IBM WebSphere Application Server - Express for IBM i,
Version 8.5

Scripting the application serving
environment

..ll

Note
FBefore using this information, be sure to read the general information under [‘Notices” on page 973

Compilation date: June 7, 2012

© Copyright IBM Corporation 2012.
US Government Users Restricted Rights — Use, duplication or disclosure restricted by GSA ADP Schedule Contract

with IBM Corp.

Contents

How to send your comments.

Using this PDF .

Chapter 1. How do | use wsadmin commands to administer applications and their environments?

Chapter 2. Using wsadmin scripting .

Chapter 3. Scripting concepts

Using wsadmin scripting with Java Management Exten3|ons (JMX)
WebSphere Application Server configuration model using wsadmin scripting .
Using wsadmin scripting with Jacl .

Using wsadmin scripting with Jython

Chapter 4. Getting started with wsadmin scripting .
What is new for scripted administration (wsadmin) .o
Overview and new features for scripting the application servmg enwronment

Chapter 5. Using the wsadmin scripting objects .
Help object for scripted administration using wsadmin scrlptmg

Chapter 6. Using the wsadmin scripting AdminApp object for scripted administration .
Listing applications using the wsadmin scripting tool.
Editing application configurations using the wsadmin scripting tooI

Chapter 7. Using the wsadmin scripting AdminControl object for scripted administration.

ObjectName, Attribute, and AttributeList classes using wsadmin scripting . .
Example: Collecting arguments for the AdminControl object using wsadmin scnptmg
Example: Identifying running objects using wsadmin scripting .

Specifying running objects using the wsadmin scripting tool . .
Identifying attributes and operations for running objects using the wsadmm scrlptlng tool .
Performing operations on running objects using the wsadmin scripting tool

Modifying attributes on running objects using the wsadmin scripting tool

Chapter 8. Using the wsadmin scripting AdminConfig object for scripted administration .

Creating configuration objects using the wsadmin scripting tool.

Interpreting the output of the AdminConfig attributes command using wsadmln scrlptlng
Specifying configuration objects using the wsadmin scripting tool . ..
Listing attributes of configuration objects using the wsadmin scripting tool.

Modifying configuration objects using the wsadmin scripting tool .

Removing configuration objects with the wsadmin tool .

Removing the trust association interceptor class using scripting

Changing the application server configuration using the wsadmin tool .

Modifying nested attributes using the wsadmin scripting tool.

Saving configuration changes with the wsadmin tool

Chapter 9. Using the wsadmin scripting AdminTask object for scripted administration .

Obtaining online help using wsadmin scripting .

Invoking an administrative command in batch mode usmg wsadmln scrlptlng

Invoking an administrative command in interactive mode using wsadmin scripting .
Administrative command interactive mode environment using wsadmin scripting

Data types for the AdminTask object using wsadmin scripting

© Copyright IBM Corp. 2012

. 33
. 33
. 34

.37
.37
. 38
. 38
. 39
.4
. 43
. 44

. 47
. 47
. 49
. 51
. 53
. 55
. 58
. 59
. 59
. 61
. 63

. 65
. 66
. 70
.74
. 79
. 82

Chapter 10. Starting the wsadmin scripting client using wsadmin scripting

Chapter 11. Using the script library to automate the application serving environment using
wsadmin scripting . .o Coe
Automating server administration usmg wsadmln scnptmg

Server settings configuration scripts.

Server configuration scripts

Server query scripts .

Server administration scripts . .
Automating administrative architecture setup usmg wsadmln scnptmg Ilbrary .
Automating application configurations using wsadmin scripting

Application installation and uninstallation scripts .

Application query scripts

Application update scripts .

Application export scripts . .

Application deployment configuration scrlpts .

Application administration scripts
Automating business-level application conf|gurat|ons usmg wsadmm scrlptlng

Business-level application configuration scripts .

Automating data access resource configuration using wsadmm scrlptlng

J2C query scripts . .o

J2C configuration scripts

JDBC configuration scripts.

JDBC query scripts .

Automating messaging resource conﬂgurahons usmg wsadmm scrlptmg

JMS configuration scripts . .o

JMS query scripts . .
Automating authorization group conflguratlons usmg wsadmln scnptmg .

Authorization group configuration scripts . -

Automating resource configurations using wsadmin scrlptlng

Resource configuration scripts . .
Displaying script library help information usmg scrlptlng
Saving changes to the script library
Directory conventions

Chapter 12. Administering applications using wsadmin scripting .
Installing enterprise applications using wsadmin scripting

Setting up business-level applications using wsadmin scripting

Uninstalling enterprise applications using the wsadmin scripting tool

Deleting business-level applications using wsadmin scripting .

Pattern matching using the wsadmin scripting tool .

Managing administrative console applications using wsadmin scrlptlng
Managing JavaServer Faces implementations using wsadmin scripting
BLAManagement command group for the AdminTask object using wsadmin scrlptlng
JSFCommands command group for the AdminTask object . .
Application management command group for the AdminTask object

Chapter 13. Managing deployed applications using wsadmin scripting.
Starting applications using wsadmin scripting .

Starting business-level applications using scripting .

Stopping applications using wsadmin scripting

Stopping business-level applications using scripting

Updating installed applications using the wsadmin scrlptmg tooI

Managing assets using wsadmin scripting .

Managing composition units using wsadmin scripting .

Listing the modules in an installed application using wsadmin scrlptlng

iv Scripting the application serving environment

. 85

. 90

. 93
. 109
11
. 116
. 17
. 119
121
. 128
. 130
. 136
. 138
. 142
. 145
. 147
. 154
. 156
. 159
. 163
. 187
. 189
. 192
. 272
. 278
. 280
. 286
. 289
. 316
. 318
. 319

. 321
. 321
. 324
. 326
. 327
. 328
. 329
. 329
. 330
. 364
. 365

. 371
. 371
. 372
. 373
. 375
. 376
. 380
. 382
. 385

Example: Listing the modules in an application server
Querying the application state using wsadmin scripting .
Disabling application loading in deployed targets using wsadmln scrlptlng
Exporting applications using wsadmin scripting . Coe

Chapter 14. Configuring applications using scripting

Configuring applications for session management using scripting .
Configuring applications for session management in web modules using scnptlng
Configuring a shared library using scripting .
Configuring a shared library for an application using wsadmm scrlptlng .
Setting background applications using wsadmin scripting

Modifying WAR class loader policies for applications using Wsadmln scrlptlng
Modifying WAR class loader mode using wsadmin scripting

Modifying class loader modes for applications using wsadmin scnptmg
Modifying the starting weight of applications using wsadmin scripting .
Configuring namespace bindings using the wsadmin scripting tool .
WSScheduleCommands command group of the AdminTask object .
WSNotifierCommands command group for the AdminTask object
CoreGroupManagement command group for the AdminTask object.
CoreGroupBridgeManagement command group for the AdminTask object

Chapter 15. Configuring servers with scripting .
Creating a server using scripting

Configuring a unique HTTP session clone ID for each appllcatlon server usmg scrlptlng .

Configuring database session persistence using scripting

Configuring the Java virtual machine using scripting .

Configuring EJB containers using wsadmin

Configuring timer manager custom properties using the wsadmm tooI

Configuring work manager custom properties using the wsadmin tool .

Configuring the Performance Monitoring Infrastructure using scripting .

Logging Tivoli Performance Viewer data using scripting .

Limiting the growth of JVM log files using scripting .

ProxyManagement command group for the AdminTask object

Configuring an ORB service using scripting

Configuring processes using scripting

Configuring the runtime transaction service usmg scrlptlng
Configuring the WS-Transaction specification level by using wsadmln scnptmg

Setting port numbers to the serverindex.xml file using scripting .

Disabling components using scripting.

Disabling the trace service using scripting . .

Configuring servlet caching using wsadmin scripting .

Modifying variables using wsadmin scripting .

Increasing the Java virtual machine heap size using scnptmg

PortManagement command group for the AdminTask object

DynamicCache command group for the AdminTask object .

VariableConfiguration command group for the AdminTask object.

Chapter 16. Setting up intermediary services using scripting
Regenerating the node plug-in configuration using scripting
Creating new virtual hosts using templates with scripting
Directory conventions .o

Chapter 17. Managing servers and nodes with scripting
Stopping a node using wsadmin scripting .

Starting servers using scripting .

Stopping servers using scripting

. 388
. 392
. 393
. 395

. 397
. 397
. 400
. 405
. 409
. 413
. 414
. 415
. 418
. 419
. 420
. 422
. 424
. 427
. 432

. 439
. 440
. 441
. 442
. 443
. 445
. 449
. 450
. 452
. 454
. 455
. 457
. 461
. 463
. 465
. 467
. 468
. 472
. 474
. 475
. 476
. 477
. 477
. 479
. 481

. 485
. 485
. 487
. 488

. 491
. 491
. 492
. 493

Contents

\'}

Querying server state using scripting . .

Listing running applications on running servers usmg wsadmm scnptmg

Starting listener ports using scripting .

Managing generic servers using scripting . . .

Setting development mode for server objects using scrlptmg .

Disabling parallel startup using scripting. .

Obtaining server version information with scrlptmg

NodeGroupCommands command group for the AdminTask object usmg wsadmm scrlptlng
Utility command group of the AdminTask object .

ManagedObjectMetadata command group for the AdmmTask object

AdminSDKCmds command group for the AdminTask object

ServerManagement command group for the AdminTask object

UnmanagedNodeCommands command group for the AdminTask object usmg wsadmm scrlptmg
ConfigArchiveOperations command group for the AdminTask object using wsadmin scripting .
Directory conventions e

Chapter 18. Using properties files to manage system configuration .

Managing environment configurations with properties files using wsadmin scnptmg
Creating, modifying, and deleting configuration objects using one properties file .
Creating and deleting configuration objects using properties files and wsadmin scripting .
Creating server, cluster, application, or authorization group objects using properties files and

wsadmin scripting .
Deleting server, cluster, appllcatlon or authorlzatlon group objects usmg propertles flles

Extracting properties files using wsadmin scripting .

Extracting or modifying WCCM object properties

Validating properties files using wsadmin scripting .

Applying properties files using wsadmin scripting .
Applying portable properties files across multiple enwronments .

Running administrative commands using properties files.

Properties file syntax.

PropertiesBasedConfiguration command group for the AdmmTask object usmg wsadmm scrlptlng

Managing specific configuration objects using properties files . Coe
Working with activity session service properties files .

Using application properties files to install, update, and delete enterprlse appllcatlon flles
Working with cache provider properties files . .
Working with data replication domain properties files .
Working with J2C resource adapter properties files
Working with J2EEResourceProperty properties files .
Working with J2EEResourcePropertySet properties files.
Working with JDBC provider properties files . .o
Working with JVM properties files .

Working with JMS provider properties files .

Working with mail provider properties files .

Working with object pool properties files.

Working with scheduler provider properties files .
Working with security properties files .

Working with server properties files

Transport channel service .

Working with URL provider properhes flles

Working with service integration properties files . .
Working with timer manager provider properties files .
Working with variable map properties files .

Working with virtual host properties files.

Working with web server properties files

Working with work area service properties files . .
Working with work manager provider properties files .

Vi Scripting the application serving environment

. 494
. 494
. 497
. 498
. 499
. 499
. 500
. 501
. 508
. 511
. 518
. 524

552

. 554
. 561

. 565
. 566
. 568
. 570

. 571
. 572
. 573
. 576
. 577
. 579
. 581
. 585
. 586

586

. 594
. 598
. 600
. 624
. 634
. 637
. 639
. 640
. 642
. 651
. 653
. 664
. 667
. 675
. 681
. 700
. 735
. 744
. 747
. 758
. 763
. 764
. 769
. 783
. 788

Working with web services endpoint URL fragment property files
Chapter 19. Directory conventions .

Chapter 20. Using the Administration Thin Client .

Compiling an administration application using the Thin Admlnlstratlon Cllent .
Running the wsadmin tool remotely in a Java 2 Platform, Standard Edition enwronment
Auditing invocations of the wsadmin tool using wsadmin scripting

Directory conventions

Chapter 21. Troubleshooting with scripting

Tracing operations using the wsadmin scripting tool

Extracting properties files to troubleshoot your environment usmg wsadmm scrlptmg
Configuring traces using scripting . .o

Turning traces on and off in servers processes usmg scrlptlng

Dumping threads in server processes using scripting . .

Setting up profile scripts to make tracing easier using wsadmin scnptmg

Enabling the Runtime Performance Advisor tool using scripting .

AdministrationReports command group for the AdminTask object using wsadmln scnptmg
Configuring HPEL with wsadmin scripting .

Chapter 22. Scripting and command line reference material using wsadmin scripting .
wsadmin scripting tool .o .o
wsadmin tool performance tips . .
Commands for the Help object using wsadmm scrlptlng
Commands for the AdminConfig object using wsadmin scripting .
Commands for the AdminControl object using wsadmin scripting
Commands for the AdminApp object using wsadmin scripting .
Options for the AdminApp object install, installinteractive, edit, edltlnteractwe update and
updatelnteractive commands using wsadmin scripting . .

Example: Obtaining option information for AdminApp object commands usmg Wsadmln scrlptlng
Commands for the AdminTask object using wsadmin scripting Co
Administrative command invocation syntax using wsadmin scripting
Administrative properties for using wsadmin scripting .

com.ibm.ws.scripting.appendTrace.

com.ibm.ws.scripting.classpath .

com.ibm.ws.scripting.connectionType.. .

com.ibm.ws.scripting. crossDocumentValldatlonEnabIed .

com.ibm.ws.scripting.defauliLang .

com.ibm.ws.scripting.echoparams .

com.ibm.ws.scripting. emltWarmngForCustomSecurltyPollcy

com.ibm.ws.scripting.host . .

com.ibm.ws.scripting.ipchost .

com.ibm.ws.scripting.port .

com.ibm.ws.scripting.profiles .

com.ibm.ws.scripting.traceFile

com.ibm.ws.scripting.traceString

com.ibm.ws.scripting.tempdir .

com.ibm.ws.scripting.validationLevel .

com.ibm.ws.scripting.validationOutput
Directory conventions

Notices

Trademarks and service marks .

Contents

. 793

. 797

. 799
. 801
. 802
. 805
. 806

. 809
. 809
. 810
. 81
. 812
. 813
. 814
. 814
. 817
. 818

. 821
. 821
. 828
. 829
. 840
. 869
. 891

. 911

959

. 960
. 967
. 969
. 969
. 969
. 969
. 969
. 969
. 969
. 969
. 970
. 970
. 970
. 970
. 970
. 970
. 970
. 970
. 970
. 97

. 973

. 975

Vii

Index L L9y

viii Scripting the application serving environment

How to send your comments

Your feedback is important in helping to provide the most accurate and highest quality information.
+ To send comments on articles in the WebSphere Application Server Information Center
1. Display the article in your Web browser and scroll to the end of the article.

2. Click on the Feedback link at the bottom of the article, and a separate window containing an email
form appears.

3. Fill out the email form as instructed, and submit your feedback.
* To send comments on PDF books, you can email your comments to: wasdoc@us.ibm.com.

Your comment should pertain to specific errors or omissions, accuracy, organization, subject matter, or
completeness of this book. Be sure to include the document name and number, the WebSphere
Application Server version you are using, and, if applicable, the specific page, table, or figure number
on which you are commenting.

For technical questions and information about products and prices, please contact your IBM branch office,
your IBM business partner, or your authorized remarketer. When you send comments to IBM, you grant
IBM a nonexclusive right to use or distribute your comments in any way it believes appropriate without
incurring any obligation to you. IBM or any other organizations will only use the personal information that
you supply to contact you about your comments.

© Copyright IBM Corp. 2012 ix

X Scripting the application serving environment

Using this PDF

Links

Because the content within this PDF is designed for an online information center deliverable, you might
experience broken links. You can expect the following link behavior within this PDF:

» Links to Web addresses beginning with http:// work.
» Links that refer to specific page numbers within the same PDF book work.
* The remaining links will not work. You receive an error message when you click them.

Print sections directly from the information center navigation

PDF books are provided as a convenience format for easy printing, reading, and offline use. The
information center is the official delivery format for IBM WebSphere Application Server documentation. If
you use the PDF books primarily for convenient printing, it is now easier to print various parts of the
information center as needed, quickly and directly from the information center navigation tree.

To print a section of the information center navigation:

1. Hover your cursor over an entry in the information center navigation until the Open Quick Menu icon
is displayed beside the entry.

2. Right-click the icon to display a menu for printing or searching your selected section of the navigation
tree.

3. If you select Print this topic and subtopics from the menu, the selected section is launched in a
separate browser window as one HTML file. The HTML file includes each of the topics in the section,
with a table of contents at the top.

4. Print the HTML file.

For performance reasons, the number of topics you can print at one time is limited. You are notified if your
selection contains too many topics. If the current limit is too restrictive, use the feedback link to suggest a

preferable limit. The feedback link is available at the end of most information center pages.

© Copyright IBM Corp. 2012

Xi

xii Scripting the application serving environment

Chapter 1. How do | use wsadmin commands to administer
applications and their environments?

The wsadmin tool is a command-line interface that provides the ability to automate common tasks using
Jacl or Jython scripts. The AdminTask, AdminApp, AdminControl, AdminConfig, and Help objects provide
many commands and options that allow you to write and customize scripts to administer your applications,
environment, web services, resources, and security configurations. Follow these shortcuts to get started
quickly with popular tasks.

Use scripting to configure web services policy sets

Use scripting to create secure sessions between clients and services

|Use scripting to configure application serversl

|Use scripting to manage application servers|

[Use scripting to update applications]

|Use scripting to administer communication with web servers (plug-ins)|

[Use scripting to administer HTTP sessions|

Use scripting to provide access to relational databases (JDBC resources)
Use scripting to provide access to messaging resources (default messaging provider)

Use scripting to secure applications and their environments

© IBM Corporation 2003

2 Scripting the application serving environment

Chapter 2. Using wsadmin scripting

The WebSphere® administrative (wsadmin) scripting program is a powerful, non-graphical command
interpreter environment enabling you to run administrative operations in a scripting language.

About this task

The wsadmin tool is intended for production environments and unattended operations. You can use the
wsadmin tool to perform the same tasks that you can perform using the administrative console.

Restriction: The wsadmin tool does not apply to the Liberty profile. See [Administering the Liberty profile|
[from the command prompf{ instead.

The following list highlights the topics and tasks available with scripting:

Procedure

Getting started with scriptingl Provides an introduction to WebSphere Application Server scripting and
information about using the wsadmin tool. Topics include information about the scripting languages and
the scripting objects, and instructions for starting the wsadmin tool.

. |Using the script library to automate the application serving environmenﬂ Provides a set of Jython script
procedures that automate the most common application server administration functions. For example,
you can use the script library to easily configure servers, applications, mail settings, resources, nodes,
business-level applications, clusters, authorization groups, and more. You can run each script procedure
individually, or combine several procedures to quickly develop new scripts.

[Deploying applications| Provides instructions for deploying and uninstalling applications. For example,
stand-alone Java archive files and web archive files, the administrative console, remote Enterprise
Archive (EAR) files, file transfer applications, and so on.

[Managing deployed applications| Includes tasks that you perform after the application is deployed. For
example, starting and stopping applications, checking status, modifying listener address ports, querying
application state, configuring a shared library, and so on.

[Configuring serverg Provides instructions for configuring servers, such as creating a server, modifying

and restarting the server, configuring the Java virtual machine, disabling a component, disabling a

service, and so on.

[Configuring connections to web servers| Includes topics such as regenerating the plug-in, creating new

virtual host templates, modifying virtual hosts, and so on.

+ [Managing servers| Includes tasks that you use to manage servers. For example, stopping nodes,
starting and stopping servers, querying a server state, starting a listener port, and so on.

« Configuring security Includes security tasks, for example, enabling and disabling administrative security,
enabling and disabling Java 2 security, and so on.

» Configuring data access Includes topics such as configuring a Java DataBase Connectivity (JDBC)
provider, defining a data source, configuring connection pools, and so on.

» Configuring messaging Includes topics about messaging, such as Java Message Service (JMS)
connection, JMS provider, WebSphere queue connection factory, MQ topics, and so on.

» Configuring mail, URLs, and resource environment entries Includes topics such as mail providers, mail

sessions, protocols, resource environment providers, referenceables, URL providers, URLs, and so on.

[Troubleshooting| Provides information about how to troubleshoot using scripting. For example, tracing,

thread dumps, profiles, and so on.

. |Scripting reference material| Includes all of the reference material related to scripting. Topics include the
syntax for the wsadmin tool and for the administrative command framework, explanations and examples
for all of the scripting object commands, the scripting properties, and so on.

© IBM Corporation 2004 3

4 Scripting the application serving environment

Chapter 3. Scripting concepts

Scripting provides a non-graphical alternative to the administrative console. Using the wsadmin tool, you
can run scripts to configure and manage the product. The wsadmin tool supports two scripting languages:
Jacl and Jython. Five objects are available with scripts: AdminControl, AdminConfig, AdminApp,
AdminTask, and Help. Scripts use these objects to communicate with MBeans that run in product
processes. MBeans are Java objects that represent Java Management Extensions (JMX) resources. JMX
is a technology that provides a simple and standard way to manage Java objects.

Using wsadmin scripting with Java Management Extensions (JMX)

Java Management Extensions (JMX) is a framework that provides a standard way of exposing Java
resources, for example, application servers, to a system management infrastructure. Using the JMX
framework, a provider can implement functions, such as listing the configuration settings, and editing the
settings. This framework also includes a notification layer that management applications can use to
monitor events such as the startup of an application server.

JMX key features

The key features of the WebSphere Application Server implementation of JMX include:
* All processes that run the JMX agent.
» All runtime administration that is performed through JMX operations.

» Connectors that are used to connect a JMX agent to a remote JMX-enabled management application.
The following connectors are supported:

SOAP JMX Connector

JMX Remote application programming interface (JSR 160) Remote Method Invocation over the
Internet Inter-ORB Protocol (RMI-IIOP) JMX Connector, (the JSR160RMI connector)

Remote Method Invocation over the Internet Inter-ORB Protocol (RMI-IIOP) JMX Connector
Inter-Process Communications (IPC)

* Protocol adapters that provide a management view of the JMX agent through a given protocol.
Management applications that connect to a protocol adapter are usually specific to a given protocol.

* The ability to query and update the configuration settings of a runtime object.

» The ability to load, initialize, change, and monitor application components and resources during run
time.

JMX architecture

The JMX architecture is structured into three layers:

* Instrumentation layer - Dictates how resources can be wrapped within special Java beans, called
managed beans (MBeans).

« Agent layer - Consists of the MBean server and agents, which provide a management infrastructure.
The services that are implemented include:

— Monitoring
— Event notification
— Timers

* Management layer - Defines how external management applications can interact with the underlying
layers in terms of protocols, APIs, and so on. This layer uses an implementation of the distributed
services specification (JSR-077), which is part of the Java 2 Platform, Enterprise Edition (J2EE)
specification.

© Copyright IBM Corp. 2012

The layered architecture of JMX is summarized in the following figure:

+ + Agent Layer
MBean Server
L] Y
Agent Agent Agent Services
services services | (55 MBeans)

Java virtual machine Instrumentation Layer

Resource 1 Resource 2
MBean MBean

Manages Manages

Rﬂqﬂllrﬂi 1 Resource 2 Managed Resources

Figure 1. JMX architecture
JMX distributed administration

The following figure shows how the JMX architecture fits into the overall distributed administration topology
of a WebSphere Application Server, Network Deployment environment:

6 Scripting the application serving environment

Clients, Multi-cell,
management, & other EMS
(Tivali, BMC)

Deployment Manager

MNode Agent

E

Application Server

Figure 2. Distributed administration of JMX

The key points of this distributed administration architecture include:
* Internal MBeans that are local to the Java virtual machine (JVM) register with the local MBean server.

» External MBeans have a local proxy to their MBean server. The proxy registers with the local MBean
server.

JMX Mbeans

The product provides a number of MBeans, each of which has different functions and operations available.
For example, an application server MBean can expose operations such as start and stop. An application
MBean can expose operations such as install and uninstall. Some JMX usage scenarios that you can
encounter include:

» External programs that are written to control the WebSphere Application Server, Network Deployment
run time and its WebSphere resources by programmatically accessing the JMX API.

» Third-party applications that include custom JMX MBeans as part of the deployed code, supporting the
JMX APl management of application components and resources.

The following example illustrates how to obtain the name of a particular MBean:

Using Jacl:
set am [$AdminControl queryNames type=ApplicationManager,process=serverl,x]

Chapter 3. Scripting concepts 7

Using Jython:

am = AdminControl.queryNames ('type=ApplicationManager,process=serverl,*")

Each WebSphere Application Server runtime MBean can have attributes, operations, and notifications. The
complete documentation for each MBean that is supplied with the product is available in this information
center at information_center > Reference > Programming interfaces > Mbean interfaces.

JMX benefits

The use of JMX for management functions in WebSphere Application Server provides the following
benefits:

» Enables the management of Java applications without significant investment.
* Relies on a core-managed object server that acts as a management agent.

» Java applications can embed a managed object server and make some of its functionality available as
one or several MBeans that are registered with the object server.

* Provides a scalable management architecture.
« Every JMX agent service is an independent module that can be plugged into the management agent.

* The API is extensible, allowing new WebSphere Application Server and custom application features to
be easily added and exposed through this management interface.

* Integrates existing management solutions.

» Each process is self-sufficient when it comes to the management of its resources. No central point of
control exists. In principle, a JMX-enabled management client can be connected to any managed
process and interact with the MBeans that are hosted by that process.

» JMX provides a single, flat, domain-wide approach to system management. Separate processes interact
through MBean proxies that support a single management client to seamlessly navigate through a
network of managed processes.

» Defines the interfaces that are necessary for management only.

* Provides a standard API for exposing application and administrative resources to management tools.

WebSphere Application Server configuration model using wsadmin
scripting

Understanding the relationship between the different configuration objects is essential when creating
wsadmin scripts that perform configuration function.

Configuration data is stored in several different XML files which the server run time reads when it starts
and responds to the component settings stored there. The configuration data includes the settings for the
run time, such as, Java virtual machine (JVM) options, thread pool sizes, container settings, and port
numbers the server will use. Other configuration files define Java 2 Platform, Enterprise Edition (J2EE)
resources to which the server connects in order to obtain data that is needed by the application logic.
Security settings are stored in a separate document from the server and resource configuration.
Application-specific configuration, such as, deployment target lists, session configuration, and cache
settings, are stored in files under the root directory of each application. When viewing the XML data in the
configuration files, you can discern relationship between the configuration objects.

For more information on the WebSphere Application Server configuration objects view the HTML tables in
the installroot/web/configDocs directory. There are several subdirectories, one for each configuration
package in the model. The index.html file ties all of the individual configuration packages together in a
top-level navigation tree. Each configuration package lists the supported configuration classes and the
configuration class lists all of the supported properties. The properties with names that end with the at (@)
character imply that property is a reference to a different configuration object within the configuration data.
The properties with names that end with an asterisk (*) character imply that the property is a list of other
configuration objects.

8 Scripting the application serving environment

Using wsadmin scripting with Jacl

Jacl is an alternate implementation of TCL, and is written entirely in Java code.
The wsadmin tool uses Jacl V1.3.2.
Stabilization of the Jacl syntax in the wsadmin tool

The Jacl language stabilized in Version 7 of the product. IBM® does not currently plan to deprecate or
remove this capability in a subsequent release of the product; but future investment will be focused on the
Jython language, which is the strategic alternative. You do not need to change any of your existing
applications and scripts that use Jacl; but you should consider using the strategic alternative for new
applications.

The Jython syntax for the wsadmin tool is the strategic direction for WebSphere Application Server
administrative automation. The product continues to provide enhanced administrative functions and tooling
that support product automation and the use of the Jython syntax. The following Jython scripting-related
enhancements are provided in the product:

» Administrative console command assist - A feature of the administrative console that displays the
wsadmin command that is equivalent to the action taken by the user that interacts with the console. The
output from the console command assist feature can be transferred directly to the WebSphere
Application Server Tool, which simplifies the development of Jython scripts that are based on
administrative console actions. You can also save the output after using the console command assist
feature in a plain text file for later use.

» Jacl-to-dython conversion utility - A program that converts Jacl syntax wsadmin scripts into equivalent
Jython syntax wsadmin scripts. Dozens of new wsadmin high-level commands that decouple the script
from the underlying administrative model through use of simple parameters and smart default logic.

Basic syntax

The basic syntax for a Jacl command is the following:

Command argl arg2 arg3 ...

The command is either the name of a built-in command or a Jacl procedure. For example:

puts stdout {Hello, world!}
=> Hello, world!

In this example, the command is puts which takes two arguments, an I/O stream identifier and a string.
The puts command writes the string to the I/O stream along with a trailing new line character. The
arguments are interpreted by the command. In the example, stdout is used to identify the standard output
stream. The use of stdout as a name is a convention employed by the puts command and the other 1/0
commands. stderr identifies the standard error output, and stdin identifies the standard input.

Variables

The set command assigns a value to a variable. This command takes two arguments: the name of the
variable and the value. Variable names can be any length and are case sensitive. You do not have to
declare Jacl variables prior to using them. The interpreter will create the variable when it is first assigned a
value. For example:

set a b

=> 5

set b $a
=> 5

The second example assigns the value of variable a to variable b. The use of dollar sign ($) indicates
variable substitution. You can delete a variable with the unset command, for example:

Chapter 3. Scripting concepts 9

unset varNamel varName?2 ...

You can pass any number of variables to the unset command. The unset command gives an error if a
variable is not already defined. You can delete an entire array or just a single array element with the unset
command. Using the unset command on an array is an easy way to clear out a big data structure. The
existence of a variable can be tested with the info exists command. You might need to test for the
existence of the variable because the incr parameter requires that a variable exist first, for example:

if ![info exists my_info] {set my_info 0} else {incr my_info}
Command substitution

The second form of substitution is command substitution. A nested command is delimited by square
brackets, []. The Jacl interpreter evaluates everything between the brackets and evaluates it as a
command. For example:

set Ten [string length my_string]
= f

In this example, the nested command is the following: string Tength my_string. The string command
performs various operations on strings. In this case, the command asks for the length of the string
my_string. If there are several cases of command substitution within a single command, the interpreter
processes them from left bracket to right bracket. For example:

set number "1 2 3 4"
=> 1234

set one [lindex $number 0]
= 1

set end [lindex $number end]
= /4

set another {123 456 789}
=> 123 456 789

set stringlen [string length [Tindex $another 1]]
= 3

set listlLen [1length [lindex $another 1]

= 1
Math expressions

The Jacl interpreter does not evaluate math expressions. Use the expr command to evaluate math
expressions. The implementation of the expr command takes all arguments, concatenates them into a
single string, and parses the string as a math expression. Once the expr command computes the answer,
it is formatted into a string and returned. For example:

expr 7.2 / 3
=> 2.4

Backslash substitution

The final type of substitution done by the Jacl interpreter is backslash substitution. Use backslashes to add
quotation characters that have special meaning to the interpreter. For example, you can specify a literal
dollar sign, brace, or bracket by quoting it with a backslash. If you are using lots of backslashes, instead
you can group things with curly braces to turn off all interpretation of special characters. There are cases
where backslashes are required. For example:

set dollar "This is a string \$contain dollar char"
=> This is a string $contain dollar char

set x $dollar
=> This is a string $contain dollar char

set group {$ {} [1 { [}]}
=${30{[}]

10 Scripting the application serving environment

You can also use backslashes to continue long commands on multiple lines. A new line without the
backslash terminates a command. A backslash that is the last character on a line convert into a space. For
example:

set totallength [expr [string length "first string"] + \
[string 1length "second string"]]
=> 25

Grouping with braces and double quotation marks

Use double quotation marks and curly braces to group words together. Quotation marks enable
substitutions to occur in the group and curly braces prevent substitution. This rule applies to command,
variable, and backslash substitutions. For example:

set s Hello

=> Hello

puts stdout "The length of $s is [string length $s]."
=> The length of Hello is 5.

puts stdout {The length of $s is [string 1length $s].}
=> The length of $s is [string length $s].

In the second example, the Jacl interpreter performs variable and command substitution on the second
argument from the puts command. In the third command, substitutions are prevented so the string is
printed as it is.

Procedures and scope

Jacl uses the proc command to define procedures. The basic syntax to define a procedure is the following:

proc name arglist body

The first argument is the name of the procedure being defined. The name is case sensitive, and in fact it
can contain any characters. Procedure names and variable names do not conflict with each other. The
second argument is a list of parameters to the procedures. The third argument is a command, or more
typically a group of commands that form the procedure body. Once defined, a Jacl procedure is used just
like any of the built-in commands. For example:

proc divide {x y} {

set result [expr $x/$y]
puts $result

}

Inside the script, this is how to call divide procedure:
divide 20 5

And it gives a result resembling the following:
4

It is not necessary to use the variable c¢ in this example. The procedure body might also written as:
return [expr sqrt($a * $a + $b = $b)]

The return command is optional in this example because the Jacl interpreter returns the value of the last
command in the body as the value of the procedure. So, the procedure body might be reduced to:

expr sqrt($a * $a + $b * $b)

The result of the procedure is the result returned by the last command in the body. The return command
can be used to return a specific value.

There is a single, global scope for procedure names. You can define a procedure inside another
procedure, but it is visible everywhere. There is a different name space for variables and procedures

Chapter 3. Scripting concepts 11

therefore you might have a procedure and a variable with the same name without a conflict. Each
procedure has a local scope for variables. Variables introduced in the procedures exist only for the
duration of the procedure call. After the procedure returns, those variables are undefined. If the same
variable name exists in an outer scope, it is unaffected by the use of that variable name inside a
procedure. Variables defined outside the procedure are not visible to a procedure, unless the global scope

commands are used.

The global scope is the top-level scope. This scope is outside of any procedure. You must make variables
defined at the global scope accessible to the commands inside procedure by using the global command.
The syntax for the global command is the following:

global varNamel varName2 ...

Comments

Use the pound character (#) to make comments.

Command-line arguments

The Jacl shells pass the command-line arguments to the script as the value of the argv variable. The
number of command-line arguments is given by argc variable. The name of the program, or script, is not
part of argv nor is it counted by argc. The argv variable is a list. Use the Tindex command to extract items
from the argument list, for example:

set first [Tindex $argv
set second [lindex $argv

Strings and pattern matching

Strings are the basic data item in the Jacl language. There are multiple commands that you can use to
manipulate strings. The general syntax of the string command is the following:

string operation stringvalue otherargs

The operation argument determines the action of the string. The second argument is a string value. There
might be additional arguments depending on the operation.

The following table includes a summary of the string command:

Table 1. string command syntax descriptions. Run the string command with one or more arguments.

Command

Description

string compare str1 str2

Compares strings lexicographically. Returns 0 if equal, -1 if str1 sorts precedes
str2, else1.

string first str1 str2

Returns the index in str2 of the first occurrence of str1, or -1 if str1 is not found.

string index string1 index1

Returns the character at the specified index.

string last str1 str2

Returns the index in str2 of the last occurrence of str1, or -1 if str1 is not found.

string length string

Returns the number of characters in the string.

string match pattern str

Returns 1 if str matches the pattern, else 0.

string range stri j

Returns the range of characters in str from i to j

string tolower string

Returns string in lowercase.

string toupper string

Returns string in uppercase.

string trim string ?chars?

Trims the characters in chars from both ends of string. chars defaults to white
space.

string trimleft string ?chars?

Trims the characters in chars from the beginning of string. chars defaults to white
space.

12 Scripting the application serving environment

Table 1. string command syntax descriptions (continued). Run the string command with one or more arguments.

Command Description

string trimright string ?chars? Trims the characters in chars from the end of string. chars defaults to white space.

string wordend str ix Returns the index in str of the character after the word containing the character at
index ix.

string wordstart str ix Returns the index in str of the first character in the word containing the character
at index ix.

The append command

The first argument of the append command is a variable name. It concatenates the remaining arguments
onto the current value of the named variable. For example:

set my_item z

= 7

append my_item a b c
=> zabc

The regexp command

The regexp command provides direct access to the regular expression matcher. The syntax is the
following:

regexp ?flags? pattern string ?match subl sub2 ...?

The return value is 1 if some part of the string matches the pattern. Otherwise, the return value is 0. The
pattern does not have to match the whole string. If you need more control than this, you can anchor the
pattern to the beginning of the string by starting the pattern with ~, or to the end of the string by ending the
pattern with dollar sign, $. You can force the pattern to match the whole string by using both characters.
For example:

set textl "This is the first string"
=> This is the first string

regexp "first string" $textl
= 1

regexp "second string" $textl
:>0

Jacl data structures

The basic data structure in the Jacl language is a string. There are two higher level data structures: lists
and arrays. Lists are implemented as strings and the structure is defined by the syntax of the string. The
syntax rules are the same as for commands. Commands are particular instances of lists. Arrays are
variables that have an index. The index is a string value so you can think of arrays as maps from one
string (the index) to another string (the value of the array element).

Jacl lists
The lists of the Jacl language are strings with a special interpretation. In the Jacl language, a list has the
same structure as a command. A list is a string with list elements separated by white space. You can use

braces or quotation marks to group together words with white space into a single list element.

The following table includes commands that are related to lists:

Chapter 3. Scripting concepts 13

Table 2. list command syntax descriptions. Run the list command with one or more arguments.

Command

Description

list arg1 arg2

Creates a list out of all its arguments.

lindex list i Returns the i'th element from list.
llength list Returns the number of elements in list.
Irange list i j Returns the i'th through j'th elements from list.

lappend listVar arg arg ...

Appends elements to the value of listVar

linsert list index arg arg ...

Inserts elements into list prior to the element at position index. Returns a new list.

Ireplace listij arg arg ...

Replaces elements i through j of list with the args. Return a new list.

Isearch mode list value

Returns the index of the element in list that matches the value according to the
mode, which is -exact, -glob, or -regexp, -glob is the default. Return -1 if not found.

Isort switches list

Sorts elements of the list according to the switches: -ascii, -integer, -real,
-increasing, -decreasing, -command command. Return a new list.

concat arg arg arg ...

Joins multiple lists together into one list.

join list joinString

Merges the elements of a list together by separating them with joinString.

split string splitChars

Splits a string up into list elements, using the characters in splitChars as
boundaries between list elements.

Arrays

Arrays are the other primary data structure in the Jacl language. An array is a variable with a string-valued
index, so you can think of an array as a mapping from strings to strings. Internally an array is implemented
with a hash table. The cost of accessing each element is about the same. The index of an array is
delimited by parentheses. The index can have any string value, and it can be the result of variable or
command substitution. Array elements are defined with the set command, for example:

set arr(index) value

Substitute the dollar sign ($) to obtain the value of an array element, for example:

set my_item $arr(index)

For example:

set fruit(best) kiwi
=> kiwi

set fruit(worst) peach
=> peach

set fruit(ok) banana
=> banana

array get fruit

=> ok banana worst peach best kiwi

array exists fruit
= 1

The following table includes array commands:

Table 3. array command syntax descriptions. Run the array command with an argument.

Command

Description

array exists arr

Returns 1 if arr is an array variable.

array get arr

Returns a list that alternates between an index and the corresponding array value.

14 Scripting the application serving environment

Table 3. array command syntax descriptions (continued). Run the array command with an argument.

Command Description

array names arr ?pattern? Return the list of all indexes defined for arr, or those that match the string match
pattern.

array set arr list Initializes the array arr from list, which need the same form as the list returned by
get.

array size arr Returns the number of indexes defined for arr.

array startsearch arr Returns a search token for a search through arr.

array nextelement arr id Returns the value of the next element in array in the search identified by the token
id. Returns an empty string if no more elements remain in the search.

array anymore arr id Returns 1 if more elements remain in the search.

array donesearch arr id Ends the search identified by id.

Control flow commands

The following looping commands exist:
* while

» foreach

e for

The following are conditional commands:
o if
* switch

The following is an error handling command:
e catch

The following commands fine-tune control flow:
* break

e continue

* return

s error

if then else

The if command is the basic conditional command. It says that if an expression is true, then run the
second line of code, otherwise run a different line of code. The second command body (the else clause) is
optional. The syntax of the command is the following:

if boolean then bodyl else body2

The then and else keywords are optional. For example:

if {$x == 0} {

puts stderr "Divide by zero!"
} else {

set slope [expr $y/$x]

}

switch

Use the switch command to branch to one of many commands depending on the value of an expression.
You can choose based on pattern matching as well as simple comparisons. Any number of pattern-body

Chapter 3. Scripting concepts 15

pairs can be specified. If multiple patterns match, only the code body of the first matching pattern is
evaluated. The general form of the command is the following:

switch flags value patl bodyl pat2 body2

You can also group all the pattern-body pairs into one argument:
switch flags value {patl bodyl pat2 body2 ...}

There are four possible flags that determine how value is matched.

* -exact Matches the value exactly to one of the patterns.

* -glob Uses glob-style pattern matching.

* -regexp Uses regular expression pattern matching.

* -- No flag (or end of flags). Useful when value can begin with a dash (-).

For example:

switch -exact -- $value {

foo {doFoo; incr count(foo)}
bar {doBar; return $count(foo)}
default {incr count(other)}

}

If the pattern that is associated with the last body is default, then the command body is started if no other
patterns match. The default keyword works only on the last pattern-body pair. If you use the default
pattern on an earlier body, it is treated as a pattern to match the literal string default.

foreach

The foreach command loops over a command body and assigns a loop variable to each of the values in a
list. The syntax is the following:

foreach loopVar valuelist commandBody

The first argument is the name of a variable. The command body runs one time for each element in the
loop with the loop variable having successive values in the list. For example:

set numbers {1 3 57 11 13}

foreach num $numbers {

puts $num

}

The result from the previous example is the following output, assuming that only one server exists in the
environment. If there is more than one server, the information for all servers returns:

1

3

5

7

11

13

while

The while command takes two arguments; a test and a command body, for example:
while booleanExpr body

The while command repeatedly tests the boolean expression and runs the body if the expression is true
(non-zero). For example:

set 1 0

while {$i < 5} {
puts "i is $i"
incr i}

16 Scripting the application serving environment

The result from the previous example resembles the following output, assuming that there is only one
server. If there is more than one server, it prints all of the servers:

is 0

is 1
is 2
is 3
is 4

—_ e e e

for

The for command is similar to the C language for statement. It takes four arguments, for example:
for initial test final body

The first argument is a command to initialize the loop. The second argument is a boolean expression
which determines if the loop body runs. The third argument is a command that runs after the loop body:
For example:

set numbers {1 3 57 11 13}
for {set i 0} {$i < [11ength $numbers]} {incr i 1} {
puts "i is §i"

}

The result from previous example resembles the following output, assuming that there is only one server in

the environment. If there is more than one server, it prints all of the server names:
is 1

is 3

is 5

is 7

is 11

is 13

—_ e e e e

break and continue

You can control loop execution with the break and continue commands. The break command causes an
immediate exit from a loop. The continue command causes the loop to continue with the next iteration.

catch

An error occurs if you call a command with the wrong number of arguments or if the command detects
some error condition particular to its implementation. An uncaught error prevents a script from running.
Use the catch command trap such errors. The catch command takes two arguments, for example:

catch command ?resultVar?

The first argument is a command body. The second argument is the name of a variable that contains the
result of the command or an error message if the command raises an error. The catch command returns a
value of zero if no error was caught or a value of one if the command catches an error. For example:

catch {expr 20 / 5} result

puts $result
==> syntax error in expression "text / 5"

return

Use the return command to return a value prior to the end of the procedure body or if a contrast value
must be returned.

Chapter 3. Scripting concepts 17

Namespaces

Jacl tracks named entities such as variables, in namespaces. The wsadmin tool also adds entries to the
global namespace for the scripting objects, such as, the AdminApp object

When you run a proc command, a local namespace is created and initialized with the names and the
values of the parameters in the proc command. Variables are held in the local namespace while you run
the proc command. When you stop the proc command, the local namespace is erased. The local
namespace of the proc command implements the semantics of the automatic variables in languages such
as C and Java.

While variables in the global namespace are visible to the top-level code, they are not visible by default
from within a proc command. To make them visible, declare the variables globally using the global
command. For the variable names that you provide, the global command creates entries in the local
namespace that point to the global namespace entries that actually define the variables.

If you use a scripting object provided by the wsadmin tool in a proc, you must declare it globally prior to
you using it, for example:

proc { ... } {
global AdminConfig
... [$AdminConfig ...]
}

Calling scripts using another script

Use the source command to call a Jacl script from another Jacl script. For example:
Create a script called testl.jacl.

Create a script called testProcedure. jacl.

proc printName {first last} {
puts "My name is $first $last"

Pass the following path as a script argument.
You must use forward slashes (/) as your path separator. Backward slashes (\) do not work.
Redirection using the exec command

The following Jacl exec command for redirection does not work on Linux platforms:
eval exec 1s -1 > /tmp/out

The exec command of the Jacl scripting language does not fully support redirection therefore it might
cause problems on some platforms.

Do not use redirection when using the exec command of the Jacl language. Instead, you can save the
exec command for redirection in a variable and write it to a file, for example:

open /tmp/out w puts $fileld $result close $fileld

In some cases, you can also perform a redirection using shell and a .sh command redirection, not a
redirection issued by Tcl.

Using wsadmin scripting with Jython

Jython is an alternate implementation of Python, and is written entirely in Java.

18 Scripting the application serving environment

The wsadmin tool uses Jython V2.1. The following information is a basic summary of the Jython syntax. In
all sample code, the => notation at the beginning of a line represents command or function output.

Basic function

The function is either the name of a built-in function or a Jython function. For example, the following
functions return "Hello, World!" as the output:

print "Hello, World!"
=>Hello, World!

import sys
sys.stdout.write("Hello World!\n")
=>Hello, World!

In the example, print identifies the standard output stream. You can use the built-in module by running
import statements such as the previous example. The statement import runs the code in a module as part
of the importing and returns the module object. sys is a built-in module of the Python language. In the
Python language, modules are name spaces which are places where names are created. Names that
reside in modules are called attributes. Modules correspond to files and the Python language creates a
module object to contain all the names defined in the file. In other words, modules are name spaces.

gotcha: When you issue a Jython command in a wsadmin script that invokes a WebSphere Application
Server MBean operation, and the MBean method returns a string that includes some NLS
translated characters such as the French accent character, Jython automatically converts the
string to a python unicode string, and returns the converted string to wsadmin. If you include the
Jython print output command in the script that invokes the MBean method, the NLS translated
characters are included in the string that the MBean method returns to wsadmin instead of the
python unicode values. To avoid the displaying of NLS translated characters, use a variable for
the MBean return (for example, output = AdminControl.invoke(mbean)) and then use print
output. Use the Jython print command to convert strings that contain NLS translated characters
correctly.

Variable

To assign objects to names, the target of an assignment goes on the left side of an equal sign (=) and the
object that you are assigning on the right side. The target on the left side can be a name or object
component, and the object on the right side can be an arbitrary expression that computes an object. The
following rules exist for assigning objects to names:

» Assignments create object references.
* Names are created when you assign them.
* You must assign a name prior to referencing it.

Variable name rules are like the rules for the C language; for example, variable names can have an
underscore character (_) or a letter plus any number of letters, digits, or underscores.

The following reserved words cannot be used for variable names:
* and

+ assert
* break

* class

» continue
e def

e del

o elif

> else

* except

Chapter 3. Scripting concepts 19

exec
finally
for
from
global
if
import
in

is
lambda
not

or

pass
print
raise
return
try
while

For example:

=5

print a
=>5

= a

print b
=>5

textl, text2, text3, text4
print text3
=> pretty

The second example assigns the value of variable a to variable b.

Types and operators

The following list contains examples of the built-in object types:

Numbers. For example:
8, 3.133, 999L, 3+4j

numl = int(10)
print numl
=> 10

Strings. For example:

'name', "name's",

print str(12345)
=> '12345"'

Lists. For example:

x = [1, [2, 'free']l, 5]
y = [0, 1, 2, 3]
y.append(5)

print y

= [0, 1, 2, 3, 5]

y.reverse()
print y
=[5, 3, 2, 1, 0]

y.sort()
print y

20 Scripting the application serving environment

'good', 'bad', 'pretty', 'ugly'

=> [0, 1, 2, 3, 5]

print list("apple")
= ['a', 'p', 'p', "1, 'e']
print 1ist((1,2,3,4,5))

= [1, 2, 3, 4, 5]

test = "This is a test"
test.index("test")
=> 10

test.index('s")
= 3

The following list contains examples of the operators:

X ory

y is evaluated only if x is false. For example:

print 0 or 1
=> 1

x andy

y is evaluated only if x is true. For example:

print 0 and 1
= 0

X+y,Xx-y
Addition and concatenation, subtraction. For example:

print 6 + 7
=> 13

textl = 'Something'
text2 = ' else'
print textl + text2
=> Something else

listl = [0, 1, 2, 3]
list2 = [4, 5, 6, 7]
print Tistl + list2
= [0, 1, 2, 3, 4, 5, 6, 7]

print 10 - 5
=> 5

X Y, X!y, X%y

Multiplication and repetition, division, remainder and format. For example:

print 5 * 6
=> 30

print 'test' * 3
=> test test test

print 30 / 6
=> 5

print 32 % 6
= 2

X[, x[i:jl, x(...)
Indexing, slicing, function calls. For example:

test = "This is a test"
print test[3]

=> g

print test[3:10]
=> s is a

print test[5:]

Chapter 3. Scripting concepts

21

=> js a test

print test[:-4]
=> This is a print len(test)

=> 14
° <, <=, >, >=, ==, <>, |= isis not
Comparison operators, identity tests. For example:
L1 = [1, ('a', 3)]
L2 = [1, ('a', 2)]
L1 < L2, L1 == L2, L1 > L2, L1 <> L2, L1 != L2, L1 is L2, L1 is not L2

= (0, 0, 1, 1, 1, 0, 1)
Backslash substitution

If a statement must span multiple lines, you can also add a back slash (\) at the end of the previous line to
indicate you are continuing on the next line. Do not use white space characters, specifically tabs or
spaces, following the back slash character. For example:

text = "This is a test of a long Tines" \

" continuing Tines here."

print text
=> This is a test of a long lines continuing Tines here.

Functions and scope

Jython uses the def statement to define functions. Functions related statements include:
e def, return

The def statement creates a function object and assigns it to a name. The return statement sends a
result object back to the caller. This is optional, and if it is not present, a function exits so that control
flow falls off the function body.

e global

The global statement declares module-level variables that are to be assigned. By default, all names
assigned in a function are local to that function and exist only while the function runs. To assign a name
in the enclosing module, list functions in a global statement.

The basic syntax to define a function is the following:

def name (argl, arg2, ... ArgN)
statements
return value

where name is the name of the function being defined. It is followed by an open parenthesis, a close
parenthesis, and a colon. The arguments inside parenthesis include a list of parameters to the procedures.
The next line following the colon is the body of the function. A group of commands that form the body of
the function. Once you define a Jython function, it is used just like any of the built-in functions. For
example:

def intersect(seql, seq2):
res = []
try:
for x in seql:
if x in seq2:
res.append(x)
except:
pass
return res

To call this function, use the following command:

sl = "SPAM"
s2 = "SCAM"
intersect(sl, s2)

22 Scripting the application serving environment

=> [S, A, M]

intersect([1,2,3], (1.4))
=> [1]

Comments
Make comments in the Jython language with the pound character (#).
Command-line arguments

The Jython shells pass the command-line arguments to the script as the value of the sys.argv. In wsadmin
Jython, the name of the program, or script, is not part of sys.argv. Unlike wsadmin Jython, Jython
stand-alone takes the script file as the initial argument to the script. Since sys.argv is an array, use the
index command to extract items from the argument list. For example, test.py takes three arguments a, b,
and c.

wsadmin -f test.py a b ¢

test.py content:

import sys

first sys.argv[0]
second = sys.argv[1]
third = sys.argv[2]
arglen = len(sys.argv)

Basic statements

There are two looping statements: while and for. The conditional statement is if. The error handling
statement is try. Finally, there are some statements to fine-tune control flow: break, continue, and pass.

if
The if statement selects actions to perform. The if statement might contain other statements,

including other if statements. The if statement can be followed by one or more optional elif
statements and ends with an optional else block.

The general format of an if looks like the following:

if testl
statementsl

elif test2
statements2

else
statements3

For example:

weather = 'sunny'
if weather == 'sunny':
print "Nice weather"
elif weather == 'raining':
print "Bad weather"
else:
print "Uncertain, don't plan anything"

while

The while statement consists of a header line with a test expression, a body of one or more
indented statements, and an optional else statement that runs if control exits the loop without
running into a break statement. The while statement repeatedly runs a block of indented
statements as long as a test at the top keeps evaluating a true value. An example of while
follows:

while testl
statementsl

else
statements2

Chapter 3. Scripting concepts 23

for

For example:

a=20;b=10

while a < b:
print a
a=a+1l

The for statement begins with a header line that specifies an assignment target or targets, along
with an object you want to step through. The header is followed by a block of indented statements
which you want to repeat.

An example of a for statement follows:

for target in object:
statements

else:
statements

It assigns items in the sequence object to the target, one by one, and runs the loop body for each.
The loop body typically uses the assignment target to refer to the current item in the sequence as
if it were a cursor stepping through the sequence. For example:

sum = 0

for x in [1, 2, 3, 4]:
sum = sum + X

break, continue, and pass

try

You can control loops with the break, continue and pass statements. The break statement jumps
out of the closest enclosing loop (past the entire loop statement). The continue statements jumps
to the top of the closest enclosing loop (to the header line of the loop), and the pass statement is
an empty statement placeholder.

A statement will raise an error if it is called with the wrong number of arguments, or if it detects
some error condition particular to its implementation. An uncaught error stops the running of a
script. The try statement is used to trap such errors. Python try statements come in two flavors,
one that handles exceptions and one that runs finalization code whether exceptions occur or not.
The try, except, else statement starts with a try header line followed by a block of indented
statements, then one or more optional except clauses that name exceptions to be caught, and an
optional else clause at the end. The try, finally statements starts with a try header line followed
by a block of indented statements, then the finally clause that always runs on the way out whether
an exception occurred while the try block was running or not.

An example of try, except, else functions follows:

try:
statements
except name:
statements
except name, data:
statements
else
statements

For example:

try: myfunction() except: import sys print 'uncaught exception', sys.exc_info() try: myfilereader()
except EOFError: break else: process next line here

The general format of a try and finally looks like the following:

try
statements

finally
statements

For example:

24 Scripting the application serving environment

def divide(x, y):
return x / y

def tester(y):
try:
print divide(8, y)
finally:
print 'on the way out...'

The following is a list of syntax rules in Python:

» Statements run sequentially by default. Statements normally end at the end of the line on which they

appear. When statements are too long to fit on a single line you can also add a backslash (\) at the end

of the prior line to indicate you are continuing on the next line.
* Block and statement boundaries are detected automatically. There are no braces, or begin or end

delimiter, around blocks of code. Instead, the Python language uses the indentation of statements under

a header in order to group the statements in a nested block. Block boundaries are detected by line
indentation. All statements indented the same distance to the right belong to the same block of code
until that block is ended by a line less indented.

» Compound statements = header; "', indented statements. All compound statements in the Python
language follow the same pattern: a header line terminated with a colon, followed by one or more
nested statements indented under the header. The indented statements are called a block.

» Spaces and comments are usually ignored. Spaces inside statements and expressions are almost
always ignored (except in string constants and indentation), so are comments.

Calling scripts using another script

Use the execfile command to call a Jython script from another Jython script. For example:
Create a script called testl.py that contains the following:

Create a script called testFunctions.py that contains the following:

def printName(first, last):

name = first + ' ' + Tast
return name

Then pass the following path as a script argument:
You must use forward slashes (/) as your path separator. Backward slashes (\) do not work.
Running Jython scripts that use packages

If you run scripts that use packages, you must provide the wsadmin tool with the search path for the
Jython scripts that use packages.

To provide this information to the wsadmin tool, include the following option when you start the tool:
-Dwsadmin.script.libraries.packages=pathl;path2;...

where dir1 and dir2 represent the directory search paths for libraries containing the Jython packages.

Chapter 3. Scripting concepts

25

26 Scripting the application serving environment

Chapter 4. Getting started with wsadmin scripting

Scripting is a non-graphical alternative that you can use to configure and manage WebSphere Application
Server.

About this task

The WebSphere Application Server wsadmin tool provides the ability to run scripts. The wsadmin tool
supports a full range of product administrative activities.

Restriction: The wsadmin tool does not apply to the Liberty profile. See [Administering the Liberty profile|
[from the command prompf{ instead.

The following figure illustrates the major components involved in a wsadmin scripting solution:

Java virtual machine

External tools
and programs

Figure 3. A WebSphere Application Server scripting solution. This figure illustrates the major components involved in a
wsadmin scripting solution.

The wsadmin tool supports two scripting languages: Jacl and Jython. Five objects are available when you
use scripts:

* AdminControl: Use to run operational commands.

+ AdminConfig: Use to run configurational commands to create or modify WebSphere Application Server
configurational elements.

* AdminApp: Use to administer applications.
* AdminTask: Use to run administrative commands.
* Help: Use to obtain general help.

The scripts use these objects to communicate with MBeans that run in WebSphere Application Server
processes. MBeans are Java objects that represent Java Management Extensions (JMX) resources. JMX
is an optional package addition to Java 2 Platform Standard Edition (J2SE). JMX is a technology that
provides a simple and standard way to manage Java objects.

Important: Some wsadmin scripts, including the AdminApp install, AdminApp update, and some
AdminTask commands, require that the user ID under which the server is running must have
read permission to the files that are created by the user that is running wsadmin scripting. For
example, if the application server is running under user1, but you are running wsadmin
scripting under user2, you might encounter exceptions involving a temporary directory. When
user2 runs wsadmin scripting to deploy an application, a temporary directory for the enterprise
application archive (EAR) file is created. However, when the application server attempts to
read and unzip the EAR file as user1, the process fails. It is not recommended that you set
the umask value of the user that is running wsadmin scripting to 022 or 023 to work around

© IBM Corporation 2004 27

this issue. This approach makes all of the files that are created by the user readable by other

users. To resolve this issue, consider the following approaches based on your administrative

policies:

* Run wsadmin scripting with the same user ID as the user that runs the deployment
manager or application server. A root user can switch the user ID to complete these actions.

