IBM WebSphere Application Server Network Deployment
for IBM i, Version 8.5

Securing WebSphere applications

..ll

Note
FBefore using this information, be sure to read the general information under [‘Notices” on page 1039

Compilation date: June 5, 2012

© Copyright IBM Corporation 2012.
US Government Users Restricted Rights — Use, duplication or disclosure restricted by GSA ADP Schedule Contract

with IBM Corp.

Contents

How to send your comments

Using this PDF .

Chapter 1. Securing Client applications .

Configuring secure access to resources for applet chents .
Applet client security requirements

Example: Running the thin or pluggable appllcatlon cllent W|th securlty enabled .

Configuring secure access for stand-alone clients .

Chapter 2. Securing Data access resources .
Securing data sources . .
Java EE connector security . .
Enabling trusted context for DB2 databases .
Configuring the application server and DB2 to authentlcate W|th Kerberos
Configuring data access security .

Chapter 3. Securing EJB applications .
Securing Enterprise JavaBeans applications
Securing enterprise bean applications .

Chapter 4. Securing Messaging resources .
Securing messaging

Configuring security for message drlven beans that use actlvat|on specmcatlons .

Configuring security for message-driven beans that use listener ports .

Chapter 5. Securing Mail, URLs, and other Java EE resources
Securing applications that use the JavaMail API .
JavaMail API security permissions best practices .

Chapter 6. Securing OSGi applications

Chapter 7. Securing Portlet appllcatlons .
Portlet URL security Co
Portlet URL security

Chapter 8. Securing Service integration
Securing service integration.
Securing buses .
Disabling bus security . .
Enabling client SSL authentlcat|on
Adding unique names to the bus authonzatlon pollcy
Administering authorization permissions .
Administering permitted transports for a bus
Securing messages between messaging buses
Securing access to a foreign bus.
Securing links between messaging englnes .
Controlling which foreign buses can link to your bus.
Securing database access .
Securing mediations)
Auditing the service integration securlty mfrastructure .

Chapter 9. Securing Session Initiation Protocol (SIP) applications .

© Copyright IBM Corp. 2012

. 31

. 33
. 33
. 33

.37
.37
. 38
. 47
. 47
. 49
. 50
. 76
.79
. 80
. 80
. 81
. 81
. 82
. 84

. 87

Securing SIP applications
Configuring security for the SIP contamer
Configuring digest authentication for SIP .
Developing a custom trust association interceptor

Chapter 10. Securing web applications .

Web application security components and settings .
Web component security . .
Securing web applications using an assembly tool
Security constraints in web applications .
Security settings . .
Assigning users and groups to roIes . .
Securing applications during assembly and deployment .
User profiles and authorities .

Session security support

Chapter 11. Securing web services.
Securing JAX-RS web applications .
Securing JAX-RS applications within the web contamer .
Securing JAX-RS resources using annotations .
Securing downstream JAX-RS resources .
Securing JAX-RS clients using SSL .
Administering secure JAX-RS applications .
Defining and managing secure policy set bindings .
Configuring the SSL transport policy .
Transformation of policy and binding assertlons for WSDL
Securing message parts using the administrative console .
Signing and encrypting message parts using policy sets.
Configuring the callers for general and default bindings .
Changing the order of the callers for a token or message part
Policy set bindings settings for WS-Security .
Keys and certificates .
WS-Security authentication and protectlon
Caller settings .
Caller collection .
Message expiration settmgs .
Actor roles settings
Securing web services .
Securing web services appllcat|ons at the transport IeveI .
Authenticating web services clients using HTTP basic authentlcat|on .
Securing JAX-WS web services using message-level security.
Securing JAX-RPC web services using message-level security .
Securing web services using Security Markup Assertion Language (SAML)
Authenticating web services using generic security token login modules .
Web Services Security concepts ..
Migrating Web Services Security
Developing applications that use Web Servrces Securlty .
Configuring Web Services Security during application assembly .
Administering Web Services Security .
Deploying applications that use SAML .
Tuning Web Services Security .
Securing WSIF
Configuring UDDI registry securlty
Configuring the UDDI registry to use WebSphere Appllcatlon Server securlty
Configuring UDDI security with WebSphere Application Server security enabled

Configuring UDDI Security with WebSphere Application Server security disabled .

iv Securing WebSphere applications

. 87
. 87
. 88
.9

. 95
. 95
. 95
. 95
. 98
. 99

. 100
. 112
. 115
. 116

. 119
. 119
. 119
. 126
. 129
. 131
. 134
. 134
. 134
. 137
. 139
. 140
. 145
. 146
. 147
. 148
. 156
. 176
. 179
. 180
. 181
. 182
. 182
. 183
. 184
. 185
. 186
. 187
. 187
. 355
. 371
. 592
. . 663
. 1004
. 1012
. 1015
. 1015
. 1016
. 1017
. 1018

Access control for UDDI registry interfaces .1019

UDDI registry security and UDDI registry settings. 1020
Securing bus-enabled web services. . . 1022
Overriding the default security conflguratlon between bus enabled Web services and a secure bus 1022
Configuring secure transmission of SOAP messages by using WS-Security 1025
Working with password-protected components . 1027
Invoking outbound services over HTTPS .1083
Securing WS-Notification. 1034
Configuring secure access to WS Not|f|cat|on service pomts by usmg SOAP over HTTPS . . . 1036
Notices 1039
Trademarks and servicemarks. .. o104
Index. L L L . L1043

Contents V

Vi Securing WebSphere applications

How to send your comments

Your feedback is important in helping to provide the most accurate and highest quality information.
+ To send comments on articles in the WebSphere Application Server Information Center
1. Display the article in your Web browser and scroll to the end of the article.

2. Click on the Feedback link at the bottom of the article, and a separate window containing an email
form appears.

3. Fill out the email form as instructed, and submit your feedback.
* To send comments on PDF books, you can email your comments to: wasdoc@us.ibm.com.

Your comment should pertain to specific errors or omissions, accuracy, organization, subject matter, or
completeness of this book. Be sure to include the document name and number, the WebSphere
Application Server version you are using, and, if applicable, the specific page, table, or figure number
on which you are commenting.

For technical questions and information about products and prices, please contact your IBM branch office,
your IBM business partner, or your authorized remarketer. When you send comments to IBM, you grant
IBM a nonexclusive right to use or distribute your comments in any way it believes appropriate without
incurring any obligation to you. IBM or any other organizations will only use the personal information that
you supply to contact you about your comments.

© Copyright IBM Corp. 2012 vii

Viii Securing WebSphere applications

Using this PDF

Links

Because the content within this PDF is designed for an online information center deliverable, you might
experience broken links. You can expect the following link behavior within this PDF:

» Links to Web addresses beginning with http:// work.
» Links that refer to specific page numbers within the same PDF book work.
* The remaining links will not work. You receive an error message when you click them.

Print sections directly from the information center navigation

PDF books are provided as a convenience format for easy printing, reading, and offline use. The
information center is the official delivery format for IBM WebSphere Application Server documentation. If
you use the PDF books primarily for convenient printing, it is now easier to print various parts of the
information center as needed, quickly and directly from the information center navigation tree.

To print a section of the information center navigation:

1. Hover your cursor over an entry in the information center navigation until the Open Quick Menu icon
is displayed beside the entry.

2. Right-click the icon to display a menu for printing or searching your selected section of the navigation
tree.

3. If you select Print this topic and subtopics from the menu, the selected section is launched in a
separate browser window as one HTML file. The HTML file includes each of the topics in the section,
with a table of contents at the top.

4. Print the HTML file.

For performance reasons, the number of topics you can print at one time is limited. You are notified if your
selection contains too many topics. If the current limit is too restrictive, use the feedback link to suggest a

preferable limit. The feedback link is available at the end of most information center pages.

© Copyright IBM Corp. 2012

X Securing WebSphere applications

Chapter 1. Securing Client applications

This page provides a starting point for finding information about application clients and client applications.
Application clients provide a framework on which application code runs, so that your client applications can
access information on the application server.

For example, an insurance company can use application clients to help offload work on the server and to
perform specific tasks. Suppose an insurance agent wants to access and compile daily reports. The
reports are based on insurance rates that are located on the server. The agent can use application clients
to access the application server where the insurance rates are located.

Configuring secure access to resources for applet clients

By default, the applet client is configured to have security enabled. If you have administrative security
turned on at the server from which you are accessing resources, then you can use secure sockets layer
(SSL) when needed.

About this task

If you decide that the security requirements for applet client applications differ from other types of client
applications, then create a new version of the sas.client.props and ss1.client.props files.

Procedure

1. Make a copy of the following files so that you can use them for an applet:
* <app client rootp\properties\sas.client.props
* <app client rootp\properties\ssl.client.props
2. Edit the copies of the sas.client.props and ss1.client.props files that you made with your changes.
3. Display the IBM® Control Panel for Java. Click Start > Control panel, then select the product Java
Plug-In.
4. To use the files you created in step 1, modify the following Java Run-Time parameter values. Click the
Advanced tab, then edit the parameters in the Java Runtime Parameters field:
. -Dcom.1bm.CORBA.ConfigURL=f11e:45pp client rootF\properties\sas.c]1ent.props
° -Dcom.1bm.SSL.ConfigURL=f11e:<hpp client rootF\properties\ss].c]ient.props
5. To save your changes, click Apply

Applet client security requirements

When code is loaded, it is assigned permissions based on the security policy in effect. This policy
specifies the permissions that are available for code from various locations. You can initialize this policy
from an external policy file.

By default, the client uses the|app_server_rool/properties/client.policy file. You must update this file
with the following permission:

SocketPermission grants permission to open a port and make a connection to a host machine, which is
your WebSphere® Application Server. In the following example, yourserver.yourcompany.com is the
complete host name of your WebSphere Application Server:

permission java.util.PropertyPermission "*", "read";
permission java.net.SocketPermission "yourserver.yourcompany.com ,"connect";

© IBM Corporation 2009 1

Example: Running the thin or pluggable application client with security
enabled

Your Java thin application client no longer needs additional code to set security providers if you have
enabled security for your WebSphere Application Server instance. This code found in iSeries® Java thin or
pluggable application clients should be removed to prevent migration and compatibility problems. The
java.security file from your WebSphere instance in the properties directory is now used to configure the
security providers.

The security providers were set programmatically in the main() method and occurred prior to any code that
accessed enterprise beans:

import java.security.*;
if (System.getProperty("os.name").equals("0S/400")) {

// Set the default provider Tist first.
Provider jceProv = null;
Provider jsseProv = null;
Provider sunProv = null;

// Allow for when the Provider is not needed, when
// it is not in the client application's classpath.

try {
jceProv = new com.ibm.crypto.provider.IBMICE();

catch (Exception ex) {
ex.printStackTrace();
throw new Exception("Unable to acquire provider.");

try {
jsseProv = new com.ibm.jsse.JSSEProvider();

catch (Exception ex) {
ex.printStackTrace();
throw new Exception("Unable to acquire provider.");

try {
sunProv = new sun.security.provider.Sun();

catch (Exception ex) {
ex.printStackTrace();
throw new Exception("Unable to acquire provider.");

// Enable providers early and ahead of other providers

// for consistent performance and function.

if ((null != sunProv) && (1 != Security.insertProviderAt(sunProv, 1))) {
Security.removeProvider(sunProv.getName());
Security.insertProviderAt(sunProv, 1);

if ((null != jceProv) &% (2 != Security.insertProviderAt(jceProv, 2))) {
Security.removeProvider(jceProv.getName());
Security.insertProviderAt(jceProv, 2);

1

if ((null !'= jsseProv) && (3 != Security.insertProviderAt(jsseProv, 3))) {
Security.removeProvider(jsseProv.getName());
Security.insertProviderAt(jsseProv, 3);

}

// Adjust default ordering based on admin/startstd properties file.
// Maximum allowed in property file is 20.
String provName;

2 Securing WebSphere applications

Class provClass;
Object provObj = null;

for (int i = 0; i < 21; i++) {
provName = System.getProperty("os400.security.provider."+ i);
if (null != provName) {
try {

provClass = Class.forName(provName);
provObj = provClass.newInstance();
}
catch (Exception ex) {
// provider not found
continue;

}

if (i != Security.insertProviderAt((Provider) provObj, i)) {

// index 0 adds to end of existing Tist

if (i 1=0) {
Security.removeProvider(((Provider) provObj).getName());
Security.insertProviderAt((Provider) provObj, 1i);

1

}
} // end if (nul1 != provName)

} // end for (int i = 0; i < 21; i++)
} // end if ("os.name").equals("0S/400")

Configuring secure access for stand-alone clients

The Thin Client for JMS with WebSphere Application Server and the Resource Adapter for JMS with
WebSphere Application Server use the standard Java Secure Socket Extension (JSSE) that all supported
JREs provide for making Secure Sockets Layer (SSL) connections.

About this task

When you are configuring secure connections for the Thin Client for JMS with WebSphere Application
Server or the Resource Adapter for JMS with WebSphere Application Server, you can choose between the
following approaches:

» A global configuration approach that affects all stand-alone outbound connections from the process.
» A private approach applies only to client or resource adapter connections from the process.

For further information refer to the Securing JMS client and JMS resource adapter connections topic.
Procedure
Decide on which configuration approach you want to use, then configure the secure connections for the

Thin Client for JMS with WebSphere Application Server or the Resource Adapter for JMS with WebSphere
Application Server according to your selected approach.

Chapter 1. Securing Client applications 3

4 Securing WebSphere applications

Chapter 2. Securing Data access resources

This page provides a starting point for finding information about data access. Various enterprise
information systems (EIS) use different methods for storing data. These backend data stores might be
relational databases, procedural transaction programs, or object-oriented databases.

The flexible IBM WebSphere Application Server provides several options for accessing an information
system backend data store:

* Programming directly to the database through the JDBC 4.0 API, JDBC 3.0 API, or JDBC 2.0 optional
package API.

* Programming to the procedural backend transaction through various J2EE Connector Architecture (JCA)
1.0 or 1.5 compliant connectors.

* Programming in the bean-managed persistence (BMP) bean or servlets indirectly accessing the
backend store through either the JDBC API or JCA-compliant connectors.

» Using container-managed persistence (CMP) beans.

» Using the IBM data access beans, which also use the JDBC API, but give you a rich set of features and
function that hide much of the complexity associated with accessing relational databases.

Service Data Objects (SDO) simplify the programmer experience with a universal abstraction for messages
and data, whether the programmer thinks of data in terms of XML documents or Java objects. For
programmers, SDOs eliminate the complexity of the underlying data access technology, such as, JDBC,
RMI/IIOP, JAX-RPC, and JMS, and message transport technology such as, java.io.Serializable, DOM
Objects, SOAP, and JMS.

Securing data sources

Java EE connector security

The Java 2 Platform, Enterprise Edition (Java EE) connector architecture defines a standard architecture
for connecting J2EE to heterogeneous enterprise information systems (EIS). Examples of EIS include
Enterprise Resource Planning (ERP), mainframe transaction processing (TP) and database systems.

The connector architecture enables an EIS vendor to provide a standard resource adapter for its EIS. A
resource adapter is a system-level software driver that is used by a Java application to connect to an EIS.
The resource adapter plugs into an application server and provides connectivity between the EIS, the
application server, and the enterprise application. Accessing information in EIS typically requires access
control to prevent unauthorized accesses. J2EE applications must authenticate to the EIS to open a
connection.

The J2EE connector security architecture is designed to extend the end-to-end security model for
J2EE-based applications to include integration with EIS environments. An application server and an EIS
collaborate to ensure the correct authentication of a resource principal, which establishes a connection to
an underlying EIS. The connector architecture identifies the following mechanisms as the commonly
supported authentication mechanisms, although other mechanisms can be defined:

» BasicPassword: Basic user-password-based authentication mechanism that is specific to an EIS

° B Kerbvb: Kerberos Version 5-based authentication mechanism

Applications define whether to use application-managed sign-on or container-managed sign-on in the
resource-ref elements in the deployment descriptor. Each resource-ref element describes a single
connection factory reference binding. The res-auth element in a resource-ref element, whose value is
either Application or Container, indicates whether the enterprise bean code can perform sign-on or
whether application server can sign-on to the resource manager using the principal mapping configuration.
The resource-ref element is typically defined at application assembly time with an assembly tool. The
resource-ref can also be defined, or redefined, at deployment time.

© IBM Corporation 2009 5

Application managed sign-on

To access an EIS system, applications locate a connection factory from the Java Naming and Directory
Interface (JNDI) namespace and invoke the getConnection method on that connection factory object. The
getConnection method might require a user ID and password argument. A J2EE application can pass in a
user ID and password to the getConnection method, which subsequently passes the information to the
resource adapter. Specifying a user ID and password in the application code might compromise some
security, however.

The user ID and password, if coded into the Java source code, are available to developers and testers in
the organization. Also, the user ID and password are visible to users if they decompile the Java class.

The user ID and password cannot be changed without first requiring a code change. Alternatively,
application code might retrieve sets of user IDs and passwords from persistent storage or from an external
service. This approach requires that IT administrators configure and manage a user ID and password
using the application-specific mechanism.

To access this authentication data, the application server supports a component-managed authentication
alias to be specified on a resource. This authentication data is common to all references to the resource.
Click Resources > Resource Adapters > J2C connection factories > configuration_name. Select Use
component-managed authentication alias.

When res-auth=Application, the authentication data is taken from the following elements, in order:
1. The user ID and password that are passed to the getConnection method

2. The component-managed authentication alias in the connection factory or the data source

3. The custom properties user name and password in the data source

The user name and password properties can be initially defined in the resource adapter archive (RAR) file.
IITE Do not use the custom properties, which enable users to connect to the resources.
Container-managed sign-on

The user ID and password for the target enterprise information systems (EIS) can be supplied by the
application server. The product provides container-managed sign-on functionality. The application server
locates the proper authentication data for the target EIS to enable the client to establish a connection.
Application code does not have to provide a user ID and password in the getConnection call when it is
configured to use container-managed sign-on, and authentication data does not have to be common to all
references to a resource. The uses a Java Authentication and Authorization Service (JAAS) pluggable
authentication mechanism to use a pre-configured JAAS login configuration, and LoginModule to map a
client security identity and credentials on the running thread to a pre-configured user ID and password.

The product supports a default many-to-one credential mapping LoginModule module that maps any client
identity on the running thread to a preconfigured user ID and password for a specified target EIS. The
default mapping module is a special purpose JAAS LoginModule module that returns a
PasswordCredential credential that is specified by the configured Java 2 connector (J2C) authentication
data entry. The default mapping LoginModule module performs a table lookup, but does not perform actual
authentication. The user ID and password are stored together with an alias in the J2C authentication data
list.

The J2C authentication data list is located on the Global security panel from Java Authentication and

Authorization Service > J2C Authentication data. The default principal and credential mapping function
is defined by the DefaultPrincipalMapping application JAAS login configuration.

6 Securing WebSphere applications

J2C authentication data that is modified using the administrative console takes effect when the
modification is saved into the repository, and Test Connection is performed. Also, J2C authentication data
that is modified using wsadmin scripting takes effect when any application is started or restarted for a
given the application server server process. J2C authentication data modification takes effect by invoking
the SecurityAdmin MBean method, updateAuthDataCfg. Set the HashMap parameter to null to enable the
Securityadmin MBean to refresh the J2C authentication data using the latest values in the repository.

Do not modify the DefaultPrincipalMapping login configuration because the product includes performance
enhancements to this frequently used default mapping configuration. The product does not support
modifying the DefaultPrincipalMapping configuration, changing the default LoginModule module, or
stacking a custom LoginModule module in the configuration.

For most systems, the default method with a many-to-one mapping is sufficient. However, the product
does support custom principal and credential mapping configurations. Custom mapping modules can be
added to the application logins JAAS configuration by creating a new JAAS login configuration with a
unigue name. For example, a custom mapping module can provide one-to-one mapping or Kerberos
functionality.

Trusted connections also provide a one-to-one mapping while supporting client identity propagation. In
addition by utilizing the DB2® trusted context object, trusted connections can take advantage of connection
pooling to reduce the performance penalty of closing and reopening connections with a different identity.
Using trusted connections also enhances the security of your DB2 database by eliminating the need to
assign all privileges to a single user. The connection is established by a user whose credentials are
trusted by the DB2 server to open the connection and the same user is also then trusted to assert the
identity of the other users accessing the DB2 server from the application. A new mapping configuration
called TrustedConnectionMapping has been created to implemented trusted connections.

You also can use the WebSphere Application Server administrative console to bind the resource manager
connection factory references to one of the configured resource factories. If the value of the res-auth
element is Container within the deployment descriptor for your application, you must specify the mapping
configuration. To specify the mapping configuration, use the Resource references link under References on
the Applications > Application Types > Websphere enterprise applications > application_name
panel. See the topic, Mapping resource references to references, for additional directions.

J2C mapping modules and mapping properties

Mapping modules are special JAAS login modules that provide principal and credential mapping
functionality. You can define and configure custom mapping modules using the administrative console.

You also can define and pass context data to mapping modules by using login options in each JAAS login
configuration. In the product, you also can define context data using mapping properties on each
connection factory reference binding.

Login options that are defined for each JAAS login configuration are shared among all resources that use
the same JAAS login configuration and mapping modules. Mapping properties that are defined for each
connection factory reference binding are used exclusively by that resource reference.

Consider a usage scenario where an external mapping service is used.

For example, you might use the Tivoli® Access Manager global sign-on (GSO) service. Use the Tivoli
Access Manager GSO to locate authentication data for both backend servers.

You have two EIS servers: DB2 and MQ. The authentication data for DB2 is different from that for MQ,
however. Use the login option in a mapping JAAS login configuration to specify the parameters that are
required to establish a connection to the Tivoli Access Manager GSO service. Use the mapping properties
in a connection factory reference binding to specify which EIS server requires the user ID and password.

Chapter 2. Securing Data access resources 7

For more detailed information about developing a mapping module, see the topic, J2C principal mapping
modules.

Note:

* The mapping configuration at the connection factory has moved to the resource manager
connection factory reference. The mapping login modules that are developed using WebSphere
Application Server Version 5 JAAS callback types can be used by the resource manager
connection factory reference, but the mapping login modules cannot take advantage of the
custom mapping properties feature.

» Connection factory reference binding supports mapping properties, and passes those properties
to mapping login modules by way of a new WSMappingPropertiesCallback callback. In addition,
the WSMappingPropertiesCallback callback and the new WSManagedConnectionFactoryCallback
callback are defined in the com.ibm.wsspi package. Use the new mapping login modules with the
new callback types.

Secure message delivery with inbound SecurityContext

Security information can be supplied by an EIS resource adapter to the application server using security
inflow context. The security inflow context mechanism enables the work manager to execute the actions of
a Work instance under an established identity. Those actions include the delivery of messages to Java EE
message endpoints that are processed as message-driven beans (MDB) under an identity that is
configured in a security domain of the application server.

Attention: Security inflow context is only supported for JCA 1.6-compliant resource adapters. Currently,
the product does not provide a built-in resource adapter that supports a security inflow context.
Using inbound SecurityContext to secure message delivery requires a resource adapter that
supports Java EE messaging and security inflow context.

Secure message delivery to a message endpoint requires that global security is enabled in the global
security configuration. It also requires that application security is enabled on the application server that
hosts the application providing the message endpoint MDB. For more information about global security,
see the topic, “Global security settings”.

The security policy of the application deployment descriptor must be configured with roles that are
associated with user identities in the application realm, which is the user registry of the security domain
that scopes to the application. This security configuration enables EJB security and authorizes specific
user identities in the application realm to access MDB methods. For more information about security
overview, see the topic, “Security”.

Secure message delivery also requires the resource adapter to define implementations for both the
WorkContextProvider and SecurityContext interfaces. To deliver a secure message, a resource adapter
first submits a work instance that provides a SecurityContext implementation, which the work manager
uses to establish the execution subject for that work instance.

While establishing the execution subject, a SecurityContext can provide implementations of Java
Authentication Service Provider Interface for Containers (JASPIC) callbacks that the work manager uses to
determine caller and group identities (CallerPrincipalCallback, GroupPrincipalCallback), and to authenticate
the caller identity and password (PasswordValidationCallback). If the caller identity is in the application
realm, then the work manager asserts that identity by constructing a WSSubject instance containing the
caller principal, any group principals, and all private credentials.

Alternatively, the SecurityContext can provide an execution subject that is an instance of WSSubject
instance created by another login or authentication module. The work manager accepts this WSSubject
instance only when its caller principal is in the application realm or within a trusted realm. For more
information about realms, see the topic, “Configuring inbound trusted realms for multiple security domains”.

8 Securing WebSphere applications

The work manager rejects a Work instance whenever it cannot establish a WSSubject instance.
Otherwise, it dispatches the instance on a managed thread under the WSSubject instance that was either
asserted or accepted. If the SecurityContext provides no caller identity, the Work instance dispatches
under a WSSubject instance containing the unauthenticated caller principal.

When dispatched, a Work instance might attempt to deliver messages to the MDB of the secured
application. All messages are delivered under the WSSubject instance established for the Work instance.
The EJB security collaborator affords access to the onMessage method of the MDB whenever the caller
principal of the WSSubject instance is associated with a role that is declared in the application deployment
descriptor. Otherwise, the collaborator denies access and the message fails to deliver. During delivery, the
MDB can use the EJB Context methods, isCallerinRole and getCallerPrincipal, to make additional access
decisions, and the MDB might access other entities in the security domain for which the caller principal
has authorization.

Enabling trusted context for DB2 databases

Enable trusted context in your applications to improve how the application server interacts with DB2
database servers. Use trusted connections to preserve the identity records of clients that are connecting to
a DB2 database through your applications; trusted connections can provide a more secure environment by
granting access based on the identity of those users.

Before you begin

Ensure that the following prerequisites are met before enabling trusted connections:

* You are using a database server that is running DB2 Database for Linux, UNIX, and Windows Version
9.5 or later or DB2 Database Version 9.1 or later for zZOS®. See the list of list of supported software for
the application server for more support information.

* You do not need to be connected to the database to configure trusted context in the application server.
» Trusted context is enabled for the DB2 database.

» Global security is enabled. See the topic, Setting up, enabling and migrating security, for more
information on configuring security.

About this task

With trusted connections you can:

» Access the DB2 database with the caller identity, obviating the need to create a new connection for
every user.

* Preserve the identity of the end-user when the application server is interacting with the database.
» Strengthen database security by avoiding granting all of the privileges to a single user.

* Improve performance, as compared to the existing model of using the resetConnection() method to take
advantage of identity propagation.

Note: Non-trusted connections cannot be used as trusted connections. If the connection pool contains
only non-trusted connections and a request comes in for a trusted connection, a new request will
be sent to the database for the trusted connection.

Procedure

Enable trusted context for your applications.
» Enable trusted context when you are installing a new application.

1. Perform a typical installation for the application until you reach Step 7: Map resource references
to resources in the installation wizard.

2. In Step 7: Map resource references to resources, select Use trusted connections (one-to-one
mapping) in the Specify authentication method section.

Chapter 2. Securing Data access resources 9

3. Select an authentication alias from the list that matches an alias that is already defined in the DB2
data source. If you do not have an alias defined that is suitable, continue with the installation, and
enable trusted context after the application is installed.

Note: You can specify a default user (UNAUTHENTICATED) to be used if no client identity is
available, but that default ID (UNAUTHENTICATED) must also exist in the DB2 database. If
the com.ibm.mapping.unauthenticatedUser is set to null or an empty string, then the
application server will use the default user (UNAUTHENTICATED). For more information, see
the information about setting the security properties for trusted connections.

4. Select a data source from the table that has trusted context enabled.
5. Click Apply.

6. Edit the properties of the custom login configuration. Read the topic, Setting the security properties
for trusted connections.

Note: Ensure that all of the authentication values are set to none for the trusted connections to
work. For example, if you used a trusted connection to connect to DB2, the Test connection
button will not work and the operation will fail:

The test connection operation failed for data source jdbcTestDB on server serverl
at node wasvm04Node02 with the following exception: java.sql.SQLException:
[jcc][t4][10205][11234][3.59.81] Null userid is not supported. ERRORCODE=-4461,
SQLSTATE=42815 DSRAOO1OE: SQL State = 42815, Error Code = -4,461.

View JVM Togs for further details.

7. Finish the installation wizard.
* Enable trusted context on an application that is already installed.

Note: Remove the propagateClientldentityUsingTrustedContext custom property for the DB2 data
source, if it is present. If the propagateClientldentityUsingTrustedContext is enabled, the
application server will issue the following warning at run time:

IDENTITY_PROPAGATION_PROP_WARNING=DSRA7029W: The propagateClientIdentityUsingTrustedContext
custom property for the Datasource is no lTonger used, value will be ignored.

The application server will determine at run time if the request is using trusted context, and the
application server will enable trusted context based on that information. Therefore, the same data
source in the application server can be used for both trusted and non-trusted access.

Click Websphere enterprise applications > application_name.
2. Click Resource references from the Resources heading.

3. Select Use trusted connections (one-to-one mapping) in the Specify authentication method
section.

4. Select an authentication alias from the list that matches an alias that is already defined in the DB2
data source. If you do not have an alias defined that is suitable, define a new alias.

a. Click JDBC > Data sources > data_source_name.

—_

b. Click JAAS - J2C authentication data from the Related Items heading.
c. Click New.

d. Define the properties for the alias in General properties.

e. Click OK.

Note: You can specify a default user (UNAUTHENTICATED) to be used if no client identity is
available, but that default ID (UNAUTHENTICATED) must also exist in the DB2 database. If
the com.ibm.mapping.unauthenticatedUser is set to null or an empty string, then the
application server will use the default user (UNAUTHENTICATED). For more information, see
the information about setting the security properties for trusted connections.

5. Select a data source from the table that has trusted context enabled.

6. Click Apply.

10 Securing WebSphere applications

7. Edit the properties of the custom login configuration. Read the topic, Setting the security properties
for trusted connections.

What to do next

Be aware of the following error conditions that can occur if trusted context is not configured properly:

» The application server will issue a warning if you use the TrustedConnectionMapping login configuration
and the database server does not support trusted context. The application server will then return a
normal, non-trusted connection. If you are using a DB2 database for the database server, and it doesn't
support trusted connections, then the DB2 database server will throw an exception.

» The application server will throw the following exception if you use the TrustedConnectionMapping login
configuration and Threadldentity is specified:

IDENTITY_PROPAGATION_CONFLICT2_ERROR=DSRA7028E: You cannot use the TrustedConnectionMapping
login configuration when the Threadldentity property is enabled.

» The application server will throw the following exception if you use the TrustedConnectionMapping login
configuration and reauthentication is specified:

IDENTITY_PROPAGATION_CONFLICT1_ERROR=DSRA7025E: The reauthentication custom property for
the Datasource cannot be enabled when you are using the TrustedConnectionMapping login configuration.

Setting the security properties for trusted connections

Trusted connections are a solution that can pass the requesting user identity to DB2 and also take full
advantage of the connection pooling. Utilizing the DB2 trusted context object, the trusted connection is
used to separate the identity used to establish the connection from the identity that accessed the DB2
server services. The connection is established by a user whose credentials are authorized by the DB2
server to open the connection and trusted by the DB2 server to assert the identity of the requesting users
when accessing the DB2 server from the application.

Before you begin

To use the trusted connection functionality, you must be running at database server with DB2 Database for
Linux, UNIX, and Windows Version 9.5 or later or DB2 Database Version 9.1 or later for z/OS. Trusted
connections can be used if the application server is installed on iSeries systems, as long as a supported
version of DB2 is installed on a platform other than iSeries systems, and the DB2 universal driver is used.
See the list of list of supported software for the application server for more support information. An existing
J2EE connector (J2C) data alias must exist for passing user credentials to the DB2 server when
establishing a connection, meaning container authorization must be used.

Read about [‘Enabling trusted context for DB2 databases” on page 9| for steps to configure the application
server to use trusted connections.

About this task

Trusted connections support client identity propagation while taking advantage of connection pooling to
reduce the performance penalty of closing and reopening connections with a different identity. When you
select Use trusted connection (one-to-one mapping) for the connection mapping, five custom properties
are created. Review these properties to ensure that the default values of these properties correspond with
your intended settings.

Procedure

1. Click Enterprise applications > application_name > Resource references > Resources panel in
the administrative console.

2. Select the correct enterprise bean, and click Mapping Properties to view the properties that are set by
default when you configured the trusted connection.

3. Confirm that the default values assigned to these properties are correct for your environment.

Chapter 2. Securing Data access resources 11

Table 1. Security Properties. This table lists the security property values:

Property Default Value Information

com.ibm.mapping.authDataAlias none The value that is assigned for this property is the
value that you selected from the menu list.

com.ibm.mapping.propagateSecAttrs false A false value for this property specifies that the
security attributes are not propagated. You can
change this value to true to add the RunAs
subject as an opaque token in the
IdentityPrincipal object.

com.ibm.mapping.targetRealmName null If this value is not specified or null, the security
run time process will use the current user realm
name. This process assumes that the Enterprise
Information System (EIS) is using the current
user realm. In this context, a realm is a logical
representation of the user repository. If the
application server and DB2 server are using
different user repositories, the value of this
property should be set to the realm name of the
DB2 server. This enables a principal or
credential mapping to be set at the target EIS.

com.ibm.mapping.unauthenticatedUser UNAUTHENTICATED This property is a user identity that is used by
the EIS to indicate a user identity that is
unauthenticated. This is defined at
com.ibm.ISecurityUtilitylmpl.SecConstants.java
public final static String UnauthenticatedString =
"UNAUTHENTICATED"

com.ibm.mapping.useCallerldentityproperty false A false value for this property specifies the Run
As identity is asserted in the IdentityPrincipal
object. Change the value of this property to true
if you want to assert the caller identity in the
IdentityPrincipal object instead of the Run As
identity.

4. Click OK to confirm all the current values.

5. Click OK and Save on the Resource references panel to save your changes to the master
configuration.

Results

After the completion of these steps and a restart of the application server, trusted connections will be used
with the chosen mapping properties to connect with the DB2 database server.

Trusted connections with DB2

Trusted connections allow for the application server to use DB2 Trusted Context objects to establish
connections with a user whose credentials are trusted by the DB2 server to open the connection. By
establishing a Trusted Context, this user is then trusted to assert other user identities on the DB2 server
without the expense of reauthentication. This also enhances the security of your DB2 database by
eliminating the need to assign all privileges to a single user. Implementing trusted connections results in
client identity propagation while leveraging connection pooling to eliminate the performance penalty of
closing and reopening connections with a different identity.

Restriction: To use the trusted connection functionality you must be using DB2 Database for Linux, UNIX|,
and Windows Version 9.5 or later or DB2 Database Version 9.1 or later for z/OS. You can
use trusted connections if version 7.0 is installed on an iSeries system as long as a
supported version of DB2 is installed on a platform other than an iSeries system and the
DB2 universal driver is being used. See the list of supported software for the application
server for more support information.

To reduce the significant expense of establishing new connections, the connection manager maintains a
connection pool in which each connection is tracked by the credential originally used to open the
connection. When an application needs a connection, the connection manager uses the credential object
to match a free connection from the connection pool. If no free connection is available and the maximum
number of connections has not been reached, the connection pool manager opens a new connection

12 Securing WebSphere applications

using that credential object. This connection mapping is the default connection mapping used by the
application server and is known as a many-to-one credential mapping because the connection is opened
using the credential object in the subject, which is usually not the same as the RunAs identity. This simple
mapping supports easy connection pooling, but the caller identity is never propagated to database server.

To propagate the caller identify to the database server, you can plug in a Java Authentication and
Authorization Service (JAAS) login module. Using this method, you would map the application server user
credential to the user credential suitable for the database server security realm. This approach maintains
the caller identity, but does not use connection pooling.

Trusted connections are used instead of the default mapping or a JAAS mapping to connect to the data
source. Trusted connections support client identity propagation and can also use connection pooling to
reduce the performance penalty of closing and reopening connections with a different identity. Trusted
connections use the DB2 trusted context object.

The DB2 trusted context is an object that the database administrator defines and that contains a system
authorization ID and a set of trust attributes. The trust attributes identify characteristics of a connection that
are required for the connection to be considered trusted. The relationship between a database connection
and a trusted context is established when the connection to the DB2 server is created. After a trusted
context is defined, and an initial trusted connection to the DB2 database server is made, the application
server can use that database connection from a different user without a full reauthentication. This is
because an authentication token is required with the user identity. The database authenticates the user
and then verifies the user authorization to access the database before allowing any database requests to
be processed on behalf of that user.

Using the trusted connection provides the needed plug-in points to support adding your own secure
implementation of the DB2 trusted context. Trusted connections separate the identity used to establish the
connection from the identity that accesses the back-end server services. The connection is established by
a user whose credentials are trusted by the DB2 server to open the connection. The same user is also
then trusted to assert the identity of the other users. This assertion also helps strengthen database
security by eliminating the need to grant all privileges to a single user.

When the application requests a connection to the database, the connection manager can find any idle
trusted connection and assert the user identity to the backend server. All the operations performed on the
backend server are from the asserted user identity. The use of an identity mapping may still be needed if
the back-end server uses a different user repository than that of the application server.

A new mapping configuration called TrustedConnectionMapping implements trusted connections. The
TrustedConnectionMapping configuration maps the RunAs subject to a resource subject that contains the
following elements:

* A resource principal object that this resource subject represents
* A PasswordCredential object in the private credential set
* An IdentityPrincipal object in the principal set

The principal object represents the RunAs identity. The PasswordCredential object contains a user ID and
password to be used by the resource adapter to establish the trusted connection. The ldentityPrincipal
object by default contains the RunAs identity, but can be changed to use the identify of the caller. The
IdentityPrincipal object also contains an original user identity that represents the user who sent the request
initially, an optional realm name that indicates the set of registries where the user identity is defined and
an optional security token, which is a serialized security context of the user.

Enabling trusted context with authentication for DB2 databases

Enable trusted context in your applications to improve how the application server interacts with DB2
database servers. Use trusted connections to preserve the identity records of clients that are connecting to
a DB2 database through your applications; trusted connections can provide a more secure environment by
granting access based on the identity of those users. DB2 provides an option for trusted connections in

Chapter 2. Securing Data access resources 13

which a password is required when switching the user identity. You can configure the application server to
use trusted connections with authentication, and plug-in your own code to take advantage of trusted
context with authentication.

Before you begin

Refer to the topic on enabling trusted context for DB2 databases to ensure that trusted connections are
properly configured for the application server.

About this task

If the WITH AUTHENTICATION option is specified when the trusted context is created, the database
requires that you provide an authentication token with the end user's identity. The database authenticates
the end user and verifies the end user's authorization to access the database before the database allows
any requests to be processed.

Procedure

1. Set useTrustedContextWithAuthentication custom property to true for the DB2 data source.
a. Click JDBC > Data sources.

Click the name of the data source that you want to configure.

Click Custom properties from the Additional Properties heading.

Click New.

Complete the required fields. Use the following information:

© 2 0T

Name Value

useTrustedContextWithAuthentication true

If the useTrustedContextWithAuthentication custom property is not set to true, the application server
will provide an implementation of reusing DB2 trusted connections without authentication at run time. In
this case you are not required to provide anything to use the trusted context feature.

2. Use the login configuration for TrustedConnectionMapping, as described in the topic on enabling
trusted context for DB2 databases.

3. Extend the DataStoreHelper class, and provide the implementation for the
getPasswordForUseWithTrustedContextWithAuthentication method as described in the topic on
developing a custom DataStoreHelper class. At run time, the application server will call this method to
return the password that the application server is required to use to switch the trusted context identity
when you have enabled trusted context with authentication. The password that is returned by this
method will be sent to the database when the application server switches trusted context identities,
and the password will not be stored by the application server.

This application server only calls this method if the following is true:
* You set the useTrustedContextWithAuthentication data source custom property to true.
* You use the TrustedConnectionMapping login configuration.

The following is an example of the getPasswordForUseWithTrustedContextWithAuthentication method:

public String getPasswordForUseWithTrustedContextWithAuthentication(String identityname, String realm)
throws SQLException
{

return customersOwnUtility().getPassword(identityname) // customers use their own
// implementation to get the password
}

Note: You cannot enable the useTrustedContextWithAuthentication custom property for the data
source without overwriting the getPasswordForUseWithTrustedContextWithAuthentication
method in the DataStoreHelper class to get the password for switching the identity for trusted
connections. If you do not provide implementation for the

14 Securing WebSphere applications

getPasswordForUseWithTrustedContextWithAuthentication method, the application server will
throw an exception with the following message at run time:

TRUSTED_WITH AUTHENTICATION_ IMPLEMENTATION_ERROR=DSRA7033E: You cannot enable the
useTrustedContextWithAuthentication custom property for the data source without
overwriting the getPasswordForUseWithTrustedContextWithAuthentication DataStoreHelper.
TRUSTED_WITH_AUTHENTICATION_ IMPLEMENTATION ERROR.explanation=The
useTrustedContextWithAuthentication custom property is enabled, but the implementation
code for the DataStoreHelper method that will return the password that the application
server will use to switch the identity is not provided.

TRUSTED_WITH_ AUTHENTICATION IMPLEMENTATION ERROR.useraction=Overwrite the
getPasswordForUseWithTrustedContextWithAuthentication DataStoreHelper method and
provide the implementation code that will return the password, or set the
useTrustedContextWithAuthentication custom property for the data source to false.

Configuring the application server and DB2 to authenticate with

Kerberos

The Kerberos authentication mechanism may be used when both WebSphere Application Server and the
DB2 server are configured for Kerberos authentication. Kerberos authentication can provide single sign on
(SSO) end-to-end interoperable solutions and preserves the original requester identity.

Before you begin

In the application server, you can configure a DB2 data source, the application server, and your application
so that the DB2 data source and the application server interoperate using delegated Kerberos credentials
in an end-to-end manner for database access by the application. In order to take advantage of DB2
Kerberos authentication using delegated credentials from the application server, referred to in this topic as
option 1, you need to configure both DB2 and the application server to use Kerberos as the authentication
mechanism. See the topic, “Kerberos (KRB5) authentication mechanism support for security” to learn how
to set up Kerberos as the authentication mechanism in this version of the application server.

The XARecovery and TestConnection facilities of the application server are not able to supply delegated
Kerberos credentials to the data source. There might also be situations where the application server
security component is unable to supply delegated Kerberos credentials for a given connection request. To
account for these cases you can configure a DB2 connection using Kerberos authentication referred to in
this topic as option 2. For this option, a user ID and password must be supplied to the JDBC driver that
the driver uses to obtain its own Kerberos credentials. To use this option, you must configure a J2C
authentication data alias on the application server which defines the user ID and password that the DB2
JDBC driver will use to request a Kerberos Ticket Granting Ticket (TGT). The TGT is used for Kerberos
authentication to a DB2 server. To the application server, this looks much like the typical user ID and
password authentication.

You must use a DB2 JDBC driver that supports Kerberos authentication and is operating in type 4 mode.
The supported JDBC drivers are:

* IBM Data Server Driver for JDBC and SQLJ (identified in the application server as DB2 using IBM JCC
Driver)

« IBM DB2 JDBC Universal Driver Architecture (identified in the application server as DB2 Universal
JDBC Driver Provider)

About this task

Use the following steps to configure the application server and DB2 to authenticate with Kerberos:

Chapter 2. Securing Data access resources 15

Procedure

1. Configure the DB2 Server for Kerberos authentication. Refer to DB2 Kerberos security documentation
in the DB2 information center, for example, the topic “Kerberos authentication details”. Another helpful
reference is “DB2 UDB Security, Part 6” that is located on the IBM developerWorks website. Verify that
DB2 Kerberos authentication is working.

2. Configure the application server to use Kerberos security. See the topic “Configuring Kerberos as the
authentication mechanism using the administrative console”. Verify that application server Kerberos
authentication is working.

3. Configure the DB2 data source in the application server to use Kerberos authentication. There are two
steps to complete this task, you need to configure the resource adapter in the application server to
pass Kerberos credentials and password credentials to the JDBC driver and secondly, you need to
configure the JDBC driver to use Kerberos authentication when connecting to the DB2 server. For
more information on completing these steps, see the topic “Configuring a data source using the
administrative console”.

Table 2. Custom properties and values. When configuring the DB2 data source, you must pay particular attention to
the security settings and the custom properties.

Name Value

kerberosServerPrincipal user@REALM
Note: This property is optional except when connecting
to a DB2 server that is running on a z/OS platform (as of |Of

DB2 for LUW, v8 FP11).
) service_name/hostname @ REALM

SecurityMechanism 11
Note: A value for this property of 11, indicates that the
JDBC driver needs to use Kerberos authentication when
connecting to the DB2 server.

a. For option 2, you should configure the “Mapping-configuration alias” to “DefaultPrincipalMapping”,
or another login configuration which does not generate GSSCredentials, and set the
“Container-managed authentication alias” to reference an alias to use for Kerberos login by the
JDBC driver. The testConnection facility also uses this alias if no component-managed
authentication alias is configured.

b. For option 1, delegated Kerberos credentials, you should configure the “Mapping-configuration
alias” to “KerberosMapping”. This will indicate that the resource adapter in the application server
should provide delegated credentials to the DB2 JDBC driver. The testConnection facility and XA
transaction recovery facility are not able to supply delegated Kerberos credentials, but can revert to
option 2 authentication. If you do not need those features, you can select none for each of the
authentication aliases. If testConnection is used and a valid authentication alias is configured, an
informational message, DSRA82211, is logged. This message indicates that testConnection is not
able to offer Kerberos credentials. If no alias is configured, then testConnection fails with a
Kerberos invalid credentials error reported by the JDBC driver.

Important: If KerberosMapping is configured, but the security component is unable to provide
Kerberos credentials for a particular connection request, the resource adapter can be
configured to revert to connection authentication using Default Principle Mapping. To
configure this fallback, select an alias from the container-managed authentication alias
list. To disable this fallback, select none from the container-managed authentication
alias list.

4. To enable Kerberos mapping (option 1), you also must specify container-managed authentication. To
specify container-managed authentication, the application must use a resource reference to lookup the
data source The resource reference must specify KerberosMapping as the login configuration. If a
login configuration is specified for a resource reference, then for application access through that

16 Securing WebSphere applications

resource reference, the specified login configuration takes precedence over the mapping-configuration
alias value specified on the data source. A container-managed authentication alias can also be
specified on the resource reference.

Configuring data access security

Safeguard access to your enterprise data by designating credentials that WebSphere Application Server
uses to authenticate database connections.

Before you begin

Review the history and roles of the database tables in your environment; this information helps you
determine the best approach for securing each table. You can either rely on the default authentication
mechanism of a user profile, or override it by configuring a security scheme for the individual application
component that requires access to the database. Generally, consider overriding the default profile security
if your database tables were created prior to the Application Server installation, or if programs outside of
Application Server also access the tables.

About this task

To authenticate database connections with user profile credentials, use an existing profile from any of
three scopes in your application serving environment. Otherwise, consult the following Application
component authentication table for methods of overriding user profile settings.

Procedure

» System-level scope option: Change the default user profile of WebSphere Application Server to an
existing profile in your IBM i system that has authority to access the database tables.

* WebSphere Application Server instance scope option: Add authority for accessing the tables to the
default Application Server user profile.

» Individual application server scope option: If you designated a user profile for an individual application
server that is different from the profile of the entire WebSphere Application Server instance, add
database authority to that new user profile.

For database tables that are created by WebSphere Application Server and are used only within the
Application Server environment, you generally do not need to change or override the default security.
You can simply add authority for accessing the database to the WebSphere Application Server user
profile.

» Overriding user profile credentials: In the following table, locate the type of application component for
which you need to create authentication credentials. Choose a method from the Authentication
strategies column.

Table 3. Application component authentication. Consult the following application component authentication table for
methods of overriding user profile settings.

Type of object that
requires access to
backend data

The data is created by: Library

By default, QWASBSN.

Authentication strategies

Servlet session WebSphere Application

Server

By default, the user profile

Specify a different library by
editing the libraries custom
property in the Session
Manager persistence panel.

under which the application
server runs. Specify a
different library by editing
the libraries custom
property in the Session
Manager persistence panel.

Chapter 2. Securing Data access resources 17

Table 3. Application component authentication (continued). Consult the following application component
authentication table for methods of overriding user profile settings.

Type of object that
requires access to
backend data

The data is created by:

Library

Authentication strategies

Entity enterprise beans that
use container managed
persistence (CMP)

WebSphere Application
Server or already exists

User-defined

By default, the user profile
under which the application
server runs. Specify a
different user profile by
creating a JAAS alias for
the enterprise bean data
source. See the topic
[FCreating JAAS aliases’|
[note] that follows this table
for more information.

User-written data access
code in servlets, session
beans, and entity beans
with bean-managed
persistence (BMP), which
might use connection
pooling

WebSphere Application
Server, user code, or
already exists

User-defined

By default, the user profile
under which the application
server runs. Specify a
different user profile by
modifying the user code to
explicitly use a user ID and
password with the database
connection. Alternatively,
you can create a JAAS
alias for the data source
that you configure for your

servlet or enterprise bean.
See the f‘Creating JAAS|
|a|iases” note| that follows

this table for more
information.

Creating JAAS aliases:

1. Consult the topic, Managing Java 2 Connector Architecture authentication
data entries, article for instruction on creating a JAAS alias.

2. After following those steps, navigate to the relevant data source properties
page in the administrative console: Resources > Data sources >

my_data_source.

3. Designate the new JAAS credentials as the component-managed alias for

the data source.

4. Restart the application server for the new security configuration to take

effect.

Hierarchy of authentication strategies: If you use component-specific authentication, be aware that
some authentication strategies take precedence over others:

Enterprise bean
You can specify a data source for the enterprise bean
and create a JAAS alias for association with that data
source. The user ID and password properties of the
alias control which user ID can access the tables that
are defined by the data source. The JAAS alias that
you associate with the enterprise bean data source
takes precedence over both the application server
user ID and the ID of the EJB container data source.
If you specify a data source for the enterprise bean

18 Securing WebSphere applications

but do not specify a JAAS alias for it, your IBM i
system uses the application server ID. The
application server ID is the default, regardless of
whether you specified a data source for the EJB
container.

EJB container
You can specify a data source for the EJB container
and create a JAAS alias for association with that data
source. The user ID and password properties of the
alias control which user ID can access the tables that
are defined by the data source. The JAAS alias that
you associate with the EJB container data source
takes precedence over the application server user ID.
However, if you do not specify a JAAS alias for the
EJB container data source, your IBM i system uses
the application server ID to authenticate access to the
database tables.

Application server
The application server runs under the user ID that is
specified in the USER ID property for the application
server. Any database tables that are accessed should
allow access to the specified user ID. By default, the
application server runs under the QEJBSVR user
profile. Therefore, the database tables must allow
access to the QEJBSVR user profile.

Chapter 2. Securing Data access resources 19

20 Securing WebSphere applications

Chapter 3. Securing EJB applications
This page provides a starting point for finding information about enterprise beans.
Based on the Enterprise JavaBeans (EJB) specification, enterprise beans are Java components that

typically implement the business logic of Java 2 Platform, Enterprise Edition (J2EE) applications as well as
access data.

Securing Enterprise JavaBeans applications

Securing enterprise bean applications

You can protect enterprise bean methods by assigning security roles to them. Before you assign security
roles, you need to know which Enterprise JavaBeans (EJB) methods need protecting and how to protect
them.

About this task

You can assign a set of EJB methods to a set of roles. When an EJB method is secured by associating a
set of roles, grant at least one role in that set so that you can access that method. To exclude a set of EJB
methods from access, mark the set excluded. You can give everyone access to a set of enterprise beans
methods by clearing those methods. You can run enterprise beans as a different identity, using the runAs
identity, before invoking other enterprise beans.

Note: This procedure might not match the steps that are required when using your assembly tool, or
match the version of the assembly tool that you are using. You should follow the instructions for the
tool and version that you are using. For more information about using assembly tools see the
assembly tool information center.

To secure enterprise bean applications, follow these steps:

Procedure

1. In an assembly tool, import your Enterprise JavaBeans (EJB) Java Archive (JAR) file or an application
archive (EAR) file that contains one or more web modules.

See the information about importing an EJB JAR file or importing an enterprise application EAR file in
the Rational Application Developer documentation.

2. In the Project Explorer, click EJB Projects directory and click the name of your application.

3. Right-click the deployment descriptor and click Open with > Deployment Descriptor Editor. If you
selected an enterprise bean . jar file, an EJB deployment descriptor editor opens. If you select an
application .ear file, an application deployment descriptor editor opens. To see online information
about the editor, press F1 and click the editor name.

4. Create security roles. You can create security roles at the application level or at the EJB module level.
If you create a security role at the EJB module level, the role displays in the application level. If a
security role is created at the application level, the role does not display in all the EJB modules. You
can copy and paste one or more EJB module security roles that you create at application level:

* Create a role at an EJB module level. In an EJB deployment descriptor editor, click the Assembly
tab. Under Security Roles, click Add. In the Add Security Role wizard, name and describe the
security role and click Finish.

» Create a role at the application level. In an application deployment descriptor editor, select the
Security tab. Under the list of security roles, click Add. In the Add Security Role wizard, name and
describe the security role; then click Finish.

5. Create method permissions. Method permissions map one or more methods to a set of roles. An
enterprise bean has four types of methods: home methods, remote methods, LocalHome methods and

© Copyright IBM Corp. 2012 21

local methods. You can add permissions to enterprise beans on the method level. You cannot add a
method permission to an enterprise bean unless you already have one or more security roles defined.
For Version 2.0 EJB projects, an unselected option specifies that the selected methods from the
selected beans do not require authorization to run. To add a method permission to an enterprise bean:

a. On the Assembly tab of an EJB deployment descriptor editor, under Method Permissions, click
Add. The Add Method Permission wizard is opened.

b. Select a security role from the list of roles found and click Next.

c. Select one or more enterprise beans from the list of beans found. You can click Select All or
Deselect All to select or clear all of the enterprise beans in the list. Click Next.

d. Select the methods that you want to bind to your security role. The Method elements page lists all
the methods that are associated with the enterprise beans. You can click Apply to All or Deselect
All to quickly select or clear multiple methods. The selection affects the default (*) method for each
bean only. Creating a method permission for the exact method signature overrides the default (*)
method permission setting. The default (*) method represents all the methods within the bean.
There are default (*) methods for each interface as well. By not selecting all of the individual
methods in the tree, you can set other permissions on the remaining methods.

e. Click Finish.

After the method permission is created, you can see the new method permission in the tree. Expand
the tree to see the bean and the methods that are defined in the method permission.

6. Exclude user access to methods. Users cannot access excluded methods. Any method in the
enterprise beans that is not assigned to a role or that is not excluded, is cleared during the application
installation by the deployer.

a. On the Assembly tab of an EJB deployment descriptor editor, under Excludes List, click Add.
The Exclude List wizard is opened.

b. Select one or more enterprise beans from the list of beans found and click Next.
c. Select one or more of the method elements for the security identity and click Finish.

7. Map the security-role-ref and role-name to the role-link. When developing enterprise beans, you can
create the security-role-ref element. The security-role-ref element contains only the role-name field.
The role-name field determines if the caller is in a specified role(isCallerinRole()) role and contains the
name of the role that is referenced in the code. Because you create security roles during the assembly
stage, the developer uses a logical role name in the role-name field and provides enough information
in the Description field for the assembler to map the actual role (role-link). The security-role-ref
element is located at the EJB level. Enterprise beans can have zero or more security-role-ref elements.

a. On the Reference tab of an EJB deployment descriptor editor, under the list of references, click
Add. The Add Reference wizard is opened.

Select Security role reference and click Next.

Name the security role reference, select a security role to link the reference to, describe the
security role reference, and click Finish.

d. Map every role-name that is used during development to the role (role-link) using the previous
steps.

