y
fo

r
m

ul
tip

le
w

eb
se

rv
ic

e
re

fe
re

nc
e

de
cl

ar
at

io
ns

.
T

hi
s

at
tr

ib
ut

e
is

re
qu

ire
d.

918 Overview

Ta
bl

e
88

.
JA

X
-W

S
C

om
m

on
A

nn
ot

at
io

ns
(J

S
R

25
0)

.
D

es
cr

ib
es

th
e

su
pp

or
te

d
JA

X
-W

S
co

m
m

on
an

no
ta

tio
ns

an
d

th
ei

r
as

so
ci

at
ed

pr
op

er
tie

s.
A

n
n

o
ta

ti
o

n
cl

as
s

A
n

n
o

ta
ti

o
n

P
ro

p
er

ti
es

ja
va
x.
an
no
ta
ti
on
.
Re
so
ur
ce

T
he

@
R

es
o

u
rc

e
an

no
ta

tio
n

m
ar

ks
a

W
eb

S
er

vi
ce

C
on

te
xt

re
so

ur
ce

ne
ed

ed
by

th
e

ap
pl

ic
at

io
n.

N
o

te
:

A
pp

ly
in

g
th

is
an

no
ta

tio
n

to
a

W
eb

S
er

vi
ce

C
on

te
xt

ty
pe

fie
ld

on
th

e
se

rv
er

en
dp

oi
nt

im
pl

em
en

ta
tio

n
cl

as
s

fo
r

a
Ja

va
B

ea
ns

en
dp

oi
nt

or
a

P
ro

vi
de

r
en

dp
oi

nt
re

su
lts

in
th

e
co

nt
ai

ne
r

in
je

ct
in

g
an

in
st

an
ce

of
th

e
W

eb
S

er
vi

ce
C

on
te

xt
in

to
th

e
sp

ec
ifi

ed
fie

ld
.

W
he

n
th

is
an

no
ta

tio
n

is
us

ed
in

pl
ac

e
of

th
e

@
W

eb
S

er
vi

ce
R

ef
an

no
ta

tio
n,

th
e

ru
le

s
de

sc
rib

ed
fo

r
th

e
@

W
eb

S
er

vi
ce

R
ef

an
no

ta
tio

n
ap

pl
y.

v
A

nn
ot

at
io

n
ta

rg
et

:
F

ie
ld

or
M

et
ho

d

v
P

ro
pe

rt
ie

s:

-
ty
pe

In
di

ca
te

s
th

e
Ja

va
ty

pe
of

th
e

re
so

ur
ce

.
Yo

u
ar

e
re

qu
ire

d
to

us
e

th
e

de
fa

ul
t,
ja
va
.l
an
g.
Ob
je
ct

or
ja
va
x.
xm
l.
ws
.W
eb

Se
rv
ic
eC
on
te
xt

va
lu

e.
If

th
e

ty
pe

is
th

e
de

fa
ul

t,
th

e
re

so
ur

ce
m

us
t

be
in

je
ct

ed
in

to
a

fie
ld

or
a

m
et

ho
d.

In
th

is
ca

se
,

th
e

ty
pe

of
th

e
fie

ld
or

th
e

ty
pe

of
th

e
Ja

va
B

ea
ns

pr
op

er
ty

de
fin

ed
by

th
e

m
et

ho
d

m
us

t
be

ja
va
x.
xm
l.
ws
.W
eb
Se
rv
ic
eC
on
te
xt

.
(C

la
ss

)

If
yo

u
ar

e
us

in
g

th
is

an
no

ta
tio

n
to

in
je

ct
a

w
eb

se
rv

ic
e,

se
e

th
e

de
sc

rip
tio

n
of

th
e

@
W

eb
S

er
vi

ce
R

ef
ty
pe

at
tr

ib
ut

e.

ja
va
x.
an
no
ta
ti
on
.
Re
so
ur
ce
s

T
he

@
R

es
o

u
rc

es
an

no
ta

tio
n

as
so

ci
at

es
m

ul
tip

le
@

R
es

ou
rc

e
an

no
ta

tio
ns

w
ith

a
sp

ec
ifi

c
cl

as
s

an
d

se
rv

es
as

a
co

nt
ai

ne
r

fo
r

m
ul

tip
le

re
so

ur
ce

de
cl

ar
at

io
ns

.
v

A
nn

ot
at

io
n

ta
rg

et
:

F
ie

ld
or

M
et

ho
d

v
P

ro
pe

rt
ie

s:

-
va
lu
e S
pe

ci
fie

s
an

ar
ra

y
fo

r
m

ul
tip

le
@

R
es

ou
rc

e
an

no
ta

tio
ns

.
T

hi
s

at
tr

ib
ut

e
is

re
qu

ire
d.

ja
va
x.
an
no
ta
ti
on
.
Po
st
Co
ns
tr
uc
t

T
he

@
P

o
st

C
o

n
st

ru
ct

an
no

ta
tio

n
m

ar
ks

a
m

et
ho

d
th

at
ne

ed
s

to
ru

n
af

te
r

de
pe

nd
en

cy
in

je
ct

io
n

is
pe

rf
or

m
ed

on
th

e
cl

as
s.

A
pp

ly
th

is
an

no
ta

tio
n

to
a

JA
X

-W
S

ap
pl

ic
at

io
n

ha
nd

le
r,

a
se

rv
er

en
dp

oi
nt

im
pl

em
en

ta
tio

n
cl

as
s.

v
A

nn
ot

at
io

n
ta

rg
et

:
M

et
ho

d

ja
va
x.
an
no
ta
ti
on
.
Pr
eD
es
tr
oy

T
he

@
P

re
D

es
tr

o
y

an
no

ta
tio

n
m

ar
ks

a
m

et
ho

d
th

at
m

us
t

be
ru

n
w

he
n

th
e

in
st

an
ce

is
in

th
e

pr
oc

es
s

of
be

in
g

re
m

ov
ed

by
th

e
co

nt
ai

ne
r.

A
pp

ly
th

is
an

no
ta

tio
n

to
a

JA
X

-W
S

ap
pl

ic
at

io
n

ha
nd

le
r

or
a

se
rv

er
en

dp
oi

nt
im

pl
em

en
ta

tio
n

cl
as

s.

v
A

nn
ot

at
io

n
ta

rg
et

:
M

et
ho

d

Chapter 27. Web services 919

Ta
bl

e
89

.
IB

M
pr

op
rie

ta
ry

an
no

ta
tio

ns
.

D
es

cr
ib

es
th

e
su

pp
or

te
d

IB
M

pr
op

rie
ta

ry
an

no
ta

tio
ns

an
d

th
ei

r
as

so
ci

at
ed

pr
op

er
tie

s.
A

n
n

o
ta

ti
o

n
cl

as
s

A
n

n
o

ta
ti

o
n

P
ro

p
er

ti
es

co
m.
ib
m.
we
bs
ph
er
e.

ws
ad
dr
es
si
ng
.

ja
xw
s2
1.

Su
bm
is
si
on
Ad
dr
es
si
ng

T
he

@
S

u
b

m
is

si
o

n
A

d
d

re
ss

in
g

an
no

ta
tio

n
sp

ec
ifi

es
th

at
th

is
se

rv
ic

e
w

an
ts

to
en

ab
le

W
S

-A
dd

re
ss

in
g

su
pp

or
t

fo
r

th
e

20
04

/0
8

W
S

-A
dd

re
ss

in
g

sp
ec

ifi
ca

tio
n.

T
hi

s
an

no
ta

tio
n

is
pa

rt
of

th
e

IB
M

im
pl

em
en

ta
tio

n
of

th
e

JA
X

-W
S

2.
1

sp
ec

ifi
ca

tio
n.

A
pp

ly
th

is
an

no
ta

tio
n

to
m

et
ho

ds
on

a
se

rv
er

en
dp

oi
nt

im
pl

em
en

ta
tio

n
cl

as
s.

v
A

nn
ot

at
io

n
ta

rg
et

:
Ty

pe

v
P

ro
pe

rt
ie

s:

-
en
ab
le
d

S
pe

ci
fie

s
if

W
S

-A
dd

re
ss

in
g

is
en

ab
le

d
or

no
t.

T
he

de
fa

ul
t

va
lu

e
is

tr
ue

.
(B

oo
le

an
)

-
re
qu
ir
ed

S
pe

ci
fie

s
th

at
W

S
-A

dd
re

ss
in

g
he

ad
er

s
m

us
t

be
pr

es
en

t
on

in
co

m
in

g
m

es
sa

ge
s.

T
he

de
fa

ul
t

va
lu

e
is

fa
ls
e.

(B
oo

le
an

)

920 Overview

JAX-WS application packaging
You can package a Java Application Programming Interface (API) for XML Web Services (JAX-WS)
application as a web service. A JAX-WS web service is contained within a web application archive (WAR)
file or a WAR module within an enterprise archive (EAR) file.

A JAX-WS enabled WAR file contains:

v A WEB-INF/web.xml file

v Annotated classes that implement the web services contained in the application module

v [Optional] Web Services Description Language (WSDL) documents that describe the web services
contained in the application module

A WEB-INF/web.xml file is similar to this example:
<?xml version="1.0" encoding="UTF-8"?>
<web-app id="WebApp_ID" xmlns=”http://java.sun.com/xml/ns/j2ee”

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://java.sun.com/xml/ns/j2ee
http://java.sun.com/xml/ns/j2ee/web-app_2_4.xsd"
version="2.4">

</web-app>

The web.xml might contain servlet or servlet-mapping elements. When customizations to the web.xml file
are not needed, the WebSphere Application Server runtime defines them dynamically as the module is
loaded. For more information on configuring the web.xml file, see customizing web URL patterns in the
web.xml file for JAX-WS applications.

Annotated classes must contain, at a minimum, a web service implementation class that includes the
@WebService annotation. The definition and specification of the web services-related annotations are
provided by the JAX-WS and JSR-181 specifications. The web service implementation classes can exist
within the WEB-INF/classes or directory within a Java archive (JAR) file that is contained in the
WEB-INF/lib directory of the WAR file.

You can optionally include WSDL documents in the JAX-WS application packaging. If the WSDL document
for a particular web service is omitted, then the WebSphere Application Server runtime constructs the
WSDL definition dynamically from the annotations contained in the web service implementation classes.

Starting with WebSphere Application Server Version 7.0 and later, Java EE 5 application modules (web
application modules version 2.5 or above, or EJB modules version 3.0 or above) are scanned for
annotations to identify JAX-WS services and clients. However, pre-Java EE 5 application modules (web
application modules version 2.4 or before, or EJB modules version 2.1 or before) are not scanned for
JAX-WS annotations, by default, for performance considerations. In the Version 6.1 Feature Pack for Web
Services, the default behavior is to scan pre-Java EE 5 web application modules to identify JAX-WS
services and to scan pre-Java EE 5 web application modules and EJB modules for service clients during
application installation. Because the default behavior for WebSphere Application Server Version 7.0 and
later is to not scan pre-Java EE 5 modules for annotations during application installation or server startup,
to preserve backward compatability with the feature pack from previous releases, you must configure
either the UseWSFEP61ScanPolicy property in the META-INF/MANIFEST.MF of a web application archive
(WAR) file or EJB module or define the Java virtual machine custom property,
com.ibm.websphere.webservices.UseWSFEP61ScanPolicy, on servers to request scanning during
application installation and server startup. To learn more about annotations scanning, see the JAX-WS
annotations information.

JAXB
Java Architecture for XML Binding (JAXB) is a Java technology that provides an easy and convenient way
to map Java classes and XML schema for simplified development of web services. JAXB leverages the
flexibility of platform-neutral XML data in Java applications to bind XML schema to Java applications

Chapter 27. Web services 921

without requiring extensive knowledge of XML programming. JAXB provides the xjc schema compiler tool
and the schemagen schema generator tool to transform between XML schema and Java classes.

JAXB is an XML to Java binding technology that supports transformation between schema and Java
objects and between XML instance documents and Java object instances. JAXB consists of a runtime
application programming interface (API) and accompanying tools that simplify access to XML documents.
JAXB also helps to build XML documents that both conform and validate to the XML schema. Java API for
XML-Based Web Services (JAX-WS) leverages the JAXB API and tools as the binding technology for
mappings between Java objects and XML documents. JAX-WS tooling relies on JAXB tooling for default
data binding for two-way mappings between Java objects and XML documents.

This version of the application server supports the JAXB 2.2 specification. JAX-WS 2.2 requires JAXB 2.2
for data binding. JAXB 2.2 provides minor enhancements to its annotations for improved schema
generation and better integration with JAX-WS.

JAXB provides the xjc schema compiler tool, the schemagen schema generator tool, and a runtime
framework. You can use the xjc schema compiler tool to start with an XML schema definition (XSD) to
create a set of JavaBeans that map to the elements and types defined in the XSD schema. You can also
start with a set of JavaBeans and use the schemagen schema generator tool to create the XML schema.
Once the mapping between XML schema and Java classes exists, XML instance documents can be
converted to and from Java objects through the use of the JAXB binding runtime API. Data stored in XML
documents can be accessed without the need to understand the data structure. You can then use the
resulting Java classes to assemble a web services application.

JAXB annotated classes and artifacts contain all the information needed by the JAXB runtime API to
process XML instance documents. The JAXB runtime API supports marshaling of JAXB objects to XML
and unmarshaling the XML document back to JAXB class instances. Optionally, you can use JAXB to
provide XML validation to enforce both incoming and outgoing XML documents to conform to the XML
constraints defined within the XML schema.

JAXB is the default data binding technology used by the Java API for XML Web Services (JAX-WS) tooling
and implementation within this product. You can develop JAXB objects for use within JAX-WS applications.

You can also use JAXB independently of JAX-WS when you want to leverage the XML data binding
technology to manipulate XML within your Java applications.

922 Overview

JAX-RPC
The Java API for XML-based RPC (JAX-RPC) specification enables you to develop SOAP-based
interoperable and portable web services and web service clients. JAX-RPC 1.1 provides core APIs for
developing and deploying web services on a Java platform and is a part of the Web Services for Java
Platform, Enterprise Edition (Java EE) platform. The Java EE platform enables you to develop portable
web services.

WebSphere Application Server implements JAX-RPC 1.1 standards.

The JAX-RPC standard covers the programming model and bindings for using Web Services Description
Language (WSDL) for Web services in the Java language. JAX-RPC simplifies development of web
services by shielding you from the underlying complexity of SOAP communication.

On the surface, JAX-RPC looks like another instantiation of remote method invocation (RMI). Essentially,
JAX-RPC enables clients to access a web service as if the web service was a local object mapped into
the client's address space even though the web service provider is located in another part of the world.
The JAX-RPC is done by using the XML-based protocol SOAP, which typically rides on top of HTTP.

JAX-RPC defines the mappings between the WSDL port types and the Java interfaces, as well as Java
language and Extensible Markup Language (XML) schema types.

A JAX-RPC web service can be created from a JavaBeans or a enterprise bean implementation. You can
specify the remote procedures by defining remote methods in a Java interface. You only need to code one
or more classes that implement the methods. The remaining classes and other artifacts are generated by
the web service vendor's tools. The following is an example of a web service interface:
package com.ibm.mybank.ejb;
import java.rmi.RemoteException;
import com.ibm.mybank.exception.InsufficientFundsException;
/**
* Remote interface for Enterprise Bean: Transfer
*/
public interface Transfer_SEI extends java.rmi.Remote {

public void transferFunds(int fromAcctId, int toAcctId, float amount)
throws java.rmi.RemoteException;

}

Figure 184. JAXB architecture

Chapter 27. Web services 923

The interface definition in JAX-RPC must follow specific rules:

v The interface must extend java.rmi.Remote just like RMI.

v Methods must create java.rmi.RemoteException.

v Method parameters cannot be remote references.

v Method parameter must be one of the parameters supported by the JAX-RPC specification. The
following list are examples of method parameters that are supported. For a complete list of method
parameters see the JAX-RPC specification.

– Primitive types: boolean, byte, double, float, short, int and long

– Object wrappers of primitive types: java.lang.Boolean, java.lang.Byte, java.lang.Double,
java.lang.Float, java.lang.Integer, java.lang.Long, java.lang.Short

– java.lang.String

– java.lang.BigDecimal

– java.lang.BigInteger

– java.lang.Calendar

– java.lang.Date

v Methods can take value objects which consist of a composite of the types previously listed, in addition
to aggregate value objects.

A client creates a stub and invokes methods on it. The stub acts like a proxy for the web service. From the
client code perspective, it seems like a local method invocation. However, each method invocation gets
marshaled to the remote server. Marshaling includes encoding the method invocation in XML as
prescribed by the SOAP protocol.

The following are key classes and interfaces needed to write web services and web service clients:

v Service interface: A factory for stubs or dynamic invocation and proxy objects used to invoke methods

v ServiceFactory class: A factory for Services.

v loadService

The loadService method is provided in WebSphere Application Server Version 6.0 to generate the
service locator which is required by a JAX-RPC implementation. If you recall, in previous versions there
was no specific way to acquire a generated service locator. For managed clients you used a JNDI
method to get the service locator and for non-managed clients, you were required to instantiate IBM's
specific service locator ServiceLocator service=new ServiceLocator(...); which does not offer
portability. The loadService parameters include:

– wsdlDocumentLocation: A URL for the WSDL document location for the service or null.

– serviceName: A qualified name for the service

– properties: A set of implementation-specific properties to help locate the generated service
implementation class.

v isUserInRole

The isUserInRole method returns a boolean indicating whether the authenticated user for the current
method invocation on the endpoint instance is included in the specified logical role.

– role: The role parameter is a String specifying the name of the role.

v Service

v Call interface: Used for dynamic invocation

v Stub interface: Base interface for stubs

If you are using a stub to access the web service provider, most of the JAX-RPC API details are hidden
from you. The client creates a ServiceFactory (java.xml.rpc.ServiceFactory). The client instantiates a
Service (java.xml.rpc.Service) from the ServiceFactory. The service is a factory object that creates the
port. The port is the remote service endpoint interface to the web service. In the case of DII, the Service
object is used to create Call objects, which you can configure to call methods on the Web service's port.

924 Overview

For a complete list of the supported standards and specifications, see the web services specifications and
API documentation.

RMI-IIOP using JAX-RPC
Remote Method Invocation over Internet Inter-ORB Protocol (RMI-IIOP) can be used with JAX-RPC to
support non-SOAP bindings.

Java API for XML-based Remote Procedure Call (JAX-RPC) is the Java standard API for invoking web
services through remote procedure calls. A transport is used by a programming language to communicate
over the Internet. You can use protocols with the transport such as SOAP and Remote Method Invocation
(RMI). You can use Remote Method Invocation over Internet Inter-ORB Protocol (RMI-IIOP) with JAX-RPC
to support non-SOAP bindings.

Using RMI-IIOP with JAX-RPC, enables WebSphere Java clients to invoke enterprise beans using a
WSDL file and the JAX-RPC programming model instead of using the standard Web Services for Java
Platform, Enterprise Edition (Java EE) programming model. When a enterprise JavaBeans implementation
is used to invoke a web service, multiprotocol JAX-RPC permits the web service invocation path to be
optimized for WebSphere Java clients. To learn more this optimization, read about using enterprise bean
bindings to invoke an EJB from a web services client.

Benefits of using the RMI/IIOP protocol instead of a SOAP- based protocol are:

v XML processing is not required to send and receive messages; Java serialization is used instead.

v The client JAX-RPC call can participate in a user transaction, which is not the case when SOAP is
used.

WS-I Basic Profile
The Web Services-Interoperability (WS-I) Basic Profile is a set of non-proprietary web services
specifications that promote interoperability. WebSphere Application Server conforms to the WS-I Basic
Profile Version 1.1 and WS-I Basic Security Profile Version 1.0.

The WS-I Basic Profile is governed by a consortium of industry-leading corporations, including IBM, under
direction of the WS-I Organization. The profile consists of a set of principles that relate to bringing about
open standards for web services technology. All organizations that are interested in promoting
interoperability among web services are encouraged to become members of the Web Services
Interoperability Organization.

Several technology components are used in the composition and implementation of web services,
including messaging, description, discovery, and security. Each of these components are supported by
specifications and standards, including SOAP 1.1, Extensible Markup Language (XML) 1.0, HTTP 1.1,
Web Services Description Language (WSDL) 1.1, and Universal Description, Discovery and Integration
(UDDI). The WS-I Basic Profile specifies how these technology components are used together to achieve
interoperability, and mandates specific use of each of the technologies when appropriate. You can read
more about the WS-I Basic Profile at the WS-I Organization website.

As technology components are updated, these components are also used in the composition and
implementation of web services. One example is that both SOAP 1.1 and SOAP 1.2 are now supported.

Building on the support for WS-I Basic Profile Version 1.0, WS-I Basic Profile V1.1, Attachment Profile
V1.0, Basic Security Profile (BSP) V1.0, and WS-I Basic Security Profile V1.1, you can implement web
services with this product using the following active WS-I profiles:

v WS-I Basic Profile V1.2 builds on WS-I Basic Profile V1.0 and WS-I Basic Profile V1.1 and adds
support for WS-Addressing (WS-A) and SOAP Message Transmission Optimization Mechanism
(MTOM). The WS-Addressing specification enables the asynchronous message exchange pattern so
that you can decouple the service request from the service response. The SOAP header of the sender's
request contains the wsa:ReplyTo value that defines the endpoint reference to which the provider's

Chapter 27. Web services 925

response is sent. Decoupling the request from the response enables long running web services
interactions. Leveraging the asynchronous programming model support in JAX-WS Version 2.1 in
combination with WS-Addressing, you can now take advantage of the ability to create web services
invocations where the client can continue to process work without waiting for a response to return. This
provides for a more dynamic and efficient model to invoke web services. Using MTOM, you can send
and receive binary data optimally within a SOAP message.

v WS-I Basic Profile V2.0 builds on Basic Profile V1.2 with the addition of support for SOAP 1.2.

v WS-I Reliable Secure Profile 1.0 builds on WS-I Basic Profile V1.2, WS-I Basic Profile V2.0, WS-I Basic
Security Profile V1.0, and WS-I Basic Security Profile V1.1 and adds support for WS-Reliable
Messaging 1.1, WS-Make Connection 1.0, and WS-Secure Conversation 1.3. WS-Reliable Messaging
1.1 is a session-based protocol that provides message level reliability for web services interactions.
WS-Make Connection 1.0 was developed by the WS-Reliable Messaging workgroup to address
scenarios where a web services endpoint is behind a firewall or the endpoint has no visible endpoint
reference. If a web services endpoint loses connectivity during a reliable session, WS-Make Connection
provides an efficient method to re-establish the reliable session. Additionally, WS-Secure Conversation
V1.3 is a session-based security protocol that uses an efficient symmetric key based encryption
algorithm for message level security. WS-I Reliable Secure Profile V1.0 provides secure reliable
session-oriented web services interactions.

Each of the technology components has requirements that you can read about in more detail at the WS-I
Organization website. For example, support for Universal Transformation Format (UTF)-16 encoding is
required by WS-I Basic Profile. UTF-16 is a kind of Unicode encoding scheme that uses 16-bit values to
store Universal Character Set (UCS) characters. UTF-8 is the most common encoding that is used on the
Internet; UTF-16 encoding is typically used for Java and Windows product applications; and UTF-32 is
used by various Linux and UNIX systems. Unlike UTF-8, UTF-16 has issues with big-endian and
little-endian, and often involves Byte Order Mark (BOM) to indicate the endian. BOM is mandatory for
UTF-16 encoding and it can be used in UTF-8.

The application server only supports UTF-8 and UTF-16 encoding of SOAP messages.

See the information on changing SOAP message encoding to support WSI-Basic Profile to learn how to
modify your encoding from UTF-8 to UTF-16.

Table 90. UTF properties. Specifies the corresponding bytes and encoding form for UTF properties.
Bytes Encoding form

EF BB BF UTF-8

FF FE UTF-16, little-endian

FE FF UTF-16, big-endian

00 00 FE FF UTF-32, big-endian

FF FE 00 00 UTF-32, little-endian

BOM is written prior to the XML text, and it indicates to the parser how the XML is encoded. The XML
declaration contains the encoding, for example: <?xml version=xxx encoding="utf-xxx"?>. BOM is used
with the encoding to determine how to interpret the XML. Here is an example of a SOAP message and
how BOM and UTF encoding are used:
POST http://www.whitemesa.net/soap12/add-test-rpc HTTP/1.1
Content-Type: application/soap+xml; charset=utf-16; action=""
SOAPAction:
Host: localhost: 8080
Content-Length: 562

OxFF0xFE<?xml version="1.0" encoding="utf-16"?>
<soap:Envelope xmlns:soap="http://www.w3.org/2002/12/soap-envelope"

xmlns:soapenc="http://www.w3.org/2002/12/soap-encoding
xmlns:tns="http://whitemesa.net/wsdl/soap12-test"
xmlns:types="http://whitemesa.net/wsdl/soap12-test/encodedTypes"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">

<soap:Body>
<q1:echoString xmlns:q1="http://soapinterop.org/">
<inputString soap:encodingStyle="http://example.org/unknownEncoding"

926 Overview

xsi:type="xsd:string">
Hello SOAP 1.2

</inputString>
</q1:echoString>

</soap:Body>
</soap:Envelope>

In the example code, 0xFF0xFE represents the byte codes, while the <?xml> declaration is the textual
representation.

Support for styleEncoding is not supported in SOAP 1.2 so here is the same example of the SOAP
message but without the encoding information:
OxFF0xFE<?xml version="1.0" encoding="utf-16"?>
<soap:Envelope xmlns:soap="http://www.w3.org/2002/12/soap-envelope"

xmlns:soapenc="http://www.w3.org/2002/12/soap-encoding
xmlns:tns="http://whitemesa.net/wsdl/soap12-test"
xmlns:types="http://whitemesa.net/wsdl/soap12-test/encodedTypes"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">

<soap:Body>
<q1:echoString xmlns:q1="http://soapinterop.org/">
<inputString xsi:type="xsd:string">
Hello SOAP 1.2

</inputString>
</q1:echoString>

</soap:Body>
</soap:Envelope>

For a complete list of the supported standards and specifications, see the web services specifications and
API documentation.

WS-I Attachments Profile
The Web Services-Interoperability (WS-I) Attachments Profile is a set of non-proprietary web services
specifications that promote interoperability. This profile compliments the WS-I Basic Profile 1.1 to add
support for interoperable SOAP messages with attachments-based web services.

WebSphere Application Server conforms to the WS-I Attachments Profile 1.0.

Attachments are typically used to send binary data, for example, data that is mapped in Java code to
java.awt.Image and javax.activation.DataHandler. The raw data can be sent in the SOAP message,
however, this approach is inefficient because an XML parser has to scan the data as it parses the
message.

The WS-I Attachments Profile provides a solution to the limitations that are presented by Web Services
Description Language (WSDL) 1.1. Because WSDL 1.1 attachments are not part of the XML schema type
space, they can be message parts only. As message parts, the attachments cannot be arrays or properties
of Java beans. The profile defines the wsi:swaRef XML schema type.Use the wsi:swaRef XML schema
type to overcome the limitations of WSDL 1.1 attachments.

The wsi:swaRef type is an extension of the xsd:anyURI type, where its value contains the content-ID of
the attachment.

For a complete list of the supported standards and specifications, see the web services specifications and
API documentation.

Overview of IBM JAX-RS
Java API for RESTful Web Services (JAX-RS) is a programming model that provides a mechanism for
developing services that follow Representational State Transfer (REST) principles. Using JAX-RS,
development of RESTful services is simplified.

JAX-RS is a collection of interfaces and Java annotations that simplifies development of server-side REST
applications. By using JAX-RS technology, REST applications are simpler to develop, simpler to consume,

Chapter 27. Web services 927

and simpler to scale when compared to other types of distributed systems. This product supports a Java
API for developing REST-based services. The IBM implementation of JAX-RS provides an implementation
of the JAX-RS specification.

To develop RESTful services using IBM JAX-RS, it is assumed that you are familiar with basic REST
principles and a basic knowledge of standard technologies, such as HTTP, and XML.

REST and JAX-RS

Representational State Transfer, also known as REST, is an architectural style that uses multiple
standard technologies like HTTP, XML, ATOM, and HTML. REST is used to define flexible
applications based on the notion of resources. A resource is simply any data that you want to
share on the web that you can identify by a Uniform Resource Identifier (URI).

JAX-RS is a specification defined by JSR-311 in the Java Community Process. Some of the key
features provided by JAX-RS include:

v A collection of annotations for declaring resource classes and the data types they support

v A set of interfaces that allow application developers to gain access to the runtime context

v An extensible framework for integrating custom content handlers

Apache Wink and the IBM implementation of JAX-RS

Wink is a project developed within the Apache Software Foundation that provides a lightweight
framework for developing RESTful applications. Wink supports REST services implemented using
JAX-RS to describe the resources on the server. However, a client API is also provided by Wink.
This client API is specific to the Wink runtime environment because there is no JAX-RS defined
client API.

The IBM implementation of JAX-RS is an extension of the base Wink 1.1 runtime environment.
IBM JAX-RS includes the following features:
v JAX-RS 1.1 server runtime
v Stand-alone client API with the option to use Apache HttpClient 4.0 as the underlying client
v Built-in entity provider support for JSON4J
v An Atom JAXB model in addition to Apache Abdera support
v Multipart content support
v A handler system to integrate user handlers into the processing of requests and responses

Now, you are ready to start learning more about implementing RESTful services using IBM
JAX-RS.
v For an example of how to get a JAX-RS web application running quickly, see the quick start

documentation.
v To learn about planning considerations for the JAX-RS application, see the planning to use

JAX-RS to enable RESTful services documentation.
v To learn more about developing, packaging, and deploying JAX-RS web services, see the

implementing JAX-RS web applications documentation. Additional information is provided for
implementing JAX-RS web applications that use XML, JSON, or Atom content formats.

Web Services Addressing support
The Web Services Addressing (WS-Addressing) support in this product provides the environment for web
services that use the World Wide Web Consortium (W3C) WS-Addressing specifications. This family of
specifications provide transport-neutral mechanisms to address web services and to facilitate end-to-end
addressing.

You do not usually have to be aware of the underlying WS-Addressing support because WebSphere
Application Server ensures that your web service applications are WS-Addressing compliant when
required. Read this topic only if you have to use the WS-Addressing support directly. For example, if you
have one of the following roles:

928 Overview

v A web service developer who needs to use the WS-Addressing application programming interfaces
(APIs) to create endpoint references within an application, and then use these references to target web
service resource instances.

v A system programmer who needs to use the IBM proprietary WS-Addressing system programming
interfaces (SPIs) to undertake more advanced WS-Addressing operations, such as specifying
message-addressing properties on web services messages.

v An administrator who is configuring policy sets for JAX-WS applications.

The WS-Addressing support for developers consists of two sets of programming interfaces: the JAX-WS
standard interfaces, and the IBM proprietary implementation of the WS-Addressing specification.

Features of the JAX-WS WS-Addressing support

This product provides support for the JAX-WS WS-Addressing APIs, which you can use to undertake basic
addressing functions such as creating an endpoint reference, enabling WS-Addressing support, and
specifying the action URIs that are associated with the WSDL operations of the web service. Use these
APIs if you want to undertake simple WS-Addressing functions and create JAX-WS applications that are
portable.

The JAX-WS WS-Addressing APIs provide the following features for core WS-Addressing application
development:

v Java representations of WS-Addressing endpoint references.

– You can create Java endpoint reference instances for the application endpoint, or other endpoints in
the same application, at run time. You do not have to specify the URI of the endpoint reference.

– You can create Java endpoint reference instances for endpoints in other applications by specifying
the URI of the endpoint reference.

– On services, you can use annotations to specify whether WS-Addressing support is enabled,
whether it is required, and which message exchange pattern (synchronous, asynchronous, or both)
to use.

– On clients, you can use features to specify whether WS-Addressing support is enabled and whether
it is required.

– You can configure client proxy or Dispatch objects by using endpoint references.

v Java support for endpoint references that represent Web Services Resource (WS-Resource) instances.

– You can associate reference parameters with an endpoint reference at the time of its creation, to
correlate it with a particular resource instance.

– In targeted web services, you can extract the reference parameters of an incoming message, so that
the web service can route the message to the appropriate WS-Resource instance.

The following features were introduced in the JAX-WS 2.2 specification, which WebSphere Application
Server supports from Version 8:

v You can specify additional binding information within the metadata of an endpoint reference as part of
the JAX-WS 2.2 specification. This functionality was added to WebSphere Application Server in Version
7, however as it was not part of the JAX-WS 2.1 specification, you might have experienced
incompatibility issues when interoperating with non-WebSphere Application Server servers which did not
offer support for additional metadata in endpoint references. JAX-WS 2.2 supports WSDL metadata in
endpoint references, so applications will be compatible with other implementations of this specification.
See the “Web Services Addressing overview”topic for further information.

v You can enable and configure WS-Addressing on a client or service by adding WS-Policy assertions
into the WSDL document. WebSphere Application Server processes WS-Addressing information held
within the WS-Policy aspect of a WSDL document and uses it in the configuration of that application.
See the “Enabling Web Services Addressing support for JAX-WS applications using WS-Policy” topic for
further information.

Chapter 27. Web services 929

v You can specify whether a synchronous or an asynchronous message exchange pattern is required by
a web service application using the addressing annotation or the AddressingFeature. Use the responses
parameter on the addressing annotations or the AddressingFeature class in the code. See the “Enabling
Web Services Addressing support for JAX-WS applications using addressing annotations” topic and the
“Enabling Web Services Addressing support for JAX-WS applications using addressing features” topic
for further information.

v You can configure WS-Addressing using deployment descriptors. Add an <addressing> element and
optional child elements to the deployment descriptor file for the application. See the “Enabling Web
Services Addressing support for JAX-WS applications using deployment descriptors” topic for further
information.

v You can generate code from a WSDL document and WebSphere Application Server automatically
inserts @Action and @FaultAction annotations into the generated Java code. See the “Web Services
Addressing annotations” topic for further information.

Features of the IBM proprietary WS-Addressing support

This product provides an IBM proprietary implementation of the WS-Addressing specification, which you
can use with JAX-RPC applications as well as JAX-WS applications, to undertake more advanced
functions such as creating endpoint references that represent highly available objects, or directly setting
message addressing properties in the SOAP header. Use these APIs and SPIs if you want to create
JAX-RPC applications that use addressing, or you want to undertake more advanced functions that are not
possible with the JAX-WS APIs.

The IBM proprietary API provides the following basic features:

v You can easily create Java endpoint reference instances to represent any endpoint in the server, based
on the deployment environment of the application. You do not have to specify the URI of the endpoint
reference. Additionally, endpoint references can represent highly available or workload-managed
objects.

v You can configure client JAX-WS BindingProvider request context objects, or JAX-RPC Stub or Call
objects, with a WS-Addressing endpoint reference. Future invocations on these objects are targeted at
the endpoint that is represented by the endpoint reference. The invocations also automatically conform
to the WS-Addressing specification (namespace) that is associated with that endpoint reference.

The IBM proprietary WS-Addressing SPIs provide support for extended WS-Addressing system
development by using the following features:

v Reasoning and manipulation of endpoint references beyond what is available at the application
programming level.

– You can manipulate the contents of the endpoint reference, as specified by the WS-Addressing
specification.

– You can associate a WS-Addressing namespace, and therefore specification behavior, with an
endpoint reference.

v Java representations of the WS-Addressing message-addressing properties.

– You can specify WS-Addressing message-addressing properties for outbound web service
messages. In the targeted web service, you can extract message addressing properties from
inbound web service messages.

– You can specify the WS-Addressing namespace of an outbound WS-Addressing message, although
in most cases the namespace is automatically derived based on the target endpoint reference. In a
targeted web service, you can acquire the WS-Addressing namespace of an incoming message.

930 Overview

Support for WS-Addressing specifications and interoperability

By default, this product supports the W3C WS-Addressing 1.0 Core and SOAP Binding specifications that
are identified by the http://www.w3.org/2005/08/addressing namespace. Unless otherwise stated,
WS-Addressing semantics that are described in this documentation refer to these specifications.

For interoperability, other levels of the WS-Addressing specification are supported in this version of the
product; in particular, the WS-Addressing W3C submission with the namespace http://
schemas.xmlsoap.org/ws/2004/08/addressing.

For JAX-WS applications, this product supports the WS-Addressing metadata specification identified by the
http://www.w3.org/2007/05/addressing/metadata namespace. This specification supersedes the
WS-Addressing Web Services Description Language (WSDL) binding specification identified by the
http://www.w3.org/2006/05/addressing/wsdl namespace.

In addition, this product supports the following features from the WS-Addressing WSDL binding
specification:

v The wsaw:UsingAddressing extensibility element, on the WSDL Binding element only. The supported
namespaces for this element are the http://www.w3.org/2006/05/addressing/wsdl namespace and the
http://www.w3.org/2006/02/addressing/wsdl namespace (deprecated).

v The wsaw:Action extensibility element. The supported namespaces for this element are the
http://www.w3.org/2006/05/addressing/wsdl namespace, the http://www.w3.org/2006/02/addressing/wsdl
namespace (deprecated), and the http://schemas.xmlsoap.org/ws/2004/08/addressing namespace.

Web Services Addressing overview
Web Services Addressing (WS-Addressing) is a World Wide Web Consortium (W3C) specification that aids
interoperability between web services by defining a standard way to address web services and provide
addressing information in messages. The WS-Addressing specification introduces two primary concepts:
endpoint references, and message-addressing properties. For further details, refer to the WS-Addressing
specifications.

Endpoint references

Endpoint references provide a standard mechanism to encapsulate information about specific endpoints.
Endpoint references can be propagated to other parties and then used to target the web service endpoint
that they represent. The following table summarizes the information model for endpoint references.

Table 91. Information model for endpoint references. The table lists the different abstract property names and for
each one shows their property type, multiplicity and brief description.
Abstract property
name, using the
notational convention
of the W3C XML
Information Set Property type Multiplicity Description

[address] xs:anyURI 1..1 The absolute URI that specifies the address of the endpoint.

[reference parameters]* xs:any 0..unbounded Namespace qualified element information items that are required to interact with the
endpoint.

[metadata] xs:any 0..unbounded Description of the behavior, policies and capabilities of the endpoint.

The following prefix and corresponding namespace is used in the previous table.

Prefix Namespace

xs http://www.w3.org/2001/XMLSchema

Chapter 27. Web services 931

The following XML fragment illustrates an endpoint reference. This element references the endpoint at the
URI http://example.com/fabrikam/acct, has metadata specifying the interface to which the endpoint
reference refers, and has application-defined reference parameters of the http://example.com/fabrikam
namespace.
<wsa:EndpointReference xmlns:wsa="http://www.w3.org/2005/08/addressing"

xmlns:wsam="http://www.w3.org/2007/05/addressing/metadata"
xmlns:fabrikam="http://example.com/fabrikam"
xmlns:wsdli="http://www.w3.org/2005/08/wsdl-instance"
wsdli:wsdlLocation="http://example.com/fabrikam
http://example.com/fabrikam/fabrikam.wsdl">

<wsa:Address>http://example.com/fabrikam/acct</wsa:Address>
<wsa:Metadata>
<wsam:InterfaceName>fabrikam:Inventory</wsam:InterfaceName>

</wsa:Metadata>
<wsa:ReferenceParameters>
<fabrikam:CustomerKey>123456789</fabrikam:CustomerKey>
<fabrikam:ShoppingCart>ABCDEFG</fabrikam:ShoppingCart>

</wsa:ReferenceParameters>
</wsa:EndpointReference>

Message-addressing properties

Message addressing properties (MAPs) are a set of well defined WS-Addressing properties that can be
represented as elements in SOAP headers and provide a standard way of conveying information, such as
the endpoint to which message replies should be directed, or information about the relationship that the
message has with other messages. The MAPs that are defined by the WS-Addressing specification are
summarized in the following table.

Table 92. Message-addressing properties defined by the WS-Addressing specification. The table lists the abstract
WS-Addressing MAP names and for each one shows their MAP content type, multiplicity and brief description.
Abstract
WS-Addressing MAP
name, using the
notational convention
of the W3C XML
Information Set MAP content type Multiplicity Description

[action] xs:anyURI 1..1 An absolute URI that uniquely identifies the semantics of the message. This
proprety corresponds to the address property of the endpoint reference to
which the message is addressed. This value is required.

[destination] xs:anyURI 1..1 The absolute URI that specifies the address of the intended receiver of this
message. This value is optional because, if not present, it defaults to the
anonymous URI that is defined in the specification, indicating that the
address is defined by the underpinning protocol.

[reference parameters]* xs:any 0..unbounded Correspond to the reference parameters property of the endpoint reference to
which the message is addressed. This value is optional.

[source endpoint] EndpointReference 0..1 A reference to the endpoint from which the message originated. This value is
optional.

[reply endpoint] EndpointReference 0..1 An endpoint reference for the intended receiver of replies to this message.
This value is optional.

[fault endpoint] EndpointReference 0..1 An endpoint reference for the intended receiver of faults relating to this
message. This value is optional.

[relationship]* xs:anyURI plus optional
attribute of type
xs:anyURI

0..unbounded A pair of values that indicate how this message relates to another message.
The content of this element conveys the message ID of the related message.
An optional attribute conveys the relationship type. This value is optional.

[message id] xs:anyURI An absolute URI that uniquely identifies the message. This value is optional.

The abstract names in the previous tables are used to refer to the MAPs throughout this documentation.

The following example of a SOAP message contains WS-Addressing MAPs:
<S:Envelope xmlns:S="http://www.w3.org/2003/05/soap-envelope"

xmlns:wsa="http://www.w3.org/2005/08/addressing"
xmlns:fabrikam="http://example.com/fabrikam">

<S:Header>
...
<wsa:To>http://example.com/fabrikam/acct</wsa:To>
<wsa:ReplyTo>
<wsa:Address> http://example.com/fabrikam/acct</wsa:address>

932 Overview

</wsa:ReplyTo>
<wsa:Action>...</wsa:Action>
<fabrikam:CustomerKey wsa:IsReferenceParameter=’true’>123456789</fabrikam:CustomerKey>
<fabrikam:ShoppingCart wsa:IsReferenceParameter=’true’>ABCDEFG</fabrikam:ShoppingCart>
...

</S:Header>
<S:Body>
...

</S:Body>
</S:Envelope>

Web Services Addressing message exchange patterns
The World Wide Web Consortium (W3C) Web Services Addressing (WS-Addressing) specification explicitly
defines the WS-Addressing core properties for the message exchange patterns (MEPs) that are defined by
WSDL 1.0. These MEPs are summarized in this topic, illustrating the mandatory WS-Addressing properties
for each pattern.

One-way MEP

This straightforward one-way message is defined in WSDL 1.0 as an input-only operation. The WSDL
fragment for this operation has the following form:
<operation name="myOperation">
<input message="tns:myInputMessage"/>

</operation>

The following WS-Addressing message addressing properties (MAPs) are automatically added to the
message header of a one-way WS-Addressing input message by the client application server run time, to
ensure compliance with the WS-Addressing specification.

Tip: You can override these values by using the IBM proprietary WS-Addressing system programming
interfaces (SPIs).

Table 93. The WS-Addressing message addressing properties that a client adds to the message header of a one-way
WS-Addressing input message. The table lists the different WS-Addressing MAP names and provides a description
for each one.
Abstract WS-Addressing MAP
name, using the notational
convention of the W3C XML
Information Set Description for a one-way input message

[action] The WS-Addressing action that is generated in accordance with the version of the WS-Addressing
specification that is in use.

[reply endpoint] The WS-Addressing reply endpoint indicating that no replies are expected to this input message. The value of
this MAP depends on the version of the WS-Addressing specification that is in use.

[message id] A uniquely generated message identifier. Although not mandated by the specification, the WebSphere
Application Server run time automatically sets this value.

Although the WSDL operation for this message exchange does not specify any responses, related
messages can be sent as part of other message exchanges. In particular, applications can use the
WS-Addressing reply endpoint or fault endpoint MAPs to indicate to the target of a one-way message
where to send related messages. To propagate a reply endpoint or fault endpoint, associate the
appropriate property with the request context for the JAX-WS BindingProvider object, or with the JAX-RPC
Stub or Call object, as described in Specifying and acquiring message-addressing properties by using the
IBM proprietary Web Services Addressing SPIs, to override the defaults.

Two-way request-response

This is a request-response MEP as defined in WSDL 1.1. The response part of the operation might be
defined as an output message, or a fault message, or both. The following WSDL code extracts show the
various forms of definition for such an operation:

Chapter 27. Web services 933

<operation name="myOperation">
<input message="tns:myInputMessage"/>
<output message="tns:myOutputMessage"/>
<fault="tns:myFaultMessage"/>

</operation>

<operation name="myOperation">
<input message="tns:myInputMessage"/>
<output message="tns:myOutputMessage"/>

</operation>

<operation name="myOperation">
<input message="tns:myInputMessage"/>
<fault="tns:myFaultMessage"/>

</operation>

The application server client run time ensures that the SOAP header of the outgoing request message
contains the relevant WS-Addressing message information headers. The calling application does not have
to set the WS-Addressing headers. A response is expected, therefore you must specify a reply endpoint or
fault endpoint in the request message.

Tip: In the 2005/08 specification, an unspecified reply endpoint is valid because it defaults to an endpoint
reference that contains the anonymous URI.

The following table summarizes the MAPs that the product sets by default on a web service request that
uses WS-Addressing protocol. You can override or specify other MAPs by using the IBM proprietary
WS-Addressing SPIs.

Table 94. The message addressing properties that are added on a web service request that uses the WS-Addressing
protocol. The table lists the different WS-Addressing MAP names and provides a description for each one.
Abstract WS-Addressing MAP name,
using the notational convention of
the W3C XML Information Set Description for the input message of a request-response operation

[action] The WS-Addressing action that is generated in accordance with the version of the WS-Addressing
specification that is in use.

[message id] A uniquely generated message identifier.

The following table summarizes the MAPs that are set by default by the product on a WS-Addressing
response or fault message.

Table 95. The message addressing properties that are added on a WS-Addressing response or fault message. The
table lists the different WS-Addressing MAP names and provides a description for each one.
Abstract WS-Addressing MAP name,
using the notational convention of
the W3C XML Information Set Description for the input message of a request-response operation

[action] The WS-Addressing action that is generated in accordance with the version of the WS-Addressing
specification that is in use.

[relationship] A relationship set containing a reply relationship to the message id that is passed in the request message.

[message id] A uniquely generated message identifier; although not mandated by the specification, the application server
run time automatically sets this property.

Synchronous request-response

By default, if you do not use the IBM proprietary WS-Addressing SPI to set the reply endpoint or fault
endpoint, the response part of a two-way message is returned according to the underlying protocol in use.
In particular, for an HTTP request, the response is returned synchronously in the HTTP response.

934 Overview

For JAX-WS synchronous invocations, if you set the reply endpoint or the fault endpoint, the endpoint
reference that you set must use the anonymous URI. If the endpoint reference does not use the
anonymous URI, a javax.xml.ws.WebServiceException exception is thrown. Although the endpoint
reference uses the anonymous URI, you can use reference parameters within the endpoint reference to
target the reply or fault endpoint.

For JAX-WS applications, you can specify a synchronous message exchange pattern by applying and
configuring a WS-Addressing policy type. This exchange pattern is particularly useful in the following
scenarios:

v You do not have WS-Security enabled, or have not used an assembly tool to specify that the ReplyTo
and FaultTo elements of the SOAP message should be signed. In this situation, it is possible for a
JAX-WS endpoint to be used to send messages to a third party, potentially taking part in a Denial of
Service attack. To prevent such attacks, specify the synchronous message exchange pattern, and
enable WS-Policy so that clients are aware of this requirement.

v A JAX-WS client is communicating through a NAT device. URIs in the ReplyTo or FaultTo elements of
the SOAP message cannot be routed through such a device. In this situation, the client must use the
anonymous URI defined by the WS-Addressing specification, and a synchronous message exchange
pattern. To ensure that the client conforms to these requirements even if the server uses WS-Policy to
request a non-anonymous URI in the ReplyTo element, specify the synchronous message exchange
pattern on the client.

You can ensure that servers or clients are aware of the requirement for synchronous messaging by
enabling WS-Policy.

Asynchronous request-response

The JAX-RPC 1.0 programming model does not allow for asynchronous replies or faults to a two-way
request-response operation.

Responses to, or faults generated from, requests that are directed at endpoints hosted on WebSphere
Application Server are targeted at the reply endpoint or fault endpoint, in accordance with the
WS-Addressing specification. The connection with the requesting client will be closed with an HTTP 202
response.

Chapter 27. Web services 935

For JAX-WS asynchronous invocations, the reply endpoint is generated automatically for use by the
JAX-WS implementation. If you attempt to set either a reply endpoint or a fault endpoint, a
javax.xml.ws.WebServiceException exception is thrown.

Note: On Windows operating systems, the local host name that is sent by the client must be
resolvable by the target service, otherwise replies do not reach the client application. Alternatively,
you can configure the client to send its address in IP format, however you lose the benefits of
DHCP. For more information see the Invoking JAX-WS web services asynchronously topic.

For JAX-WS applications, you can specify an asynchronous message exchange pattern in several different
ways.

v By applying and configuring a WS-Addressing policy set. See the Configuring the WS-Addressing policy
topic.

v By setting the com.ibm.websphere.webservices.use.async.mep property on the client request context.
See the Invoking JAX-WS web services asynchronously topic.

v Through the use of deployment descriptor elements, @Addressing annotations, addressing features, or
by adding WS-Policy assertions into the WSDL document. See the Enabling Web Services Addressing
support for JAX-WS applications topic and its child topics.

This exchange pattern is particularly useful if a JAX-WS endpoint has a long-running invocation time.
Client and server resources are used to keep the connection open, but this use of resource might be
impractical if the service takes a long time to respond.

The message exchange pattern configuration is expressed in WS-Policy attachments in the WSDL
document. Clients will be able to access this message exchange pattern configuration information if any of
the following conditions are true:

v WS-Policy sharing is enabled.

v WS-Policy sharing is not enabled, but:

– the packaged WSDL (as retrived by an HTTP GET request) contains the relevant policy information.

– @Addressing annotations have been used in the code. In this case, the server runtime generates a
WSDL document containing the WS-Policy attachments.

client

Web
service

Web
service

<S:Header>
...

<wsa:To>http://example.com/fabrikam/acct</wsa:To>

</S:Header>

<wsa:ReplyTo>
<wsa:address> http://example.com/fabrikam/acct/replyEP</wsa:address>

</wsaReplyTo>
..

<S:Header>
...

<wsa:To>
..

</S:Header>

http://example.com/fabrikam/acct/replyEP</wsa:To>

936 Overview

See the “Web service providers and policy configuration sharing” on page 983 topic for further details.

Web Services Addressing version interoperability
The Web Services Addressing (WS-Addressing) support in this product can interoperate with various
versions of the WS-Addressing specification.

Table 96. Supported set of WS-Addressing versions. The table lists the associated namespace, the specification
download locations and some details about each specification.
Associated namespace Specification download location Details

http://www.w3.org/2005/08/addressing http://www.w3.org/2002/ws/addr/ W3C final versions of the WS-Addressing core
and SOAP specifications.

These specifications are sometimes referred to
collectively as the 2005/08 version of
WS-Addressing.

http://www.w3.org/2007/05/addressing/metadata http://www.w3.org/2002/ws/addr/ W3C final version of the WS-Addressing metadata
specification.

This specification defines WS-Addressing WSDL
extensions and WS-Policy assertions.

For JAX-WS applications, this specification
supersedes the http://www.w3.org/2006/05/
addressing/wsdl specification.

http://www.w3.org/2006/05/addressing/wsdl http://www.w3.org/2002/ws/addr/ W3C Candidate Recommendation (CR) version of
the WS-Addressing WSDL specification.

This is the default namespace used by this
product for the WSDL parts of the WS-Addressing
specification, for JAX-RPC applications.

For JAX-WS applications, this specification is
superseded by the http://www.w3.org/2007/05/
addressing/metadata specification.

http://www.w3.org/2006/02/addressing/wsdl http://www.w3.org/2002/ws/addr/ W3C Last Call (LC) version of the WS-Addressing
WSDL specification.

Support for this namespace is deprecated.

http://schemas.xmlsoap.org/ws/2004/08/
addressing

http://www.w3.org/Submission/ws-addressing/ W3C WS-Addressing Submission specification

This specification is sometimes referred to as the
2004/08 specification. It combines the core, SOAP
and WSDL aspects of WS-Addressing in a single
specification.

This version of the product interoperates with each of the WS-Addressing specifications that are defined in
the previous table. This interoperability results in the following behavior:

v Incoming web service messages that contain WS-Addressing message addressing properties are
appropriately bound to SOAP, and WS-Addressing SOAP elements are appropriately deserialized to
their WS-Addressing programming model representations according to the namespace in use.

v WS-Addressing programming model artifacts are appropriately serialized into SOAP elements, and the
message addressing properties are bound to SOAP according to the namespace in use.

v Differing WS-Addressing semantics are adhered to, according to the WS-Addressing version currently in
use.

Determining the WS-Addressing namespace of inbound messages

The WS-Addressing namespace of incoming web service messages is the namespace of the first
WS-Addressing action message addressing property that is found. The runtime checks for an action
message addressing property of the default namespace. If it does not find an action with the default
namespace, it will then search for action message addressing properties for other addressing namespaces

Chapter 27. Web services 937

in an undefined order. The namespace of the WS-Addressing core specification in use is available to the
target endpoint through the message context.

Determining the WS-Addressing namespace of outbound messages

WS-Addressing messages that are issued from this version of the product adopt the namespace that is
associated with the destination endpoint reference. If this namespace is unknown, the message adopts the
default WS-Addressing namespace.

This product provides a proprietary system programming interface (SPI) to change the namespace that is
associated with an endpoint reference to any namespace in the supported set.

The WS-Addressing specification to use

best-practices: In most cases, use the default WS-Addressing specification that is supported by the
product. You do not have to undertake any additional actions to use this specification.
The following list gives examples of occasions where you must override the default
namespace:

v When interoperating with an endpoint that does not support the default namespace, for
example, an earlier version of the product.

v When a namespace other than the default is required. For example, when
implementing a specification that uses a level of WS-Addressing other than the default.

The W3C Last Call (LC) version of the WS-Addressing WSDL specification is deprecated.
Use this specification only when you are interoperating with WebSphere Application
Server 6.1 nodes that do not have fix pack V6.1.0.2 or later. Otherwise, use the W3C
Candidate Recommendation version of the specification, or for JAX-WS applications, the
WS-Addressing metadata specification.

Web Services Addressing application programming model
The Web Services Addressing (WS-Addressing) specification defines an endpoint reference that is
represented in Extensible Markup Language (XML) by an EndpointReferenceType object that encapsulates
information about the endpoint address as well as additional contextual information associated with the
endpoint. Some services might be addressable by using a simple URI address, as is most typical in web
services. Other services might require the use of an endpoint reference to address them, so that the
additional contextual information associated with the endpoint is present in messages sent to the endpoint.

Examples of services that use WS-Addressing endpoint references include Web Services Resources and
Web Services Notification message producers and message consumers, all of which have the notion of
stateful resources associated with their endpoints. In these cases the endpoint reference not only contains
the service address but also some data that is used to select the specific stateful resource instance for
use in the processing of a web services message.

A WS-Resource is defined as the combination of a resource and a web service through which the
resource is accessed. The following figure illustrates a web service, at http://www.example.com/service,
and three resources, A, B, and C, which are accessed through the Web service. Three WS-Resources are
therefore illustrated in the figure:

938 Overview

A WS-Resource is referenced by a WS-Addressing endpoint reference that uniquely identifies the
WS-Resource, typically by containing an identifier of the resource component of the WS-Resource inside
the EndpointReference ReferenceParameter element. In the previous example, WS-Resource-C is the
combination of the web service and the resource that is identified by C, and a reference to
WS-Resource-C might be as follows:
<wsa:EndpointReference>

<wsa:Address>
http://www.example.com/service

</wsa:Address>
<wsa:ReferenceParameters>

<tns:SomeDisambiguatorElement>C</tns:SomeDisambiguatorElement>
</wsa:ReferenceParameters>
...

</wsa:EndpointReference>

The WS-Addressing APIs provide the appropriate interfaces for implementing the previous pattern.

Web Services Addressing annotations
The WS-Addressing specification provides transport-neutral mechanisms to address web services and to
facilitate end-to-end addressing. If you have a JAX-WS application you can use Java annotations in your
code to specify WS-Addressing behavior at run time.

You can use WS-Addressing annotations to enable WS-Addressing support, to specify whether
WS-Addressing information is required in incoming messages, to control the message exchange pattern
the service supports, and to specify actions to be associated with a web service operation or fault
response.

The following WS-Addressing annotations are supported in WebSphere Application Server. These
annotations are defined in the JAX-WS 2.2 specification unless otherwise stated. The JAX-WS 2.2
specification supersedes and includes functions within the JAX-WS 2.1 specification. See the Java API for
XML-Based Web Services 2.2 specification for full details.

javax.xml.ws.Action
Specifies the action that is associated with a web service operation.

v When following a bottom-up approach to developing JAX-WS web services, you can generate a
WSDL document from Java application code using the wsgen command-line tool. However, for
this attribute to be added to the WSDL operation, you must also specify the @Addressing
annotation on the implementation class. The result in the generated WSDL document is that the
Action annotations will have the wsam:Action attribute on the input message and output
message elements of the wsdl:operation. Alternatively, if you do not want to use the
@Addressing annotation you can supply your own WSDL document with the Action attribute
already defined.

v When following a top-down approach to developing JAX-WS web services, you can generate
Java application code from an existing WSDL document using the wsimport command-line tool.
In such cases, the resulting Java code will contain the correct Action and FaultAction
annotations.

Chapter 27. Web services 939

http://jcp.org/aboutJava/communityprocess/mrel/jsr224/index3.html
http://jcp.org/aboutJava/communityprocess/mrel/jsr224/index3.html

If this action is not specified in either code annotations or in the WSDL document, the default
action pattern as defined in the Web Services Addressing 1.0 Metadata specification is used.
Refer to this specification for full details.

Note: Whilst the WebSphere Application Server runtime environment supports the deprecated
wsaw:Action attribute, if you try to generate Java code from an old WSDL document
containing the deprecated wsaw:Action attribute, this attribute will be ignored.

javax.xml.ws.FaultAction
Specifies the action that is added to a fault response. When you use this annotation with a
particular method, the WS-Addressing FaultAction extension attribute is added to the fault element
of the WSDL operation that corresponds to that method. For this attribute to be added to the
WSDL operation, you must also specify the Addressing annotation on the implementation class. If
you do not want to use the Addressing annotation you can supply your own WSDL document with
the Action attribute already defined. This annotation must be contained within an Action annotation.

WSDL documents generated from Java application code containing the WS-Addressing
FaultAction annotation will have the wsam:Action attribute on the fault message element of the
wsdl:operation.

Note: To ensure that any custom Exception classes you write are successfully mapped to the
generated WSDL document, extend the java.lang.Exception class instead of the
java.lang.RuntimeException class.

javax.xml.ws.soap.Addressing
Specifies that this service is to enable WS-Addressing support. You can use this annotation only
on the service implementation bean; you cannot use it on the service endpoint interface.

com.ibm.websphere.wsaddressing.jaxws21.SubmissionAddressing
This annotation is part of the IBM implementation of the JAX-WS specification. This annotation
specifies that this service is to enable WS-Addressing support for the 2004/08 WS-Addressing
specification. You can use this annotation only on the service implementation bean; you cannot
use it on the service endpoint interface.

For more information about the Addressing and SubmissionAddressing annotations, including code
examples, see Enabling Web Services Addressing support for JAX-WS applications using addressing
annotations.

The following example code uses the Action annotation to define the invoke operation to be invoked
(input), and the action that is added to the response message (output). The example also uses the
FaultAction annotation to specify the action that is added to a response message if a fault occurs:
@WebService(name = "Calculator")
public interface Calculator {

...
@Action(
input="http://calculator.com/inputAction",
output="http://calculator.com/outputAction",
fault = { @FaultAction(className=AddNumbersException.class,

value="http://calculator.com/faultAction")
}

)
public int add(int value1, int value2) throws AddNumbersException {

return value1 + value2;
}

}

If you use a tool to generate service artifacts from code, the WSDL tags that are generated from the
preceding example are as follows:
<definitions targetNamespace="http://example.com/numbers" ...>

...
<portType name="AddPortType">

<operation name="Add">
<input message="tns:AddInput" name="Parameters"

wsam:Action="http://calculator.com/inputAction"/>
<output message="tns:AddOutput" name="Result"

940 Overview

http://www.w3.org/TR/ws-addr-metadata/

wsam:Action="http://calculator.com/outputAction"/>
<fault message="tns:AddNumbersException" name="AddNumbersException"

wsam:Action="http://calculator.com/faultAction"/>
</operation>

<portType>
...

<definitions>

Web Services Addressing security
It is essential that communications that use Web Services Addressing (WS-Addressing) are adequately
secured and that a sufficient level of trust is established between the communicating parties. You can
achieve secure communications through the signing of WS-Addressing message-addressing properties
and the encryption of endpoint references.

Undertake these actions for both the supported addressing namespaces, http://www.w3.org/2005/08/
addressing and http://schemas.xmlsoap.org/ws/2004/08/addressing, even if you intend to use only one of
those namespaces.

Signing of WS-Addressing message-addressing properties

You can use an assembly tool to specify the message-addressing properties, and therefore the
WS-Addressing message elements, that require signing, or that require signature verification on inbound
requests. The receiver of the message might rely on the presence of this verifiable signature to determine
that the outbound message originated from a trusted source. Similarly, the lack of a verifiable signature
that is associated with the specified inbound message addressing properties causes the rejection of the
message with a SOAP fault.

Encryption of endpoint references

You can encrypt endpoint references as part of the SOAP header or SOAP body. Alternatively, you can
remove the need for encryption by not including sensitive information in the address or reference
parameters properties of the endpoint reference.

Use of the synchronous message exchange pattern

This method applies to JAX-WS applications only.

If you do not secure the WS-Addressing information in the SOAP message by using one or more of the
previous methods, and you do not have WS-Security enabled, the ReplyTo and FaultTo elements of the
SOAP message could be used to send messages to a third party, potentially taking part in a Denial of
Service attack. To prevent such attacks, apply a WS-Addressing policy type and configure it to specify
synchronous messaging only. You should also enable WS-Policy so that this requirement is communicated
to clients.

Web Services Addressing: firewalls and intermediary nodes
Using the Web Services Addressing (WS-Addressing) support in this product, you can create endpoint
references that can be distributed across firewalls and intermediary nodes.

Using the WS-Addressing support, you can automatically generate endpoint references that represent
endpoints on the node on which the references are generated. These endpoint references contain
appropriate address information, based on the URL configured for the endpoint and any valid proxy
configuration for the server that hosts the endpoint. Messages targeted at the endpoint reference from the
client are routed to the endpoint through the appropriate intermediary node or nodes, as described in the
following topology scenarios.

If you use the IBM proprietary API to create the endpoint reference, the topology of your system can also
affect the type of endpoint reference that the WS-Addressing programming model generates. For example,

Chapter 27. Web services 941

if you use the EndpointReferenceManager.createEndpointReference(QName serviceName, String
endpointName) method to create an endpoint reference in a cluster environment, the endpoint reference,
by default, represents an endpoint that is workload-managed in the cluster in which the endpoint was
created, in accordance with the appropriate topologies in the following sections. This behavior therefore
provides a performance enhancement for the application.

Note: If the requesting application component runs under a transaction or in an HTTP session, affinity
constraints might apply to the workload-management of endpoints.

You can also use the IBM proprietary API to create an endpoint reference that represents a service that
should not be workload-managed, for example because it maintains in-memory state. A service that uses a
stateful session bean is one example of a service that relies on routing affinity to a specific server
instance. To create an endpoint reference to such a service, use the
EndpointReferenceManager.createEndpointReference(QName serviceName, String endpointName,
java.rmi.Remote statefulSessionBean) method.

If you enable high availability for stateful session beans, and create the endpoint reference using this
method, the endpoint reference remains valid even if the stateful session bean is failed over, provided that
the request originates from a WebSphere Application Server client at version 6.1 or later, or is routed by a
Proxy Server for IBM WebSphere Application Server in the same administrative cell, as described in the
following topology scenarios.

v Use the “Direct connection” topology for non-clustered configurations.

v Use the “HTTP server, such as IBM HTTP Server” on page 944, topology when endpoint references
refer to services that:

– are deployed in a workload-managed cluster

– do not access any stateful information that is localized to a specific server

v Use the “Proxy Server for IBM WebSphere Application Server” on page 943 topology, or the “HTTP
server with a Proxy Server for IBM WebSphere Application Server” on page 945 topology, when
endpoint references refer to services that:

– are deployed in a workload-managed cluster

– optionally, access stateful information that is localized to a specific server

– optionally, can be failed over in a highly-available configuration

The HTTP server with a Proxy Server for IBM WebSphere Application Server topology is useful when
the HTTP server itself has no integrated capability for affinity-based routing to WS-Addressing
endpoints.

For endpoint references that refer to services that do not access stateful information that is localized to a
specific server, all the following topology scenarios are suitable.

Direct connection

Use this topology for non-clustered configurations.

In this topology, there is no intermediary node. The client communicates directly with the server that hosts
the target endpoint. In this topology, the WS-Addressing APIs automatically generate the appropriate
endpoint reference address, based on the URL configured for the web service module. This scenario is
illustrated in the following diagram.

942 Overview

You can also use this topology when endpoint references created by using the IBM proprietary API refer to
services that are deployed in a workload-managed cluster. However, messages targeted at the endpoint
reference are workload-managed only if the client targeting the endpoint reference is a WebSphere
Application Server client, at Version 6.1 or later, that exists in the same administrative cell as the endpoint,
as illustrated in the following diagram.

Endpoint references created by using the standard JAX-WS API are not workload managed.

Proxy Server for IBM WebSphere Application Server

Use this topology when endpoint references refer to services that are deployed in a workload-managed
cluster, optionally access stateful information that is localized to a specific server, and optionally can be
failed over in a highly-available configuration.

Chapter 27. Web services 943

In this topology, the WS-Addressing APIs automatically generate the appropriate endpoint reference
address, based on the URL prefix of the Proxy Server for IBM WebSphere Application Server that is
configured for the target web service module. You must provide HTTP endpoint URL information, that is,
configure the HTTP URL prefix for each deployment of each application. The client can exist outside the
administrative cell that contains the proxy server and target server. The client communicates with the proxy
server, which dynamically routes the client requests to the appropriate server in the cluster.

If the proxy that is addressed by the endpoint reference is a Proxy Server for IBM WebSphere Application
Server, at Version 6.1 or later, that exists in the same administrative cell as the endpoint, messages
targeted at a workload-managed endpoint reference are workload-managed, based on the cluster. For
endpoint references that are created by using the IBM proprietary API, the following behavior also applies:

v If the endpoint reference represents a stateful session bean, requests targeted at the endpoint reference
retain affinity to the server and the instance of that stateful session bean.

v If the endpoint reference represents a highly available stateful session bean, the endpoint reference
remains valid if the stateful session bean is failed over to another server.

Endpoint references created by using the standard JAX-WS API do not have server affinity or high
availability.

HTTP server, such as IBM HTTP Server

Use this topology when endpoint references refer to services that are deployed in a workload-managed
cluster, and that do not access any stateful information that is localized to a specific server.

In this topology, the IBM WS-Addressing API automatically generates the appropriate endpoint reference
address based on the URL prefix of the HTTP server that is configured for the target web service module.
You must provide HTTP endpoint URL information, that is, configure the HTTP URL prefix for each
deployment of each application. The client communicates with the HTTP server, which then routes the
client requests to a specific server based on the HTTP server configuration.

944 Overview

Do not deploy an endpoint reference that represents a stateful session bean in this topology, because the
HTTP server will not retain affinity to that stateful session bean, and will spread its requests across the
available servers.

To maintain stateful session bean affinity and high availability of endpoint references that are created by
using the IBM proprietary API, use a Proxy Server for IBM WebSphere Application Server in addition to
your HTTP server, as described in the following topology.

HTTP server with a Proxy Server for IBM WebSphere Application Server

Use this topology when endpoint references refer to services that are deployed in a workload-managed
cluster, optionally access stateful information that is localized to a specific server, and optionally, can be
failed over in a highly-available configuration. The topology is similar to the Proxy Server for IBM
WebSphere Application Server topology, but supports the use of any HTTP server as the external reverse
proxy.

In this topology, the WS-Addressing API automatically generates the appropriate endpoint reference
address based on the URL prefix of the HTTP server that is configured for the target web service module.
You must provide HTTP endpoint URL information, that is, configure the HTTP URL prefix for each
deployment of each application.

The client communicates with the HTTP server, which you configure, by routing requests from a plug-in to
a proxy server, to forward the client requests to a Proxy Server for IBM WebSphere Application Server.
The proxy then dynamically routes the requests to the appropriate server.

Chapter 27. Web services 945

If the proxy that is addressed by the endpoint reference is Proxy Server for IBM WebSphere Application
Server, at Version 6.1 or later, and exists in the same administrative cell as the endpoint, messages
targeted at a workload-managed endpoint reference are workload-managed, based on the cluster. For
endpoint references that are created by using the IBM proprietary API, the following behavior also applies:

v If the endpoint reference represents a stateful session bean, requests targeted at the endpoint reference
retain affinity to the server and the instance of that stateful session bean.

v If the endpoint reference represents a highly available stateful session bean, the endpoint reference
remains valid if the stateful session bean is failed over to another server.

Endpoint references created by using the standard JAX-WS API do not have server affinity or high
availability.

Web Services Addressing and the service integration bus
If you are using the Web Services Addressing (WS-Addressing) support, the presence of a service
integration bus can affect the routing of messages. If you are also using a firewall, you might have to
complete some additional configuration.

In the following scenarios, the client must conform to the WS-Addressing specification.

One-way messaging scenario

The path taken by one-way messages is as follows:

1. The client sends a request, containing an endpoint reference specifying the endpoint to which replies
are sent, to the service integration bus. This request is a one way request, so the client does not wait
for a response.

2. The bus passes the message intact to the web service.

3. The web service sends a response directly to the endpoint that is specified in the request.

946 Overview

This scenario works if messages can flow directly from the Web service to the endpoint. If you have a
configuration that does not support direct message flow, for example if you have a firewall, you must
create handlers that can redirect the message as required.

Request-response messaging scenario

For request-response scenarios, the messages take the following path:

1. The client sends a request, containing an endpoint reference specifying the endpoint to which replies
are sent, to the service integration bus.

2. The bus passes the message intact to the web service, as a synchronous request. As the message
leaves the bus, the endpoint reference is replaced with the anonymous URI listed in the
WS-Addressing specification. This step ensures that the web service does not send a response directly
to the endpoint.

3. The web service sends a response back to the bus, as part of the synchronous interaction.

4. As the message leaves the bus, the anonymous URI is replaced with the original endpoint reference,
enabling the bus to pass the message to the endpoint.

Web Services Addressing APIs
This product provides interfaces at the application programming level to enable application developers,
including developers of Web Services Resource Framework applications, to create references to, and to
target, web service resource instances. If you are a system programmer, you can use some these
interfaces with the Web Services Addressing (WS-Addressing) system programming interfaces.

JAX-WS 2.1 APIs

The standard JAX-WS 2.1 APIs in this product are contained in the javax.xml.ws.wsaddressing package.
Refer to the JAX-WS 2.1 API documentation for more information about these APIs.

The implementation of the standard JAX-WS 2.1 APIs in this product also contains application
programming interfaces, in the com.ibm.websphere.wsaddressing.jaxws21 package. These APIs are

Chapter 27. Web services 947

described in more detail in the generated API documentation in this information center. These APIs allow
you to achieve the following objectives by using specific classes:

v To represent endpoints that conform to the 2004/08 WS-Addressing specification, use the
com.ibm.websphere.wsaddressing.jaxws21.SubmissionEndpointReference class.

v To create a SubmissionEndpointReference instance to represent 2004/08 endpoints in web services
other than the one generating the endpoint reference, use the
com.ibm.websphere.wsaddressing.jaxws21.SubmissionEndpointReferenceBuilder class.

v To convert EndpointReference instances created by using the IBM proprietary WS-Addressing API into
either W3CEndpointReference or SubmissionEndpointReference instances, use the
com.ibm.websphere.wsaddressing.jaxws21.EndpointReferenceCoverter class. This class can also be
used to reverse the conversion of EndpointReference instances.

v To enable WS-Addressing on clients, use the
com.ibm.websphere.wsaddressing.jaxws21.SubmissionAddressingFeature class, and an annotation,
@SubmissionAddressing, for enabling WS-Addressing on servers.

IBM proprietary WS-Addressing APIs

These application programming interfaces are contained in the com.ibm.websphere.wsaddressing package
and are summarized in the following diagram. The diagram also shows the following classes from the
JAX-WS 2.1 API: com.ibm.websphere.wsaddressing.jaxws21.EndpointReferenceConverter,
javax.xml.ws.wsaddressing.W3CEndpointReference and
com.ibm.websphere.wsaddressing.jaxws21.SubmissionEndpointReference.

948 Overview

These interfaces provide the following features:

v A mechanism for creating a com.ibm.websphere.wsaddressing.EndpointReference instance to represent
a WS-Addressing endpoint reference by using the
com.ibm.websphere.wsaddressing.EndpointReferenceManager.createEndpointReference interface.

v

Note: A deprecated class, com.ibm.websphere.wsaddressing.EndpointReferenceCoverter, for
converting EndpointReference instances into deprecated classes
com.ibm.websphere.wsaddressing.W3CEndpointReference or
com.ibm.websphere.wsaddressing.SubmissionEndpointReferences, for use in JAX-WS
applications.

<<Java Class>>

<<Java Class>>

<<Java Class>>

<<Java Class>>

<<Java Class>>

<<Java Interface>>

<<Java Class>>

<<Java Class>>

<<use>>

<<use>>

<<use>>

WSADDRESSING_DESTINATION_EPR : String

setReferenceParameter (name : QName, value : String) : void

createEndpointReference (serviceName : QName, endpointName : String) : EndpointReference

createIBMEndpointReference (epr : W3CEndpointReference) : EndpointReference

createEndpointReference (serviceName : QName, endpointName : String, statefulSessionBean :
SessionBean) : EndpointReference

createIBMEndpointReference (epr : SubmissionEndpointReference) : EndpointReference
createW3CEndpointReference (epr : EndpointReference) : W3CEndpointReference

getReferenceParameterFromMessageContext (name : QName) : String

createSubmissionEndpointReference (epr : EndpointReference) : SubmissionEndpointReference

WSAConstants

ReferenceParameterCreationException

EndpointReferenceCreationException

javax.xml.ws.wsaddressing.W3CEndpointReference

com.ibm.websphere.wsaddressing.jaxws21.SubmissionEndpointReference

EndpointReference

EndpointReferenceManager

com.ibm.websphere.wsaddressing.jaxws21.EndpointReferenceConverter

<<use>>

<<use>>

<<use>>

<<use>>

Chapter 27. Web services 949

These classes are deprecated in favour of the JAX-WS 2.1 classes of the same name
(EndpointReferenceConverter, SubmissionEndpointReference, and W3CEndpointReference)
contained in the com.ibm.websphere.wsaddressing.jaxws21 and
javax.xml.ws.wsaddressing.jaxws21 packages, as shown on the diagram.

v A method, com.ibm.websphere.wsaddressing.EndpointReference.setReferenceParameter, to enable you
to associate reference parameters with an EndpointReference instance.

v An interface to enable a client to configure its BindingProvider request context, or Stub or Call object,
based on an EndpointReference instance. All invocations on the BindingProvider, Stub or Call object are
subsequently targeted at the endpoint that is represented by the EndpointReference instance. To
achieve this behavior, set the
com.ibm.websphere.wsaddressing.WSAConstants.WSADDRESSING_DESTINATION_EPR property on
the BindingProvider request context, or Stub or Call object, to the appropriate EndpointReference
instance.

v A mechanism for acquiring individual reference parameters that are associated with the incoming
message context, to correlate the message to a specific resource instance through the
com.ibm.websphere.EndpointReferenceManager.getReferenceParameterFromMessageContext
interface.

IBM proprietary Web Services Addressing SPIs
The IBM proprietary Web Services Addressing (WS-Addressing) system programming interfaces (SPIs)
extend the IBM proprietary WS-Addressing application programming interfaces (APIs) to enable you to
create and reason about the contents of endpoint references and other WS-Addressing artifacts, and to
set or retrieve WS-Addressing message-addressing properties (MAPs) on or from web service messages.

You cannot use the standard JAX-WS API classes with these proprietary SPIs. However, you can convert
endpoint references created by using the standard JAX-WS API classes to instances of the proprietary
com.ibm.websphere.wsaddressing.EndpointReference class, using the
com.ibm.websphere.wsaddressing.jaxws21.EndpointReferenceConverter class. You can then use these
converted endpoint references with the proprietary SPIs.

The programming interfaces in this topic are described in more detail in the IBM WS-Addressing SPI
documentation.

Creating, refining, and reasoning about the contents of endpoint references

The proprietary SPIs for creating, refining, and reasoning about the contents of endpoint references are
contained in the com.ibm.wsspi.wsaddressing package and are summarized in the following illustration
(the first two interfaces are proprietary API interfaces that are extended by the SPIs):

950 Overview

The SPI extends the proprietary WS-Addressing com.ibm.websphere.wsaddressing.EndpointReference API
to provide a number of additional methods through the com.ibm.wsspi.wsaddressing.EndpointReference
interface. You can cast instances of com.ibm.websphere.wsaddressing.EndpointReference to
com.ibm.wsspi.wsaddressing.EndpointReference to access these additional functions.

Chapter 27. Web services 951

Similarly, the SPI com.ibm.wsspi.wsaddressing.EndpointReferenceManager extends the set of functions
that are provided in the com.ibm.websphere.wsaddressing.EndpointReferenceManager API.

You can complete the following actions by using the additional methods that are provided by the
EndpointReference and EndpointReferenceManager SPIs:

Create endpoint references
Create EndpointReference objects by specifying the URI of the endpoint that the
EndpointReference object is to represent, by using the createEndpointReference(URI) operation,
or the EndpointReferenceManager.createEndpointReference(AttributedURI) operation. These
methods differ from the createEndpointReference method that is provided at the API level, in that
they do not automatically generate the URI for the EndpointReference instance. You might use
these methods when you know that the URI of the endpoint is stable, for example in a test
environment with no deployment restrictions.

Map between XML and Java representations of an endpoint reference
You can serialize instances of the EndpointReference interface to their corresponding SOAP
element instances by using the EndpointReference.getSOAPElement operation. Conversely, you
can deserialize SOAP elements of type EndpointReferenceType into their corresponding
EndpointReference Java representation, by using the
EndpointReference.createEndpointReference(SOAPElement) operation. You might find these
serialization and deserialization interfaces useful if you are creating custom binders for types that
contain EndpointReference instances.

Use more complex reference parameter types
The proprietary interfaces that are provided at the API level are restricted to reference parameters
of type xsd:string to allow for a simpler programming model. The SPIs extend this support to allow
reference parameters of type <xsd:any>. The EndpointReference interface provides mechanisms
for getting and setting reference parameters as SOAP elements. Additionally, the
EndpointReferenceManager class provides the
getSOAPElementReferenceParameterFromMessageContext operation, which enables receiving
endpoints to acquire reference parameters that are not of type String from the incoming message.

Note: When invoking a service with an EndpointReference object that contains a reference
parameter, you must create the reference parameter by using a complete QName object,
with all parts present: namespace, localpart, and prefix. If the QName object is not
complete, service invocations fail.

Set and reason about endpoint reference contents
The EndpointReference interface provides operations for you to set and reason about the contents
of an EndpointReference instance, such as its WS-Addressing address and metadata properties.
Additional interfaces are provided to represent the artifacts making up an endpoint reference:
Metadata, AttributedURI, and ServiceName. You create instances of these interfaces by using
operations that are provided by the proprietary WSAddressingFactory class.

Acquire and change the supported namespace
The WS-Addressing support in this product supports multiple namespaces. The setNamespace
and getNamespace operations that are provided on the proprietary EndpointReference interface
enable you to change and acquire the namespace that is associated with a particular
EndpointReference object. Serialization to SOAP elements is in accordance with the namespace
of the EndpointReference object. By default, the namespace of the destination endpoint reference
(the endpoint reference set as the
com.ibm.websphere.wsaddressing.WSAConstants.WSADDRESSING_DESTINATION_EPR
property on the JAX-WS BindingProvider object request context, or the JAX-RPC Stub or Call
object), defines the namespace of the message-addressing properties of the message.

952 Overview

Setting and Retrieving WS-Addressing message-addressing properties

The IBM proprietary WS-Addressing SPI provides a number of constants that identify JAX-WS or
JAX-RPC properties that you can use to set WS-Addressing MAPs on outbound messages, and message
context properties that you can use to retrieve MAPs on inbound messages. These constants are shown in
the following diagram in the com.wsspi.wsaddresssing.WSAConstants class. The diagram also shows the
interfaces that are required for generating instances of the appropriate property value types AttributedURI
and Relationship. The first WSAConstants interface is a proprietary API interface.

Setting WS-Addressing message-addressing properties on outbound messages:

Chapter 27. Web services 953

You can add WS-Addressing message information headers to outgoing messages by setting the
appropriate properties on the JAX-WS BindingProvider object request context, or the JAX-RPC Stub or
Call object, prior to invoking a message with the BindingProvider, Stub, or Call object. The following table
summarizes the relevant properties and their types.

Table 97. Outbound properties that you can set on the BindingProvider object request context (or the Stub or Call
object). The table lists the different property names, their Java types, their abstract WS-Addressing MAP names and
their default values.

Property name (of type
String) Java type of property value

Abstract WS-Addressing MAP name
or names, using the notational
convention of the W3C XML
Information Set Default value

WSADDRESSING_
DESTINATION_EPR

com.ibm.websphere.wsaddressing.
EndpointReference

[destination] URI
[reference parameters]* (any)

Not set

Note that this property comes
from the API.

WSADDRESSING_
FROM_EPR

com.ibm.websphere.wsaddressing.
EndpointReference

[source endpoint] Not set

WSADDRESSING_
REPLYTO_EPR

com.ibm.websphere.wsaddressing.
EndpointReference

[reply endpoint] Either 'none', if the message is a
one-way message with no reply,
or not set. For two-way
asynchronous messages in
JAX-WS applications, this
property is generated
automatically. If, in this situation,
you attempt to set this property,
a
javax.xml.ws.WebServiceException
exception is thrown. This
exception is also thrown for
two-way synchronous messages
that do not use the anonymous
URI.

WSADDRESSING_
FAULTTO_EPR

com.ibm.websphere.wsaddressing.
EndpointReference

[fault endpoint] Not set

If you attempt to set this
property for two-way
asynchronous messages in
JAX-WS applications, a
javax.xml.ws.WebServiceException
exception is thrown. This
exception is also thrown for
two-way synchronous messages
that do not use the anonymous
URI.

WSADDRESSING_
RELATIONSHIP_SET

java.util.Set containing instances
of com.ibm.wsspi.wsaddressing.
Relationship

[relationship] Not set

WSADDRESSING_
MESSAGE_ID

com.ibm.wsspi.wsaddressing.
AttributedURI

[message id] Generated and set to a unique
value

WSADDRESSING_
ACTION

com.ibm.wsspi.wsaddressing.
AttributedURI

[action] Generated and set, according to
the WS-Addressing specification

WSADDRESSING_
OUTBOUND_
NAMESPACE

String none The WS-Addressing
namespace of the
WSADDRESSING_
DESTINATION_EPR
property, if specified,
otherwise the default
namespace

Retrieving WS-Addressing message-addressing properties from inbound messages:

WS-Addressing message information headers that correspond to the last inbound message are available
from the inbound properties that are defined in the WSAConstants class. The following table summarizes
the available inbound properties. You acquire reference parameters from the message context by using the
proprietary EndpointReferenceManager.getReferenceParameter interface.

954 Overview

Table 98. Inbound properties that you can acquire from the message context. The table lists the different property
names, their Java types and equivalent abstract WS-Addressing MAP names.

Message context property name (of type String) Java type of property value

Abstract WS-Addressing
MAP name, using the
notational convention of the
W3C XML Information Set

WSADDRESSING_INBOUND_TO com.ibm.wsspi.wsaddressing.
AttributedURI

[destination]

No specific property. Use the
EndpointReferenceManager.
getReferenceParameter(QName name) method
to obtain the associated MAP.

Any [reference parameters]*

WSADDRESSING_INBOUND_FROM_EPR com.ibm.websphere.wsaddressing.
EndpointReference

[source endpoint]

WSADDRESSING_INBOUND_REPLYTO_EPR com.ibm.websphere.wsaddressing.
EndpointReference

[reply endpoint]

WSADDRESSING_INBOUND_FAULTTO_EPR com.ibm.websphere.wsaddressing.
EndpointReference

[fault endpoint]

WSADDRESSING_INBOUND_RELATIONSHIP java.util.Set containing instances of
com.ibm.wsspi.wsaddressing.
Relationship

[relationship]

WSADDRESSING_INBOUND_MESSAGE_ID com.ibm.wsspi.wsaddressing.
AttributedURI

[message id]

WSADDRESSING_INBOUND_ACTION com.ibm.wsspi.wsaddressing.
AttributedURI

[action]

WSADDRESSING_INBOUND_NAMESPACE String The WS-Addressing
namespace of the incoming
message

Web Services Resource Framework support
The Web Services Resource Framework (WSRF) support in WebSphere Application Server provides the
environment for web service applications that follow the OASIS WSRF specifications.

WSRF overview

Web service interfaces often need to provide stateful interactions with the clients of the service. For
example, a web service interface such as a shopping cart, where the result of one operation influences the
carrying out of the succeeding operations. The OASIS Web Services Resource Framework (WSRF)
defines a generic framework for modelling and accessing stateful resources using web services, so that
the definition and implementation of a service and the integration and management of multiple services is
easier.

WSRF introduces the concept of an XML document description, called the resource properties document
schema, which is referenced by the WSDL description of a web service and which explicitly describes a
view of the state of the resource with which the client interacts. A service described in this way is called a
WS-Resource.

A WS-Resource is defined as the combination of a resource and a web service through which the
resource is accessed. The following figure illustrates a web service, at http://www.example.com/service,
and three resources, A, B, and C, which are accessed through the Web service. Three WS-Resources are
therefore illustrated in the figure:

Chapter 27. Web services 955

A WS-Resource is referenced by a WS-Addressing endpoint reference that uniquely identifies the
WS-Resource, typically by containing an identifier of the resource component of the WS-Resource inside
the EndpointReference ReferenceParameter element. In the previous example, WS-Resource-C is the
combination of the web service and the resource that is identified by C, and a reference to
WS-Resource-C might be as follows:
<wsa:EndpointReference>

<wsa:Address>
http://www.example.com/service

</wsa:Address>
<wsa:ReferenceParameters>

<tns:SomeDisambiguatorElement>C</tns:SomeDisambiguatorElement>
</wsa:ReferenceParameters>
...

</wsa:EndpointReference>

Each such WS-Resource has a resource property document (an XML instance document) that describes a
view of the state of the resource. The WSDL for a WS-Resource identifies the XML schema that describes
the type of the resource property document through a ResourceProperties attribute of the wsdl:PortType
element. By specifying this standard WSDL extension for the resource properties document schema,
WSRF enables the definition of simple, generic messages that interact with the WS-Resource.

For example, consider a Printer WS-Resource that has the following resource properties document
schema:
<?xml version="1.0"?>
<xsd:schema ...

xmlns:pr="http://example.org/printer.xsd"
targetNamespace="http://example.org/printer.xsd" >

<xsd:element name="printer_properties">
<xsd:complexType>
<xsd:sequence>

<xsd:element ref="pr:printer_name" />
<xsd:element ref="pr:queued_job_count" />

</xsd:sequence>
</xsd:complexType>

</xsd:element>
...
</schema>

The WSDL PortType element for such a WS-Resource declares the Resource Properties Document type
as follows:
<wsdl:portType xmlns:pr="http://example.org/printer.xsd"

xmlns:wsrf-rp="http://docs.oasis-open.org/wsrf/rp-2"
name="Printer" wsrf-rp:ResourceProperties="pr:printer_properties">

Each WS-Resource has a unique, logical resource properties document instance that is a view of the state
of the resource. The WS-ResourceProperties specification describes the interoperable protocol messages
that a WS-Resource can implement to get, set, or query the state of the resource by operating on the
resource properties document. Some of these operations affect the resource properties document as a
whole, and some of them operate on one or more elements within the document (the individual resource
properties, for example pr:printer_name). Each WS-Resource can have a finite lifecycle and can be
created and destroyed; the WS-ResourceLifetime specification describes the interoperable protocol
messages that a WS-Resource can implement to destroy itself or to alter its termination time.

956 Overview

For more information about WSRF, refer to the WSRF Primer document published by the OASIS Technical
Committee.

WSRF Programming Model

The WSRF specifications define only the protocol messages and the semantic behavior that is expected of
a WS-Resource when it processes these messages; the specifications do not prescribe the means to
implement WS-Resource objects. WSRF is primarily an application-level protocol and the tools for
implementing WS-Resources are the same tools that are used for implementing any other type of web
service. WSRF uses WS-Addressing endpoint references and the application programming model for
WS-Resources is similar to the model for any web service that uses WS-Addressing.

WSRF extends the WebSphere Application Server WS-Addressing programming model in two ways, which
differentiate a WS-Resource from a generic resource that is accessed through a web service by using
WS-Addressing:

v WSRF requires the ResourceProperties attribute on the wsdlPortType element. This attribute declares
that the portType element is implemented by a WS-Resource rather than a generic web service. The
WS-Resource must declare which WSRF operations it supports by copying those operations into the
portType element of its WSDL definition. The WS-Resource is free to choose any implementation
strategy to represent the stateful resource and to process the WSRF messages; you can implement a
resource using a simple Java class, a stateless session enterprise bean, an entity bean backed by a
relational database, a Service Data Object (SDO), and so on.

v WSRF defines a hierarchy of Java BaseFault types.

Web Services Resource Framework base faults
The Web Services Resource Framework (WSRF) provides a recommended basic fault message element
type from which you can derive all service-specific faults. The advantage of a common basic type is that
all faults can, by default, contain common information. This behavior is useful in complex systems where
faults might be systematically logged, or forwarded through several layers of software before being
analyzed.

The common information includes the following items:

v A mandatory timestamp.

v An element that can be used to indicate the originator of the fault.

v Other elements that can describe and classify the fault.

The following two standard faults are defined for use with every WSRF operation:

ResourceUnkownFault
This fault is used to indicate that the WS-Resource is not known by the service that receives the
message.

ResourceUnavailableFault
This fault is used to indicate that the web service is active, but temporarily unable to provide
access to the resource.

The following XML fragment shows an example of a base fault element:
<wsrf-bf:BaseFault>

<wsrf-bf:Timestamp>2005-05-31T12:00:00.000Z</wsrf-bf:Timestamp>
<wsrf-bf:Originator>
<wsa:Address>
http://www.example.org/Printer

</wsa:Address>
<wsa:ReferenceParameters>
<pr:pr-id>P1</pr:pr-id>

</wsa:ReferenceParameters>
</wsrf-bf:Originator>
<wsrf-bf:Description>Offline for service maintenance</wsrf-bf:Description>
<wsrf-bf:FaultCause>OFFLINE</wsrf-bf:FaultCause>

</wsrf-bf:BaseFault>

Chapter 27. Web services 957

Important: The elements and classes that are discussed in the rest of this topic apply to JAX-RPC
applications only. If your application uses JAX-WS, use the artifacts that are generated, for
example by the wsimport tool, from the application WSDL document and XML schema that
define and use the specific BaseFault type.

The BaseFault class

For JAX-RPC applications, WebSphere Application Server provides Java code mappings for all the base
fault element types that are defined by the WSRF specifications, forming an exception hierarchy where
each Java exception extends the com.ibm.websphere.wsrf.BaseFault class. Each fault class follows a
similar pattern.

For example, the BaseFault class defines the following two constructors:
package com.ibm.websphere.wsrf;
public class BaseFault extends Exception
{

public BaseFault()
{

...
}
public BaseFault(EndpointReference originator,

ErrorCode errorCode,
FaultDescription[] descriptions,
IOSerializableSOAPElement faultCause,
IOSerializableSOAPElement[] extensibilityElements,
Attribute[] attributes)

{
...

}
...

}

The IOSerializableSOAPElement class

Because the BaseFault class extends the java.lang.Exception class, the BaseFault class must implement
the java.io.Serializable interface. To meet this requirement, all properties of a BaseFault instance must be
serializable. Because the javax.xml.soap.SOAPElement class is not serializable, WebSphere Application
Server provides an IOSerializableSOAPElement class, which you can use to wrap a
javax.xml.soap.SOAPElement instance to provide a serializable form of that instance.

Create an IOSerializableSOAPElement instance by using the IOSerializableSOAPElementFactory class, as
follows:
// Get an instance of the IOSerializableSOAPElementFactory class
IOSerializableSOAPElementFactory factory = IOSerializableSOAPElementFactory.newInstance();

// Create an IOSerializableSOAPElement from a javax.xml.soap.SOAPElement
IOSerializableSOAPElement serializableSOAPElement = factory.createElement(soapElement);

// You can retrieve the wrapped SOAPElement from the IOSerializableSOAPElement
SOAPElement soapElement = serializableSOAPElement.getSOAPElement();

Any application-specific BaseFault instances must also adhere to this serializable requirement.

Application-specific faults

Applications can define their own extensions to the BaseFault element. Use XML type extensions to define
a new XML type for the application fault that extends the BaseFaultType element. For example, the
following XML fragment creates a new PrinterFaultType element:
<xsd:complexType name="PrinterFaultType">
<xsd:complexContent>
<xsd:extension base="wsrf-bf:BaseFaultType"/>

</xsd:complexContent>
</xsd:complexType>

The following example shows how a web service application, whose WSDL definition might define a print
operation that declares two wsdl:fault messages, constructs a PrinterFault object:

958 Overview

import com.ibm.websphere.wsrf.BaseFault;
import com.ibm.websphere.wsrf.*;
import javax.xml.soap.SOAPFactory;
...

public void print(PrintRequest req) throws PrinterFault, ResourceUnknownFault
{

// Determine the identity of the target printer instance.
PrinterState state = PrinterState.getState ();
if (state.OFFLINE)
{

try
{

// Get an instance of the SOAPFactory
SOAPFactory soapFactory = SOAPFactory.newInstance();

// Create the fault cause SOAPElement
SOAPElement faultCause = soapFactory.createElement("FaultCause");
faultCase.addTextNode("OFFLINE");

// Get an instance of the IOSerializableSOAPElementFactory
IOSerializableSOAPElementFactory factory = IOSerializableSOAPElementFactory.newInstance();

// Create an IOSerializableSOAPElement from the faultCause SOAPElement
IOSerializableSOAPElement serializableFaultCause = factory.createElement(faultCause);

FaultDescription[] faultDescription = new FaultDescription[1];
faultDescription[0] = new FaultDescription("Offline for service maintenance");
throw new PrinterFault(

state.getPrinterEndpointReference(),
null,
faultDescription,
serializableFaultCause,
null,
null);

}
catch (SOAPException e)
{

...
}

}
...

The following code shows how base fault hierarchies are handled as Java exception hierarchies:
import com.ibm.websphere.wsrf.BaseFault;
import com.ibm.websphere.wsrf.*;
...
try
{

printer1.print(job1);
}
catch (ResourceUnknownFault exc)
{

System.out.println("Operation threw the ResourceUnknownFault");
}
catch (PrinterFault exc)
{

System.out.println("Operation threw PrinterFault");
}
catch (BaseFault exc)
{

System.out.println("Exception is another BaseFault");
}
catch (Exception exc)
{

System.out.println("Exception is not a BaseFault");
}

Custom binders

When you define a new application-level base fault, for example the PrinterFault fault with the
PrinterFaultType type shown previously, you must provide a custom binder to define how the web services
run time serializes the Java class into an appropriate XML message, and conversely how to deserialize an
XML message into an instance of the Java class.

The custom binder must implement the com.ibm.wsspi.webservices.binding.CustomBinder interface.
Package the binder in a Java archive (JAR) file along with a declarative metadata file,
CustomBindingProvider.xml, in the /META-INF/services directory of the JAR file. This metadata file defines
the relationship between the custom binder, the Java BaseFault implementation and the BaseFault type.
For example, you might define a custom binder called PrinterFaultTypeBinder, to map between the XML
PrinterFaultType element and its Java implementation, PrinterFault, as follows:

Chapter 27. Web services 959

<customdatabinding:provider
xmlns:customdatabinding="http://www.ibm.com/webservices/customdatabinding/2004/06"
xmlns:pr="http://example.org/printer.xsd"
xmlns="http://www.ibm.com/webservices/customdatabinding/2004/06">

<mapping>
<xmlQName>pr:PrinterFaultType</xmlQName>
<javaName>PrinterFault</javaName>
<qnameScope>complexType</qnameScope>
<binder>PrinterFaultTypeBinder</binder>
</mapping>
</customdatabinding:provider>

The BaseFaultBinderHelper class

WebSphere Application Server provides a BaseFaultBinderHelper class, which provides support for
serializing and deserializing the data that is specific to a root BaseFault class, which all specialized
BaseFault classes must extend. If a custom binder uses the BaseFaultBinderHelper class, the custom
binder then needs to provide only the additional logic for serializing and deserializing the extended
BaseFault data.

The following code shows how you can implement a custom binder for the PrinterFaultType element to
take advantage of the BaseFaultBinderHelper class support:
import com.ibm.wsspi.wsrf.BaseFaultBinderHelper;
import com.ibm.wsspi.wsrf.BaseFaultBinderHelperFactory;
import com.ibm.wsspi.webservices.binding.CustomBinder;
import com.ibm.wsspi.webservices.binding.CustomBindingContext;
...

public PrinterFaultTypeBinder implements CustomBinder
{

// Get an instance of the BaseFaultBinderHelper
private BaseFaultBinderHelper baseFaultBinderHelper = BaseFaultBinderHelperFactory.getBaseFaultBinderHelper();

public SOAPElement serialize(Object data, SOAPElement rootNode, CustomBindingContext context) throws SOAPException
{
// Serialize the BaseFault specific data
baseFaultBinderHelper.serialize(rootNode, (BaseFault)data);

// Serialize any PrinterFault specific data
...

// Return the serialized PrinterFault
return rootNode;

}

public Object deserialize(SOAPElement rootNode, CustomBindingContext context) throws SOAPException
{
// Create an instance of a PrinterFault
PrinterFault printerFault = new PrinterFault();

// Deserialize the BaseFault specific data - any additional data that
// forms the PrinterFault extension will be returned as a SOAPElement[].
SOAPElement[] printerFaultElements = baseFaultBinderHelper.deserialize(printerFault, rootNode);

// Deserialize the PrinterFault specific data contained within the printerFaultElements SOAPElement[]
...

// Return the deserialized PrinterFault
return printerFault;

}

...

}

Web Services Resource Framework resource property and lifecycle
operations
The Web Services Resource Framework (WSRF) contains specifications that describe the operations that
a Web Services Resource (WS-Resource) can implement to get, set, or query the state of the resource by
operating on the resource properties document.

For a complete description of all the standard property and lifetime operations that are defined by the Web
Services Resource Framework (WSRF), see the WS-ResourceProperties and WS-ResourceLifetime
specifications. The principle WSRF operations that a Web Services Resource (WS-Resource) can support
are described in the following table.

960 Overview

Table 99. Principle WSRF operations that are supported by WS-Resources. The table lists the principle WSRF
operations and provides a description of each one, including its message and response format.
Operation Description

GetResourcePropertyDocument Returns the entire resource properties document for the WS-Resource.

Message format
<wsrf-rp:GetResourcePropertyDocument/>

Response format
<wsrf-rp:GetResourcePropertyDocumentResponse>
{any}

</wsrf-rp:GetResourcePropertyDocumentResponse>

where {any} is the content of the resource properties document.

PutResourcePropertyDocument Replaces the entire resource properties document for the WS-Resource with the document specified.

Message format
<wsrf-rp:PutResourcePropertyDocument>
{any}

</wsrf-rp:PutResourcePropertyDocument>

where {any} is the content of the new resource properties document.

Response format
<wsrf-rp:PutResourcePropertyDocumentResponse>
{any} ?

</wsrf-rp:PutResourcePropertyDocumentResponse>

where {any} is the content of the new resource properties document. If the content is the same
as the requested content, then the {any} element must not be present.

GetResourceProperty Returns the value or values of the specified resource property found within the resource properties
document for the WS-Resource.

Message format
<wsrf-rp:GetResourceProperty>
QName

</wsrf-rp:GetResourceProperty>

Response format
<wsrf-rp:GetResourcePropertyResponse>
{any}*

</wsrf-rp:GetResourcePropertyResponse>

where {any}* is a sequence of elements that match the QName specified in the request.

GetMultipleResourceProperties Returns the value or values of the specified resource properties found within the resource properties
document for the WS-Resource.

Message format
<wsrf-rp:GetMultipleResourceProperties>
<wsrf-rp:ResourceProperty>QName<wsrf-rp:ResourceProperty>+

</wsrf-rp:GetMultipleResourceProperties>

Response format
<wsrf-rp:GetMultipleResourcePropertiesResponse>
{any}*

</wsrf-rp:GetMultipleResourcePropertiesResponse>

where {any}* is a sequence of elements that match the QNames specified in the request.

InsertResourceProperties Inserts the resource property elements specified into the resource properties document for the
WS-Resource.

Message format
<wsrf-rp:InsertResourceProperties>
<wsrf-rp:Insert>
{any}*

</wsrf-rp:Insert>
</wsrf-rp:InsertResourceProperties>

where {any}* is a sequence of elements with the same QName.

Response format
<wsrf-rp:InsertResourcePropertiesResponse/>

Chapter 27. Web services 961

Table 99. Principle WSRF operations that are supported by WS-Resources (continued). The table lists the principle
WSRF operations and provides a description of each one, including its message and response format.
Operation Description

UpdateResourceProperties Updates the resource property elements specified into the resource properties document for the
WS-Resource.

Message format
<wsrf-rp:UpateResourceProperties>
<wsrf-rp:Upate>
{any}*

</wsrf-rp:Upate>
</wsrf-rp:UpateResourceProperties>

where {any}* is a sequence of elements with the same QName.

Response format
<wsrf-rp:UpateResourcePropertiesResponse/>

DeleteResourceProperties Deletes the resource property elements specified from the resource properties document for the
WS-Resource.

Message format
<wsrf-rp:DeleteResourceProperties>
<wsrf-rp:Delete ResourceProperty="QName"/>

</wsrf-rp:DeleteResourceProperties>

where QName is the QName of the resource property to delete.

Response format
<wsrf-rp:DeleteResourcePropertiesResponse/>

QueryResourceProperties Query the resource properties document by using a query expression, such as XPath.

Message format
<wsrf-rp:QueryResourceProperties>
<wsrf-rp:QueryExpression

Dialect="http://www.w3.org/TR/1999/REC-xpath-19991116">
xsd:any

</wsrf-rp:QueryExpression>
</wsrf-rp:QueryResourceProperties>

where xsd:any is the XPath query expression to apply to the resource properties document.

Response format
<wsrf-rp:QueryResourcePropertiesResponse>
{any}

</wsrf-rp:QueryResourcePropertiesResponse>

where {any} is the result of evaluating the query expression against the resource properties
document.

Destroy Destroys the WS-Resource.

Message format
<wsrf-rl:Destroy/>

Response format
<wsrf-rl:DestroyResponse/>

This response indicates successful destruction of the WS-Resource.

962 Overview

Table 99. Principle WSRF operations that are supported by WS-Resources (continued). The table lists the principle
WSRF operations and provides a description of each one, including its message and response format.
Operation Description

SetTerminationTime WS-Resources that support scheduled termination can implement this operation to allow a requester to
change the time at which the WS-Resource destroys itself.

Message format
<wsrf-rl:SetTerminationTime>
[<wsrf-rl:RequestedTerminationTime>
xsd:dateTime

</wsrf-rl:RequestedTerminationTime>]
|

[<wsrf-rl:RequestedLifetimeDuration>
xsd:duration

</wsrf-rl:RequestedLifetimeDuration>]
</wsrf-rl:SetTerminationTime>

where the termination time is either an absolute time or a relative duration.

Response format
<wsrf-rl:SetTerminationTimeResponse>
<wsrf-rl:NewTerminationTime>
xsd:dateTime

</wsrf-rl:NewTerminationTime>
<wsrf-rl:CurrentTime>
xsd:dateTime

</wsrf-rl:CurrentTime>
<wsrf-rl:SetTerminationTimeResponse>

This response contains the time, from the perspective of the WS-Resource, when the
WS-Resource destroys itself. The response also contains the WS-Resource value of the current
time.

A variety of ways exist in which a WS-Resource can implement scheduled destruction. For
example, a WS-Resource that is implemented as an enterprise bean might use the enterprise
bean container timer service by implementing the ejbTimeout callback method of the
javax.ejb.TimedObject interface, and by creating a Timer object that expires at the scheduled
destruction time and drives this callback method. EJB timer service Timer objects are retained
after server restarts, and are therefore a simple means to manage the lifecycle of
WS-Resources that have a finite lifecycle and require a time-based destruction mechanism.

Web Services Distributed Management
Web Services Distributed Management (WSDM) is an OASIS approved standard that supports managing
resources through a standardized web service interface. Your environment, such as WebSphere
Application Server host or an operating system host that has an exposed resource as a web service within
a single interface is used to manage and control resources. WSDM is a distributed management model,
but it does not replace any existing WebSphere Application Server administration models. WSDM provides
a new way to expose the internal product administration functions for a web service interface.

The existing administration interfaces, such as managed bean (MBean), wsadmin, and Java Application
Programming Interface (API), are more language and platform specific. WSDM provides a common,
flexible infrastructure to manage the product resources by leveraging the web services protocols.

WSDM defines two specifications: Management Using Web Services (MUWS) and Management of Web
Services (MOWS). MUWS defines how resources interact with the resources managed through a set of
accessible web services interfaces. MOWS extends the MUWS concepts to define how a web service
resource, itself, is managed. See Specifications and API documentation for MOWS and MUWS
specifications. In addition to the manageability capabilities defined in the MUWS specifications,
WebSphere Application Server WSDM also defines manageability capabilities unique to the product
environment.

There is a general pattern that managed resources use to expose their manageability services through
WSDM compliant web services interfaces. First, you must create a model of the managed resource.
Typically the model of the resource is created using a modeling tool such as the Test and Performance

Chapter 27. Web services 963

Tools Platform (TPTP), an eclipse plug-in tool; however, a simple text document is sufficient. Use the
modeling tool to develop the model of WebSphere Application Server managed resources. The following
graphic illustrates the process.

Code artifacts are generated from the resource model. Generated artifacts for each resource model
include:

v A Web Services Description Language (WSDL) document that describes the web service interface for
the management functions for that resource

v An implementation stub for the service implementation classes for that web service

v A client proxy for the service that is used in a program that needs to invoke the management functions
of that resource

v A unit test code for invoking test cases that exercises the functions of that service

v Additional XML documents and schema that describe the properties, operations, and notifications
associated with the managed resource

The code generated from the resource model is essentially an empty shell of the management web
service for the modeled resource. The next step in the process is to enter code that acts as an adapter
between the implementation stub for the service and the real resource management functions. In the case
of the WSDM support implementation, this adapter code contain calls to theWebSphere Application Server
AdminService APIs that expose normal product management functions. You must install the completed
service implementation in a hosting web service environment. To install your WSDM application, see
Deploying and administering enterprise applications and follow the steps for installing enterprise
application files on an application server.

Important: WSDM is a system application and it is disabled by default when the product is installed. You
must first enable WSDM before you can use it to manage the product resources. Use scripting
to enable WSDM.

Figure 185. Generic WSDM Concept

964 Overview

Web Services Distributed Management resource management
Web Services Distributed Management (WSDM) is an OASIS approved standard that supports the
management of resources through a standardized web service interface. WSDM delivers web services
based interfaces to manage application server resources using a manageability endpoint.

The manageability endpoint contains manageability capabilities for the resources. A manageability
capability uniquely identifies and associates with a set of properties, operations, and events. A resource
that supports one or more manageability capabilities becomes a manageable resource. For example, a
manageable resource is a server or an application resource that supports a capability, which includes stop,
start, and remove operations. To leverage the functions that a manageable resource provides, a
manageability consumer is used. Manageability consumer queries and discovers the available manageable
resources through the web services endpoints. After the service is discovered, the manageability consumer
exchanges messages to gather property information, invoke operations or receive notifications. The
following graphics illustrates the relationships between the manageability consumer and manageable
resources linked by the web service endpoints.

Important: WSDM is a system application and it is disabled by default when the product is installed. You
must first enable WSDM before you can use it to manage the product resources. Use scripting
to enable WSDM.

Web Services Distributed Management manageability capabilities for
WebSphere Application Server resource types
A resource that supports one or more manageability capabilities is a manageable resource. Each resource
type that is exposed within the product supports a number of Web Services Distributed Management
(WSDM) manageability capabilities.

Important: WSDM is a system application and it is disabled by default when the product is installed. You
must first enable WSDM before you can use it to manage the product resources. Use scripting
to enable WSDM.

A manageable resource is a server or an application that supports a capability which includes stop, start,
and remove operations. A manageability capability includes some properties, operations, and notifications.
You can obtain and view performance data about the managed resources when you enable Performance
Monitoring Infrastructure (PMI) in your server environment.

WSDM manageable resources, in general, are an aggregation of manageability capabilities. There are
manageability capabilities that are globally applicable to many resource types. State management fits into

Figure 186. Relationship between the different parts of WSDM

Chapter 27. Web services 965

this category. There are manageability capabilities that are unique to a single-managed resource, for
example the Java virtual machine (JVM) manageability capability only applies to JVM-managed resources.

The autonomic manager (AC), which can be any client with management capability interact with the
resources. Before the AC can interact with the resources, the AC needs to query what resources are
available in the application server via the service group. The service group is an aggregation of
WS-Resources within the same domain. The WebSphere Application Server WSDM service group
contains all of the resources. Each resource becomes a member in the service group. The AC can get a
particular resources endpoint reference (EPR) from the service group based on the resource type or the
reference parameters. After the EPR is obtained, the AC can send the request to the resource. The
service group can be accessed using the following endpoint address: http://<hostname>:<port>/
websphere-management/services/service-group.

After the AC gets the resources EPR list from the service group, the AC can send requests to the resource
provider. Each resource endpoint is listed below. The associated Web Services Description Language
(WSDL) can be obtained by attaching ?wsdl to the end of the endpoint address.

Resource type Resource endpoint address

WebSphere Application
Server profile, also called
runtime configuration
instance or WebSphere
Application Server domain

http://<hostname>:<port>/websphere-management/services/webspheredomain

WebSphere Application
Server

http://<hostname>:<port>/websphere-management/services/applicationserver

WebSphere Application
Server cluster

http://<hostname>:<port>/websphere-management/services/webspherecluster

Java virtual machine http://<hostname>:<port>/websphere-management/services/jvm

Application http://<hostname>:<port>/websphere-management/services/application

WebSphere Application
Server deployed object

http://<hostname>:<port>/websphere-management/services/deployedobject

Servlet http://<hostname>:<port>/websphere-management/services/servlet

Enterprise JavaBeans http://<hostname>:<port>/websphere-management/services/ejb

Web services http://<hostname>:<port>/websphere-management/services/webservices

JAX-WS web services http://<hostname>:<port>/websphere-management/services/jaxwswebservices

JAX-RPC web services http://<hostname>:<port>/websphere-management/services/jaxrpcwebservices

Data source http://<hostname>:<port>/websphere-management/services/datasource

Each resource type that is exposed in the product supports a number of manageability capabilities. These
resources are defined by the WSDM specification, AC touchpoint, and the product's built-in management.
A touchpoint is a combination of port types and operations defined in WSDL that exposes the
manageability interface for a managed resource in a way that complies with different specifications for web
services. Each manageability capability includes a number of properties, operations, and notifications.

The following table lists the manageability capabilities that each resource aggregates. For information
about an Application Programming Interface (API) or a specification that is listed with a manageability
capability, see Specifications and API documentation.

Resource types and manageability capabilities

966 Overview

Resource type Manageability capabilities Specification

WebSphere Application Server
domain

v J2EEDomain

v J2EEManagedObject

v Identity

v Metrics

v ManageabilityCharacteristics

v Description

v ResourceType

v Configuration

v ApplicationManagement

v ConfigChangeNotifier

v NotificationProducer

v JSR 77 – J2EE

v JSR 77 – J2EE

v MUWS – WSDM

v MUWS – WSDM

v MUWS

v MUWS – WSDM

v AC touchpoint

v MUWS – WSDM

v WebSphere Application Server
unique

v WebSphere Application Server
unique

v WSBN - WS-N

WebSphere Application Server v J2EEServer

v J2EEManagedObject

v Identity

v Metrics

v State

v ManageabilityCharacteristics

v Description

v ResourceType

v NotificationProducer

v ApplicationServer

v StateManageable

v JSR 77 – J2EE

v JSR 77 – J2EE

v MUWS – WSDM

v MUWS – WSDM

v MUWS – WSDM

v MUWS

v MUWS – WSDM

v AC touchpoint

v WSBN – WS-N

v WebSphere Application Server
unique

v WebSphere Application Server
unique

WebSphere Application Server cluster v Identity

v Metrics

v State

v ManageabilityCharacteristics

v Description

v ResourceType

v ClusterManagement

v MUWS – WSDM

v MUWS – WSDM

v MUWS – WSDM

v MUWS

v MUWS – WSDM

v AC touchpoint

v WebSphere Application Server
unique

Java virtual machine v JVM

v J2EEManagedObject

v Identity

v Metrics

v ManageabilityCharacteristics

v Description

v ResourceType

v JSR 77 – J2EE

v JSR 77 – J2EE

v MUWS – WSDM

v MUWS – WSDM

v MUWS

v MUWS – WSDM

v AC touchpoint

Chapter 27. Web services 967

Resource type Manageability capabilities Specification

Application v J2EEApplication

v J2EEDeployedObject

v J2EEManagedObject

v Identity

v State

v Metrics

v ManageabilityCharacteristics

v Description

v ResourceType

v Application

v StateManageable

v JSR 77 – J2EE

v JSR 77 – J2EE

v JSR 77 – J2EE

v MUWS – WSDM

v MUWS – WSDM

v MUWS – WSDM

v MUWS - WSDM

v MUWS – WSDM

v AC touchpoint

v WebSphere Application Server
unique

v WebSphere Application Server
unique

Servlet v Servlet

v J2EEManagedObject

v Identity

v Metrics

v ManageabilityCharacteristics

v Description

v ResourceType

v JSR 77 – J2EE

v JSR 77 – J2EE

v MUWS – WSDM

v MUWS – WSDM

v MUWS

v MUWS – WSDM

v AC touchpoint

Enterprise JavaBeans v EJB

v J2EEManagedObject

v Identity

v Metrics

v ManageabilityCharacteristics

v Description

v ResourceType

v JSR 77 – J2EE

v JSR 77 – J2EE

v MUWS – WSDM

v MUWS – WSDM

v MUWS

v MUWS – WSDM

v AC touchpoint

Web service v Metrics

v J2EEManagedObject

v Identity

v State

v ManageabilityCharacteristics

v Description

v ResourceType

v WebService

v MOWS – WSDM

v JSR 77 – J2EE

v MUWS – WSDM

v MUWS – WSDM

v MUWS

v MUWS – WSDM

v AC touchpoint

v WebSphere Application Server
unique

968 Overview

Resource type Manageability capabilities Specification

JAXWS web services v J2EEManagedObject

v Identification

v Metrics

v State

v ManageabilityCharacteristics

v Description

v ResourceType

v WebService

v Manageability references

v OperationalStatus

v Operational state

v Operation operational status

v Request processing state

v Identity

v JSR 77 – J2EE

v MOWS – WSDM

v MUWS – WSDM

v MUWS – WSDM

v MUWS

v MUWS – WSDM

v AC touchpoint

v WebSphere Application Server
unique

v MOWS – WSDM

v MOWS – WSDM

v MOWS – WSDM

v MOWS – WSDM

v MOWS – WSDM

v MUWS – WSDM

JAXRPC web services v Metrics

v J2EEManagedObject

v Identification

v Metrics

v State

v ManageabilityCharacteristics

v Description

v ResourceType

v WebService

v Manageability references

v OperationalStatus

v Operational state

v Operation operational status

v Request processing state

v Identity

v MOWS – WSDM

v JSR 77 – J2EE

v MOWS – WSDM

v MUWS – WSDM

v MUWS – WSDM

v MUWS

v MUWS – WSDM

v AC touchpoint

v WebSphere Application Server
unique

v MOWS – WSDM

v MOWS – WSDM

v MOWS – WSDM

v MOWS – WSDM

v MOWS – WSDM

v MUWS – WSDM

Data source v JDBCDatasource

v J2EEResource

v J2EEManagedObject

v Identity

v Metrics

v ManageabilityCharacteristics

v Description

v ResourceType

v DataSource

v JSR 77 – J2EE

v JSR 77 – J2EE

v JSR 77 – J2EE

v MUWS - WSDM

v MUWS - WSDM

v MUWS – WSDM

v MUWS – WSDM

v AC touchpoint

v WebSphere Application Server
unique

The following table lists the attributes and operations for the product's manageability capabilities.

Chapter 27. Web services 969

Manageability Capabilities Attributes Operations

J2EEDomain None v String getAttribute(String, String)

v String[] queryNames(String
queryString)

J2EEManagedObject v objectName

v stateMangeable

v eventProvider

v statisticsProvider

None

ConfigChangeNotifier None None (however, it has notification of
ConfigChange)

ApplicationManagement None v String installApplication(String,
String, HashMap)

v String uninstallApplication(String)

v String updateApplication(String,
String, HashMap)

v String, HashMap

v EndpointReference
listApplications(String
applicationName)

J2EEServer v serverVendor

v serverVersion

v DepolyedObjects

v javaVMs

None

StateManageable v state

v startTime

v stop()

v start()

v startRecursive()

ApplicationServer v name

v versionsForAllEFixes

v versionsForAllExtensions

v VersionsForAllPTFs

v shortName

v threadMonitorInterval

v threadMonitorthreshold

v threadMonitorAdjustmentThreshold

v ProcessId

v cellName

v nodeName

v processType

v platformName

v platformVersion

v stopImmediate()

v restart()

v String getproductVersion(String)

970 Overview

Manageability Capabilities Attributes Operations

ClusterManagement v clusterName

v preferLocal

v wlcId

v state

v backupName

v backupBootstrapHost

v backupBootstrapPort

v start()

v stop()

v stopImmediate()

v rippleStarT()

v exportRouteTable()

v dumpClusterInfo()

v boolean getAvailable(String, String)

v boolean setAvailable(String, String)

v boolean setUnavailable(String,
String)

Java virtual machine v javaVersion

v javaVendor

v node

v stats

v freeMemory

v usedMemory

v heapSize

v upTime

v GCCount

v GCTime

v GCInternalTime

v waitsForLockCount

v waitForLockTime

v objectAllocatedCount

v objectMovedCount

v objectFreedCount

v threadStartedCount

v threadEndedCount

None

J2EEDeployedObject v deploymentDescriptor

v server

None

J2EE Application module None

Application implementationVersion None

Servlet v concurrentRequest

v responseTime

v numErrors

v totalRequests

None

EJB v createCount

v loadCount

v storeCount

v readyCount

v liveCount

v pooledCount

v waitTime

None

Chapter 27. Web services 971

Manageability Capabilities Attributes Operations

WebService v payloadSize

v replyPayloadSize

v requestPayloadSize

v requestResponseTime

v replyResponseTime

v responseTime

v processRequestCount

v dispatchedRequestCount

v receivedRequestCount

v loadedWebServiceCount

None

DataSource v jdbcDriver

v connectionFactoryType

v dataSourceName

v dataStoreHelperClass

v loginTimeout

v statementCacheSize

v jtaEnabled

v name

v jndiName

v testConnection

v testConnectionInterval

v stuckTimerTime

v stuckTime

v stuckThreshold

v surgeThrehold

v surgeCreationInterval

v connectionTimeout

v maxConnections

v minConnctions

v purgePolicy

v reapTime

v unusedTimeout

v agedTimeout

v freePoolDistributionTableSize

v freePoolPartions

v sharedPoolPartitions

v String showPoolContents()

v void purgePoolContents()

v void pause()

v void resume()

v String getStatus()

Web Services Distributed Management support in the application
server
The Web Services Distributed Management (WSDM) support for a Web service in WebSphere Application
Server runs within an application server that has exposed management functions.

In the application server implementation of WSDM, a WSDM application is packaged as a Java Platform,
Enterprise Edition (Java EE) Enterprise archive (EAR) file. The EAR file is deployed as an application
server system application.

972 Overview

Important: WSDM is a system application and it is disabled by default when the product is installed. You
must first enable WSDM before you can use it to manage the product resources. Use scripting
to enable WSDM.

WSDM support for the product consists of two parts:

v WSDM runtime environment and support

v WSDM resource model and service implementation

The WSDM runtime environment provides fundamental capabilities for the manageable resources. The
WSDM runtime environment interacts with the underlying web services platform and the WSDM resources
to service the requests and responses. There are multiple specifications that the WSDM runtime
environment uses in order to provide the WSDM functions, namely WS-Addressing, WS-ResourceFramework,
and WS-Notification. For each request, the WSDM runtime environment routes the request to the
appropriate resource service implementation based on the endpoint reference, (EPR). The EPR is defined
by the WS-Addressing specification. Each EPR contains target address, runtime specific data and reference
properties to uniquely identify an instance of a WSDM resource. After the resource service implementation
returns a response, the WSDM runtime environment wraps the response into an appropriate SOAP
message format specified in the Management Using Web Services (MUWS) specification and returns the
response back to the requester. The application server leverages Apache Muse 2.0 to provide the runtime
support for WSDM. The Apache MUSE 2.0 provides both the development tool and the WSDM runtime
environment.

The WSDM resource model for the application server identifies the elements of the product that are
managed resources and further defines the specific properties, operations, and notifications that are
managed resources support. The resource model defines the interfaces to interact with the resources and
administrative functions in the product. The resource model includes appropriate capabilities defined in the
two WSDM specifications, Management Using Web Services (MUWS) and Management of Web Services
(MOWS). What this means is that the implementation is a mapping of the WSDM specification interfaces
onto the product administration and programming interfaces. The implementation does not introduce new
functions into the product, but rather, an alternative interface for accessing existing administration and
programming functions in the product. In addition, the resource model defines specific capabilities to
provide additional manageability functions. Each of the capabilities defines a set of properties, operations,
and events for managed resources in an autonomically managed system. Each resource is associated
with a Web Services Description Language (WSDL) file that contains the definition of its manageability
capabilities.

The implementation is attached to the WSSecurity default policy set and runs the administrative operations
from the client user identity. This user identity must have privileges to perform any administrative action. It
is the role of the autonomic computing (AC) manager that makes requests for the WSDM implementation
to ensure that the user of that manager has appropriate authorization to perform administration and any
other functions exposed by the AC manager.

The benefit of WSDM support in the application server is that the product can participate in multiple
product management solutions in a standard way. By exposing the product management functions through
a standard web services interoperable interface, you can combine the application server with large
management systems based on the WSDM specification.

Web Services Distributed Management in a stand-alone application
server instance
In a stand-alone application server environment, there is one Web Services Distributed Management
(WSDM) application deployed for each application server instance.

Important: WSDM is a system application and it is disabled by default when the product is installed. You
must first enable WSDM before you can use it to manage the product resources. Use scripting
to enable WSDM.

Chapter 27. Web services 973

The WSDM application acts as an administrative client to the management code running inside the single
Java virtual machine for that instance. Figure 1 illustrates an Autonomic Computing Manager (ACM)
interacting with two application server instances, each with its own WebSphere Application Server WSDM
application exposing the manageability for that individual instance.

Web Services Distributed Management in a WebSphere Application
Server, Network Deployment cell
You can use Web Services Distributed Management (WSDM) to manage application server instances
within a WebSphere Application Server, Network Deployment cell. The administrative support and visibility
for WSDM in a cell is obtained through interaction with each WSDM application deployed on the
application server.

Important: WSDM is a system application and it is disabled by default when the product is installed. You
must first enable WSDM before you can use it to manage the product resources. Use scripting
to enable WSDM.

In the multinode WebSphere Application Server, Network Deployment environment, the management code
runs across a distributed network of Java virtual machines with a central access point as the deployment
manager process for the entire network or cell. Several different application server Java virtual machines
might be managed within a cell. You can manage an application server Java virtual machines within a cell
through the WSDM application installed on deployment manager. The WSDM application acts as an
administrative client to the managed application server. Figure 1 illustrates this environment with an

Figure 187. WSDM application in a stand-alone server instance

974 Overview

Autonomic Computing Manager interacting with the single application server implementation of WSDM to
expose the manageability of that application server. You can build a federated deployment manager cell
from individual application server instances by running the addNode utility program to add the application
server instances to the centrally managed cell. After a node is added to the cell, the manager can still
manage each application server within the cell through the installed WSDM application on the deployment
manager.

Web Services Distributed Management in an administrative agent
environment
You can use Web Services Distributed Management (WSDM) to manage application server profiles in an
administrative agent (AdminAgent) environment.

Important: WSDM is a system application and it is disabled by default when the product is installed. You
must first enable WSDM before you can use it to manage the product resources. Use scripting
to enable WSDM.

You can manage multiple base application servers within profiles using the AdminAgent. You can also use
the Web Services Distributed Management (WSDM) to manage each profile within the AdminAgent.
WSDM is deployed inside the AdminAgent as a system application. Each profile is represented as a
domain resource within the product. You can get and manage the resources within a profile through the
product's domain resource. Figure 1 illustrates the AdminAgent topology.

Figure 188. WSDM application in a WebSphere Application Server, Network Deployment cell

Chapter 27. Web services 975

Notifications from the application server Web Services Distributed
Management resources
Use this topic to learn about application server Web Services Distributed Management (WSDM) resources
and their life cycle events.

Important: WSDM is a system application and it is disabled by default when the product is installed. You
must first enable WSDM before you can use it to manage the product resources. Use scripting
to enable WSDM.

There are different life cycle events that can occur for any resource. The notifications associated with
these lifecycle events are resource definition events and resource state events. Resource definition events
are:

v Created

v Deleted

Figure 189. WSDM application in an AdminAgent environment

976 Overview

v Changed

Resource state events are:

v Started

v Stopped

v Suspended

The following resources are discussed in detail. You can review WSDM manageability capabilities for
application server resource types for information about each resource endpoint address and manageability
capabilities.

The application server instances support definitional notifications. Whenever a resource definition event
occurs, the configuration of an application server is created, modified, or deleted and a notification is
generated by the WebSphere Application Server domain. The notification includes the configuration
documents that have been changed.

The product installation is performed and managed by the underlying operating system. There is no
runtime entity that represents the product installation. There are no life cycle notifications currently planned
for events related to the product installation. There are no state event notifications associated with the
lifecycle of the overall product installation.

There is an administrative agent process that is created as part of a WebSphere Application Server profile.
This administrative agent process, once created, becomes available to emit life cycle notifications for the
profile. Since any configuration modification might be considered a change to the profile, there is no
generic profile changed notification. Instead, there are specific notifications for some configuration
changes. In addition, there is no state change notification for profiles because a profile does not actually
run, it simply exists or does not exist.

Applications that are installed into the product support both definitional and operational notifications.
Whenever an application is installed, a notification is produced to indicate that an instance of that
application managed resource has been created. A notification is generated each time the application is
started, stopped, or updated. When an application is uninstalled, the resource destroyed notification is
produced.

Individual deployed modules have independent life cycles. There are create, modify, delete, start, and stop
notifications for individual deployed objects in the product.

Even though web services are not robust applications, there is a need to understand the life cycle for
these essential deployed objects. Notifications are produced in accordance to the MOWS specification
such as when a web service is installed, modified, started, stopped or uninstalled.

Web Services Invocation Framework (WSIF)
WSIF is a Web Services Description Language (WSDL)-oriented Java API. You use this API to invoke web
services dynamically, regardless of the service implementation format (for example enterprise bean) or the
service access mechanism (for example Java Message Service). Use these topics to learn more about
WSIF.

Using WSIF, you can move away from the usual web services programming model of working directly with
the SOAP APIs, towards a model where you interact with representations of the services. You can
therefore work with the same programming model regardless of how the service is implemented and
accessed.

Chapter 27. Web services 977

Note: You should not use WSIF for new applications in WebSphere Application Server, unless you are
supporting an existing WSIF configuration. You should instead adopt a more recent open standard,
such as the Java API for XML-Based Web Services (JAX-WS) programming model.

To learn about WSIF, see the following topics:

v “Goals of WSIF.”

v “WSIF Overview” on page 979.

– “WSIF architecture” on page 980.

– “WSIF and WSDL” on page 981.

– “WSIF usage scenarios” on page 981.

Goals of WSIF
WSIF aims to extend the flexibility provided by SOAP services into a general model for invoking web
services, irrespective of the underlying binding or access protocols.

SOAP bindings for web services are part of the Web Services Description Language (WSDL) specification,
therefore when most developers think of using a web service, they immediately think of assembling a
SOAP message and sending it across the network to the service endpoint, using a SOAP client API. For
example: using Apache SOAP the client creates and populates a Call object that encapsulates the service
endpoint, the identification of the SOAP operation to invoke, the parameters to send, and so on.

Although this process works for SOAP, it is limited in its use as a general model for invoking web services
for the following reasons:
v “Web services are more than just SOAP services.”
v “Tying client code to a particular protocol implementation is restricting” on page 979.
v “Incorporating new bindings into client code is hard” on page 979.
v “Multiple bindings can be used in flexible ways” on page 979.
v “A freer web services environment enables intermediaries” on page 979.

The goals of the Web Services Invocation Framework (WSIF) are therefore:
v To give a binding-independent mechanism for web service invocation.
v To free client code from the complexities of any particular protocol used to access a web service.
v To enable dynamic selection between multiple bindings to a Web service.
v To help the development of web service intermediaries.

Web services are more than just SOAP services

You can deploy as a web service any application that has a WSDL-based description of its functional
aspects and access protocols. If you are using the Java Platform, Enterprise Edition (Java EE)
environment, then the application is available over multiple transports and protocols.

For example, you can take a database-stored procedure, expose it as a stateless session bean, then
deploy it into a SOAP router as a SOAP service. At each stage, the fundamental service is the same. All
that changes is the access mechanism: from Java DataBase Connectivity (JDBC) to Remote Method
Invocation over Internet Inter-ORB Protocol (RMI-IIOP) and then to SOAP.

The WSDL specification defines a SOAP binding for web services, but you can add binding extensions to
the WSDL so that, for example, you can offer an enterprise bean as a web service that uses RMI-IIOP as
the access protocol. You can even treat a single Java class as a web service, with in-thread Java method
invocations as the access protocol. With this broader definition of a web service, you need a
binding-independent mechanism for service invocation.

978 Overview

Tying client code to a particular protocol implementation is restricting

If your client code is tightly bound to a client library for a particular protocol implementation, it can become
hard to maintain.

For example, if you move from Apache SOAP to Java Message Service (JMS) or enterprise bean, the
process can take a lot of time and effort. To avoid these problems, you need a protocol
implementation-independent mechanism for service invocation.

Incorporating new bindings into client code is hard

If you want to make an application that uses a custom protocol work as a web service, you can add
extensibility elements to WSDL to define the new bindings. But achieving this capability is complex.

For example you must design the client APIs to use this protocol. If your application uses just the abstract
interface of the web service, you must write tools to generate the stubs that enable an abstraction layer.
These tasks can take a lot of time and effort. What you need is a service invocation mechanism that you
can use to update existing bindings, and to add new bindings.

Multiple bindings can be used in flexible ways

To take advantage of web services that offer multiple bindings, you need a service invocation mechanism
that can switch between the available service bindings at run time, without having to generate or recompile
a stub.

Imagine that you have successfully deployed an application that uses a web service that offers multiple
bindings. For example, imagine that you have a SOAP binding for the service and a local Java binding
that lets you treat the local service implementation (a Java class) as a web service.

The local Java binding for the service can only be used if the client is deployed in the same environment
as the service. In this case, it is more efficient to communicate with the service by making direct Java calls
than by using the SOAP binding.

If your clients can switch the binding used based on runtime information, they can choose the most
efficient available binding for each situation.

A freer web services environment enables intermediaries

Web services offer application integrators a loosely-coupled paradigm. In such environments,
intermediaries can be very powerful.

Intermediaries are applications that intercept the messages that flow between a service requester and a
target web service, and undertake some mediating task (for example logging, high-availability or
transformation) before passing on the message. The Web Services Invocation Framework (WSIF) is
designed to make building intermediaries both possible and simple. Using WSIF, intermediaries can add
value to the service invocation without needing transport-specific programming.

WSIF Overview
The Web Services Invocation Framework (WSIF) provides a Java API for invoking web services,
independent of the format of the service, or the transport protocol through which it is invoked.

WSIF provides the following features:
v An API that provides binding-independent access to any web service.
v A close relationship with Web Services Description Language (WSDL), so it can invoke any service that

you can describe in WSDL.

Chapter 27. Web services 979

v A stubless and completely dynamic invocation of a web service.
v The capability to plug a new or updated implementation of a binding into WSIF at run time.
v The option to defer the choice of a binding until run time.

WSIF provides runtime support for web services, and for WSDL extensions and bindings, that were not
known at build time. This capability is known as dynamic invocation. Using WSIF, a client application can
choose dynamically the optimal binding to use for invoking Web service operations. For example, a web
service might offer a SOAP binding, and also a local Java binding so that you can treat the local service
implementation (a Java class) as a web service. If a client application is deployed in the same
environment as the service, this client can use the local Java binding for the service. This provides more
efficient communication between the client and the service by making direct Java calls, rather than indirect
calls that use the SOAP binding.

WSIF provides this runtime support through the use of providers that link the WSIF service to the
underlying implementation of the service. The providers support web services, WSDL extensions, and
bindings that were not known at build time by using the WSDL description to access the target service.

WSIF is designed to work both in an unmanaged environment (running WSIF as a client) and inside a
managed container. You can use the Java Naming and Directory Interface (JNDI) to find the WSIF service,
or you can use the location described in the WSDL.

For more conceptual information about WSIF and WSDL, see the following topics:
v WSIF and WSDL
v WSIF architecture
v WSIF usage scenarios

WSIF supports Internet Protocol Version 6, and Java API for XML-based Remote Procedure Calls
(JAX-RPC) Version 1.1 for SOAP.

WSIF architecture
A diagram depicting the Web Services Invocation Framework (WSIF) architecture, and a description of
each of the major components of the architecture.

The Web Services Invocation Framework (WSIF) architecture is shown in the figure.

WSDL

document

WSIF

operation

WSIF

service

1. Load WSDL
document

2. Create WSIF
service

3. Use WSIF
service to get

operation

4. Create message 5. Invoke service
with operation name

and message

Service

WSIF
provider

WSDL
describes

service
interface

WSIF

service

factory

The components of this architecture include:
WSDL document

The Web Services Description Language (WSDL) document contains the location of the web
service. The binding document defines the protocol and format for operations and messages
defined by a particular portType.

WSIF service
The WSIFService interface is responsible for generating an instance of the WSIFOperation
interface to use for a particular invocation of a service operation.

980 Overview

WSIF operation
The runtime representation of an operation, called WSIFOperation is responsible for invoking a
service based on a particular binding.

WSIF provider
A WSIF provider is an implementation of a WSDL binding that can run a WSDL operation through
a binding-specific protocol. WSIF includes SOAP providers, JMS providers, Java providers and
EJB providers. These providers link the WSIF service to the underlying implementation of the
service.

WSIF and WSDL
There is a close relationship between the metadata-based Web Services Invocation Framework (WSIF)
and the evolving semantics of Web Services Description Language (WSDL).

In WSDL, a service is defined in three distinct sections:
v The portType. This section defines the abstract interface offered by the service. A portType defines a

set of operations. Each operation can be In-Out (request-response), In-Only, Out-Only and Out-In
(Solicit-Response). Each operation defines the input and/or output messages. A message is defined as
a set of parts, and each part has a schema-defined type.

v The binding. This section defines how to map between the abstract portType and a real service format
and protocol. For example the SOAP binding defines the encoding style, the SOAPAction header, the
namespace of the body (the targetURI), and so on.

v The port. This section defines the location (endpoint) of the available service. For example, the HTTP
web address at which a SOAP service is available.

Currently in WSDL, each port has one and only one binding, and each binding has a single portType. But
(more importantly) each service (portType) can have multiple ports, each of which represents an
alternative location and binding for accessing that service.

The Web Services Invocation Framework (WSIF) follows the semantics of WSDL as much as possible:
v The WSIF dynamic invocation API directly exposes runtime equivalents of the model from WSDL. For

example, invocation of an operation involves executing an operation with an input message.
v WSDL has extension points that support the addition of new ports and bindings. This enables WSDL to

describe new systems. The equivalent concept in WSIF is a provider, which links the WSIF service to
the underlying implementation of the service. This enables WSIF to understand a class of extensions
and thereby to support a new service implementation type.

As a metadata-based invocation framework, WSIF follows the design of the metadata. As WSDL is
extended, WSIF is updated to follow.

The primary type system of WSIF is XML schema. WSIF supports invocation using dynamic proxies, which
in turn support Java type systems, but when you use the WSIFMessage interface to invoke a Web service
through the WSIF API you must populate WSIFMessage objects with data based on the XML schema
types as defined in the WSDL document. You should define your object types by a canonical and fixed
mapping from schema types into the runtime environment.

WSIF usage scenarios
There are two main scenarios that illustrate the role WSIF plays in the emerging web services
environment: Redevelopment and redeployment, and service flow composition.

Scenario: Redevelopment and redeployment

When you first implement a web service, you create a simple prototype. When you want to move a
prototype web service into production, you often have to redevelop and redeploy it.

The Web Services Invocation Framework (WSIF) uses the same API calls irrespective of the underlying
technologies, therefore if you use WSIF:

Chapter 27. Web services 981

v You can reimplement and redeploy your services without changing the client code.

v You can use existing reliable and high-performance infrastructures such as Remote Method Invocation
over Internet Inter-ORB Protocol (RMI-IIOP) and Java Message Service (JMS) without sacrificing the
location-independence that the web service model offers.

Scenario: Service flow composition

A service flow typically invokes a web service, then passes the response from one web service to the next
web service, perhaps performing some transformation in the middle.

There are two key aspects to this flow that WSIF provides:
v A representation of the service invocation based on the metadata in Web Services Description

Language (WSDL).
v The ability to build invocations based solely on the portType, which can therefore be used in any

implementation.

For example, imagine that you build a meta-service that uses a number of services to build a process.
Initially, several of those services are simple Java bean prototypes that are written and exposed through
SOAP, but you plan to reimplement some of them as EJB components, and to out-source others.

If you use SOAP, it ties up multiple threads for every onward invocation, because they pass through the
web server and servlet engine and on to the SOAP router. If you use WSIF to call the beans directly, you
get much better performance compared to SOAP and you do not lose access or location transparency.
Using WSIF, you can replace the Java bean implementations with EJB implementations without changing
the client code. To move some of the web services from local implementations to external SOAP services,
you just update the WSDL.

WS-Policy
WS-Policy is an interoperability standard that is used to describe and communicate the policies of a web
service so that service providers can export policy requirements in a standard format. Clients can combine
the service provider requirements with their own capabilities to establish the policies required for a specific
interaction.

WebSphere Application Server conforms to the web services Policy Framework (WS-Policy) specification.
You can use the WS-Policy protocol to exchange policies in standard format. A policy represents the
capabilities and requirements of a web service, for example whether a message is secure and how to
secure it, and whether a message is delivered reliably and how this is achieved. You can communicate the
policy configuration to any other client, service registry, or service that supports the WS-Policy
specification, including non-WebSphere Application Server products in a heterogeneous environment.

For a service provider, the policy configuration can be shared in published Web Services Description
Language (WSDL), in WSDL that is obtained by a client by using an HTTP GET request, or by using the
Web Services Metadata Exchange (WS-MetadataExchange) protocol. The WSDL is in the standard
WS-PolicyAttachments format.

For a client, the client can obtain the policy of the service provider in the standard WS-PolicyAttachments
format and use this information to establish a configuration that is acceptable to both the client and the
service provider. In other words, the client can be configured dynamically, based on the policies supported
by its service provider. The provider policy can be attached at the application or service or service
reference level.

Note: The following features were introduced in the JAX-WS 2.2 specification, which WebSphere
Application Server supports from Version 8:

982 Overview

v You can specify transport level security on client WSDL acquisition. You can attach a system
policy set to either an HTTP GET request or a WS-MetadataExchange request when obtaining
provider policy. See the “Configuring the client policy to use a service provider policy” topic for
further information.

v You can specify a policy set and binding for a service reference that is different from the policy
set attachment for the service. By default, service references inherit their policy set and
WS-Policy configuration from their parent service, however, if desired, the policy set and
WS-Policy configuration can be overwritten. See the “Using WS-Policy to exchange policies in a
standard format” topic and its child topics for further details.

v You can enable and configure WS-Addressing support on a client or service provider by adding
WS-Policy assertions into the WSDL document. WebSphere Application Server will now process
WS-Addressing information held within the WS-Policy aspect of an application's WSDL document
and use it in the configuration of that application. See the “Enabling Web Services Addressing
support for JAX-WS applications using WS-Policy” topic for further information.

v You can publish policy configuration relating to WS-Addressing based on JSR109 deployment
descriptors or JAX-WS 2.2 features or annotations, as well as information based on policy sets.
This ensures that the policy information published matches the run time behavior of the service.
See the “Web service providers and policy configuration sharing” topic for further information.

The WS-Policy assertion specifications that are supported in this version of WebSphere Application Server
are:

v WS-Policy. See Web Services Policy 1.5

v WS-Addressing. See Web Services Addressing 1.0 - Metadata.

v WS-AtomicTransaction. See Web Services Atomic Transaction Version 1.0, Web Services Atomic
Transaction Version 1.1 and Web Services Atomic Transaction Version 1.2.

v WS-ReliableMessaging. See Web Services Reliable Messaging Policy Assertion Version 1.0 and Web
Services Reliable Messaging Policy Assertion Version 1.1.

v WS-SecurityPolicy. See WS-SecurityPolicy 1.2.

For details of the WS-Policy domains that are supported, see the following topics:

v WS-Addressing policy settings

v WS-ReliableMessaging settings

v WS-Security policy settings

v WS-Transaction policy settings

Web service providers and policy configuration sharing
A WebSphere Application Server service provider can share its current policy configuration through its
Web Service Description Language (WSDL). The policy configuration is in standard WSDL
WS-PolicyAttachment format so that it can be shared with other clients, service registries, or services that
support the Web Services Policy (WS-Policy) specification.

You can make the policy configuration of a Java API for XML-Based Web Services (JAX-WS) service
endpoint available to share in the following ways:

v Include the policy configuration of the service provider in the WSDL. The WSDL is then available to
publish, or to obtain by using an HTTP GET request.

v Enable the Web Services Metadata Exchange (WS-MetadataExchange) protocol so that the policy
configuration of the service provider is included in the WSDL and is available to a WS-
MetadataExchange GetMetadata request. An advantage of using the WS-MetadataExchange protocol is
that you can apply message-level security to WS-MetadataExchange GetMetadata requests by using a
suitable system policy set.

Chapter 27. Web services 983

http://www.w3.org/tr/ws-policy/
http://www.w3.org/TR/ws-addr-metadata/
http://schemas.xmlsoap.org/ws/2004/10/wsat/
http://docs.oasis-open.org/ws-tx/wsat/2006/06
http://docs.oasis-open.org/ws-tx/wsat/2006/06
http://docs.oasis-open.org/ws-tx/wstx-wsat-1.2-spec-os/wstx-wsat-1.2-spec-os.html
http://schemas.xmlsoap.org/ws/2005/02/rm/policy/
http://docs.oasis-open.org/ws-rx/wsrmp/200702/wsrmp-1.1-spec-os-01.html
http://docs.oasis-open.org/ws-rx/wsrmp/200702/wsrmp-1.1-spec-os-01.html
http://docs.oasis-open.org/ws-sx/ws-securitypolicy/200512

System administrators can also access a WSDL document through a published compressed file with a
.zip file extension, using the administrative console or administrative commands. However, a WSDL
document acquired in this way might differ from a WSDL document acquired using an HTTP GET request
or through the WS-MetadataExchange protocol, because the static WSDL document published in the
compressed file will not have been able to take into account any web service features, annotations or
deployment descriptor elements which may exist in the application code, such as WS-Addressing
annotations.

By default, policy sharing is off. To include the policy configuration of the service provider in the WSDL,
and specify how it is shared, you can use the administrative console or wsadmin commands.

When policy sharing is on, any WS-Policy attachments that were in the WSDL previously are removed.
Note that policy configuration information becomes available in the WSDL to publish, but it is not available
if you view the WSDL document directly from the administrative console or if you publish the WSDL
remotely by using an administrative agent.

If the service provider application uses multipart WSDL, all the WSDL must be local to the web service
application. For more information about multipart WSDL, see the topic about WSDL.

A service provider that is configured to use Security Assertion Markup Language (SAML) can share policy
for use by a WebSphere Application Server client or a service registry. Note that the SAML tokens are
published in a proprietary format.

Application developers can specify that a service provider shares its policy configuration, and how it is
shared, by using Rational Application Developer tools when a web service is generated. For more
information, see the Rational Application Developer documentation.

Transport policy information is not included in the policy configuration because transport policies such as
HTTP, SSL, and JMS cannot be expressed in WS-PolicyAttachment format.

Bootstrap policy information, for example, the policy to access a WS-Trust service, can be included in the
policy configuration if the bootstrap policy is expressed in standard, publishable WS-PolicyAttachment
format.

You can configure a service provider to share its policy configuration at application or service level. The
policy configuration that is represented by the policy sets attached to any earlier levels will also be shared.
Policy sets that are attached at earlier levels override the policy set configuration attached at a later level.

Policy information can be defined in several ways. The following list is in descending order of precedence.
For example, the deployment descriptor method overrides the use of annotations or features in the
application code, but is itself overridden by the use of policy sets.

v Policy is defined by attaching a policy set to the application.

v Policy is defined by the use of deployment descriptor elements within a port-component-ref element.

v Policy is defined using annotations or features in the application code.

v Policy is defined using WS-Policy attachments in the WSDL document packaged with the application.

When an application is deployed in a cell and you publish WSDL by using the administrative console, the
WSDL contains the policy set configuration of the deployment manager of the cell. If you change any
policy sets, the changes do not affect the configuration of the deployment manager until that configuration
is refreshed, for example when the deployment manager restarts, or when a scripting command refreshes
the policy set configuration of the deployment manager.

The following information lays out the rules governing how policy configuration is published:

v When policy sharing is enabled, the WS-Policy attachments in the WSDL describe the policy
configuration of the service.

984 Overview

v When policy sharing is not enabled:

– The WSDL that is returned by an HTTP GET request is the WSDL packaged with the application.

Note: Such WSDL is returned unaltered and so may contain pre-existing WS-Policy attachments
that do not match the configuration of the service.

– If there is no specific WSDL document associated with the service, then the server runtime
generates a WSDL document automatically and associates it with the service. In this case the WSDL
will contain no WS-Policy attachments unless an @Addressing annotation is present on the service
implementation, in which case the @Addressing annotation configuration is expressed in WS-Policy
attachments in the generated WSDL.

Troubleshooting policy configuration sharing

A service provider might not be able to share its policy configuration because the configuration cannot be
expressed in the standard WS-PolicyAttachments format. One reason might be because multiple
incompatible policies are defined for a particular attach point. Another reason might be because there is
not enough binding information to generate the standard policy. Policy configuration might include
bootstrap policy, for example, the policy to access a WS-Trust service, so the bootstrap policy must also
be expressed in WS-PolicyAttachments format.

If the policy configuration cannot be shared, an error that describes the problem is written to the service
provider error log, and the following policy is attached to the WSDL of the service provider:
<wsp:Policy>
<wsp:ExactlyOne>
</wsp:ExactlyOne>
</wsp:Policy>

This policy notifies the client that there is no acceptable policy configuration for the service. Other aspects
of the WSDL are unaffected.

Web service clients and policy configuration to use the service
provider policy
If a service provider publishes its policy in its Web Services Description Language (WSDL), the policy
configuration of a WebSphere Application Server service client can be configured dynamically, based on
the policies supported by its service provider.

The service provider must publish its policy in WS-PolicyAttachment format in its WSDL and the client
must be able to support those provider policies. The client can base its policy configuration entirely on the
policy of the provider, or partly on the policy of the provider with restrictions that are defined by the policy
set configuration of the client.

A client acquires the provider policy by using either an HTTP GET request or the Web Services Metadata
Exchange (WS-MetadataExchange) protocol to obtain the WSDL of the provider. You can configure how
the client obtains the provider policy, and the endpoint at which the policy is acquired, by using the
administrative console or wsadmin commands. If you use the WS-MetadataExchange protocol to obtain
the policy of the provider, this has the advantage that you can secure WS-MetadataExchange
GetMetadata requests by using a suitable system policy set.

If the provider policy uses multipart WSDL, you can use an HTTP GET request to obtain the policy of the
provider, but you cannot use the WS-MetadataExchange protocol. For more information about multipart
WSDL, see the topic about WSDL.

Chapter 27. Web services 985

The web application client-side policy is calculated and cached as a runtime configuration. This calculated
policy is known as the effective policy and is used for subsequent outbound web service requests to the
endpoint or operation for which the calculation was performed. The original policy set configuration of the
client does not change.

For a specific service, dynamic policy configuration occurs once by default, and it is assumed that this
configuration is the same for all endpoints that implement a service, because they have the same WSDL.
The policy calculations that are based on this WSDL are cached in the client runtime (they are not
persisted) and shared with each target service.

In a cluster environment, this means that the client does not obtain the provider policy again for each
endpoint instance of a web service.

In WebSphere Application Server Version 8.0 and later, a service reference can be configured to use a
different WSDL document to the WSDL configured for the client service. By default, service references
inherit their policy set and WS-Policy configuration from their parent service, however, if desired, the policy
set and WS-Policy configuration can be overwritten. See Using WS-Policy to exchange policies in a
standard format for further details.

If you require a different policy configuration for each endpoint implementation, you must create a new port
for each endpoint. Then you can specify a different policy configuration for each endpoint.

Transport policies such as HTTP, SSL, and JMS, cannot be expressed in WS-PolicyAttachment format, so
the client cannot acquire the transport policies of the service provider. If the client requires transport
policies, you must configure these policies as part of the policy set configuration of the client.

For an HTTP GET request, when the request is targeted at the same location as the endpoint, the request
uses the same HTTP and SSL transport policies as the application. When the HTTP GET request is
targeted at a different endpoint, you can also attach a system policy set to specify different HTTP and SSL
transport policies.

For a WS-MetadataExchange GetMetadata request, the WS-Security configuration in the specified system
policy set is used. The HTTP transport properties are inherited from the application.

A client that is configured to use Security Assertion Markup Language (SAML) can use dynamic policy
configuration. However, the client must be configured to use general bindings.

Policy in a registry

A client can obtain the policy configuration of a web service provider from a registry, such as WebSphere
Service Registry and Repository (WSRR), by using an HTTP GET request.

The WSDL for the policy of the service provider, and its corresponding policies and policy attachments, are
stored in a registry such as WSRR. That policy must contain its policy configuration in
WS-PolicyAttachments format. The client must be able to support those provider policies.

The registry must support the use of HTTP GET requests to publish WSDL that contains WS-Policy
attachments, for example WSRR Version 6.2 or later.

You can apply the provider policy that the client obtains from a registry at the service or service reference
level, but not at the application level.

If there is a secure connection between the client and the registry, you must ensure that trust is
established between the application server and the registry server.

986 Overview

If the registry requires authentication, you also have to configure a policy to authenticate outbound service
requests to the registry. By default, the HTTP and HTTPS credentials are used for both the web service
endpoint and the registry. Therefore, it is advisable to secure any authorization credentials and ensure that
these credentials are not sent to an unauthorized endpoint. You can also attach a system policy set to
specify different HTTP and SSL transport policies.

Policy inheritance

The provider policy can be attached at the application or service level. Endpoints and operations inherit
their policy configuration from the relevant service.

Calculating policy

Policy intersection is the comparison of a client policy and a provider policy to determine whether they are
compatible, and the calculation of a new policy that complies with both their requirements and capabilities.
When you obtain the policy of a service provider, you can choose to use the provider policy only, or to use
the client and the provider policy. The outcome of policy intersection is as follows:

v When you specify provider policy only, the calculated policy is based on all the policies that the
WebSphere Application Server client supports intersected by the provider policy. Effectively, the provider
determines the policy, as long as the client can support that policy. This policy configuration is available
if the scope point (endpoint operation) where the provider policy is attached is not attached to a client
policy set and does not inherit a policy set attachment from parent scope points.

v When you specify client and provider policy, the calculated policy is based on the policy that is
acceptable to the client intersected by the provider policy. Effectively, the policy conforms to the client
policy set, but might be restricted further by the policies dictated by the provider. The policy that is
acceptable to the client is defined by the policy set that is either attached to the client scope point, or
that the client scope point inherits from a parent scope point. This policy configuration is available if the
scope point (endpoint operation) where the provider policy is attached is attached to a client policy set
or inherits a policy set attachment from parent scope points.

The WS-Policy language provides a way to express multiple policy choices, so the policy calculation might
produce more than one result. For example, the service provider might support both WS-
ReliableMessaging 1.0 and WS-ReliableMessaging 1.1. If the client also supports both versions, the client
can use either version in its web service requests to the provider. In this situation, where more than one
specification version is acceptable to both the client and the provider, the effective policy is calculated by
using the most recent version.

Policy intersection in the JAX-WS dispatch client

Invocations that use the JAX-WS dispatch client (javax.xml.ws.Dispatch) use provider policy in their
configuration if this is the administered behavior for the service. If the operation for the invocation is
unknown, the client behaves as follows:

v The client complies with the provider policy scoped to the operation only if the provider policy is
identical for all the operations provided by the service (both semantically and syntactically).

v If the provider policy is not identical for all the operations provided by the service, the client returns a
JAX-WS WebserviceException with the cause WSPolicyException (CWPOL0106E), and an appropriate
error message.

v If there is no policy on any of the operations, the client uses the effective provider policy for the service
endpoint.