+ Set the group ID of the user that is running the deployment manager or application server
to be the same group ID as the user that is running wsadmin scripting. Also, set the umask
value of the user that is running the wsadmin scripting to be at least a umask 027 value so
that files that are created by the wsadmin scripting can be read by members of the group.

* Run wsadmin scripting from a different machine. This approach forces files to be
transferred and bypasses the file copy permission issue.

To perform a task using scripting, you must first perform the following steps:

Procedure

1. Choose a scripting language. The wsadmin tool only supports Jacl and Jython scripting languages.
Jacl is the language specified by default. If you want to use the Jython scripting language, use the
-lang option or specify it in the wsadmin.properties file.

2. Start the wsadmin scripting client interactively, as an individual command, in a script, or in a profile.
What to do next

Before you perform any task using scripting, make sure that you are familiar with the following concepts:
» Java Management Extensions (JMX)

» WebSphere Application Server configuration model

* wsadmin tool

» Jacl syntax or Jython syntax

» Scripting objects

Optionally, you can customize your scripting environment. For more information, see Administrative
properties for using wsadmin scripting.

After you become familiar with the scripting concepts, choose a scripting language, and start the scripting
client, you are ready to perform tasks using scripting.

What is new for scripted administration (wsadmin)

This topic highlights what is new or changed for users who are going to customize, administer, monitor,
and tune production server environments using the wsadmin tool.

The Deprecated, stabilized, and removed features topic describes features that are being replaced or
removed in this or future releases.

Improved administrative scripting features

Command name Description

28 Scripting the application serving environment

Overview and new features for scripting the application serving

environment
Use the links provided in this topic to learn about the administrative features.

|“What is new for scripted administration (wsadmin)” on page 28|
This topic provides an overview of new and changed features for administrative scripting and the
wsadmin tool.

Introduction: Administrative scripting (wsadmin)
This topic provides an introduction to administrative scripting and the wsadmin tool.

Chapter 4. Getting started with wsadmin scripting 29

30 Scripting the application serving environment

Chapter 5. Using the wsadmin scripting objects

The wsadmin tool utilizes a set of management objects which allow you to run commands and command
parameters to configure your environment. Use the AdminConfig, AdminControl, AdminApp, AdminTask,
and Help objects to perform administrative tasks.

About this task

Each of the management objects have commands that you can use to perform administrative tasks. To
use the scripting objects, specify the scripting object, a command, and command parameters. In the
following example, AdminConfig is the scripting object, attributes is the command, and
ApplicationServer is the command parameter.

Using Jython:
print AdminConfig.attributes('ApplicationServer')

Using Jacl:
$AdminConfig attributes ApplicationServer

Administrative functions within the application server are divided into two categories: functions that work
with the configuration of application server installations, and functions that work with the currently running
objects on application server installations. Scripts work with both categories of objects. For example, an
application server is divided into two distinct entities. One entity represents the configuration of the server
that resides persistently in a repository on permanent storage.

Procedure

» Use the AdminConfig object, the AdminTask object, and the AdminApp object to handle configuration
functionality.

The AdminConfig object, the AdminTask object, and the AdminApp object are used when you are
managing the configuration of the server that resides persistently in a repository on permanent storage.
Use these objects to create, query, change, or remove this configuration without starting an application
server process. To use the AdminTask object, you must be connected to a running server.

* Use the AdminControl object to manage running objects on application server installations.

The AdminControl object is used when managing the running instance of an application server by a
Java Management Extensions (JMX) MBean. This instance can have attributes that you can interrogate
and change, and operations that you can invoke. These operational actions that are taken against a
running application server do not have an effect on the persistent configuration of the server. The
attributes that support manipulation from an MBean differ from the attributes that the corresponding
configuration supports. The configuration can include many attributes that you cannot query or set from
the running object. The application server scripting support provides functions to locate configuration
objects and running objects. The objects in the configuration do not always represent objects that are
currently running. The AdminControl object manages running objects.

» Use the Help object to obtain information about the AdminConfig, AdminApp, AdminControl, and
AdminTask objects, to obtain interface information about running MBeans, and to obtain help for
warnings and error messages.

Help object for scripted administration using wsadmin scripting

The Help object provides general help, online information about running MBeans, and help on messages.

© Copyright IBM Corp. 2012 31

Use the Help object to obtain general help for the other objects supplied by the wsadmin tool for scripting:
the AdminApp, AdminConfig, AdminTask, and AdminControl objects. For example, using Jacl, $Help
AdminApp or using Jython, Help.Adminapp(), provides information about the AdminApp object and the
available commands.

The Help object also to provides interface information about MBeans running in the system. The
commands that you use to get online information about the running MBeans include: all, attributes,
classname, constructors, description, notification, operations.

You can also use the Help object to obtain information about messages using the message command. The
message command provides aid to understand the cause of a warning or error message and find a solution
for the problem. For example, you receive a WASX7115E error when running the AdminApp install
command to install an application, use the following example:

Using Jacl:
$Help message WASX7115E

Using Jython:
print Help.message('WASX7115E")

Example output:

Explanation: wsadmin failed to read an ear file when

preparing to copy it to a temporary location for AdminApp

processing. User action: Examine the wsadmin.traceout

log file to determine the problem; there may be file permission problems.

The user action specifies the recommended action to correct the problem. It is important to understand
that in some cases the user action may not be able to provide corrective actions to cover all the possible
causes of an error. It is an aid to provide you with information to troubleshoot a problem.

To see a list of all available commands for the Help object, see the Commands for the Help object topic or
use the help command, for example:

Using Jacl:
$Help help

Using Jython:
print Help.help()

32 Scripting the application serving environment

Chapter 6. Using the wsadmin scripting AdminApp object for
scripted administration

Use the AdminApp object to manage applications.
Before you begin

This object communicates with the runtime application management object in the product to make
application inquires and changes, for example:

 Installing and uninstalling applications
» Listing applications
« Editing applications or modules

Because applications are part of configuration data, any changes that you make to an application are kept
in the configuration session, similar to other configuration data. Be sure to save your application changes
so that the data transfers from the configuration session to the master repository.

About this task

With the application already installed, the AdminApp object can update application metadata, map virtual
hosts to web modules, and map servers to modules. You must perform any other changes, such as
specifying a library for the application to use or setting session management configuration properties,
using the AdminConfig object.

You can run the commands for the AdminApp object in local mode. If a server is running, it is not
recommended that you run the scripting client in local mode because any configuration changes that are
made in local mode will not be reflected in the running server configuration and vice versa. If you save a
conflicting configuration, you could corrupt the configuration.

To see a list of all available commands for the AdminApp object:

Procedure
» See the Commands for the AdminApp object topic.
* You can also use the Help command, for example:
Using Jacl:
$AdminApp help
Using Jython:
print AdminApp.help()

Listing applications using the wsadmin scripting tool

You can list installed applications using the wsadmin tool and scripting.
Before you begin

Before starting this task, the wsadmin tool must be running. See the topic on starting the wsadmin
scripting client.

Procedure
* Query the configuration and create a list of installed applications, for example:
— Using Jacl:
$AdminApp list

© Copyright IBM Corp. 2012 33

— Using Jython:
print AdminApp.Tist()

Table 4. AdminApp list command description. Run the list command with no arguments.

Element Description

$ is a Jacl operator for substituting a variable name with its value
AdminApp is an object that supports application object management

Tist is an AdminApp command

Example output:

DefaultApplication
SampleApp
applserv2

* Query the configuration and create a list of installed applications on a given target scope, for example:
— Using Jacl:
$AdminApp Tist WebSphere:cell=myCell,node=myNode,server=myServer
— Using Jython:
print AdminApp.list("WebSphere:cell=myCell,node=myNode,server=myServer")

Table 5. AdminApp list command with target description. Run the list command with an optional argument.

Element Description

$ is a Jacl operator for substituting a variable name with its value
AdminApp is an object that supports application object management

Tist is an AdminApp command
WebSphere:cell=myCell,node=myNode, is an optional target scope

server=myServer

Example output:

DefaultApplication
PTantsByWebSphere
SamplesGallery
ivtApp

query

Editing application configurations using the wsadmin scripting tool

Use the wsadmin tool to configure application settings.

About this task

You can use the AdminApp edit or editInteractive command to change an entire application or a single
application module.

You can set or update a configuration value using options in batch mode. To identify which configuration
object is to be set or updated, the values of read only fields are used to find the corresponding
configuration object. All the values of read only fields have to match with an existing configuration object,
otherwise the command fails.

You can use pattern matching to simplify the task of supplying required values for certain complex options.
Pattern matching only applies to fields that are required or read only.

Attention: If an application is running, changing an application setting causes the application to restart.
On stand-alone servers, the application restarts after you save the change. On multiple-server products,
the application restarts after you save the change and files synchronize on the node where the application
is installed. To control when synchronization occurs on multiple-server products, deselect Synchronize
changes with nodes on the Console preferences page.

34 Scripting the application serving environment

Procedure
1. Start the wsadmin scripting tool.
2. Edit the entire application or a single application module. Use one of the following commands:
* The following command uses the installed application and the command option information to edit
the application:
— Using Jacl:
$AdminApp edit appname {options}
— Using Jython list:
AdminApp.edit('appname', ['options'])
— Using Jython string:
AdminApp.edit('appname', '[options]')

Table 6. AdminApp edit command description. Run the edit command with the name of the application or module.

Element Description

$ is a Jacl operator for substituting a variable name with its value

AdminApp is an object that supports application object management

edit is an AdminApp command

appname is the name of application or application module to edit. For the application module
name, use the module name returned from 1istModules command as the value.

{options} is a list of edit options and tasks similar to the ones for the install command

» The following command changes the application information by prompting you through a series of
editing tasks:
— Using Jacl:
$AdminApp editInteractive appname
— Using Jython:
AdminApp.editInteractive('appname')
Table 7. AdminApp editinteractive command description. Run the editInteractive command with the name of the
application or module.

Element Description

$ is a Jacl operator for substituting a variable name with its value

AdminApp is an object that supports application object management

editInteractive is an AdminApp command

appname is the name of application or application module to edit. For the application module
name, use the module name returned from 1istModules command as the value.

3. Save the configuration changes.
Use the following command example to save your configuration changes:

AdminConfig.save()

Chapter 6. Using the wsadmin scripting AdminApp object for scripted administration 35

36 Scripting the application serving environment

Chapter 7. Using the wsadmin scripting AdminControl object
for scripted administration

The AdminControl scripting object is used for operational control. It communicates with MBeans that
represent live objects running a WebSphere server process.

Before you begin

It includes commands to query existing running objects and their attributes and invoke operation on the
running objects. In addition to the operational commands, the AdminControl object supports commands to
query information on the connected server, convenient commands for client tracing, reconnecting to a
server, and start and stop server for network deployment environment.

About this task

Many of the operational commands have two sets of signatures so that they can either invoke using string
based parameters or using Java Management Extension (JMX) objects as parameters. Depending on the
server process to which a scripting client is connected, the number and type of MBeans available varies.
When connected to an application server, only MBeans running in that application server are visible.

The following steps provide a general method to manage the cycle of an application:
» Install the application.

» Edit the application.

» Update the application.

* Uninstall the application.

To see a list of all available commands for the AdminControl object:

Procedure
+ See the Commands for the AdminControl object topic.
* You can also use the help command, for example:
Using Jacl:
$AdminControl help
Using Jython:
print AdminControl.help()

ObjectName, Attribute, and AttributeList classes using wsadmin
scripting
WebSphere Application Server scripting commands use the underlying Java Management Extensions

(JMX) classes, ObjectName, Attribute, and AttributeList, to manipulate object names, attributes and
attribute lists respectively.

The ObjectName class uniquely identifies running objects. The ObjectName class consists of the following
elements:
* The domain name WebSphere.
» Several key properties, for example:
— type indicates the type of object that is accessible through the MBean, for example,
ApplicationServer, and EJBContainer.
— name represents the display name of the particular object, for example, MyServer.
— node represents the name of the node on which the object runs.

© Copyright IBM Corp. 2012 37

— process represents the name of the server process in which the object runs.
— mbeanIdentifier correlates the MBean instance with corresponding configuration data.

When ObjectName classes are represented by strings, they have the following pattern:

[domainName] : property=value[,property=value] *

For example, you can specify WebSphere:name="My Server",type=ApplicationServer,node=nl,* to specify
an application server named My Server on node n1. (The asterisk (*) is a wildcard character, used so that
you do not have to specify the entire set of key properties.) The AdminControl commands that take strings
as parameters expect strings that look like this example when specifying running objects (MBeans). You
can obtain the object name for a running object with the getObjectName command.

Attributes of these objects consist of a name and a value. You can extract the name and value with the
getName and the getValue methods that are available in the javax.management.Attribute class. You can
also extract a list of attributes.

Example: Collecting arguments for the AdminControl object using
wsadmin scripting

This example shows how to use multiple arguments with the AdminControl object.

Verify that the arguments parameter is a single string. Each individual argument in the string can contain
spaces. Collect each argument that contains spaces in some way.

* An example of how to obtain an MBean follows:
Using Jacl:
set am [$AdminControl queryNames type=ApplicationManager,process=serverl,=]
Using Jython:
am = AdminControl.queryNames ('type=ApplicationManager,process=serverl,')
» Multiple ways exist to collect arguments that contain spaces. Choose one of the following alternatives:
Using Jacl:
— $AdminControl invoke $am startApplication {"JavaMail Sample"}
— $AdminControl invoke $am startApplication {{JavaMail Sample}}
— $AdminControl invoke $am startApplication "\"JavaMail Sample\""
Using Jython:
— AdminControl.invoke(am, 'startApplication', '[JavaMail Sample]')
— AdminControl.invoke(am, 'startApplication', '\"JavaMail Sample\"')

Example: Identifying running objects using wsadmin scripting

Use the AdminControl object to interact with running MBeans.

In the WebSphere Application Server, MBeans represent running objects. You can interrogate the MBean
server to see the objects it contains.
* Use the queryNames command to see running MBean objects. For example:

Using Jacl:

$AdminControl queryNames *

Using Jython:

print AdminControl.queryNames('*")

This command returns a list of all MBean types. Depending on the server to which your scripting client

attaches, this list can contain MBeans that run on different servers:

— If the client attaches to a stand-alone WebSphere Application Server, the list contains MBeans that
run on that server.

38 Scripting the application serving environment

» The list that the queryNames command returns is a string representation of JMX ObjectName objects. For
example:

WebSphere:cel1=MyCel1,name=TraceService,mbeanIdentifier=TraceService,
type=TraceService,node=MyNode,process=serverl

This example represents a TraceServer object that runs in server? on MyNode.

* The single queryNames argument represents the ObjectName object for which you are searching. The
asterisk ("*") in the example means return all objects, but it is possible to be more specific. As shown in
the example, ObjectName has two parts: a domain, and a list of key properties. For MBeans created by
the WebSphere Application Server, the domain is WebSphere. If you do not specify a domain when you
invoke queryNames, the scripting client assumes the domain is WebSphere. This means that the first
example query above is equivalent to:

Using Jacl:

$AdminControl queryNames WebSphere:=*
Using Jython:

AdminControl.queryNames ('WebSphere:x")

» WebSphere Application Server includes the following key properties for the ObjectName object:
— name

- type

— cell

— node

— process

— mbeanldentifier

These key properties are common. There are other key properties that exist. You can use any of these
key properties to narrow the scope of the queryNames command. For example:

Using Jacl:

$AdminControl queryNames WebSphere:type=Server,node=myNode,*

Using Jython:

AdminControl.queryNames ('WebSphere:type=Server,node=myNode,*")

This example returns a list of all MBeans that represent server objects running the node myNode. The,
* at the end of the ObjectName object is a JMX wildcard designation. For example, if you enter the
following:

Using Jacl:

$AdminControl queryNames WebSphere:type=Server,node=myNode

Using Jython:

print AdminControl.queryNames ('WebSphere:type=Server,node=myNode")

you get an empty list back because the argument to queryNames is not a wildcard. There is no Server
MBean running that has exactly these key properties and no others.

» If you want to see all the MBeans representing applications running on a particular node, invoke the
following example:

Using Jacl:

$AdminControl queryNames WebSphere:type=Application,node=myNode,*

Using Jython:

print AdminControl.queryNames('WebSphere:type=Application,node=myNode,*")

Specifying running objects using the wsadmin scripting tool

Use scripting and the wsadmin tool to specify running objects.

Chapter 7. Using the wsadmin scripting AdminControl object for scripted administration 39

Before you begin

Before starting this task, the wsadmin tool must be running. See the topic on starting the wsadmin
scripting client.

About this task
You can run wsadmin commands that obtain object names and specify running objects.

Procedure
1. Obtain the configuration ID with one of the following ways:
* Obtain the object name with the completeObjectName command, for example:
— Using Jacl:
set var [$AdminControl completeObjectName template]
— Using Jython:

var = AdminControl.completeObjectName(template)

Table 8. AdminConfig completeObjectName command description. Run the completeObjectName command with the
template.

Element Description

set is a Jacl command

var is a variable name

$ is a Jacl operator for substituting a variable name with its value

AdminControl is an object that enables the manipulation of MBeans running in a WebSphere
server process

completeObjectName is an AdminControl command

template is a string containing a segment of the object name to be matched. The template

has the same format as an object name with the following pattern:
[domainName] : property=value[,property=value]*. For more information, see
Object name, Attribute, Attribute list.

If there are several MBeans that match the template, the completeObjectName command only returns
the first match. The matching MBean object name is then assigned to a variable.
To look for serverl MBean in mynode, use the following example:
— Using Jacl:
set serverl [$AdminControl completeObjectName node=mynode,type=Server,name=serverl,*]
— Using Jython:
serverl = AdminControl.completeObjectName('node=mynode,type=Server,name=serverl,*")
* Obtain the object name with the queryNames command, for example:
— Using Jacl:
set var [$AdminControl queryNames template]
— Using Jython:

var = AdminControl.queryNames (template)

Table 9. AdminControl queryNames command description. Run the queryNames command with the template.

Element Description

set is a Jacl command

var is a variable name

$ is a Jacl operator for substituting a variable name with its value

AdminControl is an object that enables the manipulation of MBeans running in a product process.
queryNames is an AdminControl command

40 Scripting the application serving environment

Table 9. AdminControl queryNames command description (continued). Run the queryNames command with the
template.

Element Description

template is a string containing a segment of the object name to be matched. The template
has the same format as an object name with the following pattern:
[domainName] :property=value[,property=value] *

2. If there are more than one running objects returned from the queryNames command, the objects are
returned in a list syntax. One simple way to retrieve a single element from the list is to use the Tindex
command in Jacl and split command in Jython. The following example retrieves the first running
object from the server list:

» Using Jacl:

set allServers [$AdminControl queryNames type=Server,*]
set aServer [lindex $allServers 0]

* Using Jython:

allServers = AdminControl.queryNames('type=Server,*"')

get Tine separator

import java

lineSeparator = java.lang.System.getProperty('line.separator')
aServer = allServers.split(1lineSeparator)[0]

For other ways to manipulate the list and then perform pattern matching to look for a specified
configuration object, refer to the topic on Jacl syntax.

Results

You can now use the running object in with other AdminControl commands that require an object name as
a parameter.

Identifying attributes and operations for running objects using the
wsadmin scripting tool

You can use scripting to identify attributes and operations for running objects.

Before you begin

Before starting this task, the wsadmin tool must be running. See the topic about starting the wsadmin
scripting client.

About this task

Use the attributes or operations commands of the Help object to find information on a running MBean in
the server.

Procedure
1. |Specify a running object]
2. Use the attributes command to display the attributes of the running object:
» Using Jacl:
$Help attributes MBeanObjectName
* Using Jython:
Help.attributes (MBeanObjectName)

Chapter 7. Using the wsadmin scripting AdminControl object for scripted administration 41

Table 10. Help attributes command description. Run the attributes command with an object name.

Attribute Definition

$ is a Jacl operator for substituting a variable name with its value

Help is the object that provides general help and information for running MBeans in the
connected server process

attributes is a Help command

MBeanObjectName is the string representation of the MBean object name that is obtained in step 2

3. Use the operations command to find out the operations that are supported by the MBean:
* Using Jacl:

$Help operations MBeanObjectname

or

$Help operations MBeanObjectname operationName
* Using Jython:

Help.operations (MBeanObjectname)

or

Help.operations (MBeanObjectname, operationName)

Table 11. Help operations command description. Run the operations command with an object name and, optionally,
an operation name.

Attribute Definition

$ is a Jacl operator for substituting a variable name with its value

Help is the object that provides general help and information for running MBeans in the
connected server process

operations is a Help command

MBeanObjectname is the string representation of the MBean object name that is obtained in step
number 2

operationName (optional) is the specified operation from which you want to obtain detailed
information

If you do not provide the operationName value, all the operations that are supported by the MBean
return with the signature for each operation. If you specify the operationName value, only the operation
that you specify returns and it contains details which include the input parameters and the return value.

To display the operations for the server MBean, use the following example:
* Using Jacl:

set server [§AdminControl completeObjectName type=Server,name=serverl,x]
$Help operations $server

* Using Jython:

server = AdminControl.completeObjectName('type=Server,name=serverl,*")
print Help.operations(server)

To display detailed information about the stop operation, use the following example:
» Using Jacl:

$Help operations $server stop
* Using Jython:

print Help.operations(server, 'stop')

42 Scripting the application serving environment

Performing operations on running objects using the wsadmin scripting

tool

You can use scripting to invoke operations on running objects.

Before you begin

Before starting this task, the wsadmin tool must be running. See the topic about starting the wsadmin

scripting client.

About this task

You can run wsadmin commands that obtain the object names of running objects and perform operations:

Procedure

1. Obtain the object name of the running object. For example:

» Using Jacl:

$AdminControl completeObjectName name

* Using Jython:

AdminControl.completeObjectName (name)

Table 12. AdminControl completeObjectName command description. Run the completeObjectName command with an

object name.

Element

Description

$

is a Jacl operator for substituting a variable name with its value

AdminControl

is an object that enables the manipulation of MBeans running in a product process

completeObjectName

is an AdminControl command

name

is a fragment of the object name. It is used to find the matching object name. For
example: type=Server,name=servl,*. It can be any valid combination of domain
and key properties. For example, type, name, cell, node, process, etc.

2. Set the sl variable to the running object, for example:

* Using Jacl:

set s1 [$AdminControl completeObjectName type=Server,name=serverl,*]

* Using Jython:

sl = AdminControl.completeObjectName('type=Server,name=serverl,x")

Table 13. AdminControl completeObjectName with type command description. Run the completeObjectName
command with an object type and name.

Element Description

set is a Jacl command

sl is a variable name

$ is a Jacl operator for substituting a variable name with its value

AdminControl

is an object that enables the manipulation of MBeans running in a product process

completeObjectName is an AdminControl command

type is the object name property key

Server is the name of the object

name is the object name property key

serverl is the name of the server where the operation is invoked

Chapter 7. Using the wsadmin scripting AdminControl object for scripted administration 43

3. Invoke the operation. For example:
* Using Jacl:
$AdminControl invoke $s1 stop
* Using Jython:
AdminControl.invoke(sl, 'stop')

Table 14. AdminControl invoke command description. Run the invoke command with the server identifier and stop
operation.

Element Description

$ is a Jacl operator for substituting a variable name with its value

AdminControl is an object that enables the manipulation of MBeans running in a product process
invoke is an AdminControl command

sl is the ID of the server that is specified in step number 3

stop is an operation to invoke on the server

Example

The following example is for operations that require parameters:
» Using Jacl:

set traceServ [$AdminControl completeObjectName type=TraceService,process=serverl,=*]
$AdminControl invoke $traceServ appendTraceString "com.ibm.ws.management.x=all=enabled"

* Using Jython:

traceServ = AdminControl.completeObjectName('type=TraceService,process=serverl,*')
AdminControl.invoke(traceServ, 'appendTraceString', "com.ibm.ws.management.x=all=enabled")

Modifying attributes on running objects using the wsadmin scripting
tool

Use scripting and the wsadmin tool to modify attributes on running objects.

Before you begin

Before starting this task, the wsadmin tool must be running. See the topic on starting the wsadmin
scripting client.

About this task
You can run a script that modifies attributes on running objects.

Procedure
1. Obtain the name of the running object.
Run the completeObjectName command with the name parameter.
» Using Jacl:
$AdminControl completeObjectName name
* Using Jython:
AdminControl.completeObjectName (name)

44 Scripting the application serving environment

Table 15. AdminControl completeObjectName command description. Run the completeObjectName command from

a wsadmin command line.

Element Description
$ is a Jacl operator for substituting a variable name with its value
AdminControl is an object that enables the manipulation of MBeans that run in a WebSphere

Application Server process

completeObjectName

is an AdminControl command

name

is a fragment of the object name that is used to find the matching object name. For
example: type=TraceService,node=mynode,*. This value can be any valid
combination of domain and key properties, for example, type, name, cell, node,
process, and so on.

2. Set the ts1 variable to the running object.
The following scripts set the ts1 variable to the result of the completeObjectName commands.

* Using Jacl:

set tsl [$AdminControl completeObjectName name]

* Using Jython:

tsl = AdminControl.completeObjectName (name)

Table 16. AdminControl completeObjectName command description. Set the result of a completeObjectName

command to a variable.

Element Description

set is a Jacl command

tsl is a variable name

$ is a Jacl operator for substituting a variable name with its value

AdminControl

is an object that enables the manipulation of MBeans running in a WebSphere
Application Server process

completeObjectName

is an AdminControl command

name

is a fragment of the object name. It is used to find the matching object name. For
example: type=TraceService,node=mynode,*. It can be any valid combination of
domain and key properties, for example, type, name, cell, node, process, and so
on.

3. Modify the running object.

The following scripts use the setAttribute command to set the ts1 variable ring buffer size to 10.

» Using Jacl:

$AdminControl setAttribute $tsl ringBufferSize 10

* Using Jython:

AdminControl.setAttribute(tsl, 'ringBufferSize', 10)

Table 17. AdminControl setAttribute command description. Run the setAttribute command from a wsadmin command

line.
Element Description
$ is a Jacl operator for substituting a variable name with its value

AdminControl

is an object that enables the manipulation of MBeans running in a WebSphere
Application Server process

setAttribute is an AdminControl command
tsl evaluates to the ID of the server specified in step number 3
ringBufferSize is an attribute of modify objects

Chapter 7. Using the wsadmin scripting AdminControl object for scripted administration 45

Table 17. AdminControl setAttribute command description (continued). Run the setAttribute command from a
wsadmin command line.

Element Description

10 is the value of the ringBufferSize attribute

You can also modify multiple attribute name and value pairs, for example:
* Using Jacl:

set tsl [$AdminControl completeObjectName type=TraceService,process=serverl,x]
$AdminControl setAttributes $tsl {{ringBufferSize 10}
{traceSpecification com.ibm.x*=all=disabled}}

* Using Jython list:

tsl = AdminControl.completeObjectName('type=TraceService,process=serverl,x")
AdminControl.setAttributes(tsl, [['ringBufferSize', 10],
['traceSpecification', 'com.ibm.*=all=disabled']])

* Using Jython string:

tsl =AdminControl.completeObjectName('type=TraceService,process=serverl,=")
AdminControl.setAttributes(tsl, '[[ringBufferSize 10]
[traceSpecification com.ibm.*=all=disabled]]")

The new attribute values are returned to the command line.

46 Scripting the application serving environment

Chapter 8. Using the wsadmin scripting AdminConfig object
for scripted administration

Use the AdminConfig object to manage the configuration information that is stored in the repository.
Before you begin

This object communicates with the WebSphere Application Server configuration service component to
make configuration inquires and changes. You can use it to query existing configuration objects, create
configuration objects, modify existing objects, remove configuration objects, and obtain help.

Updates to the configuration through a scripting client are kept in a private temporary area called a
workspace and are not copied to the master configuration repository until you run a save command. The
workspace is a temporary repository of configuration information that administrative clients including the
administrative console use. The workspace is kept in the wstemp subdirectory of your WebSphere
Application Server installation. The use of the workspace allows multiple clients to access the master
configuration. If the same update is made by more than one client, it is possible that updates made by a
scripting client will not save because there is a conflict. If this occurs, the updates will not be saved in the
configuration unless you change the default save policy with the setSaveMode command.

About this task

The AdminConfig commands are available in both connected and local modes. If a server is currently
running, it is not recommended that you run the scripting client in local mode because the configuration
changes made in the local mode is not reflected in the running server configuration and vice versa. In
connected mode, the availability of the AdminConfig commands depend on the type of server to which a
scripting client is connected in a WebSphere Application Server, Network Deployment installation.

Procedure
* Query and update a configuration object.
1. ldentify the configuration type and the corresponding attributes.
2. Query an existing configuration object to obtain a configuration ID to use.
3. Modify the existing configuration object or create a one.
4. Save the configuration.

» See the Commands for the AdminConfig object topic. You can also use the help command, for
example:

Using Jacl:
$AdminConfig help
Using Jython:

print AdminConfig.help()

Creating configuration objects using the wsadmin scripting tool

You can use scripting and the wsadmin tool to create configuration objects.
About this task

Perform this task if you want to create an object. To create new objects from the default template, use the
create command. Alternatively, you can create objects using an existing object as a template with the
createUsingTemplate command. You can only use the createUsingTemplate command for creation of a
server with APPLICATION_SERVER type. If you want to create a server with a type other than
APPLICATION_SERVER, use the createGenericServer or the createWebServer command.

© Copyright IBM Corp. 2012 47

P
1.
2.

rocedure
Start the wsadmin scripting tool.
Use the AdminConfig object listTemplates command to list available templates:

» Using Jacl:

$AdminConfig TistTemplates JDBCProvider

* Using Jython:

AdminConfig.1listTemplates('JDBCProvider')

Table 18. AdminConfig listTemplates command description. Run a command from a wsadmin command line.

Attribute Definition

$ is a Jacl operator for substituting a variable name with its value

AdminConfig is an object that represents the WebSphere Application Server configuration
listTemplates is an AdminConfig command

JDBCProvider is an object type

3. Assign the ID string that identifies the existing object to which the new object is added. You can add

the new object under any valid object type. The following example uses a node as the valid object
type:
» Using Jacl:

set nl [$AdminConfig getid /Node:mynode/]

* Using Jython:

nl = AdminConfig.getid('/Node:mynode/")

Table 19. AdminConfig getid command description. Run a command from a wsadmin command line.

Attribute Definition

set is a Jacl command

$ is a Jacl operator for substituting a variable name with its value

nl is a variable name

AdminConfig is an object that represents the WebSphere Application Server configuration
getid is an AdminConfig command

Node is an object type

mynode is the name of the node where the new object is added

4. Specify the template that you want to use:

» Using Jacl:
* Using Jython:

Table 20. AdminConfig listTemplates command description. Run a command from a wsadmin command line.

Attribute Definition

set is a Jacl command

$ is a Jacl operator for substituting a variable name with its value

tl is a variable name

AdminConfig is an object that represents the WebSphere Application Server configuration
TistTemplates is an AdminConfig command

JDBCProvider is an object type

DB2® JDBC Provider (XA) is the name of the template to use for the new object

If you supply a string after the name of a type, you get back a list of templates with display names that

48 Scripting the application serving environment

contain the string you supplied. In this example, the AdminConfig listTemplates command returns the
JDBCProvider template whose name matches DB2 JDBC Provider (XA). This example assumes that
the variable that you specify here only holds one template configuration ID. If the environment contains
multiple templates with the same string, for example, DB2 JDBC Provider (XA), the variable will hold
the configuration IDs of all of the templates. Be sure to identify the specific template that you want to
use before you perform the next step, creating an object using a template.

5. Create the object with the following command:
* Using Jacl:

$AdminConfig createUsingTemplate JDBCProvider $nl {{name newdriver}} $t1
* Using Jython:

AdminConfig.createUsingTemplate('JDBCProvider', nl, [['name', 'newdriver']l], tl1)

Table 21. AdminConfig createUsingTemplate command description. Run a command from a wsadmin command line.

Attribute Definition

$ is a Jacl operator for substituting a variable name with its value
AdminConfig is an object that represents the WebSphere Application Server configuration
createUsingTemplate is an AdminConfig command

JDBCProvider is an object type

nl evaluates the ID of the host node that is specified in step number 3

name is an attribute of JDBCProvider objects

newdriver is the value of the name attribute

tl evaluates the ID of the template that is specified in step number 4

All create commands use a template unless there are no templates to use. If a default template exists,
the command creates the object.

6. Save the configuration changes.
Use the following command example to save your configuration changes:
AdminConfig.save()

Interpreting the output of the AdminConfig attributes command using
wsadmin scripting

Use scripting to interpret the output of the AdminConfig attributes command.
Before you begin

Before starting this task, the wsadmin tool must be running. See the topic about starting the wsadmin
scripting client.

About this task

The attributes command is a wsadmin tool on-line help feature. When you issue the attributes
command, the information that displays does not represent a particular configuration object. It represents
information about configuration object types, or object metadata. This topic discusses how to interpret the
attribute type display.

Procedure
» Display simple attributes.

Using Jacl:

$AdminConfig attributes ExampleTypel
"attrl String"

Chapter 8. Using the wsadmin scripting AdminConfig object for scripted administration 49

Using Jython:

print AdminConfig.attributes('ExampleTypel")
attrl String

Types do not display as fully qualified names. For example, String is used for java.lang.String. There
are no ambiguous type names in the model. For example, x.y.ztype and a.b.ztype. Using only the
final portion of the name is possible, and it makes the output easier to read.

» Display multiple attributes.
Using Jacl:

$AdminConfig attributes ExampleType2
"attrl String" "attr2 Boolean" "attr3 Integer"

Using Jython:

print AdminConfig.attributes('ExampleType2")
attrl String attr2 Boolean attr3 Integer

All input and output for the scripting client takes place with strings, but attr2 Boolean indicates that
true or false are appropriate values. The attr3 Integer indicates that string representations of
integers ("42") are needed. Some attributes have string values that can take only one of a small number
of predefined values. The wsadmin tool distinguishes these values in the output by the special type
name ENUM, for example:

Using Jacl:

$AdminConfig attributes ExampleType3
"attr4 ENUM(ALL, SOME, NONE)"

Using Jython:

print AdminConfig.attributes('ExampleType3")
attr4 ENUM(ALL, SOME, NONE)

where: attr4 is an ENUM type. When you query or set the attribute, one of the values is ALL, SOME, or
NONE. The value A_FEW results in an error.

* Nested attributes
Using Jacl:

$AdminConfig attributes ExampleType4
"attrb String" "ex5 ExampleTypeb"

Using Jython:

print AdminConfig.attributes('ExampleType4')
attr5 String ex5 ExampleTypeb

The ExampleType4 object has two attributes: a string, and an ExampleType5 object. If you do not know
what is contained in the ExampleType5 object, you can use another attributes command to find out.
The attributes command displays only the attributes that the type contains directly. It does not
recursively display the attributes of nested types.

» Display attributes that represent lists.
The values of these attributes are object lists of different types. The * character distinguishes these
attributes, for example:
Using Jacl:

$AdminConfig attributes ExampleTypes
"ex6 ExampleTypeb*"

Using Jython:

print AdminConfig.attributes('ExampleType5")
ex6 ExampleTypeb*

In this example, objects of the ExampleTypeb type contain a single attribute, ex6. The value of this
attribute is a list of ExampleType6 type objects.

» Display reference attributes.

An attribute value that references another object. You cannot change these references using modify
commands, but these references display because they are part of the complete representation of the
type. Distinguish reference attributes using the @ sign, for example:

50 Scripting the application serving environment

Using Jacl:

$AdminConfig attributes ExampleType6
"attr7 Boolean" "ex7 ExampleType7@"

Using Jython:

print AdminConfig.attributes('ExampleType6')
attr7 Boolean ex7 ExampleType7@

ExampleTypeb objects contain references to ExampleType7 type objects.
» Display generic attributes.

These attributes have generic types. The values of these attributes are not necessarily this generic type.
These attributes can take values of several different specific types. When you use the AdminConfig
attributes command to display the attributes of this object, the various possibilities for specific types are
shown in parentheses, for example:

Using Jacl:

$AdminConfig attributes ExampleType8

"name String" "beast AnimalType(HorseType, FishType, ButterflyType)"

Using Jython:

print AdminConfig.attributes('ExampleType8")

name String beast AnimalType(HorseType, FishType, ButterflyType)

In this example, the beast attribute represents an object of the generic AnimalType. This generic type is
associated with three specific subtypes. The wsadmin tool gives these subtypes in parentheses after the
name of the base type. In any particular instance of ExampleType8, the beast attribute can have a value
of HorseType, FishType, or ButterflyType. When you specify an attribute in this way, using a modify or
create command, specify the type of AnimalType. If you do not specify the AnimalType, a generic
AnimalType object is assumed (specifying the generic type is possible and legitimate). This is done by
specifying beast:HorseType instead of beast.

Specifying configuration objects using the wsadmin scripting tool

Specify configuration objects with scripting and the wsadmin tool.
Before you begin

Before starting this task, the wsadmin tool must be running. See the Starting the wsadmin scripting client
topic.

About this task

To manage an existing configuration object, identify the configuration object and obtain a configuration 1D
of the object to use for subsequent manipulation.

Procedure

1. Obtain the configuration ID in one of the following ways:
» Obtain the ID of the configuration object with the getid command, for example:
— Using Jacl:
set var [$AdminConfig getid /type:name/]
— Using Jython:
var = AdminConfig.getid('/type:name/")

Table 22. AdminConfig getid command description. Run a command from a wsadmin command line.

Element Description

set is a Jacl command

var is a variable name

$ is a Jacl operator for substituting a variable name with its value

Chapter 8. Using the wsadmin scripting AdminConfig object for scripted administration 51

Table 22. AdminConfig getid command description (continued). Run a command from a wsadmin command line.

Element Description

AdminConfig is an object representing the product configuration

getid is an AdminConfig command

/type:name/ is the hierarchical containment path of the configuration object

type is the object type. The name of the object type that you input here is the one that is

based on the XML configuration files and does not have to be the same name that
is displayed in the administrative console.

name is the optional name of the object

You can specify multiple /type:name/ value pairs in the string, for example, /type:name/type:name/
type:name/. If you specify the type in the containment path without the name, include the colon, for
example, /type:/. The containment path must be a path that contains the correct hierarchical order.
For example, if you specify /Server:serverl/Node:node/ as the containment path, you do not
receive a valid configuration ID because Node is a parent of Server and comes before Server in the
hierarchy.
This command returns all the configuration IDs that match the representation of the containment and
assigns them to a variable.
To look for all the server configuration IDs that reside in the mynode node, use the code in the
following example:
— Using Jacl:

set nodeServers [$AdminConfig getid /Node:mynode/Server:/]
— Using Jython:

nodeServers = AdminConfig.getid('/Node:mynode/Server:/")
To look for the serverl configuration ID that resides in mynode, use the code in the following
example:
— Using Jacl:

set serverl [$AdminConfig getid /Node:mynode/Server:serverl/]
— Using Jython:

serverl = AdminConfig.getid('/Node:mynode/Server:serverl/"')
To look for all the server configuration IDs, use the code in the following example:
— Using Jacl:

set servers [$AdminConfig getid /Server:/]
— Using Jython:

servers = AdminConfig.getid('/Server:/")

* Obtain the ID of the configuration object with the 1ist command, for example:

— Using Jacl:

set var [$AdminConfig list type]

or

set var [$AdminConfig list type scopeld]
— Using Jython:
var = AdminConfig.Tist('type')

or
var = AdminConfig.list('type', 'scopeld')

Table 23. AdminConfig list command description. Run a command from a wsadmin command line.

Element Description
set is a Jacl command
var is a variable name

52 Scripting the application serving environment

Table 23. AdminConfig list command description (continued). Run a command from a wsadmin command line.

Element Description

$ is a Jacl operator for substituting a variable name with its value

AdminConfig is an object that represents the product configuration

Tist is an AdminConfig command

type is the object type. The name of the object type that you input here is the one that is
based on the XML configuration files and does not have to be the same name that
is displayed in the administrative console.

scopeld is the configuration ID of a cell, a node, or a server object

This command returns a list of configuration object IDs of a given type. If you specify the scopeld
value, the list of objects is returned within the specified scope. The returned list is assigned to a
variable.
To look for all the server configuration IDs, use the following example:
— Using Jacl:

set servers [$AdminConfig list Server]
— Using Jython:

servers = AdminConfig.list('Server')
To look for all the server configuration IDs in the mynode node, use the code in the following
example:
— Using Jacl:

set scopeid [$AdminConfig getid /Node:mynode/]
set nodeServers [$AdminConfig list Server $scopeid]

— Using Jython:

scopeid = AdminConfig.getid('/Node:mynode/")
nodeServers = AdminConfig.list('Server', scopeid)

2. If more than one configuration ID is returned from the getid or the 1ist command, the IDs are
returned in a list syntax. One way to retrieve a single element from the list is to use the Tindex
command. The following example retrieves the first configuration ID from the server object list:
» Using Jacl:

set allServers [$AdminConfig getid /Server:/]
set aServer [lindex $allServers 0]

* Using Jython:
allServers = AdminConfig.getid('/Server:/")

get Tine separator
import java
TineSeparator = java.lang.System.getProperty('line.separator')

arrayAl1Servers = allServers.split(TineSeparator)
aServer = arrayAllServers[0]

For other ways to manipulate the list and perform pattern matching to look for a specified configuration
object, refer to the topic on Jacl syntax.

Results

You can now use the configuration ID in any subsequent AdminConfig commands that require a
configuration ID as a parameter.

Listing attributes of configuration objects using the wsadmin scripting
tool

You can use scripting to generate a list of attributes of configuration objects.

Chapter 8. Using the wsadmin scripting AdminConfig object for scripted administration 53

Before you begin
Before starting this task, the wsadmin tool must be running. See the topic on starting wsadmin.
About this task

Run an AdminConfig command to create a list of attributes of configuration objects.

Procedure
1. List the attributes of a given configuration object type, using the attributes command, for example:
* Using Jacl:

$AdminConfig attributes type
* Using Jython:
AdminConfig.attributes('type')

Table 24. AdminConfig attributes command description. Run the attributes command from a wsadmin command line.

Element Description

$ is a Jacl operator for substituting a variable name with its value
AdminConfig is an object that represents the product configuration
attributes is an AdminConfig command

type is an object type

This command returns a list of attributes and its data type.
To get a list of attributes for the JDBCProvider type, use the following example command:
* Using Jacl:
$AdminConfig attributes JDBCProvider
* Using Jython:
AdminConfig.attributes('JDBCProvider')
2. List the required attributes of a given configuration object type, using the required command, for
example:
» Using Jacl:
$AdminConfig required type
* Using Jython:
AdminConfig.required('type')

Table 25. AdminConfig required command description. Run the command from a wsadmin command line.

Element Description

$ is a Jacl operator for substituting a variable name with its value
AdminConfig is an object that represents the product configuration

required is an AdminConfig command

type is an object type

This command returns a list of required attributes.
To get a list of required attributes for the JDBCProvider type, use the following example command:
* Using Jacl:
$AdminConfig required JDBCProvider
* Using Jython:
AdminConfig.required('JDBCProvider')

3. List attributes with defaults of a given configuration object type, using the defaults command, for
example:

54 Scripting the application serving environment

» Using Jacl:
$AdminConfig defaults type
* Using Jython:
AdminConfig.defaults('type')

Table 26. AdminConfig defaults command description. Run the command from a wsadmin command line.

Element Description

$ is a Jacl operator for substituting a variable name with its value
AdminConfig is an object that represents the product configuration

defaults is an AdminConfig command

type is an object type

This command returns a list of all the attributes, types, and defaults.
To get a list of attributes with the defaults displayed for the JDBCProvider type, use the following
example command:
» Using Jacl:
$AdminConfig defaults JDBCProvider
* Using Jython:
AdminConfig.defaults('JDBCProvider')

Modifying configuration objects using the wsadmin scripting tool

Modifying configuration objects using scripting and the wsadmin tool.
Before you begin

Before starting this task, the wsadmin tool must be running. See the Starting the wsadmin scripting client
topic for more information.

About this task

When using the modify command for the AdminConfig object, use the configuration object ID to modify the
attribute you want to change. If you use the parent object ID to modify the attribute, the command resets
all other attributes that are not specified to the default values. For example, you use the modify command
to change the monitoring policy settings through its parent object, the process definition object. All
attributes for the process definition object that were not modified with the command, such as the
pingInterval and pingTimeout attributes, are reset to their default values.

Perform the following steps to modify a configuration object:

Procedure
1. Retrieve the configuration ID of the objects that you want to modify, for example:
» Using Jacl:

set jdbcProviderl [$AdminConfig getid /JDBCProvider:myJdbcProvider/]
* Using Jython:
jdbcProviderl = AdminConfig.getid('/JDBCProvider:myJdbcProvider/")

Table 27. AdminConfig getid command description. Invoke a command from a wsadmin command line.

Element Description
set is a Jacl command
jdbcProviderl is a variable name

Chapter 8. Using the wsadmin scripting AdminConfig object for scripted administration 55

Table 27. AdminConfig getid command description (continued). Invoke a command from a wsadmin command line.

Element Description

$ is a Jacl operator for substituting a variable name with its value
AdminConfig is an object that represents the product configuration

getid is an AdminConfig command

/JDBCProvider:myJdbcProvider/

is the hierarchical containment path of the configuration object

JDBCProvider

is the object type

mydJdbcProvider

is the optional name of the object

2. Show the current attribute values of the configuration object with the show command, for example:

» Using Jacl:
$AdminConfig show $jdbcProviderl
* Using Jython:
AdminConfig.show(jdbcProviderl)

Table 28. AdminConfig show command description. Invoke a command from a wsadmin command line.

Element Description

$ is a Jacl operator for substituting a variable name with its value
AdminConfig is an object that represents the product configuration

show is an AdminConfig command

jdbcProviderl evaluates to the ID of the host node that is specified in step number 1

3. Modify the attributes of the configuration object.

Examples:
» Using Jacl:

$AdminConfig modify $jdbcProviderl {{description "This is my new description"}}
$AdminConfig modify $outPort {{retargettedURI "endpoint address"}}

* Using Jython list:

AdminConfig.modify(jdbcProviderl, [['description', "This is my new description"]])
AdminConfig.modify(outPort, [['retargettedURI', "endpoint address"]])

* Using Jython string:

AdminConfig.modify(jdbcProviderl, '[[description "This is my new description"]]")
AdminConfig.modify(outPort, '[[retargettedURI "endpoint address"]]"')

where:

Table 29. AdminConfig modify command description. Invoke a command from a wsadmin command line.

Element Description

$ is a Jacl operator for substituting a variable name with its value
AdminConfig is an object that represents the product configuration

modi fy is an AdminConfig command

jdbcProviderl evaluates to the ID of the host node that is specified in step number 1

description

is an attribute of server objects

This is my new description

is the value of the description attribute

outPort

is the name of the SIBWSOutboundPort created using the
addSIBWSOutboundPort command. The AdminConfig command can also
be used to modify the other SIBWSOutboundPort command attributes.

56 Scripting the application serving environment

Table 29. AdminConfig modify command description (continued). Invoke a command from a wsadmin command
line.

Element Description

retargettedURI is the attribute of outport objects. This particular attribute is equivalent to
changing the value specified for the endpoint address property on the
administrative console.

endpoint address is the value of the retargettedURI attribute

You can also modify several attributes at the same time. For example:
» Using Jacl:
{{namel vall} {name2 val2} {name3 val3}}
* Using Jython list:
[['namel', 'vall'l, ['name2', ‘val2'l, ['name3', 'val3']]
* Using Jython string:
"[[namel vall] [name2 val2] [name3 val3]]"'
4. List all of the attributes that can be modified:
» Using Jacl:
$AdminConfig attributes JDBCProvider
* Using Jython:
print AdminConfig.attributes('JDBCProvider')
Example output:

$AdminConfig attributes JDBCProvider
"classpath String"

"description String"
"implementationClassName String"
"name String"

"nativepath Stringx"

"propertySet J2EEResourcePropertySet"
"providerType String"

"xa boolean"

5. Modify an attribute that has a type of list and collection.

By default, if you try to modify an attribute that has a type of list and collection, and the attribute has
an existing value in the list, it will append the new value to the existing values. An attribute that has a
type of list and collection will have a star (*). In the following example, the attribute classpath has an
type of list and collection and the value is String. If you want to replace the existing value, you must
change the classpath to be an empty list before you modify the new value. For example:

» Using Jacl:

$AdminConfig modify $jdbcProviderl {{classpath {}}}

$AdminConfig modify $jdbcProviderl [1ist [1ist classpath /temp/db2j.jar]]
* Using Jython list:

AdminConfig.modify(jdbcProviderl, [['description', [1]1])
AdminConfig.modify(jdbcProviderl, [['description', '/temp/db2j.jar']]
* Using Jython string:

AdminConfig.modify(jdbcProviderl, '[]')

AdminConfig.modify(jdbcProviderl, '[[description /temp/db2j.jar]]")
6. Save the configuration changes.
Use the following command example to save your configuration changes:
AdminConfig.save()

Chapter 8. Using the wsadmin scripting AdminConfig object for scripted administration 57

Removing configuration objects with the wsadmin tool

Use this task to delete a configuration object from the configuration repository. This action only affects the
configuration.

About this task

If a running instance of a configuration object exists when you remove the configuration, the change has
no effect on the running instance.

Procedure
1. Start the wsadmin scripting tool.
2. Assign the ID string that identifies the server that you want to remove:
Using Jacl:
set s1 [$AdminConfig getid /Node:mynode/Server:myserver/]
Using Jython:
sl = AdminConfig.getid('/Node:mynode/Server:myserver/")

Table 30. AdminConfig getid command description. The following table describes the AdminConfig getid command.

Element Description

set is a Jacl command

sl is a variable name

$ is a Jacl operator for substituting a variable name with its value
AdminConfig is an object that represents the WebSphere Application Server configuration
getid is an AdminConfig command

Node is an object type

mynode is the host name of the node from which the server is removed

Server is an object type

myserver is the name of the server to remove

3. Remove the configuration object. For example:
» Using Jacl:
$AdminConfig remove $sl
* Using Jython:
AdminConfig.remove(sl)

Table 31. AdminConfig remove command description. The following table describes the AdminConfig remove
command.

Element Description

$ is a Jacl operator for substituting a variable name with its value
AdminConfig is an object that represents the WebSphere Application Server configuration
remove is an AdminConfig command

sl evaluates the ID of the server that is specified in step number 2

4. Save the configuration changes.
Use the following command example to save your configuration changes:

AdminConfig.save()

58 Scripting the application serving environment

Results

The application server configuration no longer contains a specific server object. Running servers are not
affected.

Removing the trust association interceptor class using scripting

Use the wsadmin tool to remove the trust association interceptor class.

Before you begin

Before starting this task, the wsadmin tool must be running. See the [Chapter 10, “Starting the wsadmin|
|scripting client using wsadmin scripting,” on page 85| article for more information.

About this task
Use the following example as a Jacl script file and run it with the “f” option:
Procedure

Using Jacl:

set variableName "com.ibm.ws.security.web.TAMTrustAssociationInterceptorPlus"
set cellName $env(Tocal.cell)

foreach taiEntry [$AdminConfig 1ist TAInterceptor] {
set interceptorClass [lindex [$AdminConfig showAttribute $taiEntry interceptorClassName] 0]
if { [string compare $interceptorClass $variableName] == 0 } {
puts "found $interceptorClass"”
puts "Removing the TAIntercepter class '$interceptorClass'"
set tai taiEntry
#set t [$AdminConfig getid /Cell:$cellName/TAInterceptor:/]
#$AdminConfig remove $t
$AdminConfig remove $taiEntry
puts "'$interceptorClass' is removed."
break
}
}

if { ![info exists tai] } {
puts "The class '$variableName' does not exist."

}

$AdminConfig save
Results

Example output:

[root@svtaix23] /tmp
==>/usr/6%/A*/profiles/Dx/bin/wsadmin.sh -f tai.jacl

WASX72091: Connected to process "dmgr" on node svtaix23CellManager0l using SOAP connector;
The type of process is: DeploymentManager

found com.ibm.ws.security.web.TAMTrustAssociationInterceptorPlus

Removing the TAIntercepter class 'com.ibm.ws.security.web.TAMTrustAssociationInterceptorPlus'
'com.ibm.ws.security.web.TAMTrustAssociationInterceptorPlus' is removed.

Changing the application server configuration using the wsadmin tool

You can use the wsadmin AdminConfig and AdminApp objects to make changes to the application server
configuration.

About this task

The purpose of this article is to illustrate the relationship between the commands that are used to change
the configuration and the files that are used to hold configuration data. This discussion assumes that you

Chapter 8. Using the wsadmin scripting AdminConfig object for scripted administration 59

have a network deployment installation, but the concepts are very similar for a application server
installation.

Procedure
1. Start the wsadmin scripting tool.
2. Set a variable for creating a server:
* Using Jacl:
set nl [$AdminConfig getid /Node:mynode/]
* Using Jython:
nl = AdminConfig.getid('/Node:mynode/")

Table 32. AdminConfig getid command description. The following table describes the AdminConfig getid command.

Element Description

set is a Jacl command

nl is a variable name

$ is a Jacl operator for substituting a variable name with its value
AdminConfig is an object that represents the WebSphere Application Server configuration
getid is an AdminConfig command

Node is the object type

mynode is the name of the object to modify

3. Create a server with the following command:
» Using Jacl:
set servl [$AdminConfig create Server $nl {{name myserv}}]
* Using Jython list:
servl = AdminConfig.create('Server', nl, [['name', 'myserv']])
» Using Jython string:
servl = AdminConfig.create('Server', nl, '[[name myserv]]"')

Table 33. AdminConfig create command description. The following table describes the AdminConfig create
command.

Element Description

set is a Jacl command

servl is a variable name

$ is a Jacl operator for substituting a variable name with its value
AdminConfig is an object that represents the WebSphere Application Server configuration
create is an AdminConfig command

Server is an AdminConfig object

nl evaluates to the ID of the host node that is specified in step number 1

name is an attribute

myserv is the value of the name attribute

After this command completes, some new files can be seen in a workspace used by the deployment
manager server on behalf of this scripting client. A workspace is a temporary repository of configuration
information that administrative clients use. Any changes made to the configuration by an administrative
client are first made to this temporary workspace. For scripting, when a save command is invoked on
the AdminConfig object, these changes are transferred to the real configuration repository. Workspaces
are kept in the wstemp subdirectory of a WebSphere Application Server installation.

60 Scripting the application serving environment

4. Make a configuration change to the server with the following command:
* Using Jacl:
$AdminConfig modify §servl {{stateManagement {{initialState STOP}}}}
* Using Jython list:
AdminConfig.modify(servl, [['stateManagement', [['initialState', 'STOP']]1])
* Using Jython string:
AdminConfig.modify(servl, '[[stateManagement [[initialState STOP]]]]')

Table 34. AdminConfig modify command description. The following table describes the AdminConfig modify
command.

Element Description

$ is a Jacl operator for substituting a variable name with its value
AdminConfig is an object that represents the WebSphere Application Server configuration
modify is an AdminConfig command

servl evaluates to the ID of the host node that is specified in step number 2
stateManagement is an attribute

initialState is a nested attribute within the stateManagement attribute

STOP is the value of the initialState attribute

This command changes the initial state of the new server. After this command completes, one of the
files in the workspace is changed.

5. Save the configuration changes.

Use the following command example to save your configuration changes:
AdminConfig.save()

Modifying nested attributes using the wsadmin scripting tool

You can modify nested attributes for a configuration object using scripting and the wsadmin tool.
About this task

The attributes for a WebSphere Application Server configuration object are often deeply nested. For
example, a JDBCProvider object has an attribute factory, which is a list of the J2EEResourceFactory type
objects. These objects can be DataSource objects that contain a connectionPool attribute with a
ConnectionPool type that contains a variety of primitive attributes.

Procedure

1. Invoke the AdminConfig object commands interactively, or in a script, from an operating system
command prompt.

See the topic on starting the wsadmin scripting client.
2. Obtain the configuration ID of the object, for example:

Using Jacl:

set t1 [$AdminConfig getid /DataSource:TechSamp/]

Using Jython:

t1=AdminConfig.getid('/DataSource:TechSamp/")

Table 35. AdminConfig getid command description. Run a command from a wsadmin command line.

Element Description
set is a Jacl command
tl is a variable name

Chapter 8. Using the wsadmin scripting AdminConfig object for scripted administration 61

Table 35. AdminConfig getid command description (continued). Run a command from a wsadmin command line.

Element Description

$ is a Jacl operator for substituting a variable name with its value
AdminConfig is an object representing the product configuration

getid is an AdminConfig command

DataSource is the object type

TechSamp is the name of the object that will be modified

3. Modify one of the object parents and specify the location of the nested attribute within the parent, for
example:
Using Jacl:
$AdminConfig modify $t1 {{connectionPool {{reapTime 2003}}}}
Using Jython list:
AdminConfig.modify(tl, [["connectionPool", [["reapTime", 2003]111])
Using Jython string:
AdminConfig.modify(tl, '[[connectionPool [[reapTime 2003]111]")

Table 36. AdminConfig modify command description. Run a command from a wsadmin command line.

Element Description

$ is a Jacl operator for substituting a variable name with its value
AdminConfig is an object representing the WebSphere Application Server configuration
modify is an AdminConfig command

tl evaluates to the configuration ID of the datasource in step number 2
connectionPool is an attribute

reapTime is a nested attribute within the connectionPool attribute

2003 is the value of the reapTime attribute

4. Save the configuration by issuing an AdminConfig save command. For example:
Using Jacl:
$AdminConfig save
Using Jython:

AdminConfig.save()

Use the reset command of the AdminConfig object to undo changes that you made to your workspace
since your last save.

Example

An alternative way to modify nested attributes is to modify the nested attribute directly.