8. Specify the RunAs identity for enterprise bean components. The RunAs identity of the enterprise bean
is used to invoke the next enterprise beans in the chain of EJB invocations. When the next enterprise
beans are invoked, the RunAsldentity identity passes to the next enterprise beans for performing an
authorization check on the next enterprise bean. If the RunAs identity is not specified, the client identity
is propagated to the next enterprise bean. The RunAs identity can represent each of the enterprise
beans or can represent each method in the enterprise beans.

a. On the Access tab of an EJB deployment descriptor editor, next to the Security Identity (Bean
Level) field, click Add. The Add Security Identity wizard is opened.

b. Select the appropriate run as mode, describe the security identity, and click Next. Select the Use
identity of caller mode to instruct the security service to not make changes to the credential
settings for the principal. Select the Use identity assigned to specific role (below) mode to use

22 Securing WebSphere applications

a principal that is assigned to the specified security role for running the bean methods. This
association is part of the application binding in which the role is associated with the user ID and
password of a user who is granted that role. If you select the Use identity assigned to specific
role (below) mode , you must specify a role name and role description.

c. Select one or more enterprise beans from the list of beans found and click Next. If Next is
unavailable, click Finish.

d. Optional: On the Method elements page, select one or more of the method elements for the
security identity and click Finish.

9. Close the deployment descriptor editor and, when prompted, click Yes to save the changes.
Results

After securing an EJB application, the resulting . jar file contains security information in its deployment
descriptor. The security information of the EJB modules is stored in the ejb-jar.xml file.

What to do next
After securing an EJB application using an assembly tool, you can install the EJB application using the

administrative console. During the installation of a secured EJB application, follow the steps in the topic,
Deploying secured applications, to complete the task of securing the EJB application.

Chapter 3. Securing EJB applications

23

24 securing WebSphere applications

Chapter 4. Securing Messaging resources

This page provides a starting point for finding information about the use of asynchronous messaging
resources for enterprise applications with WebSphere Application Server.

WebSphere Application Server supports asynchronous messaging based on the Java Message Service
(JMS) and the Java EE Connector Architecture (JCA) specifications, which provide a common way for
Java programs (clients and Java EE applications) to create, send, receive, and read asynchronous
requests, as messages.

JMS support enables applications to exchange messages asynchronously with other JMS clients by using
JMS destinations (queues or topics). Some messaging providers also allow WebSphere Application Server
applications to use JMS support to exchange messages asynchronously with non-JMS applications; for
example, WebSphere Application Server applications often need to exchange messages with WebSphere
MQ applications. Applications can explicitly poll for messages from JMS destinations, or they can use
message-driven beans to automatically retrieve messages from JMS destinations without explicitly polling
for messages.

WebSphere Application Server supports the following messaging providers:

* The WebSphere Application Server default messaging provider (which uses service integration as the
provider).

* The WebSphere MQ messaging provider (which uses your WebSphere MQ system as the provider).

» Third-party messaging providers that implement either a JCA Version 1.5 resource adapter or the ASF
component of the JMS Version 1.0.2 specification.

Securing messaging

The steps to take to secure asynchronous messaging.
About this task

Security for messaging is enabled only when WebSphere Application Server administrative security is
enabled. In this case:

« JMS connections made to a messaging provider are authenticated.
» Access to JMS resources owned by a messaging provider is controlled by access authorizations.

* Requests to create new connections to a messaging provider must include a user ID and password for
authentication.

* The user ID and password do not have to be provided by the application.

Standard Java EE Connector Architecture (JCA) authentication is used for a request to create a new
connection to a messaging provider. If authentication is successful, the JMS connection is created; if
authentication fails, the connection request is ended.

Notes:

» User IDs that are longer than 12 characters cannot be used for authentication with a
WebSphere MQ network. For example, the default Windows NT user ID “Administrator” is not
valid for use in this context because it contains 13 characters.

* To enable the WebSphere MQ messaging provider to connect in bindings transport mode to
WebSphere MQ, you set theTransport type parameter on the WebSphere MQ queue
connection factory to BINDINGS, and you [configure the WebSphere MQ messaging provider with|
Inative libraries information|

IIITE You must also choose one of the following options:

© IBM Corporation 2009 25

— If you are using security credentials (user ID and password), ensure that the user specified
is the current logged-on user for the WebSphere Application Server process, otherwise the
following WebSphere MQ JMS Bindings authentication exception message is generated:
MQJIMS2013 invalid security authentication supplied for MQQueueManager.

— If you are not using security credentials, ensure that neither the Component-managed
Authentication Alias nor the Container-managed Authentication Alias properties are set
on the connection factory.

To secure your asynchronous messaging, complete one or more of the following steps:

Procedure

¢ |Enable securit

» Use JCA authentication to create a new connection to the messaging provider.

If the resource authentication (res-auth) property is set to Application, set the Component-managed
Authentication Alias property on the connection factory. If the application that tries to create a
connection to the messaging provider specifies a user ID and password, those values are then used to
authenticate the creation request. Otherwise, the values defined by the Component-managed
Authentication Alias property are used. If you do not set the Component-managed Authentication
Alias property on the connection factory, a runtime JMS exception message is generated when an
attempt is made to connect to the messaging provider.

» Authorize access to messages stored by the default messaging provider.

Access to these messages is controlled by authorization to access the service integration bus
destinations on which the messages are stored. For information about authorizing permissions for
individual bus destinations, see[‘Administering destination roles” on page 56.

« [Configure security for message-driven beans that use listener ports|

Complete this step if you are working with a message-driven bean and are configuring a
message-driven bean listener under the Message Listener Service.

Configuring security for message-driven beans that use activation
specifications
Use this task to configure resource security and security permissions for message-driven beans.

About this task

Messages handled by message-driven beans have no client credentials associated with them. The
messages are anonymous.

To call secure enterprise beans from a message-driven bean, the message-driven bean needs to be
configured with a RunAs Identity deployment descriptor. Security depends on the role specified by the
RunAs Identity for the message-driven bean as an EJB component.

For more information about EJB security, see [EJB component securityl For more information about
configuring security for your application, see |Assemb|ing secured applicationsl.

Connections used by message-driven beans can benefit from the added security of using JCA
container-managed authentication. To enable the use of JCA container authentication aliases and
mapping, define an authentication alias on the activation specification that the message-driven bean is
configured with. If defined, the message-driven bean uses the authentication alias for its JMSConnection
security credentials instead of any application-managed alias.

To set the authentication alias, you can use the administrative console to complete the following steps.

This task description assumes that you have already created an activation specification. If you want to
create a new activation specification, see the related tasks.

26 Securing WebSphere applications

Procedure

* For a message-driven bean listening on a JMS destination of the default messaging provider, set the
authentication alias on an activation specification.

1. To display a list of existing JMS activation specifications, navigate to the following administrative
console collection panel: Resources > JMS->Activation specifications

2. If you have already created a JMS activation specification, click its name in the list displayed.
Otherwise, click New to create a new JMS activation specification.

3. Set the Authentication alias property.
4. Click OK
5. Save your changes to the master configuration.
» For a message-driven bean listening on a destination (or endpoint) of third-party JCA 1.5-enabled
provider, set the authentication alias on an activation specification.
1. To display the activation specification settings, click Resources > Resource Adapters > J2C
activation specifications > activation_specification_name
2. Set the Authentication alias property.
3. Click OK

4. Save your changes to the master configuration.

Configuring security for message-driven beans that use listener ports

For non-Java EE Connector Architecture (JCA) messaging providers, the association between connection
factories, destinations, and message-driven beans is provided by listener ports. In this case, you can
configure resource security and security permissions for message-driven beans by setting the
container-managed alias. The MDB listener's security information is established when the MDB listener's
JMS Connection is created.

Before you begin
A listener port allows a deployed message-driven bean associated with the port to retrieve messages from

the associated destination. For more information about listener ports, see [Message-driven beans - listener|
[oort components]|

Note: For WebSphere Application Server Version 7 and later, listener ports are stabilized. For more
information, read the article on stabilized features. You should plan to migrate your WebSphere MQ
message-driven bean deployment configurations from using listener ports to using activation
specifications. However, you should not begin this migration until you are sure the application does
not have to work on application servers earlier than WebSphere Application Server Version 7. For
example, if you have an application server cluster with some members at Version 6.1 and some at
a later version, you should not migrate applications on that cluster to use activation specifications
until after you migrate all the application servers in the cluster to the later version.

About this task

In most respects, the security for an MDB is identical to security for any other enterprise bean. For
instance, access to JDBC resources and JCA resources (for example CICS®, IMS™) is handled in the
same way as for an entity or session bean. Access to other JMS resources is also handled in the same
way as for other enterprise beans.

To secure an MDB which has been deployed on a listener port, you configure authentication and

authorization for the server to connect to a JMS provider and a destination so that a message can be
retrieved from the destination for processing by the onMessage () method of the MDB.

Chapter 4. Securing Messaging resources 27

With some MDBs, the onMessage() method attempts to access additional JMS resources after the initial
JMS connection has been made. In this case, security is handled identically to JMS calls made by an
entity or session EJB.

The security information for an MDB which has been deployed onto a listener port is required when the
initial JMS connection is created. When an MDB is deployed on a listener port, the security information for
the MDB is determined by the values specified for the connection factory which the listener port is using.
The user ID that is used by the listener port to create the JMS connection, is determined by the type of
authentication alias which has been specified on the queue connection factory:

1. If a container-managed alias has been defined for the connection factory, the user ID associated with
the container-managed alias is used in the connection creation call, for example
createQueueConnection(userid,password).

2. If a component-managed alias has been defined for this connection factory, the user ID associated
with the component-managed alias is used for the connection creation call.

3. If neither alias is specified and the connection factory is defined in bindings mode (that is,
TransportType = "BINDINGS"), the server identity is used.

Note: The authentication aliases referred to here are the authentication aliases associated with the
connection factory defined by the administrator. No application resource reference is associated
with the MDB or the listener port, therefore no authentication alias must be set at that level.

To set the container-managed alias (if you elect that option), use the administrative console to complete
the following steps:

Procedure

1. Display the listener port settings, by clicking Servers > Server Types > WebSphere application
servers > application_server > [Communications] Messaging > Message listener service >
[Additional properties] Listener ports > listener_port

2. Get the name of the JMS connection factory, by looking at the connection factory JNDI name property.

3. Display the JMS connection factory properties. For example, to display the properties of a queue
connection factory, click Resources > JMS->Queue connection factories-
>queue_connection_factory.

4. Set the “Container-managed authentication alias” property.

5. Click OK

What to do next

Invoking other EJBs

Messages arriving at a listener port have no client credentials associated with them. The messages are
anonymous. To call secure enterprise beans from a message-driven bean, the message-driven bean must

be configured with a RunAs Identity deployment descriptor. Security depends on the role specified by the
RunAs Identity for the message-driven bean as an EJB component.

For more information about EJB security, see |“Securing enterprise bean applications” on page 21| For
more information about configuring security for your application, see [‘Securing applications during
|assemb|y and deployment” on page 112.|

28 Securing WebSphere applications

Chapter 5. Securing Mail, URLs, and other Java EE resources

This page provides a starting point for finding information about resources that are used by applications
that are deployed on a Java Enterprise Edition (Java EE)-compliant application server. They include:

» JavaMail support for applications to send Internet mail
* URLs, for describing logical locations
* Resource environment entries, for mapping logical names to physical names

» Java DataBase Connectivity (JDBC) resources and other technology for data access (discussed
elsewhere)

» Java Message Service (JMS) resources and other messaging system support (discussed elsewhere)

Securing applications that use the JavaMail API

JavaMail API security permissions best practices

In many of its activities, the JavaMail API needs to access certain configuration files. The JavaMail and
JavaBeans Activation Framework binary packages themselves already contain the necessary configuration
files. However, the JavaMail API allows the user to define user-specific and installation-specific
configuration files to meet special requirements.

The two locations where you can place these configuration files are the <user.home> and <java.home>/11ib
directories. For example, if the JavaMail API needs to access a file named mailcap when it sends a
message, the API:

1. Tries to access <user.home>/mailcap.

2. If the first attempt fails due to a lack of security permission or a nonexistent file, the API searches in
<java.home>/1ib/mailcap.

3. If the second attempt also fails, the API searches in the META-INF/mailcap location in the class path.
This location actually leads to the configuration files contained in the mail-impl.jar and
activation-impl.jar files.

Application Server uses JavaMail API configuration files that are contained in the mail-impl.jar and
activation-impl.jar files, and there are no mail configuration files in <user.home> and <java.home>/11ib
directories. To ensure proper functioning of the JavaMail API, Application Server grants file read
permission for both the mail-impl.jar and activation-impl.jar files to all of the installed applications.

JavaMail code attempts to access configuration files at <user.home> and <java.home>/11ib, which can
cause an access control exception to be thrown, since the default configuration does not grant file read
permission for those two locations by default. This activity does not affect the proper functioning of the
JavaMail API, but you might see a large amount of mail-related security exceptions reported in the system
log, and these errors could overshadow harmful errors for which you are looking. This is a sample of the
security message, SECJ0314W:

[62/31/08 12:55:38:188 PDT] 00000058 SecurityManag W SECJO314W: Current Java 2 Security policy reported a
potential violation of Java 2 Security Permission.
Please refer to Problem Determination Guide for further information.
Permission:

D:\0063919\java\jre\lib\javamail.providers : access denied (java.io.FilePermission
D:\0063919\java\jre\lib\javamail.providers read)
Code:

com.ibm.ws.mail.SessionFactory in {file:/D:/0063919/1ib/runtime.jar}

Stack Trace:

© IBM Corporation 2009 29

java.security.AccessControlException: access denied (java.io.FilePermission D:\0063919\java\jre\lib\javamail.providers read)
at java.security.AccessControlContext.checkPermission(AccessControlContext.java(Compiled Code))
at java.security.AccessController.checkPermission(AccessController.java(Compiled Code))

at java.lang.SecurityManager.checkPermission(SecurityManager.java(Compiled Code))

at com.ibm.ws.security.core.SecurityManager.checkPermission(SecurityManager.java(Compiled Code))
at java.lang.SecurityManager.checkRead(SecurityManager.java(Compiled Code))

at java.io.FileInputStream.<init>(FileInputStream.java(Compiled Code))

at java.io.FileInputStream.<init>(FileInputStream.java:89)

at javax.mail.Session.loadFile(Session.java:1004)

at javax.mail.Session.loadProviders(Session.java:861)

at javax.mail.Session.<init>(Session.java:191)

at javax.mail.Session.getInstance(Session.java:213)

at com.ibm.ws.mail.SessionFactory.getObjectInstance(SessionFactory.java:67)

at javax.naming.spi.NamingManager.getObjectInstance(NamingManager.java:314)

at com.ibm.ws.naming.util.Helpers.processSerializedObjectForLookupExt (Helpers.java:894)

at com.ibm.ws.naming.util.Helpers.processSerializedObjectForLookup(Helpers.java:701)

at com.ibm.ws.naming.jndicos.CNContextImpl.processResolveResults(CNContextImpl.java:1937)

at com.ibm.ws.naming.jndicos.CNContextImpl.doLookup(CNContextImpl.java:1792)

at com.ibm.ws.naming.jndicos.CNContextImpl.doLookup(CNContextImpl.java:1707)

at com.ibm.ws.naming.jndicos.CNContextImpl.lookupExt(CNContextImpl.java:1412)

at com.ibm.ws.naming.jndicos.CNContextImpl.lookup(CNContextImpl.java:1290)

at com.ibm.ws.naming.util.WsnInitCtx.lookup(WsnInitCtx.java:145)

at javax.naming.InitialContext.lookup(InitialContext.java:361)

at emailservice.com.onlinebank.bpel.EmailService20060907T224337EntityAbstractBase$JSE 6.
execute(EmailService20060907T7224337EntityAbstractBase.java:32)

at com.ibm.bpe.framework.ProcessBase6.executeJavaSnippet (ProcessBase6.java:256)

at emailservice.com.onlinebank.bpel.EmailService20060907T224337EntityBase.invokeSnippet
(EmailService20060907T224337EntityBase.java:40)

Note: If this situation is a problem, consider adding more read access permissions for more locations.
This should eliminate most, if not all, JavaMail-related harmless security exceptions from the log
file.

The permissions required by JavaMail are as follows:

grant codeBase "file:${application}" {
// Allow access to default configuration files

permission java.io.FilePermission "${java.home}${/}jre${/}1ib${/}javamail.address.map", "read";

permission java.io.FilePermission "${java.home}${/}jre${/}1ib${/}javamail.providers", "read";

permission java.io.FilePermission "${java.home}${/}jre${/}1ib${/}mailcap", "read";

permission java.io.FilePermission "${java.home}${/}1ib${/}javamail.address.map", "read";

permission java.io.FilePermission "${java.home}${/}1ib${/}javamail.providers", "read";

permission java.io.FilePermission "${java. home}$(/}1ib${/}ma11cap", "read";

permission java.io.FilePermission "${user.home}${/}.mailcap", "read";

permission java.io.FilePermission "§{was.install. root}${/}11b${/}act1vat1on 1mp1 Jar" "read";
{

permission java.io.FilePermission "${was.install.root}${/}1ib${/}mail-impl.jar", "read";

permission java.io.FilePermission "${was. 1nsta11.root}${/}p1ugins${/}com.1bm.ws.prereq.javama11.jar“, "read";
// 1f using an isolated mail provider,

// add additional file read permissions for each jar defined

// for the isolated mail provider

// permission java.io.FilePermission "path${/}mail.jar, "read";

// Allow connection to mail server using SMTP
permission java.net.SocketPermission "*:25", "connect,resolve";
// Allow connection to mail server using SMTPS
permission java.net.SocketPermission "*:465", "connect,resolve";

// Allow connection to mail server using IMAP
permission java.net.SocketPermission "*:143", "connect,resolve";
// Allow connection to mail server using IMAPS
permission java.net.SocketPermission "%:993", "connect,resolve";

// Allow connection to mail server using POP3

permission java.net.SocketPermission "*:110", "connect,resolve";
// Allow connection to mail server using POP3S

permission java.net.SocketPermission "*:995", "connect,resolve";

// Allow System.getProperties() to be used

// permission java.util.PropertyPermission "*", "read,write";

// Otherwise use the following to allow system properties to be read
permission java.util.PropertyPermission "*", "read";

30 Securing WebSphere applications

Chapter 6. Securing OSGi applications

Securing OSGi applications is very similar to securing enterprise applications. For most security
frameworks, no additional steps are required. For Java 2 security, there is some optional extra
configuration that is specific to OSGi Applications.

About this task

For most security frameworks that are supported by WebSphere Application Server, configuring security for
OSGi applications requires no additional steps to those that are required for enterprise applications. For
example: If you enable security, and you add a secure asset, you must specify a target server that is in
the global security domain. This requirement is the same whether the asset is an enterprise application or
an OSGi application.

For application security with OSGi applications, you can modify the security role to user or group mapping
when you add the asset to the business-level application.

For Java 2 security in enterprise applications, you set permissions at the application level. For OSGi
applications, you can also set Java 2 security permissions at the bundle level. To support this finer-grained
security, there are extra configuration steps that you can complete when you create an OSGi application,
when you migrate an enterprise application to an OSGi application, and when you add an enterprise
bundle archive (EBA) asset to a business-level application.

Procedure
» Use application security with OSGi applications.

Application security controls which users may access which parts of the application. For more
information, see |Application security]

Modify the security role to user or group mapping.

You can modify this mapping when you add the asset to the business-level application as a
composition unit. For more information, see |Adding an EBA asset to a composition unit by using the]
[administrative console} [Adding an EBA asset to a composition unit by using wsadmin commands}
and[Security role to user or group mapping [Settings]

— Use application security with web application bundles (WABSs).

You secure WABSs in the same way that you secure web applications in Java EE. Application security
enforces any security constraints that are defined in the web.xm1 file for a WAB. When a web client
tries to access a protected resource, the client is prompted for authentication.

— Configure bean security in the Blueprint XML file.

You can configure bean security in the Blueprint XML file of your OSGi applications, so that the
methods of the bean can be accessed only by users that are assigned a specified role. You can
configure bean-level security, so that a single role is associated with all the methods of the bean, or
you can configure method-level security, where different roles are associated with specific methods.

— Use application security with EJB bundles.

You secure enterprise beans in EJB bundles in the same way that you secure enterprise beans in
Java EE. Application security enforces any bean method security settings that are defined in the
ejb-jar.xml file for an EJB bundle.

» Use Java 2 security with OSGi applications.
Java 2 security controls access to protected system resources from the application.
— Learn about using Java 2 security with OSGi applications.

Using Java 2 security in OSGi applications is very similar to using Java 2 security in enterprise
applications. For more information about Java 2 security in enterprise applications, see

© Copyright IBM Corp. 2012 31

For an overview of the main differences when you use Java 2 security in an OSGi
application, see Java 2 security and OSGi Applications| This topic describes the following
differences:

- The format and locations of the permissions.perm files in an OSGi application.

- The relationship between application-level permissions.perm files in OSGi applications and
was.policy files in enterprise applications.
- The default permissions that apply to every OSGi application, in addition to any that are provided
through a permissions.perm file.
— Configure Java 2 security for your OSGi application.
1. Create permissions.perm files. For more information, see|Java 2 security and OSGi Applications|.
2. Check the security permissions. The security permissions are displayed when you import the
OSGi application as an asset. For more information, see [Deploying an OSGi application as]
lousiness-level application]
— Migrate Java 2 security settings as part of migrating an enterprise application to an OSGi application.
When you convert an application from Java EE to OSGi, any existing was.policy file is converted
into a permissions.perm file to be used with the OSGi permissions framework, and all permissions
are promoted to the application level. If you need finer granularity, you can modify the file after
conversion. For more information, see Java 2 security and OSGi Applications] and |[Converting an|
[enterprise application to an OSGi application.

32 Securing WebSphere applications

Chapter 7. Securing Portlet applications

This page provides a starting point for finding information about portlet applications, which are special
reusable Java servlets that appear as defined regions on portal pages. Portlets provide access to many
different applications, services, and web content.

Portlet URL security

Portlet URL security

WebSphere Application Server enables direct access to portlet Uniform Resource Locators (URLSs), just
like servlets. This section describes security considerations when accessing portlets using URLs.

For security purposes, portlets are treated similar to servlets. Most portlet security uses the underlying
servlet security mechanism. However, portlet security information resides in the portlet.xml file, while the
servlet and JavaServer Pages files reside in the web.xml file. Also, when you make access decisions for
portlets, the security information, if any, in the web.xm1 file is combined with the security information in the
portlet.xml file.

Portlet security must support both programmatic security, that is isUserInRole, and declarative security.
The programmatic security is exactly the same as for servlets. However, for portlets, the isUserInRole
method uses the information from the security-role-ref element in portlet.xml. The other two methods
used by programmatic security, getRemoteUser and getUserPrincipal, behave the same way as they do
when accessing a servlet. Both of these methods return the authenticated user information accessing the
portlet.

The declarative security aspect of the portlets is defined by the security-constraint information in the
portlet.xml file. This is similar to the security-constraint information used for the servlets in the web.xml
file with the following differences:

» The auth-constraint element, which lists the names of the roles that can access the resources, does not
exist in the portlet.xml file. The portlet.xml file contains only the user-data-constraint element, which
indicates what type of transport layer security (HTTP or HTTPS) is required to access the portlet.

* The security-constraint information in the portlet.xml file contains the portlet-collection element, while
the web.xm1 file contains the web-resource-collection element. The portlet-collection element contains
only a list of simple portlet names, while the web-resource-collection contains the url-patterns as well as
the HTTP methods that need protection.

The portlet container does not deal with the user authentication directly. For example, it does not prompt
you to collect the credential information. The portlet container must, instead, use the underlying servlet
container for the user authentication mechanism. As a result, there is no auth-constraint element in the
security-constraint information in the portlet.xml file.

In WebSphere Application Server, when a portlet is accessed using a URL, the user authentication is
processed based on the security-constraint information for that portlet in the web.xm1 file. This implies that
to authenticate a user for a portlet, the web.xml file must contain the security-constraint information for that
portlet with the relevant auth-constraints contained in it. If a corresponding auth-constraint for the portlet
does not exist in the web.xml file, it indicates that the portlet is not required to have authentication. In this
case, unauthenticated access is permitted just like a URL pattern for a servlet that does not contain any
auth-constraints in the web.xm1 file. An auth-constraint for a portlet can be specified directly by using the
portlet name in the url-pattern element, or indirectly by a url-pattern that implies the portlet.

Attention: You cannot have a servlet or JSP with the same name as a portlet for WebSphere Application
Server security to work with portlet.

© IBM Corporation 2009 33

The following examples demonstrate how the security-constraint information contained in the portlet.xml
and web.xml files in a portlet application are used to make security decisions for portlets. The
security-role-ref element, which is used for isUserInRole calls, is not discussed here because it is used the
same way for servlets.

In the examples later in this section (unless otherwise noted), there are four portlets (MyPortlet1,
MyPortlet2, MyPortlet3, MyPortlet4) defined in portlet.xml. The portlets are secured by combining the
information, if any, in the web.xm1 file when they are accessed directly through URLs.

All of the examples show the contents of the web.xml and portlet.xml files. Use the correct tools when
creating these deployment descriptor files as you normally would when assembling a portlet application.

Example 1: The web.xml file does not contain any security-constraint data

In the following example, the security-constraint information is contained in portlet.xml:

<security-constraint>
<display-name>Secure Portlets</display-name>
<portlet-collection>
<portlet-name>MyPortletl</portlet-name>
<portlet-name>MyPortlet3</portlet-name>
</portlet-collection>
<user-data-constraint>
<transport-guarantee>CONFIDENTIAL</transport-guarantee>
</user-data-constraint>

</security-constraint>

In this example, when you access anything under MyPortlet1 and MyPortlet3, and these portlets are
accessed using the unsecured HTTP protocol, you are redirected through the secure HTTPS protocol. The
transport-guarantee is set to use secure connections. For MyPortlet2 and MyPortlet4, unsecured (HTTP)
access is permitted because the transport-guarantee is not set. There is no corresponding
security-constraint information for all four portlets in the web.xm1 file. Therefore, all of the portlets can be
accessed without any user authentication and role authorization. The only security involved in this instance
is the transport-layer security using Secure Sockets Layer (SSL) for MyPortlet1 and MyPortlet3.

Table 4. Security constraints that are applicable to the individual portlets. The following table lists the security
constraints that are applicable to the individual portlets.

URL Transport Protection User Authentication Role Based Authorization
/MyPortlet1/* HTTPS None None
/MyPortlet2/* None None None
/MyPortlet3/* HTTPS None None
/MyPortlet4/* None None None

Example 2: The web.xml file contains portlet specific security-constraint data

In the following example, the security-constraint information that corresponds to the portlet is contained in
web.xml. The portlet.xml file is the same as that shown in the previous example.

<security-constraint id="SecurityConstraint_1">
<web-resource-collection id="WebResourceCollection_1">
<web-resource-name>Protected Area</web-resource-name>
<url-pattern>/MyPortletl/*</url-pattern>
<url-pattern>/MyPortlet2/*</url-pattern>
</web-resource-collection>
<auth-constraint id="AuthConstraint_1">
<role-name>Employee</role-name>
</auth-constraint>
</security-constraint>

The security-constraint information contained in the web.xm1 file in this example indicates that the user
authentication must be performed when accessing anything under the MyPortlet1 and MyPortlet2 portlets.

34 Securing WebSphere applications

When you attempt to access these portlets directly using URLs, and there is no authentication information
available, you are prompted to enter their credentials. After you are authenticated, the authorization check
is performed to see if you are listed in the Employee role. The user/group to role mapping is assigned
during the portlet application deployment. In the web.xm1 file previously listed, note the following:

» Because the web.xm1 file uses url-pattern, the portlet names have been modified slightly. MyPortlet1 is
now /MyPortlet1/*, which indicates that everything under the MyPortlet1 URL is protected. This matches
the information in the portlet.xml file because the security runtime code converts the portlet-name
element in the portlet.xml file to url-pattern (for example, MyPortlet1 to /MyPortlet1/*), even for the
transport-guarantee.

* The http-method element in the web.xm1 file is not used in the example because all HTTP methods must
be protected.

Table 5. Security constraints that are applicable to the individual portlets. The following table lists the new security
constraints that are applicable to the individual portlets.

URL Transport Protection User Authentication Role Based Authorization
MyPortlet1/* HTTPS Yes Yes (Employee)
MyPortlet2/* None Yes Yes (Employee)
MyPortlet3/* HTTPS None None

MyPortlet4/* None None None

Example 3: The web.xm1 file contains generic security-constraint data implying all portlets.

In the following example, the security-constraint information is contained in the web.xm1 file that
corresponds to the portlet. The portlet.xml file is the same as that shown in the first example.

<security-constraint id="SecurityConstraint_1">

<web-resource-collection id="WebResourceCollection_1">
<web-resource-name>Protected Area</web-resource-name>
<url-pattern>/*</url-pattern>
</web-resource-collection>

<auth-constraint id="AuthConstraint_1">
<role-name>Manager</role-name>

</auth-constraint>

</security-constraint>

In this example, /* implies that all resources that do not contain their own explicit security-constraints
should be protected by the Manager role as per the URL pattern matching rules. Because the portlet.xml
file contains explicit security-constraint information for MyPortlet1 and MyPortlet3, these two portlets are
not protected by the Manager role, only by the HTTPS transport. Because the portlet.xml file cannot
contain the auth-constraint information, any portlets that contain security-contraints in it are rendered
unprotected when an implying URL (/* for example) is listed in the web.xm1 file because of the URL
matching rules.

In the previous case, both MyPortlet1 and MyPortlet3 can be accessed without user authentication.
However, because MyPortlet2 and MyPortlet4 do not have security-constraints in the portlet.xml file, the
/* pattern is used to match these portlets and are protected by the Manager role, which requires user
authentication.

Table 6. Security constraints that are applicable to the individual portlets. The following table lists the new security
constraints that are applicable to the individual portlets with this setup.

URL Transport Protection User Authentication Role Based Authorization
MyPortlet1/* HTTPS None None

MyPortlet2/* None Yes Yes (Manager)
MyPortlet3/* HTTPS None None

MyPortlet4/* None Yes Yes (Manager)

Chapter 7. Securing Portlet applications 35

If in the previous example, if you must also protect a portlet contained in the portlet.xml file (for example,
MyPortlet1), the web.xm1 file should contain an explicit security-constraint entry in addition to /* as shown
in the following example:

<security-constraint id="SecurityConstraint_1">
<web-resource-collection id="WebResourceCollection_1">
<web-resource-name>Protected Area</web-resource-name>
<url-pattern>/+</url-pattern>
</web-resource-collection>
<auth-constraint id="AuthConstraint_1">
<role-name>Manager</role-name>
</auth-constraint>
</security-constraint>
<security-constraint id="SecurityConstraint_2">
<web-resource-collection id="WebResourceCollection_2">
<web-resource-name>Protection for MyPortletl</web-resource-name>
<url-pattern>/MyPortletl/*</url-pattern>
</web-resource-collection>
<auth-constraint id="AuthConstraint_1">
<role-name>Manager</role-name>
</auth-constraint>
</security-constraint>

In this case, MyPortlet1 is protected by the Manager role and requires authentication. The data-constraint
of CONFIDENTIAL is also applied to it because the information in the web.xml file and the portlet.xml file
are combined. Because MyPortlet3 is not explicitly listed in the web.xm1 file, it is still not protected by the
Manager role and does not require user authentication.

Table 7. Security constraints that are applicable to the individual portlets. The following table shows the effect of this
change.

URL Transport Protection User Authentication Role Based Authorization
MyPortlet1/* HTTPS Yes Yes (Manager)
MyPortlet2/* None Yes Yes (Manager)
MyPortlet3/* HTTPS None None

MyPortlet4/* None Yes Yes (Manager)

36 Securing WebSphere applications

Chapter 8. Securing Service integration
This page provides a starting point for finding information about service integration.

Service integration provides asynchronous messaging services. In asynchronous messaging, producing
applications do not send messages directly to consuming applications. Instead, they send messages to
destinations. Consuming applications receive messages from these destinations. A producing application
can send a message and then continue processing without waiting until a consuming application receives
the message. If necessary, the destination stores the message until the consuming application is ready to
receive it.

Securing service integration

Messaging security protects a service integration bus from unauthorized access. When administrative
security is enabled for the application server, by default messaging security is also enabled for the bus.
You can also manually administer messaging security for the bus.

Before you begin

Review the security requirements for the bus. For guidance, see |Service integration security planningl

About this task

Providing administrative security is also enabled, messaging security enforces a security policy that
prevents unauthorized client applications from connecting to the bus, and accessing bus resources. There
might be circumstances when you do not require messaging security, for example on a development
system. In this case, you can disable messaging security.

You can customize the security configuration for the bus by using the administrative console, or wsadmin
scripting commands. The security configuration controls the following aspects of bus security:

» Authorizing groups of users in the user registry to undertake selected operations on bus destinations.
» The transport policies that maintain the integrity of messages in transit on the bus.

* The use of global, and multiple custom security domains.

* The integrity of links between messaging engines, foreign buses and databases.

Procedure

+ [“Securing buses” on page 38|

[‘Disabling bus security” on page 47|

[‘Enabling client SSL authentication” on page 47|

[‘Adding unique names to the bus authorization policy” on page 49
[‘Administering authorization permissions” on page 50|
[‘Administering permitted transports for a bus” on page 76|

« [“Securing messages between messaging buses” on page 79|
[‘Securing access to a foreign bus” on page 80|

[‘Securing links between messaging engines” on page 80|
[Controlling which foreign buses can link to your bus” on page 81|
* [‘Securing database access” on page 81|

. “‘Securing mediations” on page 82|

© Copyright IBM Corp. 2012 37

Securing buses

Securing a service integration bus provides the bus with an authorization policy to prevent unauthorized
users from gaining access. If a bus is configured to use multiple security domains, the bus also has a
security domain and user realm to further enforce its authorization policy.

Before you begin

 |f administrative security is not enabled for the cell that hosts the bus, you must enable it. The tasks
below use an administrative console wizard that detects if administrative security is not enabled, and
takes you through the steps to enable it. You must supply the type of user repository used by the
server, and the administrative security username and password.

 If the bus contains a bus member at WebSphere Application Server Version 6, you must provide an
inter-engine authentication alias to establish trust between bus members, and to enable the bus to
operate securely. The administrative console wizard detects whether an inter-engine authentication alias
is required, and prompts you to supply one. If you want to specify a new inter-engine authentication
alias, you must provide a user name and password.

About this task

When you secure a bus, consider the following points:

+ If you are securing a bus that contains only Version 7.0 or later bus members, you can use a non-global
security domain for the bus. If the bus has a WebSphere Application Server Version 6 bus member, or
might have a Version 6 bus member in the future, you must assign the bus to the global security
domain.

» If you want to assign the bus to a custom domain, you can select an existing security domain, or create
a new one.

» If you assign the bus to a custom domain, you must specify a user realm. You can select an existing
user realm, or use the global user realm.

What to do next

* The bus is secured after you restart all the servers that are members of the bus, or (for a bus that has
bootstrap members) servers for which the SIB service is enabled.

» Use the administrative console to control access to the bus by administering users and groups in the
bus connector role.

Adding a secured bus

In this task you add a new service integration bus that is secured by default. The security settings for the
bus are stored in a security domain. When you add a new bus, you can assign it to the default global
security domain, the cell-level domain, or specify a custom domain that contains a set of settings that are
unique to the bus, or shared with another resource.

Before you begin

* Plan the security requirements for the bus. For more information about security planning, see |Service|
integration security planningl For more information about security domains, see [Messaging security and|
multiple security domains]

» Stop all servers that have the SIB Service enabled. This ensures that the bus security configuration is
applied consistently when the servers are restarted. For more information, see |Stopping an application|
ﬁ

About this task
This task uses an administrative console security wizard to add a new bus. If the wizard detects that

administrative security is disabled, it prompts you to configure a user repository, and enable administrative
security.

38 Securing WebSphere applications

By default, connecting clients are required to use SSL protected transports to ensure data confidentiality
and integrity. If you do not want clients to use SSL protected transports, you can specify that you do not
require this option.

The type of security domain you can specify for the bus depends on the versions of the bus members you
intend to add to the bus:

* You must specify the global domain if you want to add one or more WebSphere Application Server
Version 6 bus members.

* You can specify the global, cell-level, or custom domain if you want to add WebSphere Application
Server Version 7.0 or later bus members only.

Procedure
1. In the navigation pane, click Service integration -> Buses. A list of buses is displayed.
2. Click New.

3. Type a name for the new bus. You must choose bus names that are compatible with the WebSphere
MQ queue manager naming restrictions. You cannot change a bus name after the bus is created,
which means that you can only interoperate with WebSphere MQ in the future if you use compatible
names. See the topic about WebSphere MQ naming restrictions in the related links.

Ensure that the Bus security check box is selected.
Click Next. The Bus Security Configuration wizard is started.
Read the Introduction panel, and click Next.

If the wizard detects that administrative security is disabled, follow the prompts to select, and
configure the appropriate user repository.

Click Next. A summary of the administrative security settings for the bus is displayed.
9. Review the summary, and click Finish. Administrative security for the cell is now enabled.

10. If you do not want clients to use SSL protected transports, clear the check box Require clients use
SSL protected transports .

11. Select a security domain for the bus.

12. If you have selected to use a custom security domain, follow the prompts to specify a user realm.
13. Review the summary of your choices, and click Finish.

14. Save your changes to the master configuration.

N o o~

©

Results
You have created a new bus secured with your chosen security settings.

What to do next

* You must propagate the bus security configuration to all the affected nodes, and restart the servers. For
more information, see[Synchronizing nodes using the wsadmin scripting tool| and [Starting an application|

* You can add bus members to the bus.

» Groups of users in the user repository require explicit authority to access the bus. For more information,
see [‘Administering authorization permissions” on page 50|

Securing an existing bus by using multiple security domains

You can configure an existing bus to use a cell-level or custom security domain. Using non-global security
domains provides the scope to use multiple security domains. The bus can inherit security settings from
the cell, or have a unique security configuration.

Chapter 8. Securing Service integration 39

Before you begin

 Review the information in|Service integration security planning and [Messaging security and multiple|
[security domains|

» The bus you want to secure must exist in the administrative console. If you want to create a new bus,
see [‘Adding a secured bus” on page 38

» Ensure that all the bus members are at WebSphere Application Server Version 7.0 or later; use of
non-global security domains is not supported for earlier versions of WebSphere Application Server. If the
bus has a WebSphere Application Server Version 6 bus member, see r‘Securing an existing bus by|
using the global security domain” on page 41 | For more information about using security domains, see
Service integration security planning and [Messaging security and multiple security domainsl

» Ensure that there are no indoubt transactions on the messaging engine because incomplete
transactions cannot be recovered after the bus is secured. For more information, see |Resolving indoubt|

transactions|.

» Stop all servers on which the SIB Service enabled. This ensures that the bus security configuration is
applied consistently when the servers are restarted. For more information, see [Stopping an application|
iserve

About this task

This task uses the administrative console Bus Security Configuration wizard to secure an existing bus. If
the wizard detects that administrative security for the cell is disabled, it prompts you to enable it. You must
specify the type of user repository, the administrative security username and password. By default,
connecting clients are required to use SSL protected transports to ensure data confidentiality and integrity.
You can choose not to use this option. You can specify that the bus uses the cell-level or a custom
security domain. If you choose a custom security domain, you must also specify a user realm.

Procedure

1. In the navigation pane, click Service integration -> Buses -> security_value. The general
properties for the selected bus are displayed.

2. Click Configure Bus Security to start the Bus Security Configuration wizard.
3. Read the Introduction panel, and click Next.

4. If administrative security is disabled, follow the instructions to configure the appropriate user
repository, and click Next.

5. Review the summary of your choices:

a. Optional: If you want to make changes, click Previous to return to an earlier panel, and make the
changes you require.

b. Click Finish when you are ready to confirm your choices.

Administrative security for the cell is now enabled.

6. If you do not want clients to use SSL protected transports, clear the check box Require clients use
SSL protected transports .

7. Select the cell-level or custom security domain for the bus.

8. Optional: To create a new custom security domain:
a. Use the name suggested for the security domain, or type a new one.
b. Optional: Provide a description of the security domain.

c. Select a user realm for the domain. You can use the user realm configured in the global security
domain, or follow the steps to configure a new user realm.

9. Click Next.
10. Review the summary of your choices:

a. Optional: If you want to make changes, click Previous to return to an earlier panel, and make the
changes you require.

40 Securing WebSphere applications

b. Click Finish to confirm your choices.
11. Save your changes to the master configuration.

Results

You have specified that the selected bus uses a cell-level or custom security domain. The security settings
configured for the bus are displayed in the updated Bus Security Settings panel. The bus is secured after
you restart all the servers that are members of the bus, or (for a bus that has bootstrap members) servers
for which the SIB service is enabled.

What to do next

You must propagate the bus security configuration to all the affected nodes, and restart the servers. For
more information, see [Synchronizing nodes using the wsadmin scripting tool| and [Starting an application|

Securing an existing bus by using the global security domain
Use this task to secure an existing service integration bus by using the global security domain.

Before you begin
+ Review the information in|Service integration security planning.

» The bus you want to secure must exist in the administrative console. If you want to create a new bus,
see [‘Adding a secured bus” on page 38.|

 If administrative security is not enabled for the cell that hosts the bus, the wizard prompts you to enable
it. You need to know the type of user repository, and the administrative security username and
password.

 If the service bus contains a bus member at WebSphere Application Server Version 6, the wizard
prompts you to select an existing authentication alias, or specify a new one. If you want to specify a
new authentication alias, you must provide a username and password.

* Ensure that there are no indoubt transactions on the messaging engine because incomplete
transactions cannot be recovered after the bus is secured. For more information, see [Resolving indoubt|

» Stop all servers on which the SIB Service enabled. This ensures that the bus security configuration is
applied consistently when the servers are restarted. For more information, see [Stopping an application|

About this task

Use this task if you want to secure a bus that exists already in the administrative console, and you want to
use the default global security domain. For example, a bus that has a bus member at WebSphere
Application Server Version 6. A mixed-version bus cannot use non-global security domains.

This task uses an administrative console wizard to guide you through the steps to secure a bus. The
following steps are conditional, depending on the bus environment:

» If administrative security is not enabled for the cell that hosts the bus, the wizard prompts you to enable
administrative security.

» If the bus has a bus member at WebSphere Application Server Version 6, the wizard prompts you for an
authentication alias to establish trust between bus members, and to enable the bus to operate securely.

Use the administrative console to secure a selected bus by using the global security domain as follows:

Procedure

1. In the navigation pane, click Service integration -> Buses -> security_value. The general
properties for the selected bus are displayed.

Chapter 8. Securing Service integration 41

2. Click Configure Bus Security to start the Bus Security Configuration wizard.

3. Read the Introduction panel, and click Next. The next step is conditional, depending on whether
administrative security is enabled or disabled:

« If administrative security is disabled, complete all the following steps.
« If administrative security is already enabled, continue from step 7.
4. Select the appropriate user repository, and click Next.
5. Depending on the type of user registry you selected, do one of the following:

* For a federated repository, specify a username and password for administrative security, and click
Next.

» For all other types of repository, follow the wizard prompts, and click Next.
6. Review the summary of your choices:

a. Optional: If you want to make changes, click Previous to return to an earlier panel, and make the
changes you require.

b. Click Finish when you are ready to confirm your choices.

Administrative security for the cell is now enabled.

7. If you do not want clients to use SSL protected transports, clear the check box Require clients use
SSL protected transports . By default, clients are required to use SSL protected transports to
ensure data confidentiality and integrity.

8. Select the global security domain option, and click Next.

9. If at least one bus member is at Version 6, you must specify an authentication alias. Specify either an
existing authentication alias, or create a new one:

» Select Specify existing authentication alias, and select the alias name from the drop-down list.
« Select Create a new authentication alias, type a unique alias name and password.
10. Review the summary of your choices:

a. Optional: If you want to make changes, click Previous to return to an earlier panel, and make the
changes you require.

b. Click Finish to confirm your choices.
11. Save your changes to the master configuration.

Results

You have secured the bus using the global security domain. The new security settings for the bus are
displayed in the updated Bus Security Settings panel. The bus is secured after you restart all the servers
that are members of the bus, or (for a bus that has bootstrap members) servers for which the SIB service
is enabled.

What to do next

* You must propagate the bus security configuration to all the affected nodes, and restart the servers. For
more information, see |Synchronizing nodes using the wsadmin scripting tool and |Starting an applicatiod

» Groups of users in the user repository require explicit authority to access the bus. For more information,
see [‘Administering authorization permissions” on page 50|

Migrating an existing secure bus to multiple domain security
Use this task to migrate a secured service integration bus from the global security domain to a cell-level or
custom security domain.

Before you begin

+ Review the information in|Service integration security planning and Messaging security and multiple]
[security domains|

42 Securing WebSphere applications

» All the bus members must be at WebSphere Application Server Version 7.0 or later; use of multiple
domain security is not supported for earlier versions of the product.

* Ensure that there are no indoubt transactions on the messaging engine because incomplete
transactions cannot be recovered after the bus is secured. For more information, see [Resolving indoubt|
transactions

» Stop all servers on which the SIB Service enabled. This ensures that the bus security configuration is
applied consistently when the servers are restarted. For more information, see |Stopping an application|
ﬁserve

About this task

The security settings for a bus are held in a security domain. There are three types of security domain:
* The global security domain which a bus uses by default.

* A cell level security domain which the bus might inherit from the administrative cell.

* A custom domain which might contain security settings that are unique to the bus.

You can use the administrative console to change the type of security domain that the bus uses. Note that
the link Configure Security Domain only becomes active if you select and apply the option to use a
selected security domain. In this case, you must also specify a user realm. You can either use the existing
global security settings, or customize a user realm specifically for the domain.

Procedure

1. In the navigation pane, click Service integration -> Buses -> security_value. The security settings
panel for the selected bus are displayed.

2. Select either Inherit the cell level security domain or Use the selected domain, depending on the
type of security domain you want to use for the bus.

3. Click Apply.
4. Complete the following steps if you want to create a custom security domain:

a. Click the link Configure Security Domain. The security domain configuration panel for the
selected bus is displayed.

Use the name suggested for the security domain, or type a new one.
Optional: Type a description of the security domain.

d. Select the type of user realm for the domain. You can either use the global security settings, or
configure a new one.

5. Click Next.
6. Review the summary of your choices:

a. Optional: If you want to make changes, click Previous to return to an earlier panel, and make the
changes you require.

b. Click Finish to confirm your choices.
7. Save your changes to the master configuration.

Results

You have migrated your existing bus from the global domain to a non-global security domain. The new
security settings for the bus are displayed in the updated Bus Security Settings panel.

What to do next
You must propagate the bus security configuration to all the affected nodes, and restart the servers. For

more information, see [Synchronizing nodes using the wsadmin scripting tool| and [Starting an application|
-server

Chapter 8. Securing Service integration 43

Configuring bus security by using an administrative console panel
Use the administrative console to configure the security properties for an existing service integration bus.

Before you begin

+ Review the information in[Service integration security planning and [Messaging security and multiple]
[security domains]

* The bus must exist in the administrative console. If you want to create a new bus, see|Adding buses

* Ensure that there are no indoubt transactions on the messaging engine because incomplete
transactions cannot be recovered after the bus is secured. For more information, see |Resolving indoubt|

[rransactiond

» Stop all servers on which the SIB Service enabled. This ensures that the bus security configuration is
applied consistently when the servers are restarted. For more information, see |Stopping an application|
ﬁ

About this task

This task uses the Bus Security administrative console panel. You can start the Bus security wizard from
the panel, or specify individual security properties directly in the panel. The bus security properties are
effective only when administrative security for the cell is enabled. If the wizard detects that administrative
security is disabled, it prompts you to enable it.

The security properties available to a particular bus depend on the versions of the bus members:

 If the bus has a WebSphere Application Server Version 6 bus member, you must specify the global
security domain. You must also specify an inter-engine authentication alias to prevent unauthenticated
messaging engines from establishing a connection with the bus.

 If the bus contains Version 7.0 or later bus members only, you can specify any type of security domain.
You do not need to specify an inter-engine or mediation authentication alias.

If you want to run mediations across multiple security domains, you can specify a single server identity for
the bus, rather than specify a mediation authentication alias for each domain. You can use a server
identity to run mediations on the global domain.

Procedure

1. In the navigation pane, click Service integration -> Buses -> security_value. security_value is either
Enabled or Disabled, depending on the security status of the bus.

2. Optional: Click Launch Bus Security Wizard to start the wizard, or specify the following properties
directly:
Enable bus security

Bus security is enabled by default. Clear this check box if you want to disable security for the
selected bus. Note that the check box is read-only if administrative security is disabled.

Inter-engine authentication alias
The name of the authentication alias used to authorize communication between messaging
engines on the bus. Specify an inter-engine authentication alias if the bus has a Version 6 bus
member, bus security is enabled, and you want to prevent unauthorized messaging engines
from establishing a connection with the bus.

Permitted transports
Specify one of the following transports for the bus:
* Any messaging transport chain defined to any bus member.
» Only messaging transport chains that are protected by an SSL chain.
* Only the transports specified in the list of permitted transports.

44 securing WebSphere applications

If you want to add and remove permitted transports, click Service integration -> Buses ->
security_value -> [Additional Properties] Permitted transports.

Use the Server ID when running mediations
Check this option if you want to run mediations by using the server identity, instead of by using
a mediation authentication alias.

Mediations are deployed as applications, and run in the domain used by the application server,
not the bus domain. If you want to run a mediation on multiple servers in different domains,
you must ensure that the user identity in the mediation authentication alias exists in the
configuration for each domain. Alternatively, you can choose to use the server identity option.
You can use this option when multiple domains are not in use.

Mediations authentication alias
The name of the authentication alias used to authorize mediations to access the bus. If the
bus has a WebSphere Application ServerVersion 6.0.x bus member, you must specify a
mediations authentication alias. If you specify a mediations authentication alias for a bus that
contains WebSphere Application ServerVersion 7.0 or later bus members only, it is ignored.

Bus security domain
Specify one of the following security domains for the bus:

Global domain
You must specify the global domain if the bus contains a Version 6 bus member, or
you do not want the bus to use multiple domains.

Cell level domain
Specify the cell-level security domain if the bus has Version 7.0 or later bus members
only, and you want the bus to share security settings with the administrative cell.

Custom domain
Specify a custom security domain if the bus has Version 7.0 or later bus members
only, and you want the bus to use a security domain that is used by another resource,
or you want to create a new security configuration for this bus.

3. Save your changes to the master configuration.
Results

You have configured security properties for the selected bus.
What to do next

You can use the administrative console to control access to the bus.

Configuring the bus to access secured mediations
Use this task to ensure that the service integration bus is authorized to access secured mediations.

Before you begin
The mediation is secured by using a Java Platform, Enterprise Edition (Java EE) Connector Architecture

authentication alias. For information about creating a Java EE authentication alias, see |Managing Java 2|
[Connector Architecture authentication data entries for JAAS|

About this task

To configure the bus to access a secured mediation, you must add the mediation authentication alias for
the secured mediation to the properties for the bus:

 If the bus has a Version 6 bus member, you must provide the principal and its associated password.

Chapter 8. Securing Service integration 45

» If the bus has WebSphere Application Server Version 7.0 or later bus members only, you need only
provide the principal.

Procedure
1. Log into the navigation pane.

2. Click Service integration -> Buses -> security_value. The bus security configuration panel is
displayed.

3. In the Mediations authentication alias field, select the principal for the mediation, and its associated
password if required.

4. Click OK.
5. Save your changes to the master configuration.

Results
The selected bus is configured to access secured mediations.
What to do next

You can assign security roles to your mediation handlers to protect them from use by unauthorized users.
For more information, see [‘Deploying secured applications” on page 114

Configuring a bus to run mediations in a multiple security domain environment
Use this task to configure a secured bus so that it can run mediations successfully on bus members in
different security domains.

Before you begin

The secured bus must be configured to use a non-global security domain. For more information about
securing buses by using multiple security domains, refer to[‘Securing buses” on page 38

About this task

If your bus topology has bus members in different security domains, you can configure the bus to allow
mediations to run under the server identity. This means that a mediation can run on any server in any
domain. You do not have to add a dedicated user ID for each mediation to the user repository, or maintain
a mediation authentication alias.

Use the administrative console to configure a secured bus to run mediations successfully as follows:

Procedure

1. In the navigation pane, click Service integration -> Buses -> security_value. The security settings
for the selected bus are displayed.

2. Check the option Use the Server ID when running mediations.
3. Click Apply.
4. Save your changes to the master configuration.

Results
You have configured the bus to run mediations successfully across servers in multiple security domains.
What to do next

You can use the administrative console to control access to the bus by administering users and groups in
the bus connector role.

46 Securing WebSphere applications

Disabling bus security

If you do not require messaging security, you can choose to disable messaging security. Any new buses
added after messaging is disabled are not secured.

Before you begin

» Ensure that there are no indoubt transactions on the messaging engine because incomplete
transactions cannot be recovered after the bus security is disabled. For more information, see
lindoubt transactions]

» Stop all servers on which the SIB Service enabled before you disable bus security. This ensures that
the bus security configuration is applied consistently when the servers are restarted. For more
information, see [Stopping an application server|

About this task

Messaging security is enabled by default, providing administrative security for the cell is enabled. However,
there might be circumstances when you do not require messaging security, for example on a development
system. In this case, you can use the administrative console to disable messaging security. If you want to
re-enable bus security, see [‘Securing buses” on page 38

Procedure
1. In the navigation pane, click Service integration -> Buses. A list of buses is displayed.

2. Find the bus for which you want to disable security, and click Enabled in the security column. The
security settings for the selected bus are displayed.

3. Clear the check box Enable bus security.
4. Click Apply.
5. Save your changes to the master configuration.

Results
You have disabled security for the selected bus.
What to do next

You must propagate the bus security configuration to all the affected nodes, and restart the servers. For
more information, see [Synchronizing nodes using the wsadmin scripting tool| and [Starting an application|

Enabling client SSL authentication

You can configure a service integration bus to allow connecting client JMS applications to authenticate by
using Secure Sockets Layer (SSL) certificates.

About this task

This is the parent task for the steps required to establish client SSL authentication for connections
between messaging engines and JMS applications running in a client container. You must configure the
bus to allow client SSL authentication, and configure the JMS client application to undertake client SSL
authentication.

Procedure
» [“Configuring a bus to allow client SSL authentication” on page 48|
« [“Configuring JMS client applications to perform client SSL authentication” on page 48

Chapter 8. Securing Service integration ~ 47

Configuring a bus to allow client SSL authentication
You can configure a service integration bus to enable connecting client JMS applications to authenticate
by using Secure Sockets Layer (SSL) certificates.

Before you begin

You must ensure that the following tasks have been completed:
+ Administrative security is enabled. For more information, see|Enabling security}

» A stand-alone Lightweight Directory Access Protocol (LDAP) user registry has been configured for
storing user and group IDs. To access the user registry, you must know a valid user ID that has the
administrative role, and password, the server host and port of the registry server, and the base

distinguished name (DN). For more information, see [Configuring Lightweight Directory Access Protocol

» Bus security is enabled. For more information, see |“Disabling bus security” on page 47.|
« JMS client applications have been configured to authenticate by using client SSL certificates.

About this task

If you want to allow connecting JMS application clients to authenticate to the bus by using client SSL
certificates, define an SSL configuration. There are two parts to this task. First you use the administrative
console to map SSL certificates to entries in the LDAP user registry. Secondly, you create a unique SSL
configuration for each endpoint address for which you want to use client SSL authentication. Do not use
the default SSL configuration for the bus.

Procedure

1. Use the administrative console to define certificate filters to map an SSL certificate to an entry in the
LDAP server. For more information, see [Creating a Secure Sockets Layer configuration, The client
SSL certificate is mapped to a user ID in the user registry.

2. Create a separate SSL configuration file for each endpoint address for server, bus member or cluster
on the bus, and select that client authentication is required. For more information, see [Creating g
[Secure Sockets Layer configuration|

Results
The bus is configured to allow client SSL authentication.
What to do next

Connecting JMS client applications can now authenticate to the bus using client SSL certificates.

Configuring JMS client applications to perform client SSL authentication
You can configure JMS client applications to authenticate to the bus by using client Secure Sockets Layer
(SSL) authentication.

Before you begin
* You have already obtained a Secure Sockets Layer (SSL) certificate for the JMS client application.

» The JMS client application is already configured to use SSL. For more information, see|ssl.client.props
[client configuration file]

About this task

This task has two objectives. First, you install the SSL certificate for the client application in the key store
for the application client. Secondly, you modify the sib.client.ssl.properties file to use client SSL

48 Securing WebSphere applications

authentication. You use the Key Management (iKeyman) utility to work with SSL certificates. The iKeyman
user interface is Java-based and uses the Java support that is installed with IBM HTTP Server.