Chapter 27. Web services 987

Refreshing the provider policy held by the client

The provider policy that the client holds for a service is refreshed the first time that the web service is
invoked after the application is started. After that, the provider policy is refreshed when the application
restarts, or when you explicitly invoke an update of the provider policy. When the provider policy is
refreshed, the effective policy is recalculated.

You can invoke an update of the provider policy in the application code. This might be useful if a JAX-WS
invocation fails; in the exception handling, you can force a retry with refreshed policy. You can set the
following property (available in the WSPConstants class of the API) on the JAX-WS client proxy, then
reissue the JAX-WS request: com.ibm.websphere.wspolicy.refreshProviderPolicy.

When the com.ibm.websphere.wspolicy.refreshProviderPolicy property is set, the provider policy that the
client holds for a service is refreshed, and the effective policy is recalculated at the next request. After the
refresh and recalculation have occurred, the com.ibm.websphere.wspolicy.refreshProviderPolicy property is
unset.

The following example of code for a dispatch client shows the identification of an exception that might be
resolved by refreshing the provider policy, followed by the invocation of the refresh.
try
{
dispatch.invoke(params);
}
catch (javax.xml.ws.WebServiceException e)
{
Throwable cause = e.getCause();
if ((cause instanceof NullPolicyException) || (cause instanceof PolicyException))
{
// The exception might be because the policy of the provider is not up to date.
//
// There is also a message on the console that starts with the characters CWPOL,
// which helps to decipher and debug the cause of the error.
// This message is also available by using
// String nlsedMessage = cause.getMessage();
Map<String, Object> requestContext = dispatch.getRequestContext();
requestContext.put(WSPConstants.REFRESH_PROVIDER_POLICY, Boolean.TRUE);
// The following method might cause another jax-ws invocation exception.
// The cause might still be policy, in which case, a message is written to the
// console.
dispatch.invoke(params);
}
// For all other exceptions, use the normal exception handling for the
// application. In this case, assume there are no other exceptions and rethrow the
// initial exception. Remember that the WebServiceException might be caused by a
// WSPolicyAdministrationException. In this situation, a message is written to the
// console, but forcing a refresh in the application cannot resolve the problem.
throw e;
}

WS-MetadataExchange requests
You can use the Web Services Metadata Exchange (WS-MetadataExchange) GetMetadata request to
exchange Web Services Description Language (WSDL) that is annotated with WS-Policy information. A
service provider can use a WS-MetadataExchange request to share its policies, and a service client can
use a WS-MetadataExchange request to apply the policies of a provider. You can secure
WS-MetadataExchange requests by using transport-level or message-level security.

The WS-MetadataExchange specification defines a mechanism to retrieve metadata from an endpoint.
WebSphere Application Server supports the use of the WS-MetadataExchange 1.1 GetMetadata request to
return metadata in a response. A service provider can use this mechanism to make WSDL that is
annotated with WS-Policy information available, that is, the service provider can share its policies. A
service client can use this mechanism to obtain WSDL that is annotated with WS-Policy information from a
service provider and then apply those policies. The policy configuration must be in WS-PolicyAttachments
format in the WSDL of the service provider.

988 Overview

You can use a WS-MetadataExchange request as an alternative to using an HTTP GET request.

By default, a service provider or a service client does not use WS-MetadataExchange to share or obtain
WS-Policy information. You must configure the service provider to share its policies, or configure the
service client to apply the policies of a service provider, and specify that a WS-MetadataExchange request
is used to share or obtain the policy configuration. WS-Policy information can be shared or obtained at the
application or service level. You can configure the service provider or service client by using the
administrative console or by using wsadmin commands.

Application developers can configure the service provider or service client using Rational Application
Developer tools when a Web service is generated. For more information, see the Rational Application
Developer documentation.

When a service provider is configured to share its policies through WS-MetadataExchange, the service
supports incoming WS-MetadataExchange GetMetadata requests that are limited to the WSDL dialect.
When the service receives such a request, the WSDL of the service is returned inline through a
conformant WS-MetadataExchange response. The WSDL of the service contains WS-PolicyAttachments
annotations that represent the current policy configuration. The policy configuration is in
WS-PolicyAttachments format in the WSDL so that it is then available to other clients, service registries or
services that support the Web Services Policy (WS-Policy) specification and the WS-MetadataExchange
GetMetadata request.

When a service client is configured to use WS-MetadataExchange to obtain the policy of a service
provider, the service client sends a WS-MetadataExchange GetMetadata request that specifies the WSDL
dialect whenever it needs to obtain or refresh the policy of the provider.

WS-MetadataExchange security

You must ensure that the GetMetadata request is secured so that there is effective authentication,
authorization, integrity, and confidentiality. End-to-end authentication is particularly important for the
exchange of security metadata (SecurityPolicy), because if an unauthorized party could access this
information, security credentials could be sent to non-trusted endpoints.

The GetMetadata request is targeted at the same port as the application endpoint, so if the application
uses transport-level security, the GetMetadata request is also be targeted at the secure port and will, by
default, use the same transport-level security configuration of the application.

Additionally, you can apply message-level security (WS-Security) to the metadata exchange. You might
want to apply message-level security if transport-level security is not available on the application endpoint,
or if transport-level security is not adequate for your requirements. An advantage of message-level security
is that it provides end-to-end security by incorporating security features in the header of the SOAP
message.

To provide message-level security, you attach system policy sets and general (named) bindings to the
endpoint when you configure the service provider or service client to exchange policy configurations.

System policy sets are used for system messages that are not business-related, whereas application
policy sets specify policy assertions for business-related messages. For example, system policy sets are
used for messages that apply qualities of service (QoS), which includes the messages that are defined in
the WS-MetadataExchange protocol. To provide message-level security for a GetMetadata request, you
must attach a system policy set that contains only Web Services Security (WS-Security) or Web Services
Addressing (WS-Addressing) policies. You can specify general bindings that are scoped either to the
global domain or to the security domain of the service.

When you apply message-level security, any transport policy of the application is always used.

Chapter 27. Web services 989

WS-ReliableMessaging
WS-ReliableMessaging is an interoperability standard for the reliable transmission of messages between
two endpoints. Use these topics to learn more about WS-ReliableMessaging.

Without WS-ReliableMessaging, your web services that require assured delivery of SOAP messages can
either use a vendor-specific binding such as SOAP over JMS (which provides limited interoperability) or
they can use SOAP over HTTP and rely upon you to write the associated durable message stores, custom
retry logic at the sender, and duplicate detection at the receiver. With WS-ReliableMessaging, you can
make your SOAP over HTTP-based web services reliable without having to write custom code.

To enable WS-ReliableMessaging for an application, you take the following broad actions:

1. Develop a Java API for XML-Based Web Services (JAX-WS) web service provider or requester
application.

2. Install the application into WebSphere Application Server.

3. Attach a reliable messaging policy set (either a default policy set or one that you have created) to an
aspect of your application (that is, application level or web service level). Policy sets define the
reliability level (quality of service) and other configuration options that you want to apply to your reliable
messaging application.

4. Define the bindings for each attachment to a policy set that specifies a managed quality of service.
That is, choose the service integration bus and messaging engine to use to maintain the state for the
managed persistent and managed non-persistent qualities of service.

At any stage - that is, before or after you have built your reliable web service application, or configured
your policy sets - you can set a property that configures endpoints to only support clients that use reliable
messaging. This setting is reflected by WS-Policy if engaged.

To learn about the WS-ReliableMessaging implementation in WebSphere Application Server, see the
following topics:

v “WS-ReliableMessaging - How it works”

v “Benefits of using WS-ReliableMessaging” on page 991

v “Qualities of service for WS-ReliableMessaging” on page 991

v “Use patterns for WS-ReliableMessaging” on page 993

v “WS-ReliableMessaging sequences” on page 996

v “WS-ReliableMessaging - terminology” on page 997

v “WS-ReliableMessaging: supported specifications and standards” on page 998

WS-ReliableMessaging - How it works
WebSphere Application Server uses WS-ReliableMessaging as part of the transport layer for SOAP over
HTTP messages. The message exchange patterns supported at the API layer are one-way “fire and
forget,” or two-way request and reply.

The reliability is provided by reliable messaging middleware that sits between the web service requester
and the web service provider. This middleware layer is shown beneath the dotted line in the following
diagram, and includes the reliable messaging source and the reliable messaging destination.

Note: When using WS-ReliableMessaging with a two-way programming API, if the requesting application
fails and is restarted it will not receive its reply message. In this model, WS-ReliableMessaging is
being used to protect from network failures only. Moreover:

v Client-side retransmissions only start after the client starts sending new messages to the service
(this is the situation for both one-way and two-way operations).

990 Overview

v Two-way operations that resume cannot drive the response message back to the client
application; the message only gets back as far as the inbound sequence on the client.

In the previous diagram, the application source invokes a web service. The sequence of interactions is as
follows:

v The invocation is passed to the reliable messaging source.

v The reliable messaging source stores the message and then returns control to the application.

v The reliable messaging source sends the message to the reliable messaging destination.

v After the reliable messaging destination receives the message, it stores it locally and sends an
acknowledgement message back to the reliable messaging source.

v The reliable messaging source can now delete its copy of the message.

v The reliable messaging destination can deliver the message to the application destination at any time
after it receives it from the reliable messaging source.

To configure a web service application to use WS-ReliableMessaging, you attach a policy set that contains
a WS-ReliableMessaging policy type. This policy type offers a range of qualities of service: managed
persistent, managed non-persistent, or unmanaged non-persistent.

The managed qualities of service, managed persistent and managed non-persistent, are supported by the
service integration bus. For each attachment between an application and a policy set, you can select the
bus and messaging engine to use for the reliable messaging protocol state.

Benefits of using WS-ReliableMessaging
With WS-ReliableMessaging, along with the other components of the Reliable Secure Profile, you can
support your business-to-business web services scenarios without having to write your own custom retry
logic, duplicate detection code and persistence code.

WS-ReliableMessaging composes with other web services standards as described in “WS-
ReliableMessaging: supported specifications and standards” on page 998.

Qualities of service for WS-ReliableMessaging
You can get different qualities of service with WS-ReliableMessaging, depending on the level of durability
and transaction support provided by the store used to manage the reliable messaging state. These
qualities of service range from protecting against loss of messages across a network, through to protecting
against server failure.

Initial Sender Ultimate Receiver

Acknowledge

Transmit

Application
Source

Application
Destination

RM Source RM Destination

Transmit Receive

Send Deliver

Figure 190. The interactions used to exchange web services messages reliably.

Chapter 27. Web services 991

WebSphere Application Server provides the following three qualities of service for WS-ReliableMessaging
when using a SOAP over HTTP binding. All three qualities of service are supported when applications are
deployed to the application server. Thin client and client container applications use the first option only.

Unmanaged non-persistent
You can configure web service applications to use WS-ReliableMessaging with a default
in-memory store. This quality of service requires minimal configuration. However it is
non-transactional and, although it allows for the resending of messages that are lost in the
network, if a server becomes unavailable you will lose messages. This quality of service is for
single server only and does not work in a cluster.

Managed non-persistent
This in-memory quality of service option uses a messaging engine to manage the sequence state,
and messages are written to disk if memory is low. This quality of service allows for the re-sending
of messages that are lost in the network, and can also recover from server failure. However, state
is discarded after a messaging engine restart so in this case you will lose messages. This option
supports clusters as well as single servers.

Managed persistent
This quality of service for asynchronous web service invocations is recoverable. This option also
uses a messaging engine and message store to manage the sequence state. Messages are
persisted at the web service requester server and at the web service provider server, and are
recoverable if the server becomes unavailable. Messages that have not been successfully
transmitted when a server becomes unavailable can continue to be transmitted after the server
restarts.

Note:

v The quality of service you get when using WS-ReliableMessaging is a direct result of the
durability of the store managing the messages.

v When you use in-order delivery and either of the managed qualities of service, if the service
causes an error then the message is re-dispatched to the service.

v You must ensure that when interacting with other vendors implementations of
WS-ReliableMessaging, the other implementations provide the quality of service you require.

How the different qualities of service are implemented

When the web service application invokes the web service, the SOAP message is added into the
WS-ReliableMessaging store. For the Managed qualities of service, the sending application transaction is
used to put the message into the message store. After the transaction commits, the message is eligible for
delivery. The other quality of service option is not transactional, so it considers the message eligible for
delivery immediately.

The WS-ReliableMessaging protocol is used to reliably deliver the message to the target server where it is
stored and acknowledged.

The message is read from the store and dispatched to the receiving application. For the Managed
Persistent quality of service, a transaction is used to read the message and then dispatch the application.

For more information about using WS-ReliableMessaging transactions, see Providing transactional
recoverable messaging through WS-ReliableMessaging.

992 Overview

The managed qualities of service, managed persistent and managed non-persistent, are supported by the
service integration bus. For each attachment between an application and a policy set, you can select the
bus and messaging engine to use for the reliable messaging protocol state.

Use patterns for WS-ReliableMessaging
Links to descriptions of the use patterns that motivate WS-ReliableMessaging. Each use pattern
description includes an overview of the business problem, of the technical solution without
WS-ReliableMessaging, of the shortcomings of this solution, and of how you can use
WS-ReliableMessaging to overcome these shortcomings.

Historically, most business-to-business integration has been implemented on a point-to-point basis.
However this situation is rapidly changing and hub-and-spoke is becoming more important, particularly for
supply chain use patterns. The point-to-point use pattern is also important because, although your
eventual goal might be to implement a business-to-business hub, you might nonetheless begin with
point-to-point prototypes and proofs of concept.

For a description of each use pattern, see the following topics:

v “Assured delivery for B2B web services: point-to-point use pattern.”

v “Assured delivery for B2B web services: hub-and-spoke use pattern” on page 995.

v “Interoperation with other WS-ReliableMessaging providers: use pattern” on page 996.

Assured delivery for B2B web services: point-to-point use pattern
In this use pattern, a manufacturer sells its products through a network of affiliated dealerships. This
manufacturer has initiated a pilot project to improve the IT integration between its own retail organization
and half a dozen of the largest, most important dealerships.

The existing technical solution

Historically, business-to-business "e-commerce" has been conducted by using Electronic Data Interchange
(EDI). EDI is a set of standards for the content and formatting of business-to-business messages. For
examples of these standards and messages, see the United Nations Directories for Electronic Data
Interchange.

If the identities of communication partners are known and unchanging, the use of industry standard
message definitions is not strictly necessary. Although other XML-based standards are available for
conducting business-to-business e-commerce (such as the OASIS Electronic Business using eXtensible
Markup Language (ebXML) specifications) the manufacturer has decided to investigate the use of web
services technologies, and is using WSDL documents from a variety of sources to define the service
interfaces.

Server1

SOAP+WS-RM/HTTP

Server2

Sender App Receiver App

Figure 191. Using stores to exchange web services messages reliably.

Chapter 27. Web services 993

http://www.unece.org/trade/untdid/welcome.htm
http://www.unece.org/trade/untdid/welcome.htm
http://www.ebxml.org
http://www.ebxml.org

The interactions between the manufacturer and its dealers for the initial pilot project fall into two
categories:

v Requests for information. The interaction is two-way, in that a request message is sent requesting some
information, and a reply message is sent in the reverse direction containing the requested information.
An example of a request for information going from a dealer to the manufacturer might be
"getOrderStatus".

v Requests for update. These interactions are one-way, in that the sender of a request for update is not
dependent on receiving a response in order to proceed with other work. An example of a request for
update going from dealer to manufacturer might be "placeOrder". An example of a request for update
going from manufacturer to dealer might be "deliveryConfirmed".

The manufacturer uses WebSphere Application Server to implement requests for information by using
SOAP over HTTP and SOAP over JMS. Dealers are free to choose their own implementation technology;
they do not have to use WebSphere Application Server.

The manufacturer implements requests for update in two different ways:

v Using SOAP over HTTP. In this case the service is represented as a request and reply interaction that
is considered to have succeeded when the requestor successfully receives a reply. The services must
be implemented to detect and successfully respond to duplicate requests (this is termed an idempotent
operation), and the client has to be implemented to try again if the communication is interrupted after
the request has been sent but before the reply has been received.

v To avoid the previous limitations, the manufacturer also uses SOAP over JMS support from WebSphere
Application Server and WebSphere MQ. In this case the request is represented as a one-way service,
and the messages are delivered reliably. The manufacturer uses WebSphere MQ as the JMS Provider,
and makes this solution available to all dealers that also use WebSphere Application Server and
WebSphere MQ. It is not required that the dealer and manufacturer be connected in order for the
message to be sent.

The messages are transmitted over Virtual Private Networks, to ensure the integrity and confidentiality of
messages transmitted between the two businesses, and as a part of establishing the identity of the sender.

The business problem

Although both the manufacturer and its dealers are happy with the implementation of the request for
information services, there are a number of issues in the request for update case:

v Using SOAP over HTTP:

– For the manufacturer, implementing idempotent services is complicated and therefore more
expensive in developer time. It increases the likelihood of coding errors, reducing the robustness of
the solution and introducing the possibility of expensive dropped or duplicated orders.

– For dealers, implementing the retry logic is similarly complex, expensive, and error-prone.

– For both the manufacturer and the dealers, the requirement for both to be available in order to
invoke the service is an issue. In particular, many dealers do not maintain seven-day availability of
their systems, whereas for the manufacturer weekends are the ideal time to deliver price updates to
the dealers. Similarly, being unable to place orders when connectivity between dealer and
manufacturer is unavailable is a real business issue.

v Using SOAP over JMS:

– Although requiring the use of WebSphere Application Server and WebSphere MQ is acceptable to
the current collection of dealers, as the project expands there might be other partners who are
unwilling or unable to use a common software platform.

994 Overview

The solution when using WS-ReliableMessaging

With WS-ReliableMessaging support in WebSphere Application Server, the manufacturer can replace their
existing custom-retry solutions for reliable one-way messaging with standard SOAP over HTTP one-way
messaging. The removal of the retry logic from the application simplifies the application code, enabling
simpler and quicker application development.

With WS-ReliableMessaging, the dealer and manufacturer do not have to be connected in order for the
message to be sent.

The WS-ReliableMessaging standard adds reliability to SOAP over HTTP messaging, reducing the need to
use SOAP over JMS.

Because WS-ReliableMessaging with SOAP over HTTP is an interoperable standard, the network of
dealers need not use a common software platform.

Assured delivery for B2B web services: hub-and-spoke use pattern
In this use pattern, a manufacturer is looking for more than the ability to conduct transactions electronically
with a fixed set of partners; the manufacturer needs a service that provides visibility to their inventory
levels, so that the suppliers can manage their own product and inventory levels accordingly.

The manufacturer has many suppliers - around 2000 major suppliers and 250,000 other suppliers - and
the set of supplier companies with which they do business is constantly changing.

The existing technical solution

The manufacturer currently has a custom-built supplier purchasing system. The system provides a trading
hub into which suppliers can integrate, and a supplier portal that enables suppliers to continue with their
(largely manual) existing processes. The interactions fall into three tiers:

v Tier one: XML message exchanges.

v Tier two: FTP and similar tools.

v Tier three: Fax.

Tiers one and two are conducted over a combination of leased lines and Virtual Private Networks (VPNs).

The business problem

The custom purchasing system has had disappointing take-up by the suppliers, and as a result the
manufacturer continues to face large costs associated with the manual processes that it still uses with the
vast majority of its suppliers. A major barrier to adoption of the new system by suppliers has been the cost
of integrating supplier systems with the trading hub.

The current solution also has costs for the manufacturers. In particular, the use of leased lines is
expensive, and the use of VPNs is difficult to manage when scaled to a large number of suppliers.

The solution when using WS-ReliableMessaging

By using WSDL to describe the services, and by using web services standards to implement the services,
you reduce the costs incurred by the manufacturer and suppliers:

v The prevalence of support for web services amongst diverse software vendors makes it easier and
cheaper for suppliers to exploit this technology.

v The familiarity of the developer community with web services technologies (and WSDL in particular),
and the rich tool support, means that the use of WSDL-described messages make the message
schemas easier to use in the context of web services.

Chapter 27. Web services 995

v WS-ReliableMessaging is used to ensure that messages are reliably delivered, and duplicate messages
are eliminated.

v Web Services Security technologies enable secure interactions across the Internet, without requiring
leased lines and VPNs.

Interoperation with other WS-ReliableMessaging providers: use pattern
Web services enable interoperability between heterogeneous platforms. This requirement arises whenever
an organization finds itself with applications on one platform (for example WebSphere Application Server)
that must work with applications on another platform, whether as a result of merger and acquisition activity,
of a deliberate multi-vendor strategy, or as a result of independent software purchasing decisions taken in
different parts of the business.

The existing technical solution

A variety of technical solutions exist for application-to-application integration between WebSphere
Application Server and other environments. Most of these involve the use of additional third-party or IBM
software to facilitate the integration.

More recently, the introduction of web services support has made interoperability possible without the use
of additional components.

The business problem

Basic web services support (using SOAP over HTTP) does enable interoperability, but has the following
limitations:

v Reliability: The absence of a WS-ReliableMessaging implementation means that the application logic
needs to be extended to handle lost or duplicated messages.

v Flexibility: The absence of asynchronous support for web services means that support is limited to
synchronous interactions.

Note: Although both request and reply and one-way messaging are supported in earlier version of
WebSphere Application Server, they were implemented in a synchronous fashion. This meant that
when a web services client invoked a service it did not receive control back from the middleware
until after the service application endpoint had been invoked.

The absence of asynchronous, reliable support for web services often leads you to use one of the other
approaches, involving additional components. The additional components often use proprietary
communication channels or APIs.

The solution by using WS-ReliableMessaging

The addition of WS-ReliableMessaging support to WebSphere Application Server and to other
environments enables you to develop reliable asynchronous web services on both platforms. These
services should interoperate without additional IBM or third-party components or proprietary bindings.

WS-ReliableMessaging sequences
The WS-ReliableMessaging protocol relies on a “sequence” to manage the transmission of messages from
reliable messaging source to reliable messaging destination. Each application message is given an
identifier that identifies both the sequence and the message number (the position) within the sequence.
Protocol flows are used to create sequences, to acknowledge messages and to terminate sequences.

You can think of a sequence as being a structured conversation between the reliable source and the
reliable destination, through which each message in the sequence is passed reliably. A sequence also
passes on the set of messages in the sequence in the order in which it receives them, so if it is important

996 Overview

that messages are processed in a particular order - for example, if money must be credited to a bank
account before a debit instruction is received to pay for a purchase - then those messages should be
included in the same sequence.

The developer of a reliable web services application does not have to be aware of sequences, but the
system administrator needs to monitor and manage sequences, as described in Detecting and fixing
problems with WS-ReliableMessaging.

WS-ReliableMessaging - terminology
Foreign destination

A foreign destination is a software agent, outside of the system, that receives messages reliably
through WS-ReliableMessaging.

Foreign source
A Foreign source is a software agent, outside of the system, that sends messages reliably through
WS-ReliableMessaging.

Implementation WSDL
A WSDL document that describes not only the interface to a service (that is the messages, port
types and bindings) but also the service implementation (that is, it has service and port elements).
The service interface should preferably be defined by importing a separate interface WSDL
document.

Interface WSDL
A WSDL document that describes only the interface to a service. That is, it defines messages, port
types and bindings, but not services and ports.

Policy set instance document
A document containing configuration details for a selection of web services standards. For more
information, see Securing web services applications with policy sets by using the administrative
console

Provider application
A provider application is an application that implements a service.

Reliable web service provider
See also the general definition of a provider application. The Reliable web service provider is a
provider application that has been deployed into the system being modeled, and is configured to
use WS-ReliableMessaging. This is the WebSphere Application Server-hosted equivalent of a
foreign destination. It is outside of the boundary of the system and interacts with the system.

Reliable web service requester
See also the general definition of a requester application. The Reliable web service requester is a
requester application that has been deployed into the system being modeled, and is configured to
use WS-ReliableMessaging. This is the WebSphere Application Server-hosted equivalent of a
foreign source. It is outside of the boundary of the system and interacts with the system.

Requester application
A requester application is an application that makes web service requests.

Terminate (a sequence)
When the reliable messaging source has completed its use of a sequence, it sends a
TerminateSequence message to the reliable messaging destination to indicate that the sequence
is complete and that it will not be sending any further messages related to the sequence. The
reliable messaging destination can then safely reclaim any resources associated with the
sequence.

Chapter 27. Web services 997

WS-ReliableMessaging: supported specifications and standards
WebSphere Application Server provides support for two levels of the WS-ReliableMessaging specification.
This gives compatibility with vendors that provide WS-ReliableMessaging support at the February 2005
level, as well as meeting the requirements of the current OASIS specification. This implementation of
WS-ReliableMessaging also composes with many other web services standards.

Details of the supported WS-ReliableMessaging specifications are available at the following web
addresses:

v The WS-ReliableMessaging specification Version 1.0, February 2005.

v The OASIS WS-ReliableMessaging specification Version 1.1, February 2007.

Support for the WS-ReliableMessaging standard was first introduced as part of the IBM WebSphere
Application Server Version 6.1 Feature Pack for Web Services. At that time, the Reliable Asynchronous
Messaging Profile (RAMP) Version 1.0 specification used WS-ReliableMessaging to ensure the reliable
delivery of messages, and the Feature Pack for Web Services in WebSphere Application Server Version
6.1 included default policy sets that support this specification. You can migrate WebSphere Application
Server Version 6.1 WS-ReliableMessaging configurations that use RAMP-based policy sets to the current
version of the product.

Following on from the RAMP Version 1.0 specification, the Web Services Interoperability organization
(WS-I) Reliable Secure Profile working group has developed Version 1.0 of an interoperability profile
dealing with secure, reliable messaging capabilities for web services. This profile is similar to RAMP
Version 1.0, except that it is updated to use WS-ReliableMessaging Version 1.1 with the OASIS
WS-SecureConversation Version 1.3 specification. The WS-I RSP default policy sets provided in this
version of WebSphere Application Server are an implementation of the Reliable Secure Profile Version 1.0
specification.

The extent to which WS-ReliableMessaging composes with other web services standards is described in
the following sections:

v “WS-Addressing”

v “WS-AtomicTransactions”

v “WS-MakeConnection” on page 999

v “WS-Notification” on page 999

v “WS-Policy” on page 999

v “WS-SecureConversation” on page 1000

v “WS-Security” on page 1000

WS-Addressing

The WS-ReliableMessaging specification uses WS-Addressing, and the implementation fully supports the
asynchronous request and reply model given in the WS-Addressing specification.

Note: WS-ReliableMessaging Version 1.1 messaging requires WS-Addressing to be mandatory. If you use
a policy set that includes WS-ReliableMessaging and WS-Addressing policies, and the
WS-Addressing policy is configured as optional, then WebSphere Application Server overrides the
WS-Addressing setting and automatically enables WS-Addressing.

WS-AtomicTransactions

WS-ReliableMessaging transactions do not use the WS-AtomicTransactions protocol. The relationship
between these two protocols is as follows:

998 Overview

http://www.ibm.com/developerworks/library/specification/ws-rm/
http://docs.oasis-open.org/ws-rx/wsrm/200702
http://www-128.ibm.com/developerworks/webservices/library/specification/ws-ramp/
http://www-128.ibm.com/developerworks/webservices/library/specification/ws-ramp/
http://www.ws-i.org/deliverables/workinggroup.aspx?wg=reliablesecure
http://www.oasis-open.org/committees/download.php/19953/ws-secureconversation-1.3-spec-ed-01-r07-diff.pdf
http://www.oasis-open.org/committees/download.php/19953/ws-secureconversation-1.3-spec-ed-01-r07-diff.pdf

v WS-AtomicTransactions and WS-ReliableMessaging are mutually exclusive when WS-
ReliableMessaging is being used, with a managed store, to provide transactional recoverable
messaging.

v If WS-ReliableMessaging is configured to use an in-memory store, then there are cases where a
WS-AtomicTransaction can be flowed between the reliable messaging source and the reliable
messaging destination for two-way invocations. In this situation, WS-ReliableMessaging only protects
against network failures, not against server failure.

For more information about WS-AtomicTransactions, see Transaction support in WebSphere Application
Server. For more information about using WS-ReliableMessaging transactions, see Providing transactional
recoverable messaging through WS-ReliableMessaging.

WS-MakeConnection

WS-ReliableMessaging Version 1.1 uses the WS-MakeConnection protocol to enable synchronous
message exchange. For more information about this protocol, see the WS-MakeConnection specification
Version 1.1, February 28 2008.

WS-MakeConnection uses information contained in WS-Addressing message headers, so for any
application that uses reliable synchronous message exchange you must include both WS-
ReliableMessaging and WS-Addressing policy in the policy set.

WS-Notification

If you create JAX-WS based WS-Notification services, you can apply WS-ReliableMessaging policies to
them to make your WS-Notification services reliable. For more information, see Configuring
WS-Notification for reliable notification.

Note: In this release, there are two types of WS-Notification service:

v Version 7.0: You configure a Version 7.0 WS-Notification service and service points if you want
to compose a JAX-WS WS-Notification service with WS-ReliableMessaging, or if you want to
apply JAX-WS handlers to your WS-Notification service. This is the recommended type of service
for new deployments.

v Version 6.1: You configure a Version 6.1 WS-Notification service and service points if you want
to expose a JAX-RPC WS-Notification service by using the same technology provided in
WebSphere Application Server Version 6.1, including the ability to apply JAX-RPC handlers to
the service.

WS-Policy

The WS-Policy implementation in WebSphere Application Server supports Web Services Reliable
Messaging Policy Assertion Version 1.0 and Web Services Reliable Messaging Policy Assertion Version
1.1.

You can use the WS-Policy protocol to exchange policies in standard format. You can communicate the
policy configuration to any other client, service registry or service that supports the WS-Policy
specification, including non-WebSphere Application Server products in a heterogeneous environment. For
a service provider, the policy configuration can be shared in published WSDL. For a client, the client can
obtain the policy of the service provider in the standard WS-PolicyAttachments format and use this
information to establish a configuration that is acceptable to both the client and the service provider. In
other words, the client can be configured dynamically, based on the policies supported by its service
provider.

At any stage - that is, before or after you have built your reliable web service application, or configured
your policy sets - you can set a property that configures endpoints to only support clients that use reliable

Chapter 27. Web services 999

http://docs.oasis-open.org/ws-rx/wsmc/200702
http://docs.oasis-open.org/ws-rx/wsmc/200702
http://schemas.xmlsoap.org/ws/2005/02/rm/policy/
http://schemas.xmlsoap.org/ws/2005/02/rm/policy/
http://docs.oasis-open.org/ws-rx/wsrmp/200702/wsrmp-1.1-spec-os-01.html
http://docs.oasis-open.org/ws-rx/wsrmp/200702/wsrmp-1.1-spec-os-01.html

messaging. This setting is reflected by WS-Policy if engaged.

WS-SecureConversation

WS-ReliableMessaging is designed to work with WS-SecureConversation. A secure conversation context is
established and this is used to secure the application messages and the WS-ReliableMessaging protocol
messages.

To use WS-SecureConversation, create or apply a policy set that includes both WS-ReliableMessaging
and WS-SecureConversation. For example, either of the WS-I RSP default policy sets.

WS-Security

WS-ReliableMessaging composes with WS-Security. The WS-ReliableMessaging headers appended to
application messages are signed if required. The WS-ReliableMessaging protocol messages are signed
and encrypted if required.

Security processing is done close to the transport: after WS-ReliableMessaging processing at the web
service requester and before WS-ReliableMessaging processing at the web service provider. This means
the messages held in the WS-ReliableMessaging store are not signed and encrypted, so the emphasis is
on the administrator to secure the store, if the store being used is the messaging engine in a service
integration bus.

Note: If possible, use WS-SecureConversation rather than WS-Security because the
WS-SecureConversation protocol is less susceptible to security attacks.

WS-ReliableMessaging roles and goals
Computing roles that members of your organization might perform, and how you can use
WS-ReliableMessaging to help meet the goals of each role.

For a general description of each of the following roles, see Chapter 37, “WebSphere Application Server
roles and goals,” on page 1239.

Application developer

The application developer is responsible for creating the WS-ReliableMessaging requester applications
and provider applications. The application developer is responsible for writing the application code and
packaging the application into a deployable unit.

Developing

v Goal: Develop a JAX-WS Web service application.

System administrator

The system administrator is responsible for providing the infrastructure, such as configured application
servers, through which the applications can be deployed and executed. The system administrator is also
responsible for deploying applications into the configured environment, and for maintaining the
environment and applications in good working order. This maintenance role includes operational
management of state, such as messages and transaction state, and problem diagnosis to determine
message or transaction outcomes.

Deploying

v Goal: Configure a policy set instance to enable WS-ReliableMessaging.

v Goal: Install your reliable JAX-WS web service application.

1000 Overview

v Goal: Attach and bind a WS-ReliableMessaging policy set to your application.

Operating

v Goal: Detect and fix problems with WS-ReliableMessaging.

WS-ReliableMessaging - requirements for interaction with other
implementations
The information and configuration that is needed for another vendor's reliable messaging source to send
messages to a WebSphere Application Server reliable messaging destination, or for a WebSphere
Application Server reliable messaging source to send messages to another vendor's reliable messaging
destination.

Using another vendor's reliable messaging source to send messages to a
WebSphere Application Server reliable messaging destination

For another vendor's WS-ReliableMessaging implementation to interact with a WebSphere Application
Server WS-ReliableMessaging endpoint, the other vendor's reliable messaging source needs to know the
target endpoint address and port for the WebSphere Application Server application that is enabled for
reliable messaging. The WS-ReliableMessaging protocol messages are sent to the same endpoint address
as the application messages. You can get this address from the WSDL published by the WebSphere
Application Server endpoint.

The reliable messaging source controls the endpoint reference used for acknowledgement messages, so
the other vendor's product might have to use the WS-Addressing anonymous URI. For more information,
see WS-ReliableMessaging - How it works. Whether or not the reliable messaging source uses the
WS-Addressing anonymous URI, the WebSphere Application Server reliable messaging destination can
work with the reliable messaging source without further configuration.

A WebSphere Application Server reliable messaging destination cannot tell whether the reliable messaging
source is durable and transactional. If you want durable transactional web services, check that the other
vendor's reliable messaging source supports that mode of operation, as well as configuring the
WebSphere Application Server end of the link.

Using a WebSphere Application Server reliable messaging source to send
messages to another vendor's reliable messaging destination

For an application in WebSphere Application Server to invoke a web service that uses
WS-ReliableMessaging, the information required is the target endpoint address and port for the web
service being invoked. The WS-ReliableMessaging protocol messages are sent to the same endpoint
address as the application messages. You can usually get this address from the WSDL published by the
target Web service.

The WebSphere Application Server Source is provided with additional WS-ReliableMessaging
configuration, modeled as part of the policy set associated with the web service client. The policy set might
configure the reliable messaging source to use the WS-Addressing anonymous URI as the address within
the endpoint reference used for acknowledgement messages. For more information, see
“WS-ReliableMessaging - How it works” on page 990

WebSphere Application Server cannot tell whether the reliable messaging destination is durable and
transactional. If you want durable transactional web services, check that the other vendor's reliable
messaging destination supports that mode of operation, as well as configuring the WebSphere Application
Server end of the link.

Chapter 27. Web services 1001

WS-Transaction
WS-Transaction is an interoperability standard that includes the WS-AtomicTransaction,
WS-BusinessActivity, and WS-Coordination specifications. Use these topics to learn more about
WS-Transaction.

The Web Services Atomic Transaction (WS-AT) support in the application server provides transactional
quality of service to the web services environment. Distributed web services applications, and the
resources they use, can take part in distributed global transactions. With Web Services Business Activity
(WS-BA) support in the application server, web services on different systems can coordinate activities that
are more loosely coupled than atomic transactions. Such activities can be difficult or impossible to roll
back atomically, and therefore require a compensation process if an error occurs. Web Services
Coordination (WS-COOR) specifies a CoordinationContext and a Registration service with which
participant web services can enlist to take part in the protocols that are offered by specific coordination
types.

To learn about WS-Transaction in WebSphere Application Server, see the following topics:

v “Web Services Atomic Transaction support in the application server”

v “Web Services Business Activity support in the application server” on page 1006

v “Web services transactions, high availability, firewalls and intermediary nodes” on page 1008

v “Transaction compensation and business activity support” on page 134

v “WS-Transaction and mixed-version cells” on page 1016

Web Services Atomic Transaction support in the application server
The Web Services Atomic Transaction (WS-AT) support in the application server provides transactional
quality of service to the web services environment. Distributed web services applications, and the
resources they use, can take part in distributed global transactions.

Web services protocols provide standard ways of defining web services applications, allowing the
applications to operate independently of the product, platform, or programming language that is used. The
WS-AT support is an implementation of the following specifications on the application server. These
specifications define a set of web services that enable web services applications to participate in global
transactions that are distributed across the heterogeneous web services environment.

v WS-AT is a specific coordination type that defines protocols for atomic transactions. The specifications
are:

– Web Services Atomic Transaction Version 1.0

– Web Services Atomic Transaction Version 1.1

– Web Services Atomic Transaction Version 1.2

v Web Services Coordination (WS-COOR) specifies a CoordinationContext and a Registration service
with which participant web services can enlist to take part in the protocols that are offered by specific
coordination types. The specifications are:

– Web Services Coordination Version 1.0

– Web Services Coordination Version 1.1

– Web Services Coordination Version 1.2

The WS-AT support is support for an interoperability protocol that introduces no new programming
interfaces for transactional support. Global transaction demarcation is provided by standard enterprise
application use of the Java Transaction API (JTA) UserTransaction interface. If an application component
that is running under a global transaction makes a web services request, a WS-AT CoordinationContext is
implicitly propagated to the target web service, but only if the appropriate application deployment
descriptors have been set, as described in the topic about configuring transactional deployment attributes.

1002 Overview

http://www.ibm.com/developerworks/library/specification/ws-tx/#atom
http://docs.oasis-open.org/ws-tx/wstx-wsat-1.1-spec-os/wstx-wsat-1.1-spec-os.html
http://docs.oasis-open.org/ws-tx/wstx-wsat-1.2-spec-os/wstx-wsat-1.2-spec-os.html
http://www.ibm.com/developerworks/library/specification/ws-tx/#coor
http://docs.oasis-open.org/ws-tx/wstx-wscoor-1.1-spec-os/wstx-wscoor-1.1-spec-os.html
http://docs.oasis-open.org/ws-tx/wstx-wscoor-1.2-spec.html

If the application server is the system hosting the target endpoint for a web services request that contains
a WS-AT CoordinationContext, the application server automatically establishes a subordinate JTA
transaction in the target runtime environment that becomes the transactional context under which the
target web service application runs.

The following figure, shows a transaction context shared between two application servers for a web
services request that contains a WS-AT CoordinationContext.

You can configure the policies for the WS-AtomicTransaction protocol. You can configure whether a client
propagates, and a server receives, a WS-AT context. To ensure that a client always sends
WS-AtomicTransaction context when it makes an outbound service request, you must associate a policy
set with the client, where the policy set must include the WS-Transaction policy type, and this policy type
must have a WS-AtomicTransaction setting of Mandatory. Alternatively, if you know that the client always
invokes remote endpoints that include the WS-AtomicTransaction ATAssertion policy type attribute, you
can configure the client to apply the WS-Policy configuration of the provider so that the client adopts the
mandatory policy of the provider automatically.

To ensure that any requests that a web services provider receives include a WS-AtomicTransaction
context, you must associate a policy set with the provider, where the policy set must include the
WS-Transaction policy type, and this policy type must have a WS-AtomicTransaction setting of Mandatory.

To ensure that a client or provider never use WS-AtomicTransaction context, you must associate a policy
set with the client or provider, where the policy set includes the WS-Transaction policy type, and this policy
type must have a WS-AtomicTransaction setting of Never. You might use this configuration for
environments where you do not want web services requests to create a tight coupling between a client
and a provider, for example when there are requests between enterprises.

If there is no policy set associated with a client or provider, or the WS-Transaction policy type is not
included in the policy set, the default WS-Transaction behavior is used.

Figure 192. Transaction context shared between two application servers

Chapter 27. Web services 1003

WS-AT support restrictions

In this version of the application server, WS-AT contexts cannot be started from a non-recoverable client
process.

Application design

WS-AT is a two-phase commit transaction protocol and is suitable for short duration transactions only.

An atomic transaction coordinates resource managers that isolate transactional updates by holding
transactional locks on resources. Therefore, it is generally not recommended that WS-AT transactions are
distributed across enterprise domains. Inter-enterprise transactions typically require a looser semantic than
two-phase commit, and in such scenarios, it can be more appropriate to use a compensating business
transaction, for example, as part of a Business Process Execution Language (BPEL) process, or by using
Web Services Business Activity (WS-BA).

WS-AT is most appropriate for distributing transaction context across web services that are deployed in a
single enterprise. Only request-response message exchange patterns carry transaction context because
the originator (application or container) of a transaction must be sure that all business tasks that are run
under that transaction have finished before requesting the completion of a transaction. Web services
invoked by a one-way request never run under the transaction of the requesting client.

The effect of service faults on WS-AT transactions is similar to the effect of Enterprise JavaBeans (EJB)
application exceptions on transactions, as described in the EJB specification. If a service that is running
under a requester WS-AT transaction returns a fault, the application server does not automatically mark
the transaction rollback-only. The exception handler of the requester chooses whether the transaction can
progress and chooses whether to mark the transaction rollback-only. If the requester is running in the
application server, the standard JTA or EJB APIs can be used to mark the transaction rollback-only. The
service component that generates the fault might, itself, mark the transaction rollback-only before returning
the fault. If the implementation of the service component encounters a system exception, it typically allows
its container to handle the exception. Application server containers automatically mark any received
transaction context rollback-only when handling a system exception that is generated by a service
implementation.

Application development

There are no specific development tasks required for web services applications to take advantage of
WS-AT.

For JAX-RPC applications, there are some application deployment descriptors that you must set
appropriately, as described in the topic about configuring transactional deployment attributes. The
JAX-RPC run time supports WS-AT 1.0.

For JAX-WS applications, enable WS-AT support by creating a policy set, adding the WS-Transaction
policy type to the policy set, optionally configuring the policy type, and attaching the policy set to the
application or client that will be involved in the WS-AT communication. The JAX-WS run time supports
WS-AT 1.0, WS-AT 1.1, WS-AT 1.2 and the WS-Policy assertion for WS-AT.

When the JAX-WS runtime receives an inbound request, WS-Transaction 1.0, WS-Transaction 1.1 and
WS-Transaction 1.2 specification levels are supported. When an outbound JAX-WS request is sent, only
one specification level can be used. If WS-Transaction WS-Policy assertions are available, either from the
Web Services Description Language (WSDL) of the target web service, or from the WS-Transaction policy
type of the client, the specification level that is applicable to the client and the target web service is used.
For example, if the hosting environment of the target web service supports only WS-Transaction 1.0,

1004 Overview

WS-AT 1.0 is used. If both specification levels are applicable, or if no WS-Transaction WS-Policy
assertions are available, the default WS-Transaction specification level that is set in the Transaction
service settings is used.

The default behavior when there is no effective policy set, or when the WS-Transaction policy type is not
included in the effective policy set, is as follows:

v For a client, if the client does not consider the policy of the provider, the client does not send any
WS-AT or Web Services Business Activity (WS-BA) context. This behavior is equivalent to a
WS-Transaction policy setting of Never.

v For a client, if the client considers the policy of the provider, the client sends WS-AT or WS-BA context
if the policy of the provider includes WS-AT or WS-BA assertions. This behavior is equivalent to a
WS-Transaction policy setting of Supports.

v For a server, the server does not receive any WS-AT or WS-BA context. This behavior is equivalent to a
WS-Transaction policy configuration setting of Never.

Application developers do not have to explicitly register WS-AT participants. The application server run
time takes responsibility for the registration of WS-AT participants, in the same way as the registration of
XAResources in the JTA transaction to which the WS-AT transaction is federated. At transaction
completion time, all XAResources and WS-AT participants are coordinated atomically by the application
server transaction service.

If a JTA transaction is active on the thread when a web services application request is made, the
transaction is propagated across on the web services request and established in the target environment.
This process is similar to the distribution of transaction context over IIOP, as described in the EJB
specification. Any transactional work performed in the target environment becomes part of the same global
transaction.

WS-Transaction policy assertions

If you configure the policies for the WS-Transaction protocol for a provider, this configuration affects the
assertions that are included in any WSDL that is generated for the web service with which the policy type
is associated. The WS-Policy assertion that is used to describe the transactional requirements of a client
or provider that uses WS-AtomicTransaction is ATAssertion. If the WS-Transaction policy type has a
WS-AtomicTransaction setting of Mandatory or Supports, a policy assertion is included in the WSDL.

The application server can also parse, understand, and apply such assertions that are in WSDL that it
parses.

The following example shows WSDL where the WS-AtomicTransaction ATAssertion indicates that an
endpoint must be invoked with WS-AT context included in the request message, and that the context can
be in WS-Transaction 1.0 or 1.1 format. There are two namespaces and there are two assertions; one for
each WS-Transaction specification level, that use the WS-Policy ExactlyOne operator to show that the
client must choose which specification level to use.
<wsdl:definitions targetNamespace="bank.example.com"

xmlns:tns="bank.example.com"
xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"
xmlns:wsp="http://schemas.xmlsoap.org/ws/2004/09/policy"
xmlns:wsat11="http://docs.oasis-open.org/ws-tx/wsat/2006/06"
xmlns:wsat10="http://schemas.xmlsoap.org/ws/2004/10/wsat"
xmlns:wsu="http://docs.oasis-open.org/wss/2004/01/
oasis-200401-wss-wssecurity-utility-1.0.xsd">
<wsp:Policy wsu:Id="ATPolicy">

<wsp:ExactlyOne>
<wsat11:ATAssertion />
<wsat10:ATAssertion />
<!-- omitted assertions -->

</wsp:ExactlyOne />
</wsp:Policy>
<!-- omitted elements -->
<wsdl:binding name="BankBinding" type="tns:BankPortType">

Chapter 27. Web services 1005

<!-- omitted elements -->
<wsdl:operation name="TransferFunds">

<wsp:PolicyReference URI="#ATPolicy" wsdl:required="true"/>
<!-- omitted elements -->

</wsdl:operation>
</wsdl:binding>

</wsdl:definitions>

Web Services Business Activity support in the application server
With Web Services Business Activity (WS-BA) support in the application server, web services on different
systems can coordinate activities that are more loosely coupled than atomic transactions. Such activities
can be difficult or impossible to roll back atomically, and therefore require a compensation process if an
error occurs.

Web services protocols are defined by the Organization for the Advancement of Structured Information
Standards (OASIS) group and provide standard ways of defining web services applications, allowing the
applications to operate independently of the product, platform or programming language that is used. The
Web Services Business Activity (WS-BA) support is an implementation of the following specifications in the
application server. These specifications define a set of protocols that enable web services applications to
participate in loosely coupled business processes that are distributed across the heterogeneous web
services environment, with the ability to compensate actions if an error occurs. For example, an application
that sends an email cannot retrieve that email following a failure in the business task. However, the
application can provide a business-level compensation handler that sends another email advising of the
new circumstances. A business activity is a group of general tasks that you want to link together so that
the tasks have an agreed outcome.

v WS-BA is a specific coordination type that defines protocols for business activities. The specifications
are:

– Web Services Business Activity Version 1.0

– Web Services Business Activity Version 1.1

– Web Services Business Activity Version 1.2

v Web Services Coordination (WS-COOR) specifies a CoordinationContext and a Registration service
with which participant web services can enlist to take part in the protocols that are offered by specific
coordination types. The specifications are:

– Web Services Coordination Version 1.0

– Web Services Coordination Version 1.1

– Web Services Coordination Version 1.2

In addition to supporting the WS-BA interoperability protocol, the application server provides a
programming interface for creating business activities and compensation handlers. With this programming
interface, you can specify compensation data and check or alter the status of a business activity.

You can also use this compensation facility with applications that are not web services, as long as these
applications involve communication between WebSphere Application Servers only. See the related topics
for more information.

You can configure the policies for the WS-BusinessActivity protocol. You can configure whether a client
propagates, and a server receives, a WS-BA context. To ensure that a client always sends
WS-BusinessActivity context when it makes an outbound service request, you must associate a policy set
with the client, where the policy set must include the WS-Transaction policy type, and this policy type must
have a WS-BusinessActivity setting of Mandatory. Alternatively, if you know that the client always invokes
remote endpoints that include the WS-BusinessActivity BAAtomicOutcomeAssertion policy type attribute,
you can configure the client to apply the WS-Policy configuration of the provider so that the client adopts
the mandatory policy of the provider automatically.

1006 Overview

http://www.ibm.com/developerworks/library/specification/ws-tx/#ba
http://docs.oasis-open.org/ws-tx/wstx-wsba-1.1-spec-os/wstx-wsba-1.1-spec-os.html
http://docs.oasis-open.org/ws-tx/wstx-wsba-1.2-spec-os/wstx-wsba-1.2-spec-os.html
http://www.ibm.com/developerworks/library/specification/ws-tx/#coor
http://docs.oasis-open.org/ws-tx/wstx-wscoor-1.1-spec-os/wstx-wscoor-1.1-spec-os.html
http://docs.oasis-open.org/ws-tx/wstx-wscoor-1.2-spec.html

To ensure that any requests that a web services provider receives includes a WS-BusinessActivity context,
you must associate a policy set with the provider, where the policy set must include the WS-Transaction
policy type, and this policy type must have a WS-BusinessActivity setting of Mandatory.

To ensure that a client or provider never use WS-BusinessActivity context, you must associate a policy set
with the client or provider, where the policy set includes the WS-Transaction policy type, and this policy
type must have a WS-BusinessActivity setting of Never. You might use this configuration for environments
where you do not want web services requests to create a tight coupling between a client and a provider,
for example when there are requests between enterprises.

If no policy set is associated with a client or provider, or the WS-Transaction policy type is not included in
the policy set, the default WS-Transaction behavior is used.

Application development

No specific development tasks are required for web services applications to take advantage of WS-BA.

For JAX-RPC applications, any Enterprise JavaBeans (EJB) component that is configured to run under a
BusinessActivity scope automatically propagates that scope when it makes an outbound JAX-RPC web
services request. The JAX-RPC run time supports WS-BA 1.0.

For JAX-WS applications, enable WS-BA support by creating a policy set, adding the WS-Transaction
policy type to the policy set, optionally configuring the policy type, and attaching the policy set to the
application or client that will be involved in the WS-BA communication. The JAX-WS run time supports
WS-BA 1.0, WS-BA 1.1, WS-BA 1.2, and the WS-Policy assertion for WS-BA.

When the JAX-WS run time receives an inbound request, WS-Transaction 1.0, WS-Transaction 1.1 and
WS-Transaction 1.2 specification levels are supported. When an outbound JAX-WS request is sent, only
one specification level can be used. If WS-Transaction WS-Policy assertions are available, either from the
Web Services Description Language (WSDL) of the target web service, or from the WS-Transaction policy
type of the client, the specification level that is applicable to the client and the target web service is used.
For example, if the hosting environment of the target web service supports only WS-Transaction 1.0,
WS-BA 1.0 is used. If both specification levels are applicable, or if no WS-Transaction WS-Policy
assertions are available, the default WS-Transaction specification level that is set in the Transaction
service settings is used.

The default behavior when there is no effective policy set, or when the WS-Transaction policy type is not
included in the effective policy set, is as follows:

v If a client does not consider the policy of the provider, the client does not send any Web Service Atomic
Transaction (WS-AT) or WS-BA context. This behavior is equivalent to a WS-Transaction policy
configuration setting of Never.

v If a client does consider the policy of the provider, the client sends WS-AT or WS-BA context if the
policy of the provider includes WS-AT or WS-BA assertions. This behavior is equivalent to a
WS-Transaction policy configuration setting of Supports.

v A server does not receive any WS-AT or WS-BA context. This behavior is equivalent to a
WS-Transaction policy configuration setting of Never.

WS-Transaction policy assertions

If you configure the policies for the WS-BusinessActivity protocol for a provider, this affects the assertions
that are includes in any WSDL that is generated for the web service with which the policy type is
associated. The WS-Policy assertion that is used to describe the compensation requirements of a client or
provider that uses WS-BusinessActivity is BAAtomicOutcomeAssertion. If the WS-Transaction policy type
has a WS-BusinessActivity setting of Mandatory or Supports, a policy assertion is included in the WSDL.

Chapter 27. Web services 1007

The application server can also parse, understand, and apply such assertions that are in WSDL that it
parses.

The following example shows WSDL where the WS-BusinessActivity BAAtomicOutcomeAssertion indicates
that an endpoint must be invoked with WS-BA context included in the request message, and that the
context can be in WS-Transaction 1.0 or 1.1 format. There are two namespaces and two assertions; one
for each WS-Transaction specification level, that use the WS-Policy ExactlyOne operator to show that the
client must choose which specification level to use.
<wsdl:definitions targetNamespace="bank.example.com"

xmlns:tns="bank.example.com"
xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"
xmlns:wsp="http://schemas.xmlsoap.org/ws/2004/09/policy"
xmlns:wsat11="http://docs.oasis-open.org/ws-tx/wsba/2006/06"
xmlns:wsat10="http://schemas.xmlsoap.org/ws/2004/10/wsba"
xmlns:wsu="http://docs.oasis-open.org/wss/2004/01/
oasis-200401-wss-wssecurity-utility-1.0.xsd">
<wsp:Policy wsu:Id="BAPolicy">

<wsp:ExactlyOne>
<wsat11:BAAtomicOutcomeAssertion />
<wsat10:BAAtomicOutcomeAssertion />
<!-- omitted assertions -->

</wsp:ExactlyOne />
</wsp:Policy>
<!-- omitted elements -->
<wsdl:binding name="BankBinding" type="tns:BankPortType">

<!-- omitted elements -->
<wsdl:operation name="TransferFunds">

<wsp:PolicyReference URI="#BAPolicy" wsdl:required="true"/>
<!-- omitted elements -->

</wsdl:operation>
</wsdl:binding>

</wsdl:definitions>

Web services transactions, high availability, firewalls and intermediary
nodes
You can configure your system to enable propagation of Web Services Atomic Transactions (WS-AT)
message contexts and Web Service Business Activities (WS-BA) message contexts across firewalls or
outside the WebSphere Application Server domain. With these configurations, you can distribute web
service applications that use WS-AT or WS-BA across disparate systems. The topology that you use can
affect the high availability and affinity behavior of the transactions.

Web services transactions (WS-AT or WS-BA) can use all the transactional high availability functions. This
includes peer recovery of a server by another active server in the same cluster, and redirection of protocol
messages to the peer server to complete units of work for the failed server. To enable high availability for
web services transactions, see the topic about configuring transaction properties for peer recovery. For
general information about high availability and peer recovery in WebSphere Application Server, see the
topic about transactional high availability.

When web services transactions are distributed between applications in different servers or clusters or to
systems that are not WebSphere Application Server systems, you must consider the transaction-routing
affinity of web service requests, as well as the impact on high availability of the transaction service on
WebSphere Application Server. If a remote client sends a series of transactional requests to a target
service that is deployed in a cluster, usually you want the first request to establish a transactional affinity
from the client application to the target server, such that subsequent requests in the same transaction are
delivered to the same target server. When the transaction completes, the transaction protocol messages
are also sent to this same target server, unless and until transaction high availability failover occurs.

The topologies that are available to you are as follows:

Direct connection

Use this topology for non-clustered configurations. No intermediary node exists in this topology.
The client communicates directly with the specificWebSphere Application Server on which the

1008 Overview

target service is hosted. This topology supports transaction affinity and high availability, but only
when the client runs on a WebSphere Application Server Version 6.0.2 or later in the same
administrative cell as the target service.

Proxy Server for IBM WebSphere Application Server

Use this topology when the client is not part of the same administrative cell as the target service,
and you require transaction affinity or transaction high availability. In this topology, the client
communicates with a Proxy Server for IBM WebSphere Application Server, which dynamically
routes the client requests and web services transaction protocol messages to the appropriate
server in a WebSphere Application Server cluster. The proxy server is configured in the same
administrative cell as the target service.

The proxy server provides the routing support for transaction high availability and affinity at the
edge of the administrative cell. As for any HTTP proxy configuration, you must provide HTTP
endpoint URL information, that is, configure the HTTP server URL prefix for the target web service
module.

Also, you must configure the proxy server for web services transactions, that is, configure it to
deliver web services transaction protocol messages to the appropriate WebSphere Application
Server. To do this, configure the transaction service HTTP proxy prefix, which is described in the
topic about enabling WebSphere Application Server to use an intermediary node for web services
transactions.

HTTP server, such as IBM HTTP Server

Use this topology when transaction high availability and affinity routing is not required by the client,
for example because the target service is deployed to a non-clustered server.

In this topology, the client communicates with an HTTP server, which always routes the client
requests and web services transaction protocol messages to a specific WebSphere Application
Server. As for any HTTP proxy configuration, you must provide HTTP endpoint URL information,
that is, configure the HTTP server URL prefix for the target web service module. Also, typically you
need to configure the HTTP server for web services transactions, that is, configure it to deliver
web services transaction protocol messages to the appropriate WebSphere Application Server. To
do this, configure the transaction service HTTP proxy prefix, which is described in the topic about
enabling WebSphere Application Server to use an intermediary node for web services
transactions.

The HTTP server cannot provide either affinity or high availability for transactions. However,
transactional integrity is assured, because recovery processing occurs after the failed server
restarts.

Chapter 27. Web services 1009

Note: You can still enable high availability on the WebSphere Application Server. Non-WebSphere
Application Server clients that access this server through an HTTP server cannot benefit
from the high availability of transactions, but other clients that access the same server can.
When the client is on WebSphere Application Server, full high availability capability is still
available if the server that acts as the client can address transaction protocol messages
directly to the application server without the HTTP proxy routing those protocol messages.
In this specific scenario, you must not specify a transaction service HTTP proxy prefix.

You might have an existing HTTP server that is a reverse proxy for all received messages,
including transaction protocol messages. If you want this server to have the high availability and
workload management capabilities of a Proxy Server for IBM WebSphere Application Server,
create a Proxy Server for IBM WebSphere Application Server and configure the HTTP server to
route all requests to the proxy server, as in the following scenario.

HTTP server in conjunction with a Proxy Server for IBM WebSphere Application Serverr

Use this topology when the client is not part of the same administrative cell as the target service
and you require transaction affinity or transaction high availability. The topology is similar to the
Proxy Server for IBM WebSphere Application Server topology, but supports the use of any HTTP
server as the external reverse proxy.

In this topology, the client communicates with an HTTP server, which you configure, by routing
requests from a plug-in to a proxy server, to forward the client requests and web services
transaction protocol messages to a Proxy Server for IBM WebSphere Application Server. The
proxy then dynamically routes the requests to the appropriate server in WebSphere Application
Server. The proxy server is configured in the same administrative cell as the target service.

The proxy server provides the routing support for transaction high availability and affinity at the
edge of the administrative cell. As for any HTTP proxy configuration, you must provide HTTP
endpoint URL information, that is, configure the HTTP server URL prefix for the target web service
module.

Also, you must configure the HTTP server and proxy server for web services transactions, that is,
configure them to deliver web services transaction protocol messages to the appropriate
WebSphere Application Server. To do this, configure the transaction service HTTP proxy prefix,
which is described in the topic about enabling WebSphere Application Server to use an
intermediary node for web services transactions.

1010 Overview

Transaction compensation and business activity support
A business activity is a collection of tasks that are linked together so that they have an agreed outcome.
Unlike atomic transactions, activities such as sending an email can be difficult or impossible to roll back
atomically, and therefore require a compensation process in the event of an error. The WebSphere
Application Server business activity support provides this compensation ability through business activity
scopes.

When to use business activity support

Use the business activity support when you have an application that requires compensation. An application
requires compensation if its operations cannot be atomically rolled back. Typically, this scenario is because
of one of the following reasons:

v The application uses multiple non-extended-architecture (XA) resources.

v The application uses more than one atomic transaction, for example, enterprise beans that have
Requires new as the setting for the Transaction field in the container transaction deployment
descriptor.

v The application does not run under a global transaction.

The following diagram shows a simple web service application that uses the business activity support. The
Retailer, Warehouse and Manufacturing services are running in non-WebSphere Application
Serverenvironments. The Retailer service calls the Supplier service, running on WebSphere Application
Server, which delegates tasks to the Warehouse and Manufacturing services. The implementation of the
Supplier service contains a stateless session bean, which calls other stateless session beans that are
associated with the Warehouse and Manufacturing services, and that undertake work that can be
compensated. These other session beans each have a compensation handler; a piece of logic that is
associated with an application component at run time, and performs compensation activity such as
resending an email.

Chapter 27. Web services 1011

Application design

Business activity contexts are propagated with application messages, and can therefore be distributed
between application components that are not co-located in the same server. Unlike atomic transaction
contexts, business activity contexts are propagated on both synchronous (blocking) call-response
messages and asynchronous one-way messages. An application component that runs under a business
activity scope is responsible for ensuring that any asynchronous work it initiates is complete before the
component's own processing is complete. An application that initiates asynchronous work by using a
fire-and-forget message pattern must not use business activity scopes, because such applications have no
means of detecting whether this asynchronous processing has completed.

Only enterprise beans that have container-managed transactions can use the business activity functions.
Enterprise beans that exploit business activity scopes can offer web service interfaces, but can also offer
standard enterprise bean local or remote Java interfaces. Business activity context is propagated in web
service messages by using a standard, interoperable Web Services Business Activity (WS-BA)
CoordinationContext element. WebSphere Application Server can also propagate business activity context
on RMI calls to enterprise beans when Web services are not being used, but this form of the context is not
interoperable with non-WebSphere Application Server environments. You might want to use this
homogeneous scenario if you require compensation for an application that is internal to your business. If
you want to use business activity compensation in a heterogeneous environment, expose your application
components as web services.

1012 Overview

Business activity contexts can be propagated across firewalls and outside the WebSphere Application
Server domain. The topology that you use to achieve this propagation can affect the high availability and
affinity behavior of the business activity transaction.

Application development and deployment

WebSphere Application Server provides a programming model for creating business activity scopes, and
for associating compensation handlers with those business activity scopes. WebSphere Application Server
also provides an application programming interface to specify compensation data, and check or alter the
status of a business activity. To use the business activity support you must set certain application
deployment descriptors appropriately, provide a compensation handler class if required, and enable
business activity support on any servers that run the application.

Note: Applications can exploit the business activity support only if you deploy them to a WebSphere
Application Server at Version 6.1 or later. Applications cannot use the business activity support if
you deploy them to a cluster that includes WebSphere Application ServerVersion 6.0.x servers.

Business activity scopes

The scope of a business activity is that of a main WebSphere Application Server unit of work: a global
transaction, an activity session, or local transaction containment (LTC). A business activity scope is not a
new unit of work (UOW); it is an attribute of an existing main UOW. Therefore, a one-to-one relationship
exists between a business activity scope and a UOW.

In a WS-BA deployment, the UOW must be container-managed:

v The UOW can be a container-managed transaction (CMT) enterprise bean that creates a global
transaction.

v The UOW can be a local transaction containment (LTC) where the container is responsible for initiating
and ending resource manager local transactions (RMLTs). That is, in the transactional deployment
descriptor attributes, the Local Transaction attribute Resolver must be set to ContainerAtBoundary. To
use WS-BA, you must not set the Resolver attribute to Application.

Any main UOW can have a business activity scope associated with it. If a component running under a
UOW that is associated with a business activity scope calls another component, that request propagates
the business activity scope; any work done by the new component is associated with the same business
activity scope as the calling component. The called component can create a new UOW, for example if an
enterprise bean has a Transaction setting of Requires new, or runs under the same UOW as the calling
component. If a new UOW is started then a new business activity scope is created and associated with
the new UOW. The newly created business activity scope is a child of the business activity scope
associated with the calling UOW. In the following diagram, EJB1a running under UOW1 calls two
components: EJB1b that also runs under UOW1, and EJB2 that creates a new UOW, UOW2. The
enterprise bean EJB1b, calls another enterprise bean, EJB3, which creates another new UOW, UOW3.
Because each new UOW is created by a calling component whose UOW already has an association with
business activity scope BAScope1, the newly created UOWs are associated with new inner business
activity scopes, BAScope2 and BAScope3.

Chapter 27. Web services 1013

Inner business activity scopes must complete before the outer business activity scope completes. Inner
business activity scopes, for example BAScope2, have an association with the outer business activity
scope, in this case BAScope1. Each business activity scope is directed to close if its associated UOW
completes successfully, or to compensate if its associated UOW fails. If BAScope2 completes successfully,
any active compensation handlers that are owned by BAScope2 are moved to BAScope1, and are
directed in the same way as the completion direction of BAScope1: either compensate or close. If
BAScope2 fails, the active compensation handlers are compensated automatically, and nothing is moved
to the outer BAScope1. When an inner business activity scope fails, as a result of its associated UOW
failing, an application server exception is thrown to the to calling application component, running in the
outer UOW.

For example, if the inner UOW fails it might throw a TransactionRolledBackException exception. If the
calling application can handle the exception, for example by trying the called component again or by
calling another component, then the calling UOW, and its associated business activity scope, can complete
successfully even though the inner business activity scope failed. If the application design requires the
calling UOW to fail, and for its associated business activity scope to be compensated, then the calling
application component must cause its UOW to fail, for example by allowing any system exception from the
UOW that failed to be handled by its container.

When the outer business activity scope completes, its success or failure determines the completion
direction (close or compensate) of any active compensation handlers that are owned by the outer business
activity scope, including those promoted by the successful completion of inner business activity scopes. If
the outer business activity scope completes successfully, it drives all active compensation handlers to
close. If the outer business activity scope fails, it drives all active compensation handlers to compensate.

This compensation behavior is summarized in the following table.

1014 Overview

Table 100. Compensation behavior for a single business activity scope. The table lists the possible combinations of
success and failure for the inner and outer business activity scopes, and the compensation behavior associated with
each combination.

Inner
business
activity scope

Outer
business
activity scope Compensation behavior

Succeeds Succeeds Any compensation handlers that are owned by the inner business activity scope wait for the
outer UOW to complete. When the outer UOW succeeds, the outer business activity scope
drives all compensation handlers to close.

Fails Succeeds Any active compensation handlers that are owned by the inner business activity scope are
compensated. An exception is thrown to the outer UOW; if this exception is caught, when the
outer UOW succeeds, the outer business activity scope drives all remaining active compensation
handlers to close.

Fails Fails Any active compensation handlers that are owned by the inner business activity scope are
compensated. An exception is thrown to the outer UOW; if this exception is not caught, the outer
business activity scope fails. When the outer business activity scope fails, either because of the
unhandled exception or for some other reason, all remaining active compensation handlers are
compensated.

Succeeds Fails Any compensation handlers that are owned by the inner business activity scope wait for the
outer UOW to complete. When the outer UOW fails, the outer business activity scope drives all
compensation handlers to compensate.

When a UOW with an associated business activity scope completes, the business activity scope always
completes in the same direction as the UOW that it is associated with. The only way that you can
influence the direction of the business activity scope is to influence the UOW that it is associated with,
which you can do by using the setCompensateOnly method of the business activity API.

A compensation handler that is registered within a transactional UOW might initially be inactive, depending
on the method invoked from the business activity API. Inactive handlers in this situation become active
when the UOW in which that handler is declared completes successfully. A compensation handler that is
registered outside a transactional UOW always becomes active immediately. For more information, see the
topic about the business activity API.

Each business activity scope in the diagram represents a business activity. For example, the outer
business activity running under BAScope1 can be a holiday booking scenario, with BAScope2 being a
flight booking activity and BAScope3 a hotel booking. If either the flight or hotel bookings fail, the overall
holiday booking by default also fails. Alternatively if, for example, the flight booking fails, you might want
your application to try booking a flight by using another component that represents a different airline. If the
overall holiday booking fails, the application can use compensation handlers to cancel any flights or hotels
that are already successfully booked.

Use of business activity scopes by application components

Application components do not use business activity scopes by default. You use the WebSphere
Application Server assembly tools to specify the use of a business activity scope and to identify any
compensation handler class for the component:

Default configuration
If a business activity context is present on a request received by a component with no business
activity scope configuration, the context is stored by the container but never used during the
method scope of the target component. A new business activity scope is not created. If the target
component invokes another component, the stored business activity context is propagated and can
be used by other compensating components.

Run enterprise bean methods under a business activity scope
Any business activity context present on the incoming request is received by the container and
made available to the target component. If a new UOW is created for the target method, for
example because the enterprise bean method has a Transaction setting of Requires new, the

Chapter 27. Web services 1015

received business activity scope becomes an outer business activity scope to a newly created
business activity. If the UOW is propagated from the calling component and used by the method,
then the received business activity scope is used by the method. If a business activity scope does
not exist on the invocation, a new business activity scope is created and used by the method.

To create a business activity scope when an enterprise bean is invoked, you must configure the enterprise
bean to run enterprise bean methods under a business activity scope. You must also configure the
deployment descriptors for the method being invoked, to specify the creation of a new UOW upon
invocation. For details, see the topic about creating an application that uses the WS-BA support.

WS-Transaction and mixed-version cells
You must consider WS-Transaction policy type enablement and behavior, and the WS-Transaction
specification level to use, when a cell contains servers at different versions; for example, WebSphere
Application Server Version 7.0 or later and WebSphere Application Server Version 6.1 Feature Pack for
Web Services.

WS-Transaction policy type enablement

For a Version 6.1 Feature Pack for Web Services server, you can enable the WS-Transaction policy type
by including it in a policy set, but you cannot configure it. For a Version 7.0 or later server, you can both
enable and configure the WS-Transaction policy type. Configuration information is written to the
WS-Transaction policy type file.

In a cell with both Version 6.1 Feature Pack for Web Services and Version 7.0 or later servers, the
following behavior occurs:

v If a Version 6.1 Feature Pack for Web Services server reads a WS-Transaction policy type file that is
generated by a Version 7.0 or later server, the server enables the WS-Transaction policy type, but
ignores any configuration information in the file.

v If a Version 7.0 or later server reads a WS-Transaction policy type that is generated by a Version 6.1
Feature Pack for Web Services server, the server enables the WS-Transaction policy type by using a
value of Supports for the WS-AtomicTransaction and WS-BusinessActivity protocols. This value is
equivalent to the existing behavior of a Version 6.1 Feature Pack for Web Services server.

WS-Transaction specification level

WebSphere Application Server supports the WS-Transaction 1.0, WS-Transaction 1.1 and WS-Transaction
1.2 specifications. In practice, version 1.2 of the WS-Transaction standard is functionally equivalent to
version 1.1, so within WebSphere Application Server, wherever WS-Transaction 1.1 is supported,
WS-Transaction 1.2 is also.

A WebSphere Application Server Version 6.x server supports WS-Transaction 1.0. A Version 7.0 or later
server supports WS-Transaction 1.0, 1.1 and 1.2.

No special restrictions apply to a cell with both Version 6.x and Version 7.0 or later servers, except for a
mixed-version cluster that requires failover for high availability. In a mixed-version cluster, a Version 7.0 or
later server might fail over to an earlier version server that does not support WS-Transaction 1.1, and that
therefore cannot recover WS-Transaction 1.1 protocol messages. In this situation, there are the following
implications:

v For a cluster of Version 7.0 or later servers that are configured to fail over and that are configured to
use WS-Transaction 1.1 or 1.2, you cannot add an earlier version server to the cluster.

v For a mixed-version cluster, where the servers are configured to fail over, any Version 7.0 or later server
configured to use WS-Transaction 1.1 or 1.2 cannot fail over to a server in the cluster configured to use
WS-Transaction 1.0.

1016 Overview

v For a cluster of servers that are configured to fail over, any Version 7.0 or later server in the cluster that
is configured to use WS-Transaction 1.1 or 1.2 cannot start if there are also servers at an earlier
version.

Business activity API
Use the business activity application programming interface (API) to create business activities and
compensation handlers for an application component, and to log data that is required to compensate an
activity if there is a failure in the overall business activity.

Overview

The business activity support provides a UserBusinessActivity API and two interfaces: a
serializable.CompensationHandler interface and a CompensationHandler interface. Each interface has two
exceptions: RetryCompensationHandlerException and CompensationHandlerFailedException. You can look
up the UserBusinessActivity interface from the application server Java Naming and Directory Interface
(JNDI) at java:comp/websphere/UserBusinessActivity. For example:
InitialContext ctx = new InitialContext();
UserBusinessActivity uba = (UserBusinessActivity) ctx.lookup("java:comp/websphere/UserBusinessActivity");

You can use the getId method to access the unique identifier for the business activity that is currently
associated with the calling thread. The identifier is the same as the one that is generated for the business
activity scope at run time and that is used for information, warning, and error messages. For example, the
application can use the identifier in audit or diagnostic messages, and it is possible to correlate between
application-generated and runtime-generated messages.
InitialContext initialContext = new InitialContext();
UserBusinessActivity uba = initialContext.lookup("java:comp/websphere/UserBusinessActivity");
...
String activityId = uba.getId();
if (activityId == null)
// No activity on the thread
else
// Output audit message including activity id

If an application component runs work that might require compensating upon failure in the business
activity, you must provide a compensation handler class that is assembled as part of the deployed
application. This Java class must implement one of the following interfaces:

v com.ibm.websphere.wsba.serializable.CompensationHandler, which takes a takes a parameter of a
serializable object

v com.ibm.websphere.wsba.CompensationHandler, which takes a parameter of a Service Data Object
(SDO)

Typically, applications that already have their data available in DataObject format will use the
CompensationHandler interface, and applications that do not will use the
serializable.CompensationHandler interface. Both interfaces support the close and compensate methods.

An application must register a compensation handler implementation that works with the type of
compensation data (serializable object or SDO) that the application uses. If there is a mismatch between
the type of data that the application component uses and the compensation handler implementation, there
is an error.

During normal application processing, the application can make one or more invocations to the
setCompensationDataImmediate or setCompensationDataAtCommit methods, passing in either a serializable
object or an SDO that represents the current state of the work performed.

When the underlying unit of work (UOW) that the root business activity is associated with completes, all
registered compensators are coordinated to complete. During completion, either the compensate or the
close method is called on the compensation handler, passing in the most recent compensation data logged
by the application component as a parameter. Your compensation handler implementation must be able to

Chapter 27. Web services 1017

understand the data that is stored in either the serializable object or the SDO DataObject; when using this
data, the compensation handler must be able to determine the nature of the work performed by the
enterprise bean and compensate or close in an appropriate way, for example by undoing changes made to
database rows if there is a failure in the business activity. You associate the compensation handler with an
application component by using the assembly tooling, such as Rational Application Developer.

Active and inactive compensation handlers

You implement the serializable.CompensationHandler or CompensationHandler interface for any
application component that executes code that might have to be compensated within a business activity
scope. Compensation handler objects are registered implicitly with the business activity scope under which
the application runs, whenever the application calls the UserBusinessActivity API to specify compensation
data. Compensation handlers can be in one of two states, active or inactive, depending on any
transactional UOW under which they are registered. A compensation handler that is registered within a
transactional UOW might initially be inactive until the transaction commits, at which point the compensation
handler becomes active (see the following section). A compensation handler that is registered outside a
transactional UOW always becomes active immediately.

When a business activity completes, it drives only active compensation handlers. Any inactive
compensation handlers that are associated with the business activity are discarded and never driven.

Logging compensation data

The business activity API specifies two methods that allow the application to log compensation data. This
data is made available to the compensation handlers during their processing when the business activity
completes. The application calls one of these methods, depending on whether it expects transactions to be
part of the business activity.

setCompensationDataAtCommit()

Call the setCompensationDataAtCommit method when the application expects a global transaction
on the thread.

v If a global transaction is present on the thread, the CompensationHandler object is initially
inactive. If the global transaction fails, it rolls back any transactional work done within its
transaction context in an atomic manner, and drives the business activity to compensate other
completed UOWs. The compensation handler does not have to be involved. If the global
transaction commits successfully, the compensation handler becomes active because if the
overall business activity fails, the compensation handler is required to compensate the durable
work that is completed by the global transaction. The setCompensationDataAtCommit method
configures the CompensationHandler instance to undertake this compensation function.

v If a global transaction is not present when the setCompensationDataAtCommit method is called,
the compensation handler becomes active immediately.

For example, for an SDO, and using the same business activity instance as in the previous
example:

DataObject compensationData = doWorkWhichWouldNeedCompensating();
uba.setCompensationDataAtCommit(compensationData);

setCompensationDataImmediate()

Call the setCompensationDataImmediate method when the application does not expect a global
transaction on the thread.

The setCompensationDataImmediate method makes a CompensationHandler instance active
immediately, regardless of the current UOW context at the time that the method is invoked. The
compensation handler is always able to participate during completion of the business activity.

The role of the setCompensationDataImmediate method is to compensate any non-transactional
work, in other words, work that can be performed either inside or outside a global transaction, but

1018 Overview

that is not governed by the transaction. An example of this type of work is sending an email. The
compensation handler must be active immediately so that if a failure occurs in a business activity,
this non-transactional work is always compensated.

For example, for a serializable object, and using the same business activity instance as in the
previous example:

Serializable compensationData = new MyCompensationData();
uba.setCompensationDataImmediate(compensationData);

Although these two compensation data logging methods, if called in the same enterprise bean, use the
same compensation handler class, they create two separate instances of the compensation handler class
at run time. Therefore, the actions of the methods are mutually exclusive; calling one of the methods does
not overwrite any work carried out by the other method.

If a compensation handler instance is already added to the Business Activity by using one of these
methods, and then the same method is called, passing in null as a parameter, that compensation handler
instance is removed from the business activity, and is not driven to close or compensate during completion
of the business activity.

As described previously, the business activity support adds a compensation handler instance to the
business activity when a compensation data logging method is called for the first time by the enterprise
bean that uses that business activity. At the same time, a snapshot of the enterprise application context is
taken and logged with the compensation data. When the business activity competes, all the compensation
handlers that were added to the business activity are driven to compensate or close. The code that you
create in the CompensationHandler or serializable.CompensationHandler class is guaranteed to run in the
same enterprise application context that was captured in the earlier snapshot.

For details about the methods available in the business activity API, see the topic about additional APIs.

Overview of the Version 3 UDDI registry
The Universal Description, Discovery, and Integration (UDDI) specification defines a way to publish and
discover information about web services.

You can find the UDDI specification on the OASIS UDDI web page.

The UDDI specification defines a standard for the visibility, reusability, and manageability that are essential
for a service-oriented architecture (SOA) registry service.

The UDDI registry is a directory for web services that is implemented using the UDDI specification. It is a
component of WebSphere Application Server.

The UDDI registry is a critical component of the IBM on-demand service-oriented architecture. It solves the
problem of discovery of technical components for an enterprise and its partners in the following ways:

v The UDDI registry provides control, flexibility, and confidentiality so that an enterprise can protect its
e-business investments.

v The UDDI registry increases efficiency by making it easier to identify technical assets.

v The UDDI registry leverages existing infrastructures

The following example shows how the UDDI registry can be used in a larger enterprise.

A company has an existing application that provides telephone numbers and human resources (HR)
information about employees. This application is turned into a web service and published to the registry. A
developer in the same company wants to write an application for a procurement function that also needs

Chapter 27. Web services 1019

http://www.uddi.org/specification.html

to provide HR information to the supplier. The application needs to give the supplier access to the
employee account codes after the employee provides a name or serial number. Before web services, the
developer might be in one of the following situations:

v The developer does not know about the similar application.

v The developer knows about the application, but cannot reuse it because of technical barriers.

v The developer knows about the application and reuses it, but only after significant time and negotiation.

With UDDI, the developer can search for the web service and reuse the existing technical component in
their new application for the supplier in minutes. The developer saves time and gets the application
running sooner, thereby increasing efficiency and saving the company time and money. The UDDI registry
was the first version 2 standard-compliant UDDI registry for private enterprise work. The UDDI registry in
this version has the following characteristics:

v It supports the UDDI Version 3.0 specification, in addition to the Version 1.0 and Version 2.0 standard
APIs.

v It leverages the proven, reliable WebSphere Application Server technology.

v It uses a relational database, such as DB2, for its persistent store.

What is new in UDDI Version 3

The main aspects of the UDDI Version 3 specification that are provided with this version of WebSphere
Application Server are as follows:

Improved recognition of the importance of private UDDI registries
Private UDDI registries are registries that are installed, owned, managed, and controlled by a
separate body such as a department within a company, a company, an industry consortium, or an
e-marketplace.

Publisher-assigned keys
The publisher of a UDDI entity can specify its key, rather than the registry automatically assigning
a unique key. This means that URI-based keys can be used, and it makes it easier to manage
multiple registries.

UDDI information model improvements
The UDDI data structures are extended, which improves the ability of UDDI to represent
businesses and services through metadata.

Security enhancements
Digital signatures provide additional security. Each of the main UDDI entities can be digitally
signed, which improves the integrity and trustworthiness of UDDI data.

Ownership transfer APIs
These APIs support the transfer of the ownership of a UDDI entity from one publisher to another.

UDDI policy
You can set policy to define the behavior of a UDDI registry and therefore recognize the different
environments in which a UDDI registry is used.

HTTP GET support for UDDI entities
You can use HTTP GET to access XML representations of each of the UDDI data structures. This
extends the HTTP GET service beyond the scope for discovery URLs in the UDDI Version 2
specification.

Additional UDDI registry capabilities

The Version 3 UDDI registry in this version of WebSphere Application Server provides the following
capabilities that are additional to support for the UDDI Version 3 specification:

1020 Overview

Version 2 UDDI inquiry and publish SOAP API compatibility
There is compatibility with the Version 1 and Version 2 SOAP Inquiry and Publish APIs.

UDDI administrative console extension
The WebSphere Application Server administrative console includes a section that administrators
can use to manage UDDI-specific aspects of their WebSphere environment. This management
includes the ability to set defaults for initialization of the UDDI node, such as its node ID, and to
set the UDDI Version 3 policy values.

UDDI registry administrative interface
The Java Management Extensions (JMX) administrative interface enables administrators to
manage UDDI-specific aspects of the WebSphere environment programmatically.

Multidatabase support
The UDDI data is stored in a registry database. The following database products that are
supported by WebSphere Application Server are also supported for use as the persistence store
for the UDDI registry. For specific details on supported levels, see Detailed system requirements
page.

v Apache Derby

v DB2

v Microsoft SQL Server

v Oracle

User-defined value set support
You can create your own categorization schemes or value sets. These are in addition to the
standard schemes, such as North American Industry Classification System (NAICS), that are
provided with the UDDI registry.

UDDI utility tools
You can use UDDI utility tools to import or export entities that use the UDDI Version 2 API.

UDDI user interface
The UDDI user console supports the UDDI Version 3 inquiry and publish APIs.

UDDI Version 3 client
The Java client for UDDI Version 3 handles the construction of raw SOAP requests for the client
application. It is a JAX-RPC client and uses Version 3 data types, which are generated from the
UDDI Version 3 Web Services Description Language (WSDL) and schema. These data types are
serialized or deserialized to the XML, which constitutes the raw UDDI requests.

UDDI Version 2 clients
The following clients for UDDI Version 2 requests are provided:

v UDDI4J. A Java class library for issuing UDDI requests.

Note: This client is provided in WebSphere Application Server Version 5 for both UDDI Version
1 requests (uddi4j.jar) and Version 2 requests (uddi4jv2.jar). These class libraries are
still supported, as part of the com.ibm.uddi.jar file, but are deprecated in WebSphere
Application Server Version 6.0.

v JAXR. The Java API for XML Registries (JAXR) is a Java client API for accessing UDDI and
ebXML registries. WebSphere Application Server provides a JAXR provider for accessing the
UDDI registry that conforms to the JAXR 1.0 specification.

v EJB. An Enterprise JavaBeans (EJB) interface for issuing UDDI Version 2 requests.

Note: The UDDI EJB interface is still supported, but is deprecated in WebSphere Application
Server Version 6.0.

Chapter 27. Web services 1021

http://www.ibm.com/support/docview.wss?rs=180&uid=swg27006921
http://www.ibm.com/support/docview.wss?rs=180&uid=swg27006921

Databases and production use of the UDDI registry
The UDDI registry fully supports a number of databases and can be used for development and test
purposes. However, there are factors to consider when you decide which database is appropriate for your
anticipated UDDI registry production use.

It is important to consult the information that is supplied by your chosen database vendor, but you must
also consider the likely size and volume of requests, and whether the general performance and scalability
of the UDDI registry is important.

For example, the Apache Derby database supports the full function of the UDDI registry, but it is not an
enterprise level database and it does not have the same characteristics, for example, scaling or
performance, as enterprise databases such as DB2.

Note: WebSphere Application Server supports direct customer use of the Apache Derby database in test
environments only. The product does not support direct customer use of Apache Derby database in
production environments.

If you need multiple connections to the UDDI registry database (for example to use the UDDI registry in a
cluster configuration) and Apache Derby is your preferred database, you must use the network option for
Apache Derby. This is because embedded Apache Derby has a limitation that allows only one Java virtual
machine to access or load a database instance at any one time. That is, two application servers cannot
access the same Apache Derby database instance at the same time.

Note: The UDDI registry can support multiple users, even if a single database connection exists.

UDDI registry terminology
Some terms specific to the UDDI registry are explained. Also, the relationship between the versions of the
UDDI registry, the Organization for the Advancement of Structured Information (OASIS) specification, and
the WebSphere Application Server level are shown.

Throughout the UDDI information in this information center, the directory location of WebSphere
Application Server is referred to as app_server_root.

UDDI Definitions

bindingTemplate
AbindingTemplate is technical information about a service entry point and construction
specifications.

businessEntity
A businessEntity is information about the party who publishes information about a family of
services.

businessService
A businessService is descriptive information about a particular service.

customized UDDI node
A customized UDDI node is a UDDI node that is initialized with customized settings for the UDDI
properties and UDDI policies. In particular, this type kind of node does not have default values for
those properties that are read-only after initialization.

Use a customized UDDI node for anything other than simple testing purposes (for which a default
UDDI node is enough). To set up a customized UDDI node, see the topic about setting up a
customized UDDI node.

When you first start a customized UDDI node, you must set values for certain properties, and then
initialize the node (using the administrative console or UDDI administrative interface), before the

1022 Overview

node is ready to accept UDDI requests. The properties that you must set control characteristics of
the UDDI node that cannot be changed after initialization.

An advantage of using a customized UDDI node is that can set these properties to values that are
suitable for your environment and usage of UDDI.

After a customized UDDI node is initialized, it is the same as a default UDDI node except that it
uses customized UDDI property and policy values.

default UDDI node
A default UDDI node is a UDDI node that is initialized with default settings for the UDDI properties
and UDDI policies, including the properties that are read-only after initialization. A default UDDI
node is intended for use for testing and to provide a simple way to become familiar with the
behavior of the UDDI registry.

You can set up a default UDDI node in two ways. The first is to run the uddiDeploy.jacl script,
specifying the 'default' option, in which case the UDDI database will be an Apache Derby database
that is created for you automatically.

The second is to create the database yourself, specifying the default option, which for Apache
Derby is the DEFAULT parameter when using the UDDIDerbyCreate.jar file, and for DB2 or Oracle
the SQL script insert_default_database_indicator.

After a default UDDI node is initialized, it is the same as a customized UDDI node except that it
uses default UDDI property and policy values.

policy profile
A policy profile is set of UDDI policies. The default policy profile is the profile created when the
default UDDI node is created. In the default policy profile, the nodeID and root key generator are
set to read-only and cannot be changed after installation.

publisherAssertion
A publisherAssertion is information about a relationship between two parties, asserted by one or
both.

tModel
A tModel (short for technical model) is a data structure representing a reusable concept, such as a
web service type, a protocol used by web services, or a category system.

tModel keys in a service description are a technical “fingerprint” that you can use to trace the
compatibility origins of a given service. They provide a common point of reference so that you can
identify compatible services.

tModels are used to establish the existence of a variety of concepts and to point to their technical
definitions. tModels that represent value sets such as category, identifier, and relationship systems
are used to provide additional data to the UDDI core entities to aid discovery along a number of
dimensions. This additional data is captured in keyedReferences that are in categoryBags,
identifierBags, or publisherAssertions. The tModelKey attributes in these keyedReferences refer to
the value set that relates to the concept or namespace being represented. The keyValues contain
the values from that value set. In some cases, keyNames are significant, for example, to describe
relationships and when using the general keywords value set. In all other cases, keyNames
provide a version of the keyValue that people can read.

UDDI application
The UDDI application is the UDDI registry enterprise application.

UDDI entitlement
A UDDI entitlement is an entitlement that a UDDI user or publisher has in a UDDI registry, such as
the capability to publish keyGenerators, or the tier to which the publisher is assigned (in other
words, the number of entities that the publisher is entitled to publish). Each UDDI publisher has a
range of settings for the various UDDI entitlements. A UDDI entitlement is sometimes referred to
as a 'user entitlement', or as the UDDI publisher set of 'user entitlements'.

Chapter 27. Web services 1023

UDDI node
A UDDI node is a set of web services that supports at least one of the UDDI API sets, which
supports interaction with UDDI data through the UDDI APIs. There is no direct mapping between a
UDDI node and a WebSphere Application Server node. A UDDI node consists of an instance of
the UDDI application running in an application server (or a cluster of UDDI application instances
running in a cluster of application servers), together with an instance of the UDDI database
containing UDDI data.

UDDI node initialization
UDDI node initialization is the process that sets up values in the UDDI database, and establishes
the "personality" of the UDDI node. A UDDI node cannot accept UDDI API requests until it is
initialized.

UDDI node state
The UDDI node state describes the current state of the UDDI node, as opposed to the state of the
UDDI application (which is either stopped or started). A UDDI node can be in one of the following
states:

v not initialized

v initialization pending

v initialization in progress

v migration pending

v migration in progress

v value set creation pending

v value set creation in progress

v activated

v deactivated

UDDI NodeId
The UDDI NodeId is a unique identifier of a UDDI node.

UDDI policy
A UDDI policy is a statement of required and expected behavior of a UDDI registry, specified by
using policy values for the various policies that are defined in the UDDI Version specification.

UDDI property
A UDDI property is a value for a property that controls the personality or behavior of a UDDI node.

UDDI publisher
A UDDI publisher is a WebSphere Application Server user who is entitled to publish UDDI entities
to a specified UDDI registry. A UDDI publisher is sometimes referred to as a 'UDDI user', or just as
a 'publisher' when used in a UDDI context.

UDDI registry
A UDDI registry comprises one or more UDDI nodes. The UDDI registry in this version of
WebSphere Application Server supports single-node UDDI registries only.

UDDI tier
A UDDI tier determines the number of UDDI entities of each type (business, services per business,
bindings per service, tModel, publisher assertion) that a UDDI publisher is entitled to publish. Each
UDDI publisher is assigned (either by default or explicitly by a UDDI administrator) to a particular
tier, and cannot publish more entities than are allowed for that tier. There are some predefined
tiers supplied with the UDDI registry, and a UDDI administrator can create additional tiers. A UDDI
tier is often referred to just as a 'tier' when used in a UDDI context.

Version 2 UDDI registry
A Version 2 UDDI registry is a UDDI registry implementation that supports Version 2 of the UDDI
specification and also Version 1. A Version 2 UDDI registry is included in WebSphere Application
Server, Network Deployment Version 6.1.

1024 Overview

Version 3 UDDI registry
A Version 3 UDDI registry is a UDDI registry implementation that supports Version 3 of the UDDI
specification, and also Versions 1 and 2. A Version 3 UDDI registry is included in WebSphere
Application Server. Note that Version 3 UDDI registry does not indicate a UDDI registry
implementation that supports only UDDI Version 3 requests.

The following table shows how the various versions of the UDDI registry relate to the relevant OASIS
specification and versions of WebSphere Application Server:

Table 101. UDDI registry versions and support. The table lists different UDDI registry versions, the associated OASIS
UDDI specification levels supported and which versions of WebSphere Application Server support each UDDI
registry.

UDDI registry
Version

OASIS UDDI specification levels supported Version of WebSphere Application
Server that supports the UDDI registry

3.0.2
v UDDI Version 1

v UDDI Version 2.0.4 (APIs), Version 2.0.3 (data structures)

v UDDI Version 3.0.2

6.1 and later

Web Services Security concepts
The Web Services Security specification defines core facilities for protecting the integrity and confidentiality
of a message, and provides mechanisms for associating security-related claims with a message.

What is new for securing web services
In WebSphere Application Server, there are many security enhancements for web services. The
enhancements include supporting sections of the Web Services Security (WS-Security) specifications and
providing architectural support for plugging in and extending the capabilities of security tokens.

Enhancements from the supported Web Services Security specifications

Since September 2002, the Organization for the Advancement of Structured Information Standards
(OASIS) has been developing the Web Services Security (WS-Security) for SOAP message standard.

In April 2004, OASIS released the Web Services Security Version 1.0 specification, which is a major
milestone for securing web services. In Feburary 2006, the specification was updated to Version 1.1. This
specification is the foundation for other Web Services Security specifications and is also the basis for the
Basic Security Profile (WS-I BSP) Version 1.0 specification, which was approved in March 2007.See the
Basic Security Profile web page for more information.

Web Services Security Version 1.1 is a strategic move towards Web Services Security interoperability, and
an important part of the Web Services Security roadmap. For more information on the Web Services
Security roadmap, see Security in a Web Services World: A Proposed Architecture and Roadmap.

WebSphere Application Server supports the following OASIS specifications and WS-I profiles:

v OASIS: Web Services Security: SOAP Message Security 1.1 (WS-Security 2004)

v OASIS: Web Services Security: UsernameToken Profile 1.1

v OASIS: Web Services Security: Kerberos Token Profile 1.1

v OASIS: WS-SecurityPolicy 1.2

v OASIS: WS-SecureConversation 1.3

v OASIS: WS-Trust 1.3

v Basic Security Profile (WS-I BSP) 1.0

v OASIS: Web Services Security: SAML Token Profile 1.1

Chapter 27. Web services 1025

http://www.uddi.org/specification.html
http://www.uddi.org/specification.html
http://www.ws-i.org/Profiles/BasicSecurityProfile-1.0.html
http://www.ibm.com/developerworks/webservices/library/ws-secmap/
http://www.oasis-open.org/committees/download.php/16790/wss-v1.1-spec-os-SOAPMessageSecurity.pdf
http://www.oasis-open.org/committees/download.php/16782/wss-v1.1-spec-os-UsernameTokenProfile.pdf
http://www.oasis-open.org/committees/download.php/16788/wss-v1.1-spec-os-KerberosTokenProfile.pdf
http://docs.oasis-open.org/ws-sx/ws-securitypolicy/200702/ws-securitypolicy-1.2-spec-os.pdf
http://docs.oasis-open.org/ws-sx/ws-secureconversation/200512/ws-secureconversation-1.3-os.pdf
http://docs.oasis-open.org/ws-sx/ws-trust/200512/ws-trust-1.3-os.pdf
http://www.ws-i.org/Profiles/BasicSecurityProfile-1.0.html
http://www.oasis-open.org/committees/download.php/16768/wss-v1.1-spec-os-SAMLTokenProfile.pdf

The Security Assertion Markup Language (SAML) is an XML-based OASIS standard for exchanging user
identity and security attributes information. Using SAML, a client can communicate assertions regarding
the identity, attributes, and entitlements of a SOAP message. Using the SAML function in WebSphere
Application Server, you can apply policy sets to JAX-WS applications to use SAML assertions in web
services messages and in web services usage scenarios. Use SAML assertions to represent user identity
and user security attributes, and optionally, to sign and to encrypt SOAP message elements.

For details on what parts of the previous specifications are supported in WebSphere Application Server,
see “Supported functionality from OASIS specifications” on page 1032.

High level features overview in WebSphere Application Server

In WebSphere Application Server, the Web Services Security for SOAP Message Version 1.1 specification
is designed to be flexible and accommodate the requirements of Web services. For example, the
specification does not have a mandatory security token definition. Instead, the specification defines a
generic mechanism to associate the security token with a SOAP message. The use of security tokens is
defined in the various Version 1.0 and 1.1 security token profiles, such as:

v The Username Token Profile

v The X.509 Token Profile

v The Kerberos Token Profile

For more information on security token profile development at OASIS, see Organization for the
Advancement of Structured Information Standards.

The Web Services Security for SOAP Message Version 1.1 updates the Web Services Security for SOAP
Message core specification and the various security token profiles. For this release, WebSphere
Application Server implements the Username Token Profile 1.1 and the X.509 Token Profile 1.1, which
includes support for the Thumbprint type of security token reference. In addition, it supports the signature
confirmation and encrypted header portions of the Web Services Security Version 1.1 standard.

Important: The wire format (such as namespaces) in the WS-SecureConversation and WS-Trust 1.3
specification has changed. WebSphere Application Server tolerates requests formatted
according to both the Submission Drafts and version 1.3 specifications, but you must ensure
that the correct version is used when clients are communicating with a Web Services Feature
Pack service provider. You can disable tolerance of the older format for WS-
SecureConversation and WS-Trust 1.3 endpoints. Submission Drafts requests are not
interoperable with version 1.3 standards.

WebSphere Application Server supports pluggable security tokens. The pluggable architecture is enhanced
to support the Web Services Security specifications, other profiles, and other Web Services Security
specifications. You can learn more about the pluggable security token framework for JAX-RPC web
services, and associating custom security tokens with SOAP messages, by reading these articles on the
IBM developerWorks website:

v Security for JAX-RPC Web services, Part 1: Generating custom tokens

v Security for JAX-RPC Web services, Part 2: Consuming custom tokens

WebSphere Application Server includes the following key enhancements:

v Support for the LTPA version 2 token

v Support for configuration of multiple callers, and an order attribute on the caller to determine which
caller is used for the WebSphere credential

v Support for the published WS-SecurityPolicy version 1.2 specification embedded in WSDL

v Support for the WS-SecureConversation version 1.3 specification and the WS-Trust version 1.3
specification (used by WS-SecureConversation)

1026 Overview

http://www.oasis-open.org/committees/download.php/16782/wss-v1.1-spec-os-UsernameTokenProfile.pdf
http://www.oasis-open.org/committees/download.php/16785/wss-v1.1-spec-os-x509TokenProfile.pdf
http://www.oasis-open.org/committees/download.php/16788/wss-v1.1-spec-os-KerberosTokenProfile.pdf
http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=wss
http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=wss
http://www.ibm.com/developerworks/websphere/library/techarticles/0803_chung/0803_chung.html
http://www.ibm.com/developerworks/websphere/library/techarticles/0804_chung/0804_chung.html

v Support for Kerberos token as defined in the WS-Kerberos Token Profile version 1.1 specification

For more information on some of these enhancements, see “Web Services Security enhancements” on
page 1028.

Configuration of Web Services Security

WebSphere Application Server uses the policy set model for implementing the Web Services Security
Version 1.1 specification, including the Username token Version 1.1 profile, support for the Kerberos and
LTPA v2 tokens, and the X.509 token version 1.1 profile. Policy sets combine configuration settings,
including those for transport and message level configuration, such as WS-Addressing,
WS-ReliableMessaging, WS-SecureConversation, and WS-Security. For more information on policy sets,
refer to the topic Managing policy sets using the administrative console.

You can use the administrative console to configure the Web Services Security binding of a deployed
application with Web Services Security constraints that are defined in the policy set.

For the X.509 Certificate Token Profile, one new type of security token reference is the Thumbprint
reference, which is specified in the binding. WebSphere Application Server now supports creating and
authenticating a security token by using a security token reference (STR) with a key identifier and a
Thumbprint in the <KeyInfo> element. The Thumbprint key information type requires that there be a
keystore with the public and private key pair instead of a shared key. To use the Thumbprint of the
specified certificate, specify the keyInfo type THUMBPRINT in the bindings.

For example, a decryption key is referenced by means of the thumbprint of an associated certificate. The
certificate is not included in the message. Instead, the <ds:KeyInfo> element contains a
<wsse:SecurityTokenReference> element that specified the thumbprint of the specified certificate by
means of the http://docs.oasis-open.org/wss/oasis-wss-soap-message-security-1.1#ThumbprintSHA1
attribute of the <wsse:KeyIdentifier> element.

To take advantage of implementations associated with the Web Services Security Version 1.1 specification,
you must:

v Ensure that your applications use the Java API for XML Web Services (JAX-WS) programming model.

v Re-configure the Web Services Security constraints in the new policy set and binding format.

WebSphere Application Server provides the following tools that you can use to edit the policy set file and
the binding file:

IBM assembly tools
You can use IBM assembly tools to develop web services and configure the policy set and the
binding file for Web Services Security. The tools enable you to assemble both web and Enterprise
JavaBeans (EJB) modules. The assembly tools do not support direct editing of policy sets, but can
import policy sets from the application server, and then attach the modified policy sets to the
service. For more information, read about assembly tools.

Note: You can use policy sets only with Java API for XML-Based Web Services (JAX-WS)
applications. You cannot use policy sets with Java API for XML-based RPC (JAX-RPC)
applications.

WebSphere Application Server administrative console
You can use the administrative console to configure the Web Services Security binding of a
deployed application with Web Services Security constraints that are defined in the policy set.

Chapter 27. Web services 1027

What is not supported

Web service security is still fairly new and some of the standards are still being defined or standardized.
The following functionality is not supported in WebSphere Application Server:

v JSR-183 (Java API for Web Services Security: SOAP Message Security 1.0 specification). See the
standard documentation for more information: JSR-183 (Java API for Web Services Security: SOAP
Message Security 1.0 specification).

v Application programming interfaces (API) do not exist for Web Services Security in WebSphere
Application Server Versions 6.0.x and later.

v SAML token profile is not supported out of the box.

v REL token profile is not supported.

v SwA profile is not supported

What is supported by the IBM Software Development Kit (SDK)

The following standards exist for the Java application programming interface for XML security and Web
Services Security:

v JSR-105 (Java API for XML-Signature XPath Filter Version 2.0

W3C Recommendation, November 2002

v JSR-106 (Java API for XML Encryption Syntax and Processing)

W3C Recommendation, December 2002

For more information on the IBM SDK for Java Version 6, see the security information documentation.

For information on what is supported for Web Services Security in WebSphere Application Server, see
“Supported functionality from OASIS specifications” on page 1032.

Web Services Security enhancements
WebSphere Application Server includes a number of enhancements for securing web services. For
example, policy sets are supported in WebSphere Application Server Version 6.1 Feature Pack for Web
Services, and later, to simplify security configuration for web services.

Building your applications

The Web Services Security runtime implementation used by WebSphere Application Server Version 8 is
based on the Java API for XML Web Services (JAX-WS) programming model. The JAX-WS runtime
environment is based on Apache Open Source Axis2, and the data model is AXIOM. Instead of
deployment descriptor and bindings, a policy set is used for configuration. You can use the WebSphere
Application Server administrative console to edit the application binding files associated with the policy
sets. The JAX-WS runtime environment is supported for the WebSphere Application Server V6.1 Feature
Pack for Web Services, and later.

The JAX-RPC programming model, which uses deployment descriptors and bindings, is still supported.
Read the topic Securing JAX-RPC Web services using message level security for more information.

Using policy sets

Use policy sets to simplify your web service Quality of Service configuration.

Note: Policy sets can only be used with JAX-WS applications, in WebSphere Application Server V6.1
Feature Pack for Web Services, and later. Policy sets cannot be used for JAX-RPC applications.

Policy sets combine configuration settings, including those for transport and message level configuration,
such as Web Services Addressing (WS-Addressing), Web Services Reliable Messaging

1028 Overview

http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-soap-message-security-1.0.pdf
http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-soap-message-security-1.0.pdf
http://www.w3.org/TR/xmldsig-filter2
http://www.w3.org/TR/xmlenc-core

(WS-ReliableMessaging), and Web Services Security (WS-Security), which includes Secure Conversation
(WS-SecureConversation).

Managing trust policies

Web Services Security Trust (WS-Trust) provides the ability for an endpoint to issue a security context
token for Web Services Secure Conversation (WS-SecureConversation). The token issuing support is
limited to the security context token. Trust policy management defines a policy for each of the trust service
operations, such as issuing, cancelling, validating, and renewing a token. A client's bootstrap policies must
correspond to the WebSphere Application Server trust service policies.

Securing session-based messages

Web Services Secure Conversation provides a secured session for long running message exchanges and
leveraging symmetric cryptographic algorithm. WS-SecureConversation provides the basic security for
securing session-based messages exchange patterns, such as Web Services Security Reliable Messaging
(WS-ReliableMessaging).

Updating message-level security

Web Services Security (WS-Security) Version 1.1 supports the following functions that update the
message-level security.

v Signature confirmation

v Encrypted headers

Signature confirmation enhances the protection of XML digital signature security. The
<SignatureConfirmation> element indicates that the responder has processed the signature in the request,
and the signature confirmation ensures that the signature is indeed processed by the intended recipient.
To process signature confirmation correctly, the initiator must preserve the signatures during the request
generation processing and later must retrieve the signatures for confirmation checks even with the
stateless nature of web services and the different message exchange patterns. You enable signature
confirmation by configuring the policy.

The encrypted header element provides a standard way of encrypting SOAP headers, which helps
inter-operability. As defined in the SOAP message security specification, the <EncryptedHeader> element
indicates that a specific SOAP header (or set of headers) must be protected. Encrypting SOAP headers
and parts helps to provide more secure message-level security. The EncryptedHeader element ensures
compliance with the SOAP mustUnderstand processing guidelines and prevents disclosure of information
contained in attributes on a SOAP header block.

Using identity assertion

In a secured environment such as an intranet, a secure sockets layer (SSL) connection or through a
Virtual Private Network (VPN), it is useful to send the requester identity only without credentials, such as
password, with other trusted credentials, such as the server identity. WebSphere Application Server
supports the following types of identity assertions:

v A username token without a password

v An X.509 Token for a X.509 certificate

For more information about identity assertion, read the topic Trusted ID evaluator.

Signing or encrypting data with a custom token

For the JAX-RPC programming model, the key locator, or the
com.ibm.wsspi.wssecurity.keyinfo.KeyLocator Java interface, is enhanced to support the flexibility of the

Chapter 27. Web services 1029

specification. The key locator is responsible for locating the key. The local JAAS Subject is passed into the
KeyLocator.getKey() method in the context. The key locator implementation can derive the key from the
token, which is created by the token generator or the token consumer, to sign a message, to verify the
signature within a message, to encrypt a message, or to decrypt a message. The
com.ibm.wsspi.wssecurity.keyinfo.KeyLocator Java interface is different from the version in WebSphere
Application Server Version 5.x. The com.ibm.wsspi.wssecurity.config.KeyLocator interface from Version 5.x
is deprecated. There is no automatic migration for the key locator from Version 5.x to Versions 6 and later.
You must migrate the source code for the Version 5.x key locator implementation to the key locator
programming model for Version 6 and later.

For the JAX-WS programming model, the pluggable token framework reuses the same framework from the
WSS API. The same implementation for creating and validating a security token can be used in both the
Web Services Security run time and the WSS API application. This simplifies the SPI programming model
and makes it easier to add new or custom security token types. The redesigned SPI consists of the
following interfaces:

v The JAAS CallbackHandler and JAAS Login Module create security tokens on the generator side and
validate, or authenticate, security tokens on the consumer side.

v The Security Token interface, com.ibm.websphere.wssecurity.wssapi.token.SecurityToken, represents
the security token that has methods to get the identity, XML format and cryptographic keys.

When using JAX-WS, the following interfaces are no longer required:

v Token Generator (com.ibm.wsspi.wssecurity.token.TokenGeneratorComponent)

v Token Consumer (com.ibm.wsspi.wssecurity.token.TokenConsumerComponent)

v Key Locator (com.ibm.wsspi.wssecurity.keyinfo.KeyLocator)

You can learn more about custom security tokens by reading these articles on the IBM developerWorks
website:

v Security for JAX-RPC Web services, Part 1: Generating custom tokens

v Security for JAX-RPC Web services, Part 2: Consuming custom tokens

Signing or encrypting any XML element

An XPath expression is used for selecting which XML element to sign or encrypt. However, an envelope
signature is used when you sign the SOAP envelope, SOAP header, or Web Services Security header. In
JAX-RPC web services, the XPath expression is specified in the application deployment descriptor. In
JAX-WS web services, the XPath expression is specified in the WS-Security policy of the policy set.

The JAX-WS programming model uses policy sets to indicate the message parts where security should be
applied. For example, the <Body> assertion is used to indicate that the body of the SOAP message is
signed or encrypted. Another example is the <Header> assertion, where the QName of the SOAP header
to be signed or encrypted is specified.

Signing or encrypting SOAP headers

The OASIS Web Services Security (WS-Security) Version 1.1 support provides for a standard way of
encrypting and signing SOAP headers. To sign or encrypt SOAP messages, specify the QName to select
header elements in the SOAP header of the SOAP message.

You can configure policy sets for signing or encrypting either by using the administrative console or by
using Web Services Security APIs (WSS APIs). For more details, see the topic Securing message parts
using the administrative console.

For signing, specify the following:

1030 Overview

http://www.ibm.com/developerworks/websphere/library/techarticles/0803_chung/0803_chung.html
http://www.ibm.com/developerworks/websphere/library/techarticles/0804_chung/0804_chung.html

Name This optional attribute indicates the local name of the SOAP header to be integrity protected. If this
attribute is not specified, all SOAP headers whose namespace matches the Namespace attribute
are to be protected.

Namespace
This required attribute indicates the namespace of the SOAP headers to be integrity protected.

For encrypting, specify the following:

Name This optional attribute indicates the local name of the SOAP header to be confidentiality protected.
If this attribute is not specified, all SOAP headers whose namespace matches the Namespace
attribute are to be protected.

Namespace
This required attribute indicates the namespace of the SOAP header(s) to be confidentiality
protected.

This results in an <EncryptedHeader> element that contains the <EncryptedData> element.

For Web Services Security Version 1.0 behavior, specify the
com.ibm.wsspi.wssecurity.encryptedHeader.generate.WSS1.0 property with a value of true in
EncryptionInfo in the bindings. Specifying this property results in an <EncryptedData> element.

For Web Services Security Version 1.1 behavior that is equivalent to WebSphere Application Server
versions prior to version 7.0, specify the
com.ibm.wsspi.wssecurity.encryptedHeader.generate.WSS1.1.pre.V7 property with a value of true on the
<encryptionInfo> element in the binding. When this property is specified, the <EncryptedHeader> element
includes a wsu:Id parameter and the <EncryptedData> element omits the Id parameter. This property
should only be used if compliance with Basic Security Profile 1.1 is not required and it is necessary to
send <EncryptedHeader> elements to a client or server that uses the WebSphere Application Server
Version 5.1 Feature Pack for Web Services.

Supporting LTPA

Lightweight Third Party Authentication (LTPA) is supported as a binary security token in Web Services
Security. Web Services Security supports both LTPA (version 1) and LTPA version 2 tokens. The LTPA
version 2 token, which is more secure than version 1, is supported in WebSphere Application Server
version 7.0 and later.

Extending the support for timestamps

You can insert a timestamp in other elements during the signing process besides the Web Services
Security header. This timestamp provides a mechanism for adding a time limit to an element. This support
is an extension for WebSphere Application Server. Other vendor implementations might not have the ability
to consume a message that is generated with an additional timestamp that is inserted in the message.

Extending the support for nonce

You can insert a nonce, which is a randomly generated value, in other elements beside the Username
token. The nonce is used to reduce the chance of a replay attack. This support is an extension for
WebSphere Application Server. Other vendor implementations might not have the ability to consume
messages with a nonce that is inserted into elements other than a Username token.

Supporting distributed nonce caching

Distributed nonce caching is a new feature for web services in WebSphere Application Server Versions 6
and later that enables you to replicate nonce data between servers in a cluster. For example, you might

Chapter 27. Web services 1031

have application server A and application server B in cluster C. If application server A accepts a nonce
with a value of X, then application server B creates a SoapSecurityException if it receives the nonce with
the same value within a specified period of time.

Important: The distributed nonce caching feature uses the WebSphere Application Server data replication
service (DRS). The data in the local cache is pushed to the cache in other servers in the
same replication domain. The replication is an out-of-process call and, in some cases, is a
remote call. Therefore, there is a possible delay in replication while the content of the cache in
each application server within the cluster is updated. The delay might be due to network
traffic, network workload, machine workload, and so on. For adequate security protection, you
must enable appropriate security for the DRS cache. See the topic Multi-broker replication
domains for more information.

Caching the X.509 certificate

WebSphere Application Server caches the X.509 certificates it receives, by default, to avoid certificate path
validation and improve its performance. However, this change might lead to security exposure. You can
disable X.509 certificate caching by using the following steps:

On the cell level:

v Click Security > Web services.

v Under Additional properties, click Properties > New.

v In the Property name field, type com.ibm.ws.wssecurity.config.token.certificate.useCache.

v In the Property value field, type false.

On the server level:

v Click Servers > Application servers > server_name .

v Under Security, click Web services: Default bindings for Web Services Security.

v Under Additional properties, click Properties > New.

v In the Property name field, type com.ibm.ws.wssecurity.config.token.certificate.useCache.

v In the Property value field, type false.

Providing support for a certificate revocation list

The certificate revocation list (CRL) in WebSphere Application Server is used to enhance certificate path
validation. You can specify a CRL in the collection certificate store for validation. You can also encode a
CRL in an X.509 token using PKCS#7 encoding. However, WebSphere Application Server Version 6 and
later do not support X509PKIPathv1 CRL encoding in a X.509 token.

Important: The PKCS#7 encoding was tested with the IBM certificate path (IBM CertPath) provider only.
The encoding is not supported for other certificate path providers.

Supported functionality from OASIS specifications
The application server supports the Organization for the Advancement of Structured Information (OASIS)
Web Services Security (WS-Security) specifications.

WebSphere Application Server supports these OASIS Web Services Security Version 1.0 specifications.

v OASIS: Web Services Security: SOAP Message Security 1.0 (WS-Security 2004)

v OASIS: Web Services Security: UsernameToken Profile 1.0

v OASIS: Web Services Security X.509 Certificate Token Profile 1.0

In WebSphere Application Server Version 6.1 Feature Pack for Web Services, and later, support for the
OASIS standards has been updated to the latest versions of Web Services Security (WS-Security)

1032 Overview

http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-soap-message-security-1.0.pdf
http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-username-token-profile-1.0.pdf
http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-x509-token-profile-1.0.pdf

specifications and tokens. Web Services Security Version 1.1 provides better security verification for
signature, a standard way of encrypting SOAP headers, and meets the requirement from some of the
inter-operability scenarios that use features from Web Services Security Version 1.1.

v OASIS: Web Services Security: SOAP Message Security 1.1 (WS-Security 2004) OASIS Standard
Specification, 1 February 2006

v OASIS: Web Services Security UsernameToken Profile 1.1 (Standard Specification, 1 February 2006)

v OASIS: Web Services Security X.509 Certificate Token Profile 1.1 (Standard Specification, 1 February
2006)

The following standards are supported only in WebSphere Application Server Version 7.0 and later.

v WS-Security Kerberos Token Profile 1.1

v WS-SecureConversation Version 1.3

v WS-Trust Version 1.3

v WS-SecurityPolicy Version 1.2

WS-SecurityPolicy support is only available for Web Services Metadata Exchange (WS-
MetadataExchange) scenarios where the assertions are embedded in the WSDL file. For more information,
read the WS-MetadataExchange requests topic.

In 2007, the OASIS Web Services Secure Exchange Technical Committee (WS-SX) produced and
approved the following specifications. Portions of these specifications are supported by WebSphere
Application Server Version 7 and later.

v WS-SecureConversation

v WS-Trust

v WS-SecurityPolicy

OASIS: Web Services Security SOAP Message Security 1.0 and 1.1

The following table shows the aspects of the OASIS: Web Services Security: SOAP Message Security 1.0
and 1.1 specifications that are supported in WebSphere Application Server Versions 6 and later.

Table 102. Aspects of OASIS SOAP Message Security standard supported in WebSphere Application Server. Use
the table to determine which aspects of the OASIS standard are supported.
Supported topic Specific aspect that is supported

Security header
v @S11:actor (for an intermediary)

v @S11:mustUnderstand

v @S12:mustUnderstand

v @S12:role (S12 is the namespace prefix for http://www.w3.org/2003/05/soap-envelope when using SOAP Version 1.2)

Security tokens
v Username token (user name and password)

v Binary security token (X.509 and Lightweight Third Party Authentication (LTPA)

v Custom token

– Other binary security token

– XML token
Note: WebSphere Application Server does not provide an implementation, but you can use an XML token with
plug-in point.

Token references
v Direct reference

v Key identifier

v Key name

v Embedded reference

Signature Signature confirmation

Chapter 27. Web services 1033

http://www.oasis-open.org/committees/download.php/16790/wss-v1.1-spec-os-SOAPMessageSecurity.pdf
http://www.oasis-open.org/committees/download.php/16790/wss-v1.1-spec-os-SOAPMessageSecurity.pdf
http://www.oasis-open.org/committees/download.php/16782/wss-v1.1-spec-os-UsernameTokenProfile.pdf
http://www.oasis-open.org/committees/download.php/16785/wss-v1.1-spec-os-x509TokenProfile.pdf
http://www.oasis-open.org/committees/download.php/16785/wss-v1.1-spec-os-x509TokenProfile.pdf
http://www.oasis-open.org/committees/download.php/16788/wss-v1.1-spec-os-KerberosTokenProfile.pdf
http://docs.oasis-open.org/ws-sx/ws-secureconversation/200512/ws-secureconversation-1.3-os.pdf
http://docs.oasis-open.org/ws-sx/ws-trust/200512/ws-trust-1.3-os.pdf
http://docs.oasis-open.org/ws-sx/ws-securitypolicy/200702/ws-securitypolicy-1.2-spec-os.pdf
http://docs.oasis-open.org/ws-sx/ws-secureconversation/200512/ws-secureconversation-1.3-os.pdf
http://docs.oasis-open.org/ws-sx/ws-trust/200512/ws-trust-1.3-os.pdf
http://docs.oasis-open.org/ws-sx/ws-securitypolicy/200702/ws-securitypolicy-1.2-spec-os.pdf

Table 102. Aspects of OASIS SOAP Message Security standard supported in WebSphere Application
Server (continued). Use the table to determine which aspects of the OASIS standard are supported.
Supported topic Specific aspect that is supported

Signature algorithms
v Digest

SHA1 http://www.w3.org/2000/09/xmldsig#sha1

SHA256 http://www.w3.org/2001/04/xmlenc#sha256

SHA512 http://www.w3.org/2001/04/xmlenc#sha512

v MAC

HMAC-SHA1
http://www.w3.org/2000/09/xmldsig#hmac-sha1

v Signature

DSA with SHA1
http://www.w3.org/2000/09/xmldsig#dsa-sha1

Do not use this algorithm if you want your configured application to be in compliance with the Basic Security
Profile (BSP)

RSA with SHA1
http://www.w3.org/2000/09/xmldsig#rsa-sha1

v Canonicalization

Canonical XML (with comments)
http://www.w3.org/TR/2001/REC-xml-c14n-20010315#WithComments

Canonical XML (without comments)
http://www.w3.org/TR/2001/REC-xml-c14n-20010315

Exclusive XML canonicalization (with comments)
http://www.w3.org/2001/10/xml-exc-c14n#WithComments

Exclusive XML canonicalization (without comments)
http://www.w3.org/2001/10/xml-exc-c14n#

v Transform

STR transform
http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-soap-message-security-1.0#STR-Transform

http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-soapmessage- security-1.0#STR-Transform

XPath http://www.w3.org/TR/1999/REC-xpath-19991116

Do not use the original XPATH transform if you want your configured application to be in compliance with the
Basic Security Profile (BSP).
Note: When referring to an element in a SECURE_ENVELOPE that does not carry an attribute of type ID
from a ds:Reference in a SIGNATURE, you must use the XPATH Filter 2.0 Transform, http://www.w3.org/
2002/06/xmldsig-filter2

Enveloped signature
http://www.w3.org/2000/09/xmldsig#enveloped-signature

XPath Filter2
http://www.w3.org/2002/06/xmldsig-filter2
Note: When referring to an element in a SECURE_ENVELOPE that does not carry an ID attribute type from
a ds:Reference in a SIGNATURE, you must use the XPATH Filter 2.0 Transform, http://www.w3.org/2002/06/
xmldsig-filter2

Decryption transform
http://www.w3.org/2002/07/decrypt#XML

1034 Overview

Table 102. Aspects of OASIS SOAP Message Security standard supported in WebSphere Application
Server (continued). Use the table to determine which aspects of the OASIS standard are supported.
Supported topic Specific aspect that is supported

Signature signed parts
for JAX-RPC only

v WebSphere Application Server key words:

– body, which signs the SOAP message body

– timestamp, which signs all of the time stamps

– securitytoken, which signs all of the security tokens

– dsigkey, which signs the signing key

– enckey, which signs the encryption key

– messageid, which signs the wsa :MessageID element in WS-Addressing.

– to, which signs the wsa:To element in WS-Addressing

– action, which signs the wsa:Action element in WS-Addressing

– relatesto, which signs the wsa:RelatesTo element in WS-Addressing

wsa is the namespace prefix of http://schemas.xmlsoap.org/ws/2004/08/addressing

– wscontext, which specifies the WS-Context header for the SOAP header.

– wsafrom, which specifies the <wsa:From> WS-Addressing From element in the SOAP header.

– wsareplyto, which specifies the <wsa:ReplyTo> WS-Addressing ReplyTo element in the SOAP header.

– wsafaultto, which specifies the <wsa:FaultTo> WS-Addressing FaultTo element in the SOAP header.

– wsaall, which specifies all of the WS-Addressing elements in the SOAP header.

v XPath expression to select an XML element in a SOAP message. For more information, see http://www.w3.org/TR/1999/
REC-xpath-19991116.

Signature message parts
for JAX-WS only

v Body (which signs the SOAP message body)

v Header (which signs one or more SOAP headers within the main SOAP header)

v XPath expression to select an XML element in a SOAP message.

– For more information, see http://www.w3.org/TR/1999/REC-xpath-19991116.

Encryption EncryptedHeader element

Chapter 27. Web services 1035

http://www.w3.org/TR/1999/REC-xpath-19991116
http://www.w3.org/TR/1999/REC-xpath-19991116

Table 102. Aspects of OASIS SOAP Message Security standard supported in WebSphere Application
Server (continued). Use the table to determine which aspects of the OASIS standard are supported.
Supported topic Specific aspect that is supported

Encryption algorithms Important: Your country of origin might have restrictions on the import, possession, use, or re-export to another country, of
encryption software. Before downloading or using the unrestricted policy files, you must check the laws of your country, its
regulations, and its policies concerning the import, possession, use, and re-export of encryption software, to determine if it
is permitted.

v Data encryption

– Triple DES in CBC: http://www.w3.org/2001/04/xmlenc#tripledes-cbc

– AES128 in CBC: http://www.w3.org/2001/04/xmlenc#aes128-cbc

– AES192 in CBC: http://www.w3.org/2001/04/xmlenc#aes192-cbc

This algorithm requires the unrestricted JCE policy file. For more information, see the Key encryption algorithm
description in the Encryption information configuration settings: Message parts.

Do not use the 192-bit data encryption algorithm if you want your configured application to be in compliance with the
Basic Security Profile (BSP).

– AES256 in CBC: http://www.w3.org/2001/04/xmlenc#aes256-cbc

This algorithm requires the unrestricted JCE policy file. For more information, see the Key encryption algorithm
description in the Encryption information configuration settings: Message parts.

v Key encryption

– Key transport (public key cryptography)

- http://www.w3.org/2001/04/xmlenc#rsa-oaep-mgf1p.
Note:

v When running with Software Development Kit (SDK) Version 1.4, the list of supported key transport algorithms
does not include this one. This algorithm appears in the list of supported key transport algorithms when running
with SDK Version 1.5.

v Use of the Federal Information Processing Standard (FIPS)-compliant Java cryptography engine does not
support this transport algorithm.

- RSA Version 1.5: http://www.w3.org/2001/04/xmlenc#rsa-1_5

– Symmetric key wrap (private key cryptography)

- Triple DES key wrap: http://www.w3.org/2001/04/xmlenc#kw-tripledes

- AES key wrap (aes128): http://www.w3.org/2001/04/xmlenc#kw-aes128

- AES key wrap (aes192): http://www.w3.org/2001/04/xmlenc#kw-aes192

This algorithm requires the unrestricted JCE policy file. For more information, see the Key encryption algorithm
description in the Encryption information configuration settings: Message parts.

Do not use the 192-bit data encryption algorithm if you want your configured application to be in compliance with
the Basic Security Profile (BSP).

- AES key wrap (aes256): http://www.w3.org/2001/04/xmlenc#kw-aes256

This algorithm requires the unrestricted JCE policy file. For more information, see the Key encryption algorithm
description in the Encryption information configuration settings: Message parts.

v Manifests-xenc is the namespace prefix of http://www.w3.org/TR/xmlenc-core

– xenc:ReferenceList

– xenc:EncryptedKey

Advanced Encryption Standard (AES) is designed to provide stronger and better performance for symmetric key encryption
over Triple-DES (data encryption standard). Therefore, it is recommended that you use AES, if possible, for symmetric key
encryption.

Encryption message
parts for JAX-RPC only

v WebSphere Application Server keywords

– bodycontent, which is used to encrypt the SOAP body content

– usernametoken, which is used to encrypt the username token

– digestvalue, which is used to encrypt the digest value of the digital signature

– signature, which is used to encrypt the entire digital signature

– wscontextcontent, which encrypts the content in the WS-Context header for the SOAP header.

v XPath expression to select the XML element in the SOAP message

– XML elements

– XML element contents

1036 Overview

http://www.w3.org/2001/04/xmlenc#rsa-oaep-mgf1p

Table 102. Aspects of OASIS SOAP Message Security standard supported in WebSphere Application
Server (continued). Use the table to determine which aspects of the OASIS standard are supported.
Supported topic Specific aspect that is supported

Encryption message
parts for JAX-WS only

v Body (which encrypts the SOAP message body content)

v Header (which encrypts one or more SOAP headers within the main SOAP header, resulting in the EncryptedHeader
element)

v XPath expression to select an XML element in a SOAP message

– For more information, see http://www.w3.org/TR/1999/REC-xpath-19991116.

Time stamp
v Within Web Services Security header

v WebSphere Application Server is extended to allow you to insert time stamps into other elements so that the age of
those elements can be determined.

Error handling SOAP faults

v New failure SOAP fault with faultcode

v The message has expired text has been added

OASIS: Web Services Security UsernameToken Profile 1.0

The following table shows the aspects of the OASIS: Web Services Security Username Token Profile 1.0
specification that is supported in WebSphere Application Server.

Table 103. Aspects of OASIS Username Token Profile V1.0 standard supported in WebSphere Application
Server. Use the table to determine which aspects of the OASIS standard are supported.
Supported topic Specific aspect that is supported

Password types Text

Token references Direct reference

OASIS: Web Services Security UsernameToken Profile 1.1

The following table shows the aspects of the OASIS: Web Services Security Username Token Profile 1.1
specification that is supported in WebSphere Application Server. Items that were previously supported for
Web Services Security UsernameToken Profile 1.0 are not listed but are still supported, unless noted
otherwise.

Table 104. Aspects of OASIS Username Token Profile V1.1 standard supported in WebSphere Application
Server. Use the table to determine which aspects of the OASIS standard are supported.
Supported topic Specific aspect that is supported

Password types Text

Token references Direct reference

OASIS: Web Services Security X.509 Certificate Token Profile 1.0

The following table shows the aspects of the OASIS: Web Services Security X.509 Certificate Token
Profile specification that are supported in WebSphere Application Server Versions 6 and later.

Table 105. Aspects of OASIS X.509 Certificate Token V1.0 standard supported in WebSphere Application
Server. Use the table to determine which aspects of the OASIS standard are supported.
Supported topic Specific aspect that is supported

Token types
v X.509 Version 3: Single certificate

http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-x509- token-profile-1.0#X509v3

v X.509 Version 3: X509PKIPathv1 without certificate revocation lists (CRL)

http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-x509- token-profile-1.0#X509PKIPathv1

v X.509 Version 3: PKCS7 with or without CRLs. The IBM software development kit (SDK) supports both. The Sun Java
SE Development Kit 6 (JDK 6) supports PKCS7 without CRL only.

Chapter 27. Web services 1037

Table 105. Aspects of OASIS X.509 Certificate Token V1.0 standard supported in WebSphere Application
Server (continued). Use the table to determine which aspects of the OASIS standard are supported.
Supported topic Specific aspect that is supported

Token references
v Key identifier – subject key identifier

v Direct reference

v Custom reference – issuer name and serial number

OASIS: Web Services Security X.509 Certificate Token Profile 1.1

The following table shows the aspects of the OASIS: Web Services Security X.509 Certificate Token
Profile 1.1 specification that are supported in WebSphere Application Server. Items that were previously
supported for Web Services Security X.509 Certificate Token Profile 1.0 are not listed but are still
supported, unless noted otherwise.

Table 106. Aspects of OASIS X.509 Certificate Token V1.1 standard supported in WebSphere Application
Server. Use the table to determine which aspects of the OASIS standard are supported.
Supported topic Specific aspect that is supported

Token types X.509 Version 1: Single certificate

Token references Key identifier – subject key identifier

v Can only reference an X.509v3 certificate

v Can specify the thumbprint of the specified certificate by using the http://docs.oasis-open.org/wss/oasis-wss-soap-
message-security-1.1#ThumbprintSHA1 attribute of the <wsse:KeyIdentifier> element.

OASIS: Web Services Security Kerberos Token Profile 1.1

The following table shows the aspects of the OASIS: Web Services Security Kerberos Token Profile 1.1
specification that are supported in WebSphere Application Server.

Table 107. Aspects of OASIS Kerberos Token Profile standard supported in WebSphere Application Server. Use the
table to determine which aspects of the OASIS standard are supported.
Supported topic Specific aspect that is supported

Token types
v GSS_API Kerberos v5 token

http://docs.oasis-open.org/wss/oasis-wss-kerberos-token-profile-1.1#GSS_Kerberosv5_AP_REQ

v GSS_API Kerberos v5 token per RFC1510

http://docs.oasis-open.org/wss/oasis-wss-kerberos-token-profile-1.1#GSS_Kerberosv5_AP_REQ1510

v GSS_API Kerberos v5 token per RFC4120

http://docs.oasis-open.org/wss/oasis-wss-kerberos-token-profile-1.1#GSS_Kerberosv5_AP_REQ4120

v Kerberos v5 token

http://docs.oasis-open.org/wss/oasiswss- kerberos-token-profile-1.1#Kerberosv5_AP_REQ

v Kerberos v5 token per RFC1510

http://docs.oasis-open.org/wss/oasis-wss-kerberos-token-profile-1.1#Kerberosv5_AP_REQ1510

v Kerberos v5 token per RFC4120

http://docs.oasis-open.org/wss/oasis-wss-kerberos-token-profile-1.1#Kerberosv5_AP_REQ412

Token references
v Security token reference

v Key identifier, which is used after the initial Kerberos v5 token is consumed

v Derived key token based on the Kerberos key

1038 Overview

OASIS: Web Services Security WS-Secure Conversation Draft and Version 1.3

The following table shows the aspects of the OASIS: WS-SecureConversation specification that are
supported in WebSphere Application Server Version 6.1 Feature Pack for Web Services, and later. Support
for Version 1.3 of the specification is provided in WebSphere Application Server Version 7.0 and later.

Table 108. Aspects of OASIS SecureConversation standard supported in WebSphere Application Server. Use the
table to determine which aspects of the OASIS standard are supported.
Supported topic Specific aspect that is supported

Token types
v Security Context Token draft version: http://schemas.xmlsoap.org/ws/2005/02/sc/sct

v Security Context Token Version 1.3: http://docs.oasis-open.org/ws-sx/ws-secureconversation/200512/sct

Token references Direct reference

Security context
establishment

Security context token created by a security token service that is embedded in the WebSphere Application Server.

Renewing context Automatic renewal of the token when its about to expire.

Cancelling context Explicit cancel request support.

Derived keys The following information is used to derive the keys using a shared secret from a security context:

v /wsc:DerivedKeyToken/wsse:SecurityTokenReference

v /wsc:DerivedKeyToken/wsc:Label

v /wsc:DerivedKeyToken/wsc:Nonce

v /wsc:DerivedKeyToken/wsc:Length

Error handling SOAP faults, including:

v wsc:BadContextToken

v wsc:UnsupportedContextToken

v wsc:RenewNeeded

v wsc:UnableToRenew

OASIS: Web Services Security WS-Trust Version 1.0 Draft and Version 1.3

The following tables show the aspects of the OASIS: Web Services Security: WS-Trust Version 1.0 Draft
and Version 1.3 specifications that are supported in WebSphere Application Server Version 6.1 Feature
Pack for Web Services, and later.

Table 109. Aspects of OASIS Trust V1.0 and V1.3 standard supported in WebSphere Application Server. Use the
table to determine which aspects of the OASIS standard are supported.
Supported topic Specific aspect that is supported

Namespace http://schemas.xmlsoap.org/ws/2005/02/trust

Request header /wsa:Action

Valid options include:

v http://schemas.xmlsoap.org/ws/2005/02/trust/RST/Issue

v http://schemas.xmlsoap.org/ws/2005/02/trust/RST/Renew

v http://schemas.xmlsoap.org/ws/2005/02/trust/RST/Cancel

v http://schemas.xmlsoap.org/ws/2005/02/trust/RST/Validate

Chapter 27. Web services 1039

Table 109. Aspects of OASIS Trust V1.0 and V1.3 standard supported in WebSphere Application
Server (continued). Use the table to determine which aspects of the OASIS standard are supported.
Supported topic Specific aspect that is supported

Request elements and
attributes

/wst:RequestSecurityToken

/wst:RequestSecurityToken/@Context

/wst:RequestSecurityToken/wst:RequestType

v Valid options include:

– http://schemas.xmlsoap.org/ws/2005/02/trust/Issue

– http://schemas.xmlsoap.org/ws/2005/02/trust/Renew

– http://schemas.xmlsoap.org/ws/2005/02/trust/Cancel

– http://schemas.xmlsoap.org/ws/2005/02/trust/Validate

/wst:RequestSecurityToken/wst:TokenType

v Valid options include:

– for http://schemas.xmlsoap.org/ws/2005/02/sc/sct

- /wst:RequestSecurityToken/wsp:AppliesTo

- /wst:RequestSecurityToken/wst:Entropy

- /wst:RequestSecurityToken/wst:Entropy/wst:BinarySecret

- /wst:RequestSecurityToken/wst:Entropy/wst:BinarySecret/@Type

– for http://schemas.xmlsoap.org/ws/2005/02/trust/Nonce

- /wst:RequestSecurityToken/wst:Lifetime

- /wst:RequestSecurityToken/wst:Lifetime/wsu:Created

- /wst:RequestSecurityToken/wst:Lifetime/wsu:Expires

- /wst:RequestSecurityToken/wst:KeySize

- /wst:RequestSecurityToken/wst:KeyType

– for http://schemas.xmlsoap.org/ws/2005/02/trust/SymmetricKey

- /wst:RequestSecurityToken/wst:RenewTarget

- /wst:RequestSecurityToken/wst:Renewing

- /wst:RequestSecurityToken/wst:Renewing/@Allow

- /wst:RequestSecurityToken/wst:Renewing/@OK

- /wst:RequestSecurityToken/wst:CancelTarget

- /wst:RequestSecurityToken/wst:ValidateTarget

- /wst:RequestSecurityToken/wst:Issuer

Response header /wsa:Action

Valid options include:

v http://schemas.xmlsoap.org/ws/2005/02/trust/RSTR/Issue

v http://schemas.xmlsoap.org/ws/2005/02/trust/RSTR/Renew

v http://schemas.xmlsoap.org/ws/2005/02/trust/RSTR/Cancel

v http://schemas.xmlsoap.org/ws/2005/02/trust/RSTR/Validate

1040 Overview

Table 109. Aspects of OASIS Trust V1.0 and V1.3 standard supported in WebSphere Application
Server (continued). Use the table to determine which aspects of the OASIS standard are supported.
Supported topic Specific aspect that is supported

Response elements and
attributes

/wst:RequestSecurityTokenResponse

/wst:RequestSecurityTokenResponse/@Context

/wst:RequestSecurityTokenResponse/wst:TokenType

/wst:RequestSecurityTokenResponse/wst:RequestedSecurityToken

/wst:RequestSecurityTokenResponse/wsp:AppliesTo

/wst:RequestSecurityTokenResponse/wst:RequestedSecurityToken

/wst:RequestSecurityTokenResponse/wst:RequestedAttachedReference

/wst:RequestSecurityTokenResponse/wst:RequestedUnattachedReference

/wst:RequestSecurityTokenResponse/wst:RequestedProofToken

/wst:RequestSecurityTokenResponse/wst:Entropy

/wst:RequestSecurityTokenResponse/wst:Entropy/wst:BinarySecret

/wst:RequestSecurityTokenResponse/wst:Entropy/wst:BinarySecret/@Type

/wst:RequestSecurityTokenResponse/wst:Lifetime

/wst:RequestSecurityTokenResponse/wst:Lifetime/wsu:Created

/wst:RequestSecurityTokenResponse/wst:Lifetime/wsu:Expires

/wst:RequestSecurityTokenResponse/wst:RequestedProofToken/wst:ComputedKey

/wst:RequestSecurityTokenResponse/wst:KeySize

/wst:RequestSecurityTokenResponse/wst:Renewing

/wst:RequestSecurityTokenResponse/wst:Renewing/@Allow

/wst:RequestSecurityTokenResponse/wst:Renewing/@OK

/wst:RequestSecurityTokenResponse/wst:RequestedTokenCancelled

/wst:RequestSecurityTokenResponse/wst:Status

/wst:RequestSecurityTokenResponse/wst:Status /wst:RequestSecurityTokenResponse/wst:Status/wst:Code

v Valid responses include:

– http://schemas.xmlsoap.org/ws/2005/02/trust/status/valid

– http://schemas.xmlsoap.org/ws/2005/02/trust/status/invalid

/wst:RequestSecurityTokenResponse/wst:Status/wst:Reason

Chapter 27. Web services 1041

Table 109. Aspects of OASIS Trust V1.0 and V1.3 standard supported in WebSphere Application
Server (continued). Use the table to determine which aspects of the OASIS standard are supported.
Supported topic Specific aspect that is supported

Error handling wst:InvalidRequest

wst:FailedAuthentication

wst:RequestFailed

wst:InvalidSecurityToken

wst:AuthenticationBadElements

wst:BadRequest

wst:ExpiredData

wst:InvalidTimeRange

wst:InvalidScope

wst:RenewNeeded

wst:UnableToRenew

Table 110. Aspects of OASIS Trust V1.3 standard supported in WebSphere Application Server. Use the table to
determine which aspects of the OASIS standard are supported.
Supported topic Specific aspect that is supported

Namespace http://docs.oasis-open.org/ws-sx/ws-trust/200512

Request header /wsa:Action

Valid options include:

v http://docs.oasis-open.org/ws-sx/ws-trust/200512/RST/Issue

v http://docs.oasis-open.org/ws-sx/ws-trust/200512/RST/Renew

v http://docs.oasis-open.org/ws-sx/ws-trust/200512/RST/Cancel

v http://docs.oasis-open.org/ws-sx/ws-trust/200512/RST/Validate

v http://docs.oasis-open.org/ws-sx/ws-trust/200512/BatchIssue

v http://docs.oasis-open.org/ws-sx/ws-trust/200512/BatchCancel

v http://docs.oasis-open.org/ws-sx/ws-trust/200512/BatchRenew

v http://docs.oasis-open.org/ws-sx/ws-trust/200512/BatchValidate

1042 Overview

Table 110. Aspects of OASIS Trust V1.3 standard supported in WebSphere Application Server (continued). Use the
table to determine which aspects of the OASIS standard are supported.
Supported topic Specific aspect that is supported

Request elements and
attributes

/wst:RequestSecurityToken

/wst:RequestSecurityToken/@Context

/wst:RequestSecurityToken/wst:RequestType

v Valid options include:

– http://docs.oasis-open.org/ws-sx/ws-trust/200512/Issue

– http://docs.oasis-open.org/ws-sx/ws-trust/200512/Renew

– http://docs.oasis-open.org/ws-sx/ws-trust/200512/Cancel

– http://docs.oasis-open.org/ws-sx/ws-trust/200512/Validate

– http://docs.oasis-open.org/ws-sx/ws-trust/200512/BatchIssue

– http://docs.oasis-open.org/ws-sx/ws-trust/200512/BatchRenew

– http://docs.oasis-open.org/ws-sx/ws-trust/200512/BatchCancel

– http://docs.oasis-open.org/ws-sx/ws-trust/200512/BatchValidate

/wst:RequestSecurityToken/wst:TokenType

v Valid options include:

– for http://docs.oasis-open.org/ws-sx/ws-secureconversation/200512/sct

- /wst:RequestSecurityToken/wsp:AppliesTo

- /wst:RequestSecurityToken/wst:Entropy

- /wst:RequestSecurityToken/wst:Entropy/wst:BinarySecret

- /wst:RequestSecurityToken/wst:Entropy/wst:BinarySecret/@Type

– for http://docs.oasis-open.org/ws-sx/ws-trust/200512/Nonce

- /wst:RequestSecurityToken/wst:Lifetime

- /wst:RequestSecurityToken/wst:Lifetime/wsu:Created

- /wst:RequestSecurityToken/wst:Lifetime/wsu:Expires

- /wst:RequestSecurityToken/wst:KeySize

- /wst:RequestSecurityToken/wst:KeyType

– for http://docs.oasis-open.org/ws-sx/ws-trust/200512/SymmetricKey

- /wst:RequestSecurityToken/wst:RenewTarget

- /wst:RequestSecurityToken/wst:Renewing

- /wst:RequestSecurityToken/wst:Renewing/@Allow

- /wst:RequestSecurityToken/wst:Renewing/@OK

- /wst:RequestSecurityToken/wst:CancelTarget

- /wst:RequestSecurityToken/wst:ValidateTarget

- /wst:RequestSecurityToken/wst:Issuer

Response header /wsa:Action

Valid options include:

v http://docs.oasis-open.org/ws-sx/ws-trust/200512/RSTR/RenewFinal

v http://docs.oasis-open.org/ws-sx/ws-trust/200512/RSTR/CancelFinal

v http://docs.oasis-open.org/ws-sx/ws-trust/200512/RSTR/ValidateFinal

v http://docs.oasis-open.org/ws-sx/ws-trust/200512/RSTRC/IssueFinal

v http://docs.oasis-open.org/ws-sx/ws-trust/200512/RSTRC/CancelFinal

v http://docs.oasis-open.org/ws-sx/ws-trust/200512/RSTRC/RenewFinal

v http://docs.oasis-open.org/ws-sx/ws-trust/200512/RSTRC/ValidateFinal

Chapter 27. Web services 1043

Table 110. Aspects of OASIS Trust V1.3 standard supported in WebSphere Application Server (continued). Use the
table to determine which aspects of the OASIS standard are supported.
Supported topic Specific aspect that is supported

Response elements and
attributes

/wst:RequestSecurityTokenResponse

/wst:RequestSecurityTokenResponse/@Context

/wst:RequestSecurityTokenResponse/wst:TokenType

/wst:RequestSecurityTokenResponse/wst:RequestedSecurityToken

/wst:RequestSecurityTokenResponse/wsp:AppliesTo

/wst:RequestSecurityTokenResponse/wst:RequestedSecurityToken

/wst:RequestSecurityTokenResponse/wst:RequestedAttachedReference

/wst:RequestSecurityTokenResponse/wst:RequestedUnattachedReference

/wst:RequestSecurityTokenResponse/wst:RequestedProofToken

/wst:RequestSecurityTokenResponse/wst:Entropy

/wst:RequestSecurityTokenResponse/wst:Entropy/wst:BinarySecret

/wst:RequestSecurityTokenResponse/wst:Entropy/wst:BinarySecret/@Type

/wst:RequestSecurityTokenResponse/wst:Lifetime

/wst:RequestSecurityTokenResponse/wst:Lifetime/wsu:Created

/wst:RequestSecurityTokenResponse/wst:Lifetime/wsu:Expires

/wst:RequestSecurityTokenResponse/wst:RequestedProofToken/wst:ComputedKey

/wst:RequestSecurityTokenResponse/wst:KeySize

/wst:RequestSecurityTokenResponse/wst:Renewing

/wst:RequestSecurityTokenResponse/wst:Renewing/@Allow

/wst:RequestSecurityTokenResponse/wst:Renewing/@OK

/wst:RequestSecurityTokenResponse/wst:RequestedTokenCancelled

/wst:RequestSecurityTokenResponse/wst:Status

/wst:RequestSecurityTokenResponse/wst:Status/wst:Code

v Valid responses include:

– http://docs.oasis-open.org/ws-sx/ws-trust/200512/status/valid

– http://docs.oasis-open.org/ws-sx/ws-trust/200512/status/invalid

/wst:RequestSecurityTokenResponse/wst:Status/wst:Reason

1044 Overview

Table 110. Aspects of OASIS Trust V1.3 standard supported in WebSphere Application Server (continued). Use the
table to determine which aspects of the OASIS standard are supported.
Supported topic Specific aspect that is supported

Error handling wst:InvalidRequest

wst:FailedAuthentication

wst:RequestFailed

wst:InvalidSecurityToken

wst:AuthenticationBadElements

wst:BadRequest

wst:ExpiredData

wst:InvalidTimeRange

wst:InvalidScope

wst:RenewNeeded

wst:UnableToRenew

Functionality that is not supported by WebSphere Application Server

The following list shows the functionality that is supported in the OASIS specifications, OASIS drafts, and
other recommendations but is not supported by WebSphere Application Server Version 6 and later:

v Web Services Security SOAP Messages with Attachments (SwA) profile 1.0

Note: When using the JAX-WS programming model, securing the SOAP Message Transmission
Optimization Mechanism (MTOM) attachment is supported. See the topic Enabling MTOM for
JAX-WS web services for more information.

v XrML token profile

v XML enveloping digital signature

v XML enveloping digital encryption

v The following WS-SecureConversation functionality is not supported by WebSphere Application Server:

– Two methods for establishing security context are not supported: 1) security context token created by
one of the communicating parties and propagated with a message; and 2) security context token
created through negotiation or exchanges.

– SCT propagation

– Amending security contexts

v The following transform algorithms for digital signatures are not supported:

– XSLT: http://www.w3.org/TR/1999/REC-xslt-19991116

– SOAP Message Normalization

See SOAP Version 1.2 Message Normalization for information, such as an empty header or header
entry with mustUnderstand=false is removed, and so forth.

– Decryption transform

v The following key agreement algorithm for encryption is not supported:

– Diffie-Hellman: http://www.w3.org/TR/2002/REC-xmlenc-core-20021210/Overview.html#sec-
DHKeyValue

v The following canonicalization algorithm for encryption, which is optional in the XML encryption
specification, is not supported:

– Canonical XML with or without comments

– Exclusive XML Canonicalization with or without comments

Chapter 27. Web services 1045

http://www.w3.org/TR/2003/NOTE-soap12-n11n-20031008/
http://www.w3.org/TR/2002/REC-xmlenc-core-20021210/Overview.html#sec-DHKeyValue
http://www.w3.org/TR/2002/REC-xmlenc-core-20021210/Overview.html#sec-DHKeyValue

v DSA digital signature is not supported.

v Pre-agreed symmetric key data encryption is not supported.

v Auditing for nonrepudiation for digital signatures is not supported.

v In both versions of the Username Token Profile specification, the digest password type is not supported.

v In the Username Token Version 1.1 Profile specification, the key derivation based on a password is not
supported.

Unsupported function for WS-Trust Version 1.0 Draft and Version 1.3

The following tables show the aspects of the OASIS: Web Services Security: WS-Trust Version 1.0 Draft
and Version 1.3 specifications that are not supported in WebSphere Application Server Version 6.1
Feature Pack for Web Services, and later.

Table 111. Aspects of OASIS Trust V1.0 and V1.3 standard that are unsupported in WebSphere Application
Server. Use the table to determine which aspects of the OASIS standard are not supported.
Unsupported topic Specific aspect that is not supported

Elements and attributes /wst:RequestSecurityToken/wst:Entropy/wst:BinarySecret/@Type

Unsupported request options:

v for http://schemas.xmlsoap.org/ws/2005/02/trust/AsymmetricKey and http://schemas.xmlsoap.org/ws/2005/02/trust/
SymmetricKey

– /wst:RequestSecurityToken/wst:Claims

– /wst:RequestSecurityToken/wst:AllowPostdating

– /wst:RequestSecurityToken/wst:OnBehalfOf

– /wst:RequestSecurityToken/wst:AuthenticationType

– /wst:RequestSecurityToken/wst:KeyType

v for http://schemas.xmlsoap.org/ws/2005/02/trust/PublicKey

– /wst:RequestSecurityToken/wst:SignatureAlgorithm

– /wst:RequestSecurityToken/wst:EncryptionAlgorithm

– /wst:RequestSecurityToken/wst:CanonicalizationAlgorithm

– /wst:RequestSecurityToken/wst:ComputedKeyAlgorithm

– /wst:RequestSecurityToken/wst:Encryption

– /wst:RequestSecurityToken/wst:ProofEncryption

– /wst:RequestSecurityToken/wst:UseKey

– /wst:RequestSecurityToken/wst:UseKey/@Sig

– /wst:RequestSecurityToken/wst:SignWith

– /wst:RequestSecurityToken/wst:EncryptWith

– /wst:RequestSecurityToken/wst:DelegateTo

– /wst:RequestSecurityToken/wst:Forwardable

– /wst:RequestSecurityToken/wst:Delegatable

– /wst:RequestSecurityToken/wsp:Policy

– /wst:RequestSecurityToken/wsp:PolicyReference

Response elements and
attributes

/wst:RequestSecurityTokenResponseCollection

/wst:RequestSecurityTokenResponseCollection/wst:RequestSecurityTokenResponse

1046 Overview

Table 112. Aspects of OASIS Trust V1.3 standard that are unsupported in WebSphere Application Server. Use the
table to determine which aspects of the OASIS standard are not supported.
Unsupported topic Specific aspect that is not supported

Elements and attributes /wst:RequestSecurityToken/wst:Entropy/wst:BinarySecret/@Type

Unsupported request options:

v for http://docs.oasis-open.org/ws-sx/ws-trust/200512/AsymmetricKey and http://docs.oasis-open.org/ws-sx/ws-trust/
200512/SymmetricKey

– /wst:RequestSecurityToken/wst:Claims

– /wst:RequestSecurityToken/wst:AllowPostdating

– /wst:RequestSecurityToken/wst:OnBehalfOf

– /wst:RequestSecurityToken/wst:AuthenticationType

– /wst:RequestSecurityToken/wst:KeyType

v for http://docs.oasis-open.org/ws-sx/ws-trust/200512/PublicKey and http://docs.oasis-open.org/ws-sx/ws-trust/200512/
Bearer

– /wst:RequestSecurityToken/wst:SignatureAlgorithm

– /wst:RequestSecurityToken/wst:EncryptionAlgorithm

– /wst:RequestSecurityToken/wst:CanonicalizationAlgorithm

– /wst:RequestSecurityToken/wst:ComputedKeyAlgorithm

– /wst:RequestSecurityToken/wst:Encryption

– /wst:RequestSecurityToken/wst:ProofEncryption

– /wst:RequestSecurityToken/wst:UseKey

– /wst:RequestSecurityToken/wst:UseKey/@Sig

– /wst:RequestSecurityToken/wst:SignWith

– /wst:RequestSecurityToken/wst:EncryptWith

– /wst:RequestSecurityToken/wst:DelegateTo

– /wst:RequestSecurityToken/wst:Forwardable

– /wst:RequestSecurityToken/wst:Delegatable

– /wst:RequestSecurityToken/wsp:Policy

– /wst:RequestSecurityToken/wsp:PolicyReference

Response header /wsa:Action

Unsupported Responses:

v http://docs.oasis-open.org/ws-sx/ws-trust/200512/RSTR/Issue

v http://docs.oasis-open.org/ws-sx/ws-trust/200512/RSTR/Renew

v http://docs.oasis-open.org/ws-sx/ws-trust/200512/RSTR/Cancel

v http://docs.oasis-open.org/ws-sx/ws-trust/200512/RSTR/Validate

Web Services Security specification - a chronology
The development of the Web Services Security specification includes information on the Organization for
the Advancement of Structured Information Standards (OASIS) Web Services Security specification. The
OASIS Web Services Security specification serves as a basis for securing web services in WebSphere
Application Server.

best-practices: IBM WebSphere Application Server supports the Java API for XML-Based Web Services
(JAX-WS) programming model and the Java API for XML-based RPC (JAX-RPC)
programming model. JAX-WS is the next generation web services programming model
extending the foundation provided by the JAX-RPC programming model. Using the
strategic JAX-WS programming model, development of web services and clients is
simplified through support of a standards-based annotations model. Although the
JAX-RPC programming model and applications are still supported, take advantage of the
easy-to-implement JAX-WS programming model to develop new web services
applications and clients.

Advantages of using the JAX-WS programming model in WebSphere Application Server include:

Chapter 27. Web services 1047

v The configuration of qualities of service (QoS) is simplified when using policy sets. Policy sets combine
configuration settings, including those for transport and message-level configuration. Policy sets and
general bindings can be reused across multiple applications, making web services QoS more
consumable.

v WS-Security for JAX-WS is supported in both a managed environment, such as a Java EE container,
and unmanaged environments, such as Java Platform, Standard Edition (Java SE 6). In addition, there
is an API for enabling WS-Security in the JAX-WS client.

Non-OASIS activities

Web services is gaining rapid acceptance as a viable technology for interoperability and integration.
However, securing web services is one of the paramount quality of services that makes the adoption of
web services a viable industry and commercial solution for businesses. IBM and Microsoft jointly published
a security white paper on web services entitled Security in a Web Services World: A Proposed Architecture
and Roadmap. The white paper discusses the following initial and subsequent specifications in the
proposed Web Services Security roadmap:

Web service security
This specification defines how to attach a digital signature, use encryption, and use security tokens
in SOAP messages.

WS-Policy
This specification defines the language that is used to describe security constraints and the policy
of intermediaries or endpoints.

WS-Trust
This specification defines a framework for trust models to establish trust between web services.

WS-Privacy
This specification defines a model of how to express a privacy policy for a web service and a
requester.