Using Jacl:

set techsamp [$AdminConfig getid /DataSource:TechSamp/]
set pool [$AdminConfig showAttribute $techsamp connectionPool]
$AdminConfig modify $pool {{reapTime 2003}}

Using Jython list:

techsamp=AdminConfig.getid('/DataSource:TechSamp/"')
pool=AdminConfig.showAttribute(techsamp,'connectionPool")
AdminConfig.modify(pool, [['reapTime',2003]])

62 Scripting the application serving environment

Using Jython string:

techsamp=AdminConfig.getid('/DataSource:TechSamp/')
pool=AdminConfig.showAttribute(techsamp, 'connectionPool")
AdminConfig.modify(pool,'[[reapTime 2003]]")

In this example, the first command gets the configuration id of the DataSource, and the second command
gets the connectionPool attribute. The third command sets the reapTime attribute on the ConnectionPool

object directly.

Saving configuration changes with the wsadmin tool

Use the wsadmin tool and scripting to save configuration changes to the master configuration repository.

About this task

The wsadmin tool uses the workspace to hold configuration changes. You must save your changes to
transfer the updates to the master configuration repository. If a scripting process ends and you have not
saved your changes, the changes are discarded.

Procedure

Use the following commands to save the configuration changes:
1. Using Jacl:

$AdminConfig save
2. Using Jython:
AdminConfig.save()

Table 37. AdminConfig save command description. Run a command from a wsadmin command line.

Element Description

$ is a Jacl operator for substituting a variable name with its value
AdminConfig is an object representing the product configuration

save is an AdminConfig command

If you are using interactive mode with the wsadmin tool, you will be prompted to save your changes before
they are discarded.

If you are using the -c option with the wsadmin tool, changes are automatically saved.

If a scripting process ends and no save has been performed, any configuration changes made since the
last save are discarded. If there are multiple clients (scripts or browser clients) updating the configuration
at the same time, it is possible that the changes requested by a script may not be saved. If this happens,
you will receive an exception and you must make the updates again. If the save fails, the updates will not
be saved to the configuration. If it succeeds, all updates are saved. To avoid save failures, you can invoke
the save command after every configuration update.

You can use the reset command of the AdminConfig object to undo changes that you made to your
configuration since your last save.

Chapter 8. Using the wsadmin scripting AdminConfig object for scripted administration 63

64 Scripting the application serving environment

Chapter 9. Using the wsadmin scripting AdminTask object for
scripted administration

Use the AdminTask object to access a set of administrative commands that provide an alternative way to
access the configuration commands and the running object management commands.

Before you begin

The administrative commands run simple and complex commands. They provide more user friendly and
task-oriented commands. The administrative commands are discovered dynamically when you start a
scripting client. The set of available administrative commands depends on the edition of WebSphere
Application Server that you installed. You can use the AdminTask object commands to access these
commands.

About this task

Administrative commands are grouped based on their function. You can use administrative command
groups to find related commands. For example, the administrative commands that are related to server
management are grouped into a server management command group. The administrative commands that
are related to the security management are grouped into a security management command group. An
administrative command can be associated with multiple command groups because it can be useful for
multiple areas of system management. Both administrative commands and administrative command
groups are uniquely identified by their name.

Two run modes are always available for each administrative command, namely the batch and interactive
modes. When you use an administrative command in interactive mode, you go through a series of steps to
collect your input interactively. This process provides users a text-based wizard and a similar user
experience to the wizard in the administrative console. You can also use the help command to obtain help
for any administrative command and the AdminTask object.

The administrative commands do not replace any existing configuration commands or running object
management commands but provide a way to access these commands and organize the inputs. The
administrative commands can be available in connected or local mode. The set of available administrative
commands is determined when you start a scripting client in connected or local mode. If a server is
running, it is not recommended that you run the scripting client in local mode because any configuration
changes made in local mode are not reflected in the running server configuration and vice versa. If you
save a conflicting configuration, you could corrupt the configuration.

Use parameter name and parameter value pairs to specify the parameters of a step in any order. You do
not have to specify option parameters. This applies to all commands for the AdminTask object. For
example:

AdminTask.createCluster('[-clusterConfig [-clusterName clusterl -preferLocal true]l]')

To determine the names of the step parameters, use the following command:
AdminTask.help('command_name', 'step _name'), as the following example demonstrates:

AdminTask.help('createCluster', 'clusterConfig')

Procedure

* Read r‘lnvoking an administrative command in batch mode using wsadmin scripting” on page 7d to use
administrative commands in batch mode.

* Read r‘lnvoking an administrative command in interactive mode using wsadmin scripting” on page 74| to
use administrative commands in interactive mode.

© Copyright IBM Corp. 2012 65

 Read [‘Obtaining online help using wsadmin scripting’] to learn how to use scripting for online help.

Obtaining online help using wsadmin scripting

You can select from three levels of online help for administrative commands.
Before you begin
Start the wsadmin tool.

About this task

The top-level help provides general information for the AdminTask object and associated commands. The
second-level help provides information about all of the available administrative commands and command
groups. The third-level help provides specific help on a command group, a command, or a step. Command
group-specific help provides descriptions for the command group that you specify and the commands that
belong to the associated group. Command-specific help provides description for the specified command,
and associated parameters and steps. Step-specific help provides a description for the specified step and
the associated parameters. For command and step-specific help, required parameters are marked with an
asterisk () in the help output.

Procedure
* To obtain general help, run the help command.
Using Jacl:
$AdminTask help
Using Jython:
print AdminTask.help()
Example output:

WASX8001I: The AdminTask object enables the execution of available admin
commands. AdminTask commands operate in two modes:
the default mode is one which AdminTask communicates with the WebSphere
server to accomplish its task. A Tocal mode is also available, in which
no server communication takes place. The local mode of operation is
invoked by bringing up the scripting client using the command Tine
"-conntype NONE" option or setting the
"com.ibm.ws.scripting.connectiontype=NONE" property in
wsadmin.properties file.

The number of admin commands varies and depends on your WebSphere install.
Use the following help commands to obtain a Tist of supported commands
and their parameters:

help -commands Lists all the admin commands

help -commands <pattern> Lists admin commands matching with wildcard
"pattern"

help -commandGroups Lists all the admin command groups

help -commandGroups <pattern> Lists admin command groups matching with
wildcard "pattern"

help commandName Displays detailed information for the
specified command

help commandName stepName Displays detailed information for the specified
step belonging to the specified command

help commandGroupName Displays detailed information for the specified

command group
There are various flavors to invoke an admin command:

commandName Invokes an admin command that does not require
any argument.

commandName targetObject Invokes an admin command with the specified

66 Scripting the application serving environment

target object string, for example, the
configuration object name of a resource
adapter. The expected target object varies
with the admin command invoked. Use help
command to get information on the target
object of an admin command.

commandName options Invokes an admin command with the specified
option strings. This invocation syntax is
used to invoke an admin command that does
not require a target object. It is also
used to enter interactive mode if
"-interactive" mode is included in the
options string.

commandName targetObject options Invokes an admin command with the specified
target object and options strings. If
"-interactive" is included in the options string,
then interactive mode is entered. The target
object and options strings vary depending on the
admin command invoked. Use help command to get
information on the target object and options.

» To list the available command groups, run the help command with the -commandGroups parameter.
Using Jacl:
$AdminTask help -commandGroups
Using Jython:
print AdminTask.help('-commandGroups')
Example output:
WASX8005I: Available admin command groups:

AdminAgentNode - Admin Agent Managed Node related tasks

AdminAgentSecurityCommands - Commands used to configure security related items during Admin Agent registration.
AdminReports - Admin configuration reports

AdminSDKCmds - Admin commands related to pluggable SDKs

AdministrativeJobs - This command group contains all the job management commands

AppManagementCommands - Application management commands.

» To list the available commands, run the help command with the -commands parameter.
Using Jacl:
$AdminTask help -commands
Using Jython:
print AdminTask.help('-commands")
Example output:
WASX80041: Available administrative commands:

copyResourceAdapter - copy the specified J2C resource adapter to the specified scope
createCluster - Creates a new application server cluster.

createClusterMember - Creates a new member of an application server cluster.
created2CConnectionFactory - Create a J2C connection factory

deleteCluster - Delete the configuration of an application server cluster.
deleteClusterMember - Deletes a member from an application server cluster.
listConnectionFactoryInterfaces - Tist all of the

defined connection factory interfaces on the

specified J2C resource adapter.

listJ2CConnectionFactories - List J2C connection factories that have a specified
connection factory interface defined in the specified J2C resouce adapter
createJ2CAdminObject - Create a J2C administrative object.
listAdminObjectInterfaces - List all the defined administrative object interfaces
on the specified J2C resource adapter.

interface on the specified J2C resource adapter.

1istJ2CAdminObjects - List the J2C administrative objects that have a specified
administrative object interface defined in the specified J2C resource adapter.
createJ2CActivationSpec - Create a J2C activation specification.
listMessageListenerTypes - list all of the defined messagelListener

Chapter 9. Using the wsadmin scripting AdminTask object for scripted administration

type on the specified J2C resource adapter.
listJ2CActivationSpecs - List the J2C activation specifications that have a
specified message Tistener type defined in the specified J2C resource adapter.

» To obtain help about a command group, run the help command with the group name.
Using Jacl:
$AdminTask help JCAManagement
Using Jython:
print AdminTask.help('JCAManagement')
Example output:
WASX80071: Detailed help for command group: JCAManagement

Description: A group of administrative commands that help to
configure Java 2 Connector Architecture (J2C)-related resources.

Commands:

createJ2CConnectionFactory - Create a J2C connection factory
listConnectionFactoryInterfaces - Tist all of the defined connection
factory interfaces on the specified J2C resource adapter.
listJ2CConnectionFactories - List J2C connection factories that have
a specified connection factory interface defined in the

specified J2C resouce adapter.

createJ2CAdminObject - Create a J2C administrative object.
1istAdminObjectInterfaces - List all the defined administrative
object interfaces on the specified J2C resource adapter.
1istJ2CAdminObjects - List the J2C administrative objects that have a
specified administrative object interface defined in the

specified J2C resource adapter.

createJ2CActivationSpec - Create a J2C activation specification.
listMessagelListenerTypes - list all of the defined

message listener types on the specified J2C resource adapter.
TistJ2CActivationSpecs - List the J2C activation specifications that
have a specified message listener type defined in the

specified J2C resource adapter.

copyResourceAdapter - copy the specified J2C resource

adapter to the specified scope.

» To obtain help about an administrative command, run the help command with the parameter name.
Using Jacl:
$AdminTask help createJ2CConnectionFactory
Using Jython:
print AdminTask.help('createJ2CConnectionFactory')
Example output:
WASX80061: Detailed help for command: createJ2CConnectionFactory

Description: Create a J2C connection factory
*Target object: The parent J2C resource adapter of the created J2C connection factory.

Arguments:

+xconnectionFactoryInterface - A connection factory interface that is defined in the deployment
description of the parent J2C resource adapter.

*name - The name of the J2C connection factory.

*jndiName - The JNDI name of the created J2C connection factory.

description - The description for the created J2C connection factory.

authDataAlias - the authentication data alias of the created J2C connection factory.

Steps:
None

In the command-specific help output that is previously listed, an administrative command is divided into
three input areas: target object, arguments, and steps. Each area can require input depending on the
administrative command. If an area requires input, each input is described by its name and a
description; except for the target object area, which contains the description of the target object only.
When you use an administrative command in batch mode, you can use any input name that resides in
the argument area as the argument name.

68 Scripting the application serving environment

If an input is required, an asterisk (*) is located before the name. If an area does not require an input, it
is marked None. The following example uses the help output for the created2CConnectionFactory
command:

— The target object area requires the configuration object name of a J2CResourceAdapter.

— In the arguments area, there are five inputs with three being required inputs. The argument names
are connectionFactorylnterface, name, jndiName, description, and authDataAlias. These names are
used as the parameter names in the option string to run an administrative command in batch mode,
for example:

-connectionFactoryInterface javax.resource.cci.ConnectionFactory -name newConnectionFactory
-jndiName CF/newConnectionFactory

See Administrative command invocation syntax using wsadmin scripting for more information about
specifying argument options.

— No step is associated with this administrative command.

To obtain help on a command step, use the step-specific help.

Step-specific help provides the following data:

— A description for the command step.

— Information indicating if this step supports collection. A collection includes objects of the same type.
In a command step, a collection contains objects that have the same set of parameters.

— Information regarding each step parameter with its name and description. If a step parameter is
required, an asterisk (*) is located in front of the name.

The following example obtains help on a command step:

Using Jacl:

$AdminTask help createCluster clusterConfig

Using Jython:

print AdminTask.help('createCluster', 'clusterConfig')

Example output:

WASX80131: Detailed help for step: clusterConfig

Description: Specifies the configuration of the new server cluster.
Collection: No

Arguments:
*clusterName - Name of server cluster.
preferLocal - Enables node-scoped routing optimization for the cluster.

This example indicates the following information about the clusterConfig step:

— This step does not support collection. Only one set of parameter values for the clusterName and
perferLocal parameters is supported.

— This step contains two input arguments with one argument that is indicated as required. The required
arguments is clusterName and the non-required parameter is preferLocal. The syntax to provide step
parameter values is different from the command argument values. You have to provide all argument
values of a step and provide them in the exact order as displayed in the step specific help. For any
optional argument that you do not want to specify a value, put double quotes (") in place of a value.
If a command step is a collection type, for example, it can contain multiple objects where each object
has the same set of arguments, you can specify multiple objects with each object enclosed by its
own pair of braces. To run an administrative command in batch mode and to include this step in the
option string, use the following syntax:

Using Jacl:
-clusterConfig {{newCluster false}}
Using Jython:

-clusterConfig [[newCluster false]]

Chapter 9. Using the wsadmin scripting AdminTask object for scripted administration 69

See Administrative command invocation syntax using wsadmin scripting for more information about
specifying parameter options.
» Use a wildcard character to search for help for a specific command.

You can use a regular Java expression pattern or a wildcard pattern to specify command name for

AdminTask.help('—commands') and AdminConfig 1ist, types, and TistTemplates functions.

— To use a regular Java expression pattern to search for the administrative command names that start
with create, specify:
print AdminTask.help("-commands", "create.*")

— To use a wildcard search pattern to search for the administrative command names that start with
create, specify:
print AdminTask.help("-commands", "createx")

— To use a Java expression pattern to search for the administrative command names that contain
SSLConfig, specify:
print AdminTask.help("-commands", ".*SSLConfig.*")

— To use a wildcard search pattern to search for the administrative command names that contain
SSLConfig, specify:
print AdminTask.help("-commands", "*SSLConfig*")

Invoking an administrative command in batch mode using wsadmin
scripting

Use AdminTask commands to invoke an administrative command in batch mode.
About this task
This topic describes how to invoke an administrative command in batch mode using wsadmin scripting.

To invoke an administrative command in interactive mode, see the topic on invoking a command in
interactive mode.

Procedure

1. Invoke the AdminTask object commands interactively, in a script, or use the wsadmin -c command from
an operating system command prompt.

See the topic on starting the wsadmin scripting client.
2. Issue one of the following commands:

 If an administrative command does not have a target object and an argument, use the following
command:

Using Jacl:
$AdminTask commandName
Using Jython:

AdminTask.commandName ()

Table 38. AdminTask description. Invoke an AdminTask command from a wsadmin command line.

Element Description

$ is a Jacl operator for substituting a variable name with its value
AdminTask is an object allowing administrative command management
commandName is the name of the administrative command to invoke

» |If an administrative command includes a target object but does not include any arguments or steps,
use the following command:

Using Jacl:

$AdminTask commandName targetObject

70 Scripting the application serving environment

Using Jython:

AdminTask.commandName (targetObject)

Table 39. AdminTask targetObject description. Invoke an AdminTask command from a wsadmin command line.

Element Description

$ is a Jacl operator for substituting a variable name with its value

AdminTask is an object that supports administrative command management

commandName is the name of the administrative command to invoke

targetObject is the target object string for the invoked administrative command. The expect target object varies with each

administrative command. View the online help for the invoked administrative command to learn more about
what you should specify as the target object.

« If an administrative command includes an argument or a step but does not include a target object,
use the following command:

Using Jacl:
$AdminTask commandName options
Using Jython:

AdminTask.commandName (options)

Table 40. AdminTask options description. Invoke an AdminTask command from a wsadmin command line.

Element Description

$ is a Jacl operator for substituting a variable name with its value

AdminTask is an object that supports administrative command management

commandName is the name of the administrative command to invoke

options is the option string for the invoked administrative command. Depending on which administrative command

you are invoking, the administrative command can have required or optional option values. The options string
is different for each administrative command. View the online help for the invoked administrative command to
obtain more information about which options are available. Arguments and steps listed on the online
administrative command help are specified as options in the option string.

Each option consists of a dash followed immediately by an option name, and then followed by an option
value if the option requires a value. If the invoked administrative command includes target objects,
arguments, or steps, then the —interactive option is available to enter interactive mode. For example, using
the output of the following online help for the listDataSource command:

WASX80061: Detailed help for command: exportServer

Description: export the configuration of a
server to a config archive.

Target object: None

Arguments:

*serverName - the name of a server

*nodeName - the name of a node. This parameter
becomes optional if the specified server name
is unique across the cell.

+archive - the fully qualified file path of

a config archive.

Steps:
None

Option names are specified with a dash before the names. Three options are required for this administrative
command. The required options are -serverName, -nodename, and -archive. In addition, the -interactive
option is available. Options are specified in the option string, which is enclosed by a pair of braces ({}) in Jacl
and a pair of brackets ([]) in Jython.

« If an administrative command includes a target object, and arguments or steps:
Using Jacl:
$AdminTask commandName targetObject options
Using Jython:

AdminTask.commandName (targetObject, options)

Chapter 9. Using the wsadmin scripting AdminTask object for scripted administration 71

Table 41. AdminTask targetObject with options description. Invoke an AdminTask command from a wsadmin
command line.

Element Description

$ is a Jacl operator for substituting a variable name with its value

AdminTask is an object that supports administrative command management

commandName is the name of the administrative command to invoke

targetObject is the target object string for the invoked administrative command. The expected target object varies with

each administrative command. View the online help for the invoked administrative command to obtain
information about what to specify as a target object. For example, using the output of the following online help
for createJ2CConnectionFactory:

WASX80061: Detailed help for command:
createJ2CConnectionFactory

Description: Create a J2C connection factory

*Target object: The parent J2C resource adapter of
the created J2C connection factory.

Arguments:

*connectionFactoryInterface - A connection factory
interface that is defined in the deployment
description of the parent J2C resource adapter.
*name - The name of the J2C connection factory.
*jndiName - The JNDI name of the created J2C
connection factory.

description - The description for the created
J2C connection factory.

authDataAlias - the authentication data alias of
the created J2C connection factory.

Steps:
None

The target object is a configuration object name of a J2C resource adapter.

options is the option string for the invoked administrative command. Depending on which administrative command
you are invoking, the administrative command can have required or optional option values. The options string
is different for each administrative command. View the online help for the invoked administrative command to
obtain more information about which options are available. Arguments and steps that are listed on the online
administrative command help are specified as options in the option string. Each option consists of a dash
followed immediately by an option name, and then followed by an option value if the option requires a value.
If the invoked administrative command includes target objects, arguments, or steps, then the —interactive
option is available to enter interactive mode. For example, using the output of the following online help for
listDataSource:

WASX80061: Detailed help for command:
createJ2CConnectionFactory

Description: Create a J2C connection factory

*Target object: The parent J2C resource adapter of
the created J2C connection factory.

Arguments:

xconnectionFactoryInterface - A connection factory
interface that is defined in the deployment
description of the parent J2C resource adapter.
*name - The name of the J2C connection factory.
*jndiName - The JNDI name of the created J2C
connection factory.

description - The description for the created J2C
connection factory.

authDataAlias - the authentication data alias of
the created J2C connection factory.

Steps:
None

Option names are specified with a dash before the names. The required options for this administrative
command include: -connectionFactoryInterface, -name, and -jndiName. The optional options include:
-description and -authDataAlias. In addition, you can also use the -interactive option. Options are
specified in the option string, which is enclosed by a pair of braces ({}) in Jacl and a pair of brackets ([]) in
Jython.

72 Scripting the application serving environment

Example

* The following example invokes an administrative command with no target object, argument, or step:

Using Jacl:
$AdminTask 1istNodes
Using Jython:
print AdminTask.listNodes()
Example output:
myNode
» The following example invokes an administrative command with a target object string:
Using Jacl:

set s1 [$AdminConfig getid /Server:serverl/]
$AdminTask showServerInfo $si

Using Jython:

sl = AdminConfig.getid('/Server:serverl/")
print AdminTask.showServerInfo(sl)

Example output:

{cell myCell}

{serverType APPLICATION SERVER}
{com.ibm.websphere.baseProductVersion 6.0.0.0}
{node myNode}

{server serverl}

» The following example invokes an administrative command with an option string:
Using Jacl:
$AdminTask getNodeMajorVersion {-nodeName myNode}
Using Jython:
print AdminTask.getNodeMajorVersion('[-nodeName myNode]"')
Example output:
6
* The following example invokes an administrative command with a target object and non-step option
strings:
Using Jacl:

set ra [$AdminConfig getid /J2CResourceAdapter:myResourceAdapter/]
$AdminTask created2CConnectionFactory $ra {-name myJ2CCF -jndiName j2c/cf -connectionFactoryInterface
javax.resource.cci.ConnectionFactory}

Using Jython:

ra = AdminConfig.getid('/J2CResourceAdapter:myResourceAdapter/")
AdminTask.createJ2CConnectionFactory(ra, '[-name myJ2CCF -jndiName j2c/cf -connectionFactoryInterface
javax.resource.cci.ConnectionFactory]"')

Example output:
myJ2CCF (cel1s/myCel1/nodes/myNode | resources.xml#J2CConnectionFactory 1069690568269)

» The following example invokes an administrative command with a target object and a step option:
Using Jacl:

set serverCluster [$AdminConfig getid /ServerCluster:myCluster/]
$AdminTask createClusterMember $serverCluster {-memberConfig {{myNode myClusterMember "" "" false false}}}

Using Jython:

serverCluster = AdminConfig.getid('/ServerCluster:myCluster/")
AdminTask.createClusterMember(serverCluster, '[-memberConfig [[myNode myClusterMember "" "" false false]]]"')

Example output:
myClusterMember(cells/myCell/nodes/myNode|cluster.xml#ClusterMember 3673839301876)

Chapter 9. Using the wsadmin scripting AdminTask object for scripted administration

73

Invoking an administrative command in interactive mode using
wsadmin scripting

These steps demonstrate how to invoke an administrative command in interactive mode.

About this task

This topic describes how to invoking an administrative command in interactive mode.

To invoke an administrative command in batch mode, see the topic on invoking a command batch mode.

Procedure

1.

Invoke the AdminTask object commands interactively, in a script, or use the wsadmin -c command from
an operating system command prompt.

See the topic on starting the wsadmin scripting client.
Invoke an administrative command in interactive mode by issuing one of the following commands:
» Use the following command invocation to enter interactive mode without providing another input in

the command invocation:

Using Jacl:

$AdminTask commandName {-interactive}
Using Jython:

AdminTask.commandName (' [-interactive] ')

Table 42. AdminTask command syntax. Invoke an AdminTask command from a wsadmin command line.

Element Description

$ is a Jacl operator for substituting a variable name with its value
AdminTask is an object that supports administrative command management
commandName is the name of the administrative command to invoke
-interactive is the interactive option

» Use the following command invocation to enter interactive mode using an administrative command

that takes a target object. You do not have to provide a target object to enter interactive mode.
Target objects provided in the command invocation will be applied to the command and displayed as
the current target object value during interactive prompting.

Using Jacl:

$AdminTask commandName targetObject {-interactive}

Using Jython:

AdminTask.commandName (targetObject, '[-interactive]')

Table 43. AdminTask commandName command description. Invoke a command from a wsadmin command line.

Element Description

$ is a Jacl operator for substituting a variable name with its value

AdminTask is an object that supports administrative command management

commandName is the name of the administrative command to invoke

targetObject is the target object string for the invoked administrative command. The target object is

different for each administrative command. View the online help for the invoked
administrative command to learn more about what to specify as a target object.

-interactive is the interactive option

74 Scripting the application serving environment

« Use the following command invocation to enter interactive mode for an administrative command that
takes options. You do not have to provide other options to enter interactive mode. Options provided
in the command invocation are applied to the command and the option values will be displayed as
the current values during interactive prompting.

Using Jacl:

$AdminTask commandName {-interactive commandOptions}

Using Jython:

AdminTask.commandName (' [-interactive commandOptions]"')

Table 44. AdminTask -interactive option description. Invoke a command from a wsadmin command line.

Element Description

$ is a Jacl operator for substituting a variable name with its value
AdminTask is an object that supports administrative command management
commandName is the name of the administrative command to invoke

-interactive

is the interactive option

commandOptions

is the command option that is available for the associated administrative command.
Available command options are different for each administrative command. View the
online help for the invoked administrative command to obtain more information about
which options are available. Arguments and steps that are listed on the online
administrative command help are specified as command options. Each option consists
of a dash followed immediately by an option name, and then followed by an option
value if the option requires a value. For example, using the output of the following
online help for the createJ2CConnectionFactory command:

WASX8006I: Detailed help for command:
created2CConnectionFactory

Description: Create a J2C connection
factory

*Target object: The parent J2C resource
adapter of the created J2C connection
factory.

Arguments:

*connectionFactoryInterface - A connection
factory interface that is

defined in the deployment description of

the parent J2C resource adapter.

*name - The name of the J2C connection factory.
*jndiName - The JNDI name of the created

J2C connection factory.

description - The description for the created
J2C connection factory.

authDataAlias - the authentication data alias
of the created J2C connection factory.

Steps:
None

In this example, five options are available:
» -connectionFactorylnterface

* -name

* -jndiName

» -description

» -authDataAlias

Each option requires a value. Three of the options are required and are denoted with a
star ().

Chapter 9. Using the wsadmin scripting AdminTask object for scripted administration 75

» Use the following command invocation to enter interactive mode for an administrative command that
has a target object and options. You do not have to specify a target object to enter interactive mode.
The values specified are applied to the command before the command data is displayed. As a
result, the values specified will be displayed as the current values during interactive prompting.
Using Jacl:
$AdminTask commandName targetObject {-interactive commandOptions}

Using Jython:

AdminTask.commandName (targetObject, '[-interactive commandOptions]')

Table 45. AdminTask -interactive targetObject option description. Invoke a command from a wsadmin command line.

Element Description

$ is a Jacl operator for substituting a variable name with its value

AdminTask is an object that supports administrative command management

commandName is the name of the administrative command to invoke

targetObject is the target object string for the invoked administrative command. The expect

target object varies with each admin command. Consult the online help on the
invoked administrative command to learn more about what to specify as target
object.

-interactive is the interactive option

76 Scripting the application serving environment

Table 45. AdminTask -interactive targetObject option description (continued). Invoke a command from a wsadmin
command line.

Element Description

commandOptions is the command option that is available for the associated administrative
command. Available command options are different for each administrative
command. View the online help for the invoked administrative command to obtain
more information about which options are available. Arguments and steps that are
listed on the online administrative command help are specified as command
options. Each option consists of a dash followed immediately by an option name,
and then followed by an option value if the option requires a value. For example,
using the output of the following online help for the createJ2CConnectionFactory
command:

WASX80061: Detailed help for command:
created2CConnectionFactory

Description: Create a J2C connection factory

*Target object: The parent J2C resource adapter of
the created J2C connection factory.

Arguments:

*connectionFactoryInterface - A connection factory
interface that is

defined in the deployment description of the
parent J2C resource adapter.

*name - The name of the J2C connection factory.
*jndiName - The JNDI name of the created J2C
connection factory.

description - The description for the created
J2C connection factory.

authDataAlias - the authentication data alias
of the created J2C connection factory.

Steps:
None

In this example, five options are available:
» -connectionFactorylnterface

s -name

* -jndiName

» -description

» -authDataAlias

Each option requires a value. Three of the options are required and are denoted
with a star (*).

Example

* The following example invokes an administrative command in interactive mode by specifying the
-interactive option:

Using Jacl:

$AdminTask createJ2CConnectionFactory {-interactive}
Using Jython:
AdminTask.createJ2CConnectionFactory('[-interactive]')
Example output:

Create a J2C connection factory

*The J2C resource adapter: "WebSphere Relational ResourceAdapter
(cel1s/myCel1/nodes/myNode|resources.xml#builtin_rra)"

Chapter 9. Using the wsadmin scripting AdminTask object for scripted administration 77

A connection factory

interface (connectionFactoryInterface):javax.resource.cci.ConnectionFactory
*Name (name): myJ2CCF

*The JNDI name (jndiName): j2c/cf

Description (description):

authentication data alias (authDataAlias):

create J2C connection factory

F (Finish)
C (Cancel)

Select [F, C]: [F]

myJ2CCF (cel1s/myCel1/nodes/myNode | resources.xml#J2CConnectionFactory 1069690568269)

* The following example invokes an administrative command using the —interactive option with a target
object that is specified in the command invocation:
Using Jacl:

set ra [$AdminConfig getid /J2CResourceAdapter:myResourceAdapter/]
$AdminTask createJ2CConnectionFactory $ra {-interactive}

Using Jython:

ra = AdminConfig.getid('/J2CResourceAdapter:myResourceAdapter/")
AdminTask.createJ2CConnectionFactory(ra, '[-interactive]')

Example output:
Create a J2C connection factory

*xThe J2C resource adapter: ["WebSphere Relational ResourceAdapter
(cel1s/myCel1/nodes/myNode | resources.xml#builtin_rra)"]

A connection factory interface (connectionFactoryInterface):
javax.resource.cci.ConnectionFactory

*Name (name): myJ2CCF

*The JNDI name (jndiName): j2c/cf

Description (description):

authentication data alias (authDataAlias):

create J2C Connection Factory

F (Finish)
C (Cancel)

Select [F, C]: [F]

myJ2CCF (cel1s/myCel1/nodes/myNode | resources.xml#J2CConnectionFactory 1069690568269)

* The following example invokes an administrative command using the —interactive option where both the
target object and the additional command options are specified in the command invocation:
Using Jacl:

set ra [$AdminConfig getid /J2CResourceAdapter:myResourceAdapter/]
$AdminTask createJ2CConnectionFactory $ra {-name myNewCF -interactive}

Using Jython:

ra = AdminConfig.getid('/J2CResourceAdapter:myResourceAdapter/")
AdminTask.createJ2CConnectionFactory(ra, '[-name myNewCF -interactive]')
Example output:

Create a J2C connection factory

*The J2C resource adapter: ["WebSphere Relational ResourceAdapter
(cel1s/myCel1/nodes/myNode | resources.xml#builtin_rra)"]

A connection factory interface (connectionFactoryInterface):javax.resource.cci.ConnectionFactory
*Name (name): [myNewCF]

*xThe JNDI name (jndiName): j2c/cf

Description (description):

authentication data alias (authDataAlias):

78 Scripting the application serving environment

create J2C Connection Factory

F (Finish)
C (Cancel)

Select [F, C]: [F]

myNewCF (cel1s/myCel1/nodes/myNode | resources.xml#J2CConnectionFactory 3839439380269)

Administrative command interactive mode environment using wsadmin
scripting

An administrative command can be run in interactive mode by providing the -interactive option in the
options string when invoking the command.

You can still provide other options, even when using the interactive option. The options values that are
specified are applied to the command before the command data is displayed. Whether or not other options
are specified, the wsadmin tool steps the user through the command to collect command information.

The general interactive flow sequence is:
1. Collect user inputs for target object and parameters

2. If the command does not include a step, the command execution menu displays to run or cancel the
command.

3. If the command includes a step, the menu to select the step displays. When all the required inputs are
entered, the menu includes command execution.

4. When a step is selected, if the step supports collection, then the menu to select an object in the
collection displays and you can exit the step. If you exit the step, repeat steps 1-3.

5. Collect user inputs for the selected step or for an object in the collection
6. Repeat steps 4 and 5 if from the collection step menu
7. Repeat steps 3-5 if from step selection menu

Depending on what input area is enabled by an administrative command, you can go through part or all of
the interactive flow sequence. If an administrative command is run in interactive mode, the syntax to run
the command except for the deletion of collection object in batch mode is generated and logged as a
WASX7278| message in both the interactive session and in the wsadmin trace file.

Collect user inputs for target object and parameters

The following interactive prompt is used to collect inputs for the Target object and Arguments input areas
that are displayed in the command-specific help:

Command title
Command Description
*target object title [current or default value]:

xparaml title (paraml name) [choicel, choice2, ...]: [current/default value]
param2 title (param2 name) [choicel, choice2, ...]: [current/default value]

Display command execution menu

If an administrative command does not contain a step, you are presented with the following menu after
collecting values for target object and parameters:

Command title

F (Finish)
C (Cancel)

Select [F, C]: F

Chapter 9. Using the wsadmin scripting AdminTask object for scripted administration 79

The Finish option runs the command and the Cancel option cancels the command. The default selection is
F (Finish). This menu is the last menu that is displayed for a non-step command to exit interactive mode
by either canceling or running the command.

Display command step selection and execution menu

If an administrative command contains a step, the following menu is displayed after collecting values for
target object and parameters:

Command title
Command description
-> %1, stepl title (stepl name)
2. step2 title (step2 name)
%3, step3 title (step3 name)
(4. stepd title (step4 name))

n. stepn title (stepn name)

(Select)
(Next)
(Previous)
(Finish)
(Cancel)
(Help)

Select [S, N, P, F, C, H]: S

T O muou=Z2w

The number of steps that is displayed in the menu depends on the administrative command. The step
name is displayed for information and is the name that is used to set data in this step in batch mode. The
following notations are used to describe a step:

* A “>" before the step indicates the current step position.
* A “” before the step indicates a required step.

* A () enclosing the entire step indicates a disabled step. You cannot navigate to this step by using the
Next or Previous options.

Using the menu, you can navigate through steps sequentially by selecting Previous or Next. Select selects
the current step, Finish runs the command, Cancel cancels the command, and Help provides online help
for the command. Not all menu choices are available. Previous is not available if the current step is the
first step. Next is not available if the current step is the last step. Finish is not available if still steps are still
missing required inputs. The default selection is S (Select) if the current step is a valid step and steps are
missing required inputs. Default selection is F (Finish) if all the required input is provided for the steps.

For commands with steps, you can exit interactive mode on this menu by either canceling or running the
command.

Display collection step menu

A step might or might not support collection. A collection refers to objects of the same type. In an
administrative command, a collection contains objects that have the same set of parameters. If a step that
supports collection is selected, the wsadmin tool displays the following menu to add and select an object
in the collection:

Step title (step name)
| key paraml title (key paraml name), key param? title (key param2 name), ...

-> objectl key paraml value, key param2 value, ...
*| object2 key paraml value, key param2 value, ...

key paraml title, key param2 title, ... must be provided to specify a row in batch row.
S (Select Row)

N (Next)
P (Previous)

80 Scripting the application serving environment

A (Add Row or Add Row Before)
D (Delete Row)

F (Finish)

H (Help)

Select [S, N, P, A, D, F, H]: F

The number of objects that display in the menu depends on the command step. Key parameters are
identified by the step to use to uniquely identify an object in a collection. Key parameter values are
displayed to identify an object to select. As with the command step selection menu, an arrow (->) is used
to indicate the current object position, and a asterisk (*) is used to indicate that required input is missing in
the object.

Use the menu to navigate through objects sequentially by selecting Previous or Next. Select Row selects
the current object, Add Row adds a new object, Add Row Before adds a new object before the current
object, Delete Row deletes the current object, Finish returns control back to the step selection and
execution menu, and Help provides on-line help for the step. Not all menu choices are available. Previous
is not available if there is no object in the collection or the first object is the current object. Next is not
available if there is no object in the collection or the last object is the current object. Select Row is
available only if there is a current object. Add Row is provided only if there is no object in the collection
and the step supports new object to be added. Add Row Before is provided if the step supports new object
to be added and there are existing objects in the collection. Delete Row is provided only if there is a
current object and the step supports an object to be deleted. Finish is not available if there are still objects
missing required inputs. Default selection is A (Add Row) when there is no object in the collection and the
step supports objects to be added. Default selection is S (Select Row) if there is a current object and there
are still objects missing required inputs. Default selection is F (Finish) if there is no required input missing
in any object.

Collect user inputs for parameters of a collection object

After a collection object is selected, the parameter value for each parameter is prompted sequentially as
shown in the following example:

*xparaml title (paraml name) [choicel, choice2, ...]: [current/default value]
param2 title (param2 name) [choicel, choice2, ...]: [current/default value]

The number of parameters depends on the number of arguments in the Argument area of the command
step-specific help. The same asterisk (*) notation is used to denote a required parameter. If a parameter
value is restricted to a set of values, then the valid choices are displayed. If the current or default value is
available, it is displayed. For each writable parameter, you can accept the existing value by pressing Enter.
To add or change an existing value, enter a new value and press Enter. For a read-only parameter, the
parameter and its value are displayed. You will not be given the prompt to modify its value. After you go
through all of the parameters, the wsadmin tool returns to the collection step menu.

Collect user inputs for non-collection step

This step has two parts. The first part displays the current or default parameter values for the selected
step, as shown in the following example:

Step title (step name)

*paraml title (paraml name) [choicel, choice2, ...]: [current/default value]
param2 title (param2 name) [choicel, choice2, ...]: [current/default value]

Select [C (Cancel), E (Edit)]: [E]

No prompting is included in this part. Instead, this part is more like a help function providing parameter
information on the selected step. The number of parameters depends on the number of arguments in the
argument area of the command step specific help. The asterisk (*) notation denotes a required parameter.

Chapter 9. Using the wsadmin scripting AdminTask object for scripted administration 81

If a parameter value is restricted to a set of values, then the valid choices will be displayed. If the current
or default value is available, it is displayed. You can choose to cancel the step or continue to the next part
to provide parameter inputs. The default selection is Edit. Because it is possible that you are seeing
default values assigned to a new piece of data that is not yet set in the step, you can accept the default
selection to continue to the next part. Otherwise, if no data exists in the selected step, selecting Cancel
does not result in creating the data.

If you accept the default Edit selection, collect user inputs for parameters sequentially just like Collect
user inputs for parameters of a collection object.

*paraml title (paraml name) [choicel, choice2, ...]: [current/default value]
param2 title (param2 name) [choicel, choice2, ...]: [current/default value]

For each writable parameter, you can accept the existing value by pressing Enter. To add or change an
existing value, enter a new value and then press Enter. For a read-only parameter, the parameter and its
value are displayed. You will not be given the prompt to modify the value of the parameter. As soon as you
step through all the parameters, the wsadmin tool will lead you back to the command step selection and
execution menu.

Data types for the AdminTask object using wsadmin scripting

The parameters for the AdminTask object accept various data types for different commands. This topic
provides examples of valid data type syntax.

The following table lists the primitive and Java data types that the AdminTask object accepts for different
commands, including the following data types:

+ String

* Boolean

» Character

* Integer

* Long

* Byte

e Short

* Float

* Double

« Javax.management.ObjectName
» Java.util.Properties

» String[]

* Integer|]

» Jaca.net.URL

» Javax.management.Attribute

» Javax.management.AttributeList
» Java.util.ArrayList

» Java.util.List

» Java.util.Hashtable

The following example command specifies various data types for parameter values that are commonly
used with the AdminTask object:

wsadmin>AdminTask.helloWorld('[-personName John -personalInfo [[cellPhone 123-456-7890] [workPhone 123-456-7892]
[homePhone 123-456-7891]] -pets [dog cat] -personID WebSphere:John(organization=ibm,country=usa,state=texas,city=austin)
—personAttrs [[gender male] [age 29] [citizership USA]] -hobbyList [swim tennis baseball]

-favorFoodTable [[juice orange] [fruit apple]] 1')

82 Scripting the application serving environment

where:

Table 46. AdminTask parameter descriptions. Run a command from a wsadmin command line.

Parameter Data type Example value

personName | String John

personalinfo java.util.Properties [[cellPhone 123-456-7890] [workPhone 123-456-7892] [homePhone 123-456-7891]]
pets String[] [dog cat]

personlD javax.management.ObjectName | WebSphere:John(organization=ibm,country=usa,state=texas,city=austin)
personAttrs javax.management.AttributeList | [[gender male] [age 29] [citizenship USA]]

hobbyList java.util. ArrayList [swim tennis baseball]

favorFoodTable | java.util.Hashtable [[juice orange] [fruit apple]]

Chapter 9. Using the wsadmin scripting AdminTask object for scripted administration ~ 83

84 Scripting the application serving environment

Chapter 10. Starting the wsadmin scripting client using
wsadmin scripting

You can use the wsadmin tool to configure and administer application servers, application deployment, and
server runtime operations.

About this task

The wsadmin tool provides the ability to automate configuration tasks for your environment by running
scripts. However, there are some limitations for using the wsadmin tool, including:

» The wsadmin tool only supports the Jython and Jacl scripting languages.

The Version 6.1 release of WebSphere Application Server represented the start of the deprecation
process for the Jacl syntax that is associated with the wsadmin tool. The Jacl syntax for the wsadmin
tool continues to remain in the product and is supported for at least two major product releases. After
that time, the Jacl language support might be removed from the wsadmin tool. The Jython syntax for
the wsadmin tool is the strategic direction for WebSphere Application Server administrative automation.
The application server provides significantly enhanced administrative functions and tooling that support
product automation and the use of the Jython syntax.

gotcha: Not all of the WebSphere Application Server component classes are packaged in the same
.jar file. If you are going to be using the wsadmin tool to run Jython scripts, include the
jython.package.path system property on your wsadmin command to ensure that all of the
required JAR files are set to the jython package path during wsadmin startup.

./wsadmin.sh -lang jython -javaoption
"-Djython.package.path=/usr/WebSphere70/AppServer/plugins/com.ibm.ws.wim.jar"

If you want to invoke WebSphere Application Server functions from different WebSphere
Application Server classes that are packaged in . jar files other than runtime.jar and
admin.jar, you can include multiple jar files in the path specified for the jython.package.path
system property, and separate them with a semicolon (;).

./wsadmin.sh -lang jython -javaoption
"-Djython.package.path=/usr/WebSphere70/AppServer/plugins/com.ibm.ws.wim.jar;com.ibm.ws.wccm. jar"

If you want to invoke WebSphere Application Server functions in a jython script using ws_ant,
you can create a .prop text file, and include the following line in this file:
jython.package.path=/usr/WebSphere70/AppServer/plugins/com.ibm.ws.wim.jar

Then include the property file in the ant script xml file. For example:

<taskdef name="wsadmin" classname="com.ibm.websphere.ant.tasks.WsAdmin"/>
<target name="main" >
<wsadmin conntype="NONE" Tang="jython" failonerror="true" properties="/tmp/jython.prop"
script="/home/fsgapp/MSTWasBuild/project/scripts/socr/socr/jython/configure.py">
</wsadmin>
</target>

» The wsadmin tool manages the installation, configuration, deployment, and runtime operations for
application servers that run the same version or a higher version of the product. The wsadmin tool
cannot connect to an application server that runs a product version which is older than the version of
the wsadmin tool. For example, a Version 7.x wsadmin client cannot connect to a Version 6.x
application server. However, a Version 6.x wsadmin client can connect to a Version 7.x application
server. This limitation exists because new functionality is added to the wsadmin tool in each product
release. You cannot use new command functionality on application servers running previous product
versions.

gotcha: The application management design does not allow you to install an EE specification level EAR
or module that is at a higher level than the client. Client code that runs in wsadmin reads the

© Copyright IBM Corp. 2012 85

EAR file and uses introspection of the content to generate the deployment configuration options
that are applicable to that application. The client side code cannot process a specification level
that is higher than what that client supports.

Procedure
1. Locate the command that starts the wsadmin scripting client.
LI Choose one of the following:

* Invoke the scripting process using a specific profile. The QShell command for invoking a scripting
process is located in the profile_root/bin directory. The name of the QShell script is wsadmin. If you
use this option, you do not need to specify the -profileName profile _name parameter.

* Invoke the scripting process using the default profile. The wsadmin Qshell command is located in
the app_server_root/bin directory. If you do not want to connect to the default profile, you must
specify the -profileName profile_name parameter to indicate the profile that you want to use.

2. Review additional connection options for the wsadmin tool.

You can start the wsadmin scripting client in several different ways. To specify the method for running
scripts, perform one of the following wsadmin tool options:

Run scripting commands interactively

Run wsadmin with an option other than -f or -c or without an option. The wsadmin tool starts
and displays an interactive shell with a wsadmin prompt. From the wsadmin prompt, enter any
Jacl or Jython command. You can also invoke commands using the AdminControl, AdminApp,
AdminConfig, AdminTask, or Help wsadmin objects. To leave an interactive scripting session,
use the quit or exit commands. These commands do not take any arguments.

The following examples launch the wsadmin tool:
» Launch the wsadmin tool using Jython:

wsadmin -Tang jython
* Launch the wsadmin tool using Jython when security is enabled:

wsadmin -Tang jython -user user_name -password password
* Launch the wsadmin tool using Jacl with no options:

wsadmin -lang jacl
Run scripting commands as individual commands
Run the wsadmin tool with the -c option.
The following examples run commands individually:
* Run the Tist command for the AdminApp object using Jython:

wsadmin -lang jython -c "AdminApp.Tist()"
* Run the Tist command for the AdminApp object using Jacl:

wsadmin -c "$AdminApp Tist"
Run scripting commands in a script

Run the wsadmin tool with the -f option, and place the commands that you want to run into
the file.

The following examples run scripts:
* Run the al.py script using Jython:

86 Scripting the application serving environment

wsadmin -Tlang jython -f al.py
where the al.py file contains the following commands:

apps = AdminApp.list()
print apps

Run scripting commands in a profile script

Results

A profile script is a script that runs before the main script, or before entering interactive mode.
You can use profile scripts to set up a scripting environment that is customized for the user or

the installation.

By default, the following profile script files might be configured for the
com.ibm.ws.scripting.profiles profiles property in the app_server_root/properties/
wsadmin.properties file:

* app_server_root/bin/securityProcs.jacl
» app_server_root/bin/LTPA_LDAPSecurityProcs.jacl

By default, these files are in ASCII. If you use the profile.encoding option to run EBCDIC
encoded profile script files, change the encoding of the files to EBCDIC.

To run scripting commands in a profile script, run the wsadmin tool with the -profile option,
and include the commands that you want to run into the profile script.

To customize the script environment, specify one or more profile scripts to run.
Do not use parenthesis in node names when creating profiles.

The following examples run profile scripts:
* Run the alprof.py script using Jython:
| IBMi |
wsadmin -lang jython -profile alprof.py
where the alprof.py file contains the following commands:

apps = AdminApp.list()
print "Applications currently installed:\n " + apps

* Run the alprof.py script using Jacl:
| IBMi |
wsadmin -profile alprof.jacl
where the alprof.py file contains the following commands:

set apps [$AdminApp Tist]
puts "Applications currently installed:\n$apps"

The wsadmin returns the following output when it establishes a connection to the server process:

Jython example output:

Applications currently installed:
DefaultApplication

ivtApp
query

WASX70311: For help, enter: "print Help.help()"

wsadmin>

Jacl example output:

Applications currently installed:
DefaultApplication

ivtApp
query

WASX70311: For help, enter: "$Help help"

wsadmin>

Chapter 10. Starting the wsadmin scripting client using wsadmin scripting

87

88 Scripting the application serving environment

Chapter 11. Using the script library to automate the
application serving environment using wsadmin scripting

The script library provides Jython script procedures to assist in automating your environment. Use the
sample scripts to manage applications, resources, servers, nodes, and clusters. You can also use the
script procedures as examples to learn the Jython syntax.

About this task

The Jython script library provides a set of procedures to automate the most common application server
administration functions. For example, you can use the script library to easily configure servers,
applications, mail settings, resources, nodes, business-level applications, clusters, authorization groups,
and more. You can run each script procedure individually, or combine several procedures to quickly
develop new scripts.

The scripting library provides a set of procedures to automate the most common application server
administration functions. There are three ways to use the Jython script library.

* Run scripts from the Jython script library in interactive mode with the wsadmin tool. You can launch the
wsadmin tool, and run individual scripts that are included in the script library using the following syntax:

wsadmin>AdminServerManagement.createApplicationServer("myNode", "myServer", "default")

» Use a text editor to combine several scripts from the Jython script library, as the following sample
displays:
#
My Custom Jython Script - file.py
#

AdminServerManagement.createApplicationServer("myNode", "Serverl", "default")
AdminServerManagement.createApplicationServer("myNode", "Server2", "default")

Use one of them as the first member of a cluster
AdminClusterManagement.createClusterWithFirstMember("myCluster", "APPLICATION_ SERVER",
"myNode", "Serverl")

Add a second member to the cluster
AdminClusterManagement.createClusterMember("myCluster", "myNode", "Server3")

Install an application
AdminApplication.installAppWithClusterOption("DefaultApplication",
"..\installableApps\DefaultApplication.ear", "myCluster")

Start all servers and applications on the node
AdminServerManagement.startAl1Servers ("myNode")

Save the custom script and run it from the command line, as the following syntax demonstrates:
bin>wsadmin -language jython -f path/to/your/jython/file.py

* Use the Jython scripting library code as sample syntax to write custom scripts. Each script example in
the script library demonstrates best practices for writing wsadmin scripts. The script library code is
located in the |app_server_rool/scriptLibraries directory. Within this directory, the scripts are
organized into subdirectories according to functionality, and further organized by version. For example,
the app_server_root/scriptLibraries/application/V70 subdirectory contains procedures that perform
application management tasks that are applicable to Version 7.0 and later of the product.

Each script from the script library directory automatically loads when you launch the wsadmin tool. To
automatically load your own Jython scripts (*.py) when the wsadmin tool starts, create a new subdirectory,
and save existing automation scripts in the|app_server_r004/scriptLibraries directory. Each script library
name must be unique and cannot be duplicated.

Note: Do not edit the script procedures in the script library. To customize script library procedures, save
the modified scripts to a new subdirectory to avoid overwriting the library.

© Copyright IBM Corp. 2012 89

To automatically load Jython scripts (*.py) that are not located in the [app_server_roofscriptLibraries
directory when the wsadmin tool starts, set the wsadmin.script.libraries system property to the script
location. For example, if your script libraries are saved in the temp directory on a Windows operating
system, the following example sets the script path in the wsadmin command line tool:

bin>wsadmin -Tang jython -javaoption "-Dwsadmin.script.libraries=c:/myJythonScripts"

To load multiple directories, specify each directory in the system property separated by a semicolon (;), as
the following example demonstrates:

bin>wsadmin -lang jython -javaoption "-Dwsadmin.script.libraries=c:/myJythonScripts;c:/AdminScripts;c:/configScripts"
The script library provides automation scripts for the following application server administration functions:

Procedure

« [Manage application servers) You can use the AdminServerManagement scripts to configure
classloaders, Java virtual machine (JVM) settings, Enterprise JavaBeans (EJB) containers, performance
monitoring, dynamic cache, and so on.

« [Manage server and system architecture.| You can use the AdminServerManagement script library to
manage server settings.

+ [Manage applications| You can use the AdminApplication scripts to install, uninstall, and update your
applications with various options.

[Manage data access resources.|You can use the AdminJDBC and AdminJ2C script libraries to manage
data sources and Java Database Connectivity (JDBC) providers, and to create and configure Java 2
Connector (J2C) resource adapters.

. |Manage messaging resources.| You can use the AdminJMS script library to configure and manage your
Java Messaging Service (JMS) configurations.

. |Manage mail resources.| You can use the AdminResources scripts in the script library to configure mail,
URL, and resource settings.

+ |Managing authorization groups.| You can use the AdminAuthorizations scripts to configure authorization
groups.

» Monitor performance and troubleshoot configurations. You can use the AdminUtilities scripts to configure
trace, debugging, logs, and performance monitoring. See the Utility scripts topic.

[Get script library help using wsadmin| You can use the AdminLibHelp script library to list each available
script library, display information for specific script libraries, and to display information for specific script
procedures.

What to do next

Determine which scripts to use to automate your environment, or create custom scripts using assembly
tools.

Automating server administration using wsadmin scripting

The scripting library provides Jython script procedures to assist in automating your environment. Use the
server management scripts to configure servers, the server runtime environment, Web containers,
performance monitoring, and logs. You can also use the scripts to administer your servers.

About this task

The scripting library provides a set of procedures to automate the most common application server
administration functions. There are three ways to use the Jython script library.

* Run scripts from the Jython script library in interactive mode with the wsadmin tool. You can launch the
wsadmin tool, and run individual scripts that are included in the script library using the following syntax:

wsadmin>AdminServerManagement.createApplicationServer("myNode", "myServer", "default")

90 Scripting the application serving environment

» Use a text editor to combine several scripts from the Jython script library, as the following sample
displays:
#
My Custom Jython Script - file.py
#

AdminServerManagement.createApplicationServer("myNode", "Serverl", "default")
AdminServerManagement.createApplicationServer("myNode", "Server2", "default")

Use one of them as the first member of a cluster
AdminClusterManagement.createClusterWithFirstMember("myCluster", "APPLICATION_ SERVER",
"myNode", "Serverl")

Add a second member to the cluster
AdminClusterManagement.createClusterMember ("myCluster", "myNode", "Server3")

Install an application
AdminApplication.installAppWithClusterOption("DefaultApplication",
"..\installableApps\DefaultApplication.ear", "myCluster")

Start all servers and applications on the node
AdminServerManagement.startAl1Servers ("myNode")

Save the custom script and run it from the command line, as the following syntax demonstrates:
bin>wsadmin -language jython -f path/to/your/jython/file.py

* Use the Jython scripting library code as sample syntax to write custom scripts. Each script example in
the script library demonstrates best practices for writing wsadmin scripts. The script library code is
located in the |app_server_roof/scriptLibraries directory. Within this directory, the scripts are
organized into subdirectories according to functionality, and further organized by version. For example,
the app_server_root/scriptLibraries/application/V70 subdirectory contains procedures that perform
application management tasks that are applicable to Version 7.0 and later of the product.

The AdminServerManagement procedures in scripting library are located in the |app_server_roo
scriptLibraries/servers/V70 subdirectory. Each script from the directory automatically loads when you
launch the wsadmin tool. To automatically load your own Jython scripts (*.py) when the wsadmin tool
starts, create a new subdirectory and save existing automation scripts under the |app_server_rooy
scriptLibraries directory.

Note: To create custom scripts using the scripting library procedures, save the modified scripts to a new
subdirectory to avoid overwriting the library. Do not edit the script procedures in the scripting library.

You can use the AdminServerManagement.py scripts to perform multiple combinations of administration
functions. This topic provides one sample combination of procedures. Use the following steps to create an
application server, connect the application server to the AdminService interface, configure Java virtual
machine (JVM) settings, add the application server to a cluster, and propagate the changes to the node.

Procedure
1. Optional: Launch the wsadmin tool.

Use this step to launch the wsadmin tool and connect to a server, job manager, or administrative agent
profile, or run the tool in local mode. If you launch the wsadmin tool, use the interactive mode
examples in this topic to run scripts.

» Enter the following command from the bin directory to launch the wsadmin tool and connect to a
server:
bin>wsadmin -lang jython
» Enter the following command from the bin directory to launch the wsadmin tool in local mode and
using the Jython scripting language:
wsadmin -conntype none -lang jython

When the wsadmin tool launches, the system loads all scripts from the scripting library.
2. Create an application server.

Chapter 11. Using the script library to automate the application serving environment using wsadmin scripting 91

Run the createApplicationServer script procedure from the AdminServerManagement script library, as
the following example demonstrates:
bin>wsadmin -Tang jython -c "AdminServerManagement.createApplicationServer("myNode", "myServer", "default")"
You can also use interactive mode to run the script procedure, as the following example demonstrates:
wsadmin>AdminServerManagement.createApplicationServer("myNode", "myServer", "“default")

3. Connect the application server of interest to the AdminService interface.

The AdminService interface is the server interface to the application server administration functions. To
connect the application server to the AdminService interface, run the configureAdminService script
procedure from the AdminServerManagement script library, specifying the node name, server name,
and connector type arguments, as the following example demonstrates:

bin>wsadmin -Tang jython -c "AdminServerManagement.configureAdminService("myNode", "myServer",
"IPC", "JSRI6ORMI")

You can also use interactive mode to run the script procedure, as the following example demonstrates:
wsadmin>AdminServerManagement.configureAdminService("myNode", "myServer", "IPC", "JSRI6ORMI")

4. Configure the Java virtual machine (JVM).

As part of configuring an application server, you might define settings that enhance the way your
operating system uses of the JVM. The JVM is an interpretive computing engine responsible for
running the byte codes in a compiled Java program. The JVM translates the Java byte codes into the
native instructions of the host machine. The application server, being a Java process, requires a JVM
in order to run, and to support the Java applications running on it.

Run the configureJavaVirtualMachine script procedure from the AdminServerManagement script library,
specifying the node name, server name, whether to run the JVM in debug mode, and any debug
arguments to pass to the JVM process. You can optionally specify additional configuration attributes
with an attribute list. Use the following example to configure the JVM:

bin>wsadmin -Tang jython -c "AdminServerManagement.configuredavaVirtualMachine("myNode",
"myServer", "true", "mydebug", [["internalClassAccessMode", "RESTRICT"],
["disableJIT", "false"], ["verboseModeJNI", "false"]])"

You can also use interactive mode to run the script procedure, as the following example demonstrates:

wsadmin>AdminServerManagement.configuredavaVirtualMachine("myNode", "myServer", "true",
"mydebug", [["internalClassAccessMode", "RESTRICT"],
["disableJIT", "false"], ["verboseModeJNI", "false"]])

5. Create a cluster, and add the application server as a cluster member.

Run the createClusterWithFirstMember script procedure from the AdminClusterManagement script
library, as the following example demonstrates:

bin>wsadmin -Tang jython -c "AdminClusterManagement.createClusterWithFirstMember("myCluster",
"APPLICATION_SERVER", "myNode", "myServer")"

wsadmin>AdminClusterManagement.createClusterWithFirstMember("myCluster", "APPLICATION_SERVER",
"myNode", "myServer")

Results

The wsadmin script libraries return the same output as the associated wsadmin commands. For example,
the AdminServerManagement.listServers() script returns a list of available servers. The
AdminClusterManagement.checklfClusterExists() script returns a value of true if the cluster exists, or
false if the cluster does not exist. If the command does not return the expected output, the script libraries
return a 1 value when the script successfully runs. If the script fails, the script libraries return a -1 value
and an error message with the exception.