Take the following steps to configure a JMS client application to use client SSL authentication:

Procedure

1. Start the iKeyman user interface. Refer to the iKeyman User Guide available from ||IBM developer kits|
for more information about using iKeyman.

2. When prompted, select the key store for the JMS client application.

3. When prompted for the type off certificate to work with, select the option Personal certificates. A list
of personal certificates is displayed.

4. Select that you want to import a certificate to the selected key store.

5. When prompted, type the location and name for the certificate. You can provide an alias for the
certificate. The certificate is installed into the keystore of the client application.

6. Close the iKeyman user interface.

7. Open a text editor to work with the sib.client.ss1.properties properties file. This file is located in
the profile root/properties directory of the application server installation, where profile_root is
[the directory in which profile-specific information is stored|

8. Set the value for the property com.ibm.ss1.client.clientAuthentication to True.

9. Set the value for the property com.ibm.ss1.client.keyStoreClientAlias to the alias name for the
certificate in the client key store.

10. Save the sib.client.ss1.properties properties file.

Results

You have now configured a JMS client application to use client SSL authentication.

Adding unique names to the bus authorization policy
How to update the authorization policy for the service integration bus with unique name entries.

About this task

You should carry out this task if you are migrating from WebSphere Application Server Version 6 to
WebSphere Application Server Version 7.0 or later. In this task, you manually run the populateUniqueNames
command to query the user repository for a selected bus for unique names, and add them to the
authorization policy. If you do not manually run this command, the messaging engine performs the query,
and adds the missing unique names to the authorizations policy, which adversely affects the start up time.

When you migrate from a Version 6 node to a Version 7.0 or later node, the authorization policy only
contains the user and group security names; it does not contain the names in the user registry that
uniquely define each user and group. If an LDAP user registry is in use, the unique name is the
distinguished name (DN). By default, only missing unique names are added to the authorization policy. If
you set the -force parameter, all unique name entries added to the authorization policy

Procedure
1. Run a scripting command.

2. At the wsadmin command prompt, type the populateUniquenames command. The following example
syntax queries the user repository for the unique names that match the security names for a bus called
Bus 1, and adds the missing unique names to the authorization policy .

AdminTask.populateUniquenames (' [-bus Busl]')
3. Save your changes to the master configuration repository. The following example presents the syntax:
AdminConfig.save()

Chapter 8. Securing Service integration 49

http://www.ibm.com/developerworks/java/jdk/docs.html

Results
The authorization policy for the bus is updated with the missing unique names.
Example

The following example updates all the unique name entries in the authorization policy for a bus called Bus
1.

AdminTask.populateUniqueNames (AdminTask.populateUniquenames (' [-bus Busl -force TRUE]')
What to do next

Use the administrative console to administer bus security authorizations.

Administering authorization permissions

Service integration messaging security uses role-based authorization. When a user is assigned to a role,
the user is granted all of the permissions that the role contains. By administering authorization
permissions, you can control user access to a bus and its resources when messaging security is enabled.

Before you begin

For guidance on security authorization for a service integration bus, refer to [Service integration security|

About this task

When a bus is created, a set of default authorization roles is created. Default roles provide authenticated
users who have the bus connector role with full access to all local destinations on the bus. By default, only
members of the Server group have the bus connector role. If a specific user needs to connect to the bus,
you must explicitly add that user to the bus connector role.

You can make changes to authorization permissions when messaging security is enabled or disabled. Any
changes that you make when security is disabled do not have any effect until security is enabled, as
described in ['Disabling bus security” on page 47

LDAP Registry Tip: When you specify the group authorization permissions, the group distinguished name
(DN) must be used. If you specify a common name (CN) for the group name, users
in that group do not have the specified authorities. For more details see
[Lightweight Directory Access Protocol registries|

When security is enabled, by default users cannot connect to a foreign bus. If a specific user needs to
connect to a foreign bus, you must explicitly add that user to the foreign bus access list.

Procedure

+ [‘Administering the bus connector role” on page 51|

+ [“Administering default roles” on page 53]

+ [*Administering destination roles” on page 56

[‘Administering foreign bus roles” on page 61|

[‘Administering temporary destination prefix roles” on page 64|
[‘Administering topic space root roles” on page 68|

[‘Administering topic roles” on page 71|

+ [‘Removing access roles from unknown users and groups” on page 75|

50 Securing WebSphere applications

Administering the bus connector role

Adding a group of users to the bus connector role for a local bus grants the members of the group
permission to access local bus destinations. Use the administrative console to list, add and remove groups
of users in the bus connector role.

Before you begin
The users and groups you want to work with must exist in the user repository.
About this task

Service integration bus security uses role-based authorization. By administering groups of users in the bus
connector role, you can control access to the local service integration bus and its resources when
messaging security is enabled.

Procedure

« [“Listing users and groups in the bus connector role’]

+ [“Adding users and groups in the bus connector role’]

+ [‘Removing users and groups from the bus connector role” on page 53|

Listing users and groups in the bus connector role:

Service integration bus security uses role-based authorization. By listing the users and groups in the bus
connector role, you can find out which users and group members are authorized to connect to a selected
secured local bus, and its resources.

Before you begin

Ensure that security is enabled for the bus. For more information, refer to[*Securing buses” on page 38

About this task

In this task you use the administrative console to list the users and groups in the bus connector role for a
selected local bus. By default, the list is empty for a new bus.

Procedure
1. Log into the administrative console.

2. Click Service integration -> Buses -> security_value -> [Authorization Policy] Users and groups
in the bus connector role.

Results

A list of the users and groups in the bus connector role for the selected bus is displayed. The list is empty
for a new bus.

What to do next

You can add and delete users and groups in the bus connector role for the selected bus.

Adding users and groups in the bus connector role:

Service integration bus security uses role-based authorization. By adding users and groups to the bus

connector role for a secured bus, you can control which users and group members have access to the bus
and its resources.

Chapter 8. Securing Service integration 51

Before you begin
« Ensure that security is enabled for the bus. For more information, refer to [‘Securing buses” on page 38

* The users and groups that you want to add to the bus connector role must exist already in the user
repository.

About this task

Adding users and groups to the bus connector role enables them to connect to the bus to carry out
messaging operations. You can add a user directly to the bus connector role, or indirectly by adding a
group to which the user belongs. You can also add special groups of users. There are three special
groups:

Server
The server identity is a WebSphere Application Server . You cannot specify the Server group for a
JMS message-driven bean (MDB).

All Authenticated
This group comprises all user identities that authenticate successfully to the bus.

Everyone
The user identities in this group are anonymous, and connect to the bus without security
authentication.

Tips:

 If the user registry is an LDAP registry, you must use the group distinguished name (DN) when
you specify a group name to add to a bus connector role. Using the common name (CN) causes
problems in security authorization. For more information, refer to|Service integration bus security|
[Troubleshooting tips|and [Standalone Lightweight Directory Access Protocol registries]

» If you attempt to add a user or a group that is already a member of the bus connector role, a
warning message is displayed.

In this task you use an administrative console wizard to add groups and users to the bus connector role
for a selected local bus.

Procedure
1. Log into the administrative console.

2. Click Service integration -> Buses -> security_value -> [Authorization Policy] Users and groups
in the bus connector role. A list of the users and groups already in the bus connector role for the
selected bus is displayed. By default, the list is empty for a new bus.

3. Click New to start the Security Resource Wizard.
4. Choose whether you want to add groups or users:
« |If you want to add a special group, select The built-in special groups option.
» |If you want to add other groups or users in the user repository, select the appropriate option, and
complete the following mandatory fields:

Search pattern
Specify a string to match against user IDs or group names in the user repository. Only user
IDs or group names that match the search pattern are retrieved, subject to the maximum
number of search results. You can specify wildcard characters.

Maximum number of search results to display
Specify the maximum number of user IDs or group names to display.
5. Click Next to display a list of groups or users.
6. Select the names of the groups or users you want to add to the bus connector role, and click Next.
7. Click Finish to confirm you choices.

52 securing WebSphere applications

8. Save your changes to the master configuration.

Results

The selected users and groups are added to the bus connector role for the selected bus.
Removing users and groups from the bus connector role:

Service integration bus security uses role-based authorization. By removing selected users and groups
from the bus connector role for a selected secured bus you prevent those users and group members from
connecting to the bus.

About this task

The users and groups that you remove from the bus connector role for a bus can no longer undertake
messaging operations on the bus. Note that removing a user from the bus connector role does not prevent
that user from connecting to the bus if they are also a member of a group that is in the bus connector role.

Procedure
1. Log into the administrative console.

2. Click Service integration -> Buses -> security_value -> [Authorization Policy] Users and groups
in the bus connector role. A list of the users and groups in the bus connector role for the selected
bus is displayed.

3. Select the check box next to the name of the user or group that you want to remove, and click Delete.
4. Save your changes to the master configuration.

Results

The selected users and groups are removed from the bus connector role.

Administering default roles

Service integration bus security uses role-based authorization. By adding a user or a group to the default
roles for a secured bus, you can control which users and group members have access to the bus and its
resources in the default roles when messaging security is enabled.

About this task

The default roles are sender, receiver, browser, and creator. These roles apply to bus destinations that do
not have a destination role, or have been configured to inherit the default roles. By default, all destinations
inherit the default roles. Access in the default roles exists in addition to any specific access roles that have
been configured for a destination.

Procedure

“Listing users and groups in default roles”l

» |“Adding users and groups to default roles” on page 54|

* |“Removing users and groups from default roles” on page 55|

Listing users and groups in default roles:
Service integration bus security uses role-based authorization. By listing the users and groups in the

default roles for a selected secured bus, you can find out which users and group members are authorized
to perform messaging operations on a local bus destinations that is allowed to inherit default roles.

Chapter 8. Securing Service integration 53

About this task

In this task you use the administrative console to list users and groups in the default access roles for a
selected secured bus. The default role types are sender, receiver, browser and creator.

Procedure
1. Log into the administrative console.

2. Click Service integration -> Buses -> security_value -> [Authorization Policy] Manage default
access roles. The Default access roles panel is displayed. The information for the default access is
displayed in a collapsed section.

3. Expand the Default access header.

Results

A list of users and groups in default roles for the selected bus is displayed.

What to do next

You can also add and remove users and groups in default roles.

Adding users and groups to default roles:

Service integration bus security uses role-based authorization. By adding selected users and groups to the
default roles for all the local bus destinations on a secured bus, you provide those users and group
members with access to the local bus destinations that are allowed to inherit default roles.

Before you begin

If a bus destination is not allowed to inherit the default roles, you must first add the user or group to the

role that grants authorization permission for the specific local destination. For more information, see
[‘Adding users and groups to destination roles” on page 57|

About this task

The default roles are sender, receiver, creator and browser. In this task you use an administrative console
wizard, the Security wizard, to add selected users or groups to the default roles. The Security wizard
requests information to enable it to retrieve selected users or groups from the potentially very large
number of users and groups in the user repository.

Procedure
1. Log onto the administrative console.

2. Click Service integration -> Buses -> security_value -> [Authorization Policy] Manage default
access roles. The Default access roles panel is displayed.

3. Expand the Default access header to list the users and groups that have been assigned to default
access roles.

4. Click Add to start the Security wizard. The wizard takes you through the following steps to add
selected users or groups to default access roles:

a. Search for the users or groups that you want to add to default access roles:

Users or Groups
Select either Users or Groups to specify whether you want to grant access roles to users
or groups.

Search pattern
This field is mandatory. Specify a search string that is matched against user IDs or group

54 securing WebSphere applications

names in the user repository. Only user IDs or group names that match the search pattern
are retrieved, subject to the maximum number of search results. Wildcard characters are
allowed.

Maximum number of search results to display
This field is mandatory. Specify the maximum number of user IDs or group names you
want the administrative console to display.

b. Click Next. The wizard displays the users or groups in the user repository that match the
information that you provided in the previous step.

c. Select the check boxes next to the user IDs or group names that you want to add to the default
access roles, and click Next. A list of user IDs or group names that you can add to the default
access roles is displayed. Note that some users or groups might already be assigned to default
access roles.

d. Select the role types that you want to assign to a user or group. For example, to assign a group to
the sender role, click the sender icon for the appropriate group name. The icon changes from |:|

to to show that you have added the user or group to the access role for the resource.

e. Complete the previous step for each user or group that you want to add to access roles, and then
click Next. A summary of your role type assignments is displayed.

f. Optional: Click Previous to review and change your assignments, if required.

g. Click Finish to confirm your assignments. The Default access roles panel is redisplayed and shows
the new role type assignments.

5. Save your changes to the master configuration.

Results

The selected users and groups are added to selected default roles for the selected bus.
Removing users and groups from default roles:

Service integration bus security uses role-based authorization. By removing selected users and groups
from the default roles for a selected secured bus, you prevent those users and group members from
accessing the bus by using the default roles.

About this task

When you remove users and groups from the default roles for a bus, they can no longer access local bus
destinations that inherit default access permissions. Note that removing a user from the default roles does
not prevent that user from accessing the bus if they are also a member of a group that has been assigned
to the default roles for that bus.

Procedure
1. Log into the administrative console.

2. Click Service integration -> Buses -> security_value -> [Authorization Policy] Manage default
access roles. The Default access roles panel is displayed.

3. Expand the Default access header to list the users and groups that have been assigned to default
access roles for the selected bus.

4. Select the users and groups that you want to remove from the default access roles for this bus, and
click Remove.

5. Save your changes to the master configuration.

Chapter 8. Securing Service integration 55

Results

The selected users and groups are removed from the default roles for the selected bus. The Default
access roles panel displays the changes to the default access role assignments.

What to do next

You can complete other security administration tasks by using the administrative console.

Administering destination roles

Service integration bus security uses role-based authorization. When messaging security is enabled, users
and groups must have authority to undertake messaging operations, at a bus destination. By administering
destination roles, you can control which users and groups can undertake operations at a bus destination,
and the types of operations that they can perform.

About this task

You use the administrative console to administer users and groups in access roles for a destination. The
access roles available for a destination depend on the type of destination. The table below lists the roles
that you can assign for each destination type:

Table 8. Destination roles. The first column of the table contains the list of destination types. The second column
contains the access roles that can be assigned for the destination types.

Destination type Access roles

queue sender, receiver, browser, creator
port sender, receiver, browser, creator
webService sender, receiver, browser, creator
topicSpace sender, receiver
foreignDestination sender

alias sender, receiver, browser

In addition to controlling which users and groups have access to a specific local or foreign destination, you
can also control the inheritance of access roles for a specific local destination. In this case, the default
access roles that apply to all the destinations in the local bus namespace are added to any access roles
that have been added for a specific destination.

Procedure

« [‘Adding users and groups to destination roles” on page 57]

[‘Removing users and groups from destination roles” on page 59|

« [“Listing users and groups in destination roles’|

[‘Restoring default inheritance for a destination” on page 59|

« |Disabling inheritance from the default resource|

. “‘Overriding inheritance from the default resource for a destination” on page 60|

Listing users and groups in destination roles:

Service integration bus security uses role-based authorization. By listing the users and groups in the
destination roles for a selected secured bus, you can find out which users and groups are authorized to
access the bus, and its resources.

About this task

In this task you use the administrative console to list all the users and groups in destination roles for
selected destinations. The list includes users and groups that have references in the service integration
role-based configuration; it does not include all the users and groups that exist in the user repository. The

56 Securing WebSphere applications

permitted destination roles are sender, receiver, browser and creator, depending on the destination type.
Icons are used in the administrative console to represent the roles to which users and groups have been

assigned. For example, if the role type set icon (¥"') is displayed in the sender role for a group called
Group 1, it means that Group 1 has been assigned to the sender role for a selected destination. For a
complete description of all the icons used to represent role assignments in the administrative console, see
IAccess role assignments for bus security resources,

Procedure
1. Log into the administrative console.

2. Click Service integration -> Buses -> security_value -> [Authorization Policy] Manage
destination access roles. The Destinations panel lists all the destinations defined for the selected
bus.

3. Select one or more destinations to work with:
» Click the name of a single destination.
« Select the check boxes next to multiple destinations, and click Manage Access Roles.

The Destination access roles panel is displayed. The information for each selected destination is
displayed in a collapsed section.

4. Expand a destination header.
Results

The Destination access roles panel lists the users and groups in access roles for the expanded
destination.

What to do next

You can now administer the users and groups in destination roles at this destination.

Adding users and groups to destination roles:

Service integration bus security uses role-based authorization. By adding users and groups to the
destination roles for a secured bus, you can control which users and group members can undertake
messaging operations at a bus destination.

Before you begin

Ensure that the following conditions are met:
- Security is enabled for the bus. For more information, see [‘Securing buses” on page 38.|
* The users and groups that you want to add to destination roles must exist already in the user repository.

About this task

By adding users or groups to the destination role, you grant the users or groups authority to undertake the
operation defined by the role at a selected destination. The destination roles are sender, receiver, browser,
and creator, depending on the destination type.

In this task you use the administrative console Security wizard to retrieve selected users or groups from
the user repository, and add them to destination roles for selected bus destinations.

Tip: To add a large number of users to destination roles, it is advisable to create a group in the user
repository, and add the group to the destination roles.

Chapter 8. Securing Service integration 57

Procedure
1. Start the administrative console.

2. Click Service integration -> Buses -> security_value -> [Authorization Policy] Manage
destination access roles. A list of the destinations defined for the selected bus is displayed in the
Destinations panel.

3. Select one or more destination to work with:
« Click a single destination name.
« Select the check boxes next to multiple destination names, and then click Manage Access Roles.
The Destination access roles panel is displayed. The information for each destination you have
selected is displayed in a collapsed section.

4. Expand a destination header to list the users and groups that have been assigned to roles for this
destination. You can verify that the user or group you want to add does not already have a role at this
destination.

5. Click Add to start the Security wizard. The wizard takes you through the following steps to add
selected users or groups to access roles for the expanded destination:

a. Search for the users or groups that you want to add to access roles for the expanded destination:

Users or Groups
Select either Users or Groups to specify whether you want to grant access roles to users
or groups.

Search pattern
This field is mandatory. Specify a search string that is matched against user IDs or group
names in the user repository. Only user IDs or group names that match the search pattern
are retrieved, subject to the maximum number of search results. Wildcard characters are
allowed.

Maximum number of search results to display
This field is mandatory. Specify the maximum number of user IDs or group names you
want the administrative console to display.

b. Click Next. The wizard displays the users or groups in the user repository that match the
information that you provided in the previous step.

c. Select the check boxes next to the user IDs or group names that you want to add to access roles
for the currently expanded destination, and click Next. A list of user IDs or group names that you
can add to destination roles is displayed. Note that some users or groups might already be
assigned to access roles for this destination.

d. Select the appropriate access role icon for the user ID or group name that you want to add to the
role at this destination. For example, select the Receiver icon for a user ID or group name that you

want to add to the receiver role. The icon changes from |:| to to show that you have added
the user or group to the access role for the resource.

e. Repeat the previous step to add more users or groups to access roles for the currently expanded
destination, and then click Next. A summary of your access role assignments is displayed.

f. Optional: Click Previous to review and change your assignments, if required.
g. Click Finish to confirm your assignments.

6. Repeat steps 4 and 5 for each destination you want to work with.

7. Save your changes to the master configuration.

Results

The selected users and groups are added to the access roles for the currently expanded destination. The
new access role assignments are displayed in the Destination access roles panel.

58 Securing WebSphere applications

Example

A group called MyGroup receives messages from three queues, Queue 1, Queue 2, and Queue 3. If you
want the group MyGroup to produce and consume messages at an additional destination, Queue 4, you
add MyGroup to Queue 4, and then add MyGroup to the sender and receiver roles for Queue 4.

What to do next
Use the administrative console to complete other security administrative tasks.
Removing users and groups from destination roles:

Service integration bus security uses role-based authorization. By removing users and groups from the
destination roles for a secured bus, you can prevent those users and group members from performing
messaging operations on the bus.

About this task

When selected users and groups no longer require access to a destination, you can remove them from all
the roles for that destination.

Procedure
1. Log into the administrative console.

2. Click Service integration -> Buses -> security_value -> [Authorization Policy] Manage
destination access roles A list of the destinations defined for the selected bus is displayed in the
Destinations panel.

3. Select one or more destinations to work with:
» Click a single destination name.
» Select the check boxes next to multiple destination names, and then click Manage Access Roles.
The Destination access roles panel is displayed. The information for each destination you have
selected is displayed in a collapsed section.

4. Expand a destination header to list the users and groups that have been assigned to roles at this
destination, and verify that the user or group that you want to remove has a role at this destination.

5. Select the users and groups that you want to remove from all role types at this destination, and click
Remove.

6. Save your changes to the master configuration.
Results

The selected users and groups are removed from all role types at the selected destination. The Manage
access roles for users and groups panel displays the updated role type assignments.

Example

The members of three groups, Group A, Group B, and Group C, belong to the sender role and the
receiver role for two queue destination, Queue 1 and Queue 2. If Group B is no longer required to send
and receive messages on Queue 2, you can use this task to remove Group B from all the role types on
Queue 2.

What to do next

Use the administrative console to complete other security administrative tasks.

Restoring default inheritance for a destination:

Chapter 8. Securing Service integration 59

Service integration bus security uses role-based authorization. By default, all local destinations inherit
access roles from the default resource. If default inheritance has been previously overridden, you can
restore it for a selected destination.

Before you begin

Default inheritance has been overridden for a selected secured destination. For more information, see
[‘Overriding inheritance from the default resource for a destination.”|

About this task

If default inheritance has been overridden for a particular destination, you can restore it. In this task, you
use the administrative console to restore the role type assignments from the default resource to a selected
destination. A destination can only inherit access roles that are allowed for that particular type of
destination. For example, a topic space can inherit the sender and receiver roles, but it cannot inherit the
browser role. Inherited access roles are added to any existing access roles for the destination.

Procedure
1. Log into the administrative console.

2. Click Service integration -> Buses -> security_value -> [Authorization Policy] Manage
destination access roles. The Destinations panel lists all the destinations defined for the selected
bus.

3. Select one or more destinations to work with:
» Click the name of a single destination.
« Select the check boxes next to multiple destinations, and click Manage Access Roles.

The Destination access roles panel is displayed. The information for each selected destination is
displayed in a collapsed section.

4. Expand a destination to list the users and groups that have been assigned to roles for this destination.
5. Select the Inherit from default check box.

6. Click OK to save your changes.

7. Save your changes to the master configuration.

Results

The role type assignments for the default resource are inherited by the selected destination. The
Destination access roles panel displays the newly inherited default access roles for the destination, and
any existing access roles.

Overriding inheritance from the default resource for a destination:

Service integration bus security uses role-based authorization. By default, local destinations can inherit
access roles from the default resource. If you do not want users and groups in the default access role to
access a particular destination, you can override default inheritance for a selected destination.

About this task

All the destinations in a local bus namespace can inherit default access roles with the following
exceptions:

« A destination for which default inheritance is overridden.
* Foreign destinations.
* Alias destinations that have an alias bus name that is not the local bus name.

60 Securing WebSphere applications

In this task, you use the administrative console to override default inheritance for a selected destination.
This means that the users or groups that belong to the default access role can no longer access the
selected destination.

Procedure
1. Log into the administrative console

2. Click Service integration -> Buses -> security_value -> [Authorization Policy] Manage
destination access roles. The Destination panel lists all the destinations defined for the selected bus.

3. Select one or more destinations to work with:
» Click the name of a single destination.
» Select the check boxes next to multiple destinations, and click Manage Access Roles.

The Destination access roles panel is displayed. The information for each selected destination is
displayed in a collapsed section.

4. Expand a destination to list the users and groups that have been assigned to roles for this destination.
5. Clear the Inherit from default check box.

6. Click OK to save your changes.

7. Save your changes to the master configuration.

Results

The inherited role type assignments are removed from the selected destination. The Destination access
roles panel displays the updated access roles for the destination.

Administering foreign bus roles

Service integration bus security uses role-based authorization. When messaging security is enabled,
groups of users require authority to send messages from a local bus destination to a foreign bus. By
listing, adding and removing users and groups in foreign bus roles, you can control who can send
messages to foreign buses.

Before you begin

These tasks assumes that one or more foreign bus connections have been configured. For more
information, see [Configuring foreign bus connections|

About this task

The foreign bus connection represents another service integration bus, either in the same cell as the local
bus or in a different cell, or it represents a WebSphere MQ queue manager. From the local bus, every
other bus is regarded as a foreign bus, even if it is a bus in the same cell. Messages route to a foreign
bus either directly through a link between the local bus and the foreign bus, or indirectly through one or
more intermediate buses. A member of a group that belongs to the sender role on the local bus and the
foreign bus can send messages directly to the foreign bus. The sender role is the only foreign bus role.

Procedure

* [‘Listing users and groups in foreign bus roles”l

. :“Adding users and groups to foreign bus roles” on page 62|

. “‘Removing users and groups from foreign bus roles” on page 64{

Listing users and groups in foreign bus roles:

Service integration bus security uses role-based authorization. When messaging security is enabled, users
and groups require authority to send messages from a secured local bus destination to a secured foreign

Chapter 8. Securing Service integration 61

bus. By listing all the users and groups in foreign bus roles for a selected foreign bus, you can find out
who has authority to send messages from the local bus to the selected foreign bus.

About this task

In this task you use the administrative console to list users and groups in the sender role for selected
foreign buses. The list includes users and groups that have references in the service integration
role-based configuration. It does not include all the users and groups that exist in the external user
repository.

Procedure
1. Log into the administrative console.

2. Click Service integration -> Buses -> security_value -> [Authorization Policy] Manage foreign
bus access roles. A list of all the foreign buses defined for the selected bus is displayed.

3. Select one or more foreign buses:
» Click the name of a single foreign bus.
» Select the check boxes next to multiple foreign buses and click Manage Access Roles.
The Foreign bus access roles panel is displayed. The access roles information for each foreign bus is
displayed in a collapsible section.
4. Expand the section header for a foreign bus.

Results

A list of all the users and groups that have been assigned to the sender role for the currently expanded
foreign bus is displayed.

What to do next

You can add and remove users and groups in the sender role for the selected foreign bus.

Adding users and groups to foreign bus roles:

Service integration bus security uses role-based authorization. When messaging security is enabled, users
and groups require authority to send messages from a secured local bus destination to a secured foreign
bus. By adding selected users and groups to the sender role for a selected foreign bus, you can control
who has authority to send messages to the selected foreign bus.

Before you begin

This task assumes that the following conditions have been met:

» One or more foreign bus connections have been configured for the local bus. For more information, see
[Configuring foreign bus connections|

» The users and groups that you want to add to foreign bus roles must exist in the user repository.

About this task

By default, when security is enabled, users and groups cannot send messages to a foreign bus. You must
add them to the sender role for the foreign bus. In this task you uses an administrative console wizard to

select one or more foreign buses, retrieve selected users or groups from the potentially very large number
of users and groups in the user repository, and add them to the sender role for the selected foreign buses.

Procedure
1. Start the administrative console.

62 Securing WebSphere applications

6.

Click Service integration -> Buses -> security_value -> [Authorization Policy] Manage foreign
bus access roles. A list of the foreign buses defined for the selected bus is displayed in the Foreign
buses panel.

Select one or more foreign buses to work with:
+ Click a single foreign bus name.
» Select the check boxes next to multiple foreign bus names, and then click Manage Access Roles.

The Foreign bus access roles panel is displayed. The access roles information for each foreign bus
you have selected is displayed in a collapsed section.

Expand a foreign bus header to list the users and groups that have been assigned to roles for this
foreign bus. You can verify that the user or group you want to add does not already have a role for this
foreign bus.

Click Add to start the Security wizard. The wizard takes you through the following steps to add
selected users or groups to the sender role for the selected foreign bus:

a. Search for the users or groups that you want to add to the sender role for the expanded foreign
bus:

Users or Groups
Select either Users or Groups to specify whether you want to grant access roles to users
or groups.

Search pattern
This field is mandatory. Specify a search string that is matched against user IDs or group
names in the user repository. Only user IDs or group names that match the search pattern
are retrieved, subject to the maximum number of search results. Wildcard characters are
allowed.

Maximum number of search results to display
This field is mandatory. Specify the maximum number of user IDs or group names you
want the administrative console to display.

b. Click Next. The wizard displays the users or groups in the user repository that match the
information that you provided in the previous step.

c. Select the check boxes next to the user IDs or group names that you want to add to the sender
role for the currently expanded foreign bus, and click Next. A list of users IDs or group names that
you can add to the sender role is displayed. Note that some users or groups might already be
assigned to the sender role for this foreign bus.

d. Select the Sender icon for a user ID or group name that you want to add to the sender role. The

icon changes from |:| to to show that you have added the user or group to the access role for
the resource.

e. Repeat the previous step for each user or group you want to add to the sender role, and then click
Next. A summary of your role assignments is displayed.

f. Optional: Click Previous to review and change your assignments, if required.
g. Click Finish to confirm your assignments.
Save your changes to the master configuration.

Results

The selected users and groups are added to the sender role for the selected foreign bus. The new access
roles are displayed in the Foreign bus access roles panel.

Chapter 8. Securing Service integration 63

What to do next
Use the administrative console to complete other security administrative tasks.

Removing users and groups from foreign bus roles:

Service integration bus security uses role-based authorization. By removing users and groups from the
foreign bus roles for a selected secured local bus, you prevent those users and groups from sending
messages to the foreign bus.

About this task

In this task you use the administrative console to remove selected users or groups from the sender role for
a selected foreign bus.

Procedure
1. Log into the administrative console.

2. Click Service integration -> Buses -> security_value -> [Authorization Policy] Manage foreign
bus access roles. A list of all the foreign buses defined for the selected bus is displayed.

3. Select one or more foreign buses to work with:
* Click a single foreign bus name.
» Select the check boxes next to multiple foreign bus names, and then click Manage Access Roles.
The Foreign bus access roles panel is displayed. The access roles information for each selected
foreign bus is displayed in a collapsed section.

4. Expand the section header for a foreign bus to display details for all the users and groups that have
the sender role for this foreign bus.

5. Select the users and groups that you want to remove from the sender role, and click Remove. The
selected users and groups are removed from the sender role for this foreign bus.

6. Save your changes to the master configuration.
Results

The selected users and groups are removed from the sender role for the selected foreign bus. The
Foreign bus access roles panel displays the changed access role assignments.

What to do next

Use the administrative console to complete other security administrative tasks.

Administering temporary destination prefix roles

Service integration bus security uses role-based authorization. A temporary destination prefix can have two
role types: creator and sender. The messaging engine uses the temporary destination prefix at runtime to
determine which users and groups have authority to create a temporary destination, and send messages
to temporary destinations. By administering temporary destination prefix roles for a bus, you control which
users and groups can create and send messages to temporary destinations for a selected bus.

Before you begin

Ensure that security is enabled for the bus. For more information, refer to[‘Securing buses” on page 38|

About this task

By default, a bus does not contain any temporary destination prefixes. You use the administrative console
to add a new temporary destination prefix to the bus, and then assign selected users and groups to the

64 Securing WebSphere applications

sender role for the new temporary destination prefix. The creator role is assigned by default. All
authenticated users can create temporary destinations by default. You can remove selected users and
groups from the sender role for a selected temporary destination prefix, and you can remove a selected
temporary destination prefix.

Procedure

* [‘Listing users and groups in temporary destination prefix roles”|

. “‘Adding users and groups to temporary destination prefix roles”l

* |“Removing users and groups from temporary destination prefix roles” on page 67|
* |“Removing a temporary destination prefix” on page 67|

Listing users and groups in temporary destination prefix roles:

Service integration bus security uses role-based authorization. Temporary destination prefix roles are used
to authorize access to the temporary destinations for a bus. By listing the users and groups in the
temporary destination prefix roles for a selected bus, you can find out which users and groups can create
temporary destinations, and send messages to temporary destinations for a selected bus.

About this task

In this task you use the administrative console to list users and groups in temporary destination prefix
roles for the selected bus. The list includes users and groups that have references in the role-based
security configuration for service integration. It does not include all the users and groups that exist in the
external user repository.

Procedure
1. Log into the administrative console.

2. Click Service integration -> Buses -> security_value -> [Authorization Policy] Manage temporary
destination prefix access roles. The Temporary destination prefixes panel lists all the temporary
destination prefixes defined on the bus.

3. Select one or more temporary destination prefixes to work with:
» Click the name of a single temporary destination prefix.

» Select the check boxes next to multiple temporary destination prefixes, and click Manage Access
Roles.

The Temporary destination prefix access roles panel is displayed. The access roles information for
each temporary destination prefix is displayed in a collapsed section.

4. Expand the header for a selected temporary destination prefix to show its access roles.
Results

The expanded section lists the users, groups and group members that are assigned to access roles for the
selected temporary destination prefix.

What to do next

You can now administer the users and groups in the sender role for a selected temporary destination
prefix.

Adding users and groups to temporary destination prefix roles:

Service integration bus security uses role-based authorization. The messaging engine uses the temporary
destination prefix at runtime to determine whether a client application is authorize to create, or send

Chapter 8. Securing Service integration 65

messages to a particular temporary destination. By adding users and groups to temporary destination
prefix roles for a selected bus, you can control which users and groups can create temporary destinations,
and send messages to them.

Before you begin

The users and groups that you want to add to temporary destination prefix roles must already exist in the
user repository.

About this task

By default, the bus security configuration does not contain any temporary destination prefixes. In this task,
you use the administrative console Security wizard to first add a new temporary destination prefix, and
then add users and groups to the sender role for the new temporary destination prefix. Note that the
creator role is assigned by default to the creator of the temporary destination; you cannot use the
administrative console to add users and groups to the creator role. By default, members of the All
Authenticated group have authority in the creator role for temporary destination prefixes.

Procedure

1. Log into the administrative console. The Temporary destination prefixes panel lists all the temporary
destination prefixes defined for the selected bus. By default, this list is empty.

2. Click Service integration -> Buses -> security_value -> [Authorization Policy] Manage temporary
destination prefix access roles

3. Click Add to start the Security wizard:

a. Define the name of the temporary destination prefix, and identify the users or groups that you want
to add to the sender role for the temporary destination prefix:

Resource
This field is mandatory. Specify a name for the new temporary destination prefix.

Users or Groups
Select either Users or Groups to specify whether you want to grant access roles to users
or groups.

Search pattern
This field is mandatory. Specify a search string that is matched against user identities or
group names in the user repository. Only user identities or group names that match the
search pattern are retrieved, subject to the maximum number of search results. Wild card
characters are allowed.

Maximum number of search results to display
This field is mandatory. Specify the maximum number of user identities or group names
you want the administrative console to display.
b. Click Next. The wizard displays the users or groups in the user repository that match the
information that you provided in the previous step.
c. Select the check boxes for the user identities or group names that you want to assign to the sender
role for the temporary destination prefix, and click Next. Note that you cannot assign users and
groups to the creator role; it is assigned by default.

d. Select the Sender icon for each user identity or group name that you want to add to the sender
role. The icon changes from |:| to to show that you have added the user or group to the
access role for the resource.

e. Click Next. A summary of your role type assignments is displayed.

f. Optional: Click Previous to review and change your role type assignments. Make your changes on
the Select role types page, and then click Next. Note that you cannot change the name of the
temporary destination prefix.

66 Securing WebSphere applications

g. Click Finish to confirm your assignments. The role type assignments are saved to the master
configuration, and the new assignments are displayed in the Temporary destination prefixes panel.

4. Save your changes to the master configuration.
Results

The selected users, groups, and group members are added to the sender role for the selected temporary
destination prefix roles. The Manage access roles panel displays the new access roles.

Removing users and groups from temporary destination prefix roles:

Service integration bus security uses role-based authorization. When security is enabled, a temporary
destination prefix role is used to authorize access to temporary destinations. The temporary destination
prefix is used at runtime to create temporary destinations on the bus. By removing users and groups from
temporary destination prefix roles for a selected bus, you can prevent selected users and groups from
sending messages to temporary destinations on the bus.

About this task

In this task you use the administrative console to remove users, groups, and group members from the
sender role for selected temporary destination prefixes. Note that you cannot use this task to remove
users and groups from the creator role. If you want to remove the creator role from a user or group, refer
to[‘Removing a temporary destination prefix.’]

Procedure
1. Log into the administrative console.

2. Click Service integration -> Buses -> security_value -> [Authorization Policy] Manage temporary
destination prefix access roles The Temporary destination prefixes panel lists all the temporary
destination prefixes defined for the selected bus.

3. Select one or more temporary destination prefixes to work with:
« Click the name of a single temporary destination prefixes.
» Select the check boxes next to multiple temporary destination prefixes, and click Manage Access
Roles.
The Temporary destination prefix access roles panel is displayed. The access roles information for
each temporary destination prefix is displayed in a collapsed section.
4. Expand the header for a selected resource to show its role type assignments.

5. Select the users and groups that you want to remove from the sender role for the currently selected
temporary destination prefix, and click Remove.

6. Save your changes to the master configuration.

Results

The selected users, groups, and group members are removed from the sender role for the selected
temporary destination prefix. The Temporary destination prefix access roles panel is updated to show the
changes to the access role assignments.

Removing a temporary destination prefix:

A temporary destination prefix is used by the service integration bus security model to determine what

operations the creator of the temporary destination can perform. By removing a temporary destination
prefix, you remove the creator role from the identity of the user that created the temporary destination.

Chapter 8. Securing Service integration 67

About this task

A temporary destination prefix can have two authorization role types: creator and sender. In this task you
use the administrative console to remove a selected temporary destination prefix from a selected bus,
which removes the creator role from the user identity that created the temporary destination.

If you want to remove users and groups from the sender role for a temporary destination prefix, see
|“Removing users and groups from temporary destination prefix roles” on page 67.|

Procedure
1. Log into the administrative console.

2. Click Service integration -> Buses -> security_value -> [Authorization Policy] Manage temporary
destination prefix access roles The Temporary destination prefixes panel lists all the temporary
destination prefixes defined for the selected bus.

3. Select the temporary destination prefix you want to remove.
4. Click Remove.
5. Save your changes to the master configuration.

Results

The selected temporary destination prefix is removed, and the creator role is removed from the user
identity that created the temporary destination.

Administering topic space root roles

Service integration bus security uses role-based authorization. When messaging security is enabled,
groups of users require authority to send and receive messages from the topic space root in a
publish/subscribe topic hierarchy. By adding and removing users and groups in topic space root roles, you
can control access to the topic space root.

About this task

Topic space root (/) is also called the virtual root, and it is the highest level topic in a publish/subscribe
topic hierarchy. The hierarchy itself is called the topic space, and it is a type of destination. Note that these
tasks apply only to the topic space root; they do not apply to topics or a topic space. For information about
administering topic access roles, refer to[‘Administering topic roles” on page 71,/ and for information about
administering topic space access roles, see [‘Administering destination roles” on page 56|

You can add and remove users and groups in the sender and receiver roles for the topic space root. The
topic space root can also inherit access in the sender and receiver roles from the topic space, providing

the topic space is configured to inherit the default destination roles. For more information about topic
inheritance, see

For the topic space root roles to have an effect, the Topic Access Check Required check box must be
selected in the topic space configuration. For more information, see |Configuring bus destination propeﬂiesl

Procedure

 |“Listing users and groups in topic space root roles’1

* [‘Adding users and groups to topic space root roles” on page 69|

. “‘Removing users and groups from topic space root roles” on page 70|

Listing users and groups in topic space root roles:

Service integration bus security uses role-based authorization. When messaging security is enabled, users
and groups require authority to send and receive messages from the topic space root in a

68 Securing WebSphere applications

publish/subscribe topic hierarchy. By listing the users and groups in topic space root roles, you can find
out who has access to the topic space root for a selected topic space.

About this task

Topic space root (/) is the highest level topic in a publish/subscribe topic hierarchy. The hierarchy itself is
called the topic space. In this task you use the administrative console wizard to list users and groups in
topic space root roles for a selected root topic.

This task applies to the topic space root only; it does not apply to the topics within the topic space, or to
the topic space. If you want to list users and groups in topic roles, refer to [‘Listing users and groups in|
hopic roles” on page 72 If you want to list users and groups in a topic space (which is a type of
destination), see [‘Listing users and groups in destination roles” on page 56.|

The users and groups listed in this task have references in the service integration bus security
configuration. The list does not include all users and groups that exist in the external user repository.

Procedure
1. Log into the administrative console.

2. Click Service integration -> Buses -> security_value -> [Authorization Policy] Manage topic
access roles

Results

The Topic space root panel lists all the users and groups in topic space root roles for the selected bus.
What to do next

You can administer the role type assignments for the users and groups displayed.

Adding users and groups to topic space root roles:

Service integration bus security uses role-based authorization. When messaging security is enabled, users
and groups require authority to send and receive messages from the topic space root in a
publish/subscribe topic hierarchy. By adding users and groups to topic space root roles, you control access

to the root topic in a selected topic space.

Before you begin
* The users and groups you want to add to topic space root roles must exist in the user repository.

+ Topic space root roles are effective only when the Topic Access Check Required setting is enabled in
the configuration for a topic space. For more information, see [Configuring bus destination properties}

About this task

Topic space root (/) is the highest level topic in a publish/subscribe topic hierarchy. The hierarchy itself is
called the topic space. Note that this task applies only to the topic space root; it does not apply to adding
users and groups to topics or a topic space. For information about adding users and groups to topic
access roles, see |“Adding users and groups to topic roles” on page 72,|and for adding users and groups
to topic space access roles, see[‘Adding users and groups to destination roles” on page 57.|

You can add users and groups to the sender and receiver roles for the topic space root. The topic space
root can also inherit access in the sender and receiver roles from the topic space, providing the topic

space is configured to inherit the default destination roles. For more information about topic inheritance,

Chapter 8. Securing Service integration 69

By default, a topic space does not contain a root topic. In this task you use an administrative console
wizard to add a root topic to an existing topic space, retrieve the users and groups from the user
repository that you want to assign to roles on the new root topic, and add them to the root topic.

Procedure
Log into the administrative console.

1.

2. Click Service integration -> Buses -> security_value -> [Authorization Policy] Manage topic
access roles. The Topic spaces panel lists the topic spaces defined on the selected bus.

3. Select the name of the topic space where you want to add a new root topic. The Topics panel displays
the selected topic space in a collapsible section.

4. Click Add to start the Security wizard:

a. ldentify the users or groups that you want to add to the sender and receiver roles for the new root

topic:

Users or Groups
Select either Users or Groups to specify whether you want to grant roles to users or
groups.

Search pattern
This field is mandatory. Specify a search string that is matched against user IDs or group
names in the user repository. Only user IDs or group names that match the search pattern
are retrieved, subject to the maximum number of search results. You can use wildcard
characters in the search string.

Maximum number of search results to display
This field is mandatory. Specify the maximum number of user IDs or group names that you
want the administrative console to display.

b. Click Next. The wizard displays the new root topic, and lists the users IDs or group names in the
user repository that match the information that you provided in the previous step.

c. Select the check boxes next to the user IDs or group names that you want to assign to roles on the
new root topic.

d. Click Next. The wizard displays the topic role types that you can assign for the users or groups
you selected in the previous step. Role types might already have been assigned for a specific user
or group.

e. Select the role types for the selected users or groups. For example, to assign a user to the sender
role, select the Sender icon for the appropriate user ID. The icon changes from |:| to to show
that you have added the user or group to the access role for the resource.

f. Click Next. A summary of your role type assignments for the root topic is displayed.

g. Optional: If you want to change your assignments, click Previous to return to the Select role types
page, change your assignments, and then click Next.

h. Click Finish to confirm your assignments. The role type assignments are saved to the master
configuration, and the new assignments are displayed in the Topics panel.

5. Save your changes to the master configuration.
Results

The selected users and groups are added to topic space root roles for the new root topic. The Manage
access roles panel displays the new access role assignments.

Removing users and groups from topic space root roles:

Service integration bus security uses role-based authorization. When messaging security is enabled, users
and groups require authority to send and receive messages from the topic space root in a

70 Securing WebSphere applications

publish/subscribe topic hierarchy. By removing users and groups from topic space root roles, you prevent
them from accessing the root topic in a selected topic space.

About this task

Topic space root (/) is the highest level topic in a publish/subscribe topic hierarchy. The hierarchy itself is
called the topic space. Note that this task applies only to the topic space root; it does not apply to
removing users and groups from topics or a topic space. For information about removing users and groups
from topic access roles, see |“Removing users and groups from topic roles” on page 73,/ and for removing
users and groups from topic space roles, see [‘Removing users and groups from destination roles” on page|

In this task you use the administrative console to remove selected users and groups from the sender and
receiver roles for the selected root topic.

Procedure
1. Log into the administrative console.

2. Click Service integration -> Buses -> security_value -> [Authorization Policy] Manage topic
access roles. The Topic spaces panel lists the topic spaces defined on the bus.

3. Select the topic space you want to work with. The selected topic space is displayed in the Topics
panel. The root topic (/) is displayed by default.

4. Select the topic space root. The Topic access roles panel lists the role type assignments for the topic
space root.

5. Select the names of the users, groups and group members that you want to remove from all role types
for the selected root topic, and click Remove.

6. Save your changes to the master configuration.
Results

The selected users and groups are removed from all roles for the selected root topic. The Topic access
roles panel is updated to show the changes to the access roles assignments.

Administering topic roles

Service integration bus security uses role-based authorization. When messaging security is enabled, users
and groups require authority to access a topic in a publish/subscribe topic hierarchy. By adding and
removing users and groups in topic roles, you can control access to the topic.

About this task

You use the administrative console to list, add and remove users and groups in the sender and receiver
roles, and to define topic role inheritance. By default, a child topic inherits its topic roles from its parent
topic. You can change the default roles for a particular topic by adding or removing topic roles at the topic
level. You can also allow or block inheritance of topic roles at topic level.

You can add access roles for a topic before it exists. Topics are created at runtime only, and exist only for
as long as they are active.

Procedure

* [‘Listing users and groups in topic roles” on page 72|

. “‘Adding users and groups to topic roles” on page 72|

* [‘Removing users and groups from topic roles” on page 73|
. “‘Enabling topic role inheritance” on page 74
» [“Disabling topic role inheritance” on page 75|

Chapter 8. Securing Service integration 71

Listing users and groups in topic roles:

Service integration bus security uses role-based authorization. When messaging security is enabled, users
and groups require authority to access topics in a publish/subscribe topic hierarchy. By listing the users
and groups that are members of topic roles for a selected topic, you can find out who has authority to
send messages to and from the topic.

About this task

In this task you use the administrative console to list users and groups that have access roles for a
selected topic in a selected topic space. The list includes users, groups and group members that have
references in the role-based security configuration for service integration. It does not list all the users and
groups that exist in the external user repository.

Procedure
1. Log into the administrative console.

2. Click Service integration -> Buses -> security_value -> [Authorization Policy] Manage topic
access roles -> topic_space_name > topic_name. The Topics panel displays the information for the
topic in a collapsed section.

3. Expand the section header to display the users and groups that are assigned to role types for the
selected topic.

What to do next
You can add and remove users and groups in the topic roles for the selected topic.
Adding users and groups to topic roles:

Service integration bus security uses role-based authorization. When messaging security, and topic level
authorization is enabled, users and groups must be authorized to access topics in a publish/subscribe
topic hierarchy. By adding users and groups to topic roles, you control access to a topic in a selected topic
space.

Before you begin
* The users and groups you want to add to topic space root roles must exist in the user repository.

» Topic roles are effective only when the Topic Access Check Required setting is enabled in the
configuration for a topic space. For more information, see [Configuring bus destination properties}

About this task

Topics are organized into one or more hierarchies within a topic space. If the Topic Access Check
Required setting is enabled for the topic space, a user must have authorization to access the topic itself.
You can add access roles to a topic before it is created at runtime. A topic inherits access roles from its
parent unless you explicitly block the inheritance. For more information, see [‘Enabling topic role]
linheritance” on page 74

In this task you use an administrative console wizard to add users or groups to the sender and receiver
roles for a selected topic.

Procedure
1. Log into the administrative console.

2. Click Service integration -> Buses -> security_value -> [Authorization Policy] Manage topic
access roles -> topic_space_name > topic_name. The Topic space root panel lists the users and
groups that are assigned to role types for the selected topic.

72 Securing WebSphere applications

3. Click Add to start the Security wizard:

a. Provide the following information to enable the wizard to identify the users or groups that you want
to add to role types for the selected topic:

Resource
Specify the name of the topic.

Users or Groups
Select either Users or Groups to specify whether you want to grant access roles to users
or groups.

Search pattern
This field is mandatory. Specify a search string that is matched against user IDs or group
names in the user repository. Only user IDs or group names that match the search pattern
are retrieved, subject to the maximum number of search results. Wild card characters are
allowed.

Maximum number of search results to display
This field is mandatory. Specify the maximum number of user IDs or group names you
want the administrative console to display.

b. Click Next. The wizard lists the users IDs or group names that match the information that you
provided in the previous step.

c. Select the check boxes for the user IDs or group names that you want to assign to roles for the
selected topic.

d. Click Next. The wizard lists the topic role types that you can assign for the users or groups you
selected in the previous step. Role types might already have been assigned for a specific user or

group.

e. Select the role types for each of the selected users or groups. For example, to assign a user ID to
the sender role, select the Sender icon for that user ID. The icon changes from |:| to to show
that you have added the user or group to the access role for the resource.

f. Click Next. A summary of your role type assignments for the selected topic is displayed.

g. Optional: If you want to change your assignments, click Previous to return to the Select role types
step. Make changes to your assignments, and click Next to return to the Confirm step.

h. Click Finish to confirm your assignments and save your changes to the master configuration.
Results

The updated role type assignments for the selected users or groups are displayed in the Topic access
roles panel.

Removing users and groups from topic roles:

Service integration bus security uses role-based authorization. When messaging security is enabled, and
the Topic access check required setting is enabled for the topic space, users and groups require
authority to access a topic in the topic space. By removing users and groups from all topic roles for a
selected topic, you prevent them from accessing the topic.

Before you begin

Topic roles are effective only when the Topic Access Check Required setting is enabled in the
configuration for a topic space. For more information, see|Configuring bus destination propertiesl

About this task

This task uses the administrative console to remove users and groups from both the sender and receiver
roles for a selected topic in a selected topic space.

Chapter 8. Securing Service integration 73

Procedure
1. Log into the administrative console.

2. Click Service integration -> Buses -> security_value -> [Authorization Policy] Manage topic
access roles -> topic_space_name > topic_name. The Topic access roles panel is displayed. The
information for the topic is displayed in a collapsed section.

3. Expand the section header to display the users and groups that are assigned to role types for the
selected topic.

4. Select the users and groups that you want to remove from the sender and receiver roles for the
selected topic, and click Remove.

5. Save your changes to the master configuration.
Results

The selected users and groups are removed from the sender and receiver roles for the selected topic. The
Topic access roles panel is updated to show that the selected users and groups have no topic role type
assignments.

Enabling topic role inheritance:

Service integration bus security uses role-based authorization. When messaging security, and topic level
security are enabled, and users and groups require access in the sender and receiver roles to access a
topic in a publish/subscribe topic hierarchy. By default, topics inherit these roles from the parent topic. If
topic role inheritance has been disabled for a particular topic, you can restore it by using the administrative
console.

Before you begin

You must ensure that the following conditions are met:

+ Messaging security is enabled. For more information, see [‘Disabling bus security” on page 47

» Topic level security is enabled for the topic space. Check the setting Topic Access Check Required?
in the topic space destination configuration. For more information, see [Configuring bus destination|

About this task

In this task you use the administrative console to restore topic role inheritance for selected topics. A topic
can only inherit the sender and receiver roles from the parent topic in the topic hierarchy.

Procedure
1. Log into the administrative console.

2. Click Service integration -> Buses -> security_value -> [Authorization Policy] Manage topic
access roles -> topic_space_name > topic_name. The Topic access roles panel lists users and
groups that have been assigned role types for the selected topic.

3. Expand the topic name header to display details of the users and groups that have one or more
access roles for this topic.

Select the Inherit sender role from parent topic check box.
Select the Inherit receiver role from parent topic check box.
Click OK to save your changes.

Save your changes to the master configuration.

N o~

74 Securing WebSphere applications

Results

The select topic inherits access roles from the parent topic. The Topic access roles panel displays the
inherited access roles for the topic.

Disabling topic role inheritance:

Service integration bus security uses role-based authorization. When messaging security, and topic level
security are enabled, users and groups require access in the sender and receiver roles to access a topic
in a publish/subscribe topic hierarchy. By default, topics inherit these roles from the parent topic. If you do
not want topics to inherit topic roles from the parent topic in the topic hierarchy, you can override topic role
inheritance by using the administrative console.

Before you begin
About this task

In this task you use the administrative console to prevent a selected topic from inheriting authorization
roles from its parent topic.

Procedure
1. Log into the administrative console.

2. Click Service integration -> Buses -> security_value -> [Authorization Policy] Manage topic
access roles -> topic_space_name > topic_name. The Topic access roles panel lists users and
groups that have been assigned role types for the selected topic.

3. Expand the topic hame header to display details of the users and groups that have access one or
more access roles for the selected topic.

4. Clear the Inherit sender role from parent topic check box.
5. Clear the Inherit receiver role from parent topic check box.
6. Click OK to save your changes.

7. Save your changes to the master configuration.

Results

The selected topic cannot inherit access roles from its parent topic. The Topic access roles panel displays
the changed access roles for the selected topic.

Removing access roles from unknown users and groups

Service integration bus security uses role-based authorization. Users and groups are assigned to access
roles for specific bus resources. If a user or a group that has access roles is removed from the user
repository, it becomes an unknown user. You can identify the unknown users and groups for a selected
bus, and removes their access roles.

About this task

In this task, you use the administrative console to remove access roles from users and groups for
unknown users and groups.

Procedure

1. Click Service integration -> Buses -> security_value -> [Authorization Policy] Manage users and
groups not known to the user repository The Unknown users and groups panel lists all the users
and groups that have access roles assigned to them, but they are not known in the user registry.

2. Select the check boxes next to multiple user and group names.
3. Click Remove all roles. The access role assignments for the selected users and groups are removed.

Chapter 8. Securing Service integration 75

4. Save your changes to the master configuration.
Results

The access role assignments are removed from the selected users and groups. The Unknown users and
groups panel is updated to show the changes to the role type assignments.

Administering permitted transports for a bus

Use these tasks to configure a transport policy for a service integration bus, and to administer the
transports chains that remote applications clients can use to connect to a service integration bus.

Procedure

» |“Configuring a transport policy for a bus”|

« [“Listing permitted transports for a bus” on page 77

* |“Adding a permitted transport to a bus” on page 77|

+ [‘Removing a permitted transport from a bus” on page 78

Configuring a transport policy for a bus
By configuring a transport policy for the bus you can affect the security of messages in transit.

Before you begin
There are no prerequisites for this task.
About this task

The transport policy for a bus controls which transport mechanism remote application clients can use to
connect to the bus.

Procedure

1. Log onto the administrative console.

2. Click Service integration -> Buses -> security_value. The configuration panel for the selected bus is
displayed

3. Choose one of the following transport policies for the bus:

Allow the use of all defined transport channel chains
Select this option to allow the bus to use unsecured ports.

Restrict the use of defined transport channel chains to those protected by SSL
Select this option to prevent the use of the InboundBasicMessaging port.

Restrict the use of defined transport channel chains to the list of permitted transports
Select this option if you want connecting client applications to use named transport channel
chains. This provides the highest level of control over the use of transport channel chains.

4. Click Apply.
5. Save your changes to the master configuration.

Results

The transport policy you have configured for the selected bus controls how application clients connect to
the bus.

76 Securing WebSphere applications

What to do next

You can use the administrative console to add and remove transport chains in the list of permitted
transports for the bus.

Listing permitted transports for a bus
Use this task to display a list of the transport chains that are available for a remote client application to
use to connect to a selected service integration bus.

Before you begin
The transport policy for the bus must be set to the option Restrict the use of defined transport channel

chains to the list of permitted transports for this task to have an effect. For more information about how
to configure the transport policy for the bus, see |“Configuring a transport policy for a bus” on page 76.|

About this task

A permitted transport is a transport chain that a remote client application can use to connect to the bus. In
this task, you use the administrative console to list all the permitted transports for a selected bus.