WS-SecureConversation
This specification defines how to exchange and establish a secured context, which derives session
keys between web services.

WS-Authorization

This specification defines the authorization policy for a Web service. However, the
WS-Authorization specification has not been published. The existing implementation of Web
Services Security is based upon the Web Services for Java Platform, Enterprise Edition (Java EE)
or Java Specification Requirements (JSR) 109 specification. The implementation of Web Services
Security leverages the Java EE role-based authorization checks. For conceptual information, read
about role-based authorization. If you develop a web service that requires method-level
authorization checks, then you must use stateless session beans to implement your web service.
For more information, read about securing enterprise bean applications.

If you develop a web service that is implemented as a servlet, you can use coarse-grained or
URL-based authorization in the web container. However, in this situation, you cannot use the
identity from Web Services Security for authorization checks. Instead, you can use the identity
from the transport. If you use SOAP over HTTP, then the identity is in the HTTP transport.

This following figure shows the relationship between these specifications:

1048 Overview

http://www.ibm.com/developerworks/webservices/library/ws-secmap/
http://www.ibm.com/developerworks/webservices/library/ws-secmap/

In April 2002, IBM, Microsoft, and VeriSign proposed the Web Services Security (WS-Security)
specification on their websites as depicted by the green box in the previous figure. This specification
included the basic ideas of a security token, XML digital signature, and XML encryption. The specification
also defined the format for user name tokens and encoded binary security tokens. After some discussion
and an interoperability test based on the specification, the following issues were noted:

v The specification requires that the Web Services Security processors understand the schema correctly
so that the processor distinguishes between the ID attribute for XML digital signature and XML
encryption.

v The freshness of the message, which indicates whether the message complies with predefined time
constraints, cannot be determined.

v Digested password strings do not strengthen security.

In August 2002, IBM, Microsoft, and VeriSign published the Web Services Security Addendum, which
attempted to address the previously listed issues. The following solutions were addressed in the
addendum:

v Require a global ID attribute for XML signature and XML encryption.

v Use time stamp header elements that indicate the time of the creation, receipt, or expiration of the
message.

v Use password strings that are digested with a time stamp and nonce, which is a randomly generated
token.

The specifications for the blue boxes in the previous figure have been proposed by various industry
vendors and various interoperability events have been organized by the vendors to verify and refine the
proposed specifications.

OASIS activities

In June 2002, OASIS received a proposed Web Services Security specification from IBM, Microsoft, and
VeriSign. The Web Services Security Technical Committee (WSS TC) was organized at OASIS soon after
the submission. The technical committee included many companies including IBM, Microsoft, VeriSign,
Sun Microsystems, and BEA Systems.

Chapter 27. Web services 1049

In September 2002, WSS TC published its first specification, Web Services Security Core Specification,
Working Draft 01. This specification included the contents of both the original Web Services Security
specification and its addendum.

The coverage of the technical committee became larger as the discussion proceeded. Because the Web
Services Security Core Specification allows arbitrary types of security tokens, proposals were published as
profiles. The profiles described the method for embedding tokens, including Security Assertion Markup
Language (SAML) tokens and Kerberos tokens embedded into the Web Services Security messages.
Subsequently, the definitions of the usage for user name tokens and X.509 binary security tokens, which
were defined in the original Web Services Security Specification, were divided into the profiles.

WebSphere Application Server Versions 5.0.2, 5.1, and 5.1.1 support the following specifications:

v Web Services Security: SOAP Message Security Draft 13 (formerly Web Services Security Core
Specification)

v Web Services Security: Username Token Profile Draft 2

In April 2004, the Web Service Security specification (officially called Web Services Security: SOAP
Message Security Version 1.0) became the Version 1.0 OASIS standard. Also, the Username token and
X.509 token profiles are Version 1.0 specifications. WebSphere Application Server 6 and later support the
following Web Services Security specifications from OASIS:

v Web Services Security: SOAP Message Security 1.0 specification

v Web Services Security: Username Token 1.0 Profile

v Web Services Security: X.509 Token 1.0 Profile

In February 2006, the core Web Service Security specification was updated and became the Version 1.1
OASIS standard. Also, the Username token, X.509 token profile, and Kerberos token profile were updated
to the Version 1.1 specifications. Portions of the following Web Services Security specifications from
OASIS are supported in WebSphere Application Server, specifically signature confirmation, encrypted
header, and thumbprint references:

v OASIS: Web Services Security: SOAP Message Security 1.1 (WS-Security 2004) OASIS Standard
Specification, 1 February 2006

v OASIS: Web Services Security UsernameToken Profile 1.1 OASIS Standard Specification, 1 February
2006

v OASIS: Web Services Security X.509 Certificate Token Profile 1.1 OASIS Standard Specification, 1
February 2006

The following specification describes the use of Kerberos tokens with respect to the Web Services Security
message security specifications. The specification defines how to use a Kerberos token to support
authentication and message protection: OASIS: Web Services Security Kerberos Token Profile 1.1 OASIS
Standard Specification, 1 February 2006.

In 2007, the OASIS Web Services Secure Exchange Technical Committee (WS-SX) produced and
approved the following specifications. Portions of these specifications are supported by WebSphere
Application Server Version 7 and later.

v WS-SecureConversation

v WS-Trust

v WS-SecurityPolicy

The following figure shows the various Web Services Security-related specifications.

1050 Overview

http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-soap-message-security-1.0.pdf
http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-username-token-profile-1.0.pdf
http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-x509-token-profile-1.0.pdf
http://www.oasis-open.org/committees/download.php/16790/wss-v1.1-spec-os-SOAPMessageSecurity.pdf
http://www.oasis-open.org/committees/download.php/16790/wss-v1.1-spec-os-SOAPMessageSecurity.pdf
http://www.oasis-open.org/committees/download.php/16782/wss-v1.1-spec-os-UsernameTokenProfile.pdf
http://www.oasis-open.org/committees/download.php/16782/wss-v1.1-spec-os-UsernameTokenProfile.pdf
http://www.oasis-open.org/committees/download.php/16785/wss-v1.1-spec-os-x509TokenProfile.pdf
http://www.oasis-open.org/committees/download.php/16785/wss-v1.1-spec-os-x509TokenProfile.pdf
http://www.oasis-open.org/committees/download.php/16788/wss-v1.1-spec-os-KerberosTokenProfile.pdf
http://www.oasis-open.org/committees/download.php/16788/wss-v1.1-spec-os-KerberosTokenProfile.pdf
http://docs.oasis-open.org/ws-sx/ws-secureconversation/200512/ws-secureconversation-1.3-os.pdf
http://docs.oasis-open.org/ws-sx/ws-trust/200512/ws-trust-1.3-os.pdf
http://docs.oasis-open.org/ws-sx/ws-securitypolicy/200702/ws-securitypolicy-1.2-spec-os.pdf

WebSphere Application Server also provides plug-in capability to enable security providers to extend the
runtime capability and implement some of the higher level specifications in the Web Service Security
stack. The plug-in points are exposed as Service Provider Programming Interfaces (SPI). For more
information on these SPIs, see “Default implementations of the Web Services Security service provider
programming interfaces” on page 1094.

Web Services Security specification 1.0 development

The OASIS Web Services Security specification is based upon the following World Wide Web Consortium
(W3C) specifications. Most of the W3C specifications are in the standard body recommended status.

v XML-Signature Syntax and Processing

W3C recommendation, February 2002 (Also, IETF RFC 3275, March 2002)

v Canonical XML Version 1.0

W3C recommendation, March 2001

v Exclusive XML Canonicalization Version 1.0

W3C recommendation, July 2002

v XML-Signature XPath Filter Version 2.0

W3C Recommendation, November 2002

v XML Encryption Syntax and Processing

W3C Recommendation, December 2002

v Decryption Transform for XML Signature

W3C Recommendation, December 2002

These specifications are supported in WebSphere Application Server in the context of Web Services
Security. For example, you can sign a SOAP message by specifying the integrity option in the deployment
descriptors. There is a client side application programming interface (API) that an application can use to
enable Web Services Security for securing a SOAP message.

The OASIS Web Services Security Version 1.0 specification defines the enhancements that are used to
provide message integrity and confidentiality. It also provides a general framework for associating the

Chapter 27. Web services 1051

http://www.w3.org/TR/xmldsig-core
http://www.w3.org/TR/xml-c14n
http://www.w3.org/TR/xml-exc-c14n
http://www.w3.org/TR/xmldsig-filter2
http://www.w3.org/TR/xmlenc-core
http://www.w3.org/TR/xmlenc-decrypt

security tokens with a SOAP message. The specification is designed to be extensible to support multiple
security token formats. The particular security token usage is addressed with the security token profile.

Specification and profile support in WebSphere Application Server

OASIS is working on various profiles. For more information, see Organization for the Advancement of
Structured Information Standards Committees.

The following list includes of the published draft profiles and OASIS Web Services Security technical
committee work in progress.

WebSphere Application Server does not support these profiles:

v Web Services Security: SAML token profile 1.0

v Web Services Security: Rights Expression Language (REL) token profile 1.0

v Web Services Security: SOAP Messages with Attachments (SwA) profile 1.0

Note: Support for Web Services Security draft 13 and Username token profile draft 2 is deprecated in
WebSphere Application Server 5.0.2, 5.1.0 and 5.1.1. For migration information, see Migrating
JAX-RPC Web Services Security applications to Version 8.5 applications.

The wire format of the SOAP message with Web Services Security in Web Services Security Version 1.0
has changed and is not compatible with previous drafts of the OASIS Web Services Security specification.
Interoperability between OASIS Web Services Security Version 1.0 and previous Web Services Security
drafts is not supported. However, it is possible to run an application that is based on Web Services
Security draft 13 on WebSphere Application Server Version 6 and later. The application can interoperate
with an application that is based on Web Services Security draft 13 on WebSphere Application Server
Version 5.0.2, 5.1 or 5.1.1.

WebSphere Application Server supports both the OASIS Web Services Security draft 13 and the OASIS
Web Services Security 1.0 specification. But in WebSphere Application Server Version 6 and later, the
support of OASIS Web Services Security draft 13 is deprecated. However, applications that were
developed using OASIS Web Services Security draft 13 on WebSphere Application Server 5.0.2, 5.1.0 and
5.1.1 can run on WebSphere Application Server Version 6 and later. OASIS Web Services Security
Version 1.0 support is available only for Java Platform, Enterprise Edition (Java EE) Version 1.4 and later
applications. The configuration format for the deployment descriptor and the binding is different from
previous versions of WebSphere Application Server. You must migrate the existing applications to Java EE
1.4 and migrate the Web Services Security configuration to the WebSphere Application Server Version 6
format.

Other Web Services Security specifications development

The most recently updated versions of the following OASIS Web Services Security specifications are
supported in WebSphere Application Server in the context of Web Services Security:

v WS-Trust Version 1.3

The Web Services Trust Language (WS-Trust) uses the secure messaging mechanisms of Web
Services Security to define additional primitives and extensions for the issuance, exchange and
validation of security tokens. WS-Trust enables the issuance and dissemination of credentials within
different trust domains. This specification defines ways to establish, assess the presence of, and broker
trust relationships.

v WS-SecureConversation Version 1.3

The Web Services Secure Conversation Language (WS-SecureConversation) is built on the
WS-Security and WS-Policy models to provide secure communication between services. WS-Security
focuses on the message authentication model but not a security context, and thus is subject several
forms of security attacks. This specification defines mechanisms for establishing and sharing security

1052 Overview

http://www.oasis-open.org/committees/
http://www.oasis-open.org/committees/
http://docs.oasis-open.org/ws-sx/ws-trust/200512/ws-trust-1.3-os.pdf
http://docs.oasis-open.org/ws-sx/ws-secureconversation/200512/ws-secureconversation-1.3-os.pdf

contexts, and deriving keys from security contexts, to enable a secure conversation. By using the SOAP
extensibility model, modular SOAP-based specifications are designed to be composed with each other
to provide a rich messaging environment.

v WS-SecurityPolicy Version 1.2

Web Services Security Policy (WS-Policy) provides a general purpose model and syntax to describe
and communicate the policies of a web service. WS-Policy assertions express the capabilities and
constraints of a particular web service. WS-PolicyAttachments defines several methods for associating
the WS-Policy expressions with web services (such as WSDL). The Web Services Security
specifications have been updated following the re-publication of WS-Security Policy in July 2005, to
reflect the constraints and capabilities of web services that are using WS-Security, WSTrust and
WS-SecureConversation. WS-ReliableMessaging Policy has also been re-published in 2005 to express
the capabilities and constraints of web services implementing WS-ReliableMessaging.

Web Services Interoperability Organization (WS-I) activities

Web Services Interoperability Organization (WS-I) is an open industry effort to promote web services
interoperability across vendors, platforms, programming languages and applications. The organization is a
consortium of companies across many industries including IBM, Microsoft, Oracle, Sun, Novell, VeriSign,
and Daimler Chrysler. WS-I began working on the basic security profile (BSP) in the spring of 2003. BSP
consists of a set of non-proprietary web services specifications that clarifies and amplifies those
specifications to promote Web Services Security interoperability across different vendor implementations.
As of June 2004, BSP is a public draft. For more information, see the Web Services Interoperability
Organization web page.

Specifically, see Basic Security Profile Version 1.0 for details about the BSP. WebSphere Application
Server supports compliance with the BSP draft, but Web Services Security does not support the BSP
Version 1.1 draft. See “Basic Security Profile compliance tips” on page 1126 for the details to configure
your application in compliance with the BSP draft.

Web Services Security configuration considerations
To secure web services for WebSphere Application Server, you must specify several different
configurations. Although there is not a specific sequence in which you must specify these different
configurations, some configurations reference other configurations.

best-practices: IBM WebSphere Application Server supports the Java API for XML-Based Web Services
(JAX-WS) programming model and the Java API for XML-based RPC (JAX-RPC)
programming model. JAX-WS is the next generation web services programming model
extending the foundation provided by the JAX-RPC programming model. Using the
strategic JAX-WS programming model, development of web services and clients is
simplified through support of a standards-based annotations model. Although the
JAX-RPC programming model and applications are still supported, take advantage of the
easy-to-implement JAX-WS programming model to develop new web services
applications and clients.

You can configure Web Services Security on the application level, server level, and the cell level. The
following table shows an example of the relationships between each of the configurations that apply to just
the application, to an entire server, or to the entire cell. However, the requirements for the bindings depend
upon the deployment descriptor. Some binding information depends upon other information in the binding
or server and cell-level configuration. Within the table, the configurations in the Referenced configurations
column are referenced by the configuration listed in the Configuration name column. For example, the
token generator on the application-level for the request generator references the collection certificate store,
the nonce, time stamp, and callback handler configurations.

Chapter 27. Web services 1053

http://docs.oasis-open.org/ws-sx/ws-securitypolicy/200702/ws-securitypolicy-1.2-spec-os.pdf
http://www.ws-i.org
http://www.ws-i.org
http://www.ws-i.org/Profiles/BasicSecurityProfile-1.0.html

Table 113. The relationship between the configurations.. Use the table to determine the mapping between the
configurations and the level of Web Services Security.
Configuration level Configuration name Referenced configurations

Application-level request generator Token generator
v Collection certificate store

v Nonce

v Timestamp

v Callback handler

Application-level request generator Key information
v Key locator

v Key name

v Token

Application-level request generator Signing information
v Key information

Application-level request generator Encryption information
v Key information

Application-level request consumer Token consumer
v Trust anchor

v Collection certificate store

v Trusted ID evaluators

v Java Authentication and Authorization Service (JAAS)
configuration

Application-level request consumer Key information
v Key locator

v Token

Application-level request consumer Signing information
v Key information

Application-level request consumer Encryption information
v Key information

Application-level response generator Token generator
v Collection certificate store

v Callback handler

Application-level response generator Key information
v Key locator

v Token

Application-level response generator Signing information
v Key information

Application-level response generator Encryption information
v Key information

Application-level response consumer Token consumer
v Trust anchor

v Collection certificate store

v JAAS configuration

Application-level response consumer Key information
v Key locator

v Key name

v Token

Application-level response consumer Signing information
v Key information

Application-level response consumer Encryption information
v Key information

Server-level default generator bindings Token generator
v Collection certificate store

v Callback handler

Server-level default generator bindings Key information
v Key locator

v Token

Server-level default generator bindings Signing information
v Key information

Server-level default generator bindings Encryption information
v Key information

Server-level default consumer bindings Token consumer
v Trust anchor

v Collection certificate store

v Trusted ID evaluator

v JAAS configuration

Server-level default consumer bindings Key information
v Key locator

v Token

Server-level default consumer bindings Signing information
v Key information

1054 Overview

Table 113. The relationship between the configurations. (continued). Use the table to determine the mapping
between the configurations and the level of Web Services Security.
Configuration level Configuration name Referenced configurations

Server-level default consumer bindings Encryption information
v Key information

Cell-level default generator bindings Token generator
v Collection certificate store

v Callback handler

Cell-level default generator bindings Key information
v Key locator

v Token

Cell-level default generator bindings Signing information
v Key information

Cell-level default generator bindings Encryption information
v Key information

Cell-level default consumer bindings Token consumer
v Trust anchor

v Collection certificate store

v Trusted ID evaluator

v JAAS configuration

Cell-level default consumer bindings Key information
v Key locator

v Token

Cell-level default consumer bindings Signing information
v Key information

Cell-level default consumer bindings Encryption information
v Key information

When multiple applications will use the same binding information, consider configuring the binding
information on the server or cell level. For example, you might have a global key locator configuration that
is used by multiple applications. Configuration information for the application-level precedes similar
configuration information on the server-level and the cell level.

Default bindings and runtime properties for Web Services Security
Use this page to configure the settings for nonce on the server level and to manage the default bindings
for the signing information, encryption information, key information, token generators, token consumers,
key locators, collection certificate store, trust anchors, trusted ID evaluators, algorithm mappings, and login
mappings.

Displayed options and the panel title depend on your server configuration and version.

To view this administrative console page for the server level, complete the following steps:

1. Click Servers > Server Types > WebSphere application servers > server_name.

2. Under Security, click JAX-WS and JAX-RPC security runtime.

Note: In a mixed node cell with a server using WebSphere Application Server version 6.1 or earlier,
click Web services: Default bindings for Web Services Security.

Read the web services documentation before you begin defining the default bindings for Web Services
Security.

Nonce is a unique cryptographic number that is embedded in a message to help stop repeat, unauthorized
attacks of user name tokens.

In WebSphere Application Server and WebSphere Application Server, Express, you must specify values for
the Nonce cache timeout, Nonce maximum age, and Nonce clock skew fields for the server level.

Nonce cache timeout
Specifies the timeout value, in seconds, for the nonce cached on the server. Nonce is a randomly
generated value.

Chapter 27. Web services 1055

The Nonce cache timeout field is not required on the server level, but it is required on the cell level. To
specify a value for the field on the cell level, click Security > JAX-WS and JAX-RPC security runtime.

If you make changes to the value for the Nonce cache timeout field, you must restart the application
server for the changes to take effect.

Information Value
Default 600 seconds
Minimum 300 seconds

Nonce maximum age
Specifies the default time, in seconds, before the nonce timestamp expires. Nonce is a randomly
generated value.

The maximum value cannot exceed the number of seconds that is specified in the Nonce cache timeout
field for the server level.

The Nonce maximum age field is not required on the server level, but it is required on the cell level. The
value set for this Nonce maximum age field on the server level must not exceed the value for the Nonce
maximum age field on the cell level. To specify a value for the Nonce maximum age field on the cell level,
click Security > JAX-WS and JAX-RPC security runtime.

Information Value
Default 300 seconds
Range 300 to the value that is specified, in seconds, in the

Nonce cache timeout field.

Nonce clock skew
Specifies the default clock skew value, in seconds, to consider when the application server checks the
timeliness of the message. Nonce is a randomly generated value.

The maximum value cannot exceed the number of seconds that is specified in the Nonce maximum age
field.

The Nonce clock skew field is not required on the server level, but it is required on the cell level. To
specify a value for the Nonce clock skew field on the cell level, click Security > JAX-WS and JAX-RPC
security runtime.

Information Value
Default 0 seconds
Range 0 to the value that is specified, in seconds, in the Nonce

maximum age field.

Enable cryptographic operations on hardware device
Enables cryptographic operations on hardware devices. Enabling this feature might improve the
performance, depending on the hardware device.

Cryptographic hardware configuration name
Specifies the name of the hardware device configuration name that is defined in the keystore settings in
the secure communications.

This value is necessary only if Hardware acceleration has been selected.

Custom properties
The linked Properties panel specifies additional properties for the security runtime configuration.

1056 Overview

Web Services Security provides message integrity, confidentiality, and
authentication
OASIS Web Services Security (WS-Security) is a flexible standard that is used to secure web services at
the message level within multiple security models. You can secure SOAP messages through XML digital
signature, confidentiality through XML encryption, and credential propagation through security tokens.

The WS-Security specification defines the core facilities for protecting the integrity and confidentiality of a
message and provides mechanisms for associating security-related claims with the message.
Message-level security, or securing web services at the message level, addresses the same security
requirements as for traditional web security. These security requirements include: identity, authentication,
authorization, integrity, confidentiality, nonrepudiation, basic message exchange, and so forth. Both
traditional web and message-level security share many of the same mechanisms for handling security,
including digital certificates, encryption, and digital signatures. While HTTPS and Secure Sockets Layer
(SSL) transport-level technology may be used for securing web services, some security scenarios are
addressed more effectively by message-level security.

Traditional web security mechanisms, such as HTTPS, might be insufficient to manage the security
requirements of all web service scenarios. For example, when an application sends a document with
JAX-RPC using HTTPS, the message is secured only for the HTTPS connection, meaning during the
transport of the document between the service requester (the client) and the service. However, the
application might require that the document data be secured beyond the HTTPS connection, or even
beyond the transport layer. By securing web services at the message level, message-level security is
capable of meeting these expanded requirements.

Message-level security applies to XML documents that are sent as SOAP messages. Message-level
security makes security part of the message itself by embedding all required security information in the
SOAP header of a message. In addition, message-level security can apply security mechanisms, such as
encryption and digital signature, to the data in the message itself.

With message-level security, the SOAP message itself either contains the information needed to secure
the message or it contains information about where to get that information to handle security needs. The
SOAP message also contains information relevant to the protocols and procedures for processing the
specified message-level security. However, message-level security is not tied to any particular transport
mechanism. Because the security information is part of the message, it is independent of a transport
protocol, such as HTTPS.

The client adds to the SOAP message header security information that applies to that particular message.
When the message is received, the web service endpoint, using the security information in the header,
verifies the secured message and validates it against the policy. For example, the service endpoint might
verify the message signature and check that the message has not been tampered with. It is possible to
add signature and encryption information to the SOAP message headers, as well as other information
such as security tokens for identity (for example, an X.509 certificate) that are bound to the SOAP
message content.

For WebSphere Application Server Versions 6 and later, Web Services Security can be applied as
transport-level security and as message-level security. You can architect highly secure client and server
designs by using these security mechanisms. Transport-level security refers to securing the connection
between a client application and a web service with Secure Sockets Layer (SSL).

You can apply various scenarios of Web Services Security according to the characteristics of each web
service application. You have choices of how to protect your information when using Web Services
Security. The authentication mechanism, integrity, and confidentiality can be applied at the message level
and at the transport level. When message-level security is applied, you can protect the SOAP message
with a security token, digital signature, and encryption.

Chapter 27. Web services 1057

Without Web Services Security, the SOAP message is sent in clear text, and personal information such as
a user ID or an account number is not protected. Without applying Web Services Security, there is only a
SOAP body under the SOAP envelope in the SOAP message. By applying features from the WS-Security
specification, the SOAP security header is inserted under the SOAP envelope in the SOAP message when
the SOAP body is signed and encrypted.

To maintain the integrity or confidentiality of the message, digital signatures and encryption are typically
applied.

v Confidentiality specifies the confidentiality constraints that are applied to generated messages. This
includes specifying which message parts within the generated message must be encrypted, and the
message parts to attach encrypted Nonce and time stamp elements to.

v Integrity is provided by applying a digital signature to a SOAP message. Confidentiality is applied by
SOAP message encryption. Multiple signatures and encryptions are supported. In addition, both signing
and encryption can be applied to the same parts, such as the SOAP body.

You can add an authentication mechanism by inserting various types of security tokens, such as the
Username token (<UsernameToken> element). When the Username token is received by the web service
server, the user name and password are extracted and verified. Only when the user name and password
combination is valid, will the message be accepted and processed at the server. Using the Username
token is just one of the ways of implementing authentication. This mechanism is also known as basic
authentication.

In addition to digital signatures, encryption, and basic authentication, other forms of authentication include
identity assertion, LTPA tokens, Kerberos tokens, and custom tokens. These other forms of authentication
are also extensions of WebSphere Application Server. You can configure these authentication mechanisms
using the assembly tools to implement authentication.

With updates to Web Services Security in the Version 1.1 specification, it is possible to layer additional
functionality in addition to these basic mechanisms. Some Version 1.1 mechanisms are extensions of
WebSphere Application Server, such as signature confirmation and the encrypted header. The security
token profiles that are supported by WebSphere Application Server include the Username token profile, the
X.509 token profile, and the Kerberos profile. In this case, when the message is received, the web service
endpoint, using the security information in the header, applies the appropriate security mechanisms to the
message. For example, the service endpoint might add signature and encryption information to the SOAP
message headers, as well as other information, such as security tokens, that are bound to the SOAP
message content. You can implement these new mechanisms by using a policy set.

WS-SecureConversation was introduced in WebSphere Application Server Version 6.1 with the Feature
Pack for Web Services. Secure Conversation uses a session key to protect SOAP messages more
efficiently, particularly when multiple SOAP messages are transmitted in a session.

Other enhancements include:

v The Kerberos token, which is used for both authentication and for subsequent message protection.

v Dynamic policy, which allows the client to retrieve the provider policy through a WSDL request, or using
Web Services MetadataExhange (WS-MEX), to simplify web services client deployment.

High-level architecture for Web Services Security
The Web Services Security policy is specified in the IBM extension of the web services deployment
descriptors when using the JAX-RPC programming model, and in policy sets when using the JAX-WS
programming model. A stand-alone JAX-WS client application may specify Web Services Security policy
programmatically. Binding data that supports the Web Services Security policy are stored in the IBM
extension of the web services deployment descriptors for both the JAX-RPC and JAX-WS programming
models. The Web Services Security run time enforces the security assertions that are specified in the
policy document, or in the application program, in that order.

1058 Overview

best-practices: IBM WebSphere Application Server supports the Java API for XML-Based Web Services
(JAX-WS) programming model and the Java API for XML-based RPC (JAX-RPC)
programming model. JAX-WS is the next generation web services programming model
extending the foundation provided by the JAX-RPC programming model. Using the
strategic JAX-WS programming model, development of web services and clients is
simplified through support of a standards-based annotations model. Although the
JAX-RPC programming model and applications are still supported, take advantage of the
easy-to-implement JAX-WS programming model to develop new web services
applications and clients.

WebSphere Application Server uses the Java Platform, Enterprise Edition (Java EE) Version 1.4 or later
web services deployment model to implement Web Services Security. One of the advantages of
deployment model is that you can define the Web Services Security requirements outside of the
application business logic. With the separation of roles, the application developer can focus on the
business logic and the security expert can specify the security requirement.

The following figure shows the high-level architecture model that is used to secure web services in
WebSphere Application Server:

The WSS API can also be used to secure the message, as illustrated later in this section:

Chapter 27. Web services 1059

There are two sets of configurations on both the client side and the server side:

Request generator
This client-side configuration defines the Web Services Security requirements for the outgoing
SOAP message request. These requirements might involve generating a SOAP message request
that uses a digital signature, incorporates encryption, and attaches security tokens. In WebSphere
Application Server Versions 5.0.2, 5.1, and 5.1.1, the request generator was known as the request
sender.

Request consumer
This server-side configuration defines the Web Services Security requirements for the incoming
SOAP message request. These requirements might involve verifying that the required integrity
parts are digitally signed; verifying the digital signature; verifying that the required confidential parts
were encrypted by the request generator; decrypting the required confidential parts; validating the
security tokens, and verifying that the security context is set up with the appropriate identity. In
WebSphere Application Server Versions 5.0.2, 5.1, and 5.1.1, the request consumer was known as
the request receiver.

Response generator
This server-side configuration defines the Web Services Security requirements for the outgoing
SOAP message response. These requirements might involve generating the SOAP message
response with Web Services Security; including digital signature; and encrypting and attaching the
security tokens, if necessary. In WebSphere Application Server Versions 5.0.2, 5.1, and 5.1.1, the
response generator was known as the response sender.

Response consumer
This client-side configuration defines the Web Services Security requirements for the incoming
SOAP response. The requirements might involve verifying that the integrity parts are signed and
the signature is verified; verifying that the required confidential parts are encrypted and that the

1060 Overview

parts are decrypted; and validating the security tokens. In WebSphere Application Server Versions
5.0.2, 5.1, and 5.1.1, the response consumer was known as the response receiver.

WebSphere Application Server does not include security policy negotiation or exchange between the client
and server. This security policy negotiation, as defined by the WS-Policy, WS-PolicyAssertion, and
WS-SecurityPolicy specifications, are not supported in WebSphere Application Server.

Note: The Web Services Security requirements that are defined in the request generator must match the
request consumer. The requirements that are defined in the response generator must match the
response consumer. Otherwise, the request or response is rejected because the Web Services
Security constraints cannot be met by the request consumer and response consumer.

The format of the Web Services Security deployment descriptors and bindings are IBM proprietary.
However, the following tools are available to edit the deployment descriptors and bindings:

IBM assembly tools
Use IBM assembly tools to edit the Web Services Security deployment descriptor and binding. Use
the tools to assemble both web and Enterprise JavaBeans (EJB) modules. For more information,
read about assembly tools.

WebSphere Application Server Administrative Console
Use this tool to edit the Web Services Security binding of a deployed application.

Security model mixture:

There can be multiple protocols and channels in the WebSphere Application Server Version 6 and later
programming environments. Each of these applications serve different business needs.

For example, you might access:

v A Web-based application through the HTTP transport such as a servlet, JavaServer Pages (JSP) file,
HTML and so on.

v An enterprise application through the Remote Method Invocation (RMI) over the Internet Inter-ORB
(RMI/IIOP) protocol.

v A web service application through the SOAP over HTTP, SOAP over the Java Message Service (JMS),
or SOAP over the RMI/IIOP protocol.

More importantly, web services are often implemented as servlets with a Enterprise JavaBeans (EJB) file.
Therefore, you can mix and match the Web Services Security model with the Java Platform, Enterprise
Edition (Java EE) security model for web and EJB components. It is intended that web service security
complement the Java EE role-based security and the security run time for WebSphere Application Server
Version 6 and later.

Web Services Security also can take advantage of the security features in Java EE and the security run
time for WebSphere Application Server Version 6 and later. For example, Web Services Security can use
the following security features to provide an end-to-end security deployment:

v Use the local OS, Lightweight Directory Access Protocol (LDAP), and custom user registries for
authenticating the username token

v Propagate the Lightweight Third Party Authentication (LTPA) security token in the SOAP message

v Use identity assertion

v Use a trust association interceptor (TAI)

v Enable security attribute propagation

v Use Java EE role-based authorization

v Use a Java Authorization Contract for Containers (JACC) authorization provider, such as Tivoli Access
Manager

Chapter 27. Web services 1061

The following figure shows that different security protocols are used to send authentication information to
the application server. For a web service, you might use either HTTP basic authentication with Secure
Sockets Layer (SSL) or a Web Services Security username token with signing and encryption. In the
following figure, when identity bob from Web Services Security is authenticated and set as the caller
identity of the SOAP message request, the Java EE Enterprise JavaBeans container performs
authorization using bob before the call is dispatched to the service implementation, which, in this case, is
the enterprise bean.

You can secure a web service using the transport layer security. For example, when you are using SOAP
over HTTP, HTTPS can be used to secure the web service. However, transport layer security provides
point-to-point security only. This layer of security might be adequate for certain scenarios. However, when
the SOAP message must travel through intermediary servers (multi-hop) before it is consumed by the
target endpoint, you might use SOAP over the Java Message Service (JMS). The usage scenarios and
security requirements dictate how to secure web services. The requirements depend upon the operating
environment and the business needs. However, one key advantage of using Web Services Security is that
it is transport layer independent; the same Web Services Security constraints can be used for SOAP over
HTTP, SOAP over JMS, or SOAP over RMI/IIOP.

Overview of platform configuration and bindings:

The Web Services Security policy is specified in the IBM extension of the web services deployment
descriptors when using the JAX-RPC programming model, and in policy sets when using the JAX-WS
programming model. Binding information to support the Web Services Security policy is stored in the IBM
extension of the web services deployment descriptors for both the JAX-RPC and JAX-WS programming
models.

1062 Overview

best-practices: IBM WebSphere Application Server supports the Java API for XML-Based Web Services
(JAX-WS) programming model and the Java API for XML-based RPC (JAX-RPC)
programming model. JAX-WS is the next generation web services programming model
extending the foundation provided by the JAX-RPC programming model. Using the
strategic JAX-WS programming model, development of web services and clients is
simplified through support of a standards-based annotations model. Although the
JAX-RPC programming model and applications are still supported, take advantage of the
easy-to-implement JAX-WS programming model to develop new web services
applications and clients.

Due to the complexity of these files, it is not recommended that you edit the deployment descriptor and
binding files manually with a text editor because they might cause errors. It is recommended, however,
that you use the tools provided by IBM to configure the Web Services Security constraints for an
application. These tools are the WebSphere Application Server administrative console, or an assembly
tool. For more information about IBM assembly tools, see the assembly tools information.

You can use the policy set function of the WebSphere Application Server to simplify your web services
configuration because policy sets group security and other web services settings into reusable units. Policy
sets are assertions about how quality of services is defined. A policy set incorporates policy types, and
their settings.

In addition to the application deployment descriptor and binding files, WebSphere Application Server
Versions 6 and later have a cell level and a server level configuration. These configurations are global for
all applications. Because WebSphere Application Server Version 6 and later support 5.x applications, some
of the configurations are valid for Version 5.x applications only and some are valid for Version 6 and later
applications only.

The following figure represents the relationship of the application deployment descriptor and binding files
to the cell (WebSphere Application Server, Network Deployment only) or server level configuration.

Chapter 27. Web services 1063

Platform configuration

The following options are available in the administrative console:

Nonce cache timeout
This option, which is found on the cell level (WebSphere Application Server, Network Deployment
only) and server level, specifies the cache timeout value for a nonce in seconds.

Nonce maximum age
This option, which is found on the cell level (WebSphere Application Server, Network Deployment
only) and server level, specifies the default life span for the nonce in seconds.

Nonce clock skew
This option, which is found on the cell level (WebSphere Application Server, Network Deployment
only) and server level, specifies the default clock skew to account for network delay, processing
delay, and so on. It is used to calculate when the nonce expires. Its unit of measurement is
seconds.

Distribute nonce caching
This feature enables you to distribute the cache for the nonce to different servers in a cluster. It is
available for WebSphere Application Server Version 6.0.x and later.

The following features can be referenced in the application binding:

1064 Overview

Key locator
This feature specifies how the keys are retrieved for signing, encryption, and decryption. The
implementation classes for the key locator are different in WebSphere Application Server Versions
6 and later and Version 5.x.

Collection certificate store
This feature specifies the certificate store for certificate path validation. It is typically used for
validating X.509 tokens during signature verification or constructing the X.509 token with a
certificate revocation list that is encoded in the PKCS#7 format. The certificate revocation list is
supported for WebSphere Application Server Version 6.x and later applications only.

Trust anchors
This feature specifies the trust level for the signer certificate and is typically used in the X.509
token validation during signature verification.

Trusted ID evaluators
This feature specifies how to verify the trust level for the identity. The feature is used with identity
assertion.

Login mappings
This feature specifies the login configuration binding to the authentication methods. This feature is
used by WebSphere Application Server Version 5.x applications only and it is deprecated.

Default bindings

The configuration of the default cell level and default server level bindings has changed in WebSphere
Application Server. Previously, you could configure only one set of default bindings for the cell, and
optionally configure one set of default bindings for each server. In version 7.0 and later, you can configure
one or more general provider bindings and one or more general client bindings. However, only one general
provider binding and one general client binding can be designated as the default.

The following figure shows the relationship between the application enterprise archive (EAR) file and the
ws-security.xml file.

Chapter 27. Web services 1065

Applications EAR 1 and EAR 2 have specific bindings in the application binding file. However, applications
EAR 3 and EAR 4 do not have a binding in the application binding file; it must be referenced to use the
default bindings defined in the ws-security.xml file. The configuration is resolved by nearest configuration
in the hierarchy. For example, there might be three key locators named mykeylocator that is defined in the
application binding file, the server level, and the cell level.

If mykeylocator is referenced in the application binding, then the key locator that is defined in the
application binding is used. The visibility scope of the data depends upon where the data is defined. If the
data is defined in the application binding, then its visibility is scoped to that particular application. If the
data is defined on the server level, then the visibility scope is all of the applications deployed on that
server. If the data is defined on the cell level, then the visibility scope is all of the applications deployed on
servers in the cell. In general, if data is not meant to be shared by other applications, define the
configuration in the application binding level.

The following figure shows the relationship of the bindings on the application, server, and cell (WebSphere
Application Server, Network Deployment only) levels.

1066 Overview

General bindings

General bindings are used as the default bindings at the cell level or server level. The general bindings
that are shipped with WebSphere Application Server are initially set as the default bindings, but you can
choose a different binding as the default, or change the level of binding that should be used as the default,
for example, from cell level binding to server level binding.

In version 7.0 and later, there are two types of bindings: application specific bindings, and general
bindings. Both types of bindings are supported for WS-Security policy sets. General bindings can be
shared across multiple applications and for trust service attachments. There are two types of general
bindings: one for service providers and one for service clients. Multiple general bindings can be defined for
the provider and also for the client.

Keys:

Use keys for XML digital signature and encryption.

There are two predominant kinds of keys used in the current Web Services Security implementation:

Chapter 27. Web services 1067

v Public key - such as Rivest Shamir Adleman (RSA) encryption and Digital Signature Algorithm (DSA)
encryption

v Secret key - such as triple-strength DES (3DES) encryption

In public key-based signature, a message is signed using the sender private key and is verified using the
sender public key. In public key-based encryption, a message is encrypted using the receiver public key
and is decrypted using the receiver private key. In secret key-based signature and encryption, the same
key is used by both parties.

While the current implementation of Web Services Security can support both kinds of keys, the format of
the message differs slightly between public key-based encryption and secret key-based encryption.

Key locator:

A key locator is an abstraction of the mechanism that retrieves the key for digital signature and encryption.
The Java Authentication and Authorization Service (JAAS) Login Module implementation is used to create
the security token on the generator side and to validate (authenticate) the security token on the consumer
side.

Retrieve keys from one of the following sources, depending upon your implementation:

v Java keystore file

v Database

v Kerberos KDC server (WebSphere Application Server using JAX-WS only)

v Trust service can provide a security context token and key (WebSphere Application Server using
JAX-WS only)

Key locators search for the key using some type of a clue. The following types of clues are supported:

v A string label of the key, which is explicitly passed through the application programming interface (API).
The relationship between each key and its name (string label) is maintained inside the key locator.

v The implementation context of the key locator; explicit information is not passed to the key locator. A
key locator determines the appropriate key according to the implementation context.

WebSphere Application Server Versions 6 and later support a secret key-based signature called
HMAC-SHA1. If you use HMAC-SHA1, the SOAP message does not contain a binary security token. In
this case, it is assumed that the key information within the message contains the key name that is used to
specify the secret key within the keystore.

Because the key locators support the public key-based signature, the key for verification is embedded in
the X.509 certificate as a <BinarySecurityToken> element in the incoming message. For example, key
locators can obtain the identity of the caller from the context and can retrieve the public key of the caller
for response encryption.

This section describes the usage scenarios for key locators.

Signing:

The name of the signing key is specified in the Web Services Security configuration. This value is passed
to the key locator and the actual key is returned. The corresponding X.509 certificate also can be returned.

Verification:

By default, WebSphere Application Server Versions 6 and later supports the following types of key
locators:

1068 Overview

KeyStoreKeyLocator
Uses the keystore to retrieve the key that is used for digital signature and verification or encryption
and decryption.

X509CertKeyLocator
Uses an X.509 certificate within a message to retrieve the key for verification or decryption.

SignerCertKeyLocator
Uses the X.509 certificate within the request message to retrieve the key that is used for
encryption in the response message.

Encryption:

The name of the encryption key is specified in the Web Services Security configuration. This value is
passed to the key locator and the actual key is returned. On the server side, you can use the
SignerCertKeyLocator to retrieve the key for encryption in the response message from the X.509 certificate
in the request message.

Decryption:

The Web Services Security specification recommends using the key identifier instead of the key name.
However, while the algorithm for computing the identifier for the public keys is defined in Internet
Engineering Task Force (IETF) Request for Comment (RFC) 3280, there is no agreed-upon algorithm for
the secret keys. Therefore, the current implementation of Web Services Security uses the identifier only
when public key-based encryption is performed. Otherwise, the ordinal key name is used.

When you use public key-based encryption, the value of the key identifier is embedded in the incoming
encrypted message. Then, the Web Services Security implementation searches for all of the keys
managed by the key locator and decrypts the message using the key whose identifier value matches the
one in the message.

When you use secret key-based encryption, the value of the key name is embedded in the incoming
encrypted message. The Web Services Security implementation asks the key locator for the key with the
name that matches the name in the message and decrypts the message using the key.

Trust anchor:

A trust anchor specifies the key stores that contain trusted root certificates. These certificates are used to
validate the X.509 certificate that is embedded in the SOAP message.

When using WebSphere Application Server with the JAX-RPC programming model, key stores are
implemented with the following message points to validate the X.509 certificate that is used for digital
signature or XML encryption:

v Request consumer, as defined in the ibm-webservices-bnd.xmi file.

v Response consumer, as defined in the ibm-webservicesclient-bnd.xmi file when a web service is
acting as a client to another web service.

For WebSphere Application Server Version 7.0 and later, using JAX-WS, key stores are used by the
following message points to validate the X.509 certificate that is used for digital signature or XML
encryption:

v Request consumer, as defined in the inbound keys and certificates of the WS-Security bindings.

v Response consumer, as defined in the inbound keys and certificates of the WS-Security bindings when
a web service is acting as a client to another web service.

Chapter 27. Web services 1069

Key stores are critical to the integrity of the digital signature validation. If the key stores are tampered with,
the result of the digital signature verification is doubtful and compromised. Therefore, it is recommended
that you secure the key stores. The binding configuration specified for the consumer must match the
binding configuration for the generator.

The trust anchor is defined as java.security.cert.TrustAnchor in the Java CertPath application programming
interface (API). The Java CertPath API uses the trust anchor and the certificate store to validate the
incoming X.509 certificate that is embedded in the SOAP message. The Web Services Security
implementation in WebSphere Application Server supports this trust anchor. In WebSphere Application
Server, the trust anchor is represented as a Java key store object. The type, path, and password of the
key store are passed to the implementation through the administrative console or by scripting.

Trusted ID evaluator:

A trusted ID evaluator is the mechanism that evaluates whether a given ID name is trusted.

Using the trusted ID evaluator with the JAX-RPC programming model

In the JAX-RPC programming model, the trusted ID evaluator,
com.ibm.wsspi.wssecurity.id.TrustedIDEvaluatorImpl, is an abstraction of the mechanism that evaluates
whether a given ID name is trusted. There are two trust modes for validating the trust of the upstream
server when using JAX-RPC:

Basic authentication (username token)
The upstream server sends a username token with a user name and password to a downstream
server. The consumer or receiver of the message authenticates the username token and validates
the trust based upon the TrustedIDEvaluator implementation. The TrustedIDEvaluator
implementation must implement the com.ibm.wsspi.wssecurity.id.TrustedIDEvaluator Java
interface.

Signature
The upstream server signs the message, which can be any message part such as the SOAP
body. The upstream server sends the X.509 token to a downstream server. The consumer or
receiver of the message verifies the signature and validates the X.509 token. The identity or the
distinguished name from the X.509 token that is used in the digital signature is validated based on
the TrustedIDEvaluator implementation. The TrustedIDEvaluator implementation must implement
the com.ibm.wsspi.wssecurity.id.TrustedIDEvaluator Java interface. For the X.509 certificate,
WebSphere Application Server uses the distinguished name in the certificate as a requester
identity.

The following figures demonstrate the identity assertion trust process for both programming models:

1070 Overview

In this figure, server s1 is the upstream server and identity assertion is set up between server s1 and
server s2. The s1 server authenticates the identity called bob. Server s1 wants to send bob to the s2
server with a password. The trust mode is an s1 credential that contains the identity and a password.
Server s2 receives the request, authenticates the user using a Java Authentication and Authorization
Service (JAAS) login module, and uses the trusted ID evaluator to determine whether to trust the identity.
If the identity is trusted, bob is used as the caller that invokes the service. If authorization is required, bob
is the identity that is used for authorization verification.

Chapter 27. Web services 1071

The identity can be asserted as the RunAs (invocation) identity of the current security context. For
example, the web services gateway authenticates a requester using a secure method such as password
authentication and then sends the requester identity only to a back-end server. You might also use identity
assertion for interoperability with another Web Services Security implementation.

Depending upon the implementation of JAX-RPC, you can use various types of infrastructure to store a list
of the trusted IDs, such as:

v Plain text file

v Database

v Lightweight Directory Access Protocol (LDAP) server

The trusted ID evaluator is typically used by the eventual receiver in a multi-hop environment. The Web
Services Security implementation invokes the trusted ID evaluator and passes the identity name of the
intermediary as a parameter. If the identity is evaluated and deemed trustworthy, the procedure continues.
Otherwise, an exception is created and the procedure is stopped.

Using the trusted ID evaluator with the JAX-WS programming model

In the JAX-WS programming model, the same concepts are supported for the trusted ID evaluator,
although the implementation is different. For the JAX-WS run time, use the administrative console to select
the Use identity assertion option on the caller binding panel. This defines the trusted identity token type,
and then defines a list of one or more trusted identities. The trusted ID evaluator validates the trusted
identity token against the list of trusted identities. For more information about the list of trusted identities,
read the topic Changing the order of the callers for a token or message part.

For WebSphere Application Server Version 6.1 and later, the Caller and TrustMethod elements are used to
support the requestor login. The requestor sends a message to an intermediary, and the message is
dispatched to the service. Based on the security information, the service performs a login for the requestor.
In some cases, there are multiple security tokens, so the service has to decide which one to use. When
the requestor ID is included as an ID assertion, the service can specify how to trust the intermediary. The
following intermediary scenarios are supported:

<BasicAuth, null, null>
The requestor username and password is used for authentication. In this case, authentication is
performed with requestor properties, therefore a password is required for authentication.

<Signature, null, null>
The requestor signature is used for authentication.

<IDAssertion, Username, null>
The requestor username (without a password) is used to identify the requestor. The
UsernameToken token is used as the ID assertion, therefore no password is required to
accompany the username. In this case, the service trusts the intermediary unconditionally.

<IDAssertion, Username, Username>
The requestor username (without a password) is used to identify the requestor, and the username
and password of the intermediary is used to authenticate the intermediary. The UsernameToken
token, when used to establish trusted identity, always requires a password because the purpose of
the token is to establish trust between the intermediary and the service.

<IDAssertion, Username, X509>
The requestor username (without a password) is used to identify the requestor, and the signature
of the intermediary is used to authenticate the intermediary. In this case, the trusted identity for the
signature of the intermediary must be established using an X.509 certificate.

<IDAssertion, X509, null>
The identity of the requestor is established using an X.509 certificate. In this case, the X.509

1072 Overview

certificate from the requestor does not provide a signature to prove possession of the certificate,
and therefore the service trusts the intermediary unconditionally.

<IDAssertion, X509, Username>
The identity of the requestor is established using an X.509 certificate, and the username and
password of the intermediary is used to authenticate the intermediary. The UsernameToken token,
when used to establish trusted identity, always requires a password because the purpose of the
token is to establish trust between the intermediary and the service.

<IDAssertion, X509, X509>
The identity of the requestor is established using an X.509 certificate, and the signature of
intermediary is used to authenticate the intermediary.

Hardware cryptographic device support for Web Services Security:

In IBM WebSphere Application Server Version 6.1 or later, Web Services Security supports the use of
cryptographic hardware devices. There are two ways in which to use hardware cryptographic devices with
Web Services Security.

Enabling cryptographic operations on hardware devices

You can enable cryptographic operations on hardware devices. The keys that are used can be stored in a
Java keystore file; it is not necessary to store them on the hardware device. The decision to use enable
cryptographic operations on hardware devices is made at the server level only, not at the application level.

If cryptographic operations on hardware device is enabled, the Web Service Security run time first
attempts to use the hardware device for cryptographic operations. If the attempt to use the hardware
device fails or if the algorithm is not supported by the hardware device, the run time uses a software
provider from the security providers list.

Enabling this feature might improve the performance, depending on the hardware device. For more
information on how to enable cryptographic operations on hardware devices, see Configuring hardware
cryptographic devices for Web Services Security.

Secure keys

Cryptographic keys can be stored on the hardware cryptographic device and never leave the device.
These secure keys are confined to the hardware cryptographic device for security considerations rather
than performance considerations. The option to select whether to use keys that are stored in a hardware
cryptographic device or a Java keystore file can be made at the application level.

If the keystore reference is specified to be a hardware device configuration, the Web Services Security run
time first attempts to obtain the cryptographic algorithm from the hardware device. If the algorithm is not
supported or fails, the run time uses a software provider from the security providers list.

See further information about how to enable secure keys, see Enabling cryptographic keys stored in
hardware devices in Web Services Security.

Limitations

The hardware cryptographic device support for Web Services Security currently has the following
limitations:

v There is no support for a web services client running as a Java Platform, Enterprise Edition (Java EE)
Application Client.

v There is no support for hardware cryptographic devices on iSeries®.

Chapter 27. Web services 1073

v Only Version 6.1 and later, Web Services Security applications can take advantage of the hardware
cryptographic support.

Note: Versions 5.x and 6.0.x Web Services Security applications can run in a Version 6.1 WebSphere
Application Server, but these versions cannot take advantage of the hardware cryptographic
support.

Long-term usage of session keys

You can configure WebSphere Application Server to use the hardware keystore, or you can configure the
hardware acceleration card to allow the long-term usage of session keys. Session keys might be insecure.

If you are concerned about insecure session keys, configure WebSphere Application Server to use the
hardware keystore. See the information about how to enable cryptographic keys that are stored in
hardware devices in Web Services Security.

To configure the hardware acceleration card to allow the long-term usage of session keys, see the
manufacturer's documentation for the specific hardware acceleration card. For example:

1. For the nCipher nforce 1600 server Version 2.23.6, follow the nCipher documentation instructions.

2. You can set the CKNFAST_SECURITY_ASSURANCES_OVERRIDE=longterm parameter in the cknfastrc
configuration file. This configuration change eliminates the time limit that is associated with session
keys.

3. Follow the documentation for Cipher to restart the nCipher server.

4. Restart WebSphere Application Server.

Default configuration:

You can use sample configurations with the administrative console for testing purposes. The configurations
that you specify are reflected on the cell or server level.

The information in the following sections describes sample default bindings, sample general bindings, and
samples for key stores, key locators, collection certificate store, trust anchors, and trusted ID evaluators.
You can develop web services using the Java API for XML-based RPC (JAX-RPC) programming model, or
for WebSphere Application Server Version 7, using the Java API for XML-Based Web Services (JAX-WS)
programming model. Samples that are provided with WebSphere Application Server differ depending on
which programming model you use.

best-practices: IBM WebSphere Application Server supports the Java API for XML-Based Web Services
(JAX-WS) programming model and the Java API for XML-based RPC (JAX-RPC)
programming model. JAX-WS is the next generation web services programming model
extending the foundation provided by the JAX-RPC programming model. Using the
strategic JAX-WS programming model, development of web services and clients is
simplified through support of a standards-based annotations model. Although the
JAX-RPC programming model and applications are still supported, take advantage of the
easy-to-implement JAX-WS programming model to develop new web services
applications and clients.

Do not use these sample configurations in a production environment as they are for sample and testing
purposes only. To make modifications to these sample configurations, it is recommended that you use the
administrative console provided by WebSphere Application Server.

Detailed information on the sample general bindings for the JAX-WS programming model is available in
the topic General sample bindings for JAX-WS applications.

1074 Overview

Information on configuring default bindings, key stores, key locators, collection certificate store, trust
anchors, and trusted ID evaluators for the JAX-RPC programming model is available in the topic Default
sample configurations for JAX-RPC.

General sample bindings for JAX-WS applications:

You can use sample bindings with the administrative console for testing purposes. The configurations that
you specify are reflected on the cell or server level.

WebSphere Application Server Version 7.0 and later includes provider and client sample bindings for
testing purposes. In the bindings, the product provides sample values for supporting tokens for different
token types, such as the X.509 token, the username token, the LTPA token, and the Kerberos token. The
bindings also include sample values for message protection information for token types such as X.509 and
secure conversation. Both provider and client sample bindings can be applied to the applications attached
with a system policy set, or application policy set, from the default local repository.

This information describes the general sample bindings for the Java API for XML-Based Web Services
(JAX-WS) programming model. You can develop web services using the Java API for XML-based RPC
(JAX-RPC) programming model, or for WebSphere Application Server Version 7.0 and later, using the
Java API for XML-Based Web Services (JAX-WS) programming model. Sample general bindings may
differ depending on which programming model you use. The following sections, describing various general
sample bindings, are provided:

v “General client sample bindings”

v “Client sample bindings V2” on page 1080

v “General provider sample bindings” on page 1082

v “Provider sample bindings V2” on page 1086

best-practices: IBM WebSphere Application Server supports the Java API for XML-Based Web Services
(JAX-WS) programming model and the Java API for XML-based RPC (JAX-RPC)
programming model. JAX-WS is the next generation web services programming model
extending the foundation provided by the JAX-RPC programming model. Using the
strategic JAX-WS programming model, development of web services and clients is
simplified through support of a standards-based annotations model. Although the
JAX-RPC programming model and applications are still supported, take advantage of the
easy-to-implement JAX-WS programming model to develop new web services
applications and clients.

Do not use these provider and client sample bindings in their default state in a production environment.
You must modify the bindings to meet your security needs before using them in a production environment
by making a copy of the bindings and then modifying the copy. For example, you must change the key
and keystore settings to ensure security, and modify the binding settings to match your environment.

One set of general default bindings is shared by the applications to make application deployment easier.
You can specify default bindings for your service provider or client that are used at the global security
(cell) level, for a security domain, or for a particular server. The default bindings are used in the absence
of an overriding binding specified at a lower scope. The order of precedence from lowest to highest that
the application server uses to determine which default bindings to use is as follows:

1. Server level default

2. Security domain level default

3. Global security (cell) default

General client sample bindings

v The sample configuration for signing information generation, called asymmetric-signingInfoRequest,
contains the following configuration:

Chapter 27. Web services 1075

– References the gen_signkeyinfo signing key information.

– The part reference configuration, which contains the transform configuration using the
http://www.w3.org/2001/10/xml-exc-c14n# algorithm.

– The signing key information, gen_signkeyinfo, which contains this configuration:

- The security token reference.

- The gen_signx509token protection token asymmetric signature generator, as follows:

v Contains the X.509 V3 Token v1.0 token type.

v Contains the http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-x509-token-
profile-1.0#X509v3 value type for the local part value.

v Contains the wss.generate.x509 JAAS login

- The X.509 Callback Handler. The callback handler calls the custom keystore in
${USER_INSTALL_ROOT}/etc/ws-security/samples/dsigsender.ks, with these characteristics:

v The keystore type is JKS.

v The keystore password is client.

v The alias name of the trusted certificate is soapca.

v The alias name of the personal certificate is soaprequester.

v The key password client issued by the intermediary certificate authority Int CA2, which is in turn
issued by soapca.

– The signature method http://www.w3.org/2000/09/xmldsig#rsa-sha1.

– The canonicalization method http://www.w3.org/2001/10/xml-exc-c14n#.

v The sample configuration for signing information generation called symmetric-signingInfoRequest
contains the following configuration:

– References the gen_signsctkeyinfo signing key information.

– The part reference configuration, which contains the transform configuration using the
http://www.w3.org/2001/10/xml-exc-c14n# algorithm.

– The signing key information, gen_signsctkeyinfo, which contains this configuration:

- The security token reference.

- The derived key, as follows:

v Requires explicit derived key token.

v WS-SecureConversation as the client label.

v WS-SecureConversation as the service label.

v Key length of 16 bytes.

v Nonce length of 16 bytes.

- The gen_scttoken protection token generator, as follows:

v Contains the Secure Conversation Token Version 1.3 token type.

v Contains the http://docs.oasis-open.org/ws-sx/ws-secureconversation/200512/sct value
type as the local part value.

v Contains wss.generate.sct JAAS login

- The WS-Trust Callback Handler.

– The signature method http://www.w3.org/2000/09/xmldsig#hmac-sha1.

– The canonicalization method http://www.w3.org/2001/10/xml-exc-c14n#.

v The sample configuration for encryption information generation, called asymmetric-
encryptionInfoRequest, contains the following configuration:

– References the gen_enckeyinfo encryption key information.

– Encryption key information, named gen_enckeyinfo, which contains this configuration:

- The key identifier.

1076 Overview

- The gen_encx509token protection token asymmetric encryption generator, as follows:

v Keystore type is JCEKS.

v Keystore password is client.

v Alias name of the trusted certificate is soapca.

v Alias name of the personal certificate is bob.

v Key password client issued by intermediary certificate authority Int CA2, which is in turn issued
by soapca.

- The X.509 Callback Handler. The callback handler calls the custom keystore in
${USER_INSTALL_ROOT}/etc/ws-security/samples/enc-sender.jceks.

– The key encryption method http://www.w3.org/2001/04/xmlenc#rsa-1_5.

v The sample configuration for encryption information generation, called symmetric-
encryptionInfoRequest, contains the following configuration:

– References the gen_encsctkeyinfo encryption key information.

– The encryption key information, gen_encsctkeyinfo, which contains this configuration:

- The security token reference.

- The derived key, as follows:

v Requires explicit derived key token.

v WS-SecureConversation as the client label.

v WS-SecureConversation as the service label.

v Key length of 16 bytes.

v Nonce length of 16 bytes.

- The gen_scttoken protection token generator, which contains the following configuration:

v Contains the Secure Conversation Token v1.3 token type.

v Contains the http://docs.oasis-open.org/ws-sx/ws-secureconversation/200512/sct value
type for the local part value.

v Contains wss.generate.sct JAAS login.

- The WS-Trust Callback Handler.

– The data encryption method http://www.w3.org/2001/04/xmlenc#aes128-cbc.

v The sample configuration for signing information consumption, called asymmetric-signingInfoResponse,
contains the following configuration:

– References the con_signkeyinfo signing key information.

– The part reference configuration, which uses the transform configuration http://www.w3.org/2001/
10/xml-exc-c14n# algorithm.

– The signing key information, named con_signkeyinfo, which contains the following configuration:

- The con_signx509token protection token asymmetric signature consumer, as follows:

v Contains the X.509 V3 Token v1.0 token type.

v Contains the http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-x509-token-
profile-1.0#X509v3 value type for the local part value.

v Contains the wss.consume.x509 JAAS login.

- The X.509 Callback Handler, as follows:

v References a certificate store named DigSigCertStore.

v References a trusted anchor store named DigSigTrustAnchor.

– The signature method http://www.w3.org/2000/09/xmldsig#rsa-sha1.

– The canonicalization method http://www.w3.org/2001/10/xml-exc-c14n#.

v The sample configuration for signing information consumption, called symmetric-signingInfoResponse,
contains the following configuration:

Chapter 27. Web services 1077

– References the con_sctsignkeyinfo signing key information.

– The part reference configuration, which uses the transform configuration http://www.w3.org/2001/
10/xml-exc-c14n# algorithm.

– The signing key information, named con_sctsignkeyinfo, which contains the following configuration:

- The derived key, as follows:

v Requires explicit derived key token.

v WS-SecureConversation as the client label.

v WS-SecureConversation as the service label.

v Key length of 16 bytes.

v Nonce length of 16 bytes.

- The con_scttoken protection token consumer, as follows:

v Contains the Secure Conversation Token v1.3 token type.

v Contains the http://docs.oasis-open.org/ws-sx/ws-secureconversation/200512/sct value
type for the local part value.

v Contains the wss.consume.sct JAAS login.

- The WS-SecureConversation Callback Handler.

– The signature method http://www.w3.org/2000/09/xmldsig#hmac-sha1.

– The canonicalization method http://www.w3.org/2001/10/xml-exc-c14n#.

v The sample configuration for encryption information consumption, called asymmetric-
encryptionInfoResponse, which contains the following configuration:

– References the dec_keyinfo encryption key information.

– The encryption key information, named dec_keyinfo, which contains the following configuration:

- The con_encx509token protection token asymmetric encryption consumer, as follows:

v Contains the X.509 V3 Token v1.0 token type.

v Contains the http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-x509-token-
profile-1.0#X509v3 value type for the local part value.

v Contains the wss.consume.x509 JAAS login.

- The X.509 Callback Handler. The callback handler calls the custom keystore in
${USER_INSTALL_ROOT}/etc/ws-security/samples/enc-sender.jceks, with the follow
characteristics:

v The keystore type is JCEKS.

v The keystore password is client.

v The alias name of the trusted certificate is soapca.

v The alias name of the personal certificate is alice.

v The key password client issued by intermediary certificate authority Int CA2, which is in turn
issued by soapca.

– The key encryption method http://www.w3.org/2001/04/xmlenc#rsa-1_5.

v The sample configuration for encryption information consumption, called symmetric-
encryptionInfoResponse, contains the following configuration:

– References the dec_sctkeyinfo encryption key information.

– The encryption key information, named dec_sctkeyinfo, contains the following configuration:

- The derived key, as follows:

v Requires explicit derived key token.

v WS-SecureConversation as the client label.

v WS-SecureConversation as the service label.

v Key length of 16 bytes.

1078 Overview

v Nonce length of 16 bytes.

- The con_scttoken protection token consumer, as follows:

v Contains the Secure Conversation Token v1.3 token type.

v Contains the http://docs.oasis-open.org/ws-sx/ws-secureconversation/200512/sct value
type for the local part value.

v Contains the wss.consume.sct JAAS login.

- The WS-SecureConversation Callback Handler.

– The data encryption method http://www.w3.org/2001/04/xmlenc#aes128-cbc.

v The sample configuration for authentication token generation, called gen_signkrb5token, contains the
following configuration:

– The custom token type for the Kerberos v5 token, which uses http://docs.oasis-open.org/wss/
oasis-wss-kerberos-token-profile-1.1#GSS_Kerberosv5_AP_REQ for the local part value.

– The wss.generate.KRB5BST JAAS login.

– The following custom properties:

- com.ibm.wsspi.wssecurity.krbtoken.targetServiceName, the target Kerberos service name.

- com.ibm.wsspi.wssecurity.krbtoken.targetServiceHost, the host name associated with the
target Kerberos service name,

You must provide the correct values for your environment before using this configuration.

– The custom Kerberos token callback handler. You must provide the correct values for the Kerberos
client principal and password.

v The sample configuration for authentication token generation, called gen_signltpaproptoken, contains
the following configuration:

– The token type LTPA propagation token, as follows:

- Contains LTPA_PROPAGATION for the local part value.

- Contains http://www.ibm.com/websphere/appserver/tokentype for the Namespace URI value.

– Contains the wss.generate.ltpaProp JAAS login.

– Uses the LTPA token callback handler.

v The sample configuration for authentication token generation, called gen_signltpatoken, contains the
following configuration:

– The token type of LTPA Token v2.0, as follows:

- Contains LTPA_PROPAGATION for the local part value.

- Contains http://www.ibm.com/websphere/appserver/tokentype for the Namespace URI value.

– The wss.generate.ltpa JAAS login.

– The LTPA token callback handler.

v The sample configuration for authentication token generation, called gen_signunametoken, contains the
following configuration:

– The token type of Username Token v1.0, which uses http://docs.oasis-open.org/wss/2004/01/
oasis-200401-wss-username-token-profile-1.0#UsernameToken for the local part value.

– The wss.generate.unt JAAS login.

– The Username token callback handler, as follows:

- Contains basic authentication fields. You must provide the correct values for your environment for
client principal and password.

- Contains the following custom properties:

v com.ibm.wsspi.wssecurity.token.username.addNonce for adding the nonce value.

v com.ibm.wsspi.wssecurity.token.username.addTimestamp for adding the time stamp value.

Chapter 27. Web services 1079

Client sample bindings V2

Two new general sample bindings, Client sample V2, and Provider sample V2, have been added to the
product. While many of the configurations are the same as previous versions of the client sample and
provider sample bindings, there are several additional, new sample configurations. To use these new
bindings, create a new profile after installing the product. For more information, read the topic Configuring
Kerberos policy sets and V2 general sample bindings.

v The sample configuration for signing information generation, called symmetric-KrbsignInfoRequest,
contains the following configuration:

– References the gen_reqKRBsignkeyinfo signing key information.

– The part reference configuration, which contains the transform configuration using the
http://www.w3.org/2001/10/xml-exc-c14n# algorithm.

– The signing key information, gen_reqKRBsignkeyinfo, which contains this configuration:

- The security token reference.

- The derived key, as follows:

v Requires explicit derived key token.

v WS-SecureConversation as the client label.

v WS-SecureConversation as the service label.

v Key length of 16 bytes.

v Nonce length of 16 bytes.

- The gen_krb5token protection token generator, as follows:

v Contains the Kerberos V5 GSS AP_REQ binary security token type.

v Contains the http://docs.oasis-open.org/wss/oasis-wss-kerberos-token-profile-
1.1#GSS_Kerberosv5_AP_REQ value type as the local part value.

v Contains wss.generate.KRB5BST JAAS login

- The com.ibm.websphere.wssecurity.callbackhandler.KRBTokenGenerateCallbackHandler.

– The signature method http://www.w3.org/2000/09/xmldsig#hmac-sha1.

– The canonicalization method http://www.w3.org/2001/10/xml-exc-c14n#.

v The sample configuration for encryption information generation, called symmetric-KrbEncInfoRequest,
contains the following configuration:

– References the gen_reqKRBenckeyinfo encryption key information.

– The encryption key information, gen_reqKRBenckeyinfo, which contains this configuration:

- The security token reference.

- The derived key, as follows:

v Requires explicit derived key token.

v WS-SecureConversation as the client label.

v WS-SecureConversation as the service label.

v Key length of 16 bytes.

v Nonce length of 16 bytes.

- The gen_krb5token protection token generator, which contains the following configuration:

v Contains the Kerberos V5 GSS AP_REQ binary security token type.

v Contains the http://docs.oasis-open.org/wss/oasis-wss-kerberos-token-profile-
1.1#GSS_Kerberosv5_AP_REQ value type for the local part value.

v Contains wss.generate.KRB5BST JAAS login.

- The com.ibm.websphere.wssecurity.callbackhandler.KRBTokenGenerateCallbackHandler.

– The data encryption method http://www.w3.org/2001/04/xmlenc#aes128-cbc.

1080 Overview

v The sample configuration for signing information consumption, called symmetric-KrbsignInfoResponse,
contains the following configuration:

– References the con_respKRBsignkeyinfo signing key information.

– The part reference configuration, which uses the transform configuration http://www.w3.org/2001/
10/xml-exc-c14n# algorithm.

– The signing key information, named con_respKRBsignkeyinfo, which contains the following
configuration:

- The derived key, as follows:

v Requires explicit derived key token.

v WS-SecureConversation as the client label.

v WS-SecureConversation as the service label.

v Key length of 16 bytes.

v Nonce length of 16 bytes.

- The con_krb5token protection token consumer, as follows:

v Contains the Kerberos V5 GSS AP_REQ binary security token type.

v Contains the http://docs.oasis-open.org/wss/oasis-wss-kerberos-token-profile-
1.1#GSS_Kerberosv5_AP_REQ value type for the local part value.

v Contains the wss.consume.KRB5BST JAAS login.

- The com.ibm.websphere.wssecurity.callbackhandler.KRBTokenConsumeCallbackHandler

– The signature method http://www.w3.org/2000/09/xmldsig#hmac-sha1.

– The canonicalization method http://www.w3.org/2001/10/xml-exc-c14n#.

v The sample configuration for encryption information consumption, called symmetric-
KrbEncInfoResponse, contains the following configuration:

– References the con_respKRBenckeyinfo encryption key information.

– The encryption key information, named con_respKRBenckeyinfo, contains the following configuration:

- The derived key, as follows:

v Requires explicit derived key token.

v WS-SecureConversation as the client label.

v WS-SecureConversation as the service label.

v Key length of 16 bytes.

v Nonce length of 16 bytes.

- The con_krb5token protection token consumer, as follows:

v Contains the Kerberos V5 GSS AP_REQ binary security token type.

v Contains the http://docs.oasis-open.org/wss/oasis-wss-kerberos-token-profile-
1.1#GSS_Kerberosv5_AP_REQ value type for the local part value.

v Contains the wss.consume.KRB5BST JAAS login.

- The com.ibm.websphere.wssecurity.callbackhandler.KRBTokenConsumeCallbackHandler.

– The data encryption method http://www.w3.org/2001/04/xmlenc#aes128-cbc.

v The sample configuration for authentication token generation, called gen_krb5token, contains the
following configuration:

– The custom token type for the Kerberos V5 token, which uses http://docs.oasis-open.org/wss/
oasis-wss-kerberos-token-profile-1.1#GSS_Kerberosv5_AP_REQ for the local part value.

– The wss.generate.KRB5BST JAAS login.

– The following custom properties:

- com.ibm.wsspi.wssecurity.krbtoken.targetServiceName, the target Kerberos service name.

- com.ibm.wsspi.wssecurity.krbtoken.targetServiceHost, the host name associated with the target
Kerberos service name.

Chapter 27. Web services 1081

Note: You must provide the correct values for your environment before using this configuration.

– The custom Kerberos token callback handler.

Note: You must provide the correct values for the Kerberos client principal and password.

v The sample configuration for authentication token generation, called con_krb5token, contains the
following configuration:

– The custom token type for the Kerberos V5 token, which uses http://docs.oasis-open.org/wss/
oasis-wss-kerberos-token-profile-1.1#GSS_Kerberosv5_AP_REQ for the local part value.

– The wss.consume.KRB5BST JAAS login.

– The custom Kerberos token callback handler.

General provider sample bindings

v The sample configuration for signing information consumption, called asymmetric-signingInfoRequest,
contains the following configuration:

– References the con_signkeyinfo signing key information.

– The part reference configuration, which uses the transform configuration http://www.w3.org/2001/
10/xml-exc-c14n# algorithm.

– The signing key information, named con_signkeyinfo, which contains the following configuration:

- The con_signx509token protection token asymmetric signature consumer, as follows:

v Contains the X.509 V3 Token v1.0 token type.

v Contains the http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-x509-token-
profile-1.0#X509v3 value type for the local part value.

v Contains the wss.consume.x509 JAAS login.

- The X.509 Callback Handler, as follows:

v References a certificate store named DigSigCertStore.

v References a trusted anchor store named DigSigTrustAnchor.

– The signature method http://www.w3.org/2000/09/xmldsig#rsa-sha1.

– The canonicalization method http://www.w3.org/2001/10/xml-exc-c14n#.

v The sample configuration for signing information consumption, called symmetric-signingInfoRequest,
contains the following configuration:

– References the con_sctsignkeyinfo signing key information.

– The part reference configuration, which uses the transform configuration http://www.w3.org/2001/
10/xml-exc-c14n# algorithm.

– The signing key information, named con_sctsignkeyinfo, which contains the following configuration:

- The derived key, as follows:

v Requires explicit derived key token.

v WS-SecureConversation as the client label.

v WS-SecureConversation as the service label.

v Key length of 16 bytes.

v Nonce length of 16 bytes.

- The con_scttoken protection token generator, as follows:

v Contains the Secure Conversation Token v1.3 token type.

v Contains the http://docs.oasis-open.org/ws-sx/ws-secureconversation/200512/sct value
type for the local part value.

v Contains the wss.consume.sct JAAS login.

- The WS-SecureConversation Callback Handler.

– The signature method http://www.w3.org/2000/09/xmldsig#hmac-sha1.

1082 Overview

– The canonicalization method http://www.w3.org/2001/10/xml-exc-c14n#.

v The sample configuration for encryption information consumption, called asymmetric-
encryptionInfoRequest, contains the following configurations:

– References the dec_keyinfo encryption key information.

– The encryption key information, named dec_keyinfo, which contains the following configuration:

- The con_encx509token protection token asymmetric encryption consumer, as follows:

v Contains the X.509 V3 Token v1.0 token type.

v Contains the http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-x509-token-
profile-1.0#X509v3 value type for the local part value.

v Contains the wss.consume.x509 JAAS login.

- The X.509 Callback Handler. The callback handler calls the custom keystore in
${USER_INSTALL_ROOT}/etc/ws-security/samples/enc-receiver.jceks, with the following
characteristics:

v The keystore type is JCEKS.

v The keystore password is client.

v The alias name of the trusted certificate is soapca.

v The alias name of the personal certificate is bob.

v The key password client issued by intermediary certificate authority Int CA2, which is in turn
issued by soapca.

– The key encryption method http://www.w3.org/2001/04/xmlenc#rsa-1_5.

v The sample configuration for encryption information consumption, called symmetric-
encryptionInfoRequest, contains the following configuration:

– References the dec_sctkeyinfo encryption key information.

– The encryption key information, named dec_sctkeyinfo, which contains the following configuration:

- The derived key, as follows:

v Requires explicit derived key token.

v WS-SecureConversation as the client label.

v WS-SecureConversation as the service label.

v Key length of 16 bytes.

v Nonce length of 16 bytes.

- The con_scttoken protection token consumer, as follows:

v Contains the Secure Conversation Token v1.3 token type.

v Contains the http://docs.oasis-open.org/ws-sx/ws-secureconversation/200512/sct value
type for the local part value.

v Contains the wss.consume.sct JAAS login.

- The WS-SecureConversation Callback Handler.

– The data encryption method http://www.w3.org/2001/04/xmlenc#aes128-cbc.

v The sample configuration for signing information generation, called asymmetric-signingInfoResponse,
contains the following configuration:

– References the gen_signkeyinfo signing key information.

– The part reference configuration, which uses the transform configuration http://www.w3.org/2001/
10/xml-exc-c14n# algorithm.

– The signing key information, named gen_signkeyinfo, which contains the following configuration:

- The security token reference.

- The gen_signx509token protection token asymmetric signature generator, as follows:

v Contains the X.509 V3 Token v1.0 token type.

Chapter 27. Web services 1083

v Contains the http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-x509-token-
profile-1.0#X509v3 value type for the local part value.

v Contains the wss.generate.x509 JAAS login.

- The X.509 Callback Handler. The callback handler calls the custom keystore in
${USER_INSTALL_ROOT}/etc/ws-security/samples/dsig-receiver.ks, with the following
characteristics:

v The keystore type is JKS.

v The keystore password is client.

v The alias name of the trusted certificate is soapca.

v The alias name of the personal certificate is soapprovider.

v The key password client issued by intermediary certificate authority Int CA2, which is in turn
issued by soapca.

– The signature method http://www.w3.org/2000/09/xmldsig#rsa-sha1.

– The canonicalization method http://www.w3.org/2001/10/xml-exc-c14n#.

v The sample configuration for signing information generation, called symmetric-signingInfoResponse,
contains the following configuration:

– References the gen_signsctkeyinfo signing key information.

– The part reference configuration, which uses the transform configuration http://www.w3.org/2001/
10/xml-exc-c14n# algorithm.

– The signing key information, named gen_signsctkeyinfo, which contains the following configuration:

- The security token reference.

- The derived key, as follows:

v Requires explicit derived key token.

v WS-SecureConversation as the client label.

v WS-SecureConversation as the service label.

v Key length of 16 bytes.

v Nonce length of 16 bytes.

- The gen_scttoken protection token generator, as follows:

v Contains the Secure Conversation Token v1.3 token type.

v Contains the http://docs.oasis-open.org/ws-sx/ws-secureconversation/200512/sct value
type for the local part value.

v Contains the wss.generate.sct JAAS login.

- The WS-Trust Callback Handler.

– The signature method http://www.w3.org/2000/09/xmldsig#hmac-sha1.

– The canonicalization method http://www.w3.org/2001/10/xml-exc-c14n#.

v The sample configuration for encryption information generation, called asymmetric-
encryptionInfoResponse, contains the following configuration:

– References the gen_enckeyinfo encryption key information.

– The encryption key information, named gen_enckeyinfo, contains the following configuration

- The key identifier.

- The gen_encx509token protection token asymmetric encryption generator, as follows:

v Contains the X.509 V3 Token v1.0 token type.

v Contains the http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-x509-token-
profile-1.0#X509v3 value type for the local part value.

v Contains the wss.generate.x509 JAAS login.

1084 Overview

- Uses X.509 Callback Handler. The callback handler calls the custom keystore in
${USER_INSTALL_ROOT}/etc/ws-security/samples/enc-receiver.jceks, with the following
characteristics:

v The keystore type is JCEKS.

v The keystore password is client.

v The alias name of the trusted certificate is soapca.

v The alias name of the personal certificate is alice.

v The key password client issued by intermediary certificate authority Int CA2, which is in turn
issued by soapca.

– The key encryption method http://www.w3.org/2001/04/xmlenc#rsa-1_5.

v The sample configuration for encryption information generation, called symmetric-
encryptionInfoResponse, contains the following configuration:

– References the gen_encsctkeyinfo encryption key information.

– The encryption key information, named gen_encsctkeyinfo, contains the following configuration:

- The security token reference.

- The derived key, as follows:

v Requires explicit derived key token.

v WS-SecureConversation as the client label.

v WS-SecureConversation as the service label.

v Key length of 16 bytes.

v Nonce length of 16 bytes.

- The gen_scttoken protection token generator, as follows:

v Contains the Secure Conversation Token v1.3 token type.

v Contains the http://docs.oasis-open.org/ws-sx/ws-secureconversation/200512/sct value
type for the local part value.

v Contains the wss.generate.sct JAAS login.

- The WS-Trust Callback Handler.

– The data encryption method http://www.w3.org/2001/04/xmlenc#aes128-cbc.

v The sample configuration for authentication token consumption, called con_krb5token, contains the
following configuration:

– The custom token type for Kerberos v5 token, which uses http://docs.oasis-open.org/wss/oasis-
wss-kerberos-token-profile-1.1#GSS_Kerberosv5_AP_REQ for the local part value.

– The wss.consume.KRB5BST JAAS login.

– The custom Kerberos token callback handler.

v The sample configuration for authentication token consumption, called con_ltpaproptoken, contains the
following configuration:

– The token type LTPA propagation token.

– The wss.consume.ltpaProp JAAS login.

– The LTPA token callback handler.

v The sample configuration for authentication token consumption, called con_ltpatoken, contains the
following configuration:

– The token type LTPA Token v2.0, with the following characteristics:

- Contains LTPAv2 for the local part value.

- Contains http://www.ibm.com/websphere/appserver/tokentype for the Namespace URI value.

– The wss.consume.ltpa JAAS login

– The LTPA token callback handler.

Chapter 27. Web services 1085

v The sample configuration for authentication token consumption, called con_unametoken, contains the
following configuration:

– Token type Username Token v1.0, which uses http://docs.oasis-open.org/wss/2004/01/oasis-
200401-wss-username-token-profile-1.0#UsernameToken for the local part value.

– The wss.consume.unt JAAS login.

– The Username token callback handler, with the following custom properties:

- com.ibm.wsspi.wssecurity.token.username.verifyNonce for verifying the nonce value.

- com.ibm.wsspi.wssecurity.token.username.verifyTimestamp for verifying the time stamp value.

Provider sample bindings V2

Two new general sample bindings, Client sample V2, and Provider sample V2, have been added to the
product. While many of the configurations are the same as previous versions of the client sample and
provider sample bindings, there are several additional, new sample configurations. To use these new
bindings, create a new profile after installing the product. For more information, read the topic Configuring
Kerberos policy sets and V2 general sample bindings.

v The sample configuration for signing information generation, called symmetric-KrbsignInfoRequest,
contains the following configuration:

– References the con_respKRBsignkeyinfo signing key information.

– The part reference configuration, which contains the transform configuration using the
http://www.w3.org/2001/10/xml-exc-c14n# algorithm.

– The signing key information, con_respKRBsignkeyinfo, which contains this configuration:

- The security token reference.

- The derived key, as follows:

v Requires explicit derived key token.

v WS-SecureConversation as the client label.

v WS-SecureConversation as the service label.

v Key length of 16 bytes.

v Nonce length of 16 bytes.

- The con_krb5token protection token consumer, as follows:

v Contains the Kerberos V5 GSS AP_REQ binary security token type.

v Contains the http://docs.oasis-open.org/wss/oasis-wss-kerberos-token-profile-
1.1#GSS_Kerberosv5_AP_REQ value type as the local part value.

v Contains wss.consume.KRB5BST JAAS login.

- The com.ibm.websphere.wssecurity.callbackhandler.KRBTokenConsumeCallbackHandler.

– The signature method http://www.w3.org/2000/09/xmldsig#hmac-sha1.

– The canonicalization method http://www.w3.org/2001/10/xml-exc-c14n#.

v The sample configuration for encryption information generation, called symmetric-KrbEncInfoRequest,
contains the following configuration:

– References the con_reqKRBenckeyinfo encryption key information.

– The encryption key information, con_reqKRBenckeyinfo, which contains this configuration:

- The security token reference.

- The derived key, as follows:

v Requires explicit derived key token.

v WS-SecureConversation as the client label.

v WS-SecureConversation as the service label.

v Key length of 16 bytes.

v Nonce length of 16 bytes.

1086 Overview

- The con_krb5token protection token consumer, which contains the following configuration:

v Contains the Kerberos V5 GSS AP_REQ binary security token type.

v Contains the http://docs.oasis-open.org/wss/oasis-wss-kerberos-token-profile-
1.1#GSS_Kerberosv5_AP_REQ value type for the local part value.

v Contains wss.consume.KRB5BST JAAS login.

- The com.ibm.websphere.wssecurity.callbackhandler.KRBTokenConsumeCallbackHandler.

– The data encryption method http://www.w3.org/2001/04/xmlenc#aes128-cbc.

v The sample configuration for signing information consumption, called symmetric-KrbsignInfoResponse,
contains the following configuration:

– References the gen_respKRBsignkeyinfo signing key information.

– The part reference configuration, which uses the transform configuration http://www.w3.org/2001/
10/xml-exc-c14n# algorithm.

– The signing key information, named gen_respKRBsignkeyinfo, which contains the following
configuration:

- The derived key, as follows:

v Requires explicit derived key token.

v WS-SecureConversation as the client label.

v WS-SecureConversation as the service label.

v Key length of 16 bytes.

v Nonce length of 16 bytes.

- The gen_krb5token protection token generator, as follows:

v Contains the Kerberos V5 GSS AP_REQ binary security token type.

v Contains the http://docs.oasis-open.org/wss/oasis-wss-kerberos-token-profile-
1.1#GSS_Kerberosv5_AP_REQ value type for the local part value.

v Contains the wss.generate.KRB5BST JAAS login.

- The com.ibm.websphere.wssecurity.callbackhandler.KRBTokenGenerateCallbackHandler.

– The signature method http://www.w3.org/2000/09/xmldsig#hmac-sha1.

– The canonicalization method http://www.w3.org/2001/10/xml-exc-c14n#.

v The sample configuration for encryption information consumption, called symmetric-
KrbEncInfoResponse, contains the following configuration:

– References the gen_respKRBenckeyinfo encryption key information.

– The encryption key information, named gen_respKRBenckeyinfo, contains the following configuration:

- The derived key, as follows:

v Requires explicit derived key token.

v WS-SecureConversation as the client label.

v WS-SecureConversation as the service label.

v Key length of 16 bytes.

v Nonce length of 16 bytes.

- The gen_krb5token protection token generator, as follows:

v Contains the Kerberos V5 GSS AP_REQ binary security token type.

v Contains the http://docs.oasis-open.org/wss/oasis-wss-kerberos-token-profile-
1.1#GSS_Kerberosv5_AP_REQ value type for the local part value.

v Contains the wss.generate.KRB5BST JAAS login.

- The com.ibm.websphere.wssecurity.callbackhandler.KRBTokenGenerateCallbackHandler

– The data encryption method http://www.w3.org/2001/04/xmlenc#aes128-cbc.

Chapter 27. Web services 1087

v The sample configuration for authentication token generation, called gen_krb5token, contains the
following configuration:

– The custom token type for the Kerberos V5 token, which uses http://docs.oasis-open.org/wss/
oasis-wss-kerberos-token-profile-1.1#GSS_Kerberosv5_AP_REQ for the local part value.

– The wss.generate.KRB5BST JAAS login.

– The custom Kerberos token callback handler.

v The sample configuration for authentication token generation, called con_krb5token, contains the
following configuration:

– The custom token type for the Kerberos V5 token, which uses http://docs.oasis-open.org/wss/
oasis-wss-kerberos-token-profile-1.1#GSS_Kerberosv5_AP_REQ for the local part value.

– The wss.consume.KRB5BST JAAS login.

– The custom Kerberos token callback handler.

Default sample configurations for JAX-RPC:

Use sample configurations with the administrative console for testing purposes. The configurations that
you specify are reflected on the cell or server level.

This information describes the sample default bindings, key stores, key locators, collection certificate store,
trust anchors, and trusted ID evaluators for WebSphere Application Server using the API for XML-based
RPC (JAX-RPC) programming model. You can develop web services using the Java API for XML-based
RPC (JAX-RPC) programming model, or for WebSphere Application Server Version 7 and later, using the
Java API for XML-Based Web Services (JAX-WS) programming model. Sample default bindings, key
stores, key locators, collection certificate store, trust anchors, and trusted ID evaluator may differ
depending on which programming model you use.

best-practices: IBM WebSphere Application Server supports the Java API for XML-Based Web Services
(JAX-WS) programming model and the Java API for XML-based RPC (JAX-RPC)
programming model. JAX-WS is the next generation web services programming model
extending the foundation provided by the JAX-RPC programming model. Using the
strategic JAX-WS programming model, development of web services and clients is
simplified through support of a standards-based annotations model. Although the
JAX-RPC programming model and applications are still supported, take advantage of the
easy-to-implement JAX-WS programming model to develop new web services
applications and clients.

Do not use these configurations in a production environment as they are for sample and testing purposes
only. To make modifications to these sample configurations, it is recommended that you use the
administrative console provided by WebSphere Application Server.

For a Web Services Security-enabled application, you must correctly configure a deployment descriptor
and a binding. In WebSphere Application Server, one set of default bindings is shared by the applications
to make application deployment easier. The default binding information for the cell level and the server
level can be overridden by the binding information on the application level. The Application Server
searches for binding information for an application on the application level before searching the server
level, and then the cell level.

The following sample configurations are for WebSphere Application Server using the API for XML-based
RPC (JAX-RPC) programming model.

Default generator binding

WebSphere Application Server provides a sample set of default generator bindings. The default generator
bindings contain both signing information and encryption information.

1088 Overview

The sample signing information configuration is called gen_signinfo and contains the following
configurations:

v Uses the following algorithms for the gen_signinfo configuration:

– Signature method: http://www.w3.org/2000/09/xmldsig#rsa-sha1

– Canonicalization method: http://www.w3.org/2001/10/xml-exc-c14n#

v References the gen_signkeyinfo signing key information. The following information pertains to the
gen_signkeyinfo configuration:

– Contains a part reference configuration that is called gen_signpart. The part reference is not used in
default binding. The signing information applies to all of the Integrity or Required Integrity elements
within the deployment descriptors and the information is used for naming purposes only. The
following information pertains to the gen_signpart configuration:

- Uses the transform configuration called transform1. The following transforms are configured for
the default signing information:

v Uses the http://www.w3.org/2001/10/xml-exc-c14n# algorithm

v Uses the http://www.w3.org/2000/09/xmldsig#sha1 digest method

– Uses the security token reference, which is the configured default key information.

– Uses the SampleGeneratorSignatureKeyStoreKeyLocator key locator. For more information on this
key locator, see “Sample key locators” on page 1092.

– Uses the gen_signtgen token generator, which contains the following configuration:

- Contains the X.509 token generator, which generates the X.509 token of the signer.

- Contains the gen_signtgen_vtype value type URI.

- Contains the http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-x509-token-profile-
1.0#X509v3 value type local name value.

– Uses X.509 Callback Handler. The callback handler calls the ${USER_INSTALL_ROOT}/etc/ws-
security/samples/dsig-sender.ks key store.

- The key store password is client.

- The alias name of the trusted certificate is soapca.

- The alias name of the personal certificate is soaprequester.

- The key password client issued by intermediary certificate authority Int CA2, which is in turn
issued by soapca.

The sample encryption information configuration is called gen_encinfo and contains the following
configurations:

v Uses the following algorithms for the gen_encinfo configuration:

– Data encryption method: http://www.w3.org/2001/04/xmlenc#tripledes-cbc

– Key encryption method: http://www.w3.org/2001/04/xmlenc#rsa-1_5

v References the gen_enckeyinfo encryption key information. The following information pertains to the
gen_enckeyinfo configuration:

– Uses the key identifier as the default key information.

– Contains a reference to the SampleGeneratorEncryptionKeyStoreKeyLocator key locator. For more
information on this key locator, see “Sample key locators” on page 1092.

– Uses the gen_signtgen token generator, which has the following configuration:

- Contains the X.509 token generator, which generates the X.509 token of the signer.

- Contains the gen_enctgen_vtype value type URI.

- Contains the http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-x509-token-profile-
1.0#X509v3 value type local name value.

– Uses X.509 Callback Handler. The callback handler calls the ${USER_INSTALL_ROOT}/etc/ws-
security/samples/enc-sender.jceks key store.

Chapter 27. Web services 1089

- The key store password is storepass.

- The secret key CN=Group1 has an alias name of Group1 and a key password of keypass.

- The public key CN=Bob, O=IBM, C=US has an alias name of bob and a key password of keypass.

- The private key CN=Alice, O=IBM, C=US has an alias name of alice and a key password of
keypass.

Default consumer binding

WebSphere Application Server provides a sample set of default consumer binding. The default consumer
binding contain both signing information and encryption information.

The sample signing information configuration is called con_signinfo and contains the following
configurations:

v Uses the following algorithms for the con_signinfo configuration:

– Signature method: http://www.w3.org/2000/09/xmldsig#rsa-sha1

– Canonicalization method: http://www.w3.org/2001/10/xml-exc-c14n#

v Uses the con_signkeyinfo signing key information reference. The following information pertains to the
con_signkeyinfo configuration:

– Contains a part reference configuration that is called con_signpart. The part reference is not used in
default binding. The signing information applies to all of the Integrity or RequiredIntegrity elements
within the deployment descriptors and the information is used for naming purposes only. The
following information pertains to the con_signpart configuration:

- Uses the transform configuration called reqint_body_transform1. The following transforms are
configured for the default signing information:

v Uses the http://www.w3.org/2001/10/xml-exc-c14n# algorithm.

v Uses the http://www.w3.org/2000/09/xmldsig#sha1 digest method.

– Uses the security token reference, which is the configured default key information.

– Uses the SampleX509TokenKeyLocator key locator. For more information on this key locator, see
“Sample key locators” on page 1092.

– References the con_signtcon token consumer configuration. The following information pertains to the
con_signtcon configuration:

- Uses the X.509 Token Consumer, which is configured as the consumer for the default signing
information.

- Contains the signtconsumer_vtype value type URI.

- Contains the http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-x509-token-profile-
1.0#X509v3 value type local name value.

– Contains a JAAS configuration called system.wssecurity.X509BST that references the following
information:

- Trust anchor: SampleClientTrustAnchor

- Collection certificate store: SampleCollectionCertStore

The encryption information configuration is called con_encinfo and contains the following configurations:

v Uses the following algorithms for the con_encinfo configuration:

– Data encryption method: http://www.w3.org/2001/04/xmlenc#tripledes-cbc

– Key encryption method: http://www.w3.org/2001/04/xmlenc#rsa-1_5

v References the con_enckeyinfo encryption key information. This key actually decrypts the message.
The following information pertains to the con_enckeyinfo configuration:

– Uses the key identifier, which is configured as the key information for the default encryption
information.

1090 Overview

– Contains a reference to the SampleConsumerEncryptionKeyStoreKeyLocator key locator. For more
information on this key locator, see “Sample key locators” on page 1092.

– References the con_enctcon token consumer configuration. The following information pertains to the
con_enctcon configuration:

- Uses the X.509 token consumer, which is configured for the default encryption information.

- Contains the enctconsumer_vtype value type URI.

- Contains the http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-x509-token-profile-
1.0#X509v3 value type local name value.

– Contains a JAAS configuration called system.wssecurity.X509BST.

Sample key store configurations

WebSphere Application Server provides the following key stores. You can work with these key
stores outside of the Application Server by using the iKeyman utility or the key tool.

v The iKeyman utility is located in the following directory: app_server_root/bin/ikeyman

v The key tool is located in the following directory: app_server_root/java/jre/bin/keytool

WebSphere Application Server provides the following key stores.
You can work with these key stores outside of the Application Server by using the iKeyman utility or the
key tool.

v The iKeyman utility is located in the following directory: app_server_root\bin\ikeyman.sh

v The key tool is located in the following directory: app_server_root\java\jre\bin\keytool.sh

The following sample key stores are for testing purposes only; do not use these key stores in a production
environment:

v ${USER_INSTALL_ROOT}/etc/ws-security/samples/dsig-sender.ks

– The key store format is JKS.

– The key store password is client.

– The trusted certificate has a soapca alias name.

– The personal certificate has a soaprequester alias name and a client key password that is issued
by the Int CA2 intermediary certificate authority, which is, in turn, issued by soapca.

v ${USER_INSTALL_ROOT}/etc/ws-security/samples/dsig-receiver.ks

– The key store format is JKS.

– The key store password is server.

– The trusted certificate has a soapca alias name.

– The personal certificate has a soapprovider alias name and a server key password that is issued by
the Int CA2 intermediary certificate authority, which is, in turn, issued by soapca.

v ${USER_INSTALL_ROOT}/etc/ws-security/samples/enc-sender.jceks

– The key store format is JCEKS.

– The key store password is storepass.

– The CN=Group1 DES secret key has a Group1 alias name and a keypass key password.

– The CN=Bob, O=IBM, C=US public key has a bob alias name and a keypass key password.

– The CN=Alice, O=IBM, C=US private key has a alice alias name and a keypass key password.

v ${USER_INSTALL_ROOT}/etc/ws-security/samples/enc-receiver.jceks

– The key store format is JCEKS.

– The key store password is storepass.

– The CN=Group1 DES secret key has a Group1 alias name and a keypass key password.

– The CN=Bob, O=IBM, C=US private key has a bob alias name and a keypass key password.

Chapter 27. Web services 1091

– The CN=Alice, O=IBM, C=US public key has a alice alias name and a keypass key password.

v ${USER_INSTALL_ROOT}/etc/ws-security/samples/intca2.cer

– The intermediary certificate is signed by soapca and it signs both the soaprequester and the
soapprovider.

Sample key locators

Key locators are used to locate the key for digital signature, encryption, and decryption. For information on
how to modify these sample key locator configurations, see the following articles:

v Configuring the key locator using JAX-RPC for the generator binding on the application level

v Configuring the key locator using JAX-RPC for the consumer binding on the application level

v Configuring the key locator using JAX-RPC on the server or cell level

SampleClientSignerKey
This key locator is used by the request sender for a Version 5.x application to sign the SOAP
message. The signing key name is clientsignerkey, which is referenced in the signing
information as the signing key name.

SampleServerSignerKey
This key locator is used by the response sender for a Version 5.x application to sign the SOAP
message. The signing key name is serversignerkey, which can be referenced in the signing
information as the signing key name.

SampleSenderEncryptionKeyLocator
This key locator is used by the sender for a Version 5.x application to encrypt the SOAP message.
It is configured to use the ${USER_INSTALL_ROOT}/etc/ws-security/samples/enc-sender.jceks key
store and the com.ibm.wsspi.wssecurity.config.KeyStoreKeyLocator key store key locator. The
implementation is configured for the DES secret key. To use asymmetric encryption (RSA), you
must add the appropriate RSA keys.

SampleReceiverEncryptionKeyLocator
This key locator is used by the receiver for a Version 5.x application to decrypt the encrypted
SOAP message. The implementation is configured to use the ${USER_INSTALL_ROOT}/etc/ws-
security/samples/enc-receiver.jceks key store and the
com.ibm.wsspi.wssecurity.config.KeyStoreKeyLocator key store key locator. The implementation
is configured for symmetric encryption (DES or TRIPLEDES). To use RSA, you must add the
private key CN=Bob, O=IBM, C=US, alias name bob, and key password keypass.

SampleResponseSenderEncryptionKeyLocator
This key locator is used by the response sender for a Version 5.x application to encrypt the SOAP
response message. It is configured to use the ${USER_INSTALL_ROOT}/etc/ws-security/samples/
enc-receiver.jceks key store and the
com.ibm.wsspi.wssecurity.config.WSIdKeyStoreMapKeyLocator key store key locator. This key
locator maps an authenticated identity (of the current thread) to a public key for encryption. By
default, WebSphere Application Server is configured to map to public key alice, and you must
change WebSphere Application Server to the appropriate user. The
SampleResponseSenderEncryptionKeyLocator key locator also can set a default key for encryption.
By default, this key locator is configured to use public key alice.

SampleGeneratorSignatureKeyStoreKeyLocator
This key locator is used by generator to sign the SOAP message. The signing key name is
SOAPRequester, which is referenced in the signing information as the signing key name. It is
configured to use the ${USER_INSTALL_ROOT}/etc/ws-security/samples/dsig-sender.ks key store
and the com.ibm.wsspi.wssecurity.keyinfo.KeyStoreKeyLocator key store key locator.

SampleConsumerSignatureKeyStoreKeyLocator
This key locator is used by the consumer to verify the digital signature in the SOAP message. The
signing key is SOAPProvider, which is referenced in the signing information. It is configured to use

1092 Overview

the ${USER_INSTALL_ROOT}/etc/ws-security/samples/dsig-receiver.ks key store and the
com.ibm.wsspi.wssecurity.keyinfo.KeyStoreKeyLocator key store key locator.

SampleGeneratorEncryptionKeyStoreKeyLocator
This key locator is used by the generator to encrypt the SOAP message. It is configured to use
the ${USER_INSTALL_ROOT}/etc/ws-security/samples/enc-sender.jceks key store and the
com.ibm.wsspi.wssecurity.keyinfo.KeyStoreKeyLocator key store key locator.

SampleConsumerEncryptionKeyStoreKeyLocator
This key locator is used by the consumer to decrypt an encrypted SOAP message. It is configured
to use the ${USER_INSTALL_ROOT}/etc/ws-security/samples/enc-receiver.jceks key store and
the com.ibm.wsspi.wssecurity.keyinfo.KeyStoreKeyLocator key store key locator.

SampleX509TokenKeyLocator
This key locator is used by the consumer to verify a digital certificate in an X.509 certificate. It is
configured to use the ${USER_INSTALL_ROOT}/etc/ws-security/samples/enc-receiver.jceks key
store and the com.ibm.wsspi.wssecurity.keyinfo.KeyStoreKeyLocator key store key locator.

Sample collection certificate store

Collection certificate stores are used to validate the certificate path. For information on how to modify this
sample collection certificate store, see the following articles:

v Configuring the collection certificate store for the generator binding on the application level

v Configuring the collection certificate store for the consumer binding on the application level

v Configuring the collection certificate on the server or cell level

SampleCollectionCertStore
This collection certificate store is used by the response consumer and the request generator to
validate the signer certificate path.

Sample trust anchors

Trust anchors are used to validate the trust of the signer certificate. For information on how to modify the
sample trust anchor configurations, see the following articles:

v Configuring trust anchors for the generator binding on the application level

v Configuring trust anchors for the consumer binding on the application level

v Configuring trust anchors on the server or cell level

SampleClientTrustAnchor
This trust anchor is used by the response consumer to validate the signer certificate. This trust
anchor is configure to access the ${USER_INSTALL_ROOT}/etc/ws-security/samples/dsig-
sender.ks key store.

SampleServerTrustAnchor
This trust anchor is used by the request consumer to validate the signer certificate. This trust
anchor is configure to access the ${USER_INSTALL_ROOT}/etc/ws-security/samples/dsig-
sender.ks key store.

Sample trusted ID evaluators

Trusted ID evaluators are used to establish trust before asserting the identity in identity assertion. For
information on how to modify the sample trusted ID evaluator configuration, see Configuring trusted ID
evaluators on the server or cell level.

SampleTrustedIDEvaluator
This trusted ID evaluator uses the com.ibm.wsspi.wssecurity.id.TrustedIDEvaluatorImpl
implementation. The default implementation of com.ibm.wsspi.wssecurity.id.TrustedIDEvaluator
contains a list of trusted identities. This list, which is used for identity assertion, defines the key

Chapter 27. Web services 1093

name and value pair for the trusted identity. The key name is in the form trustedId_* and the value
is the trusted identity. For more information, see the example in Configuring trusted ID evaluators
on the server or cell level.

Complete the following steps to define this information for the cell level in the administrative
console:

1. Click Security > Web services.

2. Under Additional properties, click Trusted ID evaluators > SampleTrustedIDEvaluator.

Default implementations of the Web Services Security service provider programming interfaces:

This information describes the default implementations of the service provider interfaces (SPI) for Web
Services Security within WebSphere Application Server. The default implementation classes and their
functionality for both the JAX-RPC run time and the JAX-WS run time are discussed. You can use this
information to create or modify the Web Services Security binding configuration.

best-practices: IBM WebSphere Application Server supports the Java API for XML-Based Web Services
(JAX-WS) programming model and the Java API for XML-based RPC (JAX-RPC)
programming model. JAX-WS is the next generation web services programming model
extending the foundation provided by the JAX-RPC programming model. Using the
strategic JAX-WS programming model, development of web services and clients is
simplified through support of a standards-based annotations model. Although the
JAX-RPC programming model and applications are still supported, take advantage of the
easy-to-implement JAX-WS programming model to develop new web services
applications and clients.

Default implementations for the JAX-RPC run time

com.ibm.wsspi.wssecurity.token.X509TokenGenerator
The Java Authentication and Authorization Service (JAAS) Login Module implementation is used to
create the security token on the generator side. It is responsible for creating the X.509 token
object from the X.509 certificate, which is returned by the
com.ibm.wsspi.wssecurity.auth.callback.{X509,PKCS7,PkiPath}CallbackHandler interface. Encode
the token using the base 64 format and insert its XML representation into the SOAP message, if
necessary.

com.ibm.wsspi.wssecurity.auth.callback.X509CallbackHandler
This class implements the javax.security.auth.callback.CallbackHandler interface and it retrieves
the X.509 certificate from the keystore file.

com.ibm.wsspi.wssecurity.token.UsernameTokenGenerator
The Java Authentication and Authorization Service (JAAS) Login Module implementation is used to
create the security token on the generator side. It is responsible for creating the username token
object from user name and password that is returned by a
javax.security.auth.callback.CallbackHandler implementation such as the following callback
handler:

com.ibm.wsspi.wssecurity.auth.callback{GUIPrompt,NonPrompt,StdinPrompt}CallbackHandler.

It also inserts the XML representation of the token into the SOAP message, if necessary.

com.ibm.wsspi.wssecurity.keyinfo.KeyStoreKeyLocator
The Java Authentication and Authorization Service (JAAS) Login Module implementation is used to
create the security token on the generator side and to validate (authenticate) the security token on
the consumer side. This class retrieves the keys from the keystore files for digital signature and
encryption.

com.ibm.wsspi.wssecurity.token.X509TokenConsumer
The Java Authentication and Authorization Service (JAAS) Login Module implementation is used to
validate (authenticate) the security token on the consumer side. This class processes the X.509

1094 Overview

token from the binary security token. This class decodes the Base64 encryption within the X.509
token and then invokes the system.wssecurity.X509BST Java Authentication and Authorization
Service (JAAS) Login Configuration with the
com.ibm.wsspi.wssecurity.auth.module.X509LoginModule login module to validate the X.509 token.
An object of the com.ibm.wsspi.wssecurity.auth.token.X509Token is created for the validated X.509
token and stored in JAAS Subject.

com.ibm.wsspi.wssecurity.token.IDAssertionUsernameTokenConsumer
The Java Authentication and Authorization Service (JAAS) Login Module implementation is used to
validate (authenticate) the security token on the consumer side. This class processes the
username token for identity assertion (IDAssertion), which does not have a password element.
This interface invokes the system.wssecurity.IDAssertionUsernameToken JAAS login configuration
with the com.ibm.wsspi.wssecurity.auth.module.IDAssertionUsernameLoginModule login module to
validate the IDAssertion user name token. An object of the
com.ibm.wsspi.wssecurity.auth.token.UsernameToken class is created for the validated username
token and stored in the JAAS Subject.

com.ibm.wsspi.wssecurity.auth.module.IDAssertionUsernameLoginModule
This class implements the javax.security.auth.spi.LoginModule interface and checks whether the
username value is not empty. The login module assumes that the UsernameToken is valid if the
username value is not empty.

com.ibm.wsspi.wssecurity.token.LTPATokenGenerator
The Java Authentication and Authorization Service (JAAS) Login Module implementation is used to
create the security token on the generator side. This class is responsible for Base 64 encoding the
LTPA token object obtained from the
com.ibm.wsspi.wssecurity.auth.callback.LTPATokenCallbackHandler callback handler. The object is
inserted into the Web Services Security header within the SOAP message, if necessary.

com.ibm.wsspi.wssecurity.token.LTPATokenConsumer
The Java Authentication and Authorization Service (JAAS) Login Module implementation is used to
validate (authenticate) the security token on the consumer side. This class processes the LTPA
token from the binary security token, and decodes the Base64 encoding within the LTPA token. An
object of the com.ibm.wsspi.wssecurity.auth.token.LTPAToken class is created for the validated
LTPA token and stored in the JAAS Subject.

com.ibm.wsspi.wssecurity.auth.module.X509LoginModule
This class implements the javax.security.auth.spi.LoginModule interface and validates the X.509
Certificate based on the trust anchor and the collection certification store configuration.

com.ibm.wsspi.wssecurity.token.UsernameTokenConsumer
The Java Authentication and Authorization Service (JAAS) Login Module implementation is used to
validate (authenticate) the security token on the consumer side. This class processes the
username token, extracts the user name and password, and then invokes the
system.wssecurity.UsernameToken JAAS login configuration using the
com.ibm.wsspi.wssecurity.auth.module.UsernameLoginModule login module to validate the user
name and password. An object of the com.ibm.wsspi.wssecurity.auth.token.UsernameToken class
is created for the validated username token and stored in the JAAS Subject.

com.ibm.wsspi.wssecurity.keyinfo.X509TokenKeyLocator
The Java Authentication and Authorization Service (JAAS) Login Module implementation is used to
create the security token on the generator side and to validate (authenticate) the security token on
the consumer side. This class is used to retrieve a public key from a X.509 certificate. The X.509
certificate is stored in the X.509 token (com.ibm.wsspi.wssecurity.auth.token.X509Token) in the
JAAS Subject. The X.509 token is created by the X.509 Token Consumer
(com.ibm.wsspi.wssecurity.tokenX509TokenConsumer).

com.ibm.wsspi.wssecurity.keyinfo.SignerCertKeyLocator
The Java Authentication and Authorization Service (JAAS) Login Module implementation is used to
create the security token on the generator side and to validate (authenticate) the security token on

Chapter 27. Web services 1095

the consumer side. This class is used to retrieve a public key from the X.509 certificate of the
request signer and encrypt the response. You can use this key locator in the response generator
binding configuration only.

Important: This implementation assumes that only one signer certificate is used in the request.

com.ibm.wsspi.wssecurity.auth.token.UsernameToken
This implementation extends the com.ibm.wsspi.wssecurity.auth.token.WSSToken abstract class to
represent the username token.

com.ibm.wsspi.wssecurity.auth.token.X509Token
This implementation extends the com.ibm.wsspi.wssecurity.auth.token.WSSToken abstract class to
represent the X.509 binary security token (X.509 certificate).

com.ibm.wsspi.wssecurity.auth.token.LTPAToken
This implementation extends the com.ibm.wsspi.wssecurity.auth.token.WSSToken abstract class as
a wrapper to the LTPA token that is extracted from the binary security token.

com.ibm.wsspi.wssecurity.auth.callback.PKCS7CallbackHandler
This class implements the javax.security.auth.callback.CallbackHandler interface and is responsible
for creating a certificate and binary data with or without a certificate revocation list (CRL) using the
PKCS#7 encoding. The certificate and the binary data is passed back to the
com.ibm.wsspi.wssecurity.token.X509TokenGenerator implementation through the
com.ibm.wsspi.wssecurity.auth.callback.X509BSCallback callback handler.

com.ibm.wsspi.wssecurity.auth.callback.PkiPathCallbackHandler
This class implements the javax.security.auth.callback.CallbackHandler interface and it is
responsible for creating a certificate and binary data without a CRL using the PkiPath encoding.
The certificate and binary data is passed back to the
com.ibm.wsspi.wssecurity.token.X509TokenGenerator implementation through the
com.ibm.wsspi.wssecurity.auth.callback.X509BSCallback callback handler.

com.ibm.wsspi.wssecurity.auth.callback.X509CallbackHandler
This class implements the javax.security.auth.callback.CallbackHandler interface and it is
responsible for creating a certificate from the keystore file. The X.509 token certificate is passed
back to the com.ibm.wsspi.wssecurity.token.X509TokenGenerator implementation through the
com.ibm.wsspi.wssecurity.auth.callback.X509BSCallback callback handler.

com.ibm.wsspi.wssecurity.auth.callback.LTPATokenCallbackHandler
This implementation generates a Lightweight Third Party Authentication (LTPA) token in the Web
Services Security header as a binary security token. If basic authentication data is defined in the
application binding file, it is used to perform a login, to extract the LTPA token from the
WebSphere Application Server credentials, and to insert the token in the Web Services Security
header. Otherwise, it extracts the LTPA security token from the invocation credentials (run as
identity) and inserts the token in the Web Services Security header.

com.ibm.wsspi.wssecurity.auth.callback.NonPromptCallbackHandler
This implementation reads the basic authentication data from the application binding file. You
might use this implementation on the server side to generate a username token.

com.ibm.wsspi.wssecurity.auth.callback.GUIPromptCallbackHandler
This implementation presents you with a login prompt to gather the basic authentication data. Use
this implementation on the client side only.

com.ibm.wsspi.wssecurity.auth.callback.StdinPromptCallbackHandler
This implementation collects the basic authentication data using a standard in (stdin) prompt. Use
this implementation on the client side only.

Restriction: If you have a multi-threaded client and multiple threads attempt to read from
standard in at the same time, all the threads will not successfully obtain the user
name and password information. Therefore, you cannot use the

1096 Overview

com.ibm.wsspi.wssecurity.auth.callback.StdinPromptCallbackHandler implementation
with a multi-threaded client where multiple threads might attempt to obtain data from
standard in concurrently.

com.ibm.wsspi.wssecurity.id.TrustedIDEvaluator
This interface is used to evaluate the level of trust for identity assertion. The default
implementation is com.ibm.wsspi.wssecurity.id.TrustedIDEvaluatorImpl, which enables you to
define a list of trusted identities.

com.ibm.wsspi.wssecurity.id.TrustedIDEvaluatorImpl
This default implementation enables you to define a list of trusted identities for identity assertion.

com.ibm.wsspi.wssecurity.id.TrustedIDEvaluatorException
This exception class is used by an implementation of the
com.ibm.wsspi.wssecurity.id.TrustedIDEvaluator to communicate the exception and errors to the
Web Services Security run time.

Default implementations for the JAX-WS run time

com.ibm.ws.wssecurity.wssapi.token.impl.CommonTokenGenerator
This implementation invokes the JAAS CallbackHandler and JAAS login configuration that are
specified in the binding to create the SecurityToken at run time on the outbound SOAP message.

com.ibm.websphere.wssecurity.callbackhandler.X509GenerateCallbackHandler
This class implements the javax.security.auth.callback.CallbackHandler interface on the outbound
SOAP message, and retrieves the X.509 certificate. The following properties may be specified:

v com.ibm.wsspi.wssecurity.token.IDAssertion.isUsed. This property takes a boolean value, and
the default value is false.

v com.ibm.wsspi.wssecurity.token.cert.useRequestorCert. This property takes a boolean value,
and the default value is false.

com.ibm.ws.wssecurity.wssapi.token.impl.X509GenerateLoginModule
The wss.generate.x509 JAAS system login configuration contains the class
com.ibm.ws.wssecurity.wssapi.token.impl.X509GenerateLoginModule. X509GenerateLoginModule
implements the javax.security.auth.spi.LoginModule interface and is responsible for generating an
XML Username token structure, and also a
com.ibm.websphere.wssecurity.wssapi.token.SecurityToken that represents the X.509 token at run
time.

com.ibm.ws.wssecurity.wssapi.token.impl.PKCS7GenerateLoginModule
The wss.generate.pkcs7 JAAS system login configuration contains the class
com.ibm.ws.wssecurity.wssapi.token.impl.PKCS7GenerateLoginModule.
PKCS7GenerateLoginModule implements the javax.security.auth.spi.LoginModule interface and is
responsible for generating an XML token structure and a
com.ibm.websphere.wssecurity.wssapi.token.SecurityToken that represents the token at run time.

com.ibm.ws.wssecurity.wssapi.token.impl.PkiPathGenerateLoginModule
The wss.generate.pkiPath JAAS system login configuration contains the class
com.ibm.ws.wssecurity.wssapi.token.impl.PkiPathGenerateLoginModule.
PkiPathGenerateLoginModule implements the javax.security.auth.spi.LoginModule interface and is
responsible for generating an XML token structure and a
com.ibm.websphere.wssecurity.wssapi.token.SecurityToken that represents the token at run time.

com.ibm.websphere.wssecurity.callbackhandler.UNTGenerateCallbackHandler
This class implements the javax.security.auth.callback.CallbackHandler interface on the outbound
SOAP message, and it retrieves the binding configuration and user name and password
authentication data. The following properties may be specified. These properties take a boolean
value, and the default value is false.

v com.ibm.wsspi.wssecurity.token.username.addNonce

Chapter 27. Web services 1097

v com.ibm.wsspi.wssecurity.token.username.addTimestamp

v com.ibm.wsspi.wssecurity.token.IDAssertion.isUsed

v com.ibm.wsspi.wssecurity.token.IDAssertion.useRunAsIdentity

v com.ibm.wsspi.wssecurity.token.IDAssertion.sendRealm

v com.ibm.wsspi.wssecurity.token.IDAssertion.trustedRealm

com.ibm.ws.wssecurity.wssapi.token.impl.UNTGenerateLoginModule
The wss.generate.unt JAAS system login configuration contains the class
com.ibm.ws.wssecurity.wssapi.token.impl. UNTGenerateLoginModule implements the
javax.security.auth.spi.LoginModule interface and is responsible for generating an XML Username
token structure and also a com.ibm.websphere.wssecurity.wssapi.token.SecurityToken that
represents the token at run time. When com.ibm.wsspi.wssecurity.token.IDAssertion.isUsed has a
the value of true, the generated username token does not contain a password. When
com.ibm.wsspi.wssecurity.token.IDAssertion.sendRealm has the value of true, the user name is
qualified by the local realm name. When com.ibm.wsspi.wssecurity.token.IDAssertion.trustedRealm
has the value of true, the user name field contains both the user name and a registry-dependent
unique identifier for the user. Both the user name and the unique identifier are qualified by the
local realm name.

com.ibm.websphere.wssecurity.callbackhandler.KRBTokenGenerateCallbackHandler
This class implements the javax.security.auth.callback.CallbackHandler interface on the outbound
SOAP message, and it retrieves the Kerberos user name and password, along with other binding
configuration properties. The following properties may be specified. The properties take a string
that specifies the target service name as part of a service principal name (SPN), in the form of
service_name/host_name@Kerberos_realm_name.

v com.ibm.wsspi.wssecurity.krbtoken.targetServiceName

v com.ibm.wsspi.wssecurity.krbtoken.targetServiceHost

v com.ibm.wsspi.wssecurity.krbtoken.targetServiceRealm

com.ibm.ws.wssecurity.wssapi.token.impl.KRBGenerateLoginModule
The wss.generate.KRB5BST JAAS system login configuration contains the classes
com.ibm.ws.wssecurity.wssapi.token.impl.KRBGenerateLoginModule, and
com.ibm.ws.wssecurity.wssapi.token.impl.DKTGenerateLoginModule. KRBGenerateLoginModule
implements the javax.security.auth.spi.LoginModule interface and is responsible for generating an
XML token structure and a com.ibm.websphere.wssecurity.wssapi.token.SecurityToken that
represents the token at run time.

com.ibm.ws.wssecurity.wssapi.token.impl.DKTGenerateLoginModule
The wss.generate.KRB5BST JAAS system login configuration contains the classes
com.ibm.ws.wssecurity.wssapi.token.impl.KRBGenerateLoginModule, and
com.ibm.ws.wssecurity.wssapi.token.impl.DKTGenerateLoginModule. DKTGenerateLoginModule
implements the javax.security.auth.spi.LoginModule interface and is responsible for generating an
XML token structure and a com.ibm.websphere.wssecurity.wssapi.token.SecurityToken that
represents the token at run time when the Requires derived keys option is enabled.

com.ibm.websphere.wssecurity.callbackhandler.LTPAGenerateCallbackHandler
This class implements the javax.security.auth.callback.CallbackHandler interface on the outbound
SOAP message, and it retrieves the user name and password binding data if they are specified.

com.ibm.ws.wssecurity.wssapi.token.impl.LTPAGenerateLoginModule
The wss.generate.ltpa JAAS system login configuration contains the class
com.ibm.ws.wssecurity.wssapi.token.impl.LTPAGenerateLoginModule. LTPAGenerateLoginModule
implements the javax.security.auth.spi.LoginModule interface and is responsible for generating an
XML token structure and a com.ibm.websphere.wssecurity.wssapi.token.SecurityToken that
represents the token at run time. The security token contains an LTPA token that is generated from
the user name and password if they are defined in the binding data, or the LTPA authentication
token from the RunAs Subject, in that order.

1098 Overview

com.ibm.ws.wssecurity.wssapi.token.impl.LTPAPropagationGenerateLoginModule
The wss.generate.ltpaProp JAAS system login configuration contains
com.ibm.ws.wssecurity.wssapi.token.impl.LTPAPropagationGenerateLoginModule.
LTPAPropagationGenerateLoginModule implements the javax.security.auth.spi.LoginModule
interface and is responsible for generating an XML token structure and a
com.ibm.websphere.wssecurity.wssapi.token.SecurityToken that represents the token at run time.
The security token contains the serialized RunAs Subject.

com.ibm.ws.wssecurity.impl.auth.callback.WSTrustCallbackHandler
This class implements the javax.security.auth.callback.CallbackHandler interface on the outbound
SOAP message, and it retrieves security context token configuration data.

com.ibm.ws.wssecurity.wssapi.token.impl.SCTGenerateLoginModule
The wss.generate.sct JAAS system login configuration contains the classes
com.ibm.ws.wssecurity.wssapi.token.impl.SCTGenerateLoginModule, and
com.ibm.ws.wssecurity.wssapi.token.impl.DKTGenerateLoginModule. SCTGenerateLoginModule
implements the javax.security.auth.spi.LoginModule interface and is responsible for generating an
XML token structure and a com.ibm.websphere.wssecurity.wssapi.token.SecurityToken that
represents the security context token at run time.

com.ibm.ws.wssecurity.wssapi.token.impl.DKTGenerateLoginModule
The wss.generate.sct JAAS system login configuration contains the classes
com.ibm.ws.wssecurity.wssapi.token.impl.SCTGenerateLoginModule, and
com.ibm.ws.wssecurity.wssapi.token.impl.DKTGenerateLoginModule. DKTGenerateLoginModule
implements the javax.security.auth.spi.LoginModule interface and is responsible for generating an
XML token structure and a com.ibm.websphere.wssecurity.wssapi.token.SecurityToken that
represents the token at run time when the Requires derived keys option is enabled.

com.ibm.ws.wssecurity.wssapi.token.impl.CommonTokenConsumer
This implementation invokes the JAAS CallbackHandler and JAAS login configuration that are
specified in the binding to extract the security token from the inbound SOAP message and to
create the SecurityToken object at run time.

com.ibm.websphere.wssecurity.callbackhandler.X509ConsumeCallbackHandler
This class implements the javax.security.auth.callback.CallbackHandler interface on SOAP
message inbound to retrieve the trust store and certificate file information that are required to
validate the X.509 certificate.

com.ibm.ws.wssecurity.wssapi.token.impl.X509ConsumeLoginModule
The wss.consume.x509 JAAS system login configuration contains the class
com.ibm.ws.wssecurity.wssapi.token.impl.X509ConsumeLoginModule. X509ConsumeLoginModule
implements the javax.security.auth.spi.LoginModule interface and is responsible for retrieving and
validating the X.509 certificate. It creates a
com.ibm.websphere.wssecurity.wssapi.token.SecurityToken that represents the X.509 token at run
time.

com.ibm.ws.wssecurity.wssapi.token.impl.PKCS7ConsumeLoginModule
The wss.consume.pkcs7 JAAS system login configuration contains the class
com.ibm.ws.wssecurity.wssapi.token.impl.PKCS7ConsumeLoginModule
PKCS7ConsumeLoginModule implements the javax.security.auth.spi.LoginModule interface and is
responsible for retrieving and validating the X.509 certificate. It creates a
com.ibm.websphere.wssecurity.wssapi.token.SecurityToken that represents the X.509 token at run
time.

com.ibm.ws.wssecurity.wssapi.token.impl.PkiPathConsumeLoginModule
The wss.consume.pkiPath JAAS system login configuration contains the class
com.ibm.ws.wssecurity.wssapi.token.impl.PkiPathConsumeLoginModule.
PkiPathConsumeLoginModule implements the javax.security.auth.spi.LoginModule interface and is

Chapter 27. Web services 1099

responsible for retrieving and validating the X.509 certificate. It creates a
com.ibm.websphere.wssecurity.wssapi.token.SecurityToken that represents the X.509 token at run
time.

com.ibm.websphere.wssecurity.callbackhandler.UNTConsumeCallbackHandler
This class implements the javax.security.auth.callback.CallbackHandler interface on SOAP
message inbound to retrieve binding configuration data. The following properties may be specified.
These properties take a boolean value and the default value is false.

v com.ibm.wsspi.wssecurity.token.username.verifyTimestamp

v com.ibm.wsspi.wssecurity.token.username.verifyNonce

v com.ibm.wsspi.wssecurity.token.IDAssertion.isUsed

v com.ibm.wsspi.wssecurity.token.IDAssertion.trustedRealm

v com.ibm.wsspi.wssecurity.token.UsernameToken.disableUserRegistryCheck

com.ibm.ws.wssecurity.wssapi.token.impl.UNTConsumeLoginModule
The wss.consume.unt JAAS system login configuration contains the class
com.ibm.ws.wssecurity.wssapi.token.impl.UNTConsumeLoginModule. UNTConsumeLoginModule
implements the javax.security.auth.spi.LoginModule interface and is responsible for retrieving and
validating the username token. It creates a
com.ibm.websphere.wssecurity.wssapi.token.SecurityToken that represents the username token at
run time. When com.ibm.wsspi.wssecurity.token.IDAssertion.isUsed has the value of false,
UNTConsumeLoginModule validates the username and password against the local user registry.
An incorrect user name or incorrect or missing password will cause the token validation to fail.
When com.ibm.wsspi.wssecurity.token.IDAssertion.isUsed has a value of true, and
com.ibm.wsspi.wssecurity.token.IDAssertion.trustedRealm has a value of false, the user name is
validated against the local user registry. There should be no password in the username token.
When both com.ibm.wsspi.wssecurity.token.IDAssertion.isUsed and
com.ibm.wsspi.wssecurity.token.IDAssertion.trustedRealm have a value of true, the user name
field must contain a realm-qualified user name and unique user identifier data, and the realm must
be one of the trusted realms in the multiple security domain inbound trust configuration.

com.ibm.websphere.wssecurity.callbackhandler.KRBTokenConsumeCallbackHandler
This class implements the javax.security.auth.callback.CallbackHandler interface on the inbound
SOAP message, and it retrieves the binding configuration data.

com.ibm.ws.wssecurity.wssapi.token.impl.KRBConsumeLoginModule
The wss.consume.KRB5BST JAAS system login configuration contains the classes
com.ibm.ws.wssecurity.wssapi.token.impl.KRBConsumeLoginModule, and
com.ibm.ws.wssecurity.wssapi.token.impl.DKTConsumeLoginModule. KRBConsumeLoginModule
implements the javax.security.auth.spi.LoginModule interface and is responsible for retrieving and
validating the Kerberos AP_REQ token. It creates a
com.ibm.websphere.wssecurity.wssapi.token.SecurityToken that represents the AP_REQ token at
run time.

com.ibm.ws.wssecurity.wssapi.token.impl.DKTConsumeLoginModule
The wss.consume.KRB5BST JAAS system login configuration contains the classes
com.ibm.ws.wssecurity.wssapi.token.impl.KRBConsumeLoginModule, and
com.ibm.ws.wssecurity.wssapi.token.impl.DKTConsumeLoginModule. DKTConsumeLoginModule
implements the javax.security.auth.spi.LoginModule interface and is responsible for retrieving the
derived key when a derived key is required.

com.ibm.websphere.wssecurity.callbackhandler.LTPAConsumeCallbackHandler
This class implements the javax.security.auth.callback.CallbackHandler interface on the inbound
SOAP message, and it retrieves the binding configuration data.

com.ibm.ws.wssecurity.wssapi.token.impl.LTPAConsumeLoginModule
The wss.consume.ltpa JAAS system login configuration contains the class
com.ibm.ws.wssecurity.wssapi.token.impl.LTPAConsumeLoginModule. LTPAConsumeLoginModule

1100 Overview

implements the javax.security.auth.spi.LoginModule interface and is responsible for retrieving and
validating the LTPA v2 or LTPA token. It creates a
com.ibm.websphere.wssecurity.wssapi.token.SecurityToken that represents the LTPA v2 or LTPA
token at run time.

com.ibm.ws.wssecurity.wssapi.token.impl.LTPAPropagationConsumeLoginModule
The wss.consume.ltpaProp JAAS system login configuration contains the class
com.ibm.ws.wssecurity.wssapi.token.impl.LTPAPropagationConsumeLoginModule.
LTPAPropagationConsumeLoginModule implements the javax.security.auth.spi.LoginModule
interface and is responsible for retrieving, deserializing, and validating the propagation token and
reconstructing the security context.

com.ibm.ws.wssecurity.impl.auth.callback.SCTConsumeCallbackHandler
This class implements the javax.security.auth.callback.CallbackHandler interface on the outbound
SOAP message, and it retrieves the binding configuration data.

com.ibm.ws.wssecurity.wssapi.token.impl.SCTConsumeLoginModule
The wss.consume.sct JAAS system login configuration contains the classes
com.ibm.ws.wssecurity.wssapi.token.impl.SCTConsumeLoginModule, and
com.ibm.ws.wssecurity.wssapi.token.impl.DKTConsumeLoginModule. SCTConsumeLoginModule
implements the javax.security.auth.spi.LoginModule interface and is responsible for retrieving and
validating the security context token.

com.ibm.ws.wssecurity.wssapi.token.impl.DKTConsumeLoginModule
The wss.consume.sct JAAS system login configuration contains the classes
com.ibm.ws.wssecurity.wssapi.token.impl.SCTConsumeLoginModule, and
com.ibm.ws.wssecurity.wssapi.token.impl.DKTConsumeLoginModule. DKTConsumeLoginModule
implements the javax.security.auth.spi.LoginModule interface and is responsible for retrieving the
derived key when a derived key is required.

com.ibm.ws.wssecurity.impl.auth.module.PreCallerLoginModule
The wss.caller JAAS system login configuration contains the class
com.ibm.ws.wssecurity.impl.auth.module.PreCallerLoginModule. PreCallerLoginModule implements
the javax.security.auth.spi.LoginModule interface and is responsible for validating whether it has
received any security token that may be used to establish caller identity or trusted identity.

com.ibm.ws.wssecurity.impl.auth.module.UNTCallerLoginModule
The wss.caller JAAS system login configuration contains the class
com.ibm.ws.wssecurity.impl.auth.module.UNTCallerLoginModule. UNTCallerLoginModule
implements the javax.security.auth.spi.LoginModule interface. UNTCallerLoginModule also
determines if the user identity is authorized to make an identity assertion if the username is
configured to be a trusted identity, or if there is exactly one caller identity if the username token is
configured to be a caller identity. It sets the validated caller and trusted identity into the shared
state.

com.ibm.ws.wssecurity.impl.auth.module.X509CallerLoginModule
The wss.caller JAAS system login configuration contains
com.ibm.ws.wssecurity.impl.auth.module.X509CallerLoginModule. X509CallerLoginModule
implements the javax.security.auth.spi.LoginModule interface. X509CallerLoginModule checks to
see if the user identity is authorized to make an identity assertion if the X509 token is configured
to be a trusted identity, or if there is exactly one caller identity if the X509 token is configured to be
a caller identity. It sets the validated caller and trusted identity into the shared state.

com.ibm.ws.wssecurity.impl.auth.module.LTPACallerLoginModule
The wss.caller JAAS system login configuration contains the class
com.ibm.ws.wssecurity.impl.auth.module.LTPACallerLoginModule. LTPACallerLoginModule
implements the javax.security.auth.spi.LoginModule interface. LTPACallerLoginModule also checks
to see if the user identity is an authorized to make an identity assertion if the LTPA token is

Chapter 27. Web services 1101

configured to be a trusted identity, or if there is exactly one caller identity if the LTPA token is
configured to be a caller identity. It sets the validated caller and trusted identity into the shared
state.

com.ibm.ws.wssecurity.impl.auth.module.LTPAPropagationCallerLoginModule
The wss.caller JAAS system login configuration contains the class
com.ibm.ws.wssecurity.impl.auth.module.LTPAPropagationCallerLoginModule.
LTPAPropagationCallerLoginModule implements the javax.security.auth.spi.LoginModule interface.
LTPAPropagationCallerLoginModule also checks to see if the user identity is an authorized to
make an identity assertion if the propagation token is configured to be a trusted identity, or if there
is exactly one caller identity if the propagation token is configured to be a caller identity. It sets the
validated caller and trusted identity into the shared state.

com.ibm.ws.wssecurity.impl.auth.module.KRBCallerLoginModule
The wss.caller JAAS system login configuration contains
com.ibm.ws.wssecurity.impl.auth.module.KRBCallerLoginModule. KRBCallerLoginModule
implements the javax.security.auth.spi.LoginModule interface. KRBCallerLoginModule also checks
to see if the user identity is an authorized to make an identity assertion if the Kerberos token is
configured to be a trusted identity, or if there is exactly one caller identity if the Kerberos token is
configured to be a caller identity. It sets the validated caller and trusted identity into the shared
state.

com.ibm.ws.wssecurity.impl.auth.module.WSWSSLoginModule
The wss.caller JAAS system login configuration contains the class
com.ibm.ws.wssecurity.impl.auth.module.WSWSSLoginModule. WSWSSLoginModule implements
the javax.security.auth.spi.LoginModule interface and is responsible for asserting the caller identity
to the ltpaLoginModule and the wsMapDefaultInboundLoginModule to establish the caller security
context.

com.ibm.ws.security.server.lm.ltpaLoginModule
The wss.caller JAAS system login configuration contains the class
com.ibm.ws.security.server.lm.ltpaLoginModule.

com.ibm.ws.security.server.lm.wsMapDefaultInboundLoginModule
The wss.caller JAAS system login configuration contains the class
com.ibm.ws.security.server.lm.wsMapDefaultInboundLoginModule.

XML digital signature
XML-Signature Syntax and Processing (XML digital signature) is a specification that defines XML syntax
and processing rules to sign and verify digital signatures for digital content. The specification was
developed jointly by the World Wide Web Consortium (W3C) and the Internet Engineering Task Force
(IETF).

XML digital signature does not introduce new cryptographic algorithms. WebSphere Application Server
uses XML digital signature with existing algorithms such as RSA, HMAC, and SHA1. XML signature
defines many methods for describing key information and enables the definition of a new method.

XML canonicalization (c14n) is often needed when you use XML signature. Information can be represented
in various ways within serialized XML documents. For example, although their octet representations are
different, the following examples are identical:

v <person first=“John” last=“Smith”/>

v <person last=“Smith” first=“John”></person>

C14n is a process that is used to canonicalize XML information. Select an appropriate c14n algorithm
because the information that is canonicalized is dependent upon this algorithm. One of the major c14n
algorithms, Exclusive XML Canonicalization, canonicalizes the character encoding scheme, attribute order,
namespace declarations, and so on. The algorithm does not canonicalize white space outside tags,
namespace prefixes, or data type representation.

1102 Overview

XML signature in the Web Services Security-Core specification

The Web Services Security-Core (WSS-Core) specification defines a standard way for SOAP messages to
incorporate an XML signature. You can use almost all of the XML signature features in WSS-Core except
enveloped signature and enveloping signature. However, WSS-Core has some recommendations such as
exclusive canonicalization for the c14n algorithm and some additional features such as
SecurityTokenReference and KeyIdentifier.

The KeyIdentifier is the value of the SubjectKeyIdentifier field within the X.509 certificate. For more
information on the KeyIdentifier, see “Reference to a Subject Key Identifier” within the OASIS Web
Services Security X.509 Certificate Token Profile documentation.

By including XML signature in SOAP messages, the following issues are realized:

Message integrity
A message receiver can confirm that attackers or accidents have not altered parts of the message
after these parts are signed by a key.

Authentication
You can assume that a valid signature is proof of possession. A message with a digital certificate
that is issued by a certificate authority and a signature in the message that is validated
successfully by a public key in the certificate, is proof that the signer has the corresponding private
key. The receiver can authenticate the signer by checking the trustworthiness of the certificate.

Collection certificate store
A collection certificate store is a collection of non-root, certificate authority (CA) certificates and certificate
revocation lists (CRLs). This collection of CA certificates and CRLs is used to check the signature of a
digitally signed SOAP message.

A collection certificate store is used when WebSphere Application Server is processing a received SOAP
message. For JAX-RPC applications, this collection is configured in the Request Consumer Service
Configuration Details section of the binding file for servers and in the Response Consumer Configuration
section of the binding file for clients. You can configure these two sections using one of the assembly tools
provided by WebSphere Application Server. See the assembly tools information in the topic Assembly
tools.

For JAX-WS applications, this collection is configured using the administrative console in the Keys and
certificates panel of the WS-Security policy set bindings.

A collection certificate store is one kind of certificate store. A certificate store is defined as
javax.security.cert.CertStore in the Java CertPath application programming interface (API). The Java
CertPath API defines the following types of certificate stores:

Collection certificate store
A collection certificate store accepts the certificates and CRLs as Java collection objects.

Lightweight Directory Access Protocol certificate store
The Lightweight Directory Access Protocol (LDAP) certificate store accepts certificates and CRLs
as LDAP entries.

The CertPath API uses the certificate store and the trust anchor to validate the incoming X.509 certificate
that is embedded in the SOAP message. The Web Services Security implementation in the WebSphere
Application Server supports the collection certificate store. Each certificate and CRL is passed as an
encoded file.

Certificate revocation list
A certificate revocation list is a time-stamped list of certificates that have been revoked by a certificate
authority (CA).

Chapter 27. Web services 1103

http://www.oasis-open.org/committees/download.php/5073/oasis-200401-wss-x509-token-profile-1.0.pdf
http://www.oasis-open.org/committees/download.php/5073/oasis-200401-wss-x509-token-profile-1.0.pdf

A certificate that is found in a certificate revocation list (CRL) might not be expired, but is no longer trusted
by the certificate authority that issued the certificate. The certificate authority creates the CRL that contains
the serial number and issuing CA distinguished name of the certificate that has been revoked. The CA
might add the certificate to the certificate revocation list if it believes that the client certificate is
compromised. The certificate revocation list is maintained and issued by the certificate authority.

XML encryption
XML encryption is a specification that was developed by World Wide Web (WWW) Consortium (W3C) in
2002 and that contains the steps to encrypt data, the steps to decrypt encrypted data, the XML syntax to
represent encrypted data, the information to be used to decrypt the data, and a list of encryption
algorithms, such as triple DES, AES, and RSA.

You can apply XML encryption to an XML element, XML element content, and arbitrary data, including an
XML document. For example, suppose that you need to encrypt the <CreditCard> element that is shown in
example 1.

Example 1: Sample XML document:
<PaymentInfo xmlns=’http://example.org/paymentv2’>
<Name>John Smith</Name>
<CreditCard Limit=’5,000’ Currency=’USD’>
<Number>4019 2445 0277 5567</Number>
<Issuer>Example Bank</Issuer>
<Expiration>04/02</Expiration>

</CreditCard>
</PaymentInfo>

Example 2: XML document with a common secret key:

Example 2 shows the XML document after encryption. The <EncryptedData> element represents the
encrypted <CreditCard> element. The <EncryptionMethod> element describes the applied encryption
algorithm, which is triple DES in this example. The <KeyInfo> element contains the information that is
needed to retrieve a decryption key, which is a <KeyName> element in this example. The <CipherValue>
element contains the cipher text that is obtained by serializing and encrypting the <CreditCard> element.
<PaymentInfo xmlns=’http://example.org/paymentv2’>
<Name>John Smith</Name>
<EncryptedData Type=’http://www.w3.org/2001/04/xmlenc#Element’

xmlns=’http://www.w3.org/2001/04/xmlenc#’>
<EncryptionMethod

Algorithm=’http://www.w3.org/2001/04/xmlenc#tripledes-cbc’/>
<KeyInfo xmlns=’http://www.w3.org/2000/09/xmldsig#’>
<KeyName>John Smith</KeyName>

</KeyInfo>
<CipherData>
<CipherValue>ydUNqHkMrD...</CipherValue>

</CipherData>
</EncryptedData>

</PaymentInfo>

Example 3: XML document encrypted with the public key of the recipient:

In example 2, it is assumed that both the sender and recipient have a common secret key. If the recipient
has a public and private key pair, which is commonly the case, the <CreditCard> element can be
encrypted as shown in example 3. The <EncryptedData> element is the same as the <EncryptedData>
element found in Example 2. However, the <KeyInfo> element contains an <EncryptedKey> element.
<PaymentInfo xmlns=’http://example.org/paymentv2’>
<Name>John Smith</Name>
<EncryptedData Type=’http://www.w3.org/2001/04/xmlenc#Element’
xmlns=’http://www.w3.org/2001/04/xmlenc#’>
<EncryptionMethod
Algorithm=’http://www.w3.org/2001/04/xmlenc#tripledes-cbc’/>

<KeyInfo xmlns=’http://www.w3.org/2000/09/xmldsig#’>
<EncryptedKey xmlns=’http://www.w3.org/2001/04/xmlenc#’>
<EncryptionMethod
Algorithm=’http://www.w3.org/2001/04/xmlenc#rsa-1_5’/>

1104 Overview

<KeyInfo xmlns=’http://www.w3.org/2000/09/xmldsig#’>
<KeyName>Sally Doe</KeyName>

</KeyInfo>
<CipherData>
<CipherValue>yMTEyOTA1M...</CipherValue>

</CipherData>
</EncryptedKey>

</KeyInfo>
<CipherData>
<CipherValue>ydUNqHkMrD...</CipherValue>

</CipherData>
</EncryptedData>

</PaymentInfo>

XML Encryption in the WSS-Core:

The WSS-Core specification is under development by Organization for the Advancement of Structured
Information Standards (OASIS). The specification describes enhancements to SOAP messaging to provide
quality of protection through message integrity, message confidentiality, and single message
authentication. The message confidentiality is realized by encryption based on XML Encryption.

The WSS-Core specification supports encryption of any combination of body blocks, header blocks, their
substructures, and attachments of a SOAP message. When you encrypt parts of a SOAP message, the
specification also requires that you prepend a reference from the security header block to the encrypted
parts of the message. The reference can be a clue for a recipient to identify which encrypted parts of the
message to decrypt.

The XML syntax of the reference varies according to what information is encrypted and how it is
encrypted. For example, suppose that the <CreditCard> element in example 4 is encrypted with either a
common secret key or the public key of the recipient.

Example 4: Sample SOAP Version 1.1 message:
<SOAP-ENV:Envelope
SOAP-ENV:encodingStyle=’http://schemas.xmlsoap.org/soap/encoding/’
xmlns:SOAP-ENV=’http://schemas.xmlsoap.org/soap/envelope/’>
<SOAP-ENV:Body>
<PaymentInfo xmlns=’http://example.org/paymentv2’>
<Name>John Smith</Name>
<CreditCard Limit=’5,000’ Currency=’USD’>
<Number>4019 2445 0277 5567</Number>
<Issuer>Example Bank</Issuer>
<Expiration>04/02</Expiration>

</CreditCard>
</PaymentInfo>

</SOAP-ENV:Body>
</SOAP-ENV:Envelope>

SOAP Version 1.2 does not support encodingStyle so the example changes to the following:
<SOAP-ENV:Envelope

xmlns:SOAP-ENV=’http://schemas.xmlsoap.org/soap/envelope/’>
<SOAP-ENV:Body>
<PaymentInfo xmlns=’http://example.org/paymentv2’>
<Name>John Smith</Name>
<CreditCard Limit=’5,000’ Currency=’USD’>
<Number>4019 2445 0277 5567</Number>
<Issuer>Example Bank</Issuer>
<Expiration>04/02</Expiration>

</CreditCard>
</PaymentInfo>

</SOAP-ENV:Body>
</SOAP-ENV:Envelope>

The resulting SOAP messages are shown in Examples 5 and 6. In these example, the <ReferenceList>
and <EncryptedKey> elements are used as references, respectively.

Example 5: SOAP Version 1.1 message encrypted with a common secret key

Chapter 27. Web services 1105

<SOAP-ENV:Envelope
xmlns:SOAP-ENV=’http://schemas.xmlsoap.org/soap/envelope/’>
<SOAP-ENV:Header>
<Security SOAP-ENV:mustUnderstand=’1’
xmlns=’http://schemas.xmlsoap.org/ws/2003/06/secext’>
<ReferenceList xmlns=’http://www.w3.org/2001/04/xmlenc#’>
<DataReference URI=’#ed1’/>

</ReferenceList>
</Security>

</SOAP-ENV:Header>
<SOAP-ENV:Body>
<PaymentInfo xmlns=’http://example.org/paymentv2’>
<Name>John Smith</Name>
<EncryptedData Id=’ed1’
Type=’http://www.w3.org/2001/04/xmlenc#Element’
xmlns=’http://www.w3.org/2001/04/xmlenc#’>
<EncryptionMethod
Algorithm=’http://www.w3.org/2001/04/xmlenc#tripledes-cbc’/>

<KeyInfo xmlns=’http://www.w3.org/2000/09/xmldsig#’>
<KeyName>John Smith</KeyName>

</KeyInfo>
<CipherData>
<CipherValue>ydUNqHkMrD...</CipherValue>

</CipherData>
</EncryptedData>

</PaymentInfo>
</SOAP-ENV:Body>

</SOAP-ENV:Envelope>

SOAP Version 1.2 does not support encodingStyle and the example changes to the following:
<SOAP-ENV:Envelope

xmlns:SOAP-ENV=’http://schemas.xmlsoap.org/soap/envelope/’>
<SOAP-ENV:Header>
<Security SOAP-ENV:mustUnderstand=’1’
xmlns=’http://schemas.xmlsoap.org/ws/2003/06/secext’>
<ReferenceList xmlns=’http://www.w3.org/2001/04/xmlenc#’>
<DataReference URI=’#ed1’/>

</ReferenceList>
</Security>

</SOAP-ENV:Header>
<SOAP-ENV:Body>
<PaymentInfo xmlns=’http://example.org/paymentv2’>
<Name>John Smith</Name>
<EncryptedData Id=’ed1’
Type=’http://www.w3.org/2001/04/xmlenc#Element’
xmlns=’http://www.w3.org/2001/04/xmlenc#’>
<EncryptionMethod
Algorithm=’http://www.w3.org/2001/04/xmlenc#tripledes-cbc’/>

<KeyInfo xmlns=’http://www.w3.org/2000/09/xmldsig#’>
<KeyName>John Smith</KeyName>

</KeyInfo>
<CipherData>
<CipherValue>ydUNqHkMrD...</CipherValue>

</CipherData>
</EncryptedData>

</PaymentInfo>
</SOAP-ENV:Body>

</SOAP-ENV:Envelope>

Example 6: SOAP message encrypted with the public key of the recipient:
<SOAP-ENV:Envelope
SOAP-ENV:encodingStyle=’http://schemas.xmlsoap.org/soap/encoding/’
xmlns:SOAP-ENV=’http://schemas.xmlsoap.org/soap/envelope/’>
<SOAP-ENV:Header>
<Security SOAP-ENV:mustUnderstand=’1’
xmlns=’http://schemas.xmlsoap.org/ws/2003/06/secext’>
<EncryptedKey xmlns=’http://www.w3.org/2001/04/xmlenc#’>
<EncryptionMethod
Algorithm=’http://www.w3.org/2001/04/xmlenc#rsa-1_5’/>

<KeyInfo xmlns=’http://www.w3.org/2000/09/xmldsig#’>
<KeyName>Sally Doe</KeyName>

</KeyInfo>
<CipherData>
<CipherValue>yMTEyOTA1M...</CipherValue>

</CipherData>
<ReferenceList>

1106 Overview

<DataReference URI=’#ed1’/>
</ReferenceList>

</EncryptedKey>
</Security>

</SOAP-ENV:Header>
<SOAP-ENV:Body>
<PaymentInfo xmlns=’http://example.org/paymentv2’>
<Name>John Smith</Name>
<EncryptedData Id=’ed1’
Type=’http://www.w3.org/2001/04/xmlenc#Element’
xmlns=’http://www.w3.org/2001/04/xmlenc#’>
<EncryptionMethod
Algorithm=’http://www.w3.org/2001/04/xmlenc#tripledes-cbc’/>

<CipherData>
<CipherValue>ydUNqHkMrD...</CipherValue>

</CipherData>
</EncryptedData>

</PaymentInfo>
</SOAP-ENV:Body>

</SOAP-ENV:Envelope>

SOAP Version 1.2 does not support encodingStyle and the example changes to the following:
<SOAP-ENV:Envelope xmlns:SOAP-ENV=’http://schemas.xmlsoap.org/soap/envelope/’>
<SOAP-ENV:Header>
<Security SOAP-ENV:mustUnderstand=’1’
xmlns=’http://schemas.xmlsoap.org/ws/2003/06/secext’>
<EncryptedKey xmlns=’http://www.w3.org/2001/04/xmlenc#’>
<EncryptionMethod
Algorithm=’http://www.w3.org/2001/04/xmlenc#rsa-1_5’/>

<KeyInfo xmlns=’http://www.w3.org/2000/09/xmldsig#’>
<KeyName>Sally Doe</KeyName>

</KeyInfo>
<CipherData>
<CipherValue>yMTEyOTA1M...</CipherValue>

</CipherData>
<ReferenceList>
<DataReference URI=’#ed1’/>

</ReferenceList>
</EncryptedKey>

</Security>
</SOAP-ENV:Header>
<SOAP-ENV:Body>
<PaymentInfo xmlns=’http://example.org/paymentv2’>
<Name>John Smith</Name>
<EncryptedData Id=’ed1’
Type=’http://www.w3.org/2001/04/xmlenc#Element’
xmlns=’http://www.w3.org/2001/04/xmlenc#’>
<EncryptionMethod
Algorithm=’http://www.w3.org/2001/04/xmlenc#tripledes-cbc’/>

<CipherData>
<CipherValue>ydUNqHkMrD...</CipherValue>

</CipherData>
</EncryptedData>

</PaymentInfo>
</SOAP-ENV:Body>

</SOAP-ENV:Envelope>

Relationship to digital signature:

The WSS-Core specification also provides message integrity, which is realized by a digital signature that is
based on the XML-Signature specification.

A combination of encryption and digital signature over common data introduces cryptographic
vulnerabilities.

Symmetric versus asymmetric encryption

For XML encryption, the application server supports two types of encryption:

v Symmetric encryption

In releases of the application server prior to WebSphere Application Server Version 7, including the IBM
WebSphere Application Server Version 6.1 Feature Pack for Web Services, by default the KeyName

Chapter 27. Web services 1107

reference was used to refer to the shared key outside of the SOAP message. However, the Web
Services Security (WS-Security) Version 1.1 standard does not recommend using the KeyName
reference. Because KeyName is not supported by the security policy, it is not supported in the
application server.

The Web Services Secure Conversation (WS-SecureConversation) standard defines how to exchange
the shared key between the client and the service and how to refer to the shared key in the message.
The use of Kerberos with Web Services Security, as described in the Kerberos Token Profile, also
defines how to use a Kerberos session key or key derived from the session key to perform symmetric
encryption. Therefore, you can use symmetric encryption by using WS-SecureConversation or Kerberos.
WebSphere Application Server supports DerivedKeyToken when using WS-SecureConversation. When
using Kerberos, WebSphere Application Server supports both the use of DerivedKeyToken and the use
of the Kerberos session key directly.

v Asymmetric encryption

For asymmetric encryption, XML Encryption introduces the idea of key wrapping. The data, such as the
contents of the SOAP body element, is encrypted with a shared key that is dynamically generated while
processing. Then, the generated shared key is encrypted with the public key of the receiver.
WebSphere Application Server supports the X509Token for asymmetric encryption.

Security token
Web Services Security provides a general-purpose mechanism to associate security tokens with messages
for single message authentication. A security token represents a set of claims made by a client that might
include a name, password, identity, key, certificate, group, privilege, and so on.

A specific type of security token is not required by Web Services Security. Web Services Security is
designed to be extensible and support multiple security token formats to accommodate a variety of
authentication mechanisms. For example, a client might provide proof of identity and proof of a particular
business certification. However, the security token usage for Web Services Security is defined in separate
profiles such as the Username token profile, the X.509 token profile, the Security Assertion Markup
Language (SAML) token profile, the eXtensible rights Markup Language (XrML) token profile, the Kerberos
token profile, and so on.

A security token is embedded in the SOAP message within the SOAP header. The security token within
the SOAP header is propagated from the message sender to the intended message receiver. On the
receiving side, the WebSphere Application Server Web Services Security handler authenticates the
security token and sets up the caller identity on the running thread.

WebSphere Application Server contains an enhanced security token that has the following features:

v The client can send multiple tokens to downstream servers.

v The receiver can determine which security token to use for authorization based upon the type or signed
part for X.509 tokens.

v You can use the custom token or derived key token for digital signing or encryption.

LTPA and LTPA Version 2 tokens
Web services security supports both LTPA (Version 1) and LTPA Version 2 (LTPA2) tokens. The LTPA2
token, which is more secure than Version 1, is supported by the JAX-WS runtime only.

Note: The support statements in this topic apply to the web services security implementation for
WebSphere Application Server and not the security implementation for non-web services
functionality.

The Lightweight Third Party Authentication (LTPA) token is a specific type of binary security token. The
web services security implementation for WebSphere Application Server, Version 5 and later supports the
LTPA Version 1 token. WebSphere Application Server Version 7 and later supports the LTPA Version 2
token using the JAX-WS runtime environment.

1108 Overview

Although the same LTPAToken assertion is used in the policy for both LTPA Version 1 and LTPA Version 2,
the valuetype value for the Version 2 token is different than Version 1. The valuetype value is composed of
the URI and the local name. The following table shows the valuetype values for the LTPA token versions
when they are selected as the token type for the policy set bindings. These values are not editable.

Table 114. LTPA token versions and their valuetype values. This table lists the valuetype values for both LTPA
(Version 1) and LTPA2 tokens.
LTPA Version
token Valuetype value

LTPA (Version 1) http://www.ibm.com/websphere/appserver/tokentype/5.0.2/LTPA

LTPA2 http://www.ibm.com/websphere/appserver/tokentype/LTPAv2

To allow for interoperability between servers that are running different versions of WebSphere Application
Server, by default, the JAX-WS web services security runtime in Version 7.0 and later can successfully
consume an LTPA Version 1 token when the binding is configured to expect an LTPA2 token. However,
you can configure the binding for the JAX-WS runtime to accept only LTPA2 tokens. For more information,
see the documentation about Authentication generator or consumer token settings.

If the web services security run time receives a token with a unrecognized valuetype value and the SOAP
security header contains a mustUnderstand attribute value that is equal to ’1’, the web services security
run time issues a SOAPFaultException error. If the mustUnderstand attribute value is equal to ’0’, the
token is ignored.

If an LTPA2 token is sent with a mustUnderstand attribute value that is equal to ’1’ to a web services
security run time in which the LTPA2 token is not supported, the run time does not recognize the LTPAv2
valuetype value. Thus, the receiving run time issues a SOAPFaultException error. The following table
illustrates these different configurations and their potential error messages..

Table 115. LTPA token configurations. This table lists whether the LTPA Version 1 token is optional or required, lists
the associated mustUnderstand attribute value, lists its run time, and provides the resulting SOAPFaultException
error, if applicable
Run time LTPA Version 1

token status
MustUnderstand
attribute value

SOAPFaultException error

JAX-RPC Required 1 com.ibm.wsspi.wssecurity.SoapSecurityException:
WSEC5509E: A security token whose type is
[{http://www.ibm.com/websphere/appserver/tokentype/5.0.2}LTPA]
is required.

JAX-RPC Required 0 com.ibm.wsspi.wssecurity.SoapSecurityException:
WSEC5509E: A security token whose type is
[{http://www.ibm.com/websphere/appserver/tokentype/5.0.2}LTPA]
is required.

JAX-RPC Optional 1 com.ibm.wsspi.wssecurity.SoapSecurityException:
WSEC5502E: Unexpected element as the target element:
s:BinarySecurityToken.

JAX-RPC Optional 0 None

JAX-RPC Not Configured 1 com.ibm.wsspi.wssecurity.SoapSecurityException:
WSEC5502E: Unexpected element as the target element:
s:BinarySecurityToken.

JAX-RPC Not Configured 0 None

JAX-WS (Version 6.1
Feature Pack for Web
Services)

Not Configured 1 CWWSS5502E: The target element:
s:BinarySecurityToken was not expected.