By default, the system disables failonerror option. To enable this option, specify true as the last argument
for the script procedure, as the following example displays:

wsadmin>AdminApplication.startApplicationOnCluster("myApplication","myCluster","true")
What to do next

Create custom scripts to automate your environment by combining script procedures from the scripting
library. Save custom scripts to a new subdirectory of the [app_server roo¥scriptLibraries directory.

92 Scripting the application serving environment

Server settings configuration scripts

The scripting library provides multiple script procedures to automate your application server configurations.
Use the application server scripts to configure class loaders, Java Virtual Machine (JVM) settings,
Enterprise JavaBeans (EJB) containers, performance monitoring, dynamic cache, and so on. You can run
each script individually, or combine procedures to create custom automation scripts for your environment.

All server management script procedures are located in the |app_server_rooi/scr1’ptLibraries/servers/
V70 directory.

Use the following script procedures to administer your application server:
+ [‘configureAdminService” on page 94|

« [‘configureApplicationServerClassloader” on page 94

* [‘configureDynamicCache” on page 95|

» [‘configureEJBContainer” on page 95|

« [“configureFileTransferService” on page 96|

+ [“configureListenerPortForMessageListenerService” on page 96

« [“configureMessageListenerService” on page 97
[“‘configureStateManageable” on page 97|

Use the following script procedures to configure your application server runtime environment:
+ [“configureCustomProperty” on page 98|

« [‘configureCustomService” on page 98|
[“‘configureEndPointsHost” on page 99

+ [“configureJavaVirtualMachine” on page 99

+ [“‘configureORBService” on page 99
[‘configureProcessDefinition” on page 100|
[‘configureRuntimeTransactionService” on page 101|
* WM [‘configureThreadPool” on page 101|

+ [“configureTransactionService” on page 102|
[‘setdVMProperties” on page 103]
[‘setTraceSpecification” on page 103|

Use the following script procedures to configure web containers for your application server:
« [“configureCookieForServer” on page 104

* [“configureHTTPTransportForWebContainer’ on page 104

* [‘configureSessionManagerForServer” on page 105|

. ‘“configureWebContainer” on page 105|

Use the following script procedures to configure logs and monitor performance for your application server:
¢ [‘configureJavaProcessLogs” on page 106|

. :“configurePerformanceMonitoringService” on page 106|

. :“configurePMIRequestMetrics” on page 107|

. :“configureServerLogs” on page 108
. ‘“configureTraceService” on page 103

Chapter 11. Using the script library to automate the application serving environment using wsadmin scripting 93

configureAdminService

This script configures settings for the AdminService interface. The AdminService interface is the
server-side interface to the application server administration functions.

Table 47. configureAdminService argument descriptions. Run the script with the node name, server name, local
connection protocol, and remote connection protocol.

Argument Description

nodeName Specifies the name of the node of interest.

serverName Specifies the name of the server of interest.

localAdminProtocol Specifies the type of connector to use to connect the AdminService interface to the
application server for local connection.

remoteAdminProtocol Specifies the type of connector to use to connect the AdminService interface to the
application server for remote connection.

otherAttributeList Optionally specifies additional attributes in the following format: [[“enabled”, “true”],
[“pluginConfigService”, “(cells/timmieNode02Cell/nodes/timmieNode01/servers/
serverl|server.xml#PluginConfigService_1183122130078)"]]

Syntax

AdminServerManagement.configureAdminService (nodeName,

Example usage

AdminServerManagement.configureAdminService(""myNode
[["enabled", "true"], ["pluginConfigService",

serverName, localAdminProtocol, remoteAdminProtocol, otherAttributelist)

e wnyServer®, “IPCY, "SOAP"

"(cells/timmieNode02Cel1/nodes/timmieNode01/servers/serverl|server.xml#PluginConfigService_1183122130078)"]1])

configureApplicationServerClassloader

This script configures a class loader for the application server. Class loaders enable applications that are
deployed on the application server to access repositories of available classes and resources.

Table 48. configureApplicationServerClassloader argument descriptions. Run the script with the node name, server
name, policy, mode, and library name arguments.

Argument

Description

nodeName

Specifies the name of the node of interest.

serverName

Specifies the name of the server of interest.

policy

Specifies the application class loader policy as SINGLE or MULTIPLE. Specify the SINGLE value
to prevent the isolation applications, and to configure the application server to use a single
application class loader to load all of the EJB modules, shared libraries, and dependency
Java archive (JAR) files in the system. Specify the MULTIPLE value to isolate applications and
provide each application with its own class loader to load EJB modules, shared libraries, and
dependency JAR files.

mode

Specifies the class loader mode as PARENT_FIRST or APPLICATION_FIRST. The PARENT_FIRST
option causes the class loader to delegate the loading of classes to its parent class loader
before attempting to load the class from its local class path. The APPLICATION_FIRST option
causes the class loader to attempt to load classes from its local class path before delegating
the class loading to its parent. Using this policy, an application class loader can override and
provide its own version of a class that exists in the parent class loader.

libraryName

Specifies the name of the shared library of interest.

Syntax

AdminServerManagement.configureApplicationServerClassloader(nodeName, serverName,

policy, mode, libraryName)

Example usage

AdminServerManagement.configureApplicationServerClassloader("myNode", "MULTIPLE", "PARENT_FIRST",

"myLibraryReference")

94 Scripting the application serving environment

configureDynamicCache

This script configures the dynamic cache service in your server configuration. The dynamic cache service

works within an application server JVM, intercepting calls to cacheable objects. For example, the dynamic
cache service intercepts calls through a servlet service method or a command execute method, and either
stores the output of the object to the cache or serves the content of the object from the dynamic cache.

Table 49. configureDynamicCache argument descriptions. Run the script with the node name, server name, default
priority, cache size, external cache group name, and external cache group type arguments.

Argument Description

nodeName Specifies the name of the node of interest.

serverName Specifies the name of the server of interest.

defaultPriority Specifies the default priority for cache entries, determining how long an entry stays in a full

cache. Specify an integer between 1 and 255.

cacheSize Specifies a positive integer as the value for the maximum number of entries that the cache
holds. Enter a cache size value in this field that is between the range of 100 through 200000.

externalCacheGroupName The external cache group name needs to match the ExternalCache property as defined in
the servlet or JavaServer Pages (JSP) file cachespec.xml file. When external caching is
enabled, the cache matches pages with its Universal Resource Identifiers (URI) and pushes
matching pages to the external cache. The entries can then be served from the external
cache, instead of from the application server.

externalCacheGroupType Specifies the external cache group type.

otherAttributeList Optionally specifies additional configuration options for the dynamic cache service in the
following format: [[“cacheProvider”, “myProvider”], [“diskCacheCleanupFrequency”, 2],
[“flushToDiskOnStop”, “true”]]

Syntax

AdminServerManagement.configureDynamicCache (nodeName, serverName, defaultPriority,
cacheSize, externalCacheGroupName, externalCacheGroupType,
otherAttributelist)

Example usage

AdminServerManagement.configureDynamicCache("myNode", "myServer", 2, 5000, "Esilnvalidator",
"SHARED", [["cacheProvider", "myProvider"], ["diskCacheCleanupFrequency", 2], ["flushToDiskOnStop","true"]])

configureEJBContainer

This script configures an Enterprise JavaBeans (EJB) container in your server configuration. An EJB
container provides a run-time environment for enterprise beans within the application server. The container
handles all aspects of an enterprise bean's operation within the application server and acts as an
intermediary between the user-written business logic within the bean and the rest of the application server
environment.

Table 50. configureEJBContainer argument descriptions. Run the script with the node name, server name,
passivation directory, and default datasource Java Naming and Directory Interface (JNDI) name arguments.

Argument Description

nodeName Specifies the name of the node of interest.

serverName Specifies the name of the server of interest.

passivationDirectory Specifies the directory into which the container saves the persistent state of passivated

stateful session beans. This directory must already exist. It is not automatically created.

defaultDatasourceJNDIName Specifies the JNDI name of a data source to use if no data source is specified during
application deployment. This setting is not applicable for EJB 2.x-compliant
container-managed persistence beans.

Syntax

AdminServerManagement.configureEJBContainer(nodeName, serverName,
passivationDir, defaultDatasourceJNDIName)

Example usage

Chapter 11. Using the script library to automate the application serving environment using wsadmin scripting 95

AdminServerManagement.configureEJBContainer(myNode, myServer, [temp/myDir, jndil)
configureFileTransferService

This script configures the file transfer service for the application server. The file transfer service transfers
files from the deployment manager to individual remote nodes.

Table 51. configureFile TransferService argument descriptions. Run the script with the node name, server name,
number of times to retry the file transfer, and the time to wait before retrying the file transfer.

Argument Description

nodeName Specifies the name of the node of interest.

serverName Specifies the name of the server of interest.

retriesCount Specifies the number of times you want the file transfer service to retry sending or receiving a
file after a communication failure occurs. The default value is 3.

retryWaitTime Specifies the number of seconds that the file transfer service waits before it retries a failed
file transfer. The default value is 10.

otherAttributeList Optionally specifies additional attributes in the following format: [[“enable”, “true”]]

Syntax

AdminServerManagement.configureFileTransferService(nodeName, serverName, retriesCount, retryWaitTime, otherAttributelist)

Example usage

AdminServerManagement.configureFileTransferService(myNode, myServer, 5, 600, [["enable", "true"]])
configureListenerPortForMessageListenerService

This script configures the listener port for the message listener service in your server configuration. The
message listener service is an extension to the Java Messaging Service (JMS) functions of the JMS
provider. It provides a listener manager that controls and monitors one or more JMS listeners, which each
monitor a JMS destination on behalf of a deployed message-driven bean.

Table 52. configureListenerPortForMessageListenerService argument descriptions. Run the script with the node
name, server name, listener port name, connection factory JNDI name, destination JNDI name, maximum number of
messages, maximum number of retries, and the maximum session arguments.

Argument Description

nodeName Specifies the name of the node of interest.

serverName Specifies the name of the server of interest.

listenerPortName The name by which the listener port is known for administrative purposes.

connectionFactoryJNDIName The JNDI name for the JMS connection factory to be used by the listener port; for example,
jms/connFactory1.

destinationJNDIName The JNDI name for the destination to be used by the listener port; for example, jms/destn1

maxMessages The maximum number of messages that the listener can process in one transaction. If the

queue is empty, the listener processes each message when it arrives. Each message is
processed within a separate transaction.

maxRetries The maximum number of times that the listener tries to deliver a message before the listener
is stopped, in the range 0 through 2147483647. The maximum number of times that the
listener tries to deliver a message to a message-driven bean instance before the listener is
stopped.

maxSession Specifies the maximum number of concurrent sessions that a listener can have with the JMS
server to process messages. Each session corresponds to a separate listener thread and
therefore controls the number of concurrently processed messages. Adjust this parameter
when the server does not fully use the available capacity of the machine and if you do not
need to process messages in a specific message order.

Syntax
AdminServerManagement.configurelListenerPortForMessagelistener(nodeName, serverName,

listenerPortName, connectionFactoryJNDIName,
destinationJNDIName, maxMessages, maxRetries, maxSession)

96 Scripting the application serving environment

Example usage

AdminServerManagement.configureListenerPortForMessagelListener("myNode", "myServer", mylistenerPort,
connNDI, “destJNDI", 5, 2, 3)

configureMessageListenerService

This script configures the message listener service in your server configuration. The message listener
service is an extension to the Java Messaging Service (JMS) functions of the JMS provider. It provides a
listener manager that controls and monitors one or more JMS listeners, which each monitor a JMS
destination on behalf of a deployed message-driven bean.

Table 53. configureMessageListenerService argument descriptions. Run the script with the node name, server
name, maximum number of message listener retries, listener recovery interval, pooling threshold, and pooling timeout

arguments.

Argument Description

nodeName Specifies the name of the node of interest.

serverName Specifies the name of the server of interest.

maxListenerRetry Specifies the maximum number of times that a listener port managed by this service tries to
recover from a failure before giving up and stopping. When stopped the associated listener
port is changed to the stop state.

listenerRecoverylnterval Specifies the time in seconds between retry attempts by a listener port to recover from a
failure.

poolingThreshold Specifies the maximum number of unused connections in the pool. The default value is 10.

poolingTimeout Specifies the number of milliseconds after which a connection in the pool is destroyed if it has
not been used. An MQSimpleConnectionManager allocates connections on a
most-recently-used basis, and destroys connections on a least-recently-used basis. By
default, a connection is destroyed if it has not been used for five minutes.

otherAttributeList Optionally specifies additional message listener attributes in the following format:
[[“description”, “test message listener”], [“isGrowable”, “true”], [“maximumSize”, 100],
[“minimumSize”, 5]]

Syntax

AdminServerManagement.configureMessagelistenerService(nodeName, serverName,
maxListenerRetry, listenerRecoverylnterval,
poolingThreshold, poolingTimeout, otherAttributelist)

Example usage
AdminServerManagement.configureMessagelistenerService (myNode, myServer, 5, 120,

20, 600000, myProp, myValue,
[["description", "test message listener"], ["isGrowable", "true"], ["maximumSize", 100], ["minimumSize", 5]])

configureStateManageable

This script configures the initial state of the application server. The initial state refers to the desired state of
the component when the server process starts.

Table 54. configureStateManageable argument descriptions. Run the script with the node name, server name,
parent type, and initial state arguments.

Argument Description

nodeName Specifies the name of the node of interest.

serverName Specifies the name of the server of interest.

parentType Specifies the type of component to modify.

initialState Specifies the desired state of the component when the server process starts. Valid values are
START and STOP.

Syntax

AdminServerManagement.configureStateManageable(nodeName, serverName,
parentType, initialState)

Example usage

Chapter 11. Using the script library to automate the application serving environment using wsadmin scripting 97

AdminServerManagement.configureStateManageable(myNode, myServer, "Server", "START")

configureCustomProperty

This script configures custom properties in your application server configuration. You can use custom
properties for configuring internal system properties which some components use, for example, to pass
information to a web container.

Table 55. configureCustomProperty argument descriptions. Run the script with the node name, server name, parent
type, property name, and property value arguments.

Argument Description

nodeName Specifies the name of the node of interest.

serverName Specifies the name of the server of interest.

parentType Specifies the type of component to configure.

propertyName Specifies the custom property to configure.

propertyValue Specifies the value of the custom property to configure.

otherAttributeList Optionally specifies additional attributes in the following format: [[“commTraceEnabled”,
“true”, [“enable”, “true™]

Syntax

AdminServerManagement.configureCustomProperty (nodeName, serverName, parentType, propertyName, propertyValue, otherAttributelist)

Example usage

AdminServerManagement.configureCustomProperty ("myNode", "myServer", "ThreadPool", "myPropl", “myPropValue",
[["description", "my property test"], ["required", "false"]])

configureCustomService

This script configures a custom service in your application server configuration. Each custom services
defines a class that is loaded and initialized whenever the server starts and shuts down. Each of these
classes must implement the com.ibm.websphere.runtime.CustomService interface. After you create a
custom service, use the administrative console to configure that custom service for your application
servers.

Table 56. configureCustomService argument descriptions. Run the script with the node name, server name, and
preferred connector type.

Argument Description

nodeName Specifies the name of the node of interest.

serverName Specifies the name of the server of interest.

classname Specifies the class name of the service implementation. This class must implement the

Custom Service interface.

displayname Specifies the name of the service.

classpath Specifies the class path used to locate the classes and JAR files for this service.

otherAttributeList Optionally specifies additional attributes in the following format: [[“description”, “test custom
service”], [“enable”, “true™]]

Syntax

AdminServerManagement.configureCustomService(nodeName, serverName, classname, displayname, classpath, otherAttributelList)

Example usage

AdminServerManagement.configureCustomService("myNode", "myServer", "myClass", "myName", "/temp/boo.jar",
[["description", "test custom service"], ["enable", "true"]])

98 Scripting the application serving environment

configureEndPointsHost

Table 57. configureEndPointsHost argument descriptions. Run the script to configure the host name of the server
endpoints. Specify the node name, server name, and host name arguments.

Argument Description

nodeName Specifies the name of the node of interest.
serverName Specifies the name of the server of interest.
hostName Specifies the name of the host of interest.
Syntax

AdminServerManagement.configureEndPointsHost (nodeName, serverName, hostName)

Example usage

AdminServerManagement.configureEndPointsHost (myNode, AppServer0l, myHostname)

configureJavaVirtualMachine
This script configures a Java virtual machine (JVM). The application server, being a Java process, requires
a JVM in order to run, and to support the Java applications running on it.

Table 58. configuredavaVirtualMachine argument descriptions. Run the script with the configuration ID of the JVM of
interest, whether to enable debug mode, and additional debug arguments.

Argument Description

JjavaVirtualMachineConfigID Specifies the configuration ID of the Java virtual machine you want to make changes.

debugMode Specifies whether to run the JVM in debug mode. The default is not to enable debug mode
support. If you set the debugMode argument to true, then you must specify debug
arguments.

debugArgs Specifies debug arguments to pass to the JVM code that starts the application server

process. If you enable debugging on multiple application servers on the same node, make
sure that the servers are using different address arguments, which define the port for
debugging. For example, if you enable debugging on two servers and leave the default
debug port for each server as address=7777, the servers could fail to start properly.

otherAttributeList Optionally specifies additional attributes using the following name and value pair format:
[[“internalClassAccessMode”, “RESTRICT”], [“disableJIT”, “false”], [“verboseModeJNI”,
“false”]]

Syntax

AdminServerManagement.configuredavaVirtualMachine(javaVirtualMachineConfiglID,
debugMode, debugArgs, otherAttributelist)

Example usage

AdminServerManagement.configureJdavaVirtualMachine
("(cel1s/WASOONetwork/nodes/ndnodel/servers/serverl|server.xml#JavaVirtualMachine_1208188803955)", "true",
mydebug, [["internalClassAccessMode", "RESTRICT"], ["disabledIT", "false"], ["verboseModeJNI", "false"]])

configureORBService

This script configures an Object Request Broker (ORB) service in your server configuration. An Object
Request Broker (ORB) manages the interaction between clients and servers, using the Internet InterORB
Protocol (IIOP). It enables clients to make requests and receive responses from servers in a
network-distributed environment.

Table 59. configureORBService argument descriptions. Run the script with the node name, server name, request
timeout, request retry count, request retry delay, maximum connection cache, minimum connection cache, and locate
request timeout arguments.

Argument Description
nodeName Specifies the name of the node of interest.
serverName Specifies the name of the server of interest.

Chapter 11. Using the script library to automate the application serving environment using wsadmin scripting 99

Table 59. configureORBService argument descriptions (continued). Run the script with the node name, server
name, request timeout, request retry count, request retry delay, maximum connection cache, minimum connection
cache, and locate request timeout arguments.

Argument

Description

requestTimeout

Specifies the number of seconds to wait before timing out on a request message.

.Eﬂ- requestRetriesCount

m Specifies the number of times that the ORB attempts to send a request if a
server fails. Retrying sometimes enables recovery from transient network failures. This field is
ignored on the z/OS® platform.

-]m requestRetriesDelay

-]M Specifies the number of milliseconds between request retries. This field is
ignored on the z/OS platform.

m connectionCacheMax

m Specifies the maximum number of entries that can occupy the ORB
connection cache before the ORB starts to remove inactive connections from the cache. This
field is ignored on the z/OS platform. It is possible that the number of active connections in
the cache will temporarily exceed this threshold value. If necessary, the ORB will continue to
add connections as long as resources are available.

m connectionCacheMin

m Specifies the minimum number of entries in the ORB connection cache. This
field is ignored on the z/OS platform. The ORB will not remove inactive connections when the
number of entries is below this value.

locateRequestTimeout Specifies the number of seconds to wait before timing out on a LocateRequest message. This
field is ignored on the z/OS platform.

otherAttributeList Optionally specifies additional attributes in the following format: [[“commTraceEnabled”,
“true”), [“enable”, “true”]]

Syntax

AdminServerManagement.configureORBService(nodeName, serverName, requestTimeout, requestRetriesCount, requestRetriesDelay,
connectionCacheMax, connectionCacheMin, TocateRequestTimeout, otherAttributelist)

Example usage

AdminServerManagement.configureMessageListenerService (myNode, myServer, 5, 120, 20, 600000, 20, 300,

[["commTraceEnabled", "true"], ["enable", "true"]])

configureProcessDefinition

This script configures the server process definition. Enhance the operation of an application server by
defining command-line information for starting or initializing the application server process. Process
definition settings define runtime properties such as the program to run, arguments to run the program,

and the working directory.

To run the script, specify the node name and server name arguments, as defined in the following table:

Table 60. configureProcessDefinition argument descriptions. Run the script with the node name, server name and,

as needed, additional parameters.

Argument Description

nodeName Specifies the name of the node of interest.

serverName Specifies the name of the server of interest.

otherParamList Specifies additional parameters for the process definition configuration in the following
format: [[“executableName”, “value1”], [‘executableArguments”, “value2”], [“workingDirectory”,
“value3”]]

Syntax

AdminServerManagement.configureProcessDefintion(nodeName, serverName, otherParamlist)

Example usage

AdminServerManagement.configureProcessDefinition(myNode, myServer,
[[executableName, "valuel"],["executableArguments"."value2"],["workingDirectory","value3"]])

100 Scripting the application serving environment

configureRuntimeTransactionService

This script configures the transaction service for your server configuration. The transaction service is a
server runtime component that coordinates updates to multiple resource managers to ensure atomic
updates of data. Transactions are started and ended by applications or the container in which the

applications are deployed.

Table 61. configureRuntime TransactionService argument descriptions. Run the script with the node name, server
name, total transaction lifetime timeout, and client inactivity timeout arguments.

Argument Description
nodeName Specifies the name of the node of interest.
serverName Specifies the name of the server of interest.

totalTranLifetime Timeout

Specifies the default maximum time, in seconds, allowed for a transaction that is started on
this server before the transaction service initiates timeout completion. Any transaction that
does not begin completion processing before this timeout occurs is rolled back.

clientInactivity Timeout Specifies the maximum duration, in seconds, between transactional requests from a remote
client. Any period of client inactivity that exceeds this timeout results in the transaction being
rolled back in this application server. If you set this value to 0, there is no timeout limit.
Syntax

AdminServerManagement.configureRuntimeTransactionService(nodeName, serverName,

totalTranlifetimeTimeout, clientInactivityTimeout)

Example usage

AdminServerManagement.configureRuntimeTransactionService(myNode, myServer, "600", "600")

| __IBMi |
configureThreadPool

This script configures thread pools in your server configuration. A thread pool enables components of the
server to reuse threads, which eliminates the need to create new threads at run time. Creating new

threads expends time and resources.

Table 62. configureThreadPool argument descriptions. Run the script with the node name, server name, parent type,
thread pool name, maximum size, minimum size, and the amount of time before timeout occurs.

Argument Description

nodeName Specifies the name of the node of interest.

serverName Specifies the name of the server of interest.

parentType Specifies the type of component to configure.

threadPoolName Specifies the name of the thread pool of interest.

maximumSize Specifies the maximum number of threads to maintain in the default thread pool. If your

Tivoli® Performance Viewer shows the Percent Maxed metric to remain consistently in the
double digits, consider increasing the Maximum size. The Percent Maxed metric indicates the
amount of time that the configured threads are used.

minimumSize

Specifies the minimum number of threads to allow in the pool. When an application server
starts, no threads are initially assigned to the thread pool. Threads are added to the thread
pool as the workload assigned to the application server requires them, until the number of
threads in the pool equals the number specified in the Minimum size field. After this point in
time, additional threads are added and removed as the workload changes. However the
number of threads in the pool never decreases below the number specified in the Minimum
size field, even if some of the threads are idle.

inactivity Timeout Specifies the number of milliseconds of inactivity that should elapse before a thread is
reclaimed. A value of 0 indicates not to wait and a negative value (less than 0) means to wait
forever.

otherAttributeList Specifies additional configuration attributes in the following format: [[“description”, “testing
thread pool”], [“isGrowable”, “true”], [“name”, “myThreadPool’]]

Syntax

Chapter 11. Using the script library to automate the application serving environment using wsadmin scripting 101

AdminServerManagement.configureThreadPool (nodeName, serverName,

parentType, threadPoolName, maximumSize,
minimumSize, inactivityTimeout, otherAttributelist)

Example usage

AdminServerManagement.configureThreadPool

("acmeNode2", "serverl", "ThreadPoolManager", "WebContainer", 15, 25, 60)

configureTransactionService

This script configures the transaction service for your application server. You can use transactions with
your applications to coordinate multiple updates to resources as atomic units (as indivisible units of work)
such that all or none of the updates are made permanent.

Table 63. configureTransactionService argument descriptions. Run the script with the node name, server name, total
transaction lifetime timeout, client inactivity timeout, maximum transaction timeout, heuristic retry limit, heuristic retry
wait, propogate or BMT transaction lifetime timeout, and asynchronous response timeout arguments.

Argument Description
nodeName Specifies the name of the node of interest.
serverName Specifies the server name of the of interest.

totalTranLifetime Timeout

Specifies the default maximum time, in seconds, allowed for a transaction that is started on
this server before the transaction service initiates timeout completion. Any transaction that
does not begin completion processing before this timeout occurs is rolled back. This timeout
is used only if the application component does not set its own transaction timeout.

Only the total transaction lifetime timeout and the maximum transaction timeout have grace
periods. You can disable the grace periods using the
DISABLE_TRANSACTION_TIMEOUT_GRACE_PERIOD custom property.

clientlnactivity Timeout

Specifies the maximum duration, in seconds, between transactional requests from a remote
client. Any period of client inactivity that exceeds this timeout results in the transaction being
rolled back in this application server. If you set this value to 0, there is no timeout limit.

maximumTransactionTimeout

Specifies the upper limit of the transaction timeout, in seconds, for transactions that run in
this server. This value should be greater than or equal to the total transaction timeout. This
timeout constrains the upper limit of all other transaction timeouts.

heuristicRetryLimit Specifies the number of times that the application server retries a completion signal, such as
commit or rollback. Retries occur after a transient exception from a resource manager or
remote partner, or if the configured asynchronous response timeout expires before all Web
Services Atomic Transaction (WS-AT) partners have responded.

heuristicRetryWait Specifies the number of seconds that the application server waits before retrying a completion

signal, such as commit or rollback, after a transient exception from a resource manager or
remote partner.

propogateOrBMT TranLifetime Timeout

Specifies the number of seconds that a transaction remains inactive before it is rolled back.

asyncResponseTimeout Specifies the amount of time, in seconds, that the server waits for an inbound Web Services
Atomic Transaction (WS-AT) protocol response before resending the previous WS-AT protocol
message.

otherAttributeList Optionally specifies additional attributes in the following format: [[“LPSHeuristicCompletion”,
“ROLLBACK?], ["WSTransactionSpecificationLevel”, “WSTX_10"], [“enable”, “true™]]

Syntax

AdminServerManagement.configureTransactionService(nodeName, serverName,

totalTranLifetimeTimeout, clientInactivityTimeout,

maximumTransactionTimeout, heuristicRetrylimit, heuristicRetryWait,
propogateOrBMTTranLifetimeTimeout, asyncResponseTimeout, otherAttributelist)

Example usage

AdminServerManagement.configureTransactionService(myNode, myServer,

120, 60, 5, 2, 5, 300, 30,

[["LPSHeuristicCompletion", "ROLLBACK"], ["WSTransactionSpecificationLevel", "WSTX_10"], ["enable", "true"]])

102 Scripting the application serving environment

setJVMProperties

This script sets additional properties for your JVM configuration.

Table 64. setJVMProperties argument descriptions. Run the script with the node name, server name, classpath,
boot class path, initial heap size, maximum heap size, whether to enable debug mode, and debug arguments.

Argument

Description

nodeName

Specifies the name of the node of interest.

serverName

Specifies the name of the server of interest.

classPath

Optionally specifies the standard class path in which the Java virtual machine code looks for
classes.

bootClasspath

Optionally specifies bootstrap classes and resources for JVM code. This option is only
available for JVM instructions that support bootstrap classes and resources.

initialHeapSize

Optionally specifies the initial heap size available to the JVM code, in megabytes. Increasing
the minimum heap size can improve startup. The number of garbage collection occurrences
are reduced and a 10% gain in performance is realized. Increasing the size of the Java heap
improves throughput until the heap no longer resides in physical memory, in general. After
the heap begins swapping to disk, Java performance suffers drastically.

maxHeapSize

Optionally specifies the maximum heap size available to the JVM code, in megabytes.
Increasing the heap size can improve startup. By increasing heap size, you can reduce the
number of garbage collection occurrences with a 10% gain in performance.

debugMode

Optionally specifies whether to run the JVM in debug mode. The default is not to enable
debug mode support. If you set the debugMode argument to true, then you must specify
debug arguments.

debugArgs

Optionally specifies debug arguments to pass to the JVM code that starts the application
server process. If you enable debugging on multiple application servers on the same node,
make sure that the servers are using different address arguments, which define the port for
debugging. For example, if you enable debugging on two servers and leave the default
debug port for each server as address=7777, the servers could fail to start properly.

Syntax

AdminServerManagement.setJVMProperties (nodeName, serverName,

classPath, bootClasspath, initialHeapSize,
maxHeapSize, debugMode, debugArgs)

Example usage

nn nn n ||)

AdminServerManagement.setJVMProperties (myNode, myServer, "/a.jar", "", "", . .

setTraceSpecification

This script sets the trace specification for your configuration.

Table 65. setTraceSpecification argument descriptions. Run the script with the node name, server name, and trace

specification arguments.

Argument Description

nodeName Specifies the name of the node of interest.

serverName Specifies the name of the server of interest.

traceSpecification Optionally specifies debug arguments to pass to the JVM code that starts the application
server process. If you enable debugging on multiple application servers on the same node,
make sure that the servers are using different address arguments, which define the port for
debugging. For example, if you enable debugging on two servers and leave the default
debug port for each server as address=7777, the servers could fail to start properly.

Syntax

AdminServerManagement.setJVMProperties(nodeName, serverName, traceSpecification)

Example usage

AdminServerManagement.setTraceSpecification(myNode, myServer, "com.ibm.ws.management.*=all")

Chapter 11. Using the script library to automate the application serving environment using wsadmin scripting 103

configureCookieForServer

This script configures cookies in your application server configuration. Configure cookies to track sessions.

Table 66. configureCookieForServer argument descriptions. Run the script with the node name, server name, cookie
name, domain, maximum cookie age, and whether to secure the cookie.

Argument Description

nodeName Specifies the name of the node of interest.

serverName Specifies the name of the server of interest.

cookieName Specifies a unique name for the session management cookie. The servlet specification
requires the name JSESSIONID. However, for flexibility this value can be configured.

domain Specifies the domain field of a session tracking cookie. This value controls whether or not a
browser sends a cookie to particular servers. For example, if you specify a particular domain,
session cookies are sent to hosts in that domain. The default domain is the server.

maximumAge Specifies the amount of time that the cookie lives on the client browser. Specify that the
cookie lives only as long as the current browser session, or to a maximum age. If you choose
the maximum age option, specify the age in seconds. This value corresponds to the Time to
Live (TTL) value described in the Cookie specification. Default is the current browser session
which is equivalent to setting the value to -1.

secure Specifies that the session cookies include the secure field. Enabling the feature restricts the
exchange of cookies to HTTPS sessions only.

otherAttributeList Optionally specifies additional attributes in the following format: [[“path”, “C:/temp/mycookie”]]

Syntax

AdminServerManagement.configureCookieForServer(nodeNam

Example usage

AdminServerManagement.configureCookieForServer (myNode,

e, serverName, cookieName, domain, maximumAge, secure, otherAttributelist)

myServer, myCookie, "uk.kingdom.com", -1, "true", [["path", "C:/temp/mycookie"]])

configureHTTPTransportForWebContainer

This script configures HTTP transports for a web container. Transports provide request queues between
application server plug-ins for Web servers and web containers in which the web modules of applications

reside. When you request an application
along the transport to the web container.

in a web browser, the request is passed to the web server, then

Table 67. configureHTTPTransportForWebContainer argument descriptions. Run the script with the node name,
server name, whether to adjust the port, whether external, the Secure Socket Layer (SSL) configuration to use, and

whether to enable SSL.

Argument Description

nodeName Specifies the name of the node of interest.

serverName Specifies the name of the server of interest.

adjustPort Specifies whether to automatically adjust the port for the web container of interest.

external Specifies whether to set the HTTP Transport for the web container to external.

sslConfig Specifies the Secure Sockets Layer (SSL) settings type for connections between the
WebSphere Application Server plug-in and application server. The options include one or
more SSL settings defined in the Security Center; for example, DefaultSSLSettings,
ORBSSLSettings, or LDAPSSLSettings.

sslEnabled Specifies whether to protect connections between the WebSphere Application Server plug-in
and application server with Secure Sockets Layer (SSL). The default is not to use SSL.

Syntax

AdminServerManagement.configureHTTPTransportForWebContainer(nodeName, serverName,

adjustPort, external, sslConfig, sslEnabled)

Example usage

AdminServerManagement.configureHTTPTransportForWebContainer(myNode, myServer, "true", "true", "mySSLConfig", "true")

104 Scripting the application serving environm

ent

configureSessionManagerForServer

This script configures the session manager for the application server. Sessions allow applications running
in a web container to keep track of individual users.

Table 68. configureSessionManagerForServer argument descriptions. Run the script with the node name, server

name, and session persistence mode.

Argument Description
nodeName Specifies the name of the node of interest.
serverName Specifies the name of the server of interest.

sessionPersistenceMode

Specifies the session persistence mode. Valid values include DATABASE and NONE.

otherAttributeList

Optionally specifies additional attributes in the following format: [[“accessSessionOnTimeout”,
“true”), [“enabled”, “true”]]

Syntax

AdminServerManagement.configureSessionManagerForServer(nodeName, serverName,

sessionPersistenceMode, otherAttributelist)

Example usage

AdminServerManagement.configureSessionManagerForServer (myNode, myServer, "DATABASE",
[["accessSessionOnTimeout", "true"], ["enabled", "true"]])

configureWebContainer

This script configures web containers in your application server configuration. A web container handles
requests for servlets, JavaServer Pages (JSP) files, and other types of files that include server-side code.
The web container creates servlet instances, loads and unloads servlets, creates and manages request
and response objects, and performs other servlet management tasks.

Table 69. configureWebContainer argument descriptions. Run the script with the node name, server name, default
virtual host name, and whether to enable serviet cache.

Argument Description

nodeName Specifies the name of the node of interest.
serverName Specifies the name of the server of interest.
webContainerName Specifies the name of the web container of interest.

defaultVirtualHostName

Specifies a virtual host that enables a single host machine to resemble multiple host
machines. Resources associated with one virtual host cannot share data with resources
associated with another virtual host, even if the virtual hosts share the same physical
machine. Valid values include:

default_host
The product provides a default virtual host with some common aliases such as the
machine IP address, short host name, and fully qualified host name. The alias
comprises the first part of the path for accessing a resource such as a servlet. For
example, it is localhost:9080 in the request http://localhost:9080/myServiet.

admin_host
This is another name for the application server; also known as server1 in the base
installation. This process supports the use of the administrative console.

proxy_host
The virtual host called proxy_host, includes default port definitions, port 80 and
443, which are typically initialized as part of the proxy server initialization. Use this
proxy host as appropriate with routing rules associated with the proxy server.

enableServletCaching

Specifies that if a servlet is invoked once and it generates output to be cached, a cache entry
is created containing not only the output, but also side effects of the invocation. These side
effects can include calls to other servlets or JavaServer Pages (JSP) files, as well as
metadata about the entry, including timeout and entry priority information.

Portlet fragment caching requires that servlet caching is enabled. Therefore, enabling portlet
fragment caching automatically enables servlet caching. Disabling servlet caching
automatically disables portlet fragment caching.

Chapter 11. Using the script library to automate the application serving environment using wsadmin scripting 105

Table 69. configureWebContainer argument descriptions (continued). Run the script with the node name, server
name, default virtual host name, and whether to enable servlet cache.

Argument Description

otherAttributeList Optionally specifies additional attributes in the following format:
[[“allowAsyncRequestDispatching”, “true”], [“disablePooling”, “true”], [“sessionAffinityTimeout”,
20]]

Syntax

AdminServerManagement.configureWebContainer(nodeName, serverName,
defaultVirtualHostName, enableServlietCaching, otherAttributelist)

Example usage
AdminServerManagement.configureWebContainer(myNode, myServer, myVH.uk.kingdom.com,

"true",
[["allowAsyncRequestDispatching", "true"], ["disablePooling", "true"], ["sessionAffinityTimeout", 20]])

configureJavaProcessLogs

This script configures Java process logs for the application server. The system creates the JVM logs by
redirecting the System.out and System.err streams of the JVM to independent log files.

Table 70. configureJavaProcesslLogs argument descriptions. Run the script with the Java process definition of
interest and root directory for the process logs.

Argument Description

JjavaProcessDefConfigIiD Specifies the configuration ID of the Java Process Definition of interest.

processLogRoot Specifies the root directory for the process logs.

otherAttributeList Optionally specifies additional attributes using the following name and value pair format:
[[“stdinFilename”, “/temp/mystdin.log”]]

Syntax

AdminServerManagement.configureJavaProcessLogs (javaProcessDefConfigID, processLogRoot,
otherAttributelist)

Example usage

AdminServerManagement.configureJavaProcessLogs
("(cel1s/WASOONetwork/nodes/ndnodel/servers/serverl|server.xml#JavaProcessDef 1184194176408)",

/temp/myJavalog, [[stdinFilename, /temp/mystdin.log]])
configurePerformanceMonitoringService

This script configures performance monitoring infrastructure (PMI) in your configuration. PMI enables the
server to collect performance data from various product components. PMI provides information about
average system resource usage statistics, with no correlation between the data across different
components.

Table 71. configurePerformanceMonitoringService argument descriptions. Run the script with the node name, server
name, whether to enable PMI, and the initial specification level arguments.

Argument Description

nodeName Specifies the name of the node of interest.

serverName Specifies the name of the server of interest.

enable Specifies whether the application server attempts to enable Performance Monitoring
Infrastructure (PMI). If an application server is started when the PMI is disabled, you have to
restart the server in order to enable it.

106 Scripting the application serving environment

Table 71. configurePerformanceMonitoringService argument descriptions (continued). Run the script with the node
name, server name, whether to enable PMI, and the initial specification level arguments.

Argument Description

initialSpecLevel Specifies a pre-defined set of Performance Monitoring Infrastructure (PMI) statistics for all
components in the server.
None All statistics are disabled.
Basic Provides basic monitoring for application server resources and applications. This

includes Java Platform Enterprise Edition (Java EE) components, HTTP session
information, CPU usage information, and the top 38 statistics. This is the default

setting.

Extended
Provides extended monitoring, including the basic level of monitoring plus
workload monitor, performance advisor, and Tivoli resource models. Extended
provides key statistics from frequently used WebSphere Application Server
components.

All Enables all statistics.

Custom Provides fine-grained control with the ability to enable and disable individual
statistics.

otherAttributeList Optionally specifies additional attributes using the following name and value pair format:
[“statisticSet”, “test statistic set”], [‘synchronizedUpdate”, “true™]]

Syntax

AdminServerManagement.configurePerformanceMonitoringService(nodeName, serverName,
enable, initialSpecLevel, otherAttributelist)

Example usage

AdminServerManagement.configurePerformanceMonitoringService(myNode, myServer, "true", "Basic",
[["statisticSet", "test statistic set"], ["synchronizedUpdate", "true"]])

configurePMIRequestMetrics

This script configures PMI request metrics in your configuration. Request metrics provide data about each
transaction, correlating this information across the various product components to provide an end-to-end
picture of the transaction.

Table 72. configurePMIRequestMetrics argument descriptions. Run the script and specify whether to enable request
metrics and the trace level.

Argument Description

enable Specifies whether to turn on the request metrics feature. When disabled, the request metrics
function is disabled.

traceLevel Specifies how much trace data to accumulate for a given transaction. Note that trace level
and components to be instrumented work together to control whether or not a request will be
instrumented.

NONE No instrumentation.

HOPS Generates instrumentation information on process boundaries only (for example,
a servlet request coming from a browser or a web server and a JDBC request
going to a database).

PERFORMANCE_DEBUG
Generates the data at Hops level and the first level of the intra-process servlet
and Enterprise JavaBeans (EJB) call (for example, when an inbound servlet
forwards to a servlet and an inbound EJB calls another EJB). Other intra-process
calls like naming and service integration bus (SIB) are not enabled at this level.

DEBUG Provides detailed instrumentation data, including response times for all
intra-process calls. Requests to servlet filters will only be instrumented at this
level.

otherAttributeList Optionally specifies additional attributes using the following name and value pair format:
[[“armType”, “TIVOLI_ARM"], [“enableARM”, “true”]]

Syntax

Chapter 11. Using the script library to automate the application serving environment using wsadmin scripting 107

AdminServerManagement.configurePMIRequestMetrics(enable, tracelevel, otherAttributelist)

Example usage

AdminServerManagement.configurePMIRequestMetrics ("true", "DEBUG",
[["armType", "TIVOLI_ARM"], ["enableARM", "true"]])

configureServerLogs

This script configures server logs for the application server of interest.

Table 73. configureServerLogs argument descriptions. Run the script with the node name, server name, and root
directory for the server logs.

Argument Description

nodeName Specifies the name of the node of interest.

serverName Specifies the name of the server of interest.

serverLogRoot Specifies the root directory for the server logs.

otherAttributeList Optionally specifies additional attributes using the following name and value pair format:
[[“formatWrites”, “true”], [“messageFormatKind”, “BASIC”], [“rolloverType”, “BOTH"]]

Syntax

AdminServerManagement.configureServerlLogs (nodeName, serverName,
serverlLogRoot, otherAttributelist)

Example usage

AdminServerManagement.configureServerlLogs (myNode, myServer, /[temp/mylog,
[["formatWrites", "true"], ["messageFormatKind", "BASIC"], ["rolloverType", "BOTH"]])

configureTraceService

This script configures trace settings for the application server. Configure trace to obtain detailed
information about running the application server.

Table 74. configure TraceService argument descriptions. Run the script with the node name, server name, trace
specification, and output type arguments.

Argument Description

nodeName Specifies the name of the node of interest.

serverName Specifies the name of the server of interest.

startupTraceSpecification Specifies the trace specification to enable for the component of interest. For example, the

com.ibm.ws.webservices.trace.MessageTrace=all trace specification traces the contents of a
SOAP message, including the binary attachment data.

traceOutputType Specifies where trace output should be written. The trace output can be written directly to an
output file, or stored in memory.

otherAttributeList Optionally specifies additional attributes for the trace service using the following name and
value pair format: [[“enable”, “true”], [“traceFormat”, “LOG_ANALYZER"]]

Syntax

AdminServerManagement.configureTraceService(nodeName, serverName,
traceString, outputType, otherAttributelist)

Example usage

AdminServerManagement.configureTraceService (myNode, myServer, "com.ibm.ws.management.*=all=enabled",
SPECIFIED_FILE, [["enable", "true"], ["traceFormat", "LOG_ANALYZER"]])

108 Scripting the application serving environment

Server configuration scripts

The scripting library provides multiple script procedures to automate your application server configurations.
Use the application server scripts to create application servers, web servers, and generic servers. You can
run each script individually, or combine procedures to create custom automation scripts for your
environment.

All server management script procedures are located in the app_server_root/scriptLibraries/servers/
V70 directory. If you do not want to set an argument, specify an empty string as the value for the
argument, as the following syntax demonstrates: "".

Use the following script procedures to administer your application server:
. “createAppIicationServer”|

« [‘createAppServerTemplate’|

» |‘createGenericServer’ on page 110|

« [‘createWebServer” on page 110

[“deleteServer” on page 111|

[‘deleteServerTemplate” on page 111|

createApplicationServer

This script creates a new application server in your environment. During the installation process, the
product creates a default application server, named serverl. Most installations require several application
servers to handle the application serving needs of their production environment.

Table 75. createApplicationServer argument descriptions. Run the script with the node, server, and template names.

Argument Description

nodeName Specifies the name of the node on which to create the application server.
serverName Specifies the name of the server to create.

templateName Optionally specifies the template to use to create the application server.
Syntax

AdminServerManagement.createApplicationServer(nodeName, serverName, templateName)

Example usage

AdminServerManagement.createApplicationServer("myNode", "myServer", "default")
createAppServerTemplate

This script creates a new application server template in your configuration. A server template is used to
define the configuration settings for a new application server. When you create a new application server,
you either select the default server template or a template you previously created, that is based on
another, already existing application server. The default template is used if you do not specify a different
template when you create the server.

Table 76. createAppServerTemplate argument descriptions. Run the script with the node name, server name, and
new template name arguments.

Argument Description

nodeName Specifies the node that corresponds to the server from which to base the template.
serverName Specifies the name of the server from which to base the template.
newTemplateName Specifies the name of the new template to create.

Syntax

AdminServerManagement.createAppServerTemplate (nodeName, serverName, newTemplateName)

Chapter 11. Using the script library to automate the application serving environment using wsadmin scripting 109

Example usage
AdminServerManagement.createAppServerTemplate("myNode", "myServer", "myNewTemplate")

createGenericServer

This script configures a new generic server in the configuration. A generic server is a server that the
application server manages, but does not supply. If you do not want to set an argument, specify an empty
string as the value for the argument, as the following syntax demonstrates: "".

Table 77. createGenericServer argument description. Run the script with the node name, new server name,
template name, start command path and arguments, working directory, and stop command path and arguments.

Argument Description

nodeName Specifies the name of the node on which to create the server.

newServerName Specifies the name of the server to create.

templateName Optionally specifies the template to use to create the server.

startCmdPath Optionally specifies the path to the command that will run when this generic server is started.

startCmdArguments Optionally specifies the arguments to pass to the startCommand when the generic server is
started.

workingDirectory Optionally specifies the working directory for the generic server.

stopCmdPath Optionally specifies the path to the command that will run when this generic server is
stopped.

stopCmdArguments Optionally specifies the arguments to pass to the stopCommand parameter when the generic
server is stopped.

Syntax

AdminServerManagement.createGenericServer(nodeName, newServerName, templateName,
startCmdPath, startCmdArguments, workingDirectory, stopCmdPath, stopCmdArguments)

Example usage

| IBMi |

AdminServerManagement.createGenericServer("myNode", "myServer",
lldefau'ltll’ IIII’ IIII’ Il/tempII, IIII, IIII)

createWebServer

This script configures a web server in your configuration. An application server works with a web server to
handle requests for dynamic content, such as servlets, from web applications. A web server uses Web
Server Plug-ins to establish and maintain persistent HTTP and HTTPS connections with an application
server. If you do not want to set an argument, specify an empty string as the value for the argument, as
the following syntax demonstrates: "".

Table 78. createWebServer argument descriptions. Run the script with the node name, new server name, port
number, server install root, plug-in installation root, configuration file path, Windows operating system service name,
error log path, access log path, and web protocol type.

Argument Description

nodeName Specifies the name of the node on which the web server is defined.

newServerName Specifies the name of the web server to create.

port Optionally specifies the port from which to ping the status of the web server.
serverlnstallRoot Optionally specifies the fully qualified path where the web server is installed. This field is

required if you are using IBM HTTP Server. For all other web servers, this field is not
required. If you enable any administrative function for non-IBM HTTP Server web servers,
the installation path is necessary.

plugininstallPath Specifies the installation path for the Web server plug-in.

110 Scripting the application serving environment

Table 78. createWebServer argument descriptions (continued). Run the script with the node name, new server
name, port number, server install root, plug-in installation root, configuration file path, Windows operating system
service name, error log path, access log path, and web protocol type.

Argument Description

configFilePath Specifies the configuration file for your Web server. Specify the file and not just the directory
of the file. The application server generates the plugin-cfg.xml file by default. The
configuration file identifies applications, application servers, clusters, and HTTP ports for the
web server. The web server uses the file to access deployed applications on various
application servers.

errorLogPath Specifies the location of the error log file.
accesslLogPath Specifies the location of the access log file.
webProtocol Specifies the protocol to use for web server communications. Use the HTTPS protocol to

securely communicate with the web server. The default is HTTP.

Syntax

AdminServerManagement.createWebServer(nodeName, newServerName, port,
serverInstallRoot, plugininstallPath, configFilePath,
errorlogPath, accesslLogPath, webProtocol)

Example usage
AdminServerManagement.createWebServer("myNode", "myWebServer'", ", "t ww_owwlowwsown o town oy

deleteServer

This script removes a server from the application server configuration.

Table 79. deleteServer argument descriptions. Run the script with the node and server names.

Argument Description

nodeName Specifies the name of the node of interest.
serverName Specifies the name of the server to delete.
Syntax

AdminServerManagement.deleteServer(nodeName, serverName)

Example usage
AdminServerManagement.deleteServer("myNode", "myServer")

deleteServerTemplate

This script deletes a server template from your configuration.

Table 80. deleteServerTemplate argument description. Run the script with the template name.

Argument Description
templateName Specifies the name of the template to delete.
Syntax

AdminServerManagement.deleteServerTemplate(templateName)

Example usage
AdminServerManagement.deleteServerTemplate("newServerTemplate")

Server query scripts

The scripting library provides multiple script procedures to automate your server configurations. This topic
provides usage information for scripts that query your application server configuration. You can run each
script individually, or combine procedures to create custom automation scripts for your environment.

Chapter 11. Using the script library to automate the application serving environment using wsadmin scripting 111

All server management script procedures are located in the app_server_root/scriptLibraries/servers/
V70 directory. Use the following script procedures to query your application server configuration:

* [‘checklIfServerExists’|
[‘checklfServerTemplateExists ”|

. “‘getJavaHome”|
 [‘getServerProcessType” on page 113|
* |“getServerPID” on page 113|

* |“help” on page 113
* |“listdVMProperties” on page 114|

+ |listServers” on page 114

* |“listServerTemplates” on page 114{

« [|listServerTypes” on page 115

* |“queryMBeans” on page 115|

+ [“showServerInfo” on page 115|
[“viewProductinformation” on page 116

checklfServerExists

This script determines whether the server of interest exists in your configuration. To run the script, specify
the node name and server name arguments, as defined in the following table:

Table 81. checklfServerExists argument descriptions. Run the script to see if a server exists.

Argument Description

nodeName Specifies the name of the node of interest.
serverName Specifies the name of the server of interest.
Syntax

AdminServerManagement.checkIfServerExists(nodeName, serverName)

Example usage

AdminServerManagement.checkIfServerExists("myNode", "myServer")
checklfServerTemplateExists

This script determines whether the server template of interest exists in your configuration. To run the
script, specify the template name arguments, as defined in the following table:

Table 82. checklIfServerTemplateExists argument descriptions. Run the script to see if a template exists.

Argument Description

templateName Specifies the name of the server template of interest.

Syntax
AdminServerManagement.checkIfServerTemplateExists (templateName)

Example usage

AdminServerManagement.checkIfServerTemplateExists("newServer")
getJavaHome

This script displays the Java home value. To run the script, specify the node name and server name
arguments, as defined in the following table:

112 Scripting the application serving environment

Table 83. getJavaHome argument descriptions. Run the script to see the Java home value.

Argument Description

nodeName Specifies the name of the node of interest.
serverName Specifies the name of the server of interest.
Syntax

AdminServerManagement.getJavaHome (nodeName, serverName)

Example usage
AdminServerManagement.getJavaHome ("myNode", "myServer")

getServerProcessType

This script displays the type of server process for a specific server. To run the script, specify the node and
server name arguments for the server of interest, as defined in the following table:

Table 84. getServerProcessType argument descriptions. Run the script to see the type of server process.

Argument Description

nodeName Specifies the name of the node of interest.
serverName Specifies the name of the server of interest.
Syntax

AdminServerManagement.getServerProcessType(nodeName, serverName)

Example usage
AdminServerManagement.getServerProcessType("myNode", "serverl")

getServerPID

This script displays the running server process ID for a specific target. To run the script, specify the node
and server name arguments for the server of interest, as defined in the following table:

Table 85. getServerPID argument descriptions. Run the script to see a running server process ID.

Argument Description

nodeName Specifies the name of the node of interest.
serverName Specifies the name of the server of interest.
Syntax

AdminServerManagement.getServerPID(nodeName, serverName)

Example usage
AdminServerManagement.getServerPID("myNode", "serverl")

help

This script displays the script procedures that the AdminServerManagement script library supports. To
display detailed help for a specific script, specify the name of the script of interest, as defined in the
following table:

Table 86. help argument description. Run the script to see help.

Argument Description

scriptName Specifies the name of the script of interest.

Chapter 11. Using the script library to automate the application serving environment using wsadmin scripting 113

Syntax

AdminServerManagement.help(scriptName)

Example usage

AdminServerManagement.help("getServerProcessType")
listdVMProperties

This script displays the properties that are associated with your Java virtual machine (JVM) configuration.
To run the script, specify the node name, server name, and optionally the JVM property of interest, as
defined in the following table:

Table 87. listJVMProperties argument descriptions. Run the script to see JVM properties.

Argument Description

nodeName Optionally specifies the name of the node of interest.
serverName Optionally specifies the name of the server of interest.
JVMProperty Optionally specifies the JVM property to query.
Syntax

AdminServerManagement.1istJVMProperties (nodeName, serverName, JVMProperty)

Example usage

AdminServerManagement.listJVMProperties("myNode", "myServer", "")
listServers

This script displays the servers that exist in your configuration. You can optionally specify the node name
or server type to query for a specific scope, as defined in the following table:

Table 88. listServers argument descriptions. Run the script to see what servers exist.

Argument Description

serverType Specifies the name of the server to query.
nodeName Specifies the name of the node to query.
Syntax

AdminServerManagement.listServers(serverType, nodeName)

Example usage
AdminServerManagement.listServers("APPLICATION_SERVER", "myNode")

listServerTemplates

This script displays the server templates in your configuration. To run the script, specify the template
version, server type, and template name, as defined in the following table:

Table 89. listServerTemplates argument descriptions. Run the script to see what templates exists.

Argument Description

templateVersion Optionally specifies the version of the template of interest.

serverType Optionally specifies the type of server. Valid values include the GENERIC_SERVER, WEB_SERVER,
APPLICATION_SERVER , and PROXY_SERVER server types.

templateName Optionally specifies the name of the template of interest.

Syntax

AdminServerManagement.listServerTemplates(templateVersion, serverType, templateName)

114 Scripting the application serving environment

Example usage
AdminServerManagement.listServerTemplates("", "APPLICATION_SERVER", "default")

listServerTypes

This script displays the server types that are available on the node of interest. To run the script, specify the
node name, as defined in the following table:

Table 90. listServerTypes argument descriptions. Run the script to see the server types.

Argument Description
nodeName Optionally specifies the name of the node of interest.
Syntax

AdminServerManagement.listServerTypes (nodeName)

Example usage

AdminServerManagement.listServerTypes ("myNode")
queryMBeans

This script queries the application server for Managed Beans (MBeans). Enhance the operation of an
application server by defining command-line information for starting or initializing the application server
process. Process definition settings define runtime properties such as the program to run, arguments to
run the program, and the working directory.

Table 91. queryMBeans argument descriptions. Run the script with the node name and server name arguments.

Argument Description

nodeName Specifies the name of the node of interest.
serverName Specifies the name of the server of interest.
mbeanType Specifies the type of MBean to query.
Syntax

AdminServerManagement.queryMBeans (nodeName, serverName, mbeanType)

Example usage

AdminServerManagement.queryMBeans ("myNode", "serverl", "Server")
showServerinfo

This script displays server configuration properties for the server of interest. The script displays the cell
name, server type, product version, node name, and server name.

Table 92. showServerinfo argument descriptions. Run the script with the node name and server name arguments.

Argument Description

nodeName Specifies the name of the node of interest.
serverName Specifies the name of the server of interest.
Syntax

AdminServerManagement.showServerInfo(nodeName, serverName)

Example usage

AdminServerManagement.showServerInfo("myNode", "myServer")

Chapter 11. Using the script library to automate the application serving environment using wsadmin scripting 115

viewProductinformation
This script displays the application server product version.

Syntax

AdminServerManagement.viewProductInformation()

Example usage

AdminServerManagement.viewProductInformation()

Server administration scripts

The scripting library provides multiple script procedures to automate your application server configurations.
Use the application server scripts to delete, start, and stop servers. You can run each script individually or
combine procedures to create custom automation scripts for your environment.

All server management script procedures are located in the app_server_root/scriptLibraries/servers/
V85 directory.

Use the following script procedures to administer your application server:
+ [“startAllServers’]|

+ [“startSingleServer’]|

+ [“stopAllServers” on page 117|

+ [“stopSingleServer” on page 117

startAllServers

This script starts all servers on a node in your configuration.

Table 93. startAllServers argument description. Run the script with the node name.

Argument Description
nodeName Specifies the name of the node of interest.
Syntax

AdminServerManagement.startAl1Servers (nodeName)

Example usage

AdminServerManagement.startAl1Servers("myNode")
startSingleServer

This script starts a specific server in your configuration.

Table 94. startSingleServer argument descriptions. Run the script with the node name and server name.

Argument Description

nodeName Specifies the name of the node of interest.
serverName Specifies the name of the server to start.
Syntax

AdminServerManagement.startSingleServer(nodeName, serverName)

Example usage

AdminServerManagement.startSingleServer("myNode", "myServer")

116 Scripting the application serving environment

stopAllServers

This script stops all servers on a node in your configuration.

Table 95. stopAllServers argument description. Run the script with the node name.