Procedure
1. Log onto the administrative console.

2. Click Service integration -> Buses -> security_value -> [Additional Properties] Permitted
transports.

Results
The Permitted transports panel displays the list of permitted transports for the selected bus.
What to do next

You can use the administrative console to add and remove transport chains in the list of permitted
transports to control which transport chains a remote client application can use to connect to the bus.

Adding a permitted transport to a bus
Use this task to make a new transport chain available to a remote client application to use to connect to a
service integration bus.

Before you begin
The transport policy for the bus must be set to the option Restrict the use of defined transport channel

chains to the list of permitted transports for this task to have an effect. For more information about how
to configure the transport policy for the bus, see |“Configuring a transport policy for a bus” on page 76.|

About this task

A permitted transport is a transport chain that a remote client application can use to connect to the bus. If
you want to allow remote client applications to connect to the bus by using a new transport chain, you
must add the new transport chain to the list of permitted transports for the bus. In this task, you use the
administrative console to add a new transport chain to the list of permitted transports for a selected bus.

Procedure
1. Log onto the administrative console.

Chapter 8. Securing Service integration 77

2. Click Service integration -> Buses -> security_value -> [Additional Properties] Permitted
transports. The Permitted transports panel displays the list of permitted transports for the selected
bus.

3. Click New.

4. Select the name of the transport chain you want to add in the list box.
5. Click OK.

6. Save your changes to the master configuration.

Results

The new transport name is displayed in the list of permitted transports, and its is available for use by a
remote client application to connect to the bus.

What to do next

You can use the administrative console to remove transport chains from a bus.

Removing a permitted transport from a bus
Use this task to remove a selected transport chain from the list of permitted transport chains for a selected
service integration bus.

Before you begin
The transport policy for the bus must be set to the option Restrict the use of defined transport channel

chains to the list of permitted transports for this task to have an effect. For more information about how
to configure the transport policy for the bus, see [‘Configuring a transport policy for a bus” on page 76.|

About this task

A permitted transport is a transport chain that a remote client application can use to connect to the bus. If
you want to prevent a remote client application from using a particular transport chain to connect to the
bus, you can remove the transport chain from the list of permitted transports for the bus. In this task, you
use the administrative console to remove a transport chain from the list of permitted transports for a
selected bus.

Procedure
1. Log onto the administrative console.

2. Click Service integration -> Buses -> security_value -> [Additional Properties] Permitted
transports. The Permitted transports panel displays the list of permitted transports for the selected
bus.

3. Select the name of the transport chain you want to remove.

4. Click Delete. The Permitted transports panel displays an updated list of permitted transports for the
selected bus.

5. Save your changes to the master configuration.
Results

The selected transport chain is removed from the list of permitted transports for the selected bus, and a
remote client can no longer use it to connect to the bus.

What to do next

You can use the administrative console to manage the transport policy for the bus.

78 Securing WebSphere applications

Securing messages between messaging buses

Use these tasks to administer the access control security associated with sending messages between
buses.

Procedure
* [‘Protecting messages transmitted between buses’]
* |“Administering access to foreign destinations”|

Protecting messages transmitted between buses
Use this task to protect the integrity of the data that is transmitted between secured linked service
integration buses.

Before you begin

« Review the information in the topics [Secure transport configuration requirements| and [Configuring
[transport chains]

+ Configure a transport policy for the bus, as described in the topic [‘Configuring a transport policy for a|
[bus” on page 76

About this task

In this task, you configure transport chains for the remote bus to ensure that only secured inbound
transport chains can contact the messaging engines on the server. The remote bus might be a foreign
bus, or an WebSphere MQ link.

Procedure
1. Ensure that the linked buses are secured. For further information, see[*Securing buses” on page 38/
2. Configure the Target inbound transport chain property for the foreign bus, or WebSphere MQ link, as
appropriate:
+ For connections to a foreign bus, see [Connecting service integration buses to use point-to-point|
[messaging or [Connecting service integration buses to use publish/subscribe messaging|

« For connections to WebSphere MQ, refer to [Creating a new WebSphere MQ link}

Results
You have configured the Target inbound transport chains for the remote service integration bus.

What to do next

Administering access to foreign destinations
Use these tasks to administer the access control security associated with sending messages to foreign
bus destinations.

About this task

To define the authentication information used in the access control checks that are performed when a
message is sent to a destination in a foreign bus, complete the following steps:

Procedure

» Define the required authorization permissions to allow a sender to access a destination on a foreign
bus. These can be defined by using either a foreign bus definition, as described in|“Administering|
foreign bus roles” on page 61,|or a foreign bus destination definition, as described in|“Administering|
destination roles” on page 56 These permissions are used when the message is sent, to check that t
sender is allowed to access the foreign bus.

Chapter 8. Securing Service integration

he

79

» The administrator of the foreign bus must define the required authorization permissions to allow the
messages to access the destination on the foreign bus. These permissions are used when the message
enters the foreign bus.

» Define the authorization permissions to allow any messages entering your bus from the foreign bus to
access the required destinations.

Securing access to a foreign bus
You can secure the link between a local bus and a foreign bus.

Before you begin

Before you can secure the link between a local bus and a foreign bus, there must be foreign bus
connection on the local bus, and therefore a link between the buses.

About this task

This task summarizes the significant tasks to secure the link between a local bus and a foreign bus. For
more general information about service integration bus security, see [‘Securing service integration” on pagel

When you create a foreign bus connection, there are some options to secure the connection during that
procedure.

Procedure
1. Enable security on the service integration bus and the foreign bus. See [‘Securing buses” on page 38.|
2. Secure the link between the buses. See ['Securing messages between messaging buses” on page 79

3. Grant access to the local bus for users who will be sending messages to the foreign bus. See
[‘Administering the bus connector role” on page 51

4. Grant access to the foreign bus for users who will be sending messages to it. See
foreign bus roles” on page 61.|

5. Optional: Give users access to foreign or alias destinations that will forward messages to a foreign
bus. See [‘Administering destination roles” on page 56|

Securing links between messaging engines

For a mixed-version bus, when security is enabled, you must define an inter-engine authentication alias so
that the messaging engines can establish trust.

Before you begin

Ensure that the user ID that you intend to use for the inter-engine authentication alias meets the following
conditions:

|t exists in the user registry.
» It is used only for messaging engine to messaging engine authentication.
* |t has not been added to the bus connector access role.

If you have a secure bus where all bus members are at Version 7.0 or later, trust between Version 7.0 or

later messaging engines is established by using a Lightweight Third Party Authentication (LTPA) token,
and you do not need to perform this task.

80 Securing WebSphere applications

About this task

If you have a secure, mixed-version bus, you must define an inter-engine authentication alias to prevent
unauthorized messaging engines from establishing a connection. Messaging engines use the inter-engine
authentication alias to establish trust in the following scenarios:

* A WebSphere Application Server Version 6 messaging engine initiates a link with a Version 7.0 or later
messaging engine.

* A Version 7.0 or later messaging engine initiates a link with a Version 6 messaging engine.

If you add a server or cluster as a bus member, if that action creates a mixed-version bus, you define an
inter-engine authentication alias during that task, and you do not need to perform this task.

Procedure

1. In the navigation pane, click Service integration -> Buses -> security_value. The bus security
configuration panel for the corresponding bus is displayed.

2. In the Inter-engine authentication alias field, select an authentication alias.
3. Click OK.
4. Save your changes to the master configuration.

Results

You have selected an inter-engine authentication alias for the bus to use in establishing trust between
mixed-version messaging engines.

What to do next

If you require additional security, you can configure the SSL certificate stores to restrict objects that can
make an SSL connection, and thereby connect to the bus. For more information see [Creating a Secure]
[Sockets Layer configuration]

Controlling which foreign buses can link to your bus
Use this task to control which foreign buses are allowed to link to your bus.

About this task

When messaging security is enabled, it is important that only authorized foreign buses are allowed to link
to your bus.

To control which foreign buses can create a link to your bus, complete the following steps:

Procedure

1. Set the authentication alias property on the foreign bus connection to be used for authentication of the
foreign bus joining your bus, as described in|Connecting service integration buses to use point-to-point
|messagingJ or|Connecting service integration buses to use publish/subscribe messaging.

2. If you require extra security, configure the SSL certificate stores to restrict who can make an SSL
connection, and hence link to the bus. For more information, see [Creating a Secure Sockets Layer

Securing database access
You can protect the data store from access by unauthorized users.

Chapter 8. Securing Service integration 81

About this task

To secure access to the data store, you must configure a user name and password on the data store for
the messaging engine. If you want to apply additional levels of security such as encrypting the contents of
the database, use the specific security features provided by your database.

Securing mediations

Use the following tasks to secure mediations at an operations level. For example, a mediation inherits its
identity from a the messaging engine, but you might want to specify an alternative identity for the
mediation to use.

Configuring an alternative mediation identity for a mediation handler
Use this task to configure an alternative mediation identity for a mediation handler

About this task

By default, a mediation inherits the identity used by the messaging engine. In some cases, you might want
to specify an alternative identity for a mediation handler to use. For example, for a single mediation that
sends messages to a destination. To do this, you specify a "run-as" identity for the mediation handler at
deployment, and map the mediation handler to an identity other than the default mediation identity by
using a role name. Follow the steps below to specify an alternative mediation identity:

Procedure

1. Package your mediation handler as an EAR file.

2. Edit the deployment descriptor file to define the roles. For more information, see
programmatic logins for Java Authentication and Authorization Servicel

3. Assign users to the role. For more information, see [‘Mapping users to RunAs roles using an assembly|
tool” on page 107|and [‘Securing applications during assembly and deployment” on page 112

4. Deploy the mediation handler in WebSphere Application Server, and assign users to the RunAs role.
For more information, see [‘Assigning users to RunAs roles” on page 106.| You can confirm the
mappings of users to roles, add new users and groups, and modify existing information during this
step. For more information, see [‘Deploying secured applications” on page 114

Example
What to do next

Next, you are ready to authorize mediations to access destinations. For more information, see
[‘Administering authorization permissions” on page 50.|

Configuring the bus to access secured mediations
Use this task to ensure that the service integration bus is authorized to access secured mediations.

Before you begin
The mediation is secured by using a Java Platform, Enterprise Edition (Java EE) Connector Architecture

authentication alias. For information about creating a Java EE authentication alias, see [Managing Java 2|
[Connector Architecture authentication data entries for JAAS|

About this task

To configure the bus to access a secured mediation, you must add the mediation authentication alias for
the secured mediation to the properties for the bus:

 If the bus has a Version 6 bus member, you must provide the principal and its associated password.

82 securing WebSphere applications

 If the bus has WebSphere Application Server Version 7.0 or later bus members only, you need only
provide the principal.

Procedure
1. Log into the navigation pane.

2. Click Service integration -> Buses -> security_value. The bus security configuration panel is
displayed.

3. In the Mediations authentication alias field, select the principal for the mediation, and its associated
password if required.

4. Click OK.
5. Save your changes to the master configuration.

Results
The selected bus is configured to access secured mediations.
What to do next

You can assign security roles to your mediation handlers to protect them from use by unauthorized users.
For more information, see [‘Deploying secured applications” on page 114

Configuring a bus to run mediations in a multiple security domain environment
Use this task to configure a secured bus so that it can run mediations successfully on bus members in
different security domains.

Before you begin

The secured bus must be configured to use a non-global security domain. For more information about
securing buses by using multiple security domains, refer to[‘Securing buses” on page 38

About this task

If your bus topology has bus members in different security domains, you can configure the bus to allow
mediations to run under the server identity. This means that a mediation can run on any server in any
domain. You do not have to add a dedicated user ID for each mediation to the user repository, or maintain
a mediation authentication alias.

Use the administrative console to configure a secured bus to run mediations successfully as follows:

Procedure

1. In the navigation pane, click Service integration -> Buses -> security value. The security settings
for the selected bus are displayed.

2. Check the option Use the Server ID when running mediations.
3. Click Apply.
4. Save your changes to the master configuration.

Results
You have configured the bus to run mediations successfully across servers in multiple security domains.
What to do next

You can use the administrative console to control access to the bus by administering users and groups in
the bus connector role.

Chapter 8. Securing Service integration 83

Auditing the service integration security infrastructure

Security auditing is an important part of the security infrastructure. Security auditing provides a mechanism
for auditable events to be tracked and archived while ensuring the integrity of the records.

Before you begin

Before enabling the security auditing subsystem for service integration, you must enable global security in
your environment.

About this task

The primary responsibility of the security infrastructure is to prevent unauthorized usage of resources.
Security auditing has two primary goals:

» Confirming the effectiveness and integrity of the existing security configuration.

 |dentifying areas where improvement to the security configuration might be needed.

Security auditing achieves these goals by providing an infrastructure that you can use to implement your
code to capture and store supported security auditable events. All code other than the Java enterprise
application code is considered to be trusted. Each time an enterprise application accesses a resource, any

internal application server process that has audit points that are added within their code can be recorded
as an auditable event. The security auditing subsystem captures the following types of auditable events:

* Authentication

» Authorization

» Principal and Credential Mapping

* Key management

* System management

» Security policy management

* Audit policy management

« Administrative configuration management
* Administrative runtime management

» User registry and identity management
» Password changes

* Delegation

These types of events can be recorded into audit log files. The audit log flies can be signed and encrypted
to ensure data integrity. These audit log files can be analyzed to discover breaches over the existing
security mechanisms and to discover potential weaknesses in the current security infrastructure. Security
event audit records are also useful for providing evidence, accountability, and vulnerability analysis. The
security auditing configuration provides four default filters, a default audit service provider, and a default
event factory. This following steps describe how to customize your security auditing subsystem. Additional
information specific to messaging is included in the step description where appropriate.

Procedure
1. [Enabling the security auditing subsystem|

Security auditing is not performed unless the audit security subsystem has been enabled. Global
security must be enabled for the security audit subsystem to function, as no security events occur if
global security is not also enabled.

To allow messaging security events to be audited, audit security must be enabled:

a. For each bus to be audited, click Service integration -> Buses -> security_value, and select the
Enable the auditing service for this bus check box.

84 Securing WebSphere applications

2.

3.

N

)]

»

~

b. For publish/subscribe messaging, also on each topic space on the bus being audited, click Service
integration -> Buses -> bus_name -> [Destination resources] Destinations ->
topic_space_name, and select the Enable the auditing service for this topic space check box.

Auditor role,

A user with the auditor role is required to enable and configure the security auditing subsystem. It is
important to require strict access control for security policy management. The auditor role provides
granularity to support separation of the auditing role from the authority of the administrator.
|Creating security auditing event type filters|

You can configure event type filters to only record a specific subset of auditable event types in your
audit logs. Filtering the event types that are recorded makes for simpler analysis of your audit records
by ensuring the records to only display what you selected as important for your an environment.

The audit events that can be configured for messaging are:

SECURITY_AUTHN
This event is produced when the identity of a messaging client or messaging engine
connecting to a messaging bus is authenticated.

SECURITY_AUTHZ
This event is produced when the identity of a messaging client is checked for access authority
to a bus or a message queue when sending, directly or by publication, or receiving messages,
directly or by subscription.

SECURITY_AUTHN_TERMINATE
This event is produced when the connection between a messaging client or messaging engine
and a messaging bus is terminated.

SECURITY_MGMT_CONFIG
This event is produced when a messaging client changes the contents of a service data object
(SDO) repository in an import or remove operation.
You can create event filters for each permutation of an event and its possible outcomes such as
SUCCESS, DENIED, or error conditions of different levels of severity.
See messaging security events| for more information on which messaging security audit events are
produced and when they are produced.

[Configuring audit service providers for security auditing|

The audit service provider is used to format the audit data object that is passed to it before outputting
the data to a repository.

[Configuring audit event factories for security auditing|

The audit event factory gathers the data associated with the auditable events and creates an audit
data object. The audit data object is then sent to the audit service provider to be formatted and
recorded to the repository.

[Protecting your security audit datd| It is important for the recorded audit data to be both secured and
with the data integrity ensured. To ensure that access to the data is restricted and secure, you can
encrypt and sign your audit data.

|Configuring security audit subsystem failure notifications|

You can enable notifications to generate alerts when the security auditing subsystem experiences a
failure. Notifications can be configured to record an alert in the audit logs or can be configured to send
an alert through email to a specified list of recipients.

Results

After successfully completing this task, you audit data is recorded for the selected auditable events that
were specified in the configuration.

Chapter 8. Securing Service integration 85

What to do next

After configuring security auditing, you can analyze your audit data for potential weaknesses in the current
security infrastructure and to discover security breaches that might have occurred over the existing
security mechanisms.

86 Securing WebSphere applications

Chapter 9. Securing Session Initiation Protocol (SIP)
applications

This page provides a starting point for finding information about SIP applications, which are Java programs
that use at least one Session Initiation Protocol (SIP) servlet written to the JSR 116 specification.

SIP is used to establish, modify, and terminate multimedia IP sessions including IP telephony, presence,
and instant messaging.

Securing SIP applications

You can apply digest authentication and Trust Association Interceptor (TAI) for a SIP application by
applying Lightweight Directory Access Protocol (LDAP) security to the application.

Before you begin

Before you can apply security, you must first deploy an application that has been developed to support
security (with the web.xm1 file configured for security) and roles. The following software must also be
installed:

1. Install a supported LDAP server. For a list of supported LDAP servers, see the IBM website for
WebSphere Application Server supported hardware, software, and APls.

IBM Tivoli Directory Server users can choose IBM Tivoli Directory Server as the directory type for
better performance.

Note: IBM SecureWay Directory Server was renamed to IBM Tivoli Directory Server in WebSphere
Application Server version 6.1.

2. Set up and activate Lightweight Third Party Authentication.
About this task

To apply LDAP security to a SIP application, click Applications > Enterprise Applications >
applicationName and complete the following steps:

Procedure

1. Click Detail Properties > Security role to user/group mapping.
2. Check All Authenticated.

3. Save all changes.

4. Restart the server.

Configuring security for the SIP container
This section provides instructions specific to security for the SIP container.

Before you begin

You must select a proper Lightweight Directory Access Protocol (LDAP) repository and activate security on
WebSphere Application Server before SIP digest authentication can be activated. See the following topics
in the information center:

+ Selecting a registry or repository
» Authenticating users

© IBM Corporation 2009 87

About this task

To configure security based on the LDAP, you can use digest authentication for your supported LDAP
server. See the information center topic on configuring digest authentication for SIP applications.

To define an LDAP connection between WebSphere Application Server and LDAP, use the security wizard.
It can also be defined by selecting it from available realms and defining the proper connection properties
to connect LDAP.

To set up a trust association interceptor (TAI), you must specify the trust information for any reverse
security proxy servers. See the information center topic on trust association interceptor settings.

Configuring digest authentication for SIP

You can configure SIP digest authentication settings to allow the SIP container to authenticate secured
applications.

Before you begin

Ensure that clusters and stand-alone servers are created and federated.
About this task

The SIP container supports digest authentication. When this type of authentication is used, the client does
not send a clear text password to the server. Instead, SIP authenticates each request using user data from
a Lightweight Directory Access Protocol (LDAP) server. A component that uses LDAP for authentication
verifies that the response that the client provides equals the response that the component calculates using
LDAP data, which authorizes the request.

gotcha: You must select a proper LDAP repository and activate security on WebSphere Application
Server before SIP digest authentication can be activated. See the information center topic on
configuring security for the SIP container.

Procedure

1. From the administrative console, click Security > Global security > Web and SIP security > SIP
digest authentication.

2. Specify a value for one or more settings. See the SIP digest authentication settings topic for more
details.

3. Click OK.
4. Restart the application server.

Results

The container uses digest authentication to authenticate SIP applications.

SIP digest authentication settings

Use this page to configure Session Initiation Protocol (SIP) digest authentication settings; these settings

allow the SIP container to authenticate secured applications.

To view this administrative console page, click Security > Global Security > Authentication > Web and
SIP Security > SIP digest authentication.

Enable digest authentication integrity:

88 securing WebSphere applications

Specifies the authentication integrity (auth-int) quality of protection (QOP) for digest authentication. Digest
authentication defines two types of QOP: auth and auth-int. By default, basic authentication (auth) is used.
If the value is set to True, the auth-int QOP is used, which is the highest level of protection.

Information Value
Data type Boolean
Default True

Enable SIP basic authentication:

Specifies the SIP container supports basic authentication. If the value is set to True, requests that have
the Authorization header with basic schema are authenticated by the application server. Otherwise,
digest authentication is required.

Information Value
Data type Boolean
Default False

Enable multiple use of nonce:

Specifies whether to enable multiple uses of the same nonce. If you use the same nonce more than once,
then less system resources are required, however, your system is not as secure.

Information Value
Data type Boolean
Default False

Limit nonce maximum age:

Specifies whether to enable the nonce maximum age. If you do not disable this parameter, the nonce
never expires.

Information Value
Data type Boolean
Default True

Nonce maximum age:

Specifies the amount of time, in milliseconds, for which a nonce is valid. If the value is set to 1, the
amount of time is considered to be infinite.

Information Value
Data type Integer
Default 1

LDAP cache clean intervals:

Specifies the amount of time that must expire, in minutes, before the LDAP cache is cleaned.

Information Value
Data type Integer
Default 120

Chapter 9. Securing Session Initiation Protocol (SIP) applications 89

LDAP password attribute name:

Specifies the LDAP attribute name that stores the user password .

Information Value
Data type String
Default Empty string

User cache clean intervals:

Specifies the amount of time that must expire, in minutes, before the security subject cache is cleaned.

Information Value
Data type Integer
Default 15

Digest password server class:

Specifies the Java class name that implements the PasswordServer interface.

Information Value
Data type String
Default Empty string

Hashed credentials:

Specifies the name of the LDAP field that contains the hashed credentials. If a value is specified for this
setting, then this setting overrides the pws_atr_name setting.

LDAP servers automatically provide password support. Unless you enable the LDAP server to use hashed
values, the LDAP server stores user passwords and then the request processing component uses these
passwords to validate a request. Because this method of authentication exposes user passwords to
potential internet theft, you should enable the use of hashed credentials to authenticate a request.

When you enable the use of hashed credentials, the LDAP server stores a hash value for the user,

password and realm information. The SIP container then requests this hash value from the LDAP server

instead of asking for a user password. This methodology protects the passwords even if the hash data is

compromised through internet theft. However, this methodology has the following limitations:

* The LDAP attribute must store a byte value or a string value. Other attribute types are not supported.

= All of your applications must share the same realm, or you must define a different attribute for each
realm.

* The hash function might be different than MD5. In this situation, the SIP container sends a algorithm
that is different from the calculated value for the attribute. When this situation occurs, user
authentication might fail even if the user provided the proper credentials.

To enable the LDAP server to use hashed credentials, you must define the following two settings:

* Hashedcredentials=value, where value is the name of LDAP attribute that stores the hash value for
user, password, and realm.

¢ Hashedrealm=value, where value is the realm, on which the hashed value is calculated.

Information Value
Data type String
Default Empty string

90 Securing WebSphere applications

Hashed realm:

Specifies the realm for hashed credentials, if the hashed credentials setting is enabled.

Information Value
Data type String
Default Empty string

Developing a custom trust association interceptor

When you develop Session Initiation Protocol (SIP) applications, you can create a custom trust association
interceptor (TAI).

Before you begin

You may want to familiarize yourself with the general TAI information contained in the |Trust Associations|
documentation. Developing a SIP TAl is similar to developing any other custom interceptors used in trust
associations. In fact, a custom TAI for a SIP application is actually an extension of the trust association
interceptor model. Refer to the [Developing a custom interceptor for trust associations| section for more
details.

About this task

TAI can be invoked by a SIP servlet request or a SIP servlet response. To implement a custom SIP TAl,
you need to write your own Java class.

Procedure

1. Write a Java class that extends the com.ibm.wsspi.security.tai.BaseTrustAssociationInterceptor
class and implements the com. ibm.websphere.security.tai.SIPTrustAssociationInterceptor
interface. Those classes are defined in the WASProductDir/plugins/
com.ibm.ws.sip.container_1.0.0.jar file, where WASProductDir is the fully qualified path name of the
directory in which WebSphere Application Server is installed.

2. Declare the following Java methods:

public int initialize(Properties properties) throws WebTrustAssociationFailedException;
This is invoked before the first message is processed so that the implementation can allocate
any resources it needs. For example, it could establish a connection to a database.
WebTrustAssociationFailedException is defined in the WASProductDir/plugins/
com.ibm.ws.runtime_1.0.0.jar file. The value of the properties argument comes from the

Custom Properties set in [this step

public void cleanup();
This is invoked when the TAl should free any resources it holds. For example, it could close a
connection to a database.

public boolean isTargetProtocolInterceptor(SipServlietMessage sipMsg) throws
WebTrustAssociationFailedException;
Your custom TAIl should use this method to handle the sipMsg message. If the method returns
false, WebSphere ignores your TAI for sipMsg.

public TAIResult negotiateValidateandEstablishProtocolTrust (SipServletRequest req,
SipServletResponse resp) throws WebTrustAssociationFailedException;
This method returns a TAIResult that indicates the status of the message being processed and
a user ID or the unique ID for the user who is trying to authenticate. If authentication
succeeds, the TAIResult should contain the status HttpServietResponse.SC_OK and a
principal. If authentication fails, the TAIResult should contain a return code of
HttpServietResponse.SC_UNAUTHORIZED (401), SC_FORBIDDEN (403), or

Chapter 9. Securing Session Initiation Protocol (SIP) applications 91

SC_PROXY_AUTHENTICATION_REQUIRED (407). This only indicates whether or not the
container should accept a message for further processing. To challenge an incoming request,
the TAl implementation must generate and send its own SipServletResponse containing a
challenge. The exception should be thrown for internal TAI errors. describes the
argument values and resultant actions for the negotiateValidateandEstablishProtocolTrust
method.

Table 9. Description of negotiateValidateandEstablishProtocolTrust arguments and actions.

This table provides a description of negotiateValidateandEstablishProtocol Trust arguments and actions

Argument or action For a SIP request For a SIP response

Value of req argument The incoming request Null

Value of resp argument Null The incoming response

Action for valid response Return TAIResult.status containing Return TAIResult.status containing
credentials SC_OK and a user ID or unique 1D SC_OK and a user ID or unique 1D
Action for incorrect response Return the TAIResult with the 4xx Return the TAIResult with the 4xx status
credentials status

The sequence of events is as follows:

a. The SIP container maps initial requests to applications by using the rules in each
applications deployment descriptor; subsequent messages are mapped based on[JSR 116
mechanisms.

b. If any of the applications require security, the SIP container invokes any defined TAI
implementations for the message.

c. If the message passes security, the container invokes the corresponding applications.

Your TAl implementation can modify a SIP message, but the modified message will not be
usable within the request mapping process, because it finishes before the container invokes
the TAI.

The com.ibm.wsspi.security.tai. TAIResult class, defined in the WASProductDir/plugins/
com.ibm.ws.runtime_1.0.0.jar file, has three static methods for creating a TAIResult. The
TAIResult create methods take an int type as the first parameter. WebSphere Application
Server expects the result to be a valid HTTP request return code and is interpreted as follows:

If the value is HttpServletResponse.SC_OK, this response tells WebSphere Application Server
that the TAI has completed its negotiation. The response also tells WebSphere Application
Server use the information in the TAIResult to create a user identity.

The created TAIResults have the meanings shown in|Table 10}

Table 10. Meanings of TAIResults.

This table lists the meanings of TAIResults

TAIResult Explanation
public static TAIResult create(int Indicates a status to WebSphere Application Server. The status should not
status); be SC_OK because the identity information is provided.

public static TAIResult create(int status, |Indicates a status to WebSphere Application Server and provides the user
String principal); ID or the unique ID for this user. WebSphere Application Server creates

credentials by querying the user registry.

public static TAIResult create(int status, |Indicates a status to WebSphere Application Server, the user ID or the
String principal, Subject subject); unique ID for the user, and a custom Subject. If the Subject contains a

Hashtable, the principal is ignored. The contents of the Subject becomes
part of the eventual user Subject.

92 Securing WebSphere applications

http://www.jcp.org/aboutJava/communityprocess/final/jsr116

public String getVersion();
This method returns the version number of the current TAl implementation.

public String getType();
This method's return value is implementation-dependent.

Compile the implementation after you have implemented it. For example: /opt/WebSphere/AppServer/
java/bin/javac -classpath /opt/WebSphere/AppServer/plugins/com.ibm.ws.runtime 1.0.0.jar;/
opt/WebSphere/AppServer/dev/JavaEE/j2ee.jar;/opt/WebSphere/AppServer/plugins/
com.ibm.ws.sip.container_1.0.0.jar myTAIImpl.java

a. For each server within a cluster, copy the class file to a location in the WebSphere class path
(preferably the WASProductDir/plugin/ directory).

b. Restart all the servers.

Delete the default WebSEAL interceptor in the administrative console and click New to add your
custom interceptor. Verify that the class name is dot-separated and appears in the class path.

Click the Custom Properties link to add additional properties that are required to initialize the custom
interceptor. These properties are passed to the initialize(Properties properties) method of your
implementation when it extends the
com.ibm.websphere.security.WebSphereBaseTrustAssociationInterceptor as described in the
previous step.

Save and synchronize (if applicable) the configuration.

Restart the servers for the custom interceptor to take effect.

Chapter 9. Securing Session Initiation Protocol (SIP) applications 93

94 Securing WebSphere applications

Chapter 10. Securing web applications

This page provides a starting point for finding information about web applications, which are comprised of

one or more related files that you can manage as a unit, including:

* HTML files

» Servlets can support dynamic web page content, provide database access, serve multiple clients at one
time, and filter data.

» Java ServerPages (JSP) files enable the separation of the HTML code from the business logic in web
pages.

IBM extensions to the JSP specification make it easy for HTML authors to add the power of Java
technology to web pages, without being experts in Java programming. More introduction...

Web application security components and settings

Web component security

A web module consists of servlets, JavaServer Pages (JSP) files, server-side utility classes, static web
content, which includes HTML, images, sound files, cascading style sheets (CSS), and client-side classes
or applets. You can use development tools such as Rational® Application Developer to develop a web
module and enforce security at the method level of each web resource.

You can identify a web resource by its URI pattern. A web resource method can be any HTTP method
(GET, POST, DELETE, PUT, for example). You can group a set of URI patterns and a set of HTTP
methods together and assign this grouping a set of roles. When a web resource method is secured by
associating a set of roles, grant a user at least one role in that set to access that method. You can exclude
anyone from accessing a set of web resources by assigning an empty set of roles. A servlet or a
JavaServer Pages (JSP) file can run as different identities before invoking another enterprise bean
component. All the secured web resources require the user to log in by using a configured login
mechanism. Three types of web login authentication mechanisms are available: basic authentication,
form-based authentication and client certificate-based authentication.

In WebSphere Application Server Version 6.1, a portlet resource that is part of a web module can also be
protected when it is accessed directly through URL. The protection is similar to other web based
resources. For more information, see [‘Portlet URL security” on page 33

For more detailed information on web security, see the [product architectural overview] article.

Securing web applications using an assembly tool

You can use three types of web login authentication mechanisms to configure a web application: basic
authentication, form-based authentication and client certificate-based authentication. Protect web resources
in a web application by assigning security roles to those resources.

About this task

To secure web applications, determine the web resources that need protecting and determine how to
protect them.

Note: This procedure might not match the steps that are required when using your jassembly tool, or
match the version of the assembly tool that you are using. You should follow the instructions for the

tool and version that you are using.

The following steps detail securing a web application using an assembly tool:

© Copyright IBM Corp. 2012 95

Procedure

1. In an assembly tool, import your web application archive (WAR) file or an application archive (EAR) file
that contains one or more Web modules.

2. In the Project Explorer folder, locate your web application.

3. Right-click the deployment descriptor and click Open With > Deployment Descriptor Editor. The
Deployment Descriptor window opens. To see online information about the editor, press F1 and click
the editor name. If you select a web application archive (WAR) file, a web deployment descriptor editor
opens. If you select an enterprise application (EAR) file, an application deployment descriptor editor
opens.

4. Create security roles either at the application level or at the web module level. If a security role is
created at the web module level, the role also displays in the application level. If a security role is
created at the application level, the role does not display in all of the web modules. You can copy and
paste a security role at the application level to one or more Web module security roles.

* Create a role at a Web-module level. In a web deployment descriptor editor, click the Security tab.
Under Security Roles, click Add.. Enter the security role name, describe the security role, and click
Finish.

» Create a role at the application level. In an application deployment descriptor editor, click the
Security tab. Under the list of security roles, click Add. In the Add Security Role wizard, name and
describe the security role and then click Finish.

5. Create security constraints. Security constraints are a mapping of one or more web resources to a set
of roles.

a. On the Security tab of a web deployment descriptor editor, click Security Constraints. On the
Security Constraints tab, you can do the following actions:
» Add or remove security constraints for specific security roles.
* Add or remove web resources and their HTTP methods.
» Define which security roles are authorized to access the web resources.
» Specify None, Integral, or Confidential constraints on user data.
None The application does not require transport guarantees.
Integral
Data cannot be changed in transit between the client and the server.
Confidential
Data content cannot be observed while it is in transit.

Integral and Confidential usually require the use of SSL. When deploying applications that are
available over public networks, specify Confidential for your web applications constraints
Under Security Constraints, click Add.
Under Constraint name, specify a display name for the security constraint and click Next.
Type a name and description for the web resource collection.

Select one or more HTTP methods. The HTTP method options are: GET, PUT, HEAD, TRACE,
POST, DELETE, and OPTIONS.

Beside the Patterns field, click Add.

g. Specify a URL Pattern. For example, type - /*, *.jsp, /hello. Consult the Servlet specification
Version 2.4 for instructions on mapping URL patterns to servlets. The security runtime uses the
exact match first to map the incoming URL with URL patterns. If the exact match is not present, the
security runtime uses the longest match. The wild card (*.,*.jsp) URL pattern matching is used
last.

h. Click Finish.
i. Repeat these steps to create multiple security constraints.

6. Map security-role-ref and role-name elements to the role-link element. During the development of a
web application, you can create the security-role-ref element. The security-role-ref element contains
only the role-name field. The role-name field contains the name of the role that is referenced in the
servlet or JavaServer Pages (JSP) code to determine if the caller is in a specified role. Because

© o 0T

—

96 Securing WebSphere applications

security roles are created during the assembly stage, the developer uses a logical role name in the
Role-name field and provides enough description in the Description field for the assembler to map the
role actual. The Security-role-ref element is at the servlet level. A servlet or JavaServer Pages (JSP)
file can have zero or more security-role-ref elements.

a. Go to the References tab of a web deployment descriptor editor. On the References tab, you can
add or remove the name of an enterprise bean reference to the deployment descriptor. You can
define five types of references on this tab:

« EJB reference

» Service reference

* Resource reference

* Message destination reference

+ Security role reference

* Resource environment reference

Under the list of Enterprise JavaBeans (EJB) references, click Add.
Specify a name and a type for the reference in the Name and Ref Type fields.
Select either Enterprise Beans in the workplace or Enterprise Beans not in the workplace.

Optional: If you select Enterprise Beans not in the workplace, select the type of enterprise bean
in the Type field. You can specify either an entity bean or a session bean.

Optional: Click Browse to specify values for the local home and local interface in the Local home
and Local fields before you click Next.

g. Map every role-name that is used during development to the role using the previous steps. Every
role name that is used during development maps to the actual role.

7. Specify the RunAs identity for servlets and JSP files. The RunAs identity of a servlet is used to invoke
enterprise beans from within the servlet code. When enterprise beans are invoked, the RunAs identity
is passed to the enterprise bean for performing an authorization check on the enterprise beans. If the
RunAs identity is not specified, the client identity is propagated to the enterprise beans. The RunAs
identity is assigned at the servlet level.

a. On the Servlets tab of a web deployment descriptor editor, under Servlets and JSP, click Add.
The Add Servlet or JSP wizard opens.

b. Specify the servlet or JavaServer Pages (JSP) file settings, including the name, initialization
parameters, and URL mappings and click Next.

c. Specify the class file destination.

d. Click Next to specify additional settings or click Finish.
e

f.

® a0 0o

—

Click Run As on the Servlets tab, select the security role and describe the role.
Specify a RunAs identity for each servlet and JSP file that is used by your web application.

8. Configure the login mechanism for the web module. This configured login mechanism applies to all the
servlets, JavaServer Pages (JSP) files and HTML resources in the web module.

a. Click the Pages tab of a web deployment descriptor editor and click Login. Select the required
authentication method. Available method values include: Unspecified, Basic, Digest, Form, and
Client-Cert.

Specify a realm name.

If you select the Form authentication method, select a login page and an error page web address.
For example, you might use /1ogin.jsp or /error. jsp. The specified login and error pages are
present in the .war file.

d. JEIIEEE Install the client certificate on the browser or web client and place the client certificate
in the server trust keyring file, if ClientCert is selected.

9. Close the deployment descriptor editor and, when prompted, click Yes to save the changes.

Chapter 10. Securing web applications 97

Results

After securing a web application, the resulting web application archive (WAR) file contains security
information in its deployment descriptor. The web module security information is stored in the web.xm1 file.
When you work in the web deployment descriptor editor, you also can edit other deployment descriptors in
the web project, including information on bindings and IBM extensions in the ibm-web-bnd.xmi and
ibm-web-ext.xmi files.

Note: For IBM extension and binding files, the .xmi or .xml file name extension is different depending on
whether you are using a pre-dava EE 5 application or module or a Java EE 5 or later application or
module. An IBM extension or binding file is named ibm-*-ext.xmi or ibm-*-bnd.xmi where * is the
type of extension or binding file such as app, application, ejb-jar, or web. The following conditions
apply:

* For an application or module that uses a Java EE version prior to version 5, the file extension
must be .xmi.

» For an application or module that uses Java EE 5 or later, the file extension must be .xml. If .xmi
files are included with the application or module, the product ignores the .xmi files.

However, a Java EE 5 or later module can exist within an application that includes pre-Java EE 5
files and uses the .xmi file name extension.

The ibm-webservices-ext.xmi, ibm-webservices-bnd.xmi, ibm-webservicesclient-bnd.xmi,
ibm-webservicesclient-ext.xmi, and ibm-portlet-ext.xmi files continue to use the .xmi file
extensions.

What to do next

After using an assembly tool to secure a web application, you can install the web application using the
administrative console. During the web application installation, complete the steps in[‘Deploying secured|
lapplications” on page 114|to finish securing the web application.

Security constraints in web applications
Security constraints determine how web content is to be protected.

These properties associate security constraints with one or more web resource collections. A constraint

consists of a web resource collection, an authorization constraint and a user data constraint.

* A web resource collection is a set of resources (URL patterns) and HTTP methods on those resources.
All requests that contain a request path that matches the URL pattern described in the web resource
collection are subject to the constraint. If no HTTP methods are specified, then the security constraint
applies to all HTTP methods.

* An authorization constraint is a set of roles that users must be granted in order to access the resources
described by the web resource collection. If a user who requests access to a specified Uniform
Resource Identifier (URI) is not granted at least one of the roles specified in the authorization constraint,
the user is denied access to that resource.

» A user data constraint indicates that the transport layer of the client or server communications process
must satisfy the requirement of either guaranteeing content integrity (preventing tampering in transit) or
guaranteeing confidentiality (preventing reading while in transit).

Note: This release of WebSphere Application Server supports security constraints that are defined in the
Java Servlet 3.0 specification (JSR-315).

However, if you use the HTTP custom method, see the information in the Security custom

properties topic regarding the security.allowCustomHTTPMethods custom property, which differs
slightly from its usage in the Java Servlet 3.0 specification.

98 Securing WebSphere applications

Security settings
Use the administrative console to modify the security settings for all applications.

You can enable security for applications by selecting the Enable application security option on the
Global security panel.

BT Note that:

» Global settings apply to existing and future applications and cannot be customized.
» Default settings apply only to future applications and can be customized.

The default settings are used as a template or starting point for configuring individual applications. The
administrator should still explicitly configure security settings for each application.

The following security settings are specified during application assembly:

Security role settings
When using an assembly tool at an application level (Enterprise Archive (EAR) file), security roles
are synchronized with the security roles defined for the embedded modules of the application.

If a security role is manually added to the EAR file, it can be automatically removed when the file
is saved if an embedded module does not reference the role, or the role is in conflict with an
existing role. In this case, remove the manually added role, but then all roles with the same name
are removed.

The role is automatically added again when the file is saved if it is still referenced in an embedded
module file. If a duplicate role is added in an embedded module file, delete all roles with the same
name and manually read the correct role.

Security constraints
Security constraints declare how to protect web content. These properties associate security
constraints with one or more web resource collections. A constraint consists of a web resource
collection, an authorization constraint, and a user data constraint.

Security constraints are set when configuring a web application in an assembly tool.

Security role references in web applications

Web application developers or Enterprise JavaBeans (EJB) providers must use a role-name in the code
when using the available programmatic security Java Platform, Enterprise Edition (Java EE) application
programming interfaces (APIs) isUserinRole(String roleName) and isCallerinRole(String roleName).

The roles used in the deployed run-time environment might not be known until the web application and
EJB components (for example, Web archive (WAR) files and ejb-jar.xml files) are assembled into an
enterprise archive (EAR) file. Therefore, the role names used in the web application or EJB component
code are logical role names which the application assembler maps to the actual run-time environment
roles during application assembly. The security role references provide a level of indirection that insulate
web application component and EJB developers from having to know the actual roles in the run-time
environment.

The definition of the logical roles and the mapping to the actual run-time environment roles are specified in
the security-role-ref element of both the web application and the EJB JAR file deployment descriptors,
web.xml and ejb-jar.xml respectively. Use the assembly tools to define the role names and map them to
the actual run-time roles in the environment with the role-link element.

The following code sample is an example of a security-role-ref from an EJB ejb-jar.xml deployment
descriptor.

.. <enterprise-beans>

.. <entity>
<ejb-name>AardvarkPayroll</ejb-name>

Chapter 10. Securing web applications 99

<ejb-class>com.aardvark.payroll.Payrol1Bean</ejb-class>

<security-role-ref>
<description>

This role should be assigned to the employees of the payroll department. Members of this role have
access to the payroll record of everyone. The role has been linked to the payroll-department role. This role
should be assigned to the employees of the payroll department. Members of this role have access to all
payroll records. The role has been linked to the payroll-department role.

</description> <role-name>payroll</role-name>
<role-1ink>payrol1-department</role-Tink>
</security-role-ref>

</entity>

</enterprise-beans>

In the previous example, the string payrol1, which appears in the <role-name> element, is what the EJB
provider uses as the argument to the isCallerinRole() API. The <role-link> element is what ties the logical
role to the actual role used in the run-time environment.

Note that for enterprise beans, the security-role-ref element must appear in the deployment descriptor
even if the logical role name is the same as the actual role name in the environment.

The rules web application components are slightly different. If no security-role-ref element matching a
security-role element is declared, the container must default to checking the role-name element argument
against the list of security-role elements for the web application. The isUserInRole method references the
list to determine whether the caller is mapped to a security role. The developer must be aware that the
use of this default mechanism can limit the flexibility in changing role names in the application without
having to recompile the servlet making the call.

See the EJB Version 2.0 and Servlet Version 2.3 specification in the Security: Resources for Learning
article for complete details on this specification.

Assigning users and groups to roles

This topic describes how to assign users and groups to roles if you are using WebSphere Application
Server authorization for Java Platform, Enterprise Edition (Java EE) roles.

Before you begin

Before you perform this task:

» Secure the web applications and Enterprise JavaBeans (EJB) applications where new roles are created
and assigned to web and enterprise bean resources.

» Create all the roles in your application.

 Verify that you have properly configured the user registry that contains the users that you want to
assign. It is preferable to have security turned on with the user registry of your choice before beginning
this process.

» Make sure that if you change anything in the security configuration you save the configuration and
restart the server before the changes become effective. For example, enable security or change the
user regqistry.

About this task
These steps are common for both installing an application and modifying an existing application. If the

application contains roles, you see the Security role to user/group mapping link during application
installation and also during application management, as a link in the Additional properties section.

100 Securing WebSphere applications

Procedure

1.

10.

Access the administrative console.
LI Type http://server_name:port_number/ibm/console in a web browser.

Click Applications > Application Types > WebSphere enterprise applications >
application_name .

Under Detail properties, click Security role to user/group mapping. A list of all the roles that belong
to this application is displayed. If the roles already have users, or if one of the special subjects,
AllAuthenticatedUsers, AllAuthenticatedinTrustedRealms, or Everyone is assigned, they display here.

To assign the special subjects, select either the Everyone or the All Authenticated in Application's
Realm option for the appropriate roles.

To assign users or groups, select the role. You can select multiple roles at the same time, if the same
users or groups are assigned to all the roles.

Click Look up users or Look up groups.

Get the appropriate users and groups from the user registry by completing the Limit and the Search
string fields and by clicking Search. The Limit field limits the number of users that are obtained and
displayed from the user registry. The pattern is a searchable pattern matching one or more users and
groups. For example, userx lists users like user1, user2. A pattern of asterisk (*) indicates all users or
groups.

Use the limit and the search strings cautiously so as not to overwhelm the user registry. When you
use large user registries such as Lightweight Directory Access Protocol (LDAP) where information on
thousands of users and groups resides, a search for a large number of users or groups can make the
system slow and can make it fail. When more entries exist than requests for entries, a message
displays on top of the panel. You can refine your search until you have the required list.

If the search string you are using has no matches, a NULL error message is displayed. This message
is informational and does not necessarily indicate an error, as it is valid to have no entries matching
your selected criteria.

Select the users and groups to include as members of these roles from the Available field and click
>> to add them to the roles.

To remove existing users and groups, select them from the Selected field and click <<. When
removing existing users and groups from roles, use caution if those same roles are used as RunAs
roles.

For example, if the user1 user is assigned to the role1 RunAs role and you try to remove the user1
user from the role1 role, the administrative console validation does not delete the user. A user can
only be part of a RunAs role if the user is already in a role either directly or indirectly through a
group. In this case, the user1 user is in the role1 role. For more information on the validation checks
that are performed between RunAs role mapping and user and group mapping to roles, see

[‘Assigning users to RunAs roles” on page 106 |

Click OK. If any validation problems exist between the role assignments and the RunAs role
assignments, the changes are not committed and an error message that indicates the problem
displays at the top of the panel. If a problem exists, make sure that the user in the RunAs role is also
a member of the regular role. If the regular role contains a group that contains the user in the RunAs
role, make sure that the group is assigned to the role using the administrative console. Follow steps 4
and 5. Avoid using any process where the complete name of the group, host name, group name, or
distinguished name (DN) is not used.

Results

The user and group information is added to the binding file in the application. This information is used later
for authorization purposes.

Note: If you change your realm you must repeat this process with the new realm name.

Chapter 10. Securing web applications 101

What to do next

This task is required to assign users and groups to roles, which enables the correct users and groups to
access a secured application. If you are installing an application, complete your installation. After the
application is installed and running you can access your resources according to the user and group
mapping that you did in this task. If you manage applications and modify the users and groups to role
mapping, make sure you save, stop, and restart the application so that the changes become effective. Try
accessing the Java EE resources in the application to verify that the changes are effective.

Note: Depending upon how your active user registry is configured, the search results of security user or
group role mappings are displayed in different formats. With federated repository, LDAP, file-based
and custom registries can be used. WebSphere Application Server can uniquely identify users from
various registries by the user names listed in the table.

Attention: EITTEE |n a distributed environment, when you install WebSphere Application Server with
samples, enable security using federated repositories, and start the server1 server with sample
applications, the server might create exceptions. However, the server starts successfully. The deployment
manager did not create user and group samples when it created the deployment manager profile. To
resolve exceptions caused by the samples failing to load, create your own sample users and groups. In
the administrative console, do the following:

1. Click Users and Groups > Manage Users.
2. Create the samples user and the sampadmn group. The samples user is a member of the sampadmn
group.

For more assistance, refer to the "Managing users" help topic by clicking More information about this
page at the top right of the Manage Users panel.

Adding users and groups to roles using an assembly tool
After creating new roles and assigning them to enterprise bean and web resources, use this task to add
users and groups to roles with an assembly tool.

Before you begin

Before you perform this task, you already completed the steps in [‘Securing web applications using an|
lassembly tool” on page 95| and|[‘Securing enterprise bean applications” on page 21|where you created
new roles and assigned those roles to enterprise bean and web resources. Complete these steps during
application installation. The environment user registry under which the application is running is not known
until deployment.

About this task

If you already know the environment in which the application is running and the user registry that is used,
you can use an assembly tool to assign users and groups to roles. Using the administrative console to
assign users and groups to roles is recommended.

Note: This procedure might not match the steps that are required when using your fassembly tool, or
match the version of the assembly tool that you are using. You should follow the instructions for the

tool and version that you are using.
To add users and groups to roles using an assembly tool, follow these steps:

Procedure

1. In the Project Explorer view of an assembly tool, right-click an enterprise application project, or
Enterprise Archive (EAR) file, and click Open With > Deployment Descriptor Editor. An application
deployment descriptor editor opens on the EAR file. To access information about the editor, press F1
and click Application deployment descriptor editor.

102 Securing WebSphere applications

2. Click the Security tab and, under the main panel, click Add.
In the Add Security Role wizard, name and describe the security role. Click Finish.

4. Under WebSphere Bindings, select the user or group extension properties for the security role.
Available values include: Everyone, All authenticated users, and Users/Groups.

5. If you selected Users/Groups, click Add beside the Users or Groups panes. In the wizard that opens,
specify a user or group name and click Finish. Repeat this step until you added all the users and
groups to which the security role applies.

6. Close the application deployment descriptor editor and, when prompted, click Yes to save the changes.

w

Results

The ibm-application-bnd.xmi or ibm-application-bnd.xml file in the application contains the users and
groups-to-roles mapping table, which is the authorization table. For Java EE Version 5 applications, the
ibm-application-bnd.xml file contains the authorization table.

Note: For IBM extension and binding files, the .xmi or .xml file name extension is different depending on
whether you are using a pre-Java EE 5 application or module or a Java EE 5 or later application or
module. An IBM extension or binding file is named ibm-*-ext.xmi or ibm-*-bnd.xmi where * is the
type of extension or binding file such as app, application, ejb-jar, or web. The following conditions
apply:

» For an application or module that uses a Java EE version prior to version 5, the file extension
must be .xmi.

» For an application or module that uses Java EE 5 or later, the file extension must be .xml. If .xmi
files are included with the application or module, the product ignores the .xmi files.

However, a Java EE 5 or later module can exist within an application that includes pre-Java EE 5
files and uses the .xmi file name extension.

The ibm-webservices-ext.xmi, ibm-webservices-bnd.xmi, ibm-webservicesclient-bnd.xmi,
ibm-webservicesclient-ext.xmi, and ibm-portlet-ext.xmi files continue to use the .xmi file
extensions.

What to do next

After securing an application, [install the application| using the administrative console.

Security role to user or group mapping
Use this page to specify the users and groups that are mapped to the security roles that are used with the
enterprise application.

To view this administrative console page, click Applications > Application types > WebSphere
enterprise applications >application_name. Under Detail Properties, click Security role to user/group

mapping.
Table 11. User and group mapping. User and group mapping.

Button Resulting action

Map Users Lists the users that are mapped to the specified role within this application.

If trusted realms are configured, a drop-down list of realms to search is displayed. Users
from the non-default realm are displayed as user@realm

Map Groups Lists the groups that are mapped to this specified role within this application.

If trusted realms are configured, a drop-down list of realms to search is displayed. Users
from the non-default realm are displayed as user@realm

Chapter 10. Securing web applications 103

Table 11. User and group mapping (continued). User and group mapping.

Button Resulting action

Map Special Subjects | This choice appears if multiple realms are being used. It enables you to map any of the
following Special Subjects to a selected role:

» All authenticated in application realm: All authenticated users that are in the
applications realm, which specifies whether to map all of the authenticated users to a
specified role. When you map all authenticated users to a specified role, all of the valid
users in the current registry who have been authenticated can access resources that
are protected by this role.

This selection also applies to all authenticated users regardless of the realm.

* Everyone: map everyone to the selected role. When you map everyone to a role,
anyone can access the resources that are protected by this role and, essentially, there
is no security.

* None: Do not map anyone to the selected role

Attention:

» If the secured realm cannot be reached, the left list is replaced with 3 text fields (that
is, name, realm, and uid). You can add the user when the secured realm is not
available.

It is not possible to map two subjects to the same role in this release of WebSphere
Application Server.

Role:

Lists the specific capabilities to a user. Role privileges give users and groups permission to run as
specified.

For example, you might map the user Joe to the administrator role, which enables user Joe to perform all
of the tasks associated with the administrator role.

The authorization policy is only enforced when global security is enabled.

Mapped users:

Lists the users that are mapped to the specified role within this application.

Special subjects:

Lists which special subjects are mapped to the security role when an application uses multiple realms.
Mapped groups:

Lists the groups that are mapped to this specified role within this application.

Look up users
Use this page to select and to map users, groups and special subjects for security roles.

To view this administrative console page, complete the following steps:

1. Click Applications > Application types > WebSphere enterprise applications > application_name.
2. Under Detail Properties, click Security role to user/group mapping.

3. Select the role and click either Map users..., Map groups... or Map Special Subjects.

104 Securing WebSphere applications

Note: Once you click OK after making any changes, you must also click OK on the previous panel for the
changes to be accepted.

Different roles can have different security authorizations. Mapping users or groups to a role authorizes
those users or groups to access applications defined by the role. Users and groups are associated with
roles defined in an application when the application is installed or configured. Use the Search pattern field
to display users in the Available list. Click >> to add users from the Available list to the Selected list.

Map users...:

Lists the users that are mapped to the specified role within this application.
Map groups...:

Lists the groups that are mapped to this specified role within this application.
Map Special Subjects:

This choice appears if multiple realms are being used. It enables you to map any of the following to
selected roles:

« All authenticated users that are in the applications's realm, which specifies whether to map all of the
authenticated users to a specified role. When you map all authenticated users to a specified role, all of
the valid users in the current registry who have been authenticated can access resources that are
protected by this role.

» All authenticated users regardless of the realm.

» Everyone, which specifies whether to map everyone to a specified role. When you map everyone to a
role, anyone can access the resources that are protected by this role and, essentially, there is no
security.

e All users in the trusted realms.

If trusted realms are configured, a drop-down list of realms to search is displayed. Users from the
non-default realm are displayed as user@realm.

Note: If the secured realm cannot be reached, the left list is replaced with 3 text fields (that is, name,
realm, and uid). You can add the user when the secured realm is not available.

It is not possible to map two subjects to the same role in this release of WebSphere Application Server.
Limit:

Specifies the maximum number of users or groups that can be returned when assigning users/groups to
roles.

A value of 0 implies a return of all users or groups that match the pattern. You can either increase the limit
or refine the search pattern to get all the entries.

Information Value

Data type Integer
Units User name
Default 20

Range 0 or more

Search string:

Indicates the search pattern used to search for the entries in a user registry.

Chapter 10. Securing web applications 105

The Search string field contains the search pattern that is used to search for the user or group entries. For
example, bob* will search all users or groups starting with bob. A limit of zero (0) retrieves all of the entries
that match the pattern. Use a limit of zero (0) only when a small number users or groups match that
pattern in the user registry. If the user registry contains more entries that match the pattern than requested
for, a message shows in the administrative console to indicate that there are more entries in the user
registry.

Information Value

Data type String

Units Number of users
Default 20

Range A-Z with *

Assigning users to RunAs roles
This article explains how to assign users to the RunAs roles for your application.

Before you begin

Complete the following tasks:

» Secure the web applications and the EJB applications where new RunAs roles are created and
assigned to web and EJB resources.

» Create all the RunAs roles in your application. The user in the RunAs role can only be entered if that
user or a group to which that user belongs is already part of the regular role.

+ Assign users and groups to security roles. Refer to [‘Assigning users and groups to roles” on page 100
for more information.

» Verify that the user registry requirements are met. These requirements are the same as those discussed
in ['Assigning users and groups to roles” on page 100 For example, if the role1 role is a role that is also
used as a RunAs role, then the user1 user can be added to the RunAs role. The administrative console
checks this logic when Apply or OK is clicked. If the check fails, the change is not made and an error
message is displayed at the top of the panel.