JAX-WS (Version 6.1
Feature Pack for Web
Services)

Not Configured 0 None

JAX-WS (Version 6.1
Feature Pack for Web
Services)

Configured 1 CWWSS5509E: A security token whose type is
[{http://www.ibm.com/websphere/appserver/tokentype/5.0.2}LTPA]
is required.

JAX-WS (Version 6.1
Feature Pack for Web
Services)

Configured 0 CWWSS5509E: A security token whose type is
[{http://www.ibm.com/websphere/appserver/tokentype/5.0.2}LTPA]
is required.

Chapter 27. Web services 1109

You can configure the JAX-WS run time to generate either LTPA (Version 1) or LTPA2 tokens. If you
configure the LTPA token generator in a policy binding to generate an LTPA (Version 1) token, you must do
one of the following:

v Enable the single sign-on interoperability mode, which is available on the Single sign-on (SSO) panel
within the administrative console. For more information on this option, see the documentation about
single sign-on settings.

v Set the com.ibm.wsspi.wssecurity.tokenGenerator.ltpav1.pre.v7 custom property to true for the LTPA
token generator.

If you do not perform at least one of the steps previously indicated, an error occurs when the application,
which is attached to these bindings, is started.

Username token
You can use the <UsernameToken> element to propagate a user name and, optionally, password
information. Also, you can use this token type to carry basic authentication information. Both a user name
and a password are used to authenticate the SOAP message.

OASIS: Web Services Security UsernameToken Profile 1.0

A UsernameToken element containing the user name is used in identity assertion. Identity assertion
establishes the identity of the user based on the trust relationship.

The following example shows the syntax of the <UsernameToken> element:
<wsse:UsernameToken wsu:Id="Example-1">

<wsse:Username>
...
</wsse:Username>
<wsse:Password Type="...">
...
</wsse:Password>
<wsse:Nonce EncodingType="...">
...
</wsse:Nonce>
<wsu:Created>
...
</wsu:Created>

</wsse:UsernameToken>

The Web Services Security specification defines the following password types:

http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-username-token-profile-1.0#PasswordText
(default)

This type is the actual password for the user name.

http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-username-token-profile-
1.0#PasswordDigest

The type is the digest of the password for the user name. The value is a base64-encoded SHA1
hash value of the UTF8-encoded password.

WebSphere Application Server supports the default PasswordText type. However, it does not support
password digest because most user registry security policies do not expose the password to the
application software.

The following example illustrates the use of the <UsernameToken> element:
<S:Envelope

xmlns:S="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:wsse="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-secext-1.0.xsd">

<S:Header>
...

<wsse:Security>
<wsse:UsernameToken>

<wsse:Username>Joe</wsse:Username>
<wsse:Password>ILoveJava</wsse:Password>

1110 Overview

</wsse:UsernameToken>
</wsse:Security>

</S:Header>
</S:Envelope>

OASIS: Web Services Security UsernameToken Profile 1.1

WebSphere Application Server supports both Username Token Profile 1.0 and Version 1.1 standards.

WebSphere Application Server does not support the following functions:

v In both versions of the Username Token Profile specification, the digest password type is not supported

v In both versions of the Username Token Profile specification, key derivation based on a password is not
supported.

You can use policy sets to configure the UsernameToken using the administrative console. Also, you can
use the Web Services Security APIs to attach the Username token to the SOAP message. The following
figure describes the creation and validation of the Username token for the JAX-RPC and the JAX-WS
programming models.

Creating and validating the Username token using the JAAS Login Module and the JAAS CallbackHandler
in JAX-RPC

Creating and validating the Username token using the JAAS Login Module and the JAAS CallbackHandler
in JAX-WS

Chapter 27. Web services 1111

Note: The WSS API is available only when you are using the Java API for XML-Based Web Services
(JAX-WS) programming model.

On the generator side, the Username token is created by using the JAAS LoginModule and by using the
JAAS CallbackHandler to pass the authentication data. The JAAS LoginModule creates the
UsernameToken object and passes it to the Web Services Security run time.

On the consumer side, the Username Token XML format is passed to the JAAS LoginModule for validation
or authentication, and the JAAS CallbackHandler is used to pass the authentication data from the Web
Services Security run time to the JAAS LoginModule. After the token is authenticated, a UsernameToken
object is created and is passed to the Web Service Security run time.

The following example provides sample code for creating Username tokens:
WSSFactory factory = WSSFactory.getInstance();

WSSGenerationContext gencont = factory.newWSSGenerationContext();

// Attach the username token to the message.
UNTGenerationCallbackHandler ugCallbackHandler =

newUNTGenerationCallbackHandler("alice", "ecila");
SecurityToken ut = factory.newSecurityToken(ugCallbackHandler,

UsernameToken.class);
gencont.add(ut);

// Generate the WS-Security header
gencont.process(msgctx);

XML token
XML tokens are offered in two well-known formats called Security Assertion Markup Language (SAML) and
eXtensible rights Markup Language (XrML).

In WebSphere Application Server Versions 6 and later, you can plug in your own implementation. By using
extensibility of the <wsse:Security> header in XML-based security tokens, you can directly insert these
security tokens into the header. SAML assertions are attached to Web Services Security messages using
web services by placing assertion elements inside the <wsse:Security> header. The following example
illustrates a Web Services Security message with a SAML assertion token.
<S:Envelope xmlns:S="...">
<S:Header>

<wsse:Security xmlns:wsse="...">
<saml:Assertion

MajorVersion="1"
MinorVersion="0"
AssertionID="SecurityToken-ef375268"

1112 Overview

Issuer="elliotw1"
IssueInstant="2002-07-23T11:32:05.6228146-07:00"

xmlns:saml="urn:oasis:names:tc:SAML:1.0:assertion">
...

</saml:Assertion>
</wsse:Security>

</S:Header>
<S:Body>
...
</S:Body>
</S:Envelope>

For a complete list of the supported standards and specifications, read about web services specifications
and APIs.

Binary security token
The ValueType attribute identifies the type of the security token, for example, a Lightweight Third Party
Authentication (LTPA) token. The EncodingType type indicates how the security token is encoded, for
example, Base64Binary. The BinarySecurityToken element defines a security token that is binary encoded.
The encoding is specified using the EncodingType attribute. The value type and space are specified using
the ValueType attribute. The Web Services Security implementation for WebSphere Application Server,
Version 6 and later supports LTPA,, LTPA version 2, and X.509 certificate binary security tokens.

A binary security token has the following attributes that are used for interpretation:

v Value type

v Encoding type

The following example depicts an LTPA binary security token in a Web services security message header:
<wsse:BinarySecurityToken xmlns:wsst=

"http://www.ibm.com/websphere/appserver/tokentype/5.0.2"
EncodingType="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-soap-message-security-1.0#Base64Binary"
ValueType="wsst:LTPA">

MIZ6LGPt2CzXBQfio9wZTo1VotWov0NW3Za6lU5K7Li78DSnIK6iHj3hxXgrUn6p4wZI
8Xg26havepvmSJ8XxiACMihTJuh1t3ufsrjbFQJOqh5VcRvI+AKEaNmnEgEV65jUYAC9
C/iwBBWk5U/6DIk7LfXcTT0ZPAd+3D3nCS0f+6tnqMou8EG9mtMeTKccz/pJVTZjaRSo
msu0sewsOKfl/WPsjW0bR/2g3NaVvBy18VlTFBpUbGFVGgzHRjBKAGo+ctkl80nlVLIk
TUjt/XdYvEpOr6QoddGi4okjDGPyyoDxcvKZnReXww5UsoqlpfXwN4KG9as=

</wsse:BinarySecurityToken>
</wsse:Security>
</soapenv:Header>

As shown in the example, the token is Base64Binary encoded.

The following example depicts an LTPA version 2 binary security token:
<wsse:BinarySecurityToken
xmlns:wsu="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-utility-1.0.xsd"
xmlns:wsst="http://www.ibm.com/websphere/appserver/tokentype"
wsu:Id="ltpa_20"
ValueType="wsst:LTPAv2">
bRYI0Z59k/P1gIkgSaxeJIQoI1BdojxjdoD+6qMmiH37lqS6U90Wx6EArMA05FHVyTmxvIJACGD
UVfqVcPDQCdPlWAn9Brhz/bXw9OEVx0wx/eNYQuiBvEVNam7urd8SxZkqppOZyeN6APZ4Z4Rox0M
jqQv9lFIB/AKBpJyaK8V9Z9gFO8k6J5HmE/G9jdBov9Su6hXlfF50Bhy6tx8BEm4Zn/pkeNc1H1d+
tOxwDOfS0ORWH0tjzDCTFpAMPjMmfR0/o7o3DivONtZG61ylbcwB4hx01iQC/FN5DJwrEy8kCwCeF
ywubKVVt5pyM1k6uVXI8ik5Pjf9aU1ei86y5iXc9CirhvqosXiZvjObHTYKZSjtGiMYw3q9NKbZxs
SzfCuAdht8sjGfaVo43i0iz7CuFYAywqVldUPjwSTvCGNtmWB/3MRtBDrmq3fqYSomjw5ZWDFex/n
98ZaOz8mUjNHinJc4APTtEx6S10CxUkUc8b8hoCdqbcOGdZcGqYF7xgcFXvsezsXw0eRmhra54x6g
CJs1skMMNvi0vF2pic1cg4GClQ74NKxV1oTrDZPaQPTikYGJOLKHBPYnbPda0hPkX+iCOYN0IIRBa
Vwjj1T0G+Y/MgokiNJRGwUQ7VHXEo0+Q2HsmCkmAFrIp4lZc9fGcFyVY/EUBBpkGchL0eKNv4DoVJW
6EhFXWZdeiVk8

</wsse:BinarySecurityToken>

The following example depicts an X.509 v3 binary security token containing an X.509 public certificate:
<wsse:BinarySecurityToken
EncodingType="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-soap-message-security-1.0#Base64Binary"
ValueType="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-x509-token-profile-1.0#X509v3"
wsu:Id="x509bst_12"
xmlns:wsu="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-utility-1.0.xsd">
MIIDQDCCAqmgAwIBAgICAQUwDQYJKoZIhvcNAQEFBQAwTjELMAkGA1UEBhMCSlAxETAPBg
NVBAgTCEthbmFnYXdhMQwwCgYDVQQKEwNJQk0xDDAKBgNVBAsTA1RSTDEQMA4GA1UEAxMH
SW50IENBMjAeFw0wMTEwMDExMDAwMzlaFw0xMTEwMDExMDAwMzlaMFMxCzAJBgNVBAYTAk
pQMREwDwYDVQQIEwhLYW5hZ2F3YTEMMAoGA1UEChMDSUJNMQwwCgYDVQQLEwNUUkwxFTAT
BgNVBAMTDFNPQVBQcm92aWRlcjCBnzANBgkqhkiG9w0BAQEFAAOBjQAwgYkCgYEAraakNJ

Chapter 27. Web services 1113

1JzkPUuvPdXRvPOOCl12nBwmqvt65dk/x+QzxxarDNwH+eWRbLyyKcrAyd0XGV+Zbvj6V3
O9DSVCZUCJttw6bbqqeYhwAP3V8s24sID77tk3gOhUTEGYxsljX2orL26SLqFJMrvnvk2F
RS2mrdkZEBUG97mD4QWcln4d0CAwEAAaOCASYwggEiMAkGA1UdEwQCMAAwCwYDVR0PBAQD
AgXgMCwGCWCGSAGG+EIBDQQfFh1PcGVuU1NMIEdlbmVyYXRlZCBDZXJ0aWZpY2F0ZTAdBg
NVHQ4EFgQUlXSsrVRfZOLGdJdjEIwTbuSTe4UwgboGA1UdIwSBsjCBr4AUvfkg1Tj5ZHLT
29p/3M6w/tC872+hgZKkgY8wgYwxCzAJBgNVBAYTAkpQMREwDwYDVQQIEwhLYW5hZ2F3YT
EPMA0GA1UEBxMGWWFtYXRvMQwwCgYDVQQKEwNJQk0xDDAKBgNVBAsTA1RSTDEZMBcGA1UE
AxMQU09BUCAyLjEgVGVzdCBDQTEiMCAGCSqGSIb3DQEJARYTbWFydXlhbWFAanAuaWJtLm
NvbYICAQEwDQYJKoZIhvcNAQEFBQADgYEAXE7mE1RPb3lYAYJFzBb3VAHvkCWa/HQtCOZd
yniCHp3MJ9EbNTq+QpOHV60YE8u0+5SejCzFSOHOpyBgLPjWoz8JXQnjV7VcAbTglw+ZoO
SYy64rfhRdr9giSs47F4D6woPsAd2ubg/YhMaXLTSyGxPdV3VqQsutuSgDUDoqWCA=

</wsse:BinarySecurityToken>

X.509 Binary Security Token
An X.509 binary security token is the base64 encoded representation of an X.509 public certificate.

The following table describes the X.509 token type.

X.509 token type Description

X.509 version 1 Contains just the X.509 public certificate.

X.509 version 3 Contains just the X.509 public certificate.

PKIPath Contains an ordered list of X.509 public certificates
packaged in a PKIPath. The X509PKIPathv1 token type
may be used to represent a certificate path.

PKCS7 Contains a list of X.509 certificates and, optionally,
certificate revocation lists (CRLs) packaged in a PKCS#7
wrapper. The PKCS7 token may be used to represent a
certificate path.

X.509 tokens are generally used to protect a SOAP message with XML Digital Signature or XML
Encryption. Although not recommended, an X.509 token can also be used as an authentication token.

Using X.509 tokens for Authentication

When you authenticate a token, you are verifying that the sender of a token is who he says he is. You
take a piece of public information that is sent in the message, such as a a user id, and verify it somehow
with a piece of private information that only they can provide, such as a password.

As a very simple example, when you authenticate a UsernameToken, the user name and password are
passed in the SOAP message and they are checked against the user registry at the endpoint.

For an X.509 certificate, the public information is the public key/DN and the private information is the
private key. Unlike the password for a UsernameToken, the private key is not sent in the message.

When an X.509 token is used to sign a message, the following process is used:

1. If trust is enabled, the certificate is evaluated against the trust store and cert store, if configured. This
will catch trust errors, certificate chaining errors, revocation errors, certificate expiration, etc. For
example, you can have specific DNs in the trust store to trust each certificate explicitly, or just the root
CA to trust all certificates issued from this CA, but no others.

2. The runtime verifies that the sender of the message has the private key associated with the certificate
by verifying the signature. If the signature cannot be verified, then one of the following conditions
occurred:

a. The message was signed with a private key that did not match the public key in the message.

b. The message was modified after it was sent.

After the signature is verified, you know that the sender of the message is the holder of the private key;
you know that he is who he says he is.

1114 Overview

If you pass an X.509 token in a message without using its private key to sign the message, you will not
perform step #2. You will not verify that the sender of the message is the holder of the private key, or he is
who he says he is. When you sign a message, you are doing something that only the holder of the private
key can do.

With an unprotected X.509 token, that is, the x.509 token was not used to sign the message, the system
can be compromised in the following way:

Capture of the valid message and substitution of an attacker's X.509 token in the same message.

It is not recommend that an unprotected X.509 token be sent in a message. If an X.509 token is to be
used for authentication, it is recommend that one X.509 token be sent in the message and that X.509
token be used for both Digital Signature and authentication, with a caller configuration. The signing part
reference is used in the caller settings.

The following table describes the X.509 token value types.

X.509 token type Value type

X.509 Version 1 http://docs.oasis-open.org/wss/2004/01/oasis-200401-
wss-x509-token-profile-1.0#X509

X.509 Version 3 http://docs.oasis-open.org/wss/2004/01/oasis-200401-
wss-x509-token-profile-1.0#X509v3

PKIPath http://docs.oasis-open.org/wss/2004/01/oasis-200401-
wss-x509-token-profile-1.0#X509PKIPathv1

PKCS7 http://docs.oasis-open.org/wss/2004/01/oasis-200401-
wss-x509-token-profile-1.0#PKCS7

Kerberos token
IBM WebSphere Application Server provides Kerberos token support for web services message-level
security. The support is based on the Organization for the Advancement of Structured Information
Standards (OASIS) Web Services Security Kerberos Token Profile Version 1.1. Use this topic to
understand the Kerberos support that is available for web services.

Kerberos token profile version 1.1

Kerberos Version 5 is a mature, open standard that provides a secure third-party authentication
mechanism. The OASIS Web Services SOAP Message Security specification references the Kerberos
token in the SOAP message. Web services applications can use the Kerberos token to send identities and
protect messages more securely. Overall, Kerberos support involves Kerberos support in Java Platform,
Enterprise Edition (Java EE) security and the Kerberos token support in Web Services Security. This topic
covers the Kerberos token support in Web Services Security only.

In WebSphere Application Server Version 7.0 and later, Web Services Security supports the Kerberos
token, which is based on OASIS WS-Security Kerberos Token Profile Version 1.1 specification. The
Kerberos token is a binary security token for web services message-level security. Web Services Security
provides SOAP message-level security, such as security token propagation, message signature, and
message encryption. The Kerberos token is used for message security, specifically with the SOAP
message security specification for web services, and is another supported token, such as the username
token and the secure conversation token.

For more information, see the Web Services Security Kerberos Token Profile Version 1.1 specification. The
specification explains how to use Kerberos security with the Web Services Security and how the Kerberos
token is propagated and used to secure the SOAP message through signing and encryption.

Chapter 27. Web services 1115

Kerberos token profile enablement

The WebSphere Application Server configuration model leverages existing tools and frameworks for the
Kerberos token profile configuration of authentication and message protection, such as:

v Policy set and binding configuration to enable the Kerberos token profile for Java API for XML-Based
Web Services (JAX-WS) applications

v Deployment descriptor and binding configuration to enable the Kerberos token profile for JAX-RPC
applications

v Token profile enablement with a Kerberos token for JAX-WS applications

v Minimal client configuration to enable the Kerberos token profile using the JAX-WS programming model

For JAX-WS client applications, the design updates the application programming interfaces (APIs) for Web
Services Security and enforces a Web Services Security policy with a Kerberos token, which is based on
the OASIS token profile. To enable a Kerberos token profile by using a policy set, you must first establish
the Web Services Security policy and binding files by using a custom token. For more information, see the
“Kerberos configuration models for web services” topic.

Kerberos support

The following Kerberos-related function is supported by web services in WebSphere Application Server:

v Client programming models for JAX-WS applications with Web Services Security APIs

v Interoperability with Web Services Enhancements (WSE) Version 3.5 and Windows Communication
Foundation (WCF) Version 3.5 for Microsoft .NET

v Recovery of web services message security tokens for JAX-WS applications

v Kerberos token profile enablement

v Integration with the base security for the application server

v Kerberos token generation for the client and service

v Kerberos consumption at the service

v Clustering and high-availability for JAX-WS applications

v Kerberos token profile configuration of authentication and message protection for JAX-WS applications

v Integration in a single realm with either a Microsoft or z/OS operating system Key Distribution Center
(KDC).

v Kerberos token profile configuration of authentication for JAX-RPC applications

v

The application server does not support the following function:

v Key name references

v Message protection using session keys for JAX-RPC applications

v Message protection using derived keys for JAX-RPC applications

v Generation of SHA1 keys for JAX-RPC applications

v Kerberos delegation is not supported when you are using JAX-RPC applications configured with the
Kerberos authentication security mechanism

v A Kerberos token is not recoverable when JAX-WS applications are enabled with web services Reliable
Messaging

Kerberos message protection for web services:

Message-level security is based on the Organization for the Advancement of Structured Information
Standards (OASIS) Web Services Security Kerberos Token Profile Version 1.1 specification. Use this topic
to gain an overall understanding of how message protection is implemented with a Kerberos token for web
services.

1116 Overview

Message protection

The application server can interoperate with other web services technology because of the implementation
of the OASIS web services Kerberos token profile. This specification defines the standards for securing a
SOAP message with the Kerberos token. However, mutual authentication is not defined by the token
profile. The OASIS Web Services SOAP Message Security specification describes how to secure a SOAP
message through signing and encryption by using and referencing a Kerberos token. Specifically, the
OASIS specification defines how the Kerberos token, as a wrapped or unwrapped AP_REQ packet, is
encoded and attached to the SOAP message. The token that is described in the OASIS Kerberos token
profile is limited to the AP_REQ packet, which consists of a service ticket and an authenticator. The
AP_REQ packet is obtained from the Key Distribution Center (KDC), which serves as the third-party
authentication service.

Multiple formats exist for the Kerberos token, as defined in the OASIS Web Services Security Kerberos
Token Profile 1.1. The @ValueType attribute is used to specify the token format. You must specify one of
the following <@ValueType> attributes for the element:

v http://docs.oasis-open.org/wss/oasis-wss-kerberos-token-profile-1.1#Kerberosv5_AP_REQ

v http://docs.oasis-open.org/wss/oasis-wss-kerberos-token-profile-1.1#GSS_Kerberosv5_AP_REQ

v http://docs.oasis-open.org/wss/oasis-wss-kerberos-token-profile-1.1#Kerberosv5_AP_REQ1510

v http://docs.oasis-open.org/wss/oasis-wss-kerberos-token-profile-1.1#GSS_Kerberosv5_AP_REQ1510

v http://docs.oasis-open.org/wss/oasis-wss-kerberos-token-profile-1.1#Kerberosv5_AP_REQ4120

v http://docs.oasis-open.org/wss/oasis-wss-kerberos-token-profile-1.1#GSS_Kerberosv5_AP_REQ4120

The resulting AP_REQ token can be either GSS-API framed (wrapped) or raw (unwrapped). The token
must be Base-64 encoded.

Kerberos usage overview for web services:

You can use a Kerberos token to complete similar functions that you might currently complete with other
binary security tokens, such as Lightweight Third Party Authentication (LTPA) and Secure Conversation
tokens.

Token generator

After the Kerberos token is created from the Key Distribution Center (KDC), the Web Services Security
generator encodes and inserts the token into the SOAP message and propagates the token for token
consumption or acceptance. If a message integrity or confidentiality key is required, a Kerberos sub-key or
a Kerberos session key from the Kerberos ticket is used. A key can be derived from either the Kerberos
sub-key or the Kerberos session key. Web Services Security uses the key from the Kerberos token to sign
and encrypt the message parts as described in the OASIS Web Services Security Kerberos Token Profile
Version 1.1 specification. The type of key to use is predetermined by the Web Services Security
configuration or policy. Also, the size of the derived key is configurable.

The value of the signature or encryption key is constructed from the value of one of the following keys:

v The Kerberos sub-key when it is present in the authenticator

v A session key directly from the ticket if the sub-key is absent

v A key that is derived from either of the previous keys

When the Kerberos token is referenced as a signature key, the signature algorithm must be a hashed
message authentication code, which is http://www.w3.org/2000/09/xmldsig#hmac-sha1. When the Kerberos
token is referenced as an encryption key, you must use one of the following symmetric encryption
algorithms:

v http://www.w3.org/2001/04/xmlenc#aes128-cbc

Chapter 27. Web services 1117

v http://www.w3.org/2001/04/xmlenc#aes256-cbc

v http://www.w3.org/2001/04/xmlenc#tripledes-cbc

Attention:

v The Application Server supports Kerberos Version 5 only.

v You can use a AES-type symmetric algorithm suite in Web Services Security when the
Kerberos ticket complies with RFC-4120 only.

v A Kerberos key with the RC4-HMAC 128–bit key type only is used when the KDC is on a
Microsoft Windows 2003 server.

v A Kerberos key with AES 128–bit or 256–bit key types is used when the KDC is on a
Microsoft Windows 2008 server.

v A Kerberos ticket must be forwardable and not contain an address when the service
provider is running in a cluster.

v You must import an unrestricted Java security policy when you use an AES 256–bit
encryption algorithm.

For information about using a Kerberos token in a cross or trusted realm environment, read the topic
“Kerberos token security in a single, cross, or trusted realm environment.”

Token consumer

The Web Services Security consumer receives and extracts the Kerberos token from the SOAP message.
The consumer then accepts the Kerberos token by validating the token with its own secret key. The secret
key of the service is stored in an exported keytab file. After acceptance, the Web Services Security
consumer stores the associated request token information into the context Subject. You can also derive
the corresponding key to the request token. The key is used to verify and decrypt the message. If the
request token is forwardable and does not contain an address, the application server can use the stored
token for downstream calls.

Token format and reference

For JAX-WS applications, use the existing custom policy set or administrative command scripts for the
custom policy to specify the Kerberos token type, the message signing, and message encryption. The
JAX-WS programming model for WebSphere Application Server provides minimal configuration to enable
the Kerberos token profile with the Kerberos token.

For JAX-RPC applications, use the deployment descriptor to specify that the custom token use the
Kerberos token. You can use the Kerberos token for authentication, but you cannot use it for message
signing or encryption.

WebSphere Application Server supports the following callback handler classes for the Kerberos Version 5
token:

v com.ibm.websphere.wssecurity.callbackhandler.KRBTokenConsumeCallbackHandler

This class is a callback handler for Kerberos Version 5 token on the consumer side. This instance is
used to generate the WSSVerification and WSSDecryption objects to validate a Kerberos binary security
token.

v com.ibm.websphere.wssecurity.callbackhandler.KRBTokenGenerateCallbackHandler

This class is a callback handler for Kerberos Version 5 token on the generator side. This instance is
used to generate the WSSSignature object and the WSSEncryption object to generate a Kerberos
binary security token.

The OASIS Web Services Security Kerberos Token Profile Version 1.1 specification states that the
Kerberos token is attached to the SOAP message with the <wsse:BinarySecurityToken> element. The

1118 Overview

following example shows the message format. The boldface type shows delineates the binary security
token information from the other parts of the example.
<S11:Envelope xmlns:S11=“...” xmlns:wsu=“...”>

<S11:Header>
<wsse:Security xmlns:wsse=“...”>

<wsse:BinarySecurityToken
EncodingType=“http://docs.oasis-open.org/wss/2004/01/

oasis-200401-wss-soap-message-security-1.0#Base64Binary”
ValueType=“http://docs.oasis-open.org/wss/

oasis-wss-kerberos-token-profile-1.1#Kerberosv5_AP_REQ”
wsu:Id=“MyToken”>boIBxDCCAcCgAwIBBaEDAgEOogcD...

</wsse:BinarySecurityToken>
...

</wsse:Security>
</S11:Header>
<S11:Body>

...
</S11:Body>

</S11:Envelope>

The Kerberos token is referenced by the <wsse:SecurityTokenReference> element. The <wsu:Id> element,
which is specified within the <wsse:BinarySecurityToken> element and is shown within the following
example in boldface type, directly references the token in the <wsse:SecurityTokenReference> element.

The @wsse:TokenType attribute value within the <wsse:SecurityTokenReference> element matches the
ValueType attribute value of the <wsse:BinarySecurityToken> element. The Reference/@ValueType attribute
is not required. However, if the attribute is specified, its value must be equivalent to the @wsse11:TokenType
attribute.

The following example shows the message format, the correlation between the<wsu:Id> and
<wsse:SecurityTokenReference> elements, and the relationship between the @wsse:TokenType and
ValueType attribute values.
<S11:Envelope xmlns:S11=“...” xmlns:wsu=“...”>

<S11:Header>
<wsse:Security xmlns:wsse=“...”>

<wsse:BinarySecurityToken
EncodingType=“http://docs.oasis-open.org/wss/2004/01/

oasis-200401-wss-soap-message-security-1.0#Base64Binary”
ValueType=“http://docs.oasis-open.org/wss/

oasis-wss-kerberos-token-profile-1.1#Kerberosv5_AP_REQ”
wsu:Id=“MyToken”>boIBxDCCAcCgAwIBBaEDAgEOogcD...

</wsse:BinarySecurityToken>
</wsse:Security>

</S11:Header>
</S11:Envelope>

<wsse:Security>
</wsse:Security>

<wsse:SecurityTokenReference
TokenType=“http://docs.oasis-open.org/wss/

oasis-wss-kerberos-token-profile-1.1#Kerberosv5_AP_REQ”>
<wsse:Reference URI=“#MyToken”

ValueType=“http://docs.oasis-open.org/wss/
oasis-wss-kerberos-token-profile-1.1#Kerberosv5_AP_REQ”>

</wsse:Reference>
</wsse:SecurityTokenReference>
...

<wsse:Security>
</wsse:Security>

<S11:Header>
</S11:Header>
<S11:Body>

...
</S11:Body>

<S11:Envelope>
</S11:Envelope>

The <wsse:KeyIdentifier> element is used to specify an identifier for the Kerberos token. The value of the
identifier is a SHA1 hash value of the encoded Kerberos token in the previous message. The element
must have a ValueType attribute with a #Kerberosv5APREQSHA1 value. The KeyIdentifier reference
mechanism is used on subsequent message exchanges after the initial Kerberos token is accepted. The
following example shows the key identifier information in boldface type:
<S11:Envelope xmlns:S11=“...” xmlns:wsse=“...” xmlns:wsu=“...”>

<S11:Header>
<wsse:Security>

...
<wsse:SecurityTokenReference

Chapter 27. Web services 1119

wsse11:TokenType=http://docs.oasis-open.org/wss/
oasis-wss-kerberos-token-profile-1.1#Kerberosv5_AP_REQ>

<wsse:KeyIdentifier
ValueType=“http://docs.oasis-open.org/wss/

oasis-wss-kerberos-token-profile-1.1#Kerberosv5APREQSHA1”>
GbsDt+WmD9XlnUUWbY/nhBveW8I=

</wsse:KeyIdentifier>
</wsse:SecurityTokenReference>
...

</wsse:Security>
</S11:Header>
<S11:Body>

...
</S11:Body>

</S11:Envelope>

Multiple references to the Kerberos token

The client is not required to send a Kerberos token in every request after the Kerberos identity is validated
and accepted by the service. The OASIS Web Services Security Kerberos Token Profile Version 1.1
specification suggests that you use a SHA1 encoded key with the <wsse:KeyIdentifier> element within
the <wsse:SecurityTokenReference> element for every subsequent message after the initial AP_REQ
packet is accepted. However, the runtime environment for Web Services Security must map the key
identifier to a cached Kerberos token for further processing. IBM WebSphere Application Server 7.0 and
later supports this SHA1 caching as described in the profile, by default. However, the application server
also provides the ability to generate new AP_REQ tokens for each request with the existing service
Kerberos ticket. When you interoperate with Microsoft .NET, do not use pSHA1 caching; generate an
AP_REQ packet for each request.

Kerberos configuration models for web services:

The IBM WebSphere Application Server configuration model leverages existing frameworks.

The configuration model features include:

v Deployment descriptors and bindings configuration to enable the Kerberos token profile for Java API for
XML-based RPC (JAX-RPC) applications

v Policy sets and bindings configuration to enable the Kerberos token profile for Java Architecture for XML
Web Services (JAX-WS) applications

v Web Services Security APIs for JAX-WS applications

v Administrative command scripts

v Interoperability with Microsoft Web Services Enhancements (WSE) Version 3.5

Following are some examples of possible configurations when using the Kerberos token:

v A JAX-WS client on Windows operating systems

v A JAX-RPC client on Windows operating systems

v A Windows JAX-RPC client on z/OS operating systems

v Web Services Security APIs on Windows operating systems

v A Microsoft .NET WSE 3.5 client on Windows operating systems

v A Microsoft .NET WSE 3.5 client on z/OS operating systems

JAX-WS configuration model

For JAX-WS applications, the WebSphere Application Server client configuration model uses the policy set
and leverages a custom policy set for the Kerberos token. You can specify the Kerberos token type and
message signing and the encryption by using the custom policy set. The Web Services Security
(WS-Security) policy is the security policy that is used to secure the application messages.

1120 Overview

Using the administrative console, you can specify the Kerberos token type, message signing, and
message encryption by using an existing custom policy set. Kerberos token generation and consumption
includes the Kerberos token generation for unmanaged JAX-WS clients.

The JAX-WS programming model also provides capabilities to enable the Kerberos token profile and
identity assertion by configuring the Kerberos token using policy sets, Web Services Security APIs, and
administrative command scripts.

For JAX-WS applications, you can use administrative commands to configure the policy set as an
alternative to using the administrative console.

JAX-RPC configuration model

JAX-RPC applications are configured using a deployment model. The deployment descriptor specifies the
custom token to use for the Kerberos token. A JAX-RPC client can generate the specified Kerberos token.
A JAX-RPC web service can successfully authenticate the Kerberos token by using a custom or the
default Kerberos identity mapping login module.

API configuration model

A set of APIs is provided by WebSphere Application Server. To successfully use these APIs, application
developers must have knowledge about the OASIS Web Services Security Version 1.0 and 1.1
specifications. When you use these APIs, the application server assumes that a policy set is not attached
to the client resources; however, a warning is still issued when the application server detects any policy
set information.

For JAX-WS client applications, the APIs include and enforce Web Services Security policy for the
Kerberos token, which is based on the OASIS token profile. To enable the Kerberos token profile with the
policy set, you must first configure the WS-Security policy and the binding files with the custom token.

For JAX-RPC applications, APIs for Web Services Security are not provided. You must use the deployment
descriptor to specify the custom token to use the Kerberos token. You can use the custom token panels
within an assembly tool, such as Rational Application Developer, to configure the deployment information.

Kerberos clustering for web services:

Clusters are groups of servers that are managed together and participate in workload management.

In a clustered environment, the Kerberos token needs to be distributed and recoverable. The Web
Services Security configuration saves and distributes Kerberos tokens among the cluster members. The
Kerberos tokens that are created or validated in one server are available to the other cluster members.
The distributed cache or database repository need to be configured as the caching mechanism.

Web Services Security Kerberos token for authentication in a single or cross Kerberos realm
environment:

To secure web services messages, you can use a Kerberos token as either an authentication token or a
message protection token. For Kerberos authentication, both the single Kerberos realm environment, and
the cross or trusted Kerberos realm environment are supported.

Single realm environment

In a single Kerberos realm environment, both the client application and the service provider use the same
Kerberos realm. The client application obtains a Kerberos token based on the Kerberos realm used by the
service provider. To configure the token, the client application defines the Kerberos service principal name

Chapter 27. Web services 1121

(SPN) for the service provider in the client policy token generator bindings. The format of the SPN is
shown later in this section, where Kerberos_Realm_Name is optional.
ServiceName/HostName@Kerberos_Realm_Name

For cell-level configuration in WebSphere Application Server, all service providers use the same Kerberos
realm.

If the service provider uses the Kerberos identity from the client for downstream web services requests, a
delegated Kerberos ticket must exist in the Kerberos token that is specified in the Kerberos configuration
file. The system JAAS login module for Kerberos is added to the provided Web Services Security caller.
For more information on using the Kerberos token for caller credentials, read about updating the system
Java Authentication and Authorization Service (JAAS) login with the Kerberos login module, and creating a
Kerberos configuration file.

Cross realm environment or trusted realm environment

The following configuration procedures must be completed for the trusted realm environment:

v The Kerberos trusted realm setup must be completed for all the configured Kerberos KDCs. See your
Kerberos Administrator and User's Guide for more information about how to set up a Kerberos trusted
realm.

v The Kerberos configuration file (krb5.ini on Windows, and krb5.conf for Unix and z/OS platforms) must
list the trusted realms. See your Kerberos Administrator and User's Guide for more information.

v The client application token generator bindings must be configured with the Kerberos SPN information
from the service provider. For more information, see configuring the bindings for message protection for
Kerberos.

In a cross or trusted Kerberos realm environment, the client application and the service provider use
different Kerberos realms that have established trust with each other. The client application obtains a
Kerberos token based on the Kerberos realm used by the service provider. To configure the token, the
client application defines the Kerberos SPN for the service provider in the client policy token generator
bindings. The format of the SPN is shown later in this section, where Kerberos_Realm_Name is required.
ServiceName/HostName@Kerberos_Realm_Name

The client application must specify the Kerberos realm name for the client in the callback handler portion
of the client policy token generator bindings. At the cell level, all service providers use the same Kerberos
realm. However, client applications can still define their own Kerberos realm. Only peer-to-peer and
transitive trust cross-realm authentication are supported.

The following figure illustrates the relationship between trusted realms as defined in the Kerberos Key
Distribution Center (KDC):

1122 Overview

If the service provider uses the Kerberos identity from the client for downstream web services requests, a
delegated Kerberos ticket must exist in the Kerberos token that is configured in the Kerberos configuration
file. The system JAAS login module for Kerberos is added to the provided Web Services Security caller.
For more information on using the Kerberos token for caller credentials, read about updating the system
JAAS login with the Kerberos login module, and creating a Kerberos configuration file.

SAML token
The Security Assertion Markup Language (SAML) is an XML-based OASIS standard for exchanging user
identity and security attributes information.

Using the product SAML function, you can apply policy sets to JAX-WS applications to use SAML
assertions in web services messages and in web services usage scenarios. Use SAML assertions to
represent user identity and user security attributes, and optionally, to sign and to encrypt SOAP message
elements. WebSphere Application Server supports SAML assertions using the bearer subject confirmation
method and the holder-of-key subject confirmation method as defined in the OASIS Web Services Security
SAML Token Profile Version 1.1 specification. Policy sets and general bindings that support SAML are
included with the product SAML function. To use SAML assertions, you must modify the provided sample
general binding.

The SAML function also provides a set of application programming interfaces (APIs) that can be used to
request SAML tokens from a Security Token Service (STS) using the WS-Trust protocol. APIs are also
provided to locally generate and validate SAML tokens. For more information, read about application
programming interfaces (APIs) for SAML.

Time stamp
A time stamp is the value of an object that indicates the system time at some critical point in the history of
the object.

A time stamp is included in a message to reduce the vulnerability of an application to replay attacks. In
web services, a replay attack occurs when an HTTP request is intercepted and the content is resent to the
provider in its original form.

Note: When you include a time stamp in a message, you must protect its integrity using transport security,
such as secure sockets layer (SSL) or message-level security, such as XML digital signature. If you
do not protect the integrity of the time stamp, it is possible to capture the message and retransmit
the content with a different time stamp, message expiration date, or both.

Chapter 27. Web services 1123

For both the JAX-RPC and JAX-WS WS-Security run times, 5 minutes is the default message expiration
time that is used for the receiver if a value is not specified in the message. If a different expiration is
required for a specific client or you are unsure of the target service default value, configure a message
expiration time value for the outbound time stamp.

Note:

v When the Web Services Security JAX-RPC and JAX-WS run times generate or consume a
message, they do not enforce that the integrity of the time stamp is protected.

v The Web Services Security JAX-RPC and JAX-WS run times do not have a default outbound
message expiration value. If you want to include a message expiration value in a message, you
must configure it. Although the JAX-WS run time does not have a default outbound message
expiration value, you can configure an outbound message expiration value in the default general
bindings. This value is acquired by all applications at the level for which the default bindings
apply. For example, the value might be acquired at the cell or application level.

v For the JAX-RPC run time, the time stamp expiration value is specified in the web services
deployment descriptor extension. You cannot modify the web services deployment descriptor
extension from the administrative console; you can only view it. To modify the deployment
descriptor extension, you must use an assembly tool and add or change the time stamp
expiration value for a JAX-RPC application.

v If WS-Security constraints exist to consume a timestamp, the client must send a timestamp.

The JAX-WS WS-Security runtime complies with the OASIS WS-SecurityPolicy 1.2 specification
Timestamp Required requirement. If you want to configure an application to not require an inbound time
stamp when an outbound time stamp is configured you can add the
com.ibm.wsspi.wssecurity.consumer.timestampRequired custom property as either an inbound or an
inbound/outbound web services security custom property.

The JAX-WS runtime always puts the timestamp first, but the JAX-RPC runtime does not. If you are using
the JAX-RPC WS-Security 1.0 runtime, and want to emit the Timestamp first in the Security header, you
must:

v Set the property com.ibm.wsspi.wssecurity.timestamp.keyword to SecurityFirst.

v Set the property com.ibm.wsspi.wssecurity.timestamp.dialect to http://www.ibm.com/websphere/
webservices/wssecurity/dialect-was. The default value for
com.ibm.wsspi.wssecurity.timestamp.dialect is dialect-was, but for the desired function to work, the
property must be set explicitly.

These properties are specified as Web Services Security property configuration settings.

Security considerations for web services
When you configure Web Services Security, you should make every effort to verify that the result is not
vulnerable to a wide range of attack mechanisms. There are possible security concerns that arise when
you are securing web services.

In WebSphere Application Server, when you enable integrity, confidentiality, and the associated tokens
within a SOAP message, security is not guaranteed. This list of security concerns is not complete. You
must conduct your own security analysis for your environment.

v Ensuring the message freshness

Message freshness involves protecting resources from a replay attack in which a message is captured
and resent. Digital signatures, by themselves, cannot prevent a replay attack because a signed
message can be captured and resent. It is recommended that you allow message recipients to detect
message replay attacks when messages are exchanged through an open network. You can use the
following elements, which are described in the Web Services Security specifications, for this purpose:

Timestamp
You can use the timestamp element to keep track of messages and to detect replays of

1124 Overview

|
|
|

|

|
|
|
|

|

previous messages. The WS-Security 2004 specification recommends that you cache time
stamps for a given period of time. As a guideline, you can use five minutes as a minimum
period of time to detect replays. Messages that contain an expired timestamp are rejected.

Nonce
A nonce is a child element of the <UsernameToken> element in the UsernameToken profile.
Because each nonce element has a unique value, recipients can detect replay attacks with
relative ease.

Important: Both the time stamp and nonce element must be signed. Otherwise, these elements can be
altered easily and, therefore, cannot prevent replay attacks.

v Using XML digital signature and XML encryption properly to avoid a potential security hole

The Web Services Security 2004 specification defines how to use XML digital signature and XML
encryption in SOAP headers. Therefore, users must understand XML digital signature and XML
encryption in the context of other security mechanisms and their possible threats to an entity. For XML
digital signature, you must be aware of all of the security implications resulting from the use of digital
signatures in general and XML digital signature in particular. When you build trust into an application
based on a digital signature, you must incorporate other technologies such as certification trust
validation based upon the Public Key Infrastructure (PKI). For XML encryption, the combination of digital
signing and encryption over a common data item might introduce some cryptographic vulnerabilities. For
example, when you encrypt digitally signed data, you might leave the digital signature in plain text and
leave your message vulnerable to plain text guessing attacks. As a general practice, when data is
encrypted, encrypt any digest or signature over the data. For more information, see
http://www.w3.org/TR/xmlenc-core/#sec-Sign-with-Encrypt.

v Protecting the integrity of security tokens

The possibility of a token substitution attack exists. In this scenario, a digital signature is verified with a
key that is often derived from a security token and is included in a message. If the token is substituted,
a recipient might accept the message based on the substituted key, which might not be what you
expect. One possible solution to this problem is to sign the security token (or the unique identifying data
from which the signing key is derived) together with the signed data. In some situations, the token that
is issued by a trusted authority is signed. In this case, there might not be an integrity issue. However,
because application semantics and the environment might change over time, the best practice is to
prevent this attack. You must assess the risk assessment based upon the deployed environment.

v Verifying the certificate to leverage the certificate path verification and the certificate revocation list

It is recommended that you verify that the authenticity or validity of the token identity that is used for
digital signature is properly trusted. Especially for an X.509 token, this issue involves verifying the
certificate path and using a certificate revocation list (CRL). In the Web Services Security
implementation in WebSphere Application Server Version 6 and later, the certificate is verified by the
<TokenConsumer> element. WebSphere Application Server provides a default implementation for the
X.509 certificate that uses the Java CertPath library to verify and validate the certificate. In the
implementation, there is no explicit concept of a CRL. Rather, proper root certificates and intermediate
certificates are prepared in files only. For a sophisticated solution, you might develop your own
TokenConsumer implementation that performs certificate and CRL verification using the online CRL
database or the Online Certificate Status Protocol (OCSP).

v Protecting the username token with a password

It is recommended that you do not send a password in a username token to a downstream server
without protection. You can use transport-level security such as SSL (for example, HTTPS) or use XML
encryption within Web Services Security to protect the password. The preferred method of protection
depends upon your environment. However, you might be able to send a password to a downstream
server as plain text in some special environments where you are positive that you are not vulnerable to
an attack.

Securing web services involves more work than just enabling XML digital signature and XML encryption.
To properly secure a Web service, you must have knowledge about the PKI. The amount of security that

Chapter 27. Web services 1125

http://www.w3.org/TR/xmlenc-core/#sec-Sign-with-Encrypt

you need depends upon the deployed environment and the usage patterns. However, there are some
basic rules and best practices for securing web services. It is recommended that you read some books on
PKI and also read information on the Web Services Interoperability Organization (WS-I) Basic Security
Profile (BSP).

Nonce, a randomly generated token:

Nonce is a randomly-generated, cryptographic token that is used to prevent replay attacks. Although nonce
can be inserted anywhere in the SOAP message, it is typically inserted in the <UsernameToken> element.

Without nonce, when a UsernameToken is passed from one machine to another machine using a
nonsecure transport, such as HTTP, the token might be intercepted and used in a replay attack. The same
password might be reused when the user name token is transmitted between the client and the server,
which leaves it vulnerable to attack. The user name token can be stolen even if you use XML digital
signature and XML encryption. However, nonce alone, used in a non-secure transport, cannot adequately
address the replay problem. Nonce is most useful when the SOAP message is transmitted via a
communication channel that is secured, either at the transport level, or at the message level.

To help eliminate these replay attacks, the <wsse:Nonce> and <wsu:Created> elements are generated
within the <wsse:UsernameToken> element and used to validate the message. The server checks the
freshness of the message by verifying that the difference between the nonce creation time, which is
specified by the <wsu:Created> element, and the current time falls within a specified time period. Also, the
server checks a cache of used nonces to verify that the user name token in the received SOAP message
has not been processed within the specified time period. These two features are used to lessen the
chance that a user name token is used for a replay attack.

To add a nonce for the UsernameToken, you can specify it in the token generator for the user name token.
When the token generator for the UsernameToken is specified, you can select the Add nonce option if
you want to include nonce in the user name token.

Basic Security Profile compliance tips:

The Web Services Interoperability Organization (WS-I) Basic Security Profile (BSP) 1.0 promotes
interoperability by providing clarifications and amplifications to a set of nonproprietary web services
specifications. WebSphere Application Server Web Services Security provides configuration options to
ensure that the BSP recommendations and security considerations can be enabled to ensure
interoperability. The degree to which you follow these recommendations is then a measure of how well the
application you are configuring complies with the Basic Security Profile (BSP).

Support for applications to comply to the Basic Security Profile (BSP) is new in WebSphere Application
Server Version 8.5. For more information on the Basic Security Profile, see Web Services Interoperability
Organization (WS-I) Basic Security Profile (BSP), Basic Security Profile Version 1.0.

You can use either a predefined list of keywords or XPath expressions to comply to the BSP. Both the
keywords and the XPath expressions are specified in the deployment descriptor configuration file and are
configured using an assembly tool.

Basic Security Profile recommendations

Follow these recommendations to ensure that your configured applications are Basic Security Profile
(BSP) compliant.

v Do not use the original XPath transform, http://www.w3.org/TR/1999/REC-xpath-19991116

When you refer to an element in a SECURE_ENVELOPE that does not carry an ID attribute type from a
ds:Reference in a SIGNATURE element, you must use the XPath Filter 2.0 transform,
http://www.w3.org/2002/06/xmldsig-filter2 to refer to that element.

1126 Overview

http://www.ws-i.org/Profiles/BasicSecurityProfile-1.0.html
http://www.w3.org/TR/1999/REC-xpath-19991116
http://www.w3.org/2002/06/xmldsig-filter2

Any ds:Transform/@Algorithm attribute in a SIGNATURE element must have one of these values:

– http://www.w3.org/2001/10/xml-exc-c14n#

– http://www.w3.org/2002/06/xmldsig-filter2

– http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-soap-message-security-1.0#STR-
Transform

– http://www.w3.org/2000/09/xmldsig#enveloped-signature

– http://docs.oasis-open.org/wss/2004/XX/oasis-2004XX-wss-swa-profile-1.0#Attachment-
Content-Only-Transform

– http://docs.oasis-open.org/wss/2004/XX/oasis-2004XX-wss-swa-profile-1.0#Attachment-
Complete-Transform

v Do not use the http://www.w3.org/2000/09/xmldsig#dsa-sha1 signature algorithm.

Any ds:SignatureMethod/@Algorithm element in a SIGNATURE that is based on a symmetric key must
have one of the following values:

– http://www.w3.org/2000/09/xmldsig#rsa-sha1

– http://www.w3.org/2000/09/xmldsig#hmac-sha1

v Do not specify the digestvalue keyword for the message part to encrypt. Instead, use the signature
keyword.

If the value of a ds:DigestValue element in a SIGNATURE element requires encryption, the entire parent
ds:Signature element must be encrypted. A SIGNATURE must not have any xenc:EncryptedData
elements among its descendants.

v Do not use the KEYNAME key information type

KEYNAME references can be ambiguous and compliance with the BSP disallows the use of KEYNAME.

A SECURITY_TOKEN_REFERENCE must not use a key name to reference a SECURITY_TOKEN. The
child element of a ds:KeyInfo element in an ENCRYPTED_KEY must be either a
SECURITY_TOKEN_REFERENCE or a ds:MgmtData element. Using a KEYNAME key information type
for an encryption key results in a KeyName child element of a ds:KeyInfo element and is disallowed for
BSP compliance.

v Do not use the http://www.w3.org/2001/04/xmlenc#aes192-cbc bit data encryption algorithm.

Any xenc:EncryptionMethod/@Algorithm attribute in an ENCRYPTED_DATA element must have one of
these values:

– http://www.w3.org/2001/04/xmlenc#tripledes-cbc

– http://www.w3.org/2001/04/xmlenc#aes128-cbc

– http://www.w3.org/2001/04/xmlenc#aes256-cbc

v Do not use the advanced encryption standard (AES) key wrap (aes192): http://www.w3.org/2001/04/
xmlenc#kw-aes192 key encryption algorithm.

When used for key wrap, any xenc:EncryptionMethod/@Algorithm attribute in an ENCRYPTED_KEY
element must have one of these values:

– http://www.w3.org/2001/04/xmlenc#kw-tripledes

– http://www.w3.org/2001/04/xmlenc#kw-aes128

– http://www.w3.org/2001/04/xmlenc#kw-aes256

Configuration Options for BSP Compliance

You achieve BSP compliance when certain configuration choices are made. The assembly tool assists you
in using appropriate choices when configuring the application by issuing warning messages. The following
configuration descriptions comprise these warnings:

v When configuring the ds:Transforms element in a signature, the list of transforms must include as its
last child element http://www.w3.org/2001/10/xml-exc-c14n# or http://docs.oasis-open.org/wss/2004/
01/oasis-200401-wss-soap-message-security-1.0#STR-Transform

Chapter 27. Web services 1127

http://www.w3.org/2001/10/xml-exc-c14n#
http://www.w3.org/2002/06/xmldsig-filter2
http://www.w3.org/2000/09/xmldsig#enveloped-signature
http://www.w3.org/2000/09/xmldsig#dsa-sha1
http://www.w3.org/2000/09/xmldsig#rsa-sha1
http://www.w3.org/2000/09/xmldsig#hmac-sha1
http://www.w3.org/2001/04/xmlenc#aes192-cbc
http://www.w3.org/2001/04/xmlenc#tripledes-cbc
http://www.w3.org/2001/04/xmlenc#aes128-cbc
http://www.w3.org/2001/04/xmlenc#aes256-cbc
http://www.w3.org/2001/04/xmlenc#kw-aes192
http://www.w3.org/2001/04/xmlenc#kw-aes192
http://www.w3.org/2001/04/xmlenc#kw-tripledes
http://www.w3.org/2001/04/xmlenc#kw-aes128
http://www.w3.org/2001/04/xmlenc#kw-aes256
http://www.w3.org/2001/10/xml-exc-c14n#

v Add a wsse:Nonce or wsse:Created element to a Username token to prevent replay. After the element
is added, sign the Username token to prevent undetected alteration of these fields; otherwise, replay
can occur.

Distributed nonce cache:

In previous releases of WebSphere Application Server, the nonce was cached locally. WebSphere
Application Server Versions 6 and later use distributed nonce caching. The distributed nonce cache makes
it possible to replicate nonce data among servers in a WebSphere Application Server cluster.

If nonce elements are in a SOAP header, all nonce values are cached by the server in the cluster. If the
distributed nonce cache is enabled, the cached nonce values are copied to other servers in the same
cluster. Then, if the message with the same nonce value is sent to (one of) other servers, the message is
rejected. A received nonce cache value is cached and replicated in a push manner among other servers in
the cluster with the same replication domain. The replication is an out-of-process call and, in some cases,
is a remote call. Therefore, there is latency when the content of the cache in the cluster is updated.

For example, you might have application server A and application server B in cluster C.

v A SOAP client sends a message with nonce abc to application server A.

v The server caches the value and pushes it to the other application server B.

v If the client sends the message with nonce abc to application server B after a certain time frame, the
message is rejected and if the application server B receives the nonce with the same value within a
specified period of time, a SoapSecurityException is thrown by application server B.

For more information, see the information that explains nonce cache timeout, nonce maximum age, and
nonce clock skew in Token generator configuration settings.

v If the client sends the message with another nonce value of xyz, the message is accepted, the value is
cached by application server B and is copied into the other application servers within the same cluster.

Important: The distributed nonce caching feature uses the WebSphere Application Server data replication
service (DRS). The data in the local cache is pushed to the cache in other servers in the
same replication domain. The replication is an out-of-process call and, in some cases, is a
remote call. Therefore, there is a possible delay in replication while the content of the cache in
each application server within the cluster is updated. The delay might be due to network
traffic, network workload, machine workload, and so on.

Web Services Security token propagation
Web Services Security has the ability to send security tokens in the security header of a SOAP message.
These security tokens can be used to sign, verify, encrypt or decrypt message parts. Security tokens can
also be sent as stand-alone security tokens and set as the caller on the request consumer. Web Services
Security token propagation is used to send these stand-alone security tokens in a
wsse:BinarySecurityToken element within the security header of the SOAP message.

Web Services Security has the following built-in token types:

v Username token

v X.509 token

v Lightweight Third-Party Authentication (LTPA) token

You can configure Web Services Security to use custom security tokens. Web Services Security uses the
same propagation token format as the Security attribute propagation feature. Web Services Security can
propagate all of the built-in security token types and can propagate custom token types as long as they
are serializable by the security attribute propagation feature.

When you configure a propagation token in a token generator or token consumer, use the following values
for the token type Uniform Resource Identifier (URI) and local name:

1128 Overview

v Token type URI: http://www.ibm.com/websphere/appserver/tokentype

v Token type local name: LTPA_PROPAGATION

When a propagation token is generated, Web Services Security gathers all of the serializable security
tokens in the RunAs subject for the current thread and serialize the security tokens within a
wsse:BinarySecurityToken token. To have a RunAs subject and the credentials that are necessary on the
current thread, a JAAS login must occur on the current thread before a propagation token can be created.

Under ordinary circumstances, for a service provider, the Java Authentication and Authorization Service
(JAAS) login is achieved by including a defined caller part for the inbound token in the WS-Security
configuration. For a web services client, the JAAS login is achieved by configuring HTTP basic
authentication.

There are two common uses for a propagation token:

v A client from within a secured service propagates the serializable security tokens and credentials from
the current RunAs subject to a downstream server.

v A server-based client that is secured in the web container with HTTP basic authentication can use a
propagation token.

For a server-based client, the overhead for propagation tokens is not necessary as only the identity is
required and not the full set of credentials. However, if the client application makes modifications to the
subject after it is invoked by the web container, it might be appropriate to use a propagation token. If
only an identity token is required, an ordinary LTPA token might be appropriate. You can generate this
LTPA token from the RunAs subject that is created by the JAAS login.

Important: For the receiver of the LTPA propagation token to make proper use of the credentials that
were sent to it in the propagation token, you must configure and define a caller part for the
token in the WS-Security configuration on the receiver side.

Chapter 27. Web services 1129

1130 Overview

Chapter 28. XML applications

This page provides a starting point for finding information about XML applications.

Overview of XML support
You can use the XML support provided with this product to work with web applications that process data
using standard XML technologies like Extensible Stylesheet Language Transformations (XSLT), XML Path
Language (XPath), and XML Query Language (XQuery).

XML-structured data has become the predominant format for data interchange. XML data is navigated,
queried, or transformed in almost every existing WebSphere application.

Since first being standardized, XML usage in application-development environments has grown
significantly to include many scenarios. WebSphere Application Server is a leading platform for the latest
application development standards, including XML.

Note: IBM WebSphere Application Server Version 8.5 delivers critical technology that provides application
developers with support for the following key World Wide Web Consortium (W3C) XML standards:

v Extensible Stylesheet Language Transformations (XSLT) 2.0

v XML Path Language (XPath) 2.0

v XML Query Language (XQuery) 1.0

These new and updated W3C XML standards offer application developers numerous advanced
capabilities for building XML applications. Specific benefits delivered in the XPath 2.0, XSLT 2.0,
and XQuery 1.0 standards include the following:

v Simpler XML application development and improved developer productivity

v Improved ability to query large amounts of data stored in XML outside of a database with XQuery
1.0

v Improved XML-application performance through new features introduced in the W3C
specifications to address previous shortcomings

v Improved XML-application reliability with new support for XML schema-aware processing and
validation

Note: If you want to use XPath 1.0 or XSLT 1.0 (not in backwards-compatibility mode), continue to use
Java API for XML Processing (JAXP) in Java 2 Platform, Standard Edition (J2SE) 6.0 and 7.0.

For more information about these W3C XML standards, go to W3C XQuery 1.0 and XSLT 2.0 Become
Standards: Tools to Query, Transform, and Access XML and Relational Data.

The product provides the IBM XML Application Programming Interface in support of these standards. This
application programming interface invokes a runtime engine that is capable of executing XPath 2.0, XSLT
2.0, and XQuery 1.0 as well as manipulating the returned XML data.

The product also includes the IBM Thin Client for XML with WebSphere Application Server. The thin client
allows access to the same XML API and runtime functionality (XPath 2.0, XSLT 2.0, and XQuery 1.0)
available in the full product. The thin client can be copied to multiple clients running Java SE in support of
a WebSphere Application Server Version 8.5 installation.

XSLT 2.0, XPath 2.0, and XQuery 1.0 major new functions
Valuable features have been added to XPath 2.0, XSLT 2.0, and XQuery 1.0 reflecting productivity and
feature improvements beyond the XPath 1.0 and XSLT 1.0 standards.

© Copyright IBM Corp. 2012 1131

http://www.w3.org/2007/01/qt-pressrelease
http://www.w3.org/2007/01/qt-pressrelease

XPath 2.0
v XPath 2.0 has been improved to support the XPath 2.0 and XQuery 1.0 Data Model (XDM), which is

based on sequences of heterogeneous items including nodes and primitive types. This replaces and
improves on the XPath 1.0 node-set support and becomes the foundation of XSLT 2.0 and XQuery 1.0
data navigation.

v XPath 2.0 adds an extensive collection of functions and operators to allow for an easier programming
experience, replacing the XPath 1.0 requirement for proprietary extension mechanisms. These functions
and operators help with date and time handling, enhance the string manipulation, support regular
expression matching and tokenization, extend the number handling, and add functions for sequence
manipulation.

v XPath 2.0 supports schema-aware processing, which allows for data navigation based on XML schema
information for not only built-in schema types, but also user-defined schema types.

v XPath 2.0 adds condition (if/then/else branches), iterative (for loops), and quantified expressions (some
and every tests) typical of other languages.

v XPath 2.0 adds named collations across multiple functions allowing for locale-specific operation.

v XPath 2.0 provides a backwards-compatibility mode to run most XPath 1.0 expressions unchanged.

XSLT 2.0
v XSLT 2.0 is based on XPath 2.0, allowing XSLT 2.0 to take advantage of all new XPath 2.0 features.

Temporary trees have been added to allow navigation of constructed trees during transformation.
User-defined functions can be defined in the XSLT language and are callable using XPath 2.0.

v XSLT 2.0 can write to multiple result documents in a single stylesheet execution.

v XSLT 2.0 supports regular expressions to analyze and separate strings.

v XSLT 2.0 allows variables and parameters to be typed, therefore improving the reliability of stylesheets
and functions.

v XSLT 2.0 supports schema-aware processing, which allows XSLT 2.0 to check for valid input, temporary
trees, and output documents.

v XSLT 2.0 supports initial named templates, which allows the processor to start with a defined template
instead of having to match the input document, a feature commonly used with loading documents
programmatically using the XPath 2.0 collection and document functions.

v Comparisons in sorting, grouping, and keys are supported with any data type and can use
locale-specific named collations.

v XHTML has been added to XSLT 2.0 as a valid output format.

v The next-match instruction allows the same node to be processed with multiple templates.

v The character-map instruction allows fine grained control of serialization of characters.

v XSLT 2.0 added addition instructions for transforming and formatting dates and times.

v XSLT 2.0 added support for tunnel parameters, which allows parameters to be passed through multiple
template calls without having to declare the parameter in each template call.

v XSLT 2.0 added multiple mode support to allow templates to apply to specific modes of processing
within a stylesheet.

v Unparsed text can be incorporated into the data processed by a stylesheet, which then can be
tokenized with the new regular expression support.

v XSLT 2.0 provides a backwards-compatibility mode to run most XSLT 1.0 stylesheets unchanged.

XQuery 1.0
v XQuery 1.0 is based on XPath 2.0, allowing XQuery 1.0 to take advantage of all new XPath 2.0

features. XQuery 1.0 builds on XPath 2.0 to provide full XML Query capability.

1132 Overview

v XQuery's FLOWR (For, Let, Order by, Where, Return) expression allows for complicated joins across
XML datasets. FLOWR allows for query of large documents or collections of documents. XQuery allows
for the mixture of direct XML construction along with computed content returned from FLOWR
expressions.

v XQuery has the ability to define functions and variables with syntax that is familiar to users of other
languages, allowing larger programs to be defined around the data-query operations.

v XQuery 1.0 supports schema-aware processing, which allows input and constructed documents and
elements to be validated.

v XQuery module support allows queries to be broken up into reusable fragments.

Overview of the XML Samples application
The XML Samples application is written to be used with the XML specifications and other documents.
However, the most important function that these samples provide is a place to begin experimenting with
the XML API and the supported specifications.

Limitations

The XML Samples application is not intended for deployment to production servers. It is for development
and educational purposes only. All source code is provided as is for you to use, copy, and modify without
royalty payment when you develop applications that run with WebSphere software. You can use the
sample code either for your own internal use, for redistribution as part of an application, or in your
products.

Content
v The simple API invocation examples included in the samples are intended as simple examples of using

the major new features of XPath 2.0, XSLT 2.0, and XQuery 1.0.

– XPath 2.0 examples

- Sample 1: Simple XPath invocation

Shows how to invoke XPath

- Sample 2: Invoking XPath 1.0 under an XPath 2.0 run time in backwards compatibility mode

Shows an example that demonstrates differences between XPath 1.0 and XPath 2.0 as well as
how to run existing XPath 1.0 statements under XPath 2.0 in backwards-compatibility mode

- Sample 3: Invoking schema aware XPath 2.0 expressions

Shows how to run schema-aware expressions; shows how to load schema documents, how to
validate input documents, and how to declare namespace prefixes

- Sample 4: XPath 2.0 - document function (relative URIs) with input and output documents

Shows how to invoke XPath using the document function with relative URIs

- Sample 5: XPath running in compiled mode

Shows how to invoke XPath in compiled mode

- Sample 6: XPath running in pre-compiled mode

Shows how to invoke XPath in pre-compiled mode

- Sample 7: XPath 2.0 collation support

Shows how to invoke XPath with collation support

– XSLT 2.0 examples

- Sample 1: Simple XSLT invocation

Shows how to invoke XSLT

- Sample 2: Invoking XSLT 1.0 under an XSLT 2.0 run time in backwards compatibility mode

Shows differences between XPath 1.0 and XPath 2.0 and how to run existing XSLT 1.0
stylesheets under a XSLT 2.0 processor in backwards-compatibility mode

Chapter 28. XML applications 1133

- Sample 3: XSLT 2.0 updated for-each support

Shows how to use the XSLT 2.0 for-each functionality

- Sample 4: XSLT 2.0 grouping support

Shows how to use the capability offered by xsl:for-each-group

- Sample 5: XSLT 2.0 regular expression support

Shows how to use XSLT 2.0 regular-expression support to work with data in structured legacy
formats within XML strings

- Sample 6: XSLT 2.0 date formatting

Shows how to use XSLT 2.0 date formatting with internationalization

- Sample 7: XSLT 2.0 multiple results

Shows how to use an XSLT 2.0 result-document instruction to write to multiple outputs
simultaneously

- Sample 8: XSLT 2.0 tunnel parameters

Shows how to use XSLT 2.0 tunnel parameters to allow values to be set and accessible during
stylesheet processing

- Sample 9: XSLT 2.0 stylesheet functions

Shows how to use the XSLT 2.0 stylesheet functions

- Sample 10: XSLT 2.0 initial template

Shows how to use the XSLT 2.0 initial-template functionality

- Sample 11: XSLT 2.0 template with multiple modes

Shows how to use the XSLT 2.0 template with multiple modes functionality

- Sample 12: XSLT 2.0 XHTML support - no output method specified

Shows how to use XSLT 2.0 XHTML support with the XHTML output method

- Sample 13: XSLT 2.0 XHTML support - output method specified

Shows how to use XSLT 2.0 XHTML support with the XHTML output method

- Sample 14: XSLT 2.0 character maps

Shows how to use XSLT 2.0 character maps functionality

- Sample 15: XSLT 2.0 "as" attribute

Shows how to use the XSLT 2.0 "as" attribute functionality

- Sample 16: XSLT 2.0 embedded stylesheets

Shows how to use the XSLT 2.0 embedded stylesheets functionality

- Sample 17: XSLT 2.0 running in compiled mode

Shows how to run XSLT in compiled mode

- Sample 18: XSLT 2.0 running in pre-compiled mode

Shows how to run XSLT in pre-compiled mode

- Sample 19: XSLT 2.0 undeclare-prefixes serialization parameter

Shows how to use the XSLT undeclare-prefix parameter when producing XML output that is
Version 1.1 or higher

- Sample 20: XSLT 2.0 next-match

Shows how to use the XSLT next-match functionality

- Sample 21: XSLT 2.0 usage of XPath 2.0 collection function

Shows how to use the collection function

- Sample 22: XSLT 2.0 schema awareness - input validation (valid)

Shows how to use the stylesheets and schemas to validate input documents

- Sample 23: XSLT 2.0 schema awareness - input validation (invalid)

Shows how to use the stylesheets and schemas to validate input documents

1134 Overview

- Sample 24: XSLT 2.0 schema awareness - temporary tree (valid)

Shows how to use the validation attribute to validate temporary trees

- Sample 25: XSLT 2.0 schema awareness - temporary tree (invalid)

Shows how to use the validation attribute to validate temporary trees

- Sample 26: XSLT 2.0 schema awareness - output document (valid)

Shows how to use the validation attribute to validate the main output document

- Sample 27: XSLT 2.0 schema awareness - output document (invalid)

Shows how to use the validation attribute to validate the main output document

- Sample 28: XSLT 2.0 schema awareness - element(*, T) function

Shows how to use the stylesheets and schemas to match on element types instead of names

- Sample 29: XSLT 2.0 use-when

Shows how to use the use-when functionality

- Sample 30: XSLT 2.0 collation support

Shows how to use the for-each-group functionality with collations

- Sample 31: Using stylesheet-declared external functions

Shows how to declare external functions within a stylesheet

– XQuery 1.0 examples

- Sample 1: Simple XQuery invocation

Shows how to invoke simple XQuery FLOWR expressions

- Sample 2: XQuery FLWOR support - using doc function and cross document joins

Shows how to invoke an XQuery that joins data from multiple documents

- Sample 3: XQuery declare functions and variables

Shows how to define and use XQuery functions and variables

- Sample 4: XQuery TypeDeclaration support

Shows how to use the TypeDeclaration functionality

- Sample 5: XQuery running in compiled mode

Shows how to run XQuery functions in compiled mode

- Sample 6: XQuery running in pre-compiled mode

Shows how to invoke XQuery in pre-compiled mode

- Sample 7: XQuery operations on types (typeswitch, cast as)

Shows how to use operations on types

- Sample 8: XQuery schema awareness - input validation (valid)

Shows how to validate the input document passed to the query

- Sample 9: XQuery schema awareness - input validation (invalid)

Shows how to validate the input document passed to the query

- Sample 10: XQuery schema awareness - node validation (valid)

Shows how to validate an element using the validate expression

- Sample 11: XQuery schema awareness - node validation (invalid)

Shows how to validate an element using the validate expression

- Sample 12: XQuery schema awareness - element(*, T) function

Shows how to use schema awareness to match on element types instead of names

- Sample 13: XQuery modules support

Shows how commonly used functions and variables can be put in a reusable library module

- Sample 14: XQuery modules support with schema

Shows how modules interact with schema support

Chapter 28. XML applications 1135

- Sample 15: Using query-declared external functions

Shows how to declare external functions within a query

v The Blog Comment Checker examples show how you can search all or your Blogger™ web publishing
service blogs for questionable comments. They are examples of high-level applications that use XPath
2.0, XSLT 2.0, and XQuery 1.0.

– XPath Blog Checker

– XSLT Blog Checker

– XQuery Blog Checker

– Database Integration Checker

Building and running a sample XML application
You can use the IBM WebSphere Application Server XML thin client, the
com.ibm.xml.thinclient_8.5.0.jar file, to build a sample XML application. You can also use the API
documentation to improve your understanding of the XML API.

Before you begin
1. Install the product.

2. Locate the com.ibm.xml.thinclient_8.5.0.jar file.

You can find the com.ibm.xml.thinclient_8.5.0.jar file in your installation tree; for example:

v app_server_root\runtimes\com.ibm.xml.thinclient_8.5.0.jar

v app_server_root/runtimes/
com.ibm.xml.thinclient_8.5.0.jar

To see how to build and use an application, refer to the sample application that is packaged with the
product.

About this task

Follow this procedure when you build and run a sample XML application.

Procedure
1. For build time, include the com.ibm.xml.thinclient_8.5.0.jar file in the build-time class path while

developing your sample XML application.

Also, attach the API documentation from the javadoc directory that is inside the
com.ibm.xml.thinclient_8.5.0.jar file.

1136 Overview

The results of these actions are shown in the following image:

When complete, your application should compile; and when using context completion, you should have
access to the API documentation as shown here:

Chapter 28. XML applications 1137

2. Deploy your application.

1138 Overview

Chapter 29. What is new in this release

WebSphere Application Server is a proven, high-performance transaction engine that can help you build,
run, integrate, and manage dynamic business applications. This release introduces key enhancements to
help you succeed in the current dynamic and competitive marketplace by introducing the new lightweight
Liberty profile and by offering breakthrough advances in developer productivity, application server
resiliency, and improved operational efficiency.

This product excels as the foundation for a service-oriented architecture with the following main benefits:

v “New Liberty profile: a lightweight application foundation” on page 1140

The Liberty profile is a highly composable, fast to start, ultra lightweight profile of the application server
that is optimized for developer productivity and smaller, simpler production server deployments.

v “Fast, flexible, and simplified application development” on page 1141

Use the new Liberty profile to jump-start application development, and speed project completion. You
can download the Liberty profile from the WASdev community page, or by using the Installation
Manager.

WebSphere Application Server Version 8.5 extends its rich application development and deployment
environment to also provide the following enhanced capabilities:

– Enterprise JavaBeans (EJB) support in OSGi applications

– Support for WebSphere SDK Java Technology Edition V7.0 as an optional pluggable JDK

– Support for Web 2.0 and Mobile Toolkit to extend enterprise applications to mobile devices

– Support for a new migration toolkit to help you not only migrate your applications, but to identify and
resolve application problems before migration

v Intelligent Management and enhanced resiliency

Take advantage of integrated Intelligent Management capabilities and enhanced resiliency of the
application server for enhanced user availability. Intelligent Management improvements include
intelligent routing, application edition management, health management and performance management.
For messaging systems, improvements for handling failures of the messaging infrastructure include
automatic detection of certain types of memory leaks and improved fault tolerance to enhance service
integration bus resiliency.

v “Integrated tools” on page 1142

WebSphere Application Server now provides integrated tooling to help you easily develop, assemble,
and deploy your applications to WebSphere Application Server Version 8.5 and includes a
rapid-deployment feature for testing applications in the Version 8.5 runtime environment.

v “Improved operations, security, control, and integration” on page 1144

Improve operational efficiency and controls for managing complex environments in a way that is less
time consuming and resource consuming. Take advantage of the benefits of the option to select and
switch between IBM WebSphere SDK Java Technology Edition Version 7.0 or 6.0 as well as powerful
new batch capabilities. Enhancements for problem determination include cross component tracing
(XCT), improved log and trace filtering, and support for IBM Support Assistant Data Collector. You can
achieve richer application security with greater flexibility and more granular control using enhanced
security with administrative audit features.

Note: The new features that are described in this topic are current as of the original release of the
product version. Changes in this documentation that are related to service releases are marked with
fix pack icons.

This version offers robust improvements, whether you are new to the product or making the transition from
a prior release. Use this topic to obtain a high-level summary of the new features in this release. To learn
more about the new and changed features in key areas that affect your specific roles in your business,

© Copyright IBM Corp. 2012 1139

|
|
|
|
|
|

https://www.ibm.com/developerworks/mydeveloperworks/blogs/wasdev/entry/download?lang=en

see the information about what is new for installers on distributed operating systems, installers on IBM i
operating systems, installers on z/OS operating systems, administrators, security specialists, developers,
and troubleshooters.

New Liberty profile: a lightweight application foundation

WebSphere Application Server includes the Liberty profile that is optimized for both operational and
developer productivity. Key operational benefits include, but are not limited to, the following capabilities:

v Ultra lightweight modular runtime environment, with an install size of under 50 MB

v Incredibly fast startup time

v Java EE and OSGi application deployment support for web applications

v LDAP registry support

v Deployment, as a package, of an application and configured server

v Managed, centralized deployment to many nodes of a packaged application and server

v Platform support for distributed platforms, z/OS, and Mac OS

The Liberty profile currently supports a subset of the following parts of the full WebSphere Application
Server programming model:

v Web applications

v OSGi applications

v Java Persistence API (JPA)

Familiar WebSphere Application Server enterprise qualities of service, such as security and transaction
integrity, are enabled as required.

v Deploying applications to a Liberty profile server

v Network deployment of Liberty profile servers

Deploying applications to a Liberty profile server

This profile supports two models of application deployment:

v Deploy an application by dropping it into a “dropins” directory.

v Deploy an application by adding it to the server configuration.

Because it is composable, each Liberty profile server is usually configured to include only the
capabilities that are needed by the applications that it serves. This approach keeps each deployed
server small and agile.

Network deployment of Liberty profile servers
The job manager provides the ability to distribute and deploy a Liberty profile server and
applications, and start or stop embedded resources. Administration through the job manager
provides the following key features:

v Support for central administration through job manager host target jobs. You can submit job
manager jobs that support the full lifecycle of Liberty profile resource deployment from initial
install, to updates, to uninstall. A deployment manager is not required, although you can use the
job manager function available on a deployment manager to administer the Liberty profile and
its resources.

v Quick installation of the Liberty profile. You can extract the Liberty profile resource and simply
run the install Liberty profile resource job. There is no requirement to run a formal installation
tool, such as Installation Manager, to use Liberty profile resources. Liberty profile resources are
packaged as compressed files that are ready for use after extraction.

v Support for flexible sharing of resources such as a software development kit (SDK), runtime
binary files, server configuration, and application binary files among many server instances.

v Non-destructive update enables easy installation of new versions of any resources. You can
switch easily between old and new resources, or run concurrent versions of resources.

1140 Overview

v No requirement for agent on target hosts, which reduces administration costs.

Fast, flexible, and simplified application development

WebSphere Application Server includes the following key new features and enhancements to ease, simply
and extend the application developer experience:

v The Liberty profile

v Support for OSGi programming model enhancements, including EJB support

v Support for IBM WebSphere SDK Java Technology Edition Version 7.0

v Integrated support for WebSphere Application Server Web 2.0 and Mobile Toolkit

v New migration suite of tools to prepare, analyze, and migrate WebSphere applications and other
competitive applications

The Liberty profile
The Liberty profile provides a simplified and lightweight development and application-serving
environment for web and OSGi applications. Familiar WebSphere Application Server enterprise
qualities of service, such as security and transaction integrity, are enabled as required. Key
benefits include, but are not limited to, the following capabilities:

v Free and frictionless download for development purposes

v Ultra lightweight modular runtime environment, with an install size of under 50 MB

v Incredibly fast startup time: under 5 seconds for simple web applications

v Simplified configuration for quick time to productivity

v Availability of WebSphere Application Server Developer Tools as Eclipse plug-ins for broad
tooling support

v Platform support for distributed platforms, z/OS, and Mac OS

Because it is composable, each Liberty profile server is usually configured to include only the
capabilities that are needed by the applications that it serves. This approach keeps each server
small and agile. The Liberty profile includes support for the following capabilities:

v Blueprint

v Java Database Connectivity (JDBC)

v Java Management Extensions (JMX)

v Java Persistence API (JPA)

v JavaServer Faces (JSF)

v JavaServer Pages (JSP)

v Secure Sockets Layer (SSL)

v Security, supported by either the basic user registry or a Lightweight Directory Access Protocol
(LDAP) user registry

v Servlet

v Web application bundle (WAB)

v Web security

Support for OSGi programming model enhancements, including EJB support

Take advantage of enhanced modular application development by assembling OSGi applications
from reusable bundles that contain Enterprise JavaBeans (EJB) assets. The enterprise beans in
your OSGi bundles can be developed from scratch, or you can include existing EJB assets and
migrate them to use OSGi modularity with minimal code changes. Stateful, stateless, and singleton
enterprise beans are supported. Your OSGi application can also contain message-driven beans
(MDBs).

Chapter 29. What is new in this release 1141

You can deploy and configure an OSGi application that contains enterprise beans in a similar way
to deploying and configuring a Java Platform, Enterprise Edition (Java EE) enterprise application,
by using wsadmin or the administrative console.

Support for IBM WebSphere SDK Java Technology Edition Version 7.0

This IBM Software Development Kit (SDK) provides a full-function SDK for Java that is compliant
with the Java Platform, Standard Edition (Java SE) 7 application programming interfaces (APIs).
With IBM WebSphere SDK Java Technology Edition Version 7.0, you can develop and deploy
Java applications at the Java 7 API level and continue the “write once, run anywhere”Java
paradigm at the Java API level. The SDK contains the Java application Runtime Environment and
other tools that enable developers to create Java applications.

WebSphere Application Server supports IBM WebSphere SDK Java Technology Edition Version
7.0 as a pluggable JDK. Java 6 is installed with the product and used by default. You can
optionally install Java 7 support and then enable it using the managesdk tool.

Integrated support for WebSphere Application Server Web 2.0 and Mobile Toolkit

The WebSphere Application Server Web 2.0 and Mobile Toolkit simplifies the addition of
Asynchronous JavaScript and XML (Ajax) rich desktop and mobile user interfaces and
Representational State Transfer (REST) Web services to Java Web applications. Web 2.0
capabilities, such as Ajax and REST, help application developers to create more connected,
interactive applications, that result in higher customer satisfaction, user productivity, and enhanced
decision making. New mobile Ajax components enable developers to create mobile web
applications that run on devices such as smartphones and tablets.

New migration suite of tools to prepare, analyze, and migrate WebSphere applications and other
competitive applications

Enjoy faster application migrations using the extensive set of tools to help you plan for and
implement application migrations. The IBM WebSphere Application Server Migration toolkit is a
suite of tools and knowledge collections, provided at no charge, to quickly and cost-effectively
migrate to WebSphere Application Server V7, V8.0 or V8.5, whether from a previous version of
WebSphere Application Server or competitive application servers including Oracle WebLogic
Server, Oracle Application Server, JBoss Application server, and Apache Tomcat. This toolkit
provides a single solution for identifying, analyzing, and resolving application code quality and
compliance requirements. You can obtain this migration toolkit from the developerWorks IBM
WebSphere Application Server Migration Toolkit page.

Integrated tools

WebSphere Application Server Version 8.5 includes:

Development workbench options

Accelerate developer productivity through integrated and optimized developer tooling. Rational
Application Developer Version 8.5 provides a complete environment for enterprise development for
Java, Java EE, web, web services, SOA, OSGi, and Portal designers and developers. Use this
environment to develop, assemble, and deploy your applications to WebSphere Application Server
Version 8.5, and test your applications using a rapid-deployment feature in the Version 8.5 runtime
environment.

The IBM WebSphere Application Server Developer Tools for Eclipse, Version 8.5 is a lightweight
set of tools for developing, assembling, and deploying Java EE, OSGi, Web 2.0 and Mobile
applications to WebSphere Application Server, including the Liberty profile.

1142 Overview

http://www.ibm.com/developerworks/websphere/downloads/migtoolkit/compmig.html
http://www.ibm.com/developerworks/websphere/downloads/migtoolkit/compmig.html

Intelligent Management and enhanced resiliency

WebSphere Application Server Version 8.5 provides enhanced user availability and application server
resiliency with integrated Intelligent Management capabilities and resiliency enhancements for the service
integration bus.

v Using Intelligent Management for application edition management

v Using Intelligent Management for intelligent routing

v Using Intelligent Management for application server health management

v Using Intelligent Management to improve performance with dynamic clustering and overload protection

v Improvements to the recovery of messaging engine errors

v Enable the messaging engine to restart after a failure

v Retain the count of failed deliveries after the messaging engine is restarted

v Enhanced memory leak detection and protection

v Improvement to the messaging engine to prevent holding long running database locks

v Improvements to service integration bus performance

v Recovery of the messaging engine configuration from the message store

Using Intelligent Management for application edition management

Leverage the application edition management capabilities of IBM Intelligent Management to
manage interruption-free production application deployments. Using this feature, you can validate
a new edition of an application in your production environment without affecting users and upgrade
your applications without incurring outages to your users. You can also run multiple editions of a
single application concurrently, directing different users to different editions.

Using Intelligent Management for intelligent routing

Intelligent routing improves business results by ensuring priority is given to business critical
applications. Requests are prioritized and routed based upon administrator-defined rules.
Intelligently route requests using the On Demand Router (ODR). The ODR can momentarily queue
requests for less important applications so that requests from more important applications are
handled more quickly.

Using Intelligent Management for application server health management

Use the application server health management feature to monitor the status of your application
servers as well as sense and respond to problem areas before an outage occurs. You can
manage the health of your application serving environment with a policy-driven approach that
enables specific actions to occur when monitored criteria is met. For example, when memory
usage exceeds a percentage of the heap size for a specified time, health actions can run to
correct the situation.

Using Intelligent Management to improve performance with dynamic clustering and overload
protection

With dynamic clusters, you can automatically scale up and down the number of running cluster
members as needed in order to meet response time goals for your users. You can leverage
overload protection to limit the rate at which the on demand router (ODR) forwards traffic to
application servers in order to prevent heap exhaustion, CPU exhaustion, or both types of
exhaustion from occurring.

Improvements to the recovery of messaging engine errors

When a recoverable database error is detected by the high availability (HA) manager, the
messaging engine is stopped, and the standby messaging engine is started automatically, if
available. The other applications running in the application server are not affected by the failure of
the messaging engine.

Enable the messaging engine to restart after a failure

Chapter 29. What is new in this release 1143

When a messaging engine fails due to recoverable database problems, it is disabled and failed
over to another messaging engine in the cluster, if configured for high availability. In the event that
the active messaging engine does not responding to the database, the standby messaging engine
is able to take ownership of the database because the active messaging engine holds only short
duration locks. This action also ensures that only one active messaging engine can access the
database at a given time. The disabled messaging engine is automatically enabled after a specific
time and is available for failover.

Retain the count of the failed deliveries after the messaging engine is restarted

When a message delivery fails, the messaging engine attempts to redeliver the message
repeatedly and the delivery count increases incrementally each time. The redelivery count is
persisted to the message store and is made available for the messages even after the messaging
engine is restarted.

Enhanced memory leak detection and protection

WebSphere Application Server provides top down pattern-based memory leak detection,
prevention, and action by watching for suspect patterns in application code at run time.
WebSphere Application Server has some means of protection against memory leaks when
stopping or redeploying applications. This product monitors application and module activity and
performs diagnostic actions when an application or an individual module stops. This feature helps
in increasing application up time with frequent application redeployments without cycling the
server.

Improvement to the messaging engine to prevent holding long running database locks

When the messaging engine uses a database as the message store, you can configure the
messaging engine to acquire short duration locks on the database; thereby, preventing it from
holding long running locks on the database. The new locking mechanism also helps the standby
messaging engine to acquire the database ownership when a JVM, hosting the messaging engine
in a highly available clustered environment, becomes unresponsive until a specified period of time.

Improvements to service integration bus performance

Improved messaging engine startup time by loading the destinations concurrently in a multi-core
architecture. The concurrent loading is possible if the message store is configured with the
database which supports parallel reads by multiple threads. The performance improvement is
directly proportional to the parallel processing capability of the database and the capacity of the
system on which the messaging engine is running.

Recovery of the messaging engine configuration from the message store

You can use the recoverMEConfig command to restore the configuration information of the
messaging engine from the message store in case the configuration files are lost or corrupted.

Improved operations, security, control, and integration

WebSphere Application Server Version 8.5 includes the following highlights for greater security and for
enhanced operations and control for application development, management, and problem determination.

v Improved operations and control

– Option to select and switch between IBM WebSphere SDK Java Technology Edition Version 7.0 or
6.0

– Enhancements for Java batch support

– OSGi Blueprint security improvements

– Support for OSGi application console

– Support for the Service Component Architecture (SCA) OASIS programming model implementation

– Support for Derby 10.8

v Simplified problem determination

1144 Overview

– Cross component trace (XCT) enables correlation of log and trace entries with minimal cost

– Enhancements to log and trace filtering using application name, request ID, or custom extensions

– Improved troubleshooting using IBM Support Assistant Data Collector

v Enhanced security for administrative configuration audit tracking

– Extended repository options

Improved operations and control

Option to select and switch between IBM WebSphere SDK Java Technology Edition Version 7.0 or
6.0

WebSphere Application Server provides support for the IBM WebSphere SDK Java Technology
Edition Version 7.0 as an optional pluggable Java development kit (JDK). Java 6 is installed with
the product and used by default. Use the managesdk tool to optionally install and enable Java 7.
You can optionally switch between using Java 6 or Java 7 to best meet your business needs.

Enhancements for Java batch support

WebSphere Application Server provides powerful new batch application features. Enhancements
include support for parallel batch processing to reduce batch job elapsed time, memory-overload
protection for batch workloads, integration of workload scheduler to submit batch work from
scheduler products like Tivoli Workload Scheduler, and numerous xJCL and programming model
improvements to increase application development flexibility.

OSGi Blueprint security improvements

You can configure bean security in the Blueprint XML file of your OSGi applications, so that the
methods of the bean can be accessed only by users that are assigned a specified role. You can
configure bean-level security, so that a single role is associated with all the methods of the bean,
or you can configure method-level security, where different roles are associated with specific
methods.

Support for the OSGi application console

The WebSphere Application Server administrative console provides pages that you can use to
examine or debug a specific set of OSGi bundles running on an application server. You can, for
example, view and explore the package and service dependencies between the bundles in an
OSGi application.

Support for the Service Component Architecture (SCA) OASIS programming model implementation

WebSphere Application Server Version 8.5 adds support for the SCA OASIS programming model
implementation. The product provides partial support for the following OASIS specifications:

v OASIS SCA Assembly Model Specification 1.1

v OASIS SCA Policy Framework Specification 1.1

The product supports OASIS policy attachment, but does not support OASIS policy set
definitions.

v OASIS SCA-Bindings specifications:

– SCA JMS Binding Specification 1.1

– SCA Web Service Binding Specification 1.1

v OASIS SCA-J Common Annotations and APIs Specification 1.1

This product also supports EJB binding, POJO, JAXB and SDO as data types.

Support for Derby 10.8

Connect your applications to the latest versions of a wide array of industry-leading databases to
enable maximum deployment flexibility. WebSphere Application Server Version 8.5 has been
tested with and includes the Derby 10.8 database.

Chapter 29. What is new in this release 1145

Simplified problem determination

Cross component trace (XCT) enables correlation of log and trace entries with minimal cost

Use the cross component trace facility to identify the root cause of problems across components.
XCT annotates log and trace entries so that log entries that are related to a request that is
serviced by more than one thread, process, or even server are identified as belonging to the same
unit of work. This enhancement enables administrators and support teams to follow the flow of a
request from end-to-end as it traverses thread or process boundaries.

Enhancements to log and trace filtering using application name, request ID, or custom extensions

Use the High Performance Extensible Logging (HPEL) LogViewer command-line tool to filter
records based on the content of log and trace record extensions. The application server
automatically creates an appName extension for each log and trace record related to a Java
Platform, Enterprise Edition (Java EE) application, indicating the name of that application. The
application server also automatically creates a requestId extension when cross component trace is
enabled for each log and trace record created during the processing of certain types of requests
(for example HTTP or JMS requests), indicating the unique ID of that request. You can add
custom extensions to HPEL log and trace entries using the LogRecordContext API.

Improved troubleshooting using IBM Support Assistant Data Collector

The IBM Support Assistant Data Collector for WebSphere Application Server tool focuses on
automatic collection of problem data and is now included as part of this product. It also provides
symptom analysis support for the various categories of problems encountered by IBM software
products. Information pertinent to a type of problem is collected to help identify the origin of the
problem under investigation. The tool assists customers by reducing the amount of time it takes to
reproduce a problem with the proper RAS tracing levels set, as well as by reducing the effort
required to send the appropriate log information in to IBM Support.

Extended repository options

Enhanced security for administrative configuration audit tracking

WebSphere Application Server Version 8.5 enables you to track changes made to your application
server configuration using checkpoints made through the extended repository service. A full
checkpoint is a complete copy of the entire configuration repository. A delta checkpoint is a subset
snapshot of the configuration repository that is made when you change a product configuration.
Use a checkpoint to restore the configuration repository back to a prior state. To determine what
has changed in the configuration, you can extract from a delta checkpoint to obtain the before and
after versions of the files that were saved.

1146 Overview

Chapter 30. Overview and new features for administering
applications and their environments

Use the links provided in this topic to learn about the administrative features.

What is new for administrators

This topic provides an overview of new and changed features of system administration.

“Introduction: System administration”

This topic describes the administration of the product and the applications that run on it.

See also “Introduction: Environment” on page 1152 and Introduction: Variables.

What is new for administrators
This topic highlights what is new or changed, for users who are going to customize, administer, monitor,
and tune production server environments. It also addresses those who are going to deploy and operate
applications.

v Migrating product configurations with migration tools

– You can use the z/OS Migration Management Tool to collect the information and generate the Job
Control Language (JCL) jobs (CNTL and DATA datasets) for migrating a stand-alone application
server, deployment manager, or federated node. You must create these jobs before you can begin
the actual migration.

– You can use the zmmt command with a response file to generate the JCL jobs (CNTL and DATA
datasets) for migrating a stand-alone application server, deployment manager, or federated node.
You must create these jobs before you can begin the actual migration.

v Scenario 2: Migrating a job manager profile and its registered set of servers using the z/OS
Configuration Migration Management Tool

You can migrate job manager profiles and the registered set of servers from Version 7.0 or above to
Version 8.5.

Introduction: System administration
You can administer your WebSphere Application Server product through scripts, command line tools, the
administrative console, or the Java programming interface. You administer server processes, topological
units referenced as nodes and cells, and the configuration repository where configuration information is
stored in Extensible Markup Language (XML) files.

Note: If you would prefer to browse PDF versions of this documentation using your Adobe Reader,
see the System Administration PDF files available from www.ibm.com/software/webservers/
appserv/infocenter.html.

A variety of tools, processes, and configuration files are provided for administering the product:
v

Administrative topology

Servers, nodes and node agents, cells and the deployment manager are fundamental concepts in the
administrative universe of the product. It is also important to understand the various processes in the
administrative topology and the operating environment in which they apply.

For more information, refer to “Welcome to basic administrative architecture” on page 1148.
v Console

The administrative console is a graphical interface that provides many features to guide you through
deployment and systems administration tasks. Use it to explore available management options.

© Copyright IBM Corp. 2012 1147

http://www.adobe.com/products/acrobat/readermain.html
http://www.ibm.com/software/webservers/appserv/infocenter.html
http://www.ibm.com/software/webservers/appserv/infocenter.html

For more information, refer to “Introduction: Administrative console” on page 1150.
v Scripting

The WebSphere administrative (wsadmin) scripting program is a powerful, non-graphical command
interpreter environment enabling you to run administrative operations in a scripting language. You can
also submit scripting language programs to run in batch mode. The wsadmin tool is intended for
production environments and unattended operations.

For more information, refer to “Introduction: Administrative scripting (wsadmin)” on page 1151.
v Command line tools

Command-line tools are simple programs that you run from an operating system command-line prompt
to perform specific tasks, as opposed to general purpose administration. Using the tools, you can start
and stop application servers, check server status, add or remove nodes, and complete similar tasks.

For more information, refer to “Introduction: Administrative commands” on page 1152.
v Programming

The product supports a Java programming interface for developing administrative programs. All of the
administrative tools supplied with the product are written according to the API, which is based on the
industry standard Java Management Extensions (JMX) specification.

For more information, refer to “Introduction: Administrative programs” on page 1152.
v Data

Product configuration data resides in XML files that are manipulated by the previously-mentioned
administrative tools.

For more information, refer to “Introduction: Administrative configuration data” on page 1152.

Welcome to basic administrative architecture
The basic administrative architecture consists of software processes called servers, topological units
referenced as nodes and cells, and the configuration repository used for storing configuration information.
The application server, node agent server, deployment manager, administrative agent, and job manager
interact to perform system administration.

This topic discusses basic concepts in the administrative architecture to help you understand system
administration in a WebSphere Application Server environment.

Servers perform the actual running of the code. Several types of servers exist depending on the
configuration. Each server runs in its own Java virtual machine (JVM). The application server is the
primary runtime component in all WebSphere Application Server configurations. All WebSphere Application
Server configurations can have one or more application servers. In some configurations, each application
server functions as a separate entity. No workload distribution or common administration among
application servers exists. In other configurations, workload can be distributed between servers and
administration can be done from a central point.

A node is a logical group of WebSphere Application Server-managed server processes that share a
common configuration repository. A node is associated with a single profile. A node does not necessarily
have a one-to-one association with a system. One computer can host arbitrarily many nodes, but a node
cannot span multiple computer systems. A node can contain zero or more application servers.

The configuration repository holds copies of the individual component configuration documents that define
the configuration of a WebSphere Application Server environment. All configuration information is stored in
.xml files.

A cell is a grouping of nodes into a single administrative domain. A cell can consist of multiple nodes, all
administered from a deployment manager server. When a node becomes part of a cell (a federated node),
a node agent server is created on the node to work with the deployment manager server to manage the
WebSphere Application Server environment on that node.

1148 Overview

When a node is a stand-alone node, not part of a cell, the configuration repository is fully contained on the
node. When a stand-alone node is registered with an administrative agent, the configuration repository
continues to be fully contained on the node. When a node is part of a cell, the configuration and
application files for all nodes in the cell are centralized into a cell master configuration repository. This
centralized repository is managed by the deployment manager server and synchronized to local copies
that are held on each node. The local copy of the repository that is given to each node contains just the
configuration information needed by that node, not the full configuration that is maintained by the
deployment manager. When a deployment manager is registered with a job manager, the deployment
manager continues to manage the centralized configuration repository.

WebSphere Application Server types

This section discusses the server types that interact to perform system administration.

Application server
The product provides functions that support and host user applications. An application server can
run on only one node, but one node can support many application servers.

Node agent
When a node is federated, a node agent is created and installed on that node. The node agent
works with the deployment manager to perform administrative activities on the node.

Deployment manager
With the deployment manager, you can administer multiple nodes from one centralized manager.
The deployment manager works with the node agent on each node to manage all the servers in a
distributed topology. Application server nodes must be federated with the deployment manager
before they can be managed by the deployment manager.

Administrative agent
An administrative agent provides a single interface to administer multiple unfederated application
server nodes in environments such as development, unit test, or that portion of a server farm that
resides on a single computer. Application servers nodes must be registered with the administrative
agent before they can be managed by the administrative agent.

Job manager
In a flexible management environment, a job manager enables you to submit administrative jobs
asynchronously for application server nodes registered to administrative agents and for
deployment managers. Application server nodes that are managed by an administrative agent or
deployment manager must be registered with the job manager before the job manager can
manage them.

The following diagram depicts the concepts that are discussed in this topic.

Chapter 30. Overview and new features: Administering 1149

Adding a node to a cell

Cell

Node
agent

Node

WebSphere Application Server
Enterprise Edition

Application Server slkdjflkdj;lakjdf;lkjaslkdfgfgfdgfdgfdgfdg

sdlkfj;slkajflskjdf;lskdflkjfj;alkjfd ;lkjfd sd;jfdfgfdgf

jsafjs df;lskjfd ;lskjf sfksdf kjsdf ;slkdfg

as;dlfkj lkdsjf ;sjd;fk ja;lkjd f;lk

Application Server

lkdsjfkenroierithtrj

a;lkjdfoidicnvcnv

aodsfiidididid

a;osidjfpapoidjuff

Node
agent

Deployment
manager

Node
agent

Node

Node

Node

WebSphere Application Server
Enterprise Edition

Application Server slkdjflkdj;lakjdf;lkjaslkdfgfgfdgfdgfdgfdg

sdlkfj;slkajflskjdf;lskdflkjfj;alkjfd ;lkjfd sd;jfdfgfdgf

jsafjs df;lskjfd ;lskjf sfksdf kjsdf ;slkdfg

as;dlfkj lkdsjf ;sjd;fk ja;lkjd f;lk

Application Server

lkdsjfkenroierithtrj

a;lkjdfoidicnvcnv

aodsfiidididid

a;osidjfpapoidjuff

WebSphere Application Server
Enterprise Edition

Application Server slkdjflkdj;lakjdf;lkjaslkdfgfgfdgfdgfdgfdg

sdlkfj;slkajflskjdf;lskdflkjfj;alkjfd ;lkjfd sd;jfdfgfdgf

jsafjs df;lskjfd ;lskjf sfksdf kjsdf ;slkdfg

as;dlfkj lkdsjf ;sjd;fk ja;lkjd f;lk

Application Server

lkdsjfkenroierithtrj

a;lkjdfoidicnvcnv

aodsfiidididid

a;osidjfpapoidjuff

WebSphere Application Server
Enterprise Edition

Application Server slkdjflkdj;lakjdf;lkjaslkdfgfgfdgfdgfdgfdg

sdlkfj;slkajflskjdf;lskdflkjfj;alkjfd ;lkjfd sd;jfdfgfdgf

jsafjs df;lskjfd ;lskjf sfksdf kjsdf ;slkdfg

as;dlfkj lkdsjf ;sjd;fk ja;lkjd f;lk

Application Server

lkdsjfkenroierithtrj

a;lkjdfoidicnvcnv

aodsfiidididid

a;osidjfpapoidjuff

WebSphere Application Server
Enterprise Edition

Application Server slkdjflkdj;lakjdf;lkjaslkdfgfgfdgfdgfdgfdg

sdlkfj;slkajflskjdf;lskdflkjfj;alkjfd ;lkjfd sd;jfdfgfdgf

jsafjs df;lskjfd ;lskjf sfksdf kjsdf ;slkdfg

as;dlfkj lkdsjf ;sjd;fk ja;lkjd f;lk

Application Server

lkdsjfkenroierithtrj

a;lkjdfoidicnvcnv

aodsfiidididid

a;osidjfpapoidjuff

= Network Deployment package is installed

= Application servers

IBM WebSphere Application Server Network Deployment package

Node

WebSphere Application Server
Enterprise Edition

Application Server slkdjflkdj;lakjdf;lkjaslkdfgfgfdgfdgfdgfdg

sdlkfj;slkajflskjdf;lskdflkjfj;alkjfd ;lkjfd sd;jfdfgfdgf

jsafjs df;lskjfd ;lskjf sfksdf kjsdf ;slkdfg

as;dlfkj lkdsjf ;sjd;fk ja;lkjd f;lk

Application Server

lkdsjfkenroierithtrj

a;lkjdfoidicnvcnv

aodsfiidididid

a;osidjfpapoidjuff

Job
manager

Node

Administrative
agent

Application
server

Node

WebSphere Application Server
Enterprise Edition

Application Server slkdjflkdj;lakjdf;lkjaslkdfgfgfdgfdgfdgfdg

sdlkfj;slkajflskjdf;lskdflkjfj;alkjfd ;lkjfd sd;jfdfgfdgf

jsafjs df;lskjfd ;lskjf sfksdf kjsdf ;slkdfg

as;dlfkj lkdsjf ;sjd;fk ja;lkjd f;lk

Application Server

lkdsjfkenroierithtrj

a;lkjdfoidicnvcnv

aodsfiidididid

a;osidjfpapoidjuff

Application
server

Application
server

Node

Node

WebSphere Application Server
Enterprise Edition

Application Server slkdjflkdj;lakjdf;lkjaslkdfgfgfdgfdgfdgfdg

sdlkfj;slkajflskjdf;lskdflkjfj;alkjfd ;lkjfd sd;jfdfgfdgf

jsafjs df;lskjfd ;lskjf sfksdf kjsdf ;slkdfg

as;dlfkj lkdsjf ;sjd;fk ja;lkjd f;lk

Application Server

lkdsjfkenroierithtrj

a;lkjdfoidicnvcnv

aodsfiidididid

a;osidjfpapoidjuff

WebSphere Application Server
Enterprise Edition

Application Server slkdjflkdj;lakjdf;lkjaslkdfgfgfdgfdgfdgfdg

sdlkfj;slkajflskjdf;lskdflkjfj;alkjfd ;lkjfd sd;jfdfgfdgf

jsafjs df;lskjfd ;lskjf sfksdf kjsdf ;slkdfg

as;dlfkj lkdsjf ;sjd;fk ja;lkjd f;lk

Application Server

lkdsjfkenroierithtrj

a;lkjdfoidicnvcnv

aodsfiidididid

a;osidjfpapoidjuff

WebSphere Application Server
Enterprise Edition

Application Server slkdjflkdj;lakjdf;lkjaslkdfgfgfdgfdgfdgfdg

sdlkfj;slkajflskjdf;lskdflkjfj;alkjfd ;lkjfd sd;jfdfgfdgf

jsafjs df;lskjfd ;lskjf sfksdf kjsdf ;slkdfg

as;dlfkj lkdsjf ;sjd;fk ja;lkjd f;lk

Application Server

lkdsjfkenroierithtrj

a;lkjdfoidicnvcnv

aodsfiidididid

a;osidjfpapoidjuff

Registering a node with

an administrative agent

The concepts that are discussed in this topic form the basis of WebSphere Application Server
administration. More detailed descriptions can be found in other sections.

Introduction: Administrative console
The administrative console is a graphical interface that allows you to manage your applications and
perform system administration tasks for your WebSphere Application Server environment. The
administrative console runs in your web browser.

Your actions in the console modify a set of XML configuration files.

You can use the administrative console to perform tasks such as:

v Add, delete, start, and stop application servers

v Deploy new applications to a server

v Start and stop existing applications, and modify certain configurations

v Add and delete Java Platform, Enterprise Edition (Java EE) resource providers for applications that
require data access, mail, URLs, and so on

v Manage variables, shared libraries, and other configurations that can span multiple application servers

v Configure product security, including access to the administrative console

v Collect data for performance and troubleshooting purposes

v Find the product version information. It is located on the front page of the console.

Starting and logging off the administrative console helps you begin using the console so that you can
explore the available options. See also the Reference > Settings section of the information center
navigation. It lists the settings or properties you can configure.

1150 Overview

Introduction: Administrative scripting (wsadmin)
The WebSphere administrative (wsadmin) scripting program is a powerful, non-graphical command
interpreter environment enabling you to run administrative operations in a scripting language.

About this task

The wsadmin tool is intended for production environments and unattended operations. You can use the
wsadmin tool to perform the same tasks that you can perform using the administrative console.

The following list highlights the topics and tasks available with scripting:

Procedure
v Getting started with scripting Provides an introduction to WebSphere Application Server scripting and

information about using the wsadmin tool. Topics include information about the scripting languages and
the scripting objects, and instructions for starting the wsadmin tool.

v Using the Jython script library The script library provides Jython script procedures to assist in
automating your environment. Use the sample scripts to manage applications, resources, servers,
nodes, and clusters. You can also use the script procedures as examples to learn the Jython syntax.

v Deploying applications Provides instructions for deploying and uninstalling applications. For example,
stand-alone Java archive files and web application archive (WAR) files, the administrative console,
remote enterprise archive (EAR) files, file transfer applications, and so on.

v Managing deployed applications Includes tasks that you perform after the application is deployed. For
example, starting and stopping applications, checking status, modifying listener address ports, querying
application state, configuring a shared library, and so on.

v Configuring servers Provides instructions for configuring servers, such as creating a server, modifying
and restarting the server, configuring the Java virtual machine, disabling a component, disabling a
service, and so on.

v Configuring connections to web servers Includes topics such as regenerating the plug-in, creating new
virtual host templates, modifying virtual hosts, and so on.

v Managing servers Includes tasks that you use to manage servers. For example, stopping nodes,
starting and stopping servers, querying a server state, starting a listener port, and so on.

v Clustering servers Includes topics about clusters, such as creating clusters, creating cluster members,
querying a cluster state, removing clusters, and so on.

v Configuring security Includes security tasks such as enabling and disabling security.

v Configuring data access Includes topics such as configuring a Java DataBase Connectivity (JDBC)
provider, defining a data source, configuring connection pools, and so on.

v Configuring messaging Includes topics about messaging, such as Java Message Service (JMS)
connection, JMS provider, WebSphere queue connection factory, MQ topics, and so on.

v Configuring mail, URLs, and resource environment entries Includes topics such as mail providers, mail
sessions, protocols, resource environment providers, referenceables, URL providers, URLs, and so on.

v Dynamic caching Includes caching topics, for example, creating, viewing and modifying a cache
instance.

v Troubleshooting Provides information about how to troubleshoot using scripting. For example, tracing,
thread dumps, profiles, and so on.

v Obtaining product information Includes tasks such as querying the product identification.

v Scripting reference material Includes all of the reference material related to scripting. Topics include the
syntax for the wsadmin tool and for the administrative command framework, explanations and examples
for all of the scripting object commands, the scripting properties, and so on.

Chapter 30. Overview and new features: Administering 1151

Introduction: Administrative commands
Command line tools are simple programs that you run from an operating system command-line prompt to
perform specific tasks, as opposed to general purpose administration. Using the tools, you can start and
stop application servers, check server status, add or remove nodes, and complete similar tasks.

See Reference > Command-line utilities in the information center navigation area for the names and
syntax of all the commands that are available with the product. A subset of these commands is particular
to system administration purposes.

Introduction: Administrative programs
The Java Management Extensions (JMX) specification allows you to write Java programs to administer
WebSphere Application Server.

The product supports a Java programming interface for developing administrative programs. All of the
administrative tools supplied with the product are written according to the API, which is based on the
industry standard Java Management Extensions (JMX) specification. You can write a Java program that
performs any of the administrative features of the WebSphere Application Server administrative tools. You
can also extend the basic WebSphere Application Server administrative system to include your own
managed resources.

Introduction: Administrative configuration data
WebSphere Application Server configuration data is kept in files. All administrative actions that you perform
involve changes to these files.

Administrative tasks typically involve defining new configurations of the product or performing operations
on managed resources within the environment. WebSphere Application Server configuration data is kept in
files. Because all product configuration involves changing the content of those files, it is useful to know the
structure and content of the configuration files.

The WebSphere Application Server product includes an implementation of the Java Management
Extension (JMX) specification. All operations on managed resources in the product go through JMX
functions. This setup means a more standard framework underlying your administrative operations as well
as the ability to tap into the systems management infrastructure programmatically.

Introduction: Environment
Your WebSphere Application Server product environment includes web server plug-ins, WebSphere
Application Server variables, and other data objects. Configure values for settings in these categories
using the Environment section of the administrative console.

Web servers

In the WebSphere Application Server product, an application server works with a web server to handle
requests for web applications. The application server and web server communicate using a WebSphere
HTTP plug-in for the web server.

Cell-wide settings

Cell-wide settings are sets of configuration data that are stored in files in the cell directory. These
configuration files are replicated to every node in the cell. Several different configuration settings apply to
the entire cell. These settings include the definition of virtual hosts, shared libraries, and any variables that
must be consistent throughout the entire cell.

For more information, refer to “Introduction: Cell-wide settings” on page 1153.

1152 Overview

Variables

Variables come in many varieties. They are used to control settings and properties relating to the server
environment. The three main types of variables that are important for you to understand are environment
variables, WebSphere variables, and custom properties.

For more information, refer to Introduction: Variables.

Introduction: Cell-wide settings
Cell-wide settings is a term that describes values that apply across the entire WebSphere Application
Server configuration.

The configuration data files for WebSphere Application Server are XML files. The XML files exist in one of
several directories in the configuration repository tree.

The directory in which a configuration file exists determines its scope, or how broadly or narrowly that data
applies. Files in an individual server directory apply to that specific server only. Files in a node-level
directory apply to every server on that node. Files in a cluster directory apply to the cluster members only.
Files in the cell directory apply to every server on every node within the entire cell.

Cell-wide configuration files are replicated to every node in the cell. Several different configuration settings
apply to the entire cell. These settings include the definition of virtual hosts, shared libraries, and some
variables.

You can also set all of these values for a stand-alone application server profile as well.

Heterogeneous cells in mixed platforms within a cell
Other operating systems can exist in the same Application Server cell. With careful planning, you can
manage cells across different z/OS Sysplexes and different operating systems.

Cells can span z/OS sysplex environments and other operating systems. For example, z/OS nodes, Linux
nodes, UNIX nodes, and Windows nodes can exist in the same Application Server cell. This kind of
configuration is referred to as a heterogeneous cell.

A heterogeneous cell does require significant planning. The Heterogeneous Cells – cells with nodes on
mixed operating system platforms white paper outlines the planning and system considerations required to
build a heterogeneous cell.

Introduction: Application servers
Application servers provide the core functionality of the WebSphere Application Server product family.
Application servers extend the ability of a web server to handle Web application requests, and much more.
An application server enables a server to generate a dynamic, customized response to a client request.

Workload management optimizes the distribution of client processing tasks. Incoming work requests are
distributed to the application servers that can most effectively process the requests. Workload
management also provides failover when servers are not available, improving application availability.

Clusters are sets of application servers that are managed together and participate in workload
management. The servers that are members of a cluster can be on different host machines, as opposed to
the servers that are part of the same node and must be located on the same host machine.

Chapter 30. Overview and new features: Administering 1153

http://www-03.ibm.com/support/techdocs/atsmastr.nsf/WebIndex/WP100644
http://www-03.ibm.com/support/techdocs/atsmastr.nsf/WebIndex/WP100644

Introduction: Application servers
An application server is a Java Virtual Machine (JVM) that runs user applications. The application server
collaborates with the web server to return a dynamic, customized response to a client request. The client
request can consist of servlets, JavaServer Pages (JSP) files, and enterprise beans, and their supporting
classes.

For example, a user at a web browser visits a company website:
1. The user requests access to data in a database.
2. The user request flows to the web server.
3. The web server determines that the request involves an application containing resources not handled

directly by the web server (such as servlets). It forwards the request to one of its application servers
on which the application is running.

4. The invoked application then processes the user request. For example:
v An application servlet prepares the user request for processing by an enterprise bean that performs

the database access.
v The application produces a dynamic web page containing the results of the user query.

5. The application server collaborates with the web server to return the results to the user at the web
browser.

When you install the product, a default application server, named server1, is automatically created. You
can use the administrative console to manage this server.

You can use the administrative console or wsadmin commands to create additional application servers that
can either be separately configured processes or nearly identical clones. As with server1, you can use the
administrative console to mange these additional servers.

You can improve system performance if you configure some of your application servers, such that each of
their components are dynamically started as they are needed, instead of letting all of these components
automatically start when the server starts. Selecting this option can improve server startup time, and
reduce the memory footprint. Starting components as they are needed is most effective if all of the
applications that are deployed on the application server are of the same type. For example, using this
option works better if all of your applications are web applications that use servlets, and JavaServer Pages
(JSP). This option works less effectively if your applications use servlets, JSPs and Enterprise JavaBeans
(EJB).

You can also perform the following tasks to enhance the operation of an application server:
v Configure transport chains to provide networking services to such functions as the service integration

bus component of IBM service integration technologies, WebSphere Secure Caching Proxy, and the
high availability manager core group bridge service.

v Add an interface to an application server to define a hook point that runs when the server starts and
shuts down.

v Define command-line information that passes to a server when it starts or initializes.
v Tune the application server.
v Enhance the performance of the application server JVM.
v Configure an Object Request Broker (ORB) for RMI/IIOP communication.

Asynchronous messaging

The product supports asynchronous messaging based on the Java Message Service (JMS) of a JMS
provider that conforms to the JMS specification Version 1.1.

The JMS functions of the default message service that is provided with the product are served by one or
more messaging engines (in a service integration bus) that runs within application servers.

1154 Overview

Generic Servers

A generic server is a server that is managed in the WebSphere administrative domain, although it is not a
server that is supplied by the product. The generic server can be any server or process that is necessary
to support the product environment.

Introduction: Web servers
An application server works with a web server to handle requests for dynamic content, such as servlets,
from web applications. A web server uses a web server plug-in to establish and maintain persistent HTTP
and HTTPS connections with an application server.

The Supported Hardware and Software web page provides the most current information about supported
web servers.

Implementing a web server plug-in describes how to set up your web server and web server plug-in
environment and how to create a web server definition. The web server definition associates a web server
with a previously defined managed or unmanaged node. After you define the web server to a node, you
can use the administrative console to perform the following functions for that web server.

If a web server is defined to a managed node, you can:

v Check the status of the web server

v Generate a plug-in configuration file for that web server.

v Propagate the plug-in configuration file after it is generated.

If the web server is an IBM HTTP Server and the IBM HTTP Server Administration server is installed and
properly configured, you can also:

v Display the IBM HTTP Server Error log (error.log) and Access log (access.log) files.

v Start and stop the server.

v Display and edit the IBM HTTP Server configuration file (httpd.conf).

If the web server is defined to an unmanaged node, you can:

v Check the status of the web server

v Generate a plug-in configuration file for that web server.

If the web server is an IBM HTTP Server and the IBM HTTP Server Administration server is installed and
properly configured, you can also:

v Display the IBM HTTP Server Error log (error.log) and Access log (access.log) files.

v Start and stop the server.

v Display and edit the IBM HTTP Server configuration file (httpd.conf).

v Propagate the plug-in configuration file after it is generated.

You can not propagate an updated plug-in configuration file to a non-IBM HTTP Server that is defined to
an unmanaged node. You must manually install an updated plug-in configuration file to a web server that
is defined to an unmanaged node. Web servers defined to an unmanaged node are typically remote web
servers. Remote web servers are web servers that are not located on the same machine as the
WebSphere Application Server.

After you set up your web server and web server plug-in, whenever you deploy a web application, you
must specify a web server as the deployment target that serves as a router for requests to the Web
application. The configuration settings in the plug-in configuration file (plugin-cfg.xml) for each web server
are based on the applications that are routed through that web server. If the web server plug-in

Chapter 30. Overview and new features: Administering 1155

http://www.ibm.com/support/docview.wss?rs=180&uid=swg27006921

configuration service is enabled, a web server plug-in's configuration file is automatically regenerated
whenever a new application is associated with that web server.

Note: Before starting the web server, make sure you are authorized to run any Application Response
Measurement (ARM) agent associated with that web server.

Refer to your web server documentation for information on how to administer that web server. For tips on
tuning your web server plug-in, see Web server plug-in tuning tips.

Introduction: Clusters
Clusters are groups of servers that are managed together and participate in workload management. A
cluster can contain nodes or individual application servers. A node is usually a physical computer system
with a distinct host IP address that is running one or more application servers. Clusters can be grouped
under the configuration of a cell, which logically associates many servers and clusters with different
configurations and applications with one another depending on the discretion of the administrator and what
makes sense in their organizational environments.

Clusters are responsible for balancing workload among servers. Servers that are a part of a cluster are
called cluster members. When you install an application on a cluster, the application is automatically
installed on each cluster member. You can configure a cluster to provide workload balancing with service
integration or with message driven beans in the application server.

Because each cluster member contains the same applications, you can distribute client tasks in distributed
platforms according to the capacities of the different machines by assigning weights to each server.

In distributed platforms, assigning weights to the servers in a cluster improves performance and failover.
Tasks are assigned to servers that have the capacity to perform the task operations. If one server is
unavailable to perform the task, it is assigned to another cluster member. This reassignment capability has
obvious advantages over running a single application server that can become overloaded if too many
requests are made.

Cluster startup process options

Normal runtime processing automatically starts all server components during the server startup process.
This processing applies to all servers, including servers that are part of a cluster. However, you can
configure servers, including servers that are cluster members, such that not all of the server components
start during the server startup process. This capability enables the server to consume resources as
needed, thereby providing a smaller and more manageable footprint, and normally results in a
performance improvement.

When you configure cluster members such that not all of the cluster member components start when the
cluster or a specific cluster member is started, the cluster member components are dynamically started as
they are needed. For example, if an application module starts that requires a specific server component,
that component is dynamically started.

Clusters and node groups

Any application you install to a cluster must be able to execute on any application server that is a member
of that cluster. Because a node group forms the boundaries for a cluster, all of the members of a cluster
must be members of the same node group. Therefore, for the application you deploy to run successfully,
all of the members of a cluster must be located on nodes that meet the requirements for that application.

1156 Overview

In a cell that has many different server configurations, it might be difficult to determine which nodes have
the capabilities to host your application. A node group can be used to define groups of nodes that have
enough in common to host members of a given cluster. All cluster members in a cluster must be in the
same node group.

All nodes are members of at least one node group. When you create a cluster, the first application server
you add to the cluster defines the node group within which all of the other cluster members must reside.
All other cluster members you add to the cluster can only be on nodes that are members of this same
node group. When you create a new cluster member in the administrative console, you are allowed to
create the application server on a node that is a member of the node group for that cluster only.

Nodes can be members of multiple node groups. If the first cluster member you add to a cluster has
multiple node groups defined, the system automatically chooses the node group that bounds the cluster.
You can change the node group by modifying the cluster settings. Use the Server cluster settings page to
change the node group.

Clusters and core groups

In a high availability environment, a group of clusters can be defined as a core group. All of the application
servers defined as a member of one of the clusters included in a core group are automatically members of
that core group. Individual application servers that are not members of a cluster can also be defined as a
member of a core group. The use of core groups enables WebSphere Application Server to provide high
availability for applications that must always be available to end users. You can also configure core groups
to communicate with each other using the core group bridge. The core groups can communicate within the
same cell or across cells.

Cluster members

You can improve system performance if you configure each cluster member, such that each of their
components are dynamically started as they are needed instead of letting all of these components
automatically start when the cluster member starts. Selecting this option can improve cluster startup time,
and reduce the memory footprint of the cluster members. Starting components as they are needed is most
effective if all of the applications that are deployed on the cluster are of the same type. For example, using
this option works better if all of your applications are web applications that use servlets, and JavaServer
Pages (JSP). This option works less effectively if your applications use servlets, JSPs and Enterprise
JavaBeans (EJB).

gotcha: If you have clients running in an environment:
v That includes Java thin clients,
v Where requests are being routed between multiple cells, or
v Where requests are being routed within a single cell that includes nodes from earlier versions

of the product,

they might suddenly encounter a situation where the port information about the cluster members
of the target cluster has become stale.

This situation most commonly occurs when all of the cluster members have dynamic ports and
are restarted during a time period when no requests are being sent. The client process in this
state will eventually attempt to route to the node agent to receive the new port data for the
cluster members, and then use that new port data to route back to the members of the cluster.

If any issues occur that prevent the client from communicating with the node agent, or that
prevent the new port data being propagated between the cluster members and the node agent,
request failures might occur on the client. In some cases, these failures are temporary. In other
cases you need to restart one or more processes to resolve a failure.

Chapter 30. Overview and new features: Administering 1157

To circumvent the client routing problems that might arise in these cases, you can configure static
ports on the cluster members. With static ports, the port data does not change as a client
process gets information about the cluster members. Even if the cluster members are restarted,
or there are communication or data propagation issues between processes, the port data the
client holds is still valid. This circumvention does not necessarily solve the underlying
communication or data propagation issues, but removes the symptoms of unexpected or uneven
client routing decisions.

Mail, URLs, and other J2EE resources
This topic describes the supported resources that are defined by Java Platform, Enterprise Edition (Java
EE).

The product supports all of the resources defined by the Java EE. It adds the following resources in
support of service extensions:
v Schedulers
v Work managers
v Object pools

Data access (JDBC and J2C)

The J2EE Connector architecture defines a standard architecture that enables the integration of various
enterprise information systems (EIS) with application servers and enterprise applications. It defines a
standard resource adapter used by a Java application to connect to an EIS. This resource adapter can
plug into the application server and, through the Common Client Interface (CCI), provide connectivity
between the EIS, the application server, and the enterprise application.

For more information, refer to “Data access resources” on page 1159.

Messaging

The product supports asynchronous messaging as a method of communication based on the Java
Message Service (JMS) programming interface. The base JMS support enables the product applications to
exchange messages asynchronously with other JMS clients by using JMS destinations (queues or topics).

For more information, refer to “Messaging resources” on page 1159.

Mail

Using JavaMail API, a code segment can be embedded in any Java EE application component, such as
an EJB or a servlet, allowing the application to send a message and save a copy of the mail to the Sent
folder.

For more information, refer to JavaMail API.

URLs

Java EE applications can use URLs as resources in the same way other Java EE resources, such as
JDBC and JavaMail, are used.

For more information, refer to “URLs” on page 370.

Resource environment entries

A resource environment reference maps a logical name used by the client application to the physical name
of an object.

1158 Overview

For more information, see Configuring new resource environment entries to map logical environment
resource names to physical names.

Data access resources
These topics provide information about accessing data resources.

The connection between an enterprise application and an enterprise information system (EIS) is
accomplished through the use of EIS-provided resource adapters, which are plugged into the application
server. The resource adapter plays a central role in the integration and connectivity between an EIS and
an application server. It serves as the point of contact between application components, application
servers, and enterprise information systems. A resource adapter must communicate with other components
based on well-defined contracts that are specified by the Java Platform, Enterprise Edition (Java EE)
Connector Architecture (JCA).

Generic inflow context enables a resource adapter to control the execution context of the Work instances it
submits to the application server. By submitting a Work instance that implements the WorkContextProvider
interface, a resource adapter can provide various types of context to the WebSphere Application Server. If
the application server supports the provided context types, the generic work context mechanism sets the
work contexts as the execution context of the Work instance. The context remains effective during the
execution the Work instance.

Security inflow context uses generic work context by enabling a resource adapter to establish security
information in the execution context of the Work instances that it submits to the application server. By
submitting a Work instance that provides context types by implementing the new standardized
SecurityContext interface, the application can establish and set an execution context containing the
security identities and credentials for a Work instance. The identities and credentials remain effective
during the execution of the Work instance, ensuring secure message delivery to Java EE message
endpoints.

WebSphere Application Server supports work context types that implement the new standardized
SecurityContext, TransactionContext and HintsContext interfaces. The generic inflow context mechanism
accepts implementations of the HintsContext interface, but the application server does not act upon these
implementations of the HintsContext interface. The security inflow context mechanism does not map user
identities from the EIS domain to identities in an application server domain. Identities provided by
implementations of SecurityContext must be in a security domain of application server.

Consult the following concept, reference, and task files for more overview information.

Messaging resources
WebSphere Application Server supports asynchronous messaging based on the Java Message Service
(JMS) and Java EE Connector Architecture (JCA) specifications, which provide a common way for Java
programs (clients and Java EE applications) to create, send, receive, and read asynchronous requests, as
messages. Applications can use point-to-point and publish/subscribe messaging. These styles of
messaging can be used in the following ways: one-way; request and response; one-way and forward.

JMS support enables applications to exchange messages asynchronously with other JMS clients by using
JMS destinations (queues or topics). Some messaging providers also allow WebSphere Application Server
applications to use JMS support to exchange messages asynchronously with non-JMS applications; for
example, WebSphere Application Server applications often need to exchange messages with WebSphere
MQ applications. Applications can explicitly poll for messages from JMS destinations, or they can use
message-driven beans to automatically retrieve messages from JMS destinations without explicitly polling
for messages. Message-driven beans can be configured as listeners on a Java EE Connector Architecture
(JCA) 1.5 or 1.6 resource adapter or against a listener port.

Chapter 30. Overview and new features: Administering 1159

WebSphere Application Server supports the following messaging providers:

v The WebSphere Application Server default messaging provider (which uses service integration as the
provider)

v The WebSphere MQ messaging provider (which uses your WebSphere MQ system as the provider)

v Third-party messaging providers that implement either a JCA Version 1.5 or 1.6 resource adapter or the
ASF component of the JMS Version 1.0.2 specification

Your applications can use messaging resources from any of these JMS providers. The choice of provider
is most often dictated by requirements to use or integrate with an existing messaging system. For
example, you might already have a messaging infrastructure based on WebSphere MQ. In this case, you
can either connect directly by using the WebSphere MQ messaging provider, or configure a service
integration bus with links to a WebSphere MQ network and then access the bus through the default
messaging provider.

If you mainly want to use messaging between applications in WebSphere Application Server, perhaps with
some interaction with a WebSphere MQ system, the default messaging provider is a logical choice. If your
business also uses WebSphere MQ, and you want to integrate WebSphere Application Server messaging
applications into a predominately WebSphere MQ network, choose the WebSphere MQ messaging
provider. To administer a third-party messaging provider, you use either the resource adaptor (for a Java
EE Connector Architecture (JCA) 1.5-compliant or 1.6-compliant messaging provider) or the client (for a
non-JCA messaging provider) that is supplied by the third party.

For more information, see “Introduction: Messaging resources” on page 1216.

1160 Overview

Chapter 31. Overview and new features for securing
applications and their environment

Use the links provided in this topic to learn more about the security infrastructure.

What is new for security specialists

This topic provides an overview of new and changed features in security.

“Security”

This topic describes how IBM WebSphere Application Server provides security infrastructure and
mechanisms to protect sensitive Java Platform, Enterprise Edition (Java EE) resources and
administrative resources and to address enterprise end-to-end security requirements on
authentication, resource access control, data integrity, confidentiality, privacy, and secure
interoperability.

“Security planning overview” on page 1172

Several communication links are provided from a browser on the Internet, through web servers
and product servers, to the enterprise data at the back-end. This topic examines some typical
configurations and common security practices. WebSphere Application Server security is built on a
layered security architecture. This section also examines the security protection offered by each
security layer and common security practice for good quality of protection in end-to-end security.

Samples

The Samples documentation offers:

v Login - Form Login

The Form Login Sample demonstrates a very simple example of how to use the login facilities for
WebSphere Application Server to implement and configure login applications. The Sample uses the
Java Platform, Enterprise Edition (Java EE) form-based login technology to customize the look and feel
of the login screens. It uses servlet filters to log the user information and the date information. The
Sample finishes the session by using the form-based logout function, an IBM extension to the Java EE
specification.

v Login - JAAS Login

The JAAS Login Sample demonstrates how to use the Java Authentication and Authorization Service
(JAAS) with WebSphere Application Server. The Sample uses server-side login with JAAS to
authenticate a real user to the WebSphere security run time. Based upon a successful login, the
WebSphere security run time uses the authenticated Subject to perform authorization checks on a
protected stateless session enterprise bean. If the Sample runs successfully, it displays all the principals
and public credentials of the authenticated user.

Security
The following information provides an overview of security in WebSphere Application Server.

IBM WebSphere Application Server provides security infrastructure and mechanisms to protect sensitive
Java 2 Platform, Enterprise Edition (J2EE) resources and administrative resources. It also addresses
enterprise end-to-end security requirements on:

v Authentication

v Resource access control

v Data integrity

v Confidentiality

v Privacy

© IBM Corporation 2003 1161

v Secure interoperability

IBM WebSphere Application Server security is based on industry standards and has an open architecture
that ensures secure connectivity and interoperability with Enterprise Information Systems (EIS) including:

v Database 2 (DB2)

v CICS

v Information Management System (IMS)

v MQ Series

v Lotus Domino

v IBM Directory

WebSphere Application Server also supports other security providers including:

v Reverse secure proxy server including WebSEAL

Based on industry standards

IBM WebSphere Application Server provides a unified, policy-based, and permission-based model for
securing web resources, web service endpoints, and enterprise JavaBeans according to J2EE
specifications. Specifically, WebSphere Application Server complies with Java EE 6 specification and has
passed the J2EE Compatibility Test Suite.

WebSphere Application Server security is a layered architecture built on top of an operating system
platform, a Java virtual machine (JVM), and Java 2 security. This security model employs a rich set of
security technology including the:
v Java 2 security model, which provides policy-based, fine-grained, and permission-based access control

to system resources.
v Common Secure Interoperability Version 2 (CSIv2) security protocol, in addition to the Secure

Authentication Services (SAS) security protocol. Both protocols are supported by prior WebSphere
Application Server releases. CSIv2 is an integral part of the J2EE 1.4 specification and is essential for
interoperability among application servers from different vendors and with enterprise CORBA services.

Important: SAS is supported only between Version 6.0.x and previous version servers that have been
federated in a Version 6.1 cell.

v Java Authentication and Authorization Service (JAAS) programming model for Java applications,
servlets, and enterprise beans.

v J2EE Connector architecture for plugging in resource adapters that support access to Enterprise
Information Systems.

The standard security models and interfaces that support secure socket communication, message
encryption, and data encryption are the Java Secure Socket Extension (JSSE) and the Java Cryptographic
Extension (JCE).

Open architecture paradigm

An application server plays an integral part in the multiple-tier enterprise computing framework. IBM
WebSphere Application Server adopts the open architecture paradigm and provides many plug-in points to
integrate with enterprise software components. Plug-in points are based on standard J2EE specifications
wherever applicable.

1162 Overview

WebSphere

Application Server

Access manager

(Authorization) Principal/

credential

mapping

J2EE

connector

Trust

association

interceptor

CSIv2 security protocol

Application

server

Enterprise

Information

System

Secure reverse

proxy server

JAAS

login module
User registry

Credential

mapping

Security server

(Authentication)

UserRegistry

interface

JAAS

login

module

Web service

security protocol

JACC

interface

Security

Role-based

authorization

Tivoli Access Manager

JACC provider (ND)

JASPI

interface

The dark blue shaded background indicates the boundary between the WebSphere Application
ServerVersion 8.5 and other business application components.

WebSphere Application Server provides Simple WebSphere Authentication Mechanism (SWAM),
Lightweight Third Party Authentication (LTPA), and Kerberos as the authentication mechanisms. Exactly
one user registry implementation can be configured to be the active user registry of WebSphere
Application Server security domain. WebSphere Application Server provides the following user registry
implementations: UNIX, Windows, and IBM i local OS and Lightweight Directory Access Protocol (LDAP).
It also provides file-based and Java database connectivity (JDBC)-based user registry reference
implementations. It supports a flexible combination of authentication mechanisms and user registries.
SWAM is simple to configure and is useful for a single application server environment. It is possible to use
SWAM in a distributed environment if identity assertion is enabled. The identity assertion feature is
available only on the CSIv2 security protocol.

Note: SWAM was deprecated in a previous release of WebSphere Application Server, and will be
removed in a future release.

The LTPA authentication mechanism is designed for all platforms security. Downstream servers can
validate the security token. It also supports setting up a trust association relationship with reverse secure
proxy servers and single sign-on (SSO), which is discussed later. Besides the combination of LTPA and
LDAP or Custom user registry interface, Version 6.x or higher supports LTPA with a LocalOS user registry
interface. The new configuration is particularly useful for a single node with multiple application servers. It
can function in a distributed environment if the local OS user registry implementation is a centralized user
registry, such as Windows Domain Controller, or can be maintained in a consistent state on multiple
nodes.

WebSphere Application Server supports the J2EE Connector architecture and offers container-managed
authentication. It provides a default Java 2 Connector (J2C) principal and credential mapping module that
maps any authenticated user credential to a password credential for the specified Enterprise Information
Systems (EIS) security domain. The mapping module is a special JAAS login module designed according
to the Java 2 Connector and JAAS specifications. Other mapping login modules can be plugged in.

Chapter 31. Overview and new features: Securing 1163

Authentication mechanisms

In WebSphere Application Server , the following authentication mechanisms are supported:

v Lightweight Third Party Authentication (LTPA)

Lightweight Third Party Authentication generates a security token for authenticated users, which can be
used to represent that authenticated user on subsequent calls to the same or other servers within a
single sign-on (SSO) domain.

v Kerberos

Security support for Kerberos as the authentication mechanism has been added for this release of
WebSphere Application Server. Kerberos is a mature, flexible, open, and very secure network
authentication protocol. Kerberos includes authentication, mutual authentication, message integrity and
confidentiality and delegation features.

v Simple WebSphere Authentication Mechanism (SWAM)

SWAM is simple to configure and is useful for a single application server environment, but forces a user
ID and password authentication for each request.

Note: SWAM was deprecated in a previous release of WebSphere Application Server, and will be
removed in a future release.

IIOP authentication protocols

IIOP Authentication protocol refers to the mechanisms used to authenticate requests from a Java Client to
a WebSphere Application Server for z/OS, or between J2EE Application Servers. Common Secure
Interoperability Version 2 (CSIv2) is implemented in WebSphere Application Server for z/OS Version 6.x or
later and is considered the strategic protocol.

Web Services Security

WebSphere Application Server enables you to secure web services based upon the Organization for the
Advancement of Structured Information Standards (OASIS) Web Services Security Version 1.1
specification. These standards address how to provide protection for messages exchanged in a web
service environment. The specification defines the core facilities for protecting the integrity and
confidentiality of a message and provides mechanisms for associating security-related claims with the
message.

Trust associations

Trust association enables you to integrate third-party security servers with IBM WebSphere Application
Server security. More specifically, a reverse proxy server can act as a front-end authentication server while
the WebSphere Application Server applies its own authorization policy onto the resulting credentials that
are passed by the proxy server. The reverse proxy server applies its authentication policies to every web
request that is dispatched to WebSphere Application Server. The products that implement trust association
interceptors (TAI) include:

v IBM Tivoli Access Manager for e-business

v WebSEAL

v Caching Proxy

For more information on using trust association, refer to Trust associations.

1164 Overview

Security attribute propagation

Security attribute propagation enables WebSphere Application Server to transport security attributes from
one server to another in your configuration. Security attributes include authenticated subject contents and
security context information. WebSphere Application Server can obtain these security attributes from
either:

v An enterprise user registry that queries static attributes

v A custom login module that can query static or dynamic attributes

Security attribute propagation provides propagation services using Java serialization for any objects that
are contained in the subject. For more information on using security attribute propagation, refer to Security
attribute propagation.

Single sign-on interoperability mode

In WebSphere Application Server, the interoperability mode option enables Single Sign-on (SSO)
connections between WebSphere Application Server version 6.1.x or later to interoperate with previous
versions of the application server. When you select this option, WebSphere Application Server adds the
old-style LtpaToken into the response so that it can be sent to other servers that work only with this token
type. This option applies only when the web inbound security attribute propagation option is enabled. For
more information on single sign-on, refer to Implementing single sign-on to minimize web user
authentications

Security for J2EE resources using web containers and EJB containers

Each container provides two kinds of security: declarative security and programmatic security. In
declarative security, the security structure of an application, including data integrity and confidentiality,
authentication requirements, security roles, and access control, is expressed in a form external to the
application. In particular the deployment descriptor is the primary vehicle for declarative security in the
J2EE platform. WebSphere Application Server maintains a J2EE security policy, including information
derived from the deployment descriptor and specified by deployers and administrators in a set of XML
descriptor files. At run time, the container uses the security policy defined in the XML descriptor files to
enforce data constraints and access control. When declarative security alone is not sufficient to express
the security model of an application, the application code can use programmatic security to make access
decisions. The application programming interface (API) for programmatic security consists of two methods
of the Enterprise JavaBeans (EJB) EJBContext interface (isCallerInRole, getCallerPrincipal) and three
methods of the servlet HttpServletrequest interface (isUserInRole, getUserPrincipal, getRemoteUser).

Java 2 security

WebSphere Application Server supports the Java 2 security model. System codes such as the
administrative subsystem, the web container, and the EJB container, are running in the WebSphere
Application Server security domain, which in the present implementation are granted with AllPermission
and can access all system resources. Application code running in the application security domain, which
by default is granted with permissions according to J2EE specifications, can access only a restricted set of
system resources. WebSphere Application Server run-time classes are protected by the WebSphere
Application Server class loader and are kept invisible to application code.

Java 2 Platform, Enterprise Edition Connector security

WebSphere Application Server supports the J2EE Connector architecture and offers container-managed
authentication. It provides a default J2C principal and credential mapping module that maps any
authenticated user credential to a password credential for the specified Enterprise Information Systems
(EIS) security domain.

Chapter 31. Overview and new features: Securing 1165

All of the application server processes, by default, share a common security configuration, which is defined
in a cell-level security XML document. The security configuration determines whether WebSphere
Application Server security is enforced, whether Java 2 security is enforced, the authentication mechanism
and user registry configuration, security protocol configurations, JAAS login configurations, and Secure
Sockets Layer configurations. Applications can have their own unique security requirements. Each
application server process can create a per server security configuration to address its own security
requirement or be mapped to a WebSphere Security domain. Not all security configurations can be
modified at the application server level. Some security configurations that can be modified at application
server level include whether application security should be enforced, whether Java 2 security should be
enforced, and security protocol configurations. WebSphere Security domains allow for more control over
the security configuration and can be mapped to individual servers. Read about Multiple security domains
for more information.

The administrative subsystem security configuration is always determined by the cell level security
document. The web container and EJB container security configuration are determined by the optional per
server level security document, which has precedence over the cell-level security document.

Security configuration, both at the cell level and at the application server level, are managed either by the
Web-based administrative console application or by the appropriate scripting application.

Web security

When a security policy is specified for a web resource and IBM WebSphere Application Server security is
enforced, the web container performs access control when the resource is requested by a web client. The
web container challenges the web client for authentication data if none is present according to the
specified authentication method, ensures that the data constraints are met, and determines whether the
authenticated user has the required security role. WebSphere Application Server supports the following
login methods:

v HTTP basic authentication

v HTTPS client authentication

v Form-based Login

v Simple and Protected GSS-API Negotiation (SPNEGO) token

Mapping a client certificate to a WebSphere Application Server security credential uses the UserRegistry
implementation to perform the mapping.

On WebSphere Application Server, Express®, the local OS user registry does not support the mapping
function.

When the LTPA authentication mechanism is configured and single sign-on (SSO) is enabled, an
authenticated client is issued a security cookie, which can represent the user within the specified security
domain.

It is recommended that you use Secure Sockets Layer (SSL) to protect the security cookie or Basic
Authentication information from being intercepted and replayed. When a trust association is configured,
WebSphere Application Server can map an authenticated user identity to security credentials based on the
trust relationship established with the secure reverse proxy server.

1166 Overview

When considering web security collaborators and EJB security collaborators:

1. The web security collaborator enforces role-based access control by using an access manager
implementation. An access manager makes authorization decisions based on the security policy
derived from the deployment descriptor. An authenticated user principal can access the requested
Servlet or JSP file if the user principal has one of the required security roles. Servlets and JSP files
can use the HttpServletRequest methods: isUserInRole, getUserPrincipal, and getRemoteUser. As an
example, the administrative console uses the isUserInRole method to determine the proper set of
administrative functionality to expose to a user principal.

2. The EJB security collaborator enforces role-based access control by using an access manager
implementation. An access manager makes authorization decisions based on the security policy
derived from the deployment descriptor. An authenticated user principal can access the requested EJB
method if it has one of the required security roles. EJB code can use the EJBContext methods
isCallerInRole and getCallerPrincipal. EJB code also can use the JAAS programming model to
perform JAAS login and WSSubject doAs and doAsPrivileged methods. The code in the doAs and
doAsPrivileged PrivilegedAction block executes under the Subject identity. Otherwise, the EJB
method executes under either the RunAs identity or the caller identity, depending on the RunAs
configuration.

EJB security

When security is enabled, the EJB container enforces access control on EJB method invocation. The
authentication takes place regardless of whether a method permission is defined for the specific EJB
method.

Chapter 31. Overview and new features: Securing 1167

A Java application client can provide the authentication data in several ways. Using the sas.client.props
file, a Java client can specify whether to use a user ID and password to authenticate or to use an SSL
client certificate to authenticate. The client certificate is stored in the key file or in the hardware
cryptographic card, as defined in a sas.client.props file. The user ID and password can be optionally
defined in the sas.client.props file.

At run time, the Java client can either perform a programmatic login or perform a lazy authentication.

In lazy authentication when the Java client is accessing a protected enterprise bean for the first time, the
security run time tries to obtain the required authentication data. Depending on the configuration setting in
sas.client.props file the security runtime either looks up the authentication data from this file or prompts
the user. Alternatively, a Java client can use programmatic login. WebSphere Application Server supports
the JAAS programming model and the JAAS login (LoginContext) is the recommended way of
programmatic login. The login_helper request_login helper function is deprecated in Version 6.x and
Version 8.5. Java clients programmed to the login_helper APT can run in this version.

The EJB security collaborator enforces role-based access control by using an access manager
implementation.

An access manager makes authorization decisions based on the security policy derived from the
deployment descriptor. An authenticated user principal can access the requested EJB method if it has one
of the required security roles. EJB code can use the EJBContext methods isCallerInRole and
getCallerPrincipal. EJB code also can use the JAAS programming model to perform JAAS login and
WSSubject doAs and doAsPrivileged methods. The code in the doAs and doAsPrivileged PrivilegedAction
block executes under the Subject identity. Otherwise, the EJB method executes under either the RunAs
identity or the caller identity, depending on the RunAs configuration. The J2EE RunAs specification is at
the enterprise bean level. When RunAs identity is specified, it applies to all bean methods. The method
level IBM RunAs extension introduced in Version 4.0 is still supported in this version.

Federal Information Processing Standards-approved

Federal Information Processing Standards (FIPS) are standards and guidelines issued by the National
Institute of Standards and Technology (NIST) for federal computer systems. FIPS are developed when
there are compelling federal government requirements for standards, such as for security and
interoperability, but acceptable industry standards or solutions do not exist.

WebSphere Application Server integrates cryptographic modules including Java Secure Socket Extension
(JSSE) and Java Cryptography Extension (JCE), which have undergone FIPS 140-2 certification.
Throughout the documentation and the WebSphere Application Server, the IBM JSSE and JCE modules
that have undergone FIPS certification are referred to as IBMJSSEFIPS and IBMJCEFIPS, which
distinguishes the FIPS modules from the IBM JSSE and IBM JCE modules.

For more information, refer to Configuring Federal Information Processing Standard Java Secure Socket
Extension files.

The IBMJCEFIPS module supports the following symmetric cipher suites:
v AES (FIPS 197)
v TripleDES (FIPS 46-3)
v SHA1 Message Digest algorithm (FIPS 180-1)

The IBMJCEFIPS module supports the following algorithms:
v Digital Signature DSA and RSA algorithms (FIPS 186-2)
v ANSI X 9.31 (FIPS 186-2)
v IBM Random Number Generator

1168 Overview

The IBMJCEFIPS cryptographic module contains the algorithms that are approved by FIPS, which form a
proper subset of those in the IBM JCE modules.

What is new for security specialists
This version contains many new and changed features for those who are responsible for securing
applications and the application serving environment.

v WebSphere Application Server security standards configurations

WebSphere Application Server integrates cryptographic modules, which include Java Secure Socket
Extension (JSSE) and Java Cryptography Extension (JCE). Most of the requirements in the standards
are handled in the JSSE and JCE, which must undergo the certification process to meet government
standards. WebSphere Application Server must be configured to run with the JSSE and JCE enabled
for a particular standard, and now supports the FIPS 140-2, SP800-131 and Suite B security standards.

What is new for securing web services
In WebSphere Application Server, there are many security enhancements for web services. The
enhancements include supporting sections of the Web Services Security (WS-Security) specifications and
providing architectural support for plugging in and extending the capabilities of security tokens.

Enhancements from the supported Web Services Security specifications

Since September 2002, the Organization for the Advancement of Structured Information Standards
(OASIS) has been developing the Web Services Security (WS-Security) for SOAP message standard.

In April 2004, OASIS released the Web Services Security Version 1.0 specification, which is a major
milestone for securing web services. In Feburary 2006, the specification was updated to Version 1.1. This
specification is the foundation for other Web Services Security specifications and is also the basis for the
Basic Security Profile (WS-I BSP) Version 1.0 specification, which was approved in March 2007.See the
Basic Security Profile web page for more information.

Web Services Security Version 1.1 is a strategic move towards Web Services Security interoperability, and
an important part of the Web Services Security roadmap. For more information on the Web Services
Security roadmap, see Security in a Web Services World: A Proposed Architecture and Roadmap.

WebSphere Application Server supports the following OASIS specifications and WS-I profiles:

v OASIS: Web Services Security: SOAP Message Security 1.1 (WS-Security 2004)

v OASIS: Web Services Security: UsernameToken Profile 1.1

v OASIS: Web Services Security: Kerberos Token Profile 1.1

v OASIS: WS-SecurityPolicy 1.2

v OASIS: WS-SecureConversation 1.3

v OASIS: WS-Trust 1.3

v Basic Security Profile (WS-I BSP) 1.0

v OASIS: Web Services Security: SAML Token Profile 1.1

The Security Assertion Markup Language (SAML) is an XML-based OASIS standard for exchanging user
identity and security attributes information. Using SAML, a client can communicate assertions regarding
the identity, attributes, and entitlements of a SOAP message. Using the SAML function in WebSphere
Application Server, you can apply policy sets to JAX-WS applications to use SAML assertions in web
services messages and in web services usage scenarios. Use SAML assertions to represent user identity
and user security attributes, and optionally, to sign and to encrypt SOAP message elements.

Chapter 31. Overview and new features: Securing 1169

http://www.ws-i.org/Profiles/BasicSecurityProfile-1.0.html
http://www.ibm.com/developerworks/webservices/library/ws-secmap/
http://www.oasis-open.org/committees/download.php/16790/wss-v1.1-spec-os-SOAPMessageSecurity.pdf
http://www.oasis-open.org/committees/download.php/16782/wss-v1.1-spec-os-UsernameTokenProfile.pdf
http://www.oasis-open.org/committees/download.php/16788/wss-v1.1-spec-os-KerberosTokenProfile.pdf
http://docs.oasis-open.org/ws-sx/ws-securitypolicy/200702/ws-securitypolicy-1.2-spec-os.pdf
http://docs.oasis-open.org/ws-sx/ws-secureconversation/200512/ws-secureconversation-1.3-os.pdf
http://docs.oasis-open.org/ws-sx/ws-trust/200512/ws-trust-1.3-os.pdf
http://www.ws-i.org/Profiles/BasicSecurityProfile-1.0.html
http://www.oasis-open.org/committees/download.php/16768/wss-v1.1-spec-os-SAMLTokenProfile.pdf

For details on what parts of the previous specifications are supported in WebSphere Application Server,
see “Supported functionality from OASIS specifications” on page 1032.

High level features overview in WebSphere Application Server

In WebSphere Application Server, the Web Services Security for SOAP Message Version 1.1 specification
is designed to be flexible and accommodate the requirements of Web services. For example, the
specification does not have a mandatory security token definition. Instead, the specification defines a
generic mechanism to associate the security token with a SOAP message. The use of security tokens is
defined in the various Version 1.0 and 1.1 security token profiles, such as:

v The Username Token Profile

v The X.509 Token Profile

v The Kerberos Token Profile

For more information on security token profile development at OASIS, see Organization for the
Advancement of Structured Information Standards.

The Web Services Security for SOAP Message Version 1.1 updates the Web Services Security for SOAP
Message core specification and the various security token profiles. For this release, WebSphere
Application Server implements the Username Token Profile 1.1 and the X.509 Token Profile 1.1, which
includes support for the Thumbprint type of security token reference. In addition, it supports the signature
confirmation and encrypted header portions of the Web Services Security Version 1.1 standard.

Important: The wire format (such as namespaces) in the WS-SecureConversation and WS-Trust 1.3
specification has changed. WebSphere Application Server tolerates requests formatted
according to both the Submission Drafts and version 1.3 specifications, but you must ensure
that the correct version is used when clients are communicating with a Web Services Feature
Pack service provider. You can disable tolerance of the older format for WS-
SecureConversation and WS-Trust 1.3 endpoints. Submission Drafts requests are not
interoperable with version 1.3 standards.

WebSphere Application Server supports pluggable security tokens. The pluggable architecture is enhanced
to support the Web Services Security specifications, other profiles, and other Web Services Security
specifications. You can learn more about the pluggable security token framework for JAX-RPC web
services, and associating custom security tokens with SOAP messages, by reading these articles on the
IBM developerWorks website:

v Security for JAX-RPC Web services, Part 1: Generating custom tokens

v Security for JAX-RPC Web services, Part 2: Consuming custom tokens

WebSphere Application Server includes the following key enhancements:

v Support for the LTPA version 2 token

v Support for configuration of multiple callers, and an order attribute on the caller to determine which
caller is used for the WebSphere credential

v Support for the published WS-SecurityPolicy version 1.2 specification embedded in WSDL

v Support for the WS-SecureConversation version 1.3 specification and the WS-Trust version 1.3
specification (used by WS-SecureConversation)

v Support for Kerberos token as defined in the WS-Kerberos Token Profile version 1.1 specification

For more information on some of these enhancements, see “Web Services Security enhancements” on
page 1028.

1170 Overview

http://www.oasis-open.org/committees/download.php/16782/wss-v1.1-spec-os-UsernameTokenProfile.pdf
http://www.oasis-open.org/committees/download.php/16785/wss-v1.1-spec-os-x509TokenProfile.pdf
http://www.oasis-open.org/committees/download.php/16788/wss-v1.1-spec-os-KerberosTokenProfile.pdf
http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=wss
http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=wss
http://www.ibm.com/developerworks/websphere/library/techarticles/0803_chung/0803_chung.html
http://www.ibm.com/developerworks/websphere/library/techarticles/0804_chung/0804_chung.html

Configuration of Web Services Security

WebSphere Application Server uses the policy set model for implementing the Web Services Security
Version 1.1 specification, including the Username token Version 1.1 profile, support for the Kerberos and
LTPA v2 tokens, and the X.509 token version 1.1 profile. Policy sets combine configuration settings,
including those for transport and message level configuration, such as WS-Addressing,
WS-ReliableMessaging, WS-SecureConversation, and WS-Security. For more information on policy sets,
refer to the topic Managing policy sets using the administrative console.

You can use the administrative console to configure the Web Services Security binding of a deployed
application with Web Services Security constraints that are defined in the policy set.

For the X.509 Certificate Token Profile, one new type of security token reference is the Thumbprint
reference, which is specified in the binding. WebSphere Application Server now supports creating and
authenticating a security token by using a security token reference (STR) with a key identifier and a
Thumbprint in the <KeyInfo> element. The Thumbprint key information type requires that there be a
keystore with the public and private key pair instead of a shared key. To use the Thumbprint of the
specified certificate, specify the keyInfo type THUMBPRINT in the bindings.

For example, a decryption key is referenced by means of the thumbprint of an associated certificate. The
certificate is not included in the message. Instead, the <ds:KeyInfo> element contains a
<wsse:SecurityTokenReference> element that specified the thumbprint of the specified certificate by
means of the http://docs.oasis-open.org/wss/oasis-wss-soap-message-security-1.1#ThumbprintSHA1
attribute of the <wsse:KeyIdentifier> element.

To take advantage of implementations associated with the Web Services Security Version 1.1 specification,
you must:

v Ensure that your applications use the Java API for XML Web Services (JAX-WS) programming model.

v Re-configure the Web Services Security constraints in the new policy set and binding format.

WebSphere Application Server provides the following tools that you can use to edit the policy set file and
the binding file:

IBM assembly tools
You can use IBM assembly tools to develop web services and configure the policy set and the
binding file for Web Services Security. The tools enable you to assemble both web and Enterprise
JavaBeans (EJB) modules. The assembly tools do not support direct editing of policy sets, but can
import policy sets from the application server, and then attach the modified policy sets to the
service. For more information, read about assembly tools.

Note: You can use policy sets only with Java API for XML-Based Web Services (JAX-WS)
applications. You cannot use policy sets with Java API for XML-based RPC (JAX-RPC)
applications.

WebSphere Application Server administrative console
You can use the administrative console to configure the Web Services Security binding of a
deployed application with Web Services Security constraints that are defined in the policy set.

What is not supported

Web service security is still fairly new and some of the standards are still being defined or standardized.
The following functionality is not supported in WebSphere Application Server:

v JSR-183 (Java API for Web Services Security: SOAP Message Security 1.0 specification). See the
standard documentation for more information: JSR-183 (Java API for Web Services Security: SOAP
Message Security 1.0 specification).

Chapter 31. Overview and new features: Securing 1171

http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-soap-message-security-1.0.pdf
http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-soap-message-security-1.0.pdf

v Application programming interfaces (API) do not exist for Web Services Security in WebSphere
Application Server Versions 6.0.x and later.

v SAML token profile is not supported out of the box.

v REL token profile is not supported.

v SwA profile is not supported

What is supported by the IBM Software Development Kit (SDK)

The following standards exist for the Java application programming interface for XML security and Web
Services Security:

v JSR-105 (Java API for XML-Signature XPath Filter Version 2.0

W3C Recommendation, November 2002

v JSR-106 (Java API for XML Encryption Syntax and Processing)

W3C Recommendation, December 2002

For more information on the IBM SDK for Java Version 6, see the security information documentation.

For information on what is supported for Web Services Security in WebSphere Application Server, see
“Supported functionality from OASIS specifications” on page 1032.

Security planning overview
When you access information on the Internet, you connect through web servers and product servers to the
enterprise data at the back end. This section examines some typical configurations and common security
practices.

This section also examines the security protection that is offered by each security layer and common
security practice for good quality of protection in end-to-end security. The following figure illustrates the
building blocks that comprise the operating environment for security within WebSphere Application Server:

1172 Overview

http://www.w3.org/TR/xmldsig-filter2
http://www.w3.org/TR/xmlenc-core

The following information describes each of the components of WebSphere Application Server security,
Java security, and Platform security that are illustrated in the previous figure.