Argument Description
nodeName Specifies the name of the node of interest.
Syntax

AdminServerManagement.stopAl1Servers (nodeName)

Example usage

AdminServerManagement.stopAl1Servers("myNode")
stopSingleServer

This script stops a single server in your configuration.

Table 96. stopSingleServer argument descriptions. Run the script with the node name and server name.

Argument Description

nodeName Specifies the name of the node of interest.
serverName Specifies the name of the server of interest.
Syntax

AdminServerManagement.stopSingleServer(nodeName, serverName, classname, displayname, classpath, otherAttributelist)

Example usage

AdminServerManagement.stopSingleServer("myNode", "myServer")

Automating administrative architecture setup using wsadmin scripting
library

The scripting library provides Jython script procedures to assist in automating your environment. Use the
server, node, and cluster management scripts to configure servers, nodes, node groups, and clusters in
your application server environment.

Before you begin
Before you can complete this task, you must install an application server in your environment.
About this task

The scripting library provides a set of procedures to automate the most common application server
administration functions. There are three ways to use the Jython script library.

* Run scripts from the Jython script library in interactive mode with the wsadmin tool. You can launch the
wsadmin tool, and run individual scripts that are included in the script library using the following syntax:
wsadmin>AdminServerManagement.createApplicationServer("myNode", "myServer", "default")

* Use a text editor to combine several scripts from the Jython script library, as the following sample
displays:

#
z My Custom Jython Script - file.py

AdminServerManagement.createApplicationServer("myNode", "Serverl", "default")
AdminServerManagement.createApplicationServer("myNode", "Server2", "default")

Chapter 11. Using the script library to automate the application serving environment using wsadmin scripting 117

Use one of them as the first member of a cluster
AdminClusterManagement.createClusterWithFirstMember("myCluster", "APPLICATION_ SERVER",
"myNode", "Serverl")

Add a second member to the cluster
AdminClusterManagement.createClusterMember("myCluster", "myNode", "Server3")

Install an application
AdminApplication.installAppWithClusterOption("DefaultApplication”,
"..\installableApps\DefaultApplication.ear", "myCluster")

Start all servers and applications on the node
AdminServerManagement.startAl1Servers ("myNode")

Save the custom script and run it from the command line, as the following syntax demonstrates:
bin>wsadmin -language jython -f path/to/your/jython/file.py

* Use the Jython scripting library code as sample syntax to write custom scripts. Each script example in
the script library demonstrates best practices for writing wsadmin scripts. The script library code is
located in the [app_server rool/scriptLibraries directory. Within this directory, the scripts are
organized into subdirectories according to functionality, and further organized by version. For example,
the app_server_root/scriptLibraries/application/V70 subdirectory contains procedures that perform
application management tasks that are applicable to Version 7.0 and later of the product.

Use the scripts in the following directories to configure your administrative architecture:

» The server and cluster management procedures are located in the app_server_root/scriptLibraries/
servers/V70 subdirectory.

» The node and node group management procedures are located in the app_server_root/
scriptLibraries/system/V70 subdirectory.

Each script from the directory automatically loads when you launch the wsadmin tool. To automatically
load your own Jython scripts (*.py) when the wsadmin tool starts, create a new subdirectory, and save
existing automation scripts in the app_server_root/scriptLibraries directory.

Note: To create custom scripts using the scripting library procedures, save the modified scripts to a new
subdirectory to avoid overwriting the library. Do not edit the script procedures in the scripting library.

This topic provides one sample combination of procedures. Use the following steps to create a node group
and add three nodes to the group:

Procedure
1. Optional: Launch the wsadmin tool.

Use this step to launch the wsadmin tool and connect to a server, job manager, or administrative agent
profile, or run the tool in local mode. If you launch the wsadmin tool, use the interactive mode
examples in this topic to run scripts.

* Enter the following command from the bin directory to launch the wsadmin tool and connect to a
server:

wsadmin -lang jython
» Enter the following command from the bin directory to launch the wsadmin tool in local mode using
the Jython scripting language:
wsadmin -conntype none -lang jython
When the wsadmin tool launches, the system loads all scripts from the scripting library.
2. Display the nodes in your environment.

Run the listNodes script procedure from the AdminNodeManagement script library, as the following
example demonstrates:

bin>wsadmin -lang jython -c "AdminNodeManagement.listNodes()"

You can also use interactive mode to run the script procedure, as the following example demonstrates:

118 Scripting the application serving environment

wsadmin>AdminNodeManagement.1istNodes ()
For this example, the command returns the following output:

Nodel
Node2
Node3

3. Create a node group.
Run the createNodeGroup script procedure from the AdminNodeGroupManagement script library,
specifying the name to assign to the new node group, as the following example demonstrates:
bin>wsadmin -lang jython -c "AdminNodeGroupManagement.createNodeGroup ("NodeGroupl")"
You can also use interactive mode to run the script procedure, as the following example demonstrates:
wsadmin>AdminNodeGroupManagement.createNodeGroup ("myNodeGroup")

4. Add nodes to the node group.
Run the addNodeGroupMember script procedure from the AdminNodeGroupManagement script library

to add the Nodel, Node2, and Node3 nodes to the NodeGroupl node group, specifying the node name
and node group name, as the following examples demonstrate:

wsadmin -lang jython -c "AdminNodeGroupManagement.addNodeGroupMember("Nodel", "NodeGroupl")"
wsadmin -lang jython -c "AdminNodeGroupManagement.addNodeGroupMember("Node2", "NodeGroupl")"
wsadmin -lang jython -c "AdminNodeGroupManagement.addNodeGroupMember("Node3", "NodeGroupl")"

You can also use interactive mode to run the script procedure, as the following example demonstrates:

wsadmin>AdminNodeGroupManagement.addNodeGroupMember("Nodel", "NodeGroupl")
wsadmin>AdminNodeGroupManagement .addNodeGroupMember ("Node2", "NodeGroupl")
wsadmin>AdminNodeGroupManagement.addNodeGroupMember ("Node3", "NodeGroupl")

Results

The wsadmin script libraries return the same output as the associated wsadmin commands. For example,
the AdminServerManagement.listServers() script returns a list of available servers. The
AdminClusterManagement.checklfClusterExists() script returns a value of true if the cluster exists, or
false if the cluster does not exist. If the command does not return the expected output, the script libraries
return a 1 value when the script successfully runs. If the script fails, the script libraries return a -1 value
and an error message with the exception.

By default, the system disables failonerror option. To enable this option, specify true as the last argument
for the script procedure, as the following example displays:

wsadmin>AdminApplication.startApplicationOnCluster("myApplication”,"myCluster","true")
What to do next

Create custom scripts to automate your environment by combining script procedures from the scripting
library. Save custom scripts to a new subdirectory of the app_server_root/scriptLibraries directory.

Automating application configurations using wsadmin scripting

The scripting library provides Jython script procedures to assist in automating your environment. Use the
application management scripts to install, uninstall, export, start, stop, and manage applications in your
environment.

About this task

The scripting library provides a set of procedures to automate the most common application server
administration functions. There are three ways to use the Jython script library.

* Run scripts from the Jython script library in interactive mode with the wsadmin tool. You can launch the
wsadmin tool, and run individual scripts that are included in the script library using the following syntax:

wsadmin>AdminServerManagement.createApplicationServer("myNode", "myServer", "default")

Chapter 11. Using the script library to automate the application serving environment using wsadmin scripting 119

» Use a text editor to combine several scripts from the Jython script library, as the following sample
displays:
#
My Custom Jython Script - file.py
#

AdminServerManagement.createApplicationServer("myNode", "Serverl", "default")
AdminServerManagement.createApplicationServer("myNode", "Server2", "default")

Use one of them as the first member of a cluster
AdminClusterManagement.createClusterWithFirstMember("myCluster", "APPLICATION_ SERVER",
"myNode", "Serverl")

Add a second member to the cluster
AdminClusterManagement.createClusterMember("myCluster", "myNode", "Server3")

Install an application
AdminApplication.installAppWithClusterOption("DefaultApplication",
"..\installableApps\DefaultApplication.ear", "myCluster")

Start all servers and applications on the node
AdminServerManagement.startAl1Servers ("myNode")

Save the custom script and run it from the command line, as the following syntax demonstrates:
bin>wsadmin -language jython -f path/to/your/jython/file.py

» Use the Jython scripting library code as sample syntax to write custom scripts. Each script example in
the script library demonstrates best practices for writing wsadmin scripts. The script library code is
located in the |app_server_roof/scriptLibraries directory. Within this directory, the scripts are
organized into subdirectories according to functionality, and further organized by version. For example,
the app_server_root/scriptLibraries/application/V70 subdirectory contains procedures that perform
application management tasks that are applicable to Version 7.0 and later of the product.

The application management procedures in scripting library are located in the app_server_root/
scriptLibraries/application/V70 subdirectory. Each script from the directory automatically loads when
you launch the wsadmin tool. To automatically load your own Jython scripts (*.py) when the wsadmin tool
starts, create a new subdirectory and save existing automation scripts under the app_server_root/
scriptLibraries directory.

Note: To create custom scripts using the scripting library procedures, save the modified scripts to a new
subdirectory to avoid overwriting the library. Do not edit the script procedures in the scripting library.

You can use the AdminApplication.py scripts to perform multiple combinations of administration functions.
This topic provides one sample combination of procedures. Use the following steps to use the scripting
library to install an application on a cluster and start the application:

Procedure
1. Optional: Launch the wsadmin tool.

Use this step to launch the wsadmin tool and connect to a server, or run the tool in local mode. If you
launch the wsadmin tool, use the interactive mode examples in this topic to run scripts.

» Enter the following command from the bin directory to launch the wsadmin tool and connect to a
server:
wsadmin -Tang jython

» Enter the following command from the bin directory to launch the wsadmin tool in local mode and
using the Jython scripting language:
wsadmin -conntype none -lang jython

When the wsadmin tool launches, the system loads all scripts from the scripting library.

2. Create a cluster.

Run the createClusterWithoutMember script procedure from the AdminClusterManagement script
library, and specify the required arguments, as the following example demonstrates:

120 Scripting the application serving environment

bin>wsadmin -lang jython -c "AdminClusterManagement.createClusterWithoutMember('myCluster')"
You can also use interactive mode to run the script procedure, as the following example demonstrates:
wsadmin>AdminClusterManagement.createClusterWithoutMember("myCluster")

3. Create a cluster member for the new cluster.

Run the createClusterMember script procedure from the AdminClusterManagement script library, and
specify the required arguments, as the following example demonstrates:

bin>wsadmin -lang jython -c "AdminClusterManagement.createClusterMember('myCluster', 'myNode, 'myNewMember')"
You can also use interactive mode to run the script procedure, as the following example demonstrates:
wsadmin>AdminClusterManagement.createClusterWithoutMember("myCluster", "myNode", "myNewMember")

4. Install the application on the newly created cluster.

Run the installAppWithClusterOption script procedure from the AdminApplication script library, and
specify the required arguments, as the following example demonstrates:

bin>wsadmin -Tang jython -c "AdminApplication.installAppWithClusterOption('myApplication', 'myApplicationEar.ear', 'myCluster')"
You can also use interactive mode to run the script procedure, as the following example demonstrates:
wsadmin>AdminApplication.installAppWithClusterOption("myApplication", "myApplicationEar.ear", "myCluster")

5. Start the application on the cluster.

Run the startApplicationOnCluster script procedure from the AdminApplication script library and specify
the required arguments, as the following example displays:

bin>wsadmin -lang jython -c "AdminApplication.startApplicationOnCluster('myApplication', 'myCluster')"
You can also use interactive mode to run the script procedure, as the following example displays:

wsadmin>AdminApplication.startApplicationOnCluster("myApplication", "myCluster")
Results

The wsadmin script libraries return the same output as the associated wsadmin commands. For example,
the AdminServerManagement.listServers() script returns a list of available servers. The
AdminClusterManagement.checklfClusterExists() script returns a value of true if the cluster exists, or
false if the cluster does not exist. If the command does not return the expected output, the script libraries
return a 1 value when the script successfully runs. If the script fails, the script libraries return a -1 value
and an error message with the exception.

By default, the system disables failonerror option. To enable this option, specify true as the last argument
for the script procedure, as the following example displays:

wsadmin>AdminApplication.startApplicationOnCluster("myApplication”,"myCluster","true")
What to do next

Create custom scripts to automate your environment by combining script procedures from the scripting
library. Save custom scripts to a new subdirectory of the app_server_root/scriptLibraries directory.

Application installation and uninstallation scripts

The scripting library provides multiple script procedures to automate your application configurations. This
topic provides usage information for scripts that install applications. You can run each script individually or
combine procedures to create custom automation scripts for your environment.

Each application management script procedure is located in the app_server_root/scriptLibraries/
application/V70 directory. Use the following script procedures to install and uninstall applications:

* |‘installAppWithDefaultBindingOption” on page 122|

» [‘installAppWithNodeAndServerOptions” on page 122
* |“installAppWithClusterOption” on page 123
* |“installAppModulesToSameServerWithMapModulesToServersOption” on page 123|

Chapter 11. Using the script library to automate the application serving environment using wsadmin scripting 121

[“installAppModulesToDiffServersWithMapModulesToServersOption” on page 124
[“installAppModulesToSameServerWithPatternMatching” on page 124
[“installAppModulesToDiffServersWithPatternMatching” on page 125

* [“installAppModulesToMultiServersWithPatternMatching” on page 125

* [‘installAppWithTargetOption” on page 126|

« [“installAppWithDeployEjbOptions” on page 126|

* |“installAppWithVariousTasksAndNonTasksOptions” on page 127|

* |“installWarFile” on page 127|

* |“uninstallApplication” on page 128|

installAppWithDefaultBindingOption
This script installs an application using the -usedefaultbindings option.

To run the script, specify the application name, enterprise archive (EAR) file, data source Java Naming
and Directory Interface (JNDI) name, data source user name, data source password, connection factory,
Enterprise JavaBeans prefix, and virtual host name arguments, as defined in the following table:

Table 97. installAppWithDefaultBindingOption argument descriptions. Run the script with argument values.

Argument Description

appName Specifies the name of the application to install.
earFile Specifies the EAR file to deploy.

nodeName Specifies the name of the target node.

serverName Specifies the name of the target server.
dsJndiName Specifies the JNDI name of the data source to use.
dsUserName Specifies the user name for the data source.
dsPassword Specifies the password for the data source.
connFactory Specifies the name of the connection factory to use.
EJBprefix Specifies the Enterprise JavaBeans (EJB) prefix to use.
virtualHostName Specifies the virtual host for the application to install.
Syntax

AdminAppTlication.installAppWithDefaultBindingOption(appName, earFile,
nodeName, serverName, dsJdndiName, dsUserName,
dsPassword, connFactory, EJBprefix, virtualHostName)

Example usage

AdminApplication.installAppWithDefaultBindingOption("myApp", "/ears/DefaultApplication.ear",
"myNode", "myServer", "myJdndi", "userl", "password", "myCf", "myEjb", "myVH")

installAppWithNodeAndServerOptions
This script installs an application using the -node and -server options.

To run the script, specify the application name, EAR file, node name, and server name arguments, as
defined in the following table:

Table 98. installAppWithNodeAndServerOptions argument descriptions. Run the script with argument values.

Argument Description

appName Specifies the name of the application to install.

earFile Specifies the EAR file to deploy.

122 Scripting the application serving environment

Table 98. installAppWithNodeAndServerOptions argument descriptions (continued). Run the script with argument

values.

Argument Description

nodeName Specifies the name of the node of interest.
serverName Specifies the name of the application server of interest.
Syntax

AdminAppTlication.installAppWithNodeAndServerOptions (appName, earFile,

nodeName, serverName)

Example usage

AdminApplication.installAppWithNodeAndServerOptions ("myApp", "/ears/DefaultApplication.ear",

"myNode", "myServer")

installAppWithClusterOption

This script installs an application using the -cluster option.

To run the script, specify the application name, EAR file, and cluster name arguments, as defined in the

following table:

Table 99. installAppWithClusterOption argument descriptions. Run the script with argument values.

Argument Description

appName Specifies the name of the application to install.
earFile Specifies the EAR file to deploy.

clusterName Specifies the name of the cluster of interest.
Syntax

AdminApplication.installAppWithClusterOption(appName, earFile, clusterName)

Example usage

AdminAppTlication.installAppWithClusterOption("myApp", "/ears/DefaultApplication.ear", "myCluster")
installAppModulesToSameServerWithMapModulesToServersOption
This script deploys application modules to the same server using the -MapModulesToServers option.

To run the script, specify the application name, EAR file, node name, and server name arguments, as

defined in the following table:

Table 100. installAppModulesToSameServerWithMapModules ToServersOption argument descriptions. Run the script

with argument values.

Argument Description

appName Specifies the name of the application to install.

earFile Specifies the EAR file to deploy.

nodeName Specifies the name of the node of interest.
serverName Specifies the name of the application server of interest.
Syntax

Chapter 11. Using the script library to automate the application serving environment using wsadmin scripting

123

AdminApplication.installAppModulesToSameServerWithMapModulesToServersOption(appName,
earfile, nodeName, serverName)

Example usage

AdminApplication.installAppModulesToSameServerWithMapModulesToServersOption("myApp",
"/ears/DefaultApplication.ear", "myNode", "myServer")

installAppModulesToDiffServersWithMapModulesToServersOption

This script deploys application modules to different servers using the -MapModulesToServers option. Use
this script to install application modules to one or two servers. To install to additional servers, create a
custom script based on the syntax in the AdminApplication.py file, or run the script multiple times.

To run the script, specify the application name, EAR file, node name, and both server name arguments, as
defined in the following table:

Table 101. installAppModulesToDiffServersWithMapModulesToServersOption argument descriptions. Run the script
with argument values.

Argument Description

appName Specifies the name of the application to install.

earFile Specifies the EAR file to deploy.

nodeName Specifies the name of the node of interest.

serverName1 Specifies the name of the application server to which the application is deployed.
serverName2 Specifies the name of an additional application server to which the application is deployed.
Syntax

AdminApplication.installAppModulesToDiffServersWithMapModulesToServersOption(appName,
earFile, nodeName, serverNamel, serverName2)

Example usage

AdminApplication.installAppModulesToDiffServersWithMapModulesToServersOption("myApp",
"/ears/DefaultApplication.ear", "myCell", "myNode", "myServerl", "myServer2")

installAppModulesToSameServerWithPatternMatching
This script deploys application modules with the -MapModulesToServers pattern matching option.

To run the script, specify the application name, EAR file, node name, and server name arguments, as
defined in the following table:

Table 102. installAppModulesToSameServerWithPatternMatching argument descriptions. Run the script with
argument values.

Argument Description

appName Specifies the name of the application to install.

earFile Specifies the EAR file to deploy.

nodeName Specifies the name of the node of interest.
serverName Specifies the name of the application server of interest.
Syntax

AdminApplication.installAppModulesToSameServerWithPatternMatching(appName,
earFile, nodeName, serverName)

124 Scripting the application serving environment

Example usage

AdminApplication.installAppModulesToSameServerUingPatternMatching("myApp",
"/ears/DefaultApplication.ear", "myNode", "myServer")

installAppModulesToDiffServersWithPatternMatching

This script deploys application modules to different servers using the -MapModulesToServers pattern
matching option. Use this script to install application modules to one or two servers. To install to additional
servers, create a custom script based on the syntax in the AdminAppTlication.py file, or run the script
multiple times.

To run the script, specify the application name, EAR file, node name, and both server name arguments, as
defined in the following table:

Table 103. installAppModulesToDiffServersWithPatternMatching argument descriptions. Run the script with argument
values.

Argument Description

appName Specifies the name of the application to install.

earFile Specifies the EAR file to deploy.

nodeName Specifies the name of the node of interest.

serverName1 Specifies the name of the application server to which the application is deployed.
serverName2 Specifies the name of an additional application server to which the application is deployed.
Syntax

AdminApplication.installAppModulesToDiffServersWithPatternMatching(appName,
earFile, nodeName, serverNamel, serverName?2)

Example usage

AdminApplication.installAppModulesToDiffServersWithPatternMatching("myApp",
"/ears/DefaultApplication.ear", "myNode", "myServerl", "myServer2")

installAppModulesToMultiServersWithPatternMatching

This script deploys application modules to multiple servers using the -MapModulesToServers pattern
matching option. Use this script to install application modules to one or two servers. To install to additional
servers, create a custom script based on the syntax in the AdminApplication.py file, or run the script
multiple times.

To run the script, specify the application name, EAR file, node name, and each server name arguments,
as defined in the following table:

Table 104. installAppModulesToMultiServersWithPatternMatching argument descriptions. Run the script with
argument values.

Argument Description

appName Specifies the name of the application to install.

earFile Specifies the EAR file to deploy.

nodeName Specifies the name of the node of interest.

serverName1 Specifies the name of the application server to which the application is deployed.
serverName2 Specifies the name of an additional application server to which the application is deployed.
Syntax

Chapter 11. Using the script library to automate the application serving environment using wsadmin scripting 125

AdminApplication.installAppModulesToMultiServersWithPatternMatching(appName,
earFile, nodeName, serverNamel, serverName2)

Example usage

AdminApplication.installAppModulesToMultiServersWithPatternMatching("myApp",
"/ears/DefaultApplication.ear", "myCell", "myNode", "myServerl", "myServer2")

installAppWithTargetOption

This script deploys an application to multiple servers using the -target option. Use this script to install
application modules to one or two servers. To install to additional servers, create a custom script based on
the syntax in the AdminApplication.py file, or run the script multiple times.

To run the script, specify the application name, EAR file, node name, and each server name arguments,
as defined in the following table:

Table 105. installAppWithTargetOption argument descriptions. Run the script with argument values.

Argument Description

appName Specifies the name of the application to install.

earFile Specifies the EAR file to deploy.

nodeName Specifies the name of the node of interest.

serverName1 Specifies the name of the application server to which the application is deployed.
serverName2 Specifies the name of an additional application server to which the application is deployed.
Syntax

AdminApplication.installAppWithTargetOption(appName, earFile, nodeName,
serverNamel, serverName?2)

Example usage

AdminApplication.installAppWithTargetOption("myApp", "/ears/DefaultApplication.ear", "myNode",
"myServerl", "myServer2")

installAppWithDeployEjbOptions
This script deploys an application with the -deployejb option.

To run the script, specify the application name and EAR file arguments, as defined in the following table:

Table 106. installAppWithDeployEjbOptions argument descriptions. Run the script with argument values.

Argument Description

appName Specifies the name of the application to install.
earFile Specifies the EAR file to deploy.

nodeName Specifies the name of the target node.
serverName Specifies the name of the target server.
Syntax

AdminAppTlication.installAppWithDeployEjbOptions(appName, earfile,
nodeName , serverName)

Example usage

126 Scripting the application serving environment

AdminApplication.installAppWithDeployEjbOptions("myApp", "/ears/DefultApplication.ear",
"myNode", "myServer")

installAppWithVariousTasksAndNonTasksOptions
This script deploys an application with various tasks and non-tasks options.

To run the script, specify the application name and EAR file arguments, as defined in the following table:

Table 107. installAppWithVarious TasksAndNonTasksOptions argument descriptions. Run the script with argument
values.

Argument Description

appName Specifies the name of the application to install.
earFile Specifies the EAR file to deploy.

Syntax

AdminApplication.installAppWithVariousTasksAndNonTasksOptions (appName, earFile)

Example usage

AdminAppTlication.installAppWithVariousTasksAndNonTasksOptions ("myApp", "/ears/DefaultApplication.ear")

installWarFile

This script installs a web application archive (WAR) file. A web module is created by assembling servlets,
JavaServer Pages (JSP) files, and static content such as Hypertext Markup Language (HTML) pages into
a single deployable unit. Web modules are stored in web application archive (WAR) files, which are
standard Java archive files.

To run the script, specify the application name, WAR file, node name, server name, and context root
arguments, as defined in the following table:

Table 108. installWarFile argument descriptions. Run the script with argument values.

Argument Description

appName Specifies the name of the application to install.

warFile Specifies the WAR file to deploy.

nodeName Specifies the name of the node of interest.

serverName Specifies the name of the application server of interest.

contextRoot Specifies the context root of the web application. The context root is combined with the
defined servlet mapping (from the WAR file) to compose the full URL that users type to
access the servlet. For example, if the context root is /gettingstarted and the servlet
mapping is MySession, then the URL is http://host:port/gettingstarted/MySession.

Syntax

AdminApplication.installWarFile(appName, warFile,
nodeName, serverName, contextRoot)

Example usage

AdminApplication.installWarFile("myApp", "/binaries/DefaultWebApplication.war",
IlmyNodell’ Ilmyserverll’ II/II)

Chapter 11. Using the script library to automate the application serving environment using wsadmin scripting 127

uninstallApplication
This script uninstalls an application.

To run the script, specify the application name argument, as defined in the following table:

Table 109. uninstallApplication argument descriptions. Run the script with argument values.

Argument Description
appName Specifies the name of the application to uninstall.
Syntax

AdminApplication.uninstallApplication(appName)

Example usage
AdminAppTlication.uninstallApplication("myApp")

Application query scripts

The scripting library provides multiple script procedures to automate your application configurations. This
topic provides usage information for scripts that query your application configuration. You can run each
script individually or combine procedures to create custom automation scripts for your environment.

Each application management script procedure is located in the|app_server_rooz}’scriptLibraries/appIication/
V70 directory. Use the following script procedures to query application configurations:

» [‘checkIfAppExists’

+ |“getAppDeployedNodes’]

* |“getAppDeploymentTarget” on page 129|
* |“getTaskinfoForAnApp” on page 129|
 |“listApplications” on page 129
« [“listApplicationsWithTarget” on page 130|
[“listModuleslnAnApp” on page 130|

checklfAppExists
This script checks if the application is deployed on the application server.

To run the script, specify the application name argument, as defined in the following table:

Table 110. checklfAppExists argument description. Run the script to see if an application exists.

Argument Description
appName Specifies the name of the application of interest.
Syntax

AdminApplication.checkIfAppExists (appName)

Example usage
AdminApplication.checkIfAppExists("myApp")

getAppDeployedNodes
This script lists the nodes on which the application of interest is deployed.

To run the script, specify the application name argument, as defined in the following table:

128 Scripting the application serving environment

Table 111. getAppDeployedNodes argument description. Run the script to list the nodes to which an application is
deployed.

Argument Description
appName Specifies the name of the application of interest.
Syntax

AdminApplication.getAppDeployedNodes (appName)

Example usage
AdminApplication.getAppDeployedNodes ("myApp")

getAppDeploymentTarget
This script displays the application deployment target for the application of interest.

To run the script, specify the application name argument, as defined in the following table:

Table 112. getAppDeploymentTarget argument description. Run the script to see information about a deployment

target.

Argument Description

appName Specifies the name of the application of interest.
Syntax

AdminApplication.getAppDeploymentTarget (appName)

Example usage
AdminApplication.getAppDeploymentTarget ("myApp")

getTaskinfoForAnApp

This script displays task information for a specific application Enterprise Archive (EAR) file. The script

obtains information about the data that is needed for your application. You need to provide data for rows or

entries that are either missing information, or require an update.

To run the script, specify the EAR file and the task arguments, as defined in the following table:

Table 113. getTaskinfoForAnApp argument descriptions. Run the script to see information about an EAR file.

Argument Description

earFile Specifies the name of the EAR file of interest.
taskName Specifies the name of the task of interest.
Syntax

AdminApplication.getTaskInfoForAnApp (appName, taskName)

Example usage

AdminApplication.getTaskInfoForAnApp("/ears/DefaultApplication.ear", "MapWebModToVH")

listApplications

This script lists all deployed applications. The script does not require arguments.

Syntax

Chapter 11. Using the script library to automate the application serving environment using wsadmin scripting

129

AdminApplication.TistApplications()

Example usage
AdminApplication.listApplications()

listApplicationsWithTarget
This script lists all deployed applications for a specific target.

To run the script, specify the node name and server name arguments, as defined in the following table:

Table 114. listApplicationsWithTarget argument descriptions. Run the script to list deployed applications.

Argument Description

nodeName Specifies the name of the node of interest.
serverName Specifies the name of the server of interest.
Syntax

AdminApplication.TistApplicationsWithTarget(nodeName, serverName)

Example usage
AdminApplication.listApplicationsWithTarget ("myNode", "serverl")

listModulesinAnApp
This script lists each module in a deployed application.

To run the script, specify the application name and server name arguments, as defined in the following
table:

Table 115. listModulesinAnApp argument descriptions. Run the script to list modules in a deployed application.
Argument Description

appName Specifies the name of the application of interest.
serverName Specifies the name of the server of interest.
Syntax

AdminApplication.listModulesInAnApp (appName, serverName)

Example usage

AdminApplication.listModulesInAnApp("myApp", "myServer")

Application update scripts

The scripting library provides multiple script procedures to automate your application configurations. This
topic provides usage information for scripts that update applications. You can run each script individually or
combine procedures to create custom automation scripts for your environment.

Each application management script procedure is located in the app_server_root/scriptLibraries/
application/V70 directory. Use the following script procedures to update application configurations:

* [‘addSingleFileToAnAppWithUpdateCommand” on page 131|

. ‘“addSingIeModuIeFiIeToAnAppWithUpdateCommand” on page 131|
[<addUpdateSingleModuleFileToAnAppWithUpdateCommand” on page 132
[‘addPartialAppToAnAppWithUpdateCommand” on page 132
[“deleteSingleFileToAnAppWithUpdateCommand” on page 132]
[‘deleteSingleModuleFileToAnAppWithUpdateCommand” on page 133

130 Scripting the application serving environment

[‘deletePartialAppToAnAppWithUpdateCommand” on page 133]
[‘updateApplicationUsingDefaultMerge” on page 134
[‘updateApplicationWithUpdatelgnoreNewOption” on page 134

* [‘updateApplicationWithUpdatelgnoreOldOption” on page 134

+ [‘updateEntireAppToAnAppWithUpdateCommand ” on page 135|

* |“updatePartialAppToAnAppWithUpdateCommand” on page 135|

* |‘updateSingleFileToAnAppWithUpdateCommand” on page 136|
|“updateSingIeModuIeFiIeToAnAppWithUpdateCommand” on page 136|

addSingleFileToAnAppWithUpdateCommand
This script uses the update command to add a single file to a deployed application.

To run the script, specify the application name, file name, and the content uniform resource identifier (URI)
arguments, as defined in the following table:

Table 116. addSingleFile ToAnAppWithUpdateCommand argument descriptions. Run the script to add a file to a
deployed application.

Argument Description

appName Specifies the name of the application to update.

fileContent Specifies the name of the file to use to update the application.
contentURI Specifies the URI of the file content.

Syntax

AdminApplication.addSingleFileToAnAppWithUpdateCommand (appName, fileContent, contentURI)

Example usage

AdminApplication.addSingleFileToAnAppWithUpdateCommand ("myApp", "/sample.txt", "META-INFO/sample.txt")
addSingleModuleFileToAnAppWithUpdateCommand
This script uses the update command to add a single module file to a deployed application.

To run the script, specify the application name, file name, and content URI arguments, as defined in the
following table:

Table 117. addSingleModuleFile ToAnAppWithUpdateCommand argument descriptions. Run the script to add a
module file to a deployed application.

Argument Description

appName Specifies the name of the application to update.

fileContent Specifies the name of the file to use to update the application.
contentURI Specifies the URI of the file content.

Syntax

AdminApplication.addSingleModuleFileToAnAppWithUpdateCommand (appName, fileContent, contentURI)

Example usage

AdminApplication.addSingleModuleFileToAnAppWithUpdateCommand("myApp", "/Increment.jar", "Increment.jar")

Chapter 11. Using the script library to automate the application serving environment using wsadmin scripting 131

addUpdateSingleModuleFileToAnAppWithUpdateCommand
This script uses the update command to add and update a single module file for a deployed application.

To run the script, specify the application name, file name, content URI, and context root arguments, as
defined in the following table:

Table 118. addUpdateSingleModuleFile ToAnAppWithUpdateCommand argument descriptions. Run the script to
update a file in a deployed application.

Argument Description

appName Specifies the name of the application to update.

fileContent Specifies the name of the file to use to update the application.
contentURI Specifies the URI of the file content.

contextRoot Specifies the context root for web modules in the application.

Syntax

AdminApplication.addUpdateSingleModuleFileToAnAppWithUpdateCommand (appName, fileContent, contentURI, contextRoot)

Example usage

AdminApplication.addUpdateSingleModuleFileToAnAppWithUpdateCommand ("myApp",
"/DefaultWebApplication.war", "DefaultWebApplication.war",
"/webapp/defaultapp")

addPartialAppToAnAppWithUpdateCommand
This script uses the update command to add a partial application to a deployed application.

To run the script, specify the application name and file content arguments, as defined in the following
table:

Table 119. addPartialApp ToAnAppWithUpdateCommand argument descriptions. Run the script to update part of a

deployed application.

Argument Description

appName Specifies the name of the application to update.

fileContent Specifies the name of the file to use to update the application.
Syntax

AdminApplication.addPartialAppToAnAppWithUpdateCommand (appName, fileContent)

Example usage

AdminApplication.addPartialAppToAnAppWithUpdateCommand ("myApp", "/partialadd.zip")
deleteSingleFileToAnAppWithUpdateCommand
This script uses the update command to delete a single file from a deployed application.

To run the script, specify the application name, file name, and content URI arguments, as defined in the
following table:

132 Scripting the application serving environment

Table 120. deleteSingleFile ToAnAppWithUpdateCommand argument descriptions. Run the script to delete a file from
a deployed application.

Argument Description

appName Specifies the name of the application to update.

fileContent Specifies the name of the file to use to update the application.
contentURI Specifies the URI of the file content.

Syntax

AdminApplication.deleteSingleFileToAnAppWithUpdateCommand (appName, fileContent, contentURI)

Example usage

AdminApplication.deleteSingleFileToAnAppWithUpdateCommand ("myApp", "/sample.
txt", "META-INFO/sample.txt")

deleteSingleModuleFileToAnAppWithUpdateCommand
This script uses the update command to delete a single module file from a deployed application.

To run the script, specify the application name, file name, and content URI arguments, as defined in the
following table:

Table 121. deleteSingleModuleFile ToAnAppWithUpdateCommand argument descriptions. Run the script to delete a
module file from a deployed application.

Argument Description

appName Specifies the name of the application to update.

fileContent Specifies the name of the file to use to update the application.
contentURI Specifies the URI of the file content.

Syntax

AdminApplication.deleteSingleModuleFileToAnAppWithUpdateCommand (appName, fileContent, contentURI)

Example usage

AdminApplication.deleteSingleModuleFileToAnAppWithUpdateCommand ("myApp",
"/Increment.jar", "Increment.jar")

deletePartialAppToAnAppWithUpdateCommand
This script uses the update command to delete a partial application from a deployed application.

To run the script, specify the application name, file name, and the content URI arguments, as defined in
the following table:

Table 122. deletePartialApp ToAnAppWithUpdateCommand argument descriptions. Run the script to delete part of a

deployed application.

Argument Description

appName Specifies the name of the application to update.

fileContent Specifies the name of the file to use to update the application.
contentURI Specifies the URI of the file content.

Syntax

AdminApplication.deletePartialAppToAnAppWithUpdateCommand (appName, fileContent, contentURI)

Chapter 11. Using the script library to automate the application serving environment using wsadmin scripting 133

Example usage

AdminApplication.deletePartialAppToAnAppWithUpdateCommand ("myApp", "/part
ialdelete.zip", "partialdelete")

updateApplicationUsingDefaultMerge
This script updates an application using default merging.

To run the script, specify the application name and EAR file arguments, as defined in the following table:

Table 123. updateApplicationUsingDefaultMerge argument descriptions. Run the script to update a deployed

application.

Argument Description

appName Specifies the name of the application to update.

earFile Specifies the name of the file to use to update the application.
Syntax

AdminApplication.updateApplicationUsingDefaultMerge(appName, earFile)

Example usage

AdminApplication.updateApplicationUsingDefaultMerge ("myApp", "/ears/D
efaultApplication.ear")

updateApplicationWithUpdatelgnoreNewOption

This script updates an application using -update.ignore.new option. The system ignores the bindings from
the new version of the application.

To run the script, specify the application name and EAR file arguments, as defined in the following table:

Table 124. updateApplicationWithUpdatelgnoreNewOption argument descriptions. Run the script to update a

deployed application.

Argument Description

appName Specifies the name of the application to update.

earFile Specifies the name of the file to use to update the application.
Syntax

AdminApplication.updateApplicationWithUpdateIgnoreNewOption(appName, earFile)

Example usage

AdminApplication.updateApplicationWithUpdateIgnoreNewOption("myApp",
"c:/ears/DefaultApplication.ear")

updateApplicationWithUpdatelgnoreOldOption

This script updates an application using the -update.ignore.old option. The system ignores the bindings
from the installed version of the application.

To run the script, specify the application name and EAR file arguments, as defined in the following table:

134 Scripting the application serving environment

Table 125. updateApplicationWithUpdatelgnoreOIldOption argument descriptions. Run the script to update a

deployed application.
Argument Description
Specifies the name of the application to update.

appName

earFile Specifies the name of the file to use to update the application.

Syntax

AdminApplication.updateApplicationWithUpdateIgnore01dOption(appName, earFile)

Example usage

AdminApplication.updateApplicationWithUpdateIgnore01dOption("myApp",
"/ears/DefaultApplication.ear")

updateEntireAppToAnAppWithUpdateCommand
This script uses the update command to update an entire deployed application.

To run the script, specify the application name and EAR file arguments, as defined in the following table:

Table 126. updateEntireApp ToAnAppWithUpdateCommand argument descriptions. Run the script to update a

deployed application.

Argument Description

appName Specifies the name of the application to update.

earFile Specifies the name of the file to use to update the application.
Syntax

AdminApplication.updateEntireAppToAnAppWithUpdateCommand (appName, earfile)

Example usage

AdminApplication.updateEntireAppToAnAppWithUpdateCommand ("myApp", "/new.ear")

updatePartialAppToAnAppWithUpdateCommand
This script uses the update command to update a partial application for a deployed application.

To run the script, specify the application name, file name,and the content URI arguments, as defined in the
following table:

Table 127. updatePartialApp ToAnAppWithUpdateCommand argument descriptions. Run the script to update part of
a deployed application.

Argument Description

appName Specifies the name of the application to update.

fileContent Specifies the name of the file to use to update the application.
contentURI Specifies the URI of the file content.

Syntax

AdminApplication.updatePartialAppToAnAppWithUpdateCommand (appName, fileContent, contentURI)

Example usage

Chapter 11. Using the script library to automate the application serving environment using wsadmin scripting 135

AdminApplication.updatePartialAppToAnAppWithUpdateCommand("myApp", "/part
ialadd.zip", "partialadd")

updateSingleFileToAnAppWithUpdateCommand
This script uses the update command to update a single file on a deployed application.

To run the script, specify the application name, file name, and the content URI arguments, as defined in
the following table:

Table 128. updateSingleFile ToAnAppWithUpdateCommand argument descriptions. Run the script to update a file in
a deployed application.

Argument Description

appName Specifies the name of the application to update.

fileContent Specifies the name of the file to use to update the application.
contentURI Specifies the URI of the file content.

Syntax

AdminApplication.updateSingleFileToAnAppWithUpdateCommand(appName, fileContent, contentURI)

Example usage

AdminApplication.updateSingleFileToAnAppWithUpdateCommand ("myApp", "/sample.
txt", "META-INFO/sample.txt")

updateSingleModuleFileToAnAppWithUpdateCommand
This script uses the update command to update a single module file for a deployed application.

To run the script, specify the application name, file name, and the content URI arguments, as defined in
the following table:

Table 129. updateSingleModuleFile ToAnAppWithUpdateCommand argument descriptions. Run the script to update a
module file in a deployed application.

Argument Description

appName Specifies the name of the application to update.

fileContent Specifies the name of the file to use to update the application.
contentURI Specifies the URI of the file content.

Syntax

AdminApplication.updateSingleModuleFileToAnAppWithUpdateCommand (appName, fileContent, contentURI)

Example usage

AdminApplication.updateSingleModuleFileToAnAppWithUpdateCommand ("myApp",
"/sample.jar", "“Increment.jar")

Application export scripts

The scripting library provides multiple script procedures to automate your application configurations. This
topic provides usage information for scripts that export applications. You can run each script individually or
combine procedures to create custom automation scripts for your environment.

Each application management script procedure is located in the |app_server_roo4’scriptLibraries/appIication/
V70 directory. Use the following script procedures to export applications:

136 Scripting the application serving environment

* [‘exportAnAppToFile’]
« [“exportAllApplicationsToDir’|
* [“exportAnAppDDLToDir]

exportAnAppToFile
This script exports a deployed application to a specific file.

To run the script, specify the application name and export file name arguments, as defined in the following
table:

Table 130. exportAnAppToFile argument descriptions. Run the script to export a deployed application.

Argument Description

appName Specifies the name of the application of interest.

exportFileName Specifies the name of the file to which the system exports the application.
Syntax

AdminApplication.exportAnAppToFile(appName, exportFileName)

Example usage
AdminApplication.exportAnAppToFile("myApp", "exported.ear")

exportAllApplicationsToDir
This script exports all deployed applications to a specific directory.

To run the script, specify the application name and export file name arguments, as defined in the following
table:

Table 131. exportAllApplicationsToDir argument description. Run the script to export all deployed applications.

Argument Description

exportDirectory Specifies the fully qualified directory path to which the system exports each application.

Syntax

AdminApplication.exportAl1ApplicationsToDir (exportDirectory)

Example usage

AdminApplication.exportAl1ApplicationsToDir("/export")
exportAnAppDDLToDir
This script exports the data definition language (DDL) from the application to a specific directory.

To run the script, specify the application name, export directory, and options arguments, as defined in the
following table:

Table 132. exportAnAppDDLToDir argument descriptions. Run the script to export a DDL.

Argument Description

appName Specifies the name of the application to export.

exportDirectory Specifies the fully qualified directory path to which the system exports each application.
options Optionally specifies additional export options.

Chapter 11. Using the script library to automate the application serving environment using wsadmin scripting 137

Syntax

AdminApplication.exportAnAppDDLToDir (appName, exportFileName, options)

Example usage

AdminApplication.exportAnAppDDLToDir ("myApp", "/export", "")

Application deployment configuration scripts

The scripting library provides multiple script procedures to automate your application configurations. This
topic provides usage information for scripts that deploy applications. You can run each script individually or
combine procedures to create custom automation scripts for your environment.

Each application management script procedure is located in the profile_root/scriptLibraries/
application/V70 directory. The application deployment script procedures contain multiple arguments. If
you do not want to specify an argument with the script, specify the value of the argument as an empty
string, as the following syntax demonstrates: "".

Use the following script procedures to deploy applications:

* [‘configureStartingWeightForAnApplication’]

. :“configureCIassLoaderPoIicyForAnAppIication”l

. :“configureCIassLoaderLoadingModeForAnAppIication” on page 139|
. :“configureSessionManagementForAnAppIication” on page 13§|

. :“configureAppIicationLoading” on page 140
. :“configureLibraryReferenceForAnAppIication” on page 141|
. :“configureEJBModuIesOfAnAppIication” on page 141
. :“configureWebModulesOfAnAppIication” on page 141]

. ‘“configureConnectorModuIesOfAnAppIication” on page 142|

configureStartingWeightForAnApplication
This script configures the starting weight attribute for an application.

To run the script, specify the application name and starting weight arguments, as defined in the following
table:

Table 133. configureStartingWeightForAnApplication argument descriptions. Run the script to set an application
starting weight.

Argument Description

appName Specifies the name of the application to configure.
startingWeight Specifies the starting weight to set for the application of interest.
Syntax

AdminApplication.configureStartingWeightForAnApplication(appName, startingWeight)

Example usage
AdminApplication.configureStartingWeightForAnApplication("myApp", "10")

configureClassLoaderPolicyForAnApplication
This script configures the class loader policy attribute for an application.

To run the script, specify the application name argument, as defined in the following table:

138 Scripting the application serving environment

Table 134. configureClassLoaderPolicyForAnApplication argument descriptions. Run the script to set an application

class loader policy.

Argument

Description

appName

Specifies the name of the application to configure.

classloaderPolicy

Specifies the class loader policy for the application of interest. For each application server in
the system, you can set the application class-loader policy to SINGLE or MULTIPLE. When the
application class-loader policy is set to SINGLE, then a single application class loader loads all
EJB modules, dependency JAR files, and shared libraries in the system. When the
application class-loader policy is set to MULTIPLE, then each application receives its own class
loader that is used for loading the EJB modules, dependency JAR files, and shared libraries
for that application.

Syntax

AdminApplication.configureClassLoaderPolicyForAnApplication(appName, classloaderPolicy)

Example usage

AdminAppTlication.configureClassLoaderPolicyForAnApplication("myApp", "SINGLE")

configureClassLoaderLoadingModeForAnApplication

This script configures the class loader loading mode for an application. The class-loader delegation mode,
also known as the class loader order, determines whether a class loader delegates the loading of classes

to the parent class loader.

To run the script, specify the application name argument, as defined in the following table:

Table 135. configureClassLoaderlLoadingModeForAnApplication argument descriptions. Run the script to set an

application class loader mode.

Argument

Description

appName

Specifies the name of the application to configure.

classloaderMode

Specifies the class loader mode to set for the application of interest. You can set the class
loader mode to PARENT_FIRST or PARENT_LAST.

The PARENT_FIRST class-loader mode causes the class loader to delegate the loading of
classes to its parent class loader before attempting to load the class from its local class path.
This value is the default for the class-loader policy and for standard JVM class loaders.

The PARENT_LAST class-loader mode causes the class loader to attempt to load classes from
its local class path before delegating the class loading to its parent. Using this policy, an
application class loader can override and provide its own version of a class that exists in the

parent class loader.

Syntax

AdminApplication.configureClassLoaderLoadingModeForAnApplication(appName, classloaderMode)

Example usage

AdminAppTlication.configureClassLoaderLoadingModeForAnApplication("myApp", "PARENT LAST")

configureSessionManagementForAnApplication

This script configures session management for an application.

To run the script, specify the application name argument, as defined in the following table:

Table 136. configureSessionManagementForAnApplication argument descriptions. Run the script to configure

application session management.

Argument

Description

appName

Specifies the name of the application to configure.

Chapter 11. Using the script library to automate the application serving environment using wsadmin scripting 139

Table 136. configureSessionManagementForAnApplication argument descriptions (continued). Run the script to

configure application session management.

Argument

Description

enableCookie

Specifies whether to enable cookies.

enableProtocolSwitching

Specifies whether session tracking uses cookies to carry session IDs. If cookies are enabled,
session tracking recognizes session IDs that arrive as cookies and tries to use cookies for
sending session IDs. If cookies are not enabled, session tracking uses Uniform Resource
Identifier (URL) rewriting instead of cookies (if URL rewriting is enabled).

enableURLRewriting Specifies whether the session management facility uses rewritten URLs to carry the session
IDs. If URL rewriting is enabled, the session management facility recognizes session IDs that
arrive in the URL if the encodeURL method is called in the servlet.

enableSSLTracking Note: This feature is deprecated inWebSphere Application Server Version 7.0. You can

reconfigure session tracking to use cookies or modify the application to use URL rewriting. If
you do not want to specify this argument, specify the value as an empty string, as the
following syntax demonstrates: "".

Specifies that session tracking uses Secure Sockets Layer (SSL) information as a session
ID. Enabling SSL tracking takes precedence over cookie-based session tracking and URL
rewriting.

enableSerializedSession

Specifies whether to allow concurrent session access in a given server.

accessSessionOnTimeout

Specifies whether the servlet is started normally or aborted in the event of a timeout. If you
specify true, the servlet is started normally. If you specify false, the servlet execution aborts
and error logs are generated.

maxWaitTime

Specifies the maximum amount of time a servlet request waits on an HTTP session before
continuing execution. This parameter is optional and expressed in seconds. The default is 5
seconds. Under normal conditions, a servlet request waiting for access to an HTTP session
gets notified by the request that currently owns the given HTTP session when the request
finishes.

sessionPersistMode

Specifies whether to enable session persistence mode.

allowOverflow

Specifies whether the number of sessions in memory can exceed the value specified by the
Max in-memory session count property. This option is valid only in non-distributed sessions
mode.

maxInMemorySessionCount

Specifies the maximum number of sessions to maintain in memory.

invalidTimeout Specifies the amount of time, in minutes, before a timeout occurs that is not valid.
sessionEnable Specifies whether to enable session.
Syntax

AdminApplication.configureSessionManagementForAnApplication(appName,
enableCookie, enableProtocolSwitching, enableURLRewriting,
enableSSLTracking, enableSerializedSession, accessSessionOnTimeout,
maxWaitTime, sessionPersistMode, allowOverflow,
maxInMemorySessionCount, invalidTimeout, sessionEnable)

Example usage

AdminApplication.configureSessionManagementForAnApplication("myApplication", "false", "false", "true",

uu’ utrueu’ ugou’ "NONE", "true", u1500u,

configureApplicationLoading

u40u, "true")

This script configures the application loading attribute for an application.

To run the script, specify the application name argument, as defined in the following table:

Table 137. configureApplicationLoading argument descriptions. Run the script to configure application loading.

Argument Description

appName Specifies the name of the application to configure.
enableTargetMapping Specifies whether to enable target mapping during application loading.
Syntax

AdminApplication.configureApplicationLoading(appName, enableTargetMapping)

140 Scripting the application serving environment

Example usage
AdminApplication.configureApplicationLoading("myApp", "true")

configureLibraryReferenceForAnApplication
This script configures the library reference for an application.

To run the script, specify the application name and shared library name arguments, as defined in the
following table:
Table 138. configureLibraryReferenceForAnApplication argument descriptions. Run the script to configure application

library reference.
Argument Description
Specifies the name of the application to configure.

appName

libraryName Specifies the name of the shared library to configure.

Syntax
AdminApplication.configureLibraryReferenceForAnApplication(appName, libraryName)

Example usage
AdminApplication.configurelLibraryReferenceForAnApplication("myApp", "sharedLibrary")

configureEJBModulesOfAnApplication
This script configures the EJB modules of an application.

To run the script, specify the application name argument, as defined in the following table:

Table 139. configureEJBModulesOfAnApplication argument descriptions. Run the script to configure EJB modules of
an application.

Argument Description

appName Specifies the name of the application to configure.

startingWeight Specifies the target weight of the EJB modules in the application of interest.
enableTargetMapping Specifies whether to enable target mapping for EJB modules.

Syntax

AdminApplication.configureEJBModulesOfAnApplication(appName,
startingWeight, enableTargetMapping)

Example usage
AdminApplication.configureEJBModulesOfAnApplication("myApp", "1500", "true")

configureWebModulesOfAnApplication
This script configures the web modules of an application.

To run the script, specify the application name argument, as defined in the following table:

Table 140. configure WebModulesOfAnApplication argument descriptions. Run the script to configure Web modules
of an application.

Argument Description

appName Specifies the name of the application of interest.
webModuleName Specifies the name of the web module to configure.
startingWeight Specifies the starting weight for the web module of interest.

Chapter 11. Using the script library to automate the application serving environment using wsadmin scripting 141

Table 140. configure WebModulesOfAnApplication argument descriptions (continued). Run the script to configure
Web modules of an application.
Argument Description

classloaderMode Specifies the class loader mode to set for the application of interest. You can set the class
loader mode to PARENT_FIRST or PARENT_LAST.

The PARENT_FIRST class-loader mode causes the class loader to delegate the loading of
classes to its parent class loader before attempting to load the class from its local class path.
This value is the default for the class-loader policy and for standard JVM class loaders.

The PARENT_LAST class-loader mode causes the class loader to attempt to load classes from
its local class path before delegating the class loading to its parent. Using this policy, an
application class loader can override and provide its own version of a class that exists in the
parent class loader.

createSessionManager Specifies whether a session manager is created for each web module that does not have
one. If you specify true, which is the default value, a session manager is created for each
web module that does not have a session manager. If you specify false, a session manager
is not created for each web module that does not have a session manager.

bprac: The recommended usage is to specify false.

Syntax

AdminApplication.configureWebModulesOfAnApplication(appName,
webModuleName, startingWeight, classloaderMode, createSessionManager)

Example usage
AdminAppTlication.configureWebModulesOfAnApplication("myApp", "myWebModule", "250", "PARENT FIRST", "", "false")

configureConnectorModulesOfAnApplication

This script configures the connector modules of an application. To run the script, specify the application
name, J2C connection factory, and node name arguments.
To run the script, specify the application name argument, as defined in the following table:

Table 141. configureConnectorModulesOfAnApplication argument descriptions. Run the script to configure connector
modules of an application.

Argument Description

appName Specifies the name of the application of interest.

j2cConnFactory Specifies the name of the Java 2 Connector (J2C) connection factory to configure.

jndiName Specifies the name of the Java Naming and Directory Interface (JNDI) of interest.

authDataAlias Specifies the name of the authentication data alias of interest.

connectionTimeout Specifies the number of seconds that a connection request waits when there are no
connections available in the free pool and no new connections can be created. This usually
occurs because the maximum value of connections in the particular connection pool has
been reached.

Syntax

AdminAppTlication.configureConnectorModulesOfAnApplication(appName, j2cConnFactory,
JjndiName, authDataAlias, connectionTimeout)

Example usage
AdminApplication.configureConnectorModulesOfAnApplication("myApp", "myConnFactory", "myDefaultSSLSettings", "150")

Application administration scripts

The scripting library provides multiple script procedures to automate your application configurations. This
topic provides usage information for scripts that start and stop applications. You can run each script
individually or combine procedures to create custom automation scripts for your environment.

142 Scripting the application serving environment

Each application management script procedure is located in the app_server_root/scriptLibraries/
application/V70 directory. Use the following script procedures to start and stop applications:

« [“startApplicationOnSingleServer’|
[‘startApplicationOnAllDeployedTargets’|

« [“startApplicationOnCluster’]

* |“stopApplicationOnSingleServer ” on page 144l

* [“stopApplicationOnAllDeployedTargets” on page 144|

* |“stopApplicationOnCluster using wsadmin scripting” on page 144|

startApplicationOnSingleServer
This script starts an application on a single server.

To run the script, specify the application name, node name, and server name arguments, as defined in the
following table:

Table 142. startApplicationOnSingleServer argument descriptions. Run the script to start an application on a server.

Argument Description

appName Specifies the name of the application to start.

nodeName Specifies the name of the node on which the application is deployed.
serverName Specifies the name of the application server on which the application is deployed.
Syntax

AdminApplication.startApplicationOnSingleServer(appName, nodeName, serverName)

Example usage
AdminApplication.startApplicationOnSingleServer("myApp", "myNode", "myServer")

startApplicationOnAllDeployedTargets
This script starts an application on all deployed nodes.

To run the script, specify the application name and node name arguments, as defined in the following
table:

Table 143. startApplicationOnAllDeployedTargets argument descriptions. Run the script to start an application on all
deployable targets.

Argument Description

appName Specifies the name of the application to start.

nodeName Specifies the name of the node on which the application is deployed.
Syntax

AdminAppTlication.startApplicationOnAl1DeployedTargets (appName, nodeName)

Example usage
AdminApplication.startApplicationOnAl1DeployedTargets ("myApp", "myNode")

startApplicationOnCluster
This script starts an application on a cluster.

To run the script, specify the application name and cluster name arguments, as defined in the following
table:

Chapter 11. Using the script library to automate the application serving environment using wsadmin scripting 143

Table 144. startApplicationOnCluster argument descriptions. Run the script to start an application on a cluster.

Argument Description
Specifies the name of the application to start.

Specifies the name of the cluster on which the application is deployed.

appName

clusterName

Syntax
AdminAppTlication.startApplicationOnCluster(appName, clusterName)

Example usage
AdminApplication.startApplicationOnCluster("myApp", "myCluster")

stopApplicationOnSingleServer

This script stops an application on a single server.

To run the script, specify the application name, node name, and server name arguments, as defined in the
following table:
Table 145. stopApplicationOnSingleServer argument descriptions. Run the script to stop an application on a server.

Argument Description

appName Specifies the name of the application to stop.

nodeName Specifies the name of the node on which the application is deployed.
serverName Specifies the name of the application server on which the application is deployed.
Syntax

AdminAppTlication.stopApplicationOnSingleServer(appName, nodeName, serverName)

Example usage
AdminApplication.stopApplicationOnSingleServer("myApp", "myNode", "myServer")

stopApplicationOnAllDeployedTargets

This script stops an application on all deployed nodes.

To run the script, specify the application name, cell name, and node name arguments, as defined in the
following table:
Table 146. stopApplicationOnAllDeployedTargets argument descriptions. Run the script to stop an application on all

deployment targets.

Argument Description

Specifies the name of the application to stop.

Specifies the name of the node on which the application is deployed.

appName

nodeName

Syntax
AdminApplication.stopApplicationOnAl1DeployedTargets (appName, nodeName)

Example usage
AdminApplication.stopApplicationOnAl1DeployedTargets ("myApp", "myNode")

stopApplicationOnCluster using wsadmin scripting

This script stops an application on a cluster.

144 Scripting the application serving environment

To run the script, specify the application name and cluster name arguments, as defined in the following
table:

Table 147. stopApplicationOnCluster argument descriptions. Run the script to stop an application on a cluster.
Argument Description

appName Specifies the name of the application to stop.
clusterName Specifies the name of the cluster on which the application is deployed.
Syntax

AdminAppTlication.stopApplicationOnCluster(appName, clusterName)

Example usage
AdminApplication.stopApplicationOnCluster("myApp", "myCluster")

Automating business-level application configurations using wsadmin
scripting

The scripting library provides Jython script procedures to assist in automating your environment. Use the
application management scripts to install, uninstall, export, start, stop, and manage business-level
applications in your environment.

About this task

The scripting library provides a set of procedures to automate the most common application server
administration functions. There are three ways to use the Jython script library.