When a user ID and password is assigned to a RunAs role, validation occurs using the current active user
registry that is configured. By default, the local operating system registry is set as the active user registry.
Therefore, when an application is installed and security is disabled on the server, the local operating
system registry is used to validate the user ID and password that is assigned to the RunAs Role. If the
intended registry for the application is not local operative system, the validation fails. Therefore, map
RunAs roles to users when the security is enabled on the server. However, if the active user registry and
the intended registry after enabling security are the same, you can assign the user to a RunAs role when
security is disabled.

If the Everyone or All Authenticated special subjects are assigned to a role, validation does not occur for
that role.

Validation is done every time you click Apply in this panel or when you click OK in the Security role to
user/group mapping panel. The check verifies that all the users in all the RunAs roles do exist directly or
indirectly through a group in those roles in the Security role to user/group mappings panel. If a role is
assigned both a user and a group to which that user belongs, you can delete either the user or the group
from the Security role to user/group mapping panel.

If the RunAs role user belongs to a group and if that group is assigned to that role, make sure that the
assignment of this group to the role is done through the administrative console and not through an
assembly tool or other method. When using the administrative console, the full name of the group is used
(for example, hostname\groupName in Windows systems and distinguished names (DN) in Lightweight
Directory Access Protocol (LDAP)). During the check, all the groups to which the RunAs role user belongs
are obtained from the user registry. Because the list of groups that are obtained from the user registry are

106 Securing WebSphere applications

the full names of the groups, the check works correctly. If the short name of a group is entered using an
assembly tool, for example groupl instead of CN=groupl, o=myCompany.com, this check fails.

About this task

These steps are common to both installing an application and modifying an existing application. If the
application contains RunAs roles, you see the User RunAs roles link during application installation and
also during managing applications as a link in the Additional properties section.

Procedure
1. Click Applications > Enterprise Applications > application_name.

2. Under Detail Properties, click Security role to user/group mapping. A list of all the RunAs roles that
belong to this application display. If the roles already have users assigned, they display here.

3. To assign a user, select the role. You can select multiple roles at the same time if the same user is
assigned to all the roles.

4. Enter the user's name and password in the designated fields. The user name entered can be either
the short name, which is preferred, or the full name, as seen when getting users and groups from the
user registry.

5. Click Apply. The user is authenticated using the active user registry. If authentication is successful, a
check is made to verify that this user or group is mapped to the role in the Map security roles to users
and groups panel. If authentication fails, verify that the user and password are correct and that the
active registry configuration is correct.

6. To remove a user from a RunAs role, select the roles and click Remove.
Results

The RunAs role user is added to the binding file in the application. This file is used for delegation
purposes when accessing Java EE resources. This step is required to assign users to RunAs roles so that
during delegation the appropriate user is used to invoke the EJB methods.

What to do next

If you are installing the application, complete installation. After the application is installed and running, you
can access your resources according to the RunAS role mapping. Save the configuration.

If you manage applications and modify User RunAs roles, make sure you save, stop, and restart the
application so that the changes become effective. Try accessing your Java Platform, Enterprise Edition
(Java EE) resources to verify that the new changes are in effect.

Mapping users to RunAs roles using an assembly tool:

RunAs roles are used for delegation. A servlet or enterprise bean component uses the RunAs role to
invoke another enterprise bean by impersonating that role.

Before you begin

Before you perform this task:

» Secure the web application and enterprise bean applications, including creating and assigning new roles
to enterprise bean and web resources. For more information, see [‘Securing web applications using an|
[assembly tool” on page 95|and [‘Securing enterprise bean applications” on page 21.

» Assign users and groups to roles. For more information, see [‘Adding users and groups to roles using an|
|assembly tool” on page 102.| Complete this step during the installation of the application. The
environment or user registry under which the application is going to run is not known until deployment. If
you already know the environment in which the application is going to run and you know the user
registry, then you can use an assembly tool to assign users to RunAs roles.

Chapter 10. Securing web applications 107

About this task

Note: This procedure might not match the steps that are required when using your jassembly tool, or
match the version of the assembly tool that you are using. You should follow the instructions for the
tool and version that you are using.

To define RunAs roles when a servlet or an enterprise bean in an application is configured with RunAs
settings, perform these steps:

Procedure

1. In the Project Explorer view of an assembly tool, right-click an enterprise application project or
Enterprise Archive (EAR) file and click Open With > Deployment Descriptor Editor. An application
deployment descriptor editor opens on the EAR file. To access information about the editor, press F1
and click Application deployment descriptor editor.

On the Security tab, under Security Role Run As Bindings, click Add.
Click Add under RunAs Bindings.

In the Security Role wizard, select one or more roles and click Finish.
Repeat steps 3 through 5 for all the RunAs roles in the application.
Close the application deployment descriptor editor and, when prompted, click Yes to save the changes.

ook

Results
The ibm-application-bnd.xmi file in the application contains the user to RunAs role mapping table.

Note: For IBM extension and binding files, the .xmi or .xml file name extension is different depending on
whether you are using a pre-dava EE 5 application or module or a Java EE 5 or later application or
module. An IBM extension or binding file is named ibm-*-ext.xmi or ibm-*-bnd.xmi where * is the
type of extension or binding file such as app, application, ejb-jar, or web. The following conditions
apply:

* For an application or module that uses a Java EE version prior to version 5, the file extension
must be .xmi.

* For an application or module that uses Java EE 5 or later, the file extension must be .xml. If .xmi
files are included with the application or module, the product ignores the .xmi files.

However, a Java EE 5 or later module can exist within an application that includes pre-Java EE 5
files and uses the .xmi file name extension.

The ibm-webservices-ext.xmi, ibm-webservices-bnd.xmi, ibm-webservicesclient-bnd.xmi,
ibm-webservicesclient-ext.xmi, and ibm-portlet-ext.xmi files continue to use the .xmi file
extensions.

What to do next

After securing an application, you can |insta|| the application| using the administrative console. You can
change the RunAs role mappings of an installed application. For more information, see
lcollection” on page 111

Ensure all unprotected 1.x methods have the correct level of protection:

Use this page to verify that the unprotected Enterprise JavaBeans (EJB) Version 1.x methods have the
correct level of protection before you map users to roles.

This administrative console page is displayed during the application deployment process. To access the
administrative console page, click Application > New application > New Enterprise Application. The

108 Securing WebSphere applications

page is displayed as Ensure all unprotected 1.x methods have the correct level of protection in the
application deployment steps. On this administrative console page, you can specify whether users can
access specific EJB modules.

EJB module:

Specifies the EJB module name.

URI:

Specifies the Uniform Resource Identifier (URI) that is used to locate the Java archive (JAR) file for the
EJB module.

Deny all access:

Select this option to protect this EJB module by making it inaccessible to users regardless of their access
permissions.

Information Value
Default: Cleared

Ensure all unprotected 2.x methods have the correct level of protection:

Use this page to verify that the unprotected Enterprise JavaBeans (EJB) Version 2.x methods have the
correct level of protection before you map users to roles.

This administrative console page is displayed during the application deployment process. To access the
administrative console page, click Applications > New application > application_name. The page is
displayed as Ensure all unprotected 2.x methods have the correct level of protection in the
application deployment steps. On this administrative console page, you can specify whether users can
access specific EJB modules.

To use this administrative console page, select the Uncheck, Exclude, or Role option, the check box next
to the EJB module, and click Apply. If you select Role option, select the appropriate role for the EJB
module before you click Apply.

Uncheck:

Select this option if you do not want the application server to verify the access permissions for the EJB
module. Everyone can access the EJB module.

Information Value
Default: Selected
Exclude:

Select this option to protect this EJB module by making it inaccessible to users regardless of their access
permissions.

Information Value
Default: Deselected
Role:

Specifies the EJB level of protection based on the security role.

Chapter 10. Securing web applications 109

The roles listed in this menu are obtained from the application scope. If the selected role is not in the
module, then it is added to the modules or Java archive (JAR) files.

Information Value
Default: Deselected
EJB module:

Specifies the name of the module.
If a module name appears in this list, then the module contains unprotected EJB methods.
URI:

Specifies the Uniform Resource Identifier (URI) that is used to locate the Java archive (JAR) file for the
EJB module.

Protection type:
Specifies the level of protection that is assigned to a particular module name.

After you select the Uncheck, Exclude, or Role option and click Apply, the selected protection option is
displayed in this column.

Correct use of the system identity:

Use this page to manage the system identity properties for the Enterprise JavaBeans (EJB) method in
your application.

This administrative console page is displayed during the application deployment process. To access the
administrative console , click Application > New application > New Enterprise Application. The is
displayed as Correct use of System Identity in the application deployment steps.

To use this page, complete the following steps:

1. Select an application that supports security and click Next.

2. Select Detailed - Show all installation options and parameters and click Next.
3. Select the Correct use of system identity step.

Bean:

A component that implements a business task or business entity and resides in an EJB container. Entity
beans, session beans, and message-driven beans are all enterprise beans.

Module:

In Java EE programming, a software unit that consists of one or more components of the same container
type and one deployment descriptor of that type. Examples include EJB, Web, and application client
modules.

URI:

A Uniform Resource Identifier (URI) is a unique address that is used to identify content on the Web, such
as a page of text, a video or sound clip, a still or animated image, or a program.

Method signature:

110 Securing WebSphere applications

The combination of a name of a method along with the number and types of the parameters and their
order.

Role:
Specifies the RunAs role that is used for this EJB method.

Username:
Specifies the user name that is assigned to the RunAs role for this EJB method.

The user name is used in conjunction with the RunAs role that you select for the Role.

User RunAs collection:

Use this page to map a specified user identity and password to a RunAs role. This panel enables you to
specify application-specific privileges for individual users to run specific tasks using another user identity.

To view this administrative console page, complete the following steps:

1. Click Applications > Application Types > WebSphere enterprise applications >
application_name.

2. Under Detail properties, click User runAs roles.

The enterprise beans that you install contain predefined RunAs roles. RunAs roles are used by enterprise
beans that need to run as a particular role for recognition while interacting with another enterprise bean.

Username:
Specifies a user name for the RunAs role user.

This user already maps to the role specified in the Mapping users and groups to roles panel. You can map
the user to its appropriate role by either mapping the user to that role directly or mapping a group that
contains the user to that role. After you specify the user name and password for the user and select a
RunAs role, click Apply.

Note:

The use of the username field is dependent on whether system authorization facility (SAF)
delegation is enabled or disabled.

* SAF delegation is enabled. The username field is NOT used.

* SAF delegation is disabled. The username field is used.

Information Value
Data type: String
Password:

Specifies the password for the RunAs user.
Note:

The use of the password field is dependent on whether system authorization facility (SAF)
delegation is enabled or disabled.

* SAF delegation is enabled. The password field is NOT used.

Chapter 10. Securing web applications 111

* SAF delegation is disabled. The password field is used.

Information Value
Data type: String
Role:

Maps specific capabilities to a user.

The authorization policy is only enforced when global security is enabled.

Securing applications during assembly and deployment

Several assembly tools exist that are graphical user interfaces for assembling enterprise or Java Platform,
Enterprise Edition (Java EE) applications. You can use these tools to assemble an application and secure
Enterprise JavaBeans (EJB) and web modules in that application.

About this task

An EJB module consists of one or more beans. You can enforce security at the EJB method level. A web
module consists of one or more web resources: an HTML page, a JavaServer Pages (JSP) file, or a
servlet. You can also enforce security for each web resource.

Note: For information about the tools that WebSphere Application Server supports, see[Assembly tools

To secure an EJB module, a Java archive (JAR) file, a web module, a web application archive (WAR) file,
or an application enterprise archive (EAR) file, you can use an assembly tool. You can create an
application, an EJB module, or a web module and secure them using an assembly tool or development
tools such as the IBM Rational Application Developer.

Procedure

1. Secure EJB applications using an assembly tool. For more information, see|‘Securing enterprise bean|
fapplications” on page 21.|

2. Secure web applications using an assembly tool. For more information, see[“Securing web applications|
lusing an assembly tool” on page 95.|

3. Add users and groups-to-roles while assembling a secured application using an assembly tool. For
more information, see[*Adding users and groups to roles using an assembly tool” on page 102

4. Map users to RunAs roles using an assembly tool. For more information, see [‘Mapping users to|
[RunAs roles using an assembly tool” on page 107

5. |Adding the was.policy file to applications for Java 2 security|

6. Assemble the application components that you secured using an assembly tool. For more information,
see[Assembling applications]

Results

After securing an application, the resulting .ear file contains security information in its deployment
descriptor. The EJB module security information is stored in the ejb-jar.xml file and the web module
security information is stored in the web.xm1 file. The application.xml file of the application EAR file
contains all the roles that are used in the application. The user and group-to-roles mapping is stored in the
ibm-application-bnd.xmi file of the application EAR file.

Note: For IBM extension and binding files, the .xmi or .xml file name extension is different depending on
whether you are using a pre-Java EE 5 application or module or a Java EE 5 or later application or

112 Securing WebSphere applications

module. An IBM extension or binding file is named ibm-*-ext.xmi or ibm-*-bnd.xmi where * is the

type of extension or binding file such as app, application, ejb-jar, or web. The following conditions

apply:

» For an application or module that uses a Java EE version prior to version 5, the file extension
must be .xmi.

» For an application or module that uses Java EE 5 or later, the file extension must be .xml. If .xmi
files are included with the application or module, the product ignores the .xmi files.

However, a Java EE 5 or later module can exist within an application that includes pre-Java EE 5
files and uses the .xmi file name extension.

The ibm-webservices-ext.xmi, ibm-webservices-bnd.xmi, ibm-webservicesclient-bnd.xmi,
ibm-webservicesclient-ext.xmi, and ibm-portlet-ext.xmi files continue to use the .xmi file
extensions.

IEITE The was.policy file of the application EAR contains the permissions granted for the application
to access system resources protected by Java 2 security.

This task is required to secure EJB modules and web modules in an application. This task is also required
for applications to run properly when Java 2 security is enabled. If the was.policy file is not created and it
does not contain required permissions, the application might not be able to access system resources.

What to do next

After securing an application, you can install an application using the administrative console. When you
install a secured application, refer to [‘Deploying secured applications” on page 114 to complete this task.

Updating and redeploying secured applications
This section addresses the way to update existing applications.

Before you begin

Before you perform this task, secure web applications, secure Enterprise JavaBeans (EJB) applications,
and deploy them in WebSphere Application Server.

Procedure

1. Use the administrative console to modify the existing users and groups mapping to roles. For
information on the required steps, see [‘Assigning users and groups to roles” on page 100.|

2. Use the administrative console to modify the users for the RunAs roles. For information on the required
steps, see [‘Assigning users to RunAs roles” on page 106]

Complete and save the changes.
Stop and restart the application for the changes to become effective.
Use an assembly tool. For more information, see|Assembling applications}

Use an assembly tool to modify roles, method permissions, auth-constraints, data-constraints and so
on. For more information, see|Assembling applications}

7. Save the enterprise archive (EAR) file, uninstall the old application, deploy the modified application and
start the application to make the changes effective.

o o~ W

Results

The applications are modified and redeployed. This step is required to modify existing secured
applications.

Chapter 10. Securing web applications 113

What to do next

If information about roles is modified, make sure that you update the user and group information using the
administrative console. After the secured applications are modified and either restarted or redeployed,
verify that the changes are effective by accessing the resources in the application.

Deploying secured applications

Deploying applications that have security constraints (secured applications) is not much different than
deploying applications that do not contain any security constraints. The only difference is that you might
need to assign users and groups to roles for a secured application. The secured application requires that
you have the correct active user registry.

Before you begin

Before you perform this task, verify that you already designed, developed, and assembled an application
with all the relevant security configurations. For more information on these tasks refer to|DeveIoping|
applications that use programmatic security| and [“Securing applications during assembly and deployment?]
on page 112.| In this context, deploying and installing an application are considered the same task.

To deploy a newly secured application click Applications > Install New Application and follow the
prompts to complete the installation steps. One of the required steps to deploy secured applications is to
assign users and groups to roles that are defined in the application.

» If you are installing a secured application, roles will be defined in the application.
 |f delegation is required in the application, you will be defining RunAs roles also.

During the installation of a new application, the role definition is completed as part of the step that maps
security roles to users and groups. If this assignment has already been completed by using an assembly
tool, you can still confirm the mapping by following this installation step. You can add new users and
groups and modify existing information during this step.

If the application supports delegation, a RunAs role will already be defined in the application. If the
delegation policy is set to Specified Identity during assembly, the intermediary invokes a method by
using an identity setup during deployment. Use the RunAs role to specify the identity under which the
downstream invocations are made. For example, if the RunAs role is assigned user bob and the client
alice is invoking a servlet, with delegation set that calls the enterprise beans, the method on the
enterprise beans is invoked with bob as the identity.

As part of the new application installation and deployment process, one of the steps is to map or modify
users to the RunAs roles. Use this step to assign new users or modify existing users to RunAs roles when
the delegation policy is set to Specified Identity.

Important: When Tivoli Access Manager (TAM) is enabled the deployment and undeployment of
applications might take a long time or even time out. Disabling the ATCCache might resolve
the issue. The ATCCache exists to help with performance during application deployment and
undeployment. With some applications, especially those with many modules, the cache can
actually have a negative impact on performance in these areas. To disable the ATCCache,
navigate to the config/cells/cell_name directory and modify the
amwas.amjacc.template.properties file to set com.tivoli.pd.as.atcc. ATCCache.enabled=false.
Because embedded TAM is already configured, update the configuration files with that
property. For each instance in the cell, go to the profiles/<profile_name>/etc/tam directory
and modify any file ends as amjacc.properties to set
com.tivoli.pd.as.atcc. ATCCache.enabled=false. The cell must be restarted before these
changes take effect.

114 Securing WebSphere applications

About this task

Note that the steps are common whether you are installing an application or modifying an existing
application.

To install and deploy the application, complete the following steps.

Procedure

1. Click Applications > Install New Application. Complete the required steps until you see the step for
mapping security roles to users and groups.

2. IS f the application contains roles, assign users and groups to roles. At this step during the
installation, under Additional Properties, click Map security roles to users and groups. For more
information, see |“Assigning users and groups to roles” on page 100.|

3. If RunAs roles exist in the application, assign users to RunAs roles. At this step during the installation,
under Additional Properties, click Map RunAs roles to users. For more information, see
[users to RunAs roles” on page 106.|

4. Optional: Click Correct use of System Identity to specify RunAs roles, if needed. Complete this
action if the application has delegation set to use system identity, which is applicable to enterprise
beans only. System identity uses the WebSphere Application Server security server ID to invoke
downstream methods. Using system identity is not recommended as this ID has more privileges than
other identities in accessing WebSphere Application Server internal methods. This task is provided to
make sure that the deployer is aware that the methods listed in the panel have system identity set up
for delegation and to correct them if necessary. When the internalServerld feature is used, runAs with
system identity is not supported; you must specify RunAs roles here.

5. Complete the remaining non-security related steps to finish installing and deploying the application.

What to do next

After a secured application is deployed, verify that you can access the resources in the application with the
correct credentials. For example, if your application has a protected web module, make sure only the
users that you assigned to the roles can use the application.

User profiles and authorities
WebSphere Application Server uses two OS/400® user profiles by default, QEJB and QEJBSVR.

The QEJB user profile is shipped as part of the operating system. This user profile is used only when
accessing validation list objects used for storing the encoded passwords used with WebSphere Application
Server. For more information on using validation list objects to store encoded passwords, see |Restoring o
[replacing damaged validation list objects|

The QEJBSVR user profile is created on your iSeries server when you install WebSphere Application
Server. This profile is the default profile under which all application servers run. Directories and files used
by WebSphere Application Server are normally owned by user profile QEJBSVR. The WebSphere
Application Server runtime, administration tools, and Qshell scripts sets the ownership and authorities
correctly on any objects created. If you create objects manually outside of the WebSphere Application
Server tools, or if you modify the authorities on objects used by WebSphere Application Server, you must
ensure QEJBSVR has the correct authorities to these objects.

You can also use the grtwasaut script| and the [rvkwasaut script| to modify authorities on integrated file
system objects. When you create new directories for WebSphere Application Server, the QEJBSVR user
profile must have read and execute authorities (*RX) to those directories.

Chapter 10. Securing web applications 115

If you have specified another user profile to run your application servers, it is recommended that you
specify QEJBSVR for its group profile. See |Running application servers under specific user profiles for
more information.

Session security support

You can integrate HTTP sessions and security in WebSphere Application Server. When security integration
is enabled in the session management facility and a session is accessed in a protected resource, you can
access that session only in protected resources from then on. Session security (security integration) is
enabled by default.

You cannot mix secured and unsecured resources accessing sessions when security integration is turned
on. Security integration in the session management facility is not supported in form-based login with
SWAM.

Note: SWAM is deprecated in WebSphere Application Server Version 8.5 and will be removed in a future
release.

Security integration rules for HTTP sessions

Only authenticated users can access sessions created in secured pages and are created under the
identity of the authenticated user. Only this authenticated user can access these sessions in other secured
pages. To protect these sessions from unauthorized users, you cannot access them from an unsecured

page.
Programmatic details and scenarios
WebSphere Application Server maintains the security of individual sessions.

An identity or user name, readable by the com.ibm.websphere.servlet.session.IBMSession interface, is
associated with a session. An unauthenticated identity is denoted by the user name anonymous.
WebSphere Application Server includes the
com.ibm.websphere.servlet.session.UnauthorizedSessionRequestException class, which is used when a
session is requested without the necessary credentials.

The session management facility uses the WebSphere Application Server security infrastructure to
determine the authenticated identity associated with a client HTTP request that either retrieves or creates
a session. WebSphere Application Server security determines identity using certificates, LPTA, and other
methods.

After obtaining the identity of the current request, the session management facility determines whether to
return the session by comparing the identity of the request with the identity of the session.

Table 12. Security integration scenarios. The following table lists possible scenarios in which security integration is
enabled with outcomes dependent on whether the HTTP request is authenticated and whether a valid session ID and
user name was passed to the session management facility.

Type of session ID Unauthenticated HTTP request is HTTP request is authenticated, with

used to retrieve a session an identity of “FRED”used to retrieve
a session

No session ID was passed in for | A new session is created. The user A new session is created. The user

this request, or the ID is for a name is anonymous name is FRED

session that is no longer valid

A session ID for a valid session is | The session is returned. The session is returned. session

passed in. The current session management changes the user name to

user name is “anonymous” FRED

116 Securing WebSphere applications

Table 12. Security integration scenarios (continued). The following table lists possible scenarios in which security
integration is enabled with outcomes dependent on whether the HTTP request is authenticated and whether a valid
session ID and user name was passed to the session management facility.

Type of session ID

Unauthenticated HTTP request is
used to retrieve a session

HTTP request is authenticated, with
an identity of “FRED”used to retrieve
a session

A session ID for a valid session is
passed in. The current session
user name is FRED

The session is not returned. An
UnauthorizedSessionRequestException
error is created”

The session is returned.

A session ID for a valid session is
passed in. The current session
user name is BOB

The session is not returned. An
UnauthorizedSessionRequestException
error is created”

The session is not returned. An
UnauthorizedSessionRequestException
error is created”

Note: *A com.ibm.websphere.servlet.session.UnauthorizedSessionRequestException error is created to

the servlet.

117

Chapter 10. Securing web applications

118 Securing WebSphere applications

Chapter 11. Securing web services
This page provides a starting point for finding information about web services.

Web services are self-contained, modular applications that can be described, published, located, and
invoked over a network. They implement a services oriented architecture (SOA), which supports the
connecting or sharing of resources and data in a very flexible and standardized manner. Services are
described and organized to support their dynamic, automated discovery and reuse.

Securing JAX-RS web applications

Securing JAX-RS applications within the web container

You can use the security services available from the web container to secure Representational State
Transfer (REST) resources. You can configure security mechanisms that define user authentication,
transport security, authorization control, and user to role mappings.

Before you begin

To appropriately define security constraints, it is important that you are familiar with your application and
the RESTful resources that it exposes. This knowledge helps you to determine appropriate security roles
required by your application as well as the individual resources it exposes.

To illustrate how to secure a REST application, this topic uses a sample REST application called
AddressBookApp.

You must complete the installation of your application on the application server. For example, after you
install the AddressBookApp application, the AddressBookApp deployment descriptor found in the

[orofile_rood/config/cell1s/cel1Name/applications/applicationName.ear/deployments/
applicationName war/applicationName.war/WEB-INF directory looks like the following example:

<?xml version="1.0" encoding="UTF-8"?7>
<IDOCTYPE web-app PUBLIC "-//Sun Microsystems, Inc.//DTD Web Application 2.3//EN" "http://java.sun.com/dtd/web-app_2_3.dtd">
<web-app id="WebApp_1255468655347">
<display-name>Sample REST Web Application</display-name>
<servlet>
<servlet-name>AddressBookApp</serviet-name>
<servlet-class>com.ibm.websphere.jaxrs.server.IBMRestServiet</servlet-class>
<init-param>
<param-name>javax.ws.rs.Application</param-name>
<param-value>com.test.AddressBookApplication</param-value>
</init-param>
<load-on-startup>1</Toad-on-startup>
</serviet>
<servlet-mapping>
<servlet-name>AddressBookApp</servlet-name>
<url-pattern>/rest/*</url-pattern>
</serviet-mapping>
</web-app>

In this example, the servlet mapping indicates the REST resources are served under the
/app_root_context/rest directory where app_root_context is what you configured during the installation of
the application. The default root context is /.

You must enable security for WebSphere Application Server.

About this task

You can use the web container to apply authentication as well as authorization constraints to a REST
application running in the application server environment. Authentication is a basic security requirement for

business REST resources that require a minimum level of security and might need to further protect
resources based on the identity of the caller.

© Copyright IBM Corp. 2012 119

You can configure the following security mechanisms for REST resources:

* Require that users authenticate to your application using either HTTP basic authentication or form login.
» Configure your application to use an SSL channel for transport when invoking REST resources.

» Define role-based authorization constraints on your REST resource patterns.

+ Implement the programmatic use of the annotated SecurityContext object to determine user identity and
roles.

Procedure
1. Ensure that security is enabled for the application server.
a. Start the WebSphere Application Server administrative console.

Start the deployment manager, and in your browser, type the address of your WebSphere
Application Server, Network Deployment server. By default, the console is located at
http://your_host.your_domain:9060/ibm/console.

If security is currently disabled, you are prompted for a user ID. Log in with any user ID. However,
if security is currently enabled, you are prompted for both a user ID and a password. Log in with a
predefined administrative user ID and password.

b. Click Security > Global security.
Select Enable application security.

Note: You must enable administrative security. You can only have application security enabled
when administrative security is enabled.

2. Add security constraints.

Edit the web.xml file for the application, or use an assembly tool to add security constraints to your
application. The following code snippet is a security constraint applied to the AddressBookApp Sample
application:

<!-- Security constraint for the sample application -->
<security-constraint id="SecurityConstraint_1">

<l-- This defines the REST resource associated with the constraint. -->

<web-resource-collection id="WebResourceCollection_1">
<web-resource-name>AddressBookApp</web-resource-name>
<description>Protection area for Rest resource /addresses </description>
<url-pattern>/rest/addresses</url-pattern>
<http-method>GET</http-method>
<http-method>P0ST</http-method>

</web-resource-collection>

<!-This defines an authorization constraint by requiring Rolel for the resource. -->
<auth-constraint id="AuthConstraint_1">
<description>Used to guard resources under this url-pattern </description>
<role-name>Rolel</role-name>
</auth-constraint>
</security-constraint>

In this example, there is a web resource located at /root_context/rest/addresses that can respond to
an HTTP GET or POST request. A security constraint, AuthConstraint_1, is applied to the web
resource. The authorization constraint specifies that role Rolel is required for users to access the
resource.

3. Choose one or more of the following security mechanisms to configure for your REST application.
* Enable basic HTTP authentication.
a. Add security constraints by editing the web.xml file as previously described.
b. Configure the web.xml file to enable basic HTTP authentication.

Edit the web.xml file for the application and add the following element to specify the use of basic
HTTP authentication. By default, the application server security runtime environment uses this
method of authentication.

<l-- This defines a HTTP basic authentication login configuration. -->
<login-config>

<auth-method>BASIC</auth-method>

<realm-name>test realm</realm-name>
</1ogin-config>

120 Securing WebSphere applications

An HTTP basic authentication method is now defined. Users attempting to access the resource
are required to login with credentials.

* Enable form login.
a. Add security constraints by editing the web.xml file as previously described.

b. Edit the web.xml file for the application and add the following element to specify the use of form
login:

<login-config>
<auth-method>FORM</auth-method>
<form-login-config>
<form-login-page>/Tlogon.jsp</form-login-page>
<form-error-page>/logonError. jsp</form-error-page>
</form-login-config>
</login-config>

It is important that you replace the logon.jsp and logonError.jsp web page values with your form
login and error processing, respectively. When accessing the application, users are redirected
through the logon.jsp web page to authenticate. If there is an authentication failure, users are
redirected to the logonError.jsp web page. The following example illustrates the placement of
logon.jsp and logonError.jsp pages in the application web application archive (WAR) file:

META-INF
logon.jsp
TogonError.jsp
WEB-INF/classes/
WEB-INF/classes/
WEB-INF/classes/com/
WEB-INF/classes/com/test/
WEB- NF/classes/com/test/AddressBookApplication.class
WEB-INF/classes/com/test/AddressBookResource.class

The following code snippet illustrates a sample logon form:

<html>

<head>
<title>Login Page</title>

</head>

<h2>Hello, please Tog in:</h2>

<hr>

<form action="j_security_check" method=post>
<p>Please Enter Your User Name:
<input type="text" name="j_username" size="25">
<p><p>Please Enter Your Password:
<input type="password" size="15" name="j_password">
<p><p>
<input type="submit" value="Submit">
<input type="reset" value="Reset">

</form>

</htm1>

« Enable SSL for your application.
a. Add security constraints by editing the web.xml file as previously described.

b. Edit the web.xml file for the application, and add the following element within the
security-constraint element:

<user-data-constraint id="UserDataConstraint_1">
<transport-guarantee>CONFIDENTIAL</transport-guarantee>
</user-data-constraint>

If you do not want to use SSL, you can either skip this constraint or replace the CONFIDENTIAL
value with NONE.

* Enable authorization control to protect resources using URL patterns.
a. Add security constraints by editing the web.xml file as previously described.

b. Edit the web.xml file for the application and add the following element within the
security-constraint element. In the following example, Rolel and Role2 specify to protect the
REST resources, /rest/addresses and /rest/resources/{i}, respectively:

<security-constraint id="SecurityConstraint_1">

<web-resource-collection id="WebResourceCollection_1">
<web-resource-name>AddressBookApp</web-resource-name>
<description>Protection area for Rest Servlet</description>
<url-pattern>/rest/addresses</url-pattern>
<http-method>GET</http-method>
<http-method>P0ST</http-method>

</web-resource-collection>

Chapter 11. Securing web services 121

<auth-constraint id="AuthConstraint_1">
<description> Rolel for this rest resource </description>
<role-name>Rolel</role-name>
</auth-constraint>
</security-constraint>

<security-constraint id="SecurityConstraint_2">
<web-resource-collection id="WebResourceCollection_2">
<web-resource-name>AddressBookApp</web-resource-name>
<description>Protection area for Rest Servlet</description>
<url-pattern>/rest/addresses/*</url-pattern>
<http-method>GET</http-method>
<http-method>P0ST</http-method>
</web-resource-collection>
<auth-constraint id="AuthConstraint_2">
<description> Role2 for this rest resource </description>
<role-name>Role2</role-name>
</auth-constraint>
</security-constraint>

In this example, only users that are members of Role1 are able to access root-context/rest/
addresses and only users that are members of Role2 are able to access the resource,
root-context/rest/addresses/{i}.

Note: It is important that you prefix the path of the protected resources with your servlet
mapping in the security constraints that you define. To prevent bypassing any access
checks, you can choose to map the servlet to the /* path. This mapping protects all
resources under the root context.

Make sure to define your roles by inserting the role definition elements within the <web-app>
element; for example:

<security-role id="SecurityRole_1">
<description>This is Rolel</description>
<role-name>Rolel</role-name>

</security-role>

<security-role id="SecurityRole_2">
<description>This is Role2</description>
<role-name>Role2</role-name>

</security-role>

The changes you make to the deployment descriptor are automatically picked up by the
application server runtime environment, and you do not need to restart the application or the
server. Other types of changes, such as the mapping URL, require that you restart the
application server. It is recommended that you restart your application to make sure that your
changes take effect.

* Programmatically using the annotated security context.

Application developers can use the JAX-RS @ SecurityContext annotation to programmatically
cascade the security context down to the resource on the server side and enable the definition of
security attributes during run time. The following is the functionality provided by the SecurityContext
interface:

public String getAuthenticationScheme()
public Principal getUserPrincipal()
public boolean isUserInRole(String role)

The following example illustrates the SecurityContext interface:

package com.test;

import javax.ws.rs.GET;

import javax.ws.rs.Consumes;

import javax.ws.rs.POST;

import javax.ws.rs.Path;

import javax.ws.rs.PathParam;

import javax.ws.rs.Produces;

import javax.ws.rs.ext.*;

import javax.ws.rs.core.SecurityContext;
import javax.ws.rs.core.Context;

[x*
* A sample resource that provides access to an address book.
*

*/
@Path(value="/addresses")
public class AddressBookResource {

@Context private SecurityContext securityContext;

122 Securing WebSphere applications

private static String[] 1ist = new String[] {
"Michael",
"Ron",
"Jane",
"Sam"

}s

OGET

@Produces(value="text/plain")

public String getList() {
// retrieve the authentication scheme that was used(e.g. BASIC)
String authnScheme = securityContext.getAuthenticationScheme());
// retrieve the name of the Principal that invoked the resource
String username = securityContext.getUserPrincipal().getName());
// check if the current user is in Rolel
Boolean isUserInRole = securityContext.isUserInRole("Rolel");

StringBuffer buffer = new StringBuffer();
buffer.append("{");
for (int i = 0; i < list.length; ++i) {
if (i 1=0)
buffer.append(", ");
buffer.append(1ist[i]);
}
buffer.append("}");

return buffer.toString();

* Use the security client handler to perform basic HTTP authentication

You can optionally use the security client handler to perform basic HTTP authentication with a
secure JAX-RS resource. The following example illustrates the simple programming model to
accomplish this task:

[x%

* This snippet illustrates the use of the JAX-RS SecurityHandler by a
* client to perform HTTP basic authentication with a target service.
*/

import org.apache.wink.client.ClientConfig;

import org.apache.wink.client.Resource;

import org.apache.wink.client.RestClient;

import org.apache.wink.client.handlers.BasicAuthSecurityHandler;

ClientConfig config = new ClientConfig();
BasicAuthSecurityHandler secHandler = new
BasicAuthSecurityHandler();

// Set the user credential.
secHandler.setUsername("userl");
secHandler.setPassword("security");

// Add this security handler to the handlers chain.
config.handlers(secHandler);

// Create the REST client instance.
RestClient client = new RestClient(config);

// Create the resource instance to interact with

// substitute for your resource address

resource =
client.resource("http://localhost:8080/path/to/resource");

// Now you are ready to call your resource.

When using the BasicAuthSecurityHandler class, ensure that you target resources using the https
scheme for your URLs, and that the target application is SSL-enabled. It is highly recommended to
use SSL connections when sending user credentials. You may explicitly turn off the requirement for
SSL in the BasicAuthSecurityHandler class by invoking the setSSLRequired method on the security
handler with the false value. By default, this value is true.

secHandler.setSSLRequired(false);
Optionally, you can also provide the user credentials on the Java command-line for your client as
follows:

java -Duser=test_user -Dpassword=your_password your_client_program

You can optionally retrieve the user credentials from a properties files whose location you specify on
the Java command-line as follows:

java -Dclientpropsdir=directory_for_your_properties_file your_client_program

Chapter 11. Securing web services 123

where directory for your properties file contains the wink.client.props file where the user and
password properties are set.

Results

After you define security constraints, access to the REST resources that are defined in your application is
subject to successful user authentication only. Additionally, you have applied role constraints to various
resource URL patterns to enable role-based access to those resources.

Example

The following example illustrates the web.xml deployment descriptor for the AddressBookApp Sample
application where security constraints have been defined using the previous procedure steps:

<web-app id="WebApp_1255468655347">
<display-name>Sample REST Web Application</display-name>
<servlet>
<servlet-name>AddressBookApp</serviet-name>
<servlet-class>com.ibm.websphere.jaxrs.server.IBMRestServlet</serviet-class>
<init-param>
<param-name>javax.ws.rs.Application</param-name>
<param-value>com.test.AddressBookApplication</param-value>
</init-param>
<load-on-startup>1</load-on-startup>
</serviet>
<servlet-mapping>
<servlet-name>AddressBookApp</serviet-name>
<url-pattern>/rest/*</url-pattern>
</servlet-mapping>
<security-constraint id="SecurityConstraint_1">
<web-resource-collection id="WebResourceCollection_1">
<web-resource-name>AddressBookApp</web-resource-name>
<description>Protection area for Rest Servlet</description>
<url-pattern>/rest/addresses</url-pattern>
<http-method>GET</http-method>
<http-method>P0ST</http-method>
</web-resource-collection>
<auth-constraint id="AuthConstraint_1">
<description>Rolel for this rest serviet</description>
<role-name>Rolel</role-name>
</auth-constraint>
<user-data-constraint id="UserDataConstraint_1">
<transport-guarantee>CONFIDENTIAL</transport-guarantee>
</user-data-constraint>
</security-constraint>
<security-constraint id="SecurityConstraint_2">
<web-resource-collection id="WebResourceCollection_2">
<web-resource-name>AddressBookApp</web-resource-name>
<description>Protection area for Rest Servlet</description>
<url-pattern>/rest/addresses/#</url-pattern>
<http-method>GET</http-method>
<http-method>P0ST</http-method>
</web-resource-collection>
<auth-constraint id="AuthConstraint_2">
<description>Role2 for this rest serviet</description>
<role-name>Role2</role-name>
</auth-constraint>
<user-data-constraint id="UserDataConstraint_1">
<transport-guarantee>CONFIDENTIAL</transport-guarantee>
</user-data-constraint>
</security-constraint>
<security-role id="SecurityRole_1">
<description>This is Rolel</description>
<role-name>Rolel</role-name>
</security-role>
<security-role id="SecurityRole_2">
<description>This is Role2</description>
<role-name>Role2</role-name>
</security-role>
<login-config>
<auth-method>FORM</auth-method>
<form-login-config>
<form-login-page>/Togon.jsp</form-login-page>
<form-error-page>/TogonError. jsp</form-error-page>
</form-login-config>
</Togin-config>
</web-app>

124 Securing WebSphere applications

What to do next

Use the administrative console to administer security for your JAX-RS application.

Directory conventions
References in product information to app_server_root, profile_root, and other directories imply specific
default directory locations. This article describes the conventions in use for WebSphere Application Server.

| _lemi | . .
Default product locations - IBM i

These file paths are default locations. You can install the product and other components in any directory
where you have write access. You can create profiles in any valid directory where you have write access.
Multiple installations of WebSphere Application Server products or components require multiple locations.

app_client_root
The default installation root directory for the Application Client for IBM WebSphere Application
Server is the /QIBM/ProdData/WebSphere/AppClient/V85/client directory.

app_client_user_data_root
The default Application Client for IBM WebSphere Application Server user data root is the
/QIBM/UserData/WebSphere/AppClient/V85/client directory.

app_client_profile_root
The default Application Client for IBM WebSphere Application Server profile root is the
/QIBM/UserData/WebSphere/AppClient/V85/cTient/profiles/profile_name directory.

app_server_root
The default installation root directory for WebSphere Application Server Network Deployment is the
/QIBM/ProdData/WebSphere/AppServer/V85/ND directory.

java_home

Table 13. Root directories for supported Java Virtual Machines.

This table shows the root directories for all supported Java Virtual Machines (JVMs).

JVM Directory
32-bit IBM Technology for Java /QOpenSys/QIBM/ProdData/JavaVM/jdk60/32bit
64-bit IBM Technology for Java /QOpenSys/QIBM/ProdData/JavaVM/jdk60/64bit

plugins_profile_root
The default Web Server Plug-ins profile root is the /QIBM/UserData/WebSphere/Plugins/V85/
webserver/profiles/profile_name directory.

plugins_root
The default installation root directory for Web Server Plug-ins is the /QIBM/ProdData/WebSphere/
PTugins/V85/webserver directory.

plugins_user_data_root
The default Web Server Plug-ins user data root is the /QIBM/UserData/WebSphere/Plugins/V85/
webserver directory.

product_library

product_lib
This is the product library for the installed product. The product library for each Version 8.5
installation on the system contains the program and service program objects (similar to .exe, .d11,
.s0 objects) for the installed product. The product library name is QWAS85x (where x is A, B, C, and
so on). The product library for the first WebSphere Application Server Version 8.5 product installed

Chapter 11. Securing web services 125

on the system is QWAS85A. The app_server_root/properties/product.properties file contains the
value for the product library of the installation, was.install.library, and is located under the
app_server_root directory.

profile_root
The default directory for a profile named profile_name for WebSphere Application Server Network
Deployment is the /QIBM/UserData/WebSphere/AppServer/V85/ND/profiles/profile name directory.

shared_product_library
The shared product library, which contains all of the objects shared by all installations on the
system, is QWAS85. This library contains objects such as the product definition, the subsystem
description, the job description, and the job queue.

user_data_root
The default user data directory for WebSphere Application Server Network Deployment is the
/QIBM/UserData/WebSphere/AppServer/V85/ND directory.

The profiles and profileRegistry subdirectories are created under this directory when you install
the product.

The user_data_root directory contains the default locations for WLP_USR_DIR and WLP_OUTPUT DIR
when the Liberty profile is installed. These directories are user _data_root/wlp/usr and
user_data_root/wlp/output/servers, respectively.

web_server_root
The default web server path is /www/web_server_name.

Securing JAX-RS resources using annotations

You can secure Java API for RESTful Web Services (JAX-RS) resources by using annotations that specify
security settings.

Before you begin

This task assumes that you have developed the application and identified the JAX-RS resources that you
want to secure using annotations for security.

About this task

You can secure JAX-RS resources using annotations for security supported by JSR 250. You can use the
following annotations to add authorization semantics to your JAX-RS application resources:

* @PermitAll - specifies that all security roles are permitted to access your JAX-RS resources
» @DenyAll - specifies that no security roles are permitted to access your JAX-RS resources
* @RolesAllowed - specifies the security roles that are permitted to access your JAX-RS resources

You can choose to annotate at the class level or at the method level. The following rules govern the
annotations for security:

Method level annotations take precedence over annotations at the class level.

In the following code snippet, the JAX-RS resource that is referenced by the @GET and @Path
annotation of /addresses and the corresponding getList() method is not restricted and open for
public consumption. However, the resource referenced by the @ PUT and @ Path annotations of
the /addresses and the corresponding updatelList() method requires the role of Manager; for
example:

@Path(value="/addresses")
@PermitAll
public class AddressBookResource {

OGET

@Produces (value="text/plain")
public String getList() {

}

126 Securing WebSphere applications

@PUT
@RolesAllowed("Manager")
to public void updateList(String[] books) {
}
}
The annotations for security are mutually exclusive.
This means that each resource is only governed by at most one of annotations for security. For
example, the following example is not valid because both @ PermitAll and @RolesAllowed are
specified:

@Path(value="/addresses")
@PermitAll
@RolesAllowed("EmpToyee")

public class AddressBookResource {

GGET
@Produces(value="text/plain")
public String getList() {

}

In the previous code example, the @RolesAllowed annotation takes precedence and the
@PermitAll annotation is ignored. Similarly, if the @RolesAllowed annotation and @DenyAll
annotation are both specified, the @DenyAll annotation takes precedence.

Similarly, if the @PermitAll and @DenyAll annotations are both specified at the method or at the
class level, the @DenyAll annotation takes precedence as it ensures security by conforming to the
safe default principle.

If the @PermitAll, @DenyAll and @RolesAllowed annotations are all present at the method or
class level the @DenyAll annotation takes precedence over @RolesAllowed and @ PermitAll. The
order of precedence of these annotations is the following:

1. @DenyAll
2. @RolesAllowed
3. @PermitAll

Rule for inheritance
JSR 250 annotations that are added at the class level only affect the classes that they annotate
and the corresponding methods for subresources. Annotations that are specified at the class level
do not affect resources that are inherited from a superclass.

Rule for overriding method(s)
Annotations on resources that correspond to overridden methods in subclasses take precedence
over annotations that are included in the parent class. In the following snippet, the
LocalAdministrator role is used to access the /addresses/local subresource; for example:

s@Path(value="/addresses")
OPermitAll
public class AddressBookResource {

OGET
@Produces(value="text/plain")
public String getList() {

}

@PUT
@RolesAllowed("Administrator")
public void updatelList(String books) {

}
}

@Path(value="/addresses")

OPermitAll

public class LocalAddressBookResource
extends AddressBookResource {

@PUT

@RolesAllowed("LocalAdministrator")
@Path(value="Tocal")

Chapter 11. Securing web services 127

public void updatelList(String books){

}
}

@RolesAllowed consideration
You cannot have multiple @RolesAllowed annotations simultaneously on a resource. For example,
you can achieve:

@RolesAllowed("rolel")

@RoTesAllowed("role2")
public String foo() {
}

using the following code snippet:

@GRoTesAllowed({"rolel", "role2"})
public String foo() {
}

Considerations for the use of annotations for security and the configuration of security
constraints

Annotations for security follow the declarative security model. Security constraints that are
configured in the deployment descriptor, the web.xml file, take precedence over security
constraints that are programmatically annotated in the application. It is important for developers of
JAX-RS resources to consider a balance across configurable security constraints and annotated
security constraints. Annotated constraints are additional to any configured security constraints.
The JAX-RS runtime environment checks for annotated constraints after the web container runtime
environment has checked for security constraints that are configured in the web.xml file.

Configure authentication constraints in the web.xml file. In the following example web.xml file, the
SecurityConstraint_1 security constraint is defined. This constraint is used to require
authentication to the application. Additionally, the SecurityConstraint_1 security constraint defines
constraints on URL patterns corresponding to JAX-RS resources. When a JAX-RS resource is
accessed that corresponds to one of these constraints, authorization checks are performed.
Access checks are performed for the declarative security annotations only after the configured
constraints are verified.

<web-app id="WebApp_someID">
<servlet>
<servlet-name>AddressBookAppSample</servlet-name>
<servlet-class>
org.apache.wink.server.internal.servlet.RestServlet
</serviet-class>
<init-param>
<param-name>javax.ws.rs.Application</param-name>
<param-value>jaxrs.sample.AddressBookApplication
</param-value>
</init-param>
<load-on-startup>1</load-on-startup>
</serviet>
<servlet-mapping>
<servlet-name>AddressBookApp</servlet-name>
<url-pattern>/*</url-pattern>
</servlet-mapping>
<security-constraint id="SecurityConstraint_1">
<web-resource-collection id="WebResourceCollection_1">
<web-resource-name>AddressBookAppSample</web-resource-name>
<description>Protection area for Rest Servlet</description>
<url-pattern>/*</url-pattern>
<http-method>GET</http-method>
<http-method>P0ST</http-method>
<http-method>PUT</http-method>
</web-resource-collection>
<auth-constraint id="AuthConstraint_1">
<description>Rolel for this rest servlet</description>
<role-name>Role</role-name>
</auth-constraint>
<user-data-constraint id="UserDataConstraint_1">
<transport-guarantee>CONFIDENTIAL</transport-guarantee>
</user-data-constraint>
</security-constraint>
<security-role id="SecurityRole_1">
<description>This Role is used to drive authentication
</description>
<role-name>Rolel</role-name>
</security-role>
<login-config>

128 Securing WebSphere applications

<auth-method>BASIC</auth-method>
<realm-name>test realm</realm-name>
</login-config>
</login-config>
</web-app>

In the previous sample web.xml file, Rolel is used for the entire application. If you are only defining
declarative security annotations and you are not using authorization constraints from the web.xml file, you
can map this role for the JAX-RS application to the AllAuthenticated special subject for user authentication.

Procedure
1. Determine if there are security constraints defined by the web.xml file for your JAX-RS application.

2. Configure the web.xml file to add security constraints. Security constraints that are configured in the
deployment descriptor, the web.xml file, take precedence over security constraints that are
programmatically annotated in the application.

3. Determine if you want to add annotations for security, in addition to any constraints in the web.xml file.
Decide if you want to add one of the @PermitAll, @ DenyAll and @ RolesAllowed annotations to
provide additional security for your JAX-RS resources. Consider the rules for adding annotations for
security such as precedence and inheritance described previously.

Results
You have defined secure JAX-RS resources using declarative security annotations.
Example

The following code snippet demonstrates how you can use security annotations to protect JAX-RS
resources. In this example, the /addresses root resource is associated with a @ PermitAll annotation and
therefore the subresource that corresponds to the @GET and @Produces(value="text/plain") methods is
permitted to all users because this resource does not introduce security annotations of its own. However,
the subresource that corresponds to the @ PUT method is associated with its own @ RolesAllowed
annotation and requires the Administrator role.

@Path(value="/addresses")
@PermitAll
public class AddressBookResource {
@GET
@Produces(value="text/plain")
public String getList() {
}

@RolesAllowed("Administrator")
ePUT
public void updateList(String books) {

}
}

Securing downstream JAX-RS resources

You can secure downstream Java API for RESTful Web Services (JAX-RS) resources by configuring the
BasicAuth method for authentication and by using the LTPA JAX-RS security handler to take advantage of
single sign-on for user authentication.

Before you begin

This task assumes that you have completed the following steps:

* You have defined to your application server a cell profile that is federated into the deployment manager
cell.

* You have installed your JAX-RS application onto the application server.
* You have enabled security for your JAX-RS application.

Chapter 11. Securing web services 129

* You have secured your JAX-RS applications within the web container by configuring downstream
JAX-RS applications to use the basic authentication (BasicAuth) method for user authentication.

About this task

When composing JAX-RS resources, a new LTPA JAX-RS security handler can be used to seamlessly
authenticate on downstream resource invocations.

When invoking downstream secure JAX-RS resources, the calling application is required to authenticate to
the target resource. If the target resource on a downstream server uses the BasicAuth method for security,
the calling application can take advantage of single sign-on (SSO) for JAX-RS resources. Using single
sign-on, an authenticated context is propagated along downstream calls. You can use the LTPA-based
security client handler to authenticate to downstream resources that are distributed across servers of a cell
environment.

To illustrate this scenario, assume that you have two servers in your cell and that you have deployed
JAX-RS resources on both of these servers. Suppose from one resource on serverl you need to invoke
another resource that is deployed on server2. When server2 resources are secured using the BasicAuth
method for authentication, use the LTPA JAX-RS security handler to take advantage of single sign-on and
seamlessly propagate user authentication on downstream calls without having to provide or manage user
identities and passwords in the application.

Application server

Application server - server2

A browser - server

a JAX-RS

S ; Contains the secure
thin client ?:Qggsrg%jre;u{e JAX-RS resource? that uses

the BasicAuth method.

JAX-RS resource1 uses the LTPA security handler for
downstream authentication to the JAX-RS resource2.

|
|
I
|
I
|
I
|
|
agent, or - X
I
|
I
|
I
|
|
|
I
|

Figure 1. Securing JAX-RS downstream resources

Use the following steps to configure user authentication to a downstream server using the JAX-RS security
handler at application build time.

Procedure

1. At application build time, use the LTPA-based security client handler, LtpaAuthSecurityHandler, to
authenticate to downstream resources that are distributed across servers of a cell environment.

When using the LtpaAuthSecurityHandler class, ensure that you target resources using the https
scheme for your URLs, and that the target application is SSL-enabled. It is highly recommended to use
SSL connections when sending user credentials, including LTPA cookies. You may explicitly turn off the
requirement for SSL in the LtpaAuthSecurityHandler class by invoking the setSSLRequired method on
the security handler with the false value. The default value is true.

yourLtpaAuthSecHandler.setSSLRequired(false);

2. Add the security handler to the handlers chain.

3. Create the REST client instance.

4. Create the resource instance that you want to interact with.
5. Substitute a value representing your resource address.

130 Securing WebSphere applications

Results

You have defined secure JAX-RS resources within your cell environment such that when downstream
resources are invoked, you can use single sign-on and seamlessly propagate user authentication on
downstream calls without having to provide or manage user identities and passwords in the application.

Example

The following code snippet demonstrates how to use this security handler that is packaged as part of the
JAX-RS client.

import org.apache.wink.client.Resource;

import org.apache.wink.client.RestClient;

import org.apache.wink.client.ClientConfig;

import org.apache.wink.client.handlers.LtpaAuthSecurityHandler;

ClientConfig config = new ClientConfig();
LtpaAuthSecurityHandler secHandler = new LtpaAuthSecurityHandler();

// Add this security handler to the handlers chain.
config.handlers(secHandler);

// Create the REST client instance.
RestClient client = new RestClient(config);

// Create the resource instance that you want to interact with.
// Substitute a value representing your resource address
resource =
client.resource("http://localhost:8080/path/to/resource");

// Now you are ready to begin calling your resource.

Securing JAX-RS clients using SSL

You can secure the communications between your Java API for RESTful Web Services (JAX-RS)
application and clients that invoke the application by using Secure Sockets Layer (SSL) transport layer
security.

Before you begin

This task assumes that you have completed the following steps:

* You have defined a cell profile to an application server or to an application server that is federated to a
network deployment manager. Read about creating cell profiles to learn how to create cell profiles that
contain a federated application server node and a deployment manager.

* You have installed your JAX-RS application onto the application server.
About this task

JAX-RS client programs can take advantage of transport security using Secure Socket Layer (SSL) in
order to protect requests and responses from JAX-RS resources.

If you have configured your JAX-RS application to use an SSL channel for transport level security when
starting REST resources, your JAX-RS client is required to use the SSL connection to enable the client to
interact with a JAX-RS resource that is deployed in the WebSphere Application Server environment. For
example, if your JAX-RS application is configured to use basic authentication, it is a common practice to
use SSL so that the user credentials are transported over secure connections.

To illustrate this scenario, assume that you have one application server in your cell, and that you have
deployed JAX-RS resources on this server. The JAX-RS resources on this server requires the use of SSL.
Suppose that you are using the Thin Client for JAX-RS, a Java-based stand-alone client that is supplied
with this product, to invoke one of these secure resources that requires the use of SSL. The Thin Client for

Chapter 11. Securing web services 131

JAX-RS enables running unmanaged JAX-RS RESTful web services client applications in a
non-WebSphere environment to invoke JAX-RS RESTful web services that are hosted by the application
server.

. Cell
| 4 h - |
E e P— Application server :
! for JAX-RS SsL :
| connection !
! R Contains secure |
| SSL. _ > JAX-RS resources that :
| configuration require use of SSL. |

Figure 2. Securing JAX-RS clients using SSL

Important: If you are invoking JAX-RS resources from within a application that is running in a WebSphere
Application Server environment, such as when you are making a downstream call, no
additional configuration for SSL is necessary. You do not need to configure SSL connections
for this resource because the application server SSL runtime and configuration is used.

Use the following steps to configure SSL with the Thin Client for JAX-RS.

Procedure

1. Enable security for your JAX-RS application and configure your application to use an SSL channel for
transport when invoking REST resources.

At application development or deployment time, edit the web.xml file to add a security constraint that
requires use of SSL for your resources. See the securing JAX-RS applications within the web
container information for additional details on enabling SSL for your application.

The following element within the security-constraint element specifies to enforce SSL for your
application:

<user-data-constraint id="UserDataConstraint_1">
<transport-guarantee>CONFIDENTIAL</transport-guarantee>
</user-data-constraint>

2. Edit the ssl.client.props file and define the keystore and the truststore properties.

The ssl.client.props file is used to configure SSL for clients. The following code example illustrates
defining the keystore and the truststore properties:

keystore information
com.ibm.ss1.keystoreName=ClientDefaultKeyStore
com.ibm.ss1.keyStore= path/to/keystore/file
com.ibm.ss1.keyStorePassword=xxxxxxx
com.ibm.ss1.keyStoreType=PKCS12
com.ibm.ss1.keyStoreProvider=IBMJCE
com.ibm.ss1.keyStoreFileBased=true

truststore information
com.ibm.ss1.trustStoreName=ClientDefaultTrustStore
com.ibm.ss1.trustStore=path/to/truststore/file
com.ibm.ss1.trustStorePassword=xxxxxx
com.ibm.ss1.trustStoreType=PKCS12
com.ibm.ss1.trustStoreProvider=IBMJCE
com.ibm.ss1.trustStoreFileBased=true
com.ibm.ss1.trustStoreReadOnly=false

3. Enable or disable host name verification.

132 Securing WebSphere applications

The com.ibm.ss1.performURLHostNameVerification property enforces URL host name verification
when the value is set to true. When HTTP URL connections are made to target servers, the common
name (CN) from the server certificate must match the target host name. Without a match, the host
name verifier rejects the connection. The default value of false omits this check.