WebSphere Application Server security

WebSphere security
WebSphere Application Server security enforces security policies and services in a unified
manner on access to Web resources, enterprise beans, and JMX administrative resources.
It consists of WebSphere Application Server security technologies and features to support
the needs of a secure enterprise environment.

Java security

Java Platform, Enterprise Edition (Java EE) security application programming interface
(API) The security collaborator enforces Java Platform, Enterprise Edition (Java EE)-based

security policies and supports Java EE security APIs.

EJB security using Common Secure Interoperability Protocol Version 2 (CSIv2)
Common Secure Interoperability Version 2 (CSIv2) is an IIOP-based, three-tiered, security
protocol that is developed by the Object Management Group (OMG). This protocol
provides message protection, interoperable authentication, and delegation. The three
layers include a base transport security layer, a supplemental client authentication layer,
and a security attribute layer. WebSphere Application Server for z/OS supports CSIv2,
conformance level 0.

Java 2 security
The Java 2 Security model offers fine-grained access control to system resources
including file system, system property, socket connection, threading, class loading, and so
on. Application code must explicitly grant the required permission to access a protected
resource.

Chapter 31. Overview and new features: Securing 1173

Java Virtual Machine (JVM) 5.0
The JVM security model provides a layer of security above the operating system layer. For
example, JVM security protects the memory from unrestricted access, creates exceptions
when errors occur within a thread, and defines array types.

Platform security

Operating system security

The security infrastructure of the underlying operating system provides certain security
services for WebSphere Application Server. These services include the file system security
support that secures sensitive files in the product installation for WebSphere Application
Server. The system administrator can configure the product to obtain authentication
information directly from the operating system user registry.

The security infrastructure of the underlying operating system provides certain security
services for WebSphere Application Server. The operating system identity of the servant,
controller, and daemon Started Task, as established by the STARTED profile, is the
identity that is used to control access to system resources such as files or sockets.
Optionally, the operating system security can provide authentication services using the
User Registry of local operating system, and/or authorization services using SAF
Authorization for the WebSphere Administration console and for applications running under
the application server.

In addition to knowledge of Secure Sockets Layer (SSL) and Transport Layer Security
(TLS), the administrator must be familiar with System Authorization Facility (SAF) and
Resource Access Control Facility (RACF), or an equivalent SAF based product.

The identity and verification of users can be managed by using a Local Operating System
as the User Registry, RACF or equivalent SAF base product. Alternatively, an LDAP,
Custom, or Federated User Registry can be used.

WebSphere can be configured to use SAF Authorization, which will use RACF or an
equivalent SAF based product to manage and protect users and group resources.
Alternatively, WebSphere can be configured to use WebSphere Authorization or a JACC
External Authorization Provider.

When using either Local Operating System as the User Registry and/or using SAF
Authorization, security auditing is an inherit feature of RACF or the equivalent SAF based
products.

Network security
The Network Security layers provide transport level authentication and message integrity
and confidentiality. You can configure the communication between separate application
servers to use Secure Sockets Layer (SSL). Additionally, you can use IP Security and
Virtual Private Network (VPN) for added message protection.

WebSphere Application Server, Network Deployment installation

Important: A node agent instance exists on every computer node.

Each product application server consists of a web container, an Enterprise Java Beans (EJB) container,
and the administrative subsystem.

The WebSphere Application Server deployment manager contains only WebSphere Application Server
administrative code and the administrative console.

The administrative console is a special Java EE web application that provides the interface for performing
administrative functions. WebSphere Application Server configuration data is stored in XML descriptor files,

1174 Overview

which must be protected by operating system security. Passwords and other sensitive configuration data
can be modified using the administrative console. However, you must protect these passwords and
sensitive data. For more information, see Encoding passwords in files.

The administrative console web application has a setup data constraint that requires access to the
administrative console servlets and JavaServer Pages (JSP) files only through an SSL connection when
administrative security is enabled.

In WebSphere Application Server Version 6.0.x and earlier, the administrator console HTTPS port was
configured to use DummyServerKeyFile.jks and DummyServerTrustFile.jks with the default self- signed
certificate. The dummy certificates and keys must be replaced immediately after WebSphere Application
Server installation; the keys are common in all of the installation and are therefore insecure. WebSphere
Application Server Version 6.1 provides integrated certificate and key management, which generate distinct
private key and self-signed certificate with embedded server host name to enable host name verification.
WebSphere Application Server Version 6.1 also enables integration with external certificate (CA) authority
to use CA-issued certificates. The WebSphere Application Servers Version 6.1 installation process
provides an option to enable administrative security during installation. As a result, a WebSphere
Application Server process is secured immediately after installation. WebSphere Application Server Version
7.0 extends the embedded certificate management capabilities by creating a chained certificate (personal
certificate signed by a root certificate) to enable refresh of the personal certificate without affecting the
trust established. It also enables tailoring of the certificate during profile creation (you can import your own
or change the distinguished name (DN) of the one created by default) as well as the ability to change the
default keystore password.

The following figure shows a typical multiple-tier business computing environment.

Administrative security

WebSphere Application Servers interact with each other through CSIv2 and Secure Authentication
Services (SAS) security protocols as well as the HTTP and HTTPS protocols.

Important: SAS is supported only between Version 6.0.x and previous version servers that have been
federated in a Version 6.1 cell.

You can configure these protocols to use Secure Sockets Layer (SSL) when you enable WebSphere
Application Server administrative security. The WebSphere Application Server administrative subsystem in
every server uses SOAP, Java Management Extensions (JMX) connectors and Remote Method Invocation
over the Internet Inter-ORB Protocol (RMI/IIOP) JMX connectors to pass administrative commands and
configuration data. When administrative security is disabled, the SOAP JMX connector uses the HTTP
protocol and the RMI/IIOP connector uses the TCP/IP protocol. When administrative security is enabled,
the SOAP JMX connector always uses the HTTPS protocol. When administrative security is enabled, you
can configure the RMI/IIOP JMX connector to either use SSL or to use TCP/IP. It is recommended that
you enable administrative security and enable SSL to protect the sensitive configuration data.

When administrative security is enabled, you can disable application security at each individual application
server by clearing the Enable administrative security option at the server level. For more information,
see Securing specific application servers. Disabling application server security does not affect the
administrative subsystem in that application server, which is controlled by the security configuration only.
Both administrative subsystem and application code in an application server share the optional per server
security protocol configuration.

Security for Java EE resources

Security for Java EE resources is provided by the web container and the EJB container. Each container
provides two kinds of security: declarative security and programmatic security.

Chapter 31. Overview and new features: Securing 1175

In declarative security, an application security structure includes network message integrity and
confidentiality, authentication requirements, security roles, and access control. Access control is expressed
in a form that is external to the application. In particular, the deployment descriptor is the primary vehicle
for declarative security in the Java EE platform. WebSphere Application Server maintains Java EE security
policy, including information that is derived from the deployment descriptor and specified by deployers and
administrators in a set of XML descriptor files. At runtime, the container uses the security policy that is
defined in the XML descriptor files to enforce data constraints and access control.

When declarative security alone is not sufficient to express the security model of an application, you might
use programmatic security to make access decisions. When administrative security is enabled and
application server security is not disabled at the server level, Java EE applications security is enforced.
When the security policy is specified for a web resource, the web container performs access control when
the resource is requested by a web client. The web container challenges the web client for authentication
data if none is present according to the specified authentication method, ensures that the data constraints
are met, and determines whether the authenticated user has the required security role. The web security
collaborator enforces role-based access control by using an access manager implementation. An access
manager makes authorization decisions that are based on security policy derived from the deployment
descriptor. An authenticated user principal can access the requested servlet or JSP file if the user principal
has one of the required security roles. Servlets and JSP files can use the HttpServletRequest methods,
isUserInRole and getUserPrincipal.

When administrative security and application security are enabled, and the application server level
application security is not disabled, the EJB container enforces access control on EJB method invocation.

The authentication occurs regardless of whether method permission is defined for the specific EJB
method. The EJB security collaborator enforces role-based access control by using an access manager
implementation. An access manager makes authorization decisions that are based on security policy
derived from the deployment descriptor. An authenticated user principal can access the requested EJB
method if it has one of the required security roles. EJB code can use the EJBContext methods,
isCallerInRole and getCallerPrincipal. Use the Java EE role-based access control to protect valuable
business data from access by unauthorized users through the Internet and the intranet. Refer to Securing
web applications using an assembly tool, and Securing enterprise bean applications.

Role-based security

WebSphere Application Server extends the security, role-based access control to administrative resources
including the JMX system management subsystem, user registries, and Java Naming and Directory
Interface (JNDI) name space. WebSphere administrative subsystem defines four administrative security
roles:

Monitor role
A monitor can view the configuration information and status but cannot make any changes.

Operator role
An operator can trigger run-time state changes, such as start an application server or stop an
application but cannot make configuration changes.

Configurator role
A configurator can modify the configuration information but cannot change the state of the runtime.

Administrator role
An operator as well as a configurator, which additionally can modify sensitive security configuration
and security policy such as setting server IDs and passwords, enable or disable administrative
security and Java 2 security, and map users and groups to the administrator role.

iscadmins
The iscadmins role has administrator privileges for managing users and groups from within the
administrative console only.

1176 Overview

WebSphere Application Server defines two additional roles that are available when you use wsadmin
scripting only.

Deployer
A deployer can perform both configuration actions and run-time operations on applications.

Adminsecuritymanager
An administrative security manager can map users to administrative roles. Also, when fine grained
admin security is used, users granted this role can manage authorization groups.

Auditor
An auditor can view and modify the configuration settings for the security auditing subsystem.

A user with the configurator role can perform most administrative work including installing new applications
and application servers. Certain configuration tasks exist that a configurator does not have sufficient
authority to do when administrative security is enabled, including modifying a WebSphere Application
Server identity and password, Lightweight Third-Party Authentication (LTPA) password and keys, and
assigning users to administrative security roles. Those sensitive configuration tasks require the
administrative role because the server ID is mapped to the administrator role.

Enable WebSphere Application Server administrative security to protect administrative subsystem integrity.
Application server security can be selectively disabled if no sensitive information is available to protect. For
securing administrative security, refer to Authorizing access to administrative roles and Assigning users
and groups to roles.

Java 2 security permissions

WebSphere Application Server uses the Java 2 security model to create a secure environment to run
application code. Java 2 security provides a fine-grained and policy-based access control to protect
system resources such as files, system properties, opening socket connections, loading libraries, and so
on. The Java EE Version 1.4 specification defines a typical set of Java 2 security permissions that web
and EJB components expect to have.

Table 116. Java EE security permissions set for web components. The Java EE security permissions set for web
components are shown in the following table.
Security Permission Target Action

java.lang.RuntimePermission loadLibrary

java.lang.RuntimePermission queuePrintJob

java.net.SocketPermission * connect

java.io.FilePermission * read, write

java.util.PropertyPermission * read

Table 117. Java EE security permissions set for EJB components. The Java EE security permissions set for EJB
components are shown in the following table.
Security Permission Target Action

java.lang.RuntimePermission queuePrintJob

java.net.SocketPermission * connect

java.util.PropertyPermission * read

The WebSphere Application Server Java 2 security default policies are based on the Java EE Version 1.4
specification. The specification grants web components read and write file access permission to any file in
the file system, which might be too broad. The WebSphere Application Server default policy gives web
components read and write permission to the subdirectory and the subtree where the web module is
installed. The default Java 2 security policies for all Java virtual machines and WebSphere Application
Server processes are contained in the following policy files:

Chapter 31. Overview and new features: Securing 1177

${java.home}/jre/lib/security/java.policy
This file is used as the default policy for the Java virtual machine (JVM).

${USER_INSTALL_ROOT}/properties/server.policy
This file is used as the default policy for all product server processes.

To simplify policy management, WebSphere Application Server policy is based on resource type rather
than code base (location). The following files are the default policy files for a WebSphere Application
Server subsystem. These policy files, which are an extension of the WebSphere Application Server
runtime, are referred to as Service Provider Programming Interfaces (SPI), and shared by multiple Java
EE applications:

v profile_root/config/cells/cell_name/nodes/node_name/spi.policy

This file is used for embedded resources defined in the resources.xml file, such as the Java Message
Service (JMS), JavaMail, and JDBC drivers.

v profile_root/config/cells/cell_name/nodes/node_name/library.policy

This file is used by the shared library that is defined by the WebSphere Application Server
administrative console.

v profile_root/config/cells/cell_name/nodes/node_name/app.policy

This file is used as the default policy for Java EE applications.

In general, applications do not require more permissions to run than those recommended by the Java EE
specification to be portable among various application servers. However, some applications might require
more permissions. WebSphere Application Server supports the packaging of a was.policy file with each
application to grant extra permissions to that application.

Attention: Grant extra permissions to an application only after careful consideration because of the
potential of compromising the system integrity.

Loading libraries into WebSphere Application Server does allow applications to leave the Java sandbox.
WebSphere Application Server uses a permission filtering policy file to alert you when an application
installation fails because of additional permission requirements. For example, it is recommended that you
not give the java.lang.RuntimePermission exitVM permission to an application so that application code
cannot terminate WebSphere Application Server.

The filtering policy is defined by the filtermask in the profile_root/config/cells/cell_name/filter.policy
file. Moreover, WebSphere Application Server also performs run-time permission filtering that is based on
the run-time filtering policy to ensure that application code is not granted a permission that is considered
harmful to system integrity.

Therefore, many applications developed for prior releases of WebSphere Application Server might not be
Java 2 security ready. To quickly migrate those applications to the latest version of WebSphere Application
Server, you might temporarily give those applications the java.security.AllPermission permission in the
was.policy file. Test those applications to ensure that they run in an environment where Java 2 security is
active. For example, identify which extra permissions, if any, are required, and grant only those
permissions to a particular application. Not granting the AllPermission permission to applications can
reduce the risk of compromising system integrity. For more information on migrating applications, refer to
Migrating Java 2 security policy.

The WebSphere Application Server runtime uses Java 2 security to protect sensitive run-time functions.
Applications that are granted the AllPermission permission not only have access to sensitive system
resources, but also WebSphere Application Server run-time resources and can potentially cause damage
to both. In cases where an application can be trusted as safe, WebSphere Application Server does support
having Java 2 security disabled on a per application server basis. You can enforce Java 2 security by
default in the administrative console and clear the Java 2 security flag to disable it at the particular
application server.

1178 Overview

When you specify the Enable administrative security and Use Java 2 security to restrict application
access to local resources options on the Global security panel of the administrative console, the
information and other sensitive configuration data, are stored in a set of XML configuration files. Both
role-based access control and Java 2 security permission-based access control are employed to protect
the integrity of the configuration data. The example uses configuration data protection to illustrate how
system integrity is maintained.

Attention: The Enable global security option in previous releases of WebSphere Application Server is
the same as the Enable administrative security option in Version 8.5. Also, the Enable Java
2 security option in previous releases is the same as the Use Java 2 security to restrict
application access to local resources option in Version 8.5.

v When Java 2 security is enforced, the application code cannot access the WebSphere Application
Server run-time classes that manage the configuration data unless the code is granted the required
WebSphere Application Server run-time permissions.

v When Java 2 security is enforced, application code cannot access the WebSphere Application Server
configuration XML files unless the code is granted the required file read and write permission.

v The JMX administrative subsystem provides SOAP over HTTP or HTTPS and a RMI/IIOP remote
interface to enable application programs to extract and to modify configuration files and data. When
administrative security is enabled, an application program can modify the WebSphere Application Server
configuration if the application program has presented valid authentication data and the security identity
has the required security roles.

v If a user can disable Java 2 security, the user can also modify the WebSphere Application Server
configuration, including the WebSphere Application Server security identity and authentication data with
other sensitive data. Only users with the administrator security role can disable Java 2 security.

v Because WebSphere Application Server security identity is given to the administrator role, only users
with the administrator role can disable administrative security, change server IDs and passwords, and
map users and groups to administrative roles, and so on.

Other Runtime resources

Other WebSphere Application Server run-time resources are protected by a similar mechanism, as
described previously. It is very important to enable WebSphere Application Server administrative security
and to use Java 2 security to restrict application access to local resources. Java EE Specification defines
several authentication methods for web components: HTTP Basic Authentication, Form-Based
Authentication, and HTTPS Client Certificate Authentication. When you use client certificate login, it is
more convenient for the browser client if the web resources have integral or confidential data constraint. If
a browser uses HTTP to access the web resource, the web container automatically redirects the browser
to the HTTPS port. The CSIv2 security protocol also supports client certificate authentication. You can also
use SSL client authentication to set up secure communication among a selected set of servers based on a
trust relationship.

If you start from the WebSphere Application Server plug-in at the web server, you can configure SSL
mutual authentication between it and the WebSphere Application Server HTTPS server. When using a
certificate, you can restrict the WebSphere Application Server plug-in to communicate with only the
selected two WebSphere Application Servers as shown in the following figure. Note that you can use
self-signed certificates to reduce administration and cost.

Chapter 31. Overview and new features: Securing 1179

For example, you want to restrict the HTTPS server in WebSphere Application Server A and in WebSphere
Application Server B to accept secure socket connections only from the WebSphere Application Server
plug-in W.

v To complete this task, you can generate three certificates using the IKEYMAN and the certificate
management utilities. Also, you can use certificate W and trust certificate A and B. Configure the HTTPS
server of WebSphere Application Server A to use certificate A and to trust certificate W.

Configure the HTTPS server of WebSphere Application Server B to use certificate B and to trust certificate
W.

Table 118. Trust relationships from example. The trust relationship that is depicted in the previous figure is shown in
the following table.

Server Key Trust

WebSphere Application Server plug-in W A, B

WebSphere Application Server A A W

WebSphere Application Server B B W

The WebSphere Application Server Deployment Manager is a central point of administration. System
management commands are sent from the deployment manager to each individual application server.
When administrative security is enabled, you can configure WebSphere Application Servers to require SSL
and mutual authentication.

You might want to restrict WebSphere Application Server A so that it can communicate with WebSphere
Application Server C only and WebSphere Application Server B can communicate with WebSphere

1180 Overview

Application Server D only. All WebSphere Application Servers must be able to communicate with
WebSphere Application Server deployment manager E; therefore, when using self-signed certificates, you
might configure the CSIv2 and SOAP/HTTPS Key and trust relationship, as shown in the following table.

Table 119. CSIv2 and SOAP/HTTPS Key and trust relationships from example. The CSIv2 and SOAP/HTTPS Key
and trust relationships are shown in the following table.
Server Key Trust

WebSphere Application Server A A C, E

WebSphere Application Server B B D, E

WebSphere Application Server C C A, E

WebSphere Application Server D D B, E

WebSphere Application Server Deployment
Manager E

E A, B, C, D

When WebSphere Application Server is configured to use Lightweight Directory Access Protocol (LDAP)
user registry, you also can configure SSL with mutual authentication between every application server and
the LDAP server with self-signed certificates so that a password is not visible when it is passed from
WebSphere Application Server to the LDAP server.

In this example, the node agent processes are not discussed. Each node agent must communicate with
application servers on the same node and with the deployment manager. Node agents also must
communicate with LDAP servers when configured to use an LDAP user registry. It is reasonable to let the
deployment manager and the node agents use the same certificate. Suppose application server A and C
are on the same computer node. The node agent on that node needs to have certificates A and C in its
trust store.

WebSphere Application Server does not provide a registry configuration or management utility. In addition,
it does not dictate the registry password policy. It is recommended that you use the password policy
recommended by your registry, including the password length and expiration period.

Before securing your WebSphere Application Server environment, determine which versions of WebSphere
Application Server you are using, review the WebSphere Application Server security architecture, and
review each of the following topics:
v Server and administrative security
v Common Secure Interoperability Version 2 features
v Identity assertion to the downstream server
v Selecting an authentication mechanism

– Lightweight Third Party Authentication
– Trust associations
– Single sign-on for authentication using LTPA cookies

v Selecting a registry or repository
– Local operating system registries
– Standalone Lightweight Directory Access Protocol registries

v Java 2 security
– Java 2 security policy files

v Java Authentication and Authorization Service
– Programmatic login for JAAS

v Java EE connector security
v Access control exception for Java 2 security

– Role-based authorization
– Administrative roles and naming service authorization

v Implementing a custom authentication provider using JASPI

Chapter 31. Overview and new features: Securing 1181

Security considerations when registering a base Application Server
node with the administrative agent
You might decide to centralize the control of your stand-alone base application servers by registering them
with the administrative agent. If your base application server is currently configured with security, some
issues require consideration. These security considerations apply to the use of the registerNode command
and the deregisterNode command.

The goal of the registerNode command is to take a stand-alone base node and convert it into one that is
managed by the administrative agent. The main parameter of the registerNode command is profilePath,
which specifies where on the local machine the administrative agent can find the node. The portsFile
parameter contains keys to determine which ports the administrative agent listens to, on behalf of the base
node. The format is the same as that for manageProfiles command line.

The registerNode command is run from the administrative agent itself. It is used to register a node with an
administrative agent. It is required that the administrative agent be on the same system as the node being
registered. The registerNode command is only valid on a base node. If a node has been federated to a
deployment manager the registerNode command fails with an error.

First, the exchange signers process for profile registration processes the default secure sockets layer
(SSL) configuration, in which it obtains the root certificate signers from the NodeDefaultRootStore of the
administrative agent and stores them in the NodeDefaultTrustStore of the target profile. Next, the process
obtains the root certificate signers from the target profile's NodeDefaultRootStore and stores them in the
NodeDefaultTrustStore of the administrative agent. The signers are stored in the target profiles trust store
using the alias prefix "agent_signer", and are stored in the administrative agents trust store using the alias
prefix "<profileName>_signer".

Next, the exchange signers process for profile registration processes the RSAToken authentication
configuration, in which it obtains the root certificate signers from the NodeRSATokenRootStore of the
administrative agent and stores them in the NodeRSATokenTrustStore of the target profile. Next, the
process obtains the root certificate signers from the target profile's NodeRSATokenRootStore and stores
them in the NodeRSATokenTrustStore of the administrative agent. The signers are stored in the target
profile's trust store using the alias prefix "agent_signer", and are stored in the administrative agents trust
store using the alias prefix "<profileName>_signer".

In addition, the registration process stores all root certificate signers (SSL and RSAToken) from the
administrative agent into the target profile's client trust store (ClientDefaultTrustStore by default).

The deregisterNode command activates the de-registration process which removes all signers exchanged
during the registration process from both the administrative agent and base profile. The base node's
configuration is retained, except that it is marked as not registered with an administrative agent. This
command is only valid for a previously registered base node.

The following issues require consideration when running the registerNode command with security:

v When attempting to run system management commands such as the registerNode command, you need
to explicitly specify administrative credentials to perform the operation. The registerNode command
accepts -username and -password parameters to specify the user ID and password, respectively. The
user ID and password that are specified must be for an administrative user; for example, a user that is
a member of the console users with Administrator privileges or the administrative user ID configured in
the user registry. An example of the registerNode command follows:

registerNode -profilePath /WebSphere/AppServer/profiles/default -host localhost -connType SOAP -port
8877 -username WSADMIN -password ADMINPWD

v Before registering to an administrative agent, a node must have administrative security enabled or
disabled.

1182 Overview

v Once a node is registered, you cannot enable or disable the administrative security for that node (or any
other registered node) until the node has been de-registered.

Proper understanding of the security interactions between distributed servers greatly reduces problems
that are encountered with se cure communications. Security adds complexity because additional function
needs management. The administrative agent provides a way of managing additional function while
preserving security.

Security considerations when adding a base Application Server node
to WebSphere Application Server, Network Deployment
You might decide to centralize the configuration of your stand-alone base application servers by adding
them into a WebSphere Application Server, Network Deployment cell. If your base application server is
currently configured with security, some issues require consideration. The major issue when adding a node
to the cell is whether the user registries between the base application server and the deployment manager
are the same.

When adding a node to the cell, you automatically inherit both the user registry and the authentication
mechanism of the cell.

For distributed security, all servers in the cell must use the same user registry and authentication
mechanism. To recover from a user registry change, you must modify your applications so that the user
and group-to-role mappings are correct for the new user registry. See the article on Assigning users and
groups to roles.

Another important consideration is the Secure Sockets Layer (SSL) public-key infrastructure. Prior to
performing the addNode command with the deployment manager, verify that the addNode command can
communicate as an SSL client with the deployment manager. This communication requires that the
addNode truststore that is configured in the sas.client.props file contains the signer certificate of the
deployment manager personal certificate, as found in the keystore and specified in the administrative
console.

The following issues require consideration when running the addNode command with security:

v When attempting to run system management commands such as the addNode command, you need to
explicitly specify administrative credentials to perform the operation. The addNode command accepts
-username and -password parameters to specify the user ID and password, respectively. The user ID
and password that are specified must be for an administrative user; for example, a user that is a
member of the console users with Administrator privileges or the administrative user ID configured in the
user registry. An example of the addNode command follows:

addNode CELL_HOST 8879 -includeapps -username user -password pass.

The -includeapps parameter is optional, but this option attempts to include the server applications into
the Deployment Manager. The addNode command might fail if the user registries used by WebSphere
Application Server and the deployment manager are not the same. To correct this problem, either make
the user registries the same or turn off security. If you change the user registries, remember to verify
that the users-to-roles and groups-to-roles mappings are correct. See addNode command for more
information on the addNode syntax.

v Adding a secured remote node through the administrative console is not supported. You can either
disable security on the remote node before performing the operation or perform the operation from the
command line using the addNode script.

v Before running the addNode command, you must verify that the truststore files on the nodes can
communicate with the keystore files from the deployment manager and vice versa. When using the
default DummyServerKeyFile and DummyServerTrustFile, you should not see this problem as these are
already able to communicate. However, never use these dummy files in a production environment.

Chapter 31. Overview and new features: Securing 1183

v When a client from a previous release tries to use the addNode command to federate to a 7.0
deployment manager, the client must first obtain signers for a successful handshake. For more
information, see "Obtaining signers from a previous release" in the article on Secure installation for
client retrieval.

v After running the addNode command, the application server is in a new SSL domain. It might contain
SSL configurations that point to keystore and truststore files that are not prepared to interoperate with
other servers in the same domain. Consider which servers are intercommunicating and ensure that the
servers are trusted within your truststore files.

Proper understanding of the security interactions between distributed servers greatly reduces problems
that are encountered with secure communications. Security adds complexity because additional function
needs management. Security needs thorough consideration during the planning of your infrastructure. This
document helps to reduce the problems that can occur because of inherent security interactions.

When you have security problems that are related to the WebSphere Application Server, Network
Deployment environment, see Troubleshooting security configurations to find additional information about
the problem. When trace is needed to solve a problem because servers are distributed, it is often required
to gather trace on all servers simultaneously while recreating the problem. This trace can be enabled
dynamically or statically, depending on the type of problem that is occurring.

Security: Resources for learning
Use the following links to find relevant supplemental information about Securing applications and their
environment. The information resides on IBM and non-IBM Internet sites, whose sponsors control the
technical accuracy of the information.

These links are provided for convenience. Often, the information is not specific to the IBM WebSphere
Application Server, but is useful in all or part for understanding the product. When possible, links are
provided to technical papers and IBM Redbooks that supplement the broad coverage of the release
documentation with in-depth examinations of particular product areas.

View links to additional information about:
v “Planning, business scenarios and IT architecture”
v “Programming model and decisions”
v “Programming specifications” on page 1185
v “Administration” on page 1185
v “Tutorials” on page 1185

Planning, business scenarios and IT architecture
v WebSphere Application Server Library
v WebSphere Application Server Support
v WebSphere Application Server Version 6 Security
v “Accessing the samples” on page 12

The technology sample in the WebSphere Application Server Samples Gallery contains several
security-related samples including the form login sample and the Java Authentication and Authorization
Service (JAAS) login sample.

v WebSphere Application Server security: Presentation series

Programming model and decisions
v IBM Software Development Kit resource packages and documentation

This website contains documentation, example code, and ancillary files relating to the IBM Software
Development Kits (SDK). You can obtain information about the IBM implementation of Java Secure
Sockets Extension (JSSE), Java Cryptography Extension (JCE), Java Generic Security Services
(JGSS), iKeyman, and so on.

v Federated Identity Management and Web Services Security with IBM Tivoli Security Solutions

1184 Overview

http://www-3.ibm.com/software/webservers/appserv/library.html
http://www-3.ibm.com/software/webservers/appserv/support.html
http://www.redbooks.ibm.com/pubs/pdfs/redbooks/sg246315.pdf
http://www.ibm.com/developerworks/websphere/library/techarticles/0409_botzum/0409_botzum.html
http://www.ibm.com/developerworks/java/jdk/security/
http://www.redbooks.ibm.com/redpieces/abstracts/sg246394.html

Programming specifications
v J2EE Specifications
v EJB Specifications
v Servlet Specifications
v Common Secure Interoperability Version 2 (CSIv2) Specification
v JAAS Specification.

For programming and usage in JAAS, refer to the specification located at http://www.ibm.com/
developerworks/java/jdk/security/ and scroll down to find the JAAS documentation for your platform. This
document contains the following when unpacked:
– login.html - LoginModule Developer's Guide
– api.html - Developer's Guide (JAAS JavaDoc)
– HelloWorld.tar - Sample JAAS Application

v Java 2 Platform, Standard Edition, v5.0 API Specification
v Java Authorization Contract for Containers (JSR 115) Specification
v Java Authentication Service Provider Interface for Containers (JSR 196) Specification
v The Kerberos Network Authentication Service Version 5
v The Simple and Protected GSS-API Negotiation Mechanism
v Kerberos: The Network Authentication Protocol

Administration
v WebSphere Application Server Version 6: Security Handbook

This is a redpiece or a draft version of WebSphere Application Server Version 6 Security handbook. It is
designed to help programmers, administrators, and architects understand the features available in
WebSphere Application Server Version 6.WebSphere Application Server V6 Migration Guide

v IBM WebSphere Version 5.0 Security

This book provides an overview of WebSphere Application Server Version 5 Security, including J2EE
security and programmatic security techniques. It also provides information about end-to-end security
solutions that include WebSphere Application Server Version 5 as part of an e-business solution.

v IBM HTTP Server Support and Documentation
v IBM Directory Server Support and Documentation
v IBM developer kits

This website provides access to the IBM developer kits that are provided by the IBM Centre for Java
Technology Development. Using this website, you can find various security and diagnostic information
including information on the Federal Information Processing Standard, Java Version 1.4.1, Java Version
1.4.2, the iKeyman tool, and the Public Key Cryptography Standards (PKCS).

v IBM cryptographic hardware devices
v Supported hardware, software and APIs prerequisite website
v IBM Education Assistant
v Understanding LDAP - Design and Implementation
v WebSphere security fundamentals
v Advanced authentication in WebSphere Application Server

Tutorials
v IBM Education Assistant: Enabling security best practices tutorials

See these tutorials for overview information about WebSphere Application Server security.

Common Criteria (EAL4) support

The National Institute of Standards and Technology (NIST) has developed Common Criteria to ensure you
have a safe option for downloading software to use on your systems. Information held by IT products or
systems is a critical resource that enables organizations to succeed in their mission. Additionally,
individuals have a reasonable expectation that their personal information contained in IT products or
systems remain private, be available to them as needed, and not be subject to unauthorized modification.
IT products or systems should perform their functions while exercising proper control of the information to

Chapter 31. Overview and new features: Securing 1185

http://java.sun.com/j2ee/download.html
http://java.sun.com/products/ejb/docs.html
http://java.sun.com/products/servlet/download.html
http://www.omg.org/technology/documents/corba_spec_catalog.htm#CSIv2
http://www.ibm.com/developerworks/java/jdk/security/
http://www.ibm.com/developerworks/java/jdk/security/
http://java.sun.com/j2se/1.5.0/docs/api/index.html
http://java.sun.com/j2ee/javaacc/
http://jcp.org/en/jsr/detail?id=196
http://www.ietf.org/rfc/rfc1510.txt
http://www.ietf.org/rfc/rfc2478.txt
http://web.mit.edu/kerberos/
http://www.redbooks.ibm.com/redpieces/abstracts/sg246316.html
http://www.redbooks.ibm.com/redpieces/abstracts/sg246369.html
http://www.redbooks.ibm.com/redbooks/pdfs/sg246573.pdf
http://www-3.ibm.com/software/webservers/httpservers/support.html
http://www-3.ibm.com/software/network/directory/support/
http://www.ibm.com/developerworks/java/jdk/index.html
http://www.ibm.com/security/cryptocards/html/library.shtml
http://www.ibm.com/support/docview.wss?rs=180&uid=swg27006921
http://www.ibm.com/software/info/education/assistant/
http://www.redbooks.ibm.com/abstracts/sg244986.html?Open
http://www.redbooks.ibm.com/redpieces/abstracts/redp3944.html
http://www.ibm.com/developerworks/websphere/techjournal/0508_benantar/0508_benantar.html
http://www.ibm.com/support/docview.wss?rs=180&context=SSEQTP&uid=swg27004761

ensure it is protected against hazards such as unwanted or unwarranted dissemination, alteration, or loss.
The term IT security is used to cover prevention and mitigation of these and similar hazards.

WebSphere Application Server Version 6.1 was certified at the Common Criteria EAL4 level, the highest
level of any commercially available application server. WebSphere Application Server Version 7 was
designed to meet or exceed the security capabilities of WebSphere Application Server Version 6.1,
including the EAL4 requirements. The US CCEVS is no longer certifying software products as Common
Criteria EAL compliant because they are moving to a new security standard referred to as Protection
Profiles. The Protection Profiles requirements for middleware software have not yet been closed. When
the Protection Profiles do close, it is our intent to see WebSphere Application Server Version 8 certified at
the appropriate Protection Profiles level.

Federal Information Processing Standard support
Federal Information Processing Standards (FIPS) are standards and guidelines issued by the United
States National Institute of Standards and Technology (NIST) for federal government computer systems.
FIPS can be enabled for WebSphere Application Server.

FIPS are developed when there are compelling federal government requirements for standards, such as
for security and interoperability, but acceptable industry standards or solutions do not exist. Government
agencies and financial institutions use these standards to ensure that the products conform to specified
security requirements. For more information on these standards, see the National Institute of Standards
and Technology.

WebSphere Application Server integrates cryptographic modules including Java Secure Socket Extension
(JSSE) and Java Cryptography Extension (JCE), which have undergone FIPS 140-2 certification. In the
WebSphere Application Server documentation, the IBM JSSE and JCE modules that have undergone
FIPS certification are referred to as IBMJSSEFIPS and IBMJCEFIPS.

Note:

In this release of WebSphere Application Server, support is provided for the FIPS 140-2,
SP800-131 and Suite B security standards. Read the "WebSphere Application Server security
standards configurations" topic for more information.

To enable FIPS for WebSphere Application Server, see Configuring Federal Information Processing
Standard Java Secure Socket Extension files.When you enable FIPS, several components of the
Application Server are affected including the cipher suites, the cryptographic providers, the load balancer,
the caching proxy, the high availability manager, and the data replication service.

See Secure transports with JSSE and JCE programming interfaces for more information on the impact the
Federal Information Processing Standard has on WebSphere Application Server.

You can use the following IBM products with WebSphere Application Server and maintain a FIPS level of
security compliance:

The DB2 Universal Database uses FIPS 140-2 approved cryptographic providers.

IBM Tivoli Directory Server
The IBM Tivoli Directory Server provides the Use FIPS certified implementation option, which
enables the directory server to use the FIPS-certified encryption algorithms. For more information,
see “Setting the level of encryption” within the IBM Tivoli Directory Server Administration Guide.

WebSphere Application Server - Edge Component
The caching proxy contains a directive for enabling FIPS. For more information, see the Caching
Proxy Administration Guide.

1186 Overview

http://csrc.nist.gov/publications/fips/
http://csrc.nist.gov/publications/fips/
http://publib.boulder.ibm.com/tividd/td/IBMDS/IDSadmin52/en_US/HTML/admin_gd.htm#Header_185
http://www.ibm.com/software/webservers/appserv/doc/v602/ec/infocenter/index.html
http://www.ibm.com/software/webservers/appserv/doc/v602/ec/infocenter/index.html

You can find more information about the Federal Information processing Standards (FIPS) on the Support
website including recommended updates for WebSphere Application Server.

Chapter 31. Overview and new features: Securing 1187

http://www.ibm.com/software/websphere/support/
http://www.ibm.com/software/websphere/support/

1188 Overview

Chapter 32. Overview and new features for developing
applications

View the topics in the following list to learn more about developing applications for deployment on this
product.

What is new for developers

This topic provides an overview of new and changed features of the programming model and
application serving environment as it pertains to development and test efforts.

Learn about WebSphere applications: Overview and new features

This topic provides an overview of the programming model.

Accessing the samples

The samples are a good way to become familiar with the programming model.

What is new for developers
This version contains many new and changed features for application developers.

v Configuring EJB bindings in SCA OASIS applications

The SCA stateless session bean binding is a protocol binding that you can use to integrate SCA with
EJB-based services. The product provides OASIS support for both EJB 3.x and 2.x bindings for
services and references.

v Deploying OSGi applications

The WebSphere Application Server administrative console provides panels that you can use to examine
or debug a specific set of OSGi bundles running on an application server. You can, for example, view
and explore the package and service dependencies between the bundles in an OSGi application.

v Developing asynchronous SCA services and clients

SCA OASIS specifications support the asynchronous running of request-response services. This
enables a client thread to continue doing other work while the service runs. You can use SCA OASIS
annotations and APIs in Java interfaces to enable asynchronization in services.

v Developing OSGi applications

– An OSGi application can contain Enterprise JavaBeans (EJBs). OSGi applications can access and
invoke an enterprise bean directly.

The enterprise beans in your OSGi bundles can be developed from scratch, or you can include
existing EJB assets and migrate them to use OSGi modularity with minimal code changes. Stateful,
stateless, and singleton enterprise beans are supported. Your OSGi application can also contain
message-driven beans (MDBs).

You deploy and configure an OSGi application that contains enterprise beans in a similar way to
deploying and configuring a Java EE enterprise application, by using wsadmin or the administrative
console.

– You can configure bean security in the Blueprint XML file of your OSGi applications, so that the
methods of the bean can be accessed only by users that are assigned a specified role. You can
configure bean-level security, so that a single role is associated with all the methods of the bean, or
you can configure method-level security, where different roles are associated with specific methods.

v Liberty profile: Developing applications

The Liberty profile support in WebSphere Application Server delivers a new, lightweight profile of the
application server for web and OSGi applications, along with a simplified configuration approach for
developers. Key benefits of the Liberty profile include, but are not limited to, the following capabilities:

– Free and frictionless download for development purposes

– Ultra lightweight modular runtime environment, with an install size of under 50 MB

© IBM Corporation 2003 1189

– Incredibly fast startup time: under 5 seconds for simple web applications

– Simplified configuration for quick time to productivity

– Java EE and OSGi application deployment support for web applications

– LDAP registry support

– Deployment, as a package, of an application and configured server

– Managed, centralized deployment of a packaged application and server

– Availability of WebSphere Application Server Developer Tools as Eclipse plug-ins for broad tooling
support

– Platform support for distributed platforms, z/OS, and Mac OS

Incredibly fast restart times, coupled with its small size, dynamic behavior, and ease of use, make the
Liberty profile a good option for developers building web applications that do not require the full Java
EE environment of traditional enterprise application server profiles. Familiar WebSphereApplication
Server enterprise qualities of service, such as security and transaction integrity, are enabled as
required.

v “SCA in WebSphere Application Server: Overview” on page 573

Version 8.5 adds support for the Service Component Architecture (SCA) OASIS programming model
implementation.

What is new for deployers
This version contains many new and changed features for application deployers.

Learn about WebSphere applications: Overview and new features
Use the Learn about WebSphere applications section as a starting point to study the programing model,
encompassing the many parts used in and by various application types supported by the application
server.

The programming model for applications deployed on this product has the following aspects.

v Java specifications and other open standards for developing applications

v WebSphere programming model extensions to enhance application functionality

v Containers and services in the application server, used by deployed applications, and which sometimes
can be extended

The diagram shows a single application server installation. The parts pertaining to the programming model
are discussed here. Other parts comprise the product architecture, independent of the various application
types outlined by the programming model. See “WebSphere Application Server architecture” on page 15.

1190 Overview

Java EE application components

The product supports application components that conform to Java Platform, Enterprise Edition (Java EE)
specifications.

Web applications run in the web container

Chapter 32. Overview and new features: Developing 1191

The web container is the part of the application server in which web application components run.
Web applications are comprised of one or more related servlets, JavaServer Pages technology
(JSP files), and Hyper Text Markup Language (HTML) files that you can manage as a unit.
Combined, they perform a business logic function.

The web container processes servlets, JSP files, and other types of server-side includes. Each
application server runtime has one logical web container, which can be modified, but not created
or removed. Each web container provides the following.

Web container transport chains
Requests are directed to the web container using the web container inbound transport
chain. The chain consists of a TCP inbound channel that provides the connection to the
network, an HTTP inbound channel that serves HTTP requests, and a web container
channel over which requests for servlets and JSP files are sent to the web container for
processing.

Servlet processing
When handling servlets, the web container creates a request object and a response
object, then invokes the servlet service method. The web container invokes the servlet's
destroy method when appropriate and unloads the servlet, after which the JVM performs
garbage collection.

Servlets can perform such tasks as supporting dynamic web page content, providing
database access, serving multiple clients at one time, and filtering data.

JSP files enable the separation of the HTML code from the business logic in web pages.
IBM extensions to the JSP specification make it easy for HTML authors to add the power
of Java technology to web pages, without being experts in Java programming.

HTML and other static content processing
Requests for HTML and other static content that are directed to the web container are
served by the web container inbound chain. However, in most cases, using an external
web server and web server plug-in as a front end to the web container is more appropriate
for a production environment.

Session management
Support is provided for the javax.servlet.http.HttpSession interface as described in the
Servlet application programming interface (API) specification.

An HTTP session is a series of requests to a servlet, originating from the same user at the
same browser. Sessions allow applications running in a web container to keep track of
individual users. For example, many web applications allow users to dynamically collect
data as they move through the site, based on a series of selections on pages they visit.
Where the user goes next, or what the site displays next, might depend on what the user
has chosen previously from the site. To maintain this data, the application stores it in a
“session”.

SIP applications and their container

SIP applications are Java programs that use at least one Session Initiation Protocol (SIP)
servlet. SIP is used to establish, modify, and terminate multimedia IP sessions including IP
telephony, presence, and instant messaging.

Portlet applications and their container

Portlet applications are special reusable Java servlets that appear as defined regions on
portal pages. Portlets provide access to many different applications, services, and web
content.

EJB applications run in the EJB container

The EJB container provides all of the runtime services needed to deploy and manage enterprise
beans. It is a server process that handles requests for both session and entity beans.

1192 Overview

Enterprise beans are Java components that typically implement the business logic of Java EE
applications, as well as accessing data. The enterprise beans, packaged in EJB modules, installed
in an application server do not communicate directly with the server. Instead, the EJB container is
an interface between EJB components and the application server. Together, the container and the
server provide the enterprise bean runtime environment.

The container provides many low-level services, including threading and transaction support. From
an administrative perspective, the container handles data access for the contained beans. A single
container can host more than one EJB Java archive (JAR) file.

Client applications and other types of clients

In a client-server environment, clients communicate with applications running on the server. Client
applications or application clients generally refers to clients implemented according to a particular set of
Java specifications, and which run in the client container of a Java EE-compliant application server. Other
clients in the WebSphere Application Server environment include clients implemented as web applications
(web clients), clients of web services programs (web services clients), and clients of the product systems
administration (administrative clients).

Client applications and their container
The client container is installed separately from the application server, on the client machine. It
enables the client to run applications in an EJB-compatible Java EE environment. The diagram
shows a Java client running in the client container.

This product provides a convenient launchClient tool for starting the application client, along with
its client container runtime.

Depending on the source of technical information, client applications sometimes are called
application clients. In this documentation, the two terms are synonymous.

Web clients, known also as web browser clients
The diagram shows a web browser client, which can be known simply as a web client, making a
request to the web container of the application server. A web client or web browser client runs in a
web browser, and typically is a web application.

Web services clients
Web services clients are yet another kind of client that might exist in your application serving
environment. The diagram does not depict a web services client. The web services information
includes information about this type of client.

Administrative clients
The diagram shows two kinds of administrative clients: a scripting client and the administrative
console that is the graphical user interface (GUI) for administering this product. Both are accessing
parts of the systems administration infrastructure. In the sense that they are basically the same for
whatever kind of applications you are deploying on the server, administrative clients are part of the
product architecture. However, because many of these clients are programs you create, they are
discussed as part of the programming model for completeness.

Web services

Web services
The diagram shows the web services engine, part of the web services support in the application
server runtime. Web services are self-contained, modular applications that can be described,
published, located, and invoked over a network. They implement a service-oriented architecture
(SOA), which supports the connecting or sharing of resources and data in a flexible and
standardized manner. Services are described and organized to support their dynamic, automated
discovery and reuse.

Chapter 32. Overview and new features: Developing 1193

The product acts as both a web services provider and as a requestor. As a provider, it hosts web
services that are published for use by clients. As a requester, it hosts applications that invoke web
services from other locations. The diagram shows the web services engine in this capacity,
contacting a web services provider or gateway.

SCA composites

Service Component Architecture (SCA)
SCA composites consist of components that implement business functions in the form of services.

Data access, messaging, and Java EE resources

Data access resources
Connection management for access to enterprise information systems (EIS) in the application
server is based on the Java EE Connector Architecture (JCA) specification. The diagram shows
JCA services helping an application to access a database in which the application retrieves and
persists data.

The connection between the enterprise application and the EIS is done through the use of
EIS-provided resource adapters, which are plugged into the application server. The architecture
specifies the connection management, transaction management, and security contracts between
the application server and EIS.

The Connection Manager (not shown) in the application server pools and manages connections. It
is capable of managing connections obtained through both resource adapters defined by the JCA
specification and data sources defined by the JDBC 2.0 Extensions specification.

JDBC resources (JDBC providers and data sources) are a type of Java EE resource used by
applications to access data. Although data access is a broader subject than that of JDBC
resources, this information often groups data access under the heading of Java EE resources for
simplicity.

JCA resource adapters are another type of Java EE resource used by applications. The JCA
defines the standard architecture for connecting the Java EE platform to heterogeneous EIS.
Imagine an ERP, mainframe transaction processing, database systems, and legacy applications
not written in the Java programming language.

The JCA resource adapter is a system-level software driver supplied by EIS vendors or other
third-party vendors. It provides the connectivity between Java EE application servers or clients and
an EIS. To use a resource adapter, install the resource adapter code and create configurations
that use that adapter. The product provides a predefined relational resource adapter for your use.

Messaging resources and messaging engines
JMS support enables applications to exchange messages asynchronously with other JMS clients
by using JMS destinations (queues or topics). Applications can use message-driven beans to
automatically retrieve messages from JMS destinations and JCA endpoints without explicitly polling
for messages.

For inbound non-JMS requests, message-driven beans use a Java EE Connector Architecture
(JCA) 1.5 resource adapter written for that purpose. For JMS messaging, message-driven beans
can use a JCA-based messaging provider such as the default messaging provider that is part of
the product.

The messaging engine supports the following types of message providers.

Default messaging provider (service integration bus)
The default messaging provider uses the service integration bus for transport. The default
message provider provides point-to-point functions, as well as publish and subscribe
functions. Within this provider, you define JMS connection factories and destinations that
correspond to service integration bus destinations.

1194 Overview

WebSphere MQ provider
You can use WebSphere MQ as the external JMS provider. The application server
provides the JMS client classes and administration interface, while WebSphere MQ
provides the queue-based messaging system.

Generic JMS provider
You can use another messaging provider as long as it implements the ASF component of
the JMS 1.0.2 specification. JMS resources for this provider cannot be configured using
the administrative console.

transition: Version 6 replaces the Version 5 concept of a JMS server with a messaging engine
built into the application server, offering the various kinds of providers mentioned
previously. The Version 5 messaging provider is offered for configuring resources for
use with Version 5 embedded messaging. You also can use the Version 5 default
messaging provider with a service integration bus.

EJB 2.1 introduces an ActivationSpec for connecting message-driven beans to
destinations. For compatibility with Version 5, you still can configure JMS
message-driven beans (EJB 2.0) against a listener port. For those message-driven
beans, the message listener service provides a listener manager that controls and
monitors one or more JMS listeners, each of which monitors a JMS destination on
behalf of a deployed message-driven bean.

Service integration bus

The service integration bus provides a unified communication infrastructure for messaging and
service-oriented applications. The service integration bus is a JMS provider that provides reliable
message transport and uses intermediary logic to adapt message flow intelligently into the
network. It supports the attachment of web services requestors and providers. Its capabilities are
fully integrated into product architecture, including the security, system administration, monitoring,
and problem determination subsystems.

The service integration bus is often referred to as just a bus. When used to host JMS applications,
it is often referred to as a messaging bus. It consists of the following parts (not shown at this level
of detail in the diagram).

Bus members
Application servers added to the bus.

Messaging engine
The component that manages bus resources. It provides a connection point for clients to
produce or from where to consume messages.

Destinations
The place within the bus to which applications attach to exchange messages. Destinations
can represent web services endpoints, messaging point-to-point queues, or messaging
publish and subscribe topics. Destinations are created on a bus and hosted on a
messaging engine.

Message store
Each messaging engine uses a set of tables in a supported data store (such as a JDBC
database) to hold information such as messages, subscription information, and transaction
states.

Through the service integration bus web services enablement, you can:

v Make an internal service that is already available at a service destination available as a web
service.

v Make an external web service available at a service destination.

v Use the web services gateway to map an existing service, either an internal service or an
external web service, to a new web service that appears to be provided by the gateway.

Chapter 32. Overview and new features: Developing 1195

Mail, URLs, and other Java EE resources
The following kinds of Java EE resources are used by applications deployed on a J2EE-compliant
application server.

v JDBC resources and other technology for data access (previously discussed)

v JCA resource adapters (previously discussed)

v JMS resources and other messaging support (previously discussed)

v JavaMail support, for applications to send Internet mail

The JavaMail APIs provide a platform and protocol-independent framework for building
Java-based mail client applications. The APIs require service providers, known as protocol
providers, to interact with mail servers that run on the appropriate protocols.

A mail provider encapsulates a collection of protocol providers, including Simple Mail Transfer
Protocol (SMTP) for sending mail; Post Office Protocol (POP) for receiving mail; and Internet
Message Access Protocol (IMAP) as another option for receiving mail. To use another protocol,
you must install the appropriate service provider for the protocol.

JavaMail requires not only service providers, but also the JavaBeans Activation Framework
(JAF), as the underlying framework to handle complex data types that are not plain text, such
as Multipurpose Internet Mail Extensions (MIME), URL pages, and file attachments.

v URLs, for describing logical locations

URL providers implement the functionality for a particular URL protocol, such as HTTP, enabling
communication between the application and a URL resource that is served by a particular
protocol. A default URL provider is included for use by any URL resource with protocols based
on the supported Java Platform, Standard Edition (Java SE) specification, such as HTTP, FTP,
or File. You also can plug in your own URL providers that implement additional protocols.

v Resource environment entries, for mapping logical names to physical names

The java:comp/env environment provides a single mechanism by which both the JNDI name
space objects and local application environment objects can be looked up. The product provides
numerous local environment entries by default.

The Java EE specification also provides a mechanism for defining customer environment entries
by defining entries in the standard deployment descriptor of an application. The Java EE
specification uses the following methods to separate the definition of the resource environment
entry from the application.

– Requiring the application server to provide a mechanism for defining separate administrative
objects that encapsulate a resource environment entry. The administrative objects are
accessible using JNDI in the application server local name space (java:comp/env).

– Specifying the administrative object's JNDI lookup name and expected returned object type.
This specification is performed in the aforementioned resource environment entry in the
deployment descriptor.

The product supports the use of resource environment entries with the following administrative
concepts.

– A resource environment entry defines the binding target (JNDI name), factory class, and
return object type (via the link to a referenceable) of the resource environment entry.

– A referenceable defines the class name of the factory that returns object instances
implementing a Java interface.

– A resource environment provider groups together the referenceable, resource environment
entries and any required custom properties.

Security

Security programming model and infrastructure
The product provides security infrastructure and mechanisms to protect sensitive Java EE

1196 Overview

resources and administrative resources and to address enterprise end-to-end security
requirements on authentication, resource access control, data integrity, confidentiality, privacy, and
secure interoperability.

Security infrastructure and mechanisms protect Java Platform, Enterprise Edition (Java EE)
resources and administrative resources, addressing your enterprise security requirements. In turn,
the security infrastructure of this product works with the existing security infrastructure of your
multiple-tier enterprise computing framework. Based on open architecture, the product provides
many plug-in points to integrate with enterprise software components to provide end-to-end
security.

The security infrastructure involves both a programming model and elements of the product
architecture that are independent of the application type.

Additional services for use by applications

Naming and directory
Each application server provides a naming service that in turn provides a Java Naming and
Directory Interface (JNDI) name space. The service is used to register resources hosted on the
application server. The JNDI implementation is built on top of a Common Object Request Broker
Architecture (CORBA) naming service (CosNaming).

JNDI provides the client-side access to naming and presents the programming model used by
application developers. CosNaming provides the server-side implementation and is where its name
space is actually stored. JNDI essentially provides a client-side wrapper of the name space stored
in CosNaming, and interacts with the CosNaming server on behalf of the client.

Clients of the application server use the naming architecture to obtain references to objects related
to those applications. The objects are bound into a mostly hierarchical structure called the name
space. It consists of a set of name bindings, each one of which is a name relative to a specific
context and the object bound with that name. The name space can be accessed and manipulated
through a name server.

This product provides the following naming and directory features.

v Distributed name space, for additional scalability

v Transient and persistent partitions, for binding at various scopes

v Federated name space structure across multiple servers

v Configured bindings for defining bindings bound by the system at server startup

v Support for CORBA Interoperable Naming Service (INS) object URLs

Note that with the addition of virtual member manager to provide federated repository support for
product security, the product now offers more extensive and sophisticated identity management
capabilities than ever before, especially in combination with other WebSphere and Tivoli products.

Object Request Broker (ORB)
The product uses an ORB to manage interaction between client applications and server
applications, as well as among product components. An ORB uses IIOP to enable clients to make
requests and receive requests from servers in a network distributed environment.

The ORB provides a framework for clients to locate objects in the network and call operations on
those objects as though the remote objects were located in the same running process as the
client, providing location transparency.

Although not shown in the diagram, one place in which the ORB comes into play is where the
client container is contacting the EJB container on behalf of a Java client.

Transactions
Part of the application server is the transaction service. The product provides advanced
transactional capabilities to help application developers avoid custom coding. It provides support

Chapter 32. Overview and new features: Developing 1197

for the many challenges related to integrating existing software assets with a Java EE
environment. These measures include ActivitySessions (described below).

Applications running on the server can use transactions to coordinate multiple updates to
resources as one unit of work such that all or none of the updates are made permanent.
Transactions are started and ended by applications or the container in which the applications are
deployed.

The application server is a transaction manager that supports coordination of resource managers
and participates in distributed global transactions with other compliant transaction managers.

The server can be configured to interact with databases, JMS queues, and JCA connectors
through their local transaction support when distributed transaction support is not required.

How applications use transactions depends on the type of application, for example:

v A session bean either can manage its transactions itself, or delegate the management of
transactions to the container.

v Entity beans use container-managed transactions.

v Web components, such as servlets, use bean-managed transactions.

The product handles transactions with the following components.

v A transaction manager supports the enlistment of recoverable XAResources and ensures each
resource is driven to a consistent outcome, either at the end of a transaction, or after a failure
and restart of the application server.

v A container manages the enlistment of XAResources on behalf of deployed applications when it
performs updates to transactional resource managers such as databases. Optionally, the
container can control the demarcation of transactions for EJB applications that have enterprise
beans configured for container-managed transactions.

v An API handles bean-managed enterprise beans and servlets, allowing such application
components to control the demarcation of their own transactions.

WebSphere extensions

WebSphere programming model extensions are the programming model benefits you gain by purchasing
this product. They represent leading edge technology to enhance application capability and performance,
and make programming and deployment faster and more productive.

In addition, your applications can use the Eclipse extension framework. Your applications are extensible as
soon as you define an extension point and provide the extension processing code for the extensible area
of the application. You can also plug an application into another extensible application by defining an
extension that adheres to the target extension point requirements. The extension point can find the newly
added extension dynamically and the new function is seamlessly integrated in the existing application. It
works on a cross Java Platform, Enterprise Edition (Java EE) module basis. The application extension
registry uses the Eclipse plug-in descriptor format and application programming interfaces (APIs) as the
standard extensibility mechanism for WebSphere applications. Developers who build WebSphere
application modules can use WebSphere Application Server extensions to implement Eclipse tools and to
provide plug-in modules to contribute functionality such as actions, tasks, menu items, and links at
predefined extension points in the WebSphere application. For more information about this feature, see
Application extension registry.

The various WebSphere programming model extensions, and the corresponding application services that
support them in the application server runtime, can be considered in three groups: Business Object Model
extensions, Business Process Model extensions, and extensions for producing Next Generation
Applications.

Extensions pertaining to the Business Object Model

1198 Overview

Business object model extensions operate with business objects, such as enterprise bean (EJB)
applications.

Application profiling
Application profiling is a WebSphere extension for defining strategies to dynamically control
concurrency, prefetch, and read-ahead.

Application profiling and access intent provide a flexible method to fine-tune application
performance for enterprise beans without impacting source code. Different enterprise beans, and
even different methods in one enterprise bean, can have their own intent to access resources.
Profiling the components based on their access intent increases performance in the application
server runtime.

Dynamic query
Dynamic query is a WebSphere programming extension for unprecedented application flexibility. It
lets you dynamically build and submit queries that select, sort, join, and perform calculations on
application data at runtime. Dynamic Query service provides the ability to pass in and process EJB
query language queries at runtime, eliminating the need to hard-code required queries into
deployment descriptors during application development.

Dynamic query improves enterprise beans by enabling the client to run custom queries on EJB
components during runtime. Until now, EJB lookups and field mappings were implemented at
development time and required further development or reassembly in order to be changed.

Dynamic cache
The dynamic cache service improves performance by caching the output of servlets, commands,
and JSP files. This service within the application server intercepts calls to cacheable objects and
either stores the output of the object or serves the content of the object from the dynamic cache.

Because Java EE applications have high read-write ratios and can tolerate small degrees of
latency in the currency of their data, the dynamic cache can create opportunity for significant gains
in server response time, throughput, and scalability.

Features include cache replication among clusters, cache disk offload, Edge side include caching,
and external caching - the ability to control caches outside of the application server, such as that
of your Web server.

Extensions pertaining to the Business Process Model

Business process model extensions provide process, workflow functionality, and services for the
application server. Use them in conjunction with business integration capabilities.

ActivitySessions
ActivitySessions are a WebSphere extension for reducing the complexity of dealing with
commitment rules and limitations associated with one-phase commit resources.

ActivitySessions provide the ability to extend the scope of multiple local transactions, and to group
them. This enables them to be committed based on deployment criteria or through explicit program
logic.

Web services
Web services are self-contained, modular applications that can be described, published, located,
and invoked over a network. They implement a services oriented architecture (SOA), which
supports the connecting or sharing of resources and data in a very flexible and standardized
manner. Services are described and organized to support their dynamic, automated discovery and
reuse.

Extensions for creating next generation applications

Chapter 32. Overview and new features: Developing 1199

Next generation extentions can be used in applications that need the specific extensions. These enable
next generation development by leveraging the latest innovations that build on today's Java EE standards.
This provides greater control over application development, execution, and performance than was ever
possible before.

Asynchronous beans
Asynchronous beans offer performance enhancements for resource-intensive tasks by enabling
single tasks to run as multiple tasks. Asynchronous scheduling facilities can also be used to
process parallel processing requests in “batch mode” at a designated time. The product provides
full support for asynchronous execution and invocation of threads and components within the
application server. The application server provides execution and security context for the
components, making them an integral part of the application.

Startup beans
Startup beans allow the automatic execution of business logic when the application server starts or
stops. For example, they might be used to pre-fill application-specific caches, initialize
application-level connection pools, or perform other application-specific initialization and
termination procedures.

Object pools
Object pools provide an effective means of improving application performance at runtime, by
allowing multiple instances of objects to be reused. This reuse reduces the overhead associated
with instantiating, initializing, and garbage-collecting the objects. Creating an object pool allows an
application to obtain an instance of a Java object and return the instance to the pool when it has
finished using it.

Internationalization
The internationalization service is a WebSphere extension for improving developer productivity. It
allows you to automatically recognize the time zone and location information of the calling client,
so that your application can act appropriately. The technology enables you to deliver each user,
around the world, the right date and time information, the appropriate currencies and languages,
and the correct date and decimal formats.

Scheduler
The scheduler service is a WebSphere programming extension responsible for starting actions at
specific times or intervals. It helps minimize IT costs and increase application speed and
responsiveness by maximizing utilization of existing computing resources. The scheduler service
provides the ability to process workloads using parallel processing, set specific transactions as
high priority, and schedule less time-sensitive tasks to process during low traffic off-hours.

Work areas
Work areas are a WebSphere extension for improving developer productivity. Work areas provide
a capability much like that of “global variables”. They provide a solution for passing and
propagating contextual information between application components.

Work areas enable efficient sharing of information across a distributed application. For example,
you might want to add profile information as each customer enters your application. By placing this
information in a work area, it will be available throughout your application, eliminating the need to
hand-code a solution or to read and write information to a database.

Specifications and API documentation
The WebSphere Application Server product supports various industry standards. This topic lists the
specifications and application programming interface (API) documentation supported in current and
previous product releases.

Components
v Any application type
v Web applications
v Portlet applications

1200 Overview

v SIP applications
v EJB applications
v OSGi applications
v Client applications
v Web services
v Service Component Architecture
v Service integration
v Data access resources
v Messaging resources
v Mail, URLs, and other Java EE resources
v Security
v Web Services Security
v Naming and directory
v Object Request Broker
v Transactions
v WebSphere extensions
v Administration

The Version 8.5 column in the tables lists the latest specification level that the product supports. However,
support for specifications is compatible with earlier versions of the product; the Version 8.5 product
supports all specifications that are listed for Version 6.0 through Version 8.5. For example, for any
application type, the Version 8.0 product supports Java EE 5 and 6 and J2EE 1.2, 1.3, and 1.4. The word
“New” beside a specification indicates that the product first supported the specification in that product
version.

Any application type

Table 120. Supported specifications for any application type. The product supports the specifications or APIs in this
table.

Specification or API Version 8.5 Version 8.0 Version 7.0 Version 6.1 Version 6.0

Java Platform, Enterprise Edition (Java EE)
specification

Prior to Java EE 5, the specification name
was Java 2 Platform, Enterprise Edition
(J2EE).

Java EE 6
(JSR 316)

Java EE 6
(JSR 316)
New

Java EE 5
New

J2EE 1.4 J2EE 1.4
New

J2EE 1.3

J2EE 1.2

Java Platform, Standard Edition (Java SE)
specification

Prior to Java SE 6, the specification name
was Java 2 Platform, Standard Edition (J2SE).

Java SE 7
New

Java SE 6 Java SE 6
New

J2SE 5 J2SE 1.4.2

ISO 8859 specifications ISO 8859 applies to these versions.

Web applications

Table 121. Supported specifications for web applications. The product supports the specifications or APIs in this
table.

Specification or API Version 8.5 Version 8.0 Version 7.0
Version
6.1 Version 6.0

Java Servlet specification (JSR 154, JSR 53
and JSR 315)

Java Servlet
3.0

Java Servlet
3.0 New

Java Servlet
2.5 New

Java
Servlet 2.4

Java
Servlet 2.4
New

Java
Servlet 2.3

Chapter 32. Overview and new features: Developing 1201

http://jcp.org/en/jsr/detail?id=316
http://jcp.org/en/jsr/detail?id=316
http://java.sun.com/javaee/5/docs/api/
http://java.sun.com/j2ee/1.4/docs/#specs
http://java.sun.com/j2ee/1.4/docs/#specs
http://java.sun.com/j2ee/1.3/docs/index.html#specs
http://java.sun.com/j2ee/1.2/docs/index.html#specs
http://download.oracle.com/javase/7/docs/api/
http://download.oracle.com/javase/6/docs/api/
http://download.oracle.com/javase/6/docs/api/
http://download.oracle.com/javase/1.5.0/docs/api/index.html
http://java.sun.com/j2se/1.4.2/docs/api/index.html
http://www.iso.org/iso/en/CatalogueListPage.CatalogueList
http://jcp.org/en/jsr/detail?id=315
http://jcp.org/en/jsr/detail?id=315
http://jcp.org/en/jsr/detail?id=315
http://jcp.org/en/jsr/detail?id=315
http://jcp.org/aboutJava/communityprocess/mrel/jsr154/index.html
http://jcp.org/aboutJava/communityprocess/mrel/jsr154/index.html
http://jcp.org/aboutJava/communityprocess/final/jsr154/index.html
http://jcp.org/aboutJava/communityprocess/final/jsr154/index.html
http://jcp.org/aboutJava/communityprocess/final/jsr154/index.html
http://jcp.org/aboutJava/communityprocess/final/jsr154/index.html
http://jcp.org/aboutJava/communityprocess/first/jsr053/index.html
http://jcp.org/aboutJava/communityprocess/first/jsr053/index.html

Table 121. Supported specifications for web applications (continued). The product supports the specifications or
APIs in this table.

Specification or API Version 8.5 Version 8.0 Version 7.0
Version
6.1 Version 6.0

JavaServer Faces (JSF) specification (JSR
252 and 127)

Apache
MyFaces -
JSF 2.0

Apache
MyFaces -
JSF 2.0 New

Sun
Reference
Implementation
- JSF 1.2

Apache
MyFaces 1.2
- JSF 1.2

JSF 1.1 JSF 1.0

JavaServer Pages (JSP) specification (JSR
245, JSR 152, and JSR 53)

JSP 2.2 JSP 2.2 New JSP 2.1 New JSP 2.0 JSP 2.0
New

JSP 1.2

Portlet applications

Table 122. Supported specifications for portlet applications. The product supports the specifications or APIs in this
table.

Specification or API Version 8.5 Version 8.0 Version 7.0 Version 6.1 Version 6.0

Portlet specification Portlet 2.0
(JSR 286)

Portlet 2.0
(JSR 286)

Portlet 2.0
(JSR 286)
New

Portlet 1.0
(JSR 168)

Not
applicable.
The product
supports
portlets in
Version 6.1.

Session Initialization Protocol applications

Table 123. Supported specifications and APIs for SIP applications. The product supports the specifications or APIs
in this table.

Specification or API Version 8.5 Version 8.0 Version 7.0 Version 6.1 Version 6.0

Session Initiation Protocol (SIP)
Servlet API

For a complete list of SIP and SIP
proxy standards, see “SIP industry
standards compliance” on page 770.

SIP 1.1 (JSR
289)

SIP 1.1 (JSR
289) New

SIP 1.1 (JSR
289) New for
Feature Pack
for CEA 1.0

SIP 1.0
(JSR 116)

Not
applicable.
The product
supports SIP
in Version
6.1.

Enterprise bean (EJB) applications

Table 124. Supported specifications and APIs for EJB applications. The product supports the specifications or APIs
in this table.

Specification or API Version 8.5 Version 8.0 Version 7.0 Version 6.1
Version
6.0

Enterprise JavaBeans (EJB)
specification

EJB 3.1 EJB 3.1 New EJB 3.0 EJB 3.0 New for Feature
Pack for EJB 3.0

EJB 2.1
New

EJB 2.0

EJB 1.1

1202 Overview

http://jcp.org/aboutJava/communityprocess/final/jsr314/index.html
http://jcp.org/aboutJava/communityprocess/final/jsr314/index.html
http://jcp.org/aboutJava/communityprocess/final/jsr252/index.html
http://jcp.org/aboutJava/communityprocess/final/jsr252/index.html
http://jcp.org/aboutJava/communityprocess/final/jsr127/index.html
http://jcp.org/aboutJava/communityprocess/final/jsr127/index.html
http://jcp.org/aboutJava/communityprocess/mrel/jsr245/index.html
http://jcp.org/aboutJava/communityprocess/mrel/jsr245/index.html
http://jcp.org/aboutJava/communityprocess/final/jsr245/index.html
http://jcp.org/aboutJava/communityprocess/final/jsr152/index.html
http://jcp.org/aboutJava/communityprocess/final/jsr152/index.html
http://jcp.org/aboutJava/communityprocess/first/jsr053/index.html
http://jcp.org/en/jsr/detail?id=286
http://jcp.org/en/jsr/detail?id=286
http://jcp.org/en/jsr/detail?id=286
http://jcp.org/en/jsr/detail?id=286
http://jcp.org/en/jsr/detail?id=286
http://jcp.org/en/jsr/detail?id=286
http://jcp.org/aboutJava/communityprocess/final/jsr168/index.html
http://jcp.org/aboutJava/communityprocess/final/jsr168/index.html
http://www.jcp.org/en/jsr/detail?id=289
http://www.jcp.org/en/jsr/detail?id=289
http://www.jcp.org/en/jsr/detail?id=289
http://www.jcp.org/aboutJava/communityprocess/final/jsr116/
http://jcp.org/en/jsr/detail?id=318
http://jcp.org/en/jsr/detail?id=318
http://java.sun.com/products/ejb/index.jsp
http://java.sun.com/products/ejb/index.jsp
http://java.sun.com/products/ejb/docs.html
http://java.sun.com/products/ejb/2.0.html
http://java.sun.com/products/ejb/docs.html

Table 124. Supported specifications and APIs for EJB applications (continued). The product supports the
specifications or APIs in this table.

Specification or API Version 8.5 Version 8.0 Version 7.0 Version 6.1
Version
6.0

Java DataBase Connectivity
(JDBC) API

JDBC 4.1
New

JDBC 4.0 JDBC 4.0
New

JDBC 3.0 JDBC 3.0
New

JDBC 2.1
and
Optional
Package
API (2.0)

Java Message Service (JMS)
specification

JMS 1.1 JMS 1.1 JMS 1.1 JMS 1.1 JMS 1.1
New

Java Persistence API (JPA)
specification

JPA 2.0 JPA 2.0 JPA 2.0

New for
Feature
Pack for
OSGi and
JPA 2.0

JPA 1.0

New for Feature Pack
for EJB 3.0

Not
applicable

OSGi applications

Table 125. Supported specifications and APIs for OSGi applications. The product supports the specifications or APIs
in this table.

Specification or API Version 8.5 Version 8.0 Version 7.0 Version 6.1 Version 6.0

OSGi Service Platform
specification

OSGi Service
Platform
Release 4
Version 4.2

OSGi Service
Platform
Release 4
Version 4.2

OSGi Service
Platform
Release 4
Version 4.2

New for
Feature Pack
for OSGi and
JPA 2.0

Not applicable Not applicable

OSGi Alliance RFC-0112 Bundle
Repository specification

OSGi Alliance
RFC-0112
(Draft)

OSGi Alliance
RFC-0112
(Draft)

OSGi Alliance
RFC-0112
(Draft)

New for
Feature Pack
for OSGi and
JPA 2.0

Not applicable Not applicable

Client applications

Table 126. Supported specifications and APIs for client applications. The product supports the specifications or APIs
in this table.

Specification or API Version 8.5 Version 8.0 Version 7.0 Version 6.1 Version 6.0

Java Web Start architecture Java Web Start
1.4.2

Java Web Start
1.4.2

Java Web
Start 1.4.2

Java Web
Start 1.4.2

Java Web
Start 1.4.2
New

Chapter 32. Overview and new features: Developing 1203

http://docs.oracle.com/javase/7/docs/technotes/guides/jdbc/
http://docs.oracle.com/javase/6/docs/technotes/guides/jdbc/
http://docs.oracle.com/javase/6/docs/technotes/guides/jdbc/
http://docs.oracle.com/javase/1.3/docs/guide/jdbc/
http://docs.oracle.com/javase/1.3/docs/guide/jdbc/
http://java.sun.com/products/jdbc/download.html
http://java.sun.com/products/jdbc/download.html
http://java.sun.com/products/jdbc/download.html
http://java.sun.com/products/jdbc/download.html
http://java.sun.com/products/jdbc/download.html
http://java.sun.com/products/jms/index.jsp
http://java.sun.com/products/jms/index.jsp
http://java.sun.com/products/jms/index.jsp
http://java.sun.com/products/jms/index.jsp
http://java.sun.com/products/jms/index.jsp
http://java.sun.com/javaee/technologies/persistence.jsp
http://java.sun.com/javaee/technologies/persistence.jsp
http://java.sun.com/javaee/technologies/persistence.jsp
http://java.sun.com/javaee/technologies/persistence.jsp
http://www.osgi.org/Download/Release4V42
http://www.osgi.org/Download/Release4V42
http://www.osgi.org/Download/Release4V42
http://www.osgi.org/Download/Release4V42
http://www.osgi.org/Download/Release4V42
http://www.osgi.org/Download/Release4V42
http://www.osgi.org/Download/Release4V42
http://www.osgi.org/Download/Release4V42
http://www.osgi.org/Download/Release4V42
http://www.osgi.org/Download/Release4V42
http://www.osgi.org/Download/Release4V42
http://www.osgi.org/Download/Release4V42
http://www.osgi.org/download/rfc-0112_BundleRepository.pdf
http://www.osgi.org/download/rfc-0112_BundleRepository.pdf
http://www.osgi.org/download/rfc-0112_BundleRepository.pdf
http://www.osgi.org/download/rfc-0112_BundleRepository.pdf
http://www.osgi.org/download/rfc-0112_BundleRepository.pdf
http://www.osgi.org/download/rfc-0112_BundleRepository.pdf
http://www.osgi.org/download/rfc-0112_BundleRepository.pdf
http://www.osgi.org/download/rfc-0112_BundleRepository.pdf
http://www.osgi.org/download/rfc-0112_BundleRepository.pdf
http://java.sun.com/j2se/1.4.2/docs/guide/jws/index.html
http://java.sun.com/j2se/1.4.2/docs/guide/jws/index.html
http://java.sun.com/j2se/1.4.2/docs/guide/jws/index.html
http://java.sun.com/j2se/1.4.2/docs/guide/jws/index.html
http://java.sun.com/j2se/1.4.2/docs/guide/jws/index.html
http://java.sun.com/j2se/1.4.2/docs/guide/jws/index.html
http://java.sun.com/j2se/1.4.2/docs/guide/jws/index.html
http://java.sun.com/j2se/1.4.2/docs/guide/jws/index.html
http://java.sun.com/j2se/1.4.2/docs/guide/jws/index.html
http://java.sun.com/j2se/1.4.2/docs/guide/jws/index.html

Web services

Table 127. Supported specifications and APIs for web services. The product supports the specifications or APIs in
this table.

Specification or API Version 8.5 Version 8.0 Version 7.0 Version 6.1 Version 6.0

Java Architecture for XML
Binding (JAXB)
specification

JAXB 2.2 JAXB 2.2 New JAXB 2.1 New JAXB 2.0 New
for Feature Pack
for Web Services

Not applicable

Java Architecture for XML
Binding (JAXB) Reference
Implementation Vendor
Extensions Runtime
Properties specification

JAXB 2.2 RI
Vendor
Extensions

JAXB 2.2 RI
Vendor
Extensions New

JAXB 2.1 RI
Vendor
Extensions New

JAXB 2.0 RI
Vendor
Extensions New
for Feature Pack
for Web Services

Not applicable

Java API for XML
Processing (JAXP)
specification

1.4

Included in Java
SE 6.

1.4

Included in Java
SE 6.

1.4

Included in Java
SE 6.

1.3

Included in J2SE
5.

1.2

Maintenance
release of JSR
63

Java API for XML
Registries (JAXR)
specification

JAXR 1.0 JAXR 1.0 JAXR 1.0 JAXR 1.0 JAXR 1.0 New

Java API for XML-based
RPC (JAX-RPC)
specification

JAX-RPC 1.1 JAX-RPC 1.1 JAX-RPC 1.1 JAX-RPC 1.1 JAX-RPC 1.1
New

Java API for RESTful Web
Services (JAX-RS)
specification

JAX-RS 1.1 JAX-RS 1.1
New

Java API for XML Web
Services (JAX-WS)
specification

JAX-WS 2.2 JAX-WS 2.2
New

JAX-WS 2.1
New

JAX-WS 2.0 New
for Feature Pack
for Web Services

Not applicable

SOAP SOAP 1.2 SOAP 1.2 SOAP 1.2 SOAP 1.2 New
for Feature Pack
for Web Services

SOAP 1.1

SOAP with Attachments
API for Java (SAAJ)
Specification

SAAJ 1.3 SAAJ 1.3 SAAJ 1.3 SAAJ 1.3 New
for Feature Pack
for Web Services

SAAJ 1.2 New

SOAP over Java Message
Service (SOAP over JMS)

W3C SOAP
over JMS 1.0

W3C SOAP
over JMS 1.0

W3C SOAP
over JMS 1.0
(submission
draft)

SOAP Message
Transmission Optimization
Mechanism (MTOM)

MTOM 1.0 MTOM 1.0 MTOM 1.0 MTOM 1.0 New
for Feature Pack
for Web Services

Not applicable

Streaming API for XML
(StAX)

StAX 1.0 StAX 1.0 StAX 1.0 StAX 1.0 New for
Feature Pack for
Web Services

Not applicable

Universal Description,
Discovery and Integration
(UDDI)

UDDI 3.0 UDDI 3.0 UDDI 3.0 UDDI 3.0 UDDI 3.0 New

1204 Overview

http://jcp.org/en/jsr/detail?id=222
http://jcp.org/en/jsr/detail?id=222
http://jcp.org/en/jsr/detail?id=222
http://jcp.org/en/jsr/detail?id=222
https://jaxb.dev.java.net/nonav/2.2/docs/vendor.html
https://jaxb.dev.java.net/nonav/2.2/docs/vendor.html
https://jaxb.dev.java.net/nonav/2.2/docs/vendor.html
https://jaxb.dev.java.net/nonav/2.2/docs/vendor.html
https://jaxb.dev.java.net/nonav/2.2/docs/vendor.html
https://jaxb.dev.java.net/nonav/2.2/docs/vendor.html
http://java.sun.com/webservices/docs/2.0/jaxb/vendorProperties.html
http://java.sun.com/webservices/docs/2.0/jaxb/vendorProperties.html
http://java.sun.com/webservices/docs/2.0/jaxb/vendorProperties.html
http://java.sun.com/webservices/docs/2.0/jaxb/vendorProperties.html
http://java.sun.com/webservices/docs/2.0/jaxb/vendorProperties.html
http://java.sun.com/webservices/docs/2.0/jaxb/vendorProperties.html
http://download.oracle.com/javase/6/docs/api/
http://download.oracle.com/javase/6/docs/api/
http://download.oracle.com/javase/6/docs/api/
http://download.oracle.com/javase/6/docs/api/
http://download.oracle.com/javase/6/docs/api/
http://download.oracle.com/javase/6/docs/api/
http://download.oracle.com/javase/1.5.0/docs/api/index.html
http://download.oracle.com/javase/1.5.0/docs/api/index.html
http://jcp.org/aboutJava/communityprocess/final/jsr063/index2.html
http://jcp.org/aboutJava/communityprocess/final/jsr063/index2.html
http://jcp.org/aboutJava/communityprocess/final/jsr063/index2.html
http://java.sun.com/xml/downloads/jaxr.html
http://java.sun.com/xml/downloads/jaxr.html
http://java.sun.com/xml/downloads/jaxr.html
http://java.sun.com/xml/downloads/jaxr.html
http://java.sun.com/xml/downloads/jaxr.html
http://java.sun.com/xml/downloads/jaxrpc.html#jaxrpcspec11
http://java.sun.com/xml/downloads/jaxrpc.html#jaxrpcspec11
http://java.sun.com/xml/downloads/jaxrpc.html#jaxrpcspec11
http://java.sun.com/xml/downloads/jaxrpc.html#jaxrpcspec11
http://java.sun.com/xml/downloads/jaxrpc.html#jaxrpcspec11
http://jcp.org/aboutJava/communityprocess/mrel/jsr311/index.html
http://jcp.org/aboutJava/communityprocess/mrel/jsr311/index.html
http://jcp.org/en/jsr/detail?id=224
http://jcp.org/en/jsr/detail?id=224
http://java.sun.com/webservices/jaxws/index.jsp
http://java.sun.com/webservices/jaxws/index.jsp
http://www.w3.org/TR/soap12
http://www.w3.org/TR/soap12
http://www.w3.org/TR/soap12
http://www.w3.org/TR/soap12
http://www.w3.org/TR/soap/
http://java.sun.com/webservices/saaj/index.jsp
http://java.sun.com/webservices/saaj/index.jsp
http://java.sun.com/webservices/saaj/index.jsp
http://java.sun.com/webservices/saaj/index.jsp
http://java.sun.com/webservices/reference/api/index.html#saaj
http://www.w3.org/TR/soapjms/
http://www.w3.org/TR/soapjms/
http://www.w3.org/TR/soapjms/
http://www.w3.org/TR/soapjms/
http://www.w3.org/TR/soapjms/
http://www.w3.org/TR/soapjms/
http://www.w3.org/TR/soapjms/
http://www.w3.org/TR/soapjms/
http://schemas.xmlsoap.org/soap/mtom/SOAP11MTOM10.pdf
http://schemas.xmlsoap.org/soap/mtom/SOAP11MTOM10.pdf
http://schemas.xmlsoap.org/soap/mtom/SOAP11MTOM10.pdf
http://schemas.xmlsoap.org/soap/mtom/SOAP11MTOM10.pdf
http://www.jcp.org/en/jsr/detail?id=173
http://www.jcp.org/en/jsr/detail?id=173
http://www.jcp.org/en/jsr/detail?id=173
http://www.jcp.org/en/jsr/detail?id=173
http://uddi.org/pubs/uddi_v3.htm
http://uddi.org/pubs/uddi_v3.htm
http://uddi.org/pubs/uddi_v3.htm
http://uddi.org/pubs/uddi_v3.htm
http://uddi.org/pubs/uddi_v3.htm

Table 127. Supported specifications and APIs for web services (continued). The product supports the specifications
or APIs in this table.

Specification or API Version 8.5 Version 8.0 Version 7.0 Version 6.1 Version 6.0

W3C XML Schema v XML Schema
1.0

v XML Schema
Part 1

v XML Schema
Part 2

v XML Schema
1.0

v XML Schema
Part 1

v XML Schema
Part 2

v XML Schema
1.0

v XML Schema
Part 1

v XML Schema
Part 2

v XML Schema
1.0

v XML Schema
Part 1

v XML Schema
Part 2

v XML
Schema 1.0

v XML
Schema
Part 1

v XML
Schema
Part 2

Web Services Addressing
(WS-Addressing)

For more information, see
“Web Services Addressing
version interoperability” on
page 937.

WS-Addressing
1.0 family of
specifications:

v 1.0 Core

v 1.0 SOAP
Binding

v 1.0 Metadata

v

WS-Addressing
WSDL Binding,
W3C
Candidate
Recommendation

v

WS-
Addressing,
W3C
Submission

WS-Addressing
1.0 family of
specifications:

v 1.0 Core

v 1.0 SOAP
Binding

v 1.0 Metadata

v

WS-Addressing
WSDL Binding,
W3C
Candidate
Recommendation

v

WS-
Addressing,
W3C
Submission

WS-Addressing
1.0 family of
specifications:

v 1.0 Core

v 1.0 SOAP
Binding

v 1.0 Metadata

v

WS-Addressing
WSDL Binding,
W3C
Candidate
Recommendation

v

WS-
Addressing,
W3C
Submission

WS-Addressing
1.0 family of
specifications:

v Core

v SOAP Binding

v WSDL Binding

v

WS-Addressing
WSDL Binding,
W3C Last Call

v

WS-Addressing,
W3C
Submission

Not applicable

Web Services Atomic
Transaction (WS-AT)

WS-AT 1.2 WS-AT 1.2 WS-AT 1.1 New

WS-AT 1.2 New

WS-AT 1.0 WS-AT 1.0
New

Web Services Business
Activity (WS-BA)

WS-BA 1.2 WS-BA 1.2 WS-BA 1.1 New

WS-BA 1.2 New

WS-BA 1.0 Not applicable

Web Services
Coordination (WS-COOR)

WS-COOR 1.2 WS-COOR 1.2 WS-COOR 1.1
New

WS-COOR 1.2
New

WS-COOR 1.0 WS-COOR 1.0
New

Web Services Description
Language (WSDL)

WSDL 1.1 WSDL 1.1 WSDL 1.1 WSDL 1.1 WSDL 1.1

Web Services for Java
Platform, Enterprise
Edition (Java EE) (JSR
109)

Prior to Web Services for
Java EE, the specification
name was Web Services
for Java 2 Platform,
Enterprise Edition (J2EE).

JSR 109 1.3 JSR 109 1.3
New

JSR 109 1.2
New

JSR 109 1.1 JSR 109 1.1
New

Chapter 32. Overview and new features: Developing 1205

http://www.w3.org/2001/XMLSchema
http://www.w3.org/2001/XMLSchema
http://www.w3.org/TR/xmlschema-1/
http://www.w3.org/TR/xmlschema-1/
http://www.w3.org/TR/xmlschema-2/
http://www.w3.org/TR/xmlschema-2/
http://www.w3.org/2001/XMLSchema
http://www.w3.org/2001/XMLSchema
http://www.w3.org/TR/xmlschema-1/
http://www.w3.org/TR/xmlschema-1/
http://www.w3.org/TR/xmlschema-2/
http://www.w3.org/TR/xmlschema-2/
http://www.w3.org/2001/XMLSchema
http://www.w3.org/2001/XMLSchema
http://www.w3.org/TR/xmlschema-1/
http://www.w3.org/TR/xmlschema-1/
http://www.w3.org/TR/xmlschema-2/
http://www.w3.org/TR/xmlschema-2/
http://www.w3.org/2001/XMLSchema
http://www.w3.org/2001/XMLSchema
http://www.w3.org/TR/xmlschema-1/
http://www.w3.org/TR/xmlschema-1/
http://www.w3.org/TR/xmlschema-2/
http://www.w3.org/TR/xmlschema-2/
http://www.w3.org/2001/XMLSchema
http://www.w3.org/2001/XMLSchema
http://www.w3.org/TR/xmlschema-1/
http://www.w3.org/TR/xmlschema-1/
http://www.w3.org/TR/xmlschema-1/
http://www.w3.org/TR/xmlschema-2/
http://www.w3.org/TR/xmlschema-2/
http://www.w3.org/TR/xmlschema-2/
http://www.w3.org/TR/2006/REC-ws-addr-core-20060509
http://www.w3.org/TR/2006/REC-ws-addr-soap-20060509
http://www.w3.org/TR/2006/REC-ws-addr-soap-20060509
http://www.w3.org/TR/2007/REC-ws-addr-metadata-20070904
http://www.w3.org/TR/2006/CR-ws-addr-wsdl-20060529/
http://www.w3.org/TR/2006/CR-ws-addr-wsdl-20060529/
http://www.w3.org/TR/2006/CR-ws-addr-wsdl-20060529/
http://www.w3.org/TR/2006/CR-ws-addr-wsdl-20060529/
http://www.w3.org/TR/2006/CR-ws-addr-wsdl-20060529/
http://www.w3.org/Submission/ws-addressing/
http://www.w3.org/Submission/ws-addressing/
http://www.w3.org/Submission/ws-addressing/
http://www.w3.org/Submission/ws-addressing/
http://www.w3.org/TR/2006/REC-ws-addr-core-20060509
http://www.w3.org/TR/2006/REC-ws-addr-soap-20060509
http://www.w3.org/TR/2006/REC-ws-addr-soap-20060509
http://www.w3.org/TR/2007/REC-ws-addr-metadata-20070904
http://www.w3.org/TR/2006/CR-ws-addr-wsdl-20060529/
http://www.w3.org/TR/2006/CR-ws-addr-wsdl-20060529/
http://www.w3.org/TR/2006/CR-ws-addr-wsdl-20060529/
http://www.w3.org/TR/2006/CR-ws-addr-wsdl-20060529/
http://www.w3.org/TR/2006/CR-ws-addr-wsdl-20060529/
http://www.w3.org/Submission/ws-addressing/
http://www.w3.org/Submission/ws-addressing/
http://www.w3.org/Submission/ws-addressing/
http://www.w3.org/Submission/ws-addressing/
http://www.w3.org/TR/2006/REC-ws-addr-core-20060509
http://www.w3.org/TR/2006/REC-ws-addr-soap-20060509
http://www.w3.org/TR/2006/REC-ws-addr-soap-20060509
http://www.w3.org/TR/2007/REC-ws-addr-metadata-20070904
http://www.w3.org/TR/2006/CR-ws-addr-wsdl-20060529/
http://www.w3.org/TR/2006/CR-ws-addr-wsdl-20060529/
http://www.w3.org/TR/2006/CR-ws-addr-wsdl-20060529/
http://www.w3.org/TR/2006/CR-ws-addr-wsdl-20060529/
http://www.w3.org/TR/2006/CR-ws-addr-wsdl-20060529/
http://www.w3.org/Submission/ws-addressing/
http://www.w3.org/Submission/ws-addressing/
http://www.w3.org/Submission/ws-addressing/
http://www.w3.org/Submission/ws-addressing/
http://www.w3.org/TR/2005/CR-ws-addr-core-20050817/
http://www.w3.org/TR/2005/CR-ws-addr-soap-20050817/
http://www.w3.org/TR/2006/CR-ws-addr-wsdl-20060529/
http://www.w3.org/TR/2006/WD-ws-addr-wsdl-20060216/
http://www.w3.org/TR/2006/WD-ws-addr-wsdl-20060216/
http://www.w3.org/TR/2006/WD-ws-addr-wsdl-20060216/
http://www.w3.org/Submission/ws-addressing/
http://www.w3.org/Submission/ws-addressing/
http://www.w3.org/Submission/ws-addressing/
http://docs.oasis-open.org/ws-tx/wstx-wsat-1.2-spec.html
http://docs.oasis-open.org/ws-tx/wstx-wsat-1.2-spec.html
http://docs.oasis-open.org/ws-tx/wstx-wsat-1.1-spec-os/wstx-wsat-1.1-spec-os.html
http://docs.oasis-open.org/ws-tx/wstx-wsat-1.2-spec.html
http://www.ibm.com/developerworks/library/specification/ws-tx/
http://www.ibm.com/developerworks/library/specification/ws-tx/
http://docs.oasis-open.org/ws-tx/wstx-wsba-1.2-spec.html
http://docs.oasis-open.org/ws-tx/wstx-wsba-1.2-spec.html
http://docs.oasis-open.org/ws-tx/wstx-wsba-1.1-spec-os/wstx-wsba-1.1-spec-os.html
http://docs.oasis-open.org/ws-tx/wstx-wsba-1.2-spec.html
http://www.ibm.com/developerworks/library/specification/ws-tx/
http://docs.oasis-open.org/ws-tx/wstx-wscoor-1.2-spec.html
http://docs.oasis-open.org/ws-tx/wstx-wscoor-1.2-spec.html
http://docs.oasis-open.org/ws-tx/wstx-wscoor-1.1-spec/wstx-wscoor-1.1-spec.html
http://docs.oasis-open.org/ws-tx/wstx-wscoor-1.2-spec.html
http://www.ibm.com/developerworks/library/specification/ws-tx/
http://www.ibm.com/developerworks/library/specification/ws-tx/
http://www.w3.org/TR/wsdl
http://www.w3.org/TR/wsdl
http://www.w3.org/TR/wsdl
http://www.w3.org/TR/wsdl
http://www.w3.org/TR/wsdl
http://jcp.org/en/jsr/detail?id=109
http://jcp.org/en/jsr/detail?id=109
http://jcp.org/en/jsr/detail?id=109
http://jcp.org/en/jsr/detail?id=109
http://jcp.org/en/jsr/detail?id=109

Table 127. Supported specifications and APIs for web services (continued). The product supports the specifications
or APIs in this table.

Specification or API Version 8.5 Version 8.0 Version 7.0 Version 6.1 Version 6.0

Web Services
Interoperability
Organization (WS-I) Basic
Profile

WS-I Basic
Profile 1.2

WS-I Basic
Profile 2.0

WS-I Basic
Profile 1.2

WS-I Basic
Profile 2.0

WS-I Basic
Profile 1.2
(draft)

WS-I Basic
Profile 2.0
(draft)

WS-I Basic
Profile 1.2 (draft)
New for Feature
Pack for Web
Services

WS-I Basic
Profile 2.0 (draft)
New for Feature
Pack for Web
Services

WS-I Basic
Profile 1.1
New

Web Services-
Interoperability (WS-I)
Attachments Profile

WS-I
Attachments 1.0

WS-I
Attachments 1.0

WS-I
Attachments 1.0

WS-I
Attachments 1.0

WS-I
Attachments
1.0 New

Web Services
Interoperability (WS-I)
Reliable Secure Profile
(RSP)

Prior to WS-I RSP, the
specification was named
Reliable Asynchronous
Messaging Profile (RAMP)

WS-I RSP 1.0 WS-I RSP 1.0 RAMP 1.0 RAMP 1.0 New
for Feature Pack
for Web Services

Not applicable

Web Services Invocation
Framework (WSIF)

WSIF WSIF WSIF WSIF WSIF

Web Services Metadata
for the Java Platform (JSR
181)

Web Services
Metadata for the
Java Platform

Web Services
Metadata for the
Java Platform

Web Services
Metadata for the
Java Platform

Web Services
Metadata for the
Java Platform
New for Feature
Pack for Web
Services

Not applicable

Web Services Notification
(WS-Notification)

WS-Notification
1.3 family of
specifications:
v

WS-
BaseNotification
1.3

v

WS-
BrokeredNotification
1.3

v WS-Topics
1.3

WS-Notification
1.3 family of
specifications:
v

WS-
BaseNotification
1.3

v

WS-
BrokeredNotification
1.3

v WS-Topics
1.3

WS-Notification
1.3 family of
specifications:
v

WS-
BaseNotification
1.3

v

WS-
BrokeredNotification
1.3

v WS-Topics
1.3

WS-Notification
1.3 family of
specifications:
v

WS-
BaseNotification
1.3

v

WS-
BrokeredNotification
1.3

v WS-Topics 1.3

Not applicable

1206 Overview

http://ws-i.org/deliverables/workinggroup.aspx?wg=basicprofile
http://ws-i.org/deliverables/workinggroup.aspx?wg=basicprofile
http://ws-i.org/deliverables/workinggroup.aspx?wg=basicprofile
http://ws-i.org/deliverables/workinggroup.aspx?wg=basicprofile
http://ws-i.org/deliverables/workinggroup.aspx?wg=basicprofile
http://ws-i.org/deliverables/workinggroup.aspx?wg=basicprofile
http://ws-i.org/deliverables/workinggroup.aspx?wg=basicprofile
http://ws-i.org/deliverables/workinggroup.aspx?wg=basicprofile
http://ws-i.org/deliverables/workinggroup.aspx?wg=basicprofile
http://ws-i.org/deliverables/workinggroup.aspx?wg=basicprofile
http://ws-i.org/deliverables/workinggroup.aspx?wg=basicprofile
http://ws-i.org/deliverables/workinggroup.aspx?wg=basicprofile
http://ws-i.org/deliverables/workinggroup.aspx?wg=basicprofile
http://ws-i.org/deliverables/workinggroup.aspx?wg=basicprofile
http://ws-i.org/deliverables/workinggroup.aspx?wg=basicprofile
http://ws-i.org/deliverables/workinggroup.aspx?wg=basicprofile
http://ws-i.org/deliverables/workinggroup.aspx?wg=basicprofile
http://ws-i.org/deliverables/workinggroup.aspx?wg=basicprofile
http://www.ws-i.org/Profiles/BasicProfile-1.1.html
http://www.ws-i.org/Profiles/BasicProfile-1.1.html
http://www.ws-i.org/Profiles/AttachmentsProfile-1.0.html
http://www.ws-i.org/Profiles/AttachmentsProfile-1.0.html
http://www.ws-i.org/Profiles/AttachmentsProfile-1.0.html
http://www.ws-i.org/Profiles/AttachmentsProfile-1.0.html
http://www.ws-i.org/Profiles/AttachmentsProfile-1.0.html
http://www.ws-i.org/Profiles/AttachmentsProfile-1.0.html
http://www.ws-i.org/Profiles/AttachmentsProfile-1.0.html
http://www.ws-i.org/Profiles/AttachmentsProfile-1.0.html
http://www.ws-i.org/Profiles/AttachmentsProfile-1.0.html
http://www.ws-i.org/Profiles/AttachmentsProfile-1.0.html
http://www.ws-i.org/Profiles/AttachmentsProfile-1.0.html
http://ws-i.org/deliverables/workinggroup.aspx?wg=reliablesecure
http://ws-i.org/deliverables/workinggroup.aspx?wg=reliablesecure
http://www.ibm.com/developerworks/webservices/library/specification/ws-ramp/
http://www.ibm.com/developerworks/webservices/library/specification/ws-ramp/
http://ws.apache.org/wsif/
http://ws.apache.org/wsif/
http://ws.apache.org/wsif/
http://ws.apache.org/wsif/
http://ws.apache.org/wsif/
http://jcp.org/en/jsr/detail?id=181
http://jcp.org/en/jsr/detail?id=181
http://jcp.org/en/jsr/detail?id=181
http://jcp.org/en/jsr/detail?id=181
http://jcp.org/en/jsr/detail?id=181
http://jcp.org/en/jsr/detail?id=181
http://jcp.org/en/jsr/detail?id=181
http://jcp.org/en/jsr/detail?id=181
http://jcp.org/en/jsr/detail?id=181
http://jcp.org/en/jsr/detail?id=181
http://jcp.org/en/jsr/detail?id=181
http://jcp.org/en/jsr/detail?id=181
http://docs.oasis-open.org/wsn/wsn-ws_base_notification-1.3-spec-os.pdf
http://docs.oasis-open.org/wsn/wsn-ws_base_notification-1.3-spec-os.pdf
http://docs.oasis-open.org/wsn/wsn-ws_base_notification-1.3-spec-os.pdf
http://docs.oasis-open.org/wsn/wsn-ws_brokered_notification-1.3-spec-os.pdf
http://docs.oasis-open.org/wsn/wsn-ws_brokered_notification-1.3-spec-os.pdf
http://docs.oasis-open.org/wsn/wsn-ws_brokered_notification-1.3-spec-os.pdf
http://docs.oasis-open.org/wsn/wsn-ws_topics-1.3-spec-os.pdf
http://docs.oasis-open.org/wsn/wsn-ws_topics-1.3-spec-os.pdf
http://docs.oasis-open.org/wsn/wsn-ws_base_notification-1.3-spec-os.pdf
http://docs.oasis-open.org/wsn/wsn-ws_base_notification-1.3-spec-os.pdf
http://docs.oasis-open.org/wsn/wsn-ws_base_notification-1.3-spec-os.pdf
http://docs.oasis-open.org/wsn/wsn-ws_brokered_notification-1.3-spec-os.pdf
http://docs.oasis-open.org/wsn/wsn-ws_brokered_notification-1.3-spec-os.pdf
http://docs.oasis-open.org/wsn/wsn-ws_brokered_notification-1.3-spec-os.pdf
http://docs.oasis-open.org/wsn/wsn-ws_topics-1.3-spec-os.pdf
http://docs.oasis-open.org/wsn/wsn-ws_topics-1.3-spec-os.pdf
http://docs.oasis-open.org/wsn/wsn-ws_base_notification-1.3-spec-os.pdf
http://docs.oasis-open.org/wsn/wsn-ws_base_notification-1.3-spec-os.pdf
http://docs.oasis-open.org/wsn/wsn-ws_base_notification-1.3-spec-os.pdf
http://docs.oasis-open.org/wsn/wsn-ws_brokered_notification-1.3-spec-os.pdf
http://docs.oasis-open.org/wsn/wsn-ws_brokered_notification-1.3-spec-os.pdf
http://docs.oasis-open.org/wsn/wsn-ws_brokered_notification-1.3-spec-os.pdf
http://docs.oasis-open.org/wsn/wsn-ws_topics-1.3-spec-os.pdf
http://docs.oasis-open.org/wsn/wsn-ws_topics-1.3-spec-os.pdf
http://docs.oasis-open.org/wsn/wsn-ws_base_notification-1.3-spec-os.pdf
http://docs.oasis-open.org/wsn/wsn-ws_base_notification-1.3-spec-os.pdf
http://docs.oasis-open.org/wsn/wsn-ws_base_notification-1.3-spec-os.pdf
http://docs.oasis-open.org/wsn/wsn-ws_brokered_notification-1.3-spec-os.pdf
http://docs.oasis-open.org/wsn/wsn-ws_brokered_notification-1.3-spec-os.pdf
http://docs.oasis-open.org/wsn/wsn-ws_brokered_notification-1.3-spec-os.pdf
http://docs.oasis-open.org/wsn/wsn-ws_topics-1.3-spec-os.pdf

Table 127. Supported specifications and APIs for web services (continued). The product supports the specifications
or APIs in this table.

Specification or API Version 8.5 Version 8.0 Version 7.0 Version 6.1 Version 6.0

Web Services Policy
(WS-Policy) specification

Web Services
Policy 1.5

Web Services
Addressing 1.0 -
Metadata

Web Services
Atomic
Transaction
Version 1.0 and
Web Services
Atomic
Transaction
Version 1.1

Web Services
Reliable
Messaging
Policy Assertion
Version 1.0 and
Web Services
Reliable
Messaging
Policy Assertion
Version 1.1

WS-
SecurityPolicy
1.2

Web Services
Policy 1.5

Web Services
Addressing 1.0 -
Metadata

Web Services
Atomic
Transaction
Version 1.0 and
Web Services
Atomic
Transaction
Version 1.1

Web Services
Reliable
Messaging
Policy Assertion
Version 1.0 and
Web Services
Reliable
Messaging
Policy Assertion
Version 1.1

WS-
SecurityPolicy
1.2

Web Services
Policy 1.5 New

Web Services
Addressing 1.0 -
Metadata New

Web Services
Atomic
Transaction
Version 1.0 and
Web Services
Atomic
Transaction
Version 1.1 New

Web Services
Reliable
Messaging
Policy Assertion
Version 1.0 and
Web Services
Reliable
Messaging
Policy Assertion
Version 1.1 New

WS-
SecurityPolicy
1.2 New

Not applicable

Web Services Reliable
Messaging

WS-
MakeConnection
Version 1.0

WS-
MakeConnection
Version 1.0

WS-
MakeConnection
Version 1.0 New

WS-
ReliableMessaging
1.0 and
WS-
ReliableMessaging
1.1. New for
Feature Pack for
Web Services

Not applicable

Web Services Resource
Framework (WSRF)

WSRF 1.2 WSRF 1.2 WSRF 1.2 WSRF 1.2 New Not applicable

XML-binary Optimized
Packaging (XOP)

XOP 1.0 XOP 1.0 XOP 1.0 XOP 1.0 New for
Feature Pack for
Web Services

Not applicable

Service Component Architecture

The product supports the following Service Component Architecture (SCA) specifications. The product
supports most sections of the specifications, although some sections are not supported. See “Unsupported
SCA specification sections” on page 585.

Chapter 32. Overview and new features: Developing 1207

http://www.w3.org/tr/ws-policy/
http://www.w3.org/tr/ws-policy/
http://www.w3.org/TR/ws-addr-metadata/
http://www.w3.org/TR/ws-addr-metadata/
http://www.w3.org/TR/ws-addr-metadata/
http://schemas.xmlsoap.org/ws/2004/10/wsat/
http://schemas.xmlsoap.org/ws/2004/10/wsat/
http://schemas.xmlsoap.org/ws/2004/10/wsat/
http://schemas.xmlsoap.org/ws/2004/10/wsat/
http://docs.oasis-open.org/ws-tx/wsat/2006/06
http://docs.oasis-open.org/ws-tx/wsat/2006/06
http://docs.oasis-open.org/ws-tx/wsat/2006/06
http://docs.oasis-open.org/ws-tx/wsat/2006/06
http://schemas.xmlsoap.org/ws/2005/02/rm/policy/
http://schemas.xmlsoap.org/ws/2005/02/rm/policy/
http://schemas.xmlsoap.org/ws/2005/02/rm/policy/
http://schemas.xmlsoap.org/ws/2005/02/rm/policy/
http://schemas.xmlsoap.org/ws/2005/02/rm/policy/
http://docs.oasis-open.org/ws-rx/wsrmp/200702/wsrmp-1.1-spec-os-01.html
http://docs.oasis-open.org/ws-rx/wsrmp/200702/wsrmp-1.1-spec-os-01.html
http://docs.oasis-open.org/ws-rx/wsrmp/200702/wsrmp-1.1-spec-os-01.html
http://docs.oasis-open.org/ws-rx/wsrmp/200702/wsrmp-1.1-spec-os-01.html
http://docs.oasis-open.org/ws-rx/wsrmp/200702/wsrmp-1.1-spec-os-01.html
http://docs.oasis-open.org/ws-sx/ws-securitypolicy/200512
http://docs.oasis-open.org/ws-sx/ws-securitypolicy/200512
http://docs.oasis-open.org/ws-sx/ws-securitypolicy/200512
http://www.w3.org/tr/ws-policy/
http://www.w3.org/tr/ws-policy/
http://www.w3.org/TR/ws-addr-metadata/
http://www.w3.org/TR/ws-addr-metadata/
http://www.w3.org/TR/ws-addr-metadata/
http://schemas.xmlsoap.org/ws/2004/10/wsat/
http://schemas.xmlsoap.org/ws/2004/10/wsat/
http://schemas.xmlsoap.org/ws/2004/10/wsat/
http://schemas.xmlsoap.org/ws/2004/10/wsat/
http://docs.oasis-open.org/ws-tx/wsat/2006/06
http://docs.oasis-open.org/ws-tx/wsat/2006/06
http://docs.oasis-open.org/ws-tx/wsat/2006/06
http://docs.oasis-open.org/ws-tx/wsat/2006/06
http://schemas.xmlsoap.org/ws/2005/02/rm/policy/
http://schemas.xmlsoap.org/ws/2005/02/rm/policy/
http://schemas.xmlsoap.org/ws/2005/02/rm/policy/
http://schemas.xmlsoap.org/ws/2005/02/rm/policy/
http://schemas.xmlsoap.org/ws/2005/02/rm/policy/
http://docs.oasis-open.org/ws-rx/wsrmp/200702/wsrmp-1.1-spec-os-01.html
http://docs.oasis-open.org/ws-rx/wsrmp/200702/wsrmp-1.1-spec-os-01.html
http://docs.oasis-open.org/ws-rx/wsrmp/200702/wsrmp-1.1-spec-os-01.html
http://docs.oasis-open.org/ws-rx/wsrmp/200702/wsrmp-1.1-spec-os-01.html
http://docs.oasis-open.org/ws-rx/wsrmp/200702/wsrmp-1.1-spec-os-01.html
http://docs.oasis-open.org/ws-sx/ws-securitypolicy/200512
http://docs.oasis-open.org/ws-sx/ws-securitypolicy/200512
http://docs.oasis-open.org/ws-sx/ws-securitypolicy/200512
http://www.w3.org/tr/ws-policy/
http://www.w3.org/tr/ws-policy/
http://www.w3.org/TR/ws-addr-metadata/
http://www.w3.org/TR/ws-addr-metadata/
http://www.w3.org/TR/ws-addr-metadata/
http://schemas.xmlsoap.org/ws/2004/10/wsat/
http://schemas.xmlsoap.org/ws/2004/10/wsat/
http://schemas.xmlsoap.org/ws/2004/10/wsat/
http://schemas.xmlsoap.org/ws/2004/10/wsat/
http://docs.oasis-open.org/ws-tx/wsat/2006/06
http://docs.oasis-open.org/ws-tx/wsat/2006/06
http://docs.oasis-open.org/ws-tx/wsat/2006/06
http://docs.oasis-open.org/ws-tx/wsat/2006/06
http://schemas.xmlsoap.org/ws/2005/02/rm/policy/
http://schemas.xmlsoap.org/ws/2005/02/rm/policy/
http://schemas.xmlsoap.org/ws/2005/02/rm/policy/
http://schemas.xmlsoap.org/ws/2005/02/rm/policy/
http://schemas.xmlsoap.org/ws/2005/02/rm/policy/
http://docs.oasis-open.org/ws-rx/wsrmp/200702/wsrmp-1.1-spec-os-01.html
http://docs.oasis-open.org/ws-rx/wsrmp/200702/wsrmp-1.1-spec-os-01.html
http://docs.oasis-open.org/ws-rx/wsrmp/200702/wsrmp-1.1-spec-os-01.html
http://docs.oasis-open.org/ws-rx/wsrmp/200702/wsrmp-1.1-spec-os-01.html
http://docs.oasis-open.org/ws-rx/wsrmp/200702/wsrmp-1.1-spec-os-01.html
http://docs.oasis-open.org/ws-sx/ws-securitypolicy/200512
http://docs.oasis-open.org/ws-sx/ws-securitypolicy/200512
http://docs.oasis-open.org/ws-sx/ws-securitypolicy/200512
http://docs.oasis-open.org/ws-rx/wsmc/200702/wsmc-1.0-spec-os-01.html
http://docs.oasis-open.org/ws-rx/wsmc/200702/wsmc-1.0-spec-os-01.html
http://docs.oasis-open.org/ws-rx/wsmc/200702/wsmc-1.0-spec-os-01.html
http://docs.oasis-open.org/ws-rx/wsmc/200702/wsmc-1.0-spec-os-01.html
http://docs.oasis-open.org/ws-rx/wsmc/200702/wsmc-1.0-spec-os-01.html
http://docs.oasis-open.org/ws-rx/wsmc/200702/wsmc-1.0-spec-os-01.html
http://docs.oasis-open.org/ws-rx/wsmc/200702/wsmc-1.0-spec-os-01.html
http://docs.oasis-open.org/ws-rx/wsmc/200702/wsmc-1.0-spec-os-01.html
http://docs.oasis-open.org/ws-rx/wsmc/200702/wsmc-1.0-spec-os-01.html
http://specs.xmlsoap.org/ws/2005/02/rm/ws-reliablemessaging.pdf
http://specs.xmlsoap.org/ws/2005/02/rm/ws-reliablemessaging.pdf
http://specs.xmlsoap.org/ws/2005/02/rm/ws-reliablemessaging.pdf
http://docs.oasis-open.org/ws-rx/wsrm/200702
http://docs.oasis-open.org/ws-rx/wsrm/200702
http://docs.oasis-open.org/ws-rx/wsrm/200702
http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=wsrf
http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=wsrf
http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=wsrf
http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=wsrf
http://www.w3.org/TR/2005/REC-xop10-20050125/
http://www.w3.org/TR/2005/REC-xop10-20050125/
http://www.w3.org/TR/2005/REC-xop10-20050125/
http://www.w3.org/TR/2005/REC-xop10-20050125/

Table 128. Supported specifications and APIs for SCA applications. The product supports the specifications or APIs
in this table.

Specification or API Version 8.5 Version 8.0 Version 7.0 Version 6.1 Version 6.0

OSOA SCA Assembly Model
specification

SCA Assembly
Model 1.00

SCA Assembly
Model 1.00

SCA
Assembly
Model 1.00
New for
Feature Pack
for SCA
Version 1.0.0

Not applicable Not
applicable

OASIS SCA Assembly
specification

SCA-Assembly
1.1 New

Not applicable Not applicable Not applicable Not
applicable

OSOA SCA Policy Framework
specification

SCA Policy
Framework
1.00

SCA Policy
Framework
1.00

SCA Policy
Framework
1.00 New for
Feature Pack
for SCA
Version 1.0.0

Not applicable Not
applicable

OASIS SCA Policy Framework
specification

The product supports policy
attachment, but does not support
OASIS policy set definitions.

SCA-Policy 1.1
New

Not applicable Not applicable Not applicable Not
applicable

OSOA SCA Transaction Policy
specification

SCA
Transaction
Policy 1.00

SCA
Transaction
Policy 1.00

SCA
Transaction
Policy 1.00
New for
Feature Pack
for SCA
Version 1.0.0

Not applicable Not
applicable

OSOA SCA Java Common
Annotations and APIs specification

SCA Java
Common
Annotations
and APIs 1.00

SCA Java
Common
Annotations
and APIs 1.00

SCA Java
Common
Annotations
and APIs 1.00
New for
Feature Pack
for SCA
Version 1.0.0

Not applicable Not
applicable

OASIS SCA-J Common
Annotations and APIs specification

SCA-J 1.1 New Not applicable Not applicable Not applicable Not
applicable

OSOA SCA Java Component
Implementation specification

SCA Java
Component
Implementation
1.00

SCA Java
Component
Implementation
1.00

SCA Java
Component
Implementation
1.00 New for
Feature Pack
for SCA
Version 1.0.0

Not applicable Not
applicable

OASIS SCA Bindings specification

OASIS SCA JMS Binding 1.1 and
OASIS SCA Web Service Binding
1.1 are supported.

OASIS SCA JCA Binding 1.1 is not
supported.

SCA-Bindings
1.1 New

Not applicable Not applicable Not applicable Not
applicable

1208 Overview

http://osoa.org/display/Main/Service+Component+Architecture+Specifications
http://osoa.org/display/Main/Service+Component+Architecture+Specifications
http://osoa.org/display/Main/Service+Component+Architecture+Specifications
http://osoa.org/display/Main/Service+Component+Architecture+Specifications
http://osoa.org/display/Main/Service+Component+Architecture+Specifications
http://osoa.org/display/Main/Service+Component+Architecture+Specifications
http://osoa.org/display/Main/Service+Component+Architecture+Specifications
http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=sca-assembly
http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=sca-assembly
http://osoa.org/display/Main/Service+Component+Architecture+Specifications
http://osoa.org/display/Main/Service+Component+Architecture+Specifications
http://osoa.org/display/Main/Service+Component+Architecture+Specifications
http://osoa.org/display/Main/Service+Component+Architecture+Specifications
http://osoa.org/display/Main/Service+Component+Architecture+Specifications
http://osoa.org/display/Main/Service+Component+Architecture+Specifications
http://osoa.org/display/Main/Service+Component+Architecture+Specifications
http://osoa.org/display/Main/Service+Component+Architecture+Specifications
http://osoa.org/display/Main/Service+Component+Architecture+Specifications
http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=sca-policy
http://osoa.org/display/Main/Service+Component+Architecture+Specifications
http://osoa.org/display/Main/Service+Component+Architecture+Specifications
http://osoa.org/display/Main/Service+Component+Architecture+Specifications
http://osoa.org/display/Main/Service+Component+Architecture+Specifications
http://osoa.org/display/Main/Service+Component+Architecture+Specifications
http://osoa.org/display/Main/Service+Component+Architecture+Specifications
http://osoa.org/display/Main/Service+Component+Architecture+Specifications
http://osoa.org/display/Main/Service+Component+Architecture+Specifications
http://osoa.org/display/Main/Service+Component+Architecture+Specifications
http://osoa.org/display/Main/Service+Component+Architecture+Specifications
http://osoa.org/display/Main/Service+Component+Architecture+Specifications
http://osoa.org/display/Main/Service+Component+Architecture+Specifications
http://osoa.org/display/Main/Service+Component+Architecture+Specifications
http://osoa.org/display/Main/Service+Component+Architecture+Specifications
http://osoa.org/display/Main/Service+Component+Architecture+Specifications
http://osoa.org/display/Main/Service+Component+Architecture+Specifications
http://osoa.org/display/Main/Service+Component+Architecture+Specifications
http://osoa.org/display/Main/Service+Component+Architecture+Specifications
http://osoa.org/display/Main/Service+Component+Architecture+Specifications
http://osoa.org/display/Main/Service+Component+Architecture+Specifications
http://osoa.org/display/Main/Service+Component+Architecture+Specifications
http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=sca-j
http://osoa.org/display/Main/Service+Component+Architecture+Specifications
http://osoa.org/display/Main/Service+Component+Architecture+Specifications
http://osoa.org/display/Main/Service+Component+Architecture+Specifications
http://osoa.org/display/Main/Service+Component+Architecture+Specifications
http://osoa.org/display/Main/Service+Component+Architecture+Specifications
http://osoa.org/display/Main/Service+Component+Architecture+Specifications
http://osoa.org/display/Main/Service+Component+Architecture+Specifications
http://osoa.org/display/Main/Service+Component+Architecture+Specifications
http://osoa.org/display/Main/Service+Component+Architecture+Specifications
http://osoa.org/display/Main/Service+Component+Architecture+Specifications
http://osoa.org/display/Main/Service+Component+Architecture+Specifications
http://osoa.org/display/Main/Service+Component+Architecture+Specifications
http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=sca-bindings
http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=sca-bindings

Table 128. Supported specifications and APIs for SCA applications (continued). The product supports the
specifications or APIs in this table.

Specification or API Version 8.5 Version 8.0 Version 7.0 Version 6.1 Version 6.0

OSOA SCA Web Services Binding
specification

SCA Web
Services
Binding V1.00

SCA Web
Services
Binding V1.00

SCA Web
Services
Binding V1.00
New for
Feature Pack
for SCA
Version 1.0.0

Not applicable Not
applicable

OSOA SCA EJB Session Bean
Binding specification

The specifications support EJB 2.1
and 3.0 modules.

SCA EJB
Session Bean
Binding 1.00

SCA EJB
Session Bean
Binding 1.00

SCA EJB
Session Bean
Binding 1.00
New for
Feature Pack
for SCA
Version 1.0.0

Not applicable Not
applicable

OSOA SCA JMS Binding
specification

SCA JMS
Binding 1.00

SCA JMS
Binding 1.00

SCA JMS
Binding 1.00
New for
Feature Pack
for SCA
Version 1.0.1

Not applicable Not
applicable

OSOA SCA Java EE Integration
specification

SCA Java EE
Integration 1.00

SCA Java EE
Integration 1.00

SCA Java EE
Integration
1.00 New for
Feature Pack
for SCA
Version 1.0.1

Not applicable Not
applicable

OSOA SCA Spring Component
Implementation specification

SCA Spring
Component
Implementation
1.00

SCA Spring
Component
Implementation
1.00

SCA Spring
Component
Implementation
1.00 New for
Feature Pack
for SCA
Version 1.0.1

Not applicable Not
applicable

Service Data Objects (SDO)
specification

SDO 2.1.1
(JSR 235)

SDO 2.1.1
(JSR 235)
New for
Feature Pack
for SCA
Version 1.0.1

Not applicable Not
applicable

Service integration

Table 129. Supported specifications and APIs for service integration. The product supports the specifications or APIs
in this table.

Specification or API Version 8.5 Version 8.0 Version 7.0
Version
6.1

Version
6.0

Java DataBase Connectivity (JDBC) API JDBC 4.1
New

JDBC 4.0 JDBC 4.0
New

JDBC 3.0 JDBC 3.0
New

Chapter 32. Overview and new features: Developing 1209

http://osoa.org/display/Main/Service+Component+Architecture+Specifications
http://osoa.org/display/Main/Service+Component+Architecture+Specifications
http://osoa.org/display/Main/Service+Component+Architecture+Specifications
http://osoa.org/display/Main/Service+Component+Architecture+Specifications
http://osoa.org/display/Main/Service+Component+Architecture+Specifications
http://osoa.org/display/Main/Service+Component+Architecture+Specifications
http://osoa.org/display/Main/Service+Component+Architecture+Specifications
http://osoa.org/display/Main/Service+Component+Architecture+Specifications
http://osoa.org/display/Main/Service+Component+Architecture+Specifications
http://osoa.org/display/Main/Service+Component+Architecture+Specifications
http://osoa.org/display/Main/Service+Component+Architecture+Specifications
http://osoa.org/display/Main/Service+Component+Architecture+Specifications
http://osoa.org/display/Main/Service+Component+Architecture+Specifications
http://osoa.org/display/Main/Service+Component+Architecture+Specifications
http://osoa.org/display/Main/Service+Component+Architecture+Specifications
http://osoa.org/display/Main/Service+Component+Architecture+Specifications
http://osoa.org/display/Main/Service+Component+Architecture+Specifications
http://osoa.org/display/Main/Service+Component+Architecture+Specifications
http://osoa.org/display/Main/Service+Component+Architecture+Specifications
http://osoa.org/display/Main/Service+Component+Architecture+Specifications
http://osoa.org/display/Main/Service+Component+Architecture+Specifications
http://osoa.org/display/Main/Service+Component+Architecture+Specifications
http://osoa.org/display/Main/Service+Component+Architecture+Specifications
http://osoa.org/display/Main/Service+Component+Architecture+Specifications
http://osoa.org/download/attachments/35/SCA_JAVAEE_Integration_V100.pdf?version=1
http://osoa.org/download/attachments/35/SCA_JAVAEE_Integration_V100.pdf?version=1
http://osoa.org/download/attachments/35/SCA_JAVAEE_Integration_V100.pdf?version=1
http://osoa.org/download/attachments/35/SCA_JAVAEE_Integration_V100.pdf?version=1
http://osoa.org/download/attachments/35/SCA_JAVAEE_Integration_V100.pdf?version=1
http://osoa.org/download/attachments/35/SCA_JAVAEE_Integration_V100.pdf?version=1
http://osoa.org/download/attachments/35/SCA_JAVAEE_Integration_V100.pdf?version=1
http://www.osoa.org/download/attachments/35/SCA_SpringComponentImplementationSpecification-V100.pdf%3fversion=1
http://www.osoa.org/download/attachments/35/SCA_SpringComponentImplementationSpecification-V100.pdf%3fversion=1
http://www.osoa.org/download/attachments/35/SCA_SpringComponentImplementationSpecification-V100.pdf%3fversion=1
http://www.osoa.org/download/attachments/35/SCA_SpringComponentImplementationSpecification-V100.pdf%3fversion=1
http://www.osoa.org/download/attachments/35/SCA_SpringComponentImplementationSpecification-V100.pdf%3fversion=1
http://www.osoa.org/download/attachments/35/SCA_SpringComponentImplementationSpecification-V100.pdf%3fversion=1
http://www.osoa.org/download/attachments/35/SCA_SpringComponentImplementationSpecification-V100.pdf%3fversion=1
http://www.osoa.org/download/attachments/35/SCA_SpringComponentImplementationSpecification-V100.pdf%3fversion=1
http://www.osoa.org/download/attachments/35/SCA_SpringComponentImplementationSpecification-V100.pdf%3fversion=1
http://www.osoa.org/download/attachments/35/SCA_SpringComponentImplementationSpecification-V100.pdf%3fversion=1
http://www.osoa.org/download/attachments/35/SCA_SpringComponentImplementationSpecification-V100.pdf%3fversion=1
http://www.osoa.org/download/attachments/35/SCA_SpringComponentImplementationSpecification-V100.pdf%3fversion=1
http://jcp.org/aboutJava/communityprocess/final/jsr235/index.html
http://jcp.org/aboutJava/communityprocess/final/jsr235/index.html
http://docs.oracle.com/javase/7/docs/technotes/guides/jdbc/
http://docs.oracle.com/javase/6/docs/technotes/guides/jdbc/
http://docs.oracle.com/javase/6/docs/technotes/guides/jdbc/
http://docs.oracle.com/javase/1.3/docs/guide/jdbc/
http://docs.oracle.com/javase/1.3/docs/guide/jdbc/

Data access resources

Table 130. Supported specifications and APIs for data access resources. The product supports the specifications or
APIs in this table.

Specification or API Version 8.5 Version 8.0 Version 7.0 Version 6.1 Version 6.0

Java DataBase Connectivity (JDBC) API JDBC 4.1
New

JDBC 4.0 JDBC 4.0
New

JDBC 3.0 JDBC 3.0
New

Java EE Connector Architecture (JCA) resource
adapter

JCA 1.6
(JSR 322)

JCA 1.6
(JSR 322)
New

JCA 1.5 JCA 1.5 JCA 1.5
New

JCA 1.0

Service Data Objects (SDO) specification SDO 2.1.1
(JSR 235)

SDO 2.1.1
(JSR 235)

SDO 2.1.1
(JSR 235)
New for
Feature
Pack for
SCA
Version
1.0.1

SDO 1.0 SDO 1.0
New

Messaging resources

Table 131. Supported specifications and APIs for messaging resources. The product supports the specifications or
APIs in this table.

Specification or API Version 8.5 Version 8.0 Version 7.0
Version
6.1

Version
6.0

Java Message Service (JMS) JMS 1.1 JMS 1.1 JMS 1.1 JMS 1.1 JMS 1.1
New

Java EE Connector Architecture (JCA) resource
adapter

JCA 1.6
(JSR 322)

JCA 1.6
(JSR 322)
New

JCA 1.5 JCA 1.5 JCA 1.5
New

JCA 1.0

Mail, URLs, and other Java EE resources

Table 132. Supported specifications and APIs for mail, URLs, and other Java EE resources. The product supports
the specifications or APIs in this table.

Specification or API Version 8.5 Version 8.0 Version 7.0 Version 6.1
Version
6.0

JavaMail API documentation (JSR 919) JavaMail 1.4 JavaMail 1.4 JavaMail 1.4
New

JavaMail
1.3

JavaMail
1.3 New

URL API documentation URL 1.4.2 URL 1.4.2 URL 1.4.2 URL 1.4.2 URL 1.4.2
New

JavaBeans Activation Framework (JAF)
Specification

JAF 1.1 JAF 1.1 JAF 1.1 New JAF 1.0.2 JAF 1.0.2
New

W3C Architecture - Naming and Addressing:
URIs, URLs

W3C Naming and Addressing applies to these versions.

1210 Overview

http://docs.oracle.com/javase/7/docs/technotes/guides/jdbc/
http://docs.oracle.com/javase/6/docs/technotes/guides/jdbc/
http://docs.oracle.com/javase/6/docs/technotes/guides/jdbc/
http://docs.oracle.com/javase/1.3/docs/guide/jdbc/
http://docs.oracle.com/javase/1.3/docs/guide/jdbc/
http://jcp.org/en/jsr/detail?id=322
http://jcp.org/en/jsr/detail?id=322
http://java.sun.com/j2ee/connector/download.html
http://java.sun.com/j2ee/connector/download.html
http://java.sun.com/j2ee/connector/download.html
http://java.sun.com/j2ee/connector/download.html
http://jcp.org/aboutJava/communityprocess/final/jsr235/index.html
http://jcp.org/aboutJava/communityprocess/final/jsr235/index.html
http://jcp.org/aboutJava/communityprocess/final/jsr235/index.html
http://www-128.ibm.com/developerworks/library/specification/ws-sdo/
http://www-128.ibm.com/developerworks/library/specification/ws-sdo/
http://java.sun.com/products/jms/docs.html.
http://java.sun.com/products/jms/docs.html.
http://java.sun.com/products/jms/docs.html.
http://java.sun.com/products/jms/docs.html.
http://java.sun.com/products/jms/docs.html.
http://jcp.org/en/jsr/detail?id=322
http://jcp.org/en/jsr/detail?id=322
http://java.sun.com/j2ee/connector/download.html
http://java.sun.com/j2ee/connector/download.html
http://java.sun.com/j2ee/connector/download.html
http://java.sun.com/j2ee/connector/download.html
http://java.sun.com/products/javamail/javadocs/index.html
http://java.sun.com/products/javamail/javadocs/index.html
http://java.sun.com/products/javamail/javadocs/index.html
http://java.sun.com/products/javamail/javadocs/index.html
http://java.sun.com/products/javamail/javadocs/index.html
http://java.sun.com/products/javamail/javadocs/index.html
http://java.sun.com/products/javamail/javadocs/index.html
http://java.sun.com/j2se/1.4.2/docs/api/java/net/URL.html
http://java.sun.com/j2se/1.4.2/docs/api/java/net/URL.html
http://java.sun.com/j2se/1.4.2/docs/api/java/net/URL.html
http://java.sun.com/j2se/1.4.2/docs/api/java/net/URL.html
http://java.sun.com/j2se/1.4.2/docs/api/java/net/URL.html
http://java.sun.com/products/javabeans/jaf/index.jsp
http://java.sun.com/products/javabeans/jaf/index.jsp
http://java.sun.com/products/javabeans/jaf/index.jsp
http://java.sun.com/products/archive/javabeans/jaf102.html
http://java.sun.com/products/archive/javabeans/jaf102.html
http://www.w3.org/Addressing/

Security

Table 133. Supported specifications and APIs for security. The product supports the specifications or APIs in this
table.

Specification or API Version 8.5 Version 8.0 Version 7.0 Version 6.1
Version
6.0

Java 2 Security Manager Java 2
Security
Manager 1.5

Java 2
Security
Manager 1.5

Java 2
Security
Manager 1.5

Java 2
Security
Manager
1.5

Java 2
Security
Manager
1.4 New

Java Authentication and Authorization Service
(JAAS)

JAAS 2.0 applies to these versions.

Java Authorization Contract for Containers
(JACC)

JACC 1.4 JACC 1.4 JACC 1.4
New

JACC 1.0 JACC 1.0
New

Java Authentication Service Provider Interface
for Containers (JASPI)

JASPI 1.0 JASPI 1.0 Not
applicable

Not
applicable

Not
applicable

Common Secure Interoperability Version 2
(CSIv2) specification

This is an Object Management Group (OMG)
CORBA/IIOP specification.

CSI 2.0 applies to these versions.

Secure Sockets Layer (SSL) configuration

The product uses Java Secure Sockets
Extension (JSSE) as the SSL implementation
for secure connections. JSSE is part of the
Java 2 Standard Edition (J2SE) specification
and is included in the IBM implementation of
the Java Runtime Extension (JRE)
specification.

JSSE 5.0 JSSE 5.0 JSSE 5.0 JSSE 5.0
New

JSSE 1.0.3

Java Generic Security Service (JGSS)

Use JGSS with the Kerberos Network
Authentication Service, Version 5

JGSS 1.0.1 applies to these versions.

The Simple and Protected GSS-API
Negotiation Mechanism (SPNEGO)

SPNEGO 1.0 applies to these versions.

Java Cryptographic Extension (JCE)
specification

JCE 1.0 applies to these versions.

Java Certification Path (CertPath) API CertPath 1.1 CertPath 1.1 CertPath 1.1 CertPath
1.1 New

CertPath
1.0

Web Services Security

Table 134. Supported specifications and APIs for Web Services Security. The product supports the specifications or
APIs in this table.

Specification or API Version 8.5 Version 8.0 Version 7.0 Version 6.1
Version
6.0

Canonical XML Canonical XML 1.0 applies to these versions.

Decryption Transform for XML Signature Decryption Transformation for XML Signature applies to these
versions. .

Exclusive XML Canonicalization Exclusive XML Canonicalization 1.0 applies to these versions.

Chapter 32. Overview and new features: Developing 1211

http://www.ibm.com/developerworks/java/jdk/security/
http://www.ibm.com/developerworks/java/jdk/security/
http://www.ibm.com/developerworks/java/jdk/security/
http://www.ibm.com/developerworks/java/jdk/security/
http://www.ibm.com/developerworks/java/jdk/security/
http://www.ibm.com/developerworks/java/jdk/security/
http://www.ibm.com/developerworks/java/jdk/security/
http://www.ibm.com/developerworks/java/jdk/security/
http://www.ibm.com/developerworks/java/jdk/security/
http://www.ibm.com/developerworks/java/jdk/security/
http://www.ibm.com/developerworks/java/jdk/security/
http://www.ibm.com/developerworks/java/jdk/security/
http://www.ibm.com/developerworks/java/jdk/security/
http://www.ibm.com/developerworks/java/jdk/security/
http://www.ibm.com/developerworks/java/jdk/security/
http://www.ibm.com/developerworks/java/jdk/security/
http://www.ibm.com/developerworks/java/jdk/security/
http://www.ibm.com/developerworks/java/jdk/security/
http://www.jcp.org/en/jsr/detail?id=115
http://www.jcp.org/en/jsr/detail?id=115
http://www.jcp.org/en/jsr/detail?id=115
http://www.jcp.org/en/jsr/detail?id=115
http://www.jcp.org/en/jsr/detail?id=115
http://jcp.org/en/jsr/detail?id=196
http://jcp.org/en/jsr/detail?id=196
http://www.omg.org/technology/documents/corba_spec_catalog.htm#CSIv2
http://java.sun.com/javase/6/docs/technotes/guides/security/index.html
http://java.sun.com/javase/6/docs/technotes/guides/security/index.html
http://java.sun.com/javase/6/docs/technotes/guides/security/index.html
http://java.sun.com/javase/6/docs/technotes/guides/security/index.html
http://java.sun.com/javase/6/docs/technotes/guides/security/index.html
http://www.ietf.org/rfc/rfc1510.txt
http://www.ietf.org/rfc/rfc1510.txt
http://java.sun.com/javase/6/docs/technotes/guides/security/index.html
http://www.ietf.org/rfc/rfc2478.txt
http://www.ibm.com/developerworks/java/jdk/security/142/secguides/jceDocs/api_users_guide.html
http://www.ibm.com/developerworks/java/jdk/security/142/secguides/certpathDocs/API_users_guide.html
http://www.ibm.com/developerworks/java/jdk/security/142/secguides/certpathDocs/API_users_guide.html
http://www.ibm.com/developerworks/java/jdk/security/142/secguides/certpathDocs/API_users_guide.html
http://www.ibm.com/developerworks/java/jdk/security/142/secguides/certpathDocs/API_users_guide.html
http://www.ibm.com/developerworks/java/jdk/security/142/secguides/certpathDocs/API_users_guide.html
http://www.ibm.com/developerworks/java/jdk/security/142/secguides/certpathDocs/API_users_guide.html
http://www.ibm.com/developerworks/java/jdk/security/142/secguides/certpathDocs/API_users_guide.html
http://www.w3.org/TR/xml-c14n
http://www.w3.org/TR/xmlenc-decrypt
http://www.w3.org/TR/xml-exc-c14n/

Table 134. Supported specifications and APIs for Web Services Security (continued). The product supports the
specifications or APIs in this table.

Specification or API Version 8.5 Version 8.0 Version 7.0 Version 6.1
Version
6.0

OASIS Web Services Security: SOAP Message
Security (WS-Security)

WS-Security
1.1

WS-Security
1.1

WS-Security
1.1

WS-Security
1.1 New for
Feature
Pack for
Web
Services

WS-
Security
1.0

OASIS Web Services Security: Kerberos Token
Profile

Kerberos
Token
Profile 1.1

Kerberos
Token
Profile 1.1

Kerberos
Token
Profile 1.1
New

Not
applicable

OASIS Web Services Security: SAML Token
Profile 1.1
Note: WebSphere Application Server supports
this specification in reference to the SAML
Version 1.1 and 2.0 assertions within SOAP
messages only.

SAML
Version 1.1
and 2.0
assertions

SAML
Version 1.1
and 2.0
assertions

SAML
Version 1.1
and 2.0
assertions

OASIS Web Services Security: Username
Token Profile

Username
Token
Profile 1.1

Username
Token
Profile 1.1

Username
Token
Profile 1.1

Username
Token
Profile 1.1
New for
Feature
Pack for
Web
Services

Username
Token
Profile 1.0
New

OASIS Web Services Security: X.509 Token
Profile

X.509 Token
Profile 1.1

X.509 Token
Profile 1.1

X.509 Token
Profile 1.1

X.509 Token
Profile 1.1
New for
Feature
Pack for
Web
Services

X.509
Token
Profile 1.0
New

Web Services Interoperability Organization
(WS-I) Basic Security Profile

WS-I Basic
Security
Profile 1.1

WS-I Basic
Security
Profile 1.1

WS-I Basic
Security
Profile 1.1
New

WS-I Basic
Security
Profile 1.0

Not
applicable

Web Services Interoperability Organization
(WS-I) Reliable Secure Profile

WS-I
Reliable
Secure
Profile 1.0
(draft)

WS-I
Reliable
Secure
Profile 1.0
(draft)

WS-I
Reliable
Secure
Profile 1.0
(draft)

WS-I
Reliable
Secure
Profile 1.0
(draft) New
for Feature
Pack for
Web
Services

Not
applicable

1212 Overview

http://www.oasis-open.org/committees/download.php/16790/wss-v1.1-spec-os-SOAPMessageSecurity.pdf
http://www.oasis-open.org/committees/download.php/16790/wss-v1.1-spec-os-SOAPMessageSecurity.pdf
http://www.oasis-open.org/committees/download.php/16790/wss-v1.1-spec-os-SOAPMessageSecurity.pdf
http://www.oasis-open.org/committees/download.php/16790/wss-v1.1-spec-os-SOAPMessageSecurity.pdf
http://www.oasis-open.org/committees/download.php/16790/wss-v1.1-spec-os-SOAPMessageSecurity.pdf
http://www.oasis-open.org/committees/download.php/16790/wss-v1.1-spec-os-SOAPMessageSecurity.pdf
http://www.oasis-open.org/committees/download.php/16790/wss-v1.1-spec-os-SOAPMessageSecurity.pdf
http://www.oasis-open.org/committees/download.php/16790/wss-v1.1-spec-os-SOAPMessageSecurity.pdf
http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-soap-message-security-1.0.pdf
http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-soap-message-security-1.0.pdf
http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-soap-message-security-1.0.pdf
http://www.oasis-open.org/committees/download.php/16788/wss-v1.1-spec-os-KerberosTokenProfile.pdf
http://www.oasis-open.org/committees/download.php/16788/wss-v1.1-spec-os-KerberosTokenProfile.pdf
http://www.oasis-open.org/committees/download.php/16788/wss-v1.1-spec-os-KerberosTokenProfile.pdf
http://www.oasis-open.org/committees/download.php/16788/wss-v1.1-spec-os-KerberosTokenProfile.pdf
http://www.oasis-open.org/committees/download.php/16788/wss-v1.1-spec-os-KerberosTokenProfile.pdf
http://www.oasis-open.org/committees/download.php/16788/wss-v1.1-spec-os-KerberosTokenProfile.pdf
http://www.oasis-open.org/committees/download.php/16788/wss-v1.1-spec-os-KerberosTokenProfile.pdf
http://www.oasis-open.org/committees/download.php/16788/wss-v1.1-spec-os-KerberosTokenProfile.pdf
http://www.oasis-open.org/committees/download.php/16788/wss-v1.1-spec-os-KerberosTokenProfile.pdf
http://www.oasis-open.org/committees/download.php/16768/wss-v1.1-spec-os-SAMLTokenProfile.pdf
http://www.oasis-open.org/committees/download.php/16768/wss-v1.1-spec-os-SAMLTokenProfile.pdf
http://www.oasis-open.org/committees/download.php/16768/wss-v1.1-spec-os-SAMLTokenProfile.pdf
http://www.oasis-open.org/committees/download.php/16768/wss-v1.1-spec-os-SAMLTokenProfile.pdf
http://www.oasis-open.org/committees/download.php/16768/wss-v1.1-spec-os-SAMLTokenProfile.pdf
http://www.oasis-open.org/committees/download.php/16768/wss-v1.1-spec-os-SAMLTokenProfile.pdf
http://www.oasis-open.org/committees/download.php/16768/wss-v1.1-spec-os-SAMLTokenProfile.pdf
http://www.oasis-open.org/committees/download.php/16768/wss-v1.1-spec-os-SAMLTokenProfile.pdf
http://www.oasis-open.org/committees/download.php/16768/wss-v1.1-spec-os-SAMLTokenProfile.pdf
http://www.oasis-open.org/committees/download.php/16768/wss-v1.1-spec-os-SAMLTokenProfile.pdf
http://www.oasis-open.org/committees/download.php/16768/wss-v1.1-spec-os-SAMLTokenProfile.pdf
http://www.oasis-open.org/committees/download.php/16768/wss-v1.1-spec-os-SAMLTokenProfile.pdf
http://www.oasis-open.org/committees/download.php/16782/wss-v1.1-spec-os-UsernameTokenProfile.pdf
http://www.oasis-open.org/committees/download.php/16782/wss-v1.1-spec-os-UsernameTokenProfile.pdf
http://www.oasis-open.org/committees/download.php/16782/wss-v1.1-spec-os-UsernameTokenProfile.pdf
http://www.oasis-open.org/committees/download.php/16782/wss-v1.1-spec-os-UsernameTokenProfile.pdf
http://www.oasis-open.org/committees/download.php/16782/wss-v1.1-spec-os-UsernameTokenProfile.pdf
http://www.oasis-open.org/committees/download.php/16782/wss-v1.1-spec-os-UsernameTokenProfile.pdf
http://www.oasis-open.org/committees/download.php/16782/wss-v1.1-spec-os-UsernameTokenProfile.pdf
http://www.oasis-open.org/committees/download.php/16782/wss-v1.1-spec-os-UsernameTokenProfile.pdf
http://www.oasis-open.org/committees/download.php/16782/wss-v1.1-spec-os-UsernameTokenProfile.pdf
http://www.oasis-open.org/committees/download.php/16782/wss-v1.1-spec-os-UsernameTokenProfile.pdf
http://www.oasis-open.org/committees/download.php/16782/wss-v1.1-spec-os-UsernameTokenProfile.pdf
http://www.oasis-open.org/committees/download.php/16782/wss-v1.1-spec-os-UsernameTokenProfile.pdf
http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-username-token-profile-1.0.pdf
http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-username-token-profile-1.0.pdf
http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-username-token-profile-1.0.pdf
http://www.oasis-open.org/committees/download.php/16785/wss-v1.1-spec-os-x509TokenProfile.pdf
http://www.oasis-open.org/committees/download.php/16785/wss-v1.1-spec-os-x509TokenProfile.pdf
http://www.oasis-open.org/committees/download.php/16785/wss-v1.1-spec-os-x509TokenProfile.pdf
http://www.oasis-open.org/committees/download.php/16785/wss-v1.1-spec-os-x509TokenProfile.pdf
http://www.oasis-open.org/committees/download.php/16785/wss-v1.1-spec-os-x509TokenProfile.pdf
http://www.oasis-open.org/committees/download.php/16785/wss-v1.1-spec-os-x509TokenProfile.pdf
http://www.oasis-open.org/committees/download.php/16785/wss-v1.1-spec-os-x509TokenProfile.pdf
http://www.oasis-open.org/committees/download.php/16785/wss-v1.1-spec-os-x509TokenProfile.pdf
http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-x509-token-profile-1.0.pdf
http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-x509-token-profile-1.0.pdf
http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-x509-token-profile-1.0.pdf
http://www.ws-i.org/Profiles/BasicSecurityProfile-1.1.html
http://www.ws-i.org/Profiles/BasicSecurityProfile-1.1.html
http://www.ws-i.org/Profiles/BasicSecurityProfile-1.1.html
http://www.ws-i.org/Profiles/BasicSecurityProfile-1.1.html
http://www.ws-i.org/Profiles/BasicSecurityProfile-1.1.html
http://www.ws-i.org/Profiles/BasicSecurityProfile-1.1.html
http://www.ws-i.org/Profiles/BasicSecurityProfile-1.1.html
http://www.ws-i.org/Profiles/BasicSecurityProfile-1.1.html
http://www.ws-i.org/Profiles/BasicSecurityProfile-1.1.html
http://www.ws-i.org/Profiles/BasicSecurityProfile-1.0.html
http://www.ws-i.org/Profiles/BasicSecurityProfile-1.0.html
http://www.ws-i.org/Profiles/BasicSecurityProfile-1.0.html
http://ws-i.org/deliverables/workinggroup.aspx?wg=reliablesecure
http://ws-i.org/deliverables/workinggroup.aspx?wg=reliablesecure
http://ws-i.org/deliverables/workinggroup.aspx?wg=reliablesecure
http://ws-i.org/deliverables/workinggroup.aspx?wg=reliablesecure
http://ws-i.org/deliverables/workinggroup.aspx?wg=reliablesecure
http://ws-i.org/deliverables/workinggroup.aspx?wg=reliablesecure
http://ws-i.org/deliverables/workinggroup.aspx?wg=reliablesecure
http://ws-i.org/deliverables/workinggroup.aspx?wg=reliablesecure
http://ws-i.org/deliverables/workinggroup.aspx?wg=reliablesecure
http://ws-i.org/deliverables/workinggroup.aspx?wg=reliablesecure
http://ws-i.org/deliverables/workinggroup.aspx?wg=reliablesecure
http://ws-i.org/deliverables/workinggroup.aspx?wg=reliablesecure
http://ws-i.org/deliverables/workinggroup.aspx?wg=reliablesecure
http://ws-i.org/deliverables/workinggroup.aspx?wg=reliablesecure
http://ws-i.org/deliverables/workinggroup.aspx?wg=reliablesecure
http://ws-i.org/deliverables/workinggroup.aspx?wg=reliablesecure
http://ws-i.org/deliverables/workinggroup.aspx?wg=reliablesecure
http://ws-i.org/deliverables/workinggroup.aspx?wg=reliablesecure
http://ws-i.org/deliverables/workinggroup.aspx?wg=reliablesecure
http://ws-i.org/deliverables/workinggroup.aspx?wg=reliablesecure

Table 134. Supported specifications and APIs for Web Services Security (continued). The product supports the
specifications or APIs in this table.

Specification or API Version 8.5 Version 8.0 Version 7.0 Version 6.1
Version
6.0

Web Services Secure Conversation
(WS-SecureConversation)

OASIS
WS-
SecureConversation
1.3

OASIS
WS-
SecureConversation
1.3

OASIS
WS-
SecureConversation
1.3 New

OASIS
WS-
SecureConversation
1.0 (draft
submission)
New for
Feature
Pack for
Web
Services

Not
applicable

Web Services Trust OASIS
WS-Trust
1.3

OASIS
WS-Trust
1.3

OASIS
WS-Trust
1.3 New

OASIS
WS-Trust
1.1 (draft)
New for
Feature
Pack for
Web
Services

Not
applicable

XML Signature Syntax and Processing XML Signature Syntax and Processing applies to these versions.

XML Encryption Syntax and Processing XML Encryption Syntax and Processing applies to these versions.

Naming and directory

Table 135. Supported specifications and APIs for naming and directory. The product supports the specifications or
APIs in this table.

Specification or API Version 8.5 Version 8.0 Version 7.0 Version 6.1
Version
6.0

Java Naming and Directory Interface (JNDI)
Specification

See also “JNDI support in WebSphere
Application Server” on page 506.

JNDI on Java
SE 7 New

JNDI on Java
SE 6

JNDI on
Java SE 6
New

JNDI on J2SE applies to
these versions.

Common Object Request Broker:
Architecture and Specification (CORBA)
specification

This is an Object Management Group
(OMG) Interoperable Naming (CosNaming)
specification.

CORBA 2.4 applies to these versions.

Interoperable Naming Service specification

This is an OMG CosNaming specification.

Interoperable Naming Service

Naming Service specification

This is an OMG CosNaming specification.

Naming Service applies to these versions.

Object Request Broker

The Object Request Broker (ORB) component follows the Common Object Request Broker Architecture
(CORBA) specifications supported by Java 2 Platform, Standard Edition (J2SE). The Object Management
Group (OMG) produces the specifications.

Chapter 32. Overview and new features: Developing 1213

http://docs.oasis-open.org/ws-sx/ws-secureconversation/200512/ws-secureconversation-1.3-os.html
http://docs.oasis-open.org/ws-sx/ws-secureconversation/200512/ws-secureconversation-1.3-os.html
http://docs.oasis-open.org/ws-sx/ws-secureconversation/200512/ws-secureconversation-1.3-os.html
http://docs.oasis-open.org/ws-sx/ws-secureconversation/200512/ws-secureconversation-1.3-os.html
http://docs.oasis-open.org/ws-sx/ws-secureconversation/200512/ws-secureconversation-1.3-os.html
http://docs.oasis-open.org/ws-sx/ws-secureconversation/200512/ws-secureconversation-1.3-os.html
http://docs.oasis-open.org/ws-sx/ws-secureconversation/200512/ws-secureconversation-1.3-os.html
http://docs.oasis-open.org/ws-sx/ws-secureconversation/200512/ws-secureconversation-1.3-os.html
http://docs.oasis-open.org/ws-sx/ws-secureconversation/200512/ws-secureconversation-1.3-os.html
http://docs.oasis-open.org/ws-sx/ws-secureconversation/200512/ws-secureconversation-1.3-os.html
http://docs.oasis-open.org/ws-sx/ws-secureconversation/200512/ws-secureconversation-1.3-os.html
http://docs.oasis-open.org/ws-sx/ws-secureconversation/200512/ws-secureconversation-1.3-os.html
http://www.oasis-open.org/committees/download.php/15978/oasis-wssx-ws-secureconversation-1.0.pdf
http://www.oasis-open.org/committees/download.php/15978/oasis-wssx-ws-secureconversation-1.0.pdf
http://www.oasis-open.org/committees/download.php/15978/oasis-wssx-ws-secureconversation-1.0.pdf
http://www.oasis-open.org/committees/download.php/15978/oasis-wssx-ws-secureconversation-1.0.pdf
http://www.oasis-open.org/committees/download.php/15978/oasis-wssx-ws-secureconversation-1.0.pdf
http://docs.oasis-open.org/ws-sx/ws-trust/200512/ws-trust-1.3-os.pdf
http://docs.oasis-open.org/ws-sx/ws-trust/200512/ws-trust-1.3-os.pdf
http://docs.oasis-open.org/ws-sx/ws-trust/200512/ws-trust-1.3-os.pdf
http://docs.oasis-open.org/ws-sx/ws-trust/200512/ws-trust-1.3-os.pdf
http://docs.oasis-open.org/ws-sx/ws-trust/200512/ws-trust-1.3-os.pdf
http://docs.oasis-open.org/ws-sx/ws-trust/200512/ws-trust-1.3-os.pdf
http://docs.oasis-open.org/ws-sx/ws-trust/200512/ws-trust-1.3-os.pdf
http://docs.oasis-open.org/ws-sx/ws-trust/200512/ws-trust-1.3-os.pdf
http://docs.oasis-open.org/ws-sx/ws-trust/200512/ws-trust-1.3-os.pdf
http://schemas.xmlsoap.org/ws/2005/02/trust/
http://schemas.xmlsoap.org/ws/2005/02/trust/
http://schemas.xmlsoap.org/ws/2005/02/trust/
http://www.w3.org/TR/xmldsig-core/
http://www.w3.org/TR/xmlenc-core/
http://docs.oracle.com/javase/7/docs/api/index.html?javax/naming/package-summary.html
http://docs.oracle.com/javase/7/docs/api/index.html?javax/naming/package-summary.html
http://download.oracle.com/javase/6/docs/api/index.html?javax/naming/package-summary.html
http://download.oracle.com/javase/6/docs/api/index.html?javax/naming/package-summary.html
http://download.oracle.com/javase/6/docs/api/index.html?javax/naming/package-summary.html
http://download.oracle.com/javase/6/docs/api/index.html?javax/naming/package-summary.html
http://java.sun.com/products/jndi/1.2/javadoc/
http://www.omg.org/cgi-bin/doc?formal/00-10-33
http://www.omg.org/cgi-bin/doc?ptc/00-08-07
http://www.omg.org/cgi-bin/doc?formal/2001-02-65

Versions 6.1 and later use the J2SE 5.0 specifications that are listed in Official Specifications for CORBA
support in J2SE 5.0 at http://download.oracle.com/javase/1.5.0/docs/guide/idl/compliance.html.

Version 6.0.x uses the J2SE 1.4 specifications that are listed in Official Specifications for CORBA support
in J2SE 1.4 at http://download.oracle.com/javase/1.4.2/docs/api/org/omg/CORBA/doc-files/compliance.html.

Table 136. Supported specifications and APIs for ORB. The product supports the specifications or APIs in this table.

Specification or API Version 8.5 Version 8.0
Version
7.0

Version
6.1

Version
6.0

Common Object Request Broker Architecture
(CORBA) specifications

CORBA 2.3.1 applies to these versions.

Revised IDL to Java language mapping Revised IDL to Java language mapping applies to these
versions.

New IDL to Java Mapping Chapter New IDL to Java Mapping Chapter applies to these versions.

Updated Java to IDL Mapping specification Updated Java to IDL Mapping applies to these versions.

Interoperable Naming Service revised chapters Interoperable Naming Service revised chapters applies to these
versions.

Object Reference Template Final Adopted
specification

Object
Reference
Template
Final Adopted
specification

Object
Reference
Template
Final Adopted
specification

Object
Reference
Template
Final
Adopted
specification

Object
Reference
Template
Final
Adopted
specification
New

Not
applicable

Portable Interceptors specification Not
applicable

Not
applicable

Not
applicable

Not
applicable

Portable
Interceptors
specification

Transactions

Table 137. Supported specifications and APIs for transactions. The product supports the specifications or APIs in
this table.

Specification or API Version 8.5 Version 8.0 Version 7.0 Version 6.1
Version
6.0

CORBA Object Transaction Service (OTS)
specification

OTS 1.4 OTS 1.4 OTS 1.4 OTS 1.4 OTS 1.4
New

Java EE Connector Architecture (JCA) resource
adapter

JCA 1.6
(JSR 322)

JCA 1.6
(JSR 322)
New

JCA 1.5 JCA 1.5 JCA 1.5
New

JCA 1.0

Java Transaction API (JTA) specification JTA 1.1 JTA 1.1 JTA 1.1 New JTA 1.0.1B JTA 1.0.1B
New

Java Transaction Service (JTS) specification JTS 1.0 applies to these versions.

WebSphere extensions

Table 138. Supported specifications and APIs for WebSphere extensions. The product supports the specifications or
APIs in this table.