* Run scripts from the Jython script library in interactive mode with the wsadmin tool. You can launch the
wsadmin tool, and run individual scripts that are included in the script library using the following syntax:

wsadmin>AdminServerManagement.createApplicationServer("myNode", "myServer", "default")

» Use a text editor to combine several scripts from the Jython script library, as the following sample
displays:
#
My Custom Jython Script - file.py
#

AdminServerManagement.createApplicationServer("myNode", "Serverl", "default")
AdminServerManagement.createApplicationServer("myNode", "Server2", "default")

Use one of them as the first member of a cluster
AdminClusterManagement.createClusterWithFirstMember("myCluster", "APPLICATION_SERVER",
"myNode", "Serverl")

Add a second member to the cluster
AdminClusterManagement.createClusterMember("myCluster", "myNode", "Server3")

Install an application
AdminApplication.installAppWithClusterOption("DefaultApplication",
"..\installableApps\DefaultApplication.ear", "myCluster")

Start all servers and applications on the node
AdminServerManagement.startAl1Servers ("myNode")

Save the custom script and run it from the command line, as the following syntax demonstrates:
bin>wsadmin -language jython -f path/to/your/jython/file.py

» Use the Jython scripting library code as sample syntax to write custom scripts. Each script example in
the script library demonstrates best practices for writing wsadmin scripts. The script library code is
located in the |app_server_rooz|/scr1‘ptLibraries directory. Within this directory, the scripts are
organized into subdirectories according to functionality, and further organized by version. For example,
the app_server_root/scriptLibraries/application/V70 subdirectory contains procedures that perform
application management tasks that are applicable to Version 7.0 and later of the product.

Chapter 11. Using the script library to automate the application serving environment using wsadmin scripting 145

The business-level application procedures in scripting library are located in the [app_server_roo¥
scriptLibraries/application/V70 subdirectory. Each script from the directory automatically loads when you
launch the wsadmin tool. To automatically load your own Jython scripts (*.py) when the wsadmin tool
starts, create a new subdirectory and save existing automation scripts under the |app_server_rooy
scriptLibraries directory.

Note: To create custom scripts using the scripting library procedures, save the modified scripts to a new
subdirectory to avoid overwriting the library. Do not edit the script procedures in the scripting library.

You can use the AdminBLA.py scripts to perform multiple combinations of administration functions. This
topic provides one sample combination of procedures. See the business-level application configuration
scripts documentation to view argument descriptions and syntax examples.

Use this topic and the scripting library to create an empty business-level application, add assets as
composition units, and start the business-level application.

Procedure
1. Launch the wsadmin tool.

Use this step to launch the wsadmin tool and connect to a server, or run the tool in local mode. If you
launch the wsadmin tool, use the interactive mode examples in this topic to run scripts.
» Enter the following command from the bin directory to launch the wsadmin tool and connect to a
server:
bin>wsadmin -Tang jython
» Enter the following command from the bin directory to launch the wsadmin tool in local mode and
using the Jython scripting language:

bin>wsadmin -conntype none -Tang jython

When the wsadmin tool launches, the system loads all scripts from the scripting library.
2. Import assets to your configuration.

Assets represent application binaries that contain business logic that runs on the target run time
environment and serves client requests. An asset can contain a file, an archive of files such as a ZIP
or Java archive (JAR) file, or an archive of archive files such as a Java Platform, Enterprise Edition
(Java EE) EAR file. Other examples of assets include Enterprise JavaBeans (EJB) JAR files, EAR
files, Service Component Architecture (SCA) composite JAR files, OSGi bundles, mediation JAR files,
shared library JAR files, and non-Java EE contents such as PHP applications.
Run the importAsset script from the AdminBLA script library to import assets to the application server
configuration repository, as the following example demonstrates:

bin>wsadmin -Tang jython -c "AdminBLA.importAsset("asset.zip", "true", "true")"
You can also use interactive mode to run the script procedure, as the following example demonstrates:

wsadmin>AdminBLA. importAsset ("asset.zip", "true", "true")

3. Create an empty business-level application.
Run the createEmptyBLA script from the AdminBLA script library to create a new business-level
application, as the following example demonstrates:

bin>wsadmin -lang jython -c "AdminBLA.createEmptyBLA("myBLA", "bla to control transactions")"
You can also use interactive mode to run the script procedure, as the following example demonstrates:

wsadmin>AdminBLA.createEmptyBLA("myBLA", "bla to control transactions")

4. Add the assets, as composition units, to the business-level application.
Composition units can represent deployed assets, other business-level applications, or external
artifacts that are deployed on non-WebSphere Application Server runtime environments without
backing assets. Business-level applications contain zero or more composition units. You cannot add
the same composition unit to more than one business-level application, but you can use one asset to
create more than one composition unit.

146 Scripting the application serving environment

Run the addCompUnit script from the AdminBLA script library to add asset.zip to myBLA as a
composition unit, as the following example demonstrates:

bin>wsadmin -Tang jython -c "AdminBLA.addCompUnit("myBLA", “asset.zip", "default",
"myCompositionUnit", "cu description", "1", "serverl", "specname=actplanl")"

You can also use interactive mode to run the script procedure, as the following example demonstrates:

wsadmin>AdminBLA.addCompUnit ("myBLA", "asset.zip", "default", "myCompositionUnit",
"cu description", "1", "serverl", "specname=actplanl")

5. Save the configuration changes.
Use the following command example to save your configuration changes:
AdminConfig.save()

6. Start the business-level application.
Use the startBLA script from the AdminBLA script library to start each composition unit of the
business-level application on the deployment targets for which the composition units are configured, as
the following example demonstrates:

wsadmin>AdminBLA.startBLA("myBLA")

Results
The business-level application is configured and started on the deployment target of interest.

The wsadmin script libraries return the same output as the associated wsadmin commands. For example,
the AdminServerManagement.listServers() script returns a list of available servers. The
AdminClusterManagement.checklfClusterExists() script returns a value of true if the cluster exists, or
false if the cluster does not exist. If the command does not return the expected output, the script libraries
return a 1 value when the script successfully runs. If the script fails, the script libraries return a -1 value
and an error message with the exception.

By default, the system disables failonerror option. To enable this option, specify true as the last argument
for the script procedure, as the following example displays:

wsadmin>AdminApplication.startApplicationOnCluster("myApplication","myCluster","true")
What to do next

Use the business-level application configuration scripts to create custom scripts to automate your
environment. Save custom scripts to a new subdirectory of the [app_server_rooffscriptLibraries directory.

Business-level application configuration scripts

The scripting library provides multiple script procedures to automate your application server configurations.
Use the scripts in this topic to create, query, and manage your business-level applications. You can run
each script individually or combine procedures to create custom automation scripts.

The AdminBLA script procedures are located in the |app_server_roo#’scriptLibraries/application/V?O
directory.

Use the following script procedures to configure and administer your business-level applications:
+ [‘addCompUnit” on page 148§|

* |‘createEmptyBLA” on page 149|

« |‘deleteAsset” on page 149

+ [“deleteBLA” on page 149|

[“deleteCompUnit” on page 149

[“editAsset” on page 150|

[“editCompUnit” on page 150

[‘exportAsset” on page 151|

Chapter 11. Using the script library to automate the application serving environment using wsadmin scripting 147

* [“importAsset” on page 151|
+ [“startBLA” on page 151
* [“stopBLA” on page 152]

Use the following script procedures to query your business-level application configurations:

* [‘help” on page 152|
 |“listAssets” on page 152|

+ [istBLAs” on page 153|

+ [“listCompUnits” on page 153|
» [*viewBLA” on page 153|

« [‘viewAsset” on page 154
[“viewCompUnit ” on page 154|

gotcha: The commands, viewBLA, viewAsset, and viewCompUnit only display output to the console
and do not return data to the calling Jython script. These commands are not intended to be used
as part of a script to store the output of the command to a string variable. By using these
commands in a Jython script to store the output to a string variable, the string variable will only
contain the value "Operation Successfull".

When invoked, as intended, with the Jython wsadmin interface, these commands properly display
output to the console.

addCompUnit

This script adds assets, shared libraries, or additional business-level applications as composition units to
the empty business-level application. A composition unit represents an asset in a business-level
application. A configuration unit enables the asset contents to interact with other assets in the application.
It also enables the product run time to load and run asset contents.

To run the script, specify the business-level application name and the composition unit source arguments,
as defined in the following table:

Table 148. addCompUnit argument descriptions. Run the script to add a composition unit to a business-level
application.

Argument Description

blaName Specifies the name of the business-level application to which the system adds the
composition unit.

compUnitiD Specifies the name of the composition unit to add to the business-level application of
interest.

deployableUnit Optionally specifies the name of the deployable unit for the asset. A deployable unit is the
smallest portion of an asset that can be individually chosen for deployment

compUnitName Optionally specifies the name for the composition unit to add.

compUnitDescription Optionally specifies a description for the new composition unit.

startingWeight Optionally specifies the starting weight of the composition unit.

target Optionally specifies the target to which the composition unit is mapped.

activationPlan Optionally specifies the activation plan for the composition unit.

Syntax

AdminBLA.addCompUnit (blaName, compUnitID, deployableUnit, compUnitName,
compUnitDescription, startingWeight, target, activationPlan)

Example usage

AdminBLA.addCompUnit("blal", "assetl.zip", "default", "myCompositionUnit", "cu description", "1",
"serverl", "specname=actplanl")

148 Scripting the application serving environment

createEmptyBLA

This script creates a new business-level application in your environment. Create an empty business-level
application and then add assets, shared libraries, or business-level applications as composition units to the
empty business-level application.

To run the script, specify the business-level application name argument, as defined in the following table:

Table 149. createEmptyBLA argument descriptions. Run the script to create a business-level application.

Argument Description

blaName Specifies the name to assign to the new business-level application.
description Optionally specifies a description for the business-level application.
Syntax

AdminBLA.createEmptyBLA(blaName, description)

Example usage
AdminBLA.createEmptyBLA("myBLA", "bla to control transactions")

deleteAsset
This script removes a registered asset from your configuration.

To run the script, specify the asset ID argument, as defined in the following table:

Table 150. deleteAsset argument description. Run the script to delete an asset.

Argument Description
assetlD Specifies the name of the asset to delete.
Syntax

AdminBLA.deleteAsset (assetID)

Example usage
AdminBLA.deleteAsset ("asset.zip")

deleteBLA
This script removes a business-level application from your configuration.

To run the script, specify the business-level application name argument, as defined in the following table:

Table 151. deleteBLA argument description. Run the script to delete a business-level application.

Argument Description
blaName Specifies the name of the business-level application to delete.
Syntax

AdminBLA.deleteBLA(blaName)

Example usage
AdminBLA.deleteBLA("myBLA")

deleteCompUnit

This script removes a composition unit from a specific business-level application configuration.

Chapter 11. Using the script library to automate the application serving environment using wsadmin scripting 149

To run the script, specify the business-level application name and composition unit arguments, as defined
in the following table:

Table 152. deleteCompUnit argument descriptions. Run the script to delete a composition unit from a business-level
application.

Argument Description

blaName Specifies the name of the business-level application of interest.
compUnitID Specifies the identifier of the composition unit to delete.
Syntax

AdminBLA.deleteCompUnit(blaName, compUnitID)

Example usage
AdminBLA.deleteCompUnit ("myBLA", "asset.zip")

editAsset
This script edits the metadata of a specific registered asset.

To run the script, specify the arguments that are defined in the following table:

Table 153. editAsset argument descriptions. Run the script to change an asset.

Argument Description

assetlD Specifies the name of the asset to edit.

assetDescription Optionally specifies the new description of the asset of interest.
assetDestinationURL Optionally specifies the new destination URL for the asset of interest.
assetTypeAspects Optionally specifies the new type aspects for the asset of interest.
assetRelationships Optionally specifies the new asset relationship configurations.

filePermission Optionally specifies the new file permission configuration for the asset of interest.
validateAsset Optionally specifies whether the command validates the asset.

Syntax

AdminBLA.editAsset (assetID, assetDescription, assetDestinationURL,
assetTypeAspects, assetRelationships, filePermission, validateAsset)

Example usage

AdminBLA.editAsset("assetl.zip", "asset for testing", "c:/installedAssets/assetl.zip",
"WebSphere:spec=sharedlib", "", ".x\.dl1=755#.%\.s0=755#.%\.a=755#.%\.s1=755", "true")
editCompUnit

This script edits a specific composition unit within a business-level application.

To run the script, specify the business-level application name and composition unit ID arguments, as
defined in the following table:

Table 154. editCompUnit argument descriptions. Run the script to change a composition unit.

Argument Description

blaName Specifies the name of the business-level application to which the composition unit is
associated.

compUnitID Specifies the name of the composition unit to edit.

compUnitDescription Optionally specifies a new description for the composition unit.

startingWeight Optionally specifies a new starting weight for the composition unit.

target Optionally specifies a new target to which the composition unit is mapped.

activationPlan Optionally specifies a new activation plan for the composition unit.

150 Scripting the application serving environment

Syntax

AdminBLA.editCompUnit(blaName, compUnitID, compUnitDescription,
startingWeight, target, activationPlan)

Example usage

AdminBLA.editCompUnit("blal", “assetl.zip","cu description", "I",
"serverl", "specname=actplanl")

exportAsset
This script exports a registered asset to a file on your system.

To run the script, specify the asset ID and file name arguments, as defined in the following table:

Table 155. exportAsset argument descriptions. Run the script to export an asset.

Argument Description

assetlD Specifies the identifier of the asset to export.

fileName Specifies the fully qualified file path to which the system exports the asset.
Syntax

AdminBLA.exportAsset (assetID, fileName)

Example usage

AdminBLA.exportAsset ("asset.zip", "/temp/a.zip")
importAsset
This script imports and registers an asset to a management domain in your configuration.

To run the script, specify the assetlD, displayDescription, and deployableUnit arguments, as defined in the
following table:

Table 156. importAsset argument descriptions. Run the script to import an asset.

Argument Description

assetlD Specifies the asset to import.

displayDescription Optionally specifies whether the script displays the description of the asset.
dispDeployableUnit Optionally specifies whether the script displays the deployable units for the asset to import.
Syntax

AdminBLA. importAsset (assetID, displayDescription, dispDeployableUnit)

Example usage

AdminBLA. importAsset ("asset.zip", "true", "true")

startBLA
This script starts the business-level application process in your configuration.

To run the script, specify business-level application name argument, as defined in the following table:

Table 157. startBLA argument description. Run the script to start a business-level application.

Argument Description
blaName Specifies the name of the business-level application to start.

Chapter 11. Using the script library to automate the application serving environment using wsadmin scripting 151

Syntax
AdminBLA.startBLA(blaName)

Example usage
AdminBLA.startBLA("myBLA")

stopBLA
This script stops the business-level application process in your configuration.

To run the script, specify the business-level application name argument, as defined in the following table:

Table 158. stopBLA argument description. Run the script to stop a business-level application.

Argument Description
blaName Specifies the name of the business-level application to stop.
Syntax

AdminBLA.stopBLA(blaName)

Example usage
AdminBLA.stopBLA("myBLA")

help

This script displays the script procedures that the AdminBLA script library supports. To display detailed
help for a specific script, specify the name of the script of interest, as defined in the following table:

Table 159. help argument description. Run the script to display help.

Argument Description
script Specifies the name of the script of interest.
Syntax

AdminBLA.help(script)

Example usage
AdminBLA.help("createEmptyBLA")

listAssets
This script displays the registered assets in your configuration.

To run the script, you can choose to specify the asset ID, display description, and display deployable units
arguments, as defined in the following table:

Table 160. listAssets argument descriptions. Run the script to list assets.

Argument Description
assetlD Optionally specifies the group ID for which to display authorization groups.
displayDescription Optionally specifies whether the command displays a description for each asset. Specify true

to display descriptions.

displayDeployUnits Optionally specifies whether the command displays the deployable units that are associated
with the assets. Specify true to display the deployable units.

Syntax

AdminBLA.listAssets(assetID, displayDescription, displayDeployUnits)

152 Scripting the application serving environment

Example usage

AdminBLA.listAssets("asset.zip", "true", "true")
listBLAs
This script displays each or specific business-level applications in your configuration.

To run the script, you can choose to specify the business-level application name and the display
description arguments, as defined in the following table:

Table 161. listBLAs argument descriptions. Run the script to list business-level applications.

Argument Description

blaName Optionally specifies the name of a business-level application of interest.

displayDescription Optionally specifies whether the command displays a description for each business-level
application. Specify true to display descriptions.

Syntax

AdminBLA.1istBLAs (blaName, displayDescription)

Example usage
AdminBLA.1istBLAs("", "true")

listCompUnits
This script displays composition units within a business-level application.

To run the script, specify the business-level application name argument, as defined in the following table:

Table 162. listCompUnits argument descriptions. Run the script to list composition units.

Argument Description

blaName Specifies the name of the authorization group of interest.

displayDescription Optionally specifies whether the command displays a description for each composition unit.
Specify true to display descriptions.

Syntax

AdminBLA.TistCompUnits(blaName, displayDescription)

Example usage
AdminBLA.1istCompUnits("myBLA", "true")

viewBLA
This script displays the name and description of the business-level application of interest.

To run the script, specify the configuration ID argument of the business-level application of interest as
defined in the following table:

Table 163. viewBLA argument description. Run the script to view information about a business-level application.

Argument Description
blalD Specifies the configuration ID of the business-level asset of interest.
Syntax

AdminBLA.viewBLA(blaID)

Example usage

Chapter 11. Using the script library to automate the application serving environment using wsadmin scripting 153

AdminBLA.viewBLA("bla01.zip")
viewAsset
This script displays the configuration attributes for a specific registered asset.

To run the script, specify the asset ID argument, as defined in the following table:

Table 164. viewAsset argument description. Run the script to view information about an asset.

Argument Description
assetlD Specifies the name of the asset of interest.
Syntax

AdminBLA.viewAsset (assetID)

Example usage

AdminBLA.viewAsset ("asset.zip")
viewCompUnit

This script displays the configuration attributes for a specific composition unit within a business-level
application.

To run the script, specify the business-level application and composition unit ID arguments, as defined in
the following table:

Table 165. viewCompUnit argument descriptions. Run the script to view information about a composition unit.

Argument Description

blaName Specifies the name of the business-level application of interest.
compUnitID Specifies the identifier for the composition unit of interest.
Syntax

AdminBLA.viewCompUnit (blaName, compUnitID)

Example usage
AdminBLA.viewCompUnit ("myBLA", "asset.zip")

Automating data access resource configuration using wsadmin
scripting

The scripting library provides Jython script procedures to assist in automating your environment. Use the
resource management scripts to configure and manage your Java Database Connectivity (JDBC)
configurations.

About this task

The scripting library provides a set of procedures to automate the most common application server
administration functions. There are three ways to use the Jython script library.

* Run scripts from the Jython script library in interactive mode with the wsadmin tool. You can launch the
wsadmin tool, and run individual scripts that are included in the script library using the following syntax:
wsadmin>AdminServerManagement.createApplicationServer("myNode", "myServer", "default")

» Use a text editor to combine several scripts from the Jython script library, as the following sample
displays:

154 Scripting the application serving environment

#

My Custom Jython Script - file.py

#

AdminServerManagement.createApplicationServer("myNode", "Serverl", "default")
AdminServerManagement.createApplicationServer("myNode", "Server2", "default")

Use one of them as the first member of a cluster
AdminClusterManagement.createClusterWithFirstMember("myCluster", "APPLICATION_SERVER",
"myNode", "Serverl")

Add a second member to the cluster
AdminClusterManagement.createClusterMember("myCluster", "myNode", "Server3")

Install an application
AdminApplication.installAppWithClusterOption("DefaultApplication",
"..\installableApps\DefaultApplication.ear", "myCluster")

Start all servers and applications on the node
AdminServerManagement.startAl1Servers ("myNode")

Save the custom script and run it from the command line, as the following syntax demonstrates:
bin>wsadmin -language jython -f path/to/your/jython/file.py

Use the Jython scripting library code as sample syntax to write custom scripts. Each script example in
the script library demonstrates best practices for writing wsadmin scripts. The script library code is
located in the |app_server_roof/scriptLibraries directory. Within this directory, the scripts are
organized into subdirectories according to functionality, and further organized by version. For example,
the app_server_root/scriptLibraries/application/V70 subdirectory contains procedures that perform
application management tasks that are applicable to Version 7.0 and later of the product.

The data access resource management procedures in the scripting library are located in the
app_server_root/scriptLibraries/resources/JDBC/V70 subdirectory. Each script from the directory
automatically loads when you launch the wsadmin tool. To automatically load your own Jython scripts

(*

.py) when the wsadmin tool starts, save your automation scripts to a new subdirectory in the

app_server_root/scriptLibraries directory.

Note: To create custom scripts using the scripting library procedures, save the modified scripts to a new

subdirectory to avoid overwriting the library. Do not edit the script procedures in the scripting library.

You can use the scripts to perform many combinations of administration functions. Use the following
sample combination of procedures to configure a JDBC provider and data source.

Procedure

1.

Verify that all of the necessary JDBC driver files are installed on your node manager. If you opt to
configure a user-defined JDBC provider, check your database documentation for information about the
driver files.

Optional: Launch the wsadmin tool.

Use this step to launch the wsadmin tool and connect to a server, or run the tool in local mode. If you
launch the wsadmin tool, use the interactive mode examples in this topic to run scripts.

» Enter the following command from the bin directory to launch the wsadmin tool and connect to a
server:

bin>wsadmin -lang jython

» Enter the following command from the bin directory to launch the wsadmin tool in local mode and
using the Jython scripting language:
bin>wsadmin -conntype none -lang jython

When the wsadmin tool launches, the system loads all scripts from the scripting library.

Configure a JDBC provider.

Run the createJDBCProvider procedure from the script library and specify the required arguments. To
run the script, specify the node name, server name, name to assign to the new JDBC provider, and the

Chapter 11. Using the script library to automate the application serving environment using wsadmin scripting 155

implementation class name. You can optionally specify additional attributes in the following format:
[["attrl", "valuel"], ["attr2", "value2"]]. Custom properties for specific vendor JDBC drivers
must be set on the application server data source. Consult your database documentation for
information about available custom properties.

The following example creates a JDBC provider in your configuration:

bin>wsadmin -lang jython -c "AdminJDBC.createJDBCProvider("myNode", "myServer", "myJDBCProvider",
"myImplementationClass", [["description", "testing"], ["xa", "false"], ["providerType", "provType"]])"
You can also use interactive mode to run the script procedure, as the following example displays:

wsadmin>AdminJDBC.createJDBCProvider("myNode", "myServer", "myJDBCProvider", "myImplementationClass",
[["description", "testing"], ["xa", "false"], ["providerType", "provType"]])

The script returns the configuration ID of the new JDBC provider.
4. Use a template to configure a data source.

Run the createDataSourceUsingTemplate procedure from the script library and specify the required
arguments. To run the script, specify the node name, server name, JDBC provider name, configuration
ID of the template to use, and the name to assign to the new data source. You can optionally specify
additional attributes in the following format: [["attrl", "valuel"], ["attr2", "value2"]].

The following example uses a template to create a data source in your configuration:

bin>wsadmin -lang jython -c "AdminJDBC.createDataSourceUsingTemplate("myNode", "myServer", "myJDBCProvider",
"Derby JDBC Driver DataSource(templates/system|jdbc-resource-provider-templates.xml#DataSource derby 1)",
"myDataSource", [["authDataAlias", "myalias"], ["authMechanismPreference", "BASIC_PASSWORD"],
["description", "testing"], ["jndiName", "dsjndil"], ["logMissingTransactionContext", "true"],
["statementCacheSize", "5"]])"

You can also use interactive mode to run the script procedure, as the following example displays:

wsadmin>AdminJDBC.createDataSourceUsingTemplate("myNode", "myServer", "myJDBCProvider", "Derby JDBC Driver
DataSource(templates/system|jdbc-resource-provider-templates.xml#DataSource derby 1)", "myDataSource",
[["authDataAlias", "myalias"], ["authMechanismPreference", "BASIC_PASSWORD"], ["description", "testing"],
["jndiName", "dsjndil"], ["TogMissingTransactionContext", "true"], ["statementCacheSize", "5"]])

The script returns the configuration ID of the new data source.
Results

The wsadmin script libraries return the same output as the associated wsadmin commands. For example,
the AdminServerManagement.listServers() script returns a list of available servers. The
AdminClusterManagement.checklfClusterExists() script returns a value of true if the cluster exists, or
false if the cluster does not exist. If the command does not return the expected output, the script libraries
return a 1 value when the script successfully runs. If the script fails, the script libraries return a -1 value
and an error message with the exception.

By default, the system disables failonerror option. To enable this option, specify true as the last argument
for the script procedure, as the following example displays:

wsadmin>AdminApplication.startApplicationOnCluster("myApplication","myCluster","true")
What to do next

Create custom scripts to automate your environment by combining script procedures from the scripting
library. Save custom scripts to a new subdirectory of the app_server _root/scriptLibraries directory.

J2C query scripts

The scripting library provides many script procedures to manage your Java 2 Connector (J2C)
configurations. This topic provides usage information for scripts that query your J2C configuration. You can
run each script individually or combine many procedures to create custom automation scripts for your
environment.

156 Scripting the application serving environment

Each J2C management script procedure is located in the app_server_root/scriptLibraries/resources/
J2C directory.

Use the following script procedures to query your J2C configurations:
« [MistAdminObjectinterfaces’]

« [“listConnectionFactorylnterfaces’|

« [“istJ2CActivationSpecs’|

* |“listJ2CAdminObjects” on page 158|

* |“listdJ2CConnectionFactories” on page 158|

* |“listd2CResourceAdapters” on page 158|
[“listMessageListenerTypes” on page 159

listAdminObijectinterfaces

This script returns and displays a list of the administrative object interfaces for the J2C resource adapter of
interest.

To run the script, specify the J2C resource adapter argument, as defined in the following table:

Table 166. listAdminObjectinterfaces script. Run the script to list administrative object interfaces.

Argument Description
resourceAdapterID Specifies the configuration ID of the resource adapter of interest.
Syntax

AdminJ2C.1istAdminObjectInterfaces(resourceAdapterID)

Example usage
AdminJ2C.1istAdminObjectInterfaces("J2CTest(cells/myCell/nodes/myNode|resources.xml#J2CResourceAdapter 1184091767578)")

listConnectionFactorylnterfaces

This script returns and displays a list of the connection factory interfaces for the J2C resource adapter of
interest.

To run the script, specify the J2C resource adapter argument, as defined in the following table:

Table 167. listConnectioinFactoryinterfaces script. Run the script to list connection factory interfaces.

Argument Description
resourceAdapterlD Specifies the configuration ID of the resource adapter of interest.
Syntax

AdminJ2C.TistConnectionFactoryInterfaces(resourceAdapteriD)

Example usage
AdminJ2C.1istConnectionFactoryInterfaces("J2CTest(cells/myCell/nodes/myNode|resources.xml#J2CResourceAdapter_1184091767578)")

listJ2CActivationSpecs
This script returns and displays a list of the J2C activation specifications in your J2C configuration.

To run the script, specify the J2C resource adapter and message listener type arguments, as defined in
the following table:

Chapter 11. Using the script library to automate the application serving environment using wsadmin scripting 157

Table 168. listJ2CActivationSpecs script. Run the script to list activation specification interfaces.

Argument Description

resourceAdapterlD Specifies the configuration ID of the resource adapter of interest.
messagelListenerType Specifies the message listener type.

Syntax

Admind2C.TistJ2CActivationSpecs(resourceAdapterID, messagelistenerType)

Example usage

Admind2C.1istJ2CActivationSpecs("J2CTest (cells/myCell/nodes/myNode | resources.xml#J2CResourceAdapter_1184091767578)",
"javax.jms.MessageListener2")

listJ2CAdminObjects
This script returns and displays a list of the administrative objects in your J2C configuration.

To run the script, specify the application name and server name arguments, as defined in the following
table:

Table 169. listJ2CAdminObjects script. Run the script to list administrative object interfaces in a J2C configuration.

Argument Description

resourceAdapterlD Specifies the name of the application of interest.
adminObjectinterface Specifies the name of the administrative object interface of interest.
Syntax

AdminJ2C.TistJ2CAdminObjects (resourceAdapterID, adminObjectInterface)

Example usage

AdminJ2C.11istJ2CAdminObjects ("J2CTest (cells/myCel1/nodes/myNode | resources.xml#J2CResourceAdapter 1184091767578)",
"fvt.adapter.message.FVTMessageProvider2")

listJ2CConnectionFactories
This script returns and displays a list of the J2C connection factories in your J2C configuration.

To run the script, specify the J2C resource adapter and connection factory interface arguments, as defined
in the following table:

Table 170. listJ2CConnectionFactories script. Run the script to list J2C connection factories.

Argument Description

resourceAdapter|D Specifies the configuration ID of the resource adapter of interest.
connFactoryinterface Specifies the name of the connection factory interface of interest.
Syntax

AdminJ2C.TistJ2CConnectionFactories(resourceAdapterID, connFactoryInterface)

Example usage

AdminJ2C.1istJ2CConnectionFactories("J2CTest (cells/myCell/nodes/myNode|resources.xml#J2CResourceAdapter 1184091767578)",
"javax.sql.DataSource2")

listd2CResourceAdapters
This script displays a list of the J2C resource adapters in your configuration. The script returns either a list
of J2CResourceAdapters with the resource adapter name or a list of all J2C resource adapters in the

environment.

158 Scripting the application serving environment

To run the script, you can optionally specify the J2C resource adapter argument, as defined in the
following table:

Table 171. listJ2CResourceAdapters script. Run the script to list J2C resource adapters.

Argument Description
resourceAdapterName Specifies the name of the resource adapter to display.
Syntax

AdminJ2C.TistJ2CResourceAdapters (resourceAdapterName)

Example usage
AdminJ2C.1istJ2CResourceAdapters ()
AdminJ2C.1istJ2CResourceAdapters ("myResourceAdapter")

listMessageListenerTypes

This script returns and displays a list of the message listener types for the J2C resource adapter of
interest.

To run the script, specify the J2C resource adapter argument, as defined in the following table:

Table 172. listMessageListenerTypes script. Run the script to list message listener types.

Argument Description
resourceAdapter|D Specifies the configuration ID of the resource adapter of interest.
Syntax

AdminJ2C.1istMessagelListenerTypes(resourceAdapterID)

Example usage
AdminJ2C.1istMessageListenerTypes("J2CTest(cells/myCel1/nodes/myNode|resources.xml#J2CResourceAdapter 1184091767578)")

J2C configuration scripts

The scripting library provides many script procedures to manage your Java 2 Connector (J2C)
configurations. Use the scripts in this topic to create activation specifications, administrative objects, and
connection factories, and to install resource adapters. You can run each script individually or combine
many procedures to create custom automation scripts for your environment.

Each J2C management script procedure is located in the lapp_server roof/scriptLibraries/resources/
J2C directory.

Use the following script procedures to configure J2C in your environment:
+ [“createJ2CActivationSpec’|

+ [“createJ2CAdminObject” on page 160|

+ [“createJ2CConnectionFactory” on page 161|

+ [“installJ2CResourceAdapter” on page 162

createJ2CActivationSpec

This script creates a J2C activation specification in your configuration. The script returns the configuration
ID of the new J2C activation specification.

Chapter 11. Using the script library to automate the application serving environment using wsadmin scripting 159

To run the script, specify the resource adapter, activation specification name, message listener type, and
the Java Naming and Directory Interface (JNDI) name arguments. You can optionally specify attributes.
The arguments and attributes are defined in the following tables:

Table 173. createJ2CActivationSpec script. Run the script to create a J2C activation specification.

Argument Description
resourceAdapterlD Specifies the configuration ID of the resource adapter of interest.
activationSpecName Specifies the name to assign to the new activation specification.
messageListenerType Specifies the message listener type.
jndiName Specifies the Java Naming and Directory Interface (JNDI) name.
attributes Optionally specifies additional attributes in a particular format:
List format
[["attrl", "valuel"], ["attr2", "value2"]]
String format
"attri=value1, attr2=value2"

Table 174. Optional attributes. Other attributes available for the script.

Attributes Description Example

authenticationAlias Specifies the authentication alias of | ["authenticationAlias", "myAlias"]
the created J2C activation
specification.

description Specifies the description for the ["description", "My description"]
created J2C activation
specification.

destinationdndiName Specifies the destination JNDI ["destinationdndiName", "myDestinationdndi"]
name of the created J2C activation.

Syntax

AdminJ2C.createJ2CActivationSpec(resourceAdapterID,
activationSpecName, messagelistenerType, jndiName,
attributes)

Example usage

The following example script contains required attributes only:

AdminJ2C.createJ2CActivationSpec(
"J2CTest (cells/myCell/nodes/myNode |resources.xml#J2CResourceAdapter 1184091767578))", "J2CASTest", "javax.jms.Messagelistener2", "jndiAS")

The following example script includes optional attributes in a string format:

AdminJ2C.created2CActivationSpec(

"J2CTest (cells/AMYLIN4Cel101/nodes/AMYLIN4CellManager03|resources.xml#J2CResourceAdapter 1245171531343)",
"J2CASTest", "javax.jms.MessagelListener", "jndi/asl",

"description=this is my J2C ActivationSpecification,

destinationdndiName=jndi/J2CAS, authenticationAlias=J2CASTest")

The following example script includes optional attributes in a list format:

AdminJ2C.createJ2CActivationSpec(
"myj2c(cells/AMYLIN4Ce1101/nodes/AMYLINACe] IManager03 | resources.xml #J2CResourceAdapter 1238380711218)",
"J2CAC1", "javax.jms.MessagelListener", "jndi/as", [['description','new j2cActivationSpec'],
['destinationdndiName','ds/jndi'], ['authenticationAlias','test']])

createJ2CAdminObiject

This script creates a J2C administrative object in your configuration. The script returns the configuration ID
of the new J2C administrative object.

To run the script, specify the resource adapter, activation specification name, Java Naming and Directory

Interface (JNDI) name, and the administrative object interface name arguments. You can optionally specify
attributes. The arguments and attributes are defined in the following tables:

160 Scripting the application serving environment

Table 175. createJ2CAdminObject script.

Run the script to create a J2C administrative object.

Argument

Description

resourceAdapterlD Specifies the configuration ID of the resource adapter of interest.
activationSpecName Specifies the name to assign to the new activation specification.
adminObjectinterface Specifies the name of the administrative object interface.
jndiName Specifies the Java Naming and Directory Interface (JNDI) name.
attributes Optionally specifies additional attributes in a particular format:

List format
[["attrl", "valuel"], ["attr2", "value2"]]

String format
"attri=valuel, attr2=value2"

Table 176. Optional attributes. Other attributes available for the script.

Attributes Description

Example

description Specifies the description for the ["description", "My description"]
created J2C administrative object.

Syntax

AdminJ2C.createJ2CAdminObject (resourceAdapteriID,

activationSpecName, adminObjectInterface, jndiName,

attributes)

Example usage

The following example script contains required attributes only:

AdminJ2C.createJ2CAdminObject (

"J2CTest (cells/myCell/nodes/myNode|resources.xml#J2CResourceAdapter 1184091767578)",
"J2CAO0Test", "fvt.adapter.message.FVTMessageProvider2", "jndiA0")

The following example script includes optional attributes in a string format:

AdminJ2C.createJ2CAdminObject (

"J2CTest (cells/AMYLIN4Cel101/nodes/AMYLIN4CellManager03 | resources.xml#J2CResourceAdapter 1245171531343)",
"J2CAOTest", "fvt.adapter.message.FVTMessageProvider"”, "jndi/aol",

"description=this is my J2C AdminObject")

The following example script includes optional attributes in a list format:

AdminJ2C.createJ2CAdminObject (

"myj2c(cells/AMYLIN4Cell01/nodes/AMYLIN4CellManagerd3|resources.xml#J2CResourceAdapter _1238380711218)",

"J2CA01", "fvt.adapter.message.FVTMessageProvider",

[['description’, 'new j2cAdminObject']])

createJ2CConnectionFactory

"jndi/ao",

This script creates a new J2C connection factory in your configuration. The script returns the configuration

ID of the new J2C connection factory.

To run the script, specify the resource adapter, connection factory name, the connection factory interface,
and the Java Naming and Directory Interface (JNDI) name arguments. You can optionally specify
attributes. The arguments and attributes are defined in the following tables:

Table 177. createJ2CConnectionFactory script. Run the script to create a J2C connection factory.

Argument Description

resourceAdapterlD Specifies the configuration ID of the resource adapter of interest.
connFactoryName Specifies the name to assign to the new connection factory.
connFactorylnterface Specifies the connection factory interface.

jndiName Specifies the Java Naming and Directory Interface (JNDI) name.

Chapter 11. Using the script library to automate the application serving environment using wsadmin scripting 161

Table 177. createJ2CConnectionFactory script (continued). Run the script to create a J2C connection factory.

Argument Description
attributes Optionally specifies additional attributes in a particular format:
List format

[["attrl", "valuel"], ["attr2", "value2"]]

String format
"attri=valuel, attr2=value2"

Table 178. Optional attributes. Other attributes available for the script.

Attribute Description Example

authDataAlias Specifies the component-managed | ["authDataAlias", "myAuthDataAlias"]
authentication data alias of the
created connection factory.

description Specifies the description of the ["description", "My description"]
created J2C connection factory.

Syntax

AdminJ2C.created2CConnectionFactory (resourceAdapterID,
connFactoryName, connFactorylnterface, jndiName,
attributes)

Example usage

AdminJ2C.createJ2CConnectionFactory (
"J2CTest (cells/myCell/nodes/myNode|resources.xml#J2CResourceAdapter 11840917675
578)", "J2CCFTest", "javax.sql.DataSource?", "jndiCF")

The following example script includes optional attributes in a string format:

AdminJ2C.createJ2CConnectionFactory (

"J2CTest (cells/AMYLINACe1101/nodes/AMYLINACe]1Manager03 | resources.xml#J2CResourceAdapter_1245171531343)",
"J2CCFTest", "javax.sql.DataSource", "jndi/j2ccftest",

"description=this is my J2CConnectionFactory, authDataAlias=J2CTest")

The following example script includes optional attributes in a list format:

AdminJ2C.createJ2CConnectionFactory (
"myj2c(cells/AMYLIN4Ce1101/nodes/AMYLINACe] 1Manager03 | resources.xml #J2CResourceAdapter 1238380711218)",
"J2CCFTest", "javax.sql.DataSource2", "jndi/cf",

[['description', 'new j2ccf'], ['authDataAlias', 'test']])

installJ2CResourceAdapter

This script installs a J2C resource adapter in your configuration. The script returns the configuration ID of
the new J2C resource adapter.

To run the script, specify the node name, resource adapter archive (RAR) file, and the resource adapter
name arguments. You can optionally specify attributes. The arguments and attributes are defined in the
following tables:

Table 179. installJ2CResourceAdapter script. Run the script to install a J2C resource adapter.

Argument Description
nodeName Specifies the name of the node of interest.
rarFile Specifies the fully qualified file path for the RAR file to install.
resourceAdapterName Specifies the name to assign to the new resource adapter.
attributes Optionally specifies additional attributes in a particular format:
List format
[["attrl", "valuel"], ["attr2", "value2"]]
String format
"attr1=value1, attr2=value2"

162 Scripting the application serving environment

Table 180. Optional attributes. Other attributes available for the script.

Attributes Description

rar.desc Specifies the description of the J2C resource adapter.

rar.archivePath Specifies the name of the path where the file is extracted. If this path is not specified, then the
archive is extracted to the $CONNECTOR_INSTALL_ ROOT directory.

rar.classpath Specifies the additional classpath.

rar.nativePath Specifies the native path.

rar.threadPoolAlias Specifies the alias of the thread pool.

rar.propertiesSet Specifies the property set of the J2C resource adapter.

rar.DeleteSourceRar Specifies whether to delete the source RAR file.

rar.isolatedClassLoader Specifies the boolean value of the isolated class loader.

rar.enableHASupport Specifies the boolean value of the enabled high availability.

rar.HACapability Specifies the kind of high availability capability.

Syntax

AdminJ2C.instal1J2CResourceAdapter (nodeName, rarFile,
resourceAdapterName, attributes)

Example usage

The following example script contains required attributes only:

AdminJ2C.instal1J2CResourceAdapter ("myNode", "/temp/jcal5cmd.rar", "J2CTest")

The following example script includes optional attributes in a string format:

dminJd2C.1instal1J2CResourceAdapter("AMYLIN4CellManagerd3"”, "/ears/jcal5cmd.rar”, "J2CTest", "rar.desc=this is J2C,
rar.archivePath=/temp/test.rar, rar.classpath=/temp, rar.isolatedClassLoader=false, rar.enableHASupport=true,
rar.DeleteSourceRar=false")

The following example script includes optional attributes in a list format:

AdminJ2C.instal1J2CResourceAdapter("AMYLIN4Node09", "/ears/jcalbcmd.rar”, "j2ctest", [['rar.desc', 'this is J2C'],
['rar.archivePath', '/temp/test.rar'], ['rar.classpath', '/temp'], ['rar.nativePath', ''], ['rar.threadPoolAlias', 'test'],
['rar.isolatedClassLoader', 'false'], ['rar.enableHASupport', 'true'], ['rar.DeleteSourceRar', 'false']])

JDBC configuration scripts

The scripting library provides many script procedures to manage Java Database Connectivity (JDBC)
configurations in your environment. This topic provides usage information for scripts that configure JDBC
settings. You can run each script individually or combine many procedures to create custom automation
scripts for your environment.

Each AdminJDBC script procedure is located in the |lapp_server_roo¥scriptLibraries/resources/JDBC/V70
directory.

Beginning with Version 7, the Jython script library provides script functions for JDBC providers, JMS
resources, and resource providers at the server scope. You can write your own custom scripts to configure
resources at the cell, node, or cluster level.

Note: Do not edit the script procedures in the script library. To write custom script library procedures, use
the scripts in the|app_server_rooz|/scr1’ptLibraries directory as Jython syntax samples. Save the
custom scripts to a new subdirectory to avoid overwriting the library.

Chapter 11. Using the script library to automate the application serving environment using wsadmin scripting 163

Fast path: Beginning with Fix Pack 5, the Jython script library provides script functions for JDBC
providers, JMS resources, and resource providers at the cell, node, server, or cluster scope.
Resource providers include mail providers, URL providers, and resource environment
providers. You do not have to write custom scripts to configure resources at a particular scope.

Attention: The example usage scripts and the script syntax are split on multiple lines for printing
purposes.

Use the following script procedures to configure JDBC in your environment:
* |“‘createDataSource” on page 165|

 |“createDataSourceUsingTemplate” on page 168|

* |‘createDataSourceAtScope” on page 171|

* |“createDataSourceUsingTemplateAtScope” on page 173|

* |‘createJDBCProvider’ on page 176]

* [‘createJDBCProviderUsingTemplate” on page 179|
[“createJDBCProviderAtScope” on page 182
[“createJDBCProviderUsingTemplateAtScope” on page 184]

Format for the scope argument
The scope format applies to the scripts in the script library that have the scope argument.
A cell is optional on node, server, and cluster scopes. A node is required on the server scope.

You can delimit the type by using a comma (,) or a colon (:). You can use lower case for the type (cell=,
node=, server=, or cluster=.)
The examples in the following table are split on multiple lines for publishing purposes.

Table 181. Examples of the containment path, configuration ID, and type for a particular scope. The scope can be
Cell, Node, Server, or Cluster.

or

/Node :myNode/Server:

myServer/

server.xml#Server_1)

Scope Containment path Configuration ID Type
Cell /Cell:myCell/ myCell(cells/myCell| Cell=myCell or cell=myCell
cell.xml#Cell 1)
Node /Cell:myCell/Node:myNode/ or myNode (cells/myCell Cell=myCell,
/Node:myNode/ /nodes /myNode | Node=myNode
node. xml#Node_1)
or
Cell=myCell:
Node=myNode
or
cell=myCell,
node=myNode
Server /Cell:myCell/Node: myServer(cells Cell=myCell,
myNode/ /myCell/ Node=myNode,
Server:myServer/ nodes /myNode/ Server=myServer
servers/myServer|

or

Node=myNode :
Server=myServer

or

cell=myCell,
Node=myNode ,
Server=myServer

164 Scripting the application serving environment

Table 181. Examples of the containment path, configuration ID, and type for a particular scope (continued). The

scope can be Cell, Node, Server, or Cluster.

Scope Containment path Configuration ID Type
Cluster /Cell:myCell/ myCluster(cells Cell=myCell,
ServerCluster: /myCell/clusters/ Cluster=myCluster
myCluster/ myCluster|
cluster.xml
#ServerCluster 1) or
or Cell=myCell:
/ServerCluster: Cluster=myCluster
myCluster/
or
cell=myCell,
Cluster=myCluster
createDataSource

This script creates a new data source in your configuration. The script returns the configuration ID of the

new data source.

To run the script, specify the node name, server name, JDBC provider, and data source name arguments.

You can optionally specify attributes. The arguments and attributes are defined in the following tables:

Table 182. createDataSource script.

Required and optional arguments.

List format

String format

[["attr1",

Argument Description

nodeName Specifies the name of the node of interest.

serverName Specifies the name of the server of interest.

jdbcProvider Specifies the name of the JDBC provider of interest.

dsName Specifies the name to assign to the new data source.
attributes Optionally specifies additional attributes in a particular format:

"valuel"], ["attr2", "value2"]]

"attri=valuel, attr2=value2"

Table 183. Optional attributes. Several scripts have these attributes.

Attributes

Description

Example

authDataAlias

Specifies the alias used for database
authentication at run time.

['authDataAlias', 'myAuthDataAlias']

authMechanismPreference

Specifies the authentication mechanism.
Valid values are BASIC_PASSWORD for basic
authentication and KERBEROS for Kerberos
authentication.

properties for the parent JDBC connection
factory instance.

When you use this attribute in a script,
use the list format. The string format does
not work because this attribute is a
configuration object type.

category Specifies the category that can be used to | ['category', 'myCategory']
classify or group the resource.
connectionPool Specifies the JDBC connection pooling ["connectionPool",[["agedTimeout","100"],

["connectionTimeout","1000"],
["freePoolDistributionTableSize",10],
["maxConnections","12"], ["minConnections","5"],
["numberOfFreePoolPartitions","3"],
["numberOfSharedPoolPartitions","6"],
["numberOfUnsharedPoolPartitions","3"],
["properties", [["description","My description"],

["name", "myName"], ["required","false"],["type","String"],

["validationExpression",""],["value","myValue"]]],
["purgePolicy","EntirePool"],["reapTime","10000"],
["struckThreshold","3"], ["struckTime","10"],
["struckTimerTime","10"],["surgeCreationInterval®,"10"],
["surgeThreshold","10"], ["testConnection","true"],
["testConnectionInterval","10"],
["unusedTimeout","10000"]]]

Chapter 11. Using the script library to automate the application serving environment using wsadmin scripting

165

Table 183. Optional attributes (continued). Several scripts have these attributes.

Attributes

Description

Example

datasourceHelperClassname

Specifies the name of the
DataStoreHelper implementation class
that extends the capabilities of the
implementation class of the JDBC driver.
The extended capabilities allow the JDBC
drive to perform functions that are specific
to the data.

com.ibm.websphere.rsadapter.DB2DataStoreHelper
com.ibm.websphere.rsadapter.DerbyDataStoreHelper

description

Specifies a description of the data source.

['description', 'My description']

JndiName

Specifies the Java Naming and Directory
Interface (JNDI) name for this data
source.

['jndiName', 'myJndiName']

logMissingTransactionContext

Specifies whether missing transaction
context logging is enabled.

['TogMissingTransactionContext', 'false']

manageCachedHandles

Specifies whether this data source is used
for container-managed persistence of
enterprise beans. The default value is
true.

['manageCachedHandles', 'false']

mapping

Specifies the mapping of the configuration
login to a specified authentication alias
name.

When you use this attribute in a script,
use the list format. The string format does
not work because this attribute is a
configuration object type.

["mapping", [["authDataAlias","authDataAliasValue"],

["mappingConfigAlias","mappingConfigAliasValue"]]]

preTestConfig

Specifies the pretest connection
configuration settings.

When you use this attribute in a script,
use the list format. The string format does
not work because this attribute is a
configuration object type.

["preTestConfig", [["preTestConnection", "true"],
"retryInterval", "12343"],"retryLimit", "4"]1]]

properties

Specifies either a typed property type or a
descriptive property type.

When you use this attribute in a script,
use the list format. The string format does
not work because this attribute is a
configuration object type.

["properties",[["description","My description"],
["name", "myName"],"required","false"],
["type","String"],["validationExpression",""],
"value', 'myValue"]]]

propertySet

Optionally specifies resource properties in
the following format:
[propertySet[[resourceProperties[[[name;
nameValue,][type; typeValue,][value,
valueValue,]]... [[name,, nameValue,]type,
typeValue,][value, valueValue,]]]]1]

When you use this attribute in a script,
use the list format. The string format does
not work because this attribute is a
configuration object type.

[propertySet [[resourceProperties

[[name databaseName][type string][value mys]]

[name driverType] [type integer][value 4]]

[name serverName] [type string][value Tocalhost]]
[[name portNumber][type integer][value 50000]] 111]

relationalResourceAdapter

Specifies the relational resource adapter
that the data source uses. The available
Java 2 Connector (J2C) resource adapter
ID of J2CResourceAdapterID can be
identified with the AdminConfig.Tist
('J2CResourceAdapter') command.

[relationalResourceAdapter "WebSphere Relational Resource
Adapter(cells/pongo/nodes/pongo/servers/serverl |
resources.xml#builtin_rra)"]

statementCacheSize

Specifies the number of statements that
the product can cache for each
connection. The product optimizes the
processing of prepared statements and
callable statements by caching statements
that are not used in an active connection.
Both statement types improve the
performance of transactions between an
application and a datastore. Caching the
statements makes them more readily
available.

['statementCacheSize', 5]

166 Scripting the application serving environment

Table 183. Optional attributes (continued). Several scripts have these attributes.

Attributes Description Example

xaRecoveryAuthAlias Specifies the database authentication ['-xaRecoveryAuthAlias', 'myCellManager0l/al']
alias used during XA recovery processing.
When this property is specified, the
default value is the alias for application
authentication.

Table 184. Optional attributes, continued. The providerType attribute is also available for the script.

Attributes Description Example

providerType Specifies the|JDBC provider type|that ['providerType', 'DB2 Using IBM JCC Driver']
this JDBC provider uses.

Syntax
providerType optional attribute

Syntax

Use the following command syntax to find the JDBC provider type name. Only JDBC provider
template IDs that contain the templates/systemljdbc-resource-provider-templates.xml substring
have valid JDBC Provider type names. The JDBC provider type name and its substring form the

JDBC provider template ID.

AdminConfig.listTemplates('JDBCProvider')

Example partial result showing the JDBC provider template ID for the JDBC provider type name of

Cloudscape JDBC Provider (XA):

Cloudscape JDBC Provider (XA)
(templates/system|jdbc-resource-provider-templates.xml#JDBCProvider db2j 4)

Some JDBC provider template IDs:

Cloudscape JDBC Provider (XA)
(templates/system|jdbc-resource-provider-templates.xml#JDBCProvider db2j_4)"

Cloudscape Network Server Using Universal JDBC Driver
(temp]ates/system|jdbc—resource—prov1der—temp]ates.xm1#JDBCProvider_dejN_l)

DB2 Legacy CLI-based Type 2 JDBC Driver (XA)
(templates/system|jdbc-resource-provider-templates.xml#JDBCProvider 4)

DB2 UDB for iSeries (Native - V5R1 and earlier)
(templates/system|jdbc-resource-provider-templates.xml#JDBCProvider db2400 5)"

DB2 Universal JDBC Driver Provider (XA)
(templates/system|jdbc-resource-provider-templates.xml#JDBCProvider_DB2_UNI_2)
AdminJDBC.createDataSource (nodeName, serverName,

JjdbcProvider, dsName, attributes)

Example usage

The following example script contains required attributes only:

AdminJDBC.createDataSource ("myNode", "myServer", "myJDBCProvider",
"myDataSource")

The following example script includes optional attributes in a string format:

AdminJDBC.createDataSource ("IBM-F4A849C57A0Node01", "serverl", "My JDBC Name2", "MyJDBCDS",
"gquthDataAlias=cellManager0l/myAuthDataAlias, authMechanismPreference=BASIC_PASSWORD, category=myCategory,
datasourceHelperClassname=com. ibm.websphere.rsadapter.DB2DataStoreHelper,

description='My description', diagnoseConnectionUsage=true, jndiName=myJndiName,
logMissingTransactionContext=false, manageCachedHandles=false, providerType='DB2 Using IBM JCC Driver',
xaRecoveryAuthAlias=myCellManager01/xal")

The following example script includes optional attributes in a list format:

AdminJDBC.createDataSource (" IBM-F4A849C57A0Node01", "serverl", "My JDBC Name2", "MyJDBCDS",

[['authDataAlias', 'cellManager0l/myAuthDataAlias'], ['authMechanismPreference', 'BASIC_PASSWORD'],

['category', 'myCategory'], ['connectionPool', [['agedTimeout', 100],

['connectionTimeout', 1000], ['freePoolDistributionTableSize', 10], ['maxConnections', 12], ['minConnections', 5],
['numberOfFreePoolPartitions', 3], ['numberOfSharedPoolPartitions', 6], ['numberOfUnsharedPoolPartitions’', 3],

Chapter 11. Using the script library to automate the application serving environment using wsadmin scripting

167

['properties', [[['name', 'namela'], ['value', 'valuela']], [['name', 'namelb'], ['value', 'valuelb']]]],
['purgePolicy’, 'EntirePool'], ['reapTime', 10000], ['stuckThreshold', 3], ['stuckTime', 10], ['stuckTimerTime', 10],
['surgeThreshold', 10], ['testConnection', 'true']]], ['datasourceHelperClassname',

'com. ibm.websphere.rsadapter.DB2DataStoreHelper'],

['description’, 'My description'], ['diagnoseConnectionUsage', 'true'], ['jndiName', 'myJndiName'],
['logMissingTransactionContext', 'false'],

['manageCachedHandles', 'false'], ['mapping', [['authDataAlias', 'anAlias'], ['mappingConfigAlias’', 'anotherTest']]],
['preTestConfig', [['preTestConnection', 'true'], ['retryInterval', 12343], ['retryLimit', 4]]], ['properties’,
[[['name"’, 'namel'], ['value', 'valuel']], [['name’', 'name2'], ['value', 'value2']]]], ['propertySet’,
[['resourceProperties', [[['name’, 'databaseName'], ['type', 'String'], ['value', 'myDbName']], [['name', 'driverType'],
['type', 'integer'], ['value', 4]], [['name', 'serverName'], ['type', 'String'], ['value', 'localhost']],

[['name’, 'portNumber'], ['type', 'integer'], ['value', 50000]]]]]], ['providerType', 'DB2 Using IBM JCC Driver'],
['relationalResourceAdapter', 'SIB JMS Resource Adapter

(cells/IBM-F4A849C57A0Cel101/nodes/I1BM-F4A849C57A0Node01 /servers/serverl |resources. xml#J2CResourceAdapter 1232911649746) '],
['statementCacheSize', 5], ['xaRecoveryAuthAlias', 'myCellManager01/xal']])

createDataSourceUsingTemplate

This script uses a template to create a new data source in your configuration. The script returns the
configuration ID of the new data source.

To run the script, specify the node name, server name, JDBC provider, template ID, and data source name
arguments. You can optionally specify attributes. The arguments and attributes are defined in the following
tables:

Table 185. createDataSourceUsingTemplate script. Required and optional arguments.

String format

Argument Description
nodeName Specifies the name of the node of interest.
serverName Specifies the name of the server of interest.
jdbcProvider Specifies the name of the JDBC provider of interest.
templatelD Specifies the configuration ID of the template to use to create the data source.
dsName Specifies the name to assign to the new data source.
attributes Optionally specifies additional attributes in a particular format:

List format

[["attrl", "valuel"], ["attr2", "value2"]]

"attri=valuel, attr2=value2"

Table 186. Optional attributes. Several scripts have these attributes.

Attributes Description

Example

authDataAlias Specifies the alias used for database

authentication at run time.

['authDataAlias', 'myAuthDataAlias']

authMechanismPreference Specifies the authentication mechanism.
Valid values are BASIC_PASSWORD for basic

authentication and KERBEROS for Kerberos

properties for the parent JDBC connection
factory instance.

When you use this attribute in a script,
use the list format. The string format does
not work because this attribute is a
configuration object type.

authentication.
category Specifies the category that can be used to | ['category', 'myCategory']
classify or group the resource.
connectionPool Specifies the JDBC connection pooling ["connectionPool", [["agedTimeout","100"],

["connectionTimeout","1000"],
["freePoolDistributionTableSize",10],
["maxConnections","12"],["minConnections","5"],
["number0fFreePoolPartitions","3"],
["numberOfSharedPoolPartitions","6"],
["number0fUnsharedPoolPartitions","3"],
["properties",[["description","My description"],

["name", "myName"], ["required","false"],["type","String"],
["validationExpression",""],["value","myValue"]]],
["purgePolicy","EntirePool"],["reapTime","10000"],
["struckThreshold","3"], ["struckTime","10"],
["struckTimerTime","10"], ["surgeCreationInterval”,"10"],
["surgeThreshold","10"], ["testConnection","true"],
["testConnectionInterval","10"],
["unusedTimeout","10000"]]]

168 Scripting the application serving environment

Table 186. Optional attributes (continued). Several scripts have these attributes.

Attributes

Description

Example

datasourceHelperClassname

Specifies the name of the
DataStoreHelper implementation class that
extends the capabilities of the
implementation class of the JDBC driver.
The extended capabilities allow the JDBC
drive to perform functions that are specific
to the data.

com.ibm.websphere.rsadapter.DB2DataStoreHelper
com.ibm.websphere.rsadapter.DerbyDataStoreHelper

description

Specifies a description of the data source.

['description', 'My description']

jndiName

Specifies the Java Naming and Directory
Interface (JNDI) name for this data
source.

['jndiName', 'myJdndiName']

logMissingTransactionContext

Specifies whether missing transaction
context logging is enabled.

['TogMissingTransactionContext', 'false']

manageCachedHandles

Specifies whether this data source is used
for container-managed persistence of
enterprise beans. The default value is
true.