The com.ibm.ss1.validationEnabled property validates each SSL configuration as it is loaded when
the value is set to true. The default value of false omits this check.

com.ibm.ss1.performURLHostNameVerification=false
com.ibm.ssT.validationEnabled=false

4. Ensure that the signer of the server certificate is in the client truststore.

Use the IBM ikeyman tool or the Java keytool utility to determine if the certificate is already in the
truststore. If the certificate is not in the truststore, import the certificate into the truststore.

For example, to list the certificates that are contained in truststore, trust.pl2 type the following
command and ensure that you include the full path to your truststore:
keytool -1ist -v -storetype pkcsl2 -keystore trust.pl2

5. Import the certificate.

If the signer of the server certificate is not in the client truststore, or if the server has a self-signed
certificate that is not in the client truststore, import the certificate.

To import the certificate, you can use your preferred tooling of either the IBM ikeyman or the Java
keytool utility. The following examples use the Java keytool utility.

a. Export the signer certificate for your server to a file.

For example, use the following command to export a signer certificate from an existing truststore,
servertrust.pl2, in the entry that corresponds to the default_signer alias name into the file
mycert.cer:

keytool -export -storetype pkcsl2 -alias default_signer -file mycert.cer -keystore servertrust.pl2
b. Import the signer certificate into the truststore used by your Thin Client for JAX-RS.

For example, use the following command to export a signer certificate from an existing truststore,
servertrust.pl2, from the entry that corresponds to the default_signer alias name into the file
mycert.cer:

keytool -export -storetype pkcsl2 -alias default_signer -file mycert.cer -keystore servertrust.pl2
Results

You have defined a secure connection between the client and the target server using SSL to enable
integrity and confidentiality of the communication between the JAX-RS application and your client.

Example

The following code snippet demonstrates a sample ssl.client.props file:

keystore information
com.ibm.ss1.keyStoreName=ClientDefaultKeyStore
com.ibm.ss1.keyStore=c:/jaxrs/test/config/keystore.pl2
com.ibm.ss1.keyStorePassword=testpasswd
com.ibm.ss1.keyStoreType=PKCS12
com.ibm.ss1.keyStoreProvider=IBMJCE
com.ibm.ss1.keyStoreFileBased=true

truststore information
com.ibm.ss1.trustStoreName=ClientDefaultTrustStore
com.ibm.ss1.trustStore= c:/jaxrs/test/config/truststore.pl2
com.ibm.ss1.trustStorePassword=testpasswd
com.ibm.ss1.trustStoreType=PKCS12
com.ibm.ss1.trustStoreProvider=IBMJCE
com.ibm.ss1.trustStoreFileBased=true
com.ibm.ss1.trustStoreReadOnly=false

Host name verification information

com.ibm.ss1.performURLHostNameVerification=false
com.ibm.ss1.validationEnabled=false

Chapter 11. Securing web services 133

Administering secure JAX-RS applications

You can use the administrative console to administer Java API for RESTful Web Services (JAX-RS)
applications that have enabled security mechanisms.

Before you begin

This task assumes familiarity with the Sample REST application that is used in the|Securing JAX-RSl
|app|ications within the web containerI topic and the security mechanisms applied to this JAX-RS
application.

About this task

After you have implemented security mechanisms, such as basic HTTP authentication or role-based
authorization constraints on your REST resources, you can administer your JAX-RS applications by
mapping defined roles to users, groups, or special subjects.

Procedure

1. In the administrative console, click Applications > Application Types > WebSphere enterprise
applications > application_name.

2. Under Detail properties, click Security role to user/group mapping. A list of all the roles that belong
to this application is displayed.

3. Select one of the roles you defined for your application.
In the AddressBookApp Sample, the defined roles are Rolel and Role2.

4. Determine the users, groups, or special subjects such as the All Authenticated in Application's
Realm option to assign the appropriate roles. This option specifies that any authenticated user is able
to access the resource. The security constraint in this Sample is for authentication only.

5. Repeat the previous steps for every role that you have defined in your JAX-RS application.
6. Click OK to save your changes.

Results

Using the administrative console, you have applied role constraints to various resource URI patterns to
enable role-based access to those resources.

Defining and managing secure policy set bindings

Configuring the SSL transport policy

When working with policy sets in the administrative console, you can customize policies to ensure
message security by configuring the SSL transport policy.

Before you begin

The default policy sets provided with the product cannot be edited. To configure custom policy sets, you
must first copy the default policy set or create a completely new policy set in order to specify the policies
for it. See creating policy sets using the administrative console.

About this task

The SSL transport policy provides the SSL transport security for the Hypertext Transfer Protocol (HTTP)
protocol with web services applications. To view the default SSL transport policy set with the SSL transport
policy, click Services > Policy sets > Application policy sets > WSHTTPS default > SSL transport.

134 Securing WebSphere applications

Procedure

1. To edit the SSL transport policy, click a policy set that you have created or customized from the
default. Select the SSL transport policy applicable check boxes to enable the SSL functions. The
following check boxes determine how SSL security is configured for this transport:

* Enable for outbound service requests
Displays whether the SSL security transport is enabled for outbound service requests.
* Enable for outbound asynchronous service responses

Displays whether the SSL security transport is enabled for outbound asynchronous service
responses.

* Enable for inbound service responses
Displays whether the SSL security transport is enabled for inbound service responses.

2. To configure the binding for the SSL transport policy, click Services > Policy sets > General client
policy set bindings > binding_name > SSL transport or Services > Policy sets > General provider
policy set bindings > binding_name > SSL transport. Select the setting to configure the SSL
bindings. The SSL transport window displays options for configuring the SSL security bindings.

a. Select the setting to configure the SSL bindings for the Outbound service requests.
+ SSL settings

Specifies the SSL security transport binding that is enabled for outbound service requests. The
default value for this field is CellDefaultSSLSettings.

» SSL properties file path

Specifies the path of the SSL properties file that is enabled for asynchronous service responses.
Enter the location of the SSL properties file to enable for asynchronous service responses.

b. Select the setting to configure the SSL bindings for the Inbound service responses.
» SSL settings

Specifies the SSL security transport binding that is enabled for inbound service responses. The
default value for this field is CellDefaultSSLSettings.

* SSL properties file path

Specifies the path of the SSL properties file that is enabled for inbound service responses. Enter
the location of the SSL properties file to enable for inbound service responses.

c. Select the setting to configure the SSL bindings for the Outbound asynchronous service
responses.

* SSL settings

Specifies the SSL security transport binding that is enabled for asynchronous service responses.
The default value for this field is CellDefaultSSLSettings.

» SSL properties file path

Specifies the file path of the SSL properties file that is enabled for outbound service requests.
Enter the location of the SSL properties file to enable for outbound service requests.

Custom properties
Click one of the following buttons to enable the action described:

Button Resulting Action

New Creates a new custom property entry. To add a custom property, enter the name and
value.

Delete Removes the selected custom property.

Edit Enables you to edit a selected custom property. It is only displayed when one or more
properties exist.

Chapter 11. Securing web services 135

Results

Once you have customized the SSL transport policy, the associated policy set uses this policy to protect
message transmission. Similarly, you can also configure HTTP transport with the HTTP transport policy.
Read about configuring the HTTP transport policy to learn how to configure the HTTP transport with the
HTTP transport policy.

What to do next

Depending on how you are using policies, you might want to configure the HTTP transport policy or the
SSL transport security bindings.

SSL transport security policy settings
Use this page to define the secure sockets layer (SSL) transport policy configuration for policy sets.

To configure the SSL transport security for a policy set, click Services > Policy sets > Application policy
sets > policy_set_name > SSL transport, where policy _set _name, applies to any policy set that contains
SSL transport security. An example of such SSL transport security is WSHTTPS default.

This administrative console page applies only to Java API for XML Web Services (JAX-WS) applications.

Enable for outbound service requests:

Specifies whether the SSL security transport is enabled for outbound service requests when the client
sends out requests.

Enable for outbound asynchronous service responses:

Specifies whether the SSL security transport is enabled for outbound asynchronous service responses
when the service or server sends back the response.

Enable for inbound service responses:

Specifies whether the SSL security transport is enabled for inbound service responses when the client
receives responses.

SSL transport security settings
Use this page to define the secure sockets layer (SSL) transport policy binding configuration.

1. Navigate to the general bindings collection page by clicking either Services > Policy sets > General
client policy set bindings or Services > Policy sets > General provider policy set bindings path.

2. Click a general binding in the Name column.
3. Click the SSL transport policy in the Policies table.

This administrative console page applies only to Java API for XML Web Services (JAX-WS) applications.
Outbound service requests — SSL settings:

Specifies the SSL security transport binding that is enabled for outbound service requests when the client
sends out requests. The default value for this field is Cel1DefaultSSLSettings.

Outbound service requests — SSL properties file path:

Specifies the file path of the SSL properties file that is enabled for outbound service requests. Enter the
location of the SSL properties file to enable for outbound service requests.

Inbound service responses — SSL settings:

136 Securing WebSphere applications

Specifies the SSL security transport binding that is enabled for inbound service responses when the client
receives responses. The default value for this field is Cel1DefaultSSLSettings.

Inbound service responses — SSL properties file path:

Specifies the SSL security transport binding that is enabled for inbound service responses. Enter the
location of the SSL properties file to enable for inbound service responses.

Outbound asynchronous service responses — SSL settings:

Specifies the SSL security transport binding that is enabled for asynchronous service responses when the
service or server sends back the response. The default value for this field is CeT1DefaultSSLSettings.

Outbound asynchronous service responses — SSL properties file path:

Specifies the path of the SSL properties file that is enabled for asynchronous service responses. Enter the
location of the SSL properties file to enable for asynchronous service responses.

Outbound asynchronous service responses — Custom properties:

Specifies the name and value pair that you define for the outbound asynchronous service responses. Click
New to add a new custom property, or click Delete to delete an existing SSL custom property.

Transformation of policy and binding assertions for WSDL

Web Services Security does not fully support the OASIS WS-SecurityPolicy Version 1.2 standard.
However, several of the policy and binding assertions supported by WebSphere Application Server can be
transformed and represented as WS-SecurityPolicy Version 1.2 assertions. The supported assertions are
transformed when a Web Services Description Language (WSDL) or Web Services Metadata Exchange
(WS-MEX) request is received in a message, and also when the client receives a policy containing
WS-SecurityPolicy 1.2 assertions.

When the WebSphere Application Server receives a WSDL or WS-MEX request, some policy and binding
assertions are transformed into standard assertions and included in the policy that is embedded into the
WSDL. In addition, when the client receives a policy containing these WS-SecurityPolicy assertions, the
assertions are transformed back into product-specific assertions so that the Application Server run time
can process them. This transformation provides interoperability between Application Server and other
systems that support the WS-SecurityPolicy version 1.2 standard.

The following WS-SecurityPolicy 1.2 assertions can be represented in the policy returned on WSDL, or a
WS-MEX request.

EncryptSignature
Represented in the product using XPath expressions in the encrypted elements.

EncryptBeforeSigning
The order attribute of the encryptioninfo and signinginfo elements on the outbound section of the
bindings determines the order in which the transform takes place, and whether this assertion is
set. The default behavior is to sign before encrypting.

ContentEncryptedElements
Represented using XPath expressions ending with /node() in the encrypted elements. The
Application Server can consume this policy assertion, but existing XPath expressions that end with
/node() are not transformed.

KerberosToken
Represented using the custom token in the policy and bindings. The Kerberos custom token
assertion specifies a local name of http://docs.oasis-open.org/wss/oasis-wss-kerberos-token-
profile-1.1#GSS_Kerberosv5_AP_REQ, or http://docs.oasis-open.org/wss/oasis-wss-kerberos-

Chapter 11. Securing web services 137

token-profile-1.1#Kerberosv5_AP_REQ, depending on the desired Kerberos token type. Also, there
is a custom property in the bindings, com.ibm.wsspi.wssecurity.krbtoken.requireDerivedKey, which
specifies use of derived keys for Kerberos. Using the local name of the custom token, along with
the derived key custom property from the product representation, an equivalent Version 1.2
representation can be created.

Require<variable>Reference, where <variable> is one of the following: Keyldentifier, IssuerSerial,
EmbeddedToken, or Thumbprint
Rrepresented using the type attribute on keylnfo in the bindings.

MustSupportRef<variable>, where <variable> is one of the following: Keyldentifier, IssuerSerial,
EmbeddedToken, or Thumbprint
This assertion is not represented in the WebSphere Application Server policies, but the product
supports all four types of references.

Protection of the SignatureConfirmation element
The SignatureConfirmation element is implicitly signed and encrypted. However, if nothing is
encrypted on the response, then the SignatureConfirmation element is not encrypted, and if
nothing is signed on the response, then the SignatureConfirmation element is not signed. All
XPath expressions representing the signing or encryption of the SignatureConfirmation element
are removed from the policy during transformation. The explicitlyProtectSignatureConfirmation
attribute in the Web Services Security binding is provided to disable implicit signature and
encryption of the SignatureConfirmation element on the response message. This provides
interoperability with WebSphere Application Server Version 6.1.x. To add the attribute, check the
option Disable implicit protection for Signature Confirmation in the Authentication and
protection panel for the default policy set bindings. If the explicitlyProtectSignatureConfirmation
attribute is present in the binding, all XPath expressions representing the signing or encryption of
the SignatureConfirmation element remain unchanged during transformation.

SC13SecurityContextToken
Version 1.3 of the Security Context Token is supported by specifying the local name
http://docs.oasis-open.org/ws-sx/ws-secureconversation/200512, in the binding for the security
context token.

RequirelmpliedDerivedKeys
This is supported by adding the custom property,
com.ibm.ws.wssecurity.token.generatelmpliedDerivedKey, in the token generator bindings.

ExactlyOne
This assertion is transformed when callers are used. Callers specify which token to use for
authentication. The ExactlyOne assertion communicates the caller tokens that the service expects.
All caller options are enclosed inside the <ExactlyOne> assertion, and each option is enclosed
inside the <wsp:All> assertion. As the name implies, the client sends only one of the token types.
For example, in the server side bindings, using the product representation, the following caller
options are specified:

<caller order="1">
<jAASConfig configName="system.wss.caller"/>
<callerIdentity uri="" TocalName="http://docs.oasis-open.org/wss/2004/01/0asis-200401-wss-username-token-profile-1.0#UsernameToken"/>
</caller>
<caller order="2">
<jAASConfig configName="system.wss.caller"/>
<callerIdentity localName="LTPA" uri="http://www.ibm.com/websphere/appserver/tokentype/5.0.2" />
</caller>

This assertion indicates that a UsernameToken token or an LTPA token is used as the caller. The
requirement to use one of these two types of tokens is communicated to the client in the
transformed policy, as in the following example:

<sp:ExactlyOne>
<wsp:All>
<sp:SupportingTokens>
<wsp:Policy wsu:Id="request:token_auth">
<sp:UsernameToken sp:IncludeToken="http://docs.oasis-open.org/ws-sx/ws-securitypolicy/200512/IncludeToken/AlwaysToRecipient">
<wsp:Policy>
<sp:WssUsernameTokenl0 />

138 Securing WebSphere applications

</wsp:Policy>
</sp:UsernameToken>
</wsp:Policy>
</sp:SupportingTokens>
</wsp:Al1>
<wsp:All>
<sp:SupportingTokens>
<wsp:Policy wsu:Id="request:token_auth">
<spe:LTPAToken sp:IncludeToken="http://docs.oasis-open.org/ws-sx/ws-securitypolicy/200512/IncTudeToken/AlwaysToRecipient" />
</wsp:Policy>
</sp:SupportingTokens>
<wsp:All>
</sp:ExactlyOne>

The product-specific policy assertions LTPAToken and LTPAPropagationToken are not altered during
transformation. These assertions are included in the embedded policy in the WSDL if they are present in
the policy being transformed. This allows a WebSphere Application Server client and WebSphere
Application Server service provider to interoperate.

Securing message parts using the administrative console

If you are working with policy sets, then you can secure message parts using the administrative console.
To secure message parts with WS-Security using policy sets, you must define the elements for the
message parts to be protected in the WS-Security policy within a policy set.

Before you begin

Before you can start this task, you must have a policy set defined for your application or service artifact.
Also, if none of the default policy sets contain the necessary policy definitions, then you must create a
custom policy set with the necessary definitions.

About this task

This task assumes that you are using policy sets and you want to secure message parts within that
context.

Procedure
1. Open the administrative console.
2. Select the policy set containing the message parts that you want to secure.

» To secure message parts using application policy sets click Services > Policy sets > Application
policy sets.

» To secure message parts using system policy sets clickServices > Policy sets > System policy
sets.

Select the policy set that you want to use.

If the WS-Security policy is not listed, then click Add and select that policy from the list.

Click the WS-Security link.

Click Main policy or Bootstrap policy. The bootstrap policy is available when Secure Conversation

is used. If you want to use the bootstrap policy, then select the SecureConversation policy set in step
three.

7. Make sure that Message level protection is selected, then click Request message part protection or
Response message part protection. When the Message level protection checkbox is unchecked,
the link to Response message part protection is not available, because the configuration information
associated with message level security is removed when Message level protection is deselected.

8. Click Add for either Encrypted parts or Signed parts depending on the level of security that you want.

9. Specify a part name and add the elements to be signed or encrypted, or both. The elements can be
the message body, XPath expression, or a QName which is for SOAP header elements only. Click
OK. Recommendation for when to use QName or XPath: If you are encrypting or signing SOAP
headers, you can use QName to select which SOAP headers to be signed or encrypted.

ook~ w

Chapter 11. Securing web services 139

Note: The elements must be a direct child of the SOAP headers.

If you wanted to sign and encrypt other elements in the SOAP message, then you can use XPath
expression. Use this XPath example to select, MyElement in a namespace, http://xyz.acme.com with
MyHeader, http://acme.com.

/*[namespace-uri()="http://www.w3.0rg/2003/05/soap-envelope' and Tocal-name()="'Envelope']/*[namespace-uri()=
"http://www.w3.0rg/2003/05/soap-envelope' and local-name()="'Header']/*[namespace-uri()="http://acme.com' and Tocal-name()=
'MyHeader'] /+[namespace-uri()="http://xyz.acme.com' and local-name()="'MyElement']

10. Repeat steps 8 and 9 to sign or encrypt each message part.
11. To save your changes to the master configuration, click Save.

Results

When you finish this task, you have configured the policy set that contains the quality of service definitions
required for signing and encrypting message parts.

Example

If you have the policy set, myPolicy and you want to specify request message bodies that must be
signed, you can perform the following:

1. Locate the policy set in the Services > Policy sets > Application policy sets collection and click the
policy set name.

2. Click the WS-Security link. If the link does not exist, click Add and then select WS-Security from the
list.

Click Main policy > Request message part protection

Click Add under the Integrity protection and Signed parts section.

Specify the name, messageBody.

Select Protect message body, click Add Specified Elements, and click OK.
Click Save to save your changes to the master configuration.

N o ok~

What to do next

You can proceed to signing and encrypting message parts using policy sets.

Signing and encrypting message parts using policy sets

With web services, you can sign message parts, encrypt message parts, or both, based on the quality of
service defined for a policy set. You can accomplish these actions by defining the binding information in a
custom attachment binding.

Before you begin

Before you begin this task, attach a policy set to a service artifact such as an application, service or
endpoint and create a custom attachment binding. Read about creating custom attachment bindings for
policy sets. The policy set that is attached to the service artifact must include a WS-Security policy that
specifies message parts to be signed or encrypted. Read about securing message parts using the
administrative console.

About this task

To sign message parts, encrypt message parts, or both, based on the quality of service defined for a
policy set, perform the following steps:

Procedure
1. Open the administrative console.

140 Securing WebSphere applications

10.
11.

12.

13.

14.

To sign and encrypt message parts for a service provider, click Applications > Enterprise
applications > application_name > Service provider policy sets and bindings. To sign and
encrypt message parts for a service client, click Applications > Enterprise applications >
application_name > Service client policy sets and bindings.

Click the binding name link of the service artifact with a custom attachment binding.

If the binding does not contain WS-Security policy set bindings, then click Add and select
WS-Security from the list.

Click WS-Security policy set bindings.
Click Authentication and protection. The resulting panel contains the following four tables:

« Protection tokens: Specifies the tokens that are defined for the symmetric or asymmetric signature
and encryption policies in the policy set.

» Authentication tokens: Specifies the tokens that are defined for the request and response token
policies.

* Request message signature and encryption protection: Specifies the message parts that are
defined in the Request message part protection for the policy set.

* Response message signature and encryption protection: Specifies the message parts that are
defined in the response message part protection in the policy set.

Initially, each table displays information that is generated based on the policy set which is attached to
the service artifact. The possible configuration objects based on the policy set are displayed. The
Status column indicates whether the object is currently configured in the custom attachment binding.

If the protection tokens have a status of Not configured, then create the protection tokens by clicking
the default name, verifying the default values. Click OK.

[Optional] If you use the X.509 protection tokens, then you must configure the keystores and keys to
be used to sign, verify, encrypt or decrypt message parts. You might need to also configure keystores
and keys when using custom protection tokens, depending on the requirements of the custom tokens.
When using a security context token for protection (secure conversation), you do not need to
configure keystores or keys. If you need to configure the keystores and keys, then perform the
following actions:

a. Click the token name link.

b. Click the Callback handler link under Additional bindings. If the Callback handler link is not
click-able, click Apply, then click the Callback handler link.

c. Either use a predefined keystore or custom keystore. To use a predefined keystore, select the
keystore from the list. To use a custom keystore, select Custom from the list and click the
Custom key store configuration link to specify the configuration.

d. Click OK.

Click the name of the request or response message part reference to be signed or encrypted. The
Protection column displays whether the message part is signed or encrypted based on the policy set.

Specify a name for the message part.

For encrypted parts, select the type of encryption from Usage of key information references. For
asymmetric encryption, or X.509, select Key encryption. For symmetric encryption, or secure
conversation, select Data encryption.

[Optional] For encrypted parts, select the Include time stamp or Include nonce options to include a
time stamp or nonce in the encrypted message part. You can include one or both of these options in
the encrypted message part.

For signed parts, specify one or more Message part references. Select a reference from the Available
column and click Add.

[Optional] For signed parts, you can also choose to add a time stamp or nonce to the signed
message part. Select a Message part reference from the Assigned column and click Edit. Select the
Include time stamp or the Include nonce options to include a time stamp or nonce in the signed
message part. You can select one or both of these options in the signed message part.

Chapter 11. Securing web services 141

15. If there are no available key information entries, then create one using the following actions:

a. Click New.

b. Specify a name.

c. Select a protection token from the Token generator or Consumer name list.

d. Click OK.

16. Select a key information entry from the Available list and click Add.
17. [Optional] Specify custom properties if needed.

a. To use Message Transmission Optimization Mechanism (MTOM) for the cipher text of the
encrypted data, add the custom property, com.ibm.wsspi.wssecurity.enc.MTOM.Optimize, with
value true to outbound encrypted parts for client requests or server responses.

b. To use encryption headers as described in the WS-Security 1.0 specification instead of the
encrypted header support described in WS-Security 1.1, add the custom property,
com.ibm.wsspi.wssecurity.encryptedHeader.generate. WSS1.0, with value true to outbound
encrypted parts for client requests or server responses.

For Web Services Security Version 1.1 behavior that is equivalent to WebSphere Application
Server versions prior to version 7.0, specify the
com.ibm.wsspi.wssecurity.encryptedHeader.generate. WSS1.1.pre.V7 property with a value of true
on the <encryptioninfo> element in the binding. When this property is specified, the
<EncryptedHeader> element includes a wsu:ld parameter and the <EncryptedData> element
omits the Id parameter. This property should only be used if compliance with Basic Security
Profile 1.1 is not required.

18. Click OK.

19. Click Save, to save the changes to the master configuration.

Results

When you finish this task, the message parts are signed and encrypted, or both, based on the
configuration used when communicating with the service artifact.

Example

You have an application, appl, with an attached policy set, RAMP default and a custom attachment
binding, myBinding, and you want to sign and encrypt the message parts.

1.
2.

N oo~

9.
10.
1.
12.
13.
14.

Click the appl application in the Applications > Enterprise Applications collection.

Click the Service provider policy sets and bindings link or the Service client policy sets and
bindings link.

Click the myBinding link.

[Optional] If WS-Security is not listed, then select Add > WS-Security.

Click the WS-Security link.

Click the Authentication and protection link.

In the Protection tokens table, click each of the four links and OK on the resulting panel. Each entry
is now shown as Configured in the Status column.

In the Request message signature and encryption protection table, click request:app_encparts.
Specify the name, requestEncParts.

Click New from Key information. Specify the name, requestEncKeyInfo.

Select SymmetricBindingRecipientEncryptionToken, and click OK.

Select requestEncKeyinfo in the Available list, and click Add. Click OK.

In the Request message signature and encryption protection table, click request:app_signparts.
Specify the name, requestSignParts.

Click New from Key information. Specify a name of requestSignKeyInfo.

142 Securing WebSphere applications

15. Select SymmetricBindinglnitiatorSignatureToken, and click OK.
16. Select requestSignKeyinfo in the Available list, and click Add. Click OK.

17. Repeat steps 8 to 16 for the links in the Response message signature and encryption protection
table.

18. Click Save, to save the changes to the master configuration.
What to do next

Start the application.

Signed or Encrypted message part settings
Use this page to configure or create new signed or encrypted message parts. Message part bindings
define how the part (which is defined in a policy set) is handled.

You can configure or create new signed or encrypted message parts when you are editing a default cell or
server binding. You can also configure application specific bindings for tokens and message parts that are
required by the policy set.

To view this administrative console page when you are editing a default cell binding, complete the
following actions:

1. Click Services > Policy sets > Default policy set bindings.

2. Click the WS-Security policy in the Policies table.

3. Click the Authentication and protection link in the Main message security policy bindings section.
4

Select a signature or an encrypted message part in the Request message signature and encryption
protection section or the Response message signature and encryption protection section.

To view this administrative console page when you are configuring application specific bindings for tokens
and message parts that are required by the policy set, complete the following actions:

1. Click Applications > Application Types > WebSphere enterprise applications.

2. Select an application that contains web services. The application must contain a service provider or a
service client.

3. Click the Service provider policy sets and bindings link or the Service client policy sets and
bindings in the Web Services Properties section.

4. Select a binding. You must have previously attached a policy set and assigned a application specific
binding.

5. Click the WS-Security policy in the Policies table.

6. Click the Authentication and protection link in the Main message security policy bindings section.

7. Select a signature or an encrypted message part in the Request message signature and encryption
protection section or the Response message signature and encryption protection section.

This administrative console page applies only to Java API for XML Web Services (JAX-WS) applications.
Name:

Specifies the name of the message part reference. The name field displays the name of the part reference
you are editing, or you can enter a name if you are creating a message part reference.

Include time stamp:
This check box is available on this panel if you are configuring encryption protection and it specifies

whether to include a time stamp. Select this check box to indicate that a time stamp is included or leave it
unchecked to indicate that the time stamp is not included with the part reference.

Chapter 11. Securing web services 143

For default bindings, to specify if a time stamp is included for signature protection, click the Signed part
reference default link under the Additional bindings section.

For application specific bindings, to specify if a time stamp is included for signature protection, highlight an
assigned signature message part reference and click Edit. The time stamp check box is located in the
Reference section.

Include nonce:

This check box is available on this panel if you are configuring encryption protection and it specifies
whether to include nonce. Select this check box to indicate that a nonce is to be used or leave it
unchecked to indicate that nonce is not to be included with this part reference.

For default bindings, to specify if a nonce is included for signature protection, click the Signed part
reference default link under the Additional bindings section.

For application specific bindings, to specify if a nonce is included for signature protection, highlight an
assigned signature message part reference and click Edit. The nonce check box is located in the
Reference section.

Usage of key information reference:

This field is available on this panel if you are configuring encryption protection and it specifies that the
encryption key information is either data encryption key information or key encryption key information.
Select Data encryption for symmetric algorithms and Key encryption for asymmetric algorithms.

Click one of the following radio buttons:

Data encryption
Indicates that the key information is used for data encryption.

Key encryption
Indicates that the key information is key encryption key information.

Key information (Request):

If you are configuring a request message signature or encryption protection, this field specifies the key
information for a token request message part. This section provides interactive fields to assign the key
information.

The Available field contains a listing of available key information entries for the message part. The
Assigned field contains a listing of one or more of the key information entries that are assigned to the
message part. Use the following actions to work with multiple request message part key information
entries:

Button Resulting action

Add Add the selected key information entry in the Available
list to the Assigned list.

New Create a new key information entry.

Remove Remove the selected key information entry from the
Assigned list.

Key information (Response):

If you are configuring a response message signature or a response encryption protection, this field
specifies the key information for a token response message part. This field provides a menu used to

144 Securing WebSphere applications

assign the key information. You can only assign one key information entry for response message parts.
The New button enables you to add a new key information entry to the menu for selection.

Custom properties — Name:
Specifies the name of the custom property to be used.

Custom properties are not initially displayed in this column. The following actions are available:

Button Resulting Action

New Creates a new custom property entry. To add a custom
property, enter the name and value.

Edit Specifies that you can edit the selected custom property.

Select this action to provide input fields and create the
listing of cell values for editing. The Edit button is not
available until at least one custom property has been
added.

Delete Removes the selected custom property.

Custom properties — Value:

Specifies the value of the custom property to be used. With the Value entry field, you can edit, enter or
delete the value for a custom property.

Additional bindings — Signed part reference default:

If you are configuring signature protection, this section is displayed on this panel. It links to a panel where
you can configure part reference properties such as including a time stamp or nonce and transform
algorithms. Part reference properties include the transform algorithms used to protect the message part.

Configuring the callers for general and default bindings
The caller specifies the token or message part that is used for authentication.

Before you begin

Before you can complete this task, you must create a new policy set and attach it to a service, or copy
and edit one of the sample system policy sets. For more information, read the topics Creating policy sets
using the administrative console and Attaching a policy set to a service artifact.

About this task

The caller is used to indicate which of the tokens on the incoming message is the caller of the request.
This information is used to create authentication credentials. You can use the administrative console to
access, view and configure caller settings for tokens and message parts. The product provides support for
multiple callers. The caller token used for authentication is the one with highest priority, based on
decreasing order of preference. You can modify the order of the callers, as described in the topic
Changing the order of the callers for a token or message part.

Procedure

1. Create a new policy set and attach it to a service, or copy and edit a sample system policy set. Add
the WS-Security policy, as described in the topic Creating policy sets using the administrative console.

2. Edit the general or default bindings for the WS-Security policy.

« To edit general provider bindings for WebSphere Application Server version 7.0 and later, click
Services > Policy Sets > General Provider policy set bindings. A caller is specified for the
provider bindings only, not for the client bindings.

Chapter 11. Securing web services 145

» To edit default bindings for WebSphere Application Server Version 6.x, click Services > Policy Sets
> Default policy set bindings.

3. Navigate to the Callers panel by clicking on the WS-Security policy, then click the Caller link.
4. Click New to create a new caller.

5. Enter the Name and Caller identity local part information for the new caller. For more information, read
about caller settings.

6. When you have finished entering the configuration information for the caller, click Apply to save the
caller.

7. If this is the first caller created for the policy set, the caller is automatically assigned as the highest
priority caller, with an order of 1 (one). If other callers are already defined, the new caller is added at
the end of the ordered list and is automatically assigned the lowest priority. You can change the order
of the callers using the Move up and Move down buttons.

Results

When assigning orders to callers for migrated bindings, the callers are initially displayed with no order
attribute. You cannot save the bindings until you assign order attributes to all the callers. Use the Move up
and Move down buttons to change the order of the callers until they are in the correct order.

Changing the order of the callers for a token or message part

Specifying a caller in default and general bindings indicates which token or tokens to use to create
authentication credentials. When there are multiple tokens on an incoming message, the order of the
callers determines which token is used for the credentials. You can rearrange the order of the callers using
the administrative console.

Before you begin

Before you can complete this task, you must create a new policy set and attach it to a service, or copy
and edit one of the sample system policy sets. For more information, read the topics Creating policy sets
using the administrative console and Attaching a policy set to a service artifact. You can also create
multiple new callers in the default provider bindings associated with the policy set, as described in the
topic Configuring the callers for general and default bindings

Procedure

1. Edit the bindings for the policy by clicking Services > Policy sets > General Provider policy set
bindings, then click on the name of the bindings. A caller is specified for the provider bindings only,
not for the client bindings.

2. Navigate to the Callers panel by clicking on the policy name, then click the Caller link.

3. In the caller collection table, the callers are listed with the order of each caller displayed in the Order
column. The order number indicates the order of preference in which the callers are used when
multiple authentication tokens are received on an incoming message. Use the Move up and Move
down buttons to change the order of the callers.

a. To change the order of a caller to a higher priority, click the selection box next to the caller name,
then click the Move up button. When a caller is moved up in priority, a caller that is above it will be
moved down.

b. To change the order of a caller to a lower priority, click the selection box next to the caller name,
then click the Move down button.

Example
The order attribute is assigned only for callers on bindings in WebSphere Application Server Version 7.0 or
later. Bindings created with earlier versions of WebSphere Application Server may have callers, but these

callers do not have an order attribute. These callers can appear in the Callers collection table, but do not

146 Securing WebSphere applications

have an order number in the order column. If these bindings were migrated to Version 7.0 or later, then
order attributes must be assigned before saving and using these bindings. You can use the Move up and
Move down buttons to assign orders to the callers.

Policy set bindings settings for WS-Security
Use this page to view, define or configure general bindings and application specific properties for the

WS-Security policy. You can configure the main policy or the secure conversation bootstrap policy by
editing the general bindings.

This administrative console page applies only to Java API for XML Web Services (JAX-WS) applications.

To use this administrative console page to view the general default bindings, click Services > Policy sets

> Default policy set bindings. You can use this navigation path for viewing only. To edit or configure the

general default bindings, complete the following steps:

1. Navigate to the general bindings collection panel by clickingServices > Policy sets > General client
policy set bindings or Services > Policy sets > General provider policy set bindings path.

2. Click a general binding in the Name column.
3. Click the WS-Security policy in the Policies table.

If you choose to use a sample binding that is provided in the product, you must edit the sample user name
and password that are provided for the Username token and LTPA token. The values provided are only
examples; to use them successfully, you must modify the values for your own environment. You can
change the user ID and password for authentication using a scripting command or by editing a copy of the
general binding.

The following configuration links are provided for both the main security policy and for secure conversation
bootstrap policy bindings.

Authentication and protection

Links to the collection of policy authentication and protection configuration settings. Click this link to access
the collection of authentication and protection settings where you can configure authentication, signature,
and encryption information that the policy requires.

Keys and certificates
Links to the collection of WS-Security policy keys and certificates.

Caller
Links to a panel to configure the caller settings. The caller specifies the token or message part that
represents the identity to be set in the caller subject of the service.

The caller settings are available only for the service provider policy sets and bindings. The caller settings
are not available for service client policy sets and bindings.

Message expiration
Links to a panel to define settings for message expiration. When you enable message expiration, the
message expires after the specified interval.

Custom properties
Links to a panel where you can specify custom properties that apply to both inbound and outbound
messages or specify properties that apply only to inbound or only to outbound messages.

Inbound and outbound custom properties

Use this page to set additional properties for inbound and outbound messages. You can specify custom
properties that apply to both inbound and outbound messages or custom properties that apply to inbound
messages only or outbound messages only.

Chapter 11. Securing web services 147

The inbound and outbound custom properties are available in multiple locations throughout the
administrative console. You can set these custom properties on the administrative console when you
modify policy sets for Web Services Security. The following steps provide one method to set these custom
properties:

1. Expand Services > Policy sets.

2. Click Default policy set bindings > binding_name.

3. Under the Policy heading, click WS-Security.

4. Under the Main message security policy bindings heading, click Custom properties.

Important: When you set custom properties in the Inbound Custom Properties or Outbound Custom
Properties fields, those custom properties take precedence over the custom properties that are
set in the Inbound and Outbound Custom Properties field.

You can also set these custom properties for custom bindings that are associated with applications.

Inbound and Outbound Custom Properties:

Add the name and value custom property pairs that affect both inbound and outbound messages.
Inbound Custom Properties:

Add the name and value custom property pairs that affect inbound messages only.

Outbound Custom Properties:

Add the name and value custom property pairs that affect outbound messages only.

Keys and certificates

Use this page to link to key and certificate binding configuration panels. This panel defines key and
certificate bindings for JAX-WS web services only. These keys and certificates can be centrally managed
by the product or in an external keystore.

You can define key and certificate bindings for message parts when you are editing a default cell or server
binding. You can also configure application specific bindings for tokens and message parts that are
required by the policy set.

To view this administrative console page when you are editing a default cell binding, complete the
following actions:

1. Click Services > Policy sets > General provider policy set bindings (for provider bindings), or
Services > Policy sets > General client policy set bindings (for client bindings).

2. Click the WS-Security policy in the Policies table.
3. Click the Keys and certificates link in the Main message security policy bindings section.

To view this administrative console page when you are configuring application specific bindings for tokens
and message parts that are required by the policy set, complete the following actions:

1. Click Applications > Application Types > WebSphere enterprise applications.

2. Select an application that contains web services. The application must contain a service provider or a
service client.

3. Click the Service provider policy sets and bindings link or the Service client policy sets and
bindings in the Web Services Properties section.

4. Select a binding. You must have previously attached a policy set and assigned a application specific
binding.

5. Click the WS-Security policy in the Policies table.

148 Securing WebSphere applications

6. Click the Keys and certificates link in the Main message security policy bindings section.

Depending on your assigned security role when security is enabled, you might not have access to text
entry fields or buttons to create or edit configuration data. Review the administrative roles documentation
to learn more about the valid roles for the application server.

Key information — Name

Specifies the key information name. The key names listed in this field are links that are used to define key
information attributes. Key information attributes define how cryptographic keys are generated or
consumed.

Use the following buttons to work with this table:

Button Resulting Action

New Inbound Creates a new inbound key information name.

New Outbound Creates a new outbound key information name.
Delete Removes the selected key information name listing.

Key information — Type
Specifies the type of key information.

Key information — Direction
Specifies the whether the direction of the key is inbound or outbound. .

Certificate store — Name
Specifies the certificate store name. The certificate store names listed in this table are used to configure
certificate stores.

Use the following actions to work with this table:

Button Resulting Action

New Inbound Creates a new inbound certificate store.
New Outbound Creates a new outbound certificate store.
Delete Removes the selected certificate store.

Certificate store — Direction
Specifies whether the direction of the certificate store is inbound or outbound.

Trust anchor — Name
Specifies the trust anchor name. The trust anchor names in this table are links that are used to configure
trust anchor certificate stores.

You can use the following buttons to work with this table:

Button Resulting Action
New Creates a new trust anchor entry.
Delete Removes the selected trust anchor.

Trust anchor — Keystore
Specifies the type of keystore for the trust anchor.

Key information settings
Use this page to configure the key information for the selected policy set binding. Key information
attributes define how cryptographic keys are generated or consumed.

Chapter 11. Securing web services 149

You can configure the key information for the selected policy set binding when you are editing a default
cell or server binding. You can also configure application specific bindings for tokens and message parts
that are required by the policy set.

To view this administrative console page when you are editing a default cell binding, complete the
following actions:

1. Click Services > Policy sets > General provider policy set bindings or General client policy set
bindings.

Click on a binding name in the Name column.

Click the WS-Security policy in the Policies table.

Click the Keys and certificates link in the Main message security policy bindings section.
Click a key in the Name column of the Key information table.

o ko

To view this administrative console page when you are configuring application specific bindings for tokens
and message parts that are required by the policy set, complete the following actions:

1. Click Applications > Application Types > WebSphere enterprise applications.

2. Select an application that contains web services. The application must contain a service provider or a
service client.

3. Click the Service provider policy sets and bindings link or the Service client policy sets and
bindings in the Web Services Properties section.

4. Select a binding. You must have previously attached a policy set and assigned a application specific
binding.

5. Click the WS-Security policy in the Policies table.

6. Click the Keys and certificates link in the Main message security policy bindings section.

7. Click a key in the Name column of the Key information table.

This administrative console page applies only to Java API for XML Web Services (JAX-WS) applications.
Name:
Specifies the unique name for the key information configuration.

The key information name field displays the unique name of the key that is being configured if you are
editing a key. If you are creating one, enter a unique name.

Type:
Lists the type of key reference.

This field appears only if you selected an encryption or signing key for the generator binding, such as
gen_signkeyinfo, gen_signsctkeyinfo, gen_encsctkeyinfo, or gen_enckeyinfo.
You can select one of the following key types from this list:

Key identifier
The associated attribute in the binding file is KEYID.

Security token reference
The associated attribute in the binding file is STRREF.

Embedded token
The associated attribute in the binding file is EMB.

X.509 issuer name and issuer serial
The associated attribute in the binding file is X509ISSUER.

150 Securing WebSphere applications

Thumbprint
The associated attribute in the binding file is THUMBPRINT.

The Thumbprint key information type requires a keystore with the public and private key pair
instead of a shared key.

Information Value
Data type: Selection list

Token generator or consumer name:

Specifies the name of the token generator or consumer. Specifies a unique name for the token
configuration.

The token generator or consumer name field displays the name of the pre-configured tokens that can be
used in the key information configuration if you are editing a key or creating a new key.

You can select a token generator or consumer name from this list. The list of names changes, depending
on whether the key information selected is for inbound (consumer) keys or outbound (generator) keys. For
keys with outbound direction, the list of defined token generators is displayed. For keys with inbound
direction, the list of defined token consumers is displayed.

Information Value
Data type: String
Direction:

Specifies whether the direction of the key is inbound or outbound.

The direction of generator tokens are outbound whereas the direction for consumer tokens and decryption
keys are inbound.

Information Value
Data type: String
Default values: Inbound (for consumer bindings) or Outbound (for

generator bindings)

Requires derived keys:

Specifies whether the key information requires derived keys.

Explicit derived keys
Requires that derived keys be explicitly specified with a WS-SecureConversation
<DerivedKeyToken> element.

Implicit derived keys
Requires that derived keys be implicitly specified with a WS-SecureConversation Nonce attribute
on the WS-Security <SecurityTokenReference> element.

Override Defaults:

Specifying derived key values overrides the derived key information that the runtime generates by default.

Chapter 11. Securing web services 151

Note: It is recommended that you do not override the following optional attributes. Web Services Security
automatically provides default values for each attribute. Overriding the default values might be
required if the service is running cross-vendors. The vendors can use different attribute values for
derived key generation.

Key length
Specifies the derived key length. If an override value is not specified, the default value is provided
based on the algorithm suite policy assertion. It is recommended that you leave this field empty so
the default value can be used. Valid values for the key length range between 16 and 32.

Nonce length
Specifies the nonce length. A nonce is generated for each request, and included for derived key
generation. This value is optional, and if an override value is not specified, a default value is used
to generate the nonce. A valid value for the nonce length is any integer between 16 and 128.

Client label
Specifies the client label. The label is used in the P_SHA-1 function to generate the derived key. If
unspecified, the default value used is WS-SecureConversation.

Service label
Specifies the service label. The label is used in the P_SHA-1 function to generate the derived key.
If unspecified, the default value used is WS-SecureConversation.

Custom properties:

Specifies additional configuration settings that token types might require.

Custom properties are arbitrary name-value pairs of data.

This table lists custom properties. Use custom properties to set internal system configuration properties.
You are not required to define a custom property when you define a custom token.

Select:
Specifies custom properties that you can add, edit, or delete from policy set bindings.
Click New to add and define a new custom property.

For existing custom properties, select the check box for the name of the custom property, and click one of
the following actions:

Action Description

New Creates a new custom property entry. To add a custom
property, enter the name and value.

Edit Specifies that you can edit the selected custom property.

Click this option to provide input fields and create the list
of cell values to edit. At least one custom property must
exist before the Edit option is displayed.

Delete Removes the selected custom property.
Information Value

Data type: Check box (unchecked)

Name:

Specifies the name of the custom property that you can use with default policy set bindings.

152 Securing WebSphere applications

Custom properties are arbitrary name-value pairs of data. Custom properties are not initially displayed in
this column until at least one custom property has been added.

Information Value
Data type: String
Value:

Specifies the custom property value.

This column displays the value for the custom property (for example, true). The value can be a string or
the value can be a true or false Boolean value.

Information Value
Data type: String or Boolean

Certificate store settings
Use this page to specify the location where certificates are stored. You can reference certificate revocation
for service generators or consumers.

You can specify the location where certificates are stored when you are editing a default cell or server
binding. You can also configure application specific bindings for tokens and message parts that are
required by the policy set.

To view this administrative console page when you are editing a default cell binding, complete the
following actions:

1. Click Services > Policy sets > Default policy set bindings.

2. Click the WS-Security policy in the Policies table.

3. Click the Keys and certificates link in the Main message security policy bindings section.
4. Click the certificate_store_name link in the Certificate store section.

To view this administrative console page when you are configuring application specific bindings for tokens
and message parts that are required by the policy set, complete the following actions:

1. Click Applications > Application Types > WebSphere enterprise applications.

2. Select an application that contains web services. The application must contain a service provider or a
service client.

3. Click the Service provider policy sets and bindings link or the Service client policy sets and
bindings in the Web Services Properties section.

4. Select a binding. You must have previously attached a policy set and assigned a application specific
binding.

5. Click the WS-Security policy in the Policies table.

6. Click the Keys and certificates link in the Main message security policy bindings section.

7. Click the certificate_store_name link in the Certificate store section.

This administrative console page applies only to Java API for XML Web Services (JAX-WS) applications.
Name:

Specifies the name of the certificate store. The name field displays the name of the certificate store if you
are editing a certificate store, or enter a name if you are creating a new certificate store.

Revoked certificates — Full path:

Chapter 11. Securing web services 153

Specifies, in the Revoked certificates table, the paths for any certificates that are revoked. The Full Path
column of this table lists any certificates that have been revoked.

You can add, edit, or remove these entries with the following buttons:

Button Resulting Action

New Creates a revoked generator or consumer certificate store.

Delete Removes the selected revoked generator or consumer
certificate store.

Edit Allows you to edit the applied entries selected in the

checkbox. This button is only displayed if revoked
certificates exist in your configuration.

Intermediate X.509 certificates — Full Path:

Specifies, for the consumer certificate store only, the paths for any intermediate X.509 certificates. The Full
Path column of this table lists any intermediate X.509 certificate stores. This table is only displayed for the
consumer version of this panel. It is not valid for generator certificate stores.

Note: If the certificate store is outbound, the Intermediate X.509 certificates field is not displayed.

You can create, edit, or remove intermediate X.509 certificates with the following buttons:

Button Resulting Action

New Creates an intermediate X.509 consumer certificate store.

Delete Removes an intermediate X.509 consumer certificate
store.

Edit Allows you to edit the applied entries selected in the
checkbox.

Trust anchor settings
Use this page to specify the trust anchor configuration. These trust anchor certificates are used to validate
the X.509 certificate that is embedded in the SOAP message.

Use this information to configure a trust anchor. Trust anchors point to keystores that contain trusted root
or self-signed certificates. This information enables you to specify a name for the trust anchor and the
information that is needed to access a keystore. The application binding uses this name to reference a
predefined trust anchor definition in the binding file (or the default).

You can configure a trust anchor when you are editing a default cell or server binding. You can also
configure application specific bindings for tokens and message parts that are required by the policy set.

To view this administrative console page when you are editing a default cell binding, complete the
following actions:

1. Click Services > Policy sets > Default policy set bindings.

2. Click the WS-Security policy in the Policies table.

3. Click the Keys and certificates link in the Main message security policy bindings section.
4. Click a name link in the Name column of the Trust anchor table.

To view this administrative console page when you are configuring application specific bindings for tokens
and message parts that are required by the policy set, complete the following actions:

1. Click Applications > Application Types > WebSphere enterprise applications.

2. Select an application that contains web services. The application must contain a service provider or a
service client.

154 Securing WebSphere applications

3. Click the Service provider policy sets and bindings link or the Service client policy sets and
bindings in the Web Services Properties section.

4. Select a binding. You must have previously attached a policy set and assigned a application specific
binding.

5. Click the WS-Security policy in the Policies table.

6. Click the Keys and certificates link in the Main message security policy bindings section.

7. Click a name link in the Name column of the Trust anchor table.

This administrative console page applies only to Java API for XML Web Services (JAX-WS) applications.
Name:

Specifies the unique name that is used by the application binding to reference a predefined trust anchor
definition in the default binding.

A trust anchor specifies the keystore that contains trusted root certificates. This field displays the name for
the trust anchor that is being edited. If you are creating a new trust anchor configuration, enter a unique
name.

Keystore files contain public and private keys, root certificate authority (CA) certificates, the intermediate
CA certificate, and so on. Keys that are retrieved from the keystore files are used to sign and validate or
encrypt and decrypt messages or message parts.

Information Value
Data type: String

Centrally managed keystore:

Specifies to use a centrally managed keystore. After selecting the Centrally managed keystore option,
choose one of the centrally managed keystore names from the list. Centrally managed keystores can be
managed in the administrative console by clicking these links: Security > SSL certificate and key
management > Key stores and certificates.

Click the radio button to enable the Name field. Select a keystore from the list.

Information Value
Data type: Radio button
Default value: Unselected

External keystore:

Specifies a keystore using a keystore path, keystore type and keystore password. The keystore file format
is determined by the keystore type. The default trust anchor in the default binding uses an external
keystore.

Select the radio button to enable an external keystore.

Information Value

Data type: Radio button
Default value: Selected
Full path

Specifies the full path to the location of the keystore.

Chapter 11. Securing web services 155

If the keystore is file-based, the location can reference any path in the file system of the node
where the trust anchor keystore is located. The trust anchor defined in the default bindings is:

${USER_INSTALL_ROOT}/etc/ws-security/samples/dsig-receiver.ks

Attention: Do not use the sample keystore files in a production environment. These samples are
provided for testing purposes only.

Information Value
Data type: String

Type Specifies the type of keystore when the external keystore is enabled.

The type specifies the implementation for keystore management. Click a keystore type from the list
provided. The selection list is returned by java.security.Security.getAlgorithms("KeyStore").

The IBM Java Cryptography Extension (IBMJCE) supports the following file-based keystore types:

JKS, JCEKS,PKCS12, and CMSKS.

» Use the JKS option if you are not using Java Cryptography Extensions (JCE).

* Use the JCEKS option if you are using Java Cryptography Extensions.

* Use the PKCS12 option if your keystore uses the PKCS#12 file format.
— AKkey.p12 file or a trust.p12 file are examples of PKCS12 type keystores.

* Use the CMSKS option if your keystore uses the Certificate Management Services (CMS)
format.

Password
Specifies the password that is needed to access the keystore file.

Use the password to protect the keystore. The password is used to access the named keystore
and the password is also the default password that is used to store keys within the keystore.

The default trust anchor in default binding uses an external keystore. The password for the
external keystore is: server. It is recommended that you change the default password as soon as

possible.
Information Value
Data type: String
Default value: WebAS or cell name

Confirm password
Confirms the password entered in the Password field.

Enter the password that is used to open the keystore file or device again. By entering the same
password that was entered in the Password field again, you confirm the password.

Information Value
Data type: String

WS-Security authentication and protection

Use the links on this page to configure authentication, protection, signature, and encryption information
that the policy requires.

You can configure authentication, protection, signature, and encryption information for tokens and

message parts when you are editing a default cell or server binding. You can also configure application
specific bindings for tokens and message parts that are required by the policy set.

156 Securing WebSphere applications

To view this administrative console page when you are editing a general provider policy set binding or
general client policy set binding, complete the following actions:

1. Click Services > Policy sets > General provider policy set bindings or Services > Policy sets >
General client policy set bindings.

2. Click Provider sample or Client sample.
3. Click WS-Security in the Policies table.
4. Click the Authentication and protection link in the Main Message Security Policy Bindings section.

To view this administrative console page when you are configuring application specific bindings for tokens
and message parts that are required by the policy set, complete the following actions:

1. Click Applications > Application Types > WebSphere enterprise applications.

2. Select an application that contains JAX-WS web services. The application must contain a service
provider or a service client.

3. Click the Service provider policy sets and bindings link or the Service client policy sets and
bindings link in the Web Services Properties section.

4. Select a binding. You must have previously attached a policy set and assigned an application specific
binding.

5. Click WS-Security in the Policies table.

6. Click the Authentication and protection link in the Main message security policy bindings section.

Depending on your assigned security role when security is enabled, you might not have access to text
entry fields or buttons to create or edit configuration data. Review the administrative roles documentation
to learn more about the valid roles for the application server.

This administrative console page applies only to Java API for XML Web Services (JAX-WS) applications.

WS-Security authentication and protection for general bindings
Use the links on this page to configure authentication, protection, signature, and encryption information
that the policy requires when using general bindings.

You can configure authentication, protection, signature, and encryption information for tokens and
message parts when you are editing a general binding.

To view this administrative console page when you are editing a general binding at the cell level, complete
the following actions:

1. Click Services > Policy sets > General provider policy set bindings or General client policy set
bindings.

2. Click on the name of the bindings you want to edit.

3. Click WS-Security policy in the Policies table.

4. Click the Authentication and protection link in the Main message security policy bindings section.

This administrative console page applies only to Java API for XML Web Services (JAX-WS) applications.
Disable implicit protection for signature confirmation:

Specifies whether implicit protection of the SignatureConfirmation element is enabled or disabled.

The explicitlyProtectSignatureConfirmation attribute in the Web Services Security binding is provided to
disable implicit signature and encryption of the SignatureConfirmation element on the response message.

If this checkbox is selected, the attribute is added and implicit protection is disabled. This provides
interoperability with earlier versions of WebSphere Application Server.

Chapter 11. Securing web services 157

Information Value
Default: Not selected (implicit protection is enabled)

Protection tokens — Protection token name:
Specifies a list of protection tokens that can be configured in the Protection tokens table.

The following actions are available for general bindings:

Button Resulting Action
New Token Creates a new protection token type.
Delete Removes the selected protection token type.

Protection tokens — Usage:
Specifies the policy assertion usage names that you can customize in the Protection tokens table.

For the usage field, the following options are available for the general bindings:
* Asymmetric encryption generator

* Asymmetric encryption consumer

* Asymmetric signature generator

* Asymmetric signature consumer

* Symmetric generator

* Symmetric consumer

* Custom generator

» Custom consumer

Authentication tokens — Authentication token name:

Specifies a list of authentication tokens that you can customize in the Authentication tokens table when
using general bindings.

If you are working with a Username token or LTPA token that is using general bindings, the user names
and passwords might have been provided as examples. When you click a Username token or LTPA token
link, you need to update the values for these token types using the Callback handler link found on the
Authentication token settings page.

The following actions are available for general bindings:

Button Resulting Action
New Token Creates a new authentication token type.
Delete Removes the selected authentication token type.

Authentication tokens — Usage:
Specifies the usage names for the Authentication tokens table for general bindings.

The following options are available for general bindings:
* Inbound
* Outbound

Request message signature and encryption protection — Name:

158 Securing WebSphere applications

Specifies a unique name to identify the request message part from the Request message signature and
encryption protection table that is protected.

The following actions are available for general bindings. The Move up and Move down actions are
available only when using service client policy sets and bindings.

Button Resulting Action

New Signature Creates a new signature.

New Encryption Creates a new encryption protection.

Delete Removes the selected request message part.

Move up Moves the selected request message part up in the order.

Move down Moves the selected request message part down in the
order.

Request message signature and encryption protection — Protection:

Specifies the type of protection from the Request message signature and encryption protection table. This
field displays the type of protection enabled for the general binding.

Response message signature and encryption protection — Name:

Specifies a unique name to identify the response message part from the Response message signature
and encryption protection table that is protected.