Specification or API Version 8.5 Version 8.0 Version 7.0 Version 6.1 Version 6.0

ActivitySession service and Last Participant Support

1214 Overview

http://download.oracle.com/javase/1.5.0/docs/guide/idl/compliance.html
http://download.oracle.com/javase/1.4.2/docs/api/org/omg/CORBA/doc-files/compliance.html
http://www.omg.org/cgi-bin/doc?formal/99-10-07
http://www.omg.org/cgi-bin/doc?ptc/00-01-08
http://www.omg.org/cgi-bin/doc?ptc/00-11-03
http://www.omg.org/cgi-bin/doc?ptc/00-01-06
http://www.omg.org/cgi-bin/doc?ptc/00-08-07
http://www.omg.org/cgi-bin/doc?ptc/2001-08-31
http://www.omg.org/cgi-bin/doc?ptc/2001-08-31
http://www.omg.org/cgi-bin/doc?ptc/2001-08-31
http://www.omg.org/cgi-bin/doc?ptc/2001-08-31
http://www.omg.org/cgi-bin/doc?ptc/2001-08-31
http://www.omg.org/cgi-bin/doc?ptc/2001-08-31
http://www.omg.org/cgi-bin/doc?ptc/2001-08-31
http://www.omg.org/cgi-bin/doc?ptc/2001-08-31
http://www.omg.org/cgi-bin/doc?ptc/2001-08-31
http://www.omg.org/cgi-bin/doc?ptc/2001-08-31
http://www.omg.org/cgi-bin/doc?ptc/2001-08-31
http://www.omg.org/cgi-bin/doc?ptc/2001-08-31
http://www.omg.org/cgi-bin/doc?ptc/2001-08-31
http://www.omg.org/cgi-bin/doc?ptc/2001-08-31
http://www.omg.org/cgi-bin/doc?ptc/2001-08-31
http://www.omg.org/cgi-bin/doc?ptc/2001-08-31
http://www.omg.org/cgi-bin/doc?ptc/2001-08-31
http://www.omg.org/cgi-bin/doc?ptc/2001-08-31
http://www.omg.org/cgi-bin/doc?ptc/2001-08-31
http://www.omg.org/cgi-bin/doc?ptc/2001-08-31
http://www.omg.org/cgi-bin/doc?ptc/2001-08-31
http://www.omg.org/cgi-bin/doc?ptc/2001-08-31
http://www.omg.org/cgi-bin/doc?ptc/2001-03-04
http://www.omg.org/cgi-bin/doc?ptc/2001-03-04
http://www.omg.org/cgi-bin/doc?ptc/2001-03-04
http://www.omg.org/cgi-bin/doc?formal/2003-09-02
http://www.omg.org/cgi-bin/doc?formal/2003-09-02
http://www.omg.org/cgi-bin/doc?formal/2003-09-02
http://www.omg.org/cgi-bin/doc?formal/2003-09-02
http://www.omg.org/cgi-bin/doc?formal/2003-09-02
http://jcp.org/en/jsr/detail?id=322
http://jcp.org/en/jsr/detail?id=322
http://java.sun.com/j2ee/connector/download.html
http://java.sun.com/j2ee/connector/download.html
http://java.sun.com/j2ee/connector/download.html
http://java.sun.com/j2ee/connector/download.html
http://java.sun.com/products/jta/
http://java.sun.com/products/jta/
http://java.sun.com/products/jta/
http://java.sun.com/products/jta/
http://java.sun.com/products/jta/
http://java.sun.com/products/jts/

Table 138. Supported specifications and APIs for WebSphere extensions (continued). The product supports the
specifications or APIs in this table.

Specification or API Version 8.5 Version 8.0 Version 7.0 Version 6.1 Version 6.0

J2EE Activity Service for Extended
Transactions (JSR 95)

JSR 95 applies to these versions.

Java Transaction API (JTA) specification JTA 1.1 JTA 1.1 JTA 1.1 New JTA 1.0.1B
New

JTA 1.0.1

Internationalization (i18n)

J2SE internationalization documentation J2SE
Internationalization
5.0

J2SE
Internationalization
5.0

J2SE
Internationalization
5.0

J2SE
Internationalization
5.0 New

J2SE
Internationalization
1.4.2

Administration

Table 139. Supported specifications and APIs for administration. The product supports the specifications or APIs in
this table.

Specification or API Version 8.5 Version 8.0 Version 7.0 Version 6.1 Version 6.0

Java EE Application Deployment
specification

Java EE
Deployment
1.2

Java EE
Deployment
1.2

Java EE
Deployment
1.2 New

J2EE
Deployment
1.1

J2EE
Deployment
1.1 New

J2EE Extension Mechanism
Architecture

J2EE
Extension
Mechanism
Architecture
1.4.2

J2EE
Extension
Mechanism
Architecture
1.4.2

J2EE
Extension
Mechanism
Architecture
1.4.2

J2EE
Extension
Mechanism
Architecture
1.4.2

J2EE
Extension
Mechanism
Architecture
1.4.2 New

Java Management Extensions (JMX)
JSR-000003

JMX 1.4 JMX 1.4 JMX 1.4 JMX 1.2 JMX 1.2 New

Java Management Extensions (JMX)
Remote API

JMX Remote
API 1.0

JMX Remote
API 1.0

JMX Remote
API 1.0

JMX Remote
API 1.0 New

Not
applicable

Java Virtual Machine (JVM)
specification

See WebSphere Application Server
detailed system requirements.

JVM 6 JVM 6 JVM 6 New JVM 5.0 New JVM 1.4.2

Logging API specification (JSR 47) Logging API
specification
(JSR 47) 1.0

Logging API
specification
(JSR 47) 1.0

Logging API
specification
(JSR 47) 1.0

Logging API
specification
(JSR 47) 1.0

Logging API
specification
(JSR 47) 1.0
New

Introduction: Web services
Explore the key concepts pertaining to web services applications. Web services are self-contained,
modular applications that can be described, published, located, and invoked over a network. They
implement a service-oriented architecture (SOA), which supports the connecting or sharing of resources
and data in a flexible and standardized manner. Services are described and organized to support their
dynamic, automated discovery and reuse.

The WebSphere® Application Server supports a set of web services standards that support the creation
and administration of interoperable, securable, transactionable, and reliable web services applications.
Using the strategic Java™ API for XML-Based Web Services (JAX-WS) programming model, web service
clients can now additionally invoke web services asynchronously, which means your client can continue
processing without waiting on the response. Your JAX-WS web services can also take advantage of the

Chapter 32. Overview and new features: Developing 1215

http://www.jcp.org/en/jsr/detail?id=95
http://java.sun.com/products/jta/
http://java.sun.com/products/jta/
http://java.sun.com/products/jta/
http://java.sun.com/products/jta/
http://java.sun.com/products/jta/
http://download.oracle.com/javase/1.5.0/docs/guide/intl/
http://download.oracle.com/javase/1.5.0/docs/guide/intl/
http://download.oracle.com/javase/1.5.0/docs/guide/intl/
http://download.oracle.com/javase/1.5.0/docs/guide/intl/
http://download.oracle.com/javase/1.5.0/docs/guide/intl/
http://download.oracle.com/javase/1.5.0/docs/guide/intl/
http://download.oracle.com/javase/1.5.0/docs/guide/intl/
http://download.oracle.com/javase/1.5.0/docs/guide/intl/
http://download.oracle.com/javase/1.5.0/docs/guide/intl/
http://download.oracle.com/javase/1.5.0/docs/guide/intl/
http://download.oracle.com/javase/1.5.0/docs/guide/intl/
http://download.oracle.com/javase/1.5.0/docs/guide/intl/
http://download.oracle.com/javase/1.4.2/docs/guide/intl/
http://download.oracle.com/javase/1.4.2/docs/guide/intl/
http://download.oracle.com/javase/1.4.2/docs/guide/intl/
http://jcp.org/en/jsr/detail?id=88
http://jcp.org/en/jsr/detail?id=88
http://jcp.org/en/jsr/detail?id=88
http://jcp.org/en/jsr/detail?id=88
http://jcp.org/en/jsr/detail?id=88
http://jcp.org/en/jsr/detail?id=88
http://jcp.org/en/jsr/detail?id=88
http://jcp.org/en/jsr/detail?id=88
http://jcp.org/en/jsr/detail?id=88
http://java.sun.com/j2ee/tools/deployment/reference/docs/index.html
http://java.sun.com/j2ee/tools/deployment/reference/docs/index.html
http://java.sun.com/j2ee/tools/deployment/reference/docs/index.html
http://java.sun.com/j2ee/tools/deployment/reference/docs/index.html
http://java.sun.com/j2ee/tools/deployment/reference/docs/index.html
http://java.sun.com/j2ee/tools/deployment/reference/docs/index.html
http://java.sun.com/j2se/1.4.2/docs/guide/extensions/spec.html
http://java.sun.com/j2se/1.4.2/docs/guide/extensions/spec.html
http://java.sun.com/j2se/1.4.2/docs/guide/extensions/spec.html
http://java.sun.com/j2se/1.4.2/docs/guide/extensions/spec.html
http://java.sun.com/j2se/1.4.2/docs/guide/extensions/spec.html
http://java.sun.com/j2se/1.4.2/docs/guide/extensions/spec.html
http://java.sun.com/j2se/1.4.2/docs/guide/extensions/spec.html
http://java.sun.com/j2se/1.4.2/docs/guide/extensions/spec.html
http://java.sun.com/j2se/1.4.2/docs/guide/extensions/spec.html
http://java.sun.com/j2se/1.4.2/docs/guide/extensions/spec.html
http://java.sun.com/j2se/1.4.2/docs/guide/extensions/spec.html
http://java.sun.com/j2se/1.4.2/docs/guide/extensions/spec.html
http://java.sun.com/j2se/1.4.2/docs/guide/extensions/spec.html
http://java.sun.com/j2se/1.4.2/docs/guide/extensions/spec.html
http://java.sun.com/j2se/1.4.2/docs/guide/extensions/spec.html
http://java.sun.com/j2se/1.4.2/docs/guide/extensions/spec.html
http://java.sun.com/j2se/1.4.2/docs/guide/extensions/spec.html
http://java.sun.com/j2se/1.4.2/docs/guide/extensions/spec.html
http://java.sun.com/j2se/1.4.2/docs/guide/extensions/spec.html
http://java.sun.com/j2se/1.4.2/docs/guide/extensions/spec.html
http://java.sun.com/j2se/1.4.2/docs/guide/extensions/spec.html
http://java.sun.com/j2se/1.4.2/docs/guide/extensions/spec.html
http://java.sun.com/j2se/1.4.2/docs/guide/extensions/spec.html
http://java.sun.com/j2se/1.4.2/docs/guide/extensions/spec.html
http://java.sun.com/j2se/1.4.2/docs/guide/extensions/spec.html
http://jcp.org/en/jsr/detail?id=151
http://jcp.org/en/jsr/detail?id=151
http://jcp.org/en/jsr/detail?id=151
http://jcp.org/aboutJava/communityprocess/final/jsr003/index3.html
http://jcp.org/aboutJava/communityprocess/final/jsr003/index3.html
http://jcp.org/aboutJava/communityprocess/final/jsr160/index.html
http://jcp.org/aboutJava/communityprocess/final/jsr160/index.html
http://jcp.org/aboutJava/communityprocess/final/jsr160/index.html
http://jcp.org/aboutJava/communityprocess/final/jsr160/index.html
http://jcp.org/aboutJava/communityprocess/final/jsr160/index.html
http://jcp.org/aboutJava/communityprocess/final/jsr160/index.html
http://jcp.org/aboutJava/communityprocess/final/jsr160/index.html
http://jcp.org/aboutJava/communityprocess/final/jsr160/index.html
http://www.ibm.com/support/docview.wss?rs=180&uid=swg27006921
http://www.ibm.com/support/docview.wss?rs=180&uid=swg27006921
http://java.sun.com/javase/6/docs/
http://java.sun.com/javase/6/docs/
http://java.sun.com/javase/6/docs/
http://java.sun.com/j2se/1.5.0/docs/index.html
http://java.sun.com/j2se/1.4.2/docs/index.html
http://jcp.org/en/jsr/detail?id=47
http://jcp.org/en/jsr/detail?id=47
http://jcp.org/en/jsr/detail?id=47
http://jcp.org/en/jsr/detail?id=47
http://jcp.org/en/jsr/detail?id=47
http://jcp.org/en/jsr/detail?id=47
http://jcp.org/en/jsr/detail?id=47
http://jcp.org/en/jsr/detail?id=47
http://jcp.org/en/jsr/detail?id=47
http://jcp.org/en/jsr/detail?id=47
http://jcp.org/en/jsr/detail?id=47
http://jcp.org/en/jsr/detail?id=47
http://jcp.org/en/jsr/detail?id=47
http://jcp.org/en/jsr/detail?id=47
http://jcp.org/en/jsr/detail?id=47

Web Services Reliable Messaging protocol quality of service where you can be confident that your
communication is reliable and reaches its destination while interoperating with other vendors.

The WebSphere® Application Server supports both the JAX-WS programming model and the Java API for
XML-based RPC (JAX-RPC) programming model. JAX-WS is the next generation web services
programming model extending the foundation provided by the JAX-RPC programming model.

JAX-WS simplifies development through a standard, annotation-based model to develop web services and
clients. A common set of binding rules for XML and Java objects make it easy to incorporate XML data
and processing functions in Java. A further set of enhancements help you optimally send binary
attachments, such as images or files with the web services request.

Simplified management of these web services profiles makes it easy to configure and reuse configurations,
so you can seamlessly incorporate new web services profiles.

For a complete list of the supported standards and specifications, see the web services specifications and
API documentation.

Introduction: Messaging resources
WebSphere Application Server supports asynchronous messaging based on the Java Message Service
(JMS) and Java EE Connector Architecture (JCA) specifications, which provide a common way for Java
programs (clients and Java EE applications) to create, send, receive, and read asynchronous requests, as
messages.

JMS support enables applications to exchange messages asynchronously with other JMS clients by using
JMS destinations (queues or topics). Some messaging providers also allow WebSphere Application Server
applications to use JMS support to exchange messages asynchronously with non-JMS applications; for
example, WebSphere Application Server applications often need to exchange messages with WebSphere
MQ applications. Applications can explicitly poll for messages from JMS destinations, or they can use
message-driven beans to automatically retrieve messages from JMS destinations without explicitly polling
for messages.

WebSphere Application Server supports the following messaging providers:

v The WebSphere Application Server default messaging provider (which uses service integration as the
provider)

v The WebSphere MQ messaging provider (which uses your WebSphere MQ system as the provider)

v Third-party messaging providers that implement either a JCA Version 1.5 or 1.6 resource adapter or the
ASF component of the JMS Version 1.0.2 specification

Your applications can use messaging resources from any of these JMS providers. The choice of provider
is most often dictated by requirements to use or integrate with an existing messaging system. For
example, you might already have a messaging infrastructure based on WebSphere MQ. In this case, you
can either connect directly by using the WebSphere MQ messaging provider, or configure a service
integration bus with links to a WebSphere MQ network and then access the bus through the default
messaging provider.

If you mainly want to use messaging between applications in WebSphere Application Server, perhaps with
some interaction with a WebSphere MQ system, the default messaging provider is a logical choice. If your
business also uses WebSphere MQ, and you want to integrate WebSphere Application Server messaging
applications into a predominately WebSphere MQ network, choose the WebSphere MQ messaging
provider. To administer a third-party messaging provider, you use either the resource adaptor (for a Java
EE Connector Architecture (JCA) 1.5-compliant or 1.6-compliant messaging provider) or the client (for a
non-JCA messaging provider) that is supplied by the third party.

1216 Overview

Introduction: Dynamic cache
Explore the key concepts pertaining to the dynamic cache service, which improves performance by
caching the output of servlets, commands, web services, and JavaServer Pages (JSP) files.

The dynamic cache engine is the default cache provider for the dynamic cache APIs and framework.
However, starting with Version 6.1.0.27, dynamic cache allows WebSphere eXtreme Scale, which is the is
the strategic direction for caching for the WebSphere products, to act as its core caching engine.

Configuring the dynamic cache to use WebSphere eXtreme Scale lets you leverage transactional support,
improved scalability, high availability, and other WebSphere eXtreme Scale features without changing your
existing dynamic cache caching code. If you are currently using the default cache provider, you can use
the administrative console or wsadmin commands to replace the default dynamic cache provider with the
WebSphere eXtreme Scale dynamic cache provider. You do not have to make any changes to your
dynamic cache programming model. See the topic WebSphere eXtreme Scale dynamic cache provider in
the WebSphere eXtreme Scale Version 7.0 Information Center for an overview of the WebSphere eXtreme
Scale dynamic cache provider.

WebSphere eXtreme Scale can operate as an in-memory database processing space. You can use this
processing space to provide in-line caching for a database back-end, or as a side cache. in-line caching
uses WebSphere eXtreme Scale as the primary means for interacting with the data. When WebSphere
eXtreme Scale is used as a side cache, the back-end is used in conjunction with WebSphere eXtreme
Scale.

Functional advantages of using the WebSphere eXtreme Scale dynamic cache
provider

The WebSphere eXtreme Scale dynamic cache provider:

v Supports memory-to-memory replication for sessions.

v Can handle all of the generic data and session caching needs of your applications.

v Enables your applications to leverage system memory without using SAN or storage solutions to host a
dynamic cache disk cache.

v Provides a scalable replicated cache with a configurable number of replicas, thereby eliminating the
need to use the data replication service (DRS), which the default cache provider uses. Use of DRS
sometimes causes performance problems.

v Can be configured with additional WebSphere eXtreme Scale containers at runtime, thereby increasing
your cache capacity, and preventing performance issues that sometimes occur when you use DRS.
WebSphere eXtreme Scale automatically redistributes the partitions as new containers are added to the
grid.

v Provides better caching qualities of service and control, than the default cache provider.

v Uses the same runtime monitoring and administration tools as the classic dynamic cache. These tools,
such as the cache monitor and the dynamic cache runtime MBean, work the same way when dynamic
cache runs on top of WebSphere eXtreme Scale, as when they are used with classic dynamic cache.

Functional differences between the default cache provider and the WebSphere
eXtreme Scale dynamic cache provider

Following is a list of functional differences between the default cache provider and the WebSphere
eXtreme Scale dynamic cache provider:

v WebSphere eXtreme Scale dynamic cache provider does not include disk cache support because all
cache data is kept in memory. Therefore, the disk caching custom properties are not supported.

v WebSphere eXtreme Scale dynamic cache provider does not support the following features:

– DistributedNioMap - skipMemoryAndWriteToDisk

– DistributedMap and DistributedNioMap alias

Chapter 32. Overview and new features: Developing 1217

http://publib.boulder.ibm.com/infocenter/wxsinfo/v7r0/topic/com.ibm.websphere.extremescale.over.doc/cxsdynacache.html

– Disabling dependency IDs or templates

–

v WebSphere eXtreme Scale dynamic cache provider does not support DRS style replication. Therefore,
the DRS custom properties are not supported.

When you use the WebSphere eXtreme Scale dynamic cache provider, replication configuration is
controlled by the WebSphere eXtreme Scale deployment and definition files. See the topic Configuring
the dynamic cache provider for WebSphere eXtreme Scale in the WebSphere eXtreme Scale Version 7
Information Center for more information about replication.

v DistributedNioMapObject.release() is not called to release the byteBuffers for NIO buffer Management.

v WebSphere eXtreme Scale dynamic cache provider has limited PMI support. Certain PMI and MBean
counters are no longer valid. See the topic Configuring the dynamic cache provider for WebSphere
eXtreme Scale in the WebSphere eXtreme Scale Version 7 Information Center for more information.

v When firing any event, ObjectGrid always sets the sourceOfInvalidation to REMOTE

v You can use the DynaCache API to register event listeners regardless of which cache provider you are
using. However, if you use WebSphere eXtreme Scale dynamic cache provider, the event listeners work
as expected for local in-memory caches. When co-located containers are being used, events are thrown
on the machine where the request that caused the event is serviced instead of on the machine where
the request originated. For example if an invalidate request is issued on Server A and the cache entry
that gets invalidated is actually stored on Server B, then the event will be fired on Server B. With the
default dynamic cache provider, the event is fired on Server A. When stand-alone containers are being
used, no events are fired through the DynaCache event listener API.

Key concepts pertaining to the dynamic cache service

Explore the key concepts pertaining to the dynamic cache service, which improves performance by
caching the output of servlets, commands, web services, and JavaServer Pages (JSP) files.

Cache instances
An application uses a cache instance to store, retrieve, and share data objects within the dynamic
cache.

Using the dynamic cache service to improve performance
Caching the output of servlets, commands, and JavaServer Pages (JSP) improves application
performance. WebSphere Application Server consolidates several caching activities including
servlets, web services, and WebSphere commands into one service called the dynamic cache.
These caching activities work together to improve application performance, and share many
configuration parameters that are set in the dynamic cache service of an application server.

Configuring dynamic cache to use the WebSphere eXtreme Scale dynamic cache provider
Configuring the dynamic cache service to use WebSphere eXtreme Scale lets you leverage
transactional support, improved scalability, high availability, and other WebSphere eXtreme Scale
features without changing your existing dynamic cache caching code.

Configuring servlet caching
After a servlet is invoked and completes generating the output to cache, a cache entry is created
containing the output and the side effects of the servlet. These side effects can include calls to
other servlets or JavaServer Pages (JSP) files or metadata about the entry, including timeout and
entry priority information.

Configuring portlet fragment caching
After a portlet is invoked and completes generating the output to cache, a cache entry is created
containing the output and the side effects of the portlet. These side effects can include calls to
other portlets or metadata about the entry, including timeout and entry priority information.

Eviction policies using the disk cache garbage collector
The disk cache garbage collector is responsible for evicting objects out of the disk cache, based
on a specified eviction policy.

1218 Overview

http://publib.boulder.ibm.com/infocenter/wxsinfo/v7r0/index.jsp?topic=/com.ibm.websphere.extremescale.over.doc/txsdyncache.html
http://publib.boulder.ibm.com/infocenter/wxsinfo/v7r0/index.jsp?topic=/com.ibm.websphere.extremescale.over.doc/txsdyncache.html
http://publib.boulder.ibm.com/infocenter/wxsinfo/v7r0/index.jsp?topic=/com.ibm.websphere.extremescale.over.doc/txsdyncache.html
http://publib.boulder.ibm.com/infocenter/wxsinfo/v7r0/index.jsp?topic=/com.ibm.websphere.extremescale.over.doc/txsdyncache.html

Configuring the JAX-RPC web services client cache
The web services client cache is a part of the dynamic cache service that is used to increase the
performance of web services clients by caching responses from remote web services.

Cache monitor
Cache monitor is an installable web application that provides a real-time view of the current state
of dynamic cache. You use it to help verify that dynamic cache is operating as expected. The only
way to manipulate the data in the cache is by using the cache monitor. It provides a GUI interface
to manually change data.

Invalidation listeners
Invalidation listener mechanism uses Java events for alerting applications when contents are
removed from the cache.

Learn about SIP applications
Find links to web resources for learning, including conceptual overviews, tutorials, samples, and “How do
I?...” topics.

How do I?...

Configure SIP applications
Configuring the SIP container
SIP timer summary
SIP container settings
Session Initiation Protocol (SIP) container inbound
channel settings
Session Initiation Protocol (SIP) inbound channel settings
Performing controlled failover of SIP applications
“SIP converged proxy” on page 783
“SIP high availability” on page 784

Replicating SIP sessions
“SIP session affinity and failover” on page 785
“SIP cluster routing” on page 789
Upgrading SIP applications
“SIP IP sprayer” on page 790
Develop SIP applications
Developing SIP applications
“SIP industry standards compliance” on page 770
“Runtime considerations for SIP application developers”
on page 773
Developing a custom trust association interceptor
Developing SIP applications that support PRACK
“SIP IBM Rational Application Developer for WebSphere
framework” on page 774
Setting up SIP application composition
“SIP servlets” on page 774
“SIP SipServletRequest and SipServletResponse classes”
on page 775
“SIP SipSession and SipApplicationSession classes” on
page 776
“Example: SIP servlet simple proxy” on page 776
“Example: SIP servlet SendOnServlet class” on page 778
“Example: SIP servlet Proxy servlet class” on page 779
Deploy SIP applications
Deploying SIP applications
Deploying SIP applications through the console

Chapter 32. Overview and new features: Developing 1219

Deploying SIP applications through scripting
Secure SIP applications
Securing SIP applications
Configuring security for the SIP container
Trace SIP applications
Tracing a SIP container
Monitor SIP applications
SIP PMI counters
Troubleshoot SIP applications
Troubleshooting SIP applications
Tuning SIP servlets for Linux
Utilize SIP proxy server
Installing a Session Initiation Protocol proxy server
Trusting SIP messages from external domains
Load balancing with the Session Initiation Protocol proxy
server
Tracing a Session Initiation Protocol proxy server
SIP proxy settings
High availability and workload management with Session
Initiation Protocol proxy server
SIP external domains collection
SIP external domains
SIP routing rules collection
SIP routing rules set order
SIP routing rules detail
SIP rule condition collection
SIP rule condition detail
SIP proxy inbound channel detail

Conceptual overviews

Using Session Initiation Protocol to provide multimedia
and interactive services
“SIP in WebSphere Application Server” on page 769
“SIP applications” on page 770
“SIP container” on page 783

developerWorks articles

Introducing SIP
Developing converged applications

Tutorials

Tutorials are not available at this time.

Samples

Samples are not available at this time.

Learn about WebSphere programming extensions
Use this section as a starting point to investigate the WebSphere programming model extensions for
enhancing your application development and deployment.

1220 Overview

http://www-128.ibm.com/developerworks/websphere/techjournal/0606_burckart/0606_burckart.html
http://www-128.ibm.com/developerworks/websphere/techjournal//0608_burckart/0608_burckart.html

See the Developing and deploying applications PDF book for a brief description of each WebSphere
extension.

Your applications can use the Eclipse extension framework. Your applications are extensible as soon as
you define an extension point and provide the extension processing code for the extensible area of the
application. You can also plug an application into another extensible application by defining an extension
that adheres to the target extension point requirements. The extension point can find the newly added
extension dynamically and the new function is seamlessly integrated in the existing application. It works on
a cross Java Platform, Enterprise Edition (Java EE) module basis.

The application extension registry uses the Eclipse plug-in descriptor format and application programming
interfaces (APIs) as the standard extensibility mechanism for WebSphere applications. Developers that
build WebSphere application modules can use WebSphere Application Server extensions to implement
Eclipse tools and to provide plug-in modules to contribute functionality such as actions, tasks, menu items,
and links at predefined extension points in the WebSphere application.

Introduction: Dynamic cache
Explore the key concepts pertaining to the dynamic cache service, which improves performance by
caching the output of servlets, commands, web services, and JavaServer Pages (JSP) files.

The dynamic cache engine is the default cache provider for the dynamic cache APIs and framework.
However, starting with Version 6.1.0.27, dynamic cache allows WebSphere eXtreme Scale, which is the is
the strategic direction for caching for the WebSphere products, to act as its core caching engine.

Configuring the dynamic cache to use WebSphere eXtreme Scale lets you leverage transactional support,
improved scalability, high availability, and other WebSphere eXtreme Scale features without changing your
existing dynamic cache caching code. If you are currently using the default cache provider, you can use
the administrative console or wsadmin commands to replace the default dynamic cache provider with the
WebSphere eXtreme Scale dynamic cache provider. You do not have to make any changes to your
dynamic cache programming model. See the topic WebSphere eXtreme Scale dynamic cache provider in
the WebSphere eXtreme Scale Version 7.0 Information Center for an overview of the WebSphere eXtreme
Scale dynamic cache provider.

WebSphere eXtreme Scale can operate as an in-memory database processing space. You can use this
processing space to provide in-line caching for a database back-end, or as a side cache. in-line caching
uses WebSphere eXtreme Scale as the primary means for interacting with the data. When WebSphere
eXtreme Scale is used as a side cache, the back-end is used in conjunction with WebSphere eXtreme
Scale.

Functional advantages of using the WebSphere eXtreme Scale dynamic cache
provider

The WebSphere eXtreme Scale dynamic cache provider:

v Supports memory-to-memory replication for sessions.

v Can handle all of the generic data and session caching needs of your applications.

v Enables your applications to leverage system memory without using SAN or storage solutions to host a
dynamic cache disk cache.

v Provides a scalable replicated cache with a configurable number of replicas, thereby eliminating the
need to use the data replication service (DRS), which the default cache provider uses. Use of DRS
sometimes causes performance problems.

v Can be configured with additional WebSphere eXtreme Scale containers at runtime, thereby increasing
your cache capacity, and preventing performance issues that sometimes occur when you use DRS.
WebSphere eXtreme Scale automatically redistributes the partitions as new containers are added to the
grid.

Chapter 32. Overview and new features: Developing 1221

http://publib.boulder.ibm.com/infocenter/wxsinfo/v7r0/topic/com.ibm.websphere.extremescale.over.doc/cxsdynacache.html

v Provides better caching qualities of service and control, than the default cache provider.

v Uses the same runtime monitoring and administration tools as the classic dynamic cache. These tools,
such as the cache monitor and the dynamic cache runtime MBean, work the same way when dynamic
cache runs on top of WebSphere eXtreme Scale, as when they are used with classic dynamic cache.

Functional differences between the default cache provider and the WebSphere
eXtreme Scale dynamic cache provider

Following is a list of functional differences between the default cache provider and the WebSphere
eXtreme Scale dynamic cache provider:

v WebSphere eXtreme Scale dynamic cache provider does not include disk cache support because all
cache data is kept in memory. Therefore, the disk caching custom properties are not supported.

v WebSphere eXtreme Scale dynamic cache provider does not support the following features:

– DistributedNioMap - skipMemoryAndWriteToDisk

– DistributedMap and DistributedNioMap alias

– Disabling dependency IDs or templates

–

v WebSphere eXtreme Scale dynamic cache provider does not support DRS style replication. Therefore,
the DRS custom properties are not supported.

When you use the WebSphere eXtreme Scale dynamic cache provider, replication configuration is
controlled by the WebSphere eXtreme Scale deployment and definition files. See the topic Configuring
the dynamic cache provider for WebSphere eXtreme Scale in the WebSphere eXtreme Scale Version 7
Information Center for more information about replication.

v DistributedNioMapObject.release() is not called to release the byteBuffers for NIO buffer Management.

v WebSphere eXtreme Scale dynamic cache provider has limited PMI support. Certain PMI and MBean
counters are no longer valid. See the topic Configuring the dynamic cache provider for WebSphere
eXtreme Scale in the WebSphere eXtreme Scale Version 7 Information Center for more information.

v When firing any event, ObjectGrid always sets the sourceOfInvalidation to REMOTE

v You can use the DynaCache API to register event listeners regardless of which cache provider you are
using. However, if you use WebSphere eXtreme Scale dynamic cache provider, the event listeners work
as expected for local in-memory caches. When co-located containers are being used, events are thrown
on the machine where the request that caused the event is serviced instead of on the machine where
the request originated. For example if an invalidate request is issued on Server A and the cache entry
that gets invalidated is actually stored on Server B, then the event will be fired on Server B. With the
default dynamic cache provider, the event is fired on Server A. When stand-alone containers are being
used, no events are fired through the DynaCache event listener API.

Key concepts pertaining to the dynamic cache service

Explore the key concepts pertaining to the dynamic cache service, which improves performance by
caching the output of servlets, commands, web services, and JavaServer Pages (JSP) files.

Cache instances
An application uses a cache instance to store, retrieve, and share data objects within the dynamic
cache.

Using the dynamic cache service to improve performance
Caching the output of servlets, commands, and JavaServer Pages (JSP) improves application
performance. WebSphere Application Server consolidates several caching activities including
servlets, web services, and WebSphere commands into one service called the dynamic cache.
These caching activities work together to improve application performance, and share many
configuration parameters that are set in the dynamic cache service of an application server.

1222 Overview

http://publib.boulder.ibm.com/infocenter/wxsinfo/v7r0/index.jsp?topic=/com.ibm.websphere.extremescale.over.doc/txsdyncache.html
http://publib.boulder.ibm.com/infocenter/wxsinfo/v7r0/index.jsp?topic=/com.ibm.websphere.extremescale.over.doc/txsdyncache.html
http://publib.boulder.ibm.com/infocenter/wxsinfo/v7r0/index.jsp?topic=/com.ibm.websphere.extremescale.over.doc/txsdyncache.html
http://publib.boulder.ibm.com/infocenter/wxsinfo/v7r0/index.jsp?topic=/com.ibm.websphere.extremescale.over.doc/txsdyncache.html

Configuring dynamic cache to use the WebSphere eXtreme Scale dynamic cache provider
Configuring the dynamic cache service to use WebSphere eXtreme Scale lets you leverage
transactional support, improved scalability, high availability, and other WebSphere eXtreme Scale
features without changing your existing dynamic cache caching code.

Configuring servlet caching
After a servlet is invoked and completes generating the output to cache, a cache entry is created
containing the output and the side effects of the servlet. These side effects can include calls to
other servlets or JavaServer Pages (JSP) files or metadata about the entry, including timeout and
entry priority information.

Configuring portlet fragment caching
After a portlet is invoked and completes generating the output to cache, a cache entry is created
containing the output and the side effects of the portlet. These side effects can include calls to
other portlets or metadata about the entry, including timeout and entry priority information.

Eviction policies using the disk cache garbage collector
The disk cache garbage collector is responsible for evicting objects out of the disk cache, based
on a specified eviction policy.

Configuring the JAX-RPC web services client cache
The web services client cache is a part of the dynamic cache service that is used to increase the
performance of web services clients by caching responses from remote web services.

Cache monitor
Cache monitor is an installable web application that provides a real-time view of the current state
of dynamic cache. You use it to help verify that dynamic cache is operating as expected. The only
way to manipulate the data in the cache is by using the cache monitor. It provides a GUI interface
to manually change data.

Invalidation listeners
Invalidation listener mechanism uses Java events for alerting applications when contents are
removed from the cache.

Accessing the samples
The product offers samples that demonstrate common enterprise application tasks. Many samples also
provide instructions for deployment and coding examples.

The product provides samples in two ways:

Plants By WebSphere sample installed with the product
If you select to install samples when installing the product and when creating an application server
profile, the Plants By WebSphere application is included with the product. The application
demonstrates several Java Platform, Enterprise Edition (Java EE) functions, using an online store
that specializes in plant and garden tool sales.

See Installing the Plants By WebSphere sample.

Samples downloadable from the Samples, Version 8.5 information center
The product provides component-specific samples that you can download at any time from a
download site.

v Available samples

v Downloading samples

Installing the Plants By WebSphere sample

To install the Plants By WebSphere sample, perform the following steps.

1. Install the product.

Chapter 32. Overview and new features: Developing 1223

When specifying installation or profile options, select to install the sample applications.

Plants By WebSphere sample is installed in the app_server_root/samples directory. A Plants By
WebSphere pre-built enterprise archive named pbw-ear.ear is in the /samples/PlantsByWebSphere/
pbw-ear/target directory.

Installation instructions are in the /samples/PlantsByWebSphere/docs directory.

You can build or modify the sample source code to support your project. The source code is in a src
directory.

2. To run the sample in a distributed WebSphere Application Server, Network Deployment environment,
install and configure the samples in a stand-alone application server profile installation, and then add
the stand-alone application server profile as a managed node of the deployment manager cell.

You can use a deployment manager administrative console or wsadmin addNode command to make an
application server a managed node of a deployment manager. For the wsadmin addNode command,
use the dmgr_host argument with the -includeapps and -includebuses options.

For example:
addNode.sh/bat dmgr_hostname -includeapps -includebuses

where dmgr_hostname is name of the computer that hosts your deployment manager profile.

3. Start the application server.

Available samples

Samples that you can download include, for example, the following materials:

Service Component Architecture (SCA) samples
The SCA samples support SCA specifications. SCA services are packaged in Java archive (JAR)
files that you import as assets to the product repository and then add as composition units to
business-level applications.

Download SCA.zip, or individual sample files, to a directory on your workstation. You might create
the /samples/sca directory path on your workstation and download SCA sample files to that
directory path.

You must deploy SCA sample files as assets of a business-level application to a Version 8.0 or
later server or cluster or to a Version 7.0 target that is enabled for the Feature Pack for SCA. The
SCA/installableApps directory of SCA.zip contains prebuilt archives that you can deploy as
assets. The other directories contain sample-specific source files, scripts, and instructions for
building deployable archives.

Communications Enabled Applications (CEA) samples
The CEA sample applications provide two main services, telephony access and multi-modal web
interaction. Use this collection of sample applications to explore the services and to use as a
starting point when developing your own communication enabled applications.

OSGi samples
The OSGi samples help you develop and deploy modular applications that use both Java EE and
OSGi technologies.

XML samples
The XML samples demonstrate use of the XML API and supported specifications.

Internationalization service sample
The Internationalization service sample demonstrates how to use the internationalization service in
Java EE applications, specifically within servlets and enterprise beans.

Web services samples

These samples demonstrate both Java API for XML-based RPC (JAX-RPC) and Java API for XML
Web Services (JAX-WS) web services that use Java Platform, Enterprise Edition (Java EE) beans
and JavaBeans components.

1224 Overview

The JAX-WS web service samples demonstrate the implementation of one-way and two-way web
services that highlight the use of web services standards such as WS-Addressing (WS-A) ,
WS-Reliable Messaging (WS-RM), and WS-Secure Conversation (WS-SC) and the SOAP
Message Transmission Optimization Mechanism (MTOM) technology.

Service Data Objects (SDO) sample
This sample demonstrates data access to a relational database through Service Data Objects
(SDO) and Java DataBase Connectivity (JDBC) Mediator technologies.

Downloading samples

You can download samples from the Samples, Version 8.5 information center.

1. Go to the Samples, Version 8.5 information center.

2. Determine which samples you want to download.

3. On the Downloads tab for the samples that you want, click a Download Sample link.

4. In the authentication window, click OK.

5. Download the compressed file, or individual sample files, to a directory on your workstation.

You might create the /samples/sample_type directory path on your workstation and download the
sample files to that directory path.

Many sample compressed files have an /installableApps directory that contains deployable prebuilt
archives. Other directories contain files such as sample-specific source archives, scripts, and instructions
for building deployable archives.

To deploy them to the application server, you can use the administrative console or use the install script
in the app_server_root/samples/bin directory.

Limitations of the samples
v The samples are for demonstration purposes only.

The code that is provided is not intended to run in a secured production environment. The samples
support Java 2 Security, therefore the samples implement policy-based access control that checks for
permissions on protected system resources, such as file I/O.

The samples also support administrative security.

v Many of the samples connect to an Apache Derby database using the embedded framework of Apache
Derby. The embedded framework of Apache Derby has a limitation that only one Java virtual machine
(JVM) can access a given database instance. As a result, in a clustered application server environment,
the second server in the node fails to start the sample applications, because the first server (JVM)
already holds a connection to that database instance.

For applications that require multiple Java virtual machines to access the same Apache Derby instance,
use the Apache Derby networkServer framework.

Additional samples and examples

Samples on developerWorks
Additional product samples are available on WebSphere developerWorks

Samples in tutorials
Many product tutorials rely on sample code. To find tutorials that demonstrate specific
technologies, browse the links in “Tutorials” on page 12.

Examples in the product documentation
The product documentation contains many code snippets and examples. To locate these examples
easily, see the developer examples in the Reference section of the information center navigation
for the product edition that you are using.

Chapter 32. Overview and new features: Developing 1225

http://www.ibm.com/developerworks/websphere/library/samples/AppServer.html

Mail, URLs, and other J2EE resources
This topic describes the supported resources that are defined by Java Platform, Enterprise Edition (Java
EE).

The product supports all of the resources defined by the Java EE. It adds the following resources in
support of service extensions:
v Schedulers
v Work managers
v Object pools

Data access (JDBC and J2C)

The J2EE Connector architecture defines a standard architecture that enables the integration of various
enterprise information systems (EIS) with application servers and enterprise applications. It defines a
standard resource adapter used by a Java application to connect to an EIS. This resource adapter can
plug into the application server and, through the Common Client Interface (CCI), provide connectivity
between the EIS, the application server, and the enterprise application.

For more information, refer to “Data access resources” on page 1159.

Messaging

The product supports asynchronous messaging as a method of communication based on the Java
Message Service (JMS) programming interface. The base JMS support enables the product applications to
exchange messages asynchronously with other JMS clients by using JMS destinations (queues or topics).

For more information, refer to “Messaging resources” on page 1159.

Mail

Using JavaMail API, a code segment can be embedded in any Java EE application component, such as
an EJB or a servlet, allowing the application to send a message and save a copy of the mail to the Sent
folder.

For more information, refer to JavaMail API.

URLs

Java EE applications can use URLs as resources in the same way other Java EE resources, such as
JDBC and JavaMail, are used.

For more information, refer to “URLs” on page 370.

Resource environment entries

A resource environment reference maps a logical name used by the client application to the physical name
of an object.

For more information, see Configuring new resource environment entries to map logical environment
resource names to physical names.

Data access resources
These topics provide information about accessing data resources.

1226 Overview

The connection between an enterprise application and an enterprise information system (EIS) is
accomplished through the use of EIS-provided resource adapters, which are plugged into the application
server. The resource adapter plays a central role in the integration and connectivity between an EIS and
an application server. It serves as the point of contact between application components, application
servers, and enterprise information systems. A resource adapter must communicate with other components
based on well-defined contracts that are specified by the Java Platform, Enterprise Edition (Java EE)
Connector Architecture (JCA).

Generic inflow context enables a resource adapter to control the execution context of the Work instances it
submits to the application server. By submitting a Work instance that implements the WorkContextProvider
interface, a resource adapter can provide various types of context to the WebSphere Application Server. If
the application server supports the provided context types, the generic work context mechanism sets the
work contexts as the execution context of the Work instance. The context remains effective during the
execution the Work instance.

Security inflow context uses generic work context by enabling a resource adapter to establish security
information in the execution context of the Work instances that it submits to the application server. By
submitting a Work instance that provides context types by implementing the new standardized
SecurityContext interface, the application can establish and set an execution context containing the
security identities and credentials for a Work instance. The identities and credentials remain effective
during the execution of the Work instance, ensuring secure message delivery to Java EE message
endpoints.

WebSphere Application Server supports work context types that implement the new standardized
SecurityContext, TransactionContext and HintsContext interfaces. The generic inflow context mechanism
accepts implementations of the HintsContext interface, but the application server does not act upon these
implementations of the HintsContext interface. The security inflow context mechanism does not map user
identities from the EIS domain to identities in an application server domain. Identities provided by
implementations of SecurityContext must be in a security domain of application server.

Consult the following concept, reference, and task files for more overview information.

Messaging resources
WebSphere Application Server supports asynchronous messaging based on the Java Message Service
(JMS) and Java EE Connector Architecture (JCA) specifications, which provide a common way for Java
programs (clients and Java EE applications) to create, send, receive, and read asynchronous requests, as
messages. Applications can use point-to-point and publish/subscribe messaging. These styles of
messaging can be used in the following ways: one-way; request and response; one-way and forward.

JMS support enables applications to exchange messages asynchronously with other JMS clients by using
JMS destinations (queues or topics). Some messaging providers also allow WebSphere Application Server
applications to use JMS support to exchange messages asynchronously with non-JMS applications; for
example, WebSphere Application Server applications often need to exchange messages with WebSphere
MQ applications. Applications can explicitly poll for messages from JMS destinations, or they can use
message-driven beans to automatically retrieve messages from JMS destinations without explicitly polling
for messages. Message-driven beans can be configured as listeners on a Java EE Connector Architecture
(JCA) 1.5 or 1.6 resource adapter or against a listener port.

WebSphere Application Server supports the following messaging providers:

v The WebSphere Application Server default messaging provider (which uses service integration as the
provider)

v The WebSphere MQ messaging provider (which uses your WebSphere MQ system as the provider)

v Third-party messaging providers that implement either a JCA Version 1.5 or 1.6 resource adapter or the
ASF component of the JMS Version 1.0.2 specification

Chapter 32. Overview and new features: Developing 1227

Your applications can use messaging resources from any of these JMS providers. The choice of provider
is most often dictated by requirements to use or integrate with an existing messaging system. For
example, you might already have a messaging infrastructure based on WebSphere MQ. In this case, you
can either connect directly by using the WebSphere MQ messaging provider, or configure a service
integration bus with links to a WebSphere MQ network and then access the bus through the default
messaging provider.

If you mainly want to use messaging between applications in WebSphere Application Server, perhaps with
some interaction with a WebSphere MQ system, the default messaging provider is a logical choice. If your
business also uses WebSphere MQ, and you want to integrate WebSphere Application Server messaging
applications into a predominately WebSphere MQ network, choose the WebSphere MQ messaging
provider. To administer a third-party messaging provider, you use either the resource adaptor (for a Java
EE Connector Architecture (JCA) 1.5-compliant or 1.6-compliant messaging provider) or the client (for a
non-JCA messaging provider) that is supplied by the third party.

For more information, see “Introduction: Messaging resources” on page 1216.

1228 Overview

Chapter 33. Overview and new features for monitoring

Use the links provided in this topic to learn about monitoring capabilities.

New for administrators: Improved monitoring and performance tuning
A section of this topic describes what is new in the area of performance tuning.

Performance: Resources for learning
Use the following links to find relevant supplemental information about performance. The information
resides on IBM and non-IBM Internet sites, whose sponsors control the technical accuracy of the
information.

These links are provided for convenience. Often, the information is not specific to the IBM WebSphere
Application Server product, but is useful for understanding the product. When possible, links are provided
to technical papers and Redbooks that supplement the broad coverage of the release documentation with
in-depth examinations of particular product areas. The following sections are covered in this reference:

View the following links for additional information:

v “Request metrics ”

v “Monitoring performance with third-party tools”

v “Tuning performance”

v “Java™ performance resource”

Request metrics
v Systems Management: Application Response Measurement (ARM)

The Open Group ARM specifications.

Monitoring performance with third-party tools
v IBM Search Solutions.

Use IBM's Global Solution Directory to find a list of IBM's business partners that offer performance
monitoring tools compliant with WebSphere Application Server.

Tuning performance
v Hints on Running a high-performance web server

Read hints about running Apache on a heavily loaded web server. The suggestions include how to tune
your kernel for the heavier TCP/IP load, and hardware and software conflicts.

v Performance Analysis for Java websites

Offers clear explanations and expert practical guidance on performance analysis for Java-based
websites. It offers extensive appendices, including worksheets for capacity planning, checklists to help
you prepare for different stages of performance testing, and a list of performance-test tool vendors.

v AIX® documentation

View the entire AIX software documentation library for releases 4.3, 5.1, and 5.2.
v WebSphere Application Server Development Best Practices for Performance and Scalability

Describes development best practices for web applications with servlets, JavaServer Pages files, JDBC
connections, and enterprise applications with Enterprise JavaBeans components.

v WebSphere Application Server V6 Scalability and Performance Handbook
v WebSphere tuning for the impatient: How to get 80% of the performance improvement with 20% of the

effort

Java™ performance resource
v IBM developerWorks

© IBM Corporation 2003, 2008 1229

http://www.opengroup.org/publications/catalog/c807.htm
http://www-304.ibm.com/partnerworld/gsd/search.do
http://www-306.ibm.com/software/webservers/httpservers/doc/v136/misc/perf.html
http://www.informit.com/store/product.aspx?isbn=0201844540
http://publib16.boulder.ibm.com/pseries/en_US/infocenter/base/aix.htm
http://www.ibm.com/software/webservers/appserv/ws_bestpractices.pdf
http://www.redbooks.ibm.com/abstracts/SG246392.html
http://www.ibm.com/developerworks/websphere/library/techarticles/0602_lurie/0602_lurie.html
http://www.ibm.com/developerworks/websphere/library/techarticles/0602_lurie/0602_lurie.html
http://www.ibm.com/developerworks

Search the IBM developerWorks website for a list of garbage collection documentation, including
“Understanding the IBM Java Garbage Collector”, a three-part series. To locate the documentation,
search on “sensible garbage collection” in the developerWorks search application.

Review “Understanding the IBM Java Garbage Collector” for a description of the IBM verbose:gc output
and more information about the IBM garbage collector.

1230 Overview

Chapter 34. Overview and new features for tuning
performance

Use the links provided in this topic to learn about tuning applications and their environment.

There are currently no new tuning performance updates for this release.

© Copyright IBM Corp. 2012 1231

1232 Overview

Chapter 35. Overview and new features for troubleshooting

Use the links provided in this topic to learn about troubleshooting and problem determination capabilities.

What is new for troubleshooters

This topic provides an overview of new and changed features in troubleshooting tools and support.

Diagnosing problems (using diagnosis tools)

This topic provides a place to start your search for troubleshooting information.

Troubleshooting overview

Troubleshooting is the process of finding and eliminating the cause of a problem. Whenever you have a
problem with your IBM software, the troubleshooting process begins as soon as you ask yourself what
happened? A basic troubleshooting strategy at a high level involves:

1. Recording the symptoms.

2. Recreating the problem.

3. Eliminating possible causes.

4. Using diagnostic tools.

Recording the symptoms of the problem

Depending on the type of problem you have, whether it be with your application, your server, or your tools,
you might receive a message that indicates something is wrong. Always record the error message that you
see. As simple as this sounds, error messages sometimes contain codes that might make more sense as
you investigate your problem further. You might also receive multiple error messages that look similar but
have subtle differences. By recording the details of each one, you can learn more about where your
problem exists.

Recreating the problem

Think back to what steps you were doing that led you to this problem. Try those steps again to see if you
can easily recreate this problem. If you have a consistently repeatable test case, you will have an easier
time determining what solutions are necessary.

v How did you first notice the problem?

v Did you do anything different that made you notice the problem?

v Is the process that is causing the problem a new procedure, or has it worked successfully before?

v If this worked before what has changed? The change can refer to any type of change made to the
system, ranging from adding new hardware or software, to configuration changes to existing software.

v What was the first symptom of the problem you witnessed? Were there other symptoms occurring
around that point of time?

v Does the same problem occur elsewhere? Is only one machine experiencing the problem or are multiple
machines experiencing the same problem?

v What messages are being generated that could indicate what the problem is?

Eliminating possible causes

Narrow the scope of your problem by eliminating components that are not causing the problem. By using a
process of elimination, you can simplify your problem and avoid wasting time in areas that are not culprits.
Consult the information in this product and other available resources to help you with your elimination
process.

© IBM Corporation 2003 1233

See the information on troubleshooting and support to learn more about problem determination tools that
are provided by the product.

Using diagnostic tools

As a more advanced task, there are various tools that you can use to analyze and diagnose problems with
your system. To learn how to use these tools see the information about using diagnosis tools to diagnose
problems. .

What is new for troubleshooters
This version provides many new features for troubleshooting and servicing the product, with a focus on the
ability to automatically detect and recover from problems.

v Configuring the memory leak policy

You can configure WebSphere Application Server to detect, prevent, and take action, if possible, on
classloader memory leaks using the memory leak detection policy. For more information about memory
leaks, read the Memory Leaks in Java Platform, Enterprise Edition applications topic.

v Cross Component Trace (XCT)

XCT helps identify the root cause of problems across components, which provides the following
benefits:

– Enables administrators and support teams to follow the flow of a request from end-to-end as it
traverses thread or process boundaries, or travels between stack products and WebSphere
Application Server.

– Helps to resolve questions about which component is responsible for a request that fails.

v High Performance Extensible Logging (HPEL)

– You can use the LogViewer command-line tool to filter records based on the content of log and trace
record extensions. The application server automatically creates an appName extension for each log
and trace record related to a Java Platform, Enterprise Edition (Java EE) application, indicating the
name of that application. The application server also automatically creates a requestID extension for
each log and trace record created during the processing of certain types of requests (for example
HTTP or JMS requests), indicating the unique ID of that request.

– Developers can use HPEL to add custom extensions to log and trace records through a log record
context API (com.ibm.websphere.logging.hpel.LogRecordContext). When HPEL stores log and trace
records, it includes any extensions present in the log record context on the same thread. For
example, a developer might write a servlet filter to add important HTTP request parameters to the
log record context. While that servlet runs, HPEL adds those extensions to any log and trace records
created on the same thread.

v Memory leaks in Java Platform, Enterprise Edition applications

WebSphere Application Server Version 8.5 provides a top down pattern-based memory leak detection,
prevention, and action by watching for suspect patterns in application code at run time. WebSphere
Application Server has some means of protection against memory leaks when stopping or redeploying
applications. If leak detection, prevention and action are enabled, WebSphere Application Server
monitors application and module activity performs diagnostic actions to detect and fix leaks when an
application or an individual module stops. This feature helps in increasing application up time with
frequent application redeployments without cycling the server.

v Using the IBM Support Assistant Data Collector

The IBM Support Assistant Data Collector for WebSphere Application Server tool focuses on automatic
collection of problem data. It also provides symptom analysis support for the various categories of
problems encountered by IBM software products. Information pertinent to a type of problem is collected
to help identify the origin of the problem under investigation. The tool assists customers by reducing the
amount of time it takes to reproduce a problem with the proper RAS tracing levels set, as well as by
reducing the effort required to send the appropriate log information to IBM Support.

1234 Overview

Chapter 36. What has changed in this release

These are changes to the default behavior for the application server. Take note of these changes and
modify your applications appropriately.

Consult the following topics.

v What has changed for administrators (includes performance)

v What has changed for developers

v What has changed for installers

v What has changed for security specialists

Note also that you can perform a search for the keyword trns to find all topics in which a changed
behavior or setting is noted.

Transitioning notes for administration topics
When you upgrade the application server to a newer version, be aware of the following settings that you
might want to change.

v APCconfig.jacl script

The WebSphere Virtual Enterprise command that equates to APCconfig.jacl is xd_APCconfig.jacl. If
you are making the transition from WebSphere Virtual Enterprise, you can continue to use the
xd_APCconfig.jacl command, which operates the same as the APCconfig.jacl command.

v BBSON bulletin board

The WebSphere Virtual Enterprise command that equates to manageBBSON.py is manageWVEBB.py. If you
are making the transition from WebSphere Virtual Enterprise, you can continue to use the
manageWVEBB.py command, which operates the same as the manageBBSON.py command.

v dumpIMPState.py script

The WebSphere Virtual Enterprise command that equates to dumpIMPState.py is dumpXdState.py. If you
are making the transition from WebSphere Virtual Enterprise, you can continue to use the
dumpXdState.py command, which operates the same as the dumpIMPState.py command.

v Dynamic operations

In WebSphere Virtual Enterprise, controllers start automatically as highly available managed items
unless explicitly suppressed. In Intelligent Management, controllers are dormant until they detect that
they are needed. When the controllers are needed, they become active. When the controllers detect
that they are no longer needed, they become dormant again. Controllers that are disabled or are in
manual mode do not use this detection capability.

v hadmgrAdd command

The Intelligent Management command that equates to hadmgrAdd is xd_hadmgrAdd. If you are making the
transition from WebSphere Virtual Enterprise, you can continue to use the xd_hadmgrAdd command,
which operates the same as the hadmgrAdd command.

v hadmgrRemove command

The Intelligent Management command that equates to hadmgrRemove is xd_hadmgrRemove. If you are
making the transition from WebSphere Virtual Enterprise, you can continue to use the xd_hadmgrRemove
command, which operates the same as the hadmgrRemove command.

v manageBBSON.py script

The WebSphere Virtual Enterprise command that equates to manageBBSON.py is manageWVEBB.py. If you
are making the transition from WebSphere Virtual Enterprise, you can continue to use the
manageWVEBB.py command, which operates the same as the manageBBSON.py command.

v manageODC.py script

© Copyright IBM Corp. 2012 1235

welc_trnsadmininstrator.html
welc_trnsdeveloper.html
welc_trnssecurity.html

The WebSphere Virtual Enterprise command that equates to manageODC.py is ve_manageODC.py. If you
are making the transition from WebSphere Virtual Enterprise, you can continue to use the
ve_manageODC.py command, which operates the same as the manageODC.py command.

v PlacementControllerProcs.jacl script

The WebSphere Virtual Enterprise command that equates to APCconfig.jacl is xd_APCconfig.jacl. If
you are making the transition from WebSphere Virtual Enterprise, you can continue to use the
xd_APCconfig.jacl command, which operates the same as the APCconfig.jacl command.

v useBBSON.py script

The Intelligent Management command that equates to useBBSON.py is useWVEBB.py. If you are making
the transition from WebSphere Virtual Enterprise, you can continue to use the useWVEBB.py command,
which operates the same as the useBBSON.py command.

v workclassoperations.py script

The WebSphere Virtual Enterprise command that equates to IMPPYModules.py is XDPYModules.py. If you
are making the transition from WebSphere Virtual Enterprise, you can continue to use the
XDPYModules.py command, which operates the same as the IMPPYModules.py command.

Transitioning notes for development topics
When you upgrade the application server to a newer version, be aware of the following settings that you
might want to change.

v Configuring JavaServer Faces implementation

The Application Server JSF engine determines if the SUN Reference Implementation (RI) 1.2 or Apache
MyFaces 2.0 is used from the Application Server run time. If either is used, the correct listener class is
registered with the web container. You do not need to add the com.sun.faces.ConfigureListener or the
org.apache.myfaces.StartupConfigureListener to your web.xml file.

v Configuring the SCA JMS binding

Differences between the OSOA and OASIS JMS binding specifications might affect migration of
applications from OSOA to OASIS. Some commonly encountered differences include:

– The validation schemas used for the OASIS applications are defined by the OASIS SCA
specification. The OASIS binding schema definition mandates that binding elements appear in the
exact order as defined in the schema. For OSOA applications, element order does not affect
validation so, when migrating applications from OSOA, ensure the binding elements are in the order
specified by the OASIS binding schema.

– For the <destination>, <connectionFactory>, and <activationSpec> elements, the name attribute is
jndiName in OASIS.

– In OASIS composites, callback references must specify a destination element. The specified
destination is used only if the destination cannot be determined from the scaCallbackDestination or
JMSReplyTo properties of the service request message. In OSOA composites, callback references
can omit the destination element if it is known that one of the properties is always set.

For information on other differences, consult the OASIS specification for additional information about
specific elements.

v Migration of JPA applications and bean validation

The Bean Validation API and implementation are included in the Version 8.x product. If you want to
deploy the feature pack applications on Version 8.x, be aware of the following changes in configuration
and runtime behaviors:

– In Version 7.0, the system property, com.ibm.websphere.validation.api.jar.path, is used to direct the
feature pack run time to locate the Bean Validation API JAR file. In Version 8.x, the Bean Validation
API JAR file is built into the product installation, therefore, this system property is ignored. However,
the bean validation provider can still be overridden in Version 7 and Version 8.x when packaged in
application or shared libraries. The third bullet describes this usage scenario.

1236 Overview

– The bean validation implementation in WebSphere Application Server is automatically the effective
default bean validation provider.

– If standard bean validation features are used by the JPA application, the
com.ibm.websphere.validation.api.jar.path system property, and user-supplied bean validation
provider can be removed from application deployment.

– If non-specification compliant or provider-specific features are used by an application, the bean
validation provider that supports the required features must be packaged, configured, and deployed
as a typical, third-party service provider in the user application, the application shared library, and the
server associated shared library. Read more about shared library usage in applications for more
information.

v Migration scenario for the getHeaderNames method

To ensure the most successful migration, the return type of the StoredResponse getHeaderNames
method was changed to com.ibm.websphere.servlet.response.CollectionEnumerationHybrid<String>.
This type implements both Collection<String> and Enumeration.

v “Runtime considerations for SIP application developers” on page 773

When a SIP application sends a request to a SIP URI over Transport Layer Security (TLS) in version
6.1, the request URI scheme changes from "sip" to "sips." In the current version, the scheme does not
change. You can reverse the new behavior by changing the application code. With a "sips" URI, the
behavior remains the same after upgrading from version 6.1 to 7.0 or above. See the information center
topic Premigration considerations for more information.

Transitioning notes for deployment topics
When you upgrade the application server to a newer version, be aware of the following settings that you
might want to change.

v BLAManagement command group for the AdminTask object using wsadmin scripting

In the WebSphere Application Server Version 7 Feature Pack for OSGi Applications and Java
Persistence API 2.0, bundle changes to the asset are applied by restarting the business-level
application. In Version 8.x, these changes are applied by updating the composition unit. The new
approach in Version 8.x means that many bundle changes can be applied in place, without restarting
the running business-level application. To enable this new approach, the UpdateAppContentVersionsStep
parameter has been replaced with the UpdateAppContentVersions parameter, and instead of restarting
the business-level application you run the editCompUnit command with the CompUnitStatusStep
parameter.

v SCA programming model support in OSGi applications

If your application previously used SDO version 1.0.0, change the Import-Package to:

Import-Package: commonj.sdo;version="[2.0.0,3.0.0)"

Transitioning notes for security topics
When you upgrade the application server to a newer version, be aware of the following settings that you
might want to change.

v SSL cipher specifications

To improve security, IBM HTTP Server Version 8.0 disables weak SSL ciphers, export SSL ciphers, and
the SSL version 2 protocol by default. SSL Version 2, weak ciphers, and export ciphers are generally
unsuitable for production SSL workloads on the internet and are flagged by security scanners. To enable
ciphers, use the SSLCipherSpec directive.

Chapter 36. What has changed in this release 1237

1238 Overview

Chapter 37. WebSphere Application Server roles and goals

There are several different computing roles that members of your organization might undertake when
working with WebSphere Application Server.

Enterprise architect

The enterprise architect provides overall leadership for all architectural and technological matters with
respect to the company's IT environment.

Solution architect

The solution architect designs and coordinates a new solution, application or component with end-to-end
responsibility including both hardware and software elements.

The main goal of the solution architect is to design a solution that supports the specification set by the
enterprise architect.

System administrator

The system administrator is responsible for managing systems and software, and for installing operating
system upgrades and middleware products in many accounts.

The system administrator installs and configures appropriate hardware and software (including
middleware) to implement the design provided by the solution architect. Additionally the system
administrator monitors and maintains the configured system, modifying and removing previously configured
objects as and when required.

Application developer

The application developer creates business applications.

The goal of the application developer is to develop applications that provide the business services
described by the solution architect.

© Copyright IBM Corp. 2012 1239

1240 Overview

Chapter 38. Fast paths for WebSphere Application Server

Use the paths in this topic to deploy applications quickly and easily. This topic provides links that pinpoint
the relevant information for reaching your goals quickly. It also describes the audience roles and tasks
assumed by this documentation. The fast paths in this topic are intended to help you gain a little
experience. The fast paths do not showcase the advanced product features that some users need or want
to use in their production environments.

About this task

Deploying any type of application involves the following tasks.

Procedure
1. Install the product.

The simplest scenario is to perform a typical installation of a single application server.

You can use the WebSphere Application Server, Express on Linux or Windows operating systems to
try out the product. It has a single application server and its Trial program code is available at no cost.

2. Obtain or develop your application.

In the simplest scenario, you already have a packaged web application that is compliant with Java
Platform, Enterprise Edition (Java EE), perhaps from a vendor with whom you work. Other than that, a
web application is the most simple type of application to develop. See topics on developing web
applications, or refer to product samples.

3. Deploy and test your application.

In the simplest scenario, you will use the application installation wizard available in the administrative
console. See topics on installing applications for a detailed walkthrough of this task. The task describes
many contingencies, but many of these steps can be disregarded if:

v You are deploying a web application.

v You accept the default settings whenever possible.

v Your application does not require data access.

v Your application does not require security.

Also, in many situations, you do not need to modify the default application server configuration.

4. Administer your deployed application.

In the simplest scenario, you monitor your application with the Tivoli Performance Viewer functionality
built into the administrative console. For an overview of this task, see topics on Monitoring
performance.

Results

Now you should have some insight into the task flow for successfully deploying your applications.

To solidify and expand your understanding, view the following table. It shows the user role and task
assumptions by which this documentation is organized, for predictability. If you know what role or task you
are performing, you can disregard (at least temporarily) documentation that is labeled for other roles or
tasks. By their nature, role and task models are simplified compared to reality. Also, one person might
perform many roles and tasks in the course of a day.

© IBM Corporation 2004 1241

Table 140. Mapping of user roles to user tasks. Each user role performs at least one user task.

User role User tasks

Installer Install application serving environment

Administer applications and environment

Migrate deployed applications and their environment

Administrator Administer applications and environment

Deploy applications into production

Monitor and tune applications and their environment

Developer
Develop or migrate application code

Assemble applications for deployment

Deploy applications for testing

Security expert
Secure applications and their environment

Troubleshooter
Use tools to troubleshoot problems

1242 Overview

Chapter 39. Release notes

Links are provided to a description of the new functionality, the product support website, the product
documentation, and to last-minute updates, limitations, and known problems for IBM WebSphere
Application Server Version 8.5 products.

v “Accessing last-minute updates, limitations, and known problems”

v “Accessing hardware and software requirements”

v “Accessing product documentation”

v “Accessing the product support website”

v “Contacting IBM Software Support”

Accessing last-minute updates, limitations, and known problems

Release notes are available at the following URL:

v WebSphere Application Server Version 8.5

Accessing hardware and software requirements
v The hardware and software requirements for the WebSphere Application Server products are provided

on the Detailed system requirements web page.

Accessing product documentation

The following documentation is installed with this product.

Help files

The help files provide detailed instructions for completing tasks and for specifying settings in the
graphical systems management tools. Use the help menus, links, or buttons provided in the tool
interfaces to access the help files.

Documentation on the web

For the entire documentation set for all WebSphere Application Server products, including the
information center and Adobe Acrobat PDF versions of the information, go to the WebSphere
Application Server library web page. All product documentation is in the information center,
including versions of the installed help files.

Accessing the product support website
v To search for the latest troubleshooting tips, downloads, fixes, and other support-related information, go

to the WebSphere Application Server support page.

Contacting IBM Software Support

If you encounter a problem with this product, first try the following actions:

v Following the steps described in the product documentation

v Looking for related documentation in the online help

v Looking up error messages in the message reference

If you cannot resolve your problem by any of the preceding methods:

1. Go to the WebSphere Application Server support page.

2. Expand the Contact Support section.

v Click "Exchanging information with IBM Tech Support", and follow the information collection
instructions provided.

© Copyright IBM Corp. 2012 1243

http://www14.software.ibm.com/webapp/wsbroker/redirect?version=phil&product=was-nd-mp&topic=dcf_v85relnotes_dist
http://www.ibm.com/support/docview.wss?rs=180&uid=swg27006921
http://www.ibm.com/software/webservers/appserv/was/library/
http://www.ibm.com/software/webservers/appserv/was/library/
http://www.ibm.com/software/webservers/appserv/was/support/
http://www.ibm.com/support/entry/portal/Overview/Software/WebSphere/WebSphere_Application_Server

v Click "Directory of worldwide contacts" to find the appropriate contact information for your
geography.

1244 Overview

Chapter 40. WebSphere platform and related software

This article provides information on other WebSphere and IBM products.

What is WebSphere?
IBM WebSphere® is the leading software platform for e-business on demand™. Successful industry
leaders choose this adaptable, open platform to succeed in quickly and reliably delivering business
results today knowing it gives them the freedom to grow their e-business in the future. Providing a
full range of middleware software and support offerings, the WebSphere platform is infrastructure
software that enables companies to develop, deploy, and integrate next-generation e-business
applications from simple web publishing through enterprise-scale transaction processing.

WebSphere software transforms the way businesses manage customer, partner, and employee
relationships. For example, you can use it to create compelling Web experiences, extend
applications to incorporate mobile devices, and build electronic e-marketplaces. WebSphere
software is all about the three fundamental aspects of e-business on demand:

v Foundation & Tools. Rely upon a high quality foundation to rapidly build and deploy
applications for high-performance e-business on demand.

v Business Portals. Enhance customer, partner, employee, and supplier user experiences for
optimal satisfaction.

v Business Integration. Integrate applications and automate business processes for operational
efficiency and business flexibility.

WebSphere software platform
This page is the main web page for finding information about products in the WebSphere brand.

WebSphere Extended Deployment
WebSphere Extended Deployment offers a dynamic, goals-directed, high-performance
environment for running mixed application types and workload patterns in WebSphere. With these
capabilities, you can optimize the resource utilization and management of your IT infrastructure,
while enhancing the quality of service for your business-critical applications.

© Copyright IBM Corp. 2012 1245

http://www.ibm.com/software/info1/websphere/index.jsp
http://www.ibm.com/software/webservers/appserv/extend/

1246 Overview

Chapter 41. Guided activities for the administrative console

The topic describes the guided activities that are available in the administrative console. Guided activities
lead you through common administrative tasks that require you to visit multiple administrative console
pages.

Table 141. Quick reference: Accessing the guided activities. The following table gives you the web address for the
guided activities in the administrative console.

The guided activities are available from the main page of the administrative console. The page is displayed after you
log into the administrative console. To open the console, enter this web address in your web browser:

http://your_fully_qualified_server_name:9060/ibm/console

Depending on your configuration, your web address might differ. Other factors can affect your ability to access the
console. See Starting and logging off the administrative console for details, as needed.

Guided activities display each administrative console page that you need to perform a task, surrounded by
the following information to help you perform the task successfully.

v An introduction to the task, introducing essential concepts and describing when and why to perform the
task

v Other tasks to do before and after performing the task

v The main steps to complete during this task

v Hints and tips to help you avoid and recover from problems

v Links to field descriptions and extended task information in the online documentation

© Copyright IBM Corp. 2012 1247

1248 Overview

Chapter 42. Tutorials

This topic describes how to find tutorials and their accompanying samples, for learning how to accomplish
your goals with the product.

IBM Education Assistant tutorials
The IBM Education Assistant site provides education resources that you can use at your
convenience.

developerWorks tutorials and training
The Tutorials and Training page of developerWorks provides tutorials and other training resources
that you can use at your convenience.

© Copyright IBM Corp. 2012 1249

http://publib.boulder.ibm.com/infocenter/ieduasst/v1r1m0/index.jsp
http://www.ibm.com/developerworks/training/tutorials.html

1250 Overview

Chapter 43. Accessing the samples

The product offers samples that demonstrate common enterprise application tasks. Many samples also
provide instructions for deployment and coding examples.

The product provides samples in two ways:

Plants By WebSphere sample installed with the product
If you select to install samples when installing the product and when creating an application server
profile, the Plants By WebSphere application is included with the product. The application
demonstrates several Java Platform, Enterprise Edition (Java EE) functions, using an online store
that specializes in plant and garden tool sales.

See Installing the Plants By WebSphere sample.

Samples downloadable from the Samples, Version 8.5 information center
The product provides component-specific samples that you can download at any time from a
download site.

v Available samples

v Downloading samples

Installing the Plants By WebSphere sample

To install the Plants By WebSphere sample, perform the following steps.

1. Install the product.

When specifying installation or profile options, select to install the sample applications.

Plants By WebSphere sample is installed in the app_server_root/samples directory. A Plants By
WebSphere pre-built enterprise archive named pbw-ear.ear is in the /samples/PlantsByWebSphere/
pbw-ear/target directory.

Installation instructions are in the /samples/PlantsByWebSphere/docs directory.

You can build or modify the sample source code to support your project. The source code is in a src
directory.

2. To run the sample in a distributed WebSphere Application Server, Network Deployment environment,
install and configure the samples in a stand-alone application server profile installation, and then add
the stand-alone application server profile as a managed node of the deployment manager cell.

You can use a deployment manager administrative console or wsadmin addNode command to make an
application server a managed node of a deployment manager. For the wsadmin addNode command,
use the dmgr_host argument with the -includeapps and -includebuses options.

For example:
addNode.sh/bat dmgr_hostname -includeapps -includebuses

where dmgr_hostname is name of the computer that hosts your deployment manager profile.

3. Start the application server.

Available samples

Samples that you can download include, for example, the following materials:

Service Component Architecture (SCA) samples
The SCA samples support SCA specifications. SCA services are packaged in Java archive (JAR)
files that you import as assets to the product repository and then add as composition units to
business-level applications.

© Copyright IBM Corp. 2012 1251

Download SCA.zip, or individual sample files, to a directory on your workstation. You might create
the /samples/sca directory path on your workstation and download SCA sample files to that
directory path.

You must deploy SCA sample files as assets of a business-level application to a Version 8.0 or
later server or cluster or to a Version 7.0 target that is enabled for the Feature Pack for SCA. The
SCA/installableApps directory of SCA.zip contains prebuilt archives that you can deploy as
assets. The other directories contain sample-specific source files, scripts, and instructions for
building deployable archives.

Communications Enabled Applications (CEA) samples
The CEA sample applications provide two main services, telephony access and multi-modal web
interaction. Use this collection of sample applications to explore the services and to use as a
starting point when developing your own communication enabled applications.

OSGi samples
The OSGi samples help you develop and deploy modular applications that use both Java EE and
OSGi technologies.

XML samples
The XML samples demonstrate use of the XML API and supported specifications.

Internationalization service sample
The Internationalization service sample demonstrates how to use the internationalization service in
Java EE applications, specifically within servlets and enterprise beans.

Web services samples

These samples demonstrate both Java API for XML-based RPC (JAX-RPC) and Java API for XML
Web Services (JAX-WS) web services that use Java Platform, Enterprise Edition (Java EE) beans
and JavaBeans components.

The JAX-WS web service samples demonstrate the implementation of one-way and two-way web
services that highlight the use of web services standards such as WS-Addressing (WS-A) ,
WS-Reliable Messaging (WS-RM), and WS-Secure Conversation (WS-SC) and the SOAP
Message Transmission Optimization Mechanism (MTOM) technology.

Service Data Objects (SDO) sample
This sample demonstrates data access to a relational database through Service Data Objects
(SDO) and Java DataBase Connectivity (JDBC) Mediator technologies.

Downloading samples

You can download samples from the Samples, Version 8.5 information center.

1. Go to the Samples, Version 8.5 information center.

2. Determine which samples you want to download.

3. On the Downloads tab for the samples that you want, click a Download Sample link.

4. In the authentication window, click OK.

5. Download the compressed file, or individual sample files, to a directory on your workstation.

You might create the /samples/sample_type directory path on your workstation and download the
sample files to that directory path.

Many sample compressed files have an /installableApps directory that contains deployable prebuilt
archives. Other directories contain files such as sample-specific source archives, scripts, and instructions
for building deployable archives.

To deploy them to the application server, you can use the administrative console or use the install script
in the app_server_root/samples/bin directory.

1252 Overview

Limitations of the samples
v The samples are for demonstration purposes only.

The code that is provided is not intended to run in a secured production environment. The samples
support Java 2 Security, therefore the samples implement policy-based access control that checks for
permissions on protected system resources, such as file I/O.

The samples also support administrative security.

v Many of the samples connect to an Apache Derby database using the embedded framework of Apache
Derby. The embedded framework of Apache Derby has a limitation that only one Java virtual machine
(JVM) can access a given database instance. As a result, in a clustered application server environment,
the second server in the node fails to start the sample applications, because the first server (JVM)
already holds a connection to that database instance.

For applications that require multiple Java virtual machines to access the same Apache Derby instance,
use the Apache Derby networkServer framework.

Additional samples and examples

Samples on developerWorks
Additional product samples are available on WebSphere developerWorks

Samples in tutorials
Many product tutorials rely on sample code. To find tutorials that demonstrate specific
technologies, browse the links in “Tutorials” on page 12.

Examples in the product documentation
The product documentation contains many code snippets and examples. To locate these examples
easily, see the developer examples in the Reference section of the information center navigation
for the product edition that you are using.

Chapter 43. Accessing the samples 1253

http://www.ibm.com/developerworks/websphere/library/samples/AppServer.html

1254 Overview

Chapter 44. Using the administrative clients

The product provides a variety of administrative clients for deploying and administering your applications
and application serving environment, including configurations and logical administrative domains.

Procedure
v Using the administrative console

The administrative console is a graphical, browser-based tool.

v Getting started with wsadmin scripting

Scripting is a non-graphical alternative that you can use to configure and administer your applications
and application serving environment. The WebSphere Application Server wsadmin tool provides the
ability to run scripts. The wsadmin tool supports a full range of product administrative activities.

v Using Ant to automate tasks

To support using Apache Ant with Java Platform, Enterprise Edition (Java EE) applications running on
IBM WebSphere Application Server, the product provides a copy of the Ant tool and a set of Ant tasks
that extend the capabilities of Ant to include product-specific functions.

v Using administrative programs (JMX)

The product supports access to the administrative functions through a set of Java classes and methods,
under the Java Management Extensions (JMX) specification. You can write a Java program that
performs any of the administrative features of the other administrative clients. You also can extend the
basic product administrative system to include your own managed resources.

v Using command-line tools

Several command-line tools are available that you can use to start, stop, and monitor WebSphere
server processes and nodes. These tools work on local servers and nodes only. They cannot operate
on a remote server or node.

© Copyright IBM Corp. 2012 1255

1256 Overview

Chapter 45. Specifications and API documentation

The WebSphere Application Server product supports various industry standards. This topic lists the
specifications and application programming interface (API) documentation supported in current and
previous product releases.

Components
v Any application type
v Web applications
v Portlet applications
v SIP applications
v EJB applications
v OSGi applications
v Client applications
v Web services
v Service Component Architecture
v Service integration
v Data access resources
v Messaging resources
v Mail, URLs, and other Java EE resources
v Security
v Web Services Security
v Naming and directory
v Object Request Broker
v Transactions
v WebSphere extensions
v Administration

The Version 8.5 column in the tables lists the latest specification level that the product supports. However,
support for specifications is compatible with earlier versions of the product; the Version 8.5 product
supports all specifications that are listed for Version 6.0 through Version 8.5. For example, for any
application type, the Version 8.0 product supports Java EE 5 and 6 and J2EE 1.2, 1.3, and 1.4. The word
“New” beside a specification indicates that the product first supported the specification in that product
version.

Any application type

Table 142. Supported specifications for any application type. The product supports the specifications or APIs in this
table.

Specification or API Version 8.5 Version 8.0 Version 7.0 Version 6.1 Version 6.0

Java Platform, Enterprise Edition (Java EE)
specification

Prior to Java EE 5, the specification name
was Java 2 Platform, Enterprise Edition
(J2EE).

Java EE 6
(JSR 316)

Java EE 6
(JSR 316)
New

Java EE 5
New

J2EE 1.4 J2EE 1.4
New

J2EE 1.3

J2EE 1.2

Java Platform, Standard Edition (Java SE)
specification

Prior to Java SE 6, the specification name
was Java 2 Platform, Standard Edition (J2SE).

Java SE 7
New

Java SE 6 Java SE 6
New

J2SE 5 J2SE 1.4.2

ISO 8859 specifications ISO 8859 applies to these versions.

© Copyright IBM Corp. 2012 1257

http://jcp.org/en/jsr/detail?id=316
http://jcp.org/en/jsr/detail?id=316
http://java.sun.com/javaee/5/docs/api/
http://java.sun.com/j2ee/1.4/docs/#specs
http://java.sun.com/j2ee/1.4/docs/#specs
http://java.sun.com/j2ee/1.3/docs/index.html#specs
http://java.sun.com/j2ee/1.2/docs/index.html#specs
http://download.oracle.com/javase/7/docs/api/
http://download.oracle.com/javase/6/docs/api/
http://download.oracle.com/javase/6/docs/api/
http://download.oracle.com/javase/1.5.0/docs/api/index.html
http://java.sun.com/j2se/1.4.2/docs/api/index.html
http://www.iso.org/iso/en/CatalogueListPage.CatalogueList

Web applications

Table 143. Supported specifications for web applications. The product supports the specifications or APIs in this
table.

Specification or API Version 8.5 Version 8.0 Version 7.0
Version
6.1 Version 6.0

Java Servlet specification (JSR 154, JSR 53
and JSR 315)

Java Servlet
3.0

Java Servlet
3.0 New

Java Servlet
2.5 New

Java
Servlet 2.4

Java
Servlet 2.4
New

Java
Servlet 2.3

JavaServer Faces (JSF) specification (JSR
252 and 127)

Apache
MyFaces -
JSF 2.0

Apache
MyFaces -
JSF 2.0 New

Sun
Reference
Implementation
- JSF 1.2

Apache
MyFaces 1.2
- JSF 1.2

JSF 1.1 JSF 1.0

JavaServer Pages (JSP) specification (JSR
245, JSR 152, and JSR 53)

JSP 2.2 JSP 2.2 New JSP 2.1 New JSP 2.0 JSP 2.0
New

JSP 1.2

Portlet applications

Table 144. Supported specifications for portlet applications. The product supports the specifications or APIs in this
table.

Specification or API Version 8.5 Version 8.0 Version 7.0 Version 6.1 Version 6.0

Portlet specification Portlet 2.0
(JSR 286)

Portlet 2.0
(JSR 286)

Portlet 2.0
(JSR 286)
New

Portlet 1.0
(JSR 168)

Not
applicable.
The product
supports
portlets in
Version 6.1.

Session Initialization Protocol applications

Table 145. Supported specifications and APIs for SIP applications. The product supports the specifications or APIs
in this table.

Specification or API Version 8.5 Version 8.0 Version 7.0 Version 6.1 Version 6.0

Session Initiation Protocol (SIP)
Servlet API

For a complete list of SIP and SIP
proxy standards, see “SIP industry
standards compliance” on page 770.

SIP 1.1 (JSR
289)

SIP 1.1 (JSR
289) New

SIP 1.1 (JSR
289) New for
Feature Pack
for CEA 1.0

SIP 1.0
(JSR 116)

Not
applicable.
The product
supports SIP
in Version
6.1.

1258 Overview

http://jcp.org/en/jsr/detail?id=315
http://jcp.org/en/jsr/detail?id=315
http://jcp.org/en/jsr/detail?id=315
http://jcp.org/en/jsr/detail?id=315
http://jcp.org/aboutJava/communityprocess/mrel/jsr154/index.html
http://jcp.org/aboutJava/communityprocess/mrel/jsr154/index.html
http://jcp.org/aboutJava/communityprocess/final/jsr154/index.html
http://jcp.org/aboutJava/communityprocess/final/jsr154/index.html
http://jcp.org/aboutJava/communityprocess/final/jsr154/index.html
http://jcp.org/aboutJava/communityprocess/final/jsr154/index.html
http://jcp.org/aboutJava/communityprocess/first/jsr053/index.html
http://jcp.org/aboutJava/communityprocess/first/jsr053/index.html
http://jcp.org/aboutJava/communityprocess/final/jsr314/index.html
http://jcp.org/aboutJava/communityprocess/final/jsr314/index.html
http://jcp.org/aboutJava/communityprocess/final/jsr252/index.html
http://jcp.org/aboutJava/communityprocess/final/jsr252/index.html
http://jcp.org/aboutJava/communityprocess/final/jsr127/index.html
http://jcp.org/aboutJava/communityprocess/final/jsr127/index.html
http://jcp.org/aboutJava/communityprocess/mrel/jsr245/index.html
http://jcp.org/aboutJava/communityprocess/mrel/jsr245/index.html
http://jcp.org/aboutJava/communityprocess/final/jsr245/index.html
http://jcp.org/aboutJava/communityprocess/final/jsr152/index.html
http://jcp.org/aboutJava/communityprocess/final/jsr152/index.html
http://jcp.org/aboutJava/communityprocess/first/jsr053/index.html
http://jcp.org/en/jsr/detail?id=286
http://jcp.org/en/jsr/detail?id=286
http://jcp.org/en/jsr/detail?id=286
http://jcp.org/en/jsr/detail?id=286
http://jcp.org/en/jsr/detail?id=286
http://jcp.org/en/jsr/detail?id=286
http://jcp.org/aboutJava/communityprocess/final/jsr168/index.html
http://jcp.org/aboutJava/communityprocess/final/jsr168/index.html
http://www.jcp.org/en/jsr/detail?id=289
http://www.jcp.org/en/jsr/detail?id=289
http://www.jcp.org/en/jsr/detail?id=289
http://www.jcp.org/aboutJava/communityprocess/final/jsr116/

Enterprise bean (EJB) applications

Table 146. Supported specifications and APIs for EJB applications. The product supports the specifications or APIs
in this table.

Specification or API Version 8.5 Version 8.0 Version 7.0 Version 6.1
Version
6.0

Enterprise JavaBeans (EJB)
specification

EJB 3.1 EJB 3.1 New EJB 3.0 EJB 3.0 New for Feature
Pack for EJB 3.0

EJB 2.1
New

EJB 2.0

EJB 1.1

Java DataBase Connectivity
(JDBC) API

JDBC 4.1
New

JDBC 4.0 JDBC 4.0
New

JDBC 3.0 JDBC 3.0
New

JDBC 2.1
and
Optional
Package
API (2.0)

Java Message Service (JMS)
specification

JMS 1.1 JMS 1.1 JMS 1.1 JMS 1.1 JMS 1.1
New

Java Persistence API (JPA)
specification

JPA 2.0 JPA 2.0 JPA 2.0

New for
Feature
Pack for
OSGi and
JPA 2.0

JPA 1.0

New for Feature Pack
for EJB 3.0

Not
applicable

OSGi applications

Table 147. Supported specifications and APIs for OSGi applications. The product supports the specifications or APIs
in this table.

Specification or API Version 8.5 Version 8.0 Version 7.0 Version 6.1 Version 6.0

OSGi Service Platform
specification

OSGi Service
Platform
Release 4
Version 4.2

OSGi Service
Platform
Release 4
Version 4.2

OSGi Service
Platform
Release 4
Version 4.2

New for
Feature Pack
for OSGi and
JPA 2.0

Not applicable Not applicable

OSGi Alliance RFC-0112 Bundle
Repository specification

OSGi Alliance
RFC-0112
(Draft)

OSGi Alliance
RFC-0112
(Draft)

OSGi Alliance
RFC-0112
(Draft)

New for
Feature Pack
for OSGi and
JPA 2.0

Not applicable Not applicable

Chapter 45. Specifications and API documentation 1259

http://jcp.org/en/jsr/detail?id=318
http://jcp.org/en/jsr/detail?id=318
http://java.sun.com/products/ejb/index.jsp
http://java.sun.com/products/ejb/index.jsp
http://java.sun.com/products/ejb/docs.html
http://java.sun.com/products/ejb/2.0.html
http://java.sun.com/products/ejb/docs.html
http://docs.oracle.com/javase/7/docs/technotes/guides/jdbc/
http://docs.oracle.com/javase/6/docs/technotes/guides/jdbc/
http://docs.oracle.com/javase/6/docs/technotes/guides/jdbc/
http://docs.oracle.com/javase/1.3/docs/guide/jdbc/
http://docs.oracle.com/javase/1.3/docs/guide/jdbc/
http://java.sun.com/products/jdbc/download.html
http://java.sun.com/products/jdbc/download.html
http://java.sun.com/products/jdbc/download.html
http://java.sun.com/products/jdbc/download.html
http://java.sun.com/products/jdbc/download.html
http://java.sun.com/products/jms/index.jsp
http://java.sun.com/products/jms/index.jsp
http://java.sun.com/products/jms/index.jsp
http://java.sun.com/products/jms/index.jsp
http://java.sun.com/products/jms/index.jsp
http://java.sun.com/javaee/technologies/persistence.jsp
http://java.sun.com/javaee/technologies/persistence.jsp
http://java.sun.com/javaee/technologies/persistence.jsp
http://java.sun.com/javaee/technologies/persistence.jsp
http://www.osgi.org/Download/Release4V42
http://www.osgi.org/Download/Release4V42
http://www.osgi.org/Download/Release4V42
http://www.osgi.org/Download/Release4V42
http://www.osgi.org/Download/Release4V42
http://www.osgi.org/Download/Release4V42
http://www.osgi.org/Download/Release4V42
http://www.osgi.org/Download/Release4V42
http://www.osgi.org/Download/Release4V42
http://www.osgi.org/Download/Release4V42
http://www.osgi.org/Download/Release4V42
http://www.osgi.org/Download/Release4V42
http://www.osgi.org/download/rfc-0112_BundleRepository.pdf
http://www.osgi.org/download/rfc-0112_BundleRepository.pdf
http://www.osgi.org/download/rfc-0112_BundleRepository.pdf
http://www.osgi.org/download/rfc-0112_BundleRepository.pdf
http://www.osgi.org/download/rfc-0112_BundleRepository.pdf
http://www.osgi.org/download/rfc-0112_BundleRepository.pdf
http://www.osgi.org/download/rfc-0112_BundleRepository.pdf
http://www.osgi.org/download/rfc-0112_BundleRepository.pdf
http://www.osgi.org/download/rfc-0112_BundleRepository.pdf

Client applications

Table 148. Supported specifications and APIs for client applications. The product supports the specifications or APIs
in this table.

Specification or API Version 8.5 Version 8.0 Version 7.0 Version 6.1 Version 6.0

Java Web Start architecture Java Web Start
1.4.2

Java Web Start
1.4.2

Java Web
Start 1.4.2

Java Web
Start 1.4.2

Java Web
Start 1.4.2
New

Web services

Table 149. Supported specifications and APIs for web services. The product supports the specifications or APIs in
this table.

Specification or API Version 8.5 Version 8.0 Version 7.0 Version 6.1 Version 6.0

Java Architecture for XML
Binding (JAXB)
specification

JAXB 2.2 JAXB 2.2 New JAXB 2.1 New JAXB 2.0 New
for Feature Pack
for Web Services

Not applicable

Java Architecture for XML
Binding (JAXB) Reference
Implementation Vendor
Extensions Runtime
Properties specification

JAXB 2.2 RI
Vendor
Extensions

JAXB 2.2 RI
Vendor
Extensions New

JAXB 2.1 RI
Vendor
Extensions New

JAXB 2.0 RI
Vendor
Extensions New
for Feature Pack
for Web Services

Not applicable

Java API for XML
Processing (JAXP)
specification

1.4

Included in Java
SE 6.

1.4

Included in Java
SE 6.

1.4

Included in Java
SE 6.

1.3

Included in J2SE
5.

1.2

Maintenance
release of JSR
63

Java API for XML
Registries (JAXR)
specification

JAXR 1.0 JAXR 1.0 JAXR 1.0 JAXR 1.0 JAXR 1.0 New

Java API for XML-based
RPC (JAX-RPC)
specification

JAX-RPC 1.1 JAX-RPC 1.1 JAX-RPC 1.1 JAX-RPC 1.1 JAX-RPC 1.1
New

Java API for RESTful Web
Services (JAX-RS)
specification

JAX-RS 1.1 JAX-RS 1.1
New

Java API for XML Web
Services (JAX-WS)
specification

JAX-WS 2.2 JAX-WS 2.2
New

JAX-WS 2.1
New

JAX-WS 2.0 New
for Feature Pack
for Web Services

Not applicable

SOAP SOAP 1.2 SOAP 1.2 SOAP 1.2 SOAP 1.2 New
for Feature Pack
for Web Services

SOAP 1.1

SOAP with Attachments
API for Java (SAAJ)
Specification

SAAJ 1.3 SAAJ 1.3 SAAJ 1.3 SAAJ 1.3 New
for Feature Pack
for Web Services

SAAJ 1.2 New

SOAP over Java Message
Service (SOAP over JMS)

W3C SOAP
over JMS 1.0

W3C SOAP
over JMS 1.0

W3C SOAP
over JMS 1.0
(submission
draft)

SOAP Message
Transmission Optimization
Mechanism (MTOM)

MTOM 1.0 MTOM 1.0 MTOM 1.0 MTOM 1.0 New
for Feature Pack
for Web Services

Not applicable

1260 Overview

http://java.sun.com/j2se/1.4.2/docs/guide/jws/index.html
http://java.sun.com/j2se/1.4.2/docs/guide/jws/index.html
http://java.sun.com/j2se/1.4.2/docs/guide/jws/index.html
http://java.sun.com/j2se/1.4.2/docs/guide/jws/index.html
http://java.sun.com/j2se/1.4.2/docs/guide/jws/index.html
http://java.sun.com/j2se/1.4.2/docs/guide/jws/index.html
http://java.sun.com/j2se/1.4.2/docs/guide/jws/index.html
http://java.sun.com/j2se/1.4.2/docs/guide/jws/index.html
http://java.sun.com/j2se/1.4.2/docs/guide/jws/index.html
http://java.sun.com/j2se/1.4.2/docs/guide/jws/index.html
http://jcp.org/en/jsr/detail?id=222
http://jcp.org/en/jsr/detail?id=222
http://jcp.org/en/jsr/detail?id=222
http://jcp.org/en/jsr/detail?id=222
https://jaxb.dev.java.net/nonav/2.2/docs/vendor.html
https://jaxb.dev.java.net/nonav/2.2/docs/vendor.html
https://jaxb.dev.java.net/nonav/2.2/docs/vendor.html
https://jaxb.dev.java.net/nonav/2.2/docs/vendor.html
https://jaxb.dev.java.net/nonav/2.2/docs/vendor.html
https://jaxb.dev.java.net/nonav/2.2/docs/vendor.html
http://java.sun.com/webservices/docs/2.0/jaxb/vendorProperties.html
http://java.sun.com/webservices/docs/2.0/jaxb/vendorProperties.html
http://java.sun.com/webservices/docs/2.0/jaxb/vendorProperties.html
http://java.sun.com/webservices/docs/2.0/jaxb/vendorProperties.html
http://java.sun.com/webservices/docs/2.0/jaxb/vendorProperties.html
http://java.sun.com/webservices/docs/2.0/jaxb/vendorProperties.html
http://download.oracle.com/javase/6/docs/api/
http://download.oracle.com/javase/6/docs/api/
http://download.oracle.com/javase/6/docs/api/
http://download.oracle.com/javase/6/docs/api/
http://download.oracle.com/javase/6/docs/api/
http://download.oracle.com/javase/6/docs/api/
http://download.oracle.com/javase/1.5.0/docs/api/index.html
http://download.oracle.com/javase/1.5.0/docs/api/index.html
http://jcp.org/aboutJava/communityprocess/final/jsr063/index2.html
http://jcp.org/aboutJava/communityprocess/final/jsr063/index2.html
http://jcp.org/aboutJava/communityprocess/final/jsr063/index2.html
http://java.sun.com/xml/downloads/jaxr.html
http://java.sun.com/xml/downloads/jaxr.html
http://java.sun.com/xml/downloads/jaxr.html
http://java.sun.com/xml/downloads/jaxr.html
http://java.sun.com/xml/downloads/jaxr.html
http://java.sun.com/xml/downloads/jaxrpc.html#jaxrpcspec11
http://java.sun.com/xml/downloads/jaxrpc.html#jaxrpcspec11
http://java.sun.com/xml/downloads/jaxrpc.html#jaxrpcspec11
http://java.sun.com/xml/downloads/jaxrpc.html#jaxrpcspec11
http://java.sun.com/xml/downloads/jaxrpc.html#jaxrpcspec11
http://jcp.org/aboutJava/communityprocess/mrel/jsr311/index.html
http://jcp.org/aboutJava/communityprocess/mrel/jsr311/index.html
http://jcp.org/en/jsr/detail?id=224
http://jcp.org/en/jsr/detail?id=224
http://java.sun.com/webservices/jaxws/index.jsp
http://java.sun.com/webservices/jaxws/index.jsp
http://www.w3.org/TR/soap12
http://www.w3.org/TR/soap12
http://www.w3.org/TR/soap12
http://www.w3.org/TR/soap12
http://www.w3.org/TR/soap/
http://java.sun.com/webservices/saaj/index.jsp
http://java.sun.com/webservices/saaj/index.jsp
http://java.sun.com/webservices/saaj/index.jsp
http://java.sun.com/webservices/saaj/index.jsp
http://java.sun.com/webservices/reference/api/index.html#saaj
http://www.w3.org/TR/soapjms/
http://www.w3.org/TR/soapjms/
http://www.w3.org/TR/soapjms/
http://www.w3.org/TR/soapjms/
http://www.w3.org/TR/soapjms/
http://www.w3.org/TR/soapjms/
http://www.w3.org/TR/soapjms/
http://www.w3.org/TR/soapjms/
http://schemas.xmlsoap.org/soap/mtom/SOAP11MTOM10.pdf
http://schemas.xmlsoap.org/soap/mtom/SOAP11MTOM10.pdf
http://schemas.xmlsoap.org/soap/mtom/SOAP11MTOM10.pdf
http://schemas.xmlsoap.org/soap/mtom/SOAP11MTOM10.pdf

Table 149. Supported specifications and APIs for web services (continued). The product supports the specifications
or APIs in this table.

Specification or API Version 8.5 Version 8.0 Version 7.0 Version 6.1 Version 6.0

Streaming API for XML
(StAX)

StAX 1.0 StAX 1.0 StAX 1.0 StAX 1.0 New for
Feature Pack for
Web Services

Not applicable

Universal Description,
Discovery and Integration
(UDDI)

UDDI 3.0 UDDI 3.0 UDDI 3.0 UDDI 3.0 UDDI 3.0 New

W3C XML Schema v XML Schema
1.0

v XML Schema
Part 1

v XML Schema
Part 2

v XML Schema
1.0

v XML Schema
Part 1

v XML Schema
Part 2

v XML Schema
1.0

v XML Schema
Part 1

v XML Schema
Part 2

v XML Schema
1.0

v XML Schema
Part 1

v XML Schema
Part 2

v XML
Schema 1.0

v XML
Schema
Part 1

v XML
Schema
Part 2

Web Services Addressing
(WS-Addressing)

For more information, see
“Web Services Addressing
version interoperability” on
page 937.

WS-Addressing
1.0 family of
specifications:

v 1.0 Core

v 1.0 SOAP
Binding

v 1.0 Metadata

v

WS-Addressing
WSDL Binding,
W3C
Candidate
Recommendation

v

WS-
Addressing,
W3C
Submission

WS-Addressing
1.0 family of
specifications:

v 1.0 Core

v 1.0 SOAP
Binding

v 1.0 Metadata

v

WS-Addressing
WSDL Binding,
W3C
Candidate
Recommendation

v

WS-
Addressing,
W3C
Submission

WS-Addressing
1.0 family of
specifications:

v 1.0 Core

v 1.0 SOAP
Binding

v 1.0 Metadata

v

WS-Addressing
WSDL Binding,
W3C
Candidate
Recommendation

v

WS-
Addressing,
W3C
Submission

WS-Addressing
1.0 family of
specifications:

v Core

v SOAP Binding

v WSDL Binding

v

WS-Addressing
WSDL Binding,
W3C Last Call

v

WS-Addressing,
W3C
Submission

Not applicable

Web Services Atomic
Transaction (WS-AT)

WS-AT 1.2 WS-AT 1.2 WS-AT 1.1 New

WS-AT 1.2 New

WS-AT 1.0 WS-AT 1.0
New

Web Services Business
Activity (WS-BA)

WS-BA 1.2 WS-BA 1.2 WS-BA 1.1 New

WS-BA 1.2 New

WS-BA 1.0 Not applicable

Web Services
Coordination (WS-COOR)

WS-COOR 1.2 WS-COOR 1.2 WS-COOR 1.1
New

WS-COOR 1.2
New

WS-COOR 1.0 WS-COOR 1.0
New

Web Services Description
Language (WSDL)

WSDL 1.1 WSDL 1.1 WSDL 1.1 WSDL 1.1 WSDL 1.1

Chapter 45. Specifications and API documentation 1261

http://www.jcp.org/en/jsr/detail?id=173
http://www.jcp.org/en/jsr/detail?id=173
http://www.jcp.org/en/jsr/detail?id=173
http://www.jcp.org/en/jsr/detail?id=173
http://uddi.org/pubs/uddi_v3.htm
http://uddi.org/pubs/uddi_v3.htm
http://uddi.org/pubs/uddi_v3.htm
http://uddi.org/pubs/uddi_v3.htm
http://uddi.org/pubs/uddi_v3.htm
http://www.w3.org/2001/XMLSchema
http://www.w3.org/2001/XMLSchema
http://www.w3.org/TR/xmlschema-1/
http://www.w3.org/TR/xmlschema-1/
http://www.w3.org/TR/xmlschema-2/
http://www.w3.org/TR/xmlschema-2/
http://www.w3.org/2001/XMLSchema
http://www.w3.org/2001/XMLSchema
http://www.w3.org/TR/xmlschema-1/
http://www.w3.org/TR/xmlschema-1/
http://www.w3.org/TR/xmlschema-2/
http://www.w3.org/TR/xmlschema-2/
http://www.w3.org/2001/XMLSchema
http://www.w3.org/2001/XMLSchema
http://www.w3.org/TR/xmlschema-1/
http://www.w3.org/TR/xmlschema-1/
http://www.w3.org/TR/xmlschema-2/
http://www.w3.org/TR/xmlschema-2/
http://www.w3.org/2001/XMLSchema
http://www.w3.org/2001/XMLSchema
http://www.w3.org/TR/xmlschema-1/
http://www.w3.org/TR/xmlschema-1/
http://www.w3.org/TR/xmlschema-2/
http://www.w3.org/TR/xmlschema-2/
http://www.w3.org/2001/XMLSchema
http://www.w3.org/2001/XMLSchema
http://www.w3.org/TR/xmlschema-1/
http://www.w3.org/TR/xmlschema-1/
http://www.w3.org/TR/xmlschema-1/
http://www.w3.org/TR/xmlschema-2/
http://www.w3.org/TR/xmlschema-2/
http://www.w3.org/TR/xmlschema-2/
http://www.w3.org/TR/2006/REC-ws-addr-core-20060509
http://www.w3.org/TR/2006/REC-ws-addr-soap-20060509
http://www.w3.org/TR/2006/REC-ws-addr-soap-20060509
http://www.w3.org/TR/2007/REC-ws-addr-metadata-20070904
http://www.w3.org/TR/2006/CR-ws-addr-wsdl-20060529/
http://www.w3.org/TR/2006/CR-ws-addr-wsdl-20060529/
http://www.w3.org/TR/2006/CR-ws-addr-wsdl-20060529/
http://www.w3.org/TR/2006/CR-ws-addr-wsdl-20060529/
http://www.w3.org/TR/2006/CR-ws-addr-wsdl-20060529/
http://www.w3.org/Submission/ws-addressing/
http://www.w3.org/Submission/ws-addressing/
http://www.w3.org/Submission/ws-addressing/
http://www.w3.org/Submission/ws-addressing/
http://www.w3.org/TR/2006/REC-ws-addr-core-20060509
http://www.w3.org/TR/2006/REC-ws-addr-soap-20060509
http://www.w3.org/TR/2006/REC-ws-addr-soap-20060509
http://www.w3.org/TR/2007/REC-ws-addr-metadata-20070904
http://www.w3.org/TR/2006/CR-ws-addr-wsdl-20060529/
http://www.w3.org/TR/2006/CR-ws-addr-wsdl-20060529/
http://www.w3.org/TR/2006/CR-ws-addr-wsdl-20060529/
http://www.w3.org/TR/2006/CR-ws-addr-wsdl-20060529/
http://www.w3.org/TR/2006/CR-ws-addr-wsdl-20060529/
http://www.w3.org/Submission/ws-addressing/
http://www.w3.org/Submission/ws-addressing/
http://www.w3.org/Submission/ws-addressing/
http://www.w3.org/Submission/ws-addressing/
http://www.w3.org/TR/2006/REC-ws-addr-core-20060509
http://www.w3.org/TR/2006/REC-ws-addr-soap-20060509
http://www.w3.org/TR/2006/REC-ws-addr-soap-20060509
http://www.w3.org/TR/2007/REC-ws-addr-metadata-20070904
http://www.w3.org/TR/2006/CR-ws-addr-wsdl-20060529/
http://www.w3.org/TR/2006/CR-ws-addr-wsdl-20060529/
http://www.w3.org/TR/2006/CR-ws-addr-wsdl-20060529/
http://www.w3.org/TR/2006/CR-ws-addr-wsdl-20060529/
http://www.w3.org/TR/2006/CR-ws-addr-wsdl-20060529/
http://www.w3.org/Submission/ws-addressing/
http://www.w3.org/Submission/ws-addressing/
http://www.w3.org/Submission/ws-addressing/
http://www.w3.org/Submission/ws-addressing/
http://www.w3.org/TR/2005/CR-ws-addr-core-20050817/
http://www.w3.org/TR/2005/CR-ws-addr-soap-20050817/
http://www.w3.org/TR/2006/CR-ws-addr-wsdl-20060529/
http://www.w3.org/TR/2006/WD-ws-addr-wsdl-20060216/
http://www.w3.org/TR/2006/WD-ws-addr-wsdl-20060216/
http://www.w3.org/TR/2006/WD-ws-addr-wsdl-20060216/
http://www.w3.org/Submission/ws-addressing/
http://www.w3.org/Submission/ws-addressing/
http://www.w3.org/Submission/ws-addressing/
http://docs.oasis-open.org/ws-tx/wstx-wsat-1.2-spec.html
http://docs.oasis-open.org/ws-tx/wstx-wsat-1.2-spec.html
http://docs.oasis-open.org/ws-tx/wstx-wsat-1.1-spec-os/wstx-wsat-1.1-spec-os.html
http://docs.oasis-open.org/ws-tx/wstx-wsat-1.2-spec.html
http://www.ibm.com/developerworks/library/specification/ws-tx/
http://www.ibm.com/developerworks/library/specification/ws-tx/
http://docs.oasis-open.org/ws-tx/wstx-wsba-1.2-spec.html
http://docs.oasis-open.org/ws-tx/wstx-wsba-1.2-spec.html
http://docs.oasis-open.org/ws-tx/wstx-wsba-1.1-spec-os/wstx-wsba-1.1-spec-os.html
http://docs.oasis-open.org/ws-tx/wstx-wsba-1.2-spec.html
http://www.ibm.com/developerworks/library/specification/ws-tx/
http://docs.oasis-open.org/ws-tx/wstx-wscoor-1.2-spec.html
http://docs.oasis-open.org/ws-tx/wstx-wscoor-1.2-spec.html
http://docs.oasis-open.org/ws-tx/wstx-wscoor-1.1-spec/wstx-wscoor-1.1-spec.html
http://docs.oasis-open.org/ws-tx/wstx-wscoor-1.2-spec.html
http://www.ibm.com/developerworks/library/specification/ws-tx/
http://www.ibm.com/developerworks/library/specification/ws-tx/
http://www.w3.org/TR/wsdl
http://www.w3.org/TR/wsdl
http://www.w3.org/TR/wsdl
http://www.w3.org/TR/wsdl
http://www.w3.org/TR/wsdl

Table 149. Supported specifications and APIs for web services (continued). The product supports the specifications
or APIs in this table.

Specification or API Version 8.5 Version 8.0 Version 7.0 Version 6.1 Version 6.0

Web Services for Java
Platform, Enterprise
Edition (Java EE) (JSR
109)

Prior to Web Services for
Java EE, the specification
name was Web Services
for Java 2 Platform,
Enterprise Edition (J2EE).

JSR 109 1.3 JSR 109 1.3
New

JSR 109 1.2
New

JSR 109 1.1 JSR 109 1.1
New

Web Services
Interoperability
Organization (WS-I) Basic
Profile

WS-I Basic
Profile 1.2

WS-I Basic
Profile 2.0

WS-I Basic
Profile 1.2

WS-I Basic
Profile 2.0

WS-I Basic
Profile 1.2
(draft)

WS-I Basic
Profile 2.0
(draft)

WS-I Basic
Profile 1.2 (draft)
New for Feature
Pack for Web
Services

WS-I Basic
Profile 2.0 (draft)
New for Feature
Pack for Web
Services

WS-I Basic
Profile 1.1
New

Web Services-
Interoperability (WS-I)
Attachments Profile

WS-I
Attachments 1.0

WS-I
Attachments 1.0

WS-I
Attachments 1.0

WS-I
Attachments 1.0

WS-I
Attachments
1.0 New

Web Services
Interoperability (WS-I)
Reliable Secure Profile
(RSP)

Prior to WS-I RSP, the
specification was named
Reliable Asynchronous
Messaging Profile (RAMP)

WS-I RSP 1.0 WS-I RSP 1.0 RAMP 1.0 RAMP 1.0 New
for Feature Pack
for Web Services

Not applicable

Web Services Invocation
Framework (WSIF)

WSIF WSIF WSIF WSIF WSIF

Web Services Metadata
for the Java Platform (JSR
181)

Web Services
Metadata for the
Java Platform

Web Services
Metadata for the
Java Platform

Web Services
Metadata for the
Java Platform

Web Services
Metadata for the
Java Platform
New for Feature
Pack for Web
Services

Not applicable

Web Services Notification
(WS-Notification)

WS-Notification
1.3 family of
specifications:
v

WS-
BaseNotification
1.3

v

WS-
BrokeredNotification
1.3

v WS-Topics
1.3

WS-Notification
1.3 family of
specifications:
v

WS-
BaseNotification
1.3

v

WS-
BrokeredNotification
1.3

v WS-Topics
1.3

WS-Notification
1.3 family of
specifications:
v

WS-
BaseNotification
1.3

v

WS-
BrokeredNotification
1.3

v WS-Topics
1.3

WS-Notification
1.3 family of
specifications:
v

WS-
BaseNotification
1.3

v

WS-
BrokeredNotification
1.3

v WS-Topics 1.3

Not applicable

1262 Overview

http://jcp.org/en/jsr/detail?id=109
http://jcp.org/en/jsr/detail?id=109
http://jcp.org/en/jsr/detail?id=109
http://jcp.org/en/jsr/detail?id=109
http://jcp.org/en/jsr/detail?id=109
http://ws-i.org/deliverables/workinggroup.aspx?wg=basicprofile
http://ws-i.org/deliverables/workinggroup.aspx?wg=basicprofile
http://ws-i.org/deliverables/workinggroup.aspx?wg=basicprofile
http://ws-i.org/deliverables/workinggroup.aspx?wg=basicprofile
http://ws-i.org/deliverables/workinggroup.aspx?wg=basicprofile
http://ws-i.org/deliverables/workinggroup.aspx?wg=basicprofile
http://ws-i.org/deliverables/workinggroup.aspx?wg=basicprofile
http://ws-i.org/deliverables/workinggroup.aspx?wg=basicprofile
http://ws-i.org/deliverables/workinggroup.aspx?wg=basicprofile
http://ws-i.org/deliverables/workinggroup.aspx?wg=basicprofile
http://ws-i.org/deliverables/workinggroup.aspx?wg=basicprofile
http://ws-i.org/deliverables/workinggroup.aspx?wg=basicprofile
http://ws-i.org/deliverables/workinggroup.aspx?wg=basicprofile
http://ws-i.org/deliverables/workinggroup.aspx?wg=basicprofile
http://ws-i.org/deliverables/workinggroup.aspx?wg=basicprofile
http://ws-i.org/deliverables/workinggroup.aspx?wg=basicprofile
http://ws-i.org/deliverables/workinggroup.aspx?wg=basicprofile
http://ws-i.org/deliverables/workinggroup.aspx?wg=basicprofile
http://www.ws-i.org/Profiles/BasicProfile-1.1.html
http://www.ws-i.org/Profiles/BasicProfile-1.1.html
http://www.ws-i.org/Profiles/AttachmentsProfile-1.0.html
http://www.ws-i.org/Profiles/AttachmentsProfile-1.0.html
http://www.ws-i.org/Profiles/AttachmentsProfile-1.0.html
http://www.ws-i.org/Profiles/AttachmentsProfile-1.0.html
http://www.ws-i.org/Profiles/AttachmentsProfile-1.0.html
http://www.ws-i.org/Profiles/AttachmentsProfile-1.0.html
http://www.ws-i.org/Profiles/AttachmentsProfile-1.0.html
http://www.ws-i.org/Profiles/AttachmentsProfile-1.0.html
http://www.ws-i.org/Profiles/AttachmentsProfile-1.0.html
http://www.ws-i.org/Profiles/AttachmentsProfile-1.0.html
http://www.ws-i.org/Profiles/AttachmentsProfile-1.0.html
http://ws-i.org/deliverables/workinggroup.aspx?wg=reliablesecure
http://ws-i.org/deliverables/workinggroup.aspx?wg=reliablesecure
http://www.ibm.com/developerworks/webservices/library/specification/ws-ramp/
http://www.ibm.com/developerworks/webservices/library/specification/ws-ramp/
http://ws.apache.org/wsif/
http://ws.apache.org/wsif/
http://ws.apache.org/wsif/
http://ws.apache.org/wsif/
http://ws.apache.org/wsif/
http://jcp.org/en/jsr/detail?id=181
http://jcp.org/en/jsr/detail?id=181
http://jcp.org/en/jsr/detail?id=181
http://jcp.org/en/jsr/detail?id=181
http://jcp.org/en/jsr/detail?id=181
http://jcp.org/en/jsr/detail?id=181
http://jcp.org/en/jsr/detail?id=181
http://jcp.org/en/jsr/detail?id=181
http://jcp.org/en/jsr/detail?id=181
http://jcp.org/en/jsr/detail?id=181
http://jcp.org/en/jsr/detail?id=181
http://jcp.org/en/jsr/detail?id=181
http://docs.oasis-open.org/wsn/wsn-ws_base_notification-1.3-spec-os.pdf
http://docs.oasis-open.org/wsn/wsn-ws_base_notification-1.3-spec-os.pdf
http://docs.oasis-open.org/wsn/wsn-ws_base_notification-1.3-spec-os.pdf
http://docs.oasis-open.org/wsn/wsn-ws_brokered_notification-1.3-spec-os.pdf
http://docs.oasis-open.org/wsn/wsn-ws_brokered_notification-1.3-spec-os.pdf
http://docs.oasis-open.org/wsn/wsn-ws_brokered_notification-1.3-spec-os.pdf
http://docs.oasis-open.org/wsn/wsn-ws_topics-1.3-spec-os.pdf
http://docs.oasis-open.org/wsn/wsn-ws_topics-1.3-spec-os.pdf
http://docs.oasis-open.org/wsn/wsn-ws_base_notification-1.3-spec-os.pdf
http://docs.oasis-open.org/wsn/wsn-ws_base_notification-1.3-spec-os.pdf
http://docs.oasis-open.org/wsn/wsn-ws_base_notification-1.3-spec-os.pdf
http://docs.oasis-open.org/wsn/wsn-ws_brokered_notification-1.3-spec-os.pdf
http://docs.oasis-open.org/wsn/wsn-ws_brokered_notification-1.3-spec-os.pdf
http://docs.oasis-open.org/wsn/wsn-ws_brokered_notification-1.3-spec-os.pdf
http://docs.oasis-open.org/wsn/wsn-ws_topics-1.3-spec-os.pdf
http://docs.oasis-open.org/wsn/wsn-ws_topics-1.3-spec-os.pdf
http://docs.oasis-open.org/wsn/wsn-ws_base_notification-1.3-spec-os.pdf
http://docs.oasis-open.org/wsn/wsn-ws_base_notification-1.3-spec-os.pdf
http://docs.oasis-open.org/wsn/wsn-ws_base_notification-1.3-spec-os.pdf
http://docs.oasis-open.org/wsn/wsn-ws_brokered_notification-1.3-spec-os.pdf
http://docs.oasis-open.org/wsn/wsn-ws_brokered_notification-1.3-spec-os.pdf
http://docs.oasis-open.org/wsn/wsn-ws_brokered_notification-1.3-spec-os.pdf
http://docs.oasis-open.org/wsn/wsn-ws_topics-1.3-spec-os.pdf
http://docs.oasis-open.org/wsn/wsn-ws_topics-1.3-spec-os.pdf
http://docs.oasis-open.org/wsn/wsn-ws_base_notification-1.3-spec-os.pdf
http://docs.oasis-open.org/wsn/wsn-ws_base_notification-1.3-spec-os.pdf
http://docs.oasis-open.org/wsn/wsn-ws_base_notification-1.3-spec-os.pdf
http://docs.oasis-open.org/wsn/wsn-ws_brokered_notification-1.3-spec-os.pdf
http://docs.oasis-open.org/wsn/wsn-ws_brokered_notification-1.3-spec-os.pdf
http://docs.oasis-open.org/wsn/wsn-ws_brokered_notification-1.3-spec-os.pdf
http://docs.oasis-open.org/wsn/wsn-ws_topics-1.3-spec-os.pdf

Table 149. Supported specifications and APIs for web services (continued). The product supports the specifications
or APIs in this table.

Specification or API Version 8.5 Version 8.0 Version 7.0 Version 6.1 Version 6.0

Web Services Policy
(WS-Policy) specification

Web Services
Policy 1.5

Web Services
Addressing 1.0 -
Metadata

Web Services
Atomic
Transaction
Version 1.0 and
Web Services
Atomic
Transaction
Version 1.1

Web Services
Reliable
Messaging
Policy Assertion
Version 1.0 and
Web Services
Reliable
Messaging
Policy Assertion
Version 1.1

WS-
SecurityPolicy
1.2

Web Services
Policy 1.5

Web Services
Addressing 1.0 -
Metadata

Web Services
Atomic
Transaction
Version 1.0 and
Web Services
Atomic
Transaction
Version 1.1

Web Services
Reliable
Messaging
Policy Assertion
Version 1.0 and
Web Services
Reliable
Messaging
Policy Assertion
Version 1.1

WS-
SecurityPolicy
1.2

Web Services
Policy 1.5 New

Web Services
Addressing 1.0 -
Metadata New

Web Services
Atomic
Transaction
Version 1.0 and
Web Services
Atomic
Transaction
Version 1.1 New

Web Services
Reliable
Messaging
Policy Assertion
Version 1.0 and
Web Services
Reliable
Messaging
Policy Assertion
Version 1.1 New

WS-
SecurityPolicy
1.2 New

Not applicable

Web Services Reliable
Messaging

WS-
MakeConnection
Version 1.0

WS-
MakeConnection
Version 1.0

WS-
MakeConnection
Version 1.0 New

WS-
ReliableMessaging
1.0 and
WS-
ReliableMessaging
1.1. New for
Feature Pack for
Web Services

Not applicable

Web Services Resource
Framework (WSRF)

WSRF 1.2 WSRF 1.2 WSRF 1.2 WSRF 1.2 New Not applicable

XML-binary Optimized
Packaging (XOP)

XOP 1.0 XOP 1.0 XOP 1.0 XOP 1.0 New for
Feature Pack for
Web Services

Not applicable

Service Component Architecture

The product supports the following Service Component Architecture (SCA) specifications. The product
supports most sections of the specifications, although some sections are not supported. See “Unsupported
SCA specification sections” on page 585.

Chapter 45. Specifications and API documentation 1263

http://www.w3.org/tr/ws-policy/
http://www.w3.org/tr/ws-policy/
http://www.w3.org/TR/ws-addr-metadata/
http://www.w3.org/TR/ws-addr-metadata/
http://www.w3.org/TR/ws-addr-metadata/
http://schemas.xmlsoap.org/ws/2004/10/wsat/
http://schemas.xmlsoap.org/ws/2004/10/wsat/
http://schemas.xmlsoap.org/ws/2004/10/wsat/
http://schemas.xmlsoap.org/ws/2004/10/wsat/
http://docs.oasis-open.org/ws-tx/wsat/2006/06
http://docs.oasis-open.org/ws-tx/wsat/2006/06
http://docs.oasis-open.org/ws-tx/wsat/2006/06
http://docs.oasis-open.org/ws-tx/wsat/2006/06
http://schemas.xmlsoap.org/ws/2005/02/rm/policy/
http://schemas.xmlsoap.org/ws/2005/02/rm/policy/
http://schemas.xmlsoap.org/ws/2005/02/rm/policy/
http://schemas.xmlsoap.org/ws/2005/02/rm/policy/
http://schemas.xmlsoap.org/ws/2005/02/rm/policy/
http://docs.oasis-open.org/ws-rx/wsrmp/200702/wsrmp-1.1-spec-os-01.html
http://docs.oasis-open.org/ws-rx/wsrmp/200702/wsrmp-1.1-spec-os-01.html
http://docs.oasis-open.org/ws-rx/wsrmp/200702/wsrmp-1.1-spec-os-01.html
http://docs.oasis-open.org/ws-rx/wsrmp/200702/wsrmp-1.1-spec-os-01.html
http://docs.oasis-open.org/ws-rx/wsrmp/200702/wsrmp-1.1-spec-os-01.html
http://docs.oasis-open.org/ws-sx/ws-securitypolicy/200512
http://docs.oasis-open.org/ws-sx/ws-securitypolicy/200512
http://docs.oasis-open.org/ws-sx/ws-securitypolicy/200512
http://www.w3.org/tr/ws-policy/
http://www.w3.org/tr/ws-policy/
http://www.w3.org/TR/ws-addr-metadata/
http://www.w3.org/TR/ws-addr-metadata/
http://www.w3.org/TR/ws-addr-metadata/
http://schemas.xmlsoap.org/ws/2004/10/wsat/
http://schemas.xmlsoap.org/ws/2004/10/wsat/
http://schemas.xmlsoap.org/ws/2004/10/wsat/
http://schemas.xmlsoap.org/ws/2004/10/wsat/
http://docs.oasis-open.org/ws-tx/wsat/2006/06
http://docs.oasis-open.org/ws-tx/wsat/2006/06
http://docs.oasis-open.org/ws-tx/wsat/2006/06
http://docs.oasis-open.org/ws-tx/wsat/2006/06
http://schemas.xmlsoap.org/ws/2005/02/rm/policy/
http://schemas.xmlsoap.org/ws/2005/02/rm/policy/
http://schemas.xmlsoap.org/ws/2005/02/rm/policy/
http://schemas.xmlsoap.org/ws/2005/02/rm/policy/
http://schemas.xmlsoap.org/ws/2005/02/rm/policy/
http://docs.oasis-open.org/ws-rx/wsrmp/200702/wsrmp-1.1-spec-os-01.html
http://docs.oasis-open.org/ws-rx/wsrmp/200702/wsrmp-1.1-spec-os-01.html
http://docs.oasis-open.org/ws-rx/wsrmp/200702/wsrmp-1.1-spec-os-01.html
http://docs.oasis-open.org/ws-rx/wsrmp/200702/wsrmp-1.1-spec-os-01.html
http://docs.oasis-open.org/ws-rx/wsrmp/200702/wsrmp-1.1-spec-os-01.html
http://docs.oasis-open.org/ws-sx/ws-securitypolicy/200512
http://docs.oasis-open.org/ws-sx/ws-securitypolicy/200512
http://docs.oasis-open.org/ws-sx/ws-securitypolicy/200512
http://www.w3.org/tr/ws-policy/
http://www.w3.org/tr/ws-policy/
http://www.w3.org/TR/ws-addr-metadata/
http://www.w3.org/TR/ws-addr-metadata/
http://www.w3.org/TR/ws-addr-metadata/
http://schemas.xmlsoap.org/ws/2004/10/wsat/
http://schemas.xmlsoap.org/ws/2004/10/wsat/
http://schemas.xmlsoap.org/ws/2004/10/wsat/
http://schemas.xmlsoap.org/ws/2004/10/wsat/
http://docs.oasis-open.org/ws-tx/wsat/2006/06
http://docs.oasis-open.org/ws-tx/wsat/2006/06
http://docs.oasis-open.org/ws-tx/wsat/2006/06
http://docs.oasis-open.org/ws-tx/wsat/2006/06
http://schemas.xmlsoap.org/ws/2005/02/rm/policy/
http://schemas.xmlsoap.org/ws/2005/02/rm/policy/
http://schemas.xmlsoap.org/ws/2005/02/rm/policy/
http://schemas.xmlsoap.org/ws/2005/02/rm/policy/
http://schemas.xmlsoap.org/ws/2005/02/rm/policy/
http://docs.oasis-open.org/ws-rx/wsrmp/200702/wsrmp-1.1-spec-os-01.html
http://docs.oasis-open.org/ws-rx/wsrmp/200702/wsrmp-1.1-spec-os-01.html
http://docs.oasis-open.org/ws-rx/wsrmp/200702/wsrmp-1.1-spec-os-01.html
http://docs.oasis-open.org/ws-rx/wsrmp/200702/wsrmp-1.1-spec-os-01.html
http://docs.oasis-open.org/ws-rx/wsrmp/200702/wsrmp-1.1-spec-os-01.html
http://docs.oasis-open.org/ws-sx/ws-securitypolicy/200512
http://docs.oasis-open.org/ws-sx/ws-securitypolicy/200512
http://docs.oasis-open.org/ws-sx/ws-securitypolicy/200512
http://docs.oasis-open.org/ws-rx/wsmc/200702/wsmc-1.0-spec-os-01.html
http://docs.oasis-open.org/ws-rx/wsmc/200702/wsmc-1.0-spec-os-01.html
http://docs.oasis-open.org/ws-rx/wsmc/200702/wsmc-1.0-spec-os-01.html
http://docs.oasis-open.org/ws-rx/wsmc/200702/wsmc-1.0-spec-os-01.html
http://docs.oasis-open.org/ws-rx/wsmc/200702/wsmc-1.0-spec-os-01.html
http://docs.oasis-open.org/ws-rx/wsmc/200702/wsmc-1.0-spec-os-01.html
http://docs.oasis-open.org/ws-rx/wsmc/200702/wsmc-1.0-spec-os-01.html
http://docs.oasis-open.org/ws-rx/wsmc/200702/wsmc-1.0-spec-os-01.html
http://docs.oasis-open.org/ws-rx/wsmc/200702/wsmc-1.0-spec-os-01.html
http://specs.xmlsoap.org/ws/2005/02/rm/ws-reliablemessaging.pdf
http://specs.xmlsoap.org/ws/2005/02/rm/ws-reliablemessaging.pdf
http://specs.xmlsoap.org/ws/2005/02/rm/ws-reliablemessaging.pdf
http://docs.oasis-open.org/ws-rx/wsrm/200702
http://docs.oasis-open.org/ws-rx/wsrm/200702
http://docs.oasis-open.org/ws-rx/wsrm/200702
http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=wsrf
http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=wsrf
http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=wsrf
http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=wsrf
http://www.w3.org/TR/2005/REC-xop10-20050125/
http://www.w3.org/TR/2005/REC-xop10-20050125/
http://www.w3.org/TR/2005/REC-xop10-20050125/
http://www.w3.org/TR/2005/REC-xop10-20050125/

Table 150. Supported specifications and APIs for SCA applications. The product supports the specifications or APIs
in this table.

Specification or API Version 8.5 Version 8.0 Version 7.0 Version 6.1 Version 6.0

OSOA SCA Assembly Model
specification

SCA Assembly
Model 1.00

SCA Assembly
Model 1.00

SCA
Assembly
Model 1.00
New for
Feature Pack
for SCA
Version 1.0.0

Not applicable Not
applicable

OASIS SCA Assembly
specification

SCA-Assembly
1.1 New

Not applicable Not applicable Not applicable Not
applicable

OSOA SCA Policy Framework
specification

SCA Policy
Framework
1.00

SCA Policy
Framework
1.00

SCA Policy
Framework
1.00 New for
Feature Pack
for SCA
Version 1.0.0

Not applicable Not
applicable

OASIS SCA Policy Framework
specification

The product supports policy
attachment, but does not support
OASIS policy set definitions.

SCA-Policy 1.1
New

Not applicable Not applicable Not applicable Not
applicable

OSOA SCA Transaction Policy
specification

SCA
Transaction
Policy 1.00

SCA
Transaction
Policy 1.00

SCA
Transaction
Policy 1.00
New for
Feature Pack
for SCA
Version 1.0.0

Not applicable Not
applicable

OSOA SCA Java Common
Annotations and APIs specification

SCA Java
Common
Annotations
and APIs 1.00

SCA Java
Common
Annotations
and APIs 1.00

SCA Java
Common
Annotations
and APIs 1.00
New for
Feature Pack
for SCA
Version 1.0.0

Not applicable Not
applicable

OASIS SCA-J Common
Annotations and APIs specification

SCA-J 1.1 New Not applicable Not applicable Not applicable Not
applicable

OSOA SCA Java Component
Implementation specification

SCA Java
Component
Implementation
1.00

SCA Java
Component
Implementation
1.00

SCA Java
Component
Implementation
1.00 New for
Feature Pack
for SCA
Version 1.0.0

Not applicable Not
applicable

OASIS SCA Bindings specification

OASIS SCA JMS Binding 1.1 and
OASIS SCA Web Service Binding
1.1 are supported.

OASIS SCA JCA Binding 1.1 is not
supported.

SCA-Bindings
1.1 New

Not applicable Not applicable Not applicable Not
applicable

1264 Overview

http://osoa.org/display/Main/Service+Component+Architecture+Specifications
http://osoa.org/display/Main/Service+Component+Architecture+Specifications
http://osoa.org/display/Main/Service+Component+Architecture+Specifications
http://osoa.org/display/Main/Service+Component+Architecture+Specifications
http://osoa.org/display/Main/Service+Component+Architecture+Specifications
http://osoa.org/display/Main/Service+Component+Architecture+Specifications
http://osoa.org/display/Main/Service+Component+Architecture+Specifications
http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=sca-assembly
http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=sca-assembly
http://osoa.org/display/Main/Service+Component+Architecture+Specifications
http://osoa.org/display/Main/Service+Component+Architecture+Specifications
http://osoa.org/display/Main/Service+Component+Architecture+Specifications
http://osoa.org/display/Main/Service+Component+Architecture+Specifications
http://osoa.org/display/Main/Service+Component+Architecture+Specifications
http://osoa.org/display/Main/Service+Component+Architecture+Specifications
http://osoa.org/display/Main/Service+Component+Architecture+Specifications
http://osoa.org/display/Main/Service+Component+Architecture+Specifications
http://osoa.org/display/Main/Service+Component+Architecture+Specifications
http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=sca-policy
http://osoa.org/display/Main/Service+Component+Architecture+Specifications
http://osoa.org/display/Main/Service+Component+Architecture+Specifications
http://osoa.org/display/Main/Service+Component+Architecture+Specifications
http://osoa.org/display/Main/Service+Component+Architecture+Specifications
http://osoa.org/display/Main/Service+Component+Architecture+Specifications
http://osoa.org/display/Main/Service+Component+Architecture+Specifications
http://osoa.org/display/Main/Service+Component+Architecture+Specifications
http://osoa.org/display/Main/Service+Component+Architecture+Specifications
http://osoa.org/display/Main/Service+Component+Architecture+Specifications
http://osoa.org/display/Main/Service+Component+Architecture+Specifications
http://osoa.org/display/Main/Service+Component+Architecture+Specifications
http://osoa.org/display/Main/Service+Component+Architecture+Specifications
http://osoa.org/display/Main/Service+Component+Architecture+Specifications
http://osoa.org/display/Main/Service+Component+Architecture+Specifications
http://osoa.org/display/Main/Service+Component+Architecture+Specifications
http://osoa.org/display/Main/Service+Component+Architecture+Specifications
http://osoa.org/display/Main/Service+Component+Architecture+Specifications
http://osoa.org/display/Main/Service+Component+Architecture+Specifications
http://osoa.org/display/Main/Service+Component+Architecture+Specifications
http://osoa.org/display/Main/Service+Component+Architecture+Specifications
http://osoa.org/display/Main/Service+Component+Architecture+Specifications
http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=sca-j
http://osoa.org/display/Main/Service+Component+Architecture+Specifications
http://osoa.org/display/Main/Service+Component+Architecture+Specifications
http://osoa.org/display/Main/Service+Component+Architecture+Specifications
http://osoa.org/display/Main/Service+Component+Architecture+Specifications
http://osoa.org/display/Main/Service+Component+Architecture+Specifications
http://osoa.org/display/Main/Service+Component+Architecture+Specifications
http://osoa.org/display/Main/Service+Component+Architecture+Specifications
http://osoa.org/display/Main/Service+Component+Architecture+Specifications
http://osoa.org/display/Main/Service+Component+Architecture+Specifications
http://osoa.org/display/Main/Service+Component+Architecture+Specifications
http://osoa.org/display/Main/Service+Component+Architecture+Specifications
http://osoa.org/display/Main/Service+Component+Architecture+Specifications
http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=sca-bindings
http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=sca-bindings

Table 150. Supported specifications and APIs for SCA applications (continued). The product supports the
specifications or APIs in this table.

Specification or API Version 8.5 Version 8.0 Version 7.0 Version 6.1 Version 6.0

OSOA SCA Web Services Binding
specification

SCA Web
Services
Binding V1.00

SCA Web
Services
Binding V1.00

SCA Web
Services
Binding V1.00
New for
Feature Pack
for SCA
Version 1.0.0

Not applicable Not
applicable

OSOA SCA EJB Session Bean
Binding specification

The specifications support EJB 2.1
and 3.0 modules.

SCA EJB
Session Bean
Binding 1.00

SCA EJB
Session Bean
Binding 1.00

SCA EJB
Session Bean
Binding 1.00
New for
Feature Pack
for SCA
Version 1.0.0

Not applicable Not
applicable

OSOA SCA JMS Binding
specification

SCA JMS
Binding 1.00

SCA JMS
Binding 1.00

SCA JMS
Binding 1.00
New for
Feature Pack
for SCA
Version 1.0.1

Not applicable Not
applicable

OSOA SCA Java EE Integration
specification

SCA Java EE
Integration 1.00

SCA Java EE
Integration 1.00

SCA Java EE
Integration
1.00 New for
Feature Pack
for SCA
Version 1.0.1

Not applicable Not
applicable

OSOA SCA Spring Component
Implementation specification

SCA Spring
Component
Implementation
1.00

SCA Spring
Component
Implementation
1.00

SCA Spring
Component
Implementation
1.00 New for
Feature Pack
for SCA
Version 1.0.1

Not applicable Not
applicable

Service Data Objects (SDO)
specification

SDO 2.1.1
(JSR 235)

SDO 2.1.1
(JSR 235)
New for
Feature Pack
for SCA
Version 1.0.1

Not applicable Not
applicable

Service integration

Table 151. Supported specifications and APIs for service integration. The product supports the specifications or APIs
in this table.

Specification or API Version 8.5 Version 8.0 Version 7.0
Version
6.1

Version
6.0

Java DataBase Connectivity (JDBC) API JDBC 4.1
New

JDBC 4.0 JDBC 4.0
New

JDBC 3.0 JDBC 3.0
New

Chapter 45. Specifications and API documentation 1265

http://osoa.org/display/Main/Service+Component+Architecture+Specifications
http://osoa.org/display/Main/Service+Component+Architecture+Specifications
http://osoa.org/display/Main/Service+Component+Architecture+Specifications
http://osoa.org/display/Main/Service+Component+Architecture+Specifications
http://osoa.org/display/Main/Service+Component+Architecture+Specifications
http://osoa.org/display/Main/Service+Component+Architecture+Specifications
http://osoa.org/display/Main/Service+Component+Architecture+Specifications
http://osoa.org/display/Main/Service+Component+Architecture+Specifications
http://osoa.org/display/Main/Service+Component+Architecture+Specifications
http://osoa.org/display/Main/Service+Component+Architecture+Specifications
http://osoa.org/display/Main/Service+Component+Architecture+Specifications
http://osoa.org/display/Main/Service+Component+Architecture+Specifications
http://osoa.org/display/Main/Service+Component+Architecture+Specifications
http://osoa.org/display/Main/Service+Component+Architecture+Specifications
http://osoa.org/display/Main/Service+Component+Architecture+Specifications
http://osoa.org/display/Main/Service+Component+Architecture+Specifications
http://osoa.org/display/Main/Service+Component+Architecture+Specifications
http://osoa.org/display/Main/Service+Component+Architecture+Specifications
http://osoa.org/display/Main/Service+Component+Architecture+Specifications
http://osoa.org/display/Main/Service+Component+Architecture+Specifications
http://osoa.org/display/Main/Service+Component+Architecture+Specifications
http://osoa.org/display/Main/Service+Component+Architecture+Specifications
http://osoa.org/display/Main/Service+Component+Architecture+Specifications
http://osoa.org/display/Main/Service+Component+Architecture+Specifications
http://osoa.org/download/attachments/35/SCA_JAVAEE_Integration_V100.pdf?version=1
http://osoa.org/download/attachments/35/SCA_JAVAEE_Integration_V100.pdf?version=1
http://osoa.org/download/attachments/35/SCA_JAVAEE_Integration_V100.pdf?version=1
http://osoa.org/download/attachments/35/SCA_JAVAEE_Integration_V100.pdf?version=1
http://osoa.org/download/attachments/35/SCA_JAVAEE_Integration_V100.pdf?version=1
http://osoa.org/download/attachments/35/SCA_JAVAEE_Integration_V100.pdf?version=1
http://osoa.org/download/attachments/35/SCA_JAVAEE_Integration_V100.pdf?version=1
http://www.osoa.org/download/attachments/35/SCA_SpringComponentImplementationSpecification-V100.pdf%3fversion=1
http://www.osoa.org/download/attachments/35/SCA_SpringComponentImplementationSpecification-V100.pdf%3fversion=1
http://www.osoa.org/download/attachments/35/SCA_SpringComponentImplementationSpecification-V100.pdf%3fversion=1
http://www.osoa.org/download/attachments/35/SCA_SpringComponentImplementationSpecification-V100.pdf%3fversion=1
http://www.osoa.org/download/attachments/35/SCA_SpringComponentImplementationSpecification-V100.pdf%3fversion=1
http://www.osoa.org/download/attachments/35/SCA_SpringComponentImplementationSpecification-V100.pdf%3fversion=1
http://www.osoa.org/download/attachments/35/SCA_SpringComponentImplementationSpecification-V100.pdf%3fversion=1
http://www.osoa.org/download/attachments/35/SCA_SpringComponentImplementationSpecification-V100.pdf%3fversion=1
http://www.osoa.org/download/attachments/35/SCA_SpringComponentImplementationSpecification-V100.pdf%3fversion=1
http://www.osoa.org/download/attachments/35/SCA_SpringComponentImplementationSpecification-V100.pdf%3fversion=1
http://www.osoa.org/download/attachments/35/SCA_SpringComponentImplementationSpecification-V100.pdf%3fversion=1
http://www.osoa.org/download/attachments/35/SCA_SpringComponentImplementationSpecification-V100.pdf%3fversion=1
http://jcp.org/aboutJava/communityprocess/final/jsr235/index.html
http://jcp.org/aboutJava/communityprocess/final/jsr235/index.html
http://docs.oracle.com/javase/7/docs/technotes/guides/jdbc/
http://docs.oracle.com/javase/6/docs/technotes/guides/jdbc/
http://docs.oracle.com/javase/6/docs/technotes/guides/jdbc/
http://docs.oracle.com/javase/1.3/docs/guide/jdbc/
http://docs.oracle.com/javase/1.3/docs/guide/jdbc/

Data access resources

Table 152. Supported specifications and APIs for data access resources. The product supports the specifications or
APIs in this table.

Specification or API Version 8.5 Version 8.0 Version 7.0 Version 6.1 Version 6.0

Java DataBase Connectivity (JDBC) API JDBC 4.1
New

JDBC 4.0 JDBC 4.0
New

JDBC 3.0 JDBC 3.0
New

Java EE Connector Architecture (JCA) resource
adapter

JCA 1.6
(JSR 322)

JCA 1.6
(JSR 322)
New

JCA 1.5 JCA 1.5 JCA 1.5
New

JCA 1.0

Service Data Objects (SDO) specification SDO 2.1.1
(JSR 235)

SDO 2.1.1
(JSR 235)

SDO 2.1.1
(JSR 235)
New for
Feature
Pack for
SCA
Version
1.0.1

SDO 1.0 SDO 1.0
New

Messaging resources

Table 153. Supported specifications and APIs for messaging resources. The product supports the specifications or
APIs in this table.

Specification or API Version 8.5 Version 8.0 Version 7.0
Version
6.1

Version
6.0

Java Message Service (JMS) JMS 1.1 JMS 1.1 JMS 1.1 JMS 1.1 JMS 1.1
New

Java EE Connector Architecture (JCA) resource
adapter

JCA 1.6
(JSR 322)

JCA 1.6
(JSR 322)
New

JCA 1.5 JCA 1.5 JCA 1.5
New

JCA 1.0

Mail, URLs, and other Java EE resources

Table 154. Supported specifications and APIs for mail, URLs, and other Java EE resources. The product supports
the specifications or APIs in this table.

Specification or API Version 8.5 Version 8.0 Version 7.0 Version 6.1
Version
6.0

JavaMail API documentation (JSR 919) JavaMail 1.4 JavaMail 1.4 JavaMail 1.4
New

JavaMail
1.3

JavaMail
1.3 New

URL API documentation URL 1.4.2 URL 1.4.2 URL 1.4.2 URL 1.4.2 URL 1.4.2
New

JavaBeans Activation Framework (JAF)
Specification

JAF 1.1 JAF 1.1 JAF 1.1 New JAF 1.0.2 JAF 1.0.2
New

W3C Architecture - Naming and Addressing:
URIs, URLs

W3C Naming and Addressing applies to these versions.

1266 Overview

http://docs.oracle.com/javase/7/docs/technotes/guides/jdbc/
http://docs.oracle.com/javase/6/docs/technotes/guides/jdbc/
http://docs.oracle.com/javase/6/docs/technotes/guides/jdbc/
http://docs.oracle.com/javase/1.3/docs/guide/jdbc/
http://docs.oracle.com/javase/1.3/docs/guide/jdbc/
http://jcp.org/en/jsr/detail?id=322
http://jcp.org/en/jsr/detail?id=322
http://java.sun.com/j2ee/connector/download.html
http://java.sun.com/j2ee/connector/download.html
http://java.sun.com/j2ee/connector/download.html
http://java.sun.com/j2ee/connector/download.html
http://jcp.org/aboutJava/communityprocess/final/jsr235/index.html
http://jcp.org/aboutJava/communityprocess/final/jsr235/index.html
http://jcp.org/aboutJava/communityprocess/final/jsr235/index.html
http://www-128.ibm.com/developerworks/library/specification/ws-sdo/
http://www-128.ibm.com/developerworks/library/specification/ws-sdo/
http://java.sun.com/products/jms/docs.html.
http://java.sun.com/products/jms/docs.html.
http://java.sun.com/products/jms/docs.html.
http://java.sun.com/products/jms/docs.html.
http://java.sun.com/products/jms/docs.html.
http://jcp.org/en/jsr/detail?id=322
http://jcp.org/en/jsr/detail?id=322
http://java.sun.com/j2ee/connector/download.html
http://java.sun.com/j2ee/connector/download.html
http://java.sun.com/j2ee/connector/download.html
http://java.sun.com/j2ee/connector/download.html
http://java.sun.com/products/javamail/javadocs/index.html
http://java.sun.com/products/javamail/javadocs/index.html
http://java.sun.com/products/javamail/javadocs/index.html
http://java.sun.com/products/javamail/javadocs/index.html
http://java.sun.com/products/javamail/javadocs/index.html
http://java.sun.com/products/javamail/javadocs/index.html
http://java.sun.com/products/javamail/javadocs/index.html
http://java.sun.com/j2se/1.4.2/docs/api/java/net/URL.html
http://java.sun.com/j2se/1.4.2/docs/api/java/net/URL.html
http://java.sun.com/j2se/1.4.2/docs/api/java/net/URL.html
http://java.sun.com/j2se/1.4.2/docs/api/java/net/URL.html
http://java.sun.com/j2se/1.4.2/docs/api/java/net/URL.html
http://java.sun.com/products/javabeans/jaf/index.jsp
http://java.sun.com/products/javabeans/jaf/index.jsp
http://java.sun.com/products/javabeans/jaf/index.jsp
http://java.sun.com/products/archive/javabeans/jaf102.html
http://java.sun.com/products/archive/javabeans/jaf102.html
http://www.w3.org/Addressing/

Security

Table 155. Supported specifications and APIs for security. The product supports the specifications or APIs in this
table.

Specification or API Version 8.5 Version 8.0 Version 7.0 Version 6.1
Version
6.0

Java 2 Security Manager Java 2
Security
Manager 1.5

Java 2
Security
Manager 1.5

Java 2
Security
Manager 1.5

Java 2
Security
Manager
1.5

Java 2
Security
Manager
1.4 New

Java Authentication and Authorization Service
(JAAS)

JAAS 2.0 applies to these versions.

Java Authorization Contract for Containers
(JACC)

JACC 1.4 JACC 1.4 JACC 1.4
New

JACC 1.0 JACC 1.0
New

Java Authentication Service Provider Interface
for Containers (JASPI)

JASPI 1.0 JASPI 1.0 Not
applicable

Not
applicable

Not
applicable

Common Secure Interoperability Version 2
(CSIv2) specification

This is an Object Management Group (OMG)
CORBA/IIOP specification.

CSI 2.0 applies to these versions.

Secure Sockets Layer (SSL) configuration

The product uses Java Secure Sockets
Extension (JSSE) as the SSL implementation
for secure connections. JSSE is part of the
Java 2 Standard Edition (J2SE) specification
and is included in the IBM implementation of
the Java Runtime Extension (JRE)
specification.

JSSE 5.0 JSSE 5.0 JSSE 5.0 JSSE 5.0
New

JSSE 1.0.3

Java Generic Security Service (JGSS)

Use JGSS with the Kerberos Network
Authentication Service, Version 5

JGSS 1.0.1 applies to these versions.

The Simple and Protected GSS-API
Negotiation Mechanism (SPNEGO)

SPNEGO 1.0 applies to these versions.

Java Cryptographic Extension (JCE)
specification

JCE 1.0 applies to these versions.

Java Certification Path (CertPath) API CertPath 1.1 CertPath 1.1 CertPath 1.1 CertPath
1.1 New

CertPath
1.0

Web Services Security

Table 156. Supported specifications and APIs for Web Services Security. The product supports the specifications or
APIs in this table.

Specification or API Version 8.5 Version 8.0 Version 7.0 Version 6.1
Version
6.0

Canonical XML Canonical XML 1.0 applies to these versions.

Decryption Transform for XML Signature Decryption Transformation for XML Signature applies to these
versions. .

Exclusive XML Canonicalization Exclusive XML Canonicalization 1.0 applies to these versions.

Chapter 45. Specifications and API documentation 1267

http://www.ibm.com/developerworks/java/jdk/security/
http://www.ibm.com/developerworks/java/jdk/security/
http://www.ibm.com/developerworks/java/jdk/security/
http://www.ibm.com/developerworks/java/jdk/security/
http://www.ibm.com/developerworks/java/jdk/security/
http://www.ibm.com/developerworks/java/jdk/security/
http://www.ibm.com/developerworks/java/jdk/security/
http://www.ibm.com/developerworks/java/jdk/security/
http://www.ibm.com/developerworks/java/jdk/security/
http://www.ibm.com/developerworks/java/jdk/security/
http://www.ibm.com/developerworks/java/jdk/security/
http://www.ibm.com/developerworks/java/jdk/security/
http://www.ibm.com/developerworks/java/jdk/security/
http://www.ibm.com/developerworks/java/jdk/security/
http://www.ibm.com/developerworks/java/jdk/security/
http://www.ibm.com/developerworks/java/jdk/security/
http://www.ibm.com/developerworks/java/jdk/security/
http://www.ibm.com/developerworks/java/jdk/security/
http://www.jcp.org/en/jsr/detail?id=115
http://www.jcp.org/en/jsr/detail?id=115
http://www.jcp.org/en/jsr/detail?id=115
http://www.jcp.org/en/jsr/detail?id=115
http://www.jcp.org/en/jsr/detail?id=115
http://jcp.org/en/jsr/detail?id=196
http://jcp.org/en/jsr/detail?id=196
http://www.omg.org/technology/documents/corba_spec_catalog.htm#CSIv2
http://java.sun.com/javase/6/docs/technotes/guides/security/index.html
http://java.sun.com/javase/6/docs/technotes/guides/security/index.html
http://java.sun.com/javase/6/docs/technotes/guides/security/index.html
http://java.sun.com/javase/6/docs/technotes/guides/security/index.html
http://java.sun.com/javase/6/docs/technotes/guides/security/index.html
http://www.ietf.org/rfc/rfc1510.txt
http://www.ietf.org/rfc/rfc1510.txt
http://java.sun.com/javase/6/docs/technotes/guides/security/index.html
http://www.ietf.org/rfc/rfc2478.txt
http://www.ibm.com/developerworks/java/jdk/security/142/secguides/jceDocs/api_users_guide.html
http://www.ibm.com/developerworks/java/jdk/security/142/secguides/certpathDocs/API_users_guide.html
http://www.ibm.com/developerworks/java/jdk/security/142/secguides/certpathDocs/API_users_guide.html
http://www.ibm.com/developerworks/java/jdk/security/142/secguides/certpathDocs/API_users_guide.html
http://www.ibm.com/developerworks/java/jdk/security/142/secguides/certpathDocs/API_users_guide.html
http://www.ibm.com/developerworks/java/jdk/security/142/secguides/certpathDocs/API_users_guide.html
http://www.ibm.com/developerworks/java/jdk/security/142/secguides/certpathDocs/API_users_guide.html
http://www.ibm.com/developerworks/java/jdk/security/142/secguides/certpathDocs/API_users_guide.html
http://www.w3.org/TR/xml-c14n
http://www.w3.org/TR/xmlenc-decrypt
http://www.w3.org/TR/xml-exc-c14n/

Table 156. Supported specifications and APIs for Web Services Security (continued). The product supports the
specifications or APIs in this table.

Specification or API Version 8.5 Version 8.0 Version 7.0 Version 6.1
Version
6.0

OASIS Web Services Security: SOAP Message
Security (WS-Security)

WS-Security
1.1

WS-Security
1.1

WS-Security
1.1

WS-Security
1.1 New for
Feature
Pack for
Web
Services

WS-
Security
1.0

OASIS Web Services Security: Kerberos Token
Profile

Kerberos
Token
Profile 1.1

Kerberos
Token
Profile 1.1

Kerberos
Token
Profile 1.1
New

Not
applicable

OASIS Web Services Security: SAML Token
Profile 1.1
Note: WebSphere Application Server supports
this specification in reference to the SAML
Version 1.1 and 2.0 assertions within SOAP
messages only.

SAML
Version 1.1
and 2.0
assertions

SAML
Version 1.1
and 2.0
assertions

SAML
Version 1.1
and 2.0
assertions

OASIS Web Services Security: Username
Token Profile

Username
Token
Profile 1.1

Username
Token
Profile 1.1

Username
Token
Profile 1.1

Username
Token
Profile 1.1
New for
Feature
Pack for
Web
Services

Username
Token
Profile 1.0
New

OASIS Web Services Security: X.509 Token
Profile

X.509 Token
Profile 1.1

X.509 Token
Profile 1.1

X.509 Token
Profile 1.1

X.509 Token
Profile 1.1
New for
Feature
Pack for
Web
Services

X.509
Token
Profile 1.0
New

Web Services Interoperability Organization
(WS-I) Basic Security Profile

WS-I Basic
Security
Profile 1.1

WS-I Basic
Security
Profile 1.1

WS-I Basic
Security
Profile 1.1
New

WS-I Basic
Security
Profile 1.0

Not
applicable

Web Services Interoperability Organization
(WS-I) Reliable Secure Profile

WS-I
Reliable
Secure
Profile 1.0
(draft)

WS-I
Reliable
Secure
Profile 1.0
(draft)

WS-I
Reliable
Secure
Profile 1.0
(draft)

WS-I
Reliable
Secure
Profile 1.0
(draft) New
for Feature
Pack for
Web
Services

Not
applicable

1268 Overview

http://www.oasis-open.org/committees/download.php/16790/wss-v1.1-spec-os-SOAPMessageSecurity.pdf
http://www.oasis-open.org/committees/download.php/16790/wss-v1.1-spec-os-SOAPMessageSecurity.pdf
http://www.oasis-open.org/committees/download.php/16790/wss-v1.1-spec-os-SOAPMessageSecurity.pdf
http://www.oasis-open.org/committees/download.php/16790/wss-v1.1-spec-os-SOAPMessageSecurity.pdf
http://www.oasis-open.org/committees/download.php/16790/wss-v1.1-spec-os-SOAPMessageSecurity.pdf
http://www.oasis-open.org/committees/download.php/16790/wss-v1.1-spec-os-SOAPMessageSecurity.pdf
http://www.oasis-open.org/committees/download.php/16790/wss-v1.1-spec-os-SOAPMessageSecurity.pdf
http://www.oasis-open.org/committees/download.php/16790/wss-v1.1-spec-os-SOAPMessageSecurity.pdf
http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-soap-message-security-1.0.pdf
http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-soap-message-security-1.0.pdf
http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-soap-message-security-1.0.pdf
http://www.oasis-open.org/committees/download.php/16788/wss-v1.1-spec-os-KerberosTokenProfile.pdf
http://www.oasis-open.org/committees/download.php/16788/wss-v1.1-spec-os-KerberosTokenProfile.pdf
http://www.oasis-open.org/committees/download.php/16788/wss-v1.1-spec-os-KerberosTokenProfile.pdf
http://www.oasis-open.org/committees/download.php/16788/wss-v1.1-spec-os-KerberosTokenProfile.pdf
http://www.oasis-open.org/committees/download.php/16788/wss-v1.1-spec-os-KerberosTokenProfile.pdf
http://www.oasis-open.org/committees/download.php/16788/wss-v1.1-spec-os-KerberosTokenProfile.pdf
http://www.oasis-open.org/committees/download.php/16788/wss-v1.1-spec-os-KerberosTokenProfile.pdf
http://www.oasis-open.org/committees/download.php/16788/wss-v1.1-spec-os-KerberosTokenProfile.pdf
http://www.oasis-open.org/committees/download.php/16788/wss-v1.1-spec-os-KerberosTokenProfile.pdf
http://www.oasis-open.org/committees/download.php/16768/wss-v1.1-spec-os-SAMLTokenProfile.pdf
http://www.oasis-open.org/committees/download.php/16768/wss-v1.1-spec-os-SAMLTokenProfile.pdf
http://www.oasis-open.org/committees/download.php/16768/wss-v1.1-spec-os-SAMLTokenProfile.pdf
http://www.oasis-open.org/committees/download.php/16768/wss-v1.1-spec-os-SAMLTokenProfile.pdf
http://www.oasis-open.org/committees/download.php/16768/wss-v1.1-spec-os-SAMLTokenProfile.pdf
http://www.oasis-open.org/committees/download.php/16768/wss-v1.1-spec-os-SAMLTokenProfile.pdf
http://www.oasis-open.org/committees/download.php/16768/wss-v1.1-spec-os-SAMLTokenProfile.pdf
http://www.oasis-open.org/committees/download.php/16768/wss-v1.1-spec-os-SAMLTokenProfile.pdf
http://www.oasis-open.org/committees/download.php/16768/wss-v1.1-spec-os-SAMLTokenProfile.pdf
http://www.oasis-open.org/committees/download.php/16768/wss-v1.1-spec-os-SAMLTokenProfile.pdf
http://www.oasis-open.org/committees/download.php/16768/wss-v1.1-spec-os-SAMLTokenProfile.pdf
http://www.oasis-open.org/committees/download.php/16768/wss-v1.1-spec-os-SAMLTokenProfile.pdf
http://www.oasis-open.org/committees/download.php/16782/wss-v1.1-spec-os-UsernameTokenProfile.pdf
http://www.oasis-open.org/committees/download.php/16782/wss-v1.1-spec-os-UsernameTokenProfile.pdf
http://www.oasis-open.org/committees/download.php/16782/wss-v1.1-spec-os-UsernameTokenProfile.pdf
http://www.oasis-open.org/committees/download.php/16782/wss-v1.1-spec-os-UsernameTokenProfile.pdf
http://www.oasis-open.org/committees/download.php/16782/wss-v1.1-spec-os-UsernameTokenProfile.pdf
http://www.oasis-open.org/committees/download.php/16782/wss-v1.1-spec-os-UsernameTokenProfile.pdf
http://www.oasis-open.org/committees/download.php/16782/wss-v1.1-spec-os-UsernameTokenProfile.pdf
http://www.oasis-open.org/committees/download.php/16782/wss-v1.1-spec-os-UsernameTokenProfile.pdf
http://www.oasis-open.org/committees/download.php/16782/wss-v1.1-spec-os-UsernameTokenProfile.pdf
http://www.oasis-open.org/committees/download.php/16782/wss-v1.1-spec-os-UsernameTokenProfile.pdf
http://www.oasis-open.org/committees/download.php/16782/wss-v1.1-spec-os-UsernameTokenProfile.pdf
http://www.oasis-open.org/committees/download.php/16782/wss-v1.1-spec-os-UsernameTokenProfile.pdf
http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-username-token-profile-1.0.pdf
http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-username-token-profile-1.0.pdf
http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-username-token-profile-1.0.pdf
http://www.oasis-open.org/committees/download.php/16785/wss-v1.1-spec-os-x509TokenProfile.pdf
http://www.oasis-open.org/committees/download.php/16785/wss-v1.1-spec-os-x509TokenProfile.pdf
http://www.oasis-open.org/committees/download.php/16785/wss-v1.1-spec-os-x509TokenProfile.pdf
http://www.oasis-open.org/committees/download.php/16785/wss-v1.1-spec-os-x509TokenProfile.pdf
http://www.oasis-open.org/committees/download.php/16785/wss-v1.1-spec-os-x509TokenProfile.pdf
http://www.oasis-open.org/committees/download.php/16785/wss-v1.1-spec-os-x509TokenProfile.pdf
http://www.oasis-open.org/committees/download.php/16785/wss-v1.1-spec-os-x509TokenProfile.pdf
http://www.oasis-open.org/committees/download.php/16785/wss-v1.1-spec-os-x509TokenProfile.pdf
http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-x509-token-profile-1.0.pdf
http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-x509-token-profile-1.0.pdf
http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-x509-token-profile-1.0.pdf
http://www.ws-i.org/Profiles/BasicSecurityProfile-1.1.html
http://www.ws-i.org/Profiles/BasicSecurityProfile-1.1.html
http://www.ws-i.org/Profiles/BasicSecurityProfile-1.1.html
http://www.ws-i.org/Profiles/BasicSecurityProfile-1.1.html
http://www.ws-i.org/Profiles/BasicSecurityProfile-1.1.html
http://www.ws-i.org/Profiles/BasicSecurityProfile-1.1.html
http://www.ws-i.org/Profiles/BasicSecurityProfile-1.1.html
http://www.ws-i.org/Profiles/BasicSecurityProfile-1.1.html
http://www.ws-i.org/Profiles/BasicSecurityProfile-1.1.html
http://www.ws-i.org/Profiles/BasicSecurityProfile-1.0.html
http://www.ws-i.org/Profiles/BasicSecurityProfile-1.0.html
http://www.ws-i.org/Profiles/BasicSecurityProfile-1.0.html
http://ws-i.org/deliverables/workinggroup.aspx?wg=reliablesecure
http://ws-i.org/deliverables/workinggroup.aspx?wg=reliablesecure
http://ws-i.org/deliverables/workinggroup.aspx?wg=reliablesecure
http://ws-i.org/deliverables/workinggroup.aspx?wg=reliablesecure
http://ws-i.org/deliverables/workinggroup.aspx?wg=reliablesecure
http://ws-i.org/deliverables/workinggroup.aspx?wg=reliablesecure
http://ws-i.org/deliverables/workinggroup.aspx?wg=reliablesecure
http://ws-i.org/deliverables/workinggroup.aspx?wg=reliablesecure
http://ws-i.org/deliverables/workinggroup.aspx?wg=reliablesecure
http://ws-i.org/deliverables/workinggroup.aspx?wg=reliablesecure
http://ws-i.org/deliverables/workinggroup.aspx?wg=reliablesecure
http://ws-i.org/deliverables/workinggroup.aspx?wg=reliablesecure
http://ws-i.org/deliverables/workinggroup.aspx?wg=reliablesecure
http://ws-i.org/deliverables/workinggroup.aspx?wg=reliablesecure
http://ws-i.org/deliverables/workinggroup.aspx?wg=reliablesecure
http://ws-i.org/deliverables/workinggroup.aspx?wg=reliablesecure
http://ws-i.org/deliverables/workinggroup.aspx?wg=reliablesecure
http://ws-i.org/deliverables/workinggroup.aspx?wg=reliablesecure
http://ws-i.org/deliverables/workinggroup.aspx?wg=reliablesecure
http://ws-i.org/deliverables/workinggroup.aspx?wg=reliablesecure

Table 156. Supported specifications and APIs for Web Services Security (continued). The product supports the
specifications or APIs in this table.