['manageCachedHandles', 'false']

mapping

Specifies the mapping of the configuration
login to a specified authentication alias
name.

When you use this attribute in a script,
use the list format. The string format does
not work because this attribute is a
configuration object type.

["mapping", [["authDataAlias","authDataAliasValue"],

["mappingConfigAlias","mappingConfigAliasValue"]]]

preTestConfig

Specifies the pretest connection
configuration settings.

When you use this attribute in a script,
use the list format. The string format does
not work because this attribute is a
configuration object type.

["preTestConfig",[["preTestConnection", "true"],
"retryInterval", "12343"],"retryLimit", "4"]1]]

properties

Specifies either a typed property type or a
descriptive property type.

When you use this attribute in a script,
use the list format. The string format does
not work because this attribute is a
configuration object type.

["properties",[["description","My description"],
["name", "myName"],"required","false"],
["type","String"],["validationExpression",""],
"value', 'myValue"]]]

propertySet

Optionally specifies resource properties in
the following format:
[propertySet[[resourceProperties[[[name,
nameValue,][type; typeValue,][value,
valueValue,]]... [[name, nameValue,]ltype,
typeValue,][value, valueValue,]]]11]

When you use this attribute in a script,
use the list format. The string format does
not work because this attribute is a
configuration object type.

[propertySet [[resourceProperties

[[name databaseName][type string][value mys]]

[name driverType] [type integer][value 4]]

[name serverName] [type string][value localhost]]
[[name portNumber][type integer][value 50000]] 1111

relationalResourceAdapter

Specifies the relational resource adapter
that the data source uses. The available
Java 2 Connector (J2C) resource adapter
ID of J2CResourceAdapterID can be
identified with the
AdminConfig.1ist('J2CResourceAdapter")
command.

[relationalResourceAdapter "WebSphere Relational Resource
Adapter(cells/pongo/nodes/pongo/servers/serverl |
resources.xml#builtin_rra)"]

statementCacheSize

Specifies the number of statements that
the product can cache for each
connection. The product optimizes the
processing of prepared statements and
callable statements by caching statements
that are not used in an active connection.
Both statement types improve the
performance of transactions between an
application and a datastore. Caching the
statements makes them more readily
available.

['statementCacheSize', 5]

Chapter 11. Using the script library to automate the application serving environment using wsadmin scripting

169

Table 186. Optional attributes (continued). Several scripts have these attributes.

Attributes

Description

Example

xaRecoveryAuthAlias

Specifies the database authentication alias
used during XA recovery processing.
When this property is specified, the default
value is the alias for application
authentication.

['-xaRecoveryAuthAlias', 'myCellManager01/al']

Table 187. Optional attributes, continued. Several scripts have this attribute.

Attributes Description Example

providerType Specifies the |[JDBC provider type that ['providerType', 'DB2 Using IBM JCC Driver']
this JDBC provider uses.

Syntax

providerType optional attribute

Syntax

Use the following command syntax to find the JDBC provider type name. Only JDBC provider
template IDs that contain the templates/systemljdbc-resource-provider-templates.xml substring
have valid JDBC Provider type names. The JDBC provider type name and its substring form the
JDBC provider template ID.

AdminConfig.listTemplates('JDBCProvider')

Example partial result showing the JDBC provider template ID for the JDBC provider type name of
Cloudscape JDBC Provider (XA):

Cloudscape JDBC Provider (XA)

(templates/system|jdbc-resource-provider-templates.xml#JDBCProvider db2j 4)

Some JDBC provider template IDs:

Cloudscape JDBC Provider (XA)

(temp1ates/system|jdbc-resource-provider-temp]ates.xm]#JDBCProvider_dej_4)"

Cloudscape Network Server Using Universal JDBC Driver
(temp]ates/system|jdbc—resource—provider—temp]ates.xm]#JDBCProvider_dejN_l)

DB2 Legacy CLI-based Type 2 JDBC Driver (XA)
(templates/system|jdbc-resource-provider-templates.xml#JDBCProvider 4)

DB2 UDB for iSeries (Native - V5R1 and earlier)
(templates/system|jdbc-resource-provider-templates.xml#JDBCProvider db2400 5)"

DB2 Universal JDBC Driver Provider (XA)
(templates/system|jdbc-resource-provider-templates.xml#JDBCProvider_DB2_UNI_2)

AdminJDBC.createDataSourceUsingTemplate (nodeName,
serverName, jdbcProvider, templatelID, dsName,

attributes)

Example usage

The following example script contains required attributes only:

AdminJDBC.createDataSourceUsingTemplate("myNode", "myServer",
"myJDBCProvider", "Derby JDBC Driver
DataSource (templates/system|jdbc-resource-provider-templates.xml#DataSource_derby 1)", "myDataSource")

The following example script includes optional attributes in a string format:

AdminJDBC.createDataSourceUsingTemplate("IBM-F4A849C57A0Node01", "serverl”, "My JDBC Name2",

"DB2 Universal JDBC Driver DataSource(templates/system|jdbc-resource-provider-templates.xml#DataSource _DB2 UNI_1)",
"MyJDBCDS", "authDataAlias=cellManager0l/myAuthDataAlias, authMechanismPreference=BASIC_PASSWORD, category=myCategory,
datasourceHelperClassname=com. ibm.websphere.rsadapter.DB2DataStoreHelper, description='My description’,
diagnoseConnectionUsage=true, jndiName=myJndiName, logMissingTransactionContext=false, manageCachedHandles=false,
providerType='DB2 Using IBM JCC Driver', xaRecoveryAuthAlias=myCellManager0l/xal")

The following example script includes optional attributes in a list format:

AdminJDBC.createDataSourceUsingTemplate ("IBM-F4A849C57A0Nodedl1", "serverl"”, "My JDBC Name2",

"DB2 Universal JDBC Driver DataSource(templutes/system|jdbc—resource—provider—templates.xml#DataSource_DBZ_UNI_l)”,
"MyJDBCDS", [['authDataAlias', 'cellManager0l/myAuthDataAlias'], ['authMechanismPreference', 'BASIC_PASSWORD'],
['category', 'myCategory'], ['connectionPool', [['agedTimeout', 100], ['connectionTimeout', 1000],

170 Scripting the application serving environment

['freePoolDistributionTableSize', 10],

['maxConnections', 12],

['minConnections', 5], ['numberOfFreePoolPartitions’, 3], ['numberOfSharedPoolPartitions’, 6],

['numberOfUnsharedPoolPartitions’, 3],

['properties', [[['name', 'namela'], ['value', 'valuela']], [['name', 'namelb'], ['value', 'valuelb']]]],
['purgePolicy', 'EntirePool'], ['reapTime', 10000], ['stuckThreshold', 3], ['stuckTime', 10], ['stuckTimerTime', 10],
['surgeThreshold', 10], ['testConnection', 'true']]], ['datasourceHelperClassname',

'com. ibm.websphere.rsadapter.DB2DataStoreHelper'],

['description’, 'My description'], ['diagnoseConnectionUsage', 'true'], ['jndiName', 'myJdndiName'],
['logMissingTransactionContext', 'false'],

['manageCachedHandles', 'false'], ['mapping', [['authDataAlias', 'anAlias'], ['mappingConfigAlias’', 'anotherTest']]],
['preTestConfig', [['preTestConnection', 'true'], ['retryInterval', 12343], ['retryLimit', 4]]],

['properties', [[['name', 'namel'],

['value', 'valuel']], [['name', 'name2'], ['value', 'value2']]]], ['propertySet', [['resourceProperties’,
[[['name’, 'databaseName'], ['type', 'String'], ['value', 'myDbName']], [['name’', 'driverType'],

['type', 'integer'], ['value', 4]],

[['name’, 'serverName'], ['type', 'String'], ['value', 'localhost']], [['name', 'portNumber'], ['type', 'integer'],
['value', 50000]]]]]], ['providerType', 'DB2 Using IBM JCC Driver'],

['relationalResourceAdapter’,

'SIB JMS Resource Adapter(cells/IBM-F4A849C57A0Cell01/clusters/cl|resources.xml#J2CResourceAdapter 1232911649746) '],
['statementCacheSize', 5], ['xaRecoveryAuthAlias', 'myCellManager0l/xal']])

createDataSourceAtScope

This script creates a new data source in your configuration at the scope that you specify. The script
returns the configuration ID of the new data source. The script procedure uses the createDatasource
administrative command to create a new data source. The createDataSource script creates a new data
source using the AdminConfig create command.

To run the script, specify the scope, JDBC provider, data source name, and database name arguments.
You can optionally specify attributes. The arguments and attributes are defined in the following tables:

Table 188. createDataSourceAtScope script. Required and optional arguments.

Argument Description

scope Specifies aof cell, node, server, or cluster for the JDBC provider.
jdbcProvider Specifies the name of the JDBC provider of interest.

dsName Specifies the name to assign to the new data source.

databaseName (URL for the Oracle database) Specifies the name to assign the database for the JDBC provider.

For a JDBC provider that uses the Oracle database, the argument specifies the URL of the
database from which the datasource obtains connections. Examples are
jdbc:oracle:thin:@localhost:1521:sample for a thin driver and jdbc:oracle:oci8:@sample
for a thick driver.

attributes Optionally specifies additional attributes in a particular format:

List format
[["attrl", "valuel"], ["attr2", "value2"]]

String format
"attri=value1, attr2=value2"

Table 189. Optional attributes. Several scripts have these attributes.

Attributes Description

category Specifies the category that can be used to classify or group the resource.

componentManagedAuthenticationAlias Specifies the alias used for database authentication at runtime.

containerManagedPersistence Specifies that container managed persistence is enabled when set to true.

description Specifies a description of the data source.

driverType Specifies the data source type. The data source type is valid only for JDBC providers that have a
database type of DB2.

JjndiName Specifies the Java Naming and Directory Interface (JNDI) name for this data source.

portNumber Specifies the port number of the database server. The port number is valid only for JDBC providers

that have a database type of DB2, Informix, Sybase, or SQLServer.

serverName Specifies the host name of the database server or IP address. The server name is valid only for
JDBC providers that have a database type of DB2, Informix, Sybase, or SQLServer. For the
Informix® JDBC Driver, the serverName refers to the name of the Informix instance. Example:
ol_myserver.

Chapter 11. Using the script library to automate the application serving environment using wsadmin scripting 171

Table 189. Optional attributes (continued). Several scripts have these attributes.

Attributes

Description

ifXxIFHOST

Specifies the physical machine name of the server hosting the Informix instance. You can enter a
host name or IP address. You can also enter an Internet Protocol Version 6 (IPv6) if the host
database supports it. This attribute is valid only for JDBC providers that have a database type of
Informix.

informixLockMode Wait

Specifies the connection wait time for obtaining a lock on the database. By default, the Informix
database returns an error when it cannot acquire a lock, rather than wait for the current owner of
the lock to release it. To modify the behavior, set the property to the number of seconds to wait for
a lock. The default is 2 seconds. Any negative value translates into an unlimited wait time. This
attribute is valid only for JDBC providers that have a database type of Informix.

xaRecoveryAuthAlias

Specifies the database authentication alias used during XA recovery processing. When this
property is specified, the default value is the alias for application authentication.

Syntax

AdminJDBC.createDataSourceAtScope(scope,
JjdbcProvider, dsName, databaseName, attributes)

Example usage

The following example script contains required attributes only:
AdminJDBC.createDataSourceAtScope("myScope", “myJDBCProvider",

"myDataSource", "myDatabase")

Examples scripts for the DB2 database type:

The following example script includes optional attributes in a string format:
AdminJDBC.createDataSourceAtScope("Cell=1BM-F4A849C57A0Cel 101, Node=1BM-F4A849C57A0Node0l, Server=serverl”,

"MyTestJDBCProviderName", "newds2", "newds2/jndi"

"

", "com.ibm.websphere.rsadapter.DB2UniversalDataStoretelper", "dbl",
category=myCategory, componentManagedAuthenticationAlias=CellManager@l/AuthDataAliase, containerManagedPersistence=true,

description="'My description', xaRecoveryAuthAlias=CellManager0l/xaAliase", "serverName=localhost,

driverType=4,portNumber=50000")

The following example script includes optional attributes in a list format:

AdminJDBC.createDataSourceAtScope("Cell=IBM-F4A849C57A0Cel 101, Node=IBM-F4A849C57A0Node0l, Server=serverl",
"MyTestJDBCProviderName", "newds2", "newds2/jndi", "com.ibm.websphere.rsadapter.DB2UniversalDataStoreHelper",
"db1", [['category', 'myCategory'], ['componentManagedAuthenticationAlias’,

'CellManager@1/AuthDataAliase'], ['containerManagedPersistence', 'true'], ['description', 'My description'],
['xaRecoveryAuthAlias', 'CellManager0l/xaAliase']] , [['serverName', 'localhost'],

['driverType', 4], ['portNumber', 50000]])

Examples scripts for the Derby database:

The following example script includes optional attributes in a string format:

AdminJDBC.createDataSourceAtScope("Cel1=IBM-F4A849C57A0Ce1101,Node=1BM-F4A849C57A0Node01,Server=serverl",

"Derby JDBC Provider", "Derby DataSource", "newds2/jndi", "com.ibm.websphere.rsadapter.DB2UniversalDataStoreHelper",
"dbl", " category=myCategory, componentManagedAuthenticationAlias=CellManager01l/AuthDataAliase,
containerManagedPersistence=true, description=My description, xaRecoveryAuthAlias=CellManager01/xaAliase")

The following example script includes optional attributes in a list format:

AdminJDBC.createDataSourceAtScope("Cel1=1BM-F4A849C57A0Ce1101,Node=IBM-F4A849C57A0Node01,Server=serverl",

"Derby JDBC Provider", "Derby DataSource", "newds2/jndi", "com.ibm.websphere.rsadapter.DB2UniversalDataStoreHelper",
"dbl", [['category', 'myCategory'], ['componentManagedAuthenticationAlias', 'CellManager0l/AuthDataAliase'],
['containerManagedPersistence', 'true'], ['description', 'My description'], ['xaRecoveryAuthAlias',

'CellManager0l/xaAliase']])

Examples scripts for the Informix database:

The following example script includes optional attributes in a string format:

AdminJDBC.createDataSourceAtScope(“Cell=IBM-F4A849C57A0Cel 101", "Informix JDBC Driver Test", "My DataSource",
"My JNDIName", "com.ibm.websphere.rsadapter.InformixDataStoreHelper", "MyDB", " category=myCategory,
componentManagedAuthenticationAlias=CellManager0l/AuthDataAliase, containerManagedPersistence=true,

description="'My description’,

xaRecoveryAuthAlias=CellManager0l/xaAliase”, "serverName=ol_myserver, portNumber=50000, ifxIFXHOST=localhost,

informixLockModeWait=2")

172 Scripting the application serving environment

The following example script includes optional attributes in a list format:

AdminJDBC.createDataSourceAtScope(“Cell=IBM-F4A849C57A0Cel 101", "Informix JDBC Driver Test", "My DataSource",

"My JNDIName", "com.ibm.websphere.rsadapter.InformixDataStoreHelper", "MyDB", [['category', 'myCategory'],
['componentManagedAuthenticationAlias', 'CellManager01/AuthDataAliase'], ['containerManagedPersistence', 'true'],
['description', 'My description'], ['xaRecoveryAuthAlias', 'CellManager0l/xaAliase']] , [['serverName', 'ol_myserver'],
['portNumber', 1526], ['ifxIFXHOST', 'localhost'], ['informixLockModeWait', 2]])

Examples scripts for the Oracle database:

The following example script includes optional attributes in a string format:

AdminJDBC.createDataSourceAtScope("Cell=IBM-F4A849C57A0Cel 101, Node=IBM-F4A849C57A0Node01, Server=serverl",
"Oracle JDBC Driver", "My DataSource", "My JNDIName", "com.ibm.websphere.rsadapter.OracleDataStoretelper",
"http://myURL.com", "category=myCategory, componentManagedAuthenticationAlias=CellManager0l/AuthDataAliase,
containerManagedPersistence=true, description='My description', xaRecoveryAuthAlias=CellManager0l/xaAliase")

The following example script includes optional attributes in a list format:

AdminJDBC.createDataSourceAtScope(“Cell=I1BM-F4A849C57A0Cell01, Node=IBM-F4A849C57A0Node01, Server=serverl",
"Oracle JDBC Driver", "My DataSource", "My JNDIName", "com.ibm.websphere.rsadapter.OracleDataStoretelper",
"http://myURL.com",

[['category’, 'myCategory'], ['componentManagedAuthenticationAlias', 'CellManager0l/AuthDataAliase'],
['containerManagedPersistence’, 'true'], ['description’, 'My description'], ['xaRecoveryAuthAlias',
'CellManager0l/xaAliase']])

Examples scripts for the SQLServer database:

The following example script includes optional attributes in a string format:

AdminJDBC.createDataSourceAtScope("Cell=IBM-F4A849C57A0Cel 101, Node=IBM-F4A849C57A0Node0], Server=serverl",

"Microsoft SQL Server JDBC Driver", "My DataSource", "My JNDIName", "com.ibm.websphere.rsadapter.SQLserverDataStoreHelper",
"myDBName", " category=myCategory, componentManagedAuthenticationAlias=CellManager0l/AuthDataAliase,
containerManagedPersistence=true, description='My description', xaRecoveryAuthAlias=CellManager0l/xaAliase",
"serverName=localhost, portNumber=1433")

The following example script includes optional attributes in a list format:

AdminJDBC.createDataSourceAtScope("Cell=I1BM-F4A849C57A0Cel 101, Node=1BM-F4A849C57A0Node0l1, Server=serverl"”,

"Microsoft SQL Server JDBC Driver", "My DataSource", "My JNDIName", "com.ibm.websphere.rsadapter.SQLserverDataStoreHelper",
"myDBName", [['category', 'myCategory'], ['componentManagedAuthenticationAlias', 'CellManager0l/AuthDataAliase'],
['containerManagedPersistence’, 'true'], ['description’, 'My description'], ['xaRecoveryAuthAlias', 'CellManager0l/xaAliase']] ,
[['serverName', 'localhost'], ['portNumber', 1433]])

Examples scripts for the Sybase database:

The following example script includes optional attributes in a string format:

AdminJDBC.createDataSourceAtScope("Cell=I1BM-F4A849C57A0Cell01,Node=IBM-F4A849C57A0Node01, Server=serverl",

"Sybase JDBC 3 Driver", "My DataSource", "My JNDIName", "com.ibm.websphere.rsadapter.SybaseserverDataStoreHelper",
"myDBName", " category=myCategory, componentManagedAuthenticationAlias=CellManager0l/AuthDataAliase,
containerManagedPersistence=true, description='My description', xaRecoveryAuthAlias=CellManager@1/xaAliase",
"serverName=localhost, portNumber=1433")

The following example script includes optional attributes in a list format:

AdminJDBC.createDataSourceAtScope(“Cell=I1BM-F4A849C57A0Cel 101, Node=1BM-F4A849C57A0Node0l1, Server=serverl”,

"Sybase JDBC 3 Driver", "My DataSource", "My JNDIName", "com.ibm.websphere.rsadapter.SybaseserverDataStoreHelper",

"myDBName", [['category', 'myCategory'], ['componentManagedAuthenticationAlias', 'CellManager0l/AuthDataAliase'],
['containerManagedPersistence', 'true'], ['description’, 'My description'], ['xaRecoveryAuthAlias', 'CellManager0l/xaAliase']] ,
[['serverName', 'localhost'], ['portNumber', 2638]])

createDataSourceUsingTemplateAtScope

This script uses a template to create a new data source in your configuration at the scope that you specify.
The script returns the configuration ID of the new data source.

To run the script, specify the scope, JDBC provider, template ID, and data source name arguments. You
can optionally specify attributes. The arguments and attributes are defined in the following tables:

Table 190. createDataSourceUsingTemplateAtScope script. Required and optional arguments.

Argument Description
scope Specifies a[scope]of cell, node, server, or cluster for the JDBC provider.
jdbcProvider Specifies the name of the JDBC provider of interest.

Chapter 11. Using the script library to automate the application serving environment using wsadmin scripting 173

Table 190. createDataSourceUsingTemplateAtScope script (continued). Required and optional arguments.

Argument Description

templatelD Specifies the configuration ID of the template to use to create the data source.
dsName Specifies the name to assign to the new data source.

attributes Optionally specifies additional attributes in a particular format:

List format

String format

[["attrl", "valuel"], ["attr2", "value2"]]

"attri=valuel, attr2=value2"

Table 191. Optional attributes. Several scripts have these attributes.

Attributes

Description

Example

authDataAlias

Specifies the alias used for database
authentication at run time.

['authDataAlias', 'myAuthDataAlias']

authMechanismPreference

Specifies the authentication mechanism. Valid
values are BASIC_PASSWORD for basic
authentication and KERBEROS for Kerberos
authentication.

category Specifies the category that can be used to ['category', 'myCategory']
classify or group the resource.
connectionPool Specifies the JDBC connection pooling ["connectionPool", [["agedTimeout","100"],

properties for the parent JDBC connection
factory instance.

When you use this attribute in a script, use the
list format. The string format does not work
because this attribute is a configuration object
type.

["connectionTimeout","1000"],
["freePoolDistributionTableSize",10],
["maxConnections","12"], ["minConnections","5"],
["number0OfFreePoolPartitions","3"],
["number0fSharedPoolPartitions","6"],
["number0fUnsharedPoolPartitions","3"],
["properties",[["description","My description"],

"name", "myName"], ["required","false"],["type","String"],
["validationExpression",""],["value","myValue"]]],
["purgePolicy","EntirePool"], ["reapTime","10000"],
["struckThreshold","3"], ["struckTime","10"],
["struckTimerTime","10"], ["surgeCreationInterval","10"],
["surgeThreshold","10"],["testConnection","true"],
["testConnectionInterval”,"10"],
["unusedTimeout","10000"]]]

datasourceHelperClassname

Specifies the name of the DataStoreHelper
implementation class that extends the
capabilities of the implementation class of the
JDBC driver. The extended capabilities allow
the JDBC drive to perform functions that are
specific to the data.

com.ibm.websphere.rsadapter.DB2DataStoreHelper
com.ibm.websphere.rsadapter.DerbyDataStoreHelper

description

Specifies a description of the data source.

['description', 'My description']

JndiName

Specifies the Java Naming and Directory
Interface (JNDI) name for this data source.

['jndiName', 'myJndiName']

logMissing TransactionContext

Specifies whether missing transaction context
logging is enabled.

['logMissingTransactionContext', 'false']

manageCachedHandles

Specifies whether this data source is used for
container-managed persistence of enterprise
beans. The default value is true.

['manageCachedHandles', 'false']

mapping

Specifies the mapping of the configuration
login to a specified authentication alias name.

When you use this attribute in a script, use the
list format. The string format does not work
because this attribute is a configuration object
type.

["mapping",[["authDataAlias","authDataAliasValue"],
["mappingConfigAlias", "mappingConfigAliasValue"]]]

preTestConfig

Specifies the pretest connection configuration
settings.

When you use this attribute in a script, use the
list format. The string format does not work
because this attribute is a configuration object

type.

["preTestConfig", [["preTestConnection", "true"],
"retryInterval®, "12343"],"retryLimit", "4"]]]

properties

Specifies either a typed property type or a
descriptive property type.

When you use this attribute in a script, use the
list format. The string format does not work
because this attribute is a configuration object
type.

["properties",[["description","My description"],
"name", "myName"],"required","false"],
["type","String"],["validationExpression",""],
"value', 'myValue"]]]

174 Scripting the application serving environment

Table 191. Optional attributes (continued). Several scripts have these attributes.

Attributes

Description

Example

propertySet

Optionally specifies resource properties in the
following format:
[propertySet[[resourceProperties[[[name
nameValue,][type; typeValue4][value,
valueValue4]]... [[name,, nameValue,][type,
typeValuep][value, valueValuey]] 1111

When you use this attribute in a script, use the
list format. The string format does not work
because this attribute is a configuration object
type.

[propertySet [[resourceProperties

[[name databaseName][type string][value mys]]

[name driverType] [type integer][value 4]]

[name serverName] [type string][value Tocalhost]]
[[name portNumber] [type integer][value 50000]] 1111

relationalResourceAdapter

Specifies the relational resource adapter that
the data source uses. The available Java 2
Connector (J2C) resource adapter ID of
J2CResourceAdapterID can be identified with
the AdminConfig.1ist('J2CResourceAdapter')
command.

[relationalResourceAdapter "WebSphere Relational Resource
Adapter(cells/pongo/nodes/pongo/servers/serverl |
resources.xml#builtin_rra)"]

statementCacheSize

Specifies the number of statements that the
product can cache for each connection. The
product optimizes the processing of prepared
statements and callable statements by caching
statements that are not used in an active
connection. Both statement types improve the
performance of transactions between an
application and a datastore. Caching the
statements makes them more readily
available.

['statementCacheSize', 5]

xaRecoveryAuthAlias

Specifies the database authentication alias
used during XA recovery processing. When
this property is specified, the default value is
the alias for application authentication.

['-xaRecoveryAuthAlias', 'myCellManager0l/al']

Table 192. Optional attributes, continued. Several scripts have this attribute.

Attributes Description Example

providerType Specifies the JJDBC provider type] that this | ['providerType', 'DB2 Using IBM JCC Driver']
JDBC provider uses.

Syntax

providerType optional attribute

Syntax

Use the following command syntax to find the JDBC provider type name. Only JDBC provider
template IDs that contain the templates/systemljdbc-resource-provider-templates.xml substring

have valid JDBC Provider type names. The JDBC provider type name and its substring form the
JDBC provider template ID.

AdminConfig.listTemplates('JDBCProvider')

Example partial result showing the JDBC provider template ID for the JDBC provider type name of
Cloudscape JDBC Provider (XA):

Cloudscape JDBC Provider (XA)

(templ ates/system|jdbc-resource-provider-temp] ates.xml#JDBCProvider_db2j_4)

Some JDBC provider template IDs:

Cloudscape JDBC Provider (XA)

(templates/system|jdbc-resource-provider-templates.xml#JDBCProvider db2j 4)"

Cloudscape Network Server Using Universal JDBC Driver
(templates/system|jdbc-resource-provider-templates.xml#JDBCProvider db2jN_1)

DB2 Legacy CLI-based Type 2 JDBC Driver (XA)
(templates/system|jdbc-resource-provider-templates.xml#JDBCProvider 4)

DB2 UDB for iSeries (Native - V5R1 and earlier)
(temp]ates/system|jdbc-resource-prov1der-temp]ates.xrn1#JDBCProvider_db2400_5)"

DB2 Universal JDBC Driver Provider (XA)
(temp1ates/system|jdbc-resource-prov1‘der-temp1ates.xrn]#JDBCProvider_DBZ_UNI_Z)

AdminJDBC.createDataSourceUsingTemplateAtScope (nodeName,
serverName, jdbcProvider, templatelID, dsName,
attributes)

Chapter 11. Using the script library to automate the application serving environment using wsadmin scripting

175

Example usage

The following example script contains required attributes only:

AdminJDBC.createDataSourceUsingTemplateAtScope ("myNode", "myServer",
"myJDBCProvider", "Derby JDBC Driver
DataSource (templates/system|jdbc-resource-provider-templates.xml#DataSource_derby 1)", "myDataSource")

The following example script includes optional attributes in a string format:

AdminJDBC.createDataSourceUsingTemplateAtScope("/Cell: IBM-F4A849C57A0Cel101/Node : IBM-F4A849C57A0Node01/Server:serverl”,
"My JDBC Name2",

"DB2 Universal JDBC Driver DataSource(templates/system|jdbc-resource-provider-templates.xml#DataSource DB2_UNI_1)",
"MyJdDBCDS", "authDataAlias=cellManager@l/myAuthDataAlias, authMechanismPreference=BASIC_PASSWORD, category=myCategory,
datasourceHelperClassname=com. ibm.websphere.rsadapter.DB2DataStoreHelper, description='My description’,
diagnoseConnectionUsage=true, jndiName=myJndiName, logMissingTransactionContext=false, manageCachedHandles=false,
providerType='DB2 Using IBM JCC Driver', xaRecoveryAuthAlias=myCellManager0l/xal")

The following example script includes optional attributes in a list format:

AdminJDBC.createDataSourceUsingTemplateAtScope("/Cell: IBM-F4A849C57A0Cel101/Node: IBM-F4A849C57A0Node01/Server:serverl”,
"My JDBC Name2",

"DB2 Universal JDBC Driver DataSource(templates/system|jdbc-resource-provider-templates.xml#DataSource_DB2_UNI_I)",
"MyJDBCDS", [['authDataAlias', 'cellManager0l/myAuthDataAlias'], ['authMechanismPreference', 'BASIC_PASSWORD'],
['category', 'myCategory'], ['connectionPool', [['agedTimeout', 100], ['connectionTimeout', 1000],
['freePoolDistributionTableSize', 10],

['maxConnections', 12], ['minConnections', 5], ['numberOfFreePoolPartitions’, 3], ['numberOfSharedPoolPartitions', 6],
['numberOfUnsharedPoolPartitions', 3], ['properties’', [[['name', 'namela'], ['value', 'valuela']], [['name', 'namelb'],
['value', 'valuelb']]]], ['purgePolicy', 'EntirePool'], ['reapTime', 10000], ['stuckThreshold', 3], ['stuckTime', 10],
['stuckTimerTime', 10], ['surgeThreshold', 10], ['testConnection', 'true']]],

['datasourceHelperClassname', 'com.ibm.websphere.rsadapter.DB2DataStoreHelper'],

['description’, 'My description'], ['diagnoseConnectionUsage', 'true'], ['jndiName', 'myJdndiName'],
['logMissingTransactionContext', 'false'],

['manageCachedHandles', 'false'], ['mapping', [['authDataAlias', 'anAlias'], ['mappingConfigAlias’, 'anotherTest']]],
['preTestConfig', [['preTestConnection', 'true'], ['retryInterval', 12343], ['retryLimit', 4]]],

['properties', [[['name', 'namel'],

['value', 'valuel']], [['name', 'name2'], ['value', 'value2']]]], ['propertySet', [['resourceProperties’,

[[['name’, 'databaseName'],

['type', 'String'], ['value', 'myDbName']], [['name’, 'driverType'], ['type', 'integer'], ['value', 4]], [['name', 'serverName'],
['type', 'String'], ['value', 'localhost']], [['name', 'portNumber'], ['type', 'integer'], ['value', 50000]]]]1]],
['providerType', 'DB2 Using IBM JCC Driver'],

['relationalResourceAdapter’,

'SIB JMS Resource Adapter(cells/IBM-F4A849C57A0Cell101/clusters/cl|resources.xml#J2CResourceAdapter 1232911649746) '],
['statementCacheSize', 5], ['xaRecoveryAuthAlias', 'myCellManager01/xal']])

createJDBCProvider

This script creates a new JDBC provider in your environment. The script returns the configuration ID of the
new JDBC provider.

To run the script, specify the node name, server name, JDBC provider, and implementation class
arguments. You can optionally specify attributes. The arguments and attributes are defined in the following
tables:

Table 193. createJDBCProvider script. Required and optional arguments.

Argument Description
nodeName Specifies the name of the node of interest.
serverName Specifies the name of the server of interest.
jdbcProvider Specifies the name to assign to the new JDBC provider.
implementationClass Specifies the name of the to use.
attributes Optionally specifies additional attributes in a particular format:
List format
[["attrl", "valuel"], ["attr2", "value2"]]
String format
"attri=valuel, attr2=value2"

176 Scripting the application serving environment

Table 194. Optional attributes. Several scripts have these attributes.

Attributes Description

Example

classpath Specifies a list of paths or Java archive
(JAR) file names which together form the
location for the resource provider
classes. Use a semicolon (;) to separate

class paths.

['-classpath', '${DB2_JCC_DRIVER_PATH}/db2jcc4.jar;
${UNIVERSAL_JDBC_DRIVER}/db2jcc_license_cu.jar;
${DB2_JCC_DRIVER_PATH}/db2jcc_license_cisuz.jar']

description Specifies a description of the resource

adapter.

['description', 'My description']

isolated If set to true, specifies that the resource

provider is loaded in its own class loader.

Attention: A provider cannot be
isolated when a native library path is
specified.

[*isolated', 'false']

nativepath Specifies an optional path to any native
libraries, such as *.dll and *.so. Native
path entries are separated by a

semicolon (;).

['-nativepath', '${DB2_JCC_DRIVER NATIVEPATH}']

Table 195. Optional attributes, continued. Several scripts have these attributes.

Attributes Description Example

propertySet Optionally specifies resource properties in | [propertySet [[resourceProperties
the following format: [[[name databaseName] [type string][value mys]]
[propertySet[[resourceProperties[[[name, | [[name driverType][type integer] [value 4]]
nameValue, [[type; typeValue;][value, [[name serverName] [type string][value Tocalhost]]
valueValue,]l... [[name, nameValue,itype, [[name portNumber][type integer][value 50000]] 111]
typeValue,]|[value, valueValue,]]]]1]
When you use this attribute in a script,
use the list format. The string format does
not work because this attribute is a
configuration object type.

providerType Specifies the|[JDBC provider type|that this | ['providerType', 'DB2 Universal JDBC Driver Provider']
JDBC provider uses.

xa Possible values are true and false. If set | true
to true, data sources for the provider
produce connections that applications use | false
in two-phase commit, global transactions.
If set to false, the data sources produce
connections that applications use in
single-phase commit, local transactions.

Syntax

Implementation class optional attribute

Syntax

Use the following command syntax to find the implementationClassName attribute by specifying
the JDBC provider template 1D for JDBCProvID:

AdminConfig.showAttribute(JDBCProvID,'implementationClassName')

implementationClassName attribute example usage:

print AdminConfig.showAttribute("DB2 Universal JDBC Driver Provider (XA)
(templates/system|jdbc-resource-provider-temp]ates.xm]#JDBCProvider_DBZ_UNI_Z)",

"implementationClassName")

Result:
com.ibm.db2. jcc.DB2XADataSource

Some possible implementation class names:

com.ibm.db2.jcc.DB2ConnectionPoolDataSource

com.ibm.db2.jcc.DB2XADataSource

Chapter 11. Using the script library to automate the application serving environment using wsadmin scripting

177

com.ibm.db2.jdbc.app.UDBConnectionPoolDataSource
com.ibm.db2.jdbc.app.UDBXADataSource
com.ibm.as400.access.AS400JDBCConnectionPoolDataSource
com.ibm.as400.access.AS400JDBCXADataSource
org.apache.derby.jdbc.ClientConnectionPoolDataSource
org.apache.derby.jdbc.ClientXADataSource
org.apache.derby.jdbc.ClientConnectionPoolDataSource40
org.apache.derby.jdbc.ClientXADataSource40
org.apache.derby.jdbc.EmbeddedConnectionPoolDataSource40
org.apache.derby.jdbc.EmbeddedXADataSource40
org.apache.derby.jdbc.EmbeddedConnectionPoolDataSource
org.apache.derby.jdbc.EmbeddedXADataSource
com.informix.jdbcx.lfxConnectionPoolDataSource
com.informix.jdbcx.lfxXADataSource oracle.jdbc.pool.OracleConnectionPoolDataSource
oracle.jdbc.xa.client.OracleXADataSource
com.sybase.jdbc3.jdbc.SybConnectionPoolDataSource
com.sybase.jdbc3.jdbc.SybXADataSource
com.sybase.jdbc4.jdbc.SybConnectionPoolDataSource
com.sybase.jdbc4.jdbc.SybXADataSource
com.microsoft.sqlserver.jdbc.SQLServerConnectionPoolDataSource
com.microsoft.sqlserver.jdbc.SQLServerXADataSource
com.ddtek.jdbcx.sqlserver.SQLServerDataSource

providerType optional attribute
Syntax

Use the following command syntax to find the JDBC provider type name. Only JDBC provider
template IDs that contain the templates/systemljdbc-resource-provider-templates.xml substring
have valid JDBC Provider type names. The JDBC provider type name and its substring form the
JDBC provider template ID.

AdminConfig.listTemplates('JDBCProvider')

Example partial result showing the JDBC provider template ID for the JDBC provider type name of
Cloudscape JDBC Provider (XA):

Cloudscape JDBC Provider (XA)
(templates/system|jdbc-resource-provider-templates.xml#JDBCProvider db2j 4)

Some JDBC provider template IDs:

Cloudscape JDBC Provider (XA)
(temp]ates/system|jdbc-resource-provider-temp]ates.xm]#JDBCProvider_dej_4)"

Cloudscape Network Server Using Universal JDBC Driver
(templates/system|jdbc-resource-provider-templates.xml#JDBCProvider db2jN_1)

DB2 Legacy CLI-based Type 2 JDBC Driver (XA)
(templates/system|jdbc-resource-provider-templates.xml#JDBCProvider 4)

DB2 UDB for iSeries (Native - V5R1 and earlier)
(templates/system|jdbc-resource-provider-templates.xml#JDBCProvider db2400 5)"

DB2 Universal JDBC Driver Provider (XA)
(templates/system|jdbc-resource-provider-templates.xml#JDBCProvider_DB2_UNI_2)

AdminJDBC.createJDBCProvider (nodeName, serverName,
JjdbcProvider, implementationClass, attributes)

Example usage

The following example script contains required attributes only:

178 Scripting the application serving environment

AdminJDBC.createJDBCProvider ("myNode", "myServer", "myJDBCProvider",
"myImplementationClass")

The following example script includes optional attributes in a string format:

AdminJDBC.createJDBCProvider ("IBM-F4A849C57A0Node01", "serverl™, "My JDBC Name",

"com. ibm.db2. jcc.DB2ConnectionPoolDataSource”,

" classpath=${DB2_JCC_DRIVER_PATH}/db2jcc4.jar;${UNIVERSAL_JDBC_DRIVER}/db2jcc_license_cu.jar;
${DB2_JCC_DRIVER_PATH}/db2jcc_license_cisuz.jar,

description='My description’, isolated=false, nativepath=${DB2 JCC _DRIVER NATIVEPATH},
providerType='DB2 Univesal JDBC Driver Provider', xa=true ")

The following example script includes optional attributes in a list format:

AdminJDBC.createJDBCProvider("IBM-F4A849C57A0Node01", "serverl", "My JDBC Name",
"com. ibm.db2. jcc.DB2ConnectionPoolDataSource”,
[['classpath’, '${DB2_JCC_DRIVER _PATH}/db2jcc4.jar; ${UNIVERSAL_JDBC DRIVER}/db2jcc_license_cu.jar;

${DB2_JCC_DRIVER _PATH}/db2jcc_license_cisuz.jar'],

['description’, 'My description'], ['isolated', 'false'], ['nativepath’, '${DB2_JCC_DRIVER_NATIVEPATH}'],
['providerType', 'DB2 Univesal JDBC Driver Provider'], ['xa', 'true'], ['propertySet', [['resourceProperties’,
[[['name’, 'databaseName'], ['type', 'String'], ['value', 'myDbName']], [['name', 'driverType'], ['type', 'integer'],
['value', 4]], [['name', 'serverName'], ['type', 'String'], ['value', 'localhost']], [['name’, 'portNumber'],
['type', 'Integer'], ['value', 50000]]]1]]])

createJDBCProviderUsingTemplate

This script uses a template to create a new JDBC provider in your environment. The script returns the

configuration ID of the new JDBC provider.

To run the script, specify the node name, server name, template 1D, JDBC provider name, and
implementation class arguments. You can optionally specify attributes. The arguments and attributes are
defined in the following tables:

Table 196. createJDBCProviderUsingTemplate script.

Required and optional arguments.

List format

String format

Argument Description

nodeName Specifies the name of the node of interest.

serverName Specifies the name of the server of interest.

templatelD Specifies the configuration ID of the template to use to create the JDBC provider.
jdbcProvider Specifies the name to assign to the new JDBC provider.

implementationClass Specifies the name of the to use.

attributes Optionally specifies additional attributes in a particular format:

[["attrl", "valuel"], ["attr2", "value2"]]

"attri=value1, attr2=value2"

Table 197. Optional attributes. Several scripts have these attributes.

Attributes

Description

Example

classpath

Specifies a list of paths or Java archive
(JAR) file names which together form the
location for the resource provider
classes. Use a semicolon (;) to separate
class paths.

['-classpath', '${DB2_JCC_DRIVER_PATH}/db2jcc4.jar;
${UNIVERSAL_JDBC_DRIVER}/db2jcc_license_cu.jar;
${DB2_JCC_DRIVER_PATH}/db2jcc_license_cisuz.jar']

description

Specifies a description of the resource
adapter.

['description', 'My description']

isolated

If set to true, specifies that the resource
provider is loaded in its own class loader.

Attention: A provider cannot be
isolated when a native library path is
specified.

["isolated', 'false']

nativepath

Specifies an optional path to any native
libraries, such as *.dll and *.so. Native
path entries are separated by a
semicolon (;).

['-nativepath', '${DB2_JCC_DRIVER_NATIVEPATH}']

Chapter 11. Using the script library to automate the application serving environment using wsadmin scripting

179

Table 198. Optional attributes, continued. Several scripts have these attributes.

Attributes Description Example

propertySet Optionally specifies resource properties [propertySet [[resourceProperties
in the following format: [[[name databaseName] [type string][value mys]]
[propertySet[[resourceProperties[[[name, | [[name driverType][type integer][value 4]]
nameValue, [[type; typeValue,]value; [[name serverName][type string] [value Tocalhost]]

valueValue,]]... [[name, [[name portNumber][type integer][value 50000]]]11]

nameValue,]type, typeValue][value,
valueValue,]] 1111

When you use this attribute in a script,
use the list format. The string format
does not work because this attribute is a
configuration object type.

providerType Specifies the [JDBC provider type]that ['providerType', 'DB2 Universal JDBC Driver Provider']
this JDBC provider uses.

xa Possible values are true and false. If true
set to true, data sources for the provider
produce connections that applications false

use in two-phase commit, global
transactions. If set to false, the data
sources produce connections that
applications use in single-phase commit,
local transactions.

Syntax
Implementation class optional attribute
Syntax

Use the following command syntax to find the implementationClassName attribute by specifying
the JDBC provider template ID for JDBCProvID:

AdminConfig.showAttribute(JDBCProvID, 'implementationClassName')

implementationClassName attribute example usage:

print AdminConfig.showAttribute("DB2 Universal JDBC Driver Provider (XA)
(templates/system|jdbc-resource-provider-templates.xml#JDBCProvider DB2_UNI_2)",
"implementationClassName")

Result:
com.ibm.db2. jcc.DB2XADataSource

Some possible implementation class names:
com.ibm.db2.jcc.DB2ConnectionPoolDataSource
com.ibm.db2.jcc.DB2XADataSource
com.ibm.db2.jdbc.app.UDBConnectionPoolDataSource
com.ibm.db2.jdbc.app.UDBXADataSource
com.ibm.as400.access.AS400JDBCConnectionPoolDataSource
com.ibm.as400.access.AS400JDBCXADataSource
org.apache.derby.jdbc.ClientConnectionPoolDataSource
org.apache.derby.jdbc.ClientXADataSource
org.apache.derby.jdbc.ClientConnectionPoolDataSource40
org.apache.derby.jdbc.ClientXADataSource40
org.apache.derby.jdbc.EmbeddedConnectionPoolDataSource40
org.apache.derby.jdbc.EmbeddedXADataSource40
org.apache.derby.jdbc.EmbeddedConnectionPoolDataSource
org.apache.derby.jdbc.EmbeddedXADataSource
com.informix.jdbcx.lfxConnectionPoolDataSource

180 Scripting the application serving environment

com.informix.jdbcx.lfxXADataSource oracle.jdbc.pool.OracleConnectionPoolDataSource
oracle.jdbc.xa.client.OracleXADataSource
com.sybase.jdbc3.jdbc.SybConnectionPoolDataSource
com.sybase.jdbc3.jdbc.SybXADataSource
com.sybase.jdbc4.jdbc.SybConnectionPoolDataSource
com.sybase.jdbc4.jdbc.SybXADataSource
com.microsoft.sqlserver.jdbc.SQLServerConnectionPoolDataSource
com.microsoft.sqlserver.jdbc.SQLServerXADataSource
com.ddtek.jdbcx.sqglserver.SQLServerDataSource

providerType optional attribute

Syntax

Use the following command syntax to find the JDBC provider type name. Only JDBC provider
template IDs that contain the templates/systemljdbc-resource-provider-templates.xml substring
have valid JDBC Provider type names. The JDBC provider type name and its substring form the

JDBC provider template ID.

AdminConfig.listTemplates('JDBCProvider')

Example partial result showing the JDBC provider template ID for the JDBC provider type name of

Cloudscape JDBC Provider (XA):

Cloudscape JDBC Provider (XA)
(temp]ates/system|jdbc—resource—prov1der—temp]ates.xm1#JDBCProvider_dej_4)

Some JDBC provider template IDs:

Cloudscape JDBC Provider (XA)
(templates/system|jdbc-resource-provider-templates.xml#JDBCProvider db2j 4)"

Cloudscape Network Server Using Universal JDBC Driver
(temp]ates/system|jdbc-resource-prov1der-temp]ates.xm]#JDBCProvider_dejN_l)

DB2 Legacy CLI-based Type 2 JDBC Driver (XA)
(templates/system|jdbc-resource-provider-templates.xml#JDBCProvider 4)

DB2 UDB for iSeries (Native - V5R1 and earlier)
(templates/system|jdbc-resource-provider-templates.xml#JDBCProvider db2400 5)"

DB2 Universal JDBC Driver Provider (XA)
(templates/system|jdbc-resource-provider-templates.xml#JDBCProvider_DB2_UNI_2)

AdminJDBC.createJDBCProviderUsingTemplate (nodeName ,
serverName, templatelID, jdbcProvider,
implementationClass, attributes)

Example usage

The following example script contains required attributes only:

AdminJDBC.createJDBCProviderUsingTemplate("myNode", "myServer", "Derby JDBC
Provider(templates/servertypes/APPLICATION_SERVER/servers/DeveloperServer|resources.xml#JDBCProvider 1124467079638)",
"myJDBCProvider", "myImplementationClass")

The following example script includes optional attributes in a string format:

AdminJDBC.createJDBCProviderUsingTemplate ("IBM-F4A849C57A0Noded1", "serverl”,

"DB2 Universal JDBC Driver Pravider(templates/system|jdbc-resource-provider—templates.xml#JDBCPravider_DBZ_UNI_l)”,
"My JDBC Name", "com.ibm.db2.jcc.DB2ConnectionPoolDataSource",

"classpath= ${DB2_JCC_DRIVER_PATH}/db2jcc4.jar;
${UNIVERSAL_JDBC_DRIVER}/db2jcc_license_cu.jar;${DB2_JCC_DRIVER_PATH}/db2jcc_license_cisuz.jar,

description="'My description’, isolated=false, nativepath=${DB2_JCC DRIVER NATIVEPATH},

providerType='DB2 Univesal JDBC Driver Provider', xa=true ")

The following example script includes optional attributes in a list format:

AdminJDBC.createJDBCProviderUsingTemplate ("IBM-F4A849C57A0Noded1", "serverl",

"DB2 Universal JDBC Driver Provider(templates/system|jdbc-resource-provider-templates.xml#JDBCProvider_DB2 UNI_I)",
My JDBC Name",

"com. ibm.db2.jcc.DB2ConnectionPoolDataSource”,

[['classpath’, '${DB2_JCC_DRIVER_PATH}/db2jcc4.jar;

${UNIVERSAL_JDBC_DRIVER}/db2jcc_license_cu.jar; ${DB2_JCC_DRIVER_PATH}/db2jcc_license_cisuz.jar'],

['description’, 'My description'], ['isolated', 'false'], ['nativepath’, '${DB2_JCC_DRIVER_NATIVEPATH}'],

Chapter 11. Using the script library to automate the application serving environment using wsadmin scripting

181

['providerType', 'DB2 Univesal JDBC Driver Provider'], ['xa', 'true'], ['propertySet', [['resourceProperties’,
[[['name’, 'databaseName'], ['type', 'String'], ['value’, 'myDbName']], [['name’', 'driverType'], ['type', 'integer'],
['value', 4]], [['name', 'serverName'], ['type', 'String'], ['value', 'localhost']], [['name’, 'portNumber'],
['type', 'Integer'], ['value', 50000]]]]]]])

createJDBCProviderAtScope

This script creates a new JDBC provider in your environment at the scope that you specify. The script
returns the configuration ID of the new JDBC provider. The script procedure uses the createJDBCProvider
administrative command to create a new JDBC provider. The createJDBCProvider script procedure creates
a new JDBC provider by using the AdminConfig create command.

To run the script, specify the scope, JDBC provider, database type, provider type, and implementation
types arguments. You can optionally specify attributes. The arguments and attributes are defined in the
following tables:

Table 199. createJDBCProviderAtScope script. Required and optional arguments.

Argument Description

scope Specifies aof cell, node, server, or cluster for the JDBC provider.

jdbcProvider Specifies the name to assign to the new JDBC provider.

databaseType Specifies the database type that this JDBC provider uses. Valid values include DB2, Derby,
Informix, Oracle, Sybase, SQL Server, and user-defined values.

providerType Specifies the JDBC provider type] that this JDBC provider uses.

implementationType Specifies the implementation type that this JDBC provider uses. Valid values are Connection
pool datasource and XA data source.

attributes Optionally specifies additional attributes in a particular format:
List format

[["attrl", "valuel"], ["attr2", "value2"]]

String format
"attr1=value1, attr2=value2"

Table 200. Optional attributes. Several scripts have these attributes.

Attributes Description Example

classpath Specifies a list of paths or Java archive ['-classpath', '${DB2_JCC_DRIVER_PATH}/db2jcc4.jar;
(JAR) file names which together form the | ${UNIVERSAL_JDBC_DRIVER}/db2jcc_license_cu.jar;
location for the resource provider ${DB2_JCC_DRIVER_PATH}/db2jcc_license_cisuz.jar']
classes. Use a semicolon (;) to separate
class paths.

description Specifies a description of the resource ['description', 'My description']
adapter.

isolated If set to true, specifies that the resource | ['isolated', 'false']

provider is loaded in its own class loader.

Attention: A provider cannot be
isolated when a native library path is
specified.

nativepath Specifies an optional path to any native ['-nativepath', '${DB2_JCC_DRIVER NATIVEPATH}']
libraries, such as *.dll and *.so. Native
path entries are separated by a
semicolon (;).

Table 201. Optional attributes, continued. Several scripts have this attribute.
Attributes Description
implementationClassName Specifies the [mplementation class|to use for a given JDBC provider template.

providerType optional attribute

Syntax

182 Scripting the application serving environment

Use the following command syntax to find the JDBC provider type name. Only JDBC provider
template IDs that contain the templates/systemljdbc-resource-provider-templates.xml substring

have valid JDBC Provider type names. The JDBC provider type name and its substring form the

JDBC provider template ID.

AdminConfig.listTemplates('JDBCProvider')

Example partial result showing the JDBC provider template ID for the JDBC provider type name of

Cloudscape JDBC Provider (XA):

Cloudscape JDBC Provider (XA)
(templates/system|jdbc-resource-provider-templates.xml#JDBCProvider db2j 4)

Some JDBC provider template IDs:

Cloudscape JDBC Provider (XA)
(templates/system|jdbc-resource-provider-templates.xml#JDBCProvider_db2j_4)"

Cloudscape Network Server Using Universal JDBC Driver
(templates/system|jdbc-resource-provider-templates.xml#JDBCProvider_db2jN_1)

DB2 Legacy CLI-based Type 2 JDBC Driver (XA)
(templates/system|jdbc-resource-provider-templates.xml#JDBCProvider 4)

DB2 UDB for iSeries (Native - V5R1 and earlier)
(templates/system|jdbc-resource-provider-templates.xml#JDBCProvider db2400 5)"

DB2 Universal JDBC Driver Provider (XA)
(templates/system|jdbc-resource-provider-templates.xml#JDBCProvider DB2_UNI_2)

implementationClassName attribute

Syntax

Use the following command syntax to find the implementationClassName attribute by specifying

the JDBC provider template ID for JDBCProvID:

AdminConfig.showAttribute(JDBCProvID, 'implementationClassName')

implementationClassName attribute example usage:

print AdminConfig.showAttribute("DB2 Universal JDBC Driver Provider (XA)
(templates/system|jdbc-resource-provider-templates.xml#JDBCProvider DB2_UNI_2)",
"implementationClassName")

Result:
com.ibm.db2. jcc.DB2XADataSource

Some possible implementation class names:
com.ibm.db2.jcc.DB2ConnectionPoolDataSource
com.ibm.db2.jcc.DB2XADataSource
com.ibm.db2.jdbc.app.UDBConnectionPoolDataSource
com.ibm.db2.jdbc.app.UDBXADataSource
com.ibm.as400.access.AS400JDBCConnectionPoolDataSource
com.ibm.as400.access.AS400JDBCXADataSource
org.apache.derby.jdbc.ClientConnectionPoolDataSource
org.apache.derby.jdbc.ClientXADataSource
org.apache.derby.jdbc.ClientConnectionPoolDataSource40
org.apache.derby.jdbc.ClientXADataSource40
org.apache.derby.jdbc.EmbeddedConnectionPoolDataSource40
org.apache.derby.jdbc.EmbeddedXADataSource40
org.apache.derby.jdbc.EmbeddedConnectionPoolDataSource
org.apache.derby.jdbc.EmbeddedXADataSource
com.informix.jdbcx.lfxConnectionPoolDataSource
com.informix.jdbcx.lfxXADataSource oracle.jdbc.pool.OracleConnectionPoolDataSource

Chapter 11. Using the script library to automate the application serving environment using wsadmin scripting

183

oracle.jdbc.xa.client.OracleXADataSource
com.sybase.jdbc3.jdbc.SybConnectionPoolDataSource
com.sybase.jdbc3.jdbc.SybXADataSource
com.sybase.jdbc4.jdbc.SybConnectionPoolDataSource
com.sybase.jdbc4.jdbc.SybXADataSource
com.microsoft.sqlserver.jdbc.SQLServerConnectionPoolDataSource
com.microsoft.sqlserver.jdbc.SQLServerXADataSource
com.ddtek.jdbcx.sqlserver.SQLServerDataSource

createJDBCProviderAtScope script

Syntax

AdminJDBC.createJDBCProviderAtScope (scope,
JjdbcProvider, databaseType, providerType, implementationType,
attributes)

Example usage

The following example script contains required attributes only:

AdminJDBC.createJDBCProviderAtScope("myScope", "myJDBCProvider", "myDatabaseType","myProviderType",
"myImplementationClass")

The following example script includes optional attributes in a string format:

AdminJDBC.createJDBCProviderAtScope(”/Cell: IBM-F4A849C57A0Cell01/Node: IBM-F4A849C57A0Node01", "DB2",
"DB2 Universal JDBC Driver Provider", "Connection pool data source", "My JDBCProvider Name",
"description="'My description', implementationClassName=com.ibm.db2.jcc.DB2ConnectionPoolDataSource,
classpath=${DB2_JCC_DRIVER_PATH}/db2jcc4.jar;

${UNIVERSAL_JDBC DRIVER}/db2jcc_license_cu.jar;${DB2_JCC_DRIVER_PATH}/db2jcc_license_cisuz.jar,
nativePath=${DB2_JCC_DRIVER_NATIVEPATH}, isolated=false")

The following example script includes optional attributes in a list format:

AdminJDBC.createJDBCProviderAtScope("/Cell: IBM-F4A849C57A0Cel101/Node: IBM-F4A849C57A0Node01", "DB2",

"DB2 Universal JDBC Driver Provider", "Connection pool data source", "My JDBCProvider Name", [['description', 'My description'],
['implementationClassName ', 'com.ibm.db2.jcc.DB2ConnectionPoolDataSource'],

['classpath', '${DB2 _JCC DRIVER PATH}/db2jcc4.jar;

${UNIVERSAL_JDBC DRIVER}/db2jcc_license cu.jar;${DB2_JCC _DRIVER PATH}/dbZjcc_license_cisuz.jar'],

['nativePath', '${DB2_JCC DRIVER NATIVEPATH}'], ['isolated', 'false']])

createJDBCProviderUsingTemplateAtScope

This script uses a template to create a new JDBC provider in your environment at the scope that you
specify. The script returns the configuration ID of the new JDBC provider.

To run the script, specify the scope, template ID, JDBC provider name, and implementation class
arguments. You can optionally specify attributes. The arguments and attributes are defined in the following
tables:

Table 202. createJDBCProviderUsingTemplateAtScope script. Required and optional arguments.

Argument Description
scope Specifies aof cell, node, server, or cluster for the JDBC provider.
templatelD Specifies the configuration ID of the template to use to create the JDBC provider.
jdbcProvider Specifies the name to assign to the new JDBC provider.
implementationClassName Specifies the name of the to use.
attributes Optionally specifies additional attributes in a particular format:
List format
[["attrl", "valuel"], ["attr2", "value2"]]
String format
"attri=value1, attr2=value2"

184 Scripting the application serving environment

Table 203. Optional attributes. Several scripts have these attributes.

libraries, such as *.dll and *.so. Native
path entries are separated by a
semicolon (;).

Attributes Description Example

classpath Specifies a list of paths or Java archive ['-classpath', '${DB2_JCC_DRIVER_PATH}/db2jcc4.jar;
(JAR) file names which together form the | ${UNIVERSAL_JDBC_DRIVER}/db2jcc_license_cu.jar;
location for the resource provider ${DB2_JCC_DRIVER_PATH}/db2jcc_license_cisuz.jar']
classes. Use a semicolon (;) to separate
class paths.

description Specifies a description of the resource ['description', 'My description']
adapter.

isolated If set to true, specifies that the resource | ['isolated', 'false']
provider is loaded in its own class loader.
Attention: A provider cannot be
isolated when a native library path is
specified.

nativepath Specifies an optional path to any native ['-nativepath', '${DB2_JCC_DRIVER_NATIVEPATH}']

Table 204. Optional attributes, continued. Several scripts have these attributes.

produce connections that applications
use in two-phase commit, global
transactions. If set to false, the data
sources produce connections that
applications use in single-phase commit,
local transactions.