The following actions are available for general bindings. The Move up and Move down actions are
available only when using service provider policy sets and bindings.

Button Resulting Action

New Signature Creates a new response message signature.

New Encryption Creates a new encryption.

Delete Removes the selected response message part.

Move up Moves the selected response message part up in the
order.

Move down Moves the selected response message part down in the
order.

Response message signature and encryption protection — Protection:

Specifies the type of protection enabled from the Response message signature and encryption protection
table. This field displays the type of protection enabled for the response message part.

Response message signature and encryption protection — Order:

Specifies the order in which the signatures and encryptions occur. Use the Move up and Move down
actions to order the list of protection types in this table.

WS-Security authentication and protection for application specific bindings
Use the links on this page to configure authentication, signature, and encryption information that the policy
requires when using application specific bindings.

You can configure application specific bindings for tokens and message parts that are required by the
policy set.

To view this administrative console page when you are configuring application specific bindings for tokens
and message parts that are required by the policy set, complete the following actions:

Chapter 11. Securing web services 159

1. Click Applications > Application Types > WebSphere enterprise applications.

2. Select an application that contains web services. The application must contain a service provider or a
service client.

3. Click the Service provider policy sets and bindings link or the Service client policy sets and
bindings in the Web Services Properties section.

4. Select a binding. You must have previously attached a policy set and assigned a application specific
binding.

5. Click the WS-Security policy in the Policies table.

6. Click the Authentication and protection link in the Main message security policy bindings section.

This administrative console page applies only to Java API for XML Web Services (JAX-WS) applications.
Disable implicit protection for Signature Confirmation:
Specifies whether implicit protection of the SignatureConfirmation element is enabled or disabled.

The explicitlyProtectSignatureConfirmation attribute in the Web Services Security binding is provided to
disable implicit signature and encryption of the SignatureConfirmation element on the response message.
If this checkbox is selected, the attribute is added and implicit protection is disabled. This provides
interoperability with earlier versions of WebSphere Application Server.

Information Value
Default: Not selected (implicit protection is enabled)

Protection tokens — Protection token name:

Specifies a list of protection tokens that can be configured in the Protection tokens table for application
specific bindings.

The following actions are available for application specific bindings:

Button Resulting Action
Unconfigure Removes the selected protection token from the binding.

Protection tokens — Protection token type:

Specifies the protection token type for application specific bindings.

Protection tokens — Usage:

Specifies the policy assertion usage names that you can customize in the Protection tokens table.

For the usage field, the following options are available for the application specific bindings:
» Asymmetric encryption generator

* Asymmetric encryption consumer

* Asymmetric signature generator

* Asymmetric signature consumer

* Symmetric encryption generator

« Symmetric encryption consumer

* Symmetric signature generator

» Symmetric signature consumer

160 Securing WebSphere applications

Protection tokens — Status:

Specifies the status of the protection token when using application specific bindings. The valid values are
configured, not configured, or incompatible.

Authentication tokens — Security token reference:

Specifies a list of authentication tokens that you can customize in the Authentication tokens table when
using application specific bindings.

The following actions are available for application specific bindings:

Button Resulting Action
Unconfigure Removes the selected authentication token from the
binding.

Authentication tokens — Authentication token type:

Specifies the authentication token type for the security token reference when using application specific
bindings.

Authentication tokens — Usage:
Specifies the usage names from the Authentication tokens table for application specific bindings.

The following options are available for application specific bindings:
* Inbound request

* Outbound request

* Inbound response

* QOutbound response

Authentication tokens — Status:

Specifies the status of the authentication token form the Authentication tokens table for application specific
bindings. The valid values are configured, not configured, or incompatible.

Request message signature and encryption protection — Request message part reference:

Specifies the name of the request message part in the policy from the Request message signature and
encryption protection table that is protected.

The following actions are available for application specific bindings. The Move up and Move down actions
are available only when using Service client policy sets and bindings.

Button Resulting Action

Unconfigure Removes the selected request message part from the
binding.

Move up Moves the selected request message part up in the order.

Move down Moves the selected request message part down in the
order.

Request message signature and encryption protection — Protection:

Specifies the type of protection from the Request message signature and encryption protection table. This
field displays the type of protection enabled for the application specific binding.

Chapter 11. Securing web services 161

Request message signature and encryption protection — Order:

Specifies the order in which signatures and encryptions occur when using service client policy sets and
bindings. Use the Move up and Move down actions to order the list of protection types in this table.

Request message signature and encryption protection — Status:

Specifies the status of the request message signature and encryption protection token when using
application specific bindings. The valid values are configured, not configured, or incompatible.

Response message signature and encryption protection — Response message part reference:

Specifies the name of the response message part in the policy from the Response message signature and
encryption protection table that is protected.

The following actions are available for application specific bindings. The Move up and Move down actions
are available only when using Service provider policy sets and bindings.

Button Resulting Action

Unconfigure Removes the selected response message part from the
binding.

Move up Moves the selected response message part up in the
order.

Move down Moves the selected response message part down in the
order.

Response message signature and encryption protection — Protection:

Specifies the type of protection enabled from the Response message signature and encryption protection
table. This field displays the type of protection enabled for the response message part.

Response message signature and encryption protection — Order:

Specifies the order in which signatures and encryptions occur when using service provider policy sets and
bindings. Use the Move up and Move down actions to order the list of protection types in this table.

Response message signature and encryption protection — Status:

Specifies the status of the response message signature and encryption protection token when using
application specific bindings. The valid values are configured, not configured, or incompatible.

Protection token settings (generator or consumer)
Use this page to configure protection tokens. Protection tokens sign messages to protect integrity or
encrypt messages to provide confidentiality.

You can add protection token settings for message parts when you are editing general provider or client
policy set bindings. You can also configure application specific bindings for tokens and message parts that
are required by the policy set.

To view this administrative console page when you are editing a general provider binding, complete the
following actions:

1. Click Services > Policy sets > General provider policy set bindings.

2. Click on the name of the binding you want to edit.

3. Click the WS-Security policy in the Policies table.

4. Click the Authentication and protection link in the security policy bindings section.

162 Securing WebSphere applications

5. Click New token to create a new token generator or consumer, or click an existing consumer or
generator token link from the Protection Tokens table.

To view this administrative console page when you are editing a general client binding, complete the
following actions:

1. Click Services > Policy sets > General client policy set bindings.

Click on the name of the binding you want to edit.

Click the WS-Security policy in the Policies table.

Click the Authentication and protection link in the Main message security policy bindings section.

Click New token to create a new token generator or consumer or click an existing consumer or
generator token link from the Protection Tokens table.

S A

To view this administrative console page when you are configuring application specific bindings for tokens
and message parts that are required by the policy set, complete the following actions:

1. Click Applications > Websphere enterprise applications.

2. Select an application that contains web services. The application must contain a service provider or a
service client.

3. Click the Service provider policy sets and bindings link or the Service client policy sets and
bindings in the Web Services Properties section.

Select a binding. You must have previously attached a policy set and assigned a binding.
Click the WS-Security policy in the Policies table.

Click the Authentication and protection link in the security policy bindings section.
Click a consumer or generator token link from the Protection Tokens table.

N o o s

This administrative console page applies only to Java API for XML Web Services (JAX-WS) applications.
Name:

Specifies the token generator or consumer name. Enter a name in this field when you create a new token.
Token type:

Specifies the type of token. When using bindings, the token type is determined from the policy and cannot
be edited.

Valid values are:

* LPTA Token V2.0

» Secure Conversation Token V1.3

» Secure Conversation Token V200502
* X509V3 Token V1.1

» X509V3 Token V1.0

* X509PKCS7 Token V1.1

» X509PKCS7 Token V1.0

» X509PkiPathV1 Token V1.1

» X509PkiPathV1 Token V1.0

» X509V1 Token V1.1

* Custom Token

The Secure Conversation Token v200502 token type for the WS-Security policy represents the

requirement for a Security Context Token as defined in the February 2005 level of the
WS-SecureConversation specification.

Chapter 11. Securing web services 163

Enforce token version:

When LTPA Token v2.0 is selected as the token type, both LTPA version 1 and LTPA version 2 tokens can
be consumed. Select this checkbox to restrict token consumption to the LTPA Token v2.0 token type.

Local name:

Specifies the local name of the custom token generator or consumer. The Local nhame field is populated
based on the token type displayed. Use this field to edit custom token types only.

If the custom token type is used to generate a Kerberos token as defined in the OASIS Web Services
Security Specification for Kerberos Token Profile V1.1, use one of the values listed below for the local
name. The value you choose depends on the specification level of the Kerberos token generated by the
Key Distribution Center (KDC). The following table lists the values and the specification level associated
with each value. For purposes of interoperability, the Basic Security Profile V1.1 standard requires the use
of the local name http://docs.oasis-open.org/wss/oasis-wss-kerberos-token-profile-

1.1#GSS_Kerberosvs_AP_REQ.

Local Name Value for Kerberos Token

http://docs.oasis-open.org/wss/oasiswss-
kerberos-token-profile-1.1#Kerb erosv5_AP_REQ

http://docs.oasis-open.org/wss/oasis-wss-kerberos-token-
profile-1.1#GSS_Kerberosv5_AP_REQ

http://docs.oasis-open.org/wss/oasis-wss-kerberos-token-
profile-1.1#Kerberosv5_AP_REQ1510

http://docs.oasis-open.org/wss/oasis-wss-kerberos-token-
profile-1.1#GSS_Kerberosv5_AP_REQ1510

http://docs.oasis-open.org/wss/oasis-wss-kerberos-token-
profile-1.1#Kerberosv5_AP_REQ4120

http://docs.oasis-open.org/wss/oasis-wss-kerberos-token-
profile-1.1#GSS_Kerberosv5_AP_REQ4120

URI:

Associated Specification Level

Kerberos v5 AP-REQ as defined in the Kerberos
specification. Use this value when the Kerberos ticket is
an AP Request.

GSS-API Kerberos V5 mechanism token containing a
KRB_AP_REQ message as defined in RFC-1964 [1964],
Sec. 1.1 and its successor RFC-4121, Sec. 4.1. Use this
value when the Kerberos ticket is an AP Request (ST +
Authenticator).

Kerberos v5 AP-REQ as defined in RFC1510. Use this
value when the Kerberos ticket is an AP Request per
RFC1510.

GSS-API Kerberos V5 mechanism token containing a
KRB_AP_REQ message as defined in RFC-1964, Sec.
1.1 and its successor RFC-4121, Sec. 4.1. Use this value
when the Kerberos ticket is an AP Request (ST +
Authenticator) per RFC1510.

Kerberos v5 AP-REQ as defined in RFC4120. Use this
value when the Kerberos ticket is an AP Request per
RFC4120.

GSS-API Kerberos V5 mechanism token containing an
KRB_AP_REQ message as defined in RFC-1964, Sec.
1.1 and its successor, RFC-4121, Sec. 4.1. Use this value
when the Kerberos ticket is an AP Request (ST +
Authenticator) per RFC4120.

Specifies the uniform resource identifier (URI) of the custom token generator or consumer. The URI field is
populated based on the token type displayed. Use this field to edit custom token types only.

Leave this field blank if the custom token type is used to generate a Kerberos token as defined in the
OASIS Web Services Security Specification for Kerberos Token Profile V1.1.

JAAS login:

Specifies the Java Authentication and Authorization Service (JAAS) application login information. Click
New to add a new JAAS application login or JAAS system login entry.

164 Securing WebSphere applications

If the server is in a security domain that includes specific system or application logins, these logins are
listed in the JAAS login menu, in addition to the global logins.

New Application Login:
Click to go to the effective JAAS login collection for the current security domain.
Custom properties — Name:

Specifies the name of the custom property. Custom properties are not initially displayed in this column until
they are added.

Select one of the following actions for custom properties:

Button Resulting Action

New Creates a new custom property entry. To add a custom
property, enter the name and value.

Edit Specifies that you can edit the selected custom property.

Select this action to provide input fields and create the
listing of cell values for editing. The Edit button is not
available until at least one custom property has been
added.

Delete Removes the selected property.

If the custom token type is used to generate a Kerberos token, specify the following custom properties:

Custom property name Value
Specify the name of the target service. Specifies the name of the target service.
com.ibm.wsspi.wssecurity.krbtoken.targetServiceName
This property is required.
com.ibm.wsspi.wssecurity.krbtoken.targetServiceHost Specifies the host name that is associated with the target
service in the following format: myhost.mycompany . com.

This property is required.
com.ibm.wsspi.wssecurity.krbtoken.targetServiceRealm Specifies the name of the realm that is associated with the
target service.

This property is optional for a single Kerberos realm. If the targetSer
In a cross or trusted realm environment, you must provide a value f

For the token generator, the combination of the target service name and target hostname forms the

Service Principal Name (SPN), which represents the target Kerberos service principal name. The Kerberos
client requests the initial Kerberos AP_REQ token for the SPN.

If an application generates or consumes a Kerberos V5 AP_REQ token for each web services request
message, set the com.ibm.wsspi.wssecurity.kerberos.attach.apreq custom property to true in the token

generator and the token consumer bindings for the application. For more information, see the Web
Services Security troubleshooting tips topic.

Custom properties — Value:

Specifies the value of the custom property. Use the Value field to enter, edit, or delete the value for a
custom property.

Callback handler:

Chapter 11. Securing web services 165

After all other configurations on the protection token page are applied or saved, this section is displayed
and links to the configuration settings for the callback handler. Click this link to specify callback handler
settings that determine how security tokens are acquired from message headers.

Tolerate secure conversation token V200502:

The secure conversation token V200502 token type for the WS-Security policy represents the requirement
for a secure conversation token as defined the in the February 2005 level of the WS-SecureConversation
specification. This option specifies whether the provider handles both secure conversation token V1.3 and
secure conversation token V200502. By default, the provider handles both versions. You can change this
behavior by clicking to remove the check box selection so that the provider handles only the V1.3 token.

Note: This checkbox is displayed only in the service provider token consumer panel.

Information Value

Data type Check box

Range Selected or cleared
Default value Selected

Authentication generator or consumer token settings
Authentication tokens are used to prove or assert an identity. Use the administrative console to add
authentication token settings for message parts when you are editing a general binding.

To configure authentication tokens, complete the following steps:

1. To view and select the general bindings that are set as the global security default policy set bindings,
click Services > Policy sets > Default policy set bindings. The specified bindings are used unless
overridden at the attachment point, at the server, or at a security domain.

2. To access and configure the general bindings and to add authentication token settings for message
parts, click Services > Policy sets > General provider policy set bindings.

3. Click the WS-Security policy in the Policies table.
4. Click the Authentication and protection link in the Main message security policy bindings section.

5. Click New token to create a new token generator or consumert, or click an existing consumer or
generator token link from the Authentication Tokens table.

To view and configure application-specific bindings for tokens and message parts that are required by a
policy set, complete the following steps:

1. Click Applications > Application Types > WebSphere enterprise applications.

2. Select an application that contains web services. The application must contain a service provider or a
service client.

3. Click the Service provider policy sets and bindings link or the Service client policy sets and
bindings link in the Web Services Properties section.

4. Select a binding. You must have previously attached a policy set and assigned an application specific
binding.

5. Click the WS-Security policy in the Policies table.

6. Click the Authentication and protection link in the Main message security policy bindings section.

7. Click a consumer or generator token link from the Protection Tokens table.

This administrative console page applies only to Java API for XML Web Services (JAX-WS) applications.
Name:

Specifies the name of the token being configured. When using application specific bindings, this field is not
displayed.

166 Securing WebSphere applications

Token type:
Specifies the type of token being configured.

When you are using application specific bindings, the token type is obtained from the policy file and it is
read-only. When you are using general bindings, select a token type from the list. The following token
types are available:

» X509V3 Token V1.1

* X509V3 Token V1.0

* Username Token V1.1

* Username Token V1.0

* X509PKCS7 Token V1.1

* X509PKCS7 Token V1.0

» X509PkiPathV1 Token V1.1
* X509PkiPathV1 Token V1.0
* LTPA Propagation Token

* X509V1 Token V1.1

* LTPA Token

* LTPA Token V2.0

» Custom Token

Note: The LTPA Token V2.0 token type is available only for bindings using the namespace as supported
in IBM WebSphere Application Server, Version 7.0 or later. When you select LTPA Token V2.0 as
the token type for the token consumer, both LTPA tokens and LTPA V2.0 tokens can be consumed.
To restrict the token consumer to LTPA V2.0 tokens only, select the Enforce token version check
box.

If you select LTPA Token as the token type for the token generator, single sign-on interoperability
mode must be enabled. This is a setting in global security from Web and SIP security. If the
interoperability flag is not set to enabled (true), an error occurs when the application that is attached
to these bindings is started. If you want to use the LTPA token without checking the state of the
interoperability flag, you can set the custom property,
com.ibm.wsspi.wssecurity.tokenGenerator.ltpav1.pre.v7, on the token generator. Set the property
using the administrative console, as described in the topic Enabling or disabling single sign-on
interoperability mode for the LTPA token. The property can not be set using the Web Services
Security API.

Local name:

Specifies the local name for the authentication token generator or consumer. The Local name field is
populated based on the token type displayed. Use this field to edit custom token types only.

URI:

Specifies the uniform resource identifier (URI) of the authentication token generator or consumer. The URI
field is populated based on the token type displayed. Use this field to edit custom token types only.

Leave this field blank if the custom token type is used to generate a Kerberos token as defined in the
OASIS Web Services Security Specification for Kerberos Token Profile v1.1.

Security token reference:

Chapter 11. Securing web services 167

Specifies the security token reference. The security token reference field is displayed only for
authentication tokens in application-specific bindings. This field is not available for default bindings.

JAAS login:

Specifies a list of application and system Java Authentication and Authorization Service (JAAS) logins that
are effective for the domain to which the binding is scoped.

If an application is scoped to the global security or if it is scoped to a domain that does not customize its
own JAAS logins, then the list of global logins are displayed in the menu list. Click New Application
Login to access the global JAAS application login collection. The JAAS login menu list and New
Application Login button behavior depend on whether the binding is being created in association with an
attachment. Use caution when changing security domains, since a previously-referenced security
configuration, such as JAAS logins, might not be accessible in a different security domain.

Custom properties — Name:
Specifies the name used for the custom property.

Custom properties are not initially displayed in this column. Click one of the following buttons to enable the
actions described:

Button Resulting Action

New Creates a new custom property entry. To add a custom property, enter the name and
value.

Edit Enables the selected custom property to be edited. Clicking this button provides input

fields and creates the listing of cell values to be edited. The Edit button is not available
until at least one custom property has been added.
Delete Removes the selected custom property.

Custom properties — Value:

Specifies the value of the custom property to be used. Use the Value field to enter, edit, or delete the
value for a custom property.

If the custom token type is used to generate a Kerberos token, specify the following custom properties:

Custom property name Value
com.ibm.wsspi.wssecurity.krbtoken.targetServiceName Specifies the name of the target service.

This property is required.
com.ibm.wsspi.wssecurity.krbtoken.targetServiceHost Specifies the host name that is associated with the target
service in the following format: myhost.mycompany . com.

This property is required.
com.ibm.wsspi.wssecurity.krbtoken.targetServiceRealm Specifies the name of the realm that is associated with the
target service.

This property is optional for a single Kerberos realm. If the targetServic

In a cross or trusted realm environment, you must provide a value for
com.ibm.wsspi.wssecurity.krbtoken.clientRealm Specifies the name of the Kerberos realm associated with

the client.

This property is optional for a single Kerberos realm environment.
When implementing Web Services Security in a cross or trusted Kerbert

168 Securing WebSphere applications

Custom property name Value
com.ibm.wsspi.wssecurity.krbtoken.loginPrompt Enables the Kerberos login when the value is True. The
default value is False.

This property is required.

For the token generator, the combination of the target service name and target hostname forms a Service
Principal Name (SPN) which represents the target Kerberos service principal name. The Kerberos client
requests the initial Kerberos AP_REQ token for the SPN.

If an application generates or consumes a Kerberos V5 AP_REQ token for each web services request
message, set the com.ibm.wsspi.wssecurity.kerberos.attach.apreq custom property to true in the token
generator and the token consumer bindings for the application. For more information, see the Web
Services Security troubleshooting tips topic.

Callback handler:

Links to the Callback handler page where you can configure callback handlers. Callback handler settings
determine how security tokens are acquired from messages headers.

If you are working with a Username token or LTPA token that is using default bindings, the user names
and passwords might have been provided as examples. You need to update the values for these token
types.

Callback handler settings for JAX-WS
Use this page to configure callback handler settings for JAX-WS, which determine how security tokens are
acquired from messages headers.

You can configure callback handler settings when you are editing a general cell-level or server-level
binding. You can also configure application specific bindings for tokens and message parts that are
required by the policy set.

gotcha: Before you specify values for the Keystore and Key properties on this page, you must
understand that the keystore/alias information that you provide for the generator, and the
keystore/alias information that you provide for the consumer are used for different purposes. The
main difference applies to the alias for an X.509 callback handler:

Generator
When used in association with an encryption generator, the alias supplied for the generator is
used to retrieve the public key to encrypt the message. A password is not required. The alias that
is entered on a callback handler associated with an encryption generator must be accessible
without a password. This means that the alias must not have private key information associated
with it in the keystore. When used in association with a signature generator, the alias supplied for
the generator is used retrieve the private key to sign the message. A password is required.

Consumer
When used in association with a encryption consumer, the alias supplied for the consumer is used
retrieve the private key to decrypt the message. A password is required.

When an X.509 certificate is sent in the SOAP security header as a BinarySecurityToken, if there
is a keystore/alias configured on the X.509 token consumer associated with a signature consumer,
the certificate that is configured on the consumer will be compared against the one that is passed
in the message. If they do not match, the message will be rejected. This behavior is different than
JAX-RPC. The certificate associated with the alias configured on the X.509 token consumer is not
used to evaluate trust on the inbound certificate. Only the trust store and cert stores are used for
that purpose.

Chapter 11. Securing web services 169

If you want the certificate configured on the X.509 token consumer associated with a signature
consumer to be availble for Keylnfo resolution, but not reject X.509 certificates that are passed in
the message that do not match, you can add the following custom property to the X.509 token
consumer callback handler:
com.ibm.wsspi.wssecurity.consumer.callbackHandlerKeystoreLimitsAccess=false

See the topic Key information settings for more information about the key identifier, X.509
issuer/serial, and thumbprint.

To view this administrative console page when you are editing a general cell-level binding, complete the
following actions:

1. Click Services > Policy sets > Default policy set bindings. The bindings panel indicates which
binding is set as the default binding, for example, the Provider sample binding.

To edit this default binding, click Services > Policy sets > General provider policy set bindings.
Click the name of the default binding as determined in the first step. For example, Provider sample.
Click the WS-Security policy in the Policies table.

Click the Authentication and protection link in the Main message security policy bindings section.
Click the name_of _token link in the Protection tokens section or the Authentication tokens section.
Click the Callback handler link.

N ok~

To view this administrative console page when you are configuring application specific bindings for tokens
and message parts that are required by the policy set, complete the following actions:

1. Click Applications > Application Types > WebSphere enterprise applications.

2. Select an application that contains web services. The application must contain a service provider or a
service client.

3. Click the Service provider policy sets and bindings link or the Service client policy sets and
bindings in the Web Services Properties section.

4. Select a binding. You must have previously attached a policy set and assigned an application specific
binding.

Click the WS-Security policy in the Policies table.

Click the Authentication and protection link in the Main message security policy bindings section.
Click the name_of_token link in the Protection tokens section or the Authentication tokens section.
Click the Callback handler link.

© N O

This administrative console page applies only to Java API for XML Web Services (JAX-WS) applications.

The Callback Handler displays fields differently for different tokens being configured. Depending on
whether you are configuring generator or consumer tokens for protection or you are configuring inbound or
outbound tokens for authentication, the sections and fields on this panel display some or all of the fields
explained in this topic, as noted in the description of each field.

Class name:
The fields in the Class name section are available for all types of token configuration.

Select the class name to use for the callback handler. Select the Use built-in default option for normal
operation. Use the Use custom option only if you are using a custom token type.

For the Kerberos custom token type, use the class name,
com.ibm.websphere.wssecurity.callbackhandler.KRBTokenGenerateCallbackHandler, for token generator
configuration. Use com.ibm.websphere.wssecurity.callbackhandler.KRBTokenConsumeCallbackHandler for
token consumer configuration.

170 Securing WebSphere applications

Use built-in default:

Specifies that the default value is used for the class name. Use the default value (shown in the field) for
the class name when you select this radio button. This name is based on the token type and whether the
callback handler is for a token generator or a token consumer. This option is mutually exclusive to the Use
custom option.

Use custom:

Specifies that a custom value is used for the class name. Select this radio button and enter the name in
the field to use a custom class name.

No default value is available for this entry field. Use the information in the following table to determine this
value:

Table 14. Custom class names for the callback handler and associated token types. The callback handler determines
how security tokens are acquired from message headers.

Consumer or
Token Type Generator Callback Handler Class Name
UsernameToken consumer com.ibm.websphere.wssecurity.callbackhandler. UNTConsumeCallbackHandler
UsernameToken generator com.ibm.websphere.wssecurity.callbackhandler.UNTGenerateCallbackHandler
X509Token consumer com.ibm.websphere.wssecurity.callbackhandler.X509ConsumeCallbackHandler
X509Token generator com.ibm.websphere.wssecurity.callbackhandler.X509GenerateCallbackHandler
LTPAToken/LTPAPropagationToken | consumer com.ibm.websphere.wssecurity.callbackhandler.LTPAConsumeCallbackHandler
LTPAToken/LTPAPropagationToken | generator com.ibm.websphere.wssecurity.callbackhandler.LTPAGenerateCallbackHandler
SecureConversationToken consumer com.ibm.ws.wssecurity.impl.auth.callback.SCTConsumeCallbackHandler
SecureConversationToken generator com.ibm.ws.wssecurity.impl.auth.callback. WSTrustCallbackHandler

This button is mutually exclusive to the Use built-in default option.
Certificates (generator):

The fields in the Certificates section are available if you are configuring a protection token. For a generator
token, you can click to select a certificate store from the listing, or click the New button to add a certificate
store.

Certificates (consumer):

The fields in the Certificates section are available if you are configuring a protection token. For a consumer
token, you can use the Trust any certificate option, or the Certificate store option, to configure the
certificate store.

Certificates - Trust any certificate (consumer):

This option is applicable only to the token consumer. This option indicates that the system will trust all
certificates, and does not define a specific certificate store. This option is mutually exclusive to the
Certificate store option.

Certificates - Certificate store (consumer):

This option is applicable only the to the token consumer. Use this option to specify a certificate store
collection containing intermediate certificates, which can include certificate revocation lists (CRLs). Select
this option to trust the certificate store or stores specified in the entry field. This option is mutually
exclusive to the Trust any certificate option. When you select the Certificate store option, the New
button is enabled so that you can configure a new certificate store and trusted anchor store.

Chapter 11. Securing web services 171

You can set the value of the certificate store field to the default value, which is None. However, the trusted
anchor store value must be set to a specific value. There is no default value. The trusted anchor is
required if the Trust any certificate option is not selected.

Basic authentication:

The fields in the Basic authentication section are available if you are configuring an authentication token
that is not an LTPA propagation token.

For the Kerberos custom token type, you must complete the Basic Authentication section for the Kerberos
login.

User name:

Specifies the user name that you want to authenticate.

Password:

Specifies the password to be authenticated. Enter a password to authenticate in this entry field.
Confirm password:

Specifies the password that you want to confirm.

Keystore:

The keystore fields are not available when the run times determines that they are not needed.

In the Keystore name list, you can click Custom to define a custom keystore, click one of the externally
defined keystore names, or click None if no keystore is required.

Keystore - Name:
Specifies the name of the keystore that you want to use.

Click the name of a keystore name from this menu or select one of the following values:
None Specifies to not use a keystore.

Custom
Specifies to use a user-defined keystore. Click the Custom keystore configuration link to
configure custom keystore and key settings.

Key:

Specifies the attributes of the key to be retrieved from the configured key store. Some fields in the Key
section are not available when the run times determines that they are not needed.

When a centrally managed keystore is selected for the Keystore, the fields in the Key section are
available.

Name:

Specifies the name of the key to use. The list is populated with the keys available in the selected centrally
managed keystore. Select the name of the key that you want to use, or '(none)' if no key is to be used.

Alias:

172 Securing WebSphere applications

Displays the alias of the key name selected
Password:

Specifies the password for the key that you want to use. This field will only be available when the run time
determines that it is needed.

You cannot set a password for public keys for asymmetric encryption generator or asymmetric signature
consumer. Please refer to 'avoid trouble' at the beginning of the article.

Confirm password:

Specifies the confirmation of the password for the key that you want to use. This field will only be available
when the run time determines that it is needed.

Do not provide a key confirm password for public keys for asymmetric outbound encryption or inbound
signature.

Keystore - Custom keystore configuration:

Specifies a link to create a custom keystore. Click this link to open a panel where you can configure a
custom keystore.

Key store password:

Specifies the password that is used to access the keystore file.

Key store path:

Specifies the location of the keystore file.

Use ${USER_INSTALL_ROOQOT} in the path name because this variable expands to the product path on
your machine. To change the path used by this variable, click Environment > WebSphere variables and
click USER_INSTALL_ROOT.

Key store type:

Specifies the type of keystore file format

Choose one of the following values for this field:
JKS Use this option if the keystore uses the Java Keystore (JKS) format.

JCEKS
Use this option if the Java Cryptography Extension is configured in the software development kit
(SDK). The default IBM JCE is configured in the application server. This option provides stronger
protection for stored private keys by using Triple DES encryption.

PKCS12KS (PKCS12)
Use this option if your keystore file uses the PKCS#12 file format.

Custom properties:
The fields in the Custom properties section are available for all types of token configuration.

You can add custom properties needed by the callback handler using name-value pairs.

Chapter 11. Securing web services 173

To implement signer certificate encryption when using the JAX-WS programming model, add the custom
property com.ibm.wsspi.wssecurity.token.cert.useRequestorCert with the value true on the callback
handler of the encryption token generator. This implementation uses the certificate of the signer of the
SOAP request to encrypt the SOAP response. This custom property is used by the response generator.

For a Kerberos custom token based on OASIS Web Services Security Specification for Kerberos Token
Profile V1.1, specify the following property for token generation:
com.ibm.wsspi.wssecurity.krbtoken.clientRealm. This specifies the name of the Kerberos realm
associated with the client and allows the Kerberos client realm to initiate the Kerberos login. If not
specified, the default Kerberos realm name is used. This property is optional for a single Kerberos realm
environment.

The Kerberos custom property, com.ibm.wsspi.wssecurity.krbtoken.loginPrompt, enables the Kerberos
login when the value is true. The default value is false. This property is optional.

When configuring a username token for the JAX-WS programming model, to protect against replay attacks
it is strongly recommended that you add the following custom properties to the callback handler
configuration. These custom properties enable and verify the nonce and timestamp for message
authentication.

Property name (generator) Property value
com.ibm.wsspi.wssecurity.token.username.addNonce true
com.ibm.wsspi.wssecurity.token.username.addTimestamp true

Property name (consumer) Property value
com.ibm.wsspi.wssecurity.token.username.verifyNonce true
com.ibm.wsspi.wssecurity.token.username.verifyTimestamp true

Name:
Specifies the name of the custom property to use.

Custom properties are not initially displayed in this column. Click one of the following actions for custom
properties:

Button Resulting action

New Creates a new custom property entry. To add a custom
property, enter the name and value.

Delete Removes the selected custom property.

Value:

Specifies the value of the custom property to use. With the Value entry field, you can enter or delete the
value for a custom property.

Custom keystore settings:

Use this page to configure custom keystore files. Custom keystore files are alternatives to the key
management support built into the WebSphere Application Server. The callback handler uses the custom
version of the keystore configuration that includes keys.

You can configure custom keystore files for message parts when you are editing a default cell or server

binding. You can also configure application specific bindings for tokens and message parts that are
required by the policy set.

174 Securing WebSphere applications

To view this administrative console page when you are editing a default cell binding, complete the
following actions:

1. Click Services > Policy sets > Default policy set bindings.

Click the WS-Security policy in the Policies table.

Click the Authentication and protection link in the Main message security policy bindings section.
Click a protection_token link in the Protection tokens table.

Click the Callback handler link in the Additional bindings section.

Select Custom from the list in the Keystore section.

Click the Custom keystore configuration link.

N o o~ DD

To view this administrative console page when you are configuring application specific bindings for tokens
and message parts that are required by the policy set, complete the following actions:

1. Click Applications > Application Types > WebSphere enterprise applications.

2. Select an application that contains web services. The application must contain a service provider or a
service client.

3. Click the Service provider policy sets and bindings link or the Service client policy sets and
bindings in the Web Services Properties section.

4. Select a binding. You must have previously attached a policy set and assigned a application specific
binding.

Click the WS-Security policy in the Policies table.

Click the Authentication and protection link in the Main message security policy bindings section.
Click a protection_token link in the Protection tokens table.

Click the Callback handler link in the Additional bindings section.

Select Custom from the list in the Keystore section.

Click the Custom keystore configuration link.

©C O NOO

1
This administrative console page applies only to Java API for XML Web Services (JAX-WS) applications.
Keystore:

Use this section to specify information about the custom keystores.

Full path:

Specifies the full path to where the keystore file is located. Enter the path to the keystore file in this
required field. You can use system variables for portions of the path. For example you might enter
${USER_INSTALL ROOT}/etc/ws-security/myKeyStore.jks. This field is required for the custom keystore
configuration.

Type:

Specifies the type of the keystore file to use.

Password:

Specifies the password to use.

Confirm password:

Specifies the password to be use and confirms the one entered in the Password field.

Key:

Chapter 11. Securing web services 175

Use this section to specify information about the key.

Name:

Specifies the name of the key to use. Enter the name of the key to be used in this required field.
Alias:

Specifies the alias name of the key that you want to use. Enter the alias of the name of the key to use in
this required field.

Password:
Specifies the password for the key that you want to use.

You cannot set a password for public keys for asymmetric signature inbound and encryption outbound.
The Password and Confirm Password fields display only for the following:

Table 15. Keystore configuration for password and confirm password fields. The keystore is used for message
authentication and protection.

Client or server Asymmetric value Key

client asymmetric signature outbound AsymmetricBindinglnitiatorSignature TokenO
client asymmetric encryption inbound AsymmetricBindinglnitiatorEncryptionToken0
server asymmetric signature outbound AsymmetricBindingRecipientSignatureTokenO
server asymmetric encryption inbound AsymmetricBindingRecipientEncryptionToken0

Confirm password:

Specifies the confirmation of the password for the key that you want to use. Enter the password that you
entered in the Password field to confirm.

Similar to the Password field, you cannot confirm the password for public keys for asymmetric signature
inbound and encryption outbound.

Caller settings
Use this page to configure the caller settings. The caller specifies the token or message part that is used
for authentication.

You can configure the caller settings for message parts when you are editing a default cell or server
binding. You can also configure application specific bindings for tokens and message parts that are
required by the policy set.

To view this administrative console page when you are editing a general provider binding, complete the
following actions:
1. Click Services > Policy sets > General provider policy sets bindings.

2. Click the WS-Security policy in the Policies table.

3. Click the Authentication and protection link in the Main message security policy bindings section.
4. Click the Caller link in the Main message security policy bindings section.

5. Click New.

To view this administrative console page when you are configuring application specific bindings for tokens
and message parts that are required by the policy set, complete the following actions:

1. Click Applications > Application Types > WebSphere enterprise applications.

176 Securing WebSphere applications

2. Select an application that contains web services. The application must contain a service provider or a
service client.

3. Click the Service provider policy sets and bindings link in the Web Services Properties section. The
caller settings are available only for the service provider policy sets and bindings. The caller settings
are not available for service client policy sets and bindings.

4. Select a binding. You must have previously attached a policy set and assigned a application specific
binding.

5. Click the WS-Security policy in the Policies table.

6. Click the Caller link in the Main message security policy bindings section.

7. Click New.

Note: When you create a new caller it will automatically be assigned the next available order. You can
change the order of preference, as described in the Order section below.

This administrative console page applies only to Java API for XML Web Services (JAX-WS) applications.

Name
Specifies the name of the caller to use for authentication. Enter a caller name in this required field. This
arbitrary name identifies this caller setting.

Order

Specifies the order of preference for the callers. The order determines which caller will be utilized when
multiple authentication tokens are received.

You can change the order of preference by moving a caller up or down in the list. Click the checkbox next
to a caller name to select the caller, then click the Move up button to move the caller higher in the list, or
click the Move down button to move the caller to a lower position in the preference order.

Button Resulting Action
Move up Moves the order of the selected caller up in the caller list.
Move down Moves the order of the selected caller down in the caller

list.

Note: The order column displays only for bindings using the new namespace. If a binding with multiple
callers was migrated to the new namespace, then the callers do not have an order. In that case, an
error message is displayed. When this occurs, select a caller in the table and then click either
Move up or Move down to assign an order to each caller. Callers must have orders assigned
before you save the bindings or use the bindings with an application.

Caller identity local part
Specifies the local name of the caller to use for authentication. Enter a caller identity local name in this
required field.

When specifying an LTPA caller, use LTPA as the local name for a caller that uses an older binding, prior
to IBM WebSphere Application Server, Version 7.0. Newer bindings for IBM WebSphere Application
Server, Version 7.0 and later should use LTPAv2 as the local name. Specifying LTPAv2 allows both LTPA
and LTPAv2 tokens to be consumed, unless the Enforce token version option is selected on the token
consumer.

Table 16. Caller identity namespace URI field description. The table lists the possible values for the Caller identity
namespace URI field description.

Information Value

Default String

Chapter 11. Securing web services 177

Caller identity namespace URI
Specifies the uniform resource identifier (URI) of the caller to use for authentication. Enter a caller URI in
this field.

When specifying an LTPA caller, use http://www.ibm.com/websphere/appserver/tokentype/5.0.2 as the URI
for a caller that uses an older binding, prior to IBM WebSphere Application Server, Version 7.0. Newer
bindings for IBM WebSphere Application Server, Version 7.0 and later should use the
http://www.ibm.com/websphere/appserver/tokentype URI.

Table 17. Possible values for the caller identity. The table provides a list of the Caller identity local part and the
Caller identity namespace URI field values as applicable. A Caller identity namespace URI value is not needed
unless it is otherwise specified in the table. The caller identity is used for message authentication.

Caller identity namespace URI

Token type Caller identity local part

http://docs.oasis-open.org/wss/2004/01/0asis-200401-
wss-username-token-profile-1.0#UsernameToken

Username token 1.0

Username token 1.1 http://docs.oasis-open.org/wss/2004/01/oasis-200401-

wss-username-token-profile-1.0#UsernameToken

X509 certificate token http://docs.oasis-open.org/wss/2004/01/oasis-200401-

wss-x509-token-profile-1.0#X509v3

http://docs.oasis-open.org/wss/2004/01/oasis-200401-
wss-x509-token-profile-1.0#X509PKIPathv1

X509 certificates in a
PKIPath

A list of X509 certificates
and CRLs in a PKCS#7

http://docs.oasis-open.org/wss/2004/01/0asis-200401-
wss-x509-token-profile-1.0#PKCS7

LTPA token

LTPA

http://www.ibm.com/websphere/appserver/tokentype/5.0.2

LTPA token

LTPAvV2

http://www.ibm.com/websphere/appserver/tokentype

LTPA propagation token

LTPA_PROPAGATION

http://www.ibm.com/websphere/appserver/tokentype

SAML 1.1 token http://docs.oasis-open.org/wss/oasis-wss-saml-token-

profile-1.1#SAMLV1.1

http://docs.oasis-open.org/wss/oasis-wss-saml-token-
profile-1.1#SAMLV2.0

http://docs.oasis-open.org/wss/oasis-wss-kerberos-
token-profile-1.1#GSS_Kerberosv5_AP_REQ

SAML 2.0 token

Kerberos token

Note: If you specify a custom value type for a custom token, you must specify the Caller identity local part
and Caller identity namespace URI values. For example, you might enter Custom in the Caller
identity local part value field and http://www.ibm.com/custom in the Caller identity namespace URI
field.

Signing part reference
When the trusted identity is based on a signing token, select the signing part reference that represents the
message parts signed by that token.

If you select the Signing part reference option, you must specify a callback handler for the bindings to
work properly.

Use identity assertion
Specifies whether identity assertion is used when authenticating.

Select this check box if you want to use identity assertion. When you select this checkbox, the Trusted
identity local name and Trusted identity namespace URI fields are enabled.

Trusted identity local name
Specifies the trusted identity local name when the identity assertion is used.

If you select the Use identity assertion option and a trust token exists in the WS-Security policy, you
must provide a value for the Trusted identity local name field for the bindings to work properly.

178 Securing WebSphere applications

Trusted identity URI
Specifies the trusted identity uniform resource identifier (URI).

Callback handler
Specifies the class hame of the callback handler. Enter the class name of the callback handler in this field.

If you provide a value for the Trusted identity local name field and you do not set the token consumer for
the trust token to Trust any certificate, then you must set the value in this Callback handler field to
com.ibm.ws.wssecurity.impl.auth.callback.TrustedIdentityCallbackHandler.

When you provide a callback handler name, you must specify the trusted identities as callback handler
custom properties. For example:

property name="trustedId_0", value="CN=Bob,0=ACME,C=US"
property name="trustedId_1", value="userl"

JAAS login
Specifies the Java Authentication and Authorization Service (JAAS) application login. You can enter a
JAAS login, select one from the menu, or click New to add a new one.

For information on updating the Kerberos system JAAS login module for JAX-WS applications, read the
topic Updating the system JAAS login with the Kerberos login module.

Custom properties — Name
Specifies the name of the custom property.

Custom properties are not initially displayed in this column. Select one of the following actions for custom
properties:

Button Resulting Action

New Creates a new custom property entry. To add a custom
property, enter the name and value.

Edit Specifies that you can edit the custom property value. At
least one custom property must exist before this option is
displayed.

Delete Removes the selected custom property.

Custom properties — Value
Specifies the value of the custom property that you want to use. Use the Value field to add, edit, or delete
the value for a custom property.

Caller collection

The caller specifies the token or message part that you want to use for authentication. Use this
administrative console page to access, view and configure the caller settings for message parts.

To configure general bindings for tokens and message parts that are required by the policy set, complete
the following steps.

1. To access and configure the general bindings, click Services > Policy sets > General provider
policy set bindings. The caller settings are available only for the service provider policy sets and
bindings. The caller settings are not available for service client policy sets and bindings.

2. Click the WS-Security policy in the Policies table.
3. Click the Caller link in the Main message security policy bindings section.

To view and configure application specific bindings for tokens and message parts that are required by a
policy set, complete the following steps:

1. Click Applications > Application Types > WebSphere enterprise applications.

Chapter 11. Securing web services 179

2. Select an application that contains web services. The application must contain a service provider.

3. Click the Service provider policy sets and bindings link in the Web Services Properties section. The
caller settings are available only for the service provider policy sets and bindings. The caller settings
are not available for service client policy sets and bindings.

4. Select a binding. You must have previously attached a policy set and assigned an application specific
binding.

5. Click the WS-Security policy in the Policies table.

6. Click the Caller link in the Main message security policy bindings section.

This administrative console page applies only to Java API for XML Web Services (JAX-WS) applications.
Depending on your assigned security role when security is enabled, you might not have access to text
entry fields or buttons to create or edit configuration data. Review the administrative roles documentation

to learn more about the valid roles for the application server.

Name
Specifies the name of the caller to use for authentication. Select a caller name from this field.

The following actions are available to work with callers.

Button Resulting Action

New Opens the Caller settings page, which you use to add a
caller.

Delete Removes the selected caller.

Order

This number specifies the order of preference for the configured callers. If multiple caller tokens are found
in an incoming message, the caller used for authentication will be the one with highest priority, based on
decreasing order of preference.

You can change the order of preference using the Move Up and Move Down buttons.

Button Resulting Action

Move Up Moves the selected caller up in the order of preference, switching positions with the
immediately preceding caller. The selected caller is now preferred over the caller that
you demoted in the list.

Move Down Moves the selected caller lower in the order of preference, switching positions with the
caller following it. The demoted caller is now lower in preference than the caller that
was previously below it.

Caller Identity Local Part
Specifies the local identity part of the caller to use for authentication.

Caller Identity URI
Specifies the uniform resource identifier (URI) of the caller to use for authentication.

Message expiration settings

Use this page to define settings for message expiration, if and when messages expire. When you specify
message expiration, the message expires after the specified interval of time passes.

You can define message expiration settings for tokens and message parts when you are editing a default

cell or server binding. You can also configure application specific bindings for tokens and message parts
that are required by the policy set.

180 Securing WebSphere applications

To view this administrative console page when you are editing a default cell binding, complete the
following actions:

1. Click Services > Policy sets > Default policy set bindings.
2. Click the WS-Security policy in the Policies table.
3. Click the Message expiration link in the Main message security policy bindings section.

To view this administrative console page when you are configuring application specific bindings for tokens
and message parts that are required by the policy set, complete the following actions:

1. Click Applications > Application Types > WebSphere enterprise applications.

2. Select an application that contains web services. The application must contain a service provider or a
service client.

3. Click the Service provider policy sets and bindings link or the Service client policy sets and
bindings in the Web Services Properties section.

4. Select a binding. You must have previously attached a policy set and assigned a application specific
binding.

5. Click the WS-Security policy in the Policies table.

6. Click the Message expiration link in the Main message security policy bindings section.

This administrative console page applies only to Java API for XML Web Services (JAX-WS) applications.

Message expiration
Specifies whether message expiration is enabled. To enable message expiration, select this check box.
Leave it unchecked to disable message expiration.

Message timeout interval
Specifies the time, in minutes, for the message to time out if message expiration is enabled. This field is
enabled only when you select the Enable message expiration check box.

Actor roles settings

Use this page to define settings for SOAP actor roles. The SOAP actor, also known as the SOAP role,
defines the intermediary or ultimate recipient of a message.

To view this administrative console page use one of the following options:
1. Click Applications > Application Types > WebSphere enterprise applications.

2. Select an application that contains web services. The application must contain a service provider or a
service client.

3. Click the Service provider policy sets and bindings link or the Service client policy sets and
bindings in the Web Services Properties section.

4. Select a binding. The binding must have previously attached a policy set and assigned a application
specific binding.

5. Click the WS-Security policy in the Policies table.
6. Click the Actor roles link in the Main message security policy bindings section.

This administrative console page applies only to Java API for XML Web Services (JAX-WS) applications.

Inbound actor role URI
Specifies the name of the uniform resource identifier (URI) for the inbound actor role.

Outbound actor role URI
Specifies the name of the uniform resource identifier (URI) for the outbound actor role.

Chapter 11. Securing web services 181

Securing web services

The Web Services Security specification defines core facilities for protecting the integrity and confidentiality
of a message, and provides mechanisms for associating security-related claims with a message. Web
Services Security, an extension of the IBM web services engine, provides a quality of service.

Securing web services applications at the transport level

Transport-level security is a well-known and often used mechanism to secure HTTP Internet and intranet
communications. Transport level security can be used to secure web services messages. Transport-level
security functionality is independent from functionality that is provided by message-level security
(WS-Security) or HTTP basic authentication.

Before you begin

You can use either message-level security (WS-Security) or transport-level security, or a combination of
both. The following examples are common usage scenarios, but are not an exhaustive list of all possible
scenarios:

» Use message-level security when security is essential to the Web service application. HTTP basic
authentication uses a user name and password to authenticate a service client to a secure endpoint.
The basic authentication is encoded in the HTTP request that carries the SOAP message. When the
application server receives the HTTP request, the user name and password are retrieved and verified
using the authentication mechanism specific to the server.

Important: With message-level security, if you are not using the default outbound secure sockets layer
(SSL) port of 443, ensure that the dynamic outbound endpoint for SSL is configured
properly for your configuration.

» Use transport-level security to enable basic authentication. Transport-level security can be enabled or
disabled independently from message-level security. Transport-level security provides minimal security.
You can use this configuration when a web service is a client to another web service.

» Use SSL for confidentiality and integrity and HTTP Basic Authentication for authentication.

» Use SSL for confidentiality and integrity and WS-Security for authentication. For example, a Username
token or LTPA token can be used for authentication.

» Use WS-Security for both confidentiality and integrity, and authentication.
About this task

Transport-level security is based on Secure Sockets Layer (SSL) or Transport Layer Security (TLS) that
runs beneath HTTP. HTTP, the most used Internet communication protocol, is currently also the most
popular protocol for web services. HTTP is an inherently insecure protocol because all information is sent
in clear text between unauthenticated peers over an insecure network. To secure HTTP, transport-level
security can be applied.

Transport level security can be used to secure web services messages. However, transport-level security
functionality is independent from functionality that is provided by WS-Security or HTTP Basic
Authentication.

SSL and TLS provide security features including authentication, data protection, and cryptographic token
support for secure HTTP connections. To run with HTTPS, the service port address must be in the form
https://. The integrity and confidentiality of transport data, including SOAP messages and HTTP basic
authentication, is confirmed when you use SSL and TLS.

WebSphere Application Server uses the Java Secure Sockets Extension (JSSE) package to support SSL
and TLS.

182 Securing WebSphere applications

This task is one of several ways that you can configure the HTTP outbound transport level security for a
web service acting as a client to another Web service server. You can also configure the HTTP outbound
transport level security with an assembly tool or by using the Java properties. If you do not configure the
HTTP outbound transport level security, the web services runtime defers to the Java Platform, Enterprise
Edition (Java EE) security runtime in the WebSphere product for an effective Secure Sockets Layer (SSL)
configuration. If there is no SSL configuration with the Java EE security runtime in the WebSphere product,
the Java Secure Socket Extension (JSSE) system properties are used.

You can define additional HTTP transport properties for web services applications. Use the additional
properties to manage the connection pool for HTTP outbound connections, configure the content encoding
of the HTTP message, enable HTTP persistent connection, and resend the HTTP request when a timeout
occurs.

Procedure

1. Develop and assemble a web services application. You can configure and assemble the HTTP
outbound transport level security for the application with an assembly tool.

2. Deploy the application. For more information about deploying web services applications, read about
deploying Web services.

3. Configure transport level security for the application. You can use one of the following methods to
configure HTTP outbound transport level security.

« Configure HTTP outbound transport level security using the administrative console.
» Configure HTTP outbound transport-level security using Java properties.

4. Define additional HTTP transport properties for the Web services application. Use one of the following
methods to define additional HTTP transport properties:

« Configure additional HTTP transport properties using the JVM custom property panel in the
administrative console.

« Configure additional HTTP transport properties using an assembly tool.
Results

By completing these steps, you have secured web services applications at the transport level.

Authenticating web services clients using HTTP basic authentication

A simple way to provide authentication data for the service client is to authenticate to the protected service
endpoint by using HTTP basic authentication. HT TP basic authentication uses a user name and password
to authenticate a service client to a secure endpoint.

Before you begin

You can use either message-level security (WS-Security) or transport-level security:

» Use message-level security when security is essential to the web service application. HTTP basic
authentication uses a user name and password to authenticate a service client to a secure endpoint.
The basic authentication is encoded in the HTTP request that carries the SOAP message. When the
application server receives the HTTP request, the user name and password are retrieved and verified
using the authentication mechanism specific to the server.

» Use transport-level security to enable basic authentication. Transport-level security can be enabled or
disabled independently from message-level security. Transport-level security provides minimal security.
You can use this configuration when a web service is a client to another web service.

About this task

WebSphere Application Server can have several resources, including web services, protected by a Java
Platform, Enterprise Edition (Java EE) security model.

Chapter 11. Securing web services 183

HTTP basic authentication is orthogonal to the security support provided by WS-Security or HTTP Secure
Sockets Layer (SSL) configuration.

A simple way to provide authentication data for the service client is to authenticate to the protected service
endpoint using HTTP basic authentication. The basic authentication is encoded in the HTTP request that
carries the SOAP message. When the application server receives the HTTP request, the user name and
password are retrieved and verified using the authentication mechanism specific to the server.

Although the basic authentication data is base64-encoded, sending data over HTTPS is recommended.
The integrity and confidentiality of the data can be protected by the SSL protocol.

In some cases, a firewall is present using a pass-through HTTP proxy server. The HTTP proxy server
forwards the basic authentication data into the Java EE application server. The proxy server can also be
protected. Applications can specify the proxy data by setting properties in a stub object.

Procedure

1. Develop and assemble a web services application. You can configure and assemble HTTP
authentication for the application using an assembly tool, or programmatically. Modify the HTTP
properties programmatically if you want the values that are set programmatically to take precedence
over the values that are defined in the binding. If you configure HTTP basic authentication
programmatically, the properties are configured in the Stub or Call instance. However, you only can
programmatically configure HTTP proxy authentication.

2. Deploy the application. For more information about deploying web services applications, read about
deploying Web services.

3. Configure HTTP authentication for the application. If you choose to configure HTTP basic
authentication with the administrative console, the Web Services Security binding information is
modified.

Securing JAX-WS web services using message-level security

Web Services Security standards and profiles address how to provide message-level protection for
messages that are exchanged in a web service environment.

Before you begin

Before you begin this task, you must develop and deploy a JAX-WS application. See the topic "JAX-WS"
for more information.

About this task

Java API for XML-Based Web Services (JAX-WS) is the next generation web services programming model
complimenting the foundation provided by the Java API for XML-based RPC (JAX-RPC) programming
model. Using JAX-WS, development of web services and clients is simplified with greater platform
independence for Java applications through the use of dynamic proxies and Java annotations. JAX-WS
simplifies application development through support of a standard, annotation-based model to develop web
service applications and clients. A required part of the Java Platform, Enterprise Edition 5 (Java EE 5),
JAX-WS is also known as JSR 224.

JAX-WS applications can be secured with Web Services Security in one of two ways. The application can
be secured using policy sets, or through the use of the Web Services Security APl (WSS API). The WSS
API can only be used to secure a JAX-WS client application. The following sections describe both
methods.

Procedure
1. Learn about Web Services Security.

184 Securing WebSphere applications

2. Decide which programming model, JAX-WS or JAX-RPC, works best for securing your web services
applications. This procedure uses the JAX-WS programming model.

3. Configure the security bindings, or migrate an application and associated bindings. For more
information about bindings, read about defining and managing policy set bindings.

4. Develop and assemble a JAX-WS application.
5. Deploy the JAX-WS application.

6. Configure and administer the Web Services Security runtime environment. Read about signing and
encrypting message parts using policy sets to find out how to specify the required message-level
protection. The policy specifies what protection will be applied, including which message parts to sign
or encrypt, and the token types and algorithms to use. For complete information about policy sets, read
about managing policy sets using the administrative console.

7. Configure policy sets through metadata exchange (WS-MetadataExchange). In WebSphere Application
Server Version 7.0 and later, using JAX-WS, you can enable the Web Services Metadata Exchange
(WS-MetadataExchange) protocol so that the policy configuration of the service provider is included in
the WSDL and is available to a WS-MetadataExchange GetMetadata request. One advantage of using
the WS-MetadataExhange protocol is that you can apply message-level security to
WS-MetadataExchange GetMetadata requests by using a suitable system policy set. Another
advantage is that the client does not have to match the provider configuration, or have a policy set
attached. The client only needs the binding information, and then the client can operate based on the
provider policy, or based on the intersection of the client and provider policies. You can configure a
service provider to share its policy configuration using the administrative console. For more
information, read the following topics:

« Configuring security for a WS-MetadataExchange request
» Configuring a service provider to share its policy configuration
» Transformation of policy and binding assertions for WSDL

Securing JAX-RPC web services using message-level security

Standards and profiles address how to provide protection for messages that are exchanged in a web
service environment.

Before you begin

best-practices: IBM WebSphere Application Server supports the Java API for XML-Based Web Services
(JAX-WS) programming model and the Java API for XML-based RPC (JAX-RPC)
programming model. JAX-WS is the next generation web services programming model
extending the foundation provided by the JAX-RPC programming model. Using the
strategic JAX-WS programming model, development of web services and clients is
simplified through support of a standards-based annotations model. Although the
JAX-RPC programming model and applications are still supported, take advantage of the
easy-to-implement JAX-WS programming model to develop new web services
applications and clients.