Specification or API Version 8.5 Version 8.0 Version 7.0 Version 6.1
Version
6.0

Web Services Secure Conversation
(WS-SecureConversation)

OASIS
WS-
SecureConversation
1.3

OASIS
WS-
SecureConversation
1.3

OASIS
WS-
SecureConversation
1.3 New

OASIS
WS-
SecureConversation
1.0 (draft
submission)
New for
Feature
Pack for
Web
Services

Not
applicable

Web Services Trust OASIS
WS-Trust
1.3

OASIS
WS-Trust
1.3

OASIS
WS-Trust
1.3 New

OASIS
WS-Trust
1.1 (draft)
New for
Feature
Pack for
Web
Services

Not
applicable

XML Signature Syntax and Processing XML Signature Syntax and Processing applies to these versions.

XML Encryption Syntax and Processing XML Encryption Syntax and Processing applies to these versions.

Naming and directory

Table 157. Supported specifications and APIs for naming and directory. The product supports the specifications or
APIs in this table.

Specification or API Version 8.5 Version 8.0 Version 7.0 Version 6.1
Version
6.0

Java Naming and Directory Interface (JNDI)
Specification

See also “JNDI support in WebSphere
Application Server” on page 506.

JNDI on Java
SE 7 New

JNDI on Java
SE 6

JNDI on
Java SE 6
New

JNDI on J2SE applies to
these versions.

Common Object Request Broker:
Architecture and Specification (CORBA)
specification

This is an Object Management Group
(OMG) Interoperable Naming (CosNaming)
specification.

CORBA 2.4 applies to these versions.

Interoperable Naming Service specification

This is an OMG CosNaming specification.

Interoperable Naming Service

Naming Service specification

This is an OMG CosNaming specification.

Naming Service applies to these versions.

Object Request Broker

The Object Request Broker (ORB) component follows the Common Object Request Broker Architecture
(CORBA) specifications supported by Java 2 Platform, Standard Edition (J2SE). The Object Management
Group (OMG) produces the specifications.

Chapter 45. Specifications and API documentation 1269

http://docs.oasis-open.org/ws-sx/ws-secureconversation/200512/ws-secureconversation-1.3-os.html
http://docs.oasis-open.org/ws-sx/ws-secureconversation/200512/ws-secureconversation-1.3-os.html
http://docs.oasis-open.org/ws-sx/ws-secureconversation/200512/ws-secureconversation-1.3-os.html
http://docs.oasis-open.org/ws-sx/ws-secureconversation/200512/ws-secureconversation-1.3-os.html
http://docs.oasis-open.org/ws-sx/ws-secureconversation/200512/ws-secureconversation-1.3-os.html
http://docs.oasis-open.org/ws-sx/ws-secureconversation/200512/ws-secureconversation-1.3-os.html
http://docs.oasis-open.org/ws-sx/ws-secureconversation/200512/ws-secureconversation-1.3-os.html
http://docs.oasis-open.org/ws-sx/ws-secureconversation/200512/ws-secureconversation-1.3-os.html
http://docs.oasis-open.org/ws-sx/ws-secureconversation/200512/ws-secureconversation-1.3-os.html
http://docs.oasis-open.org/ws-sx/ws-secureconversation/200512/ws-secureconversation-1.3-os.html
http://docs.oasis-open.org/ws-sx/ws-secureconversation/200512/ws-secureconversation-1.3-os.html
http://docs.oasis-open.org/ws-sx/ws-secureconversation/200512/ws-secureconversation-1.3-os.html
http://www.oasis-open.org/committees/download.php/15978/oasis-wssx-ws-secureconversation-1.0.pdf
http://www.oasis-open.org/committees/download.php/15978/oasis-wssx-ws-secureconversation-1.0.pdf
http://www.oasis-open.org/committees/download.php/15978/oasis-wssx-ws-secureconversation-1.0.pdf
http://www.oasis-open.org/committees/download.php/15978/oasis-wssx-ws-secureconversation-1.0.pdf
http://www.oasis-open.org/committees/download.php/15978/oasis-wssx-ws-secureconversation-1.0.pdf
http://docs.oasis-open.org/ws-sx/ws-trust/200512/ws-trust-1.3-os.pdf
http://docs.oasis-open.org/ws-sx/ws-trust/200512/ws-trust-1.3-os.pdf
http://docs.oasis-open.org/ws-sx/ws-trust/200512/ws-trust-1.3-os.pdf
http://docs.oasis-open.org/ws-sx/ws-trust/200512/ws-trust-1.3-os.pdf
http://docs.oasis-open.org/ws-sx/ws-trust/200512/ws-trust-1.3-os.pdf
http://docs.oasis-open.org/ws-sx/ws-trust/200512/ws-trust-1.3-os.pdf
http://docs.oasis-open.org/ws-sx/ws-trust/200512/ws-trust-1.3-os.pdf
http://docs.oasis-open.org/ws-sx/ws-trust/200512/ws-trust-1.3-os.pdf
http://docs.oasis-open.org/ws-sx/ws-trust/200512/ws-trust-1.3-os.pdf
http://schemas.xmlsoap.org/ws/2005/02/trust/
http://schemas.xmlsoap.org/ws/2005/02/trust/
http://schemas.xmlsoap.org/ws/2005/02/trust/
http://www.w3.org/TR/xmldsig-core/
http://www.w3.org/TR/xmlenc-core/
http://docs.oracle.com/javase/7/docs/api/index.html?javax/naming/package-summary.html
http://docs.oracle.com/javase/7/docs/api/index.html?javax/naming/package-summary.html
http://download.oracle.com/javase/6/docs/api/index.html?javax/naming/package-summary.html
http://download.oracle.com/javase/6/docs/api/index.html?javax/naming/package-summary.html
http://download.oracle.com/javase/6/docs/api/index.html?javax/naming/package-summary.html
http://download.oracle.com/javase/6/docs/api/index.html?javax/naming/package-summary.html
http://java.sun.com/products/jndi/1.2/javadoc/
http://www.omg.org/cgi-bin/doc?formal/00-10-33
http://www.omg.org/cgi-bin/doc?ptc/00-08-07
http://www.omg.org/cgi-bin/doc?formal/2001-02-65

Versions 6.1 and later use the J2SE 5.0 specifications that are listed in Official Specifications for CORBA
support in J2SE 5.0 at http://download.oracle.com/javase/1.5.0/docs/guide/idl/compliance.html.

Version 6.0.x uses the J2SE 1.4 specifications that are listed in Official Specifications for CORBA support
in J2SE 1.4 at http://download.oracle.com/javase/1.4.2/docs/api/org/omg/CORBA/doc-files/compliance.html.

Table 158. Supported specifications and APIs for ORB. The product supports the specifications or APIs in this table.

Specification or API Version 8.5 Version 8.0
Version
7.0

Version
6.1

Version
6.0

Common Object Request Broker Architecture
(CORBA) specifications

CORBA 2.3.1 applies to these versions.

Revised IDL to Java language mapping Revised IDL to Java language mapping applies to these
versions.

New IDL to Java Mapping Chapter New IDL to Java Mapping Chapter applies to these versions.

Updated Java to IDL Mapping specification Updated Java to IDL Mapping applies to these versions.

Interoperable Naming Service revised chapters Interoperable Naming Service revised chapters applies to these
versions.

Object Reference Template Final Adopted
specification

Object
Reference
Template
Final Adopted
specification

Object
Reference
Template
Final Adopted
specification

Object
Reference
Template
Final
Adopted
specification

Object
Reference
Template
Final
Adopted
specification
New

Not
applicable

Portable Interceptors specification Not
applicable

Not
applicable

Not
applicable

Not
applicable

Portable
Interceptors
specification

Transactions

Table 159. Supported specifications and APIs for transactions. The product supports the specifications or APIs in
this table.

Specification or API Version 8.5 Version 8.0 Version 7.0 Version 6.1
Version
6.0

CORBA Object Transaction Service (OTS)
specification

OTS 1.4 OTS 1.4 OTS 1.4 OTS 1.4 OTS 1.4
New

Java EE Connector Architecture (JCA) resource
adapter

JCA 1.6
(JSR 322)

JCA 1.6
(JSR 322)
New

JCA 1.5 JCA 1.5 JCA 1.5
New

JCA 1.0

Java Transaction API (JTA) specification JTA 1.1 JTA 1.1 JTA 1.1 New JTA 1.0.1B JTA 1.0.1B
New

Java Transaction Service (JTS) specification JTS 1.0 applies to these versions.

WebSphere extensions

Table 160. Supported specifications and APIs for WebSphere extensions. The product supports the specifications or
APIs in this table.

Specification or API Version 8.5 Version 8.0 Version 7.0 Version 6.1 Version 6.0

ActivitySession service and Last Participant Support

1270 Overview

http://download.oracle.com/javase/1.5.0/docs/guide/idl/compliance.html
http://download.oracle.com/javase/1.4.2/docs/api/org/omg/CORBA/doc-files/compliance.html
http://www.omg.org/cgi-bin/doc?formal/99-10-07
http://www.omg.org/cgi-bin/doc?ptc/00-01-08
http://www.omg.org/cgi-bin/doc?ptc/00-11-03
http://www.omg.org/cgi-bin/doc?ptc/00-01-06
http://www.omg.org/cgi-bin/doc?ptc/00-08-07
http://www.omg.org/cgi-bin/doc?ptc/2001-08-31
http://www.omg.org/cgi-bin/doc?ptc/2001-08-31
http://www.omg.org/cgi-bin/doc?ptc/2001-08-31
http://www.omg.org/cgi-bin/doc?ptc/2001-08-31
http://www.omg.org/cgi-bin/doc?ptc/2001-08-31
http://www.omg.org/cgi-bin/doc?ptc/2001-08-31
http://www.omg.org/cgi-bin/doc?ptc/2001-08-31
http://www.omg.org/cgi-bin/doc?ptc/2001-08-31
http://www.omg.org/cgi-bin/doc?ptc/2001-08-31
http://www.omg.org/cgi-bin/doc?ptc/2001-08-31
http://www.omg.org/cgi-bin/doc?ptc/2001-08-31
http://www.omg.org/cgi-bin/doc?ptc/2001-08-31
http://www.omg.org/cgi-bin/doc?ptc/2001-08-31
http://www.omg.org/cgi-bin/doc?ptc/2001-08-31
http://www.omg.org/cgi-bin/doc?ptc/2001-08-31
http://www.omg.org/cgi-bin/doc?ptc/2001-08-31
http://www.omg.org/cgi-bin/doc?ptc/2001-08-31
http://www.omg.org/cgi-bin/doc?ptc/2001-08-31
http://www.omg.org/cgi-bin/doc?ptc/2001-08-31
http://www.omg.org/cgi-bin/doc?ptc/2001-08-31
http://www.omg.org/cgi-bin/doc?ptc/2001-08-31
http://www.omg.org/cgi-bin/doc?ptc/2001-08-31
http://www.omg.org/cgi-bin/doc?ptc/2001-03-04
http://www.omg.org/cgi-bin/doc?ptc/2001-03-04
http://www.omg.org/cgi-bin/doc?ptc/2001-03-04
http://www.omg.org/cgi-bin/doc?formal/2003-09-02
http://www.omg.org/cgi-bin/doc?formal/2003-09-02
http://www.omg.org/cgi-bin/doc?formal/2003-09-02
http://www.omg.org/cgi-bin/doc?formal/2003-09-02
http://www.omg.org/cgi-bin/doc?formal/2003-09-02
http://jcp.org/en/jsr/detail?id=322
http://jcp.org/en/jsr/detail?id=322
http://java.sun.com/j2ee/connector/download.html
http://java.sun.com/j2ee/connector/download.html
http://java.sun.com/j2ee/connector/download.html
http://java.sun.com/j2ee/connector/download.html
http://java.sun.com/products/jta/
http://java.sun.com/products/jta/
http://java.sun.com/products/jta/
http://java.sun.com/products/jta/
http://java.sun.com/products/jta/
http://java.sun.com/products/jts/

Table 160. Supported specifications and APIs for WebSphere extensions (continued). The product supports the
specifications or APIs in this table.

Specification or API Version 8.5 Version 8.0 Version 7.0 Version 6.1 Version 6.0

J2EE Activity Service for Extended
Transactions (JSR 95)

JSR 95 applies to these versions.

Java Transaction API (JTA) specification JTA 1.1 JTA 1.1 JTA 1.1 New JTA 1.0.1B
New

JTA 1.0.1

Internationalization (i18n)

J2SE internationalization documentation J2SE
Internationalization
5.0

J2SE
Internationalization
5.0

J2SE
Internationalization
5.0

J2SE
Internationalization
5.0 New

J2SE
Internationalization
1.4.2

Administration

Table 161. Supported specifications and APIs for administration. The product supports the specifications or APIs in
this table.

Specification or API Version 8.5 Version 8.0 Version 7.0 Version 6.1 Version 6.0

Java EE Application Deployment
specification

Java EE
Deployment
1.2

Java EE
Deployment
1.2

Java EE
Deployment
1.2 New

J2EE
Deployment
1.1

J2EE
Deployment
1.1 New

J2EE Extension Mechanism
Architecture

J2EE
Extension
Mechanism
Architecture
1.4.2

J2EE
Extension
Mechanism
Architecture
1.4.2

J2EE
Extension
Mechanism
Architecture
1.4.2

J2EE
Extension
Mechanism
Architecture
1.4.2

J2EE
Extension
Mechanism
Architecture
1.4.2 New

Java Management Extensions (JMX)
JSR-000003

JMX 1.4 JMX 1.4 JMX 1.4 JMX 1.2 JMX 1.2 New

Java Management Extensions (JMX)
Remote API

JMX Remote
API 1.0

JMX Remote
API 1.0

JMX Remote
API 1.0

JMX Remote
API 1.0 New

Not
applicable

Java Virtual Machine (JVM)
specification

See WebSphere Application Server
detailed system requirements.

JVM 6 JVM 6 JVM 6 New JVM 5.0 New JVM 1.4.2

Logging API specification (JSR 47) Logging API
specification
(JSR 47) 1.0

Logging API
specification
(JSR 47) 1.0

Logging API
specification
(JSR 47) 1.0

Logging API
specification
(JSR 47) 1.0

Logging API
specification
(JSR 47) 1.0
New

Chapter 45. Specifications and API documentation 1271

http://www.jcp.org/en/jsr/detail?id=95
http://java.sun.com/products/jta/
http://java.sun.com/products/jta/
http://java.sun.com/products/jta/
http://java.sun.com/products/jta/
http://java.sun.com/products/jta/
http://download.oracle.com/javase/1.5.0/docs/guide/intl/
http://download.oracle.com/javase/1.5.0/docs/guide/intl/
http://download.oracle.com/javase/1.5.0/docs/guide/intl/
http://download.oracle.com/javase/1.5.0/docs/guide/intl/
http://download.oracle.com/javase/1.5.0/docs/guide/intl/
http://download.oracle.com/javase/1.5.0/docs/guide/intl/
http://download.oracle.com/javase/1.5.0/docs/guide/intl/
http://download.oracle.com/javase/1.5.0/docs/guide/intl/
http://download.oracle.com/javase/1.5.0/docs/guide/intl/
http://download.oracle.com/javase/1.5.0/docs/guide/intl/
http://download.oracle.com/javase/1.5.0/docs/guide/intl/
http://download.oracle.com/javase/1.5.0/docs/guide/intl/
http://download.oracle.com/javase/1.4.2/docs/guide/intl/
http://download.oracle.com/javase/1.4.2/docs/guide/intl/
http://download.oracle.com/javase/1.4.2/docs/guide/intl/
http://jcp.org/en/jsr/detail?id=88
http://jcp.org/en/jsr/detail?id=88
http://jcp.org/en/jsr/detail?id=88
http://jcp.org/en/jsr/detail?id=88
http://jcp.org/en/jsr/detail?id=88
http://jcp.org/en/jsr/detail?id=88
http://jcp.org/en/jsr/detail?id=88
http://jcp.org/en/jsr/detail?id=88
http://jcp.org/en/jsr/detail?id=88
http://java.sun.com/j2ee/tools/deployment/reference/docs/index.html
http://java.sun.com/j2ee/tools/deployment/reference/docs/index.html
http://java.sun.com/j2ee/tools/deployment/reference/docs/index.html
http://java.sun.com/j2ee/tools/deployment/reference/docs/index.html
http://java.sun.com/j2ee/tools/deployment/reference/docs/index.html
http://java.sun.com/j2ee/tools/deployment/reference/docs/index.html
http://java.sun.com/j2se/1.4.2/docs/guide/extensions/spec.html
http://java.sun.com/j2se/1.4.2/docs/guide/extensions/spec.html
http://java.sun.com/j2se/1.4.2/docs/guide/extensions/spec.html
http://java.sun.com/j2se/1.4.2/docs/guide/extensions/spec.html
http://java.sun.com/j2se/1.4.2/docs/guide/extensions/spec.html
http://java.sun.com/j2se/1.4.2/docs/guide/extensions/spec.html
http://java.sun.com/j2se/1.4.2/docs/guide/extensions/spec.html
http://java.sun.com/j2se/1.4.2/docs/guide/extensions/spec.html
http://java.sun.com/j2se/1.4.2/docs/guide/extensions/spec.html
http://java.sun.com/j2se/1.4.2/docs/guide/extensions/spec.html
http://java.sun.com/j2se/1.4.2/docs/guide/extensions/spec.html
http://java.sun.com/j2se/1.4.2/docs/guide/extensions/spec.html
http://java.sun.com/j2se/1.4.2/docs/guide/extensions/spec.html
http://java.sun.com/j2se/1.4.2/docs/guide/extensions/spec.html
http://java.sun.com/j2se/1.4.2/docs/guide/extensions/spec.html
http://java.sun.com/j2se/1.4.2/docs/guide/extensions/spec.html
http://java.sun.com/j2se/1.4.2/docs/guide/extensions/spec.html
http://java.sun.com/j2se/1.4.2/docs/guide/extensions/spec.html
http://java.sun.com/j2se/1.4.2/docs/guide/extensions/spec.html
http://java.sun.com/j2se/1.4.2/docs/guide/extensions/spec.html
http://java.sun.com/j2se/1.4.2/docs/guide/extensions/spec.html
http://java.sun.com/j2se/1.4.2/docs/guide/extensions/spec.html
http://java.sun.com/j2se/1.4.2/docs/guide/extensions/spec.html
http://java.sun.com/j2se/1.4.2/docs/guide/extensions/spec.html
http://java.sun.com/j2se/1.4.2/docs/guide/extensions/spec.html
http://jcp.org/en/jsr/detail?id=151
http://jcp.org/en/jsr/detail?id=151
http://jcp.org/en/jsr/detail?id=151
http://jcp.org/aboutJava/communityprocess/final/jsr003/index3.html
http://jcp.org/aboutJava/communityprocess/final/jsr003/index3.html
http://jcp.org/aboutJava/communityprocess/final/jsr160/index.html
http://jcp.org/aboutJava/communityprocess/final/jsr160/index.html
http://jcp.org/aboutJava/communityprocess/final/jsr160/index.html
http://jcp.org/aboutJava/communityprocess/final/jsr160/index.html
http://jcp.org/aboutJava/communityprocess/final/jsr160/index.html
http://jcp.org/aboutJava/communityprocess/final/jsr160/index.html
http://jcp.org/aboutJava/communityprocess/final/jsr160/index.html
http://jcp.org/aboutJava/communityprocess/final/jsr160/index.html
http://www.ibm.com/support/docview.wss?rs=180&uid=swg27006921
http://www.ibm.com/support/docview.wss?rs=180&uid=swg27006921
http://java.sun.com/javase/6/docs/
http://java.sun.com/javase/6/docs/
http://java.sun.com/javase/6/docs/
http://java.sun.com/j2se/1.5.0/docs/index.html
http://java.sun.com/j2se/1.4.2/docs/index.html
http://jcp.org/en/jsr/detail?id=47
http://jcp.org/en/jsr/detail?id=47
http://jcp.org/en/jsr/detail?id=47
http://jcp.org/en/jsr/detail?id=47
http://jcp.org/en/jsr/detail?id=47
http://jcp.org/en/jsr/detail?id=47
http://jcp.org/en/jsr/detail?id=47
http://jcp.org/en/jsr/detail?id=47
http://jcp.org/en/jsr/detail?id=47
http://jcp.org/en/jsr/detail?id=47
http://jcp.org/en/jsr/detail?id=47
http://jcp.org/en/jsr/detail?id=47
http://jcp.org/en/jsr/detail?id=47
http://jcp.org/en/jsr/detail?id=47
http://jcp.org/en/jsr/detail?id=47

1272 Overview

Chapter 46. WebSphere Application Server architecture

This article introduces the parts of the WebSphere Application Server.

Servers

WebSphere Application Server. An application server is a Java virtual machine (JVM) running user
applications. Application servers use Java technology to extend web server capabilities to handle web
application requests. An application server makes it possible for a server to generate a dynamic,
customized response to a client request. The WebSphere Application Server provides application servers.

For more introduction, refer to “Introduction: Application servers” on page 1154.

Generic servers. In distributed platforms, you can use the generic servers feature to create a generic
server as an application server instance within the product administration, and associate it with a
non-WebSphere server or process. The generic server can be associated with any server or process that
is necessary to support the application server environment.

For more information, refer to Server collection.

Web servers. In the WebSphere Application Server, an application server works with a web server to
handle requests for web applications. The application server and web server communicate using an HTTP
plug-in for the web server.

For more information, refer to Implementing a web server plug-in.

Clusters

Clusters. In the WebSphere Application Server, Network Deployment product, clusters and cluster
members help you monitor application servers and manage the workloads of servers.

For more information, refer to Balancing workloads.

Core groups

Core groups settings. A core group is a statically defined component of the high availability manager. The
high availability manager is a product function that monitors the application server environment and
provides peer-to-peer failover of application server components.

Core group bridge settings. A core group bridge is a configurable service for communication between core
groups.

For more information, refer to Core groups (high availability domains).

Resources

JMS providers. The product supports messaging by providing a range of Java Message Service (JMS)
providers that conform to the JMS specifications. There are three main types of JMS provider that can be
configured in WebSphere Application Server: The WebSphere Application Server default messaging
provider (uses service integration as the provider), the WebSphere MQ messaging provider (uses your
WebSphere MQ system as the provider) and 3rd party messaging providers (use another company's
product as the provider).

For more information, refer to “Introduction: Messaging resources” on page 1216.

© Copyright IBM Corp. 2012 1273

Environment

Cell-wide settings help handle requests among Web applications, web containers, and application servers
in a logical administrative domain called a cell.

Virtual hosts. A virtual host is a configuration enabling a single host to resemble multiple logical hosts.
Each virtual host has a logical name and a list of one or more DNS aliases by which it is known. A DNS
alias is the TCP/IP host name and port number that are used to request the servlet, for example:
hostname:80. The DNS alias might be the host name and port of a web server that routes to the
application server or the actual host name and port on which the application server is listening. Java
Platform, Enterprise Edition (Java EE) web modules are mapped to a virtual host at installation time. Web
modules that use the same virtual host can dispatch to resources within one another.

For more information, refer to Virtual hosts.

WebSphere variables. Variables are used to control settings and properties relating to the server
environment. WebSphere variables are used to configure product path names such as JAVA_HOME,
cell-wide customization values, and the WebSphere Application Server for z/OS location service.

For more information, refer to WebSphere variables.

Shared libraries. Shared libraries are files used by multiple applications. You can define a shared library at
the cell, node, or server level. You can then associate the library to an application or server in order for the
classes represented by the shared library to be loaded in either a server-wide or application-specific class
loader.

For more information, refer to Managing shared libraries.

Replication domains. Replication is a service that transfers data, objects, or events among application
servers. Data replication service (DRS) is the internal WebSphere Application Server component that
replicates data. Replication domains transfer data, objects, or events for session manager, dynamic cache,
or stateful session beans among application servers in a cluster.

For more information, refer to Data replication.

System administration

Administrative console. The administrative console is a graphical interface that provides many features to
guide you through deployment and systems administration tasks. Use it to explore available management
options.

For more introduction, refer to “Introduction: Administrative console” on page 1150.

Scripting client (wsadmin). The WebSphere administrative (wsadmin) scripting program is a powerful,
non-graphical command interpreter environment enabling you to run administrative operations in a
scripting language. You can also submit scripting language programs to run. The wsadmin tool is intended
for production environments and unattended operations.

For more introduction, refer to “Introduction: Administrative scripting (wsadmin)” on page 1151.

Administrative programs (Java Management Extensions). The product supports a Java programming
interface for developing administrative programs. All of the administrative tools that are supplied with the
product are written according to the API, which is based on the industry standard Java Management
Extensions (JMX) specification.

For more introduction, refer to “Introduction: Administrative programs” on page 1152.

1274 Overview

Command line tools. Command-line tools are simple programs that you run from an operating system
command-line prompt to perform specific tasks, as opposed to general purpose administration. Using the
tools, you can start and stop application servers, check server status, add or remove nodes, and complete
similar tasks.

For more introduction, refer to “Introduction: Administrative commands” on page 1152.

Configuration files. Product configuration data resides in XML files that are manipulated by the previously
mentioned administrative clients.

For more introduction, refer to “Introduction: Administrative configuration data” on page 1152.

Domains (cells, nodes). Servers, nodes and node agents, cells, and the deployment manager are
fundamental concepts in the administrative universe of the product. It is also important to understand the
various processes in the administrative topology and the operating environment in which they apply.

For more introduction, refer to “Welcome to basic administrative architecture” on page 1148.

Monitoring and tuning

Monitoring tools. Performance monitoring is an activity in which you collect and analyze data about the
performance of your applications and their environments. Performance monitoring tools include :

v Performance Monitoring Infrastructure (PMI) for monitoring to understand overall system health. For
more information, see Performance Monitoring Infrastructure (PMI).

v Request metrics for monitoring to understand resource usage. For more information, see Why use
request metrics?.

v Tivoli Performance Viewer (TPV) for viewing the performance data that you collected. For more
information, see Why use Tivoli Performance Viewer?.

Tuning tools. Tuning the product helps you obtain the best performance from your website. Tuning the
product involves analyzing performance data and determining the optimal server configuration. This
determination requires considerable knowledge about the various components in the application server
and their performance characteristics. The performance advisors encapsulate this knowledge, analyze the
performance data and provide configuration recommendations to improve the application server
performance. Therefore, the performance advisors provide a starting point to the application server tuning
process and help you without requiring that you become an expert.

For more information, refer to Obtaining advice from the advisors.

Troubleshooting

Diagnostic tools. Diagnostic tools help you isolate the source of problems. Many diagnostic tools are
available for this product.

For more information, refer to Working with troubleshooting tools.

Support and self-help IBM Support can assist in deciphering the output of diagnostic tools. Refer to the
WebSphere Application Server Technical Support website for current information on known problems and
their resolution. Documents at this site can save you time gathering information that is needed to resolve a
problem.

For more information, refer to the WebSphere Application Server Support page.

Chapter 46. Product architecture 1275

http://www.ibm.com/software/webservers/appserv/was/support/

Three-tier architectures
WebSphere Application Server provides the application logic layer in a three-tier architecture, enabling
client components to interact with data resources and legacy applications.

Collectively, three-tier architectures are programming models that enable the distribution of application
functionality across three independent systems, typically:

v Client components running on local workstations (tier one)

v Processes running on remote servers (tier two)

v A discrete collection of databases, resource managers, and mainframe applications (tier three)

The following diagram outlines the three tier levels. The tiers are logical . They might or might not be
running on the same physical server.

First tier. Responsibility for presentation and user interaction resides with the first-tier components. These
client components enable the user to interact with the second-tier processes in a secure and intuitive
manner. WebSphere Application Server supports several client types. Clients do not access the third-tier
services directly. For example, a client component provides a form on which a customer orders products.
The client component submits this order to the second-tier processes, which check the product databases
and perform tasks that are needed for billing and shipping.

Second tier. The second-tier processes are commonly referred to as the “application logic layer”. These
processes manage the business logic of the application, and are permitted access to the third-tier
services. The application logic layer is where most of the processing work occurs. Multiple client
components can access the second-tier processes simultaneously, so this application logic layer must
manage its own transactions.

In the previous example, if several customers attempt to place an order for the same item, of which only
one remains, the application logic layer must determine who has the right to that item, update the
database to reflect the purchase, and inform the other customers that the item is no longer available.
Without an application logic layer, client components access the product database directly. The database
is required to manage its own connections, typically locking out a record that is being accessed. A lock can
occur when an item is placed into a shopping cart, preventing other customers from considering it for

Figure 193. Three tier architecture

1276 Overview

purchase. Separating the second and third tiers reduces the load on the third-tier services, supports more
effective connection management, and can improve overall network performance.

Third tier. The third-tier services are protected from direct access by the client components residing within
a secure network. Interaction must occur through the second-tier processes.

Communication among tiers. All three tiers must communicate with each other. Open, standard protocols
and exposed APIs simplify this communication. You can write client components in any programming
language, such as Java or C++. These clients run on any operating system, by speaking with the
application logic layer. Databases in the third tier can be of any design, if the application layer can query
and manipulate them. The key to this architecture is the application logic layer.

Chapter 46. Product architecture 1277

1278 Overview

Chapter 47. Deprecated, stabilized, and removed features

If you are migrating from an earlier release of WebSphere Application Server, you should be aware of the
various features that have been deprecated, stabilized, and removed since Version 6.x.

depfeat: Refer to the tables in “Deprecated features,” “Stabilized features” on page 1312, and “Removed
features” on page 1314 to learn what has been deprecated, stabilized, and removed.

Deprecated features

If a feature is listed as deprecated, IBM might remove this capability in a subsequent release of
the product. Future investment will be focused on the strategic function listed under
Recommended Migration Actions in “Deprecated features.” Typically, a feature is not removed until
at least two major releases or three full years (whichever time period is longer) after the release in
which that feature is deprecated. For example, features that are deprecated in Version 6.0, Version
6.0.1, or Version 6.0.2 are not removed from the product until after Version 7.0 because both
Version 6.0.x and Version 6.1.x are major releases. In rare cases, it might become necessary to
remove features sooner; such cases are indicated clearly and explicitly in the descriptions of these
deprecated features.

For information on features that have been deprecated in this and earlier releases of WebSphere
Application Server, read “Deprecated features.”

Stabilized features

If a feature is listed as stabilized, IBM does not currently plan to deprecate or remove this
capability in a subsequent release of the product; but future investment will be focused on the
alternative function listed under Strategic Alternative in “Stabilized features” on page 1312. You do
not need to change any of your existing applications and scripts that use a stabilized function; but
you should consider using the strategic alternative for new applications.

For information on features that have been stabilized in this release of WebSphere Application
Server, read “Stabilized features” on page 1312.

Removed features

For information on features that have been removed in this and earlier releases of WebSphere
Application Server, read “Removed features” on page 1314.

Deprecated features
If you are migrating your configuration from an earlier release of WebSphere Application Server, you
should be aware of the various features that have been deprecated in this and earlier releases.

If a feature is listed here as deprecated, IBM might remove this capability in a subsequent release of the
product. Future investment will be focussed on the strategic function listed under Recommended Migration
Actions. Typically, a feature is not removed until at least two major releases or three full years (whichever
time period is longer) after the release in which that feature is deprecated. For example, features that are
deprecated in Version 6.0, Version 6.0.1, or Version 6.0.2 are not removed from the product until Version
7.0 because both Version 6.0.x and Version 6.1.x are major releases. In rare cases, it might become
necessary to remove features sooner; such cases are indicated clearly and explicitly in the descriptions of
these deprecated features in this article.

The following tables summarize deprecated features by version and release. The tables indicate what is
deprecated—such as application programming interfaces (APIs), scripting interfaces, tools, wizards,
publicly exposed configuration data, naming identifiers, and constants. Where possible, the tables also
indicate the recommended migration action.

This article contains the following deprecation tables:

© IBM Corporation 1997, 2009 1279

v “Features deprecated in Version 8.5”
v “Features deprecated in Version 8.0.0.1” on page 1283
v “Features deprecated in Version 8.0” on page 1285
v “Features deprecated in Version 7.0” on page 1290
v “Features deprecated in Version 6.1” on page 1294
v “Features deprecated in Version 6.0.2” on page 1298
v “Features deprecated in Version 6.0” on page 1298
v “Features deprecated in Version 5.1.1” on page 1302
v “Features deprecated in Version 5.1” on page 1302
v “Features deprecated in Version 5.0.2” on page 1306
v “Features deprecated in Version 5.0.1” on page 1308
v “Features deprecated in Version 5.0” on page 1310

Features deprecated in Version 8.5

1280 Overview

Ta
bl

e
16

2.
F

ea
tu

re
s

de
pr

ec
at

ed
in

V
er

si
on

8.
5.

T
hi

s
ta

bl
e

de
sc

rib
es

th
e

fe
at

ur
es

th
at

ar
e

de
pr

ec
at

ed
in

V
er

si
on

8.
5.

C
at

eg
o

ry
D

ep
re

ca
ti

o
n

R
ec

o
m

m
en

d
ed

M
ig

ra
ti

o
n

A
ct

io
n

A
pp

lic
at

io
n

se
rv

ic
es

T
he

co
m

.ib
m

.w
eb

sp
he

re
.m

an
ag

em
en

t.a
pp

lic
at

io
n.

cl
ie

nt
.E

nv
E

nt
ry

_p
ro

ce
ss

A
nn

ot
at

io
ns

pr
op

er
ty

U
se

th
e

co
m

.ib
m

.w
eb

sp
he

re
.m

an
ag

em
en

t.a
pp

lic
at

io
n.

cl
ie

nt
.E

nv
E

nt
ry

_p
ro

ce
ss

B
in

di
ng

s
pr

op
er

ty

T
he

D
O

JO
w

id
ge

ts
as

so
ci

at
ed

w
ith

th
e

C
om

m
un

ic
at

io
ns

E
na

bl
ed

A
pp

lic
at

io
ns

(C
E

A
)

fe
at

ur
e

U
se

th
e

C
E

A
D

O
JO

1.
5

w
id

ge
t

so
ur

ce
an

d
de

sc
rip

tio
n

th
at

ar
e

av
ai

la
bl

e
fr

om
th

e
pu

bl
ic

ly
ac

ce
ss

ib
le

de
ve

lo
pe

rW
or

ks
ar

tic
le

at
ht

tp
://

w
w

w
14

.s
of

tw
ar

e.
ib

m
.c

om
/w

eb
ap

p/
w

sb
ro

ke
r/

re
di

re
ct

?v
er

si
on

=
ph

il&
pr

od
uc

t=
w

as
-n

d-
m

p&
to

pi
c=

ce
aw

id
ge

ts
.

A
ll

ap
pl

ic
at

io
n

pr
og

ra
m

m
in

g
in

te
rf

ac
es

(A
P

Is
)

re
la

te
d

to
th

e
C

om
m

on
E

ve
nt

In
fr

as
tr

uc
tu

re
(C

E
I)

m
od

ul
e

T
he

fo
llo

w
in

g
fil

es
ar

e
us

ed
by

th
e

C
E

I
m

od
ul

e
an

d
ar

e
de

pr
ec

at
ed

:

v
F

ile
s

in
ap

p_
se

rv
er

_r
oo

t/
bi

n/
:

–
ev

en
tb

uc
ke

t.s
h/

ev
en

tb
uc

ke
t.b

at

–
ev

en
tc

at
al

og
.s

h/
ev

en
tc

at
al

og
.b

at

–
ev

en
te

m
it.

sh
/e

ve
nt

em
it.

ba
t

–
ev

en
tp

ur
ge

.s
h/

ev
en

tp
ur

ge
.b

at

–
ev

en
tp

ur
ge

po
ol

.s
h/

ev
en

tp
ur

ge
po

ol
.b

at

–
ev

en
tq

ue
ry

.s
h/

ev
en

tq
ue

ry
.b

at

v
F

ile
s

in
ap

p_
se

rv
er

_r
oo

t/
sy

st
em

Ap
ps

/:

–
E

ve
nt

S
er

vi
ce

.e
ar

/M
E

TA
-I

N
F

–
E

ve
nt

S
er

vi
ce

.e
ar

/D
at

aS
to

re
E

jb
.ja

r

–
E

ve
nt

S
er

vi
ce

.e
ar

/E
ve

nt
C

at
al

og
E

jb
.ja

r

–
E

ve
nt

S
er

vi
ce

.e
ar

/E
ve

nt
S

er
ve

rE
jb

.ja
r

–
E

ve
nt

S
er

vi
ce

.e
ar

/E
ve

nt
S

er
ve

rM
db

.ja
r

v
F

ile
s

in
ap

p_
se

rv
er

_r
oo

t/
pl

ug
in

s/
:

–
co

m
.ib

m
.e

ve
nt

s.
cl

ie
nt

.ja
r

–
co

m
.ib

m
.e

ve
nt

s.
se

rv
ic

e.
ja

r

v
F

ile
in

ap
p_

se
rv

er
_r

oo
t/
fe

at
ur

es
/:

–
co

m
.ib

m
.e

ve
nt

s.
se

rv
ic

e_
6.

1.
0.

0

v
F

ile
s

in
ap

p_
se

rv
er

_r
oo

t/
pr

op
er

ti
es

/s
ch

em
as

/:

–
ce

i.x
sd

–
ce

is
er

vi
ce

.x
s

v
F

ile
s

in
ap

p_
se

rv
er

_r
oo

t/
ut

il
/e

ve
nt

/:

–
ce

ic
on

fig
re

lo
ad

.ja
cl

–
ev

en
tb

uc
ke

t.j
ac

l

–
ev

en
tc

at
al

og
.ja

cl

–
ev

en
te

m
it.

ja
cl

–
ev

en
tp

ur
ge

.ja
cl

–
ev

en
tp

ur
ge

po
ol

.ja
cl

–
ev

en
tq

ue
ry

.ja
cl

v
F

ile
s

in
ap

p_
se

rv
er

_r
oo

t/
we

b/
co

nf
ig

Do
cs

/p
ac

ka
ge

s/
ce

i/
:

–
cl

as
se

s-
fr

am
e.

ht
m

l

–
D

at
aS

to
re

P
ro

fil
e.

ht
m

l

–
D

is
tr

ib
ut

io
nQ

ue
ue

.h
tm

l

–
E

m
itt

er
F

ac
to

ry
P

ro
fil

e.
ht

m
l

–
E

ve
nt

B
us

Tr
an

sm
is

si
on

P
ro

fil
e.

ht
m

l

–
E

ve
nt

G
ro

up
P

ro
fil

e.
ht

m
l

–
E

ve
nt

G
ro

up
P

ro
fil

eL
is

t.h
tm

l

–
E

ve
nt

In
fr

as
tr

uc
tu

re
P

ro
vi

de
r.h

tm
l

–
E

ve
nt

S
er

ve
rP

ro
fil

e.
ht

m
l

–
F

ilt
er

F
ac

to
ry

P
ro

fil
e.

ht
m

l

–
JM

S
Tr

an
sm

is
si

on
P

ro
fil

e.
ht

m
l

F
or

ne
w

ap
pl

ic
at

io
ns

th
at

re
qu

ire
ev

en
t-

ba
se

d
m

od
el

s,
us

e
S

er
vi

ce
In

te
gr

at
io

n
B

us
(S

IB
us

).
D

es
ig

n
ne

w
ap

pl
ic

at
io

ns
us

in
g

S
IB

us
-p

ro
vi

de
d

A
P

Is
fo

r
se

nd
in

g
an

d
re

ce
iv

in
g

ev
en

ts
.

T
he

co
m

.ib
m

.p
or

ta
l.*

pa
ck

ag
es

:

v
co

m
.ib

m
.p

or
ta

l

v
co

m
.ib

m
.p

or
ta

l.d
yn

am
ic

ui

v
co

m
.ib

m
.p

or
ta

l.h
el

p

v
co

m
.ib

m
.p

or
ta

l.j
nd

i

v
co

m
.ib

m
.p

or
ta

l.p
or

tle
t.s

er
vi

ce

v
co

m
.ib

m
.p

or
ta

l.p
ro

pe
rt

yb
ro

ke
r.p

ro
pe

rt
y

v
co

m
.ib

m
.p

or
ta

l.p
ro

pe
rt

yb
ro

ke
r.s

er
vi

ce

v
co

m
.ib

m
.p

or
ta

l.s
ta

te

v
co

m
.ib

m
.p

or
ta

l.s
ta

te
.e

xc
ep

tio
ns

T
he

re
is

no
re

co
m

m
en

de
d

m
ig

ra
tio

n
ac

tio
n.

T
he

re
vo

ke
S

S
O

C
oo

ki
es

(H
ttp

S
er

vl
et

R
eq

ue
st

,
H

ttp
S

er
vl

et
R

es
po

ns
e)

m
et

ho
d

fr
om

th
e

W
S

S
ec

ur
ity

H
el

pe
r

cl
as

s
N

o
te

:
T

hi
s

m
et

ho
d

is
no

t
su

pp
or

te
d

in
th

e
Li

be
rt

y
pr

of
ile

.
U

se
th

e
fu

nc
tio

na
lit

y
pr

ov
id

ed
by

th
e

Ja
va

S
er

vl
et

-3
.0

lo
go

ut
()

m
et

ho
d.

R
ea

d
S

er
vl

et
se

cu
rit

y
m

et
ho

ds
.

T
he

ge
tL

T
P

A
C

oo
ki

eF
ro

m
S

S
O

To
ke

n(
)

m
et

ho
d

fr
om

th
e

W
S

S
ec

ur
ity

H
el

pe
r

cl
as

s
N

o
te

:
T

hi
s

m
et

ho
d

is
no

t
su

pp
or

te
d

in
th

e
Li

be
rt

y
pr

of
ile

.
U

se
th

e
fu

nc
tio

na
lit

y
pr

ov
id

ed
by

th
e

ge
tS

S
O

C
oo

ki
eF

ro
m

S
S

O
To

ke
n(

)
m

et
ho

d
fr

om
th

e
W

eb
S

ec
ur

ity
H

el
pe

r
cl

as
s.

Chapter 47. Deprecated, stabilized, and removed features 1281

http://www14.software.ibm.com/webapp/wsbroker/redirect?version=phil&product=was-nd-mp&topic=ceawidgets
http://www14.software.ibm.com/webapp/wsbroker/redirect?version=phil&product=was-nd-mp&topic=ceawidgets

Ta
bl

e
16

2.
F

ea
tu

re
s

de
pr

ec
at

ed
in

V
er

si
on

8.
5

(c
on

tin
ue

d)
.

T
hi

s
ta

bl
e

de
sc

rib
es

th
e

fe
at

ur
es

th
at

ar
e

de
pr

ec
at

ed
in

V
er

si
on

8.
5.

C
at

eg
o

ry
D

ep
re

ca
ti

o
n

R
ec

o
m

m
en

d
ed

M
ig

ra
ti

o
n

A
ct

io
n

E
dg

e
co

m
po

ne
nt

s
W

id
e-

A
re

a
N

et
w

or
k

D
is

pa
tc

he
r

(W
A

N
D

)
fe

at
ur

e
pr

ov
id

ed
by

W
eb

S
ph

er
e

E
dg

e
C

om
po

ne
nt

s
Lo

ad
B

al
an

ce
r

fo
r

IP
v4

U
se

th
e

N
et

w
or

k
ad

dr
es

s
tr

an
sl

at
io

n
(N

A
T

)
fo

rw
ar

di
ng

m
et

ho
d

on
IP

v4
,

or
us

e
th

e
M

ed
ia

A
cc

es
s

C
on

tr
ol

(M
A

C
)

en
ca

ps
ul

at
io

n
fo

rw
ar

di
ng

m
et

ho
d

on
IP

v6
.

T
he

fo
llo

w
in

g
tw

o
co

m
po

ne
nt

s
of

W
eb

S
ph

er
e

E
dg

e
C

om
po

ne
nt

s
Lo

ad
B

al
an

ce
r

fo
r

IP
v4

(w
hi

ch
w

or
k

in
co

nj
un

ct
io

n
w

ith
th

es
e

ve
nd

or
s’

sw
itc

he
s

to
pr

ov
id

e
S

im
pl

e
N

et
w

or
k

M
an

ag
em

en
t

P
ro

to
co

l(
S

N
M

P
)

st
at

is
tic

s
on

se
rv

er
av

ai
la

bi
lit

y)
:

v
C

is
co

C
on

su
lta

nt
(C

C
O

)

N
or

te
lA

lte
on

W
eb

S
w

itc
h

A
D

3,
A

D
4,

18
0e

or
18

4;
en

d
of

su
pp

or
t

4/
1/

20
10

v
N

or
ta

l-A
lte

on
C

on
su

lta
nt

(N
A

L)

C
is

co
C

S
S

11
00

0
se

rie
s,

en
d

of
su

pp
or

t
12

/1
7/

20
08

U
se

an
IB

M
Lo

ad
B

al
an

ce
r.

W
eb

S
ph

er
e

E
dg

e
C

om
po

ne
nt

s
Lo

ad
B

al
an

ce
r

fo
r

IP
v4

su
pp

or
t

fo
r

th
e

to
ke

n-
rin

g
in

te
rf

ac
e

U
se

an
E

th
er

ne
t

in
te

rf
ac

e.

S
ys

te
m

ad
m

in
is

tr
at

io
n

In
te

lli
ge

nt
M

an
ag

em
en

t
su

pp
or

t
fo

r
th

e
fo

llo
w

in
g

as
si

st
ed

lif
ec

yc
le

m
id

dl
ew

ar
e

se
rv

er
ty

pe
s:

v
A

pa
ch

e
To

m
ca

t

v
B

E
A

W
eb

Lo
gi

c

v
JB

os
s

v
E

xt
er

na
lW

eb
S

ph
er

e
ap

pl
ic

at
io

n
se

rv
er

U
se

ws
ad

mi
n

sc
rip

tin
g

to
m

an
ag

e
th

es
e

m
id

dl
ew

ar
e

se
rv

er
re

so
ur

ce
s.

T
he

de
fa

ul
tX

D
an

d
de

fa
ul

tX
DZ

OS
se

rv
er

te
m

pl
at

es
th

at
ar

e
us

ed
w

he
n

cr
ea

tin
g

a
dy

na
m

ic
cl

us
te

r
U

se
th

e
de

fa
ul

t
se

rv
er

te
m

pl
at

e.

S
up

po
rt

fo
r

W
eb

S
ph

er
e

V
irt

ua
lE

nt
er

pr
is

e
V

er
si

on
7.

x
an

d
ea

rli
er

no
de

s
M

ig
ra

te
th

e
no

de
s

to
W

eb
S

ph
er

e
A

pp
lic

at
io

n
S

er
ve

r
N

et
w

or
k

D
ep

lo
ym

en
t

V
er

si
on

8.
5.

R
ea

d
M

ig
ra

tin
g

fr
om

W
eb

S
ph

er
e

V
irt

ua
lE

nt
er

pr
is

e.

1282 Overview

http://www.nortel.com/products/announcements/eol2005b/web_switch_md_final.pdf
http://www.cisco.com/en/US/products/hw/contnetw/ps789/prod_eol_notice09186a008032d520.html

Features deprecated in Version 8.0.0.1

Chapter 47. Deprecated, stabilized, and removed features 1283

Ta
bl

e
16

3.
F

ea
tu

re
s

de
pr

ec
at

ed
in

V
er

si
on

8.
0.

0.
1.

T
hi

s
ta

bl
e

de
sc

rib
es

th
e

fe
at

ur
es

th
at

ar
e

de
pr

ec
at

ed
in

V
er

si
on

8.
0.

0.
1.

C
at

eg
o

ry
D

ep
re

ca
ti

o
n

R
ec

o
m

m
en

d
ed

M
ig

ra
ti

o
n

A
ct

io
n

S
ys

te
m

ad
m

in
is

tr
at

io
n

S
up

po
rt

fo
r

th
e

fo
llo

w
in

g:

v
S

yb
as

e
A

da
pt

iv
e

S
er

ve
r

E
nt

er
pr

is
e

(A
S

E
)

12
.5

.X

S
ee

th
e

E
nd

of
Li

fe
N

ot
ic

e
fo

r
A

da
pt

iv
e

S
er

ve
r

E
nt

er
pr

is
e

(A
S

E
)

12
.5

.X
.

v
S

yb
as

e
jC

on
ne

ct
5.

5

S
ee

th
e

E
nd

of
Li

fe
N

ot
ic

e
fo

r
jC

on
ne

ct
V

er
si

on
5.

5.

M
ov

e
to

th
e

fo
llo

w
in

g:

v
S

yb
as

e
A

da
pt

iv
e

S
er

ve
r

E
nt

er
pr

is
e

(A
S

E
)

15
.X

v
S

yb
as

e
jC

on
ne

ct
6.

05
or

jC
on

ne
ct

7.
0

1284 Overview

http://m.sybase.com/detail?id=1053693
http://m.sybase.com/detail?id=1061561

Features deprecated in Version 8.0

Chapter 47. Deprecated, stabilized, and removed features 1285

Ta
bl

e
16

4.
F

ea
tu

re
s

de
pr

ec
at

ed
in

V
er

si
on

8.
0.

T
hi

s
ta

bl
e

de
sc

rib
es

th
e

fe
at

ur
es

th
at

ar
e

de
pr

ec
at

ed
in

V
er

si
on

8.
0.

C
at

eg
o

ry
D

ep
re

ca
ti

o
n

R
ec

o
m

m
en

d
ed

M
ig

ra
ti

o
n

A
ct

io
n

A
pp

lic
at

io
n

se
rv

ic
es

T
he

fo
llo

w
in

g
hi

st
or

yI
nf

o
ut

ili
ty

co
m

m
an

d-
lin

e
ar

gu
m

en
ts

:

v
-c

om
po

ne
nt

s

v
-m

ai
nt

en
an

ce
P

ac
ka

ge
ID

B
e

aw
ar

e
of

th
e

fo
llo

w
in

g
w

he
n

yo
u

us
e

th
e

hi
st

or
yI

nf
o

ut
ili

ty
:

v
-c

om
po

ne
nt

D
o

no
t

us
e

th
is

ar
gu

m
en

t.
It

no
w

pe
rf

or
m

s
no

ac
tio

n.

v
-m

ai
nt

en
an

ce
P

ac
ka

ge
ID

T
hi

s
ar

gu
m

en
t

no
w

pe
rf

or
m

s
an

ac
tio

n
th

at
is

eq
ui

va
le

nt
to

-o
ffe

rin
gI

D
.

U
se

-o
ffe

rin
gI

D
.

T
he

fo
llo

w
in

g
ve

rs
io

nI
nf

o
ut

ili
ty

co
m

m
an

d-
lin

e
ar

gu
m

en
ts

:

v
-c

om
po

ne
nt

D
et

ai
l

v
-c

om
po

ne
nt

s

v
-m

ai
nt

en
an

ce
P

ac
ka

ge
D

et
ai

l

v
-m

ai
nt

en
an

ce
P

ac
ka

ge
s

B
e

aw
ar

e
of

th
e

fo
llo

w
in

g
w

he
n

yo
u

us
e

th
e

ve
rs

io
nI

nf
o

ut
ili

ty
:

v
-c

om
po

ne
nt

D
et

ai
l

D
o

no
t

us
e

th
is

ar
gu

m
en

t.
It

no
w

pe
rf

or
m

s
no

ac
tio

n.

v
-c

om
po

ne
nt

s

D
o

no
t

us
e

th
is

ar
gu

m
en

t.
It

no
w

pe
rf

or
m

s
no

ac
tio

n.

v
-m

ai
nt

en
an

ce
P

ac
ka

ge
D

et
ai

l

T
hi

s
ar

gu
m

en
t

no
w

pe
rf

or
m

s
an

ac
tio

n
th

at
is

eq
ui

va
le

nt
to

-f
ix

pa
ck

D
et

ai
lp

lu
s

-if
ix

D
et

ai
l.

U
se

-f
ix

pa
ck

D
et

ai
la

nd
-if

ix
D

et
ai

l.

v
-m

ai
nt

en
an

ce
P

ac
ka

ge
s

T
hi

s
ar

gu
m

en
t

no
w

pe
rf

or
m

s
an

ac
tio

n
th

at
is

eq
ui

va
le

nt
to

-f
ix

pa
ck

s
pl

us
-if

ix
es

.
U

se
-f

ix
pa

ck
s

an
d

-if
ix

es
.

T
he

fo
llo

w
in

g
m

et
ho

ds
in

th
e

co
m

.ib
m

.w
eb

sp
he

re
.p

ro
du

ct
.W

A
S

D
ire

ct
or

y
cl

as
s:

v
pu

bl
ic

W
A

S
C

om
po

ne
nt

ge
tIn

st
al

le
dC

om
po

ne
nt

B
yN

am
e(

S
tr

in
g

co
m

po
ne

nt
N

am
e)

v
pu

bl
ic

W
A

S
C

om
po

ne
nt

[]
ge

tIn
st

al
le

dC
om

po
ne

nt
Li

st
()

v
pu

bl
ic

bo
ol

ea
n

is
C

om
po

ne
nt

In
st

al
le

d(
S

tr
in

g
co

m
po

ne
nt

N
am

e)

v
pu

bl
ic

W
A

S
M

ai
nt

en
an

ce
P

ac
ka

ge
[]

ge
tH

is
to

ry
M

ai
nt

en
an

ce
P

ac
ka

ge
Li

st
()

v
pu

bl
ic

W
A

S
M

ai
nt

en
an

ce
P

ac
ka

ge
ge

tIn
st

al
le

dM
ai

nt
en

an
ce

P
ac

ka
ge

B
yI

D
(S

tr
in

g
m

pI
D

)

v
pu

bl
ic

W
A

S
M

ai
nt

en
an

ce
P

ac
ka

ge
[]

ge
tIn

st
al

le
dM

ai
nt

en
an

ce
P

ac
ka

ge
Li

st
()

v
pu

bl
ic

bo
ol

ea
n

is
M

ai
nt

en
an

ce
P

ac
ka

ge
In

st
al

le
d(

S
tr

in
g

ID
)

D
o

no
t

us
e

th
es

e
m

et
ho

ds
.

v
pu

bl
ic

W
A

S
C

om
po

ne
nt

ge
tIn

st
al

le
dC

om
po

ne
nt

B
yN

am
e(

S
tr

in
g

co
m

po
ne

nt
N

am
e)

T
hi

s
m

et
ho

d
no

w
re

tu
rn

s
a

nu
ll

ob
je

ct
.

v
pu

bl
ic

W
A

S
C

om
po

ne
nt

[]
ge

tIn
st

al
le

dC
om

po
ne

nt
Li

st
()

T
hi

s
m

et
ho

d
no

w
re

tu
rn

s
an

em
pt

y
lis

t.

v
pu

bl
ic

bo
ol

ea
n

is
C

om
po

ne
nt

In
st

al
le

d(
S

tr
in

g
co

m
po

ne
nt

N
am

e)

T
hi

s
m

et
ho

d
no

w
re

tu
rn

s
as

fa
ls

e.

v
pu

bl
ic

W
A

S
M

ai
nt

en
an

ce
P

ac
ka

ge
[]

ge
tH

is
to

ry
M

ai
nt

en
an

ce
P

ac
ka

ge
Li

st
()

T
hi

s
m

et
ho

d
is

re
pl

ac
ed

by
pu

bl
ic

IM
E

ve
nt

[]
ge

tH
is

to
ry

E
ve

nt
Li

st
()

.

v
pu

bl
ic

W
A

S
M

ai
nt

en
an

ce
P

ac
ka

ge
ge

tIn
st

al
le

dM
ai

nt
en

an
ce

P
ac

ka
ge

B
yI

D
(S

tr
in

g
m

pI
D

)

T
hi

s
m

et
ho

d
is

re
pl

ac
ed

by
pu

bl
ic

IM
O

ffe
rin

g
ge

tIn
st

al
le

dO
ffe

rin
gB

yI
D

(S
tr

in
g

pr
od

uc
tID

).

v
pu

bl
ic

W
A

S
M

ai
nt

en
an

ce
P

ac
ka

ge
[]

ge
tIn

st
al

le
dM

ai
nt

en
an

ce
P

ac
ka

ge
Li

st
()

T
hi

s
m

et
ho

d
is

re
pl

ac
ed

by
pu

bl
ic

IM
O

ffe
rin

g[
]

ge
tIn

st
al

le
dO

ffe
rin

gL
is

t(
).

v
pu

bl
ic

bo
ol

ea
n

is
M

ai
nt

en
an

ce
P

ac
ka

ge
In

st
al

le
d(

S
tr

in
g

ID
)

T
hi

s
m

et
ho

d
is

re
pl

ac
ed

by
pu

bl
ic

bo
ol

ea
n

is
T

hi
sP

ro
du

ct
In

st
al

le
d(

S
tr

in
g

id
).

1286 Overview

Ta
bl

e
16

4.
F

ea
tu

re
s

de
pr

ec
at

ed
in

V
er

si
on

8.
0

(c
on

tin
ue

d)
.

T
hi

s
ta

bl
e

de
sc

rib
es

th
e

fe
at

ur
es

th
at

ar
e

de
pr

ec
at

ed
in

V
er

si
on

8.
0.

C
at

eg
o

ry
D

ep
re

ca
ti

o
n

R
ec

o
m

m
en

d
ed

M
ig

ra
ti

o
n

A
ct

io
n

A
pp

lic
at

io
n

se
rv

ic
es

T
he

fo
llo

w
in

g
cl

as
se

s
un

de
r

th
e

co
m

.ib
m

.w
eb

sp
he

re
.p

ro
du

ct
.*

pa
ck

ag
e:

v
co

m
.ib

m
.w

eb
sp

he
re

.p
ro

du
ct

.m
et

ad
at

a.
W

A
S

C
om

po
ne

nt

v
co

m
.ib

m
.w

eb
sp

he
re

.p
ro

du
ct

.m
et

ad
at

a.
W

A
S

C
om

po
ne

nt
U

pd
at

e

v
co

m
.ib

m
.w

eb
sp

he
re

.p
ro

du
ct

.m
et

ad
at

a.
W

A
S

M
ai

nt
en

an
ce

P
ac

ka
ge

v
co

m
.ib

m
.w

eb
sp

he
re

.p
ro

du
ct

.W
A

S
P

ro
du

ct
E

xc
ep

tio
n

v
co

m
.ib

m
.w

eb
sp

he
re

.p
ro

du
ct

.h
is

to
ry

.W
A

S
H

is
to

ry
E

xc
ep

tio
n

v
co

m
.ib

m
.w

eb
sp

he
re

.p
ro

du
ct

.W
A

S
P

ro
du

ct
.

v
co

m
.ib

m
.w

eb
sp

he
re

.p
ro

du
ct

.h
is

to
ry

.W
A

S
H

is
to

ry

U
se

th
e

fo
llo

w
in

g
gu

id
el

in
es

:

v
co

m
.ib

m
.w

eb
sp

he
re

.p
ro

du
ct

.m
et

ad
at

a.
W

A
S

C
om

po
ne

nt

D
o

no
t

us
e

th
is

cl
as

s.
A

ll
pu

bl
ic

m
et

ho
ds

in
th

is
cl

as
s

no
w

re
tu

rn
ei

th
er

nu
ll

ob
je

ct
s

or
em

pt
y

lis
ts

.

v
co

m
.ib

m
.w

eb
sp

he
re

.p
ro

du
ct

.m
et

ad
at

a.
W

A
S

C
om

po
ne

nt
U

pd
at

e

D
o

no
t

us
e

th
is

cl
as

s.
A

ll
pu

bl
ic

m
et

ho
ds

in
th

is
cl

as
s

no
w

re
tu

rn
ei

th
er

nu
ll

ob
je

ct
s

or
em

pt
y

lis
ts

.

v
co

m
.ib

m
.w

eb
sp

he
re

.p
ro

du
ct

.m
et

ad
at

a.
W

A
S

M
ai

nt
en

an
ce

P
ac

ka
ge

D
o

no
t

us
e

th
is

cl
as

s.

v
co

m
.ib

m
.w

eb
sp

he
re

.p
ro

du
ct

.W
A

S
P

ro
du

ct
E

xc
ep

tio
n

D
o

no
t

us
e

th
is

cl
as

s.
U

se
th

e
co

m
.ib

m
.w

eb
sp

he
re

.p
ro

du
ct

.W
A

S
D

ire
ct

or
yE

xc
ep

tio
n

cl
as

s.

v
co

m
.ib

m
.w

eb
sp

he
re

.p
ro

du
ct

.h
is

to
ry

.W
A

S
H

is
to

ry
E

xc
ep

tio
n

D
o

no
t

us
e

th
is

cl
as

s.
U

se
th

e
co

m
.ib

m
.w

eb
sp

he
re

.p
ro

du
ct

.W
A

S
D

ire
ct

or
yE

xc
ep

tio
n

cl
as

s.

v
co

m
.ib

m
.w

eb
sp

he
re

.p
ro

du
ct

.W
A

S
P

ro
du

ct
.

D
o

no
t

us
e

th
is

cl
as

s.
U

se
th

e
co

m
.ib

m
.w

eb
sp

he
re

.p
ro

du
ct

.W
A

S
D

ire
ct

or
y

cl
as

s.

v
co

m
.ib

m
.w

eb
sp

he
re

.p
ro

du
ct

.h
is

to
ry

.W
A

S
H

is
to

ry

D
o

no
t

us
e

th
is

cl
as

s.
U

se
th

e
co

m
.ib

m
.w

eb
sp

he
re

.p
ro

du
ct

.W
A

S
D

ire
ct

or
y

cl
as

s.

T
he

fo
llo

w
in

g
co

ns
ta

nt
s

un
de

r
th

e
co

m
.ib

m
.w

eb
sp

he
re

.p
ro

du
ct

.W
A

S
D

ire
ct

or
y

cl
as

s:

v
ID

_B
A

S
E

v
ID

_E
X

P
R

E
S

S

v
ID

_N
D

T
he

fo
llo

w
in

g
co

ns
ta

nt
s

un
de

r
th

e
co

m
.ib

m
.w

eb
sp

he
re

.p
ro

du
ct

.W
A

S
D

ire
ct

or
y

an
d

co
m

.ib
m

.w
eb

sp
he

re
.p

ro
du

ct
.u

til
s.

W
A

S
D

ire
ct

or
yH

el
pe

r
cl

as
se

s:

v
ID

_P
M

E

v
ID

_W
B

I

v
ID

_J
D

K

v
ID

_E
M

B
E

D
D

E
D

_E
X

P
R

E
S

S

v
ID

_X
D

v
ID

_C
LI

E
N

T

v
ID

_P
LG

v
ID

_I
H

S

v
ID

_W
X

D

v
ID

_N
D

D
M

Z

v
ID

_U
P

D
I

W
A

S
D

ire
ct

or
y

in
te

rf
ac

es
ar

e
in

de
pe

nd
en

t
of

pr
od

uc
t

ID
s

an
d

tr
ea

t
th

em
as

a
st

rin
g.

A
ny

pr
od

uc
t-

sp
ec

ifi
c

ca
lle

rs
sh

ou
ld

sp
ec

ify
pr

od
uc

t
ID

s
by

th
em

se
lv

es
.

S
up

po
rt

fo
r

Ja
va

A
P

I
fo

r
X

M
L

R
eg

is
tr

ie
s

(J
A

X
R

)
U

se
U

D
D

I
V

er
si

on
3.

S
ec

ur
ity

co
m

.ib
m

.w
s.

se
cu

rit
y.

w
eb

.T
A

M
Tr

us
tA

ss
oc

ia
tio

nI
nt

er
ce

pt
or

P
lu

s
Ti

vo
li

A
cc

es
s

M
an

ag
er

(T
A

M
)

tr
us

t
as

so
ci

at
io

n
in

te
rc

ep
to

r
(T

A
I)

in
te

rf
ac

e
G

et
th

e
la

te
st

ve
rs

io
n

of
Ti

vo
li

co
de

fr
om

th
e

Ti
vo

li
A

cc
es

s
M

an
ag

er
Tr

us
tA

ss
oc

ia
tio

n
In

te
rc

ep
to

r
P

lu
s

w
eb

si
te

.

Chapter 47. Deprecated, stabilized, and removed features 1287

http://www.ibm.com/support/entdocview.wss?uid=swg24016601

Ta
bl

e
16

4.
F

ea
tu

re
s

de
pr

ec
at

ed
in

V
er

si
on

8.
0

(c
on

tin
ue

d)
.

T
hi

s
ta

bl
e

de
sc

rib
es

th
e

fe
at

ur
es

th
at

ar
e

de
pr

ec
at

ed
in

V
er

si
on

8.
0.

C
at

eg
o

ry
D

ep
re

ca
ti

o
n

R
ec

o
m

m
en

d
ed

M
ig

ra
ti

o
n

A
ct

io
n

S
ys

te
m

ad
m

in
is

tr
at

io
n

cr
ea

te
Se

rv
er

Ty
pe

co
m

m
an

d
in

th
e

S
er

ve
rM

an
ag

em
en

t
co

m
m

an
d

gr
ou

p
fo

r
th

e
A

dm
in

Ta
sk

ob
je

ct
D

o
no

t
cr

ea
te

ne
w

se
rv

er
ty

pe
s.

T
he

fo
llo

w
in

g
co

m
m

an
ds

in
th

e
M

an
ag

ed
N

od
eG

ro
up

co
m

m
an

d
gr

ou
p

fo
r

th
e

A
dm

in
Ta

sk
ob

je
ct

:

v
cr

ea
te

M
an

ag
ed

N
od

eG
ro

up

v
de

le
te

M
an

ag
ed

N
od

eG
ro

up

v
ad

dM
em

be
rT

oM
an

ag
ed

N
od

eG
ro

up

v
de

le
te

M
em

be
rF

ro
m

M
an

ag
ed

N
od

eG
ro

up

v
qu

er
yM

an
ag

ed
N

od
eG

ro
up

s

v
ge

tM
an

ag
ed

N
od

eG
ro

up
M

em
be

rs

v
ge

tM
an

ag
ed

N
od

eG
ro

up
In

fo

v
m

od
ify

M
an

ag
ed

N
od

eG
ro

up
In

fo

T
he

fo
llo

w
in

g
co

m
m

an
ds

in
th

e
Jo

bM
an

ag
er

N
od

e
co

m
m

an
d

gr
ou

p
fo

r
th

e
A

dm
in

Ta
sk

ob
je

ct
:

v
cl

ea
nu

pM
an

ag
ed

N
od

e

v
qu

er
yM

an
ag

ed
N

od
es

v
ge

tM
an

ag
ed

N
od

eP
ro

pe
rt

ie
s

v
m

od
ify

M
an

ag
ed

N
od

eP
ro

pe
rt

ie
s

v
ge

tM
an

ag
ed

N
od

eK
ey

s

U
se

th
e

fo
llo

w
in

g
co

m
m

an
ds

in
th

e
Ta

rg
et

G
ro

up
co

m
m

an
d

gr
ou

p
fo

r
th

e
A

dm
in

Ta
sk

ob
je

ct
:

v
cr

ea
te

Ta
rg

et
G

ro
up

v
de

le
te

Ta
rg

et
G

ro
up

v
ad

dM
em

be
rT

oT
ar

ge
tG

ro
up

v
de

le
te

M
em

be
rF

ro
m

Ta
rg

et
G

ro
up

v
qu

er
yT

ar
ge

tG
ro

up
s

v
ge

tT
ar

ge
tG

ro
up

M
em

be
rs

v
ge

tT
ar

ge
tG

ro
up

In
fo

v
m

od
ify

Ta
rg

et
G

ro
up

In
fo

U
se

th
e

fo
llo

w
in

g
co

m
m

an
ds

in
th

e
Jo

bM
an

ag
er

N
od

e
co

m
m

an
d

gr
ou

p
fo

r
th

e
A

dm
in

Ta
sk

ob
je

ct
:

v
cl

ea
nu

pT
ar

ge
t

v
qu

er
yT

ar
ge

ts

v
ge

tT
ar

ge
tP

ro
pe

rt
ie

s

v
m

od
ify

Ta
rg

et
P

ro
pe

rt
ie

s

v
ge

tT
ar

ge
tK

ey
s

T
he

fo
llo

w
in

g
co

m
m

an
ds

us
ed

to
la

un
ch

th
e

P
ro

fil
e

M
an

ag
em

en
t

To
ol

:

v
ap

p_
se

rv
er

_r
oo

t/
bi

n/

Pr
of

il
eM

an
ag

em
en

t/
pm

t.
sh

v
ap

p_
se

rv
er

_r
oo

t\
bi

n\
Pr

of
il

eM
an

ag
em

en
t\

pm
t.

ba
t

T
he

fo
llo

w
in

g
co

m
m

an
ds

us
ed

to
la

un
ch

th
e

M
ig

ra
tio

n
M

an
ag

em
en

t
To

ol
:

v
ap

p_
se

rv
er

_r
oo

t/
bi

n/

mi
gr

at
io

n.
sh

v
ap

p_
se

rv
er

_r
oo

t\
bi

n\
mi

gr
at

io
n.

ba
t

U
se

th
e

fo
llo

w
in

g
co

m
m

an
ds

to
la

un
ch

th
e

W
eb

S
ph

er
e

C
us

to
m

iz
at

io
n

To
ol

bo
x:

v
pr

of
il

e_
ro

ot
/b

in
/w

ct
.s

h

v
pr

of
il

e_
ro

ot
\b

in
\w

ct
.b

at

U
se

th
e

fo
llo

w
in

g
co

m
m

an
ds

to
la

un
ch

th
e

P
ro

fil
e

M
an

ag
em

en
t

To
ol

(z
/O

S
on

ly
)

co
nt

ai
ne

d
in

th
e

W
eb

S
ph

er
e

C
us

to
m

iz
at

io
n

To
ol

bo
x:

v
pr

of
il

e_
ro

ot
/b

in
/w

ct
.s

h

-p
er

sp
ec

ti
ve

co
m.

ib
m.

ws
.p

mt
.v

ie
ws

.s
ta

nd
al

on
e.

pe
rs

pe
ct

iv
es

.s
ta

nd
Al

on
eP

er
sp

ec
ti

ve

v
pr

of
il

e_
ro

ot
\b

in
\w

ct
.b

at
-p

er
sp

ec
ti

ve

co
m.

ib
m.

ws
.p

mt
.v

ie
ws

.s
ta

nd
al

on
e.

pe
rs

pe
ct

iv
es

.s
ta

nd
Al

on
eP

er
sp

ec
ti

ve

U
se

th
e

fo
llo

w
in

g
co

m
m

an
ds

to
la

un
ch

th
e

M
ig

ra
tio

n
M

an
ag

em
en

t
To

ol
co

nt
ai

ne
d

in
th

e
W

eb
S

ph
er

e
C

us
to

m
iz

at
io

n
To

ol
bo

x:

v
pr

of
il

e_
ro

ot
/b

in
/w

ct
.s

h

-p
er

sp
ec

ti
ve

co
m.

ib
m.

ws
.m

mt
.p

er
sp

ec
ti

ve

v
pr

of
il

e_
ro

ot
\b

in
\w

ct
.b

at
-p

er
sp

ec
ti

ve
co

m.
ib

m.
ws

.m
mt

.p
er

sp
ec

ti
ve

S
er

vi
ce

lo
g,

co
m

m
on

ly
na

m
ed

ac
ti

vi
ty

.l
og

U
se

on
e

of
th

e
fo

llo
w

in
g

to
ac

ce
ss

lo
g

co
nt

en
t:

v
Sy

st
em

Ou
t.

lo
g

fil
e

w
he

n
yo

ur
sy

st
em

is
co

nf
ig

ur
ed

to
us

e
ba

si
c

lo
g

an
d

tr
ac

e
m

od
e

v
H

ig
h

P
er

fo
rm

an
ce

E
xt

en
si

bl
e

Lo
gg

in
g

(H
P

E
L)

Lo
gV

ie
w

er
co

m
m

an
d

w
he

n
yo

ur
sy

st
em

is
co

nf
ig

ur
ed

to
us

e
H

P
E

L
lo

g
an

d
tr

ac
e

m
od

e

C
on

fig
ur

e
yo

ur
se

rv
er

s
to

us
e

H
P

E
L

lo
g

an
d

tr
ac

e
m

od
e

an
d

us
e

th
e

H
P

E
L

A
P

I
if

yo
u

ne
ed

to
be

ab
le

to
m

er
ge

lo
g

fil
e

co
nt

en
t

fr
om

m
ul

tip
le

se
rv

er
s.

U
se

th
e

H
P

E
L

lo
g

an
d

tr
ac

e
m

od
e

an
d

us
e

th
e

H
P

E
L

Lo
gV

ie
w

er
co

m
m

an
d

if
yo

u
ne

ed
to

be
ab

le
to

re
nd

er
lo

g
co

nt
en

t
in

C
om

m
on

B
as

e
E

ve
nt

X
M

L
fo

rm
at

.

S
up

po
rt

fo
r

de
pl

oy
in

g
Ja

va
P

la
tfo

rm
,

E
nt

er
pr

is
e

E
di

tio
n

(J
av

a
E

E
)

m
od

ul
es

or
ap

pl
ic

at
io

ns
on

an
ap

pl
ic

at
io

n
se

rv
er

us
in

g
th

e
Ja

va
E

E
A

pp
lic

at
io

n
D

ep
lo

ym
en

tA
P

I
sp

ec
ifi

ca
tio

n
JS

R
-8

8
U

se
an

y
of

a
nu

m
be

r
of

ot
he

r
op

tio
ns

to
de

pl
oy

ap
pl

ic
at

io
ns

to
th

e
se

rv
er

,
in

cl
ud

in
g

w
sa

dm
in

sc
rip

tin
g

an
d

JM
X

M
B

ea
ns

.
T

he
cl

os
es

t
m

et
ho

d
to

us
in

g
th

e
Ja

va
E

E
D

ep
lo

ym
en

tA
P

I
w

ou
ld

be
us

in
g

W
eb

S
ph

er
e

JM
X

M
B

ea
ns

.
R

ea
d

W
ay

s
to

in
st

al
le

nt
er

pr
is

e
ap

pl
ic

at
io

ns
or

m
od

ul
es

fo
r

m
or

e
in

fo
rm

at
io

n.

D
at

aP
ow

er
®

ap
pl

ia
nc

e
m

an
ag

er
Yo

u
ca

n
co

nt
in

ue
to

us
e

th
e

D
at

aP
ow

er
ap

pl
ia

nc
e

m
an

ag
er

to
m

an
ag

e
ex

is
tin

g
su

pp
or

te
d

D
at

aP
ow

er
ap

pl
ia

nc
es

un
til

it
is

re
m

ov
ed

fr
om

th
e

pr
od

uc
t

or
un

til
th

e
ap

pl
ia

nc
es

ar
e

ou
t

of
se

rv
ic

e.

In
W

eb
S

ph
er

e
A

pp
lic

at
io

n
S

er
ve

r
V

er
si

on
8.

0,
th

e
fo

llo
w

in
g

ap
pl

ia
nc

es
ar

e
su

pp
or

te
d:

v
90

01

v
90

02

v
90

03
/7

99
3

v
90

04
/9

23
5

–
X

S
40

,
X

I5
0,

X
B

60
,

X
M

70

v
90

04
/9

23
5

–
X

A
35

,
X

M
70

F
C

T
he

en
d-

of
-s

er
vi

ce
da

te
s

fo
r

th
e

ap
pl

ia
nc

es
ar

e
do

cu
m

en
te

d
in

IB
M

W
eb

S
ph

er
e

D
at

aP
ow

er
S

O
A

A
pp

lia
nc

es
E

nd
of

S
er

vi
ce

da
te

s.

N
ew

ap
pl

ia
nc

es
no

t
on

th
e

pr
ev

io
us

lis
t

ar
e

m
an

ag
ed

th
ro

ug
h

a
se

pa
ra

te
D

at
aP

ow
er

ap
pl

ia
nc

e
m

an
ag

em
en

t
of

fe
rin

g
th

at
is

al
so

ca
pa

bl
e

of
m

an
ag

in
g

ex
is

tin
g

ap
pl

ia
nc

es
.

Ti
vo

li
P

er
fo

rm
an

ce
V

ie
w

er
U

se
of

th
e

S
ca

la
bl

e
V

ec
to

r
G

ra
ph

ic
s

(S
V

G
)

fo
rm

at
by

th
e

Ti
vo

li
P

er
fo

rm
an

ce
V

ie
w

er
to

pl
ot

gr
ap

hs
N

o
ac

tio
n

is
re

qu
ire

d.
T

he
Ti

vo
li

P
er

fo
rm

an
ce

V
ie

w
er

no
w

us
es

th
e

D
oj

o
fo

rm
at

to
pl

ot
gr

ap
hs

.
N

o
te

:
To

go
ba

ck
to

th
e

ea
rli

er
st

yl
e

of
gr

ap
h,

w
hi

ch
su

pp
or

ts
S

V
G

an
d

im
ag

e
fo

rm
at

s,
se

t
th

e
co

m
.ib

m
.w

eb
sp

he
re

.tp
v.

D
oj

oG
ra

ph
JV

M
sy

st
em

pr
op

er
ty

to
fa

ls
e.

1288 Overview

http://www-01.ibm.com/support/docview.wss?uid=swg21317845
http://www-01.ibm.com/support/docview.wss?uid=swg21317845

Chapter 47. Deprecated, stabilized, and removed features 1289

Features deprecated in Version 7.0

1290 Overview

Ta
bl

e
16

5.
F

ea
tu

re
s

de
pr

ec
at

ed
in

V
er

si
on

7.
0.

T
hi

s
ta

bl
e

de
sc

rib
es

th
e

fe
at

ur
es

th
at

ar
e

de
pr

ec
at

ed
in

V
er

si
on

7.
0.

C
at

eg
o

ry
D

ep
re

ca
ti

o
n

R
ec

o
m

m
en

d
ed

M
ig

ra
ti

o
n

A
ct

io
n

A
pp

lic
at

io
n

pr
og

ra
m

m
in

g
m

od
el

re
gi

st
er

S
yn

ch
ro

ni
za

tio
nC

al
lb

ac
kF

or
C

ur
re

nt
Tr

an
m

et
ho

d
in

th
e

co
m

.ib
m

.w
eb

sp
he

re
.jt

ae
xt

en
si

on
s.

E
xt

en
de

dJ
TA

Tr
an

sa
ct

io
n

in
te

rf
ac

e
U

se
th

e
re

gi
st

er
In

te
rp

os
ed

S
yn

ch
ro

ni
za

tio
n

m
et

ho
d

of
th

e
Tr

an
sa

ct
io

nS
yn

ch
ro

ni
za

tio
nR

eg
is

tr
y

in
te

rf
ac

e
in

st
ea

d.

co
m

.ib
m

.w
s.

ex
te

ns
io

nh
el

pe
r.T

ra
ns

ac
tio

nC
on

tr
ol

in
te

rf
ac

e
U

se
th

e
co

m
.ib

m
.w

ss
pi

.u
ow

.U
O

W
M

an
ag

er
in

te
rf

ac
e

in
st

ea
d.

H
ttp

S
er

vl
et

R
eq

ue
st

P
ro

xy
cl

as
s

in
th

e
co

m
.ib

m
.w

eb
sp

he
re

.s
er

vl
et

.r
eq

ue
st

pa
ck

ag
e

U
se

th
e

H
ttp

S
er

vl
et

R
eq

ue
st

W
ra

pp
er

cl
as

s
in

st
ea

d
of

th
e

H
ttp

S
er

vl
et

R
eq

ue
st

P
ro

xy
cl

as
s.

Yo
u

ca
n

us
e

th
e

su
bc

la
ss

es
of

th
is

cl
as

s
to

ov
er

lo
ad

or
en

ha
nc

e
th

e
fu

nc
tio

na
lit

y
of

a
se

rv
er

-p
ro

vi
de

d
H

ttp
S

er
vl

et
R

eq
ue

st
.

H
ttp

S
er

vl
et

R
es

po
ns

eP
ro

xy
cl

as
s

in
th

e
co

m
.ib

m
.w

eb
sp

he
re

.s
er

vl
et

.r
es

po
ns

e
pa

ck
ag

e
U

se
th

e
H

ttp
S

er
vl

et
R

es
po

ns
eW

ra
pp

er
cl

as
s

in
st

ea
d

of
th

e
H

ttp
S

er
vl

et
R

es
po

ns
eP

ro
xy

cl
as

s.
Yo

u
ca

n
us

e
th

e
su

bc
la

ss
es

of
th

is
cl

as
s

to
ov

er
lo

ad
or

en
ha

nc
e

th
e

fu
nc

tio
na

lit
y

of
a

se
rv

er
-p

ro
vi

de
d

H
ttp

S
er

vl
et

R
es

po
ns

e.

T
he

fo
llo

w
in

g
cl

as
se

s,
in

te
rf

ac
es

,
m

et
ho

ds
,

an
d

fie
ld

s
of

th
e

W
eb

S
ph

er
e

re
la

tio
na

lr
es

ou
rc

e
ad

ap
te

r:

v
C

la
ss

es
:

–
co

m
.ib

m
.w

eb
sp

he
re

.r
sa

da
pt

er
.J

db
cA

cc
es

so
rI

m
pl

–
co

m
.ib

m
.w

eb
sp

he
re

.r
sa

da
pt

er
.O

ra
cl

eD
at

aS
to

re
H

el
pe

r

v
In

te
rf

ac
es

:

–
co

m
.ib

m
.w

eb
sp

he
re

.r
sa

da
pt

er
.B

eg
in

na
bl

e

–
co

m
.ib

m
.w

eb
sp

he
re

.r
sa

da
pt

er
.H

an
dl

eS
ta

te
s

–
co

m
.ib

m
.w

eb
sp

he
re

.r
sa

da
pt

er
.R

ea
ss

oc
ia

te
ab

le

–
co

m
.ib

m
.w

eb
sp

he
re

.r
sa

da
pt

er
.W

S
N

at
iv

eC
on

ne
ct

io
nA

cc
es

so
r

v
M

et
ho

ds
:

–
co

m
.ib

m
.w

eb
sp

he
re

.r
sa

da
pt

er
.W

S
C

al
lH

el
pe

r.s
et

C
on

ne
ct

io
nE

rr
or

(O
bj

ec
t

co
nn

)

–
co

m
.ib

m
.w

eb
sp

he
re

.r
sa

da
pt

er
.W

S
C

al
lH

el
pe

r.c
al

l

–
co

m
.ib

m
.w

eb
sp

he
re

.r
sa

da
pt

er
.W

S
C

on
ne

ct
io

n.
ge

tC
lie

nt
In

fo
rm

at
io

n

–
co

m
.ib

m
.w

eb
sp

he
re

.r
sa

da
pt

er
.W

S
C

on
ne

ct
io

n.
se

tC
lie

nt
In

fo
rm

at
io

n

–
co

m
.ib

m
.w

s.
rs

ad
ap

te
r.c

ci
.W

S
R

es
ou

rc
eA

da
pt

er
B

as
e.

ge
tN

at
iv

eC
on

ne
ct

io
n

(ja
va

x.
re

so
ur

ce
.c

ci
.C

on
ne

ct
io

n)

–
co

m
.ib

m
.w

s.
rs

ad
ap

te
r.c

ci
.W

S
R

es
ou

rc
eA

da
pt

er
B

as
e.

ge
tN

at
iv

eC
on

ne
ct

io
n

(c
om

.ib
m

.w
s.

rs
ad

ap
te

r.j
db

c.
W

S
Jd

bc
C

on
ne

ct
io

n)

–
co

m
.ib

m
.w

s.
rs

ad
ap

te
r.j

db
c.

W
S

Jd
bc

U
til

.g
et

N
at

iv
eC

on
ne

ct
io

n
(c

om
.ib

m
.w

s.
rs

ad
ap

te
r.j

db
c.

W
S

Jd
bc

C
on

ne
ct

io
n)

v
F

ie
ld

s:

–
co

m
.ib

m
.w

eb
sp

he
re

.r
sa

da
pt

er
.D

at
aS

to
re

H
el

pe
r.O

R
A

C
LE

_H
E

LP
E

R

–
co

m
.ib

m
.w

eb
sp

he
re

.r
sa

da
pt

er
.W

S
C

on
ne

ct
io

n.
C

LI
E

N
T

_A
C

C
O

U
N

T
IN

G
_I

N
F

O

–
co

m
.ib

m
.w

eb
sp

he
re

.r
sa

da
pt

er
.W

S
C

on
ne

ct
io

n.
C

LI
E

N
T

_A
P

P
LI

C
A

T
IO

N
_N

A
M

E

–
co

m
.ib

m
.w

eb
sp

he
re

.r
sa

da
pt

er
.W

S
C

on
ne

ct
io

n.
C

LI
E

N
T

_I
D

–
co

m
.ib

m
.w

eb
sp

he
re

.r
sa

da
pt

er
.W

S
C

on
ne

ct
io

n.
C

LI
E

N
T

_L
O

C
A

T
IO

N

–
co

m
.ib

m
.w

eb
sp

he
re

.r
sa

da
pt

er
.W

S
C

on
ne

ct
io

n.
C

LI
E

N
T

_O
T

H
E

R
_I

N
F

O

–
co

m
.ib

m
.w

eb
sp

he
re

.r
sa

da
pt

er
.W

S
C

on
ne

ct
io

n.
C

LI
E

N
T

_T
Y

P
E

If
yo

u
ar

e
us

in
g

th
e

O
ra

cl
eD

at
aS

to
re

H
el

pe
r,

sw
itc

h
to

th
e

O
ra

cl
e

11
g

JD
B

C
dr

iv
er

an
d

us
e

th
e

O
ra

cl
e1

1g
D

at
aS

to
re

H
el

pe
r

in
st

ea
d.

In
st

ea
d

of
us

in
g

ge
tN

at
iv

eC
on

ne
ct

io
n,

us
e

th
e

Ja
va

D
at

ab
as

e
C

on
ne

ct
iv

ity
(J

D
B

C
)

4.
0

w
ra

pp
er

pa
tte

rn
.

In
st

ea
d

of
W

S
C

on
ne

ct
io

n
cl

ie
nt

in
fo

rm
at

io
n,

us
e

JD
B

C
4.

0
cl

ie
nt

-in
fo

rm
at

io
n

A
P

Is
.

In
st

ea
d

of
co

m
.ib

m
.w

eb
sp

he
re

.r
sa

da
pt

er
.W

S
C

al
lH

el
pe

r.s
et

C
on

ne
ct

io
nE

rr
or

(O
bj

ec
t

co
nn

),
us

e
th

e
co

m
.ib

m
.w

eb
sp

he
re

.r
sa

da
pt

er
.W

S
C

al
lH

el
pe

r.s
et

C
on

ne
ct

io
nE

rr
or

(O
bj

ec
t

co
nn

,
bo

ol
ea

n
lo

gE
ve

nt
)

m
et

ho
d.

T
he

ne
w

m
et

ho
d

pr
ov

id
es

a
bo

ol
ea

n
pa

ra
m

et
er

th
at

al
lo

w
s

yo
u

to
co

nt
ro

lw
he

th
er

or
no

t
co

nn
ec

tio
n

er
ro

r
ev

en
ts

ar
e

lo
gg

ed
to

sy
st

em
ou

t.

In
st

ea
d

of
W

S
C

al
lH

el
pe

r.c
al

l,
us

e
st

an
da

rd
Ja

va
re

fle
ct

io
ns

A
P

Is
.

If
yo

u
ar

e
us

in
g

th
e

O
R

A
C

LE
_H

E
LP

E
R

,
sw

itc
h

to
th

e
O

ra
cl

e
11

g
JD

B
C

dr
iv

er
an

d
us

e
th

e
O

R
A

C
LE

_1
1G

_H
E

LP
E

R
in

st
ea

d.

Chapter 47. Deprecated, stabilized, and removed features 1291

Ta
bl

e
16

5.
F

ea
tu

re
s

de
pr

ec
at

ed
in

V
er

si
on

7.
0

(c
on

tin
ue

d)
.

T
hi

s
ta

bl
e

de
sc

rib
es

th
e

fe
at

ur
es

th
at

ar
e

de
pr

ec
at

ed
in

V
er

si
on

7.
0.

C
at

eg
o

ry
D

ep
re

ca
ti

o
n

R
ec

o
m

m
en

d
ed

M
ig

ra
ti

o
n

A
ct

io
n

A
pp

lic
at

io
n

pr
og

ra
m

m
in

g
m

od
el

T
he

fo
llo

w
in

g
se

ss
io

n-
m

an
ag

em
en

t
fu

nc
tio

n:

v
G

lo
ba

ls
es

si
on

sh
ar

in
g

th
ro

ug
h

th
e

S
er

vl
et

21
S

es
si

on
C

om
pa

tib
ili

ty
pr

op
er

ty

v
S

up
po

rt
fo

r
an

y
se

ss
io

n-
m

an
ag

er
pr

op
er

tie
s

as
sy

st
em

pr
op

er
tie

s

v
S

up
po

rt
fo

r
an

y
se

ss
io

n-
m

an
ag

er
pr

op
er

tie
s

as
w

eb
co

nt
ai

ne
r

cu
st

om
pr

op
er

tie
s

F
or

se
ss

io
n

sh
ar

in
g,

re
de

si
gn

yo
ur

ap
pl

ic
at

io
ns

so
th

at
th

e
se

ss
io

n
is

ap
pr

op
ria

te
ly

sc
op

ed
at

th
e

w
eb

m
od

ul
e

as
sp

ec
ifi

ed
in

th
e

Ja
va

S
er

vl
et

S
pe

ci
fic

at
io

n
V

er
si

on
2.

2
an

d
la

te
r.

If
da

ta
m

us
t

be
sh

ar
ed

ac
ro

ss
th

e
W

eb
-m

od
ul

e
bo

un
da

ry
,

us
e

th
e

W
eb

sp
he

re
E

xt
en

si
on

,
sh

ar
ed

se
ss

io
n

co
nt

ex
t

=
tr

ue
,

or
us

e
th

e
IB

M
A

pp
lic

at
io

nS
es

si
on

A
P

I.

R
at

he
r

th
an

sp
ec

ify
in

g
se

ss
io

n
m

an
ag

er
pr

op
er

tie
s

as
sy

st
em

or
w

eb
co

nt
ai

ne
r

cu
st

om
pr

op
er

tie
s,

us
e

se
ss

io
n-

m
an

ag
er

cu
st

om
pr

op
er

tie
s.

C
on

ne
ct

io
n

va
lid

at
io

n
by

S
Q

L
qu

er
y

U
se

th
e

tim
eo

ut
-b

as
ed

va
lid

at
io

n
in

tr
od

uc
ed

w
ith

JD
B

C
4.

0.

C
la

ss
es

:

v
S

E
R

V
1\

w
s\

co
de

\a
dm

in
.th

in
cl

ie
nt

\b
ui

ld
\c

la
ss

es
\c

om
\ib

m
\w

s\
m

an
ag

em
en

t\
cm

df
ra

m
ew

or
k\

im
pl

\
R

em
ot

eC
om

m
an

dM
gr

*.
cl

as
s

v
S

E
R

V
1\

w
s\

co
de

\a
dm

in
.th

in
cl

ie
nt

\b
ui

ld
\c

la
ss

es
\c

om
\ib

m
\w

s\
m

an
ag

em
en

t\
cm

df
ra

m
ew

or
k\

im
pl

\
R

em
ot

eC
om

m
an

dM
gr

Im
pl

*.
cl

as
s

In
te

rf
ac

e:
S

E
R

V
1\

w
s\

co
de

\a
dm

in
.th

in
cl

ie
nt

\s
rc

\c
om

\ib
m

\w
s\

m
an

ag
em

en
t\

cm
df

ra
m

ew
or

k\
im

pl
\

R
em

ot
eC

om
m

an
dM

gr
.ja

va

M
et

ho
ds

:A
ll

m
et

ho
ds

in
th

e
R

em
ot

eC
om

m
an

dM
gr

in
te

rf
ac

e
an

d
M

B
ea

n
xm

l,
S

E
R

V
1\

w
s\

co
de

\a
dm

in
.jm

x\
sr

c\
co

m
\

ib
m

\w
s\

m
an

ag
em

en
t\

de
sc

rip
to

r\
xm

l\R
em

ot
eC

om
m

an
dM

gr
.x

m
l

C
on

st
ru

ct
or

:
R

em
ot

eC
om

m
an

dM
gr

Im
pl

()

N
o

m
ig

ra
tio

n
ac

tio
n

is
ne

ce
ss

ar
y.

T
he

fo
llo

w
in

g
pr

op
rie

ta
ry

cl
as

se
s

th
at

ar
e

us
ed

to
re

pr
es

en
t

an
d

m
an

ip
ul

at
e

W
S

-A
dd

re
ss

in
g

en
dp

oi
nt

re
fe

re
nc

es
in

Ja
va

A
P

I
fo

r
X

M
L

W
eb

S
er

vi
ce

s
(J

A
X

-W
S

)
2.

0:

v
co

m
.ib

m
.w

eb
sp

he
re

.w
sa

dd
re

ss
in

g.
ja

xw
s.

W
3C

E
nd

po
in

tR
ef

er
en

ce

v
co

m
.ib

m
.w

eb
sp

he
re

.w
sa

dd
re

ss
in

g.
ja

xw
s.

S
ub

m
is

si
on

E
nd

po
in

tR
ef

er
en

ce

v
co

m
.ib

m
.w

eb
sp

he
re

.w
sa

dd
re

ss
in

g.
ja

xw
s.

E
nd

po
in

tR
ef

er
en

ce
C

on
ve

rt
er

U
se

th
e

fo
llo

w
in

g
cl

as
se

s
in

st
ea

d:

v
ja

va
x.

xm
l.w

s.
w

sa
dd

re
ss

in
g.

W
3C

E
nd

po
in

tR
ef

er
en

ce

v
co

m
.ib

m
.w

eb
sp

he
re

.w
sa

dd
re

ss
in

g.
ja

xw
s2

1.
S

ub
m

is
si

on
E

nd
po

in
tR

ef
er

en
ce

v
co

m
.ib

m
.w

eb
sp

he
re

.w
sa

dd
re

ss
in

g.
ja

xw
s2

1.
E

nd
po

in
tR

ef
er

en
ce

C
on

ve
rt

er

T
he

fo
llo

w
in

g
W

eb
S

ph
er

e
C

om
m

on
C

on
fig

ur
at

io
n

M
od

el
(W

C
C

M
)

ty
pe

s:

v
S

IB
JM

S
P

ro
vi

de
r

v
S

IB
JM

S
C

on
ne

ct
io

nF
ac

to
ry

v
S

IB
JM

S
Q

ue
ue

C
on

ne
ct

io
nF

ac
to

ry

v
S

IB
JM

S
To

pi
cC

on
ne

ct
io

nF
ac

to
ry

v
S

IB
JM

S
Q

ue
ue

v
S

IB
JM

S
To

pi
c

If
on

e
of

yo
ur

Jy
th

on
or

Ja
cl

w
sa

dm
in

sc
rip

ts
us

es
an

y
of

th
es

e
ty

pe
s,

m
od

ify
th

e
sc

rip
t

to
us

e
th

e
co

rr
ec

t
A

dm
in

Ta
sk

co
m

m
an

d
to

co
m

pl
et

e
th

e
eq

ui
va

le
nt

fu
nc

tio
n.

F
or

ex
am

pl
e:

Ad
mi

nT
as

k.
li

st
SI

BJ
MS

Qu
eu

es
()

E
nv

iro
nm

en
t

IB
M

H
T

T
P

S
er

ve
r

(I
H

S
)

m
od

_f
ile

_c
ac

he
m

od
ul

e
M

ig
ra

te
yo

ur
IH

S
co

nf
ig

ur
at

io
n

di
re

ct
iv

es
fr

om
m

od
_f

ile
_c

ac
he

to
th

e
ap

pr
op

ria
te

pr
ov

id
ed

ca
ch

e
m

ec
ha

ni
sm

—
ei

th
er

m
od

_m
em

_c
ac

he
or

m
od

_c
ac

he
.

IH
S

m
od

_i
bm

_l
da

p
m

od
ul

e
M

ig
ra

te
yo

ur
m

od
_i

bm
_l

da
p

co
nf

ig
ur

at
io

n
di

re
ct

iv
es

to
th

e
eq

ui
va

le
nt

m
od

_l
da

p
di

re
ct

iv
es

.

IH
S

m
od

_m
im

e_
m

ag
ic

m
od

ul
e

R
em

ov
e

an
y

IH
S

co
nf

ig
ur

at
io

n
di

re
ct

iv
es

as
so

ci
at

ed
w

ith
th

is
m

od
ul

e.

IH
S

m
od

_p
ro

xy
_f

tp
m

od
ul

e
R

em
ov

e
an

y
IH

S
co

nf
ig

ur
at

io
n

di
re

ct
iv

es
as

so
ci

at
ed

w
ith

th
is

m
od

ul
e.

IH
S

m
od

_a
fp

a_
ca

ch
e

m
od

ul
e

A
da

pt
iv

e
F

as
t

P
at

h
A

rc
hi

te
ct

ur
e

(A
F

P
A

)
is

be
in

g
de

pr
ec

at
ed

fo
r

bo
th

A
IX

an
d

W
in

do
w

s
op

er
at

in
g

sy
st

em
s

fo
r

bo
th

st
at

ic
an

d
dy

na
m

ic
al

ly
ge

ne
ra

te
d

co
nt

en
t

ca
ch

in
g.

R
em

ov
e

an
y

IH
S

co
nf

ig
ur

at
io

n
di

re
ct

iv
es

as
so

ci
at

ed
w

ith
th

is
m

od
ul

e.

In
st

al
la

tio
n

an
d

m
ai

nt
en

an
ce

to
ol

s
S

up
po

rt
fo

r
us

in
g

IB
M

U
pd

at
e

In
st

al
le

r
fo

r
W

eb
S

ph
er

e
S

of
tw

ar
e

V
er

si
on

6.
x

to
ap

pl
y

m
ai

nt
en

an
ce

on
W

eb
S

ph
er

e
A

pp
lic

at
io

n
S

er
ve

r
V

er
si

on
6.

0.
2.

21
+

an
d

V
er

si
on

6.
1.

0.
x

U
se

IB
M

U
pd

at
e

In
st

al
le

r
fo

r
W

eb
S

ph
er

e
S

of
tw

ar
e

V
er

si
on

7.
0.

U
pd

at
e

In
st

al
le

r
V

er
si

on
7.

0
su

pp
or

ts
ap

pl
yi

ng
m

ai
nt

en
an

ce
on

W
eb

S
ph

er
e

A
pp

lic
at

io
n

S
er

ve
r

V
er

si
on

6.
0.

2.
21

+
,

V
er

si
on

6.
1.

0.
x,

an
d

V
er

si
on

7.
0.

S
up

po
rt

fo
r

us
in

g
IB

M
W

eb
S

ph
er

e
In

st
al

la
tio

n
F

ac
to

ry
V

er
si

on
6.

1
to

cr
ea

te
in

st
al

la
tio

n
pa

ck
ag

es
fo

r
W

eb
S

ph
er

e
A

pp
lic

at
io

n
S

er
ve

r
V

er
si

on
6.

1
U

se
IB

M
W

eb
S

ph
er

e
In

st
al

la
tio

n
F

ac
to

ry
V

er
si

on
7.

0.

W
eb

S
ph

er
e

In
st

al
la

tio
n

F
ac

to
ry

V
er

si
on

7.
0

su
pp

or
ts

cr
ea

tin
g

in
st

al
la

tio
n

pa
ck

ag
es

fo
r

W
eb

S
ph

er
e

A
pp

lic
at

io
n

S
er

ve
r

V
er

si
on

6.
1

an
d

V
er

si
on

7.
0.

J2
E

E
re

so
ur

ce
s

T
he

fo
llo

w
in

g
fe

at
ur

es
:

v
S

up
po

rt
fo

r
us

in
g

JM
S

pr
ov

id
er

s
th

at
ar

e
no

t
co

m
pl

ia
nt

w
ith

th
e

J2
E

E
C

on
ne

ct
or

A
rc

hi
te

ct
ur

e
1.

5
sp

ec
ifi

ca
tio

n
is

de
pr

ec
at

ed
.

T
he

W
eb

S
ph

er
e

A
pp

lic
at

io
n

S
er

ve
r

V
er

si
on

5
de

fa
ul

t
m

es
sa

gi
ng

pr
ov

id
er

w
as

de
pr

ec
at

ed
in

V
er

si
on

6.
1.

v
T

he
W

eb
S

ph
er

e
M

Q
m

es
sa

gi
ng

pr
ov

id
er

w
as

up
da

te
d

in
V

er
si

on
7.

0
to

su
pp

or
t

th
e

J2
E

E
C

on
ne

ct
or

A
rc

hi
te

ct
ur

e
1.

5.
S

up
po

rt
fo

r
ot

he
r

us
ag

es
of

th
is

pr
ov

id
er

ar
e

de
pr

ec
at

ed
.

U
se

JM
S

pr
ov

id
er

s
th

at
ar

e
co

m
pl

ia
nt

w
ith

th
e

J2
E

E
C

on
ne

ct
or

A
rc

hi
te

ct
ur

e
1.

5
sp

ec
ifi

ca
tio

n.

1292 Overview

Ta
bl

e
16

5.
F

ea
tu

re
s

de
pr

ec
at

ed
in

V
er

si
on

7.
0

(c
on

tin
ue

d)
.

T
hi

s
ta

bl
e

de
sc

rib
es

th
e

fe
at

ur
es

th
at

ar
e

de
pr

ec
at

ed
in

V
er

si
on

7.
0.

C
at

eg
o

ry
D

ep
re

ca
ti

o
n

R
ec

o
m

m
en

d
ed

M
ig

ra
ti

o
n

A
ct

io
n

D
at

a
ac

ce
ss

di
sa

bl
eP

K
54

58
9

sy
st

em
pr

op
er

ty
C

on
fig

ur
e

th
e

da
ta

so
ur

ce
cu

st
om

pr
op

er
ty

is
C

on
ne

ct
io

nS
ha

rin
gB

as
ed

O
nC

ur
re

nt
S

ta
te

.

If
yo

u
ar

e
us

in
g

di
sa

bl
eP

K
54

58
9=

tr
ue

,
yo

u
ca

n
re

pl
ac

e
it

w
ith

is
C

on
ne

ct
io

nS
ha

rin
gB

as
ed

O
nC

ur
re

nt
S

ta
te

=
fa

ls
e.

P
ro

gr
am

m
in

g
S

hi
pm

en
t

of
Ja

va
S

er
ve

r
F

ac
es

w
id

ge
t

lib
ra

ry
(J

W
L)

w
ith

W
eb

S
ph

er
e

A
pp

lic
at

io
n

S
er

ve
r

M
an

ua
lly

cr
ea

te
a

sh
ar

ed
lib

ra
ry

fo
r

JW
L

us
in

g
th

e
ja

r
fr

om
R

at
io

na
lA

pp
lic

at
io

n
D

ev
el

op
er

.

P
ro

fil
e

m
an

ag
em

en
t

D
ep

lo
ym

en
t

m
an

ag
er

pr
of

ile
te

m
pl

at
e

U
se

th
e

m
an

ag
em

en
t

pr
of

ile
te

m
pl

at
e

w
ith

a
de

pl
oy

m
en

t
m

an
ag

er
se

rv
er

.

S
er

ve
rs

S
hi

pm
en

t
of

A
pa

ch
e

S
tr

ut
s

1.
1,

1.
2.

4,
an

d
1.

2.
7

as
op

tio
na

ll
ib

ra
rie

s
w

ith
in

W
eb

S
ph

er
e

A
pp

lic
at

io
n

S
er

ve
r

If
yo

u
w

ou
ld

lik
e

to
co

nt
in

ue
us

in
g

th
es

e
ve

rs
io

ns
of

A
pa

ch
e

S
tr

ut
s,

th
ey

ar
e

av
ai

la
bl

e
fr

om
th

e
A

pa
ch

e
S

tr
ut

s
w

eb
si

te
.

F
or

co
re

gr
ou

p
tr

an
sp

or
t,

th
e

fo
llo

w
in

g
co

nf
ig

ur
at

io
n

op
tio

ns
:

v
U

ni
ca

st

v
M

ul
tic

as
t

M
ov

e
to

ch
an

ne
lf

ra
m

ew
or

k
tr

an
sp

or
t.

F
or

m
or

e
in

fo
rm

at
io

n,
re

ad
C

or
e

gr
ou

p
tr

an
sp

or
ts

.

S
ys

te
m

ad
m

in
is

tr
at

io
n

O
pt

io
n

to
in

st
al

lt
he

P
lu

gg
ab

le
ap

pl
ic

at
io

n
cl

ie
nt

fe
at

ur
e

fo
r

th
e

IB
M

A
pp

lic
at

io
n

C
lie

nt
fo

r
W

eb
S

ph
er

e
A

pp
lic

at
io

n
S

er
ve

r
U

se
th

e
ne

w
E

JB
T

hi
n

A
pp

lic
at

io
n

C
lie

nt
fe

at
ur

e
in

st
ea

d.

T
he

fo
llo

w
in

g
se

rv
ic

e
in

te
gr

at
io

n
bu

s
(S

IB
us

)
se

cu
rit

y
fe

at
ur

es
:

v
-s

ec
ur

e
fla

g
on

th
e
cr

ea
te

SI
Bu

s
an

d
th

e
mo

di
fy

SI
Bu

s
co

m
m

an
ds

v
li

st
In

he
ri

tS
en

de
rF

or
To

pi
c,

li
st

In
he

ri
tR

ec
ei

ve
rF

or
To

pi
c,

an
d
li

st
In

he
ri

tD
ef

au
lt

sF
or

De
st

in
at

io
n

co
m

m
an

ds

v
In

te
r-

en
gi

ne
au

th
en

tic
at

io
n

al
ia

s

P
er

fo
rm

th
e

fo
llo

w
in

g
ac

tio
ns

:

v
U

se
th

e
-b

us
S

ec
ur

ity
fla

g
in

st
ea

d
of

th
e

-s
ec

ur
e

fla
g.

v
R

ep
la

ce
us

ag
es

of
th

e
li

st
In

he
ri

tS
en

de
rF

or
To

pi
c,

li
st

In
he

ri
tR

ec
ei

ve
rF

or
To

pi
c,

an
d

li
st

In
he

ri
tD

ef
au

lt
sF

or
De

st
in

at
io

n
co

m
m

an
ds

w
ith

th
e
is

In
he

ri
tS

en
de

rF
or

To
pi

c,
is

In
he

ri
tR

ec
ei

ve
rF

or
To

pi
c,

an
d
is

In
he

ri
tD

ef
au
lt

sF
or

De
st

in
at

on
co

m
m

an
ds

re
sp

ec
tiv

el
y.

v
R

em
ov

e
an

y
us

ag
e

of
th

e
-in

te
rE

ng
in

eA
ut

he
nt

ic
at

io
nA

lia
s

op
tio

n
on

th
e
cr

ea
te

SI
Bu

s
an

d
mo

di
fy

SI
Bu

s
co

m
m

an
ds

.

C
ol

le
ct

or
to

ol
(c
ol

le
ct

or
.b

at
or

co
ll

ec
to

r.
sh

)
th

at
ga

th
er

s
in

fo
rm

at
io

n
ab

ou
t

th
e

W
eb

S
ph

er
e

A
pp

lic
at

io
n

S
er

ve
r

in
st

al
la

tio
n

an
d

pa
ck

ag
es

it
in

a
Ja

va
ar

ch
iv

e
(J

A
R

)
fil

e
th

at
yo

u
ca

n
se

nd
to

IB
M

S
of

tw
ar

e
S

up
po

rt
U

se
A

ut
oP

D
.

P
ro

to
co

l-b
as

ed
pr

ox
y

se
rv

er
te

m
pl

at
es

U
se

th
e

ad
m

in
is

tr
at

iv
e

co
ns

ol
e

or
th

e
w

sa
dm

in
co

m
m

an
ds

in
th

e
S

er
ve

rM
an

ag
em

en
t

co
m

m
an

d
gr

ou
p

to
se

le
ct

on
e

or
m

ul
tip

le
pr

ot
oc

ol
s

fo
r

pr
ox

y
se

rv
er

s.

F
or

m
or

e
in

fo
rm

at
io

n,
re

ad
S

er
ve

rM
an

ag
em

en
t

co
m

m
an

d
gr

ou
p

fo
r

th
e

A
dm

in
Ta

sk
ob

je
ct

W
eb

S
ph

er
e

To
uc

hp
oi

nt
(W

A
S

.a
dm

in
.w

st
p

co
m

po
ne

nt
—

al
lc

la
ss

es
an

d
m

et
ho

ds
)

U
se

th
e

ot
he

r
st

an
da

rd
m

an
ag

em
en

t
in

te
rf

ac
es

in
W

eb
S

ph
er

e
A

pp
lic

at
io

n
S

er
ve

r.

C
om

m
an

ds
in

th
e

S
ec

ur
eC

on
ve

rs
at

io
n

co
m

m
an

d
gr

ou
p

fo
r

th
e

A
dm

in
Ta

sk
ob

je
ct

U
se

th
e

co
m

m
an

ds
in

th
e

W
S

S
C

ac
he

M
an

ag
em

en
t

co
m

m
an

d
gr

ou
p

to
m

an
ag

e
W

eb
S

er
vi

ce
s

S
ec

ur
ity

(W
S

-S
ec

ur
ity

)
di

st
rib

ut
ed

-c
ac

he
co

nf
ig

ur
at

io
ns

.

T
he

fo
llo

w
in

g
Li

gh
tw

ei
gh

t
D

ire
ct

or
y

A
cc

es
s

P
ro

to
co

l(
LD

A
P

)
co

nf
ig

ur
at

io
n

na
m

es
in

th
e

vi
rt

ua
lm

em
be

r
m

an
ag

er
(V

M
M

)
fe

de
ra

te
d

re
po

si
to

ry
:

v
S

E
C

U
R

E
W

A
Y,

ID
S

4,
ID

S
51

,
an

d
ID

S
6

v
D

O
M

IN
O

5,
D

O
M

IN
O

6,
an

d
D

O
M

IN
O

65

v
A

D
20

00
an

d
A

D
20

03

U
se

th
e

fo
llo

w
in

g
co

nf
ig

ur
at

io
n

na
m

es
:

v
ID

S
ra

th
er

th
an

S
E

C
U

R
E

W
A

Y,
ID

S
4,

ID
S

51
,

or
ID

S
6

v
D

O
M

IN
O

ra
th

er
th

an
D

O
M

IN
O

5,
D

O
M

IN
O

6,
or

D
O

M
IN

O
65

v
A

D
ra

th
er

th
an

A
D

20
00

or
A

D
20

03

W
eb

se
rv

ic
es

S
up

po
rt

fo
r

th
e

'2
00

6/
02

'W
S

-A
dd

re
ss

in
g

W
eb

S
er

vi
ce

s
D

es
cr

ip
tio

n
La

ng
ua

ge
(W

S
D

L)
bi

nd
in

g
na

m
es

pa
ce

R
ep

la
ce

an
y

us
es

of
th

e
'2

00
6/

02
'n

am
es

pa
ce

in
W

S
D

L
fil

es
w

ith
us

es
of

th
e

'2
00

6/
05

'n
am

es
pa

ce

W
eb

S
er

vi
ce

s
D

is
tr

ib
ut

ed
M

an
ag

em
en

t
(W

S
D

M
)

in
te

rf
ac

e
U

se
th

e
ot

he
r

st
an

da
rd

m
an

ag
em

en
t

in
te

rf
ac

es
in

W
eb

S
ph

er
e

A
pp

lic
at

io
n

S
er

ve
r.

IB
M

pr
op

rie
ta

ry
S

O
A

P
ov

er
Ja

va
M

es
sa

ge
S

er
vi

ce
(J

M
S

)
pr

ot
oc

ol
fo

r
Ja

va
A

P
I

fo
r

X
M

L
W

eb
S

er
vi

ce
s

(J
A

X
-W

S
)

or
Ja

va
A

P
I

fo
r

X
M

L-
ba

se
d

R
P

C
(J

A
X

-R
P

C
)

ap
pl

ic
at

io
ns

U
se

th
e

st
an

da
rd

S
O

A
P

ov
er

JM
S

pr
ot

oc
ol

.

F
or

m
or

e
in

fo
rm

at
io

n,
re

ad
S

O
A

P
ov

er
JM

S
pr

ot
oc

ol
an

d
S

O
A

P
ov

er
Ja

va
M

es
sa

ge
S

er
vi

ce
.

R
es

tr
ic

ti
o

n
:

If
yo

ur
cl

ie
nt

ap
pl

ic
at

io
n

in
vo

ke
s

en
te

rp
ris

e-
be

an
ba

se
d

w
eb

se
rv

ic
es

th
at

ar
e

su
pp

or
te

d
by

a
re

le
as

e
of

W
eb

S
ph

er
e

A
pp

lic
at

io
n

S
er

ve
r

th
at

is
ea

rli
er

th
an

V
er

si
on

7.
0,

yo
u

m
us

t
co

nt
in

ue
to

us
e

th
e

IB
M

pr
op

rie
ta

ry
S

O
A

P
ov

er
JM

S
pr

ot
oc

ol
to

ac
ce

ss
th

os
e

w
eb

se
rv

ic
es

.

Chapter 47. Deprecated, stabilized, and removed features 1293

http://struts.apache.org/
http://struts.apache.org/
http://www.w3.org/Submission/SOAPJMS/

Features deprecated in Version 6.1

1294 Overview

Ta
bl

e
16

6.
F

ea
tu

re
s

de
pr

ec
at

ed
in

V
er

si
on

6.
1.

T
hi

s
ta

bl
e

de
sc

rib
es

th
e

fe
at

ur
es

th
at

ar
e

de
pr

ec
at

ed
in

V
er

si
on

6.
1.

C
at

eg
o

ry
D

ep
re

ca
ti

o
n

R
ec

o
m

m
en

d
ed

M
ig

ra
ti

o
n

A
ct

io
n

A
pp

lic
at

io
n

pr
og

ra
m

m
in

g
m

od
el

se
tD

at
ab

as
eD

ef
au

ltI
so

la
tio

nL
ev

el
(in

t)
m

et
ho

d
in

th
e

co
m

.ib
m

.w
eb

sp
he

re
.r

sa
da

pt
er

.D
at

aS
to

re
H

el
pe

rM
et

aD
at

a
cl

as
s

S
ta

rt
us

in
g

th
e

fo
llo

w
in

g
in

st
ea

d:

pu
bl

ic
fi

na
l

vo
id

se
tD

at
ab

as
eD

ef
au

lt
Is

ol
at

io
nL

ev
el

(i
nt

he
lp

er
De

fa
ul

tL
ev

el
,

in
t

cu
sD

ef
in

ed
Wa

sD
ef

au
lt

Is
oL

ev
el

)

T
he

fo
llo

w
in

g
cl

as
s

an
d

in
te

rf
ac

e
in

th
e

M
ed

ia
tio

n
F

ra
m

ew
or

k
ru

nt
im

e:

v
co

m
.ib

m
.w

eb
sp

he
re

.s
ib

.m
ed

ia
tio

n.
ha

nd
le

r.S
IM

es
sa

ge
C

on
te

xt
E

xc
ep

tio
n

cl
as

s

v
co

m
.ib

m
.w

eb
sp

he
re

.s
ib

.m
ed

ia
tio

n.
m

es
sa

ge
co

nt
ex

t.S
IM

ed
ia

tio
nB

ea
n

M
es

sa
ge

C
on

te
xt

in
te

rf
ac

e

R
ep

la
ce

al
lu

se
s

of
th

e
co

m
.ib

m
.w

eb
sp

he
re

.s
ib

,.m
ed

ia
tio

n.
ha

nd
le

r.S
IM

es
sa

ge
C

on
te

xt
E

xc
ep

tio
n

cl
as

s
w

ith
th

e
co

m
.ib

m
.w

eb
sp

he
re

.s
ib

.m
ed

ia
tio

n.
ha

nd
le

r.M
es

sa
ge

C
on

te
xt

E
xc

ep
tio

n
cl

as
s.

R
ep

la
ce

al
lu

se
s

of
th

e
co

m
.ib

m
.w

eb
sp

he
re

.s
ib

.m
ed

ia
tio

n.
m

es
sa

ge
co

nt
ex

t.S
IM

ed
ia

tio
nB

ea
n

M
es

sa
ge

C
on

te
xt

in
te

rf
ac

e
w

ith
an

eq
ui

va
le

nt
in

te
rf

ac
e.

W
eb

S
ph

er
e

A
pp

lic
at

io
n

S
er

ve
r

do
es

no
t

pr
ov

id
e

an
im

pl
em

en
ta

tio
n

of
th

is
in

te
rf

ac
e.

T
he

fo
llo

w
in

g
w

eb
co

nt
ai

ne
r

m
es

sa
ge

be
an

fu
nc

tio
ns

:

v
st

ar
tT

ra
ns

po
rt

s

v
st

op
Tr

an
sp

or
ts

v
re

st
ar

tW
eb

A
pp

lic
at

io
n

B
eg

in
m

ov
in

g
to

th
e

ch
an

ne
lf

ra
m

ew
or

k.

T
he

ch
an

ne
lf

ra
m

ew
or

k
pr

ov
id

es
th

e
Tr

an
sp

or
tC

ha
nn

el
S

er
vi

ce
m

es
sa

ge
be

an
,

w
hi

ch
is

m
or

e
fle

xi
bl

e
an

d
ha

s
m

or
e

m
et

ho
ds

th
an

th
e

cu
rr

en
t

w
eb

co
nt

ai
ne

r
tr

an
sp

or
t-

re
la

te
d

m
et

ho
ds

.

S
up

po
rt

fo
r

de
pl

oy
in

g
co

nt
ai

ne
r-

m
an

ag
ed

en
tit

y
be

an
s

to
a

ge
ne

ric
S

Q
L

da
ta

ba
se

If
an

ap
pl

ic
at

io
n

us
es

S
Q

L9
2

or
S

Q
L9

9
be

ca
us

e
th

e
ap

pl
ic

at
io

n
ha

s
to

ru
n

w
ith

di
ffe

re
nt

re
la

tio
na

ld
at

ab
as

es
,

us
e

th
e

IB
M

to
ol

in
g

to
ge

ne
ra

te
de

pl
oy

ed
co

de
fo

r
ea

ch
da

ta
ba

se
ve

nd
or

or
ve

rs
io

n
th

at
th

e
ap

pl
ic

at
io

n
m

ig
ht

us
e.

A
t

in
st

al
la

tio
n

tim
e,

sp
ec

ify
th

e
da

ta
ba

se
ve

nd
or

or
ve

rs
io

n
th

at
w

ill
us

ed
w

ith
W

eb
S

ph
er

e
A

pp
lic

at
io

n
S

er
ve

r.

IB
M

W
eb

S
ph

er
e

S
tu

di
o

to
ol

s
ru

nt
im

e
su

pp
or

t
pr

ov
id

ed
by

th
e

fo
llo

w
in

g
cl

as
se

s
(w

hi
ch

w
er

e
us

ed
to

le
ve

ra
ge

V
is

ua
l

A
ge

fo
r

Ja
va

to
ol

in
g)

:

v
co

m
.ib

m
.w

eb
to

ol
s.

ru
nt

im
e.

A
bs

tr
ac

tS
tu

di
oS

er
vl

et

v
co

m
.ib

m
.w

eb
to

ol
s.

ru
nt

im
e.

B
ui

ld
N

um
be

r

v
co

m
.ib

m
.w

eb
to

ol
s.

ru
nt

im
e.

N
oD

at
aE

xc
ep

tio
n

v
co

m
.ib

m
.w

eb
to

ol
s.

ru
nt

im
e.

S
tu

di
oP

er
va

si
ve

S
er

vl
et

v
co

m
.ib

m
.w

eb
to

ol
s.

ru
nt

im
e.

Tr
an

sa
ct

io
nF

ai
lu

re
E

xc
ep

tio
n

v
co

m
.ib

m
.w

eb
to

ol
s.

ru
nt

im
e.

W
S

U
til

iti
es

R
ea

rc
hi

te
ct

yo
ur

ap
pl

ic
at

io
ns

to
us

e
st

an
da

rd
J2

E
E

co
di

ng
co

nv
en

tio
ns

.

C
U

S
T

O
M

_H
E

LP
E

R
co

ns
ta

nt
fie

ld
in

th
e

co
m

.ib
m

.w
eb

sp
he

re
.r

sa
da

pt
er

.D
at

aS
to

re
H

el
pe

r
cl

as
s

A
P

I
If

yo
u

cr
ea

te
yo

ur
ow

n
D

at
aS

to
re

H
el

pe
r

im
pl

em
en

ta
tio

n
cl

as
s,

do
no

t
in

vo
ke

se
tH

el
pe

rT
yp

e(
D

at
aS

to
re

H
el

pe
r.C

U
S

T
O

M
_H

E
LP

E
R

).
In

st
ea

d,
le

t
th

e
H

el
pe

rT
yp

e
va

lu
e

be
se

t
by

th
e

im
pl

em
en

ta
tio

n
cl

as
s

fr
om

w
hi

ch
it

in
he

rit
s.

J2
E

E
re

so
ur

ce
s

S
up

po
rt

fo
r

th
e

ab
ili

ty
to

co
nn

ec
t

fr
om

ei
th

er
an

ap
pl

ic
at

io
n

se
rv

er
or

a
J2

E
E

ap
pl

ic
at

io
n

cl
ie

nt
to

th
e

JM
S

S
er

ve
r

co
m

po
ne

nt
of

th
e

em
be

dd
ed

m
es

sa
gi

ng
fe

at
ur

e
in

W
eb

S
ph

er
e

A
pp

lic
at

io
n

S
er

ve
r

V
er

si
on

5

T
hi

s
de

pr
ec

at
io

n
in

cl
ud

es
th

e
fo

llo
w

in
g

ca
pa

bi
lit

ie
s:

v
D

ef
in

in
g

JM
S

re
so

ur
ce

de
fin

iti
on

s
fo

r
th

e
V

er
si

on
5

de
fa

ul
t

m
es

sa
gi

ng
pr

ov
id

er

v
E

st
ab

lis
hi

ng
co

nn
ec

tio
ns

fr
om

cl
ie

nt
ap

pl
ic

at
io

ns
th

at
ar

e
ei

th
er

ru
nn

in
g

in
a

V
er

si
on

5
en

vi
ro

nm
en

t
or

ut
ili

zi
ng

V
er

si
on

5
de

fa
ul

t
m

es
sa

gi
ng

pr
ov

id
er

re
so

ur
ce

de
fin

iti
on

s

P
er

fo
rm

th
e

fo
llo

w
in

g
ac

tio
ns

:

1.
E

ns
ur

e
th

at
an

y
JM

S
S

er
ve

r
m

es
sa

gi
ng

pr
ov

id
er

s
th

at
ar

e
ho

st
ed

on
W

eb
S

ph
er

e
A

pp
lic

at
io

n
S

er
ve

r
V

er
si

on
5.

1
ap

pl
ic

at
io

n
se

rv
er

s
ar

e
m

ov
ed

on
to

V
er

si
on

6.
0

or
la

te
r

ap
pl

ic
at

io
n

se
rv

er
s.

T
hi

s
ta

sk
is

ha
nd

le
d

au
to

m
at

ic
al

ly
w

he
n

yo
u

m
ig

ra
te

a
V

er
si

on
5.

x
se

rv
er

to
V

er
si

on
6.

0
or

la
te

r.

2.
C

ha
ng

e
al

lJ
M

S
re

so
ur

ce
de

fin
iti

on
s

to
us

e
th

e
ne

w
V

er
si

on
6

de
fa

ul
t

m
es

sa
gi

ng
pr

ov
id

er
in

st
ea

d
of

th
e

V
er

si
on

5
de

fa
ul

t
m

es
sa

gi
ng

pr
ov

id
er

.

Chapter 47. Deprecated, stabilized, and removed features 1295

Ta
bl

e
16

6.
F

ea
tu

re
s

de
pr

ec
at

ed
in

V
er

si
on

6.
1

(c
on

tin
ue

d)
.

T
hi

s
ta

bl
e

de
sc

rib
es

th
e

fe
at

ur
es

th
at

ar
e

de
pr

ec
at

ed
in

V
er

si
on

6.
1.

C
at

eg
o

ry
D

ep
re

ca
ti

o
n

R
ec

o
m

m
en

d
ed

M
ig

ra
ti

o
n

A
ct

io
n

S
ys

te
m

ad
m

in
is

tr
at

io
n

se
tu

p
co

m
m

an
d

U
se

th
e
in

st
al

l
co

m
m

an
d.

cl
ie

nt
Up

gr
ad

e
co

m
m

an
d

N
o

m
ig

ra
tio

n
ac

tio
n

is
ne

ce
ss

ar
y.

wa
sp

ro
fi

le
co

m
m

an
d

U
se

th
e
ma

na
ge

pr
of

il
es

co
m

m
an

d.

T
he

fo
llo

w
in

g
WA

SP
os

tU
pg

ra
de

co
m

m
an

d
pa

ra
m

et
er

s:

v
-im

po
rt

xm
i_

da
ta

_f
ile

v
-s

ub
st

itu
te

“k
ey

1=
va

lu
e1

[;k
ey

2=
va

lu
e2

;[.
..]

]”

N
o

m
ig

ra
tio

n
ac

tio
n

is
ne

ce
ss

ar
y.

C
lo

ud
sc

ap
e

da
ta

st
or

e
he

lp
er

(c
om

.ib
m

.w
eb

sp
he

re
.r

sa
da

pt
er

.C
lo

ud
sc

ap
eD

at
aS

to
re

H
el

pe
r)

an
d

C
lo

ud
sc

ap
e

N
et

w
or

k
S

er
ve

r
da

ta
st

or
e

he
lp

er
(c

om
.ib

m
.w

eb
sp

he
re

.r
sa

da
pt

er
.C

lo
ud

sc
ap

eN
et

w
or

kS
er

ve
rD

at
aS

to
re

H
el

pe
r)

as
w

el
la

s
th

ei
r

ty
pe

s
in

D
at

aS
to

re
H

el
pe

r

F
or

ex
is

tin
g

co
nf

ig
ur

at
io

ns
,

no
m

ig
ra

tio
n

ac
tio

n
is

ne
ce

ss
ar

y.
T

he
m

ig
ra

tio
n

ut
ili

ty
ch

an
ge

s
th

e
de

pr
ec

at
ed

C
lo

ud
sc

ap
e

he
lp

er
s

to
D

er
by

he
lp

er
s.

F
or

ne
w

co
nf

ig
ur

at
io

ns
,

us
e

th
e

D
er

by
da

ta
st

or
e

he
lp

er
s

an
d

ty
pe

s
in

st
ea

d
of

th
e

C
lo

ud
sc

ap
e

da
ta

st
or

e
he

lp
er

s.

D
B

2
Le

ga
cy

C
LI

-b
as

ed
Ty

pe
2

JD
B

C
D

riv
er

pr
ov

id
er

S
ta

rt
us

in
g

th
e

D
B

2
U

ni
ve

rs
al

JD
B

C
D

riv
er

P
ro

vi
de

r.

Lo
gi

ca
lp

oo
ld

is
tr

ib
ut

io
n

su
pp

or
t

(c
om

.ib
m

.w
eb

sp
he

re
.c

si
.T

hr
ea

dP
oo

lS
tr

at
eg

y.
Lo

gi
ca

lP
oo

lD
is

tr
ib

ut
io

n)
N

o
m

ig
ra

tio
n

ac
tio

n
is

ne
ce

ss
ar

y.

W
he

n
th

is
fu

nc
tio

n
is

re
m

ov
ed

,
ho

w
ev

er
,

al
lc

us
to

m
O

bj
ec

t
R

eq
ue

st
B

ro
ke

r
(O

R
B

)
pr

op
er

tie
s

th
at

yo
u

sp
ec

ifi
ed

fo
r

it
w

ill
be

ig
no

re
d.

T
he

cu
st

om
O

R
B

pr
op

er
tie

s
of

in
te

re
st

ar
e

co
m

.ib
m

.w
eb

sp
he

re
.th

re
ad

po
ol

.s
tr

at
eg

y.
Lo

gi
ca

lP
oo

lD
is

tr
ib

ut
io

n.
*.

O
R

B
th

re
ad

po
ol

co
nf

ig
ur

at
io

n
as

pa
rt

of
th

e
S

er
ve

r
ob

je
ct

in
th

e
se

rv
er

.x
ml

fil
e

U
se

th
e

th
re

ad
po

ol
co

nf
ig

ur
at

io
n

th
at

is
pa

rt
of

th
e

S
er

ve
rI

nd
ex

ob
je

ct
in

th
e
se

rv
er

in
de

x.
xm

l
fil

e.

JV
M

sy
st

em
pr

op
er

ty
co

m
.ib

m
.w

eb
sp

he
re

.s
en

dr
ed

ire
ct

.c
om

pa
tib

ili
ty

B
eg

in
m

od
ify

in
g

yo
ur

ap
pl

ic
at

io
ns

to
re

di
re

ct
no

n-
re

la
tiv

e
U

R
Ls

,
th

os
e

st
ar

tin
g

w
ith

a
fo

rw
ar

d
sl

as
h

(“
/”

),
re

la
tiv

e
to

th
e

se
rv

le
t

co
nt

ai
ne

r
ro

ot
(w

eb
_s

er
ve

r_
ro

ot
)

in
st

ea
d

of
th

e
w

eb
ap

pl
ic

at
io

n
co

nt
ex

t
ro

ot
.

R
ea

d
th

e
Ja

va
S

er
vl

et
2.

4
S

pe
ci

fic
at

io
n,

w
hi

ch
is

av
ai

la
bl

e
fo

r
do

w
nl

oa
d

at
ht

tp
://

jc
p.

or
g/

ab
ou

tJ
av

a/
co

m
m

un
ity

pr
oc

es
s/

fin
al

/js
r1

54
/,

fo
r

in
fo

rm
at

io
n

on
ho

w
se

nd
R

ed
ire

ct
sh

ou
ld

be
ha

ve
.

W
eb

co
nt

ai
ne

r
P

ag
eL

is
t

S
er

vl
et

cu
st

om
ex

te
ns

io
n,

in
cl

ud
in

g
th

e
fo

llo
w

in
g

cl
as

se
s:

v
co

m
.ib

m
.s

er
vl

et
.C

lie
nt

Li
st

v
co

m
.ib

m
.s

er
vl

et
.C

lie
nt

Li
st

E
le

m
en

t

v
co

m
.ib

m
.s

er
vl

et
.M

LN
ot

F
ou

nd
E

xc
ep

tio
n

v
co

m
.ib

m
.s

er
vl

et
.P

ag
eL

is
tS

er
vl

et

v
co

m
.ib

m
.s

er
vl

et
.P

ag
eN

ot
F

ou
nd

E
xc

ep
tio

n

R
ea

rc
hi

te
ct

yo
ur

ap
pl

ic
at

io
ns

to
us

e
ja

va
x.

se
rv

le
t.f

ilt
er

cl
as

se
s

ra
th

er
th

an
co

m
.ib

m
.s

er
vl

et
cl

as
se

s.

S
ta

rt
in

g
w

ith
th

e
Ja

va
S

er
vl

et
2.

3
sp

ec
ifi

ca
tio

n,
ja

va
x.

se
rv

le
t.f

ilt
er

cl
as

se
s

gi
ve

yo
u

th
e

ca
pa

bi
lit

y
to

in
te

rc
ep

t
re

qu
es

ts
an

d
ex

am
in

e
re

sp
on

se
s.

T
he

y
al

so
al

lo
w

pr
ov

id
e

ch
ai

ni
ng

fu
nc

tio
na

lit
y

as
w

el
la

s
fu

nc
tio

na
lit

y
fo

r
em

be
lli

sh
in

g
or

tr
un

ca
tin

g
re

sp
on

se
s.

T
he

fo
llo

w
in

g
cu

st
om

pr
op

er
tie

s
fo

r
a

da
ta

so
ur

ce
:

v
va

lid
at

eN
ew

C
on

ne
ct

io
n

v
va

lid
at

eN
ew

C
on

ne
ct

io
nR

et
ry

C
ou

nt

v
va

lid
at

eN
ew

C
on

ne
ct

io
nR

et
ry

In
te

rv
al

T
he

pr
od

uc
t

no
w

of
fe

rs
th

es
e

pr
op

er
tie

s
as

pr
e-

co
nf

ig
ur

ed
op

tio
ns

,
w

hi
ch

ar
e

th
e

re
pl

ac
em

en
t

pr
op

er
tie

s
in

th
e

fo
llo

w
in

g
lis

t.
To

av
oi

d
ru

nt
im

e
er

ro
r

m
es

sa
ge

s,
pe

rm
an

en
tly

di
sa

bl
e

th
e

or
ig

in
al

cu
st

om
pr

op
er

tie
s

by
de

le
tin

g
th

em
fr

om
th

e
lis

t
of

cu
st

om
pr

op
er

tie
s.

v
va

lid
at

eN
ew

C
on

ne
ct

io
n

is
re

pl
ac

ed
by

P
re

te
st

n
ew

co
n

n
ec

ti
o

n

v
va

lid
at

eN
ew

C
on

ne
ct

io
nR

et
ry

C
ou

nt
is

re
pl

ac
ed

by
N

u
m

b
er

o
f

re
tr

ie
s

v
va

lid
at

eN
ew

C
on

ne
ct

io
nR

et
ry

In
te

rv
al

is
re

pl
ac

ed
by

R
et

ry
in

te
rv

al

N
o

te
:

If
th

e
ne

w
pr

op
er

tie
s

an
d

ol
d

pr
op

er
tie

s
co

ex
is

t,
th

e
ne

w
pr

op
er

tie
s

ta
ke

pr
ec

ed
en

ce
.

D
IS

A
B

LE
_F

IL
E

_L
O

C
K

IN
G

tr
an

sa
ct

io
n

se
rv

ic
e

cu
st

om
pr

op
er

ty
C

le
ar

th
e

E
n

ab
le

fi
le

lo
ck

in
g

ch
ec

k
bo

x
on

th
e

Tr
an

sa
ct

io
n

S
er

vi
ce

pa
ne

lo
f

th
e

ad
m

in
is

tr
at

iv
e

co
ns

ol
e.

S
im

pl
e

W
eb

S
ph

er
e

A
ut

he
nt

ic
at

io
n

M
ec

ha
ni

sm
(S

W
A

M
)

U
se

th
e

Li
gh

tw
ei

gh
t

T
hi

rd
-P

ar
ty

A
ut

he
nt

ic
at

io
n

(L
T

P
A

)
m

ec
ha

ni
sm

.

S
ec

ur
ity

Lo
gi

nH
el

pe
r

C
O

R
B

A
au

th
en

tic
at

io
n

he
lp

er
fu

nc
tio

n
(c

om
.ib

m
.w

s.
se

cu
rit

y.
ut

il.
Lo

gi
nH

el
pe

r)
M

ig
ra

te
to

th
e

Ja
va

A
ut

he
nt

ic
at

io
n

an
d

A
ut

ho
riz

at
io

n
S

er
vi

ce
(J

A
A

S
)

pr
og

ra
m

m
in

g
m

od
el

.
F

or
in

fo
rm

at
io

n
on

th
is

m
ig

ra
tio

n,
re

ad
M

ig
ra

tin
g

C
om

m
on

O
bj

ec
t

R
eq

ue
st

B
ro

ke
r

A
rc

hi
te

ct
ur

e
pr

og
ra

m
m

at
ic

lo
gi

n
to

Ja
va

A
ut

he
nt

ic
at

io
n

an
d

A
ut

ho
riz

at
io

n
S

er
vi

ce
(C

O
R

B
A

an
d

JA
A

S
).

co
m

.ib
m

.w
s.

se
cu

rit
y.

w
eb

.W
eb

S
ea

lT
ru

st
A

ss
oc

ia
tio

nI
nt

er
ce

pt
or

tr
us

t
as

so
ci

at
io

n
in

te
rc

ep
to

r
(T

A
I)

in
te

rf
ac

e

T
hi

s
Ti

vo
li

TA
I

in
te

rc
ep

to
r

th
at

im
pl

em
en

ts
th

e
W

eb
S

ph
er

e
A

pp
lic

at
io

n
S

er
ve

r
TA

I
in

te
rf

ac
e

w
as

pr
ov

id
ed

to
su

pp
or

t
W

eb
S

E
A

L
V

er
si

on
4.

1.

If
yo

u
pl

an
to

us
e

W
eb

S
E

A
L

5.
1

or
la

te
r,

yo
u

sh
ou

ld
m

ig
ra

te
to

us
e

th
e

co
m

.ib
m

.w
s.

se
cu

rit
y.

w
eb

.T
A

M
Tr

us
tA

ss
oc

ia
tio

nI
nt

er
ce

pt
or

P
lu

s
in

te
rc

ep
to

r.

S
up

po
rt

fo
r

th
e

Ja
va

V
irt

ua
lM

ac
hi

ne
P

ro
fil

er
In

te
rf

ac
e

(J
V

M
P

I)
is

de
pr

ec
at

ed
al

on
g

w
ith

th
e

fo
llo

w
in

g
re

la
te

d
JV

M
ru

nt
im

e
co

un
te

rs
:

v
O

bj
ec

tM
ov

ed
C

ou
nt

v
O

bj
ec

tF
re

ed
C

ou
nt

v
O

bj
ec

tA
llo

ca
te

C
ou

nt

B
eg

in
m

ov
in

g
to

th
e

Ja
va

V
irt

ua
lM

ac
hi

ne
To

ol
In

te
rf

ac
e

(J
V

M
T

I)
.

F
or

m
or

e
in

fo
rm

at
io

n,
re

ad
JV

M
To

ol
In

te
rf

ac
e

(J
V

M
T

I)
.

1296 Overview

http://jcp.org/aboutJava/communityprocess/final/jsr154/
http://jcp.org/aboutJava/communityprocess/final/jsr154/
http://java.sun.com/j2se/1.5.0/docs/guide/jvmti/index.html

Ta
bl

e
16

6.
F

ea
tu

re
s

de
pr

ec
at

ed
in

V
er

si
on

6.
1

(c
on

tin
ue

d)
.

T
hi

s
ta

bl
e

de
sc

rib
es

th
e

fe
at

ur
es

th
at

ar
e

de
pr

ec
at

ed
in

V
er

si
on

6.
1.

C
at

eg
o

ry
D

ep
re

ca
ti

o
n

R
ec

o
m

m
en

d
ed

M
ig

ra
ti

o
n

A
ct

io
n

P
er

fo
rm

an
ce

S
up

po
rt

fo
r

th
e

Ja
va

V
irt

ua
lM

ac
hi

ne
D

eb
ug

ge
r

In
te

rf
ac

e
(J

V
M

D
I)

B
eg

in
m

ov
in

g
to

th
e

Ja
va

V
irt

ua
lM

ac
hi

ne
To

ol
In

te
rf

ac
e

(J
V

M
T

I)
.

F
or

m
or

e
in

fo
rm

at
io

n,
re

ad
JV

M
To

ol
In

te
rf

ac
e

(J
V

M
T

I)
.

M
es

sa
ge

ID
fo

rm
at

th
at

is
us

ed
in

W
eb

S
ph

er
e

A
pp

lic
at

io
n

S
er

ve
r

V
er

si
on

6.
0.

x
an

d
ea

rli
er

T
he

m
es

sa
ge

pr
ef

ix
es

fo
r

lo
g

fil
es

w
er

e
no

t
pr

ev
io

us
ly

re
gi

st
er

ed
w

ith
th

e
pr

im
ar

y
m

es
sa

ge
re

gi
st

ry
.

W
eb

S
ph

er
e

A
pp

lic
at

io
n

S
er

ve
r

V
er

si
on

6.
1.

x
an

d
la

te
r

us
e

co
m

pl
ia

nt
m

es
sa

ge
pr

ef
ix

es
in

th
e

ou
tp

ut
lo

gs
.

U
se

th
e
co

nv
er

tl
og

co
m

m
an

d
an

d
th

e
M

es
sa

ge
C

on
ve

rt
er

cl
as

s
to

as
si

st
yo

u
in

m
ig

ra
tin

g
to

ol
s

th
at

re
ly

on
th

e
ol

de
r

m
es

sa
ge

fo
rm

at
.

P
ro

bl
em

de
te

rm
in

at
io

n
T

he
co

m
.ib

m
.e

to
ol

s.
lo

gg
in

g.
ut

il
pl

ug
-in

,
th

e
lo

gu
ti

l.
ja

r
fil

e

v
Lo

gg
in

g
fa

ci
lit

y

Lo
gg

in
g

fa
ci

lit
y

us
ed

fo
r

lo
gg

in
g

Ja
va

pr
im

iti
ve

s
an

d
co

m
pl

ex
ob

je
ct

s
to

na
m

ed
lo

gg
er

s;
co

nf
ig

ur
ab

le
w

ith
pr

ed
ef

in
ed

fil
te

rin
g

le
ve

ls
,

Lo
gg

in
g

A
ge

nt
an

d
fil

e
si

nk
s,

an
d

ou
tp

ut
fo

rm
at

s
th

ro
ug

h
an

A
P

I,
E

cl
ip

se
pl

ug
-in

m
an

ife
st

,
or

E
cl

ip
se

pr
ef

er
en

ce
pa

ne
l

v
Lo

gg
in

g
ag

en
t

X
M

L-
ba

se
d

m
es

sa
gi

ng
ag

en
t

us
ed

in
co

nj
un

ct
io

n
w

ith
th

e
IB

M
A

ge
nt

C
on

tr
ol

le
r

to
w

rit
e

lo
g

an
d

tr
ac

e
X

M
L

re
co

rd
s

to
a

lo
gg

in
g

se
rv

ic
e

re
m

ot
el

y
at

ta
ch

ab
le

th
ro

ug
h

an
A

P
I

or
Te

st
an

d
P

er
fo

rm
an

ce
To

ol
s

P
la

tfo
rm

(T
P

T
P

),
fo

rm
al

ly
H

ya
de

s,
E

cl
ip

se
w

or
kb

en
ch

v
P

ro
bl

em
de

te
rm

in
at

io
n

ar
tif

ac
ts

an
d

m
es

sa
ge

s

O
rig

in
al

im
pl

em
en

ta
tio

n
of

th
e

M
an

ag
ea

bi
lit

y
(M

12
)

M
od

el
P

ro
bl

em
D

et
er

m
in

at
io

n
A

rc
hi

te
ct

ur
e

V
er

si
on

1.
5

an
d

P
ro

bl
em

D
et

er
m

in
at

io
n

A
rt

ifa
ct

s
C

om
m

on
D

at
a

M
od

el
sp

ec
ifi

ca
tio

n
us

ed
fo

r
ca

pt
ur

in
g

an
d

en
co

di
ng

lo
g

an
d

tr
ac

e
da

ta

v
D

is
tr

ib
ut

ed
co

rr
el

at
or

se
rv

ic
e

(D
C

S
)

D
is

tr
ib

ut
ed

co
rr

el
at

or
se

rv
ic

e
th

at
is

us
ed

fo
r

in
st

ru
m

en
tin

g
co

rr
el

at
io

n
id

en
tif

ie
rs

fo
r

co
rr

el
at

in
g

lo
g

an
d

tr
ac

e
da

ta
ac

ro
ss

on
e

or
m

or
e

ho
st

s

v
Ja

va
cl

ie
nt

bi
nd

in
gs

Ja
va

cl
ie

nt
bi

nd
in

gs
us

ed
to

co
m

m
un

ic
at

e
w

ith
th

e
IB

M
A

ge
nt

C
on

tr
ol

le
r

to
la

un
ch

lo
ca

la
nd

re
m

ot
e

pr
oc

es
se

s,
at

ta
ch

to
ru

nn
in

g
pr

oc
es

se
s,

an
d

m
on

ito
r

ac
tiv

e
ag

en
ts

in
a

se
cu

re
cl

ie
nt

en
vi

ro
nm

en
t

B
eg

in
m

ov
in

g
pl

ug
-in

s
an

d
ap

pl
ic

at
io

n
co

de
us

in
g

co
nf

ig
ur

at
io

n
fil

es
,

cl
as

se
s,

m
et

ho
ds

,
or

va
ria

bl
es

in
th

e
co

m
.ib

m
.e

to
ol

s.
lo

gg
in

g.
ut

il
pl

ug
-in

to
th

e
fo

llo
w

in
g

re
pl

ac
em

en
ts

:

v
Lo

gg
in

g
fa

ci
lit

y

R
ep

la
ce

m
en

t:
Ja

va
Lo

gg
in

g
A

P
Is

in
Ja

va
V

er
si

on
1.

4.
0+

;
Lo

gg
in

g
A

ge
nt

su
pp

or
t

fo
r

th
e

Ja
va

Lo
gg

in
g

A
P

Is
pr

ov
id

ed
in

T
P

T
P

an
d

C
om

m
on

Lo
gg

in
g

(c
om

.ib
m

.e
to

ol
s.

co
m

m
on

.lo
gg

in
g/

lo
gg

in
g.

ja
r)

v
Lo

gg
in

g
ag

en
t

R
ep

la
ce

m
en

t:
T

P
T

P
Lo

gg
in

g
A

ge
nt

(o
rg

.e
cl

ip
se

.h
ya

de
s.

lo
gg

in
g.

co
re

/h
lc

or
e.

ja
r)

v
P

ro
bl

em
de

te
rm

in
at

io
n

ar
tif

ac
ts

an
d

m
es

sa
ge

s

R
ep

la
ce

m
en

t:
C

om
m

on
B

as
e

E
ve

nt
V

er
si

on
1.

0.
1

sp
ec

ifi
ca

tio
n

an
d

T
P

T
P

im
pl

em
en

ta
tio

n
(o

rg
.e

cl
ip

se
.h

ya
de

s.
lo

gg
in

g.
co

re
/h

lc
be

10
1.

ja
r)

v
D

is
tr

ib
ut

ed
co

rr
el

at
or

se
rv

ic
e

(D
C

S
)

R
ep

la
ce

m
en

t:
T

P
T

P
C

or
re

la
tio

n
S

er
vi

ce
(o

rg
.e

cl
ip

se
.h

ya
de

s.
ex

ec
ut

io
n.

co
rr

el
at

io
n/

hc
or

re
la

tio
n.

ja
r)

v
Ja

va
cl

ie
nt

bi
nd

in
gs

R
ep

la
ce

m
en

t:
T

P
T

P
Ja

va
C

lie
nt

B
in

di
ng

s
(o

rg
.e

cl
ip

se
.h

ya
de

s.
ex

ec
ut

io
n/

he
xl

.ja
r)

F
or

m
or

e
in

fo
rm

at
io

n,
re

ad
th

e
co

m
.ib

m
.e

to
ol

s.
lo

gg
in

g.
ut

il\
do

c\
IB

M
_L

og
gi

ng
_U

til
iti

es
_M

ig
ra

tio
n_

G
ui

de
.h

tm
l

do
cu

m
en

t.

Chapter 47. Deprecated, stabilized, and removed features 1297

http://java.sun.com/j2se/1.5.0/docs/guide/jvmti/index.html

Features deprecated in Version 6.0.2
Table 167. Features deprecated in Version 6.0.2. This table describes the features that are deprecated in Version
6.0.2.
Category Deprecation Recommended Migration Action

Application programming model The following methods from class com.ibm.websphere.runtime.ServerName:

initialize(java.lang.String*!ENTITY!*cell,
java.lang.String node,
java.lang.String server)

was390Initialize(byte[] a_stoken,
String a_printable_stoken,
String a_jsabpref,
int a_pid,
int an_asid,
String a_jsabjbnm)

was390Initialize(byte[] a_stoken,
java.lang.String a_printable_stoken,
java.lang.String a_jsabpref,
int a_pid,
int an_asid,
java.lang.String a_jsabjbnm,
java.lang.String a_smcasid)

These methods are for WebSphere Application Server runtime use only.
Applications should not call these methods.

Support for HTTP transport configuration Begin moving to channel-based transport.

Performance com.ibm.websphere.cache.DistributedLockingMap interface Do not use the com.ibm.websphere.cache.DistributedLockingMap interface
because this interface is not supported by the WebSphere Application Server
runtime.

TYPE_DISTRIBUTED_LOCKING_MAP constant that is defined in the
com.ibm.websphere.cache.DistributedObjectCache class

Do not use the TYPE_DISTRIBUTED_LOCKING_MAP constant that is defined in
the com.ibm.websphere.cache.DistributedObjectCache class because this
constant is not supported by the WebSphere Application Server runtime.

System Administration The following custom properties for a data source:

v dbFailOverEnabled

v connRetriesDuringDBFailover

v connRetryIntervalDuringDBFailover

Replace the properties with the following:

v Use validateNewConnection instead of dbFailOverEnabled.

v Use validateNewConnectionRetryCount instead of
connRetriesDuringDBFailover.

v Use validateNewConnectionRetryInterval instead of
connRetryIntervalDuringDBFailover.

Note: If the new properties and old properties coexist, the new properties take
precedence.

Features deprecated in Version 6.0

1298 Overview

Ta
bl

e
16

8.
F

ea
tu

re
s

de
pr

ec
at

ed
in

V
er

si
on

6.
0.

T
hi

s
ta

bl
e

de
sc

rib
es

th
e

fe
at

ur
es

th
at

ar
e

de
pr

ec
at

ed
in

V
er

si
on

6.
0.

C
at

eg
o

ry
D

ep
re

ca
ti

o
n

R
ec

o
m

m
en

d
ed

M
ig

ra
ti

o
n

A
ct

io
n

A
pp

lic
at

io
n

pr
og

ra
m

m
in

g
m

od
el

an
d

co
nt

ai
ne

r
su

pp
or

t
S

up
po

rt
fo

r
th

e
fo

llo
w

in
g
ts

x
ta

gs
in

th
e

Ja
va

S
er

ve
r

P
ag

es
(J

S
P

)
en

gi
ne

:

v
re

pe
at

v
db

co
nn

ec
t

v
db

qu
er

y

v
ge

tP
ro

pe
rt

y

v
us

er
id

v
pa

ss
w

d

v
db

m
od

ify

In
st

ea
d

of
us

in
g

th
e
ts

x
ta

gs
,

yo
u

sh
ou

ld
us

e
eq

ui
va

le
nt

ta
gs

fr
om

th
e

Ja
va

S
er

ve
r

P
ag

es
S

ta
nd

ar
d

Ta
g

Li
br

ar
y

(J
S

T
L)

.
JS

T
L

is
su

pp
or

te
d

in
W

eb
S

ph
er

e
A

pp
lic

at
io

n
S

er
ve

r
V

er
si

on
6.