Attributes Description Example

propertySet Optionally specifies resource properties in | [propertySet [[resourceProperties
the following format: [[[name databaseName] [type string][value mys]]
[propertySet[[resourceProperties[[[name, | [[name driverType] [type integer] [value 4]]
nameValue, [[type; typeValue;][value, [[name serverName] [type string][value Tocalhost]]
valueValue,]]... [[name, [[name portNumber][type integer][value 50000]] 111]
nameValue,]type, typeValue][value,
valueValue,]] 1111
When you use this attribute in a script,
use the list format. The string format
does not work because this attribute is a
configuration object type.

providerType Specifies the EDBC provider tzEelthat this | ['providerType', 'DB2 Universal JDBC Driver Provider']
JDBC provider uses.

xa Possible values are true and false. If set | true
to true, data sources for the provider

false

Implementation class optional attribute

Syntax

Use the following command syntax to find the implementationClassName attribute by specifying
the JDBC provider template ID for JDBCProvID:

AdminConfig.showAttribute(JDBCProvID, 'implementationClassName')

implementationClassName attribute example usage:

print AdminConfig.showAttribute("DB2 Universal JDBC Driver Provider (XA)
(templates/system|jdbc-resource-provider-templates.xml#JDBCProvider DB2_UNI_2)",

"implementationClassName")

Result:

com.ibm.db2.jcc.DB2XADataSource

Some possible implementation class names:

com.ibm.db2.jcc.DB2ConnectionPoolDataSource
com.ibm.db2.jcc.DB2XADataSource
com.ibm.db2.jdbc.app.UDBConnectionPoolDataSource

Chapter 11. Using the script library to automate the application serving environment using wsadmin scripting

185

com.ibm.db2.jdbc.app.UDBXADataSource
com.ibm.as400.access.AS400JDBCConnectionPoolDataSource
com.ibm.as400.access.AS400JDBCXADataSource
org.apache.derby.jdbc.ClientConnectionPoolDataSource
org.apache.derby.jdbc.ClientXADataSource
org.apache.derby.jdbc.ClientConnectionPoolDataSource40
org.apache.derby.jdbc.ClientXADataSource40
org.apache.derby.jdbc.EmbeddedConnectionPoolDataSource40
org.apache.derby.jdbc.EmbeddedXADataSource40
org.apache.derby.jdbc.EmbeddedConnectionPoolDataSource
org.apache.derby.jdbc.EmbeddedXADataSource
com.informix.jdbcx.lfxConnectionPoolDataSource
com.informix.jdbcx.lfxXADataSource oracle.jdbc.pool.OracleConnectionPoolDataSource
oracle.jdbc.xa.client.OracleXADataSource
com.sybase.jdbc3.jdbc.SybConnectionPoolDataSource
com.sybase.jdbc3.jdbc.SybXADataSource
com.sybase.jdbc4.jdbc.SybConnectionPoolDataSource
com.sybase.jdbc4.jdbc.SybXADataSource
com.microsoft.sqlserver.jdbc.SQLServerConnectionPoolDataSource
com.microsoft.sqlserver.jdbc.SQLServerXADataSource
com.ddtek.jdbcx.sqglserver.SQLServerDataSource

providerType optional attribute
Syntax

Use the following command syntax to find the JDBC provider type name. Only JDBC provider
template IDs that contain the templates/systemljdbc-resource-provider-templates.xml substring
have valid JDBC Provider type names. The JDBC provider type name and its substring form the
JDBC provider template ID.

AdminConfig.listTemplates('JDBCProvider')

Example partial result showing the JDBC provider template ID for the JDBC provider type name of
Cloudscape JDBC Provider (XA):

Cloudscape JDBC Provider (XA)
(templates/system|jdbc-resource-provider-templates.xml#JDBCProvider_db2j_4)

Some JDBC provider template IDs:

Cloudscape JDBC Provider (XA)
(templates/system|jdbc-resource-provider-templates.xml#JDBCProvider_db2j 4)"

Cloudscape Network Server Using Universal JDBC Driver
(templates/system|jdbc-resource-provider-templates.xml#JDBCProvider db2jN_1)

DB2 Legacy CLI-based Type 2 JDBC Driver (XA)
(templates/system|jdbc-resource-provider-templates.xml#JDBCProvider 4)

DB2 UDB for iSeries (Native - V5R1 and earlier)
(templates/system|jdbc-resource-provider-templates.xml#JDBCProvider db2400_5)"

DB2 Universal JDBC Driver Provider (XA)
(templates/system|jdbc-resource-provider-templates.xml#JDBCProvider DB2_UNI_2)

createJDBCProviderUsingTemplateAtScope script

Syntax

AdminJDBC.createJDBCProviderUsingTemplateAtScope(scope,
templateID, jdbcProvider,
implementationClass, attributes)

186 Scripting the application serving environment

Example usage

The following example script contains required attributes only:

AdminJDBC.createJDBCProviderUsingTemplateAtScope("myScope", "Derby JDBC
Provider (templates/servertypes/APPLICATION_SERVER/servers/DeveloperServer|resources.xml#JDBCProvider 1124467079638)",
"myJDBCProvider", "myImplementationClass")

The following example script includes optional attributes in a string format:

AdminJDBC.createJDBCProviderUsingTemplateAtScope(”/Cell: IBM-F4A849C57A0Cel101/ServerCluster:clusterl”,

"DB2 Universal JDBC Driver Provider(templates/system|jdbc-resource-provider-templates.xml#JDBCProvider DB2 UNI_1)",
"My JDBC Name@O1", " com.ibm.db2.jcc.DB2ConnectionPoolDataSource",

"classpath= ${DB2_JCC_DRIVER_PATH}/db2jcc4.jar;

${UNIVERSAL_JDBC DRIVER}/db2jcc_license_cu.jar;${DB2_JCC_DRIVER PATH}/db2jcc_license_cisuz.jar,

description="'My description’, isolated=false, nativepath=${DB2_JCC DRIVER NATIVEPATH},

providerType='DB2 Univesal JDBC Driver Provider', xa=true ")

The following example script includes optional attributes in a list format:

AdminJDBC.createJDBCProviderUsingTemplateAtScope("/Cell: IBM-F4A849C57A0Cel101/ServerCluster:clusterl”,

"DB2 Universal JDBC Driver Provider(templates/system|jdbc-resource-provider-templates.xml#JDBCProvider_DB2 UNI_I)",
"My JDBC Name@O1", " com.ibm.db2.jcc.DB2ConnectionPoolDataSource",

[['classpath’, '${DB2_JCC_DRIVER_PATH}/db2jcc4.jar;

${UNIVERSAL_JDBC_DRIVER}/db2jcc_license_cu.jar; ${DB2_JCC_DRIVER_PATH}/db2jcc_license_cisuz.jar'],

['description’, 'My description'], ['isolated', 'false'], ['nativepath’, '${DB2_JCC_DRIVER_NATIVEPATH}'],
['providerType', 'DB2 Univesal JDBC Driver Provider'], ['xa', 'true'], ['propertySet', [['resourceProperties’,
[[['name’, 'databaseName'], ['type', 'String'], ['value’, 'myDbName']], [['name', 'driverType'], ['type', 'integer'],
['value', 4]], [['name', 'serverName'], ['type', 'String'], ['value', 'localhost']], [['name’, 'portNumber'],
['type', 'Integer'],

['value', 50000]7]]1]])

JDBC query scripts

The scripting library provides many script procedures to manage Java Database Connectivity (JDBC)
configurations in your environment. This topic provides usage information for scripts that retrieve
configuration IDs for your JDBC configuration. You can run each script individually or combine many
procedures to create custom automation scripts for your environment.

Each AdmindDBC script procedure is located in the app_server_root/scriptLibraries/resources/JDBC/
V70 directory.

Beginning with Version 7, the Jython script library provides script functions for JDBC providers, JMS
resources, and resource providers at the server scope. You can write your own custom scripts to configure
resources at the cell, node, or cluster level.

Note: Do not edit the script procedures in the script library. To write custom script library procedures, use
the scripts in the|app_server rool/scriptLibraries directory as Jython syntax samples. Save the
custom scripts to a new subdirectory to avoid overwriting the library.

Fast path: Beginning with Fix Pack 5, the Jython script library provides script functions for JDBC
providers, JMS resources, and resource providers at the cell, node, server, or cluster scope.
Resource providers include mail providers, URL providers, and resource environment
providers. You do not have to write custom scripts to configure resources at a particular scope.

Use the following script procedures to query your JDBC configuration:
« [“listDataSources’|

+ [“listDataSourceTemplates” on page 188§|

« [“listJDBCProviders” on page 188

« [“list/DBCProviderTemplates” on page 188|

listDataSources

This script displays a list of configuration IDs for the data sources in your configuration.

Chapter 11. Using the script library to automate the application serving environment using wsadmin scripting 187

No input arguments are required for the script. However, you can specify a data source name to return a
specific configuration id, as defined in the following table:

Table 205. listDataSources script. Run the script to list data sources.

Argument Description
dsName Optionally specifies the name of the data source of interest.
Syntax

AdminJDBC.1istDataSources (dsName)

Example usage
AdminJDBC.T1istDataSources ()
AdminJDBC.TlistDataSources("myDataSource")

listDataSourceTemplates
This script displays a list of configuration IDs for the data source templates in your environment.

No input arguments are required for the script. However, you can specify a template name to return a
specific configuration id, as defined in the following table:

Table 206. listDataSourceTemplates script. Run the script to list data source templates.

Argument Description
templateName Optionally specifies the name of the template of interest.
Syntax

AdminJDBC.1istDataSourceTemplates (templateName)

Example usage
AdminJDBC.TistDataSourceTemplates()
AdminJDBC.TistDataSourceTemplates("Derby JDBC Driver DataSource")

listdDBCProviders
This script displays a list of configuration IDs for the JDBC providers in your environment.

No input arguments are required for the script. However, you can specify a JDBC provider name to return
a specific configuration id, as defined in the following table:

Table 207. listJIDBCProviders script. Run the script to list JOBC providers.

Argument Description
jdbcName Optionally specifies the name of the JDBC provider of interest.
Syntax

AdminJDBC.11istJDBCProviders (jdbcName)

Example usage
AdminJDBC.1istJDBCProviders()
AdminJDBC.1istJDBCProviders ("myJDBCProvider")

listJDBCProviderTemplates

This script displays a list of configuration IDs for the JDBC provider templates in your environment.

188 Scripting the application serving environment

No input arguments are required for the script. However, you can specify a template name to return a
specific configuration id, as defined in the following table:

Table 208. listJDBCProviderTemplates script. Run the script to list JODBC provider templates.

Argument Description
templateName Optionally specifies the name of the template of interest.
Syntax

AdminJDBC.1istJDBCProviderTemplates (templateName)

Example usage
AdminJDBC.1istJDBCProviderTemplates ()
AdminJDBC.1istJDBCProviderTemplates("Derby JDBC Provider")

Automating messaging resource configurations using wsadmin
scripting

The scripting library provides Jython script procedures to assist in automating your environment. Use the
resource management scripts to configure and manage your Java Messaging Service (JMS)
configurations.

About this task

The scripting library provides a set of procedures to automate the most common application server
administration functions. There are three ways to use the Jython script library.

* Run scripts from the Jython script library in interactive mode with the wsadmin tool. You can launch the
wsadmin tool, and run individual scripts that are included in the script library using the following syntax:

wsadmin>AdminServerManagement.createApplicationServer("myNode", "myServer", "default")

* Use a text editor to combine several scripts from the Jython script library, as the following sample
displays:
#
My Custom Jython Script - file.py
#

AdminServerManagement.createApplicationServer("myNode", "Serverl", "default")
AdminServerManagement.createApplicationServer("myNode", "Server2", "default")

Use one of them as the first member of a cluster
AdminClusterManagement.createClusterWithFirstMember("myCluster", "APPLICATION_SERVER",
"myNode", "Serverl")

Add a second member to the cluster
AdminClusterManagement.createClusterMember("myCluster", "myNode", "Server3")

Install an application
AdminApplication.instalTAppWithClusterOption("DefaultApplication",
"..\installableApps\DefaultApplication.ear", "myCluster")

Start all servers and applications on the node
AdminServerManagement.startAl1Servers ("myNode")

Save the custom script and run it from the command line, as the following syntax demonstrates:
bin>wsadmin -language jython -f path/to/your/jython/file.py

» Use the Jython scripting library code as sample syntax to write custom scripts. Each script example in
the script library demonstrates best practices for writing wsadmin scripts. The script library code is
located in the [app_server rool/scriptLibraries directory. Within this directory, the scripts are
organized into subdirectories according to functionality, and further organized by version. For example,
the app_server_root/scriptLibraries/application/V70 subdirectory contains procedures that perform
application management tasks that are applicable to Version 7.0 and later of the product.

Chapter 11. Using the script library to automate the application serving environment using wsadmin scripting 189

The messaging resource management procedures in the scripting library are located in the
app_server_root/scriptLibraries/resources/JMS/V70 subdirectory. Each script from the directory
automatically loads when you launch the wsadmin tool. To automatically load your custom Jython scripts
(*.py) when the wsadmin tool starts, save your automation scripts to a new subdirectory in the
app_server_root/scriptLibraries directory.

Note: To create custom scripts using the scripting library procedures, save the modified scripts to a new
subdirectory to avoid overwriting the library. Do not edit the script procedures in the scripting library.

You can use the scripts to perform multiple combinations of administration functions. Use the following
sample combination of procedures to create a JMS provider and configure JMS resources for the JMS

provider.

Procedure
1. Optional: Launch the wsadmin tool.
Use this step to launch the wsadmin tool and connect to a server, or run the tool in local mode. If you
launch the wsadmin tool, use the interactive mode examples in this topic to run scripts.
» Enter the following command from the bin directory to launch the wsadmin tool and connect to a
server:
bin>wsadmin -lang jython
» Enter the following command from the bin directory to launch the wsadmin tool in local mode and
using the Jython scripting language:
bin>wsadmin -conntype none -lang jython

When the wsadmin tool launches, the system loads all scripts from the scripting library.

2. Configure a JMS provider.
Run the createJMSProvider procedure from the script library and specify the required arguments. To
run the script, specify the node, server, JMS provider name, external initial contextual factory name,
and external provider URL. You can optionally specify additional attributes in the following format:
[["attrl", "valuel"], ["attr2", "value2"]]. The following table provides additional information
about the arguments to specify:

Table 209. createJMSProvider script arguments. Run the script to create a JMS provider.

Argument Description

Node name Specifies the name of the node of interest.

Server name Specifies the name of the server of interest.

JMS provider name Specifies the name to assign to the new JMS provider.

External initial contextual factory name Specifies the Java class name of the initial context factory for the JMS provider.
External provider URL Specifies the JMS provider URL for external JNDI lookups.

The following example creates a JMS provider in your configuration:

bin>wsadmin -Tang jython -c "AdminJMS.createJMSProvider("myNode", "myServer", "myJMSProvider", "extInitCF",
"extPURL", [["description", "testing"], ["supportsASF", "true"], ["providerType", "jmsProvType"]])"

You can also use interactive mode to run the script procedure, as the following example displays:

wsadmin>AdminJMS.createJMSProvider("myNode", "myServer", "myJMSProvider", "extInitCF",
"extPURL", [["description", "testing"], ["supportsASF", "true"], ["providerType", "jmsProvType"]])

The script returns the configuration ID of the new JMS provider.

3. Configure a generic JMS connection factory.
Run the createGenericdMSConnectionFactory procedure from the script library and specify the
required arguments. To run the script, specify the node, server, JMS provider name, name of the new
connection factory, JNDI name, and external JNDI name. You can optionally specify additional
attributes in the following format: [["attrl", "valuel"], ["attr2", "value2"]]. The following table
provides additional information about the arguments to specify:

190 Scripting the application serving environment

Table 210. createGenericJMSConnectionFactory script arguments. Run the script to create a generic JMS

connection factory.

Argument

Description

Node name

Specifies the name of the node of interest.

Server name

Specifies the name of the server of interest.

JMS provider name

Specifies the name of the JMS provider.

Connection factory name

Specifies the name to assign to the new connection factory

JNDI name

Specifies the JNDI name that the system uses to bind the connection factory into the name space.

External JNDI name

Specifies the JNDI name that is used to bind the queue into the application server name space. As
a convention, use the fully qualified JNDI name; for example, in the form jms/Name, where Name is
the logical name of the resource. This name is used to link the platform binding information. The
binding associates the resources defined by the deployment descriptor of the module to the actual
(physical) resources bound into JNDI by the platform.

The following example creates a JMS connection factory in your configuration:

bin>wsadmin -lang jython -c "AdminJMS.createGenericJMSConnectionFactory("myNode", "myServer", "myJMSProvider",
"JMSCFTest", "jmsjndi", "extjmsjndi", [["XAEnabled", "true"], ["authDataAlias", "myalias"],

["description", "testing"]])"

You can also use interactive mode to run the script procedure, as the following example displays:

wsadmin>AdminJdMS.createGenericJMSConnectionFactory("myNode", "myServer", "myJMSProvider",

"JMSCFTest", "jmsjndi",
["description", "testing"]1])

"extjmsjndi", [["XAEnabled", "true"], ["authDataAlias", "myalias"],

The script returns the configuration ID of the new generic JMS connection factory.

Create a generic JMS destination.

Run the createGenericJMSDestination procedure from the script library and specify the required
arguments. To run the script, specify the node, server, JMS provider name, generic JMS destination
name, JNDI name, and external JNDI name. You can optionally specify additional attributes in the
following format: [["attrl", "valuel"], ["attr2", "value2"]]. The following table provides
additional information about the arguments to specify:

Table 211. createGenericJMSDestination script arguments. Run the script to create a generic JMS destination.

Argument

Description

Node name

Specifies the name of the node of interest.

Server name

Specifies the name of the server of interest.

JMS provider name

Specifies the name of the JMS provider.

Generic JMS destination name

Specifies the name to assign to the new generic JMS destination.

JNDI name

Specifies the JNDI name that the system uses to bind the connection factory into the name space.

External JNDI name

Specifies the JNDI name that is used to bind the queue into the application server name space. As
a convention, use the fully qualified JNDI name; for example, in the form jms/Name, where Name is
the logical name of the resource. This name is used to link the platform binding information. The
binding associates the resources defined by the deployment descriptor of the module to the actual
(physical) resources bound into JNDI by the platform.

The following example uses a template to use a template to create a generic JMS destination in your

configuration:

bin>wsadmin -lang jython -c "AdminJMS.createGenericJMSDestination("myNode", "myServer", "myJMSProvider",
"JMSDest", "destjndi", "extDestJdndi", [["description", "testing"], ["category", "jmsDestCatagory"],

["type" s "TOPIC"]])) n

You can also use interactive mode to run the script procedure, as the following example displays:

wsadmin>AdminJMS.createGenericJMSDestination("myNode", "myServer", "myJMSProvider",
"JMSDest", "destjndi", "extDestJdndi", [["description", "testing"], ["category", "jmsDestCatagory"],

["type" s "TOPIC"]]))

The script returns the configuration ID of the new generic JMS destination.

Chapter 11. Using the script library to automate the application serving environment using wsadmin scripting 191

Results

The wsadmin script libraries return the same output as the associated wsadmin commands. For example,
the AdminServerManagement.listServers() script returns a list of available servers. The
AdminClusterManagement.checklfClusterExists() script returns a value of true if the cluster exists, or
false if the cluster does not exist. If the command does not return the expected output, the script libraries
return a 1 value when the script successfully runs. If the script fails, the script libraries return a -1 value
and an error message with the exception.

By default, the system disables failonerror option. To enable this option, specify true as the last argument
for the script procedure, as the following example displays:

wsadmin>AdminApplication.startApplicationOnCluster("myApplication","myCluster","true")
What to do next

Create custom scripts to automate your environment by combining script procedures from the scripting
library. Save custom scripts to a new subdirectory of the app_server _root/scriptLibraries directory.

JMS configuration scripts

The scripting library provides many script procedures to manage your Java Messaging Service (JMS)
configurations. This topic provides usage information for scripts that query your JMS configuration. You
can run each script individually or combine many procedures to create custom automation scripts for your
environment.

Each AdminJMS management script procedure is located in the app_server_root/scriptLibraries/
resources/JMS/V70 directory.

Beginning with Version 7, the Jython script library provides script functions for JDBC providers, JMS
resources, and resource providers at the server scope. You can write your own custom scripts to configure
resources at the cell, node, or cluster level.

Note: Do not edit the script procedures in the script library. To write custom script library procedures, use
the scripts in the|app_server rool/scriptLibraries directory as Jython syntax samples. Save the
custom scripts to a new subdirectory to avoid overwriting the library.

Fast path: Beginning with Fix Pack 5, the Jython script library provides script functions for JDBC
providers, JMS resources, and resource providers at the cell, node, server, or cluster scope.
Resource providers include mail providers, URL providers, and resource environment
providers. You do not have to write custom scripts to configure resources at a particular scope.

Attention: The example usage scripts and the script syntax are split on multiple lines for printing
purposes.

Use the following script procedures to configure JMS in your environment:

* [“createGenericJMSConnectionFactory” on page 194

+ [“createGenericJMSConnectionFactoryUsingTemplate” on page 197

* [“createGenericJMSConnectionFactoryAtScope” on page 200

* [‘createGenericJMSConnectionFactoryUsingTemplateAtScope” on page 203|
[‘createGenericJMSDestination” on page 206
[‘createGenericJMSDestinationUsingTemplate” on page 207
[‘createGenericJMSDestinationAtScope” on page 208|

« [‘createGenericJMSDestinationUsingTemplateAtScope” on page 210
[‘createJMSProvider” on page 211

192 Scripting the application serving environment

[‘createJMSProviderUsingTemplate” on page 213
[‘createJMSProviderAtScope” on page 214
[‘createJMSProviderUsingTemplateAtScope” on page 215

* [‘createWASQueue” on page 217

+ [‘createWASQueueUsingTemplate” on page 219

* |“createWASQueueAtScope” on page 220|

+ [‘createWASQueueUsingTemplateAtScope” on page 222|

* [‘createSIBJMSQueue” on page 223

* [‘createWMQQueue” on page 224

* |[‘createWASQueueConnectionFactory” on page 225|

« [‘createWASQueueConnectionFactoryUsingTemplate” on page 228|
* |“‘createWASQueueConnectionFactoryAtScope” on page 231|

+ [‘createWASQueueConnectionFactoryUsingTemplateAtScope” on page 233
[“<createWASTopic” on page 236|
[“createWASTopicUsingTemplate” on page 238

[‘create WASTopicAtScope” on page 239
[‘createWASTopicUsingTemplateAtScope” on page 241|
[“createSIBJMSTopic” on page 242|

[‘createWMQTopic” on page 243
[‘createWASTopicConnectionFactory” on page 245|
[‘createWASTopicConnectionFactoryUsingTemplate” on page 247|
[‘createWASTopicConnectionFactoryAtScope” on page 250
[‘createWASTopicConnectionFactoryUsingTemplateAtScope” on page 252|
[‘createSIBJMSConnectionFactory” on page 255
[‘createWMQConnectionFactory” on page 256|
[‘createSIBJMSQueueConnectionFactory” on page 259
[‘createWMQQueueConnectionFactory” on page 261|
[‘createSIBJMSTopicConnectionFactory” on page 263]
[‘createWMQTopicConnectionFactory” on page 265
[‘createSIBJMSActivationSpec” on page 267
[‘createWMQACctivationSpec” on page 269

[‘startListenerPort” on page 272|

Format for the scope argument
The scope format applies to the scripts in the script library that have the scope argument.
A cell is optional on node, server, and cluster scopes. A node is required on the server scope.

You can delimit the type by using a comma (,) or a colon (:). You can use lower case for the type (cell=,
node=, server=, or cluster=.)

The examples in the following table are split on multiple lines for publishing purposes.

Chapter 11. Using the script library to automate the application serving environment using wsadmin scripting 193

Table 212. Examples of the containment path, configuration ID, and type for a particular scope. The scope can be

Cell, Node, Server, or Cluster.

Scope Containment path Configuration ID Type
Cell /Cell:myCelll myCell(cells/myCell| Cell=myCell or cell=myCell
cell.xml#Cell_1)
Node /Cell:myCell/Node:myNode/ or myNode (cells/myCell Cell=myCell,
/Node:myNode/ /nodes /myNode | Node=myNode

node. xml#Node_1)
or

Cell=myCell:
Node=myNode

or

cell=myCell,
node=myNode

Server /Cell:myCell/Node:
myNode/
Server:myServer/

or

/Node:myNode/Server:

myServer(cells Cell=myCell,

/myCell/ Node=myNode,
nodes /myNode/ Server=myServer
servers/myServer|

server.xml#Server_1) or

Node=myNode :

or

/ServerCluster:
myCluster/

myServer/ Server=myServer
or
cell=myCell,
Node=myNode,
Server=myServer
Cluster /Cell:myCell/ myCluster(cells Cell=myCell,
ServerCluster: /myCell/clusters/ Cluster=myCluster
myCluster/ myCluster|

cluster.xml

#ServerCluster 1) or

Cell=myCell:
Cluster=myCluster

or

cell=myCell,
Cluster=myCluster

createGenericJMSConnectionFactory

This script creates a new generic JMS connection factory in your configuration. The script returns the
configuration ID of the created JMS connection factory in the respective cell.

To run the script, specify the node, server, JMS provider name, name of the new connection factory, JNDI
name, and external JNDI name arguments. You can optionally specify attributes. The arguments and
attributes are defined in the following tables:

Table 213. Arguments for the createGenericJMSConnectionFactory script. Run the script to create a generic JMS

connection factory.

Argument Description

nodeName Specifies the name of the node of interest.

serverName Specifies the name of the server of interest.

jmsProvider Specifies the name of the JMS provider.

connFactoryName Specifies the name to assign to the new connection factory

jndiName Specifies the JNDI name that the system uses to bind the connection factory into the name space.
extJndiName Specifies the JNDI name that is used to bind the queue into the application server name space. As

a convention, use the fully qualified JNDI name; for example, in the form jms/Name, where Name is
the logical name of the resource. This name is used to link the platform binding information. The
binding associates the resources defined by the deployment descriptor of the module to the actual
(physical) resources bound into JNDI by the platform.

194 Scripting the application serving environment

Table 213. Arguments for the createGenericJMSConnectionFactory script (continued). Run the script to create a

generic JMS connection factory.

Argument Description

attributes

List format

String format

Optionally specifies additional attributes in a particular format:

[["attrl", "valuel"], ["attr2", "value2"]]

"attri=valuel, attr2=value2"

Table 214. Optional attributes. Additional attributes available for the script.

Attributes Description Example
XAEnabled Specifies whether XA recovery ['XAEnabled', 'false']
processing is enabled.
authDataAlias Specifies the alias used for database ['authDataAlias', 'myAuthDataAlias']

authentication at runtime.

authMechanismPreference Specifies the authentication
mechanism. Valid values are
BASIC_PASSWORD for basic
authentication and KERBEROS for

Kerberos authentication.

Do not put either of the values in
quotes for the string format of the

[*authMechanismPreference',
'BASIC_PASSWORD']

command.
category Specifies the category that can be ['category', 'myCategory']
used to classify or group the resource.
connectionPool Specifies the JMS connection pooling | ['connectionPool",
properties for the parent JMS [['agedTimeout','100'],['connectionTimeout','1000'],
connection factory instance. ['freePoolDistributionTableSize',10],['maxConnections','12'],
[*minConnections','5'], ['numberOfFreePoolPartitions','3'],
. . . . ['numberOfSharedPoolPartitions','6'],
Whetr; y?utufs?nt]hlts _?Ltrlbl::_enlnfa ;crltpt, ['numberOfUnsharedPoolPartitions','3'],['properties’,
use the list format. The s "l 9 or a | [['description','My description'],['name', 'myName'],
does not work because this attribute is ["required','false'],['type', 'String']
a configuration object type. ['validationExpression',"'],['value', 'myValue']1],
['purgePolicy', 'EntirePool'],['reapTime','10000'],
['struckThreshold','3'],['struckTime',"'10'],
['struckTimerTime','10'],['surgeCreationInterval','10'],
['surgeThreshold','10'],['testConnection', 'true'],
['testConnectionInterval','10'],['unusedTimeout"', '10000']]]
description Specifies a description of the resource | ['description', 'My description']

adapter.

diagnoseConnectionUsage Specifies whether connection usage

diagnosis is enabled.

['diagnoseConnectionUsage', 'false']

logMissingTransactionContext
context logging is enabled.

Specifies whether missing transaction

['TogMissingTransactionContext', 'true']

manageCachedHandles Specifies whether this data source is
used for container-managed
persistence of enterprise beans. The

default value is true.

['manageCachedHandles', 'true']

Specifies the mapping of the
configuration login to a specified
authentication alias name.

mapping

use the list format. The string format

a configuration object type.

When you use this attribute in a script,

does not work because this attribute is

["mapping",[["authDataAlias","authDataAliasValue"],

["mappingConfigAlias","mappingConfigAliasValue"]]]

preTestConfig Specifies the pretest connection

configuration settings.

use the list format. The string format

a configuration object type.

When you use this attribute in a script,

does not work because this attribute is

["preTestConfig",[["preTestConnection", "true"],
["retryInterval", "12343"],["retryLimit", "4"]1]]

Chapter 11. Using the script library to automate the application serving environment using wsadmin scripting

195

Table 214. Optional attributes (continued). Additional attributes available for the script.

Attributes Description Example
properties Specifies either a typed property type | ["properties”,[["description","My description"],
or a descriptive property type. ["name", "myName"], ["required","false"],["type","String"],

["validationExpression",""],["value","myValue"]]]
When you use this attribute in a script,
use the list format. The string format
does not work because this attribute is
a configuration object type.

propertySet Optionally specifies resource [propertySet [[resourceProperties

properties in the following format: [[[name databaseName][type string][value mys]]
[propertySet[[resourceProperties[[[name| [[name driverType] [type integer][value 4]]
nameValue, J[type, typeValue,][value, [[name serverName] [type §tring] [value localhost]]
valueValue,]l... [[name, [[name portNumber][type integer][value 50000]] 1111
nameValue,]type, typeValue,][value,
valueValue,]] 1]1]

When you use this attribute in a script,
use the list format. The string format
does not work because this attribute is
a configuration object type.

provider Specifies the JMS driver ['provider', 'myJMSProvider']
implementation class for access to a
vendor database. To create a pool of
connections to that database,
associate a data source with the JMS

provider.
providerType Specifies the JMS provider type used | ['providerType', 'myJMSProviderType']
by this JMS provider.
sessionPool Specifies the JMS session pooling ["sessionPool\",
properties for the parent JMS [["agedTimeout","100"], ["connectionTimeout","1000"],
connection instance. ["freePoolDistributionTableSize",10], ["maxConnections","12"],

["minConnections","5"], ["numberOfFreePoolPartitions","3"],
["number0fSharedPoolPartitions","6"],

. N ["numberOfUnsharedPoolPartitions","3"], ["properties",

use the list format. The stflng fqrmat . [["description","My description"],["name", "myName"],
does r?ot wo_rk bec_ause this attribute is ["required","false"], ["type","String"],

a configuration object type. ["validationExpression”,""],["value", "myValue"]]],
["purgePolicy", 'EntirePool'],["reapTime","10000"],
["struckThreshold","3"], ["struckTime","10"],
["struckTimerTime","10"], ["surgeCreationInterval","10"],
["surgeThreshold","10"],["testConnection","true"],
["testConnectionInterval","10"], ["unusedTimeout","10000"]]]

When you use this attribute in a script,

xaRecoveryAuthAlias Specifies the database authentication ['xaRecoveryAuthATias', 'myCellManager01l/al']
alias used during XA recovery
processing. When this property is
specified, the default value is the alias
for application authentication.

Table 215. Optional attributes, continued. Additional attribute available for the script.

Attributes Description Example

type Specifies QUEUE for queues, TOPIC for | ['type', 'TOPIC']
topics, and UNIFIED for both queues
and topics.

Do not put either of the values in
quotes for the string format of the
command.

Syntax

AdminJMS.createGenericJMSConnectionFactory (nodeName ,
serverName, jmsProvider, connFactoryName, jndiName,
extJdndiName, attributes)

Example usage

The following example script contains required attributes only:

AdminJMS.createGenericJMSConnectionFactory ("myNode", "myServer",
"JMSTest", "JMSCFTest", "jmsjndi", "extjmsjndi")

196 Scripting the application serving environment

The following example script includes optional attributes in a string format:

AdminJMS.createGenericJMSConnectionFactory ("IBM-F4A849C57A0Node01", "serverl", "My JMS Provider Namel",
"My Generic JMSConnection Factory", "JNDIName", "extJNDIName", "XAEnabled=false,
authDataAlias=myAuthDataAlias, authMechanismPreference=BASIC_PASSWORD, category=myCategory,
description="'my JMS Connection Factory',

diagnoseConnectionUsage=false, logMissingTransactionContext=true, manageCachedHandles=true,
providerType=myJMSProviderType, type=TOPIC, xaRecoveryAuthAlias=myCellManager0l/al")

The following example script includes optional attributes in a list format:

AdminJMS.createGenericJMSConnectionFactory ("IBM-F4A849C57A0Node01", "serverl", "My JMS Provider Namel",
"My Generic JMSConnection Factory",

"JNDIName", "extJNDIName", [['XAEnabled', 'false'], ['authDataAlias', 'myAuthDataAlias'],
['authMechanismPreference', 'BASIC_PASSWORD'], ['category', 'myCategory'],

['connectionPool', [['agedTimeout', '100'], ['connectionTimeout', '1000'],
['freePoolDistributionTableSize', 10], ['maxConnections', '12'], ['minConnections', '5'],

['numberOfFreePoolPartitions', '3'], ['numberOfSharedPoolPartitions', '6'],

['number0fUnsharedPoolPartitions', '3'],

['properties’, [[['description’, 'My description'], ['name', 'myName'],

['required', 'false'], ['validationExpression', ''], ['value', 'myValue']]]],

['purgePolicy', 'EntirePool'], ['reapTime', '10000'], ['surgeCreationInterval', '10'],
['surgeThreshold', '10'], ['testConnection', 'true'], ['testConnectionInterval', '10'],
['unusedTimeout', '10000']]], ['description', 'My description'],

['diagnoseConnectionUsage', 'false'], ['logMissingTransactionContext', 'true'],
['manageCachedHandles', 'true'], ['mapping', [['authDataAlias', 'authDataAliasValue'],
['mappingConfigAlias', 'mappingConfigAliasValue']]], ['preTestConfig’,

[['preTestConnection', 'true'], ['retrylInterval’, '12343'], ['retryLimit', '4']]],
['properties’, [[['description’, 'My description'], ['name', 'myName'], ['required’, 'false'],
['validationExpression', ''], ['value', 'myValue']]]], ['propertySet’,
[['resourceProperties’, [[['name', 'databaseName'], ['type', 'java.lang.String'],

['value', 'myDbName']], [['name', 'driverType'], ['type', 'java.lang.Integer'],

['value', 4]], [['name', 'serverName'], ['type', 'java.lang.String'],

['value', 'localhost']], [['name', 'portNumber'], ['type', 'java.lang.Integer'],

['value', 50000]]]]]], ['providerType', 'myJMSProviderType'], ['sessionPool’,
[['agedTimeout"', '100'], ['connectionTimeout', '1000'], ['freePoolDistributionTableSize', 10],
['maxConnections', '12'], ['minConnections', '5'], ['numberOfFreePoolPartitions', '3'],
['number0fSharedPoolPartitions', '6'], ['numberOfUnsharedPoolPartitions', '3'], ['properties’,
[[['description', 'My description'], ['name', 'myName'], ['required', 'false'],
['validationExpression', ''], ['value', 'myValue']]]],

['purgePolicy', 'EntirePool'], ['reapTime', '10000'],

['surgeCreationInterval', '10'], ['surgeThreshold', '10'],

['testConnection', 'true'], ['testConnectionInterval', '10'], [

'unusedTimeout', '10000']]], ['type', 'TOPIC'], ['xaRecoveryAuthAlias', 'myCellManager01/al']]

createGenericJMSConnectionFactoryUsingTemplate

This script uses a template to create a generic JMS connection factory in your configuration. The script
returns the configuration ID of the created JMS connection factory using a template in the respective cell.

To run the script, specify the node, server, JMS provider name, template 1D, connection factory name,
JNDI name, and external JNDI name arguments. You can optionally specify attributes. The arguments and
attributes are defined in the following tables:

Table 216. Arguments for the createGenericJMSConnectionFactoryUsingTemplate script. Run the script to create a
generic JMS connection factory.

Argument Description

nodeName Specifies the name of the node of interest.

serverName Specifies the name of the server of interest.

jmsProvider Specifies the name of the JMS provider.

templatelD Specifies the configuration ID of the template to use.

connFactoryName Specifies the name to assign to the new connection factory

JndiName Specifies the JNDI name that the system uses to bind the connection factory into the name space.
extJndiName Specifies the JNDI name that is used to bind the queue into the application server name space. As

a convention, use the fully qualified JNDI name; for example, in the form jms/Name, where Name is
the logical name of the resource. This name is used to link the platform binding information. The
binding associates the resources defined by the deployment descriptor of the module to the actual
(physical) resources bound into JNDI by the platform.

attributes Optionally specifies additional attributes in a particular format:

List format
[["attrl", "valuel"], ["attr2", "value2"]]

String format
"attri=value1, attr2=value2"

Chapter 11. Using the script library to automate the application serving environment using wsadmin scripting 197

Table 217. Optional attributes. Additional attributes available for the script.

Attributes Description Example
XAEnabled Specifies whether XA recovery ['XAEnabled', 'false']
processing is enabled.
authDataAlias Specifies the alias used for database ['authDataAlias', 'myAuthDataAlias']

authentication at runtime.

authMechanismPreference

Specifies the authentication
mechanism. Valid values are
BASIC_PASSWORD for basic
authentication and KERBEROS for
Kerberos authentication.

Do not put either of the values in
quotes for the string format of the
command.

['authMechanismPreference',
'BASIC_PASSWORD']

category Specifies the category that can be ['category', 'myCategory']
used to classify or group the resource.
connectionPool Specifies the JMS connection pooling | ['connectionPool",
properties for the parent JMS [['agedTimeout','100'],['connectionTimeout"','1000'],
connection factory instance. ['freePoolDistributionTableSize',10],['maxConnections','12'],
['minConnections','5'], ['numberOfFreePoolPartitions','3'],
. . .] [*number0fSharedPoolPartitions','6'],
When yolu use this attnbutg in a script, ['numberOfUnsharedPoolPartitions','3'],['properties’,
use the list format. The str‘mg fo_rmat_ [['description’, My description'],['name', 'myName'],
does r_not wqu bec_ause this attribute is ["required','false'],['type', String'],
a configuration object type. ['validationExpression',''],['value’, 'myvalue']]],
['purgePolicy','EntirePool'],['reapTime','10000'],
['struckThreshold','3'],['struckTime','10'],
['struckTimerTime','10'],['surgeCreationInterval','10'],
['surgeThreshold','10'],['testConnection', 'true'],
['testConnectionInterval','10'],['unusedTimeout','10000']]]
description Specifies a description of the resource | ['description', 'My description']

adapter.

diagnoseConnectionUsage

Specifies whether connection usage
diagnosis is enabled.

['diagnoseConnectionUsage', 'false']

logMissing TransactionContext

Specifies whether missing transaction
context logging is enabled.

['TogMissingTransactionContext', 'true']

manageCachedHandles

Specifies whether this data source is
used for container-managed
persistence of enterprise beans. The
default value is true.

['manageCachedHandles', 'true']

mapping

Specifies the mapping of the
configuration login to a specified
authentication alias name.

When you use this attribute in a script,
use the list format. The string format
does not work because this attribute is
a configuration object type.

["mapping", [["authDataAlias","authDataAliasValue"],
["mappingConfigAlias","mappingConfigAliasValue"]]]

preTestConfig

Specifies the pretest connection
configuration settings.

When you use this attribute in a script,
use the list format. The string format
does not work because this attribute is
a configuration object type.

["preTestConfig", [["preTestConnection", "true"],
["retryInterval®, "12343"],["retryLimit", "4"]]]

properties

Specifies either a typed property type
or a descriptive property type.

When you use this attribute in a script,
use the list format. The string format
does not work because this attribute is
a configuration object type.

["properties", [["description","My description"],
"name", "myName"], ["required","false"],["type","String"],

["validationExpression",""],["value","myValue"]]]

198 Scripting the application serving environment

Table 217. Optional attributes (continued). Additional attributes available for the script.

Attributes Description Example
propertySet Optionally specifies resource [propertySet [[resourceProperties
properties in the following format: [[[name databaseName][type string][value mys]]

[propertySet[[resourceProperties[[[name{ [[name driverType] [type integer] [value 4]]
nameValue, [[type; typeValue,][value, [[name serverName][type string][value Tocalhost]]
valueValue,]]... [[name, [[name portNumber][type integer][value 50000]]]]11]
nameValue,|[type, typeValue,][value,
valueValue,]] 1111

When you use this attribute in a script,
use the list format. The string format
does not work because this attribute is
a configuration object type.

provider Specifies the JMS driver ['provider', 'myJMSProvider']
implementation class for access to a
vendor database. To create a pool of
connections to that database,
associate a data source with the JMS

provider.
providerType Specifies the JMS provider type used ['providerType', 'myJMSProviderType']
by this JMS provider.
sessionPool Specifies the JMS session pooling ["sessionPool\",
properties for the parent JMS [["agedTimeout","100"], ["connectionTimeout","1000"],
connection instance. ["freePoolDistributionTableSize",10], ["maxConnections","12"],

["minConnections","5"], ["numberOfFreePoolPartitions","3"],
["number0fSharedPoolPartitions","6"],

’) ["number0fUnsharedPoolPartitions","3"],["properties",

use the list format. The str_lng fo_rmat_ [["description”,"My description"],["name", "myName"],
does not work because this attribute is ["required","false"], ["type","String"],

a configuration object type. ["validationExpression",""],["value", "myValue"]]],
["purgePolicy", 'EntirePool'],["reapTime","10000"],
["struckThreshold","3"],["struckTime","10"],
["struckTimerTime","10"], ["surgeCreationInterval®,"10"],
["surgeThreshold","10"],["testConnection","true"],

["testConnectionInterval","10"], ["unusedTimeout","10000"]1]]

When you use this attribute in a script,

xaRecoveryAuthAlias Specifies the database authentication ['xaRecoveryAuthATias', 'myCellManager0l/al']
alias used during XA recovery
processing. When this property is
specified, the default value is the alias
for application authentication.

Table 218. Optional attributes, continued. Additional attribute available for the script.

Attributes Description Example

type Specifies QUEUE for queues, TOPIC for | ['type', 'TOPIC']
topics, and UNIFIED for both queues
and topics.

Do not put either of the values in
quotes for the string format of the
command.

Syntax

AdminJMS.createGenericJMSConnectionFactoryUsingTemplate (nodeName ,
serverName, jmsProvider, templatelD,
connFactoryName, jndiName, extJndiName, attributes)

Example usage

The following example script contains required attributes only:

AdminJMS.createGenericJMSConnectionFactoryUsingTemplate ("myNode", "myServer",

"JMSTest", "Generic QueueConnectionfactory for

Windows (templates/system|JMS-resource-provider-templates.xml#GenericJMSConnectionFactory 1)",
"JMSCFTest", "jmsjndi", “extjmsjndi")

The following example script includes optional attributes in a string format:

AdminJMS.createGenericJMSConnectionFactoryUsingTemplate ("IBM-F4A849C57A0Node01", "serverl", "My JMS Provider Namel”,
"Generic QueueConnectionFactory for Windows
(templates/system|JMS-resource-provider-templates.xml#GenericJMSConnectionFactory 1)",

"My Generic JMSConnection Factory", "JNDIName", "extJNDIName", "XAEnabled=false,

Chapter 11. Using the script library to automate the application serving environment using wsadmin scripting 199

authDataAlias=myAuthDataAlias, authMechanismPreference=BASIC_PASSWORD, category=myCategory,
description="'my JMS Connection Factory using template’,

diagnoseConnectionUsage=false, logMissingTransactionContext=true, manageCachedHandles=true,
providerType=myJMSProviderType, type=TOPIC, xaRecoveryAuthAlias=myCellManager0l/al")

The following example script includes optional attributes in a list format:

AdminJMS.createGenericJMSConnectionFactoryUsingTemplate ("IBM-F4A849C57A0Node01", "serverl", "My JMS Provider Namel",
"Generic QueueConnectionfactory for Windows(templates/system|JMS-resource-pravider-templates.xml#GenericJMSConnectionFuctory_]) "
"My Generic JMSConnection Factory", "JNDIName", "extJNDIName", [['XAEnabled’, 'false'],

['authDataAlias', 'myAuthDataAlias'], ['authMechanismPreference', 'BASIC_PASSWORD'],

['category', 'myCategory'], ['connectionPool', [['agedTimeout', '100'], ['connectionTimeout', '1000'],
['freePoolDistributionTableSize', 10], ['maxConnections', '12'], ['minConnections', '5'],
['numberOfFreePoolPartitions', '3'], ['numberOfSharedPoolPartitions', '6'],

['numberOfUnsharedPoolPartitions’, '3'], ['properties', [[['description’, 'My description'],

['name', 'myName'], ['required', 'false'], ['validationExpression', ''], ['value', 'myValue']]]],

['purgePolicy', 'EntirePool'], ['reapTime', '10000'], ['surgeCreationInterval', '10'],

['surgeThreshold', '10'], ['testConnection', 'true'], ['testConnectionInterval', '10'],

["unusedTimeout', '10000']]], ['description’, 'My description'], ['diagnoseConnectionUsage', 'false'],
['logMissingTransactionContext', 'true'], ['manageCachedHandles', 'true'], ['mapping’,

[['authDataAlias', 'authDataAliasValue'], ['mappingConfigAlias’', 'mappingConfigAliasValue']]],

['preTestConfig', [['preTestConnection’, 'true'], ['retryInterval', '12343'], ['retryLimit', '4']]],

['properties’, [[['description’, 'My description'], ['name', 'myName'], ['required', 'false'],
['validationExpression', ''], ['value', 'myValue']]]], ['propertySet', [['resourceProperties’,

[[['name"’, 'databaseName'], ['type', 'java.lang.String'], ['value', 'myDbName']], [['name', 'driverType'],

["type', 'java.lang.Integer'], ['value', 4]], [['name', 'serverName'], ['type', 'java.lang.String'],

['value', 'localhost']], [['name’, 'portNumber'], ['type', 'java.lang.Integer'], ['value', 50000]]1]]]1],
['providerType', 'mydMSProviderType'], ['sessionPool’, [['agedTimeout', '100'],

['connectionTimeout', '1000'], ['freePoolDistributionTableSize', 10], ['maxConnections', '12'], ['minConnections', '5'],
['numberOfFreePoolPartitions', '3'], ['numberOfSharedPoolPartitions', '6'], ['numberOfUnsharedPoolPartitions', '3'],
['properties', [[['description’, 'My description'], ['name', 'myName'], ['required', 'false'],
['validationExpression', ''], ['value', 'myValue']]]], ['purgePolicy', 'EntirePool'],

['reapTime', '10000'], ['surgeCreationInterval', '10'], ['surgeThreshold', '10'],

['testConnection', 'true'], ['testConnectionInterval', '10'], ['unusedTimeout', '10000']]],

["type', 'TOPIC'], ['xaRecoveryAuthAlias', 'myCellManager01/al']])

createGenericJMSConnectionFactoryAtScope

This script creates a new generic JMS connection factory in your configuration at the scope that you
specify. The script returns the configuration ID of the created JMS connection factory in the respective cell.

To run the script, specify the scope, JMS provider name, name of the new connection factory, JNDI name,
and external JNDI name arguments. You can optionally specify attributes. The arguments and attributes
are defined in the following tables:

Table 219. Arguments for the createGenericJMSConnectionFactoryAtScope script. Run the script to create a generic
JMS connection factory.

Argument Description

scope Specifies a[scope] of cell, node, server, or cluster for the JMS provider.

jmsProvider Specifies the name of the JMS provider.

connFactoryName Specifies the name to assign to the new connection factory

jndiName Specifies the JNDI name that the system uses to bind the connection factory into the name space.
extJndiName Specifies the JNDI name that is used to bind the queue into the application server name space. As

a convention, use the fully qualified JNDI name; for example, in the form jms/Name, where Name is
the logical name of the resource. This name is used to link the platform binding information. The
binding associates the resources defined by the deployment descriptor of the module to the actual
(physical) resources bound into JNDI by the platform.

attributes Optionally specifies additional attributes in a particular format:

List format
[["attrl", "valuel"], ["attr2", "value2"]]

String format
"attri=value1, attr2=value2"

Table 220. Optional attributes. Additional attributes available for the script.

Attributes Description Example

XAEnabled Specifies whether XA recovery ['XAEnabled', 'false']
processing is enabled.

authDataAlias Specifies the alias used for database ['authDataAlias', 'myAuthDataAlias']
authentication at runtime.

200 Scripting the application serving environment

Table 220. Optional attributes (continued). Additional attributes available for the script.

Attributes

Description

Example

authMechanismPreference

Specifies the authentication
mechanism. Valid values are
BASIC_PASSWORD for basic
authentication and KERBEROS for
Kerberos authentication.

Do not put either of the values in
quotes for the string format of the
command.

[*authMechanismPreference',
'BASIC_PASSWORD']

category Specifies the category that can be ['category', 'myCategory']
used to classify or group the resource.
connectionPool Specifies the JMS connection pooling | ['connectionPool",
properties for the parent JMS [['agedTimeout','100'],['connectionTimeout','1000'],
connection factory instance. ['freePoolDistributionTableSize',10],['maxConnections','12'],
[*minConnections','5'], ['numberOfFreePoolPartitions','3'],
. . . . ['number0fSharedPoolPartitions','6'],
When yqu use this attrlbut_e in a script, ['numberOfUnsharedPoolPartitions','3'],['properties’,
use the list format. The str.mg fqrmat | [['description','My description'],['name', 'myName'],
does not work because this attribute is ["required','false'],['type', 'String'],
a configuration object type. ['validationExpression',''],['value', 'myValue']]],
['purgePolicy', 'EntirePool'],['reapTime','10000'],
['struckThreshold','3'],['struckTime',"'10'],
['struckTimerTime','10'],['surgeCreationInterval','10'],
['surgeThreshold','10'],['testConnection', 'true'],
['testConnectionInterval','10'],['unusedTimeout', '10000']]]
description Specifies a description of the resource | ['description', 'My description']

adapter.

diagnoseConnectionUsage

Specifies whether connection usage
diagnosis is enabled.

['diagnoseConnectionUsage', 'false']

logMissingTransactionContext

Specifies whether missing transaction
context logging is enabled.

['1ogMissingTransactionContext', 'true']

manageCachedHandles

Specifies whether this data source is
used for container-managed
persistence of enterprise beans. The
default value is true.

['manageCachedHandles', 'true']

mapping

Specifies the mapping of the
configuration login to a specified
authentication alias name.

When you use this attribute in a script,
use the list format. The string format
does not work because this attribute is
a configuration object type.

["mapping",[["authDataAlias","authDataAliasValue"],

["mappingConfigAlias","mappingConfigAliasValue"]]]

preTestConfig

Specifies the pretest connection
configuration settings.

When you use this attribute in a script,
use the list format. The string format
does not work because this attribute is
a configuration object type.

["preTestConfig",[["preTestConnection", "true"],
["retryInterval", "12343"],["retryLimit", "4"]1]]

properties

Specifies either a typed property type
or a descriptive property type.

When you use this attribute in a script,
use the list format. The string format
does not work because this attribute is
a configuration object type.

["properties",[["description","My description"],

["name", "myName"], ["required","false"],["type","String"],

["validationExpression",""],["value","myValue"]]]

propertySet

Optionally specifies resource

properties in the following format:
[propertySet[[resourceProperties[[[name
nameValue,][type; typeValue,][value,
valueValue,]]... [[name,,
nameValue,|[type, typeValue,][value,
valueValue,]] 1111

When you use this attribute in a script,
use the list format. The string format
does not work because this attribute is
a configuration object type.

[propertySet [[resourceProperties

[[[name databaseName] [type string][value mys]]
[[name driverType] [type integer][value 4]]

[[name serverName][type string][value Tocalhost]]
[[name portNumber] [type integer][value 50000]] 1111

Chapter 11. Using the script library to automate the application serving environment using wsadmin scripting

201

Table 220. Optional attributes (continued). Additional attributes available for the script.

Attributes Description Example
provider Specifies the JMS driver ['provider', 'myJMSProvider']
implementation class for access to a
vendor database. To create a pool of
connections to that database,
associate a data source with the JMS
provider.
providerType Specifies the JMS provider type used | ['providerType', 'myJMSProviderType']
by this JMS provider.
sessionPool Specifies the JMS session pooling ["sessionPool\",
properties for the parent JMS [["agedTimeout","100"], ["connectionTimeout","1000"],
connection instance. ["freePoolDistributionTableSize",10], ["maxConnections","12"],
["minConnections","5"], ["numberOfFreePoolPartitions","3"],
. . . . ["number0fSharedPoolPartitions","6"],
When you use this attribute in a script, | -, RS -
use thg list format. The string forma’(p E[ﬂgzgggfg?z:ﬁrﬁﬂpoglzgg1Eg:ﬁ] ’ [ﬁnlég..prﬁze;;zﬁ] ’
does not wqu bec_ause this attribute is ["requireZ“,“faise{] , ["typz","Str;ng"] , > ’
a configuration object type. ["validationExpression",""],["value","myValue"]]],
["purgePolicy", 'EntirePool'],["reapTime","10000"],
["struckThreshold","3"],["struckTime","10"],
["struckTimerTime","10"], ["surgeCreationInterval®,"10"],
["surgeThreshold","10"], ["testConnection","true"],
["testConnectionInterval","10"], ["unusedTimeout","10000"]]]
xaRecoveryAuthAlias Specifies the database authentication | ['xaRecoveryAuthAlias', 'myCellManager0l/al']
alias used during XA recovery
processing. When this property is
specified, the default value is the alias
for application authentication.

Table 221. Optional attributes, continued. Additional attribute available for the script.

Attributes Description Example

type Specifies QUEUE for queues, TOPIC for | ['type', 'TOPIC']
topics, and UNIFIED for both queues
and topics.

Do not put either of the values in
quotes for the string format of the
command.

Syntax

AdminJMS.createGenericJMSConnectionFactoryAtScope(scope,
JmsProvider, connFactoryName, jndiName,
extJndiName, attributes)

Example usage

The following example script contains required attributes only:

AdminJMS.createGenericJMSConnectionFactoryAtScope("myScope", "JMSTest", "JMSCFTest", "“jmsjndi",
"extjmsjndi")

The following example script includes optional attributes in a string format:

AdminJMS.createGenericJMSConnectionFactoryAtScope("Cell=I1BM-F4A849C57A0Cel101, Node=1BM-F4A849C57A0Node01, Server=serverl”,
"My JMS Provider Namel", "My Generic JMSConnection Factory", "JNDIName", "extJNDIName",

"XAEnabled=false, authDataAlias=myAuthDataAlias, authMechanismPreference=BASIC_PASSWORD,

category=myCategory, diagnoseConnectionUsage=false, logMissingTransactionContext=true,

description="'my JMS Connection Factory at scope',

manageCachedHandles=true, providerType=myJMSProviderType, type=TOPIC,

XxaRecoveryAuthAlias=myCellManager0l/al")

The following example script includes optional attributes in a list format:

AdminJMS.createGenericJMSConnectionFactoryAtScope(”Cell=IBM-F4A849C57A0Cel 101, Node=1BM-F4A849C57A0Node0], Server=serverl”,
"My JMS Provider Namel", "My Generic JMSConnection Factory", "JNDIName", "extJNDIName", [['XAEnabled’, 'false'],
['authDataAlias', 'myAuthDataAlias'], ['authMechanismPreference', 'BASIC _PASSWORD'],

['category', 'myCategory'], ['connectionPool', [['agedTimeout', '100'],

['connectionTimeout', '1000'], ['freePoolDistributionTableSize', 10], ['maxConnections', '12'],

['minConnections', '5'], ['numberOfFreePoolPartitions’, '3'],

['numberOfSharedPoolPartitions', '6'], ['numberOfUnsharedPoolPartitions', '3'], ['properties’,

[[['description', 'My description'], ['name', 'myName'], ['required', 'false'],

['validationExpression', ''], ['value', 'myValue']]]], ['purgePolicy', 'EntirePool'],

202 scripting the application serving environment

['reapTime', '10000'], ['surgeCreationInterval', '10'], ['surgeThreshold', '10'],
['testConnection', 'true'], ['testConnectionInterval', '10'], ['unusedTimeout', '10000']]],
['description’, 'My description'], ['diagnoseConnectionUsage', 'false'],
['logMissingTransactionContext', 'true'], ['manageCachedHandles', 'true'], ['mapping’,
[['authDataAlias', 'authDataAliasValue'], ['mappingConfigAlias', 'mappingConfigAliasValue']]],
['preTestConfig', [['preTestConnection', 'true'], ['retryInterval', '12343'],

['retryLimit', '4']]], ['properties', [[['description', 'My description'], ['name', 'myName'],
['required’', 'false'], ['validationExpression', ''], ['value', 'myValue']]]], ['propertySet’,
[['resourceProperties', [[['name', 'databaseName'], ['type', 'java.lang.String'],

['value', 'myDbName']], [['name’, 'driverType'], ['type', 'java.lang.Integer'], ['value', 4]],
[['name’, 'serverName'], ['type', 'java.lang.String'], ['value', 'localhost']],

[['name', 'portNumber'], ['type', 'java.lang.Integer'], ['value', 50000]]]]]],
['providerType', 'myJMSProviderType'], ['sessionPool', [['agedTimeout', '100'],
['connectionTimeout', '1000'], ['freePoolDistributionTableSize', 10], ['maxConnections', '12'],
['minConnections', '5'], ['numberOffreePoolPartitions', '3'],
['number0fSharedPoolPartitions', '6'], ['numberOfUnsharedPo