About this task

To secure web services with WebSphere Application Server, you must specify several different
configurations. Although there is not a specific sequence in which you must specify these different
configurations, some configurations reference other configurations. See ['Web Services Security]
lconfiguration considerations” on page 215.|

Web service security is supported in the managed web service container. To establish a managed
environment and to enforce constraints for Web Services Security, you must perform a Java Naming and
Directory Interface (JNDI) lookup on the client to resolve the service reference.

Chapter 11. Securing web services 185

Because of the relationship between the different Web Services Security configurations, it is recommended
that you specify the configurations on each level of the configuration in the following order. You can
choose to configure Web Services Security for the application level, the server level or the cell level as it
depends upon your environment and security needs.

Procedure

1. Learn about Web Services Security.

2. Decide which programming model, JAX-WS or JAX-RPC, works best for securing your web services
applications. This procedure uses the JAX-RPC programming model.

3. Configure Web Services Security. You can choose to configure Web Services Security for the
application level, the server level, the cell level, or the platform level, depending on your environment
and security needs. Cell-level configuration is supported only in a network deployment environment.

4. Specify the application-level configuration.

5. Specify the server-level configuration.

6. Specify the cell-level configuration. Cell-level configuration is supported only in a network deployment
environment.

7. Specify the platform-level configuration.

8. Develop and assemble a JAX-RPC application, or migrate an existing application. Assemble your Web
Services Security-enabled application using an assembly tool. For more information, read about
assembly tools. Prior to modifying a Web Services Security-enabled application in the WebSphere
Application Server administrative console, you must assemble your application using an assembly tool.
Although you can modify some of the application settings using the administrative console, you must
configure the generator and the consumer security constraints using an assembly tool.

9. Deploy the JAX-RPC application.
Results

After completing these steps for WebSphere Application Server, you have secured web services.

Securing web services using Security Markup Assertion Language
(SAML)

The Security Assertion Markup Language (SAML) is an XML-based OASIS standard for exchanging user
identity and security attributes information. Using SAML, a client can communicate assertions regarding
the identity, attributes, and entitlements of a SOAP message. You can apply policy sets to JAX-WS
applications to use SAML assertions in web services messages and in web services usage scenarios. Use
SAML assertions to represent user identity and user security attributes, and optionally, to sign and to
encrypt SOAP message elements.

Procedure
1. Learn about SAML.
2. Configure SAML application support.

Security Assertion Markup Language (SAML) is an XML-based, OASIS standard for exchanging user
identity and security attributes information. You can use the SAML function to apply a default policy to
use SAML assertions in web services messages and in web services usage scenarios. In a typical
SAML usage scenario, you authenticate to a security domain and request an identity provider to issue
SAML assertions.

In WebSphere Application Server Version 7.0.0.7 and later, to use the SAML default policy sets,
sample SAML general bindings, and JAAS login configuration settings for SAML, you were required to
set up the SAML configuration, which is stored in a profile. In WebSphere Application Server Version
8.5, the SAML feature is available in all profiles by default.

3. Develop and assemble a SAML application.

186 Securing WebSphere applications

4. Deploy the SAML application.

Authenticating web services using generic security token login
modules

You can use the generic security token login modules to issue, validate, and exchange security tokens
using an external Security Token Service (STS).

Procedure
1. Learn about generic security token login modules.

The generic security token login modules generate and consume tokens using WS-Trust Issue and
WS-Trust Validate requests. As a result of these requests, the login module issues, validates, or
exchanges tokens with a WS-Trust Security Token Service, such as the service that is provided with
the IBM Tivoli Federated Identity Manager.

2. Administering a generic security token login module.

To use the generic security login module features, you must configure the login module and the
callback handler for both the token generator and the token consumer.

Web Services Security concepts

The Web Services Security specification defines core facilities for protecting the integrity and confidentiality
of a message, and provides mechanisms for associating security-related claims with a message.

Web Services Security concepts
The Web Services Security specification defines core facilities for protecting the integrity and confidentiality
of a message, and provides mechanisms for associating security-related claims with a message.

What is new for securing web services:

In WebSphere Application Server, there are many security enhancements for web services. The
enhancements include supporting sections of the Web Services Security (WS-Security) specifications and
providing architectural support for plugging in and extending the capabilities of security tokens.

Enhancements from the supported Web Services Security specifications

Since September 2002, the Organization for the Advancement of Structured Information Standards
(OASIS) has been developing the Web Services Security (WS-Security) for SOAP message standard.

In April 2004, OASIS released the Web Services Security Version 1.0 specification, which is a major
milestone for securing web services. In Feburary 2006, the specification was updated to Version 1.1. This
specification is the foundation for other Web Services Security specifications and is also the basis for the
Basic Security Profile (WS- BSP) Version 1.0 specification, which was approved in March 2007.See the
[Basic Security Profilel web page for more information.

Web Services Security Version 1.1 is a strategic move towards Web Services Security interoperability, and
an important part of the Web Services Security roadmap. For more information on the Web Services
Security roadmap, see |Security in a Web Services World: A Proposed Architecture and Roadmapl

WebSphere Application Server supports the following OASIS specifications and WS-I profiles:
« |OASIS: Web Services Security: SOAP Message Security 1.1 (WS-Security 2004)|

- |OASIS: Web Services Security: UsernameToken Profile 1.1

- |OASIS: Web Services Security: Kerberos Token Profile 1.1|

» [OASIS: WS-SecurityPolicy 1.2
+ [OASIS: WS-SecureConversation 1.3

Chapter 11. Securing web services 187

http://www.ws-i.org/Profiles/BasicSecurityProfile-1.0.html
http://www.ibm.com/developerworks/webservices/library/ws-secmap/
http://www.oasis-open.org/committees/download.php/16790/wss-v1.1-spec-os-SOAPMessageSecurity.pdf
http://www.oasis-open.org/committees/download.php/16782/wss-v1.1-spec-os-UsernameTokenProfile.pdf
http://www.oasis-open.org/committees/download.php/16788/wss-v1.1-spec-os-KerberosTokenProfile.pdf
http://docs.oasis-open.org/ws-sx/ws-securitypolicy/200702/ws-securitypolicy-1.2-spec-os.pdf
http://docs.oasis-open.org/ws-sx/ws-secureconversation/200512/ws-secureconversation-1.3-os.pdf

- [OASIS: WS-Trust 1.3|
+ [Basic Security Profile (WS- BSP) 1.0
- [OASIS: Web Services Security: SAML Token Profile 1.1

The Security Assertion Markup Language (SAML) is an XML-based OASIS standard for exchanging user
identity and security attributes information. Using SAML, a client can communicate assertions regarding
the identity, attributes, and entitlements of a SOAP message. Using the SAML function in WebSphere
Application Server, you can apply policy sets to JAX-WS applications to use SAML assertions in web
services messages and in web services usage scenarios. Use SAML assertions to represent user identity
and user security attributes, and optionally, to sign and to encrypt SOAP message elements.

For details on what parts of the previous specifications are supported in WebSphere Application Server,
see [‘Supported functionality from OASIS specifications” on page 194

High level features overview in WebSphere Application Server

In WebSphere Application Server, the Web Services Security for SOAP Message Version 1.1 specification
is designed to be flexible and accommodate the requirements of Web services. For example, the
specification does not have a mandatory security token definition. Instead, the specification defines a
generic mechanism to associate the security token with a SOAP message. The use of security tokens is
defined in the various Version 1.0 and 1.1 security token profiles, such as:

+ [The Username Token Profile]
+ [The X.509 Token Profile]
+ [The Kerberos Token Profile|

For more information on security token profile development at OASIS, see [Organization for the]
I[Advancement of Structured Information Standards}

The Web Services Security for SOAP Message Version 1.1 updates the Web Services Security for SOAP
Message core specification and the various security token profiles. For this release, WebSphere
Application Server implements the Username Token Profile 1.1 and the X.509 Token Profile 1.1, which
includes support for the Thumbprint type of security token reference. In addition, it supports the signature
confirmation and encrypted header portions of the Web Services Security Version 1.1 standard.

Important: The wire format (such as namespaces) in the WS-SecureConversation and WS-Trust 1.3
specification has changed. WebSphere Application Server tolerates requests formatted
according to both the Submission Drafts and version 1.3 specifications, but you must ensure
that the correct version is used when clients are communicating with a Web Services Feature
Pack service provider. You can disable tolerance of the older format for WS-
SecureConversation and WS-Trust 1.3 endpoints. Submission Drafts requests are not
interoperable with version 1.3 standards.

WebSphere Application Server supports pluggable security tokens. The pluggable architecture is enhanced
to support the Web Services Security specifications, other profiles, and other Web Services Security
specifications. You can learn more about the pluggable security token framework for JAX-RPC web
services, and associating custom security tokens with SOAP messages, by reading these articles on the
IBM developerWorks® website:

* [Security for JAX-RPC Web services, Part 1: Generating custom tokens|
+ |Security for JAX-RPC Web services, Part 2: Consuming custom tokens|

WebSphere Application Server includes the following key enhancements:
» Support for the LTPA version 2 token

» Support for configuration of multiple callers, and an order attribute on the caller to determine which
caller is used for the WebSphere credential

188 Securing WebSphere applications

http://docs.oasis-open.org/ws-sx/ws-trust/200512/ws-trust-1.3-os.pdf
http://www.ws-i.org/Profiles/BasicSecurityProfile-1.0.html
http://www.oasis-open.org/committees/download.php/16768/wss-v1.1-spec-os-SAMLTokenProfile.pdf
http://www.oasis-open.org/committees/download.php/16782/wss-v1.1-spec-os-UsernameTokenProfile.pdf
http://www.oasis-open.org/committees/download.php/16785/wss-v1.1-spec-os-x509TokenProfile.pdf
http://www.oasis-open.org/committees/download.php/16788/wss-v1.1-spec-os-KerberosTokenProfile.pdf
http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=wss
http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=wss
http://www.ibm.com/developerworks/websphere/library/techarticles/0803_chung/0803_chung.html
http://www.ibm.com/developerworks/websphere/library/techarticles/0804_chung/0804_chung.html

» Support for the published WS-SecurityPolicy version 1.2 specification embedded in WSDL

» Support for the WS-SecureConversation version 1.3 specification and the WS-Trust version 1.3
specification (used by WS-SecureConversation)

» Support for Kerberos token as defined in the WS-Kerberos Token Profile version 1.1 specification

For more information on some of these enhancements, see [‘Web Services Security enhancements” on|

Configuration of Web Services Security

WebSphere Application Server uses the policy set model for implementing the Web Services Security
Version 1.1 specification, including the Username token Version 1.1 profile, support for the Kerberos and
LTPA v2 tokens, and the X.509 token version 1.1 profile. Policy sets combine configuration settings,
including those for transport and message level configuration, such as WS-Addressing,
WS-ReliableMessaging, WS-SecureConversation, and WS-Security. For more information on policy sets,
refer to the topic Managing policy sets using the administrative console.

You can use the administrative console to configure the Web Services Security binding of a deployed
application with Web Services Security constraints that are defined in the policy set.

For the X.509 Certificate Token Profile, one new type of security token reference is the Thumbprint
reference, which is specified in the binding. WebSphere Application Server now supports creating and
authenticating a security token by using a security token reference (STR) with a key identifier and a
Thumbprint in the <KeyInfo> element. The Thumbprint key information type requires that there be a
keystore with the public and private key pair instead of a shared key. To use the Thumbprint of the
specified certificate, specify the keyInfo type THUMBPRINT in the bindings.

For example, a decryption key is referenced by means of the thumbprint of an associated certificate. The
certificate is not included in the message. Instead, the <ds:Keylnfo> element contains a
<wsse:SecurityTokenReference> element that specified the thumbprint of the specified certificate by
means of the http://docs.oasis-open.org/wss/oasis-wss-soap-message-security-1.1#ThumbprintSHA1
attribute of the <wsse:Keyldentifier> element.

To take advantage of implementations associated with the Web Services Security Version 1.1 specification,
you must:

» Ensure that your applications use the Java API for XML Web Services (JAX-WS) programming model.
* Re-configure the Web Services Security constraints in the new policy set and binding format.

WebSphere Application Server provides the following tools that you can use to edit the policy set file and
the binding file:

IBM assembly tools
You can use IBM assembly tools to develop web services and configure the policy set and the
binding file for Web Services Security. The tools enable you to assemble both web and Enterprise
JavaBeans (EJB) modules. The assembly tools do not support direct editing of policy sets, but can
import policy sets from the application server, and then attach the modified policy sets to the
service. For more information, read about assembly tools.

Note: You can use policy sets only with Java API for XML-Based Web Services (JAX-WS)
applications. You cannot use policy sets with Java API for XML-based RPC (JAX-RPC)
applications.

WebSphere Application Server administrative console
You can use the administrative console to configure the Web Services Security binding of a
deployed application with Web Services Security constraints that are defined in the policy set.

Chapter 11. Securing web services 189

What is not supported

Web service security is still fairly new and some of the standards are still being defined or standardized.
The following functionality is not supported in WebSphere Application Server:

» JSR-183 (Java API for Web Services Security: SOAP Message Security 1.0 specification). See the
standard documentation for more information: JSR-183 (Java API for Web Services Security: SOAP]
|Message Security 1.0 specification)L

» Application programming interfaces (API) do not exist for Web Services Security in WebSphere
Application Server Versions 6.0.x and later.

» SAML token profile is not supported out of the box.
* REL token profile is not supported.
* SwaA profile is not supported

What is supported by the IBM Software Development Kit (SDK)

The following standards exist for the Java application programming interface for XML security and Web
Services Security:

+ [JSR-105 (Java API for XML-Signature XPath Filter Version 2.0
W3C Recommendation, November 2002

+ [JSR-106 (Java API for XML Encryption Syntax and Processing)
W3C Recommendation, December 2002

For more information on the IBM SDK for Java Version 6, see the security information documentation.

For information on what is supported for Web Services Security in WebSphere Application Server, see
[‘Supported functionality from OASIS specifications” on page 194

Web Services Security enhancements:

WebSphere Application Server includes a number of enhancements for securing web services. For
example, policy sets are supported in WebSphere Application Server Version 6.1 Feature Pack for Web
Services, and later, to simplify security configuration for web services.

Building your applications

The Web Services Security runtime implementation used by WebSphere Application Server Version 8 is
based on the Java API for XML Web Services (JAX-WS) programming model. The JAX-WS runtime
environment is based on Apache Open Source Axis2, and the data model is AXIOM. Instead of
deployment descriptor and bindings, a policy set is used for configuration. You can use the WebSphere
Application Server administrative console to edit the application binding files associated with the policy
sets. The JAX-WS runtime environment is supported for the WebSphere Application Server V6.1 Feature
Pack for Web Services, and later.

The JAX-RPC programming model, which uses deployment descriptors and bindings, is still supported.
Read the topic ISecuring JAX-RPC Web services using message level security| for more information.

Using policy sets
Use policy sets to simplify your web service Quality of Service configuration.

Note: Policy sets can only be used with JAX-WS applications, in WebSphere Application Server V6.1
Feature Pack for Web Services, and later. Policy sets cannot be used for JAX-RPC applications.

190 Securing WebSphere applications

http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-soap-message-security-1.0.pdf
http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-soap-message-security-1.0.pdf
http://www.w3.org/TR/xmldsig-filter2
http://www.w3.org/TR/xmlenc-core

Policy sets combine configuration settings, including those for transport and message level configuration,
such as Web Services Addressing (WS-Addressing), Web Services Reliable Messaging
(WS-ReliableMessaging), and Web Services Security (WS-Security), which includes Secure Conversation
(WS-SecureConversation).

Managing trust policies

Web Services Security Trust (WS-Trust) provides the ability for an endpoint to issue a security context
token for Web Services Secure Conversation (WS-SecureConversation). The token issuing support is
limited to the security context token. Trust policy management defines a policy for each of the trust service
operations, such as issuing, cancelling, validating, and renewing a token. A client's bootstrap policies must
correspond to the WebSphere Application Server trust service policies.

Securing session-based messages

Web Services Secure Conversation provides a secured session for long running message exchanges and
leveraging symmetric cryptographic algorithm. WS-SecureConversation provides the basic security for
securing session-based messages exchange patterns, such as Web Services Security Reliable Messaging
(WS-ReliableMessaging).

Updating message-level security

Web Services Security (WS-Security) Version 1.1 supports the following functions that update the
message-level security.

» Signature confirmation
* Encrypted headers

Signature confirmation enhances the protection of XML digital signature security. The
<SignatureConfirmation> element indicates that the responder has processed the signature in the request,
and the signature confirmation ensures that the signature is indeed processed by the intended recipient.
To process signature confirmation correctly, the initiator must preserve the signatures during the request
generation processing and later must retrieve the signatures for confirmation checks even with the
stateless nature of web services and the different message exchange patterns. You enable signature
confirmation by configuring the policy.

The encrypted header element provides a standard way of encrypting SOAP headers, which helps
inter-operability. As defined in the SOAP message security specification, the <EncryptedHeader> element
indicates that a specific SOAP header (or set of headers) must be protected. Encrypting SOAP headers
and parts helps to provide more secure message-level security. The EncryptedHeader element ensures
compliance with the SOAP mustUnderstand processing guidelines and prevents disclosure of information
contained in attributes on a SOAP header block.

Using identity assertion

In a secured environment such as an intranet, a secure sockets layer (SSL) connection or through a
Virtual Private Network (VPN), it is useful to send the requester identity only without credentials, such as
password, with other trusted credentials, such as the server identity. WebSphere Application Server
supports the following types of identity assertions:

* A username token without a password
* An X.509 Token for a X.509 certificate

For more information about identity assertion, read the topic Trusted ID evaluator.

Chapter 11. Securing web services 191

Signing or encrypting data with a custom token

For the JAX-RPC programming model, the key locator, or the
com.ibm.wsspi.wssecurity.keyinfo.KeyLocator Java interface, is enhanced to support the flexibility of the
specification. The key locator is responsible for locating the key. The local JAAS Subject is passed into the
KeyLocator.getKey() method in the context. The key locator implementation can derive the key from the
token, which is created by the token generator or the token consumer, to sign a message, to verify the
signature within a message, to encrypt a message, or to decrypt a message. The
com.ibm.wsspi.wssecurity.keyinfo.KeyLocator Java interface is different from the version in WebSphere
Application Server Version 5.x. The com.ibm.wsspi.wssecurity.config.KeyLocator interface from Version 5.x
is deprecated. There is no automatic migration for the key locator from Version 5.x to Versions 6 and later.
You must migrate the source code for the Version 5.x key locator implementation to the key locator
programming model for Version 6 and later.

For the JAX-WS programming model, the pluggable token framework reuses the same framework from the
WSS API. The same implementation for creating and validating a security token can be used in both the
Web Services Security run time and the WSS API application. This simplifies the SPI programming model
and makes it easier to add new or custom security token types. The redesigned SPI consists of the
following interfaces:

* The JAAS CallbackHandler and JAAS Login Module create security tokens on the generator side and
validate, or authenticate, security tokens on the consumer side.

» The Security Token interface, com.ibm.websphere.wssecurity.wssapi.token.SecurityToken, represents
the security token that has methods to get the identity, XML format and cryptographic keys.

When using JAX-WS, the following interfaces are no longer required:

» Token Generator (com.ibm.wsspi.wssecurity.token. TokenGeneratorComponent)

» Token Consumer (com.ibm.wsspi.wssecurity.token. TokenConsumerComponent)

» Key Locator (com.ibm.wsspi.wssecurity.keyinfo.KeyLocator)

You can learn more about custom security tokens by reading these articles on the IBM developerWorks
website:

« [Security for JAX-RPC Web services, Part 1: Generating custom tokens|
* [Security for JAX-RPC Web services, Part 2: Consuming custom tokens|

Signing or encrypting any XML element

An XPath expression is used for selecting which XML element to sign or encrypt. However, an envelope
signature is used when you sign the SOAP envelope, SOAP header, or Web Services Security header. In
JAX-RPC web services, the XPath expression is specified in the application deployment descriptor. In
JAX-WS web services, the XPath expression is specified in the WS-Security policy of the policy set.

The JAX-WS programming model uses policy sets to indicate the message parts where security should be
applied. For example, the <Body> assertion is used to indicate that the body of the SOAP message is
signed or encrypted. Another example is the <Header> assertion, where the QName of the SOAP header
to be signed or encrypted is specified.

Signing or encrypting SOAP headers

The OASIS Web Services Security (WS-Security) Version 1.1 support provides for a standard way of
encrypting and signing SOAP headers. To sign or encrypt SOAP messages, specify the QName to select
header elements in the SOAP header of the SOAP message.

You can configure policy sets for signing or encrypting either by using the administrative console or by
using Web Services Security APIs (WSS APIs). For more details, see the topic Securing message parts
using the administrative console.

192 Securing WebSphere applications

http://www.ibm.com/developerworks/websphere/library/techarticles/0803_chung/0803_chung.html
http://www.ibm.com/developerworks/websphere/library/techarticles/0804_chung/0804_chung.html

For signing, specify the following:

Name This optional attribute indicates the local name of the SOAP header to be integrity protected. If this
attribute is not specified, all SOAP headers whose namespace matches the Namespace attribute
are to be protected.

Namespace
This required attribute indicates the namespace of the SOAP headers to be integrity protected.

For encrypting, specify the following:

Name This optional attribute indicates the local name of the SOAP header to be confidentiality protected.
If this attribute is not specified, all SOAP headers whose namespace matches the Namespace
attribute are to be protected.

Namespace
This required attribute indicates the namespace of the SOAP header(s) to be confidentiality
protected.

This results in an <EncryptedHeader> element that contains the <EncryptedData> element.

For Web Services Security Version 1.0 behavior, specify the
com.ibm.wsspi.wssecurity.encryptedHeader.generate. WSS1.0 property with a value of true in
Encryptioninfo in the bindings. Specifying this property results in an <EncryptedData> element.

For Web Services Security Version 1.1 behavior that is equivalent to WebSphere Application Server
versions prior to version 7.0, specify the

com.ibm.wsspi.wssecurity.encryptedHeader.generate. WSS1.1.pre.V7 property with a value of true on the
<encryptioninfo> element in the binding. When this property is specified, the <EncryptedHeader> element
includes a wsu:ld parameter and the <EncryptedData> element omits the Id parameter. This property
should only be used if compliance with Basic Security Profile 1.1 is not required and it is necessary to
send <EncryptedHeader> elements to a client or server that uses the WebSphere Application Server
Version 5.1 Feature Pack for Web Services.

Supporting LTPA

Lightweight Third Party Authentication (LTPA) is supported as a binary security token in Web Services
Security. Web Services Security supports both LTPA (version 1) and LTPA version 2 tokens. The LTPA
version 2 token, which is more secure than version 1, is supported in WebSphere Application Server
version 7.0 and later.

Extending the support for timestamps

You can insert a timestamp in other elements during the signing process besides the Web Services
Security header. This timestamp provides a mechanism for adding a time limit to an element. This support
is an extension for WebSphere Application Server. Other vendor implementations might not have the ability
to consume a message that is generated with an additional timestamp that is inserted in the message.

Extending the support for nonce
You can insert a nonce, which is a randomly generated value, in other elements beside the Username
token. The nonce is used to reduce the chance of a replay attack. This support is an extension for

WebSphere Application Server. Other vendor implementations might not have the ability to consume
messages with a nonce that is inserted into elements other than a Username token.

Chapter 11. Securing web services 193

Supporting distributed nonce caching

Distributed nonce caching is a new feature for web services in WebSphere Application Server Versions 6
and later that enables you to replicate nonce data between servers in a cluster. For example, you might
have application server A and application server B in cluster C. If application server A accepts a nonce
with a value of X, then application server B creates a SoapSecurityException if it receives the nonce with
the same value within a specified period of time.

Important: The distributed nonce caching feature uses the WebSphere Application Server data replication
service (DRS). The data in the local cache is pushed to the cache in other servers in the
same replication domain. The replication is an out-of-process call and, in some cases, is a
remote call. Therefore, there is a possible delay in replication while the content of the cache in
each application server within the cluster is updated. The delay might be due to network
traffic, network workload, machine workload, and so on. For adequate security protection, you
must enable appropriate security for the DRS cache. See the topic Multi-broker replication
domains for more information.

Caching the X.509 certificate

WebSphere Application Server caches the X.509 certificates it receives, by default, to avoid certificate path
validation and improve its performance. However, this change might lead to security exposure. You can
disable X.509 certificate caching by using the following steps:

On the cell level:

» Click Security > Web services.

» Under Additional properties, click Properties > New.

* In the Property name field, type com.ibm.ws.wssecurity.config.token.certificate.useCache.
* In the Property value field, type false.

On the server level:

» Click Servers > Application servers > server_name .

* Under Security, click Web services: Default bindings for Web Services Security.

» Under Additional properties, click Properties > New.

* In the Property name field, type com.ibm.ws.wssecurity.config.token.certificate.useCache.
* In the Property value field, type false.

Providing support for a certificate revocation list

The certificate revocation list (CRL) in WebSphere Application Server is used to enhance certificate path
validation. You can specify a CRL in the collection certificate store for validation. You can also encode a
CRL in an X.509 token using PKCS#7 encoding. However, WebSphere Application Server Version 6 and
later do not support X509PKIPathv1 CRL encoding in a X.509 token.

Important: The PKCS#7 encoding was tested with the IBM certificate path (IBM CertPath) provider only.
The encoding is not supported for other certificate path providers.

Supported functionality from OASIS specifications:

The application server supports the Organization for the Advancement of Structured Information (OASIS)
Web Services Security (WS-Security) specifications.

WebSphere Application Server supports these OASIS Web Services Security Version 1.0 specifications.
+ [OASIS: Web Services Security: SOAP Message Security 1.0 (WS-Security 2004)|

194 Securing WebSphere applications

http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-soap-message-security-1.0.pdf

« [OASIS: Web Services Security: UsernameToken Profile 1.0
+ [OASIS: Web Services Security X.509 Certificate Token Profile 1.0

In WebSphere Application Server Version 6.1 Feature Pack for Web Services, and later, support for the
OASIS standards has been updated to the latest versions of Web Services Security (WS-Security)
specifications and tokens. Web Services Security Version 1.1 provides better security verification for
signature, a standard way of encrypting SOAP headers, and meets the requirement from some of the
inter-operability scenarios that use features from Web Services Security Version 1.1.

» |OASIS: Web Services Security: SOAP Message Security 1.1 (WS-Security 2004) OASIS Standardl
Specification, 1 February 2006

» |OASIS: Web Services Security UsernameToken Profile 1.1 (Standard Specification, 1 February 2006)|
- |OASIS: Web Services Security X.509 Certificate Token Profile 1.1 (Standard Specification, 1 February|

2006)]

The following standards are supported only in WebSphere Application Server Version 7.0 and later.
« [WS-Security Kerberos Token Profile 1.1|

+ [WS-SecureConversation Version 1.3|

+ [WS-Trust Version 1.3]

+ [WS-SecurityPolicy Version 1.2

WS-SecurityPolicy support is only available for Web Services Metadata Exchange (WS-
MetadataExchange) scenarios where the assertions are embedded in the WSDL file. For more information,
read the WS-MetadataExchange requests topic.

In 2007, the OASIS Web Services Secure Exchange Technical Committee (WS-SX) produced and
approved the following specifications. Portions of these specifications are supported by WebSphere
Application Server Version 7 and later.

+ [WS-SecureConversation|

'

+ [WS-SecurityPolicy|

OASIS: Web Services Security SOAP Message Security 1.0 and 1.1

The following table shows the aspects of the OASIS: Web Services Security: SOAP Message Security 1.0
and 1.1 specifications that are supported in WebSphere Application Server Versions 6 and later.

Table 18. Aspects of OASIS SOAP Message Security standard supported in WebSphere Application Server. Use the
table to determine which aspects of the OASIS standard are supported.
Supported topic Specific aspect that is supported

Security header * @S11:actor (for an intermediary)

* @S11:mustUnderstand

* @S12:mustUnderstand

* @S12:role (S12 is the namespace prefix for http://www.w3.0rg/2003/05/soap-envelope when using SOAP Version 1.2)

Security tokens « Username token (user name and password)
» Binary security token (X.509 and Lightweight Third Party Authentication (LTPA)
» Custom token

— Other binary security token

— XML token
Note: WebSphere Application Server does not provide an implementation, but you can use an XML token with
plug-in point.

Chapter 11. Securing web services 195

http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-username-token-profile-1.0.pdf
http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-x509-token-profile-1.0.pdf
http://www.oasis-open.org/committees/download.php/16790/wss-v1.1-spec-os-SOAPMessageSecurity.pdf
http://www.oasis-open.org/committees/download.php/16790/wss-v1.1-spec-os-SOAPMessageSecurity.pdf
http://www.oasis-open.org/committees/download.php/16782/wss-v1.1-spec-os-UsernameTokenProfile.pdf
http://www.oasis-open.org/committees/download.php/16785/wss-v1.1-spec-os-x509TokenProfile.pdf
http://www.oasis-open.org/committees/download.php/16785/wss-v1.1-spec-os-x509TokenProfile.pdf
http://www.oasis-open.org/committees/download.php/16788/wss-v1.1-spec-os-KerberosTokenProfile.pdf
http://docs.oasis-open.org/ws-sx/ws-secureconversation/200512/ws-secureconversation-1.3-os.pdf
http://docs.oasis-open.org/ws-sx/ws-trust/200512/ws-trust-1.3-os.pdf
http://docs.oasis-open.org/ws-sx/ws-securitypolicy/200702/ws-securitypolicy-1.2-spec-os.pdf
http://docs.oasis-open.org/ws-sx/ws-secureconversation/200512/ws-secureconversation-1.3-os.pdf
http://docs.oasis-open.org/ws-sx/ws-trust/200512/ws-trust-1.3-os.pdf
http://docs.oasis-open.org/ws-sx/ws-securitypolicy/200702/ws-securitypolicy-1.2-spec-os.pdf

Table 18. Aspects of OASIS SOAP Message Security standard supported in WebSphere Application
Server (continued). Use the table to determine which aspects of the OASIS standard are supported.

Supported topic Specific aspect that is supported

Token references - Direct reference

« Key identifier
* Key name
* Embedded reference

Signature Signature confirmation

Signature algorithms - Digest

SHA1 http://www.w3.0rg/2000/09/xmldsig#sha1l
SHA256 http://www.w3.0rg/2001/04/xmlenc#sha256

SHA512 http://www.w3.0rg/2001/04/xmlenc#sha512
« MAC
HMAC-SHA1
http://www.w3.0rg/2000/09/xmldsig#hmac-sha1l
« Signature

DSA with SHA1
http://www.w3.0rg/2000/09/xmldsig#dsa-shal

Do not use this algorithm if you want your configured application to be in compliance with the Basic Security
Profile (BSP)

RSA with SHA1
http://www.w3.0rg/2000/09/xmldsig#rsa-sha1

« Canonicalization

Canonical XML (with comments)
http://www.w3.0rg/TR/2001/REC-xml-c14n-20010315#WithComments

Canonical XML (without comments)
http://www.w3.0rg/TR/2001/REC-xml-c14n-20010315

Exclusive XML canonicalization (with comments)
http://www.w3.0rg/2001/10/xml-exc-c14n#WithComments

Exclusive XML canonicalization (without comments)
http://www.w3.0rg/2001/10/xml-exc-c14n#

* Transform

STR transform
http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-soap-message-security-1.0#STR-Transform

http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-soapmessage- security-1.0#STR-Transform
XPath http://www.w3.0rg/TR/1999/REC-xpath-19991116

Do not use the original XPATH transform if you want your configured application to be in compliance with the
Basic Security Profile (BSP).

Note: When referring to an element in a SECURE_ENVELOPE that does not carry an attribute of type ID
from a ds:Reference in a SIGNATURE, you must use the XPATH Filter 2.0 Transform, http://www.w3.org/
2002/06/xmldsig-filter2

Enveloped signature
http://www.w3.0rg/2000/09/xmldsig#enveloped-signature

XPath Filter2
http://www.w3.0rg/2002/06/xmldsig-filter2
Note: When referring to an element in a SECURE_ENVELOPE that does not carry an ID attribute type from
a ds:Reference in a SIGNATURE, you must use the XPATH Filter 2.0 Transform, http://www.w3.0rg/2002/06/
xmldsig-filter2

Decryption transform
http://www.w3.0rg/2002/07/decrypt#XML

196 Securing WebSphere applications

Table 18. Aspects of OASIS SOAP Message Security standard supported in WebSphere Application
Server (continued). Use the table to determine which aspects of the OASIS standard are supported.

Supported topic

Specific aspect that is supported

Signature signed parts
for JAX-RPC only

WebSphere Application Server key words:

XPath expression to select an XML element in a SOAP message. For more information, see |http://www.w3.org/TR/1999]

REC-xpath-19991116)

body, which signs the SOAP message body

timestamp, which signs all of the time stamps

securitytoken, which signs all of the security tokens

dsigkey, which signs the signing key

enckey, which signs the encryption key

messageid, which signs the wsa :MessageID element in WS-Addressing.

to, which signs the wsa:To element in WS-Addressing

action, which signs the wsa:Action element in WS-Addressing

relatesto, which signs the wsa:RelatesTo element in WS-Addressing

wsa is the namespace prefix of http://schemas.xmlsoap.org/ws/2004/08/addressing

wscontext, which specifies the WS-Context header for the SOAP header.

wsafrom, which specifies the <wsa:From> WS-Addressing From element in the SOAP header.
wsareplyto, which specifies the <wsa:Rep1yTo> WS-Addressing ReplyTo element in the SOAP header.
wsafaultto, which specifies the <wsa:FaultTo> WS-Addressing FaultTo element in the SOAP header.
wsaall, which specifies all of the WS-Addressing elements in the SOAP header.

Signature message parts
for JAX-WS only

Body (which signs the SOAP message body)
Header (which signs one or more SOAP headers within the main SOAP header)
XPath expression to select an XML element in a SOAP message.

For more information, see http://www.w3.0rg/TR/1999/REC-xpath-19991116.

Encryption

EncryptedHeader element

Chapter 11. Securing web services 197

http://www.w3.org/TR/1999/REC-xpath-19991116
http://www.w3.org/TR/1999/REC-xpath-19991116

Table 18. Aspects of OASIS SOAP Message Security standard supported in WebSphere Application

Server (continued).

Use the table to determine which aspects of the OASIS standard are supported.

Supported topic

Specific aspect that is supported

Encryption algorithms

Important: Your country of origin might have restrictions on the import, possession, use, or re-export to another country, of
encryption software. Before downloading or using the unrestricted policy files, you must check the laws of your country, its
regulations, and its policies concerning the import, possession, use, and re-export of encryption software, to determine if it
is permitted.

» Data encryption
— Triple DES in CBC: http://www.w3.0rg/2001/04/xmlenc#tripledes-cbc
— AES128 in CBC: http://www.w3.0rg/2001/04/xmlenc#aes128-cbc
— AES192 in CBC: http://www.w3.0rg/2001/04/xmlenc#aes192-cbc

This algorithm requires the unrestricted JCE policy file. For more information, see the Key encryption algorithm
description in the ['Encryption information configuration settings: Message parts” on page 883)

Do not use the 192-bit data encryption algorithm if you want your configured application to be in compliance with the
Basic Security Profile (BSP).

— AES256 in CBC: http://www.w3.0rg/2001/04/xmlenc#aes256-cbc

This algorithm requires the unrestricted JCE policy file. For more information, see the Key encryption algorithm
description in the [‘Encryption information configuration settings: Message parts” on page 883]

* Key encryption
— Key transport (public key cryptography)

- |http://www.w3.0rg/2001/04/xmlenct#rsa-oaep-mgfip|
Note:

* When running with Software Development Kit (SDK) Version 1.4, the list of supported key transport algorithms
does not include this one. This algorithm appears in the list of supported key transport algorithms when running
with SDK Version 1.5.

« Use of the Federal Information Processing Standard (FIPS)-compliant Java cryptography engine does not
support this transport algorithm.

- RSA Version 1.5: http://www.w3.0rg/2001/04/xmlenct#rsa-1_5
— Symmetric key wrap (private key cryptography)
- Triple DES key wrap: http://www.w3.0rg/2001/04/xmlenc#kw-tripledes
- AES key wrap (aes128): http://www.w3.0rg/2001/04/xmlenc#kw-aes128
- AES key wrap (aes192): http://www.w3.0rg/2001/04/xmlenc#kw-aes192

This algorithm requires the unrestricted JCE policy file. For more information, see the Key encryption algorithm
description in theFEncryption information configuration settings: Message parts” on page 883.]

Do not use the 192-bit data encryption algorithm if you want your configured application to be in compliance with
the Basic Security Profile (BSP).

- AES key wrap (aes256): http://www.w3.0rg/2001/04/xmlenc#kw-aes256

This algorithm requires the unrestricted JCE policy file. For more information, see the Key encryption algorithm
description in the [‘Encryption information configuration settings: Message parts” on page 883.]

» Manifests-xenc is the namespace prefix of http://www.w3.org/TR/xmlenc-core
— xenc:ReferencelList
— xenc:EncryptedKey

Advanced Encryption Standard (AES) is designed to provide stronger and better performance for symmetric key encryption
over Triple-DES (data encryption standard). Therefore, it is recommended that you use AES, if possible, for symmetric key
encryption.

Encryption message
parts for JAX-RPC only

* WebSphere Application Server keywords

— bodycontent, which is used to encrypt the SOAP body content

— usernametoken, which is used to encrypt the username token

— digestvalue, which is used to encrypt the digest value of the digital signature

— signature, which is used to encrypt the entire digital signature

— wscontextcontent, which encrypts the content in the WS-Context header for the SOAP header.
» XPath expression to select the XML element in the SOAP message

— XML elements

— XML element contents

198 Securing WebSphere applications

http://www.w3.org/2001/04/xmlenc#rsa-oaep-mgf1p

Table 18. Aspects of OASIS SOAP Message Security standard supported in WebSphere Application
Server (continued). Use the table to determine which aspects of the OASIS standard are supported.

Supported topic Specific aspect that is supported
Encryption message + Body (which encrypts the SOAP message body content)
parts for JAX-WS only
* Header (which encrypts one or more SOAP headers within the main SOAP header, resulting in the EncryptedHeader
element)

» XPath expression to select an XML element in a SOAP message
— For more information, see http://www.w3.org/TR/1999/REC-xpath-19991116.

Time stamp » Within Web Services Security header
» WebSphere Application Server is extended to allow you to insert time stamps into other elements so that the age of
those elements can be determined.

Error handling SOAP faults
* New failure SOAP fault with faultcode
* The message has expired text has been added

OASIS: Web Services Security UsernameToken Profile 1.0
The following table shows the aspects of the OASIS: Web Services Security Username Token Profile 1.0
specification that is supported in WebSphere Application Server.

Table 19. Aspects of OASIS Username Token Profile V1.0 standard supported in WebSphere Application
Server. Use the table to determine which aspects of the OASIS standard are supported.

Supported topic Specific aspect that is supported
Password types Text
Token references Direct reference

OASIS: Web Services Security UsernameToken Profile 1.1

The following table shows the aspects of the OASIS: Web Services Security Username Token Profile 1.1
specification that is supported in WebSphere Application Server. Items that were previously supported for
Web Services Security UsernameToken Profile 1.0 are not listed but are still supported, unless noted

otherwise.

Table 20. Aspects of OASIS Username Token Profile V1.1 standard supported in WebSphere Application
Server. Use the table to determine which aspects of the OASIS standard are supported.

Supported topic Specific aspect that is supported
Password types Text
Token references Direct reference

OASIS: Web Services Security X.509 Certificate Token Profile 1.0

The following table shows the aspects of the OASIS: Web Services Security X.509 Certificate Token
Profile specification that are supported in WebSphere Application Server Versions 6 and later.

Table 21. Aspects of OASIS X.509 Certificate Token V1.0 standard supported in WebSphere Application Server. Use
the table to determine which aspects of the OASIS standard are supported.
Supported topic Specific aspect that is supported

Token types + X.509 Version 3: Single certificate
http://docs.oasis-open.org/wss/2004/01/0asis-200401-wss-x509- token-profile-1.0#X509v3

* X.509 Version 3: X509PKIPathv1 without certificate revocation lists (CRL)
http://docs.oasis-open.org/wss/2004/01/0asis-200401-wss-x509- token-profile-1.0#X509PKIPathv1

* X.509 Version 3: PKCS7 with or without CRLs. The IBM software development kit (SDK) supports both. The Sun Java
SE Development Kit 6 (JDK 6) supports PKCS7 without CRL only.

Chapter 11. Securing web services 199

Table 21. Aspects of OASIS X.509 Cetrtificate Token V1.0 standard supported in WebSphere Application
Server (continued). Use the table to determine which aspects of the OASIS standard are supported.

Supported topic Specific aspect that is supported

Token references « Key identifier — subject key identifier
« Direct reference
» Custom reference — issuer name and serial number

OASIS: Web Services Security X.509 Certificate Token Profile 1.1

The following table shows the aspects of the OASIS: Web Services Security X.509 Certificate Token
Profile 1.1 specification that are supported in WebSphere Application Server. ltems that were previously
supported for Web Services Security X.509 Certificate Token Profile 1.0 are not listed but are still
supported, unless noted otherwise.

Table 22. Aspects of OASIS X.509 Certificate Token V1.1 standard supported in WebSphere Application Server. Use
the table to determine which aspects of the OASIS standard are supported.

Supported topic Specific aspect that is supported
Token types X.509 Version 1: Single certificate
Token references Key identifier — subject key identifier

« Can only reference an X.509v3 certificate

» Can specify the thumbprint of the specified certificate by using the http://docs.oasis-open.org/wss/oasis-wss-soap-
message-security-1.1#ThumbprintSHA1 attribute of the <wsse:Keyldentifier> element.

OASIS: Web Services Security Kerberos Token Profile 1.1
The following table shows the aspects of the OASIS: Web Services Security Kerberos Token Profile 1.1
specification that are supported in WebSphere Application Server.

Table 23. Aspects of OASIS Kerberos Token Profile standard supported in WebSphere Application Server. Use the
table to determine which aspects of the OASIS standard are supported.

Supported topic Specific aspect that is supported

Token types + GSS_API Kerberos v5 token

http://docs.oasis-open.org/wss/oasis-wss-kerberos-token-profile-1.1#GSS_Kerberosvs5_AP_REQ
* GSS_API Kerberos v5 token per RFC1510

http://docs.oasis-open.org/wss/oasis-wss-kerberos-token-profile-1.1#GSS_Kerberosvs5_AP_REQ1510
* GSS_API Kerberos v5 token per RFC4120

http://docs.oasis-open.org/wss/oasis-wss-kerberos-token-profile-1.1#GSS_Kerberosvs_AP_REQ4120

Kerberos v5 token

http://docs.oasis-open.org/wss/oasiswss- kerberos-token-profile-1.1#Kerberosv5_AP_REQ
Kerberos v5 token per RFC1510

http://docs.oasis-open.org/wss/oasis-wss-kerberos-token-profile-1.1#Kerberosv5_AP_REQ1510
» Kerberos v5 token per RFC4120

http://docs.oasis-open.org/wss/oasis-wss-kerberos-token-profile-1.1#Kerberosv5_AP_REQ412

Token references

Security token reference

Key identifier, which is used after the initial Kerberos v5 token is consumed

Derived key token based on the Kerberos key

200 Ssecuring WebSphere applications

OASIS: Web Services Security WS-Secure Conversation Draft and Version 1.3

The following table shows the aspects of the OASIS: WS-SecureConversation specification that are
supported in WebSphere Application Server Version 6.1 Feature Pack for Web Services, and later. Support
for Version 1.3 of the specification is provided in WebSphere Application Server Version 7.0 and later.

Table 24. Aspects of OASIS SecureConversation standard supported in WebSphere Application Server. Use the
table to determine which aspects of the OASIS standard are supported.

Supported topic Specific aspect that is supported

Token types » Security Context Token draft version: http://schemas.xmlsoap.org/ws/2005/02/sc/sct

» Security Context Token Version 1.3: http://docs.oasis-open.org/ws-sx/ws-secureconversation/200512/sct

Token references Direct reference

Security context Security context token created by a security token service that is embedded in the WebSphere Application Server.
establishment

Renewing context Automatic renewal of the token when its about to expire.

Cancelling context Explicit cancel request support.

Derived keys The following information is used to derive the keys using a shared secret from a security context:

» /wsc:DerivedKeyToken/wsse:Security TokenReference
» /wsc:DerivedKeyToken/wsc:Label

» /wsc:DerivedKeyToken/wsc:Nonce

» /wsc:DerivedKeyToken/wsc:Length

Error handling SOAP faults, including:

» wsc:BadContextToken

* wsc:UnsupportedContextToken
» wsc:RenewNeeded

» wsc:UnableToRenew

OASIS: Web Services Security WS-Trust Version 1.0 Draft and Version 1.3

The following tables show the aspects of the OASIS: Web Services Security: WS-Trust Version 1.0 Draft
and Version 1.3 specifications that are supported in WebSphere Application Server Version 6.1 Feature
Pack for Web Services, and later.

Table 25. Aspects of OASIS Trust V1.0 and V1.3 standard supported in WebSphere Application Server. Use the
table to determine which aspects of the OASIS standard are supported.

Supported topic Specific aspect that is supported
Namespace http://schemas.xmlsoap.org/ws/2005/02/trust
Request header /wsa:Action

Valid options include:

* http://schemas.xmlsoap.org/ws/2005/02/trust/RST/Issue

* http://schemas.xmlsoap.org/ws/2005/02/trust/RST/Renew
* http://schemas.xmlsoap.org/ws/2005/02/trust/RST/Cancel
* http://schemas.xmlsoap.org/ws/2005/02/trust/RST/Validate

Chapter 11. Securing web services 201

Table 25. Aspects of OASIS Trust V1.0 and V1.3 standard supported in WebSphere Application
Server (continued). Use the table to determine which aspects of the OASIS standard are supported.

Supported topic Specific aspect that is supported

Request elements and /wst:RequestSecurityToken
attributes
/wst:RequestSecurityToken/@ Context

/wst:RequestSecurityToken/wst:RequestType

» Valid options include:
— http://schemas.xmlsoap.org/ws/2005/02/trust/Issue
— http://schemas.xmlsoap.org/ws/2005/02/trust/Renew
— http://schemas.xmlsoap.org/ws/2005/02/trust/Cancel
— http://schemas.xmlsoap.org/ws/2005/02/trust/Validate

/wst:RequestSecurityToken/wst:TokenType
* Valid options include:

— for http://schemas.xmlsoap.org/ws/2005/02/sc/sct
- /wst:RequestSecurityToken/wsp:AppliesTo
- /wst:RequestSecurityToken/wst:Entropy
- /wst:RequestSecurityToken/wst:Entropy/wst:BinarySecret
- /wst:RequestSecurityToken/wst:Entropy/wst:BinarySecret/ @ Type

— for http://schemas.xmlsoap.org/ws/2005/02/trust/Nonce
- /wst:RequestSecurityToken/wst:Lifetime
- /wst:RequestSecurityToken/wst:Lifetime/wsu:Created
- /wst:RequestSecurityToken/wst:Lifetime/wsu:Expires
- /wst:RequestSecurityToken/wst:KeySize
- /wst:RequestSecurityToken/wst:KeyType

— for http://schemas.xmlsoap.org/ws/2005/02/trust/SymmetricKey
- /wst:RequestSecurityToken/wst:RenewTarget
- /wst:RequestSecurity Token/wst:Renewing
- /wst:RequestSecurityToken/wst:Renewing/ @ Allow
- /wst:RequestSecurity Token/wst:Renewing/ @ OK
- /wst:RequestSecurityToken/wst:CancelTarget
- /wst:RequestSecurityToken/wst:Validate Target
- /wst:RequestSecurityToken/wst:Issuer

Response header /wsa:Action

Valid options include:

* http://schemas.xmlsoap.org/ws/2005/02/trust/RSTR/Issue

« http://schemas.xmlsoap.org/ws/2005/02/trust/RSTR/Renew
« http://schemas.xmlsoap.org/ws/2005/02/trust/RSTR/Cancel
« http://schemas.xmlsoap.org/ws/2005/02/trust/RSTR/Validate

202 Securing WebSphere applications

Table 25. Aspects of OASIS Trust V1.0 and V1.3 standard supported in WebSphere Application

Server (continued).

Use the table to determine which aspects of the OASIS standard are supported.

Supported topic

Specific aspect that is supported

Response elements and
attributes

/wst:RequestSecurityTokenResponse
/wst:RequestSecurityTokenResponse/ @ Context
/wst:RequestSecurityTokenResponse/wst: TokenType
/wst:RequestSecurityTokenResponse/wst:RequestedSecurityToken
/wst:RequestSecurityTokenResponse/wsp:AppliesTo

/wst:RequestSecurity TokenResponse/wst:RequestedSecurityToken
/wst:RequestSecurityTokenResponse/wst:RequestedAttachedReference
/wst:RequestSecurityTokenResponse/wst:RequestedUnattachedReference
/wst:RequestSecurityTokenResponse/wst:RequestedProofToken
/wst:RequestSecurityTokenResponse/wst:Entropy
/wst:RequestSecurityTokenResponse/wst:Entropy/wst:BinarySecret
/wst:RequestSecurityTokenResponse/wst:Entropy/wst:BinarySecret/ @ Type
/wst:RequestSecurityTokenResponse/wst:Lifetime
/wst:RequestSecurityTokenResponse/wst:Lifetime/wsu:Created
/wst:RequestSecurityTokenResponse/wst:Lifetime/wsu:Expires
/wst:RequestSecurityTokenResponse/wst:RequestedProofToken/wst:ComputedKey
/wst:RequestSecurityTokenResponse/wst:KeySize
/wst:RequestSecurityTokenResponse/wst:Renewing
/wst:RequestSecurityTokenResponse/wst:Renewing/ @ Allow
/wst:RequestSecurityTokenResponse/wst:Renewing/ @ OK
/wst:RequestSecurityTokenResponse/wst:RequestedTokenCancelled
/wst:RequestSecurityTokenResponse/wst:Status

/wst:RequestSecurityTokenResponse/wst:Status /wst:RequestSecurityTokenResponse/wst:Status/wst:Code
» Valid responses include:

— http://schemas.xmlsoap.org/ws/2005/02/trust/status/valid

— http://schemas.xmlsoap.org/ws/2005/02/trust/status/invalid

/wst:RequestSecurityTokenResponse/wst:Status/wst:Reason

Chapter 11. Securing web services

203

Table 25. Aspects of OASIS Trust V1.0 and V1.3 standard supported in WebSphere Application
Server (continued). Use the table to determine which aspects of the OASIS standard are supported.

Supported topic Specific aspect that is supported

Error handling wst:InvalidRequest
wst:FailedAuthentication
wst:RequestFailed
wst:InvalidSecurityToken
wst:AuthenticationBadElements
wst:BadRequest
wst:ExpiredData
wst:InvalidTimeRange
wst:InvalidScope
wst:RenewNeeded

wst:UnableToRenew

Table 26. Aspects of OASIS Trust V1.3 standard supported in WebSphere Application Server. Use the table to
determine which aspects of the OASIS standard are supported.

Supported topic Specific aspect that is supported
Namespace http://docs.oasis-open.org/ws-sx/ws-trust/200512
Request header /wsa:Action

Valid options include:

* http://docs.oasis-open.org/ws-sx/ws-trust/200512/RST/Issue

* http://docs.oasis-open.org/ws-sx/ws-trust/200512/RST/Renew
« http://docs.oasis-open.org/ws-sx/ws-trust/200512/RST/Cancel
« http://docs.oasis-open.org/ws-sx/ws-trust/200512/RST/Validate
« http://docs.oasis-open.org/ws-sx/ws-trust/200512/Batchlssue
« http://docs.oasis-open.org/ws-sx/ws-trust/200512/BatchCancel
* http://docs.oasis-open.org/ws-sx/ws-trust/200512/BatchRenew

* http://docs.oasis-open.org/ws-sx/ws-trust/200512/BatchValidate

204 securing WebSphere applications

Table 26. Aspects of OASIS Trust V1.3 standard supported in WebSphere Application Server (continued). Use the
table to determine which aspects of the OASIS standard are supported.

Supported topic

Specific aspect that is supported

Request elements and
attributes

/wst:RequestSecurityToken

/wst:RequestSecurity Token/@ Context

/wst:RequestSecurity Token/wst:RequestType

Valid options include:

— http://docs.oasis-open.org/ws-sx/ws-trust/200512/Issue

— http://docs.oasis-open.org/ws-sx/ws-trust/200512/Renew

— http://docs.oasis-open.org/ws-sx/ws-trust/200512/Cancel

— http://docs.oasis-open.org/ws-sx/ws-trust/200512/Validate

— http://docs.oasis-open.org/ws-sx/ws-trust/200512/Batchlssue

— http://docs.oasis-open.org/ws-sx/ws-trust/200512/BatchRenew
— http://docs.oasis-open.org/ws-sx/ws-trust/200512/BatchCancel
— http://docs.oasis-open.org/ws-sx/ws-trust/200512/BatchValidate

/wst:RequestSecurityToken/wst: TokenType

Valid options include:
— for http://docs.oasis-open.org/ws-sx/ws-secureconversation/200512/sct
- /wst:RequestSecurityToken/wsp:AppliesTo
- /wst:RequestSecurity Token/wst:Entropy
- /wst:RequestSecurityToken/wst:Entropy/wst:BinarySecret
- /wst:RequestSecurityToken/wst:Entropy/wst:BinarySecret/ @ Type
— for http://docs.oasis-open.org/ws-sx/ws-trust/200512/Nonce
- /wst:RequestSecurityToken/wst:Lifetime
- /wst:RequestSecurityToken/wst:Lifetime/wsu:Created
- /wst:RequestSecurityToken/wst:Lifetime/wsu:Expires
- /wst:RequestSecurityToken/wst:KeySize
- /wst:RequestSecurityToken/wst:KeyType
— for http://docs.oasis-open.org/ws-sx/ws-trust/200512/SymmetricKey
- /wst:RequestSecurityToken/wst:RenewTarget
- /wst:RequestSecurityToken/wst:Renewing
- /wst:RequestSecurityToken/wst:Renewing/ @ Allow
- /wst:RequestSecurityToken/wst:Renewing/ @ OK
- /wst:RequestSecurityToken/wst:CancelTarget
- /wst:RequestSecurityToken/wst:Validate Target
- /wst:RequestSecurityToken/wst:Issuer

Response header

/wsa:Action

Valid options include:

http://docs.oasis-open.org/ws-sx/ws-trust/200512/RSTR/RenewFinal
http://docs.oasis-open.org/ws-sx/ws-trust/200512/RSTR/CancelFinal
http://docs.oasis-open.org/ws-sx/ws-trust/200512/RSTR/ValidateFinal
http://docs.oasis-open.org/ws-sx/ws-trust/200512/RSTRC/IssueFinal
http://docs.oasis-open.org/ws-sx/ws-trust/200512/RSTRC/CancelFinal
http://docs.oasis-open.org/ws-sx/ws-trust/200512/RSTRC/RenewFinal
http://docs.oasis-open.org/ws-sx/ws-trust/200512/RSTRC/ValidateFinal

Chapter 11. Securing web services

205

Table 26. Aspects of OASIS Trust V1.3 standard supported in WebSphere Application Server (continued). Use the
table to determine which aspects of the OASIS standard are supported.

Supported topic Specific aspect that is supported

Response elements and | /wst:RequestSecurityTokenResponse
attributes
/wst:RequestSecurityTokenResponse/ @ Context
/wst:RequestSecurityTokenResponse/wst: TokenType
/wst:RequestSecurityTokenResponse/wst:RequestedSecurity Token
/wst:RequestSecurity TokenResponse/wsp:AppliesTo
/wst:RequestSecurityTokenResponse/wst:RequestedSecurity Token
/wst:RequestSecurityTokenResponse/wst:RequestedAttachedReference
/wst:RequestSecurityTokenResponse/wst:RequestedUnattachedReference
/wst:RequestSecurityTokenResponse/wst:RequestedProofToken
/wst:RequestSecurityTokenResponse/wst:Entropy
/wst:RequestSecurityTokenResponse/wst:Entropy/wst:BinarySecret
/wst:RequestSecurityTokenResponse/wst:Entropy/wst:BinarySecret/ @ Type
/wst:RequestSecurityTokenResponse/wst:Li