0,
an

d
th

e
ta

g
lib

ra
ry

is
in

cl
ud

ed
w

ith
th

e
pr

od
uc

t.
U

se
th

is
ta

bl
e

as
a

gu
id

el
in

e
fo

r
co

nv
er

tin
g
ts

x
ta

gs
to

JS
T

L
ta

gs
:

ts
x

ta
g

JS
TL

ta
g

ts
x:

re
pe

at
c:
fo

rE
ac

h
ts

x:
db

co
nn

ec
t

sq
l:

se
tD

at
aS

ou
rc

e
ts

x:
db

qu
er

y
sq
l:

qu
er

y
ts

x:
ge

tP
ro

pe
rt

y
Us

e
st

an
da

rd
EL

sy
nt

ax
;

c:
ou

t
va
lu

e=
"$

{b
oo

k.
ti

tl
e}

"
fo

r
ex

am
pl

e,
wh
er

e
bo

ok
is

th
e

cu
rr

en
t

in
de

x
in

th
e

re
su

lt
se

t
ts

x:
us

er
id

Us
e

th
e

us
er

at
tr

ib
ut

e
of

th
e

se
tD

at
aS

ou
rc

e
ta

g
ts

x:
pa

ss
wd

Us
e

th
e

pa
ss

wo
rd

at
tr

ib
ut

e
of

th
e

se
tD

at
aS

ou
rc

e
ta

g
ts

x:
db

mo
di

fy
sq
l:

up
da

te

T
he

fo
llo

w
in

g
ba

ck
en

d
ID

s:

v
S

Q
L9

2
(1

99
2

S
Q

L
S

ta
nd

ar
d)

v
S

Q
L9

9
(1

99
9

S
Q

L
S

ta
nd

ar
d)

U
se

ot
he

r
ba

ck
en

d
ID

s.

A
pp

lic
at

io
n

se
rv

ic
es

JR
as

E
xt

en
si

on
s

A
P

I

N
o

fu
rt

he
r

en
ha

nc
em

en
ts

ar
e

pl
an

ne
d

fo
r

JR
as

su
pp

or
t.

U
se

th
e

eq
ui

va
le

nt
fu

nc
tio

n
in

th
e

ja
va

.u
til

.lo
gg

in
g

pa
ck

ag
e

(J
S

R
47

).

U
ni

ve
rs

al
D

es
cr

ip
tio

n,
D

is
co

ve
ry

an
d

In
te

gr
at

io
n

(U
D

D
I)

V
er

si
on

2
E

JB
in

te
rf

ac
e

to
th

e
U

D
D

I
R

eg
is

tr
y

T
he

re
is

no
re

pl
ac

em
en

t
fo

r
th

e
E

JB
in

te
rf

ac
e.

T
hi

s
in

te
rf

ac
e

is
in

cl
ud

ed
in

W
eb

S
ph

er
e

A
pp

lic
at

io
n

S
er

ve
r

V
er

si
on

6.
0

fo
r

co
m

pa
tib

ili
ty

w
ith

V
er

si
on

5.
x.

U
se

rs
do

no
t

ne
ed

to
ta

ke
an

y
sp

ec
ifi

c
ac

tio
ns

an
d

ca
n

co
nt

in
ue

to
us

e
th

e
V

er
si

on
2

E
JB

A
P

I;
ho

w
ev

er
,

th
ey

sh
ou

ld
be

aw
ar

e
th

at
it

do
es

no
t

in
cl

ud
e

an
y

U
D

D
I

fu
nc

tio
na

lit
y

th
at

is
ne

w
to

U
D

D
I

V
er

si
on

3
an

d
th

e
in

te
rf

ac
e

m
ig

ht
be

re
m

ov
ed

in
a

su
bs

eq
ue

nt
re

le
as

e
of

W
eb

S
ph

er
e

A
pp

lic
at

io
n

S
er

ve
r.

T
he

U
D

D
I4

J
V

er
si

on
2

cl
as

s
lib

ra
ry

,
th

e
ud

di
4j

v2
.j

ar
fil

e
S

ta
rt

us
in

g
th

e
V

er
si

on
3

U
D

D
IA

P
Is

.A
cl

ie
nt

lib
ra

ry
is

pr
ov

id
ed

to
si

m
pl

ify
co

ns
tr

uc
tin

g
an

d
se

nd
in

g
U

D
D

I
V

er
si

on
3

re
qu

es
ts

fr
om

Ja
va

.
T

hi
s

is
th

e
IB

M
U

D
D

I
V

er
si

on
3

C
lie

nt
fo

r
Ja

va
,

pr
ov

id
ed

in
ud

di
v3

cl
ie

nt
.j

ar
.

T
he

U
D

D
I4

J
A

P
Is

ca
n

st
ill

be
us

ed
;

ho
w

ev
er

,
yo

u
sh

ou
ld

be
aw

ar
e

th
at

th
ey

do
no

t
pr

ov
id

e
ac

ce
ss

to
an

y
of

th
e

ne
w

U
D

D
I

V
er

si
on

3
fu

nc
tio

na
lit

y
an

d
th

ey
m

ig
ht

be
re

m
ov

ed
in

a
su

bs
eq

ue
nt

re
le

as
e

of
W

eb
S

ph
er

e
A

pp
lic

at
io

n
S

er
ve

r.

A
ll

of
th

e
lo

w
-le

ve
lU

D
D

I
U

til
ity

To
ol

s
(U

U
T

)
A

P
Is

,
su

ch
as

B
us

in
es

sS
tu

b,
S

er
vi

ce
S

tu
b,

an
d

so
on

,

T
he

se
A

P
Is

ar
e

al
lr

ep
la

ce
d

w
ith

th
e

hi
gh

-le
ve

lP
ro

m
ot

er
A

P
I

in
te

rf
ac

e
in

th
e

co
m

.ib
m

.u
dd

i.p
ro

m
ot

er
pa

ck
ag

e.

S
ta

rt
us

in
g

th
e

P
ro

m
ot

er
A

P
I

in
te

rf
ac

e
in

th
e

co
m

.ib
m

.u
dd

i.p
ro

m
ot

er
pa

ck
ag

e
in

pl
ac

e
of

th
es

e
lo

w
-le

ve
lA

P
Is

,
w

hi
ch

w
ill

be
re

m
ov

ed
in

a
su

bs
eq

ue
nt

re
le

as
e

of
W

eb
S

ph
er

e
A

pp
lic

at
io

n
S

er
ve

r.
T

he
P

ro
m

ot
er

A
P

I
pr

ov
id

es
th

e
sa

m
e

fu
nc

tio
na

lit
y

at
a

hi
gh

er
le

ve
lo

f
ab

st
ra

ct
io

n.

T
he

fo
llo

w
in

g
m

et
ho

ds
in

th
e

J2
E

E
C

on
ne

ct
or

A
rc

hi
te

ct
ur

e
ru

nt
im

e:

v
co

m
.ib

m
.w

s.
m

an
ag

em
en

t.d
es

cr
ip

to
r.x

m
l.C

on
ne

ct
io

nF
ac

to
ry

.x
m

l(
ge

tP
oo

lC
on

te
nt

s
an

d
ge

tA
llP

oo
lC

on
te

nt
s

m
et

ho
ds

)

v
co

m
.ib

m
.w

eb
sp

he
re

.j2
c.

C
on

ne
ct

io
nM

an
ag

er
in

te
rf

ac
e

v
co

m
.ib

m
.w

eb
sp

he
re

.j2
c.

C
on

ne
ct

io
nE

ve
nt

Li
st

en
er

in
te

rf
ac

e

T
he

m
et

ho
ds

ar
e

re
pl

ac
ed

as
fo

llo
w

s:

v
ge

tP
oo

lC
on

te
nt

s
an

d
ge

tA
llP

oo
lC

on
te

nt
s

ar
e

re
pl

ac
ed

w
ith

sh
ow

P
oo

lC
on

te
nt

s
an

d
sh

ow
A

llP
oo

lC
on

te
nt

s.

v
C

on
ne

ct
io

nM
an

ag
er

in
te

rf
ac

e
is

re
pl

ac
ed

w
ith

J2
E

E
C

on
ne

ct
or

A
rc

hi
te

ct
ur

e
1.

5
La

zy
A

ss
oc

ia
ta

bl
eC

on
ne

ct
io

nM
an

ag
er

in
te

rf
ac

e.

v
C

on
ne

ct
io

nE
ve

nt
Li

st
en

er
in

te
rf

ac
e

is
re

pl
ac

ed
w

ith
J2

E
E

C
on

ne
ct

or
A

rc
hi

te
ct

ur
e

1.
5

La
zy

E
nl

is
ta

bl
eC

on
ne

ct
io

nM
an

ag
er

in
te

rf
ac

e.

F
or

co
nt

ai
ne

r-
m

an
ag

ed
au

th
en

tic
at

io
n

al
ia

se
s,

sp
ec

ify
th

e
co

nt
ai

ne
r-

m
an

ag
ed

cr
ed

en
tia

ls
in

th
e

re
so

ur
ce

bi
nd

in
g

in
fo

rm
at

io
n

fo
r

th
e

ap
pl

ic
at

io
n.

A
pp

lic
at

io
nP

ro
fil

e
pr

op
er

ty
on

th
e

W
or

k
m

an
ag

er
pa

ne
li

n
th

e
ad

m
in

is
tr

at
iv

e
co

ns
ol

e
R

ea
d

th
e

in
fo

rm
at

io
n

ce
nt

er
fo

r
th

e
di

ffe
re

nc
es

be
tw

ee
n

ap
pl

ic
at

io
n

pr
of

ili
ng

in
V

er
si

on
5.

x
an

d
V

er
si

on
6.

0.
x.

T
he

fo
llo

w
in

g
tw

o
ite

m
s

fr
om

th
e

D
at

a
so

ur
ce

pa
ne

li
n

th
e

ad
m

in
is

tr
at

iv
e

co
ns

ol
e:

v
C

on
ta

in
er

-M
an

ag
ed

A
ut

he
nt

ic
at

io
n

A
lia

s

v
D

ef
au

ltP
rin

ci
pl

eM
ap

pi
ng

D
ef

in
e

th
e

C
on

ta
in

er
-M

an
ag

ed
A

ut
he

nt
ic

at
io

n
A

lia
s

an
d

D
ef

au
ltP

rin
ci

pl
eM

ap
pi

ng
pr

op
er

tie
s

on
th

e
R

es
ou

rc
e

R
ef

er
en

ce
.

A
ll

cl
as

se
s

in
th

e
co

m
.ib

m
.w

eb
sp

he
re

.s
er

vl
et

.fi
lte

r
pa

ck
ag

e,
in

cl
ud

in
g

th
e

fo
llo

w
in

g:

v
C

ha
in

ed
R

eq
ue

st

v
C

ha
in

ed
R

es
po

ns
e

v
C

ha
in

er
S

er
vl

et

v
S

er
vl

et
C

ha
in

R
ea

rc
hi

te
ct

yo
ur

ap
pl

ic
at

io
ns

to
us

e
ja

va
x.

se
rv

le
t.f

ilt
er

cl
as

se
s

ra
th

er
th

an
co

m
.ib

m
.w

eb
sp

he
re

.s
er

vl
et

.fi
lte

r
cl

as
se

s.
S

ta
rt

in
g

fr
om

th
e

S
er

vl
et

2.
3

sp
ec

ifi
ca

tio
n,

ja
va

x.
se

rv
le

t.f
ilt

er
cl

as
se

s
gi

ve
yo

u
th

e
ca

pa
bi

lit
y

to
in

te
rc

ep
t

re
qu

es
ts

an
d

ex
am

in
e

re
sp

on
se

s.
T

he
y

al
so

al
lo

w
yo

u
to

ac
hi

ev
e

ch
ai

ni
ng

fu
nc

tio
na

lit
y,

as
w

el
la

s
em

be
lli

sh
in

g
an

d
tr

un
ca

tin
g

re
sp

on
se

s.

Chapter 47. Deprecated, stabilized, and removed features 1299

Ta
bl

e
16

8.
F

ea
tu

re
s

de
pr

ec
at

ed
in

V
er

si
on

6.
0

(c
on

tin
ue

d)
.

T
hi

s
ta

bl
e

de
sc

rib
es

th
e

fe
at

ur
es

th
at

ar
e

de
pr

ec
at

ed
in

V
er

si
on

6.
0.

C
at

eg
o

ry
D

ep
re

ca
ti

o
n

R
ec

o
m

m
en

d
ed

M
ig

ra
ti

o
n

A
ct

io
n

A
pp

lic
at

io
n

se
rv

ic
es

M
ul

tip
ur

po
se

In
te

rn
et

M
ai

lE
xt

en
si

on
s

(M
IM

E
)

fil
te

rin
g

M
IM

E
fil

te
rs

w
er

e
fir

st
su

pp
or

te
d

in
W

eb
S

ph
er

e
A

pp
lic

at
io

n
S

er
ve

r
V

er
si

on
3.

5
as

a
w

ay
fo

r
se

rv
le

ts
to

em
be

lli
sh

,
tr

un
ca

te
,

an
d

m
od

ify
th

e
re

sp
on

se
s

ge
ne

ra
te

d
by

ot
he

r
se

rv
le

ts
,

ba
se

d
on

th
e

M
IM

E
ty

pe
s

of
th

e
ou

tp
ut

co
nt

en
t.

T
he

ja
va

x.
se

rv
le

t.f
ilt

er
s,

w
hi

ch
w

er
e

in
tr

od
uc

ed
in

th
e

S
er

vl
et

2.
3

sp
ec

ifi
ca

tio
n,

al
lo

w
us

er
s

to
pl

ug
in

fil
te

rs
th

at
ca

n
in

te
rc

ep
t

re
qu

es
ts

to
an

d
re

sp
on

se
s

fr
om

se
rv

le
ts

.
T

he
y

al
so

ha
ve

th
e

ca
pa

bi
lit

y
to

m
od

ify
co

nt
en

t
flo

w
in

g
in

ei
th

er
di

re
ct

io
n.

T
he

ja
va

x.
se

rv
le

t.f
ilt

er
s

m
ai

nt
ai

n
al

lo
f

th
e

fu
nc

tio
na

lit
y

of
M

IM
E

fil
te

rs
.

ja
va

x.
se

rv
le

t.f
ilt

er
s

ar
e

st
an

da
rd

A
P

Is
,

an
d

ar
e

su
pp

or
te

d
by

al
lc

om
pl

ia
nt

ap
pl

ic
at

io
n

se
rv

er
s.

R
ef

er
to

th
e

S
er

vl
et

2.
3

sp
ec

ifi
ca

tio
n

fo
r

m
or

e
in

fo
rm

at
io

n.

C
on

ta
in

er
-m

an
ag

ed
pe

rs
is

te
nc

e
(C

M
P

)
en

tit
y

be
an

s
co

nf
ig

ur
ed

w
ith

m
et

ho
d

le
ve

la
cc

es
s

in
te

nt
m

ig
ht

ru
n

in
to

da
ta

ac
ce

ss
pr

ob
le

m
s,

lik
e

de
ad

lo
ck

.
T

he
re

fo
re

,
th

e
m

et
ho

d
le

ve
la

cc
es

s
in

te
nt

is
de

pr
ec

at
ed

.
R

ec
on

fig
ur

e
C

M
P

en
tit

y
be

an
s

to
us

e
be

an
le

ve
la

cc
es

s
in

te
nt

,
or

re
co

nf
ig

ur
e

ap
pl

ic
at

io
n

pr
of

ile
s

w
ith

W
eb

S
ph

er
e

A
pp

lic
at

io
n

S
er

ve
r

To
ol

ki
t.

A
ll

of
th

e
m

et
ho

ds
an

d
fie

ld
s

in
th

e
co

m
.ib

m
.w

eb
sp

he
re

.p
ro

du
ct

.p
ro

du
ct

an
d

co
m

.ib
m

.w
eb

sp
he

re
.p

ro
du

ct
.b

ui
ld

In
fo

cl
as

se
s

T
he

re
fo

re
,

th
e

fo
llo

w
in

g
m

et
ho

ds
fr

om
co

m
.ib

m
.w

eb
sp

he
re

.p
ro

du
ct

.W
A

S
P

ro
du

ct
cl

as
s

(w
hi

ch
in

vo
lv

es
co

m
.ib

m
.w

eb
sp

he
re

.p
ro

du
ct

.p
ro

du
ct

an
d

co
m

.ib
m

.w
eb

sp
he

re
.p

ro
du

ct
.b

ui
ld

In
fo

ob
je

ct
s)

ar
e

de
pr

ec
at

ed
:

v
pu

bl
ic

pr
od

uc
t

ge
tP

ro
du

ct
B

yF
ile

na
m

e(
S

tr
in

g
ba

se
na

m
e)

v
pu

bl
ic

pr
od

uc
t

ge
tP

ro
du

ct
B

yI
d(

S
tr

in
g

id
)

v
pu

bl
ic

bo
ol

ea
n

pr
od

uc
tP

re
se

nt
(S

tr
in

g
id

)

v
pu

bl
ic

bo
ol

ea
n

ad
dP

ro
du

ct
(p

ro
du

ct
aP

ro
du

ct
)

v
pu

bl
ic

bo
ol

ea
n

re
m

ov
eP

ro
du

ct
(p

ro
du

ct
aP

ro
du

ct
)

v
pu

bl
ic

Ite
ra

to
r

ge
tP

ro
du

ct
s(

)

v
pu

bl
ic

Ite
ra

to
r

ge
tP

ro
du

ct
N

am
es

()

v
pu

bl
ic

S
tr

in
g

lo
ad

V
er

si
on

In
fo

A
sX

M
LS

tr
in

g(
S

tr
in

g
fil

en
am

e)

v
pu

bl
ic

S
tr

in
g

ge
tP

ro
du

ct
D

irN
am

e(
)

v
pu

bl
ic

st
at

ic
S

tr
in

g
co

m
pu

te
P

ro
du

ct
D

irN
am

e(
)

U
se

th
e

fo
llo

w
in

g
su

pp
or

te
d

m
et

ho
ds

fr
om

co
m

.ib
m

.w
eb

sp
he

re
.p

ro
du

ct
.W

A
S

D
ire

ct
or

y:

v
pu

bl
ic

W
A

S
P

ro
du

ct
In

fo
ge

tW
A

S
P

ro
du

ct
In

fo
(S

tr
in

g
id

)

v
pu

bl
ic

bo
ol

ea
n

is
T

hi
sP

ro
du

ct
In

st
al

le
d(

S
tr

in
g

id
)

v
pu

bl
ic

W
A

S
P

ro
du

ct
In

fo
[]

ge
tW

A
S

P
ro

du
ct

In
fo

In
st

an
ce

s(
)

v
pu

bl
ic

S
tr

in
g

ge
tW

as
Lo

ca
tio

n(
)

A
ls

o,
in

st
ea

d
of

ge
tti

ng
pr

od
uc

t
in

fo
rm

at
io

n
(n

am
e,

ve
rs

io
n,

bu
ild

le
ve

l,
bu

ild
da

te
)

fr
om

th
e

ol
d

W
A

S
P

ro
du

ct
A

P
I

(c
om

.ib
m

.w
eb

sp
he

re
.p

ro
du

ct
.W

A
S

P
ro

du
ct

),
yo

u
sh

ou
ld

no
w

us
e

th
e

fo
llo

w
in

g
m

et
ho

ds
in

th
e

W
A

S
D

ire
ct

or
y

cl
as

s
to

ge
t

th
at

in
fo

rm
at

io
n:

v
co

m
.ib

m
.w

eb
sp

he
re

.p
ro

du
ct

.W
A

S
D

ire
ct

or
y.

ge
tN

am
e(

S
tr

in
g)

v
co

m
.ib

m
.w

eb
sp

he
re

.p
ro

du
ct

.W
A

S
D

ire
ct

or
y.

ge
tV

er
si

on
(S

tr
in

g)

v
co

m
.ib

m
.w

eb
sp

he
re

.p
ro

du
ct

.W
A

S
D

ire
ct

or
y.

ge
tB

ui
ld

Le
ve

l(S
tr

in
g)

v
co

m
.ib

m
.w

eb
sp

he
re

.p
ro

du
ct

.W
A

S
D

ire
ct

or
y.

ge
tB

ui
ld

D
at

e(
S

tr
in

g)

D
at

a
ac

ce
ss

be
an

s,
w

hi
ch

ar
e

in
cl

ud
ed

w
ith

W
eb

S
ph

er
e

A
pp

lic
at

io
n

S
er

ve
r

in
th

e
da

ta
be

an
s.

ja
r

fil
e

In
st

ea
d

of
us

in
g

da
ta

ac
ce

ss
be

an
s,

yo
u

sh
ou

ld
us

e
S

er
vi

ce
D

at
a

O
bj

ec
ts

(S
D

O
).

R
ea

d
S

er
vi

ce
D

at
a

O
bj

ec
ts

fo
r

ad
di

tio
na

ld
et

ai
ls

.

re
lo

ad
In

te
rv

al
an

d
re

lo
ad

in
gE

na
bl

ed
at

tr
ib

ut
es

of
th

e
IB

M
de

pl
oy

m
en

t
de

sc
rip

to
r

ex
te

ns
io

ns
,

in
cl

ud
in

g
bo

th
th

e
W

A
R

fil
e

ex
te

ns
io

n
(W

E
B

-I
N

F
/ib

m
-w

eb
-e

xt
.x

m
i)

an
d

th
e

ap
pl

ic
at

io
n

ex
te

ns
io

n
(M

E
TA

-I
N

F
/ib

m
-a

pp
lic

at
io

n-
ex

t.x
m

i).
In

st
ea

d
of

us
in

g
de

pl
oy

m
en

t
de

sc
rip

to
r

ex
te

ns
io

ns
,

yo
u

sh
ou

ld
us

e
th

e
re

lo
ad

en
ab

le
an

d
in

te
rv

al
op

tio
ns

pr
ov

id
ed

du
rin

g
ap

pl
ic

at
io

n
de

pl
oy

m
en

t.

co
m

.ib
m

.w
eb

sp
he

re
.s

er
vl

et
.s

es
si

on
.U

se
rT

ra
ns

ac
tio

nW
ra

pp
er

A
P

I
T

he
re

is
no

re
pl

ac
em

en
t

fo
r

th
is

A
P

I.
T

he
U

se
rT

ra
ns

ac
tio

n
ob

je
ct

ca
n

be
pl

ac
ed

di
re

ct
ly

in
to

th
e

H
T

T
P

se
ss

io
n

w
ith

ou
t

us
in

g
a

w
ra

pp
er

.

1300 Overview

http://www.ibm.com/developerworks/library/specification/ws-sdo/

Ta
bl

e
16

8.
F

ea
tu

re
s

de
pr

ec
at

ed
in

V
er

si
on

6.
0

(c
on

tin
ue

d)
.

T
hi

s
ta

bl
e

de
sc

rib
es

th
e

fe
at

ur
es

th
at

ar
e

de
pr

ec
at

ed
in

V
er

si
on

6.
0.

C
at

eg
o

ry
D

ep
re

ca
ti

o
n

R
ec

o
m

m
en

d
ed

M
ig

ra
ti

o
n

A
ct

io
n

S
ec

ur
ity

S
O

A
P

-S
ec

ur
ity

(X
M

L
di

gi
ta

ls
ig

na
tu

re
)

ba
se

d
on

A
pa

ch
e

S
O

A
P

im
pl

em
en

ta
tio

n
In

st
ea

d
of

us
in

g
S

O
A

P
-S

ec
ur

ity
,

yo
u

sh
ou

ld
m

ig
ra

te
yo

ur
ap

pl
ic

at
io

n
to

JS
R

-1
09

im
pl

em
en

ta
tio

n
of

w
eb

se
rv

ic
e.

A
ls

o,
m

ig
ra

te
(r

ec
on

fig
ur

e
yo

ur
ap

pl
ic

at
io

n)
to

us
e

W
S

S
(W

eb
S

er
vi

ce
s

S
ec

ur
ity

)
1.

0
im

pl
em

en
ta

tio
n.

W
eb

S
er

vi
ce

S
ec

ur
ity

(W
S

S
)

dr
af

t
13

sp
ec

ifi
ca

tio
n-

le
ve

ls
up

po
rt

A
pp

lic
at

io
ns

sh
ou

ld
be

m
ig

ra
te

d
to

th
e

su
pp

or
te

d
W

S
S

1.
0

st
an

da
rd

.
T

he
dr

af
t-

le
ve

ls
up

po
rt

do
es

no
t

pr
ov

id
e

in
te

ro
pe

ra
bi

lit
y

w
ith

so
m

e
th

ird
-p

ar
ty

ve
nd

or
s,

as
th

e
m

es
sa

ge
le

ve
lh

as
be

en
ch

an
ge

d
be

tw
ee

n
th

e
dr

af
t

an
d

th
e

W
S

S
1.

0
im

pl
em

en
ta

tio
n.

W
S

S
1.

0
is

on
ly

su
pp

or
te

d
in

J2
E

E
1.

4
ap

pl
ic

at
io

ns
.

T
he

re
fo

re
,

yo
u

ne
ed

to
m

ig
ra

te
ap

pl
ic

at
io

ns
to

J2
E

E
1.

4
fir

st
.

T
he

ne
xt

st
ep

is
to

us
e

A
pp

lic
at

io
n

S
er

ve
r

To
ol

ki
t

or
R

at
io

na
lA

pp
lic

at
io

n
D

ev
el

op
er

to
ol

in
g

to
re

co
nf

ig
ur

e
W

S
S

fo
r

th
e

m
ig

ra
te

d
ap

pl
ic

at
io

n.
T

he
re

is
no

au
to

m
at

ic
m

ig
ra

tio
n

of
W

S
S

in
th

is
re

le
as

e
of

A
pp

lic
at

io
n

S
er

ve
r

To
ol

ki
t

or
R

at
io

na
lA

pp
lic

at
io

n
D

ev
el

op
er

to
ol

in
g

fo
r

V
er

si
on

6.
0;

th
e

m
ig

ra
tio

n
ha

s
to

be
do

ne
m

an
ua

lly
.

T
he

fo
llo

w
in

g
S

P
I

ha
s

al
so

be
en

de
pr

ec
at

ed
:

co
m

.ib
m

.w
ss

pi
.w

ss
ec

ur
ity

.c
on

fig
.K

ey
Lo

ca
to

r

Yo
u

ne
ed

to
m

ig
ra

te
yo

ur
im

pl
em

en
ta

tio
n

to
th

e
ne

w
S

P
I

fo
r

W
S

S
1.

0
su

pp
or

t
in

V
er

si
on

6.
0:

co
m

.ib
m

.w
ss

pi
.w

ss
ec

ur
ity

.k
ey

in
fo

.K
ey

Lo
ca

to
r

F
in

al
ly

,
th

e
Ja

va
A

ut
he

nt
ic

at
io

n
an

d
A

ut
ho

riz
at

io
n

S
er

vi
ce

(J
A

A
S

)
Lo

gi
nM

od
ul

e
im

pl
em

en
ta

tio
n

ne
ed

s
to

be
m

ig
ra

te
d

to
th

e
ne

w
pr

og
ra

m
m

in
g

m
od

el
fo

r
JA

A
S

Lo
gi

nM
od

ul
e

in
V

er
si

on
6.

0.

S
ec

ur
e

A
ut

he
nt

ic
at

io
n

S
er

vi
ce

(S
A

S
)

IIO
P

se
cu

rit
y

pr
ot

oc
ol

U
se

th
e

C
om

m
on

S
ec

ur
e

In
te

ro
pe

ra
bi

lit
y

V
er

si
on

2
(C

S
Iv

2)
pr

ot
oc

ol
s.

S
ec

ur
e

A
ut

he
nt

ic
at

io
n

S
er

vi
ce

(S
A

S
)

C
O

R
B

A
se

cu
rit

y
pr

og
ra

m
m

in
g

A
P

Is
M

ig
ra

te
fr

om
th

e
S

A
S

pr
og

ra
m

m
in

g
A

P
Is

to
th

e
Ja

va
A

ut
he

nt
ic

at
io

n
an

d
A

ut
ho

riz
at

io
n

S
er

vi
ce

(J
A

A
S

).
F

or
in

fo
rm

at
io

n
on

th
is

m
ig

ra
tio

n,
re

ad
M

ig
ra

tin
g

C
om

m
on

O
bj

ec
t

R
eq

ue
st

B
ro

ke
r

A
rc

hi
te

ct
ur

e
pr

og
ra

m
m

at
ic

lo
gi

n
to

Ja
va

A
ut

he
nt

ic
at

io
n

an
d

A
ut

ho
riz

at
io

n
S

er
vi

ce
(C

O
R

B
A

an
d

JA
A

S
).

S
ys

te
m

ad
m

in
is

tr
at

io
n

C
on

fig
ur

in
g

re
so

ur
ce

s
un

de
r

ce
ll

sc
op

e
Yo

u
sh

ou
ld

co
nf

ig
ur

e
re

so
ur

ce
s

un
de

r
cl

us
te

r
sc

op
e

in
st

ea
d.

In
pr

ev
io

us
re

le
as

es
,

yo
u

co
nf

ig
ur

ed
ce

ll
sc

op
e

re
so

ur
ce

s
to

al
lo

w
th

e
cl

us
te

r
m

em
be

rs
to

sh
ar

e
th

e
re

so
ur

ce
co

nf
ig

ur
at

io
n

de
fin

iti
on

.
In

V
er

si
on

6,
ce

ll
sc

op
e

re
so

ur
ce

co
nf

ig
ur

at
io

n
is

di
sc

ou
ra

ge
d

be
ca

us
e

ce
ll

sc
op

e
re

so
ur

ce
s

ar
e

vi
si

bl
e

to
ev

er
y

no
de

in
th

e
ce

ll,
ev

en
th

ou
gh

no
t

ev
er

y
no

de
in

th
e

ce
ll

is
ab

le
to

su
pp

or
t

th
e

re
so

ur
ce

.

de
pl

.e
xt

en
si

on
.r

eg
an

d
in

st
al

ld
ir

op
tio

ns
fo

r
th

e
in

st
al

l
co

m
m

an
d

in
th

e
A

dm
in

A
pp

sc
rip

tin
g

ob
je

ct
T

he
re

is
no

re
pl

ac
em

en
t

fo
r

th
e

de
pl

.e
xt

en
si

on
.r

eg
op

tio
n.

In
V

er
si

on
5.

x,
th

is
op

tio
n

w
as

a
no

-o
p.

F
or

th
e

in
st

al
ld

ir
op

tio
n,

us
e

th
e

in
st

al
le

d.
ea

r.d
es

tin
at

io
n

op
tio

n
in

st
ea

d.

P
er

fo
rm

an
ce

P
M

I
C

lie
nt

A
P

I,
w

hi
ch

w
as

in
tr

od
uc

ed
in

V
er

si
on

4.
0

to
pr

og
ra

m
m

at
ic

al
ly

ga
th

er
pe

rf
or

m
an

ce
da

ta
fr

om
W

eb
S

ph
er

e
A

pp
lic

at
io

n
S

er
ve

r
T

he
Ja

va
M

an
ag

em
en

t
E

xt
en

si
on

(J
M

X
)

in
te

rf
ac

e,
w

hi
ch

is
pa

rt
of

th
e

J2
E

E
sp

ec
ifi

ca
tio

n,
is

th
e

re
co

m
m

en
de

d
w

ay
to

ga
th

er
W

eb
S

ph
er

e
A

pp
lic

at
io

n
S

er
ve

r
pe

rf
or

m
an

ce
da

ta
.

P
M

I
da

ta
ca

n
be

ga
th

er
ed

fr
om

th
e

J2
E

E
-m

an
ag

ed
ob

je
ct

m
es

sa
ge

be
an

s,
or

fr
om

th
e

W
eb

S
ph

er
e

P
M

I
P

er
f

m
es

sa
ge

be
an

.
W

hi
le

th
e

J2
E

E
m

es
sa

ge
be

an
s

pr
ov

id
e

pe
rf

or
m

an
ce

da
ta

ab
ou

t
a

sp
ec

ifi
c

co
m

po
ne

nt
,

th
e

P
er

f
m

es
sa

ge
be

an
ac

ts
as

a
ga

te
w

ay
to

th
e

W
eb

S
ph

er
e

A
pp

lic
at

io
n

S
er

ve
r

P
M

I
se

rv
ic

e,
an

d
pr

ov
id

es
ac

ce
ss

to
th

e
pe

rf
or

m
an

ce
da

ta
fo

r
al

lo
f

th
e

co
m

po
ne

nt
s.

Chapter 47. Deprecated, stabilized, and removed features 1301

Features deprecated in Version 5.1.1
Table 169. Features deprecated in Version 5.1.1. This table describes the features that are deprecated in Version
5.1.1.
Category Deprecation Recommended Migration Action

Application programming model and
container support

Web services gateway customization API Plan over time to replace your existing filters with a combination of JAX-RPC
handlers and service integration bus mediations.

Application services The following Java Database Connectivity (JDBC) drivers:

v Microsoft SQL Server 2000 Driver for JDBC

v SequeLink JDBC driver for Microsoft SQL Server

If you are using either of these JDBC drivers and still want to use Microsoft SQL
Server as your database, switch to the Connect JDBC driver. You can purchase
the Connect JDBC driver from DataDirect Technologies.

Features deprecated in Version 5.1

1302 Overview

Ta
bl

e
17

0.
F

ea
tu

re
s

de
pr

ec
at

ed
in

V
er

si
on

5.
1.

T
hi

s
ta

bl
e

de
sc

rib
es

th
e

fe
at

ur
es

th
at

ar
e

de
pr

ec
at

ed
in

V
er

si
on

5.
1.

C
at

eg
o

ry
D

ep
re

ca
ti

o
n

R
ec

o
m

m
en

d
ed

M
ig

ra
ti

o
n

A
ct

io
n

In
st

al
la

tio
n

an
d

m
ig

ra
tio

n
to

ol
s

T
he

A
pp

lic
at

io
n

A
ss

em
bl

y
To

ol
th

at
is

us
ed

fo
r

de
ve

lo
pi

ng
J2

E
E

ap
pl

ic
at

io
ns

is
re

pl
ac

ed
w

ith
th

e
A

ss
em

bl
y

To
ol

co
m

po
ne

nt
of

th
e

A
pp

lic
at

io
n

S
er

ve
r

To
ol

ki
t.

In
st

ea
d

of
ru

nn
in

g
th

e
A

pp
lic

at
io

n
A

ss
em

bl
y

To
ol

,
us

er
s

w
ill

in
st

al
la

nd
ru

n
th

e
A

ss
em

bl
y

To
ol

ki
t

co
m

po
ne

nt
of

th
e

A
pp

lic
at

io
n

S
er

ve
r

To
ol

ki
t.

T
he

A
pp

lic
at

io
n

S
er

ve
r

To
ol

ki
t

is
ba

se
d

on
th

e
E

cl
ip

se
fr

am
ew

or
k.

O
n

st
ar

tin
g

th
e

A
pp

lic
at

io
n

S
er

ve
r

To
ol

ki
t,

th
e

J2
E

E
fu

nc
tio

n
is

fo
un

d
by

op
en

in
g

th
e

J2
E

E
P

er
sp

ec
tiv

e.

B
us

in
es

s
pr

oc
es

se
s

m
od

el
ed

w
ith

W
eb

S
ph

er
e

S
tu

di
o

A
pp

lic
at

io
n

D
ev

el
op

er
In

te
gr

at
io

n
E

di
tio

n
V

er
si

on
5.

0
or

ea
rli

er
B

us
in

es
s

pr
oc

es
se

s
m

od
el

ed
w

ith
W

eb
S

ph
er

e
S

tu
di

o
A

pp
lic

at
io

n
D

ev
el

op
er

In
te

gr
at

io
n

E
di

tio
n

V
er

si
on

5.
0

or
ea

rli
er

ne
ed

to
be

m
ig

ra
te

d
to

a
B

P
E

L-
ba

se
d

pr
oc

es
s.

U
se

th
e

M
ig

ra
te

op
tio

n
pr

ov
id

ed
w

ith
W

eb
S

ph
er

e
S

tu
di

o
A

pp
lic

at
io

n
D

ev
el

op
er

In
te

gr
at

io
n

E
di

tio
n

V
er

si
on

5.
1.

S
ev

er
al

pr
oc

es
s

ch
or

eo
gr

ap
he

r
A

P
I

in
te

rf
ac

es
an

d
m

et
ho

ds
us

ed
fo

r
bu

si
ne

ss
pr

oc
es

se
s

cr
ea

te
d

w
ith

W
eb

S
ph

er
e

S
tu

di
o

A
pp

lic
at

io
n

D
ev

el
op

er
In

te
gr

at
io

n
E

di
tio

n
V

er
si

on
5.

0
or

ea
rli

er
.A

lis
t

ca
n

be
fo

un
d

in
th

e
A

P
I

do
cu

m
en

ta
tio

n
pr

ov
id

ed
w

ith
pr

oc
es

s
ch

or
eo

gr
ap

he
r.

In
fo

rm
at

io
n

on
th

e
re

co
m

m
en

de
d

m
ig

ra
tio

n
ac

tio
n

fo
r

th
e

de
pr

ec
at

ed
A

P
Is

is
av

ai
la

bl
e

in
th

e
A

P
I

do
cu

m
en

ta
tio

n
fo

r
th

e
ap

pr
op

ria
te

A
P

I.

JD
O

M
(a

Ja
va

re
pr

es
en

ta
tio

n
of

an
X

M
L

do
cu

m
en

t
th

at
pr

ov
id

es
an

A
P

I
fo

r
ef

fic
ie

nt
re

ad
in

g,
m

an
ip

ul
at

in
g,

an
d

w
rit

in
g

do
cu

m
en

ta
tio

n)

T
he

cu
rr

en
tly

pa
ck

ag
ed

ve
rs

io
n

of
JD

O
M

in
W

eb
S

ph
er

e
A

pp
lic

at
io

n
S

er
ve

r
w

ill
no

t
be

pa
ck

ag
ed

in
su

bs
eq

ue
nt

re
le

as
es

.

G
o

to
th

e
JD

O
M

w
eb

si
te

,
ge

t
th

e
la

te
st

co
py

of
JD

O
M

,
an

d
bu

nd
le

it
in

si
de

yo
ur

ap
pl

ic
at

io
n.

N
o

te
:

C
us

to
m

er
s

ru
nn

in
g

W
eb

S
ph

er
e

S
tu

di
o

A
pp

lic
at

io
n

D
ev

el
op

er
In

te
gr

at
io

n
E

di
tio

n
V

er
si

on
4.

1
ap

pl
ic

at
io

ns
w

ill
ne

ed
to

m
ig

ra
te

th
em

to
W

eb
S

ph
er

e
S

tu
di

o
A

pp
lic

at
io

n
D

ev
el

op
er

In
te

gr
at

io
n

E
di

tio
n

V
er

si
on

5.
0.

T
he

C
+

+
O

bj
ec

t
R

eq
ue

st
B

ro
ke

r
(O

R
B

),
th

e
C

+
+

lib
ra

ry
fo

r
ID

L
va

lu
e

ty
pe

s
an

d
th

e
W

eb
S

ph
er

e
A

pp
lic

at
io

n
S

er
ve

r
C

+
+

se
cu

rit
y

cl
ie

nt

S
up

po
rt

is
no

lo
ng

er
av

ai
la

bl
e

fo
r

th
e

C
om

m
on

O
bj

ec
t

R
eq

ue
st

B
ro

ke
r

A
rc

hi
te

ct
ur

e
(C

O
R

B
A

)
C

+
+

D
ev

el
op

er
K

it.
T

he
C

O
R

B
A

te
ch

no
lo

gy
is

a
br

id
ge

fo
r

m
ig

ra
tio

n
to

a
Ja

va
2

P
la

tfo
rm

E
nt

er
pr

is
e

E
di

tio
n

(J
2E

E
)

an
d

W
eb

S
ph

er
e

A
pp

lic
at

io
n

S
er

ve
r

en
vi

ro
nm

en
t.

In
ad

di
tio

n
to

th
e

pr
ec

ed
in

g
in

fo
rm

at
io

n,
th

e
C

O
R

B
A

C
+

+
cl

ie
nt

fe
at

ur
e

w
ill

be
re

m
ov

ed
fr

om
th

e
A

pp
lic

at
io

n
C

lie
nt

s
in

st
al

la
tio

n
im

ag
e

in
su

bs
eq

ue
nt

re
le

as
es

.

It
is

re
co

m
m

en
de

d
th

at
cu

st
om

er
s

m
ig

ra
te

to
th

e
O

bj
ec

t
R

eq
ue

st
B

ro
ke

r
(O

R
B

)
se

rv
ic

e
fo

r
Ja

va
te

ch
no

lo
gy

th
at

sh
ip

s
w

ith
W

eb
S

ph
er

e
A

pp
lic

at
io

n
S

er
ve

r.
H

ow
ev

er
,

th
er

e
is

no
eq

ui
va

le
nt

J2
E

E
fu

nc
tio

na
lit

y
fo

r
th

e
C

+
+

se
cu

rit
y

cl
ie

nt
or

th
e

C
+

+
va

lu
e-

ty
pe

lib
ra

ry
.

C
us

to
m

er
s

th
at

re
qu

ire
su

ch
fu

nc
tio

na
lit

y
m

us
t

pr
ov

id
e

or
de

ve
lo

p
th

ei
r

ow
n.

T
he

de
pr

ec
at

io
n

of
th

e
C

O
R

B
A

C
+

+
D

ev
el

op
er

K
it

do
es

no
t

af
fe

ct
su

pp
or

t
fo

r
C

O
R

B
A

in
te

ro
pe

ra
bi

lit
y

w
ith

ve
nd

or
so

ftw
ar

e
fo

r
C

O
R

B
A

se
rv

ic
es

.
V

ie
w

th
e

fo
llo

w
in

g
lin

ks
fo

r
ad

di
tio

na
li

nf
or

m
at

io
n

ab
ou

t
in

te
ro

pe
ra

bi
lit

y:

v
C

O
R

B
A

In
te

ro
pe

ra
bi

lit
y

S
am

pl
es

do
cu

m
en

ta
tio

n

v
IB

M
W

eb
S

ph
er

e
A

pp
lic

at
io

n
S

er
ve

rs
C

O
R

B
A

In
te

ro
pe

ra
bi

lit
y

w
hi

te
pa

pe
r

IB
M

C
lo

ud
sc

ap
e

V
er

si
on

5.
1.

x
U

se
th

e
C

lo
ud

sc
ap

e
N

et
w

or
k

S
er

ve
r

JD
B

C
dr

iv
er

.

S
er

ve
r

IB
M

H
T

T
P

S
er

ve
r

(I
H

S
)

V
er

si
on

1.
3.

x
If

yo
u

ar
e

us
in

g
IH

S
V

er
si

on
1.

3.
x

w
ith

m
od

ul
es

th
at

:

v
ar

e
in

cl
ud

ed
as

pa
rt

of
IH

S
V

er
si

on
1.

3.
x

pa
ck

ag
es

,
yo

u
do

no
t

ne
ed

to
ta

ke
an

y
ac

tio
n

to
m

ig
ra

te
th

os
e

m
od

ul
es

.

v
ar

e
su

pp
lie

d
by

a
th

ird
pa

rt
y

(in
cl

ud
in

g
ot

he
r

IB
M

pr
od

uc
ts

),
yo

u
ne

ed
to

ob
ta

in
IH

S
/A

pa
ch

e
2

ve
rs

io
ns

of
th

es
e

m
od

ul
es

fr
om

th
e

th
ird

pa
rt

y.

v
ha

ve
be

en
cu

st
om

iz
ed

or
ar

e
in

ho
us

e,
yo

u
ne

ed
to

po
rt

th
es

e
m

od
ul

es
to

th
e

ne
w

IH
S

/A
pa

ch
e

2
A

P
I.

Chapter 47. Deprecated, stabilized, and removed features 1303

http://www.jdom.org
http://www.ibm.com/developerworks/websphere/library/samples/WASV501/corba.html
http://www.ibm.com/support/docview.wss?uid=swg27004340

Ta
bl

e
17

0.
F

ea
tu

re
s

de
pr

ec
at

ed
in

V
er

si
on

5.
1

(c
on

tin
ue

d)
.

T
hi

s
ta

bl
e

de
sc

rib
es

th
e

fe
at

ur
es

th
at

ar
e

de
pr

ec
at

ed
in

V
er

si
on

5.
1.

C
at

eg
o

ry
D

ep
re

ca
ti

o
n

R
ec

o
m

m
en

d
ed

M
ig

ra
ti

o
n

A
ct

io
n

A
pp

lic
at

io
n

pr
og

ra
m

m
in

g
m

od
el

an
d

co
nt

ai
ne

r
su

pp
or

t
B

ea
n

S
cr

ip
tin

g
F

ra
m

ew
or

k
(B

S
F

)
Ja

va
S

er
ve

r
P

ag
es

(J
S

P
)

ex
ec

ut
io

n
an

d
de

bu
gg

in
g

fu
nc

tio
na

lit
y

T
he

fu
nc

tio
na

lit
y

w
ill

ne
ed

to
be

re
ar

ch
ite

ct
ed

if
yo

u
ar

e
us

in
g

th
e

Ja
va

S
cr

ip
t,

Tc
l,

an
d

P
yt

ho
n

la
ng

ua
ge

s.
If

us
in

g
B

S
F

sc
rip

tin
g

in
yo

ur
ow

n
cu

st
om

ap
pl

ic
at

io
ns

,
th

ey
w

ill
be

un
af

fe
ct

ed
.

C
us

to
m

sc
rip

ts
w

rit
te

n
fo

r
th

e
W

eb
S

ph
er

e
A

pp
lic

at
io

n
S

er
ve

r
ad

m
in

is
tr

at
iv

e
co

ns
ol

e
w

ill
al

so
be

un
af

fe
ct

ed
.

T
hi

s
fu

nc
tio

na
lit

y
w

ill
co

nt
in

ue
to

ex
is

t
in

W
eb

S
ph

er
e

A
pp

lic
at

io
n

S
er

ve
r

V
er

si
on

5.
1

an
d

su
cc

ee
di

ng
re

le
as

es
un

til
V

er
si

on
6.

0.
If

de
bu

gg
in

g
JS

P
fil

es
,

yo
u

m
ig

ht
ha

ve
to

re
st

ar
t

th
e

ap
pl

ic
at

io
n

se
rv

er
du

rin
g

Ja
va

S
cr

ip
t

de
bu

gg
in

g
se

ss
io

ns
.

T
he

fo
llo

w
in

g
B

us
in

es
s

R
ul

e
B

ea
n

cl
as

se
s,

m
et

ho
ds

,
an

d
at

tr
ib

ut
es

:

v
P

ub
lic

cl
as

se
s:

–
co

m
.ib

m
.w

eb
sp

he
re

.b
rb

.R
ul

eI
m

po
rt

er

–
co

m
.ib

m
.w

eb
sp

he
re

.b
rb

.R
ul

eE
xp

or
te

r

v
P

ub
lic

m
et

ho
d:

–
ge

tL
oc

al
R

ul
eM

an
ag

er
()

on
cl

as
s

co
m

.ib
m

.w
eb

sp
he

re
.b

rb
.T

rig
ge

rP
oi

nt

v
P

ro
te

ct
ed

at
tr

ib
ut

e:

–
ru

le
M

gr
on

cl
as

s
co

m
.ib

m
.w

eb
sp

he
re

.b
rb

.T
rig

ge
rP

oi
nt

U
se

rs
do

no
t

ha
ve

to
ta

ke
an

y
ac

tio
n.

D
at

a
ac

ce
ss

pr
og

ra
m

m
in

g
in

te
rf

ac
es

in
co

m
.ib

m
.w

eb
sp

he
re

.r
sa

da
pt

er
.

R
el

at
io

na
lr

es
ou

rc
e

ad
ap

te
r

in
te

rf
ac

e:
(c

om
.ib

m
.w

eb
sp

he
re

.r
sa

da
pt

er
).

M
et

ho
ds

ar
e

de
pr

ec
at

ed
in

th
e

fo
llo

w
in

g
ty

pe
s:

co
m.

ib
m.

we
bs

ph
er

e.
rs

ad
ap

te
r.

Or
ac

le
Da

ta
St

or
eH

el
pe

r
pu

bl
ic

vo
id

do
Sp

ec
ia

lB
Lo

bW
or

k(
Re

su
lt

Se
t

rs
et

,
In

pu
tS

tr
ea

m[
]

da
ta

,
St
ri

ng
[]

bl
ob

Co
lu

mn
Na

me
s)

pu
bl

ic
St

ri
ng

as
se

mb
le

Sq
lS

tr
in

g(
St

ri
ng

[]
bl

ob
Co

lu
mn

Na
me

s,
St

ri
ng

Bu
ff

er
wh

er
eC

la
us
e,

St
ri

ng
[]

va
rV

al
ue

s,
St

ri
ng

ta
bl

eN
am

e)

T
he

se
re

la
tio

na
lr

es
ou

rc
e

ad
ap

te
r

de
pr

ec
at

ed
m

et
ho

ds
do

no
t

im
pa

ct
th

e
ap

pl
ic

at
io

n.
N

o
te

:
Yo

u
w

ill
no

t
ne

ed
to

im
pl

em
en

t
th

es
e

de
pr

ec
at

ed
m

et
ho

ds
in

th
ei

r
su

bc
la

ss
es

if
yo

u
ha

ve
th

e
su

bc
la

ss
of

O
ra

cl
eD

at
aS

to
re

H
el

pe
r

cl
as

s.
T

ho
se

de
pr

ec
at

ed
m

et
ho

ds
w

ill
no

t
be

ca
lle

d
by

th
e

W
eb

S
ph

er
e

A
pp

lic
at

io
n

S
er

ve
r

ru
nt

im
e.

S
ch

ed
ul

er
(c

om
.ib

m
.w

eb
sp

he
re

.s
ch

ed
ul

er
)

pr
og

ra
m

m
in

g
in

te
rf

ac
es

--
V

er
si

on
5.

x
pu

bl
ic

ty
pe

s
in

:

v
In

te
rf

ac
e

m
et

ho
ds

sc
he

du
le

r.
Sc

he
du

le
r

pu
bl

ic
Be

an
Ta

sk
In

fo
cr

ea
te

Be
an

Ta
sk

In
fo

()
;

pu
bl

ic
Me

ss
ag

eT
as

kI
nf

o
cr

ea
te

Me
ss

ag
eT

as
kI

nf
o(

);

U
se

th
e

fo
llo

w
in

g
m

et
ho

ds
in

st
ea

d
of

th
e

de
pr

ec
at

ed
m

et
ho

ds
:

pu
bl

ic
Ob

je
ct

cr
ea

te
Ta

sk
In

fo
(C

la
ss

ta
sk

In
fo

In
te

rf
ac

e)
th

ro
ws

Ta
sk

In
fo

In
va

li
d;

To
cr

ea
te

a
B

ea
nT

as
kI

nf
o

ob
je

ct
us

in
g

th
e

su
pp

or
te

d
cr

ea
te

Ta
sk

In
fo

m
et

ho
ds

:

Be
an

Ta
sk

In
fo

ti
=

(B
ea

nT
as

kI
nf

o)
Sc

he
du

le
r.

cr
ea

te
Ta
sk

In
fo

(B
ea

nT
as

kI
nf

o.
cl

as
s)

;

W
eb

co
nt

ai
ne

r
A

P
I

m
od

ifi
ca

tio
ns

:
N

o
te

:
T

he
re

ar
e

no
de

cl
ar

ed
de

pr
ec

at
io

ns
.

T
he

on
ly

ch
an

ge
s

ar
e

ca
us

ed
be

ca
us

e
of

a
Ja

va
A

P
I

th
at

ch
an

ge
d

be
tw

ee
n

1.
3

an
d

1.
4.

T
he

ch
an

ge
d

cl
as

s
is

co
m

.ib
m

.w
eb

sp
he

re
.s

er
vl

et
.e

rr
or

.S
er

vl
et

E
rr

or
R

ep
or

t.
T

he
re

tu
rn

si
gn

at
ur

e
fo

r
ge

tS
ta

ck
Tr

ac
e(

)
is

ch
an

ge
d

be
ca

us
e

ja
va

.la
ng

.T
hr

ow
ab

le
no

w
de

fin
es

th
e

sa
m

e
m

et
ho

d
w

ith
a

di
ffe

re
nt

re
tu

rn
si

gn
at

ur
e.

v
P

re
vi

ou
s

m
et

ho
d

si
gn

at
ur

e

pu
bl

ic
St

ri
ng

ge
tS

ta
ck

Tr
ac

e(
);

//
re

tu
rn

s
a

St
ri

ng
re

pr
es

en
ta

ti
on

of
th

e
ex

ce
pt

io
n

st
ac

k

v
N

ew
m

et
ho

d
si

gn
at

ur
e

(J
av

a
D

ev
el

op
m

en
t

K
it

1.
4,

W
eb

S
ph

er
e

A
pp

lic
at

io
n

S
er

ve
r

5.
1)

pu
bl

ic
St

ac
kT

ra
ce

El
em

en
t[

]
ge

tS
ta

ck
Tr

ac
e(

);
//

re
tu

rn
s

an
ar

ra
y

of
st

ac
k

tr
ac

e
el

em
en

ts

v
R

ep
la

ce
m

en
t

m
et

ho
d

(5
.1

)
(a

re
pl

ac
em

en
t

m
et

ho
d

th
at

ca
rr

ie
s

on
th

e
ol

d
fu

nc
tio

na
lit

y
ha

s
be

en
pr

ov
id

ed
):

pu
bl

ic
St

ri
ng

ge
tS

ta
ck

Tr
ac

eA
sS

tr
in

g(
);

//
re

tu
rn

s
a

St
ri

ng
re

pr
es

en
ta

ti
on

of
th

e
Ex

ce
pt

io
n

St
ac

k

If
yo

u
ar

e
us

in
g

co
m

.ib
m

.w
eb

sp
he

re
.s

er
vl

et
.e

rr
or

.S
er

vl
et

E
rr

or
R

ep
or

t.g
et

S
ta

ck
Tr

ac
e(

)
an

d
ex

pe
ct

in
g

a
re

tu
rn

ty
pe

of
S

tr
in

g,
yo

u
ne

ed
to

ch
an

ge
yo

ur
ap

pl
ic

at
io

n
to

us
e

th
e

re
pl

ac
em

en
t

m
et

ho
d.

1304 Overview

Ta
bl

e
17

0.
F

ea
tu

re
s

de
pr

ec
at

ed
in

V
er

si
on

5.
1

(c
on

tin
ue

d)
.

T
hi

s
ta

bl
e

de
sc

rib
es

th
e

fe
at

ur
es

th
at

ar
e

de
pr

ec
at

ed
in

V
er

si
on

5.
1.

C
at

eg
o

ry
D

ep
re

ca
ti

o
n

R
ec

o
m

m
en

d
ed

M
ig

ra
ti

o
n

A
ct

io
n

A
pp

lic
at

io
n

se
rv

ic
es

D
at

a
ac

ce
ss

bi
na

rie
s

--
C

om
m

on
C

on
ne

ct
or

F
ra

m
ew

or
k,

in
cl

ud
in

g
th

e
fo

llo
w

in
g

JA
R

fil
es

:

v
cc

f.
ja

r

v
cc

f2
.j

ar

v
re

cj
av

a.
ja

r

v
ea

bl
ib

.j
ar

T
he

J2
E

E
C

on
ne

ct
or

A
rc

hi
te

ct
ur

e
so

lu
tio

n
sh

ou
ld

be
us

ed
in

st
ea

d
of

th
e

C
om

m
on

C
on

ne
ct

or
F

ra
m

ew
or

k.

S
et

tin
g

th
e

X
A

pa
rt

ne
r

lo
g

di
re

ct
or

y
us

in
g

th
e

T
R

A
N

LO
G

_R
O

O
T

va
ria

bl
e

T
he

se
tti

ng
cu

rr
en

tly
st

or
ed

in
th

e
T

R
A

N
LO

G
_R

O
O

T
va

ria
bl

e
(if

an
y)

w
ill

ne
ed

to
be

ad
de

d
to

th
e

Tr
an

sa
ct

io
n

S
er

vi
ce

pa
ne

lf
or

al
ls

er
ve

rs
th

at
ne

ed
to

us
e

th
e

X
A

pa
rt

ne
r

lo
g.

If
th

e
de

fa
ul

t
lo

ca
tio

n
is

to
be

us
ed

,
th

en
no

ac
tio

n
is

re
qu

ire
d.

T
he

Tr
an

sa
ct

io
n

S
er

vi
ce

pa
ne

lc
an

be
fo

un
d

on
th

e
ad

m
in

is
tr

at
iv

e
co

ns
ol

e
by

se
le

ct
in

g
A

pp
lic

at
io

n
S

er
ve

rs
on

th
e

le
ft,

ch
oo

si
ng

th
e

ap
pl

ic
at

io
n

se
rv

er
to

be
m

od
ifi

ed
,

an
d

se
le

ct
in

g
Tr

an
sa

ct
io

n
S

er
vi

ce
on

th
e

pa
ne

l
th

at
is

di
sp

la
ye

d.
T

he
di

re
ct

or
y

cu
rr

en
tly

in
T

R
A

N
LO

G
_R

O
O

T
sh

ou
ld

be
en

te
re

d
in

th
e

Lo
gg

in
g

D
ire

ct
or

y
bo

x
on

th
e

pa
ne

l.

S
ec

ur
ity

A
P

I
fo

r
co

m
.ib

m
.w

eb
sp

he
re

.s
ec

ur
ity

.a
ut

h.
W

S
P

rin
ci

pa
l.g

et
C

re
de

nt
ia

l()
.

In
st

ea
d

of
ge

tti
ng

th
e

W
S

C
re

de
nt

ia
lf

ro
m

th
e

pr
in

ci
pa

l,
yo

u
sh

ou
ld

no
w

us
e

on
e

of
th

e
fo

llo
w

in
g

m
et

ho
ds

to
ge

t
th

e
S

ub
je

ct
th

at
co

nt
ai

ns
th

e
W

S
C

re
de

nt
ia

l:

v
T

he
R

un
A

s
S

ub
je

ct
is

th
e

S
ub

je
ct

us
ed

fo
r

ou
tb

ou
nd

re
qu

es
ts

.

v
T

he
C

al
le

r
su

bj
ec

t
is

th
e

S
ub

je
ct

th
at

re
pr

es
en

ts
th

e
au

th
en

tic
at

ed
ca

lle
r

fo
r

th
e

cu
rr

en
t

re
qu

es
t.

v
T

he
m

et
ho

ds
to

us
e

to
ge

t
th

e
ru

nA
s

an
d

ca
lle

r
su

bj
ec

ts
ar

e
as

fo
llo

w
s:

co
m

.ib
m

.w
eb

sp
he

re
.s

ec
ur

ity
.a

ut
h.

W
S

S
ub

je
ct

.g
et

R
un

A
sS

ub
je

ct
()

an
d co

m
.ib

m
.w

eb
sp

he
re

.s
ec

ur
ity

.a
ut

h.
W

S
S

ub
je

ct
.g

et
C

al
le

rS
ub

je
ct

()

re
sp

ec
tiv

el
y.

T
he

fo
llo

w
in

g
el

em
en

ts
in

th
e

se
cu

rit
y

pr
og

ra
m

m
in

g
in

te
rf

ac
e:

v
T

he
in

te
rf

ac
e

is
de

pr
ec

at
ed

in
co

m
.ib

m
.w

eb
sp

he
re

.s
ec

ur
ity

.a
ut

h.
W

S
S

ec
ur

ity
C

on
te

xt
.

v
T

he
ex

ce
pt

io
n

is
de

pr
ec

at
ed

in
co

m
.ib

m
.w

eb
sp

he
re

.s
ec

ur
ity

.a
ut

h.
W

S
S

ec
ur

ity
C

on
te

xt
E

xc
ep

tio
n.

v
T

he
cl

as
s

is
de

pr
ec

at
ed

in
co

m
.ib

m
.w

eb
sp

he
re

.s
ec

ur
ity

.a
ut

h.
W

S
S

ec
ur

ity
C

on
te

xt
R

es
ul

t.

U
se

Ja
va

A
ut

he
nt

ic
at

io
n

an
d

A
ut

ho
riz

at
io

n
S

er
vi

ce
(J

A
A

S
)

fo
r

al
la

ut
he

nt
ic

at
io

n
re

la
te

d
fu

nc
tio

na
lit

y.

In
te

gr
at

ed
C

ry
pt

og
ra

ph
ic

S
er

vi
ce

s
F

ac
ili

ty
(I

C
S

F
)

au
th

en
tic

at
io

n
m

ec
ha

ni
sm

U
se

th
e

Li
gh

tw
ei

gh
t

T
hi

rd
-P

ar
ty

A
ut

he
nt

ic
at

io
n

(L
T

P
A

)
m

ec
ha

ni
sm

.

S
ys

te
m

ad
m

in
is

tr
at

io
n

T
he

fo
llo

w
in

g
cl

as
s:

co
m

.ib
m

.w
eb

sp
he

re
.r

sa
da

pt
er

.D
B

23
90

D
at

aS
to

re
H

el
pe

r

If
yo

u
cu

rr
en

tly
us

e
th

e
D

B
23

90
D

at
aS

to
re

H
el

pe
r

cl
as

s
fo

r
th

e
D

B
2

Le
ga

cy
C

LI
-b

as
ed

pr
ov

id
er

w
he

n
yo

u
ar

e
ac

ce
ss

in
g

da
ta

,
yo

u
sh

ou
ld

no
w

us
e

th
e

D
B

2D
at

aS
to

re
H

el
pe

r
cl

as
s.

If
yo

u
cu

rr
en

tly
us

e
th

e
D

B
23

90
D

at
aS

to
re

H
el

pe
r

cl
as

s
fo

r
th

e
D

B
2

U
ni

ve
rs

al
JD

B
C

pr
ov

id
er

w
he

n
yo

u
ar

e
ac

ce
ss

in
g

da
ta

,
yo

u
sh

ou
ld

no
w

us
e

th
e

D
B

2U
ni

ve
rs

al
D

at
aS

to
re

H
el

pe
r

cl
as

s.

Chapter 47. Deprecated, stabilized, and removed features 1305

Features deprecated in Version 5.0.2

1306 Overview

Ta
bl

e
17

1.
F

ea
tu

re
s

de
pr

ec
at

ed
in

V
er

si
on

5.
0.

2.
T

hi
s

ta
bl

e
de

sc
rib

es
th

e
fe

at
ur

es
th

at
ar

e
de

pr
ec

at
ed

in
V

er
si

on
5.

0.
2.

C
at

eg
o

ry
D

ep
re

ca
ti

o
n

R
ec

o
m

m
en

d
ed

M
ig

ra
ti

o
n

A
ct

io
n

A
pp

lic
at

io
n

P
ro

gr
am

m
in

g
M

od
el

an
d

C
on

ta
in

er
S

up
po

rt
A

pa
ch

e
S

O
A

P
ch

an
ne

li
n

w
eb

se
rv

ic
es

ga
te

w
ay

.
G

at
ew

ay
se

rv
ic

es
sh

ou
ld

be
de

pl
oy

ed
to

th
e

S
O

A
P

H
T

T
P

ch
an

ne
li

ns
te

ad
of

th
e

A
pa

ch
e

S
O

A
P

ch
an

ne
l.

T
he

E
nd

po
in

t
(U

R
L)

of
th

e
se

rv
ic

e
w

ill
be

di
ffe

re
nt

fo
r

th
is

ch
an

ne
la

nd
th

er
ef

or
e

cl
ie

nt
pr

og
ra

m
s

th
at

ar
e

ta
lk

in
g

to
th

e
ga

te
w

ay
w

ill
ne

ed
to

us
e

th
e

ne
w

se
rv

ic
e

E
nd

po
in

t.

A
pa

ch
e

S
O

A
P,

W
E

B
S

JA
V

A
.S

O
A

P
:

v
so

ap
.j

ar

v
ws

so
ap

.j
ar

S
ee

th
e

in
fo

rm
at

io
n

ce
nt

er
fo

r
m

or
e

in
fo

rm
at

io
n.

S
ch

ed
ul

er
(c

om
.ib

m
.w

eb
sp

he
re

.s
ch

ed
ul

er
)

pr
og

ra
m

m
in

g
in

te
rf

ac
es

--
V

er
si

on
5.

x
pu

bl
ic

ty
pe

s
in

:

v
in

te
rf

ac
e

m
et

ho
d

sc
he

du
le

r.
Me

ss
ag

eT
as

kI
nf

o
pu

bl
ic

in
t

se
tJ

MS
Pr

io
ri

ty
()

;

U
se

th
e

fo
llo

w
in

g
m

et
ho

d
in

st
ea

d
of

th
e

de
pr

ec
at

ed
m

et
ho

d:

pu
bl

ic
in

t
ge

tJ
MS

Pr
io
ri

ty
()

;

A
pp

lic
at

io
n

S
er

vi
ce

s
D

at
a

ac
ce

ss
pr

og
ra

m
m

in
g

in
te

rf
ac

es
in

co
m

.ib
m

.w
eb

sp
he

re
.r

sa
da

pt
er

.

R
el

at
io

na
lr

es
ou

rc
e

ad
ap

te
r

in
te

rf
ac

e
(c

om
.ib

m
.w

eb
sp

he
re

.r
sa

da
pt

er
)

M
et

ho
ds

ha
ve

be
en

de
pr

ec
at

ed
in

th
es

e
ty

pe
s:

co
m.

ib
m.

we
bs

ph
er

e.
rs

ad
ap

te
r.

Da
ta

St
or

eH
el

pe
r

pu
bl

ic
in

t
pr

oc
es

sS
QL

(j
av

a.
la

ng
.S

tr
in

g.
sq

lS
tr

in
g,

in
t

is
ol

ev
el

,
bo

ol
ea

n
ad

dF
or

Up
da

te
,

bo
ol

ea
n

ad
de

xt
en

de
dF

or
Up

da
te

Sy
nt

ax
);

pu
bl

ic
Da

ta
St

or
eA

da
tp

er
Ex

ce
pt

io
n

ma
pE

xc
ep

ti
on

(D
at

aS
to

re
Ad

ap
te

rE
xc

ep
ti

on
e)

;

co
m.

ib
m.

we
bs

ph
er

e.
rs

ad
ap

te
r.

Ge
ne

ri
cD

at
aS

to
re

He
lp

er
pu

bl
ic

in
t

pr
oc

es
sS

QL
(j

av
a.

la
ng

.S
tr

in
g.

sq
lS

tr
in

g,
in

t
is

ol
ev

el
,

bo
ol

ea
n
ad

dF
or

Up
da

te
,

bo
ol

ea
n

ad
de

xt
en

de
dF

or
Up

da
te

Sy
nt

ax
);

pu
bl

ic
Da

ta
St

or
eA

da
tp

er
Ex

ce
pt

io
n

ma
pE

xc
ep

ti
on

(D
at

aS
to

re
Ad

ap
te

rE
xc

ep
ti

on
e)

;

co
m.

ib
m.

we
bs

ph
er

e.
rs

ad
ap

te
r.

WS
Ca

ll
He

lp
er

pu
bl

ic
st

at
ic

Da
ta

St
or

eH
el

pe
r

cr
ea

te
Da

ta
St

or
eH

el
pe

r(
St

ri
ng

ds
Cl

as
sN

am
e)

T
he

se
re

la
tio

na
lr

es
ou

rc
e

ad
ap

te
r

de
pr

ec
at

ed
m

et
ho

ds
do

no
t

im
pa

ct
th

e
ap

pl
ic

at
io

n.
N

o
te

:
Yo

u
w

ill
no

t
ne

ed
to

im
pl

em
en

t
th

es
e

de
pr

ec
at

ed
m

et
ho

ds
in

th
ei

r
su

bc
la

ss
es

if
yo

u
ha

ve
th

e
su

bc
la

ss
of

G
en

er
ic

D
at

aS
to

re
H

el
pe

r.
T

ho
se

de
pr

ec
at

ed
m

et
ho

ds
w

ill
no

t
be

ca
lle

d
by

th
e

W
eb

S
ph

er
e

A
pp

lic
at

io
n

S
er

ve
r

ru
nt

im
e.

F
or

co
m

.ib
m

.w
eb

sp
he

re
.r

sa
da

pt
er

.W
S

C
al

lH
el

pe
r,

us
e

th
e

ge
tD

at
aS

to
re

H
el

pe
r(

da
ta

so
ur

ce
)

m
et

ho
d

to
ge

t
a

D
at

aS
to

re
H

el
pe

r
ob

je
ct

.

S
ys

te
m

A
dm

in
is

tr
at

io
n

D
B

23
90

D
at

aS
to

re
H

el
pe

r
an

d
D

B
23

90
Lo

ca
lD

at
aS

to
re

H
el

pe
r

cl
as

se
s

T
he

D
B

2D
at

aS
to

re
H

el
pe

r
cl

as
s

no
w

gi
ve

s
al

lt
he

re
qu

ire
d

he
lp

er
in

fo
rm

at
io

n
ne

ed
ed

fo
r

th
e

pr
ov

id
er

s
th

at
cu

rr
en

tly
us

e
th

e
D

B
23

90
D

at
aS

to
re

H
el

pe
r

an
d

th
e

D
B

23
90

Lo
ca

lD
at

aS
to

re
H

el
pe

r
cl

as
se

s.

te
st

Co
nn

ec
ti

on
co

m
m

an
d

in
th

e
A

dm
in

C
on

tr
ol

sc
rip

tin
g

ob
je

ct
($

A
dm

in
C

on
tr

ol
Te

st
C

on
ne

ct
io

n
co

nf
ig

Id
pr

op
s)

R
un

ni
ng

th
is

co
m

m
an

d
in

W
eb

S
ph

er
e

A
pp

lic
at

io
n

S
er

ve
r,

V
er

si
on

5.
0.

2
or

la
te

r
re

tu
rn

s
th

e
fo

llo
w

in
g

m
es

sa
ge

:

WA
SX

73
90

E:
Op

er
at

io
n

no
t

su
pp

or
te

d
-

te
st

Co
nn

ec
ti

on
co

mm
an

d
wi

th
co

nf
ig

id
an

d
pr

op
er

ti
es

ar
gu

me
nt

s
is

no
t

su
pp

or
te

d.
Us

e
te

st
Co

nn
ec

ti
on

co
mm

an
d

wi
th

co
nf

ig
id

ar
gu

me
nt

on
ly

.

A
s

of
W

eb
S

ph
er

e
A

pp
lic

at
io

n
S

er
ve

r,
V

er
si

on
5.

0.
2

or
la

te
r,

th
e

pr
ef

er
re

d
w

ay
to

te
st

a
da

ta
so

ur
ce

co
nn

ec
tio

n
is

th
e

te
st

C
on

ne
ct

io
n

co
m

m
an

d
pa

ss
in

g
in

th
e

da
ta

so
ur

ce
co

nf
ig

ur
at

io
n

ID
as

th
e

on
ly

pa
ra

m
et

er
.

ge
tP

ro
pe

rt
ie

sF
or

Da
ta

So
ur

ce
co

m
m

an
d

in
th

e
A

dm
in

C
on

tr
ol

sc
rip

tin
g

ob
je

ct
($
Ad

mi
nC

on
tr

ol
ge

tP
ro

pe
rt

ie
sF

or
Da

ta
So

ur
ce

co
nf

ig
Id

)

T
hi

s
co

m
m

an
d

in
co

rr
ec

tly
as

su
m

es
th

e
av

ai
la

bi
lit

y
of

th
e

co
nf

ig
ur

at
io

n
se

rv
ic

e
w

he
n

yo
u

ru
n

it
in

th
e

co
nn

ec
te

d
m

od
e.

R
un

ni
ng

th
is

co
m

m
an

d
in

W
eb

S
ph

er
e

A
pp

lic
at

io
n

S
er

ve
r,

V
er

si
on

5.
0.

2
or

la
te

r
re

tu
rn

s
th

e
fo

llo
w

in
g

m
es

sa
ge

:

WA
SX

73
89

E:
Op

er
at

io
n

no
t

su
pp

or
te

d
-

ge
tP

ro
pe

rt
ie

sF
or

Da
ta

So
ur

ce
co

mm
an

d
is

no
t

su
pp

or
te

d.

T
he

re
is

no
re

pl
ac

em
en

t
fo

r
th

is
co

m
m

an
d.

Chapter 47. Deprecated, stabilized, and removed features 1307

Features deprecated in Version 5.0.1

1308 Overview

Ta
bl

e
17

2.
F

ea
tu

re
s

de
pr

ec
at

ed
in

V
er

si
on

5.
0.

1.
T

hi
s

ta
bl

e
de

sc
rib

es
th

e
fe

at
ur

es
th

at
ar

e
de

pr
ec

at
ed

in
V

er
si

on
5.

0.
1.

C
at

eg
o

ry
D

ep
re

ca
ti

o
n

R
ec

o
m

m
en

d
ed

M
ig

ra
ti

o
n

A
ct

io
n

A
pp

lic
at

io
n

S
er

vi
ce

s
D

at
a

ac
ce

ss
pr

og
ra

m
m

in
g

in
te

rf
ac

es
in

co
m

.ib
m

.w
eb

sp
he

re
.r

sa
da

pt
er

.

R
el

at
io

na
lr

es
ou

rc
e

ad
ap

te
r

in
te

rf
ac

e
(c

om
.ib

m
.w

eb
sp

he
re

.r
sa

da
pt

er
).

M
et

ho
ds

ha
ve

be
en

de
pr

ec
at

ed
in

th
es

e
ty

pe
s:

co
m.

ib
m.

we
bs

ph
er

e.
rs

ad
ap

te
r.

Da
ta

St
or

eH
el

pe
r

pu
bl

ic
in

t
pr

oc
es

sS
QL

(j
av

a.
la

ng
.S

tr
in

g
sq

lS
tr

in
g,

in
t

is
ol

ev
el

);

co
m.

ib
m.

we
bs

ph
er

e.
rs

ad
ap

te
r.

Ge
ne

ri
cD

at
aS

to
re

He
lp

er
pu

bl
ic

in
t

pr
oc

es
sS

QL
(j

av
a.

la
ng

.S
tr

in
g

sq
lS

tr
in

g,
in

t
is

ol
ev

el
);

co
m.

ib
m.

we
bs

ph
er

e.
rs

ad
ap

te
r.

DB
23

90
Da

ta
St

or
eH

el
pe

r
pu

bl
ic

in
t

pr
oc

es
sS

QL
(j

av
a.

la
ng

.S
tr

in
g

sq
lS

tr
in

g,
in

t
is

ol
ev

el
);

T
he

se
re

la
tio

na
lr

es
ou

rc
e

ad
ap

te
r

de
pr

ec
at

ed
m

et
ho

ds
do

no
t

im
pa

ct
th

e
ap

pl
ic

at
io

n.
N

o
te

:
Yo

u
w

ill
no

t
ne

ed
to

im
pl

em
en

t
th

es
e

de
pr

ec
at

ed
m

et
ho

ds
in

th
ei

r
su

bc
la

ss
es

if
yo

u
ha

ve
th

e
su

bc
la

ss
of

co
m

.ib
m

.w
eb

sp
he

re
.r

sa
da

pt
er

.G
en

er
ic

D
at

aS
to

re
H

el
pe

r.
T

ho
se

de
pr

ec
at

ed
m

et
ho

ds
w

ill
no

t
be

ca
lle

d
by

th
e

W
eb

S
ph

er
e

A
pp

lic
at

io
n

S
er

ve
r

ru
nt

im
e.

Chapter 47. Deprecated, stabilized, and removed features 1309

Features deprecated in Version 5.0

1310 Overview

Ta
bl

e
17

3.
F

ea
tu

re
s

de
pr

ec
at

ed
in

V
er

si
on

5.
0.

T
hi

s
ta

bl
e

de
sc

rib
es

th
e

fe
at

ur
es

th
at

ar
e

de
pr

ec
at

ed
in

V
er

si
on

5.
0.

C
at

eg
o

ry
D

ep
re

ca
ti

o
n

R
ec

o
m

m
en

d
ed

M
ig

ra
ti

o
n

A
ct

io
n

A
pp

lic
at

io
n

S
er

vi
ce

s
T

he
fo

llo
w

in
g

th
re

e
m

et
ho

ds
fr

om
co

m
.ib

m
.w

eb
sp

he
re

.a
pp

pr
of

ile
.a

cc
es

si
nt

en
t.A

cc
es

sI
nt

en
t:

pu
bl

ic
bo

ol
ea

n
ge

tP
es

si
mi
st

ic
Up

da
te

Hi
nt

We
ak

es
tL

oc
kA

tL
oa

d(
);

pu
bl

ic
bo

ol
ea

n
ge

tP
es

si
mi
st

ic
Up

da
te

Hi
nt

No
Co

ll
is

io
n(

);

pu
bl

ic
bo

ol
ea

n
ge

tP
es

si
mi
st

ic
Up

da
te

Hi
nt

Ex
cl

us
iv

e(
);

T
hi

s
is

a
ba

se
A

P
I.

R
at

he
r

th
an

us
in

g
th

e
th

re
e

de
pr

ec
at

ed
m

et
ho

ds
on

th
e

A
cc

es
sI

nt
en

t
in

te
rf

ac
e,

de
ve

lo
pe

rs
sh

ou
ld

us
e

th
e

fo
llo

w
in

g
m

et
ho

d
fr

om
th

e
sa

m
e

in
te

rf
ac

e:

pu
bl

ic
in

t
ge

tP
es

si
mi

st
ic

Up
da

te
Lo

ck
Hi

nt
()

;

T
he

po
ss

ib
le

re
tu

rn
va

lu
es

ar
e

de
fin

ed
on

th
e

A
cc

es
sI

nt
en

t
in

te
rf

ac
e:

pu
bl

ic
fi

na
l

st
at

ic
in

t
PE

SS
IM

IS
TI

C_
UP

DA
TE

_L
OC

K_
HI

NT
_N

OC
OL

LI
SI

ON
=

1;

pu
bl

ic
fi

na
l

st
at

ic
in

t
PE

SS
IM

IS
TI

C_
UP

DA
TE

_L
OC

K_
HI

NT
_W

EA
KE

ST
_L

OC
K_

AT
_L

OA
D

=
2;

pu
bl

ic
fi

na
l

st
at

ic
in

t
PE

SS
IM

IS
TI

C_
UP

DA
TE

_L
OC

K_
HI

NT
_N

ON
E

=
3;

pu
bl

ic
fi

na
l

st
at

ic
in

t
PE

SS
IM

IS
TI

C_
UP

DA
TE

_L
OC

K_
HI

NT
_E

XC
LU

SI
VE

=
4;

W
eb

ap
pl

ic
at

io
n

pr
og

ra
m

m
in

g
in

te
rf

ac
es

--
V

ar
io

us
V

er
si

on
5.

x
m

et
ho

ds
in

co
m

.ib
m

.w
eb

sp
he

re
.S

er
vl

et
E

rr
or

R
ep

or
t

S
ec

ur
ity

co
m

.ib
m

.w
eb

sp
he

re
.s

ec
ur

ity
.C

us
to

m
R

eg
is

tr
y

in
te

rf
ac

e
U

se
th

e
co

m
.ib

m
.w

eb
sp

he
re

.s
ec

ur
ity

.U
se

rR
eg

is
tr

y
in

te
rf

ac
e.

P
er

fo
rm

an
ce

P
er

fo
rm

an
ce

M
on

ito
rin

g
In

fr
as

tr
uc

tu
re

--
V

ar
io

us
V

er
si

on
5.

x
pu

bl
ic

m
et

ho
ds

in
:

v
co

m
.ib

m
.w

eb
sp

he
re

.p
m

i.s
ta

t.S
ta

ts
U

til

v
co

m
.ib

m
.w

eb
sp

he
re

.p
m

i.P
m

iJ
m

xT
es

t

v
co

m
.ib

m
.w

eb
sp

he
re

.p
m

i.c
lie

nt
.P

m
iC

lie
nt

T
he

se
m

et
ho

ds
ar

e
re

pl
ac

ed
as

fo
llo

w
s:

v
co

m
.ib

m
.w

eb
sp

he
re

.p
m

i.s
ta

t.S
ta

ts
U

til

T
he

re
is

no
re

pl
ac

em
en

t
fo

r
S

ta
ts

U
til

.

v
co

m
.ib

m
.w

eb
sp

he
re

.p
m

i.P
m

iJ
m

xT
es

t

U
se

P
m

iC
lie

nt
.fi

nd
C

on
fig

()
in

st
ea

d.

v
co

m
.ib

m
.w

eb
sp

he
re

.p
m

i.c
lie

nt
.P

m
iC

lie
nt

T
he

ge
tN

LS
V

al
ue

(S
tr

in
g

ke
y)

is
re

pl
ac

ed
w

ith
ge

tN
LS

V
al

ue
(S

tr
in

g
ke

y,
S

tr
in

g
m

od
ul

eI
D

).

Chapter 47. Deprecated, stabilized, and removed features 1311

Stabilized features
If you are migrating your configuration from an earlier release of WebSphere Application Server, you
should be aware of the various features that have been stabilized in this release.

If a feature is listed here as stabilized, IBM does not currently plan to deprecate or remove this capability
in a subsequent release of the product; but future investment will be focused on the alternative function
listed under Strategic Alternative. You do not need to change any of your existing applications and scripts
that use a stabilized function; but you should consider using the strategic alternative for new applications.

Features stabilized in Version 8.5

Table 174. Features stabilized in Version 8.5. This table describes the features that are stabilized in Version 8.5.
Category Stabilized Function Strategic Alternative

Application programming
model and container support

Use of the Common Base Event application-programming
interface (API) for problem determination

v Classes or Interfaces:

– All classes and interfaces from
org.eclipse.hyades.logging.* packages

v Methods:

– Use of CommonBaseEvent or
CommonBaseEventLogRecord as a message parm
in the following WsJDK14Logger methods:

- public void trace(Object message)

- public void trace(Object message, Throwable t)

- public void debug(Object message)

- public void debug(Object message, Throwable t)

- public void info(Object message)

- public void info(Object message, Throwable t)

- public void warn(Object message)

- public void warn(Object message, Throwable t)

- public void error(Object message)

- public void error(Object message, Throwable t)

- public void fatal(Object message)

- public void fatal(Object message, Throwable t)

v Other:

– Use of the eventfactory Logger.properties logger
extension

- CBE-XML-1.0.1 output format for showlog

- CBE-1.0.1 output format for HPEL logviewer

– Use of the custom property
name="com.ibm.ws.logging.zOS.errorLog.format"
and value "CBE-XML-1.0.1"

– Use of the showlog command on z/OS

None

Features stabilized in Version 8.0

Table 175. Features stabilized in Version 8.0. This table describes the features that are stabilized in Version 8.0.
Category Stabilized Function Strategic Alternative

Application programming
model and container support

ActiveX to Enterprise JavaBeans (EJB) Bridge Do not use Active X to access EJB.

WebSphere Application Servers V4 Data sources and
ConnectionManager

Use the WebSphere Application Servers Data sources
(non-V4) and ConnectionManager.

Use of CommonBaseEventLogRecord for logging Use standard java.util.logging API for logging; and when
needed, use High Performance Extensible Logging (HPEL)
log and trace facility's LogViewer command to convert log
and trace messages into Common Base Event XML.

System administration WebSphere Application Server Reliability, Availability, and
Serviceability (RAS) basic logging formats—System.out,
System.err, trace.log, and activity.log

Use the High Performance Extensible Logging (HPEL) log
and trace facility to improve logging performance as well
as to improve analysis and merging of logs.

1312 Overview

Features stabilized in Version 7.0

Table 176. Features stabilized in Version 7.0. This table describes the features that are stabilized in Version 7.0.
Category Stabilized Function Strategic Alternative

Application programming
model and container support

Enterprise JavaBeans (EJB) entity beans:
Container-Managed Persistence (CMP) 1.x and 2.x, and
Bean-Managed Persistence (BMP)

Use the Java Persistence API (JPA) for new database and
other persistence-related operations.

Java API for XML-based RPC (JAX-RPC)

The Java Community Process (JCP) is limiting the focus
for enhancements to the JAX-RPC runtime for building
web services; therefore, WebSphere Application Server
will follow suit and limit enhancements.

Java API for XML Web Services (JAX-WS) will become
the strategic runtime on which any new enhancements will
be focused. The focus to ensure interoperability for the
subset of capabilities that map to the JAX-RPC and
JAX-WS intersection will be maintained; but all new
enhancements related to updating to support new
standards will be only in the JAX-WS runtime.

System administration Application server administrative (wsadmin) scripting
support for the Jacl language

Use Jython syntax for any new wsadmin scripting.

J2EE resources Support for configuring and using message-driven beans
(MDBs) through JMS listener ports

Perform the following actions to use JMS activation
specifications instead of listener ports:

v Create a JMS activation specification to replace the
listener port.

v Modify the configuration of the application's Message
Driven Bean listener bindings to use the activation
specification instead of the listener port.

v Because an JMS activation specification can be defined
at a wider scope than a listener-port definition (which is
restricted to server scope), you might be able to replace
multiple listener-port definitions with a single activation
specification.

v Update any administrative scripts that define or
administer listener ports to define or administer JMS
activation specifications instead.

v Update any administrative scripts that use the stop or
start operations of the ListenerPort MBean to use the
pause and resume operations on the Message Endpoint
MBean instead.

Chapter 47. Deprecated, stabilized, and removed features 1313

Features stabilized in Version 6.1

Table 177. Features stabilized in Version 6.1. This table describes the features that are stabilized in Version 6.1.
Category Stabilized Function Strategic Alternative

Edge components Edge component Caching Proxy function Use the Edge component Load Balancer with Media
Access Control (MAC) forwarding in conjunction with one
of the following:

v WebSphere Application Server, Network Deployment
proxy server

v IBM HTTP Server plug-in in WebSphere Application
Server, Network Deployment

Edge component Load Balancer function that is associated
with the following capabilities:

v Content-based routing (CBR) component

v Site Selector component

v Cisco CSS Controller component

v Nortel Alteon Controller component

v Generic routing encapsulation (GRE)

v Network address translation (NAT) forwarding method

v CBR forwarding method

v Remote administration

v Rules-based load balancing

v Wide-area load balancing

v Mutual high availability

v Simple Network Management Protocol (SNMP)
subagent support

v User Datagram Protocol (UDP) support

Use the Edge component Load Balancer with Media
Access Control (MAC) forwarding in conjunction with one
of the following:

v WebSphere Application Server, Network Deployment
proxy server

v IBM HTTP Server plug-in in WebSphere Application
Server, Network Deployment

Removed features
If you are migrating your configuration from an earlier release of WebSphere Application Server, you
should be aware of the various features that have been removed from this and earlier releases.

If a feature is listed as deprecated in “Deprecated features” on page 1279, IBM might remove this
capability in a subsequent release of the product. Future investment will be focussed on the strategic
function listed under Recommended Migration Actions in “Deprecated features” on page 1279. Typically, a
feature is not removed until at least two major releases or three full years (whichever time period is longer)
after the release in which that feature is deprecated. For example, features that are deprecated in Version
6.0, Version 6.0.1, or Version 6.0.2 are not removed from the product until after Version 7.0 because both
Version 6.0.x and Version 6.1.x are major releases. In rare cases, it might become necessary to remove
features sooner; such cases are indicated clearly and explicitly in the descriptions of these deprecated
features in “Deprecated features” on page 1279.

The following tables describe what is removed—such as features, APIs, scripting interfaces, tools, wizards,
publicly exposed configuration data, naming identifiers, and constants. Where possible, the recommended
replacement is identified.
v “Features removed in Version 8.5”
v “Features removed in Version 8.0” on page 1316
v “Features removed in Version 7.0” on page 1318
v “Features removed in Version 6.1” on page 1320
v “Features removed in Version 6.0” on page 1321

Features removed in Version 8.5

1314 Overview

Ta
bl

e
17

8.
F

ea
tu

re
s

re
m

ov
ed

in
V

er
si

on
8.

5.
T

hi
s

ta
bl

e
de

sc
rib

es
th

e
fe

at
ur

es
th

at
ar

e
re

m
ov

ed
in

V
er

si
on

8.
5.

F
ea

tu
re

R
ec

o
m

m
en

d
ed

M
ig

ra
ti

o
n

A
ct

io
n

wa
sp
ro
fi
le

co
m

m
an

d
U

se
th

e
ma
na
ge
pr
of
il
es

co
m

m
an

d.

T
he

w
as

lo
gb

r
an

d
w

cs
lo

gb
r

to
ol

s,
an

d
as

so
ci

at
ed

sc
rip

ts
to

la
un

ch
th

e
to

ol
s

N
o

m
ig

ra
tio

n
ac

tio
n

is
ne

ce
ss

ar
y.

Lo
g

fil
es

ca
n

be
vi

ew
ed

us
in

g
th

e
ad

m
in

is
tr

at
iv

e
co

ns
ol

e
or

an
y

te
xt

ed
ito

r.

S
up

po
rt

fo
r

th
e

IB
M

W
eb

S
ph

er
e

A
pp

lic
at

io
n

S
er

ve
r

F
ea

tu
re

P
ac

k
fo

r
D

yn
am

ic
S

cr
ip

tin
g

M
ig

ra
te

IB
M

W
eb

S
ph

er
e

sM
as

h
ap

pl
ic

at
io

ns
to

th
e

Li
be

rt
y

pr
of

ile
,

w
he

re
th

ey
ca

n
ta

ke
ad

va
nt

ag
e

of
th

e
sm

al
l-f

oo
tp

rin
t

ru
nt

im
e

an
d

in
du

st
ry

-s
ta

nd
ar

d
R

E
S

T
fu

ls
er

vi
ce

s
us

in
g

JA
X

-R
S

as
w

el
la

s
ga

in
ac

ce
ss

to
si

gn
ifi

ca
nt

up
da

te
s

in
D

O
JO

su
pp

or
t.

In
te

lli
ge

nt
M

an
ag

em
en

t
su

pp
or

t
fo

r
co

nf
ig

ur
in

g
th

e
fo

llo
w

in
g

m
id

dl
ew

ar
e

se
rv

er
ty

pe
s

us
in

g
th

e
ad

m
in

is
tr

at
iv

e
co

ns
ol

e:

v
A

pa
ch

e
To

m
ca

t

v
B

E
A

W
eb

Lo
gi

c

v
JB

os
s

v
E

xt
er

na
lW

eb
S

ph
er

e
ap

pl
ic

at
io

n
se

rv
er

U
se

ws
ad
mi
n

sc
rip

tin
g

to
m

an
ag

e
th

es
e

re
so

ur
ce

s.

Chapter 47. Deprecated, stabilized, and removed features 1315

Features removed in Version 8.0

1316 Overview

Ta
bl

e
17

9.
F

ea
tu

re
s

re
m

ov
ed

in
V

er
si

on
8.

0.
T

hi
s

ta
bl

e
de

sc
rib

es
th

e
fe

at
ur

es
th

at
ar

e
re

m
ov

ed
in

V
er

si
on

8.
0.

F
ea

tu
re

R
ec

o
m

m
en

d
ed

M
ig

ra
ti

o
n

A
ct

io
n

A
pa

ch
e

S
O

A
P

ch
an

ne
li

n
w

eb
se

rv
ic

es
ga

te
w

ay
G

at
ew

ay
se

rv
ic

es
sh

ou
ld

be
de

pl
oy

ed
to

th
e

S
O

A
P

H
T

T
P

ch
an

ne
li

ns
te

ad
of

th
e

A
pa

ch
e

S
O

A
P

ch
an

ne
l.

T
he

en
dp

oi
nt

(U
R

L)
of

th
e

se
rv

ic
e

w
ill

be
di

ffe
re

nt
fo

r
th

is
ch

an
ne

l;
an

d
th

er
ef

or
e

,c
lie

nt
pr

og
ra

m
s

th
at

ar
e

ta
lk

in
g

to
th

e
ga

te
w

ay
w

ill
ne

ed
to

us
e

th
e

ne
w

se
rv

ic
e

en
dp

oi
nt

.

A
pa

ch
e

S
O

A
P,

W
E

B
S

JA
V

A
.S

O
A

P

v
so
ap
.j
ar

v
ws
so
ap
.j
ar

M
ig

ra
te

w
eb

se
rv

ic
es

th
at

w
er

e
de

ve
lo

pe
d

us
in

g
A

pa
ch

e
S

O
A

P
to

Ja
va

A
P

I
fo

r
X

M
L-

ba
se

d
R

P
C

(J
A

X
-R

P
C

)
w

eb
se

rv
ic

es
th

at
ar

e
de

ve
lo

pe
d

ba
se

d
on

th
e

W
eb

S
er

vi
ce

s
fo

r
Ja

va
P

la
tfo

rm
,

E
nt

er
pr

is
e

E
di

tio
n

(J
av

a
E

E
)

sp
ec

ifi
ca

tio
n.

S
ee

th
e

in
fo

rm
at

io
n

ce
nt

er
fo

r
m

or
e

in
fo

rm
at

io
n.

T
he

fo
llo

w
in

g
cl

as
se

s
an

d
fie

ld
s

of
th

e
W

eb
S

ph
er

e
re

la
tio

na
lr

es
ou

rc
e

ad
ap

te
r:

v
C

la
ss

co
m

.ib
m

.w
eb

sp
he

re
.r

sa
da

pt
er

.O
ra

cl
e1

0g
D

at
aS

to
re

H
el

pe
r

v
F

ie
ld

co
m

.ib
m

.w
eb

sp
he

re
.r

sa
da

pt
er

.D
at

aS
to

re
H

el
pe

r.O
R

A
C

LE
_1

0G
_H

E
LP

E
R

v
C

la
ss

co
m

.ib
m

.w
eb

sp
he

re
.r

sa
da

pt
er

.O
ra

cl
eD

at
aS

to
re

H
el

pe
r

v
F

ie
ld

co
m

.ib
m

.w
eb

sp
he

re
.r

sa
da

pt
er

.D
at

aS
to

re
H

el
pe

r.O
R

A
C

LE
_H

E
LP

E
R

If
yo

u
ar

e
us

in
g

th
e

O
ra

cl
e1

0g
D

at
aS

to
re

H
el

pe
r,

O
R

A
C

LE
_1

0G
_H

E
LP

E
R

,
O

ra
cl

eD
at

aS
to

re
H

el
pe

r,
or

O
R

A
C

LE
_H

E
LP

E
R

,
sw

itc
h

to
th

e
O

ra
cl

e
11

g
JD

B
C

dr
iv

er
an

d
us

e
th

e
O

ra
cl

e1
1g

D
at

aS
to

re
H

el
pe

r
or

O
R

A
C

LE
_1

1G
_H

E
LP

E
R

in
st

ea
d.

Chapter 47. Deprecated, stabilized, and removed features 1317

Features removed in Version 7.0

1318 Overview

Ta
bl

e
18

0.
F

ea
tu

re
s

re
m

ov
ed

in
V

er
si

on
7.

0.
T

hi
s

ta
bl

e
de

sc
rib

es
th

e
fe

at
ur

es
th

at
ar

e
re

m
ov

ed
in

V
er

si
on

7.
0.

F
ea

tu
re

R
ec

o
m

m
en

d
ed

M
ig

ra
ti

o
n

A
ct

io
n

S
up

po
rt

fo
r

th
e

fo
llo

w
in

g
in

te
rf

ac
es

:

v
Ja

va
V

irt
ua

lM
ac

hi
ne

P
ro

fil
er

In
te

rf
ac

e
(J

V
M

P
I)

v
Ja

va
V

irt
ua

lM
ac

hi
ne

D
eb

ug
In

te
rf

ac
e

(J
V

M
D

I)

U
se

th
e

Ja
va

V
irt

ua
lM

ac
hi

ne
To

ol
In

te
rf

ac
e

(J
V

M
T

I)
.

F
or

m
or

e
in

fo
rm

at
io

n,
re

ad
JV

M
To

ol
In

te
rf

ac
e

(J
V

M
T

I)
.

A
ll

cl
as

se
s

in
th

e
co

m
.ib

m
.w

eb
sp

he
re

.s
er

vl
et

.fi
lte

r
pa

ck
ag

e:

v
C

ha
in

ed
R

eq
ue

st

v
C

ha
in

ed
R

es
po

ns
e

v
C

ha
in

er
S

er
vl

et

v
S

er
vl

et
C

ha
in

R
ea

rc
hi

te
ct

yo
ur

ap
pl

ic
at

io
ns

to
us

e
ja

va
x.

se
rv

le
t.f

ilt
er

cl
as

se
s

ra
th

er
th

an
co

m
.ib

m
.w

eb
sp

he
re

.s
er

vl
et

.fi
lte

r
cl

as
se

s.
S

ta
rt

in
g

fr
om

th
e

S
er

vl
et

2.
3

sp
ec

ifi
ca

tio
n,

ja
va

x.
se

rv
le

t.f
ilt

er
cl

as
se

s
gi

ve
yo

u
th

e
ca

pa
bi

lit
y

to
in

te
rc

ep
t

re
qu

es
ts

an
d

ex
am

in
e

re
sp

on
se

s.
Yo

u
ca

n
al

so
ch

ai
n

fu
nc

tio
na

lit
y

as
w

el
la

s
em

be
lli

sh
an

d
tr

un
ca

te
re

sp
on

se
s.

In
te

gr
at

ed
C

ry
pt

og
ra

ph
ic

S
er

vi
ce

s
F

ac
ili

ty
(I

C
S

F
)

au
th

en
tic

at
io

n
m

ec
ha

ni
sm

U
se

th
e

Li
gh

tw
ei

gh
t

T
hi

rd
-P

ar
ty

A
ut

he
nt

ic
at

io
n

(L
T

P
A

)
m

ec
ha

ni
sm

.

T
he

fo
llo

w
in

g
Ja

va
D

at
ab

as
e

C
on

ne
ct

iv
ity

(J
D

B
C

)
dr

iv
er

s:

v
W

eb
S

ph
er

e
C

on
ne

ct
JD

B
C

dr
iv

er

v
M

ic
ro

so
ft

S
Q

L
S

er
ve

r
20

00
D

riv
er

fo
r

JD
B

C

v
W

eb
S

ph
er

e
S

eq
ue

Li
nk

JD
B

C
dr

iv
er

fo
r

M
ic

ro
so

ft
S

Q
L

S
er

ve
r

U
se

th
e

D
at

aD
ire

ct
C

on
ne

ct
JD

B
C

dr
iv

er
or

M
ic

ro
so

ft
S

Q
L

S
er

ve
r

JD
B

C
dr

iv
er

.

R
ev

ie
w

D
at

a
so

ur
ce

m
in

im
um

re
qu

ire
d

se
tti

ng
s,

by
ve

nd
or

fo
r

sp
ec

ifi
c

JD
B

C
pr

ov
id

er
s.

R
ea

d
th

e
M

ig
ra

tin
g

fr
om

th
e

W
eb

S
ph

er
e

C
on

ne
ct

JD
B

C
dr

iv
er

ar
tic

le
in

th
e

in
fo

rm
at

io
n

ce
nt

er
fo

r
in

fo
rm

at
io

n
on

us
in

g
th

e
We
bS
ph
er
eC
on
ne
ct
JD
BC
Dr
iv
er
Co
nv
er
si
on

co
m

m
an

d
to

co
nv

er
t

da
ta

so
ur

ce
s

fr
om

th
e

W
eb

S
ph

er
e

C
on

ne
ct

JD
B

C
dr

iv
er

to
th

e
D

at
aD

ire
ct

C
on

ne
ct

JD
B

C
dr

iv
er

or
th

e
M

ic
ro

so
ft

S
Q

L
S

er
ve

r
JD

B
C

dr
iv

er
..

S
up

po
rt

fo
r

th
e

D
B

2
le

ga
cy

C
LI

-b
as

ed
Ty

pe
2

JD
B

C
D

riv
er

an
d

th
e

D
B

2
le

ga
cy

C
LI

-b
as

ed
Ty

pe
2

JD
B

C
D

riv
er

(X
A

)

F
or

m
or

e
in

fo
rm

at
io

n,
re

ad
S

up
po

rt
fo

r
D

B
2

le
ga

cy
C

LI
-b

as
ed

Ty
pe

2
JD

B
C

D
riv

er
s

is
re

m
ov

ed
fr

om
IB

M
W

eb
S

ph
er

e
A

pp
lic

at
io

n
S

er
ve

r
V

er
si

on
7.

0.

U
se

th
e

D
B

2
U

ni
ve

rs
al

JD
B

C
D

riv
er

.

mb
2m
db

co
m

m
an

d-
lin

e
ut

ili
ty

N
o

m
ig

ra
tio

n
ac

tio
n

is
ne

ce
ss

ar
y.

W
eb

se
rv

ic
es

ga
te

w
ay

cu
st

om
iz

at
io

n
A

P
I

R
ep

la
ce

yo
ur

ex
is

tin
g

fil
te

rs
w

ith
a

co
m

bi
na

tio
n

of
JA

X
-R

P
C

ha
nd

le
rs

an
d

se
rv

ic
e

in
te

gr
at

io
n

bu
s

m
ed

ia
tio

ns
.

co
m

.ib
m

.w
eb

sp
he

re
.s

er
vl

et
.s

es
si

on
.U

se
rT

ra
ns

ac
tio

nW
ra

pp
er

cl
as

s
S

to
re

a
U

se
rT

ra
ns

ac
tio

n
di

re
ct

ly
in

to
th

e
H

T
T

P
se

ss
io

n
w

ith
ou

t
w

ra
pp

in
g

it
in

th
e

re
m

ov
ed

cl
as

s.

co
m

.ib
m

.w
eb

sp
he

re
.r

sa
da

pt
er

.D
at

aD
ire

ct
D

at
aS

to
re

H
el

pe
r

cl
as

s
U

se
th

e
co

m
.ib

m
.w

eb
sp

he
re

.r
sa

da
pt

er
.C

on
ne

ct
JD

B
C

D
at

aS
to

re
H

el
pe

r
cl

as
s.

co
m

.ib
m

.w
eb

sp
he

re
.r

sa
da

pt
er

.M
S

S
Q

LS
er

ve
rD

at
aS

to
re

H
el

pe
r

cl
as

s
U

se
th

e
co

m
.ib

m
.w

eb
sp

he
re

.r
sa

da
pt

er
.M

ic
ro

so
ftS

Q
LS

er
ve

rD
at

aS
to

re
H

el
pe

r
cl

as
s.

D
er

by
N

et
w

or
k

S
er

ve
r

P
ro

vi
de

r
us

in
g

th
e

U
ni

ve
rs

al
JD

B
C

dr
iv

er
U

se
th

e
D

er
by

N
et

w
or

k
S

er
ve

r
us

in
g

D
er

by
C

lie
nt

in
st

ea
d.

S
up

po
rt

fo
r

th
e

fo
llo

w
in

g
cu

st
om

pr
op

er
tie

s:

v
co

m
.ib

m
.s

ec
ur

ity
.S

A
F.

un
au

th
en

tic
at

ed
Id

v
co

m
.ib

m
.s

ec
ur

ity
.S

A
F.

us
eE

JB
R

O
LE

A
ut

hz

v
co

m
.ib

m
.s

ec
ur

ity
.S

A
F.

us
eE

JB
R

O
LE

D
el

eg
at

io
n

U
se

th
e

fo
llo

w
in

g
cu

st
om

pr
op

er
tie

s
th

at
ar

e
sp

ec
ifi

ed
on

th
e

S
A

F
au

th
or

iz
at

io
n

op
tio

ns
pa

ne
l:

v
co

m
.ib

m
.s

ec
ur

ity
.S

A
F.

un
au

th
et

ic
at

ed

v
co

m
.ib

m
.s

ec
ur

ity
.S

A
F.

au
th

or
iz

at
io

n

v
co

m
.ib

m
.s

ec
ur

ity
.S

A
F.

de
le

ga
tio

n

Chapter 47. Deprecated, stabilized, and removed features 1319

http://java.sun.com/javase/6/docs/technotes/guides/jvmti/index.html
http://www.ibm.com/support/docview.wss?uid=swg21316317
http://www.ibm.com/support/docview.wss?uid=swg21316317

Features removed in Version 6.1
Table 181. Features removed in Version 6.1. This table describes the features that are removed in Version 6.1.
Feature Recommended Migration Action

com.ibm.websphere.security.CustomRegistry
interface

Use the com.ibm.websphere.security.UserRegistry interface.

Support for the Secure Authentication Service
(SAS) IIOP security protocol

Use the Common Secure Interoperability Version 2 (CSIv2) protocols.

Support for the Secure Authentication Service
(SAS) CORBA security programming APIs

Migrate from the SAS programming APIs to the Java Authentication and Authorization Service
(JAAS).

For information on this migration, read Migrating Common Object Request Broker Architecture
programmatic login to Java Authentication and Authorization Service (CORBA and JAAS).

Support for the Common Connector Framework
(CCF)

Use the J2EE Connector Architecture (JCA) solution.

Support for the IBM Cloudscape Version 5.1.x
database

Use the IBM Cloudscape Version 10.1 database.

This database provides Derby Version 10.1 binaries, National Language Support (NLS)
enablement, quality assurance, and product support.

The term "Derby" rather than "Cloudscape" is used in places such as the administrative console,
the ejbdeploy command, and others.

Profile creation wizard Use the Profile Management tool.

Log Analyzer, the tool that was previously
provided for viewing and analyzing the activity or
service log file

Use the Log and Trace Analyzer tool for Eclipse in the Application Server Toolkit. This tool is
installable from the Application Server Toolkit launchpad console.

Mozilla Rhino JavaScript (js.jar) Use the Rhino code available from Mozilla.

Go to the Rhino: JavaScript for Java website, and get the latest copy of Rhino.

Java Document Object Model (JDOM) Use the code available from the JDOM organization.

Go to the JDOM website, get the latest copy of JDOM, and bundle it inside your application.

Class preloading function No migration action is necessary.

The following samples from the Samples Gallery:

v Adventure Builder

v Greenhouse by WebSphere

v WebSphere Bank

The following technology samples from the
Samples Gallery:

v Bean-Managed Persistence (BMP)

v Container-Managed Persistence (CMP) 1.1

v Container-Managed Persistence (CMP) 2.1

v Container-Managed Relationships (CMR)

v EJB Time

v Filter Servlet

v JavaServer Pages (JSP) 2.0

v Message-Driven Beans (MDB)

v Pagelist Servlet

v Simple JavaServer Pages (JSP)

v Simple Servlet

v Stateful Session

v TagLib

No migration action is necessary.

1320 Overview

http://www.mozilla.org/rhino/
http://www.jdom.org

Features removed in Version 6.0
Table 182. Features removed in Version 6.0. This table describes the features that are removed in Version 6.0.
Component Classes and Interfaces

Activity com.ibm.ws.activity.ActivityConstants
com.ibm.ws.activity.ActivityService
com.ibm.ws.activity.ActivityServiceInitializer
com.ibm.ws.activity.ActivityTrace
com.ibm.ws.activity.GlobalIdImpl
com.ibm.ws.activity.HighlyAvailableServiceManager
com.ibm.ws.activity.HLSLiteDataInterface
com.ibm.ws.activity.HLSLiteExtended
com.ibm.ws.activity.HLSLiteInfo
com.ibm.ws.activity.j2ee_activity_specific_data
com.ibm.ws.activity.j2ee_activity_specific_dataHelper
com.ibm.ws.activity.ServiceMigration
com.ibm.ws.activity.VUTrace
com.ibm.ws.activity.WebSphereServiceManager
com.ibm.ws.activity.WebSphereUserActivity
com.ibm.ws.javax.activity.ActionErrorException
com.ibm.ws.javax.activity.ActionNotFoundException
com.ibm.ws.javax.activity.ActivityCoordinator
com.ibm.ws.javax.activity.ActivityInformation
com.ibm.ws.javax.activity.ActivityManager
com.ibm.ws.javax.activity.ActivityNotProcessedException
com.ibm.ws.javax.activity.ActivityPendingException
com.ibm.ws.javax.activity.ActivityToken
com.ibm.ws.javax.activity.CompletionStatus
com.ibm.ws.javax.activity.ContextPendingException
com.ibm.ws.javax.activity.CoordinationInformation
com.ibm.ws.javax.activity.GlobalId
com.ibm.ws.javax.activity.InvalidParentContextException
com.ibm.ws.javax.activity.InvalidStateException
com.ibm.ws.javax.activity.NoActivityException
com.ibm.ws.javax.activity.NoImplementException
com.ibm.ws.javax.activity.NotOriginatorException
com.ibm.ws.javax.activity.Outcome
com.ibm.ws.javax.activity.PersistentActivityCoordinator
com.ibm.ws.javax.activity.PropertyGroupContext
com.ibm.ws.javax.activity.PropertyGroupRegisteredException
com.ibm.ws.javax.activity.PropertyGroupUnknownException
com.ibm.ws.javax.activity.ServiceAlreadyRegisteredException
com.ibm.ws.javax.activity.ServiceInformation
com.ibm.ws.javax.activity.ServiceNotRegisteredException
com.ibm.ws.javax.activity.Signal
com.ibm.ws.javax.activity.SignalSetActiveException
com.ibm.ws.javax.activity.SignalSetInactiveException
com.ibm.ws.javax.activity.SignalSetUnknownException
com.ibm.ws.javax.activity.Status
com.ibm.ws.javax.activity.SystemException
com.ibm.ws.javax.activity.TimeoutRangeException
com.ibm.ws.javax.activity.UserActivity
com.ibm.ws.javax.activity.coordination.Action
com.ibm.ws.javax.activity.coordination.RecoverableAction
com.ibm.ws.javax.activity.coordination.ServiceManager
com.ibm.ws.javax.activity.coordination.SignalSet
com.ibm.ws.javax.activity.coordination.SubordinateSignalSet
com.ibm.ws.javax.activity.propertygroup.PropertyGroup
com.ibm.ws.javax.activity.propertygroup.PropertyGroupManager
com.ibm.ws.javax.ejb.ActivityCompletedLocalException
com.ibm.ws.javax.ejb.ActivityRequiredLocalException
com.ibm.ws.javax.ejb.InvalidActivityLocalException

ALS com.ibm.websphere.als.BufferManager

Ant tasks com.ibm.websphere.ant.tasks.endptEnabler.Property
com.ibm.websphere.ant.tasks.Java2WSDL.Mapping
com.ibm.websphere.ant.tasks.Messages
com.ibm.websphere.ant.tasks.WSDL2Java.Mapping

Asynchronous Beans APIs com/ibm/websphere/asynchbeans/pmi/AlarmManagerPerf.java
com/ibm/websphere/asynchbeans/pmi/AsynchBeanPerf.java
com/ibm/websphere/asynchbeans/pmi/SubsystemMonitorManagerPerf.java
com/ibm/websphere/asynchbeans/pmi/SubsystemMonitorPerf.java
com/ibm/websphere/asynchbeans/pmi/AlarmManagerPmiModule.java
com/ibm/websphere/asynchbeans/pmi/AsynchBeanPmiModule.java
com/ibm/websphere/asynchbeans/pmi/SubsystemMonitorManagerPmiModule.java
com/ibm/websphere/asynchbeans/pmi/SubsystemMonitorPmiModule.java

Chapter 47. Deprecated, stabilized, and removed features 1321

Table 182. Features removed in Version 6.0 (continued). This table describes the features that are removed in
Version 6.0.
Component Classes and Interfaces

Dynacache com.ibm.websphere.servlet.cache.CacheConfig

Management com.ibm.websphere.management.application.EarUtils

ObjectPool APIs com/ibm/websphere/objectpool/pmi/ObjectPoolPerf.java
com/ibm/websphere/objectpool/pmi/ObjectPoolPmiModule.java

RAS com.ibm.ras.RASConsoleHandler
com.ibm.ras.RASEnhancedMessageFormatter
com.ibm.ras.RASEnhancedTraceFormatter
com.ibm.ras.RASErrorHandler com.ibm.ras.RASFileHandler
com.ibm.ras.RASFormatter com.ibm.ras.RASHandler
com.ibm.ras.RASMessageFormatter
com.ibm.ras.RASMultiFileHandler
com.ibm.ras.RASSerialFileHandler com.ibm.ras.RASSocketHandler
com.ibm.ras.RASTextAreaHandler
com.ibm.ras.RASTraceFormatter
com.ibm.websphere.ras.WsOrbRasManager

Scheduler API com.ibm.websphere.scheduler.pmi.SchedulerPmiModule
com.ibm.websphere.scheduler.pmi.SchedulerPerf
com.ibm.websphere.scheduler.MessageTaskInfo.setJMSPriority()

Security com.ibm.websphere.security.AuthorizationTable
com.ibm.websphere.security.FileRegistrySample
com.ibm.websphere.security.SecurityProviderException
com.ibm.websphere.security.WASPrincipal
com.ibm.websphere.security.auth.AuthDataFileEnc

Userprofile com.ibm.websphere.userprofile.UserProfile
com.ibm.websphere.userprofile.UserProfileCreateException
com.ibm.websphere.userprofile.UserProfileExtender
com.ibm.websphere.userprofile.UserProfileFinderException
com.ibm.websphere.userprofile.UserProfileManager
com.ibm.websphere.userprofile.UserProfileProperties
com.ibm.websphere.userprofile.UserProfileRemoveException

1322 Overview

Chapter 48. Development and assembly tools

You can use an Integrated Development Environment to develop, assemble, and deploy Java Platform,
Enterprise Edition (Java EE) modules for WebSphere Application Server.

The IBM Rational Application Developer for WebSphere Software product and the IBM WebSphere
Application Server Developer Tools for Eclipse product are supported tools for integrated development
environments.

This information center refers to the products as the assembly tools. However, you can use the products to
do more than assemble modules. Use these tools in an integrated development environment to develop,
assemble, and deploy Java EE modules.

The Rational Application Developer for WebSphere Software is a more extensive set of tools supporting
enterprise development. This workbench has integrated support for WebSphere Application Server Version
6.1 and later. This workbench also supports both the OSGi and Java EE programming models, and
contains wizards and visual editors to help you develop Web 2.0, Service Component Architecture (SCA),
Java, and Java EE applications. This product contains code quality tools to help you analyze code and
improve performance. This product integrates with Rational Team Concert to provide a team-based
environment to help developers share information and work collaboratively. The Trial download for Rational
Application Developer is available at http://www.ibm.com/developerworks/downloads/r/rad/.

IBM WebSphere Application Server Developer Tools for Eclipse is a lightweight set of tools for developing,
assembling, and deploying Java EE applications to WebSphere Application Server Version 7.0 and 8.x.
This workbench integrates with the application server to help you to quickly deploy and test applications.
This product contains wizards and visual editors that support the Java EE programming model.

For documentation on the tools, see “Rational Application Developer documentation.” Topics on application
assembly in this information center supplement that documentation.

Important: The assembly tools run on Windows and Linux Intel platforms. Users of WebSphere
Application Server on all platforms must assemble their modules using an assembly tool
installed on Windows or Linux Intel platforms. To install an assembly tool, follow instructions
available with the tool.

© Copyright IBM Corp. 2012 1323

1324 Overview

Chapter 49. Web resources for learning

This topic familiarizes you with the many websites containing technical information for understanding and
using your WebSphere Application Server product. A wealth of online information is available to
complement the product documentation.

Choose an area of interest.

v Learning and education

v Developer resources

v Architect, planner, installer, and administrator resources

v Partner resources

v Redbooks, white papers, and documentation

v Troubleshooting and support

Also, throughout the documentation, you will find additional resources for learning pages, each focused on
a specific technology, such as web services. The pages provide links to particular documents of interest.

Learning and education

IBM Education Assistant

Find tutorials, multimedia demonstrations, and presentations for WebSphere servers and Rational
development tools.

Training and certification

Use this page to find educational opportunities to learn about WebSphere software. IBM has
several educational options available to you. From classroom courses to on-site assistance and
Internet-based training, if you are ready to learn, we are ready to teach.

Developer resources

developerWorks - WebSphere Application Server zone

Use this page to search for information, download software including trial code and fixes, learn
about the application server, and find support and migration information.

Samples

The Samples section of the information center offers a set of samples that demonstrate common
web application tasks.

WASdev community downloads page

Use this page to participate in the WASdev community for developers. Interact with the
WebSphere and Rational Development teams, collaborate with other developers, and provide
requirements input directly to the development and product management teams.

Architect, planner, installer, and administrator resources

Detailed system requirements page

These pages describe the minimum product levels you should have installed before opening a
problem report with the WebSphere Application Server support team.

Patterns for e-business

Patterns for e-business are a group of reusable assets that can help speed the process of
developing Web-based applications. The Patterns leverage the experience of IBM architects to
create solutions quickly, whether for a small local business or a large multinational enterprise.

© Copyright IBM Corp. 2012 1325

http://publib.boulder.ibm.com/infocenter/ieduasst/v1r1m0/index.jsp
http://www.ibm.com/software/info1/websphere/index.jsp?tab=education/index
http://www.ibm.com/developerworks/websphere/zones/was/
https://www.ibm.com/developerworks/mydeveloperworks/blogs/wasdev/entry/download?lang=en
http://www.ibm.com/support/docview.wss?rs=180&uid=swg27006921
http://www.ibm.com/developerworks/patterns/

Partner resources

PartnerWorld®

Find product, business, and technical information. The PartnerWorld program is designed to offer
IBM Business Partners benefits, technical support, education, marketing campaigns, sales tools
and more to help you grow your business and drive profits.

Redbooks, white papers, and documentation

Redbooks - WebSphere

Find Redbooks pertaining to WebSphere, including the newest, latest, and most popular Redbooks
and Redpapers in draft and published form.

White papers

This link performs a query for white papers that are relevant to WebSphere Application Server.

Library page

A new, improved web page for finding product documentation, including the online information
center, documentation plug-ins for offline viewing with the WebSphere help system, and PDF
books. This page links to a variety of other kinds of product information, such as WebSphere
Redbooks.

Troubleshooting and support

IBM Support Assistant

Looking for ways to simplify software support, reduce support costs and improve your ability to
resolve software problems inhouse quickly? If so, we invite you to explore IBM Support Assistant.

IBM Support Assistant allows you to search multiple knowledge repositories and gives you access
to the latest product information. You can choose to be guided through your problem symptoms or
view a complete listing of advanced tooling for analyzing everything from logs to memory dumps.
Using the IBM Support Assistant Workbench installed on a local workstation running the Windows
or Linux Intel operating system, you can connect to the IBM Support Assistant Agent installed on a
remote system running on the AIX, Linux, Windows, or Solaris operating system. You can use IBM
Support Assistant to run automated, symptom-specific data collectors. This data can then be
attached to an IBM Service Request so that you can get help from IBM Support.

WebSphere Application Server - Support

This page provides a convenient starting point for querying technical documents, solving problems,
downloading fixes, planning, learning, and communicating.

IBM Support has documents and tools that can save you time gathering information needed to
resolve problems, as described in Troubleshooting help from IBM. Before opening a problem
report, see the Support page:

v WebSphere Application Server support

Support - Recent updates

This document lists valuable resources and newly created content.

Support - Resource reference list

This document is an introduction to available documentation and educational resources.

Support - Quick links

This document provides a reference of direct links to available documentation and educational
resources.

Support - Recommended fixes

1326 Overview

http://www.ibm.com/partnerworld/pwhome.nsf/weblook/index.html
http://www.redbooks.ibm.com/redbooks.nsf/portals/Websphere
http://www.ibm.com/support/search.wss?rs=180&tc=SSEQTP&dc=DA480+DB100&dtm
http://www-306.ibm.com/software/webservers/appserv/was/library/index.html
http://www.ibm.com/software/support/isa/
http://www.ibm.com/software/webservers/appserv/was/support/
http://www.ibm.com/support/docview.wss?rs=180&context=SSEQTP&uid=swg21173515
http://www.ibm.com/support/docview.wss?rs=180&context=SSEQTP&uid=swg27005148
http://www.ibm.com/support/docview.wss?rs=180&context=SSEQTP&uid=swg21174575
http://www-1.ibm.com/support/docview.wss?rs=180&uid=swg27004980

This document provides a comprehensive list of recommended, generally available (GA) fixes for
IBM WebSphere Application Server releases.

Support - MustGather documents

MustGather documents aid in problem determination and save time resolving Problem
Management Records (PMRs). Collecting MustGather data early, even before opening the PMR,
helps IBM Support quickly determine if:

v Symptoms match known problems (rediscovery).

v There is a non-defect problem that can be identified and resolved.

v There is a defect that identifies a workaround to reduce severity.

v Locating root cause can speed development of a code fix.

Notes®

v The WebSphere Application Server product documentation found in the information center and PDF
books documents supported configurations. Many of the above sites could contain information that
describes unsupported configurations.

v Information residing on non-IBM sites is provided for your convenience. Its technical accuracy is
controlled by the owner of the site. Use the information at your own risk.

Chapter 49. Web resources for learning 1327

http://www-1.ibm.com/support/docview.wss?rs=180&context=SSEQTP&uid=swg21145599

1328 Overview

Notices

References in this publication to IBM products, programs, or services do not imply that IBM intends to
make these available in all countries in which IBM operates. Any reference to an IBM product, program, or
service is not intended to state or imply that only IBM's product, program, or service may be used. Any
functionally equivalent product, program, or service that does not infringe any of IBM's intellectual property
rights may be used instead of the IBM product, program, or service. Evaluation and verification of
operation in conjunction with other products, except those expressly designated by IBM, is the user's
responsibility.

APACHE INFORMATION. This information may include all or portions of information which IBM obtained
under the terms and conditions of the Apache License Version 2.0, January 2004. The information may
also consist of voluntary contributions made by many individuals to the Apache Software Foundation. For
more information on the Apache Software Foundation, please see http://www.apache.org. You may obtain
a copy of the Apache License at http://www.apache.org/licenses/LICENSE-2.0.

IBM may have patents or pending patent applications covering subject matter in this document. The
furnishing of this document does not give you any license to these patents. You can send license inquiries,
in writing, to:

IBM Director of Intellectual Property & Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785
USA

© Copyright IBM Corp. 2012 1329

1330 Overview

Trademarks and service marks

IBM, the IBM logo, and ibm.com are trademarks or registered trademarks of International Business
Machines Corporation in the United States, other countries, or both. If these and other IBM trademarked
terms are marked on their first occurrence in this information with a trademark symbol (® or ™), these
symbols indicate U.S. registered or common law trademarks owned by IBM at the time this information
was published. Such trademarks may also be registered or common law trademarks in other countries. For
a current list of IBM trademarks, visit the IBM Copyright and trademark information Web site
(www.ibm.com/legal/copytrade.shtml).

Microsoft and Windows are trademarks of Microsoft Corporation in the United States, other countries, or
both.

UNIX is a registered trademark of The Open Group in the United States and other countries.

Java and all Java-based trademarks and logos are trademarks or registered trademarks of Oracle and/or
its affiliates.

Other company, product, or service names may be trademarks or service marks of others.

© Copyright IBM Corp. 2012 1331

http://www.ibm.com/legal/copytrade.shtml

1332 Overview

Index

A
Addressing annotations 939
APIs

SOAP 890
application bundles 544, 545, 546
application manifest file 552
application manifest file 540, 544, 552
Application-Content header 552
applications

web 835
AspectJ programming extension 793
asynchronous beans 41
asynchronous request dispatcher 847, 862
asynchronous servlets

best practices 841
authentication

Kerberos
tokens 1115
web services clustering 1121
web services configuration models 1120
web services message protection 1117
web services usage overview 1117

auto-export attribute 528
availability attribute 529

B
BaseFault class 957
BaseFaultBinderHelper class 957
Blueprint bundles 524
Blueprint container 566
Blueprint container 523, 525, 529, 531, 532, 534, 538
bundle fragments 546
bundle manifest files 549
bundle repositories 543, 555
Bundle-SymbolicName header 529, 552

C
cache

distributed nonce 1128
Call object 950
CEA 57

calls 58
collaboration 59, 61, 64
iWidgets 61
JSF 289 780
JSR 289 782
REST 66

certificates
revocation list 1104

class attribute 525
clustered sessions 859
collection certificate stores 1103
commands

wsjpaversion 114, 177
component-id attribute 532

component-name attribute 529
composite bundle manifest files 550
composite bundles 543, 550, 555
CompositeBundle-Content header 550
context support 502
custom binders 957

D
data sources 87, 93
default applications 838
default-activation attribute 524
dependency bundles 544
deployment manifest files 540, 555
destroy-method attribute 534
directory

installation
conventions 72

distributed sessions 854

E
EBA files 540
EJB bundles 547
encryption

XML 1104
endpoint references 928, 931, 938, 941, 950
enterprise applications 517
enterprise beans 153
enterprise bundle archive files 540, 542

installing 542
updating 542

enterprise bundles 540, 542
Export-EJB header 549

F
factory-method attribute 525
factory-ref attribute 525
fault endpoints 933
fault messages 933
feature configurations

features 345
files

web.xml 836
fragments

web 840

H
HTTP servlets

features 345
HTTP session management 853
HTTP sessions

invalidation 861
resources for learning 862

© Copyright IBM Corp. 2012 1333

HTTPS listener
features 345

HTTPS port
features 345

I
IBM JAX-RS 927
id attribute 524, 532
idref element 532
interaction intent 562
interface attribute 528, 529
interfaces

web services security
default service providers 1094

J
Java Persistence API

architecture 113, 176
Java Servlet 3.0

caching 152
JavaMail

IPv6 370
JavaServer Pages 839
JAX-RPC 923

default sample configurations 1088
JAX-RPC applications 957
JAX-WS 901
JAX-WS applications

sample bindings 1075
JAXB 922
JNDI 506

cell bindings 511
namespaces 499
naming 499

JPA 113, 176
WebSphere Application Server 114, 177

JSF framework
features 345

JSP files 839
jta-data-source element 560

K
key

locators 1068
keys 1067

L
Liberty runtime environment

overview 213
Linux shell

overview 213
list element 529, 532, 538

M
mail

resources for learning 369
mail service providers 369
mail sessions 369
manifest files 548, 549, 550, 552, 555
map element 532
message exchange patterns 933
Meta-Persistence header 549, 560
modules

web 835
MVS console 213

N
namespace logical view

cells 500
namespaces

federation 508
name bindings 506

naming
deployment descriptors 503
lookup names support 503
namespace logical view 500
thin clients 503

nonce 1126

O
OASIS applications

supported functions 1032
object request brokers 513, 514
ORB 513, 514

thread pools 513
OSGi applications

configuring bean security 566
OSGi applications 515, 516

features 345
overview 213

OSGi blueprint container specification
features 345

OSGi bundles 540, 549
OSGi framework 518
OSGi services 549

P
package versioning 547
persistence bundles 560
platform configurations

bindings 1063
overview 1063

policies
dynamic cache service eviction 147

policy sets 983, 985
portlet container 569
portlet filters 570
portlets 569
portType element 955

1334 Overview

profiles
WS-I attachments 927

properties
web container 842

provision bundles 544

R
reference element 529
reference listeners 536
reference managers 536
reference-list element 529
reference-list element 529
reference-listener element 536
referenced bundles 544
registration listeners 536
registration-listener element 536
reliable messaging 990, 1001
reply endpoints 933
res-auth element 535
res-sharing-scope element 535
resource adapters

settings
WebSphere relational resource adapters 89

resource properties documents 955, 960
resource references 535
ResourceProperties attribute 955
REST 66

S
SAAJ

version differences 892
SAF registry

features 345
overview 213

SCA
components 578
composites 579

learning 576
contributions 581
domain 580
overview 573
specification

API documentation 1200, 1257
unsupported sections 585

SCA specification 1200, 1257
SDO

resources for learning 112
Security differences 367
security models 1061
security profiles

compliance tips 1126
service data objects

resources for learning 112
service element 528, 529
service manager 524
service provider policies 985
service selection 529
service-properties element 528
servlets 839

sessions 853
set element 532, 538
shared bundle space 557
shared bundles 544, 557
signatures

XML digital signatures 1102
SIP 769, 770, 783

classes 775, 776
compliance 770
development 773
failover 785
high availability 784
IP sprayers 790
proxy servers 783
Rational Application Developer 774
routers 781

clusters 789
servlets 774

proxy servlet 779
sendOnServlet class 778
simple proxy 776

session affinity 785
SOA 879

web services
business models 881

SOAP 889
version differences 900

Spring Framework 791, 792, 793, 795, 796, 797
SSL certificates

features 345
Stub object 950

T
time stamps 1123
timer managers 50
tokens

binary
web services security 1113

Kerberos
realm environments 1121

LTPA 1108
nonce 1126
SAML 1123
Username 1110
web services security 1108

propagation 1128
XML 1112

trust anchors 1069
trusted IDs

evaluators 1070
type attribute 532
type converters 538
type-converters element 538

U
UDDI registry 1019

databases 1022
UDDI registry nodes 1022

customized 1022

Index 1335

unregistration-method attribute 536
use bundles 544
Use-Bundle header 520

V
value-ref attribute 532

W
web application bundles 545, 546
web applications 835

learn about 835
resources for learning 847

Web applications
features 345

web container
properties 842

web fragments 840
web modules 835
web services 882

development artifacts 885
distributed management 963, 972
Java EE 883
security 1025, 1169

Web Services Resource Framework 955, 957, 960
web services scenarios 869
web services security

architecture 1059
authentication 1057
binary tokens 1113
concepts 1025
confidentiality 1057
configuration considerations 1053
considerations 1124
cryptographic device

hardware 1073
default bindings 1055
default configurations 1074
enhancements 1028

web services security (continued)
keys 1067
message integrity 1057
new features 1025, 1169
runtime properties 1055
specification 1047
XML digital signatures 1102

web.xml file 836
WebSphere Application Server Developer Tools for

Eclipse 211
work managers 44
WS-Addressing 928, 937
WS-Addressing 928, 931, 933
WS-Addressing endpoint references 955
WS-Addressing namespace 937
WS-Addressing policy 933
WS-AtomicTransactions 998
WS-MakeConnection 998
WS-MetadataExchange 988
WS-MetadataExchange requests 988
WS-Policy 933, 982, 983, 988, 998
WS-Policy attachments 983
WS-ReliableMessaging 990, 991, 992, 997, 1000,

1001
policy sets 998
sequences 996
use patterns 993, 995, 996

WS-Resource 938, 955, 957, 960
WS-ResourceProperties specification 955
WS-SecureConversation 998
WS-SecurityPolicy 982
WSDL 886
WSRF specification 955, 957

X
XML files

basic architecture 214
server configurations 223

XML information set 898

1336 Overview

	Contents
	How to send your comments
	Using this PDF
	Chapter 1. Learn about WebSphere applications: Overview and new features
	Guided activities for the administrative console
	Tutorials
	Accessing the samples
	Development and assembly tools
	WebSphere Application Server architecture
	Three-tier architectures

	Chapter 2. ActivitySessions
	The ActivitySession service
	Usage model for using ActivitySessions with HTTP sessions
	ActivitySession and transaction contexts
	ActivitySession and transaction container policies in combination
	ActivitySession samples
	ActivitySession service: Resources for learning

	Chapter 3. Application profiling
	Application profiling
	Tasks and units of work considerations
	Application profiles
	Application profiling tasks

	Chapter 4. Asynchronous beans
	Asynchronous beans
	Work managers
	Timer managers
	Example: Using connections with asynchronous beans

	Chapter 5. Bean Validation
	Bean Validation

	Chapter 6. Communications Enabled Applications
	Communications Enabled Applications concepts
	CEA call flow
	CEA collaboration flow
	CEA iWidgets
	Collaboration Dialog
	Collaborative two-way forms
	REST APIs in CEA
	Directory conventions

	Chapter 7. Client applications
	Types of client applications
	Terms used for clients
	Application Client for WebSphere Application Server
	Stand-alone thin clients
	Java EE client
	Java thin client
	Applet client
	ActiveX to Enterprise JavaBeans (EJB) Bridge
	Pluggable Application Client

	Chapter 8. Data access resources
	Data concepts
	Relational resource adapters and JCA
	Using a single instance of a resource adapter
	WebSphere relational resource adapter settings
	Data access portability features

	JDBC providers
	Configuring QueryTimeout

	Data sources
	Data access beans
	Connection management architecture
	Connection pooling
	Connection life cycle
	Unshareable and shareable connections
	Connection handles
	Transaction type and connection behavior
	Application scoped resources

	Data access: Resources for learning
	Service Data Objects: Resources for learning

	Java Persistence API (JPA) architecture
	JPA for WebSphere Application Server
	wsjpaversion command
	wsjpa properties
	wsjpa.AccessIntent
	wsjpa.jdbc.Schema
	wsjpa.jdbc.CollectionId

	Transaction support in WebSphere Application Server
	Resource manager local transaction (RMLT)
	Global transactions
	Local transaction containment
	Local transaction containment

	Local and global transactions
	Client support for transactions
	Commit priority for transactional resources
	Sharing locks between transaction branches
	Transactional high availability
	Deployment for transactional high availability
	High availability policies for the transaction service

	Transaction compensation and business activity support
	JTA support
	SCA transaction intents

	Chapter 9. Dynamic caching
	Dynamic cache service eviction policies
	Disk cache infrastructure enhancements
	Eviction policies using the disk cache garbage collector
	Example: Caching web services
	Caching with Servlet 3.0

	Chapter 10. EJB applications
	Enterprise beans
	Java EE application resource declarations
	Message-driven beans - automatic message retrieval
	Message-driven beans, activation specifications, and listener ports
	Message processing in ASF mode and non-ASF mode
	How messages are processed in ASF mode
	How messages are processed in non-ASF mode

	Message-driven beans - JCA components
	J2C activation specification configuration and use
	Message-driven beans - transaction support
	Message-driven beans - listener port components

	Access intent policies for EJB 2.x entity beans
	Concurrency control
	Read ahead scheme hints
	Database deadlocks caused by lock upgrades
	Access intent assembly settings
	Name
	Description
	Methods - name
	Methods - enterprise bean
	Methods - type
	Methods - parameters
	Applied access intent

	Java Persistence API (JPA) architecture
	JPA for WebSphere Application Server
	wsjpaversion command
	wsjpa properties
	wsjpa.AccessIntent
	wsjpa.jdbc.Schema
	wsjpa.jdbc.CollectionId

	Transaction support in WebSphere Application Server
	Resource manager local transaction (RMLT)
	Global transactions
	Local transaction containment
	Local transaction containment

	Local and global transactions
	Client support for transactions
	Commit priority for transactional resources
	Sharing locks between transaction branches
	Transactional high availability
	Deployment for transactional high availability
	High availability policies for the transaction service

	Transaction compensation and business activity support
	JTA support
	SCA transaction intents

	Chapter 11. IBM WebSphere Application Server Developer Tools for Eclipse overviewVersion 8.5
	Chapter 12. The Liberty profile
	Liberty profile: Architecture
	Programming model support
	Liberty profile externals support

	Liberty profile: Server configuration
	Liberty profile: Configuration elements in the server.xml file
	activedLdapFilterProperties
	administrator-role
	application
	application-bnd
	applicationMonitor
	authCache
	authData
	authentication
	basicRegistry
	bundleRepository
	channelfw
	classloader
	config
	connectionManager
	customLdapFilterProperties
	dataSource
	domino50LdapFilterProperties
	edirectoryLdapFilterProperties
	executor
	featureManager
	fileset
	httpClassification
	httpEncoding
	httpEndpoint
	httpOptions
	httpSession
	httpSessionDatabase
	idsLdapFilterProperties
	iplanetLdapFilterProperties
	jaasLoginContextEntry
	jaasLoginModule
	jdbcDriver
	jndiEntry
	jpa
	jspEngine
	keyStore
	ldapRegistry
	library
	logging
	ltpa
	mimeTypes
	monitor
	nativeTransactionManager
	netscapeLdapFilterProperties
	pluginConfiguration
	properties
	properties.datadirect.sqlserver
	properties.db2.i.native
	properties.db2.i.toolbox
	properties.db2.jcc
	properties.derby.client
	properties.derby.embedded
	properties.informix
	properties.informix.jcc
	properties.microsoft.sqlserver
	properties.oracle
	properties.sybase
	quickStartSecurity
	safAuthorization
	safCredentials
	safRegistry
	safRoleMapper
	securewayLdapFilterProperties
	ssl
	sslDefault
	sslOptions
	tcpOptions
	transaction
	trustAssociation
	virtualHost
	webAppSecurity
	webContainer
	wlmClassification
	zosWorkloadManager

	Liberty profile: Feature management
	Liberty profile: Server features

	Liberty profile: Security
	Liberty profile: Quick overview of security
	Liberty profile: Authentication
	Liberty profile: Authorization
	Liberty profile: Security public APIs
	Configuration differences between the full profile and Liberty profile: security

	Chapter 13. Mail, URLs, and other Java EE resources
	Mail service providers and mail sessions
	Mail: Resources for learning
	JavaMail support for Internet Protocol 6.0

	URLs
	URLs: Resources for learning

	Chapter 14. Managed beans
	Managed beans

	Chapter 15. Messaging resources
	Styles of messaging in applications
	Types of messaging providers
	Default messaging
	JCA activation specifications and service integration
	JMS connection factories and service integration
	JMS queue resources and service integration
	JMS topic resources and service integration
	The createQueue or createTopic method and the default messaging provider
	How JMS applications connect to a messaging engine on a bus
	How a message-driven bean connects in a cluster
	Why and when to pass the JMS message payload by reference

	Interoperation with WebSphere MQ
	Comparison of WebSphere Application Server and WebSphere MQ messaging
	Interoperation with WebSphere MQ: Comparison of architectures
	Interoperation with WebSphere MQ: Comparison of key features
	Interoperation with WebSphere MQ: Key WebSphere MQ concepts
	Interoperation using the WebSphere MQ messaging provider
	Network topologies: Interoperating by using the WebSphere MQ messaging provider
	WebSphere MQ messaging provider activation specifications
	Enhanced features of the WebSphere MQ messaging provider
	Strict message ordering with the WebSphere MQ messaging provider and message-driven bean (MDB) applications
	WebSphere MQ custom properties
	WebSphere MQ messages

	How messages are passed between service integration and a WebSphere MQ network
	Differences between service integration and a WebSphere MQ network
	How service integration converts messages to and from WebSphere MQ format
	How to address bus destinations and WebSphere MQ queues
	JNDI namespaces and connecting to different JMS provider environments

	Interoperation using a WebSphere MQ link
	Network topologies for interoperation using a WebSphere MQ link
	Message exchange through a WebSphere MQ link
	Point-to-point messaging with a WebSphere MQ network
	Publish/subscribe messaging through a WebSphere MQ link
	Request-reply messaging through a WebSphere MQ link
	Strict message ordering using the strict message ordering facility of the WebSphere Application Server default messaging prov
	Securing connections to a WebSphere MQ network
	Messaging between two application servers through WebSphere MQ
	Messaging between two WebSphere MQ networks through an application server

	Interoperation using a WebSphere MQ server
	Network topologies for interoperation using a WebSphere MQ server connection and WebSphere MQ for z/OS shared queues
	WebSphere MQ queue points and mediation points
	WebSphere MQ server and mediated exchange scenarios
	WebSphere MQ server: Connection and authentication
	User identification
	Request-reply messaging using a WebSphere MQ server
	WebSphere MQ server: Transport chain security

	Message-driven beans - automatic message retrieval
	Message-driven beans, activation specifications, and listener ports
	Message processing in ASF mode and non-ASF mode
	How messages are processed in ASF mode
	How messages are processed in non-ASF mode

	Message-driven beans - JCA components
	J2C activation specification configuration and use
	Message-driven beans - transaction support
	Message-driven beans - listener port components

	JMS interfaces - explicit polling for messages

	Chapter 16. Naming and directory
	Naming
	Namespace logical view
	Initial context support
	Lookup names support in deployment descriptors and thin clients
	JNDI support in WebSphere Application Server
	Configured name bindings
	Namespace federation
	Naming roles
	Foreign cell bindings
	Naming and directories: Resources for learning

	Chapter 17. Object Request Broker (ORB)
	Object Request Brokers
	Logical pool distribution
	Object Request Brokers: Resources for learning

	Chapter 18. OSGi applications
	An introduction to OSGi Applications
	Business goals and OSGi Applications
	The modularization challenge
	The OSGi Framework
	Enterprise OSGi standards
	The WebSphere programming model and OSGi

	The Blueprint Container
	Blueprint bundles
	Blueprint XML
	Beans and the Blueprint Container
	Services and the Blueprint Container
	References and the Blueprint Container
	Scopes and the Blueprint Container
	Object values and the Blueprint Container
	Object life cycles and the Blueprint Container
	Resource references and the Blueprint Container
	Dynamism and the Blueprint Container
	Type converters and the Blueprint Container
	JNDI lookup for blueprint components

	OSGi bundles and bundle archives
	Enterprise bundle archives
	Enterprise bundle archive installation
	Enterprise bundle archive update

	Composite bundles
	Application bundles, use bundles and provision bundles
	Web application bundles
	Considerations for using web applications and bundle fragments in web application bundles

	EJB bundles
	Bundle and package versioning

	Manifest files
	Example: OSGi bundle manifest file
	Example: OSGi composite bundle manifest file
	Example: OSGi application manifest file
	OSGi deployment manifest file

	Provisioning for OSGi applications
	OSGi application isolation and sharing
	Java 2 security and OSGi Applications
	JMS and OSGi Applications
	JPA and OSGi Applications
	SCA and OSGi Applications
	Transactions and OSGi Applications
	Bean security and OSGi applications
	Enterprise JavaBeans and OSGi Applications

	Chapter 19. Portlet applications
	Portlet container
	Portlets
	Portlet filters
	Portlet container

	Chapter 20. SCA composites
	SCA in WebSphere Application Server: Overview
	Learn about SCA composites
	SCA components
	SCA composites
	SCA domain
	SCA contributions
	Security configurations for SCA applications

	Unsupported SCA specification sections

	Chapter 21. Service integration
	Service integration technologies
	Service integration buses
	Bus members
	Messaging engines
	Mechanisms for stopping messaging engines
	Message points
	Remote message points

	Messaging engine communication
	Inbound transport options
	Outbound transport options
	Secure transport configuration requirements

	Security for messaging engines
	Applications with a dependency on messaging engine availability

	Bus destinations
	How JMS destinations relate to service integration destinations
	Queue destinations
	Publish/subscribe messaging and topic spaces
	Workload sharing with publish/subscribe messaging
	The consequences of changing durable subscriptions
	Topic names and use of wildcard characters in topic expressions

	Foreign destinations and alias destinations
	Permanent bus destinations
	Temporary bus destinations
	Exception destinations
	Destination mediation
	Destination routing paths
	Message points
	Remote message points

	Message ordering
	Strict message ordering for bus destinations
	Message selection and filtering

	Message stores
	Relative advantages of a file store and a data store
	File stores
	Hints and tips for configuring file store size
	File store exclusive access
	File store disk requirements

	Data stores
	Data store life cycle
	Data store exclusive access
	Data store performance
	Configuration planning for a messaging engine to use a data store

	Message store high availability
	File store high availability
	Data store high availability

	Service integration security
	Service integration security planning
	Messaging security and multiple security domains
	Messaging security
	Security event logging
	Messaging security audit events
	A messaging client sending a message to a message destination
	A messaging client receiving a message from a message destination
	Messaging engines connecting to one another on the same bus
	Messaging engines connecting to one another on different buses
	A publisher sending a message to a topic
	A messaging client receiving a message from a subscription
	A cell administrator updates a service data object (SDO) repository

	Client authentication on a service integration bus
	Role-based authorization
	Destination security
	Mediations security
	Topic security
	Access control for multiple buses
	Message security in a service integration bus

	High availability and workload sharing
	WebSphere Application Server high availability
	Workload sharing
	Workload sharing with queue destinations
	Workload sharing with publish/subscribe messaging

	High availability
	Messaging engine recovery from exception conditions
	External high availability frameworks and service integration
	High availability of messaging engines that are connected to WebSphere MQ

	Service integration high availability and workload sharing configurations
	Bus member types and their effect on high availability and workload sharing
	Simple configuration without workload sharing or high availability
	Configuration for high availability
	Configuration for workload sharing or scalability
	Configuration for workload sharing with high availability
	Policies for service integration

	Mediations
	Mediation handlers and mediation handler lists
	Transactionality in mediations
	Performance tuning for mediations
	Performance monitoring for mediations
	Concurrent mediations
	Mediation points
	Mediation context information
	Mediations security
	Mediation application installation
	Mediation programming
	SDO data graphs
	Coding tips for mediations programming

	Service integration configurations
	Bus configurations
	Single-server bus
	Multiple-server bus without clustering
	Multiple-server bus with clustering
	Common issues with all bus configurations
	Configurations that include WebSphere MQ
	Application server cluster with single ME bus
	Multiple application server cluster with single messaging engine bus
	Multiple bus member bus
	Interconnected bus configurations
	Interconnected buses

	Bootstrap members

	Service integration notification events
	Message reliability levels - JMS delivery mode and service integration quality of service
	Dynamic reloading of configuration files
	Service integration backup

	Chapter 22. Session Initiation Protocol (SIP) applications
	SIP in WebSphere Application Server
	SIP applications
	SIP industry standards compliance
	Runtime considerations for SIP application developers
	SIP IBM Rational Application Developer for WebSphere framework
	SIP servlets

	SIP container
	SIP converged proxy
	SIP high availability
	SIP session affinity and failover
	SIP cluster routing
	SIP IP sprayer

	Chapter 23. Spring applications
	Spring Framework
	Presentation layer and the Spring Framework
	Data access and the Spring Framework
	Transaction support and the Spring Framework
	JMX and MBeans with the Spring Framework
	JMS and the Spring Framework
	Class loaders and the Spring Framework
	Thread management and the Spring Framework

	Chapter 24. Transactions
	Transaction support in WebSphere Application Server
	Resource manager local transaction (RMLT)
	Global transactions
	Local transaction containment
	Local transaction containment

	Local and global transactions
	Client support for transactions
	Commit priority for transactional resources
	Sharing locks between transaction branches
	Transactional high availability
	Deployment for transactional high availability
	High availability policies for the transaction service

	Transaction compensation and business activity support
	JTA support
	SCA transaction intents

	Chapter 25. Work area
	Overview of work area service
	Work area property modes
	Nested work areas
	Distributed work areas
	WorkArea service: Special considerations

	Chapter 26. Web applications
	Learn about web applications
	Web applications
	Web modules
	Web container request attributes
	web.xml file
	Default Application
	JavaServer Pages
	Servlets
	Web fragments
	Asynchronous servlet best practices
	Web container properties
	Java EE application resource declarations
	Web applications: Resources for learning

	Asynchronous request dispatcher
	Asynchronous request dispatcher

	Sessions
	Session management support
	Distributed sessions
	Memory-to-memory replication
	Memory-to-memory topology: Peer-to-peer function
	Memory-to-memory topology: Client/server function

	Memory-to-memory session partitioning
	Clustered session support
	Scheduled invalidation
	Base in-memory session pool size
	HTTP session invalidation
	Write operations
	HTTP sessions: Resources for learning

	Asynchronous request dispatcher
	Asynchronous request dispatcher
	Asynchronous request dispatcher application design considerations

	Chapter 27. Web services
	Overview: Online garden retailer web services scenarios
	Web services online garden retailer scenario: Static inquiry on supplier
	Web services online garden retailer scenario: Dynamic inquiry on supplier
	Web services online garden retailer scenario: Cross supplier inquiry

	Service-oriented architecture
	Web services approach to a service-oriented architecture
	Web services business models supported in SOA

	Web services
	Web Services for Java EE specification
	Artifacts used to develop web services
	WSDL
	SOAP
	SOAP with Attachments API for Java interface
	Differences in SAAJ versions
	Message Transmission Optimization Mechanism
	Differences in SOAP versions

	JAX-WS
	JAX-WS client programming model
	JAX-WS annotations
	JAX-WS application packaging

	JAXB
	JAX-RPC
	RMI-IIOP using JAX-RPC

	WS-I Basic Profile
	WS-I Attachments Profile

	Overview of IBM JAX-RS
	Web Services Addressing support
	Web Services Addressing overview
	Web Services Addressing message exchange patterns

	Web Services Addressing version interoperability
	Web Services Addressing application programming model
	Web Services Addressing annotations
	Web Services Addressing security
	Web Services Addressing: firewalls and intermediary nodes
	Web Services Addressing and the service integration bus
	Web Services Addressing APIs
	IBM proprietary Web Services Addressing SPIs

	Web Services Resource Framework support
	Web Services Resource Framework base faults
	Web Services Resource Framework resource property and lifecycle operations

	Web Services Distributed Management
	Web Services Distributed Management resource management
	Web Services Distributed Management manageability capabilities for WebSphere Application Server resource types
	Web Services Distributed Management support in the application server
	Web Services Distributed Management in a stand-alone application server instance
	Web Services Distributed Management in a WebSphere Application Server, Network Deployment cell
	Web Services Distributed Management in an administrative agent environment
	Notifications from the application server Web Services Distributed Management resources

	Web Services Invocation Framework (WSIF)
	Goals of WSIF
	WSIF Overview
	WSIF architecture
	WSIF and WSDL
	WSIF usage scenarios

	WS-Policy
	Web service providers and policy configuration sharing
	Web service clients and policy configuration to use the service provider policy
	WS-MetadataExchange requests

	WS-ReliableMessaging
	WS-ReliableMessaging - How it works
	Benefits of using WS-ReliableMessaging
	Qualities of service for WS-ReliableMessaging
	Use patterns for WS-ReliableMessaging
	Assured delivery for B2B web services: point-to-point use pattern
	Assured delivery for B2B web services: hub-and-spoke use pattern
	Interoperation with other WS-ReliableMessaging providers: use pattern

	WS-ReliableMessaging sequences
	WS-ReliableMessaging - terminology
	WS-ReliableMessaging: supported specifications and standards
	WS-ReliableMessaging roles and goals
	WS-ReliableMessaging - requirements for interaction with other implementations

	WS-Transaction
	Web Services Atomic Transaction support in the application server
	Web Services Business Activity support in the application server
	Web services transactions, high availability, firewalls and intermediary nodes
	Transaction compensation and business activity support
	WS-Transaction and mixed-version cells
	Business activity API

	Overview of the Version 3 UDDI registry
	Databases and production use of the UDDI registry
	UDDI registry terminology

	Web Services Security concepts
	What is new for securing web services
	Web Services Security enhancements
	Supported functionality from OASIS specifications
	Web Services Security specification - a chronology

	Web Services Security configuration considerations
	Default bindings and runtime properties for Web Services Security
	Nonce cache timeout
	Nonce maximum age
	Nonce clock skew
	Enable cryptographic operations on hardware device
	Cryptographic hardware configuration name
	Custom properties

	Web Services Security provides message integrity, confidentiality, and authentication
	High-level architecture for Web Services Security
	XML digital signature
	Collection certificate store
	Certificate revocation list
	XML encryption
	Security token
	LTPA and LTPA Version 2 tokens
	Username token
	XML token
	Binary security token
	X.509 Binary Security Token
	Kerberos token
	SAML token
	Time stamp
	Security considerations for web services
	Web Services Security token propagation

	Chapter 28. XML applications
	Overview of XML support
	XSLT 2.0, XPath 2.0, and XQuery 1.0 major new functions

	Overview of the XML Samples application
	Building and running a sample XML application

	Chapter 29. What is new in this release
	Chapter 30. Overview and new features for administering applications and their environments
	What is new for administrators
	Introduction: System administration
	Welcome to basic administrative architecture
	Introduction: Administrative console
	Introduction: Administrative scripting (wsadmin)
	Introduction: Administrative commands
	Introduction: Administrative programs
	Introduction: Administrative configuration data

	Introduction: Environment
	Introduction: Cell-wide settings
	Heterogeneous cells in mixed platforms within a cell

	Introduction: Application servers
	Introduction: Application servers
	Introduction: Web servers
	Introduction: Clusters

	Mail, URLs, and other J2EE resources
	Data access resources
	Messaging resources

	Chapter 31. Overview and new features for securing applications and their environment
	Security
	What is new for security specialists
	What is new for securing web services
	Security planning overview
	Security considerations when registering a base Application Server node with the administrative agent
	Security considerations when adding a base Application Server node to WebSphere Application Server, Network Deployment
	Security: Resources for learning
	Common Criteria (EAL4) support
	Federal Information Processing Standard support

	Chapter 32. Overview and new features for developing applications
	What is new for developers
	What is new for deployers
	Learn about WebSphere applications: Overview and new features
	Specifications and API documentation
	Introduction: Web services
	Introduction: Messaging resources
	Introduction: Dynamic cache
	Learn about SIP applications

	Learn about WebSphere programming extensions
	Introduction: Dynamic cache

	Accessing the samples
	Mail, URLs, and other J2EE resources
	Data access resources
	Messaging resources

	Chapter 33. Overview and new features for monitoring
	Performance: Resources for learning

	Chapter 34. Overview and new features for tuning performance
	Chapter 35. Overview and new features for troubleshooting
	What is new for troubleshooters

	Chapter 36. What has changed in this release
	Transitioning notes for administration topics
	Transitioning notes for development topics
	Transitioning notes for deployment topics
	Transitioning notes for security topics

	Chapter 37. WebSphere Application Server roles and goals
	Chapter 38. Fast paths for WebSphere Application Server
	Chapter 40. WebSphere platform and related software
	Chapter 41. Guided activities for the administrative console
	Chapter 42. Tutorials
	Chapter 43. Accessing the samples
	Chapter 44. Using the administrative clients
	Chapter 45. Specifications and API documentation
	Chapter 46. WebSphere Application Server architecture
	Three-tier architectures

	Chapter 47. Deprecated, stabilized, and removed features
	Deprecated features
	Features deprecated in Version 8.5
	Features deprecated in Version 8.0.0.1
	Features deprecated in Version 8.0
	Features deprecated in Version 7.0
	Features deprecated in Version 6.1
	Features deprecated in Version 6.0.2
	Features deprecated in Version 6.0
	Features deprecated in Version 5.1.1
	Features deprecated in Version 5.1
	Features deprecated in Version 5.0.2
	Features deprecated in Version 5.0.1
	Features deprecated in Version 5.0

	Stabilized features
	Removed features
	Features removed in Version 8.5
	Features removed in Version 8.0
	Features removed in Version 7.0
	Features removed in Version 6.1
	Features removed in Version 6.0

	Chapter 48. Development and assembly tools
	Chapter 49. Web resources for learning
	Notices
	Trademarks and service marks
	Index
	A
	B
	C
	D
	E
	F
	H
	I
	J
	K
	L
	M
	N
	O
	P
	R
	S
	T
	U
	V
	W
	X

